
ETSI TS 101 493-3 V1.1.1 (2000-09)
Technical Specification

Broadband Radio Access Networks (BRAN);
HIPERLAN Type 2;

Packet based convergence layer;
Part 3: IEEE 1394 Service Specific Convergence

Sublayer (SSCS)

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)2

Reference
DTS/BRAN-0024004-3

Keywords
access, broadband, radio, HIPERLAN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2000.
All rights reserved.

http://www.etsi.org/
http://www.etsi.org/tb/status
editor@etsi.fr

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)3

Contents

Intellectual Property Rights ..7

Foreword...7

1 Scope ..8

2 References ..8

3 Definitions, symbols and abbreviations ...8
3.1 Definitions..8
3.2 Symbols..10
3.3 Abbreviations ...10

4 Overview ..11
4.1 The 1394 SSCS ..11
4.2 HIPERLAN/2 Bus..12
4.3 Numbering and coding conventions ...13

5 User plane services...14
5.1 General ...14
5.2 Primitives (informative) ...14
5.2.1 Primitive types ..14
5.2.2 Parameter definitions ..15
5.2.3 Interface to the upper layer ...15
5.2.3.1 Primitives related to isochronous traffic ...15
5.2.3.1.1 CL_ISOCH_STREAM {request, indication}..15
5.2.3.1.2 CL_CYCLE_SYNCH {indication}...15
5.2.3.2 Primitives related to asynchronous traffic...15
5.2.3.2.1 CL_ASYNC_ACTION {request, indication, confirm, response}...16
5.2.3.2.2 CL_ASYNC_STREAM {request, indication} ..16
5.2.4 Interface to the common part ..16
5.3 Clock synchronization service..17
5.3.1 General..17
5.3.2 SSCS PDU format ..18
5.3.3 Procedures...19
5.3.3.1 Procedure in the wireless cycle master (WCM) ..19
5.3.3.2 Procedure in a wireless cycle slave (WCS)...19
5.4 Asynchronous transaction data transport service ...19
5.4.1 General..19
5.4.2 Asynchronous SSCS PDU coding ..20
5.4.3 Asynchronous packets management ...21
5.4.4 Procedures...21
5.4.4.1 Procedure in the sender ...21
5.4.4.2 Procedure in receiver...22
5.5 Stream data transport service..22
5.5.1 Isochronous stream data transport service ..22
5.5.1.1 General ..22
5.5.1.2 Isochronous stream SSCS PDU coding...22
5.5.1.3 Procedure ..24
5.5.1.3.1 Procedure in the sender..24
5.5.1.3.2 Procedure in the receiver ...24
5.5.2 Asynchronous stream data transport service...25
5.5.2.1 General ..25
5.5.2.2 Asynchronous stream SSCS PDU coding ...25
5.5.2.3 Procedure ..26
5.5.2.3.1 Procedure in the sender..26
5.5.2.3.2 Procedure in the receiver ...27

6 Control plane services ..27
6.1 General ...27

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)4

6.2 Primitives (informative) ...28
6.2.1 CL_CONTROL {request, confirm}..28
6.2.2 CL_SELF_ID {indication} ...29
6.3 Association - Initialization ...29
6.4 Bus reset service...30
6.4.1 General..30
6.4.2 Procedures...30
6.4.2.1 CC or WT initiated bus reset...30
6.4.2.2 Bus reset worst case duration ..30
6.4.2.3 Procedure in the CC side...30
6.4.2.4 Procedure in the WT side..31
6.4.3 Assignment of physical_IDs ...32
6.5 Clock information connection control..32
6.5.1 General..32
6.5.2 Wireless cycle master procedure ..33
6.5.2.1 Wireless cycle master election ..33
6.5.2.2 Wireless cycle master operation..33
6.5.3 Wireless cycle slave procedure...33
6.5.4 CC specific procedure...34
6.6 CL responsibility handover ..34
6.7 HL2 Address Resolution service (HARP)..35
6.7.1 General..35
6.7.2 Procedures...35
6.7.2.1 Procedure in the sender ...35
6.7.2.2 Procedure in the receiver...36
6.8 Asynchronous transaction connection control service..36
6.8.1 Asynchronous transaction mapping to a DLC connection..36
6.8.1.1 General ..36
6.8.1.2 Procedures...36
6.8.2 Clean closing service ..37
6.8.2.1 General ..37
6.8.2.2 Clean closing SSCS PDU format ..37
6.8.2.3 Procedures...37
6.8.2.3.1 Procedure at the initiating side ..37
6.8.2.3.2 Procedure at the other side...37
6.9 Isochronous stream connection control service ..38
6.9.1 General..38
6.9.2 SSCS procedure ..39
6.9.2.1 General ..39
6.9.2.1.1 Resources allocation..39
6.9.2.1.2 Non overlaid connection..39
6.9.2.1.3 Overlaid connection...40
6.9.2.1.4 Resources reclaim..41
6.9.2.1.5 Resources release...41
6.9.2.2 Procedure at the talker side ...41
6.9.2.3 Procedure at the listener side...42
6.9.2.4 Procedure at the IRM side...43
6.10 Asynchronous streams connection control service...45
6.10.1 IRM and PCR functions..45
6.10.2 Asynchronous stream relaying..45
6.10.2.1 General ..45
6.10.2.2 Procedures...45
6.10.2.2.1 Procedure in the WT side ..45
6.10.2.2.2 Procedure in the CC side ...46

7 Convergence layer specific parameters ..46
7.1 Convergence layer identifier ..46
7.2 Convergence layer version ...46
7.3 Maximum transmission unit ...46
7.4 Information elements for 1394 SSCS...47
7.4.1 Information element format ..47
7.4.2 Information element type coding ..47

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)5

7.4.3 HARP_REQUEST information element ..47
7.4.4 HARP_RESPONSE information element ..47
7.4.5 EUI_64 information element ..48
7.4.6 CHANNEL information element ..48
7.4.7 BUS_SUSPEND information element..49
7.4.8 BUS_RESUME information element ...49
7.4.9 BUS_RESET information element ...49
7.4.10 TRANSACTION_INDICATOR information element ...50

Annex A (normative): HIPERLAN/2 CSRs...51

A.1 CSR registers..51
A.1.1 Standard CSR registers...51
A.1.2 Unimplemented wired-1394 registers ..51
A.1.3 INTERRUPT_TARGET register ...52
A.1.4 CYCLE_TIME register ..52
A.1.5 BUS_TIME register ...53
A.1.6 LOCAL_CYCLES register ..54
A.1.7 LOCAL_SECONDS register..54
A.1.8 SPLIT_TIMEOUT register ..55

A.2 PCRs...56
A.2.1 oPCR format...56
A.2.2 iPCR format..57
A.2.3 PCR error codes ...58

A.3 ROM information...59

A.4 Locked messages..60
A.4.1 Locked message formats ..61
A.4.2 ALLOCATE_SOME..62
A.4.2.1 ALLOCATE_SOME request..62
A.4.2.2 ALLOCATE_SOME response ...62
A.4.3 MODIFY_BANDWIDTH..63
A.4.3.1 MODIFY_BANDWIDTH request..63
A.4.3.2 MODIFY_BANDWIDTH response ...63
A.4.4 RECLAIM_THIS ...64
A.4.4.1 RECLAIM_THIS request ...64
A.4.4.2 RECLAIM_THIS response...64
A.4.5 RELEASE_THIS ...65
A.4.5.1 RELEASE_THIS request ...65
A.4.5.2 RELEASE_THIS response ...65

Annex B (informative): Quadlet-structured PDU formats...66

B.1 Asynchronous subaction...66

B.2 Isochronous streams ...66

B.3 Asynchronous streams..67

Annex C (normative): Nonbridge upper layer ..68

C.1 Primitives (informative) ...68

C.2 Time stamps for split-response timeouts (normative) ..68

C.3 User plane...69
C.3.1 Isochronous stream transport service ...69
C.3.1.1 HL2 Bus maximum transmission delay (informative)..69
C.3.1.2 Relative CIP time stamps (normative) ..70
C.3.2 Asynchronous transactions...72
C.3.2.1 Subaction rt field (normative) ...72
C.3.2.2 Available self-ID information (informative)...72

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)6

C.4 Control plane (normative) ..72
C.4.1 Clock connection control..72
C.4.2 Isochronous stream connection control ..72

Bibliography ...73

History ..74

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)7

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI Project Broadband Radio Access Networks (BRAN).

The present document defines the functionality required for interworking HIgh PErformance Radio Local Area
Network Type 2 (HIPERLAN/2) with IEEE 1394 [6]. Separate ETSI documents provide details on the system
overview, data link control layer, radio link control sublayer, other convergence sublayers and conformance testing
requirements for HIPERLAN/2.

The present document is Part 3 of a multi-part deliverable covering the Packet based Convergence Layer of
HIPERLAN/2, as identified below:

 Part 1: "Common Part";

 Part 2: "Ethernet Service Specific Convergence Sublayer (SSCS)";

 Part 3: "IEEE 1394 Service Specific Convergence Sublayer";

 Part 4: "IEEE 1394 bridge layer".

Part 1, Common Part, describes the functionality for adapting variable length packets/frames to the fixed size used in
the Data Link Control (DLC) layer. Further parts, each defining a Service Specific Convergence Sublayer (SSCS),
describe the functionality required to support a certain protocol, e.g. IEEE 1394 [6] or Ethernet protocols. The SSCSs
all use the services of the Common Part and the DLC [2]. It is envisioned that several, independent, service specific
parts will be defined in the future as market requirements develop. As a result, further parts may be added in the future.

http://www.etsi.org/ipr

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)8

1 Scope
The present document is applicable to HIPERLAN/2 equipment supporting interworking with 1394 buses.

The present document only addresses the functionality required to transfer IEEE 1394 [6] traffic over the radio interface
between HIPERLAN/2 devices. It does not address the requirements and technical characteristics for wired network
interfaces at a HIPERLAN/2 device.

The present document uses the services provided by the Common Part of the Packet based Convergence Layer and by
the Data Link Control layers of HIPERLAN/2.

The present document does not address the requirements and technical characteristics for type approval and
conformance testing. These are covered in separate Technical Specifications.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

• A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same
number.

[1] ETSI TS 101 493-1: "Broadband Radio Access Networks (BRAN); HIPERLAN 2; Packet based
Convergence Layer; Part 1: Common Part".

[2] ETSI TS 101 761-2: "Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data
Link Control (DLC) Layer; Part 2: Radio Link Control (RLC) sublayer".

[3] ETSI TS 101 761-1: "Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data
Link Control (DLC) Layer; Part 1: Basic Data Transport Functions".

[4] ETSI TS 101 764-4: "Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data
Link Control (DLC) Layer; Part 4: Extension for Home Environment".

[5] IEC 61883 (1998): "Consumer audio/video equipment - Digital interface".

[6] IEEE Std 1394 (1995): "Standard for a High Performance Serial Bus".

[7] IEEE Std 1394a (2000): "IEEE Standard for a High Performance Serial Bus - Amendment 1".

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

1394 controller: 1394 application that establishes an isochronous connection on a Serial Bus.

1394 SSCS: abbreviation for IEEE 1394 SSCS, the contents of the present document.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)9

HL2 1394 bridge layeraccess point: term access point used in the basic specifications is replaced by the term central
controller throughout this document to reflect that in home environment multiple HL2 devices can act as the access
point to a fixed network, whereas the whole HL2 network is still controlled by a single entity, the central controller.

bridge: pair of two closely coupled serial bus nodes, called portals, capable of connecting two buses in a Serial Bus net.
The bridge selectively forwards asynchronous and isochronous packets according to route information contained within
the portals.

bus_ID: 10-bit number uniquely specifying a particular bus within a Serial Bus net.

central controller (CC): provides control functionality for the DLC layer equivalent to that of an access point as
defined by HIPERLAN/2, but is not necessarily attached to a fixed network. The central controller functionality may be
embedded in a wireless device.

extended unique identifier (EUI-64): 64-bit unique number identifiers derived from the IEEE/RAC-provided
company_id value These EUI-64 values are, by definition, unique among themselves.

HIPERLAN/2: HIgh PErformance Radio Local Area Network Type 2, a short-range wireless LAN providing
broadband local access. Standardized by ETSI Project BRAN.

HL2 1394 bridge layer: refers to the HIPERLAN/2 IEEE 1394 bridge layer (see Bibliography).

HL2 Bus: protocols that provide 1394 asynchronous and isochronous services on a HL2 wireless network.

information element: message used to transfer convergence layer specific information and that is transferred
transparently by RLC messages.

listener: device that can sink isochronous streams is called a listener.

mac_ID: each WT is assigned a MAC ID that is unique for the AP by the AP RLC entity during association. The MAC
ID is coded with 8 bits.

mobile terminal: term mobile terminal used in the basic specifications is replaced by the term wireless terminal
throughout this document to reflect that in home environment not all HL2 terminals need to be mobile.

node_ID: 16-bit address which distinguishes the node from other nodes in the system. The 10 most significant bits are
the same for all nodes on the same bus; this is called the bus_ID. The 6 least-significant bits are unique for each node on
the same bus; this is called the physical_ID.

octet: eight bits of data.

overlaid connection: IEC 61883 [5] specification defines this operation that allows adding additional listeners to an
existing connection.

physical_ID: 6-bit number uniquely specifying a particular node on a 1394 bus.

portal: node that connects a bridge to a Serial Bus.

protocol data unit (PDU): data unit exchanged between entities at the same ISO layer.

quadlet: four bytes, or 32 bits, of data.

reserved codes: set of values for a defined field that are not used within the present document, but are reserved for
future revisions of the present document. A reserved code shall not be generated or, upon development of a future
standard, may be used as specified by such a standard. The recipient of a reserved code shall check its value and shall
reject code values that were not defined at the time of its inception.

reserved fields: set of bits not defined by the present document, but reserved for future revisions of the present
document. A reserved field shall be zeroed or, upon development of a future standard, set to a value specified by such a
standard. The recipient of a reserved field shall not check its value.

service data unit (SDU): data unit exchanged between adjacent ISO layers.

talker: device that can source isochronous streams is called a talker.

wired 1394: refers to a wired bus as specified in IEEE Std 1394-1995 as amended by IEEE Std 1394a-2000, and
supplemented with IEC 61883 [5].

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)10

wireless 1394: refers to a HL2 Bus as specified in the present document.

wireless bridge: bridge which a least one of its portals is wireless.

wireless cycle master: refers to the cycle master on the HL2 Bus.

wireless node: device that belongs to the HL2 Bus and that implements the 1394 SSCS without any bridging functions
on top of it. A wireless node is identical to a wireless terminal. The term wireless node is used when describing HL2
Bus behaviour.

wireless portal: wireless node that implements the HL2 1394 bridge layer, in addition of the 1394 SSCS.

wireless terminal (WT): HL2 home device, which is not acting as a central controller for a subnet. A wireless terminal
is identical to a wireless node which is not acting as a central controller. The term wireless terminal is used when
describing WT behaviour compared to CC behaviour.

3.2 Symbols
For the purposes of the present document, the following symbols apply:

0516 Hexadecimal notation
0000 01012 Binary notation

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AP Access Point
BRAN Broadband Radio Access Networks (Project)
CC Central Controller
CL Convergence Layer
CPCS Common Part Convergence Sublayer
C-SAP Control Service Access Point
CSR Control and Status Register
DLC Data Link Control
DUC DLC User Connection
ETSI European Telecommunications Standards Institute
EUI-64 Extended Unique Identifier
HARP HIPERLAN/2 Address Resolution Protocol
HL2 HIPERLAN/2
IE Information Element
IEEE Institute of Electrical and Electronics Engineers
iPCR input Plug Control Register
IRM Isochronous Resource Manager
LAN Local Area Network
LSB Least Significant Bit
MAC Medium Access Control
MSB Most Significant Bit
oPCR output Plug Control Register
PCR Plug Control Register
PDU Protocol Data Unit
RLC Radio Link Control
SAP Service Access Point
SDU Service Data Unit
Self_ID Self IDentify
SSCS Service Specific Convergence Sublayer
WCM Wireless Cycle Master
WCS Wireless Cycle Slave
WT Wireless Terminal

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)11

4 Overview

4.1 The 1394 SSCS
The IEEE 1394 Service Specific Convergence Sublayer (SSCS) is a part of the Packet based Convergence Layer and it
resides on top of the Common Part and the DLC, as shown in Figure 1. The support of the DLC extensions for the home
environment, as described in [4], is mandated by the 1394 SSCS.

The aim of this sublayer is to mimic the functions provided by IEEE 1394 [6] link layer. Bridge functions are out of the
scope of this document. They are defined in the HIPERLAN/2 1394 bridge layer (see Bibliography). The HIPERLAN/2
protocol stack defined in the present document replaces the wired 1394 physical and link layer. The services and
primitives provided by the 1394 SSCS are a subset of those provided by the wired 1394 physical and link stacks. Basic
wired 1394 services and primitives are provided by the 1394 SSCS. Some of the wired 1394 services and primitives are
related to the cable environment and the corresponding physical layer. They are not relevant for the HIPERLAN/2
environment, and thus not provided by the 1394 SSCS.

The 1394 SSCS allows the transportation of wired-1394 asynchronous and isochronous packets over HIPERLAN/2.
It also provides 1394 clock propagation over HIPERLAN/2.

Packet based Convergence Layer

HIPERLAN 2 Data Link Control LayerHIPERLAN 2 Data Link Control Layer

Part 1: Common PartPart 1: Common Part

Common Part Convergence SublayerCommon Part Convergence SublayerCommon Part Convergence Sublayer

Segmentation and Re-assemblySegmentation and Re-assemblySegmentation and Re-assembly

Higher layers

HIPERLAN 2 Physical Layer

CL User SAPCL User SAP

DLC User SAPDLC User SAP

Part 3: IEEE 1394 Service Specific Convergence SublayerPart 3: IEEE 1394 Service Specific Convergence Sublayer

Figure 1: IEEE 1394 [6] packet based convergence layer

The 1394 SSCS consists of a user plane and a control plane.

The user plane, described in clause 5, provides services to the higher layer via the CL-Service Access Point (SAP) and
uses the services of the Common Part of the Packet based Convergence Layer [1].

The control plane, described in clause 6, interacts with the DLC control plane, i.e. the RLC sublayer, via the DLC
Control SAP. It also uses the services of the Common Part of the Packet based Convergence Layer [1]. The DLC
Control SAP is defined in [2] and [4].

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)12

The 1394 SSCS may be present in two types of devices:

• Wireless 1394 bridge devices: these devices contain bridge functions to allow the connection of a HIPERLAN/2
network to a wired-1394 bus or to another wireless network. A wireless bridge device has at least one of its
portals that belong to the HIPERLAN/2 network. The wireless portal shall implement both the 1394 SSCS and
the HIPERLAN/2 1394 bridge layer.

• Wireless 1394 devices: these devices implement only the 1394 SSCS, and thus they do not provide any bridge
functions (see in Figure 2).

