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Intellectual Property Rights 
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (http://webapp.etsi.org/IPR/home.asp). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Foreword 
This Technical Report (TR) has been produced by ETSI Technical Committee Telecommunications and Internet 
converged Services and Protocols for Advanced Networking (TISPAN). 

Introduction 
Next Generation Networks (NGN) are required to provide real-time services such as authentication, location, presence 
information, user registration, accounting, and separation of bandwidth control from call/session control (as with the 
gateway control protocol H.248); and these functions will generally be distributed over a number of servers. The 
protocols used between the servers could comprise any, or all, of the following: SIP, HTTP(S), Radius, Diameter, DNS, 
COPS, SNMP, SMPP, SAML, LDAP, Parlay, Java, SOAP, Midcom, H.248, SIP-I, INAP, etc. 

An analysis of IETF Working Groups suggests that much thought has been, and is being, given to the management of 
bandwidth and router congestion (see, for example, RFC 3124 [5] "The Congestion Manager"), but almost none to 
control of host and server processing overload. Indeed, although some of the above listed protocols (e.g. SIP and HTTP) 
do provide response or status codes that might be used to indicate processing overload, none explicitly specifies an 
overload control mechanism. 

The same conclusion also seems to apply to the following non-IETF protocols: H.323 [8], SOAP, SAML, SMPP, and 
Parlay. 

This contrasts with the telephony/ATM world where there are examples of protocols that have built-in overload control 
features: INAP, ISUP, BICC, PNNI and more recently overload control package H.248.11 [7]. Such controls are crucial 
during extremes of network operation where surges of service requests (or Denial of Service attacks) can be an order of 
magnitude greater than normal demand levels. 

As a general rule, an NGNs servers can experience prolonged processing overload under the appropriate circumstances 
(e.g. partial, or full, server failure, high rates of incoming service requests). Consequently, it needs to be equipped with 
some form of overload detection and control (including expansive controls such as load balancing and resource 
replication), in order to keep response times just low enough under such processing overload to preclude customers 
abandoning their service requests prematurely.  

The usual way to provide load control is to build a mechanism into each protocol that needs it (for example ISUP ACC, 
and the H.248.11 [7] Congestion Control Package). However, rather than building a variety of mechanisms into a range 
of protocols, established through a number of standards fora, it ought to be quicker and cheaper to solve the problem 
once, in a way that is independent of the main protocols. This could be done by designing a separate overload control 
protocol with associated load control functions which together detect processing overload, adapt and distribute 
restriction levels and apply restriction. This protocol is called GOCAP (Generic Overload Control Application 
Protocol). 

http://webapp.etsi.org/IPR/home.asp
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The perceived benefits are: 

1) IT- and internet-based protocols will more easily transfer into the service-level assured world of the 
telecommunications operators. 

2) Manufacturers have only one overload control mechanism to implement and maintain. 

3) It would simplify the route through standards bodies. 

4) It would provide flexibility of implementation (no need to implement if not required). 

The present document explores the some of the options for GOCAP and the functional entities required to support its 
use as an overload control. The specific NGN requirements and actual protocol specification of such an overload 
control will be described separately. 



 

ETSI 

ETSI TR 182 015 V1.1.1 (2006-10) 7  

1 Scope 
The present document describes the architectural principles that are required to provide effective control of processing 
overload in networks compliant to the TISPAN NGN Architecture. As such it constitutes a discussion of the 
requirements for the protocols required to support the NGN overload control architecture.  

The scope is limited to the control of processing overload at NGN processing resources caused by service requests 
coming from session-based or command-response applications by controlling the rate at which those applications send 
service requests to an overloaded resource. It does not extend to the overload of transmission bandwidth whether used 
for the user plane or for the control plane. 

2 References 
For the purposes of this Technical Report (TR), the following references apply: 

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee 
their long term validity. 

[1] ETSI ES 283 039-3: "Telecommunications and Internet converged Services and Protocols for 
Advanced Networking (TISPAN); Specification of protocols required to support the NGN 
Overload Control Architecture; Part 3: Overload and Congestion Control for H.248 MG/MGC". 

[2] Whitehead M J and Williams P M, "Adaptive Network Overload Controls", BT Technology 
Journal, Vol. 20, No. 3, July 2002. 

[3] ITU-T Recommendation E.412 (01/2003): "Network management controls". 

[4] ETSI TR 180 001: "Telecommunications and Internet converged Services and Protocols for 
Advanced Networking (TISPAN); NGN Release 1; Release definition". 

[5] IETF RFC 3124: "The Congestion Manager". 

[6] ITU-T Recommendation H.248.10: "Gateway control protocol: Media gateway resource 
congestion handling package". 

[7] ITU-T Recommendation H.248.11: "Gateway control protocol: Media gateway overload control 
package". 

[8] ITU-T Recommendation H.323: "Packet-based multimedia communications systems". 

[9] ITU-T Recommendation H.248.1: "Gateway control protocol: Version 3". 

[10] ITU-T Recommendation E.164: "The international public telecommunication numbering plan". 

[11] ETSI EN 383 001: "Telecommunications and Internet converged Services and Protocols for 
Advanced Networking (TISPAN); Interworking between Session Initiation Protocol (SIP) and 
Bearer Independent Call Control (BICC) Protocol or ISDN User Part (ISUP) [ITU-T 
Recommendation Q.1912.5, modified]". 
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3 Definitions and abbreviations 

3.1 Definitions 
For the purposes of the present document, the following terms and definitions apply: 

admission control: control that accepts or rejects request on the basis of system load state 

NOTE: This "admission control" relates only to requests accepted and rejected on the basis load state of 
processing resource. This is a separate control to that used to manage access to transport resource. 

3.2 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

A Admission (control, function) 
ACC Automatic Congestion Control 
ACL Access Control List 
ADC Automatic Destination Control 
AF Application Function 
AMG Access Media Gateway 
API Application Programming Interface 
A-RACF Access Resource Admission Contol Function 
ATM Asynchronous Transfer Mode 
BGF Border Gateway Function 
BICC Bearer Independent Call Control 
C Communication (applications) 
C Control (variable) 
CA Call Agent 
COPS Common Open Policy Service 
D Distribution (function) 
DNS Domain Name System 
DoS Denial of Service 
GOCAP Generic Overload Control Application Protocol 
HTTP HyperText Transfer Protocol 
IETF Internet Engineering Task Force 
IMS Internet protocol based Multimedia core network Subsystem 
INAP Intelligent Network Application Protocol 
IP Internet Protocol 
ISUP ISDN User Part 
IT Information Technology 
LDAP Lightweight Directory Access Protocol 
M Monitor (reject Monitor and restriction Mastering function) 
MGC Media Gateway Controller 
NGN Next Generation Network 
NOCA NGN Overload Control Architecture 
OSA Open Service Access 
pA pseudo-Admission 
PDU Packet Data Unit 
PNNI Private Network to Network Interface 
PSTN Public Switched Telephone Network 
R Restrictor,  

Restriction (method) 
RACS Resource and Admission Control Subsystem 
RADIUS Remote Authentication Dial-in User Service 
SAML Security Access Markup Language 
SCP Service Control Point  
SCTP Stream Contol Transmission Protocol 
SIP Session Initiation Protocol 
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SIP-I SIP profile C of EN 383 001 [11] 
SLA Service Level Agreement 
SMPP Short Message Peer to Peer Protocol 
SNMP Simple Network Management Protocol 
SOAP Simple Object Access Protocol 
SPDF Service Policy Decision Function 
TCP Transmission Contol Protocol 
TISPAN Telecommunications and Internet converged Services and Protocols for Advanced Networking 
TLS Transaction Layer Security 
UDP User Datagram Protocol 
URI Uniform Resource Identifier 
VoIP Voice-over-IP 

4 Requirements for NGN overload controls 

4.1 NGN overload scenarios 

4.1.1 Processing overload sizes 

Overloads peak at calling rates much greater than the predictable daily profile peak to which the network can be 
economically dimensioned. Table 1 taken from [2] shows the range of calling rate measurements taken from BTs 
network (based on 15 minute samples). We can see that overload can exceed 64 times the systematic peak calling rate 
for six 15 minutes periods a year. While, during such an overload we might expect a large proportion of call attempts to 
fail, however, it would be unacceptable for the network to fail completely due to processing overload. In particular, the 
network would prioritize service of emergency traffic and other important streams. 

The reality of massive overloads has been demonstrated by data from PSTN networks, how do these overloads occur?  

Table 1: Extremes of the calling rate distribution 

Calling rate expressed as a multiple 
of systematic quarter hour peak 

Number of quarter hours per year calling 
rate is exceeded (% of quarter hours) 

2 344 (1 %) 
4 139 (0,4 %)  
8 51 (0,1 %)  

16 22 (0,06 %) 
32 17 (0,05 %) 
64 6 (0,02 %) 

 

4.1.2 Media stimulated events 

This is a family of events such as televotes for TV programmes, ticket sales and phone-ins which can all generate high 
calling rates to particular small ranges of numbers. In [2], it is reported that these events occur with a frequency of 
several thousand a month. Some of the largest events are televotes stimulated by TV programmes, and such events can 
have a very rapid onset, with the calling rate increasing at a rate of 4 k calls per second per second over 6 seconds 
observed in parts of BTs network. Often these events are known about in advance, so steps can be taken to prepare the 
overload controls. Also they are usually focussed on a small range of destinations, so controls like ADC [3] may help to 
reject sessions unlikely to succeed early in the call setup process.  



 

ETSI 

ETSI TR 182 015 V1.1.1 (2006-10) 10 

4.1.3 Disasters 

Disasters, such as major accidents, terrorist attacks or extreme weather, may stimulate overloads, some times focussed 
on a few destinations (emergency services, information lines etc) or possibly more diffuse with whole regions seeing an 
increase in call attempts. In the former case, the network operator may have advance notice of a destination before it is 
advertised to the general public and be able to arm appropriate network controls (these events are similar to media 
stimulated events, albeit with much less time to prepare the network). The more diffuse overload may be harder to 
manage as there are no specific destinations that can be used to target the anomalous load and there is no warning. One 
of the alarming aspects of disaster scenarios is that the operators network may its self be damaged (e.g. by flooding) 
reducing capacity at the very time that it is exposed to these additional loads. 

4.1.4 Network Failures 

Significant processing overloads can be generated by network equipment failures. This may be caused by reducing the 
capacity available (e.g. the loss of a call agent) or by abruptly terminating existing sessions, triggering mass session 
releases followed by session re-establishment attempts. It is difficult for the network to shed load in these circumstances 
(the session clear downs have to be processed so that network resources are recovered and end users are not 
overcharged). These events happen very rapidly, and require very quick response times from automatic controls.  

4.1.5 Conclusion 

We can see that the NOCA needs to be able to control severe processing overloads, and that these overloads may appear 
suddenly, with little or no warning. This means that the NOCA needs to be able to detect overloads very quickly and 
respond without operator intervention. 

