

ETSI TR 182 015 V1.1.1 (2006-10)

Technical Report

Telecommunications and Internet converged Services and
Protocols for Advanced Networking (TISPAN);

Next Generation Networks;
Architecture for Control of Processing Overload

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 2

Reference
DTR/TISPAN-02026-NGN

Keywords
control, architecture

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2006.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 3

Contents

Intellectual Property Rights ..5

Foreword...5

Introduction ..5

1 Scope ..7

2 References ..7

3 Definitions and abbreviations...8
3.1 Definitions..8
3.2 Abbreviations ...8

4 Requirements for NGN overload controls..9
4.1 NGN overload scenarios ..9
4.1.1 Processing overload sizes ...9
4.1.2 Media stimulated events ...9
4.1.3 Disasters..10
4.1.4 Network Failures ..10
4.1.5 Conclusion ..10
4.2 Impact of overload on resources and customer behaviour ...10
4.3 NGN Interfaces requiring overload controls ..11
4.4 NGN architectural factors...12
4.5 GOCAP requirements...13

5 Overload control design rules...14

6 Detailed NGN overload control architecture..16
6.1 Control architecture: General approach..16
6.2 Options for locating components (M, D and R) ...17
6.2.1 Case 1: protocol supports reject of service requests by the target with an indication of overload..............17
6.2.2 Case 2: protocol supports an indication of overload, but not rejection of service requests18
6.2.3 Case 3: protocol supports neither rejection of service requests nor indication of overload19
6.2.4 Preferred locations of components..20
6.3 Destination load control ...20
6.3.1 Control loops in series ..21
6.3.2 Called address translation ...21
6.4 Control of server overload..22
6.4.1 Control loops in series ..23
6.5 Joint control of destination- and server-overload ...23
6.6 AMG to MGC fan-in issue ...24
6.7 Discriminating between importance levels...25
6.8 Interworking with load balancing and forking ...25
6.9 Interworking with information hiding proxies ...25
6.10 Multiple controls at an overloaded resource...27
6.11 Specification of standardized control components ...28
6.11.1 Mapping of the M, D & R functions...28
6.11.2 Detailed component description ...30
6.11.2.1 Control Distribution component..30
6.11.2.2 Adaptation Manager..31
6.11.2.3 Control Adaptor ..32
6.11.2.4 Throttle Manager...32
6.11.2.5 Throttle..32
6.11.3 Control of the total load offered to a target node ..32
6.11.3.1 Initiation of closed-loop control..32
6.11.3.2 Adaptation of control variable in the closed-Loop state..33
6.11.3.3 Termination of closed-loop control...35
6.11.3.4 Allocation of target capacity between controlled sources, fairness and SLAs......................................35
6.12 Specification of APIs for control components..38

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 4

6.13 Specification of network management interfaces...39
6.14 Security design ...39
6.15 Mapping control components to processing cards..39
6.16 Performance proving ..41

7 GOCAP requirements...42
7.1 Introduction ..42
7.2 Transport requirements...43
7.3 Security requirements...43
7.4 General requirements ...43
7.4.1 Overload of GOCAP dialogues ..43
7.4.2 Administrative requirements...43
7.4.2.1 General ..43
7.4.2.2 Version identification..44
7.4.3 GOCAP dialogues ..44
7.4.3.1 GOCAP dialogue establishment..44
7.4.4 GOCAP dialogue status monitoring ...45
7.4.5 GOCAP restrict message requirements...45
7.5 GOCAP example Meta-protocol ..46
7.5.1 Dialogue establishment messages...46
7.5.1.1 Open dialogue message...46
7.5.1.2 Open dialogue acknowledgement message ...46
7.5.2 Dialogue status messages..47
7.5.2.1 Status message originated by a server...47
7.5.2.2 Status message originated by a client..47
7.5.2.3 Status acknowledge message in response to a request originated by a server.......................................47
7.5.2.4 Status acknowledge message in response to a request originated by a client..47
7.5.3 Overload restriction messages ..47
7.5.3.1 Restrict request message ...47
7.5.3.2 Restrict negative acknowledgement message ...48

Annex A: Example information flows ..49

History ..54

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Report (TR) has been produced by ETSI Technical Committee Telecommunications and Internet
converged Services and Protocols for Advanced Networking (TISPAN).

Introduction
Next Generation Networks (NGN) are required to provide real-time services such as authentication, location, presence
information, user registration, accounting, and separation of bandwidth control from call/session control (as with the
gateway control protocol H.248); and these functions will generally be distributed over a number of servers. The
protocols used between the servers could comprise any, or all, of the following: SIP, HTTP(S), Radius, Diameter, DNS,
COPS, SNMP, SMPP, SAML, LDAP, Parlay, Java, SOAP, Midcom, H.248, SIP-I, INAP, etc.

An analysis of IETF Working Groups suggests that much thought has been, and is being, given to the management of
bandwidth and router congestion (see, for example, RFC 3124 [5] "The Congestion Manager"), but almost none to
control of host and server processing overload. Indeed, although some of the above listed protocols (e.g. SIP and HTTP)
do provide response or status codes that might be used to indicate processing overload, none explicitly specifies an
overload control mechanism.

The same conclusion also seems to apply to the following non-IETF protocols: H.323 [8], SOAP, SAML, SMPP, and
Parlay.

This contrasts with the telephony/ATM world where there are examples of protocols that have built-in overload control
features: INAP, ISUP, BICC, PNNI and more recently overload control package H.248.11 [7]. Such controls are crucial
during extremes of network operation where surges of service requests (or Denial of Service attacks) can be an order of
magnitude greater than normal demand levels.