Packet based CL 1394-SSCS

Transaction
layer

S
er

ia
lB

us
M

an
ag

em
en

t

Hiperlan/2 PHY

Hiperlan/2 DLC

Packet based CL Common Part

Applications

Figure 2: Protocol stack of a non-bridge wireless 1394 device

4.2 HIPERLAN/2 Bus
The net topology when applied to HIPERLAN/2 is shown in Figure 3. The HIPERLAN/2 network appears as a wired-
1394 bus for all the attached nodes. This bus is called a HIPERLAN/2 Bus, which is often abbreviated as HL2 Bus.
Regarding the HL2 Bus, all wireless nodes are peers (there is no particular base station). Regarding the HIPERLAN/2
network there is however one device in the cell which acts as the CC.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)13

HIPERLAN/2 Bus

IEEE1394 Bus IEEE1394 Bus

IEEE1394 Bus

Bridge Portal

Wireless Bridge Portal

Wireless Node

Node

Wireless Bridge

Figure 3: HL2 Bus connecting bridge and non-bridge 1394 devices

4.3 Numbering and coding conventions
Information elements and PDU are transferred between the 1394 SSCS and the underlying protocol layers in units of
octets, in ascending numerical octet order (i.e. octet 1, 2, …, n-1, n), see Figure 4.

MSB Bits LSB
8 7 6 5 4 3 2 1

Octet 1
Octet 2

…
Octet N-1
Octet N

Figure 4: Format convention

When a bit is contained within a single octet, the highest bit number (i.e. labelled 8) represents the high order or most
significant bit (MSB).

In a multi-octet field, the order (i.e. the significance) of bit values within each octet decreases as the octet number
increases. For example, a 16-bit field is coded in Figure 5.

MSB Bits LSB
8 7 6 5 4 3 2 1

Octet 1 215 (MSB) 214 213 212 211 210 29 28

Octet 2 27 26 25 24 23 22 21 20 (LSB)

Figure 5: Corresponding coding in an IE or PDU

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)14

5 User plane services

5.1 General
The user plane procedures of the 1394 SSCS provide the capabilities to transfer 1394 SSCS SDUs between two wireless
1394 devices over the HIPERLAN/2 network.

The behaviour of the user plane procedures for CC and WT is identical.

User plane services cover:

a) Transport of 1394 SSCS SDU for both asynchronous and isochronous data;

b) Clock synchronization service: this function provides a mechanism that allows any isochronous capable node to
have its own cycle clock synchronized to the cycle clock of a single node.

5.2 Primitives (informative)
The higher layers (node or bridge applications) access to the 1394 SSCS is defined by the service primitives defined in
this subclause. Normative definitions are therefore contained in [7] and HL2 1394 bridge layer (see Bibliography), for
node and bridge applications respectively.

NOTE: The primitives are defined only for the purpose of describing layer-to-layer and sublayer-to-sublayer
interactions. These primitives are defined as an abstract list of parameters, and their concrete realization
may vary between implementations. No formal testing of primitives is intended. The following primitive
definitions have no normative significance.

5.2.1 Primitive types

Interface between layers

Four primitive types may be used between different layers:

- request, for a higher layer to request service from a lower layer;

- confirm, for the layer providing the service to confirm the activity has been completed;

- indication, for a layer providing service to notify the next higher layer of any specific service related activity;

- response, for a layer to acknowledge receipt of an indication primitive from the next lower layer.

Interface between sublayers

Two different primitives may be used between different sublayers. To indicate the absence of a Service Access Point
these primitives differ to the primitives between different layers:

- invoke, for a higher layer to request service from a lower layer;

- signal, for a layer providing service to notify the next higher layer of any specific service related activity.

The defined types for each category of primitive are shown as a list in curly brackets.

EXAMPLE: CL_UNITDATA {request, indication}

In this example, the defined types are request and indication but not confirm or response.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)15

5.2.2 Parameter definitions

Message unit: each piece of higher layer information that is included in the primitive is called a message unit. A series
of one or more message units may be associated with each primitive where each separate unit is related to one
information element in the corresponding DLC layer message. The list of message units is derived from the message
definitions by reference to the information elements that may contain information from or (to) the CL.

5.2.3 Interface to the upper layer

5.2.3.1 Primitives related to isochronous traffic

These primitives are used either by a HL2 1394 bridge layer entity (see Bibliography) or by a streaming application.

5.2.3.1.1 CL_ISOCH_STREAM {request, indication}

This primitive is used to transmit isochronous packets on the bus, using parameters specified in Table 1. This primitive
is not confirmed.

Table 1: CL_ISOCH_STREAM parameters

parameter request confirm indication response
Message units (possible elements)
time_stamp
isoch_header
interface_data (SSCS SDU)

always
always
always

—
—
—

always
always
always

—
—
—

The time_stamp parameter specifies a 32 bits time stamp that shall be inserted in the 1394 SSCS PDU.

The isoch_header parameter includes tag, channel, tcode, and sy field, as defined by wired 1394.

The interface_data parameter consists of the data and pad bytes, as well as data_CRC fields, as defined by wired 1394.

5.2.3.1.2 CL_CYCLE_SYNCH {indication}

The 1394 SSCS entity uses this primitive to indicate to the upper layer that an isochronous period has passed (i.e. that
CYCLE_TIME.offset_count has overflowed), using parameters specified in Table 2. This primitive is not confirmed.

Table 2: CL_CYCLE_SYNCH parameters

parameter request confirm indication response
Message units (possible elements)

current_seconds_count
current_cycle_count

—
—

—
—

always
always

—
—

The current_seconds_count parameter contains the current value of the BUS_TIME register.

The current_cycle_count parameter contains the current CYCLE_TIME.cycle_count value.

5.2.3.2 Primitives related to asynchronous traffic

These primitives are used by a 1394 Transaction Layer.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)16

5.2.3.2.1 CL_ASYNC_ACTION {request, indication, confirm, response}

This primitive is used to transmit one primary asynchronous packet on the HIPERLAN/2 bus, using parameters
specified in Table 3.

Table 3: CL_ASYNC_ACTION parameters

parameter request confirm indication response
Message units (possible elements)
time_of_life
response_flag
interface_data (SSCS SDU)
crc_result
reply

always
always
always

—
—

—
—
—
—

always

always
always
always
always

—

—
—
—

always
always

The time_of_life parameter is used to indicate how long this packet is allowed to live in the HL2 Bus. It may be
negative, in that case an upper layer receiving it in an indication could take appropriate actions (such as discard the
packet).

The response_flag parameter differentiates between request and response packets, for the purposes of determining
which DUC shall be used.

The interface_data parameter consists of an asynchronous subaction (request or response) packet, as defined by
wired 1394.

The reply code has one of the following values:

reply_accepted the interface data was accepted, but has not necessarily been transferred over the HL2 Bus.
reply_busy the interface data was rejected because buffer space was temporarily unavailable.
reply_missing the interface data could not be delivered because the destination_ID is invalid.

The crc_result parameter indicates when the data_CRC was found to be invalid.

5.2.3.2.2 CL_ASYNC_STREAM {request, indication}

This primitive is used to transmit asynchronous stream packets on the bus, using parameters specified in Table 4. This
primitive is not confirmed.

Table 4: CL_ASYNC_STREAM parameters

parameter request confirm indication response
Message units (possible elements)
time_of_life
async_header
interface_data (SSCS SDU)
crc_result

always
always
always

—

—
—
—
—

always
always
always
always

—
—
—
—

The time_of_life is used to indicate how long this packet is allowed to live in the HL2 Bus. It may be negative, in that
case an upper layer receiving it in an indication could take appropriate actions (such as discard the packet).

The async_header parameter consists of the asynchronous stream packet header as defined by wired 1394.

The interface_data parameter consists of the header, header_CRC, data, pad, and data_CRC fields, as defined by
wired 1394.

The crc_result parameter indicates when the data_CRC was found to be invalid.

5.2.4 Interface to the common part

The primitive CPCS_UNITDATA {invoke, signal}, defined in [1], is used by the user plane procedures of the
1394 SSCS.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)17

5.3 Clock synchronization service

5.3.1 General

Clock synchronization service aims to provide the means to synchronize clock registers of wireless nodes to their
corresponding registers at the wireless cycle master (WCM) node. Clock registers are the following:

- BUS_TIME,

- CYCLE_TIME,

- LOCAL_SECONDS,

- LOCAL_CYCLES.

BUS_TIME and CYCLE_TIME registers are related to isochronous traffic, and shall be implemented by all
isochronous capable wireless nodes. These registers are synchronized to the BUS_TIME and CYCLE_TIME registers
of the WCM.

LOCAL_SECONDS and LOCAL_CYCLES maintain a local time within the HL2 Bus and shall be implemented by all
wireless nodes. These registers are synchronized to the LOCAL_SECONDS and LOCAL_CYCLES registers of the
WCM. The characteristic of these two registers is that they have to ensure that the time passes continuously.
LOCAL_SECONDS and LOCAL_CYCLES registers of the WCM shall not be modified by the network cycle master
in order to prevent any time discontinuities (see also in 6.5.2.2). LOCAL_SECONDS and LOCAL_CYCLES registers
have only local significance. Time maintained by these registers is used by wireless nodes to timestamp asynchronous
transactions (see subclause 5.4).

Detailed description of all these registers is given in Annex A; clauses A.1.4, A.1.5, A.1.6 and A.1.7.

Synchronization principles for BUS_TIME, CYCLE_TIME, LOCAL_SECONDS and LOCAL_CYCLES with their
corresponding registers at the WCM are similar. The following principle is mainly focused on the synchronization of
the CYCLE_TIME register.

Synchronization principle of the CYCLE_TIME register between the cycle master and a cycle slave is depicted in
Figure 6. Referring to this illustration, when a frame start is observed by the cycle master the CYCLE_TIME register is
latched in the a register, and when the frame start is observed by a cycle slave the CYCLE_TIME register is latched in
the b register. The contents of the a register is transmitted to the cycle slave a' register. The time difference between b
and a' is used to adjust the CYCLE_TIME register of the cycle slave.

NOTE: The offset of the clock PDU in the frame is not constant; it may change as depicted in Figure 6.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)18

oscillator

CYCLE TIME

2 ms 2 ms 2 ms

a

oscillator

CYCLE TIME

b

a’

Frame Start Frame Start
b -
a’

Cycle Master Cycle Slave

update

Figure 6: Synchronization principle of the CYCLE_TIME register

5.3.2 SSCS PDU format

The WCM shall broadcast clock information into clock PDU, which contains synchronized and local time values, as
illustrated in Figure 7.

8 7 6 5 4 3 2 1
Octet 1
Octet 2 isoch_seconds
Octet 3
Octet 4
Octet 5 isoch_cycles
Octet 6
Octet 7 isoch_offset
Octet 8 reserved frame_counter
Octet 9
Octet 10 local_seconds
Octet 11
Octet 12
Octet 13 local_cycles
Octet 14
Octet 15 local_offset
Octet 16 reserved

Figure 7: Clock SSCS PDU format

Clock PDU fields are defined as follows:

- The 32-bit isoch_seconds field shall contain the value of the BUS_TIME register at the time when the
DLC_MAC_FRAME_START primitive was received by the 1394 SSCS entity of the WCM.

- The 13-bit isoch_cycle field shall contain the value of CYCLE_TIME. cycle_count at the time when the
DLC_MAC_FRAME_START primitive was received by the 1394 SSCS entity of the WCM.

- The 12-bit isoch_offset field shall contain the value of the CYCLE_TIME. cycle_offset at the time when the
DLC_MAC_FRAME_START primitive was received by the 1394 SSCS entity of the WCM.

- The 32-bit local_seconds, 13-bit local_cycles and 12-bit local_offset fields are copies of like named fields from
the LOCAL_SECONDS and LOCAL_CYCLES registers at the time when the DLC_MAC_FRAME_START
primitive was received by the 1394 SSCS entity of the WCM.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)19

- The 4-bit frame_ counter identifies the number of the MAC frame which preamble was taken as a reference
point for the initialization of the all other fields of the SSCS PDU. DLC_MAC_FRAME_NUMBER primitive
furnishes the MAC frame number.

5.3.3 Procedures

5.3.3.1 Procedure in the wireless cycle master (WCM)

Each time the MAC frame start preamble is detected by means of the DLC_MAC_FRAME_START indication
primitive, the WCM shall take a snap-shot of its BUS_TIME, CYCLE_TIME, LOCAL_SECONDS, LOCAL_CYCLES
registers, and shall construct a SSCS PDU as follows:

- isoch_seconds contains the BUS_TIME.seconds value,

- isoch_cycles contains the CYCLE_TIME.cycle_count part,

- isoch_offset contains the CYCLE_TIME.cycle_offset part,

- local_seconds contains the LOCAL_SECONDS.seconds register value,

- local_cycles contains the LOCAL_CYCLES.cycle_count part,

- frame_counter contains the number of the frame which preamble was taken as reference point to all wireless
nodes.

The WCM sends this SSCS PDU using the CPCS_UNITDATA invoke primitive to the CPCS entity.

5.3.3.2 Procedure in a wireless cycle slave (WCS)

Each time the MAC frame start preamble is detected by means of the DLC_MAC_FRAME_START indication
primitive, the WCS shall take a snap-shot of its BUS_TIME (if any), CYCLE_TIME (if any), LOCAL_SECONDS,
LOCAL_CYCLES registers, and shall store the result in a temporary register along with the frame_counter of the
MAC_FRAME_START primitive.

When the WCS receives a CPCS_UNITDATA signal primitive for the clock DLC Connection, it shall check whether
the received SSCS PDU corresponds to a measured snap-shot (by checking the frame_counter field). If the
frame_counter matches, the WCS is able to update its clock registers. The way registers are updated is implementation
dependent.

In the case the 1394 SSCS entity receives SSCS PDUs from the forwarding channel (see in 6.5), then snap-shots for the
two last frames shall be stored in a temporary register.

5.4 Asynchronous transaction data transport service

5.4.1 General

The purpose of the asynchronous transaction service is to reliably communicate asynchronous transaction components,
i.e. request or response subaction packets, between two 1394 SSCS peer entities. A busy-acknowledge based flow
control limits the flow rate of the higher level transmitter to that which can be supported by the lower layers.

The upper layer is responsible for creation and checking of 1394 specified packets, including their header_CRC and
data_CRC values. Higher level CRC coverage is a necessity because the undetected error rate of the lower level
transport (approximately 10-11) is less than that expected by 1394.

At the higher level, losses of asynchronous packets are detected through timeouts. In support of such timeout protocols,
higher level transmitters send each packet to the 1394 SSCS entity with a time_of_life parameter, thereby limiting its
effective lifetime within the HL2 Bus. At the higher level, receivers are required to check the time_of_life parameter,
discarding these packets if their allocated time-to-live has expired.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)20

When passing through the 1394 SSCS entity, the packet's time_of_life parameter shall be converted to a time_of_death
label, by adding the current time to the time_of_life parameter. The time_of_death label uses the clock synchronization
service (at least only the seconds and cycle counts of it). When passed to the higher level, the packet's time_of_death
parameter shall be returned to a time_of_life parameter, thereby insulating the higher level protocols from the lowest
level timing parameters.

5.4.2 Asynchronous SSCS PDU coding

The 1394 SSCS asynchronous subaction PDU consists of a format, a time-stamp and a wired-1394 asynchronous
packet, as illustrated in Figure 8.

8 7 6 5 4 3 2 1
Octet 1 format
Octet 2
Octet 3 seconds

Octet 34 cycles
Octet 45 reserved type
Octet 56
Octet 67 destination_ID

Octet 78 tlabel rt
Octet 89 tcode pri

header quadlets...

Octet 4n+1
Octet 4n+2
Octet 4n+3
Octet 4n+4

header_CRC

(data quadlets)

Octet m+1
Octet m+2
Octet m+3
Octet m+4

(data_CRC)

Figure 8: Asynchronous subaction SSCS PDU format

Each PDU starts with a format field that describes which encapsulation scheme is applied for this asynchronous
subaction packet PDU. Format values are described in Table 5.

Table 5: format values

Value Name Description
0 iso_stream_bus_packet Encapsulation of wired-1394 isochronous stream packets
1 async_stream_bus_packet Encapsulation of wired-1394 asynchronous stream packets
2 async_subaction Encapsulation of asynchronous subaction packets
3-254 - Reserved

The 1394 SSCS PDU also contains a time_of_death label. This time_of_death label has 16-bit seconds and 13-bit
cycles field components, representing time in seconds and multiples of 125 µs units respectively.

The 2-bit type field specifies the packet type, as specified in Table 6.

Table 6: Asynchronous subaction type values

Value Name Description
0 ASYNC_REQUEST Asynchronous request and response packet with time_of_death header
1 — Reserved
2 CLOSE_REQUEST Clean-closing request (header quadlet only), see 6.8.2
3 CLOSE_RESPONSE Clean closing response (header quadlet only), see 6.8.2

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)21

The remainder of the packet consists of a subaction as defined by wired 1394. The tlabel, rt, pri fields, the remaining
header quadlets, and the data quadlets are processed as user data and (except for their inclusion in the CRC calculations)
are ignored by the 1394 SSCS entity. Other fields are described in the remainder of this subclause and can effect the
1394 SSCS entity processing.

The destination_ID that consists of a 10-bit bus_ID and 6-bit physical_ID components specifies which node is intended
to receive the packet.

The header_CRC value is located at a tcode-dependent offset (as defined in [6]) and covers the fourth through
preceding bytes. The initial four bytes are not covered by the header_CRC value.

Some packets contain data after the header_CRC value. For such packets, the data_CRC value covers these data bytes
and the zero-valued pad bytes defined in [6].

5.4.3 Asynchronous packets management

To transfer asynchronous transaction between two nodes A and B, a single duplex DUC shall be opened, as defined
in 6.8. One DUC is used to send requests from A to B and responses from B to A, which is sufficient if A is the
requester and B is the responder. A different DUC (if necessary) would be used to send requests from B to A and
responses from A to B. This prevents deadlocks that may appear if requests and responses are using a single DLC
connection.

Thus, the opening of a DUC necessarily involves the passing of an information element, that specifies whether the
opening node is the requester or responder. This is further described in 6.8.1.

When a 1394 SSCS receives a CL_CONTROL.asynchronous_path_reset, all open DUCs shall be closed as described
in 6.8.2.

5.4.4 Procedures

5.4.4.1 Procedure in the sender

This service is started on the upper layer request, when using the CL_ASYNC_ACTION request primitive. The service
involves a sequence of steps, listed below.

1) If the destination_ID.busID and request/response property (see 5.4.3) are associated with an open DUC, then
skip to step 5.

2) The destination_ID field is processed to generate physicalAddr, the HL2-bus destination's physical_ID address:

a) If destination_ID.bus_ID equals NODE_IDS.bus_ID (NODE_IDS is a CSR described in Annex A), then
physicalAddr equals destination_ID.physical_ID.

b) Otherwise, the destination_ID.bus_ID value is used as a parameter of a HARP operation (see 6.7) that returns
a physicalAddr address. If the HARP operation fails to return a valid physicalAddr address, then a
CL_ASYNC_ACTION confirm, with a reply_missing code, is returned.