4.2 Impact of overload on resources and customer behaviour 

Offered rate
(service requests/sec)

Rejection rate
 at resource

C M

Offe
re

d 
ra

te

Offered rate 
beyond which 
correct request 
handling not 
guaranteed

Response
time

Internal 
load control 
invoked

Admission rate
(service requests/sec)

 

Figure 1: Typical throughput and response time curves for a system with internal load control 

Figure 1 illustrates the typical behaviour of a resource that has an internal overload control acting to reject sufficient 
offered demand so as to keep response times constant, and short, under overload.  

Customer persistence can lead to an explosion of repeat attempts when service requests are rejected, resulting in 
congestion in other parts of the NGN. It is therefore essential to maintain as high as possible effective throughput at an 
overloaded resource, subject to keeping response time small enough to preclude customers abandoning service requests 
due to long delays. 

Because rejecting fresh calls takes processing effort, effective throughput at an overloaded resource (i.e. admitted 
service requests/sec) must eventually fall as the load offered to it is increased; and ultimately it will spend all its time 
rejecting fresh demand. So, to prevent this, it is necessary that controls external to the resource act to reduce the fresh 
offered load to the level at which its effective throughput is maximized. 
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4.3 NGN Interfaces requiring overload controls 
Figure 2 (taken from [4]) shows the top-level NGN sub-systems (PSTN/ISDN Emulation Subsystem, IP Multimedia 
Subsystem, etc). The specific overload requirements of the NGN will be documented in the individual functional 
specifications. The realization of this architecture will require many protocols. Table 2 shows a list of protocols, many 
of which could be required for the TISPAN NGN, together with their overload control status. Notice that many key 
protocols are without effective overload control. 

Resource and Admission 
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IP Connectivity
Access Network
And related functionality

Network Access
Attachment Functions

NAS S

Other Multimedia 
Components É

Streaming Services 
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Application Functions

Core transport 
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3GPP IP-CAN

Access Transport 
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User
Profile
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O
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etw
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Legacy
Terminals

GW
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Transport Stratum

Service Stratum
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Network 
Entry 
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Resource and Admission
Control Sub-System
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Figure 2: TISPAN NGN Overview 
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Table 2: Overload control status for NGN protocols 

Protocol Description Has 
Control

? 

Comments 

SIP 
RFC3261 

Session control 
messages, 

presence etc. 

No Various status codes could be used to drive load control, but SIP does not 
specify how.  

DNS 
RFC1035 

Network host 
database 

No No DNS message response codes explicitly reserved for server overload. 
Rcode = 2, "server failure", might be usable. 

LDAP 
RFC3377 

Database lookup No Result code busy (51) = "server too busy to service the operation". Might be 
usable to drive an overload control. 

HTTP 
RFC2616 

Web based 
services 

No Various status codes could be used to drive load control, but HTTP does not 
specify how. 

COPS 
RFC2748 

 No Reason code 7 (Insufficient resources) or Error code 4 (Unable to process) 
might be usable to drive an overload control.  

SNMP 
RFC3411 

Management 
interface 

No The Response-PDU error status value = "resourceUnavailable" might be 
usable to drive an overload control. 

Radius 
RFC2865 

Authentication 
protocol 

No No provision in Radius for a server (or proxy) to tell a client it is overloaded. 
Would have to consider use of client time-outs to drive control. 

Diameter 
RFC3588 

 No Error code DIAMETER_TOO_BUSY might be usable to drive an overload 
control. 

ISUP Call control Yes Can use ACC. 
H.248 Control interface 

between media 
gateway and its 

controller 

Partial 
(MGC to 

MGW 
only) 

Packages H.248.10 [6] and H.248.11 [7] define overload controls that 
protect MGW by throttling at MGC. Overload control in the reverse direction 
(MGW to MGC) is provided by the package ES 283 039-3 [1]. Issue of 
integration of existing controls with other protocols at MGC. 

INAP  Yes INAP Call Gap message and action defined, but not how to detect overload 
at an SCP, nor how to adapt the gap interval. 

 

4.4 NGN architectural factors 
The NGN overload control architecture needs to take into account the following factors: 

•  AMG to CA fan-in issue [1]. The possibility of thousands of small AMGs (with, say, 20 to 30 customer lines 
each) parented on a CA, poses a severe overload control problem for the CA. Special overload control 
techniques may be needed to protect a CA from very sudden, and very severe, calling rates coming from its 
dependent AMGs. Reference [1] proposes a new control method, to be incorporated into a new  
H.248 extension package, to resolve this issue when the H.248 protocol is used. 

•  As we saw in table 2, many protocols which might be used by an NGN have no built-in overload controls. 
Examples are: SIP, LDAP, Diameter and H.323 [8]. Moreover, some protocols do not even provide a means to 
indicate processing overload in response to a service request. Examples are: DNS, Radius, SNMP, SOAP and 
SAML. 

•  Session-based and command-response protocols.  

•  Load-balancing and load forking. 

•  Proxies and information hiding. 
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4.5 GOCAP requirements 
The following set of top-level requirements are proposed: 

1) automatically maximize effective throughput (i.e. admitted service requests/sec) at an overloaded resource 
subject to keeping response times low and giving priority to follow-on service requests (for session-based 
protocols); achieve this throughput for the duration of an overload event, and irrespective of the overloaded 
resource's capacity or of the number of sources of overload (the AMG to CA fan-in issue is an important 
special case); 

2) automatically control processing overload caused by high rates of session release requests;  

3) be aware of differing importance levels of messages, and be configurable to reject low importance messages 
first, and then also reject the next higher importance level as well, and so on; 

4) be configurable by the service provider so that, under processing overload, a high proportion of response times 
at overloaded resources are low enough so as not to cause customers to prematurely abandon service requests; 

5) be configurable by the service provider so that, when several inter-acting controls are active at the same time, 
they converge to an acceptable steady-state when offered loads are constant;  

6) inter-work with demand call routing, load balancing and load forking; 

7) automatically limit ineffective service requests by detecting specific called names/addresses that are attracting 
a high reject rate and selectively controlling demand to them; 

8) handle translation of called identity (name or address); 

9) handle topology-hiding mechanisms; 

10) enforce fair allocation of an overloaded processing resource between competing controlled streams of service 
requests; 

11) enforcement of SLAs (to divide the capacity of an overloaded resource between competing streams of service 
requests according to agreed policies); 

12) be able to know which types of service requests may be rejected (by the NGN overload control), and which 
may not, given the protocol used between two hosts; 

13) use the smallest practicable set of standardized, fully-specified, overload control components, in order to 
minimize the costs of implementation and end-to-end proving; 

14) have standardized interfaces (APIs) to the overload control's components for use by the applications running 
on each host; 

15) manual configuration of the overload control's components via a standardized network management interface; 

16) (optionally) automatic configuration of the overload control; 

17) output network management data output on event occurrence (e.g. control activation/termination) and on 
demand from network management (e.g. counts of service requests admitted and rejected by the overload 
control); 

18) have adequate security from malicious actions; 

19) shall apply within a service provider's NGN, and between different service providers' NGNs; 

20) shall apply within an NGN subsytem (e.g. IMS, PSTN/ISDN emulation) and between different NGN 
subsystems. 
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5 Overload control design rules 
The following is proposed as an initial set of design rules that help ensure that the overload control architecture's design 
requirements (clause 4.4) should be met. 

Internal Overload Control: All resources that can get into processor overload should ideally have a function that can 
detect processor overload and an admission function that rejects just enough fresh incoming demand to maximize 
successful completion of admitted sessions subject to not exceeding customer tolerance of long set-up delays. 

NOTE: Many telcos' PSTN call processors have such adaptive internal overload controls. They use feedback 
loops to determine dynamically what part of the stream of initial service requests should be rejected, in 
order to keep some internal measured quantity (e.g. processor occupancy) roughly constant. 

External overload control: Because rejecting fresh calls takes processing effort, effective throughput at an overloaded 
resource (i.e. its admitted rate) must eventually fall as the load offered to it is increased; and ultimately it will spend all 
its time rejecting fresh demand. So, to prevent this, it is necessary that controls external to the resource act to reduce the 
fresh offered load to the level at which its effective throughput is maximized. 

Discrimination: Both internal and external controls should: 

1) discriminate so that subsequent demand (e.g. session release requests) after the initial request is only rejected if 
all lower importance demand has been rejected and the demand level is still too high; and 

2) discriminate in favour of priority demand (e.g. emergency sessions). 

Explicit demand rejection: Preferably, the admission control at an overloaded resource should reject a service request 
by sending an explicit response rejecting the request, and the backward response should indicate that the request was 
rejected due to processing overload. The backward response may indicate to an external control what level of restriction 
to apply.  

Failing explicit backward overload indication, which may not be available in many protocols, there are two options. 
Either: 

1) use a pseudo-Admission control at an overloaded resource (see clause 6.1.2); or 

2) depend upon the use, at external points of control, of timed-out responses to service requests as a surrogate for 
explicit backward overload indication.  

Both these control configurations make targets vulnerable to misbehaving external sources, and more sensitive to 
fluctuations in arriving demand, leading to longer response time tails. Also this use of time-outs relies upon response 
times being predictable and short under non-overload conditions. That may not always be the case. A server's response 
times may tend to be mainly short but with the occasional long delay when the server has to get non-local information 
(e.g. DNS lookups, SIP redirection/location proxies). 
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Closed loop feedback control: The internal and external controls protecting a resource must have a closed-loop 
feedback structure in which the controlled variable is the rate (per second) at which an overloaded resource rejects 
service requests due to overload. The goal of the feedback control must be to adjust the level of external restriction so as 
to cause the controlled variable to converge rapidly to a low value. This choice of controlled variable and goal should 
ensure that the level of demand arriving at an overloaded resource will automatically adapt to match that resource's 
capacity, whatever the capacity may be, and however many demand sources are causing the overload (see [2]).  

The closed loop structure is illustrated in figure 3. 

  

Figure 3: Basic components of an adaptive overload control 
based on feedback of session rejects 

The functional components are as follows:  

1) an internal Admission/load control mechanism (A) at the target that controls access to a network resource 
(including access to the bearer and signalling networks, re-routing under congestion, load sharing, and 
advanced service features); 

2) a reject Monitoring and restriction Mastering function (M) that counts and analyses service request arrivals 
and rejections by the Admission function (A) and uses that information to adapt the restriction level; 

3) a distribution function (D) that apportions and distributes the restriction level calculated by M to each of the 
restrictors; 

4) a restrictor (R) that rejects part of the demand directed to an overloaded resource and is driven by updates  
from D. 

Location of control components: The control components must be distributed between the overloaded resource and 
external points of control in one of the following two ways:  

1) The overloaded resource hosts A, M and D, and so masters and adapts the level of restriction which is applied 
externally at R. For this to work, the protocol used between the sending and overloaded resources must allow 
carriage of the restriction level. 