As a general rule, an NGNs servers can experience prolonged processing overload under the appropriate circumstances
(e.g. partial, or full, server failure, high rates of incoming service requests). Consequently, it needs to be equipped with
some form of overload detection and control (including expansive controls such as load balancing and resource
replication), in order to keep response times just low enough under such processing overload to preclude customers
abandoning their service requests prematurely.

The usual way to provide load control is to build a mechanism into each protocol that needs it (for example ISUP ACC,
and the H.248.11 [7] Congestion Control Package). However, rather than building a variety of mechanisms into a range
of protocols, established through a number of standards fora, it ought to be quicker and cheaper to solve the problem
once, in a way that is independent of the main protocols. This could be done by designing a separate overload control
protocol with associated load control functions which together detect processing overload, adapt and distribute
restriction levels and apply restriction. This protocol is called GOCAP (Generic Overload Control Application
Protocol).

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 6

The perceived benefits are:

1) IT- and internet-based protocols will more easily transfer into the service-level assured world of the
telecommunications operators.

2) Manufacturers have only one overload control mechanism to implement and maintain.

3) It would simplify the route through standards bodies.

4) It would provide flexibility of implementation (no need to implement if not required).

The present document explores the some of the options for GOCAP and the functional entities required to support its
use as an overload control. The specific NGN requirements and actual protocol specification of such an overload
control will be described separately.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 7

1 Scope
The present document describes the architectural principles that are required to provide effective control of processing
overload in networks compliant to the TISPAN NGN Architecture. As such it constitutes a discussion of the
requirements for the protocols required to support the NGN overload control architecture.

The scope is limited to the control of processing overload at NGN processing resources caused by service requests
coming from session-based or command-response applications by controlling the rate at which those applications send
service requests to an overloaded resource. It does not extend to the overload of transmission bandwidth whether used
for the user plane or for the control plane.

2 References
For the purposes of this Technical Report (TR), the following references apply:

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

[1] ETSI ES 283 039-3: "Telecommunications and Internet converged Services and Protocols for
Advanced Networking (TISPAN); Specification of protocols required to support the NGN
Overload Control Architecture; Part 3: Overload and Congestion Control for H.248 MG/MGC".

[2] Whitehead M J and Williams P M, "Adaptive Network Overload Controls", BT Technology
Journal, Vol. 20, No. 3, July 2002.

[3] ITU-T Recommendation E.412 (01/2003): "Network management controls".

[4] ETSI TR 180 001: "Telecommunications and Internet converged Services and Protocols for
Advanced Networking (TISPAN); NGN Release 1; Release definition".

[5] IETF RFC 3124: "The Congestion Manager".

[6] ITU-T Recommendation H.248.10: "Gateway control protocol: Media gateway resource
congestion handling package".

[7] ITU-T Recommendation H.248.11: "Gateway control protocol: Media gateway overload control
package".

[8] ITU-T Recommendation H.323: "Packet-based multimedia communications systems".

[9] ITU-T Recommendation H.248.1: "Gateway control protocol: Version 3".

[10] ITU-T Recommendation E.164: "The international public telecommunication numbering plan".

[11] ETSI EN 383 001: "Telecommunications and Internet converged Services and Protocols for
Advanced Networking (TISPAN); Interworking between Session Initiation Protocol (SIP) and
Bearer Independent Call Control (BICC) Protocol or ISDN User Part (ISUP) [ITU-T
Recommendation Q.1912.5, modified]".

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 8

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

admission control: control that accepts or rejects request on the basis of system load state

NOTE: This "admission control" relates only to requests accepted and rejected on the basis load state of
processing resource. This is a separate control to that used to manage access to transport resource.

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

A Admission (control, function)
ACC Automatic Congestion Control
ACL Access Control List
ADC Automatic Destination Control
AF Application Function
AMG Access Media Gateway
API Application Programming Interface
A-RACF Access Resource Admission Contol Function
ATM Asynchronous Transfer Mode
BGF Border Gateway Function
BICC Bearer Independent Call Control
C Communication (applications)
C Control (variable)
CA Call Agent
COPS Common Open Policy Service
D Distribution (function)
DNS Domain Name System
DoS Denial of Service
GOCAP Generic Overload Control Application Protocol
HTTP HyperText Transfer Protocol
IETF Internet Engineering Task Force
IMS Internet protocol based Multimedia core network Subsystem
INAP Intelligent Network Application Protocol
IP Internet Protocol
ISUP ISDN User Part
IT Information Technology
LDAP Lightweight Directory Access Protocol
M Monitor (reject Monitor and restriction Mastering function)
MGC Media Gateway Controller
NGN Next Generation Network
NOCA NGN Overload Control Architecture
OSA Open Service Access
pA pseudo-Admission
PDU Packet Data Unit
PNNI Private Network to Network Interface
PSTN Public Switched Telephone Network
R Restrictor,

Restriction (method)
RACS Resource and Admission Control Subsystem
RADIUS Remote Authentication Dial-in User Service
SAML Security Access Markup Language
SCP Service Control Point
SCTP Stream Contol Transmission Protocol
SIP Session Initiation Protocol

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 9

SIP-I SIP profile C of EN 383 001 [11]
SLA Service Level Agreement
SMPP Short Message Peer to Peer Protocol
SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol
SPDF Service Policy Decision Function
TCP Transmission Contol Protocol
TISPAN Telecommunications and Internet converged Services and Protocols for Advanced Networking
TLS Transaction Layer Security
UDP User Datagram Protocol
URI Uniform Resource Identifier
VoIP Voice-over-IP

4 Requirements for NGN overload controls

4.1 NGN overload scenarios

4.1.1 Processing overload sizes

Overloads peak at calling rates much greater than the predictable daily profile peak to which the network can be
economically dimensioned. Table 1 taken from [2] shows the range of calling rate measurements taken from BTs
network (based on 15 minute samples). We can see that overload can exceed 64 times the systematic peak calling rate
for six 15 minutes periods a year. While, during such an overload we might expect a large proportion of call attempts to
fail, however, it would be unacceptable for the network to fail completely due to processing overload. In particular, the
network would prioritize service of emergency traffic and other important streams.