3) The physicalAddr value is processed to retrieve the mac_ID address of the destination node by checking self-ID
information (see 5.4.3 and 6.4). If no mac_ID address is found, then a CL_ASYNC_ACTION confirm, with a
reply_missing code, is returned.

4) If no currently open DUC supports communications with the mac_ID address, then a DUC is opened for this
purpose as described in 6.8. For efficiency, the destination_ID.bus_ID value may remain associated with the
open DUC until the DUC is closed.

5) If the time_of_life value is negative, the packet shall be discarded. Otherwise, the time_of_life is added to the
time values contained in LOCAL_SECONDS/LOCAL_CYCLES (these are CSRs described in Annex A) to
generate a time_of_death value. The time_of_death value shall then be placed in the seconds/cycles fields of the
packet.

6) If buffer space is not available in the lower layer, then a CL_ASYNC_ACTION confirm, with a reply_busy
code, is returned. Otherwise, the 1394 SSCS PDU is posted to the CPCS in a CPCS_UNITDATA invoke
primitive and a CL_ASYNC_ACTION confirm, with a reply_accepted code is returned.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)22

5.4.4.2 Procedure in receiver

The header_CRC is checked. If the header is found to be corrupted, the packet is discarded.

The time values contained in LOCAL_SECONDS/LOCAL_CYCLES (these are CSRs described in Annex A) are
subtracted from the time_of_death value to generate the time_of_life value that is included in the
CL_ASYNC_ACTION indication primitive.

The data_CRC is checked and the result of this check is included in the CL_ASYNC_ACTION indication primitive.

NOTE: For efficiency, a source_ID.bus_ID of a packet received from the requester (see 6.8.1) may be associated
(as described in 5.4.4.1) with the DUC. This has the effect of eliminating the need to do an additional
HARP when the expected response is returned.

5.5 Stream data transport service

5.5.1 Isochronous stream data transport service

5.5.1.1 General

The purpose of the isochronous stream data transport service is to reliably transmit isochronous streams between two
1394 SSCS peer entities.

The upper layer is responsible for the generation and the reception of SDUs, representing individual 125 µs isochronous
packets. Each SDU is received from the upper layer with a time stamp. This time represents the time when the packet
was generated. It is encoded in the PDU, as described below, and thus transmitted by the 1394 SSCS entity to its peer so
that the SDU is delivered to the destination upper layer with the time stamp. The time stamp may then be used by the
upper layer to provide a constant delay service.

Each SDU is protected by a 32 bits CRC. Corrupted data are discarded by the 1394 SSCS entity.

The sending 1394 SSCS entity is responsible for concatenating the product of multiple SDUs into a single larger 2ms
PDU. The receiving 1394 SSCS entity is responsible for regenerating multiple SDUs, representing individual 125 µs
isochronous packets from a 2 ms PDU.

5.5.1.2 Isochronous stream SSCS PDU coding

For efficiency, several SDUs are collected into a single PDU, as illustrated in
Figure 9 and described in the remainder of this Part.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)23

8 7 6 5 4 3 2 1
Octet 1 format
Octet 2
Octet 3 seconds

Octet 4 cycles
Octet 5 Reserved

— tagged_SDU[1]

— tagged_SDU[2]

—

—

tagged_SDU[N]

Figure 9: Isochronous SSCS PDU format

A SDU is defined here as a 1394 isochronous packet as defined by wired 1394. The associated 1394 isochronous packet
header is not part of the SDU, but is one of the parameters of the associated primitive (as described in 5.2.3.1.1).

Each PDU starts with a format field that describes which encapsulation scheme is applied for this stream PDU. Format
values are described in Table 5.

A quadlet time-stamp label indicates then the isochronous cycle when the first SDU within the PDU was created. The
time stamp label has 16-bit seconds and 13-bit cycles field components, representing BUS_TIME/CYCLE_TIME
specified time in seconds and cycles (multiples of 125 µs units) respectively.

The remainder of the packet consists of the concatenation of tagged SDUs. For each SDU, the tag consists of its
corresponding wired-1394 header, except that the channel number is replaced by 6-bits of the primitive supplied
time-stamp value.

8 7 6 5 4 3 2 1
Octet 1
Octet 2 data_length

Octet 3 tag cycle_low
Octet 4 tcode sy

data_quadlets...

Octet 4n+1
Octet 4n+2
Octet 4n+3
Octet 4n+4

data_CRC

Figure 10: Isochronous tagged SDU format

data_length field represents the length of the following tagged SDU. It contains the length of the data field of the 1394
packet (without comprising the 1394 packet padding bytes). The data_length field is the same as the data_length field
of the corresponding wired-1394 packet header (retrieved from or sent in the primitive).

SDU

Tag

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)24

tag field contains the tag field value of the corresponding wired-1394 packet header (retrieved from or sent in the
primitive).

cycle_low field contains the 6 least significant bits of the cycle_count field from the time stamp that came to the 1394
SSCS entity along with the SDU.

tcode field contains the tcode field value of the corresponding wired-1394 packet header (retrieved from or sent in the
primitive).

sy field contains the sy field value of the corresponding wired-1394 packet header (retrieved from or sent in the
primitive).

data_quadlets represent data bytes as they were received in the SDU. They may contain padding bytes (the total
number of data_quadlet bytes represents an integer number of quadlets).

data_CRC is the data CRC as defined by wired 1394.

NOTE: data_length field does not necessarily give the SDU size. Some padding bytes may be necessary to add to
the data_length in order to get the total SDU size.

5.5.1.3 Procedure

5.5.1.3.1 Procedure in the sender

Upon the reception of a CL_ISOCH_STREAM request primitive, the 1394 SSCS entity shall check whether a multicast
DUC is open for this SDU: the 1394 SSCS entity shall extract the 1394 channel field from the isoch_header primitive
parameter. It shall then check whether there is an active DLC User Connection for a multicast channel corresponding to
this 1394 channel (see 6.9). If there is no such open DUC, then the SDU shall be discarded. Otherwise, the 1394 SSCS
entity collects several SDUs, received in several CL_ISOCH_STREAM request primitives into a single PDU.

The 1394 SSCS entity shall encode the seconds and cycles fields of the PDU with the time_stamp value of the first SDU
(that was received in the CL_ISOCH_STREAM request primitive).

For each SDU, all the 1394 header fields, except the channel and the header CRC (that were received in the
CL_ISOCH_STREAM request primitive) are copied into the corresponding fields tagging the SDU (tag, tcode, sy).

For each SDU, the cycle_low field is encoded with the 6 less significant bits of the time_stamp.cycle_offset primitive
parameter.

data_CRC field is also encoded with the data_CRC from the CL_ISOCH_STREAM request primitive. This
corresponds to a wired-1394 data CRC.

The 1394 SSCS entity shall build and post a PDU to the CPCS every HL2 frame. A DLC primitive
(DLC_MAC_FRAME_START), described in [4] is available to determine when a HL2 frame starts.

Each PDU nominally contains 16 SDUs, although the number of SDUs can be less than 16 (if an isochronous packet is
not sent in every cycle), 15 (if an isochronous packet is sent in every cycle, but the isochronous cycle duration is larger
than 1/16 of the HL2 frame duration), or 17 (if an isochronous packet is sent in every cycle, but the isochronous cycle
duration is shorter than 1/16 of the HL2 frame duration).

SDUs shall not be fragmented among different PDUs.

If the upper layer does not generate CL_ISOCH_STREAM request primitives within some 2 ms periods, empty PDUs
may also be generated (a PDU with no SDU). In this case the empty PDU shall contain at least an empty SDU (i.e.
data_length field encoded with 0, no data_quadlet field and a data_CRC encoded with 0). An empty PDU shall have 0
in the seconds and cycles fields as well as in the tag, tcode, sy and cycle_low fields.

5.5.1.3.2 Procedure in the receiver

The 1394 SSCS entity shall regenerate individual SDUs. It shall parse the PDU, and the individual data_length fields to
recover individual SDUs. Since every data_quadlets field is quadlet aligned (i.e. it corresponds to an integer number of
quadlets), the data_length field does not necessarily point to the end of the data_quadlets field.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)25

For each recovered SDU:

• The 1394 SSCS entity shall compute the data_CRC field, and discard corrupted SDUs.

• Based on the cycle_low field of every SDU tag, and on the seconds and cycles fields of the PDU, the 1394 SSCS
entity shall generate a time_stamp parameter.

• Based on the SDU tag, the 1394 SSCS entity shall generate the isoch_header primitive parameter corresponding
to the SDU: tag, tcode and sy are extracted from the received SDU tag and copied as they are in the
corresponding isoch_header fields.
The PDU was received on a multicast channel for which there is a correspondence to a 1394 channel, which is
used to fill the channel field of the isoch_header primitive parameter.

• The 1394 SSCS entity shall send the SDU along with the time_stamp and isoch_header parameters to the upper
layer in a CL_ISOCH_STREAM indication primitive.

The receiver of isochronous streams shall be prepared for these streams to experience a maximum transmission delay of
8 ms as described in C.4.2.

5.5.2 Asynchronous stream data transport service

5.5.2.1 General

The purpose of the asynchronous stream data transport service is to reliably transmit asynchronous streams between two
1394 SSCS peer entities.

The upper layer is responsible for the generation and the reception of SDUs, representing individual asynchronous
stream packets. Each SDU is received from the upper layer with a time_of_life.

When passing through the 1394 SSCS entity, the packet's time_of_life parameter shall be converted to a time_of_death
label, by adding the current time to the time_of_life parameter. The time_of_death label uses the clock synchronization
service (at least only the seconds and cycle counts of it). When passed to the higher level, the packet's time_of_death
parameter shall be returned to a time_of_life parameter, thereby insulating the higher level protocols from the lowest
level timing parameters.

Each SDU is also protected by a 32 bits CRC. Corrupted data are detected by the 1394 SSCS entity, and are signalled to
the upper layer as corrupted.

5.5.2.2 Asynchronous stream SSCS PDU coding

An SDU is defined here as a 1394 asynchronous stream packet as defined by wired 1394. The associated 1394
asynchronous stream packet header is not part of the SDU, but is one of the parameters of the associated primitive (as
described in 5.2.3.2.2)

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)26

8 7 6 5 4 3 2 1
Octet 1 format
Octet 2
Octet 3 seconds

Octet 4 cycles
Octet 5 reserved
Octet 6
Octet 7 data_length

Octet 8 tag reserved
Octet 9 tcode sy

data_quadlets...

Octet 4n-3
Octet 4n-2
Octet 4n-1
Octet 4n

data_CRC

Figure 11: Asynchronous stream PDU format

Each PDU starts with a format field that describes which encapsulation scheme is applied for this stream PDU. Format
values are described in Table 5.

A quadlet time_of_death label having a 16-bit seconds and 13-bit cycles field components represents time in seconds
and multiples of 125 µs units respectively.

data_length field represents the length of the following SDU. It contains the length of the data field of the 1394 packet
(without comprising the 1394 packet padding bytes). The data_length field is the same as the data_length field of the
corresponding wired-1394 packet header (retrieved from or sent in the primitive).

tag field contains the tag field value of the corresponding wired-1394 packet header (retrieved from or sent in the
primitive).

reserved field corresponds to the channel field of the wired-1394 packet header, and shall be filled with 0.

tcode field contains the tcode field value of the corresponding wired-1394 packet header (retrieved from or sent in the
primitive).

sy field contains the sy field value of the corresponding wired-1394 packet header (retrieved from or sent in the
primitive).

data_quadlets represent data bytes as they were received in the SDU. They may contain padding bytes (the total
number of data_quadlet bytes represents an integer number of quadlets).

data_CRC is the data CRC as defined by wired 1394.

5.5.2.3 Procedure

5.5.2.3.1 Procedure in the sender

Upon the reception of a CL_ASYNC_STREAM request primitive, the 1394 SSCS entity shall check whether a DLC
multicast group is existing for this SDU: the 1394 SSCS entity shall extract the 1394 channel field from the
async_header primitive parameter. It shall then check whether there is a DLC multicast group corresponding to this
1394 channel (at least whether the 1394 SSCS entity has joined such a DLC multicast group as described in 6.10). If the
1394 SSCS entity did not join such a DLC multicast group, then the SDU shall be discarded. Otherwise, the 1394 SSCS
entity shall build a PDU according to 5.5.2.2.

If the time_of_life value is negative, the packet shall be discarded. Otherwise, the time_of_life is added to the time
values contained in LOCAL_SECONDS/LOCAL_CYCLES (these are CSRs described in Annex A) to generate a
time_of_death value. The time_of_death value shall then be placed in the seconds/cycles fields of the packet.

All the 1394 header fields, except the channel and the header CRC (that were received in the CL_ISOCH_STREAM
request primitive) are copied into the corresponding fields of the PDU (data_length tag, tcode, sy).

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)27

Reserved bits are set to 0.

If the data_quadlets field is present data_CRC field is also encoded with the data_CRC from the
CL_ISOCH_STREAM request primitive. This corresponds to a wired-1394 data CRC. If the data_quadlets field is
absent (as can occur, when a channel is active but no data is available to be transmitted), then the data_CRC value is not
included on the wired-1394 packet and is therefore not included in the 1394 SSCS PDUs.

The 1394 SSCS entity shall build and post a PDU to the CPCS in a CPCS_UNITDATA invoke primitive.

5.5.2.3.2 Procedure in the receiver

Upon the reception of a CPCS_UNITDATA signal primitive from the CPCS:

• The 1394 SSCS entity shall compute the data_CRC field, if present. The result of this operation is included in
the CL_ASYNC_STREAM indication primitive. Based on the cycle_low field of every SDU tag, and on the
seconds and cycles fields of the PDU, the 1394 SSCS entity shall generate a time_stamp parameter.

• The 1394 SSCS entity shall generate the async_header primitive parameter. It shall extract the tag, tcode and sy
PDU fields and copy as they are in the corresponding isoch_header fields.
The PDU was received on a multicast channel for which there is a correspondence to a 1394 channel that is used
to fill the channel field of the isoch_header primitive parameter.

• time of life primitive parameter is generated by subtracting the time values contained in
LOCAL_SECONDS/LOCAL_CYCLES (these are CSRs described in Annex A) from the time_of_death value.

• The 1394 SSCS entity shall send the SDU along with the time_of_life and isoch_header parameters to the upper
layer in a CL_ISOCH_STREAM indication primitive.

6 Control plane services

6.1 General
The control plane of the 1394 SSCS interacts with the DLC control plane (i.e. the RLC sublayer) via the DLC Control
Service Access Point defined in [2]. It also uses the services of the Common Part of the Packet based Convergence
Layer [1].

The following functions are performed by the control plane procedures of the 1394 SSCS:

a) Triggering of DLC connection setup. This includes:

• Clock information DLC Connections (done at association time, and when connectivity to the wireless cycle
master changes);

• Isochronous and asynchronous streams. This is done on upper layer request using isochronous resource manager
(IRM) services (as described in 6.8);

• Asynchronous transaction data. This is done when the address resolution mechanism requests it (as described in
6.5) .

b) Triggering of DLC multicast and broadcast join procedures. This includes:

• Clock information DLC Connections (done at association time, and when connectivity to the wireless cycle
master changes);

• Isochronous and asynchronous streams. This is done on upper layer request using plug control register (PCR)
services (as described in 6.8).

c) Triggering of a bus reset process. This includes:

• 1394 physical_ID allocation;

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)28

• Distribution of all the 1394 physical_IDs of the HL2 Bus.

The following DLC C-SAP primitives defined in [4] are used by the control plane procedures of the 1394 SSCS:

• DLC_SETUP {request, indication};

• DLC_CONNECT {request, confirm, indication, response};

• DLC_RELEASE { request, confirm, indication, response };

• DLC_MULTICAST_JOIN {request, confirm, indication, response};

• DLC_MULTICAST_LEAVE {request, indication};

• DLC_MULTICAST_CONNECT {request, confirm, indication, response};

• DLC_MULTICAST_RELEASE {request, confirm, indication, response};

• DLC_MULTICAST_MODIFY {request, confirm, indication, response};

• DLC_INFO_TRANSFER {request, confirm, indication, response};

• DLC_MAC_FRAME_START {indication, response};

• DLC_MAC_FRAME_NUMBER {indication, response};

• DLC_START_CL_HO {indication, response};

• DLC_START_CC {indication, response}.

The DLC_INFO_TRANSFER primitive corresponds to the RLC_INFO primitive in the RLC layer. The RLC_INFO
function, which is optional in RLC layer (as described in [2]), shall be mandatory for a RLC that supports the 1394
SSCS services.

6.2 Primitives (informative)
These primitives are used by the upper layer in a wireless 1394 device.

6.2.1 CL_CONTROL {request, confirm}

The upper layer uses this service to request the convergence layer to perform specific actions. This service is confirmed.

Table 7: CL_CONTROL parameters

parameter request confirm indication response
Message units (possible elements)
bus_reset
enable_cycle_master
asynchronous_path_reset
node_type

always
always
always
always

always
always
always
always

—
—
—
—

—
—
—
—

The bus_reset parameter is used to initiate a bus reset.

The enable_cycle_master parameter permits to enable / disable wireless cycle master as defined in [6].

The asynchronous_path_reset parameter is used to force a reset of the asynchronous data transport service without loss
of data. This means that all the DUCs being used for the asynchronous data transport service shall be closed.

The node_type parameter indicates the type of the node, as defined in Table 8.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)29

Table 8: node_type values

Value Definition
0 Non-bridge device
1 - 3 Bridge, as defined by HL2 1394 bridge layer

This information is used in the self identify process as described in 6.4.

6.2.2 CL_SELF_ID {indication}

The bus reset service is further described in 6.4.

It reports to an application layer the self_ID information on the HL2 Bus (number of connected nodes, as well as their
physical_ID).

Table 9: CL_SELF_ID parameters

parameter request confirm indication response
Message units (possible elements)
current_physical_ID
node_number
toggle_bit
For (i=0;i<Node_number; i++) {
physical_ID
node_type
IRM_flag
}

—
—
—

—
—
—

—
—
—

—
—
—

always
always
always

always
always
always

—
—
—

—
—
—

The current_physical_ID parameter indicates the physical_ID of the current node on the HL2 Bus.

The node_number field indicates the number of nodes on the HL2 Bus.

The toggle_bit field indicates some physical_IDs are going to be reallocated (portals can react accordingly).

The physical_ID parameter indicates the physical_ID of one node on the HL2 Bus.

The node_type parameter indicates the type of the node, identified by physical_ID on the HL2 Bus. The coding of this
parameter is as defined in Table 8.

The IRM_flag parameter indicates if the node identified by the physical_ID on the HL2 Bus is the isochronous resource
manager.

6.3 Association - Initialization
The CL capabilities (at least the CL version as defined in 7.2) should be exchanged between WT and CC convergence
layers during the HIPERLAN/2 association process. The WT shall complete the association by sending one
DLC_INFO_TRANSFER request primitive containing the EUI_64 information element defined below to the CC, using
acknowledged unicast connections.