2) The overloaded resource hosts just A; and M, D and R run on the sending resource. The feedback from 
overloaded resource to sending resource is then explicit rejections of requests (carrying an overload 
indication).  

Control loops in series (staged control): It is possible to connect in series several sequences of components R, A, M 
and D (forming a closed loop control). This is termed staged control, and has the following advantages: 

1) lower control loop round-trip times (more stable control); 

2) avoidance of problems with translation of called number or address (a control message sent back to an 
originating node could otherwise refer to an identity that is meaningless to that node); 

3) avoidance of too great a degree of "fan-in" from many points of control (R) to a single overloaded resource 
(faster adaptation of control level). 
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Restriction method (R): This should be either gapping or leaky bucket (or other method that bounds admitted rates). 
Gapping and leaky buckets can be implemented in several ways; the following two examples illustrate the concepts: 

1) Gapping (Crawford algorithm). Upon admitting a request, start a timer of duration t seconds. Then reject all 
subsequent requests which arrive at the restrictor before the timer has expired. 

2) Leaky bucket. This is a count that continuously decreases at rate r (subject to not falling below 0). When a 
request arrives to find the count is less than the bucket maximum, then admit the request and increase the 
count by 1, otherwise the request is rejected and the count is not changed. 

Automatic Destination Control (ADC [3]): Overload controls should be able to automatically identify and control the 
load offered to specific called customers or destination network addresses attracting a high failure rate due to congestion 
at a terminating resource or network resource. This can be done by suitably modifying the Monitoring and Mastering 
function (M), e.g. by the use of leaky bucket monitors assigned automatically to called identities attracting high failure 
rates. 

SLA (Service Level Agreement) enforcement:. Closed-loop feedback controls protecting a resource can be arranged 
so that the capacity of that resource is divided between the streams of requests causing the overload according to agreed 
amounts. For example, requests coming from service "x" can be guaranteed to get at least a proportion "p(x)" of the 
total capacity. For this to be implementable, each request arriving at the overloaded resource must somehow identify the 
service it belongs to. For traditional IN services, the identifier is a Service Key; for the service streams in an NGN, there 
may or may not be any such identifier. 

6 Detailed NGN overload control architecture 

6.1 Control architecture: General approach 
At its top level, the GOCAP architecture provides an optional generic overload control interface (labelled GOCAP in 
figure 4) acting in parallel to an existing protocol interface (labelled PROTOCOL) being used by the source and target 
communication applications (labelled as C). This approach does not change the protocol interface, rather the overload 
control interface is used to affect the behaviour of the communications application at the source. For simplicity the 
model shows a source / target relationship but it should be noted that on many control interfaces the demand can be 
sourced by both entities, i.e. in both directions so that either end can be simultaneously acting as both a source and a 
target. It should also be remembered that there will usually be more than one source that contributes to the load 
experienced by the target. 

 

Figure 4: Relationship of Generic Overload Control Interface 
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6.2 Options for locating components (M, D and R) 
Consider an overloaded NGN processing resource (the target) receiving service requests from one or more NGN 
processing resources (the sources), and consider the protocol in operation between a specific source and the target. Then 
there are, logically, just 3 cases to consider: 

1) the protocol supports rejection (due to overload) of service requests by the target with an indication of 
overload (e.g. SIP [RFC3261], HTTP [RFC2616], LDAP [RFC3377], COPS [RFC2748], H.323 [8], SOAP, 
Parlay OSA API); 

2) the protocol supports an indication of overload, but not rejection of service requests due to overload  
(e.g. H.248.11 [7]); 

3) the protocol supports neither rejection of service requests due to overload nor indication of overload  
(e.g. DNS [RFC1035], RADIUS [RFC2865], SAML, H.248 (target = MGC)). 

6.2.1 Case 1: protocol supports reject of service requests by the target 
with an indication of overload 

For case 1, the target will have an Admission control. There are two options for locating the overload control's 
components: option 1 (shown in figure 5) and option 2 (shown in figure 6). 

In option 1, M and D are located at the overloaded resource (the target), and R is located at adjacent resources (sources). 
Service requests arriving at the target's admission control (A) are either admitted or rejected, and handled accordingly 
by the target's application (C). If a request is rejected, then C copies reject information to M, which mastered the 
required restriction level. The overload control protocol then sends updates to restriction levels to R using the 
Distribution function D. At the source, the application (C), asks R whether it can forward a service request to the target. 

Note that a key assumption is that the communication applications ('C') are users of the protocol in operation between 
source and target, but are not part of the protocol. So to add an NGN overload control to an existing NGN processing 
resource, a vendor only has to change C's code to talk to the NGN overload control APIs (e.g. to ask R for permission to 
forward a SIP Invite, or report to M that a service request has been rejected due to overload). 

 

Figure 5: Case 1 - option 1 

In option 2, M, D and R are located at the source. The sources application (C) copies rejections with overload indication 
which it receives from the target to the Monitoring instance (M) at the source, and asks R if it can forward service 
requests to the target.  
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Figure 6: Case 1 - option 2 

Option 1 has an important statistical advantage compared to option 2: the target sees the totality of service requests it 
rejects. That means it can estimate reject rates faster than can option 2, for which each source only sees part of the 
rejects. 

6.2.2 Case 2: protocol supports an indication of overload, but not rejection 
of service requests 

In this case, the target needs a pseudo-Admission function (denoted by "pA" in figure 7) in order to support GOCAP 
(Figure 7). The pseudo-Admission function marks incoming service requests as "pseudo-rejected" or not, based upon 
measurements of target loads and delays. 

In option 1 (shown in Figure 7), M and D are located at the target, and R at the source. A pseudo-rejected request is not 
rejected by the target but instead is processed fully, and information about the request is passed to the target's reject 
Monitor (M), which then acts upon it exactly as if it were a true reject as described for case 1, option 1. 

  

Figure 7: Case 2 - option 1 

In option 2 (shown in figure 8), M, D and R are all located at the source. The source application (C) then passes 
overload indications to its local monitor instance M, and the control aims to throttle back service requests to a rate at 
which overload indications are received infrequently. 
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Figure 8: Case 2 - option 2 

6.2.3 Case 3: protocol supports neither rejection of service requests nor 
indication of overload 

In this case, the protocol operating between source and target has no way of rejecting a service request due to target 
overload. 

Option 1 (shown in figure 9) has M and D located at the target and R at the source. As with case 2, option 1, the target 
has a pseudo-Admission function, which marks individual service requests as "pseudo-rejected" or not based upon 
measurements of the target's internal resource loadings or delays. A pseudo-rejected request is not rejected by the target 
but instead is processed fully, and information about the request is passed to the target's reject Monitor (M), which then 
acts upon it exactly as if it were a true reject as described for case 1, option 1. 

  

Figure 9: Case 3 - option 1 

Figure 10 shows option 2 in which M, D and R are located at the source. The source's application (C) runs a timeout for 
each service request sent to the target, and passes reject information to M if the timeout expires before a response to the 
service request is received back. This option either depends upon response time being predictable and short when the 
target is not overloaded, or depends upon the session control protocol always returning (in a predictable and short time) 
an indication from the target that the request has been received and is being processed (e.g. SIP 100 Trying). 

  

Figure 10: Case 3 - option 2 
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6.2.4 Preferred locations of components 

Based upon the options discussed in the preceding clauses, it is recommended that the GOCAP functional components 
M, D and R be located as shown in figure 11. That is, the Monitoring and restriction Distribution functions should be 
located at the target and the Restriction function should be located at the sources.  

 

Figure 11: Preferred locations for M, D and R 

6.3 Destination load control 
The type of overload considered in this clause is one focussed onto a destination address (e.g. SIP User Agent Server) 
as opposed to node load control described below. 

This is illustrated in figure 12, in which a high rate stream of session-related or command/response service requests is 
focussed on the called address "x" parented on node "y".  

 

Figure 12: Destination load control 

The protocol used between "x" and "y" conveys reject responses from "x" back to the application C in node "y". C 
notifies the GOCAP instance resident at node "y" of each such reject, passing across the identity "x". GOCAP creates a 
reject monitor (denoted by Mx) specifically associated with address "x", if one does not currently exist. The Monitor 

estimates the rate at which "x" rejects requests. If the reject rate exceeds a configurable threshold then control of 
requests to "x" is started. That is, M starts to send the control variable associated with address "x" to the distribution 
function, for onward communication to adjacent nodes by GOCAP messages. At adjacent nodes (such as node "a") a 
restrictor (denoted Rx,y) is created to throttle service requests sent via next hop node "y" to address "x".  

NOTE: It is possible that more than one Restrictor against address "x" could be active at node "a". For example, 
one restrictor could be throttling service requests forwarded to "x" via "y", and another could be throttling 
routing requests relating to address "x" sent to an overloaded external routing database. The GOCAP 
message therefore needs to identify the controlled address "x", the next hop node (y) towards "x" from the 
point of restriction, and the restriction level (L). 
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At node "y", Mx periodically updates the restriction level applied against "x" in order to drive the reject rate measured 

by Mx close to its (configurable) goal reject rate. Each time the restriction level is updated, The distribution function, D, 

sends the appropriate allocation of that level to each of the adjacent node s. This then ensures that the adjacent nodes 
receive appropriate shares of the capacity of "x" to handle incoming service requests, if the restrictors employ a method 
that bounds admitted rates (as do leaky bucket methods, and call gap methods). Control against "x" at node "y" should 
cease when the current restriction level has adapted down to a (configurable) minimum level, and has stayed at that 
level for a configurable (termination pending) interval. 

6.3.1 Control loops in series 

Control of service requests towards an overloaded destination address "x" can be extended beyond the immediate 
neighbours of the node "y" that hosts "x". This can be done by connecting feedback control loops in series, as illustrated 
in figure 13. 

The advantage is that the streams of requests to address "x" are restricted closer to the points where they enter the 
network, thus greatly reducing the amount of ineffective demand in the network. In addition, short feedback loops 
reduce the loop round-trip time improving feedback stability. 

 

Figure 13: Destination control loops in series 

The control loop between nodes "a" and "y" operates as described above. The control loop between nodes "b" and "a" is 
driven by rejected admission requests at node "a". The application C at node "a" notifies GOCAP each time a service 
request to address "x" is either rejected by Restrictor Rx,y , or a (non-GOCAP) response is received from downstream 

indicating that the request has been rejected due to overload at "x". GOCAP then activates a Monitor Mx at "a". A high 

enough rate of rejections measured at a by Mx results in restriction levels being distributed periodically to node "b". 

6.3.2 Called address translation 

Figure 14 shows how two control loops in series can be configured to handle a change to the request destination address 
at the node where the two loops meet (node "a" in figure 14). 