The reality of massive overloads has been demonstrated by data from PSTN networks, how do these overloads occur?

Table 1: Extremes of the calling rate distribution

Calling rate expressed as a multiple
of systematic quarter hour peak

Number of quarter hours per year calling
rate is exceeded (% of quarter hours)

2 344 (1 %)
4 139 (0,4 %)
8 51 (0,1 %)

16 22 (0,06 %)
32 17 (0,05 %)
64 6 (0,02 %)

4.1.2 Media stimulated events

This is a family of events such as televotes for TV programmes, ticket sales and phone-ins which can all generate high
calling rates to particular small ranges of numbers. In [2], it is reported that these events occur with a frequency of
several thousand a month. Some of the largest events are televotes stimulated by TV programmes, and such events can
have a very rapid onset, with the calling rate increasing at a rate of 4 k calls per second per second over 6 seconds
observed in parts of BTs network. Often these events are known about in advance, so steps can be taken to prepare the
overload controls. Also they are usually focussed on a small range of destinations, so controls like ADC [3] may help to
reject sessions unlikely to succeed early in the call setup process.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 10

4.1.3 Disasters

Disasters, such as major accidents, terrorist attacks or extreme weather, may stimulate overloads, some times focussed
on a few destinations (emergency services, information lines etc) or possibly more diffuse with whole regions seeing an
increase in call attempts. In the former case, the network operator may have advance notice of a destination before it is
advertised to the general public and be able to arm appropriate network controls (these events are similar to media
stimulated events, albeit with much less time to prepare the network). The more diffuse overload may be harder to
manage as there are no specific destinations that can be used to target the anomalous load and there is no warning. One
of the alarming aspects of disaster scenarios is that the operators network may its self be damaged (e.g. by flooding)
reducing capacity at the very time that it is exposed to these additional loads.

4.1.4 Network Failures

Significant processing overloads can be generated by network equipment failures. This may be caused by reducing the
capacity available (e.g. the loss of a call agent) or by abruptly terminating existing sessions, triggering mass session
releases followed by session re-establishment attempts. It is difficult for the network to shed load in these circumstances
(the session clear downs have to be processed so that network resources are recovered and end users are not
overcharged). These events happen very rapidly, and require very quick response times from automatic controls.

4.1.5 Conclusion

We can see that the NOCA needs to be able to control severe processing overloads, and that these overloads may appear
suddenly, with little or no warning. This means that the NOCA needs to be able to detect overloads very quickly and
respond without operator intervention.

4.2 Impact of overload on resources and customer behaviour

Offered rate
(service requests/sec)

Rejection rate
 at resource

C M

Offe
re

d
ra

te

Offered rate
beyond which
correct request
handling not
guaranteed

Response
time

Internal
load control
invoked

Admission rate
(service requests/sec)

Figure 1: Typical throughput and response time curves for a system with internal load control

Figure 1 illustrates the typical behaviour of a resource that has an internal overload control acting to reject sufficient
offered demand so as to keep response times constant, and short, under overload.

Customer persistence can lead to an explosion of repeat attempts when service requests are rejected, resulting in
congestion in other parts of the NGN. It is therefore essential to maintain as high as possible effective throughput at an
overloaded resource, subject to keeping response time small enough to preclude customers abandoning service requests
due to long delays.

Because rejecting fresh calls takes processing effort, effective throughput at an overloaded resource (i.e. admitted
service requests/sec) must eventually fall as the load offered to it is increased; and ultimately it will spend all its time
rejecting fresh demand. So, to prevent this, it is necessary that controls external to the resource act to reduce the fresh
offered load to the level at which its effective throughput is maximized.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 11

4.3 NGN Interfaces requiring overload controls
Figure 2 (taken from [4]) shows the top-level NGN sub-systems (PSTN/ISDN Emulation Subsystem, IP Multimedia
Subsystem, etc). The specific overload requirements of the NGN will be documented in the individual functional
specifications. The realization of this architecture will require many protocols. Table 2 shows a list of protocols, many
of which could be required for the TISPAN NGN, together with their overload control status. Notice that many key
protocols are without effective overload control.

Resource and Admission
Control Functions

RACS

Based on
3GPP IMS

IP Connectivity
Access Network
And related functionality

Network Access
Attachment Functions

NAS S

Other Multimedia
Components É

Streaming Services
(RTSP based)

Application Functions

Core transport
Functions

3GPP IP-CAN

Access Transport
Functions

3GPP Terminals

NGN
Terminals

Customer
Networks

User
Profile

Functions

O
ther N

etw
orks

Legacy
Terminals

GW

PSTN / ISDN Emulation
(SIP-I based)

IP Multimedia
Component (Core IMS)

(SIP based)

NNI

Transport Stratum

Service Stratum

UNI

Network
Entry

Functions

Service
and

Control
Functions

Customer
and

Terminal

Network Attachment
Sub-System

NASS
Functions

Resource and Admission
Control Sub-System

RACS

Figure 2: TISPAN NGN Overview

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 12

Table 2: Overload control status for NGN protocols

Protocol Description Has
Control

?

Comments

SIP
RFC3261

Session control
messages,

presence etc.