Information element Reference Status Total length
(octets)

Description

EUI_64 7.4.5 mandatory 11 Contains the WT’s EUI_64

The EUI_64 information element shall be transmitted in the <<CL-ATTRIBUTE>> field of the
DLC_INFO_TRANSFER request/response primitive.

Once the association procedure (as defined in [2]) is complete), a 1394 SSCS entity that is a wireless cycle master shall
setup the clock channels (as described in 6.5). A 1394 SSCS entity that is a wireless cycle slave shall join the multicast
clock group as described in 6.5).

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)30

6.4 Bus reset service

6.4.1 General

A bus reset can be initiated by any WT in the HL2 Bus, including the CC. The HL2 Bus reset is always controlled by
the CC. The CC shall initiate a bus reset when:

- a WT associates to the CC; i.e. a wireless node joins the HL2 Bus,

- a WT dissociates from the CC; i.e. a wireless node leaves the HL2 Bus,

- the CC receives a request from a WT to initiate a bus reset,

- the CC receives a request from the upper layer to initiate a bus reset.

6.4.2 Procedures

A HL2 Bus reset is not an atomic action and the CC may consume time and resources in order to reliably propagate bus
reset information. The HL2 Bus reset should be as less disruptive as possible regarding ongoing connections.

For the CC 1394 SSCS entity a specific state (bus_reset_state) is defined. The CC 1394 SSCS entity enters the
bus_reset_state as soon as it decides to initiate a bus reset. It leaves the bus_reset_state when the bus reset is completed
(see in 6.4.2.3).

Two types of information element are used by the CC to perform the bus reset: BUS_SUSPEND and BUS_RESUME.
A third information element, BUS_RESET, is used by WTs to request the CC to initiate a bus reset.

6.4.2.1 CC or WT initiated bus reset

A bus reset is CC initiated when an event (such as WT association or WT dissociation) appears in the lower layers. As
soon as such an event occurs, the CC enters into the bus_reset_state.

A bus reset may also be WT initiated. In this case, the WT sends DLC_INFO_TRANSFER request primitive containing
the BUS_RESET information element defined below.

Information element Reference Status Total length
(octets)

Description

BUS_RESET 7.4.5 mandatory 4 Initiates a bus reset

When the CC receives such an information element, it shall enter in bus_reset_state, and start a bus reset phase. It shall
also acknowledge the WT by sending a DLC_INFO_TRANSFER response primitive containing the same BUS_RESET
information element.

NOTE: When a bus reset is initiated by the upper layer of the device where the CC runs, it can still be considered
as a WT initiated bus reset, where the BUS_RESET information element flows internally to the device.

6.4.2.2 Bus reset worst case duration

The bus reset worst case duration is the maximum time the CC is allowed to spend in bus_reset_state. It starts when the
CC decides to enter this state, and stops when the BUS_RESUME information element has been received from the last
WT. This ∆T time is fixed to 1 second.

6.4.2.3 Procedure in the CC side

When entering into the bus_reset_state, the CC shall start the ∆T timer to monitor the bus reset duration. The CC 1394
SSCS entity shall then first send a DLC_INFO_TRANSFER request primitive containing the BUS_SUSPEND
information element defined below to all associated WTs, using acknowledged unicast connections.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)31

Information element Reference Status Total length
(octets)

Description

BUS_SUSPEND 7.4.7 mandatory 2xN+2 Indicates the start of the bus reset phase

The BUS_SUSPEND information element shall be transmitted in the <<CL-ATTRIBUTE>> field of the
DLC_INFO_TRANSFER request/response primitive. The BUS_SUSPEND information element contains the
physical_id allocation corresponding to this new bus reset (see in 6.4.3).

The CC 1394 SSCS entity shall manage isochronous resources as described in 6.9.2.4.

When the CC 1394 SSCS entity has received the DLC_INFO_TRANSFER response primitive containing the
BUS_SUSPEND information element from all associated WTs, it shall invoke the CL_SELF_ID indication primitive
and send a DLC_INFO_TRANSFER request primitive containing the BUS_RESUME information element defined
below to all associated WTs, using acknowledged unicast connections.

Information element Reference Status Total length
(octets)

Description

BUS_RESUME 7.4.8 mandatory 2xN+2 Indicates the end of the bus reset phase

The BUS_RESUME information element shall be transmitted in the <<CL-ATTRIBUTE>> field of the
DLC_INFO_TRANSFER request/response primitive.

The bus reset is complete when the BUS_SUSPEND information element have been received from all associated WTs.
Then the CC leaves the bus_reset_state.

As said in 6.4.2.2, the bus reset duration shall be less than the ∆T timer. If a bus reset cannot be completed within the
∆T timer, another bus reset shall be started.

The CC shall take appropriate actions (DFS, WT dissociation, …) so that it can succeed in one bus reset. The detail of
these actions is out of the scope of the present document.

If the CC 1394 SSCS entity fails to send the DLC_INFO_TRANSFER request primitive containing the
BUS_SUSPEND information element to all associated WTs, it shall retransmit this primitive to only those WTs that did
not acknowledge it, provided that the ∆T timer did not expire.

If the CC 1394 SSCS entity fails to send the DLC_INFO_TRANSFER request primitive containing the BUS_RESUME
information element to all associated WTs, it shall retransmit this primitive to only those WTs that did not acknowledge
it, provided that the ∆T timer did not expire.

6.4.2.4 Procedure in the WT side

When a WT 1394 SSCS entity receives a DLC_INFO_TRANSFER request primitive containing the BUS_SUSPEND
information element, it shall acknowledge it by sending a DLC_INFO_TRANSFER response primitive containing the
same BUS_SUSPEND information element.

The behaviour of a WT 1394 SSCS entity after the reception of a BUS_SUSPEND information element shall be as
follows:

- all established isochronous connections shall be maintained;

- for the asynchronous transaction data transport service:

- the 1394 SSCS entity shall reject any CL_ASYNC_ACTION request from its upper layer (i.e. respond with
an ack_busy to any transaction layer packet) – as a result the upper layer will not be able to initiate new
resource reservation from this time,

- the 1394 SSCS entity shall process packets coming from the lower layer (the CPCS). This includes internal
CSR access as well as transaction packets to deliver to the upper layer. The 1394 SSCS entity shall process
its PCRs, if any, (reset the PCRs, start a timer and wait for a 1394 controller to configure the plus again as
described in 6.9.2.2 and 6.9.2.3).

When a WT 1394 SSCS entity receives a DLC_INFO_TRANSFER request primitive containing the BUS_RESUME
information element, it shall acknowledge it by sending a DLC_INFO_TRANSFER response primitive containing the
same BUS_RESUME information element.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)32

The behaviour of a WT 1394 SSCS entity after the reception of a BUS_RESUME information element shall be as
follows:

- the WT resumes normal processing of asynchronous transactions;

- the WT shall invoke the CL_SELF_ID indication primitive.

When the upper layer receives a CL_SELF_ID indication primitive, it shall reserve resources that were reserved before
the bus reset, as defined in 6.9, Annex C and [5], Part 1.

NOTE: Since a device running a CC 1394 SSCS also contains a WT 1394 SSCS, WT 1394 SSCS behaviour
when a DLC_INFO_TRANSFER request primitive containing the BUS_RESUME information element
is received also applies for the device containing the CC.

If the WT 1394 SSCS receives more than one BUS_SUSPEND information elements before the reception of a
BUS_RESUME information element, only the first one shall be considered (others shall be ignored). If the WT 1394
SSCS receives more than one BUS_RESUME information elements with no reception of a BUS_SUSPEND
information element, only the first one shall be considered (others shall be ignored).

6.4.3 Assignment of physical_IDs

The CC shall assign a new physical_ID each time a WT associates. If the CC runs out new physical_IDs, the CC can
recycle old physical_IDs, but shall inform about that by setting the toggle bit in the CL_SELF_ID primitive.

As physical_IDs assignment is centrally managed, the CC has to keep as much as possible stable physical_IDs through
bus resets. The CC shall assign the same physical_IDs to still associated WTs. However if the bus reset is WT-initiated,
the CC shall assign a new physical_ID to that WT which initiates the bus reset. If a WT leaves (disassociates) and joins
(associates) again the HL2 Bus it shall be assigned a new physical_ID.

6.5 Clock information connection control

6.5.1 General

A 1394 channel is reserved and is dedicated to the multicast clock distribution. The 1394 clock channel is 0016. Two
multicast groups may correspond to this 1394 clock channel (a main and a forwarding group). The main group
corresponds to clock information directly sent by the WCM. The forwarding group corresponds to clock information
repeated by the 1394 SSCS entity of the CC. Selection between main and forwarding group is done by using the relay
bit of the 1394 CHANNEL IE.

Every isochronous capable HL2 1394 device shall join the main multicast group of the clock channel just after the
association phase. The CC side of 1394 SSCS entity allocates a multicast mac_ID for this main multicast group.

Cycle master function is enabled on a 1394 SSCS entity by invoking the CL_CONTROL request primitive on the
corresponding entity with enable_cycle_master as primitive parameter.
A 1394 SSCS entity that contains the IRM function can also enable itself its cycle master function (see 6.5.2.1).

Once the cycle master function is enabled on a device, the 1394 SSCS entity shall setup a multicast DLC connection for
the clock multicast mac_ID. According to the DLC multicast procedures (as defined in [4]), every 1394 SSCS entity
belonging to the clock multicast group (i.e. all the wireless cycle slaves) will get the DLC multicast connection setup.

If one of the 1394 SSCS entity does not correctly receive the clock information (because no radio contact to the WCM),
it shall ask to join the forwarding multicast group.

When at least one WT asks to join the forwarding multicast group, the corresponding multicast DLC connection shall
be setup. The 1394 SSCS entity of the CC shall also repeat clock information as described in 5.3.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)33

6.5.2 Wireless cycle master procedure

6.5.2.1 Wireless cycle master election

The wireless cycle master (WCM) is the cycle master on the HL2 Bus.

The 1394 SSCS entity that contains the IRM function (as described in 6.9) shall enable its cycle master function if no
other WCM is operating on the HL2 Bus (no multicast DLC connection is enabled for the multicast group of the clock
channel).

If the 1394 SSCS entity receives a CL_CONTROL request primitive with the enable_cycle_master action from its
upper HL2 1394 bridge layer entity, it shall enable its cycle master function. An upper layer that is not a HL2 1394
bridge layer entity shall not generate such a request as described in Annex C.

If the 1394 SSCS entity receives a CL_CONTROL request primitive with the disable_cycle_master action from its
upper HL2 1394 bridge layer entity, it shall disable its cycle master function. An upper layer that is not a HL2 1394
bridge layer entity shall not generate such a request as described in Annex C.

6.5.2.2 Wireless cycle master operation

As any isochronous capable device the 1394 SSCS entity shall join the main multicast group of the clock channel
during the initialization phase. It shall send a DLC_MULTICAST_JOIN request primitive containing the CHANNEL
information element defined below to the CC, using acknowledged unicast connections. (if the WCM and the CC
functions are hosted by the same device, this message flow is internal).

Information element Reference Status Total length
(octets)

Description

CHANNEL 7.4.6 mandatory 3 Contains the channel number

The CHANNEL information element shall be transmitted in the <<CL-ATTRIBUTE>> field of the
DLC_MULTICAST_JOIN request/response primitive.

The relay bit, which is defined in 6.10.2, is set to 0.

When the cycle master function is enabled on a device B, the cycle master function may already operate on another
device A. In that case device B, the new WCM, shall first update its LOCAL_TIME register value based on observed
values provided by device A, the old WCM, and continues as described below. The LOCAL_TIME register is defined
in Annex A and in 5.3.

When the cycle master function is enabled, the 1394 SSCS entity shall setup the multicast DLC connection for the clock
multicast mac_ID. It shall use the fixed slot allocation mode of the DLC (as described in [4]), with one LCH slot every
frame. It shall use the non acknowledged transport mode of the DLC.
When the cycle master function is disabled, the 1394 SSCS entity shall release the multicast DLC connection for the
clock multicast mac_ID.

When a WCM detects that another WCM is operating on the HL2 Bus, the 1394 SSCS entity that contains the IRM and
is also WCM shall disable its cycle master function.

6.5.3 Wireless cycle slave procedure

The 1394 SSCS entity shall join the main multicast group of the 1394 clock channel during the initialization phase (i.e.
just after the association phase). It shall send a DLC_MULTICAST_JOIN request primitive containing the CHANNEL
information element defined below to the CC, (if the WCM and the CC functions are hosted by the same device, this
message flow is internal).

Information element Reference Status Total length
(octets)

Description

CHANNEL 7.4.6 mandatory 3 Contains the channel number -
The relay bit, which is defined in
6.10.2, is set to 0.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)34

The CHANNEL information element shall be transmitted in the <<CL-ATTRIBUTE>> field of the
DLC_MULTICAST_JOIN request/response primitive.

When the multicast DLC connection for the main multicast group of the clock channel is setup, the 1394 SSCS entity
shall check that the clock information is correctly received. If the clock information is not well received (no or loose
radio contact with the WCM), the 1394 SSCS entity shall join the forwarding multicast group of the clock channel. It
shall send a DLC_MULTICAST_JOIN request primitive containing the CHANNEL information element defined below
to the CC, (if the WCM and the CC functions are hosted by the same device, this message flow is internal).

Information element Reference Status Total length
(octets)

Description

CHANNEL 7.4.6 mandatory 3 Contains the channel number -
The relay bit, which is defined in
6.9.3.2, is set to 1.

The CHANNEL information element shall be transmitted in the <<CL-ATTRIBUTE>> field of the
DLC_MULTICAST_JOIN request/response primitive.

A 1394 SSCS entity shall check it correctly receives the clock information at the initialization, and also during the
normal operation: the radio contact may change, and the 1394 SSCS entity may have to join the forwarding channel if it
looses direct contact to the WCM.

In the same way, a device that joined the forwarding multicast group, shall periodically check whether it gets clock
information from the main channel. If it does, it shall leave the forwarding multicast group by using a
DLC_MULTICAST_LEAVE request primitive with the CHANNEL information element.

6.5.4 CC specific procedure

When a WT joins the forwarding multicast group of the clock channel, the 1394 SSCS entity of the CC shall set up a
forwarding multicast DLC connection for this group, as defined in 6.9.3.2. Parameters for the forwarding DLC
connection are the same as the main DLC connection (fixed slot allocation, one LCH slot every frame,
non-acknowledged transport mode).

The 1394 SSCS entity of the CC shall release the forwarding multicast DLC connection when it detects that the last WT
left the forwarding group.

6.6 CL responsibility handover
When the 1394 SSCS of the CC receives the DLC_START_CL_HO indication primitive, it means a CC handover is on
going, and another CC capable device accepted to become the CC (called the new CC hereafter). CC responsibility
handover at the lower layer is described in [4].

Then the old CC shall perform the CL responsibility handover as follow:

It shall perform a bus reset procedure to inform other devices about the ongoing CC handover.

It shall send a BUS_SUSPEND message to all the devices (WTs and new CC), as described in 6.4 with the
information that the new CC is the IRM. The description of the IRM in the BUS_SUSPEND IE is depicted in
7.4.7.

Eventually it sends a BUS_RESUME message to all devices (WTs and CC), as described in 6.4.

The new CC may become the wireless cycle master as defined in 6.5.

Once the bus reset phase is finished, the 1394 SSCS of the old CC indicates the completion of the procedure to the
DLC layer by a DLC_START_CL_HO response.

When the new CC receives a DLC_START_CC indication primitive, it shall respond with a DLC_START_CC
response primitive. The DLC_START_CC primitive means that the CC handover is completed.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)35

NOTE: There is no convergence layer information to be handed over during a CC responsibility handover. After
the CC responsibility handover bus reset, isochronous resources will be reclaimed as described in 6.9.
The handle field of the RECLAIM_THIS request contains the mac_ID to be associated with the 1394
channel. So that, after the resource reclaim period, the new IRM gets the (1394 channel – multicast
mac_IDs) pairs that go on. If some resources are not reclaimed after the resource reclaim period, it has to
be released by the new IRM. The exact interface between the IRM and the RLC to retrieve these
un-reclaimed resources is out of the scope of the present document.

6.7 HL2 Address Resolution service (HARP)

6.7.1 General

This service is provided as a future-proof feature. This service is attached to the asynchronous transaction data transport
from the user plane. If the bus_ID part of the destination_ID of the 1394 SSCS SDU is neither set to the HL2 Bus
bus_ID, neither to 3F16 (local bus), this service is used in order to resolve the destination address.

When a 1394 SSCS entity receives SDU of which the destination bus_ID is unknown, it has to initiate the address
resolution service to get the physical_ID of the destination wireless device. In order to guarantee the accuracy of the
request, the 1394 SSCS entity uses an acknowledged protocol by polling every node of the HL2 Bus.

The HARP service uses the DLC_INFO_TRANSFER primitive of the DLC-C-SAP for direct link.

MT1_CL MT1_RLC MT2_CLMT2_RLC

ARP_REQUEST

RLC_INFO

ARP_REQUEST

ARP_RESPONSE

ARP_RESPONSE

RLC_INFO_ACK

Figure 12: HARP request

The initiating 1394 SSCS entity sends a HARP_REQUEST to all other WTs, that answers back a HARP_RESPONSE
indicating whether they are the destination 1394 SSCS entity or not.

6.7.2 Procedures

6.7.2.1 Procedure in the sender

When a 1394 SSCS entity wants to initiate a HARP, it shall send a DLC_INFO_TRANSFER request primitive
containing the HARP_REQUEST information element below to all the wireless nodes, using acknowledged unicast
connections.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)36

Information element Reference Status Total length
(octets)

Description

HARP_REQUEST 7.4.3 mandatory 4 Contains the unknown bus_ID

The HARP_REQUEST information element shall be transmitted in the <<CL-ATTRIBUTE>> field of the
DLC_INFO_TRANSFER request/response primitive.

When a WT gets an HARP_RESPONSE information element with acceptance of forwarding from another WT, it
knows whether that WT is the destination wireless device or not.

HARP protocol shall stop at the first positive response got. If no positive response comes (invalid bus_ID), then the
1394 SSCS entity generates a response packet (wired-1394 response packet with resp_address_error response code (as
defined in [6]) to the upper layer.

6.7.2.2 Procedure in the receiver

Upon receiving a DLC_INFO_TRANSFER indication the 1394 SSCS entity generates a DLC_INFO_TRANSFER
response primitive containing the HARP_REQUEST information element. Among all the 1394 SSCS entities that have
received an HARP_REQUEST, only the one that is in charge of forwarding the asynchronous packets to the target
bus_ID shall set Forwarding bit indication to 1 in the HARP_RESPONSE. It shall also put its own physical_ID in the
IE. The others shall set this bit to 0.

Information element Reference Status Total length
(octets)

Description

HARP_RESPONSE 7.4.4 Mandatory 5 Contains the unknown bus_ID and
physical_ID

The HARP_RESPONSE information element shall be transmitted in the <<CL-ATTRIBUTE>> field of the
DLC_INFO_TRANSFER response primitive.