 

Figure 14: Handling request address translation 
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Suppose that the application logic "P" at node "a" changes all service requests to address "z" to requests to address "x". 
When requests to "x" are being throttled at "a", then "C" should therefore notify the local GOCAP instance at node "a" 
that a service request to address "z" has been rejected, every time the Restrictor Rx,y rejects a call to "x". That way a 

new control loop, acting between nodes "b" and "a" will be created restricting calls at "b" to address "z". Notice that this 
called address functionality will always work when the mapping function of addresses "z"→"x" is bijective (i.e. each 
address in set Z mapped to exactly one address in set X and each address in set X has an address in set Z that maps to 
it). If address wildcarding is allowed, then the mapping of each address range in Z to a address range in X must be 
bijective. If these properties do not hold, then the reverse mapping at node "a" is non-trivial and is for further study.  

6.4 Control of server overload 
The type of overload considered in this clause is server overload caused by a general increase in the rate of service 
requests to a large number of destination addresses (i.e. the request stream is not mainly directed to a single destination 
user). It is then appropriate to activate controls at all adjacent nodes that are contributing to overload of the server in 
question; and for those controls to restriction all streams of requests forwarded to the overloaded server.  

Figure 15 illustrates how NOCA would be configured to throttle requests sent to the overloading node "y".  

 

Figure 15: Control of server overload 

It is assumed that node "y" has an admission control (denoted by Ay) which decides, based upon internal load 

monitoring, whether an arriving service request shall be admitted or rejected. If a request is rejected, then an indication 
of that is passed to the application logic C, so that C can respond appropriately to node "a", and also notify node y's 
NOCA instance that a request has been rejected due to processing overload of node "y". 

The monitoring and mastering function (denoted by My), specifically associated with address (i.e. node) "y", measures 

rejects from "y" and (directly or indirectly) estimates their reject rate over a short interval. If the reject rate exceeds a 
configurable threshold, My then control of requests to "y" is started. That is the (configurable) initial restriction level to 

be applied against y is returned to an adjacent node (via a GOCAP message) in response to the subsequent receipt of a 
request from that node, whether or not "y" rejects the request. At adjacent nodes (such as node "a") a restrictor  
(denoted Ry) is created to throttle service requests sent via next hop node "y". 

At node "y", My periodically updates the restriction level applied against "y" in order to drive the reject rate measured 

by My close to its (configurable) goal reject rate. 

NOTE: The per-node goal reject rate will need to be separately configurable from per destination-user goal reject 
rate. 
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Each time the restriction level is updated, that same value is apportioned and distributed by D to each adjacent node in 
response to a service request received from that node by "y". Then this ensures that the adjacent nodes receive equal 
shares of the capacity of "y" to handle incoming service requests, if the restrictors employ a method that bounds 
admitted rates (as do leaky bucket methods, and call gap methods). However, it is possible to divide the capacity of 
address "y" between the adjacent nodes in set proportions, for example by scaling the restriction level sent to each 
adjacent node. This might be desirable if the adjacent nodes have different capacities, so that larger nodes got a larger 
share of "y". 

Control protecting node "y" should cease when the current restriction level has adapted down to a (configurable) 
minimum level, and has stayed at that level for a configurable (termination pending) interval. 

6.4.1 Control loops in series 

Figure 16 illustrates how NOCA could be configured to extend per-node throttling to protect node "y" beyond the 
immediate neighbours of "y", assuming next-hop forwarding of service requests. The application logic "P" at "a" 
notifies the local NOCA instance at "a" that node "a" has rejected a call due to general overload of node "a" every time 
a service request to node "y" is rejected by the per-node throttle, Ry, protecting node "y". And it does this even though 

node "a" is not overloaded. This copies the method of connecting of per-called user control loops in series described in 
clause 6.3.1. 

  

Figure 16: Per-node control loops in series 

There is a problem with coupling of control loops for per-node overload control. It occurs when nodes adjacent to node 
"a" are told to throttle all request streams passing via node "a" even though node "a" is not overloaded, just in order 
protect node "y". Unlike per-destination throttling, where the controlled destination address ("x") is used to route 
onwards so that demand to "x" can be throttled, given next-hop routing there seems to be no way that node "b" can 
know which of its requests will be routed via node "y" unless "y" is adjacent to "b". It is thought, therefore, that 
propagating per-node control information beyond immediate neighbours is not very useful. It may, however, be worth 
keeping this as an internal NOCA configuration option. 

6.5 Joint control of destination- and server-overload 
Figure 17 illustrates how NOCA should be configured to provide joint control of destination- and server-overload. The 
figure assumes a focussed overload directed to destination user "x" at node "y" that overloaded both "x" and "y". At 
node "y" service requests rejected by "x" cause activation of a control with Monitoring and Mastering function Mx these 

applied both at adjacent nodes such as "a" and more distant nodes such as "b" (using control loops in series). Also at 
node "y", the application admission control (not shown) rejects service requests, and causes activation of a per-node 
overload control with Monitoring and Mastering function, My and restriction Ry applied at adjacent nodes such as "a". 
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Figure 17: Joint control of destination- and server-overload 

At nodes such as "a" at which more than one active restrictor matches a service request, then NOCA should only admit 
a request to be forwarded if each matching Restrictor admits it.  

6.6 AMG to MGC fan-in issue 
There is a particular issue with media gateway controllers (MGCs) which may be loaded from a very large number of 
access media gateways (AMGs). The large number of load sources makes the maintenance of separate load monitors 
and control update controllers problematic because of the additional processing load placed on the overload target. (In 
general, there is an issue with any scenario where a resource may become overloaded due to many sources.) It is still 
desirable to integrate the AMG→MGC overload control with the GOCAP on the MGC as this means that the available 
processing resource can be allocated between different functions on the MGC in a controlled way. One possible 
approach for the AMG to MGC overload problem is described below.  

A control to limit the load from an AMG is currently being standardized within ETSI ES 283 039-3 [1] and this control 
enables the MGC to set a percentage restriction to be applied against all non-priority service requests. This can be 
integrated with a rate limiter based GOCAP running on the target by implementing a pseudo admission control in the 
communication application on the target that looks at requests from AMGs (or sets of AMGs). In figure 18 we have the 
communication applications in white circles, GOCAP components in clear rectangles and ES 283 039-3 [1] components 
in the shaded lozenges. The pseudo admission control, pA, measures the arrival rate, a , from the AMGs and the 
"reject" rate, ρ , from the GOCAP throttle RA and uses this rate to update the ES 283 039-3 [1] restriction 

probability, r . If the current restriction is or , then the new restriction, nr , would be given by an expression similar to 

( )oon r
a

rr −+= 1
ρ

. The new restriction is passed to the ES 283 039-3 [1] distribution function for distribution to the 

individual AMGs.  
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Figure 18: Possible solution to the AMG fan-in issue 

6.7 Discriminating between importance levels 
It is important that the control system can distinguish between importance levels during an overload episode. One 
approach could be to use priority levels as described in ITU-Recommendation H.248.11 clause 8.2.5 [7]. Another 
approach could be the use of leaky buckets in which different request priorities are implemented using a different 
bucket fill rejection threshold for each priority. Whatever method is used, it implies that part of the request information 
that crosses the interface between application and NOCA is the request priority. The details of how this could be 
implemented are for further study. 

6.8 Interworking with load balancing and forking 
In general the NOCA throttles should be applied to an outgoing request after any load balancing or forking decisions 
have been made. It may be that, in the event of load balancing, the rejected request would be offered to another server 
from the balanced set - but that would depend on the application. In the case of load forking, a rejection of one (or 
more) of the generated requests by a NOCA throttle should not imply that all the forked requests should be rejected. It 
should be noted that when the load balancing is performed by a separate entity, rather that the request source, then the 
comments regarding information hiding below applies. In this case the information that is hidden is the actual identity 
of the server that will satisfy the request. 

6.9 Interworking with information hiding proxies 
In some applications, proxies are used to hide information between different functions in the NGN network. This may 
be for reasons of security, or it may be to hide complex implementation issues from other functions. In these 
circumstances, the use of the NOCA implies additional functionality in the proxy. Consider figure 19, which shows two 
request sources able to load three potential overload targets. In this scenario, if Target X is overloaded, then it will use 
the GOCAP protocol to instantiate and control throttles on sources A and B, the distribution function controlling the 
apportionment of processing resource at X between A and B.  
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Figure 19: A meshed implementation of sources and targets 

In figure 20 we see that a proxy has been added to hide the complexity of the layer below. Now all requests destined for 
X, Y or Z are sent by A and B to the proxy, P. (For an example of this in the NGN architecture, consider RACS. In this 
case the sources A and B would correspond to the AF instances, the targets X, Y and Z would correspond to A-RACF 
or BGF instances and the proxy, P, would correspond to the SPDF.) When the target X detects that it is overload what 
should it do? It can no longer request throttling at A and B as they are hidden by the proxy. Nor could X request the 
proxy to forward restriction requests to A and B, as A and B do not know which requests are targeted at X (that 
matching is done by P). In some special cases, it could be possible for the proxy to use address translation to give 
request address ranges that have significance at A and B which could be used to throttle requests to X, but often that 
will not be the case. (See the discussion on address translation above, a bijective mapping of the address ranges 
associated with X, Y and Z to address ranges used by A and B are possible, though the use of the proxy for complexity 
hiding would tend to suggest it is unlikely.) 

 

Figure 20:The same scenario using an information hiding proxy 

In general terms, X can only invoke throttles at the proxy, which forces the proxy to have sufficient functionality to 
support GOCAP. The rejection at P of demand destined for X may cause P to become overloaded, and thus P would 
request throttling of requests to P at A and B. This is almost what would happen in the case without the proxy, except 
that the throttles deployed at A and B do not discriminate between requests destined to X (which is overloaded) and 
requests destined to Y and Z (which are not). This means that an overload at X can result in the rejection of requests 
destined to Y and Z even when Y and Z have sufficient resources to handle the requests.  
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6.10 Multiple controls at an overloaded resource 
Figure 21 illustrates how the overload control architecture can be used to inter-work with the following sources: 

1) sources equipped with NOCA components; 

2) sources equipped with an overload control that is driven by reject messages indicating that the target is 
overloaded (illustrated by ISUP ACC enabled source in the figure); 

3) sources with no overload control; and 

4) sources with an overload control driven by restriction messages as part of the protocol used to communicate 
with target (illustrated by the use of the draft ES 283 039-3 [1] at the AMG in the figure). 

Note that in figure 21 the NOCA architecture's components are indicated by boxes, and the non-NOCA functions are 
indicated by ovals. 

The target has a single monitoring and mastering function (M) which is monitoring the total arrival and reject rates and 
mastering the restriction level. The restriction level is passed to the distribution function (D) which apportions the 
restriction among the different NOCA managed restrictions using operator defined weights.  