No Various status codes could be used to drive load control, but SIP does not
specify how.

DNS
RFC1035

Network host
database

No No DNS message response codes explicitly reserved for server overload.
Rcode = 2, "server failure", might be usable.

LDAP
RFC3377

Database lookup No Result code busy (51) = "server too busy to service the operation". Might be
usable to drive an overload control.

HTTP
RFC2616

Web based
services

No Various status codes could be used to drive load control, but HTTP does not
specify how.

COPS
RFC2748

 No Reason code 7 (Insufficient resources) or Error code 4 (Unable to process)
might be usable to drive an overload control.

SNMP
RFC3411

Management
interface

No The Response-PDU error status value = "resourceUnavailable" might be
usable to drive an overload control.

Radius
RFC2865

Authentication
protocol

No No provision in Radius for a server (or proxy) to tell a client it is overloaded.
Would have to consider use of client time-outs to drive control.

Diameter
RFC3588

 No Error code DIAMETER_TOO_BUSY might be usable to drive an overload
control.

ISUP Call control Yes Can use ACC.
H.248 Control interface

between media
gateway and its

controller

Partial
(MGC to

MGW
only)

Packages H.248.10 [6] and H.248.11 [7] define overload controls that
protect MGW by throttling at MGC. Overload control in the reverse direction
(MGW to MGC) is provided by the package ES 283 039-3 [1]. Issue of
integration of existing controls with other protocols at MGC.

INAP Yes INAP Call Gap message and action defined, but not how to detect overload
at an SCP, nor how to adapt the gap interval.

4.4 NGN architectural factors
The NGN overload control architecture needs to take into account the following factors:

• AMG to CA fan-in issue [1]. The possibility of thousands of small AMGs (with, say, 20 to 30 customer lines
each) parented on a CA, poses a severe overload control problem for the CA. Special overload control
techniques may be needed to protect a CA from very sudden, and very severe, calling rates coming from its
dependent AMGs. Reference [1] proposes a new control method, to be incorporated into a new
H.248 extension package, to resolve this issue when the H.248 protocol is used.

• As we saw in table 2, many protocols which might be used by an NGN have no built-in overload controls.
Examples are: SIP, LDAP, Diameter and H.323 [8]. Moreover, some protocols do not even provide a means to
indicate processing overload in response to a service request. Examples are: DNS, Radius, SNMP, SOAP and
SAML.

• Session-based and command-response protocols.

• Load-balancing and load forking.

• Proxies and information hiding.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 13

4.5 GOCAP requirements
The following set of top-level requirements are proposed:

1) automatically maximize effective throughput (i.e. admitted service requests/sec) at an overloaded resource
subject to keeping response times low and giving priority to follow-on service requests (for session-based
protocols); achieve this throughput for the duration of an overload event, and irrespective of the overloaded
resource's capacity or of the number of sources of overload (the AMG to CA fan-in issue is an important
special case);

2) automatically control processing overload caused by high rates of session release requests;

3) be aware of differing importance levels of messages, and be configurable to reject low importance messages
first, and then also reject the next higher importance level as well, and so on;

4) be configurable by the service provider so that, under processing overload, a high proportion of response times
at overloaded resources are low enough so as not to cause customers to prematurely abandon service requests;

5) be configurable by the service provider so that, when several inter-acting controls are active at the same time,
they converge to an acceptable steady-state when offered loads are constant;

6) inter-work with demand call routing, load balancing and load forking;

7) automatically limit ineffective service requests by detecting specific called names/addresses that are attracting
a high reject rate and selectively controlling demand to them;

8) handle translation of called identity (name or address);

9) handle topology-hiding mechanisms;

10) enforce fair allocation of an overloaded processing resource between competing controlled streams of service
requests;

11) enforcement of SLAs (to divide the capacity of an overloaded resource between competing streams of service
requests according to agreed policies);

12) be able to know which types of service requests may be rejected (by the NGN overload control), and which
may not, given the protocol used between two hosts;

13) use the smallest practicable set of standardized, fully-specified, overload control components, in order to
minimize the costs of implementation and end-to-end proving;

14) have standardized interfaces (APIs) to the overload control's components for use by the applications running
on each host;

15) manual configuration of the overload control's components via a standardized network management interface;

16) (optionally) automatic configuration of the overload control;

17) output network management data output on event occurrence (e.g. control activation/termination) and on
demand from network management (e.g. counts of service requests admitted and rejected by the overload
control);

18) have adequate security from malicious actions;

19) shall apply within a service provider's NGN, and between different service providers' NGNs;

20) shall apply within an NGN subsytem (e.g. IMS, PSTN/ISDN emulation) and between different NGN
subsystems.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 14

5 Overload control design rules
The following is proposed as an initial set of design rules that help ensure that the overload control architecture's design
requirements (clause 4.4) should be met.

Internal Overload Control: All resources that can get into processor overload should ideally have a function that can
detect processor overload and an admission function that rejects just enough fresh incoming demand to maximize
successful completion of admitted sessions subject to not exceeding customer tolerance of long set-up delays.

NOTE: Many telcos' PSTN call processors have such adaptive internal overload controls. They use feedback
loops to determine dynamically what part of the stream of initial service requests should be rejected, in
order to keep some internal measured quantity (e.g. processor occupancy) roughly constant.

External overload control: Because rejecting fresh calls takes processing effort, effective throughput at an overloaded
resource (i.e. its admitted rate) must eventually fall as the load offered to it is increased; and ultimately it will spend all
its time rejecting fresh demand. So, to prevent this, it is necessary that controls external to the resource act to reduce the
fresh offered load to the level at which its effective throughput is maximized.