6.8 Asynchronous transaction connection control service

6.8.1 Asynchronous transaction mapping to a DLC connection

6.8.1.1 General

Wired-1394 transactions are mapped on DLC connections as follow: one 1394 SSCS entity uses one DLC duplex
connection to send transaction requests and receive transaction responses. If the 1394 SSCS entity is intended to receive
transaction requests from the peer entity, another DLC duplex connection is needed.

Therefore, when setting up a DLC duplex connection, it is necessary to indicate whether the initiating side is a
transaction requester or a responder.

6.8.1.2 Procedures

The 1394 SSCS initiating the connection shall send a DLC_SETUP request primitive containing the
TRANSACTION_INDICATOR information element defined below to the other WT.

Information element Reference Status Total length
(octets)

Description

TRANSACTION_INDICATOR 7.4.10 mandatory 3 Indicates whether the initiating WT
is the requester or the responder

The TRANSACTION_INDICATOR information element shall be transmitted in the <<CL-ATTRIBUTE>> field of the
DLC_SETUP request/response primitive.

A 1394 SSCS receiving a DLC_SETUP indication primitive with the TRANSACTION_INDICATOR information
element, and accepting the connection shall send a DLC_CONNECT request primitive with no specific information
element. This TRANSACTION_INDICATOR IE indicates whether the WT that initiated the connection is a transaction
requester or a responder and respectively.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)37

6.8.2 Clean closing service

6.8.2.1 General

This service is used to clean close DLC user connections. A WT going to close a DLC user connection is thus able to
purge DLC buffers before closing. This feature allows some devices with limited ARQ resources to cleanly close some
DLC user connections and swap on others without loosing data. The way a device shares a limited amount of ARQ
resources between a larger amount of DLC user connections is however out of the scope of the present document.

6.8.2.2 Clean closing SSCS PDU format

Clean close request and clean close response PDU are based on an asynchronous subaction SSCS PDU (see 5.4.2) with
following characteristics:

8 7 6 5 4 3 2 1
Octet 1
Octet 2 seconds

Octet 3 cycles
Octet 4 reserved type

not used...

Figure 13: clean closing SSCS PDU format

Seconds and cycles fields shall be set to 0.

type field shall be set to either CLOSE_REQUEST or CLOSE_RESPONSE (see in Table 6).

Other asynchronous subaction SSCS PDU fields (destination_ID, tlabel, rt, tcode, pri, header_quadlets, header_CRC,
data_quadlets, data_CRC) shall not be included in the remaining part of the PDU.

6.8.2.3 Procedures

6.8.2.3.1 Procedure at the initiating side

When one 1394 SSCS entity wants to close a DLC user connection, it shall send a clean closing request PDU, defined
in 6.8.2.2, to the 1394 SSCS entity of the receiver and start a split timeout, as far a standard 1394 transaction.

It shall then stop sending user data to this DLC user connection.

It shall then wait for the reception of a clean closing response SSCS PDU. When either the clean closing response SSCS
PDU comes back or the split timeout expires, then the 1394 SSCS entity sends a DLC_RELEASE request primitive.

6.8.2.3.2 Procedure at the other side

When a 1394 SSCS entity gets a clean closing request, it has to stop transmitting packets after sending the current one.

It shall then respond with the clean closing response PDU to the sender.

The DLC user connection will be released by the clean closing initiator. But as soon as the 1394 SSCS entity sent a
clean closing response PDU, it shall consider the DUC is not open anymore.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)38

6.9 Isochronous stream connection control service

6.9.1 General

The isochronous stream connection control service is used to allocate resources to the stream data transport service.

The management of the isochronous resources in a Serial Bus is covered by the isochronous resource manager (IRM)
function described in wired 1394. It is located in the 1394 SSCS of the CC. The IRM provides channels and bandwidth
reservation facilities, so that other device applications can make some resource reservation (lock request / lock
response). The IRM does not provide any BANDWIDTH_AVAILABLE and CHANNEL_AVAILABLE registers. In
fact due to wireless transmission constraints (link radio quality), there are different physical modes possible when a
talker sends data to the listener. The selection of the physical mode depends from the radio link quality. Moreover from
the selected physical mode depends also the duration of the allocated time slots in the MAC frame (this is further
detailed in [3] and [4]. Therefore, the bandwidth to be reserved (in terms of time duration in the MAC frame) depends
from the selected physical mode, and thus depends from who is the talker and who is the listener. Therefore a specific
command based lock request lock response has been defined for the purpose of the IRM resources (see Annex A) in
order to put the bandwidth, the talker, and at least one listener in a single command. The mechanism for isochronous
data flow management uses the functions described in IEC 61883 [5],clause 7 of Part 1, with the exception of the oPCR
definition, which is described in A.2.1 of the present document. It also uses the connection management procedures
(CMP), as described in IEC 61883 [5],clause 8 of Part 1.

The 1394 controller reserves bandwidth and channel in the IRM and configures the iPCR and the oPCR. It can also
modify or release the bandwidth in the IRM.

An application can connect a device on a IEEE 1394 [6] channel by writing a channel number into its plug control
register (input plug for devices that receive data from the channel, output plug for devices that send data on the
channel).

The oPCR register (or set of registers) shall be implemented in a 1394 SSCS of a device that can source isochronous
streams. It is defined in A.2.1. This device is called a talker.

The iPCR register (or set of registers) shall be implemented in a 1394 SSCS of a device that can sink isochronous
streams. It is defined in A.2.2. This device is called a listener.

The oPCR defined here is not totally the same as the one described in the IEC 61883 [5] standard. It is adapted to HL2.

Isochronous streams shall use fixed slot allocation, which is a mode of capacity allocation negotiated during DUC
setup, as defined in [4].

Relaying of isochronous streams is out of the scope of the present document. Relaying of multicast data is not defined
in [4]. In the case there is no radio contact between the talker and the listener, or in the case the radio contact gets lost
between the talker and the listener, the listener will fail in receiving isochronous streams.

There are some features (link adaptation) in the lower layers (see [3] and [4]) in order to adapt the reception when the
link radio quality is changed. Therefore, when the link radio quality decreases, another physical mode may be selected.
If there is sufficient bandwidth, this mechanism is transparent to the 1394 SSCS entity and only requires peer to peer
DLC protocols. In a similar way, when other listeners join the multicast group, the link adaptation for direct link
multicast as described in [4] shall be used, so that the correct physical mode is selected. If there is sufficient bandwidth,
this is also transparent to the 1394 SSCS entity.
If the link radio quality decreases and there is not enough bandwidth to sustain the connection, then the multicast DLC
connection is released. When a 1394 SSCS entity observes a DLC multicast connection release, it shall update the
corresponding PCRs and report to the 1394 controllers that a connection has been released.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)39

6.9.2 SSCS procedure

6.9.2.1 General

The procedures defined below are used in three types of operations: allocating, reclaiming and releasing resources.

The wireless devices allocate resources when they want to send or receive streams.

The action of claiming new resources is split in two scenarios:

• Non overlaid connection consists in a wireless 1394 channel setup where both the source and the destination are
connected at the same time.

• Overlaid connection allows adding listeners to an existing connection.

The wireless devices shall reclaim resource after a bus reset operation.

6.9.2.1.1 Resources allocation

6.9.2.1.2 Non overlaid connection

One isochronous channel is mapped to one multicast DUC.

First, the 1394 controller shall a command based lock request (as defined in Annex A) towards the IRM (containing the
bandwidth, the channel, the talker identifier and one listener identifier. to allocate the channel and the bandwidth. If
there are available resources, the lock command succeeds.

The 1394 controller shall then send a lock request to the talker and listener at iPCR and oPCR addresses to set the
channel of the previous step.

Both talker and listener shall perform the multicast join procedure on this channel.

After the multicast join procedure is complete, the CC shall start a multicast setup procedure into the multicast group.
The stream is opened.

Then, both the talker and the listener shall send a lock response to the 1394 controller.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)40

MT2_
listener

CC_
WL_IRM

MT3_
1394_ctrl

MT1_
talker

Link_budget_calculation

Stream_opened

Associated

MSC Non_overlaid_connection

RLC_GROUP_JOIN

(channel)

RLC_GROUP_JOIN_ACK

(multicast mac_id)

Lock_rsp

MULTICAST_SETUP_PROCEDURE

MULTICAST_SETUP_PROCEDURE

Lock_rsp

Lock_req

(oPCR)

Lock_req

(iPCR)

Lock_req

(allocate_some
bandwidth,

)

Lock_rsp

(

bandwidth,
channel,

)

RLC_GROUP_JOIN

(channel)

RLC_GROUP_JOIN_ACK

(multicast mac_id)

allocate_some

talker_ID, listener_ID

talker_ID, listener_ID

Figure 14: Non overlaid connection mechanism

6.9.2.1.3 Overlaid connection

A HL2 multicast connection for a channel already exists.

The 1394 controller shall set the oPCR of the talker to increment the point to point connection counter.

It shall then set the iPCR of the new listener with the channel by sending a lock request. The new listener shall perform
a multicast join procedure.

The CC shall start a multicast setup procedure with the new listener. The stream is opened.

Then, the listener shall send a lock response to the 1394 controller.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)41

MT4_
new_listener

CC_
WL_IRM

MT3_
1394_ctrl

MT1_
talker

Stream_opened

Associated

MSC overlaid_connection

Lock_rsp

MULTICAST_SETUP_PROCEDURE

Lock_req

(iPCR)

Lock_req

(oPCR)

RLC_GROUP_JOIN_ACK

(multicast mac_id)

Lock_rsp

RLC_GROUP_JOIN

(channel)

Figure 15: Overlaid connection mechanism

6.9.2.1.4 Resources reclaim

When a 1394 controller is indicated a bus reset, it shall re-allocate all its connections within one second (i.e. send lock
request to the IRM as described in 6.9.2.4, and to the PCRs as described in 6.9.2.2 and in 6.9.2.3). After this time it is
not allowed to send either re-allocation or normal allocation messages during the worst case bus reset duration time
(∆T), see in 6.4.2.2. But a device can receive and accept a request during this period, as defined in 6.4.

The 1394 controller shall wait 1+∆T s to allocate new isochronous resources.

6.9.2.1.5 Resources release

To release the resources allocated to an isochronous channel, the 1394 controller shall release the bandwidth and
channels reserved in the IRM, by sending the appropriate command to the IRM (see 6.9.2.4 and A.4).

The talker and the listener can autonomously disconnect from the isochronous stream (if the DLC connection has been
released) and report that disconnection to the 1394 controller.

6.9.2.2 Procedure at the talker side

The talker shall behave as described in IEC 61883 [5] Part 1, with some specific HL2 behaviours that are described
hereafter:

Resource allocation:

When the talker receives a lock request from the 1394 controller on its oPCR, and that oPCR's channel field is nonzero,
it shall process the compare and swap transaction as specified in wired 1394 (compare the arg_value and data_value).
If the arg_value and data_value are different, then a negative lock response is generated. Otherwise, the talker shall
initiate a multicast join procedure to the CC on this channel.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)42

It shall send a DLC_MULTICAST_JOIN request primitive containing the CHANNEL information element defined
below to the CC.

Information element Reference Status Total length
(octets)

Description

CHANNEL 7.4.6 mandatory 3 Contains the channel number

The CHANNEL information element shall be transmitted in the <<CL-ATTRIBUTE>> field of the
DLC_MULTICAST_JOIN request/response primitive. The relay bit, which is defined in 6.9.3.2, is set to 0. The talker
gets the multicast mac_ID in the DLC_MULTICAST_JOIN confirmation primitive.

When the talker receives a DLC_MULTICAST_CONNECT indication primitive containing the multicast mac_ID, it
shall send a positive lock response to the 1394 controller.

If the multicast join procedure or the multicast setup procedure fails, the talker shall return a lock response with an error
code in the channel field to the 1394 controller, see A.2.3. If the multicast setup procedure failed due to transient
transmission error (timeouts, for instance), a TRANSIENT_ERROR code shall be returned in the lock response and the
1394 controller is expected to retry the resource allocation. If the error is more severe (such as bandwidth limitations), a
PERMANENT_ERROR code shall be returned in the lock response and the 1394 controller is not be expected to retry
the resource allocation.

Resource reclaim:

When the talker receives a BUS_RESUME information element contained in the <<CL-ATTRIBUTE>> field of the
DLC_INFO_TRANSFER request primitive, as defined in the bus reset procedure in 6.4, it shall reset the oPCR and
start a T timer (T=1s + ∆T).

If channel bits are not written before the T timeout, the 1394 SSCS shall generate a multicast leave procedure towards
the CC to leave the multicast group.

The talker shall leave the multicast group by sending a DLC_MULTICAST_LEAVE request primitive to the CC, for
the corresponding multicast mac_ID.

Resource release:

When the point-to-point connection counter field or the broadcast connection counter field of the oPCR is set to 0 by a
1394 controller, (the talker is disconnected from a channel) then the talker shall release the multicast DLC connection
corresponding to that channel, by sending a DLC_MULTICAST_RELEASE request primitive. It shall leave the
multicast group (by sending a DLC_MULTICAST_LEAVE request primitive).

If the multicast DLC connection is released by the lower layer, then the point-to-point connection counter field and the
broadcast connection counter field of the oPCR shall be set to 0. The 1394 SSCS entity shall also leave the
corresponding multicast group (by sending a DLC_MULTICAST_LEAVE request primitive). It shall also set the
disconnected_pcr bit in a write request to the INTERRUPT_TARGET CSR of at least the 1394 controllers that
modified the corresponding oPCR.

6.9.2.3 Procedure at the listener side

The listener shall behave as described in IEC 61883 [5], Part 1, with some specific HL2 behaviours that are described
hereafter:

Resource allocation:

When the listener receives a lock request from the 1394 controller on its iPCR, and that iPCR's channel field is nonzero,
it shall process the compare and swap transaction as specified in wired 1394 (compare the arg_value and data_value).
If the arg_value and data_value are different, then a negative lock response is generated. Otherwise, the listener shall
initiate a multicast join procedure to the CC on this channel:

It shall send a DLC_MULTICAST_JOIN request primitive containing the CHANNEL information element defined
below to the CC.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)43

Information element Reference Status Total length
(octets)

Description

CHANNEL 7.4.6 mandatory 3 Contains the channel number

The CHANNEL information element shall be transmitted in the <<CL-ATTRIBUTE>> field of the
DLC_MULTICAST_JOIN request/response primitive. The relay bit, which is defined in 6.9.3.2, is set to 0.The listener
gets the multicast mac_ID in DLC_MULTICAST_JOIN confirmation primitive.

When the listener receives a DLC_MULTICAST_CONNECT indication primitive containing the multicast mac_ID, it
shall send a positive lock response to the 1394 controller.

If the multicast join procedure or the multicast setup procedure fails, the listener shall return a lock response with an
error code in the channel field to the 1394 controller, see A.2.3. If the multicast setup procedure failed due to transient
transmission error (timeouts, for instance), a TRANSIENT_ERROR code shall be returned in the lock response and the
1394 controller is expected to retry the resource allocation. If the error is more severe (such as bandwidth limitations), a
PERMANENT_ERROR code shall be returned in the lock response and the 1394 controller is not be expected to retry
the resource allocation.

Resource reclaim:

When the listener receives a BUS_RESUME information element contained in the <<CL-ATTRIBUTE>> field of the
DLC_INFO_TRANSFER request primitive, as defined in the bus reset procedure in 6.4, it shall reset the iPCR and start
a T timer (T=1s + ∆T).

If channel bits are not written before the T timeout, the 1394 SSCS shall generate a multicast leave procedure towards
the CC to leave the multicast group.

The listener shall leave the multicast group by sending a DLC_MULTICAST_LEAVE request primitive to the CC, for
the corresponding multicast mac_ID.

Resource release:

When point-to-point connection counter field or the broadcast connection counter field of the iPCR is set to 0 (the
listener disconnected from a channel) then the listener shall release the multicast DLC connection corresponding to that
channel, by sending a DLC_MULTICAST_RELEASE request primitive. It shall leave the multicast group (by sending
a DLC_MULTICAST_LEAVE request primitive).

If the multicast DLC connection is released by the lower layer, then the point-to-point connection counter field and the
broadcast connection counter field of the iPCR shall be set to 0. The 1394 SSCS entity shall also leave the
corresponding multicast group (by sending a DLC_MULTICAST_LEAVE request primitive). It shall also set the
disconnected_pcr bit in a write request to the INTERRUPT_TARGET CSR of at least the 1394 controllers that
modified the corresponding oPCR.

6.9.2.4 Procedure at the IRM side

The IRM can receive different lock request commands, which are defined in A.4.
When the IRM receives a lock request from the 1394 controller, it shall perform the requested action. If the action is
done, the IRM shall send a lock response to the 1394 controller with the status field set to DONE code. If the action is
not correctly done, it shall send a lock response to the 1394 controller with the status field set to the appropriate failure
code.

The text below describes the different lock request commands.

Resource allocation on a new channel (ALLOCATE_SOME):

If the IRM receives an ALLOCATE_SOME request while being processing a bus reset (i.e. the CC started a bus reset
and did not complete it yet, see 6.4), then a ALLOCATE_SOME response shall be answered (with the status field set to
RESET code). Neither bandwidth nor channel shall be reserved.

Else, if the IRM receives an ALLOCATE_SOME request (new resource reservation on a not yet existing channel),
containing the talker_ID, the listener_ID, the isochronous channel and the bandwidth parameters, it shall check if it is
possible to allocate such bandwidth on the requested channel. The 1394 SSCS of the CC gets the information about the
link radio quality from the DLC layer. The exact procedure is out of the scope of the standard.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)44

If there are enough available resources, the IRM shall send an ALLOCATE_SOME response with the status field set to
DONE code and the handle field containing the allocated multicast mac_ID. It shall also update the bandwidth and
channel in the IRM.

If there are not available resources (not enough bandwidth, or channel already reserved), the IRM shall send an
ALLOCATE_SOME response, with the status field set to an appropriate failure code (indicating which from the
bandwidth or the channel was not available). Whatever the failure is (channel or bandwidth failure), neither bandwidth
nor channel shall be reserved.

When the IRM receives a DLC_MULTICAST_JOIN request primitive, it shall perform a multicast join procedure. It
shall then respond with a DLC_MULTICAST_JOIN response primitive.

When the IRM has completed the multicast join procedure for both the talker and the listener, it shall start a multicast
setup procedure between the talker and the listener, as described in [4]. The IRM shall send a
DLC_MULTICAST_CONNECT request primitive to the DLC.

If the multicast setup fails, the IRM shall not free resources by itself, but shall wait for the 1394 controller to free
allocated resources via appropriate lock command.

Resource allocation on an existing channel (MODIFY_BANDWIDTH)

If the IRM receives a MODIFY_BANDWIDTH request while being processing a bus reset (i.e. the 1394 SSCS entity
started a bus reset and did not complete it yet, see 6.4), then an MODIFY_BANDWIDTH response shall be answered
(with the status field set to RESET code).