 

Figure 21: Working with existing or no controls - target is NOCA equipped 
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For the NOCA enabled source, the feedback loop is as described above, but the target manages three restrictions locally, 
one for each of the other sources. Assuming the restrictions are leaky buckets, then the weights used by the distribution 
function could be chosen to ensure that each of the 4 sources gets an equal share of the overloaded resource. 
Alternatively the weights could be chosen to share the overload resource in proportion to the normal load generated by 
each of the sources.  

When a service request arrives at the target, its Communication Application(s) should check if there is a matching local 
restriction; and if there is, ask whether the request is to be admitted or not. Note that, if the target has a local Admission 
Control (not shown in figure 21), then it is assumed that each arriving request will also be tagged to indicate whether it 
has been rejected by the local Admission Control.  

If an arriving service request is rejected at the target, either by the target's Admission Control or by an active Local 
NOCA throttle, then the logic of the protocol used between the request's source and the target should be followed. In the 
examples shown in figure 21 this means that a rejected request from source 2 (running ISUP) should cause an ISUP 
release message to be returned; and the release should indicate target overload (ACL set to 1 or 2) and reason cause 
(42). A rejected request from source 3 (supporting no overload control) should be returned whatever indication of target 
overload the protocol provides. A rejected request (in the example, an Off-hook notification) from source 4 should 
follow the logic of H.248.1 [9] and the H.248.1 [9] extension package that embodies ES 283 039-3 [1]. In particular, the 
ES 283 039-3 [1] logic running on the target should be applied.  

This method scales to any number of external sources. 

This method of working with existing non-NOCA overload controls, and uncontrolled sources, has three advantages as 
follows: 

•  existing overload controls do not need to be changed either at the target or at external sources (although some 
change to the Communication Application is required at the target to check against local NOCA restrictions);  

•  the share of the target's capacity each external source, across different protocols, is managed via NOCA by 
configuration of the restriction distribution weights;  

•  the rate of admitted service requests from uncontrolled sources is configurable. 

6.11 Specification of standardized control components 

6.11.1 Mapping of the M, D & R functions 

The overload control architecture has 3 main components, indicated by the boxes in figure 22. Their alignment with the 
M, D and R functions is as follows: 

•  Monitoring and Mastering Function (M): 

- This function is realized with two components, the Adaptation Manager and one or more Control 
Adaptors. These two components are responsible for adapting the control variable(s) by monitoring the 
load information provided by the application (reject rates or cpu occupancy for example). Each active 
control at the host is managed by a single Control Adaptor, with the Adaptation Manager responsible for 
the instantiation and deletion of each adaptor. 

•  Distribution Function (D) 

- This function is realized by the Control Distribution component. This component receives control 
updates from the control adaptors and distributes apportioned restriction levels to the throttle controllers 
at appropriate nodes. 

•  Restriction Function (R) 

- This function is realized with two components, the Throttle Manager and zero or more Local Throttles. 
The Throttle manager receives restriction updates from the Control Distribution component (either local 
or remote) and responds to application queries for request forwarding (by granting or refusing those 
requests). The throttle manager is responsible for the instantiation and deletion of each throttle. 
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Figure 22: Control components (boxes) and non-NOCA system functions (ovals) 

The components and functions shown in Figure 22 should be thought of as being located above the top level of the 
protocol stacks running at target and source. As an example, the two Comms Application instances running on the 
source and target may use ISUP to communicate with each other in establishing and clearing-down voice calls. Beneath 
ISUP, the protocol stack (in descending order) could be SIP-I/TCP/IP, SIP-I/SCTP/IP or SIP-I/UDP/IP.  

Various non-NOCA system functions need to inter-act with the control components to form a working control. They are 
indicated by the oval boxes in Figure 22, and are as follows: 

•  Management Function: 

- This provides a management interface for NOCA components for configuration, status enquiries, control 
statistics etc. 

•  Communications Application: 

- This runs the logic of a service application (e.g. VoIP session establishment, routing, charging etc). 
There may be several different communication applications running on a server if the server hosts several 
different services. 

•  Load Monitor/Admission Control: 

- This provides time series of arrival rates, reject rates, processor occupancy etc. In the case of admission 
control, it is assumed that the function is already realized as part of the internal overload management for 
the communication application running on the server. (This is a server load-shedding mechanism that 
ensures that admitted requests are handled with adequately short response times.) In cases where 
admission control is not appropriate, a load monitor is required to provide the NOCA control adapters 
with equivalent data in the form of request arrival rates and pseudo reject rates. 

Of course, the splitting of functionality between admission/load control (A) and communication application (C) is 
somewhat arbitrary - in fact the admission/load control could well be considered as part of the application. It is certainly 
application aware (so that it knows which messages to apply admission control to). For the description here, it is 
assumed that load/reject information is relayed to NOCA controls by the communication application.  

Conceptually, the NOCA- and system-components communicate with each other by sending requests and returning 
responses.  
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A server might be a target in one overload event and a source in another. In that case, it would need the full set of 
NOCA components configured and running (in a wholly NOCA network). A server could also be a target and a source 
at the same time if it were both overloaded itself and the source of overload elsewhere. This is shown in figure 23. Note 
that the application checks the Throttle Manager for admission throttles that apply to requests as they arrive at the node 
as well as checking before sending a request on to another node. Although remote throttles are preferred, local 
admission throttles may be used when interfacing with other overload controls as described above. 

 

Figure 23: Structure of a NOCA enabled server 

6.11.2 Detailed component description 

6.11.2.1 Control Distribution component 

A Control Distribution component is located at each NOCA target server.  

It is created and configured when the NOCA subsystem is started. It receives control variable updates from the 
Adaptation Controller. The information passed to it in a control variable update is the following (some of which may be 
pointers to the actual data): 

•  a list of all (source node, protocol) pairs the control variable should be sent to; 

•  the identity of the target server; 

•  the value and nature (maximum admission rate or admission percentage) of the (unscaled) control variable; 
and 

•  the ControlDuration parameter value. 

It then refreshes its list of (node, protocol) pairs for which a control update awaits dispatch as follows: 

1) adds to the list any control updates for (node, protocol) pairs not in the list; 

2) over-writes the update data for matching (node, protocol) pairs in the list; 

3) scales the control variable value given the weight that applies to a (node, protocol) pair. 
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The scaling data is configured via the management system. The ideal scaling values may be affected by topology and 
capacity changes. Sub-optimal scaling factors may affect control performance, especially transient behaviour when the 
control starts. When choosing scaling values, due consideration needs to be taken of the of the impact of topology and 
capacity changes on the control performance. 

When informed that a service request from a specific (node, protocol) pair has arrived at the target, the Control 
Distribution component extracts the relevant data for that (node, protocol) pair from its list. If the data is a control 
update, then it assembles the following data: 

•  the (source node, protocol) pair the control update should be sent to; 

•  the identity of the target server; 

•  the value and nature (maximum admission rate or admission percentage) of the (scaled) control variable; and 

•  the ControlDuration parameter value. 

If the data is a TerminateRestriction command, then it assembles the following data: 

•  the (source node, protocol) pair a TerminateRestriction message should be sent to; 

•  the identity of the target server. 

If the node identity = target node identity, then the update applies to a Throttle at the target, and the data is passed to the 
local Throttle Controller. Otherwise, the data is passed to the Throttle Controller at the remote source. 

When informed by the target Adaptation Controller that control against a (node, protocol) pair has ended, then it adds 
the following data to the list of control updates to be sent out: 

1) the (source node, protocol) pair a TerminateRestriction message should be sent to; 

2) the identity of the target server. 

6.11.2.2 Adaptation Manager 

An Adaptation Manager is located at each target server. 

The Adaptation Manager is created and configured when the overload control is armed.  

When initialized, the Adaptation Manager creates a special Control Adaptor to monitor load state of the host and master 
the NOCA node overload control. This special Control Adapter may be driven by: 

•  request arrival rate and local admission control reject rate; 

•  system load state information; or 

•  system capacity (either static or dynamically derived).  

The Adaptation Manager may create, on demand, additional Control Adapters, to support destination load control for 
example, that are driven by arrival and reject rate data provided by the application. 

The Adaptation Manager sets what kind of control variable each Control Adaptor is to use - the two options are: 
admission percentage and leak rate (the latter applies to leaky buckets and to gaps). And it tells it the other relevant 
configuration data - including the following: 

•  initial value of the control variable to send out when feedback control starts;  

•  Control Duration time interval;  

•  maximum and minimum values of the control variable; 

•  goal request arrival rate from the set of (source node, protocol) pairs; 

•  the lower threshold on the arrival rate; 

•  the TerminationPending time interval. 
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6.11.2.3 Control Adaptor 

Each Control Adaptor is periodically passed data on the goal arrival rate and the actual arrival rate (or other load 
information), and acts upon them as specified in clause 6.12.3 to initiate closed-loop control, update its control variable, 
and terminate closed-loop control. 

6.11.2.4 Throttle Manager 

The Throttle Manager is created and configured when the overload control is armed. 

It manages 0 or more active Throttles. 

The Throttle Manager starts and stops Throttles when told to by Control Distribution components (either local or 
remote). It is informed of the nature of the Throttle, and the specific throttle "address" (source node, protocol, target 
node, destination) it applies to. (Some fields may be wild carded - e.g. for node load control, the destination field would 
be a wildcard.) When the Throttle Manager is told to start a Throttle it does the following: 

1) adds the throttle "address" to a list of active throttles; 

2) instantiates and initializes the Throttle - based on knowing the nature of the Throttle (i.e. percent admission 
state = initial percentage, leaky bucket state = bucket fill, max fill, and leak rate, or gap state = remaining gap 
interval). 

When the Throttle manager is told to stop a Throttle by a Control Distribution component, it will be given the throttle 
"address" that it applies to. The Throttle Manager then frees any resources used by the Throttle, and removes the 
Throttle from its list of active Throttles.  

When the Throttle Manager receives a control update from the (local or remote) Control Distribution component, it then 
commands the Throttle to apply the new value of the control variable (optionally randomizing first use of it to prevent 
synchronization of Throttles). 

When the Throttle Manager receives a query from a local Communication Application whether a service request via a 
specific protocol to a specific target node can be admitted, it looks for a matching active throttle in its list of active 
Throttles. If there is no match, then the query is granted, and the Throttle Manager responds to the Communication 
Application. If there is a match with an active throttle then the Throttle Manager asks the Throttle if the request can be 
admitted. The Throttle then grants the query or not, and the Throttle Manager replies to the Communication 
Application. If multiple throttles match the query, then the request must be accepted by all the throttles in order to be 
accepted. This is coordinated by the throttle manager the throttles may need to be updated with the result of the 
admission request. 

The management function may also request the creation and destruction of throttles by the throttle manager, allowing 
the network operator to use the NOCA infrastructure for manually applied restrictions as required. 

6.11.2.5 Throttle 

Throttles are instantiated and destroyed by the Throttle Manager. They are responsible for the actual request 
accept/reject decisions. 