Discrimination: Both internal and external controls should:

1) discriminate so that subsequent demand (e.g. session release requests) after the initial request is only rejected if
all lower importance demand has been rejected and the demand level is still too high; and

2) discriminate in favour of priority demand (e.g. emergency sessions).

Explicit demand rejection: Preferably, the admission control at an overloaded resource should reject a service request
by sending an explicit response rejecting the request, and the backward response should indicate that the request was
rejected due to processing overload. The backward response may indicate to an external control what level of restriction
to apply.

Failing explicit backward overload indication, which may not be available in many protocols, there are two options.
Either:

1) use a pseudo-Admission control at an overloaded resource (see clause 6.1.2); or

2) depend upon the use, at external points of control, of timed-out responses to service requests as a surrogate for
explicit backward overload indication.

Both these control configurations make targets vulnerable to misbehaving external sources, and more sensitive to
fluctuations in arriving demand, leading to longer response time tails. Also this use of time-outs relies upon response
times being predictable and short under non-overload conditions. That may not always be the case. A server's response
times may tend to be mainly short but with the occasional long delay when the server has to get non-local information
(e.g. DNS lookups, SIP redirection/location proxies).

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 15

Closed loop feedback control: The internal and external controls protecting a resource must have a closed-loop
feedback structure in which the controlled variable is the rate (per second) at which an overloaded resource rejects
service requests due to overload. The goal of the feedback control must be to adjust the level of external restriction so as
to cause the controlled variable to converge rapidly to a low value. This choice of controlled variable and goal should
ensure that the level of demand arriving at an overloaded resource will automatically adapt to match that resource's
capacity, whatever the capacity may be, and however many demand sources are causing the overload (see [2]).

The closed loop structure is illustrated in figure 3.

Figure 3: Basic components of an adaptive overload control
based on feedback of session rejects

The functional components are as follows:

1) an internal Admission/load control mechanism (A) at the target that controls access to a network resource
(including access to the bearer and signalling networks, re-routing under congestion, load sharing, and
advanced service features);

2) a reject Monitoring and restriction Mastering function (M) that counts and analyses service request arrivals
and rejections by the Admission function (A) and uses that information to adapt the restriction level;

3) a distribution function (D) that apportions and distributes the restriction level calculated by M to each of the
restrictors;

4) a restrictor (R) that rejects part of the demand directed to an overloaded resource and is driven by updates
from D.

Location of control components: The control components must be distributed between the overloaded resource and
external points of control in one of the following two ways:

1) The overloaded resource hosts A, M and D, and so masters and adapts the level of restriction which is applied
externally at R. For this to work, the protocol used between the sending and overloaded resources must allow
carriage of the restriction level.

2) The overloaded resource hosts just A; and M, D and R run on the sending resource. The feedback from
overloaded resource to sending resource is then explicit rejections of requests (carrying an overload
indication).

Control loops in series (staged control): It is possible to connect in series several sequences of components R, A, M
and D (forming a closed loop control). This is termed staged control, and has the following advantages:

1) lower control loop round-trip times (more stable control);

2) avoidance of problems with translation of called number or address (a control message sent back to an
originating node could otherwise refer to an identity that is meaningless to that node);

3) avoidance of too great a degree of "fan-in" from many points of control (R) to a single overloaded resource
(faster adaptation of control level).

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 16

Restriction method (R): This should be either gapping or leaky bucket (or other method that bounds admitted rates).
Gapping and leaky buckets can be implemented in several ways; the following two examples illustrate the concepts:

1) Gapping (Crawford algorithm). Upon admitting a request, start a timer of duration t seconds. Then reject all
subsequent requests which arrive at the restrictor before the timer has expired.

2) Leaky bucket. This is a count that continuously decreases at rate r (subject to not falling below 0). When a
request arrives to find the count is less than the bucket maximum, then admit the request and increase the
count by 1, otherwise the request is rejected and the count is not changed.

Automatic Destination Control (ADC [3]): Overload controls should be able to automatically identify and control the
load offered to specific called customers or destination network addresses attracting a high failure rate due to congestion
at a terminating resource or network resource. This can be done by suitably modifying the Monitoring and Mastering
function (M), e.g. by the use of leaky bucket monitors assigned automatically to called identities attracting high failure
rates.

SLA (Service Level Agreement) enforcement:. Closed-loop feedback controls protecting a resource can be arranged
so that the capacity of that resource is divided between the streams of requests causing the overload according to agreed
amounts. For example, requests coming from service "x" can be guaranteed to get at least a proportion "p(x)" of the
total capacity. For this to be implementable, each request arriving at the overloaded resource must somehow identify the
service it belongs to. For traditional IN services, the identifier is a Service Key; for the service streams in an NGN, there
may or may not be any such identifier.

6 Detailed NGN overload control architecture

6.1 Control architecture: General approach
At its top level, the GOCAP architecture provides an optional generic overload control interface (labelled GOCAP in
figure 4) acting in parallel to an existing protocol interface (labelled PROTOCOL) being used by the source and target
communication applications (labelled as C). This approach does not change the protocol interface, rather the overload
control interface is used to affect the behaviour of the communications application at the source. For simplicity the
model shows a source / target relationship but it should be noted that on many control interfaces the demand can be
sourced by both entities, i.e. in both directions so that either end can be simultaneously acting as both a source and a
target. It should also be remembered that there will usually be more than one source that contributes to the load
experienced by the target.