Else, if the IRM receives a MODIFY_BANDWIDTH request (asking for a modified bandwidth in a specified channel),
it shall check if it is possible to modify such bandwidth on the requested channel. This exact procedure is out of the
scope of the standard.

If the modification of the bandwidth is correctly done, the IRM shall send a MODIFY_BANDWIDTH response, with
the status field set to DONE code and the handle field containing the allocated multicast MAC_ID. It shall also update
the bandwidth in the IRM (the exact procedure is out of the scope of the present document). It shall then send the
DLC_MULTICAST_MODIFY request primitive to the DLC layer to modify the multicast connection.

If the modification of the bandwidth is not correctly done, the IRM shall send an MODIFY_BANDWIDTH response,
with the status field set to the appropriate failure code.

Note: a new listener may also be connected to an existing channel, without claiming for new resources on the IRM. This
will appear to the IRM by a DLC_MULTICAST_JOIN indication primitive. The IRM shall then setup the multicast
DLC connection corresponding to the 1394 channel towards this new listener.

Resource reclaim (RECLAIM_THIS):

When the CC side of the 1394 SSCS entity receives a BUS_RESUME information element contained in the
DLC_INFO_TRANSFER request primitive, as defined in the bus reset procedure in 6.4, it shall release the bandwidth
and channel registers and start a T timer (T=1s + ∆T).

When the IRM receives a RECLAIM_THIS request (asking for a resource reclaim), it shall update the channel and the
bandwidth and set the corresponding resources as reclaimed.

As already said any command different than a RECLAIM_THIS shall be rejected by sending the corresponding
command in a lock response (with the status field set to RESET code).

If the re-allocation of the resources is done, it shall send a RECLAIM_THIS response, with the status field set to DONE
code.

If the re-allocation of the resources is not correctly done, it shall send a RECLAIM_THIS response, with the status field
set to the appropriate failure code.

When the timer T expires, unreclaimed resources are released (Group mac_IDs are released in the CL). The IRM shall
then initiate a multicast release procedure toward the talker and each listener of these Group mac_IDs.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)45

Resource release (RELEASE_THIS):

If the CC receives a RELEASE_THIS request, while being processing a bus reset (i.e. the CC started a bus reset and did
not complete it yet, see 6.4), then a RELEASE_THIS response shall be answered (with the status field set to RESET
code).

When the IRM receives a RELEASE_THIS request, (asking for a release of an isochronous connection), it shall free the
reserved channel and bandwidth. It shall also send a DLC_MULTICAST_RELEASE request primitive for the
corresponding multicast mac_ID.

If the DLC_MULTICAST_RELEASE succeeds, it shall send a RELEASE_THIS response, with the status field set to
DONE code.

Otherwise, it shall send a RELEASE_THIS response, with the status field set to a failure code.

6.10 Asynchronous streams connection control service

6.10.1 IRM and PCR functions

IRM and PCR functions are used as described in 6.9 with some specificity:

• The 1394 controller reserves a channel with no bandwidth. The channel 31 is reserved for the global broadcast.

• No bandwidth is written in the PCR.

• After WTs have joined, the IRM does not perform any RLC multicast DLC connection setup. WTs are allowed
to use the asynchronous stream as soon as they have joined the channel.

6.10.2 Asynchronous stream relaying

6.10.2.1 General

In the case some WTs do not have any radio contact between them, correctness of higher layer rely on a relaying
mechanism for asynchronous stream data. This shall be done as described below:

There is a distinction between the main channel and the forwarding channel.

The main channel is defined by an IEEE 1394 [6] channel number. It is identified in the CHANNEL information
element with the relay bit set to 0. A multicast mac_ID is defined and associated to the main channel. Any WT is
allowed to send data in the main channel. Any WT, belonging to the main multicast group is allowed to listen
and receive data from the main channel.

The forwarding channel is defined by the same IEEE 1394 [6] channel as the main channel. It is identified in the
CHANNEL information element with the relay bit set to 1. When used, a specific multicast mac_ID is defined
and associated to it (different from the main channel multicast mac_ID). The 1394 SSCS entity of the CC has to
repeat on the forwarding channel any data sent on the main channel.

6.10.2.2 Procedures

6.10.2.2.1 Procedure in the WT side

When a WT fails in receiving data from one sender on the main multicast channel carrying an asynchronous stream (a
IEEE 1394 [6] channel with no bandwidth), it shall ask to join the forwarding channel.

It shall send a DLC_MULTICAST_JOIN request primitive containing the CHANNEL information element defined
below to the CC.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)46

Information element Reference Status Total length
(octets)

Description

CHANNEL 7.4.6 mandatory 3 Channel set to forwarding channel number;
relay bit set to 1

The CHANNEL information element shall be transmitted in the <<CL-ATTRIBUTE>> field of the
DLC_MULTICAST_JOIN request/response primitive.

6.10.2.2.2 Procedure in the CC side

When at least one WT has asked to join the forwarding channel, the 1394 SSCS entity of the CC has to allocate a
multicast mac_ID for the forwarding channel.

It shall send a DLC_MULTICAST_JOIN response primitive, with the allocated mac_ID, containing the CHANNEL
information element defined below to the WT.

Information element Reference Status Total length
(octets)

Description

CHANNEL 7.4.6 mandatory 3 Channel set to forwarding channel
number;
relay bit set to 1

The CHANNEL information element shall be transmitted in the <<CL-ATTRIBUTE>> field of the
DLC_MULTICAST_JOIN request/response primitive.

It shall then repeat in the forwarding channel any data received in the main channel.

The forwarding multicast group is released when the last WT left the forwarding multicast group.

7 Convergence layer specific parameters

7.1 Convergence layer identifier
The convergence layer ID field of the convergence layer IE, defined in [2], shall be set according to Table 10 to signal
the support of 1394 SSCS in the WT and AP. The first 3 bits identifies the convergence layer. In case of the Packet
based CL the next 5 bits identifies the Service Specific Convergence Sublayer.

Table 10: convergence layer identifier

Bits 8 7 6 5 4 3 2 1 Meaning
0 0 1 0 0 0 0 1 1394 SSCS supported

All other values reserved

7.2 Convergence layer version
The convergence layer version number is an 8-bit field used in the RLC [2]. This field is split into two 4-bit subfields.
The four most significant bits (bits 5 to 8) identify the version of the Common Part and the four least significant bits
(bits 1 to 4) identify the version of the SSCS. The convergence layer version number shall be set according to Table 11
to indicate the support of this edition (version 1) of the 1394 SSCS.

Table 11: convergence layer version

Bits 8 7 6 5 4 3 2 1 Meaning
x x x x 0 0 0 1 1394 SSCS version 1 supported

7.3 Maximum transmission unit
The maximum transmission unit (MTU) used in the Common Part of the Packet based Convergence Layer [1] shall be
set to 12 432 octets.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)47

7.4 Information elements for 1394 SSCS

7.4.1 Information element format

In order to transfer convergence layer specific information between CC and WT, as well as between two WTs, a
number of CL information elements are defined. These convergence layer specific information elements are transferred
transparently by RLC messages within the RLC specific field <<CL-ATTRIBUTES>>, as defined in [2].

Each convergence layer information element consists of a type field, a length field and an information field, as defined
in Figure 16.

The purpose of the information element type is to identify the function of the information element being sent. The IE
type field is 8 bits, allowing for up to 256 information elements to be defined for a certain SSCS.

The reserved field is for future use and shall be coded as zero.

The length field indicates the length of the information field in bytes. It does not include the length of the IE type field,
the reserved field, or the length of the length field itself.

8 7 6 5 4 3 2 1
Octet 1 type
Octet 2 reserved length = L
Octet 3

...
Octet L+2

information

Figure 16: convergence layer information element structure

7.4.2 Information element type coding

The IE type codes of Table 12 are used in the 1394 SSCS:

Table 12: information element type coding

IE Type code IE Name
0000 00012 HARP_REQUEST (see 7.4.3)
0000 00102 HARP_RESPONSE (see 7.4.4)
0000 00112 EUI_64 (see 7.4.5)
0000 01002 CHANNEL (see 7.4.6)
0000 01012 BUS_SUSPEND (see 7.4.7)
0000 01102 BUS_RESUME (see 7.4.8)
0000 01112 BUS_RESET (see 7.4.9)
0000 10002 TRANSACTION_INDICATOR (see 7.4.10)

All other values reserved for future IEs.

7.4.3 HARP_REQUEST information element

The <<HARP_REQUEST>> information element is used in the HARP.

8 7 6 5 4 3 2 1
Octet 1 <<HARP_REQUEST>>
Octet 2 reserved length = 2
Octet 3 bus_ID[9..2]
Octet 4 bus_ID[1..0] reserved

Figure 17: HARP_REQUEST information element

7.4.4 HARP_RESPONSE information element

The <<HARP_RESPONSE>> information element is used in the HARP.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)48

8 7 6 5 4 3 2 1
Octet 1 <<HARP_RESPONSE>>
Octet 2 reserved length = 3
Octet 3 bus_ID[9..2]
Octet 4 bus_ID[1..0] physical_ID
Octet 5 reserved fwd

Figure 18: HARP_RESPONSE information element

7.4.5 EUI_64 information element

The <<EUI_64 >> information element is used to inform the CC of the WT’s EUI-64 during association.

The node type informs the CC if the node is a bridge or not. The value 0 indicates a non-bridge node. Other values
indicate a bridge node.

8 7 6 5 4 3 2 1
Octet 1 <<EUI_64>>
Octet 2 reserved length = 9
Octet 3
Octet 4
Octet 5
Octet 6 GUID
Octet 7
Octet 8
Octet 9

Octet 10
Octet 11 node_type

Figure 19: EUI_64 information element

7.4.6 CHANNEL information element

The <<CHANNEL>> information element is used in the multicast join procedure. It is used by the WT to inform the
CC about the channel number. It is also used in the asynchronous streams connection control service in the stream
relaying procedure.

8 7 6 5 4 3 2 1
Octet 1 <<CHANNEL>>
Octet 2 reserved length = 1
Octet 3 channel relay reserved

Figure 20: CHANNEL information element

The relay field makes the distinction between the main channel and the forwarding channel, as defined in 6.5.3.2.

The values of the channel are defined in Table 13. The c[0] to c[31] bits specify the isochronous channel that is
concerned.

Table 13: Values of the channel

Value Status
C[0] to C[29] Asynchronous & isochronous stream
C[30] Clock channel
C[31] Global broadcast
C[32] to C[47] Reserved
C[48] to C[63] Error, see Annex A

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)49

7.4.7 BUS_SUSPEND information element

The <<BUS_SUSPEND>> information element is used in the self-identity process. It is used by the CC to inform WTs
about the start of the bus reset phase.

8 7 6 5 4 3 2 1
Octet 1 <<BUS_SUSPEND>>
Octet 2 Reserved length = 2xN
Octet 3 mac_ID (of the IRM)
Octet 4 node_type physical_id (of the IRM)
Octet 5 mac_ID
Octet 6 node_type physical_id

... ...
Octet 2xN-1 mac_ID
Octet 2xN node_type physical_id

Figure 21: BUS_SUSPEND information element

Fields shall be as follows:

- N is the number of wireless nodes in the HL2 Bus. N shall not be greater than 20.

- node-type is as delivered by the upper layer in the CL_SELF_ID primitive (see 6.2.2).

- The first two bytes of the list shall contain information related to the IRM.

7.4.8 BUS_RESUME information element

The <<BUS_RESUME>> information element is used in the self-identity process. It is used by the CC to inform WTs
about the completion of the bus reset phase.

8 7 6 5 4 3 2 1
Octet 1 <<BUS_RESUME>>
Octet 2 reserved length = 2xN
Octet 3 mac_ID (of the IRM)
Octet 4 node_type physical_id (of the IRM)
Octet 5 mac_ID
Octet 6 node_type physical_id

... ...
Octet 2xN-1 mac_ID
Octet 2xN node_type physical_id

Figure 22: BUS_RESUME information element

<<BUS_RESUME>> IE fields shall be identical to those of the <<BUS_SUSPEND>> IE.

7.4.9 BUS_RESET information element

The <<BUS_RESET>> information element is used in the self-identity process. It is used by the WT to initiate the bus
reset phase.

8 7 6 5 4 3 2 1
Octet 1 <<BUS_RESET>>
Octet 2 reserved length = 2
Octet 3 mac_ID
Octet 4 node_type physical_ID

Figure 23: BUS_RESET information element

mac_ID, node_type and physical_id fields are those of the WN that requests the bus reset.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)50

7.4.10 TRANSACTION_INDICATOR information element

The <<TRANSACTION_INDICATOR>> information element is used in the DLC user connection control process,
when a DLC connection is setup for a 1394 transaction data service.

8 7 6 5 4 3 2 1
Octet 1 <<TRANSACTION_INDICATOR>>
Octet 2 reserved length = 1
Octet 3 reserved request

Figure 24: TRANSACTION_INDICATOR information element

The values of the request bit are specified in Table 14:

Table 14: request values

request Name Cause
0 REQUEST Initiating transaction is a requester
1 RESPONSE Initiating transaction is a responder

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)51

Annex A (normative):
HIPERLAN/2 CSRs
The intent of the present document is to isolate the higher level 1394 applications from the physical nature of the HL2
DLC and PHY characteristics, so that only minor changes are required when porting an application from wired 1394 to
wireless 1394. However, there are still several differences, due to 1394 physical related CSRs that are meaningless for a
HL2 bus, as well as some specificity from the wireless medium that have been minimized (new lock format for IRM
registers).

A.1 CSR registers

A.1.1 Standard CSR registers
For HL2 Bus, the standard CSRs of Table A.1 shall be implemented.
NODE_IDS, MESSAGE_REQUEST and MESSAGE_RESPONSE registers are the same as defined in wired 1394.
SPLIT_TIMEOUT, CYCLE_TIME and BUS_TIME register format is the same as in wired 1394, but their exact usage
is defined hereafter.
INTERRUPT_TARGET, LOCAL_SECONDS and LOCAL_CYCLES registers (shaded in Table A.1) are additional
registers that are not specified by wired 1394.
Other wired 1394 defined CSRs are not relevant for HL2 (as described in A.1.2) and shall not be implemented.

Table A.1: Standard CSR registers

offset register reference description
816 NODE_IDS [6] Address selection
1816 SPLIT_TIMEOUT A.1.8 Local-bus split-response timeout
5016 INTERRUPT_TARGET A.1.3 Controller event register
5C16 LOCAL_CYCLES A.1.6 Local-bus free-running timer (LSBs)
5816 LOCAL_SECONDS A.1.7 Local-bus free-running timer (MSBs)
8016 MESSAGE_REQUEST [6] Message request register
C016 MESSAGE_RESPONSE [6] Message-response register
20016 CYCLE_TIME A.1.4 Net-synchronous isochronous timer (MSBs)
20416 BUS_TIME A.1.5 Net-synchronous isochronous timer (LSBs)

Except for the INTERRUPT_TARGET, LOCAL_CYCLES and LOCAL_SECONDS registers, the locations and
formats of these registers are specified by the CSR Architecture. These offset addresses are also listed here, for the
convenience of the reader; in the case of a definition conflict, the CSR Architecture shall have precedence.

A.1.2 Unimplemented wired-1394 registers
The 1394-1995 and 1394a-2000 bus dependent registers, defined in [6] and [7] respectively , which are listed below
shall not be implemented:

1394-1995 registers:
POWER_FAIL_IMMINENT — Only applicable to backplane shared power-supply designs
POWER_SOURCE — "
BUSY_TIMEOUT — Managed by end-to-end timeout
BUS_MANAGER_ID — "
BANDWIDTH_AVAILABLE — Replaced by message-based IRM
CHANNELS_AVAILABLE — "
MAINT_CONTROL — Unnecessary and not applicable
MAINT_UTILITY — Unnecessary and not applicable
TOPOLOGY_MAP — Unnecessary and not applicable
SPEED_MAP — Unnecessary and not applicable

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)52

1394a-2000 registers:
PRIORITY_BUDGET — Not used
BROADCAST_CHANNEL — Unnecessary

A.1.3 INTERRUPT_TARGET register
All isochronous controllers shall implement this register.

This register provides a target address for sending of interrupt-event indication to the controller portion of a node. A
quadlet write transaction data corresponds to 32 events that can be signalled. Only one of these events is specified (this
corresponding to the least-significant bit of this register), as illustrated in Figure A.1.

- -reserved

definition

-zeros

read value

write effects

-ignored

disconnected_pcr

event indication

-

Figure A.1: INTERRUPT_TARGET register

A quadlet write with disconnected_pcr bit set to one indicates that the requesting node has been disconnected from an
isochronous stream and that PCR has been updated. That write shall be ignored if the disconnected_pcr bit is zero.

A.1.4 CYCLE_TIME register
Distinction: This register is read-only.
Distinction: This register is updated once each 2ms frame, rather than once every 125 µs cycle.
Distinction: The synchronizing clock-master node is not necessarily the IRM.
All nodes capable of providing isochronous services shall implement this register. The implementation is optional for
nodes that do not provide isochronous services.

Nodes that are isochronous capable shall implement a clock that shall run freely and shall update the contents of the
CYCLE_TIME register. The CYCLE_TIME register shall also be updated, once each 2ms frame, to the clock-reference
value implied by values transmitted within frames. The fields within the CYCLE_TIME register specify the current
time value, in a 1394 compatible fashion, as illustrated in Figure A.2.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)53

-Seconds_count cycle_offsetcycle_count

definition

-zeros

power-reset value

bus-reset and command-reset values

-unchanged

read values

-last update

write effects

-ignored

Figure A.2: CYCLE_TIME register

The 7-bit second_count field is an exact copy of the 7 least significant bits of the BUS_TIME register.

The 13-bit cycle_count field specifies the time offset from the last integer second value, in units of 125µs.

The 12-bit cycle_offset field specifies the time offset from the last integer cycle_count value, in units of
125µs/(2 048+1 024). This prevision corresponds to one tick of a 24,576 MHz clock.

A.1.5 BUS_TIME register

Distinction: This register is read-only and is updated by the clock-master node once each 2ms frame
All nodes capable of providing isochronous services, and then implementing the CYCLE_MASTER register, shall
implement this register. The implementation is optional for nodes that do not provide isochronous services.

Nodes that are isochronous capable shall implement a clock that shall run freely and shall update the contents of the
BUS_TIME register. The BUS_TIME register shall also be updated, once each 2ms frame, to the clock-reference value
implied by values transmitted within frames. The BUS_TIME register specifies the current time value, in seconds, as
illustrated in Figure A.3.

-seconds

definition

-zeros

power-reset value

bus-reset and command-reset values

-unchanged

read values

-last update

write effects

-ignored

Figure A.3: BUS_TIME register

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)54

The 32-bit seconds field provides a measure of the current time in seconds and has a range of 232 seconds, or
approximately 136 years.