6.11.3 Control of the total load offered to a target node 

6.11.3.1 Initiation of closed-loop control 

The Adaptation Manager, associated with a resource, will have assigned a Control Adaptor to monitor the following 
quantities: 

•  periodically-updated estimates of the total arrival rate of service requests Y(C) at the resource; and 

•  periodically-updated values for total arrival rate goal YG for service requests to that resource.  

When the total request arrival rate exceeds its goal rate, then the Control Adaptor changes state to Closed-Loop control. 
It will have been assigned an initial value for its control variable, and it should send that value out as a control update to 
the Control Distribution component. 
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The ControlAdaptor does this by sending a Restrict message to the ControlDistribution component. The message should 
contain the following data: 

•  a list of all (source node, protocol) pairs being controlled by the Control; 

•  the identity of the target server; 

•  the value and nature (maximum admission rate or admission percentage) of the control variable; and 

•  the ControlDuration parameter value. 

The ControlDuration parameter ensures that a Throttle will cease throttling after a time period equal to the 
ControlDuration value has elapsed, unless it receives further Restriction messages before then. It is a failsafe 
mechanism to ensure that a source control will eventually end if the GOCAP association with the target server has 
failed. 

6.11.3.2 Adaptation of control variable in the closed-Loop state 

While in the Closed-Loop state the ControlAdaptor receives the following data: 

•  periodically-updated estimates of the total arrival rate of service requests Y(C) at an overloaded resource; and 

•  periodically updated values for total arrival rate goal YG for service requests to that resource; 

and uses it to update its control variable C as follows. 

Suppose that Y(C) is a monotonically increasing function of the control variable C, and that the slope of Y(C) is  
non-increasing everywhere. This is the case for the following throttle types: 

Leaky bucket, with C = maximum bucket leak rate; 

Crawford Gap, with C = 1/gap interval; 

Percentage thinning, with C = admitted percentage. 

Then (see figure 24) given the current value Ci of the control variable and the corresponding total request arrival rate 

Y(Ci), draw a straight line from the point (Ci, Y(Ci)) to the coordinate origin, and find the value of C at which this line 

intersects the horizontal line Y = YG. Take this as the new value of the control variable: ).Y(C / YC  C iGi1i =+ . 

 

Figure 24: Adaptation of control variable 
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Then, given the two assumptions about Y(C), it follows that if CG < Ci , then CG <= Ci+1 < Ci ; and if CG > Ci, then  

CG >= Ci+1 > Ci . That is, the sequence of successive values of the control variable either decreases monotonically and 

is bounded below by CG, or increases monotonically and is bounded above by CG. In either case the sequence of  

C values must therefore converge (theorem in real analysis); and the limit is CG. 

The value of iC should be changed to comply with configurable minimum and maximum values, if its value is either 

less than the minimum or greater than the maximum allowed. 

Deterministic modelling suggests that, in a network where several servers are overloaded and each applies this 
adaptation method to its (neighbouring) sources, the entire set of interacting nearest-neighbour controls converges - 
typically in 10 to 20 iterations. 

Note that if C = percentage admitted, then Y(C) is an increasing linear function of C, and adaptation takes just one step. 
However, a percentage-thinning throttle does not bound its admitted rate (unlike the Crawford gap and leaky bucket); 
and, for that reason, the rate restriction methods are preferred. Synchronization of gaps or leaky buckets can occur when 
applied at multiple sources. This problem is simply solved by appropriately randomizing the first use of a newly 
received gap rate or leaky bucket rate.  

Figure 25 shows that the adaptation algorithm will cause the control variable to increase without limit when the 
controlled sources, between them, are originating service requests destined for the target server, at a rate less than the 
target server's goal arrival rate GY . It would be dangerous to allow this to occur because the sources could suddenly 

increase their offered rates to the target. 

 

Figure 25: Adaptation when sources originate requests at a rate < goal arrival rate 

Therefore, in the Closed Loop state, if the current arrival rate )( iCY  is not significantly greater than the previous arrival 

rate )( 1−iCY , that is if RateChangeMinArrival )()( 1 <− −ii CYCY , where the configurable parameter 

MinArrivalRateChange is small and positive, then the next value of the control variable, 1+iC , should revert to 1−iC .  
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When the ControlAdaptor has a control update it sends a Restrict message to the ControlDistribution function. The 
message should contain the following data: 

1) a list of all (source node, protocol) pairs being controlled by the ControlAdaptor; 

2) the identity of the target server; 

3) the value and nature (maximum admission rate or admission percentage) of the control variable; and 

4) the ControlDuration parameter value. 

6.11.3.3 Termination of closed-loop control 

The ControlAdaptor enters a TerminationPending state when the measured total request arrival rate falls below a lower 
threshold on the total arrival rate. It starts a TerminationPending timer, sends a TerminateRestriction message to the 
Control Distribution component. The TerminateRestriction message should include the following data: 

1) a list of all (source node, protocol) pairs being controlled by the Control; and 

2) the identity of the target server. 

If the Termination Pending timer expires while the Control is in the TerminationPending state then the ControlAdaptor 
reverts to monitoring arrival and goal rates. 

If the measured total request arrival rate exceeds the goal rate while the ControlAdaptor is in the TerminationPending 
state, then control reverts to Closed-Loop control.  

6.11.3.4 Allocation of target capacity between controlled sources, fairness and SLAs 

If the Throttles are leaky buckets, then a simple and flexible mechanism is available to apportion the target server's 
capacity among the controlled sources. The mechanism ensures that a source with high enough offered load will get at 
least a defined proportion of the target's goal arrival rate. 

Suppose that there are "n" sources all running leaky bucket throttles. The Target ControlAdaptor's control variable "C" 
is then a rate, which can be scaled by the ControlDistribution component before being sent out; so that, for example, 
source i is sent the leaky bucket leak rate si C. Impose the conditions that each si lie between 0 and 1, and together they 

sum to 1. Then, when used in the apportionment method to be described, si is the guaranteed minimum proportion of the 
target server's goal arrival rate that source i gets, provided it originates requests at a high enough rate. 

Denote by xi the rate at which source i offers requests to its throttle. Then the admission rate of the throttle as a function 

of its leak rate si C is as follows. When the bucket leak rate exceeds xi then the whole stream originating at source i is 

admitted at rate xi; and when the bucket leak rate is less than xi then the admitted rate equals the leak rate. (Strictly 
speaking, this is true only if the leaky bucket has infinite maximum fill. However, it can be closely approximated by 
setting a leaky bucket's maximum fill to about 10).  

So the admitted rate at source i as a function of the control variable C equals si C if C < xi / si , and equals xi if C > xi / si 

(see figure 26).  
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Figure 26: Idealized leaky bucket admission rate function 

Summing the "n" source node admission functions, gives the total arrival rate Y(C) at the target node.  
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The graph of Y(C) is illustrated in figure 27. 
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Figure 27: Total arrival rate function Y(C) 

A nice feature of this capacity apportionment method is that (generally) sources originating little load will get all of it 
forwarded to the target, leaving the remaining goal capacity to be divided between the high load sources in proportion 
to their relative weights. This method of apportioning the goal arrival rate is not the same as reserving a set proportion 
of it for each source. 

The apportionment method could be used to divide the goal arrival rate between competing services if the service type 
of a request is known somehow (for example, deduced from its payload). The method therefore might provide a simple 
way to enforce an important aspect of service level agreements with different Service Providers. 
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6.12 Specification of APIs for control components 
The interface between the NOCA and other system component (communication application, management system, etc. 
will be specified. Figure 28 and figure 29 indicate the possible API calls that would be suitable for the Throttle 
Controller and the Adaptation Controller. 

 

 

Figure 28: Outline API for the Throttle Manager and associated Throttles 

 

 

Figure 29: Outline API for the Adaptation Manager and associated Control Adaptors 
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6.13 Specification of network management interfaces 
The management function interacts with NOCA components in four different ways: 

1) The NOCA components are instantiated and initialized on enabled equipment by operator intervention via the 
management system. It may be that the definition of hosts capable of supporting remote throttles, or from 
whom throttle requests would be accepted will be defined by the management system. 

2) The management system can be used to instantiate and arm manual controls. These controls are not modified 
by the NOCA components, but use the NOCA infrastructure. 

3) The management system collects statistics from throttles detailing the numbers of sessions accepted/rejected 
by NOCA throttles and the activity of Control Adapters. 

4) The management system will collect alarms generated when NOCA components activate new throttles etc or 
when internal errors or problem arise. 

6.14 Security design 
Most of the functions in the NOCA are between elements within the NGN. It is not envisaged that the NOCA would 
extend out to the end user and so the security implications are relatively light. The key security risk associated with the 
NOCA is GOCAP, in which remote servers send instructions to network elements to reject service requests to particular 
destinations. The potential for abusing this functionality to implement denial of service attacks is obvious, especially as 
these control associations may cross operator boundaries. The security requirements for GOCAP are described in 
clause 7.3. 

6.15 Mapping control components to processing cards 
Server architectures may differ in the way that they map the various communication applications and the protocol stacks 
onto processing cards. In particular, the communication applications may only be located on some of the cards, not all. 
For example, processing of the lower part of the protocol stack, that is transport protocols such as UDP/IP or SCTP/IP, 
may be done on separate cards from the processing of the communication applications and upper layers of the stack.  

The NOCA has been designed to use the following information that is available to communication applications: 

•  knowledge of which communication protocol (e.g. SIP, LDAP) is being used to convey a service request from 
source to target; Throttles are applied against messages in specific protocols; 

•  knowledge of which messages may be rejected (e.g. SIP INVITE, SIP REGISTER) and which must not  
(e.g. SIP RESPONSE, ACK, CANCEL, BYE);  

•  where relevant, knowledge of called address (e.g. SIP Request-URI), in order to throttle requests relating to a 
specific called address where appropriate;  

•  where relevant, knowledge of called address translation, in order to chain feedback controls in series; 

•  knowledge of source node identity (throttles apply at specific source nodes against specific protocols). 

Consequently, the NOCA components may be located in the following ways: 

•  either on the processing cards that run communication applications (see figure 30); 

•  or on a separate NOCA server, which communicates with the processing cards that run communication 
applications (see figure 31). 

NOTE 1: The mechanism by which NOCA cards communicate with other cards within a single server does not 
require standardization, it being an implementation issue for the server vendor. 
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Figure 30 shows a server with two cards running Communication Applications (indicated by squares) and cards not 
running Communication Applications (indicated by circles). It shows NOCA configured on the Communication 
Application cards facing outwards to external servers. 

NOTE 2: GOCAP could be used internally, for example between the two Communication Application cards, as 
indicated.  

NOTE 3: It is possible for the cards not running Communication Application to become overloaded (for example, 
by high, or unbalanced, signalling load). It is up to the server's vendor to decide how to cope with this 
situation. Possible solutions are the following: 

•  Provide enough processing power on the non Communication Application cards in order to force the 
Communication Application cards always to be the bottleneck. 