Figure 4: Relationship of Generic Overload Control Interface

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 17

6.2 Options for locating components (M, D and R)
Consider an overloaded NGN processing resource (the target) receiving service requests from one or more NGN
processing resources (the sources), and consider the protocol in operation between a specific source and the target. Then
there are, logically, just 3 cases to consider:

1) the protocol supports rejection (due to overload) of service requests by the target with an indication of
overload (e.g. SIP [RFC3261], HTTP [RFC2616], LDAP [RFC3377], COPS [RFC2748], H.323 [8], SOAP,
Parlay OSA API);

2) the protocol supports an indication of overload, but not rejection of service requests due to overload
(e.g. H.248.11 [7]);

3) the protocol supports neither rejection of service requests due to overload nor indication of overload
(e.g. DNS [RFC1035], RADIUS [RFC2865], SAML, H.248 (target = MGC)).

6.2.1 Case 1: protocol supports reject of service requests by the target
with an indication of overload

For case 1, the target will have an Admission control. There are two options for locating the overload control's
components: option 1 (shown in figure 5) and option 2 (shown in figure 6).

In option 1, M and D are located at the overloaded resource (the target), and R is located at adjacent resources (sources).
Service requests arriving at the target's admission control (A) are either admitted or rejected, and handled accordingly
by the target's application (C). If a request is rejected, then C copies reject information to M, which mastered the
required restriction level. The overload control protocol then sends updates to restriction levels to R using the
Distribution function D. At the source, the application (C), asks R whether it can forward a service request to the target.

Note that a key assumption is that the communication applications ('C') are users of the protocol in operation between
source and target, but are not part of the protocol. So to add an NGN overload control to an existing NGN processing
resource, a vendor only has to change C's code to talk to the NGN overload control APIs (e.g. to ask R for permission to
forward a SIP Invite, or report to M that a service request has been rejected due to overload).

Figure 5: Case 1 - option 1

In option 2, M, D and R are located at the source. The sources application (C) copies rejections with overload indication
which it receives from the target to the Monitoring instance (M) at the source, and asks R if it can forward service
requests to the target.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 18

Figure 6: Case 1 - option 2

Option 1 has an important statistical advantage compared to option 2: the target sees the totality of service requests it
rejects. That means it can estimate reject rates faster than can option 2, for which each source only sees part of the
rejects.

6.2.2 Case 2: protocol supports an indication of overload, but not rejection
of service requests

In this case, the target needs a pseudo-Admission function (denoted by "pA" in figure 7) in order to support GOCAP
(Figure 7). The pseudo-Admission function marks incoming service requests as "pseudo-rejected" or not, based upon
measurements of target loads and delays.

In option 1 (shown in Figure 7), M and D are located at the target, and R at the source. A pseudo-rejected request is not
rejected by the target but instead is processed fully, and information about the request is passed to the target's reject
Monitor (M), which then acts upon it exactly as if it were a true reject as described for case 1, option 1.

Figure 7: Case 2 - option 1

In option 2 (shown in figure 8), M, D and R are all located at the source. The source application (C) then passes
overload indications to its local monitor instance M, and the control aims to throttle back service requests to a rate at
which overload indications are received infrequently.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 19

Figure 8: Case 2 - option 2

6.2.3 Case 3: protocol supports neither rejection of service requests nor
indication of overload

In this case, the protocol operating between source and target has no way of rejecting a service request due to target
overload.

Option 1 (shown in figure 9) has M and D located at the target and R at the source. As with case 2, option 1, the target
has a pseudo-Admission function, which marks individual service requests as "pseudo-rejected" or not based upon
measurements of the target's internal resource loadings or delays. A pseudo-rejected request is not rejected by the target
but instead is processed fully, and information about the request is passed to the target's reject Monitor (M), which then
acts upon it exactly as if it were a true reject as described for case 1, option 1.

Figure 9: Case 3 - option 1

Figure 10 shows option 2 in which M, D and R are located at the source. The source's application (C) runs a timeout for
each service request sent to the target, and passes reject information to M if the timeout expires before a response to the
service request is received back. This option either depends upon response time being predictable and short when the
target is not overloaded, or depends upon the session control protocol always returning (in a predictable and short time)
an indication from the target that the request has been received and is being processed (e.g. SIP 100 Trying).

Figure 10: Case 3 - option 2

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 20

6.2.4 Preferred locations of components

Based upon the options discussed in the preceding clauses, it is recommended that the GOCAP functional components
M, D and R be located as shown in figure 11. That is, the Monitoring and restriction Distribution functions should be
located at the target and the Restriction function should be located at the sources.

Figure 11: Preferred locations for M, D and R

6.3 Destination load control
The type of overload considered in this clause is one focussed onto a destination address (e.g. SIP User Agent Server)
as opposed to node load control described below.

This is illustrated in figure 12, in which a high rate stream of session-related or command/response service requests is
focussed on the called address "x" parented on node "y".

Figure 12: Destination load control

The protocol used between "x" and "y" conveys reject responses from "x" back to the application C in node "y". C
notifies the GOCAP instance resident at node "y" of each such reject, passing across the identity "x". GOCAP creates a
reject monitor (denoted by Mx) specifically associated with address "x", if one does not currently exist. The Monitor

estimates the rate at which "x" rejects requests. If the reject rate exceeds a configurable threshold then control of
requests to "x" is started. That is, M starts to send the control variable associated with address "x" to the distribution
function, for onward communication to adjacent nodes by GOCAP messages. At adjacent nodes (such as node "a") a
restrictor (denoted Rx,y) is created to throttle service requests sent via next hop node "y" to address "x".

NOTE: It is possible that more than one Restrictor against address "x" could be active at node "a". For example,
one restrictor could be throttling service requests forwarded to "x" via "y", and another could be throttling
routing requests relating to address "x" sent to an overloaded external routing database. The GOCAP
message therefore needs to identify the controlled address "x", the next hop node (y) towards "x" from the
point of restriction, and the restriction level (L).