A.1.6 LOCAL_CYCLES register
All nodes shall implement the LOCAL_CYCLES register. This register provides access to a local-synchronized clock
value. This clock is provided to support asynchronous split-response timeouts.

The fields within this register specify the current time value, in a CYCLE_TIME compatible fashion, as illustrated in
Figure A.4.

-seconds_count cycle_offsetcycle_count

definition

-zeros

power-reset value

bus-reset and command-reset values

-unchanged

read values

-last update

write effects

-ignored

Figure A.4: LOCAL_CYCLES register

The 7-bit second_count field is an exact copy of the 7 least significant bits of the LOCAL_SECONDS register.

The 13-bit cycle_count field specifies the time offset from the last integer second value, in units of 125 µs.

The 12-bit cycle_offset field specifies the time offset from the last integer cycle_count value, in units of
125 µs/(2 048+1 024). This prevision corresponds to one tick of a 24,576 MHz clock.

The behaviour of this register depends on a node's clock-master capabilities, as follows:

a) Clock-master. The clock-master node, based on its free running clock, asserts its time value every 2 ms frame,
for the purpose of synchronizing non clock-master nodes.

b) Non clock-master. This register shall be updated, once each 2 ms frame, based on the clock-reference value
transmitted by the clock-master node within frames. Between these updates this register is autonomously
increased by the node.

A.1.7 LOCAL_SECONDS register
All nodes shall implement the LOCAL_SECONDS register. The fields within this register specify the current time value,
in a BUS_TIME compatible fashion. The register specifies the current time value, in seconds, as illustrated in
Figure A.5.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)55

-seconds

definition

-zeros

power-reset value

bus-reset and command-reset values

-unchanged

read values

-last update

write effects

-ignored

Figure A.5: LOCAL_SECONDS register

The 32-bit seconds field provides a measure of the current time in seconds and has a range of 232 s, or approximately
136 years.

The behaviour of this register depends on a node's clock-master capabilities, as described in A.1.6.

A.1.8 SPLIT_TIMEOUT register
Distinction: the initial value of this register corresponds to 200 ms, as opposed to the initial wired-1394 100 ms value.
Distinction: the measurement points and the duration of timeouts differ from 1394, see C.2.
All nodes shall implement this register.

Split-transaction error detection expects all HL2 Bus nodes to share the same time-out value and that requester and
responder behave in complementary fashion, as specified in C.2. The SPLIT_TIMEOUT register establishes the time-
out value for the detection of split-transaction errors, as illustrated in Figure A.6.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)56

-reserved0

definition

-zeros

power-reset value

bus-reset and command-reset values

-unchanged

read values

write effects

sec

reserved1cycles

1600
10

zeros

-unchanged

-ignored stored

ignoredstored

-zeros lw

zeroslast-write

Figure A.6: SPLIT_TIMEOUT register

The 3-bit sec field, in units of seconds, and the 13-bit cycles field, in units of 125 µs, together specify the time-out
value. The value of cycles shall be less than 8 000.

The minimum time-out value is 1 600 cycles (0,2 s). If a value smaller than this is written to the SPLIT_TIMEOUT
register the node shall not revise the stored value but shall behave as if a value of 1 600 had been stored.

NOTE: The Serial Bus definition of the SPLIT_TIMEOUT register differs from that of the CSR Architecture.
Serial Bus interprets the most significant 13 bits of the SPLIT_TIMEOUT_LO register as units of
1/8 000 s, rather than a true binary fraction of a second with units of 1/8 192 s. Since precise time-outs are
not necessary, the bus manager may ignore this difference when calculating values for use within the
SPLIT_TIMEOUT_LO register.

A.2 PCRs

A.2.1 oPCR format

Distinction: The oPCR payload contents are specified differently and include bus-dependent overhead.

The oPCR is specified in clause 7.7 of the IEC 61883 [5], Part 1.

The usage of the oPCR is the same as described in IEC 61883 [5], Part 1, with the addition that some HL2 specific error
codes are specified in the present document. These HL2 specific error codes (see A.2.3) are used in the PCR lock
response to indicate an error to the initiating controller.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)57

The format of the HL2 oPCR is also slightly different from the IEC 61883 [5] oPCR (as described below).

The oPCR is depicted in Figure A.7.

unchangedlast-update00

- reservedchannel number

definition

-zeros

power-reset value

bus-reset and command-reset values

- zeros

read values

write effects

-ignored

- - res

point-to-point connection counter

broadcast connection counter

on-line

unchanged

- zeros unchanged

last update

payload

zeros

Figure A.7: oPCR format

The on-line bit always indicates whether the corresponding output plug is on-line (value one) or off-line (value zero).

The broadcast connection counter bit indicates whether a broadcast-out connection to the output plug exists (value
one) or not (value zero).

The 6-bit point-to-point connection counter indicates the number of point of point connections to the output plug.

The 6-bit channel number indicates the actual channel number used by the output plug.

The 10-bit payload reflects the maximum number of bytes to be transmitted within a 2 ms HL2 frame (including the
SSCS and CPCS overheads) divided by 16.

The HL2 Bus 500 Hz (± 20 ppm) physical layer framing clock is not synchronized to the wired-1394 8 kHz
(± 100 ppm) cycle clock. To account for the clock deviations, the application shall add a 1-byte margin to the
oPCR.payload value.

A.2.2 iPCR format
The iPCR is specified in clause 7.8 of the IEC 61883 [5], Part 1. The format of the iPCR is depicted in Figure A.8:

The usage of the iPCR is the same as described in IEC 61883 [5] Part 1, with the addition that some HL2 specific error
codes are specified in the present document. These HL2 specific error codes (see A.2.3) are used in the PCR lock
response to indicate an error to the initiating controller.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)58

zeros00

- reservedchannel number

definition

-zeros

power-reset value

bus-reset and command-reset values

- zeros

read values

last update

write effects

-ignored

- - res

point-to-point connection counter

broadcast connection counter

on-line

unchanged

- zeros unchanged

last update

Figure A.8: iPCR format

The definition of the fields is the same as in the oPCR.

The on-line bit, the broadcast connection counter bit, the 6-bit point-to-point connection counter field, and the 6-bit
channel number field are described in IEC 61883 [5], subclause 7.8 of Part 1.

A.2.3 PCR error codes
Lock transactions on PCRs can fail due to HL2 specific reasons, as described in 6.9.2.2 and in 6.9.2.3. Therefore some
specific channel numbers are reserved for that purpose (see 7.4.6). When an error occurs, these reserved channel
numbers shall be used in the lock response, as defined in Table A.2.

Table A.2: PCR error codes

Channel value Name Description
62 TRANSIENT_ERROR A non fatal error occurred
63 PERSISTENT_ERROR A severe error occurred

When a TRANSIENT_ERROR is reported, the 1394 controller is expected to retry the lock request on the PCR.

When a PERSISTENT_ERROR is reported, the 1394 controller is not expected to retry the lock request on the PCR
until the error condition has been resolved.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)59

A.3 ROM information

The HL2 Bus provides 1394 services over an alternate (RF) physical layer. The bus_info_block has a distinctive "0000"
label (to avoid possible confusion with wired-1394), but is otherwise as specified by wired 1394. Other bus-directory
entries are used to better identify the HL2 physical layer and its bus-dependent CSR behaviours, as illustrated in
Figure A.9.

A

B

C

D

E

F

G

J

K

L

M

Q

R

S

P

T

U

V

textual
descriptor leaf

bus_info_block

root directory

HL2 directory

chip_ID_lo

company_id chip_ID_hi

cycle_clk_acc max_rec res max_ link_spdrgenerationresimc
cmc

isc
bmc

pmc

bus_info_length=4 crccrc_length=6

type offset=n+mkey_id

length crc

type specifier_IDkey_id

type versionkey_id

length crc

... m quadlets ...

... p quadlets ...

type offset=pkey_id

...

length=6 crc

language=0

specifier_ID=0descriptor_type=0

width=0 character_set=0

31
16

("1") 33
16

("3") 39
16

("9") 39
16

("4")

2D
16

("-") 48
16

("H") 4C
16

("L") 32
16

("2")

2D
16

("-") 53
16

("S") 53
16

("S") 43
16

("C")

53
16

("S") 2D
16

("-") 31
16

("1") 21
16

(".")

31
16

("1") 00
16

(null) 00
16

(null) 00
16

(null)W

30
16

("0") 30
16

("0") 30
16

("0") 30
16

("0")

Figure A.9: HL2-Bus ROM format

The 8-bit bus_info_length field, the imc (isochronous resource manager capable) bit, cmc (cycle master capable) bit,
isc (isochronous capable) bit, 8-bit cycle_clk_acc (cycle clock accuracy) field, 4-bit max_rec (maximum receive buffer
size) field, and 2-bit max_ROM (maximum ROM access) fields are defined by wireless 1394. The bmc (bus manager
capable) bit, pmc (power manager capable) bit, 4-bit generation field, and the 3-bit link_spd fields shall be zero. The
quadlet[A].crc_length field shall have a value of 6 and the quadlet[A].crc field shall cover the following 6 quadlets.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)60

A node that is CC capable (as defined in [4] shall be isochronous resource manager capable, and thus shall set the imc
bit to 1. A node that is not CC capable (WT only) shall clear the imc bit to 0.

The 24-bit company_id identifies the vendor that administers the following chip_ID_hi and chip_ID_lo field values.
The 8-bit chip_ID_hi and 32-bit chip_ID_lo values shall be concatenated to produce a 40-bit chip_ID value.
The concatenation of the company_id and chip_ID values shall be the globally unique EUI-64 value for this node.

The initial root-directory entry is a quadlet in size and points to a Bus_Dependent_Info directory; the 2-bit
quadlet[G[.type field has a Directory=3 value; the 6-bit quadlet[G].key_id (key identifier) has a
Bus_Dependent_Info=2 value, and the 24-bit quadlet[G].offset field specifies the number of quadlets between here and
the start of the bus-directory directory.

The first quadlet of the bus-directory entry has 16-bit quadlet[J].length and quadlet[J].crc fields, whose meanings are
defined by like named fields in the CSR Architecture. The 2-bit quadlet[K].type field has an Immediate=0 value; the 6-
bit quadlet[K].key_id (key identifier) has a Specifier_ID=1216 value; the 2-bit quadlet[L].type field has an Immediate=0
value; the 6-bit quadlet[K].key_id has a Version=1316 value.

The concatenation of the 24-bit quadlet[K].specifier_ID and 24-bit quadlet[L].version fields forms the EUI-48
identifier that uniquely specifies this 1394 SSCS "bus" standard. The specifier_ID is an IEEE/RAC supplied
company_id value; the version field is a value administered by the company_id-specified organization. For this
technical specification, these shall have the values listed below:

company_id xxxxxx16

version xxxxpq16

The p and q values are hexadecimal digits representing the phase and the revision of the HL2 1394 SSCS TS. For this
particular TS, p and q values shall both be 1.

NOTE: No fields are allocated to represent editorial changes.

The 2-bit quadlet[M].type field has a Leaf=2 value and the 6-bit quadlet[M].key_id field (key identifier) has a
Textual_Descriptor=1 value. The 24-bit quadlet[M].offset field equals the number of following quadlets before the
textual-descriptor leaf.

The leading quadlet of the textual-descriptor leaf provides quadlet[P].length and quadlet[P].crc fields, as specified by
the CSR Architecture. The 8-bit quadlet[Q].descriptor_type, 24-bit quadlet[Q].specifier_ID8, 4-bit quadlet[R].width,
12-bit quadlet[R].character_set, and 16-bit quadlet[R].language_id fields shall be zero (this identifies the remaining
text to be in minimal ASCII English). The following text shall specify the "1394-HL2-SSCS-1" string, which
corresponds to the present document.

A.4 Locked messages
The HL2 Bus IRM interface differs from that defined by wired 1394, because isochronous bandwidth allocations
depend on the talker_ID and listener_ID identifiers of the participating nodes. Since a different IRM interface is
mandated, an efficient (as opposed to legacy-compatible) locked-message transport is provided.

A locked-message exchange has two phases: call and return, where the call and return phases correspond to the request
and response subactions of a distinctive lock transaction. The request provides a command byte and multiple command-
dependent arguments; the response returns a status byte and multiple status-dependent extended-status bytes, as
described in the remainder of this subclause.

The locked-message transaction is distinguished by its address-offset and lock-subcommand values. The address offset
shall be the start of the MESSAGE_REQUEST register (see A.1.1). The lock subcommand is the bus-dependent
(value 7) value, as specified by the CSR architecture.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)61

A.4.1 Locked message formats
The locked-message components include a 16-byte request and 8-byte response packet payloads, as illustrated in
Figure A.10.

command dependent0

dependent3

dependent2

dependent1

transmitted first

transmitted last

status dependent0

dependent1

transmitted first

transmitted last

request

response

Figure A.10: Locked message formats

The 8-bit command values specify the locked-message operation to be performed, as specified in Table A.3). The
definitions of status-field values is command-value dependent.

Table A.3: Locked-message command values

Value Name Subclause Description
0 ALLOCATE_SOME A.4.2 Available channel(s) and bandwidth request
1 MODIFY_BANDWIDTH A.4.3 Modify isochronous bandwidth allocation
2 RECLAIM_THIS A.4.4 Isochronous reallocation, channel and bandwidth
3 RELEASE_THIS A.4.5 Isochronous release, channel and bandwidth
4-255 — Reserved

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)62

A.4.2 ALLOCATE_SOME
An available channel and isochronous bandwidth are allocated for communication between physical_ID-addressed
talker_ID and listener_ID nodes, using the parameters illustrated in Figure A.11.

reserved1

command reserved0

reserved3

reserved2

transmitted first

transmitted last

talker_ID listener_ID

status reserved0

reserved1b

transmitted first

transmitted last

payload

handle

request

response

channelreserved1a

Figure A.11: ALLOCATE_SOME register format

A.4.2.1 ALLOCATE_SOME request

The 8-bit command distinctively identifies this command (see Table A.3).

The 6-bit talker_ID and 6-bit listener_ID values specify the physical_ID addresses of the local talker and listener nodes
respectively.

The 10-bit payload value specifies the necessary isochronous bandwidth, as specified in A.4.2.1.

A.4.2.2 ALLOCATE_SOME response

The returned 8-bit status field indicates the success or failure of the command, as specified in Table A.4.

Table A.4: ALLOCATE_SOME response format

Value Name Description
0 DONE Successful completion
1 CHAN Channel allocation failure
2 RESET Bus reset in process
3 BW Isochronous bandwidth allocation failure
4 BOTH Channel and bandwidth allocation failure
5-254 — Reserved
255 BAD_COMMAND Unsupported command

The 8-bit handle field contains the allocated multicast mac_ID, which is needed on following same-channel IRM
commands.

The returned 6-bit channel value identifies the allocated isochronous channel number.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)63

A.4.3 MODIFY_BANDWIDTH
The isochronous bandwidth associated with a specific channel is modified (increased or decreased), using the
parameters illustrated in Figure A.12.

reserved1a

command reserved0

reserved3

reserved2

transmitted first

transmitted last

status reserved0

reserved1

transmitted first

transmitted last

channel

request

response

reserved1b payload

Figure A.12: MODIFY_BANDWIDTH register format

A.4.3.1 MODIFY_BANDWIDTH request

The 8-bit command distinctively identifies this command (see Table A.3).

The 6-bit channel value identifies the isochronous channel number for which bandwidth is modified.

The 10-bit payload value specifies the necessary isochronous bandwidth, as specified in A.2.1.

A.4.3.2 MODIFY_BANDWIDTH response

The returned 8-bit status field indicates the success or failure of the command, as specified in Table A.5.

Table A.5: MODIFY_BANDWIDTH response-status values

Value Name Description
0 DONE Successful completion
1 CHAN Channel failure
2 RESET Bus reset in process
3 BW Bandwidth modify failure
4-254 — Reserved
255 BAD_COMMAND Unsupported command

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)64

A.4.4 RECLAIM_THIS
A specific channel and isochronous bandwidth are reclaimed, using the parameters illustrated in Figure A.13.

channel

command reserved0

reserved3

reserved2

transmitted first

transmitted last

status reserved0

reserved1

transmitted first

transmitted last

payload

handle

request

response

reserved1breserved1a

Figure A.13: RECLAIM_THIS register format

A.4.4.1 RECLAIM_THIS request

The 8-bit command distinctively identifies this command (see Table A.3).

The 8-bit handle value shall equal that returned by the initial ALLOCATE_SOME locked-message.

The 6-bit channel value specifies the requested isochronous channel number.

The 10-bit payload value specifies the necessary isochronous bandwidth, as specified in A.2.1.

A.4.4.2 RECLAIM_THIS response

The returned 8-bit status field indicates the success or failure of the command, as specified in Table A.6.

Table A.6: RECLAIM_THIS response-status values

Value Name Description
0 DONE Successful completion
1 CHAN Channel reclaim failure
2 RESET Bus reset in process
3 BW Bandwidth reclaim failure
4 BOTH Channel and bandwidth reclaim failure
5-254 — Reserved
255 BAD_COMMAND Unsupported command

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)65

A.4.5 RELEASE_THIS
A specific channel and isochronous bandwidth are released, using the parameters illustrated in Figure A.14.

reserved1bchannel

command reserved0

reserved3

reserved2

transmitted first

transmitted last

status reserved0

reserved1

transmitted first

transmitted last

request

response

reserved1a

Figure A.14: RELEASE_THIS register format

A.4.5.1 RELEASE_THIS request

The 8-bit command distinctively identifies this command (see Table A.3).

The 6-bit channel value specifies the released isochronous channel number.

A.4.5.2 RELEASE_THIS response

The returned 8-bit status field indicates the success or failure of the command, as specified in Table A.7.

Table A.7: RELEASE_THIS response-status values

Value Name Description
0 DONE Successful completion
1 CHAN Channel release failure
2 RESET Bus reset in process
3-254 — Reserved
255 BAD_COMMAND Unsupported command

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)66

Annex B (informative):
Quadlet-structured PDU formats
Within HL2 standards, the PDU formats are normally illustrated in byte-wide Figures. For the convenience of wired-
1394 readers, this Annex provides quadlet-wide equivalents of these Figures.

Fields of quadlet-wide PDUs are the same as those of the byte wide PDUs. See 5.4.2, 5.5.1.2 and 5.5.2.2 for fields
description.

B.1 Asynchronous subaction

1394
asynch
packet

destination_ID

source_ID

header_fields

header_CRC

data_bytes[data length]

zero pad bytes (if necessary)

data_CRC

tLabel rt pritcode

cyclesseconds res

format

Figure B.1: Asynchronous subaction PDU format

B.2 Isochronous streams

resseconds cycles

tagged_SDU[0]

tagged_SDU[1]

...

tagged_SDU[N]

format

Figure B.2: Isochronous stream PDU format

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)67

data_length cycle6tag sytcode

data_bytes[data length]

zero pad bytes (if necessary)

data_CRC

1394
isochronous
data payload

Figure B.3: Isochronous tagged SDU

B.3 Asynchronous streams

resseconds cycle_number

data_length channeltag sytcode

1394
asynchronous
stream packet

data_bytes[data length]

zero pad bytes (if necessary)

data_CRC

header_CRC

format

Figure B.4: Asynchronous stream PDU format

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)68

Annex C (normative):
Nonbridge upper layer
A wireless node that does not gather bridge functions may implement the 1394 SSCS only. In that case, the upper layer
that is not a HL2 1394 bridge layer entity shall react as described in this Annex.