•  Provide a mechanism for an overloaded non Communication Application card to indicate to a Communication 
Application card that it is overloaded. 
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Figure 30: NOCA embedded in Communication App cards of a server 

Figure 31 shows the same server as figure 30, but with GOCAP running on a separate internal GOCAP server 
(indicated by the square box with rounded corners). For this configuration, each Communication Application card has a 
GOCAP proxy to manage GOCAP related communications, and the GOCAP server card has the full set of GOCAP 
components.  

If a Communication Application card were causing overload at an external server then the latter would send NOCA 
control updates to the Throttle Controller which would instantiate a throttle. The Communication Application, would 
then ask its proxy whether it could send a service request to the external server, and its proxy would forward the request 
to the GOCAP server. The GOCAP server would forward the request to the Throttle Controller, and the response would 
be conveyed back to the Communication Application. 

If a Communication Application card were overloaded by external servers, then the card's Load Monitoring and/or 
Admission functions would notify the card's GOCAP proxy of high loads and/or reject events. That proxy would 
forward the notifications to the proxy at the GOCAP server, which would pass them to the Adaptation Controller. The 
latter then begins load/reject monitoring and adaptation of the control variable. Control variable updates are sent to the 
external server by the NOCA Control Distribution component. 
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Figure 31: Server with internal NOCA card 

6.16 Performance proving 
Tests to prove that overload controls perform adequately fall into two main types: 

Deterministic, i.e. calls are generated with constant inter-arrival times. This type of test is designed in such a way that 
the behaviour of the system is very precisely determined. It enables testing of whether: 

•  the overload control logic is working correctly; 

•  parameter values are being correctly assigned; 

•  measurements (for statistics) are being correctly calculated. 
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Realistic load and configuration: These types of tests are designed to determine the behaviour of the overload control 
when the test set-up is configured to mimic a more realistic network configuration, including the random nature of real 
traffic. Optimal or near-optimal parameter values would be used. It enables a determination of whether the observed 
behaviour sufficiently closely matches that determined by modelling (discrete event simulation), and hence whether the 
code implements the end-to-end overload control design faithfully. 

In each of the above two cases, it is the end-to-end behaviour of the control that is being tested, and therefore such tests 
should cover both the overload detection and the restriction schemes.  

The following testing and modelling facilities will be required: 

•  call generators able to mimic the call state machine at source nodes, including the relevant parts of the 
overload control (if real servers are not available); 

•  equipment able to measure response times and calling rates (before and after restriction at source nodes, and 
admitted and rejected at the target node) on a second-by-second basis - required to understand the fast 
dynamics of the end-to-end control of powerful servers under overload; 

•  very high calling-rate generation (for example several thousand calls per second) to overload large capacity 
servers; 

•  a realistic model of the end-to-end overload control (usually a detailed simulation) - required to check that all 
parameter values cope well over the required range of overload scenarios; 

•  a comparison of test measurements with the simulation model's results - required if the full range of overload 
scenarios cannot be generated in a test facility. 

7 GOCAP requirements  

7.1 Introduction 
Whereas clause 6 describes the nodal behaviours required to implement a distributed processing overload scheme, 
clause 7 describes the requirements for the Generic Overload Control Application Protocol (GOCAP). The GOCAP is 
proposed to define an optional parallel interface to an existing control interface which supports the real time 
management of dynamic transaction request peaks between components in or interfacing to the control plane of a NGN. 
The use of such functionality removes the unpredictable and undesirable degradation of such components, allows 
systems to maintain their real-time processing profile whilst maximizing the effective transactions. 

The relationship of a generic overload control interface between architectural entities is represented below  
(see figure 32) where an existing control interface can optionally have a parallel generic overload control interface. This 
approach in no way changes the control interface Ca, rather the overload control interface is used to affect the behaviour 
of the client. For simplicity the model shows a client / server relationship, with the request source as the client and the 
target as the server, but it should be noted that on many control interfaces the demand can be sourced by both 
architectural entities, i.e. in both directions so that either end can be simultaneously acting as both a client and a server. 

Control Interface

Ca

Generic Overload
Control Interface

Ga

Restriction
Function

Client Entity Server Entity

Demand

Conditioned
Demand

Load
Monitoring 
and control
functions

 

Figure 32: Relationship of generic overload control interface 
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7.2 Transport requirements 
GOCAP is aimed at supporting real time applications and therefore requires the following network transport 
characteristics: 

a) GOCAP requires a reliable transport mechanism so that crucial overload control messages are not lost at the 
very time when the control requests are causing the server to approach overload. (High demand peaks can 
occur during conditions such as control packet or even media stream packet loss, as resultant application 
misbehaviour often results in multiple user repeated attempts.) 

b) GOCAP requires a transport mechanism that does not introduce significant delay that would affect the speed at 
which a control was applied to a source.  

c) A transport layer failure may precipitate server overload, so it is important that GOCAP sessions should be 
able to survive such failures. The GOCAP transport mechanism should, therefore, be resilient or capable of 
fast restoration. 

It is recommended the use of SCTP multi-homing associations should be at least an option for meeting these 
requirements. 

7.3 Security requirements 
GOCAP, by its very nature, can intrinsically be used for Denial of Service (DoS) attacks from just a single source 
spoofing a control client. Native GOCAP is susceptible to Masquerade and "Man-in-the-Middle" attacks, (as are the 
same mechanisms built into existing protocols). Therefore there shall be an option for underlying transport mechanisms 
to provide authentication of the transport end-points and privacy of the information flows. The special security issues 
related to the use of GOCAP between different network operators also needs to be taken into account. In particular it 
shall not be possible for one operator to cause restriction of request flows that do not terminate or transit that operators 
network.  

It is recommended that the defined GOCAP transport profiles include mandatory options for transport links such as TLS 
or IPsec. 

7.4 General requirements 

7.4.1 Overload of GOCAP dialogues 

In GOCAP deployments it shall be assumed that: 

a) the priority given by client and server entities to processing GOCAP messages is at the expense of processing 
the control protocol messages; 

b) consequently the proportion of the server or client entity processing used is a significantly small percentage of 
that available and therefore no overload controls are required at the GOCAP level. 

7.4.2 Administrative requirements 

7.4.2.1 General 

a) Multiple GOCAP dialogues from different clients to one server shall be supported. 

b) Multiple control protocols from a single client to a server shall be supported via multiple GOCAP dialogues. 

c) GOCAP shall support multiple overload control methods and be extensible for new methods to be added in 
latter versions. 
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7.4.2.2 Version identification 

a) All GOCAP messages shall identify the current protocol version. 

b) GOCAP dialogues shall convey information on the control protocol and its characteristics to ensure that it the 
parallel control stream is unambiguously associated with the GOCAP dialogue. 

7.4.3 GOCAP dialogues 

7.4.3.1 GOCAP dialogue establishment 

a) For a control protocol that registers one entity with the other entity, the registrar shall default to the GOCAP 
Master and the source of registration request the GOCAP Slave. 

b) For control protocols that do not register one entity with the other, each entity's management system shall be 
capable of designating which entity is the Master and which is the Slave. 

c) All Master / Slave designations shall only have scope for the individual dialogue between two entities. E.g. for 
three entities in a linear control chain, the middle entity must be able to be a Master to one entity and 
simultaneously be a Slave to the other if required. 

d) GOCAP Masters shall be responsible for invoking the opening of the appropriate transport link to the Slave. If 
an attempt to establish a transport link fails, it will be reattempted after a configurable time interval.  

e) The Master entity's management system shall attempt to establish a transport link a configurable number of 
times, before reporting a failure back to the entity's management system. When this retry count is reached it 
shall be reset and link establishment attempts shall continue. 

f) Once the transport path has been established between the two entities a GOCAP dialogue shall be established 
by the designated Master. 

g) Each entity shall report any GOCAP dialogue establishment failure to its management system. 

h) To facilitate interoperability and upgrades, the GOCAP dialogue establishment shall negotiate the GOCAP 
version to be used. 

i) GOCAP dialogue establishment shall agree if the overload control relation is from Master to Slave only, Slave 
to Master only or if bi-directional control is allowed for the supported protocol. 

j) GOCAP dialogue establishment shall exchange the Control Protocol name and version to which it refers. A 
mismatch of Control Protocol name and version shall result in a dialogue failure. 

k) GOCAP dialogue establishment shall exchange the overload control method being used (e.g. gapping, 
percentage call restriction, scaled restriction rates, etc). A mismatch of overload control mechanism shall result 
in a dialogue failure. 

l) GOCAP dialogue establishment shall exchange the type address / request reference to which restriction 
requests will be applied, e.g. ITU-Recommendation E.164 [10], national/private telephone numbers, URIs, etc. 

m) GOCAP dialogue establishment shall exchange the Control Protocol "end point identifiers" to which it refers. 
If these identifiers do not match those expected for the parallel control path, this shall result in a dialogue 
failure.  

n) A GOCAP Master shall poll its Slave with a request to open a dialogue. The time between of poll attempts 
shall be configurable by the management system. 

o) The GOCAP Master entity's management system shall support configuring the number of failed poll attempts 
allowed, before reporting a failure back to its management system.. In event of failure, this counter is reset and 
polling continued. Subsequent failures are to be reported to the management system. Once a dialogue is 
established, the server shall continue and report success to the management system.  

p) Each request to open a dialogue shall be identifiable by a sequence number and all responses shall use this to 
identify the associated request.  



 

ETSI 

ETSI TR 182 015 V1.1.1 (2006-10) 45 

q) If a dialogue exchange has occurred but fails to negotiate a dialogue (e.g. the Master and Slave cannot agree 
the GOCAP version to use), the Master shall halt polling until restarted by an action from its management 
system. Such a situation would require manual intervention and reconfiguration and therefore the GOCAP 
establishment shall cease pending a management restart. 

r) If the underlying transport layer reports that the data connection is lost, the GOCAP Master shall automatically 
attempt to re-establish the transport path and then the GOCAP dialogue as described above. 

s) A Master shall open up a separate GOCAP dialogue for each control protocol supported even if a dialogue has 
already been established to the same client for a different control protocol. 

7.4.4 GOCAP dialogue status monitoring 

a) When a dialogue has been successfully established, both entities in a dialogue shall poll the other with a status 
request to ensure that the overload control process is active at the other end. The poll rate shall be individually 
configurable per GOCAP dialogue by each entities own management system. The time from dialogue 
establishment and the first poll shall be randomly chosen within the configured polling period. 

b) Each status request shall be identifiable by a sequence number provided by the source of the request and all 
responses shall use this to identity the associated request. 

c) When a status request is acknowledged the normal poll cycle shall continue but if a status response is not 
received within some configurable interval, the source entity shall repeat the status request. If a response is not 
received after a certain number of repeat requests, the GOCAP dialogue shall be deemed to be lost and a new 
dialogue initiated. Loss of GOCAP dialogue shall be reported to the management entity.  

d) Loss of the underlying transport link shall be indicated to the GOCAP Master which shall automatically 
attempt to re-establish the transport connection.  