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 21

At node "y", Mx periodically updates the restriction level applied against "x" in order to drive the reject rate measured

by Mx close to its (configurable) goal reject rate. Each time the restriction level is updated, The distribution function, D,

sends the appropriate allocation of that level to each of the adjacent node s. This then ensures that the adjacent nodes
receive appropriate shares of the capacity of "x" to handle incoming service requests, if the restrictors employ a method
that bounds admitted rates (as do leaky bucket methods, and call gap methods). Control against "x" at node "y" should
cease when the current restriction level has adapted down to a (configurable) minimum level, and has stayed at that
level for a configurable (termination pending) interval.

6.3.1 Control loops in series

Control of service requests towards an overloaded destination address "x" can be extended beyond the immediate
neighbours of the node "y" that hosts "x". This can be done by connecting feedback control loops in series, as illustrated
in figure 13.

The advantage is that the streams of requests to address "x" are restricted closer to the points where they enter the
network, thus greatly reducing the amount of ineffective demand in the network. In addition, short feedback loops
reduce the loop round-trip time improving feedback stability.

Figure 13: Destination control loops in series

The control loop between nodes "a" and "y" operates as described above. The control loop between nodes "b" and "a" is
driven by rejected admission requests at node "a". The application C at node "a" notifies GOCAP each time a service
request to address "x" is either rejected by Restrictor Rx,y , or a (non-GOCAP) response is received from downstream

indicating that the request has been rejected due to overload at "x". GOCAP then activates a Monitor Mx at "a". A high

enough rate of rejections measured at a by Mx results in restriction levels being distributed periodically to node "b".

6.3.2 Called address translation

Figure 14 shows how two control loops in series can be configured to handle a change to the request destination address
at the node where the two loops meet (node "a" in figure 14).

Figure 14: Handling request address translation

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 22

Suppose that the application logic "P" at node "a" changes all service requests to address "z" to requests to address "x".
When requests to "x" are being throttled at "a", then "C" should therefore notify the local GOCAP instance at node "a"
that a service request to address "z" has been rejected, every time the Restrictor Rx,y rejects a call to "x". That way a

new control loop, acting between nodes "b" and "a" will be created restricting calls at "b" to address "z". Notice that this
called address functionality will always work when the mapping function of addresses "z"→"x" is bijective (i.e. each
address in set Z mapped to exactly one address in set X and each address in set X has an address in set Z that maps to
it). If address wildcarding is allowed, then the mapping of each address range in Z to a address range in X must be
bijective. If these properties do not hold, then the reverse mapping at node "a" is non-trivial and is for further study.

6.4 Control of server overload
The type of overload considered in this clause is server overload caused by a general increase in the rate of service
requests to a large number of destination addresses (i.e. the request stream is not mainly directed to a single destination
user). It is then appropriate to activate controls at all adjacent nodes that are contributing to overload of the server in
question; and for those controls to restriction all streams of requests forwarded to the overloaded server.

Figure 15 illustrates how NOCA would be configured to throttle requests sent to the overloading node "y".

Figure 15: Control of server overload

It is assumed that node "y" has an admission control (denoted by Ay) which decides, based upon internal load

monitoring, whether an arriving service request shall be admitted or rejected. If a request is rejected, then an indication
of that is passed to the application logic C, so that C can respond appropriately to node "a", and also notify node y's
NOCA instance that a request has been rejected due to processing overload of node "y".

The monitoring and mastering function (denoted by My), specifically associated with address (i.e. node) "y", measures

rejects from "y" and (directly or indirectly) estimates their reject rate over a short interval. If the reject rate exceeds a
configurable threshold, My then control of requests to "y" is started. That is the (configurable) initial restriction level to

be applied against y is returned to an adjacent node (via a GOCAP message) in response to the subsequent receipt of a
request from that node, whether or not "y" rejects the request. At adjacent nodes (such as node "a") a restrictor
(denoted Ry) is created to throttle service requests sent via next hop node "y".

At node "y", My periodically updates the restriction level applied against "y" in order to drive the reject rate measured

by My close to its (configurable) goal reject rate.

NOTE: The per-node goal reject rate will need to be separately configurable from per destination-user goal reject
rate.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 23

Each time the restriction level is updated, that same value is apportioned and distributed by D to each adjacent node in
response to a service request received from that node by "y". Then this ensures that the adjacent nodes receive equal
shares of the capacity of "y" to handle incoming service requests, if the restrictors employ a method that bounds
admitted rates (as do leaky bucket methods, and call gap methods). However, it is possible to divide the capacity of
address "y" between the adjacent nodes in set proportions, for example by scaling the restriction level sent to each
adjacent node. This might be desirable if the adjacent nodes have different capacities, so that larger nodes got a larger
share of "y".

Control protecting node "y" should cease when the current restriction level has adapted down to a (configurable)
minimum level, and has stayed at that level for a configurable (termination pending) interval.

6.4.1 Control loops in series

Figure 16 illustrates how NOCA could be configured to extend per-node throttling to protect node "y" beyond the
immediate neighbours of "y", assuming next-hop forwarding of service requests. The application logic "P" at "a"
notifies the local NOCA instance at "a" that node "a" has rejected a call due to general overload of node "a" every time
a service request to node "y" is rejected by the per-node throttle, Ry, protecting node "y". And it does this even though

node "a" is not overloaded. This copies the method of connecting of per-called user control loops in series described in
clause 6.3.1.