This Annex contains informative as well as normative parts.

C.1 Primitives (informative)
The upper layer uses the primitives defined in 5.2.1 and 6.2. They are adapted to the 1394 SSCS, and are slightly
different from those provided by the 1394 link layer.

C.2 Time stamps for split-response timeouts (normative)
Split-responses buses, like wired 1394 or HL2 Bus, detect transmission failures through split-response timeouts. On the
HL2 Bus, time stamps are used to limit the request-transmission time, the responder transaction processing time, and
the response-transmission time. The requester normally abandons the transaction after the sum of these worst-case
times, but avoids reuse of the transaction's tlabel identifier until an even later time, to cope with possible inaccuracies in
transmission-time limits.

The timeout requirements for wired 1394 and HL2 Bus are similar, but differ in where timing checks are performed, as
illustrated in Figure C.1. Although implementation details differ, both buses provide for a SPLIT_TIMEOUT
responder-processing delay and a 2×SPLIT_TIMEOUT timeout recovery delay in the requester.

requester responder

wired 1394

t0

t1

t4

a) (t1-t0)<retry_timeout
b) (t4-t1)<Tst
c) (t6-t1)>2*Tst

requester responder

HL2 Bus

t0 t2t3t5

a) (t2-t0)<(3/2)Tst
b) (t3-t0)<(3/2)Tst
c) (t5-t0)<(3/2)Tst

d) (t6-t0)>2*Tst

t5

Tst: SPLIT_TIMEOUT register value
t0 : request posted for transmission
t1 : request transmitted
t2 : request available to responder
t3 : response posted for transmission
t4 : response transmitted
t5 : response available for the requester
t6 : tLabel recycling

(t4)

(t1)

(t2)(t3)

Figure C.1: Split-response timeout times

A wired-1394 request-transmission begins at time t0 and a busy-retry timeout limits the arbitration delay (t1- t0) to a
software-specifiable value. The t1 transmission time of a request and the t4 transmission time of the response are visible
to the requester and responder. The responder limits its processing time to ensure that (t4- t1)<Tst and the requester
terminates the transaction if (t4- t1)> Tst. To account for timing differences and, the requester avoids reusing the
transaction tlabel identifier until time t6, where (t6- t1)>2×Tst.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)69

HL2 Bus transmission times are not visible to the 1394 SSCS entity, so timeouts are defined in a different (although
similar) fashion. A HL2 Bus request-transmission begins and ends at times t0 and t2 respectively, and a delay of ½Tst is
allocated for this request-packet transmission.

The responder is expected to limit its processing time to ensure that (t3- t2)<½Tst. A response-transmission begins and
ends at times t3 and t5 respectively, and a delay of ½Tst is allocated for this response-packet transmission.

The requester terminates the transaction when (t5- t0)>(3/2)Tst but (to account for timing differences and irregularities)
avoids reuse of a timed-out transaction's tlabel identifier until time t6, where (t6- t0)>2Tst.

Time stamps on HL2 Bus packets effectively limit the lifetime of request and response packets. These time-stamp
values are unknown to the lower-layer protocols, so actual lifetimes can exceed their allocated limits. The receivers are
therefore responsible for checking received time-stamp values, so that stale packets can be discarded.

To realize the desired behaviours, the processing of packet time-stamp values (see 5.2.3.2.1 and 5.4.4) is specified as
follows:

a) Requester inclusion: the requester shall prepend its request packet with a time_of_life=(3/2)Tst.

b) Responder rejection: when the request is received at time t2, a responder shall behave as follows:

1) The request may be rejected if time_of_life<Tst (because the request transmission time has exceeded ½Tst)

2) The request should be rejected if time_of_life<½Tst (to allow for a response transmission time of ½Tst)

c) Responder discard: the responder shall discard an in-progress request or response, if time_of_life≤0.

d) Responder processing: when generating a response, the response time_of_life shall be set to the request
time_of_life minus the response processing time (t3- t2).

NOTE 1: This time_of_life calculation results in equal time_of_death values in both request and response
asynchronous subaction SSCS PDUs (see 5.4.2).

e) Requester discard: when received at time t5, the requester shall discard a response if time_of_life≤0.

f) Requester recycle: a requester may release a tlabel when the first of the following occurs:

1) Completion: matching response is received

2) Termination: (t6-t0)>2Tst

NOTE 2: Some of the data can still be in the lower layer when the current bus time exceeds the PDU specified
time_of_death. Then the discarding facilities of the DLC (see [3]) may be used to avoid transmitting
useless data. The details of this mechanism are implementation dependent and outside the scope of the
present document.

C.3 User plane

C.3.1 Isochronous stream transport service

C.3.1.1 HL2 Bus maximum transmission delay (informative)

The receiver of isochronous streams shall be prepared for these streams to experience a maximum transmission delay of
6,1 ms.

The example on Figure C.2 shows how consecutive channel traffic on wired 1394 are concatenated over a duration of
approximately 2 ms. The MAC frame top signals are generated by the appropriate primitive.

It is assumed that the 1394 SSCS collects all data of each cycle until it receives this frame top. But the
wired 1394 8 kHz cycle clock is not synchronized on the 500 Hz HL2 Bus clock. Thus the concatenation can reach
17 cycles of 125 µs.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)70

In Figure C.2, a fixed number of slots is reserved in each frame starting at position #Q (fixed slot allocation).

The 16 (15 or 17) wired 1394 cycle data acquired are dealt by the 1394 SSCS, CPCS and SAR and provide N packets of
48 bytes. These bytes are encapsulated by the DLC and transmitted in the slots reserved on the air interface.

The maximum transmission jitter is 6,1 ms, coming from:

• 2,1 ms for the worst case acquisition period over one MAC frame: in the normal case it is 2 ms, but due to the
1394 clock / HL2 clock difference, a 1394 SSCS PDU may sometimes contain 17 SDUs (see 5.5.1.2), and thus
the acquisition period may contain an additional 1394 cycle (0,1 ms);

• 2 ms because the granted slot may have just occurred when the corresponding data come to the DLC, so that it
shall wait for the next frame (worst case 2 ms);

• 2 ms because the scheduler may have rescheduled the frame at that point, so that the slot is now at the other side
of the frame (worst case 2 ms).

NOTE: As already mentioned, a 1394 SSCS entity may generate 16-SDU PDUs in average, and sometimes a
17-SDU PDU. As mentioned in A.2.1, a secure margin shall be reserved by 1394 controller to take the
1394/HL2 clock difference. Nevertheless, when a 17-SDU PDU is transmitted, the last SDU of the
17-SDU PDU (or at least part of it) may have to wait for the next frame (because the other 16 SDUs have
already used all granted slots). The 17th SDU may thus experience a 2 ms more transmission delay. But,
since it did not experience any acquisition delay (the PDU has been completed with it), no specific
additional delay is taken into account here.

F
ram

e
#12

16x125µs

nx 48
bytes

17x125µs

px48
bytes

SSCS
+ CPCS
+ SAR

processing

slot
#Q

slot
#Q

slot
#Q

2ms MAC
frame

DLC + PHY
processing

F
ram

e
#10

F
ram

e
#11

slot
#Q

F
ram

e
#13

Figure C.2: maximum transmission delay

C.3.1.2 Relative CIP time stamps (normative)

On wired 1394, CIP headers transport an absolute time stamp. The time stamp location in the CIP and meaning is as
described in IEC 61883 [5] . Depending on the CIP data format, the time stamp may be located in the header or the
following data, as illustrated in Figure C.3 and Figure C.4. These Figures illustrate tagged SDUs as specified in 5.5.1.2.
On the HL2 Bus, the format of these isochronous payloads is the same, but a relative time stamp shall be provided.

A 4-bit cCount time-stamp field can be located in the CIP header, as illustrated in Figure C.3.

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)71

1394
isochronous
data payload

zero pad bytes (if necessary)

0

data_length cycle_low01 sytcode

data_bytes[data length]

data_CRC

0 0 sid dbs fn dbcresqpc s

0 fmt depend cCount cycle_offset1

Figure C.3: CIP header time stamp

The value of cCount in an HL2 Bus packet (hl2Bus.cCount) can be readily derived from the value defined by
IEC 61883 [5] for the CIP header (cipStd.cCount), and shall be as specified below:

hl2Bus.cCount= (cipStd.cCount-time_stamp.cycles)&0xF;
where:
time_stamp is a parameter of the CL_ISOCH_STREAM primitive, which specifies the isochronous cycle when the

isochronous packet is presented to the 1394 SSCS.

Alternatively, a 13-bit cycle_count time-stamp field can be located at header-dependent positions within transmitted
data blocks, as illustrated in Figure C.4.

1394
isochronous
data payload

1

data_length cycle_low01 sytcode

data_CRC

0 0 sid dbs fn dbcresqpc 1

0 fmt depends1

... remainder of block[0] ...

reserved cycle_count cycle_offset

block[...]

block[2fn-1]

... remainder of block[0] ...

reserved cycle_count cycle_offset

block[...]

block[2fn-1]

Figure C.4: Source packet header time stamps

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)72

The value of cycle_count in an HL2 Bus packet (hl2Bus.cycle_count) can be readily derived from the value defined by
IEC 61883 [5] for the CIP header (cipStd.cycle_count), and shall be as specified below:

hl2Bus.cycle_count= (8000+cipStd.cycle_count-time_stamp.cycles)%8000;
where:
time_stamp is a parameter of the CL_ISOCH_STREAM primitive, which specifies the isochronous cycle when the

isochronous packet is presented to the 1394 SSCS.

C.3.2 Asynchronous transactions

C.3.2.1 Subaction rt field (normative)

If the packet originated on wired 1394 and passed through a bridge, the rt field and the header_CRC values shall be the
values that were observed on the bus when the packet was received. Except for its inclusion in the header_CRC
calculation, the value of the rt field shall be ignored. If the request packet passes through wireless 1394 and returns to a
wired 1394 environment, the wired-1394 specified rt field value shall be used. Since the transmitted rt value may
change, wired-1394 transmitters are required to recompute the header_CRC value while the packet is being transmitted.

If the packet is originated from a HL2 Bus node, the rt field shall be zero.

All asynchronous packets are prepended with the same seconds/cycles quadlet and transmitted as received on 1394. For
the sake of brevity, these other packet formats are not illustrated.

C.3.2.2 Available self-ID information (informative)

The HL2 Bus self-ID information includes a 2-bit node_type field, a 6-bit physical_ID field, and an 8-bit mac_ID field
for each of the attached nodes. The IRM information block is always the first of these, allowing the IRM node to be
readily identified. See 7.4.7 for details.

C.4 Control plane (normative)

C.4.1 Clock connection control
The upper layer shall not generate a CL_CONTROL request primitive that enables / disables wireless cycle master, as
defined in 6.5.

C.4.2 Isochronous stream connection control
The upper layer shall use the mechanism for isochronous data flow management, as defined in 6.9, i.e. the connection
management procedures, described in IEC 61883 [5], clause 8 of Part 1, with the following adaptations:

• IRM register access is as described in 6.9 (based on command based lock messages).

• PCR lock transactions response can sometimes report error codes as specified in A.2.3.

• Listener and talker nodes can autonomously disconnect themselves from an isochronous stream, update their
PCRs, signal the 1394 controllers by writing to the INTERRUPT_TARGET register (see 6.9.2.2, 6.9.2.3
and A.1.3).

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)73

Bibliography
The following material, though not specifically referenced in the body of the present document (or not publicly
available), gives supporting information.

- ETSI TS 101 493-4: "Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Packet
based Convergence Layer; Part 4: IEEE 1394 bridge layer".

ETSI

ETSI TS 101 493-3 V1.1.1 (2000-09)74

History

Document history

V1.1.1 September 2000 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions, symbols and abbreviations
	3.1 Definitions
	3.2 Symbols
	3.3 Abbreviations

	4 Overview
	4.1 The 1394 SSCS
	4.2 HIPERLAN/2 Bus
	4.3 Numbering and coding conventions

	5 User plane services
	5.1 General
	5.2 Primitives (informative)
	5.2.1 Primitive types
	5.2.2 Parameter definitions
	5.2.3 Interface to the upper layer
	5.2.3.1 Primitives related to isochronous traffic
	5.2.3.1.1 CL_ISOCH_STREAM {request, indication}
	5.2.3.1.2 CL_CYCLE_SYNCH {indication}

	5.2.3.2 Primitives related to asynchronous traffic
	5.2.3.2.1 CL_ASYNC_ACTION {request, indication, confirm, response}
	5.2.3.2.2 CL_ASYNC_STREAM {request, indication}

	5.2.4 Interface to the common part

	5.3 Clock synchronization service
	5.3.1 General
	5.3.2 SSCS PDU format
	5.3.3 Procedures
	5.3.3.1 Procedure in the wireless cycle master (WCM)
	5.3.3.2 Procedure in a wireless cycle slave (WCS)

	5.4 Asynchronous transaction data transport service
	5.4.1 General
	5.4.2 Asynchronous SSCS PDU coding
	5.4.3 Asynchronous packets management
	5.4.4 Procedures
	5.4.4.1 Procedure in the sender
	5.4.4.2 Procedure in receiver

	5.5 Stream data transport service
	5.5.1 Isochronous stream data transport service
	5.5.1.1 General
	5.5.1.2 Isochronous stream SSCS PDU coding
	5.5.1.3 Procedure
	5.5.1.3.1 Procedure in the sender
	5.5.1.3.2 Procedure in the receiver

	5.5.2 Asynchronous stream data transport service
	5.5.2.1 General
	5.5.2.2 Asynchronous stream SSCS PDU coding
	5.5.2.3 Procedure
	5.5.2.3.1 Procedure in the sender
	5.5.2.3.2 Procedure in the receiver

	6 Control plane services
	6.1 General
	6.2 Primitives (informative)
	6.2.1 CL_CONTROL {request, confirm}
	6.2.2 CL_SELF_ID {indication}

	6.3 Association - Initialization
	6.4 Bus reset service
	6.4.1 General
	6.4.2 Procedures
	6.4.2.1 CC or WT initiated bus reset
	6.4.2.2 Bus reset worst case duration
	6.4.2.3 Procedure in the CC side
	6.4.2.4 Procedure in the WT side

	6.4.3 Assignment of physical_IDs

	6.5 Clock information connection control
	6.5.1 General
	6.5.2 Wireless cycle master procedure
	6.5.2.1 Wireless cycle master election
	6.5.2.2 Wireless cycle master operation

	6.5.3 Wireless cycle slave procedure
	6.5.4 CC specific procedure

	6.6 CL responsibility handover
	6.7 HL2 Address Resolution service (HARP)
	6.7.1 General
	6.7.2 Procedures
	6.7.2.1 Procedure in the sender
	6.7.2.2 Procedure in the receiver

	6.8 Asynchronous transaction connection control service
	6.8.1 Asynchronous transaction mapping to a DLC connection
	6.8.1.1 General
	6.8.1.2 Procedures

	6.8.2 Clean closing service
	6.8.2.1 General
	6.8.2.2 Clean closing SSCS PDU format
	6.8.2.3 Procedures
	6.8.2.3.1 Procedure at the initiating side
	6.8.2.3.2 Procedure at the other side

	6.9 Isochronous stream connection control service
	6.9.1 General
	6.9.2 SSCS procedure
	6.9.2.1 General
	6.9.2.1.1 Resources allocation
	6.9.2.1.2 Non overlaid connection
	6.9.2.1.3 Overlaid connection
	6.9.2.1.4 Resources reclaim
	6.9.2.1.5 Resources release

	6.9.2.2 Procedure at the talker side
	6.9.2.3 Procedure at the listener side
	6.9.2.4 Procedure at the IRM side

	6.10 Asynchronous streams connection control service
	6.10.1 IRM and PCR functions
	6.10.2 Asynchronous stream relaying
	6.10.2.1 General
	6.10.2.2 Procedures
	6.10.2.2.1 Procedure in the WT side
	6.10.2.2.2 Procedure in the CC side

	7 Convergence layer specific parameters
	7.1 Convergence layer identifier
	7.2 Convergence layer version
	7.3 Maximum transmission unit
	7.4 Information elements for 1394 SSCS
	7.4.1 Information element format
	7.4.2 Information element type coding
	7.4.3 HARP_REQUEST information element
	7.4.4 HARP_RESPONSE information element
	7.4.5 EUI_64 information element
	7.4.6 CHANNEL information element
	7.4.7 BUS_SUSPEND information element
	7.4.8 BUS_RESUME information element
	7.4.9 BUS_RESET information element
	7.4.10 TRANSACTION_INDICATOR information element

	Annex A (normative): HIPERLAN/2 CSRs
	A.1 CSR registers
	A.1.1 Standard CSR registers
	A.1.2 Unimplemented wired-1394 registers
	A.1.3 INTERRUPT_TARGET register
	A.1.4 CYCLE_TIME register
	A.1.5 BUS_TIME register
	A.1.6 LOCAL_CYCLES register
	A.1.7 LOCAL_SECONDS register
	A.1.8 SPLIT_TIMEOUT register

	A.2 PCRs
	A.2.1 oPCR format
	A.2.2 iPCR format
	A.2.3 PCR error codes

	A.3 ROM information
	A.4 Locked messages
	A.4.1 Locked message formats
	A.4.2 ALLOCATE_SOME
	A.4.2.1 ALLOCATE_SOME request
	A.4.2.2 ALLOCATE_SOME response

	A.4.3 MODIFY_BANDWIDTH
	A.4.3.1 MODIFY_BANDWIDTH request
	A.4.3.2 MODIFY_BANDWIDTH response

	A.4.4 RECLAIM_THIS
	A.4.4.1 RECLAIM_THIS request
	A.4.4.2 RECLAIM_THIS response

	A.4.5 RELEASE_THIS
	A.4.5.1 RELEASE_THIS request
	A.4.5.2 RELEASE_THIS response

	Annex B (informative): Quadlet-structured PDU formats
	B.1 Asynchronous subaction
	B.2 Isochronous streams
	B.3 Asynchronous streams

	Annex C (normative): Nonbridge upper layer
	C.1 Primitives (informative)
	C.2 Time stamps for split-response timeouts (normative)
	C.3 User plane
	C.3.1 Isochronous stream transport service
	C.3.1.1 HL2 Bus maximum transmission delay (informative)
	C.3.1.2 Relative CIP time stamps (normative)

	C.3.2 Asynchronous transactions
	C.3.2.1 Subaction rt field (normative)
	C.3.2.2 Available self-ID information (informative)

	C.4 Control plane (normative)
	C.4.1 Clock connection control
	C.4.2 Isochronous stream connection control

	Bibliography
	History