7.4.5 GOCAP restrict message requirements 

a) When an overload is detected by the load monitoring function within the control protocol server, a restrict 
request shall be issued. 

b) All restrict requests shall be identified by a sequence number so as to identify repeat requests. 

c) All restrict requests shall have a duration validity field which specifies the default number of seconds the 
restriction is valid unless updated with a new restriction message. Subsequent restriction requests with 
identical restriction criteria shall overwrite the duration field to that in the new request. 

d) If the client entity in unable to accommodate a restriction request, it shall indicate this to the server via a 
negative acknowledgement. Negative acknowledgements shall be notified to both GOCAP Slave and Master 
entities management systems. 

NOTE 1: Positive acknowledgements may not be required if the transport can indicate to GOCAP delivery failure.  

e) Negative acknowledgement shall indicate what aspect of the request could not be accommodated. 

NOTE 2: Specific negative acknowledgements may minimize the work done in constructing and sending positive 
acknowledgement. 

f) If a restrict request fails to be delivered, resending will be attempted a number of times after which the failure 
shall be notified to the requesting entity's management system. 

g) The control protocol server shall send restriction requests that shall be applied to: 

1) all destination addresses;  

2) partial destination addresses; 

3) an individual destination address. 
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h) All TISPAN NGN address formats shall be supported. 

i) As appropriate to the type of address, individual characters shall be capable of being wild carded. 

EXAMPLE 1: For a wildcard character "?" an E.164 number might be represented by 199236367?1. This would 
apply only to 19923637611, 19923636721, 19923636731, …………, 19923636791. 

j) As appropriate to the type of address, individual address fields should be capable of being wild-carded. 

EXAMPLE 2: For a wildcard character "*", a URI with IP address might be restricted with 
telepromotion.bigco@10.153.42.*. This would apply to all session requests to the 
telepromotion.bigco at the sub-net 10.153.42. 

k) For E.164 and telephone numbers it shall be possible to wildcard digit at the end of a number string. 

EXAMPLE 3: For a wildcard character of "*", then 44147360* would apply to addresses strings where the first 
eight digits matched the restriction string, i.e. 441473603377 would be a match. 

l) It shall be possible to up apply simultaneous restrictions where address wild-carding overlaps if one address 
can be determined as more specific than another. In this situation the more specific address type will have 
priority. 

EXAMPLE 4: For telephone numbers this means that longest length has priority so that a restriction to 
14023391182? would take precedence over 140233911*. 

7.5 GOCAP example Meta-protocol 

7.5.1 Dialogue establishment messages 

7.5.1.1 Open dialogue message 

The following psuedo-protocol is an expression of the requirements for an OPEN dialogue message, initiated by the 
GOCAP Server. 

GOCAP:  Version n.m  ;Client GOCAP version   
Message: OPEN 
Server Ref: string   ; reference unique to the Server 
Client Ref:     ; null 
Svr Seq No: nnnnnnnn  ;  
Clnt Seq No:    ; null 
Versions: n.m n.m ….. n.m ; list of version numbers supported 
Cntrl Type: (S->C | C->S | S<-> C) ; Server to Client or Client to Server or bi-directional control 
         ; i.e. overload control commands issues from server to 
         ; client only or from both Server and Client 
Cntrl Prot: string n.m  ; name as defined in the Protocol Classification register & version 
OvlCtl Type:  Gap | Perc | etc ;type of overload control mechanism supported 
Server Id: string   ; identifier of Server as used in Control Protocol 
Client Id: string   ; identifier of Client as used in Control Protocol 
 

7.5.1.2 Open dialogue acknowledgement message 

The following pseudo-protocol is an expression of the requirements for an OPEN ACKNOWLEDGE dialogue message 
in response to an OPEN request. The fields are checked by the client have an OK or FAIL indication added to them.  
A dialogue shall only be deemed to be successful if all checked fields indicate "OK". 

GOCAP:  Version n.m     
Message: OPEN_ACK    ; dialogue open acknowledgement 
Server Ref: string     ; Server Ref as in associated OPEN request 
Client Ref:        ; null 
Svr Seq No: nnnnnnnn    ; Sequence No. as in associated OPEN request  
Clnt Seq No:      ; null 
Versions: n.m (OK | FAIL)   ; OK =version number to be used, FAIL=no version match 
Cntrl Type: (S->C | C->S | S<-> C) (OK | FAIL) 
         ; Control Type as in the associated OPEN request. 
Cntrl Prot: string n.m (OK | FAIL) ; name and version as defined in the 
         ; Protocol Classification register + version number 

mailto:telepromotion.bigco@10.153.42.*
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OvlCtl Type:Gap (OK | Fail) | Perc (OK | Fail) | etc   
         ;type of overload control mechanism supported 
Server Id: string (OK | FAIL)  ; identifier of Server as used in Control Protocol 
Client Id: string (OK | FAIL)  ; identifier of Client as used in Control Protocol 
 

7.5.2 Dialogue status messages 

The following psuedo-protocol is an expression of the requirements for dialogue status request and response messages. 

7.5.2.1 Status message originated by a server 

GOCAP:  Version n.m  ; negotiated GOCAP version   
Message: STATUS   ; 
Server Ref: string   ; reference unique to the Server 
Client Ref:     ; null 
Svr Seq No: nnnnnnnn  ;  
Clnt Seq No:    ; null 
 

7.5.2.2 Status message originated by a client 

GOCAP:   Version n.m  ; negotiated GOCAP version   
Message: STATUS   ; 
Server Ref:     ; null  
Client Ref: string   ; reference unique to the Client   
Svr Seq No:     ; null 
Clnt Seq No:nnnnnnnn  ;  
 

7.5.2.3 Status acknowledge message in response to a request originated by a server 

GOCAP:  Version n.m  ; negotiated GOCAP version   
Message: STATUS_ACK  ; 
Server Ref: string   ; reference unique to the Server 
Client Ref:     ; null 
Svr Seq No: nnnnnnnn  ;  
Clnt Seq No:    ; null 
 

7.5.2.4 Status acknowledge message in response to a request originated by a client 

GOCAP:  Version n.m  ; negotiated GOCAP version   
Message: STATUS_ACK  ; 
Server Ref:     ; null  
Client Ref: string   ; reference unique to the Client   
Svr Seq No:     ; null 
Clnt Seq No:nnnnnnnn  ; 
 

7.5.3 Overload restriction messages  

The following pseudo-protocol is an expression of the requirements for overload restriction request and response 
messages. 

7.5.3.1 Restrict request message  

GOCAP:  Version n.m  ; negotiated GOCAP version   
Message: RESTRICT  ;  
Server Ref: string | null ; null if initiated from client 
Client Ref: string | null ; null is initiated from server 
Svr Seq No: string | null ; null if initiated from client 
Clnt Seq No:string | null ; null if initiated from server 
Class:  nn    ; Session type class number as defined in the  
       ; Protocol Classification register 
Param: p.qr |40%|etc  ; restriction parameter depending on the negotiated restriction 
       ; type e.g. for gapping it would be the gap time 
       ;in seconds (to 2 decimal places), for proportional restriction it  
       ; would be a percentage of sessions admitted, etc 
       ; shortest window to allow a new session origination 
Adrs Type: string   ; type of address in the Adrs field e.g. E.164, tel No., URI, 

Adrs:  string   ; address range to which restriction applies 
Duration: 60->3600  ; No. seconds the restriction applies unless updated. 
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7.5.3.2 Restrict negative acknowledgement message  

GOCAP:  Version n.m    ; negotiated GOCAP version   
Message: RESTRICT_NACK   ;  
Server Ref: string | null   ; null if initiated from client 
Client Ref: string | null   ; null is initiated from server 
Svr Seq No: string | null   ; null if initiated from client 
Clnt Seq No:string | null   ; null if initiated from server 
Param:  p.qr |40%|etc (OK|FAIL) ; OK = Accepted, Fail = number of restriction conditions  
         ;full in source limiter 
Adrs Type: string (OK | FAIL)  ; address type OK= recognized, FAIL = unrecognised 
Adrs:  string (OK | FAIL)  ; address string or wild-carding 
         ; OK= recognized, FAIL = unrecognised 
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Annex A: 
Example information flows 
To make clear some of the logic described above, the following message flows demonstrate the information being 
passed between the different NOCA entities when NOCA is being used to protect against server overload. Figure 33 
shows a simple session in which application App1 on Server1 sends a request to App2 on Server2. To service this 
request requires App2 to consult application running on Server3 and Server4. Server2 has local admission control (as 
part of App1). The message flow shows how this simple request is handled. 

 

Figure 33: A simple session 

Figure 34 shows the simple request in an environment in which NOCA is deployed. In this case, there are no NOCA 
throttles instantiated (none of the servers in overloaded). Of course App1 and App2 do not know that there are no active 
throttles, which is why each request is offered to the throttle controller even though there are no active throttles. 

 

Figure 34: A simple call in a GOCAP enabled system with no overload 
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When the systems are overloaded, NOCA throttles will be instantiated. Figure 35 shows a successful session when 
Server2 and Server3 are both overloaded. 
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Figure 35: A successful session during overload on Server2 and Server3 

We can see in figure 36 how Server2 is protected by the remote throttle on the source. 

 

Figure 36: A session rejected by the NOCA throttle at Server1 protecting Server2 

Figure 37 shows how the overloaded server, Server3, is protected by the throttle on Server2. Notice that the NOCA 
throttle for Server3 should be consulted as soon as Server3 is identified as supporting the session as that helps to reduce 
the processing load on Server2. In this case it is assumed that the session is rejected if throttled, but App2 could be 
configured to pass the request onto another server.  
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Figure 37: A session rejected by the GOCAP throttle protecting Server3 

In figure 38 shows a GOCAP interworking scenario, where the source is not GOCAP aware. This means that that there 
is no NOCA throttle on the source, and requests arriving at Server2 are not controlled. Server2 is overloaded and has 
deployed an admission throttle (Throttle2.2) to regulate the arrivals from the source. Obviously, a local throttle does not 
protect the host any more than local admission control, but NOCA allows them as it enables the controlled 
apportionment of processing resource between competing request sources and reduces the unfair throttling of those 
sources that do support overload control. 

Figure 39 shows a request rejected by the local NOCA throttle. These locally rejected requests are treated as if rejected 
by App1 remotely as far as the NOCA Adaptation Manager is concerned, and so the local admission control decision is 
not passed to Adaptation Manager and does not contribute to the target rejection rate of the system. 

Finally, figure 40 shows a request rejected by the local admission control, and this rejection information is passed to the 
Adaptation Manager. 
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Figure 38: A successful session using a local throttle on Server2 
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Figure 39: Rejection of a session request from Server1 by local throttle at Server2 
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Figure 40: Rejection of a session request by App2 admission control at Server 
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