Figure 16: Per-node control loops in series

There is a problem with coupling of control loops for per-node overload control. It occurs when nodes adjacent to node
"a" are told to throttle all request streams passing via node "a" even though node "a" is not overloaded, just in order
protect node "y". Unlike per-destination throttling, where the controlled destination address ("x") is used to route
onwards so that demand to "x" can be throttled, given next-hop routing there seems to be no way that node "b" can
know which of its requests will be routed via node "y" unless "y" is adjacent to "b". It is thought, therefore, that
propagating per-node control information beyond immediate neighbours is not very useful. It may, however, be worth
keeping this as an internal NOCA configuration option.

6.5 Joint control of destination- and server-overload
Figure 17 illustrates how NOCA should be configured to provide joint control of destination- and server-overload. The
figure assumes a focussed overload directed to destination user "x" at node "y" that overloaded both "x" and "y". At
node "y" service requests rejected by "x" cause activation of a control with Monitoring and Mastering function Mx these

applied both at adjacent nodes such as "a" and more distant nodes such as "b" (using control loops in series). Also at
node "y", the application admission control (not shown) rejects service requests, and causes activation of a per-node
overload control with Monitoring and Mastering function, My and restriction Ry applied at adjacent nodes such as "a".

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 24

Figure 17: Joint control of destination- and server-overload

At nodes such as "a" at which more than one active restrictor matches a service request, then NOCA should only admit
a request to be forwarded if each matching Restrictor admits it.

6.6 AMG to MGC fan-in issue
There is a particular issue with media gateway controllers (MGCs) which may be loaded from a very large number of
access media gateways (AMGs). The large number of load sources makes the maintenance of separate load monitors
and control update controllers problematic because of the additional processing load placed on the overload target. (In
general, there is an issue with any scenario where a resource may become overloaded due to many sources.) It is still
desirable to integrate the AMG→MGC overload control with the GOCAP on the MGC as this means that the available
processing resource can be allocated between different functions on the MGC in a controlled way. One possible
approach for the AMG to MGC overload problem is described below.

A control to limit the load from an AMG is currently being standardized within ETSI ES 283 039-3 [1] and this control
enables the MGC to set a percentage restriction to be applied against all non-priority service requests. This can be
integrated with a rate limiter based GOCAP running on the target by implementing a pseudo admission control in the
communication application on the target that looks at requests from AMGs (or sets of AMGs). In figure 18 we have the
communication applications in white circles, GOCAP components in clear rectangles and ES 283 039-3 [1] components
in the shaded lozenges. The pseudo admission control, pA, measures the arrival rate, a , from the AMGs and the
"reject" rate, ρ , from the GOCAP throttle RA and uses this rate to update the ES 283 039-3 [1] restriction

probability, r . If the current restriction is or , then the new restriction, nr , would be given by an expression similar to

()oon r
a

rr −+= 1
ρ

. The new restriction is passed to the ES 283 039-3 [1] distribution function for distribution to the

individual AMGs.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 25

RA M

D

restrict

Requests

reject info (x)Admit?

Source AMGs

request

Target MGC

C A C

C

Requests

D

Ry

Ry

pA

Control

Update

Figure 18: Possible solution to the AMG fan-in issue

6.7 Discriminating between importance levels
It is important that the control system can distinguish between importance levels during an overload episode. One
approach could be to use priority levels as described in ITU-Recommendation H.248.11 clause 8.2.5 [7]. Another
approach could be the use of leaky buckets in which different request priorities are implemented using a different
bucket fill rejection threshold for each priority. Whatever method is used, it implies that part of the request information
that crosses the interface between application and NOCA is the request priority. The details of how this could be
implemented are for further study.

6.8 Interworking with load balancing and forking
In general the NOCA throttles should be applied to an outgoing request after any load balancing or forking decisions
have been made. It may be that, in the event of load balancing, the rejected request would be offered to another server
from the balanced set - but that would depend on the application. In the case of load forking, a rejection of one (or
more) of the generated requests by a NOCA throttle should not imply that all the forked requests should be rejected. It
should be noted that when the load balancing is performed by a separate entity, rather that the request source, then the
comments regarding information hiding below applies. In this case the information that is hidden is the actual identity
of the server that will satisfy the request.

6.9 Interworking with information hiding proxies
In some applications, proxies are used to hide information between different functions in the NGN network. This may
be for reasons of security, or it may be to hide complex implementation issues from other functions. In these
circumstances, the use of the NOCA implies additional functionality in the proxy. Consider figure 19, which shows two
request sources able to load three potential overload targets. In this scenario, if Target X is overloaded, then it will use
the GOCAP protocol to instantiate and control throttles on sources A and B, the distribution function controlling the
apportionment of processing resource at X between A and B.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 26

Figure 19: A meshed implementation of sources and targets

In figure 20 we see that a proxy has been added to hide the complexity of the layer below. Now all requests destined for
X, Y or Z are sent by A and B to the proxy, P. (For an example of this in the NGN architecture, consider RACS. In this
case the sources A and B would correspond to the AF instances, the targets X, Y and Z would correspond to A-RACF
or BGF instances and the proxy, P, would correspond to the SPDF.) When the target X detects that it is overload what
should it do? It can no longer request throttling at A and B as they are hidden by the proxy. Nor could X request the
proxy to forward restriction requests to A and B, as A and B do not know which requests are targeted at X (that
matching is done by P). In some special cases, it could be possible for the proxy to use address translation to give
request address ranges that have significance at A and B which could be used to throttle requests to X, but often that
will not be the case. (See the discussion on address translation above, a bijective mapping of the address ranges
associated with X, Y and Z to address ranges used by A and B are possible, though the use of the proxy for complexity
hiding would tend to suggest it is unlikely.)

Figure 20:The same scenario using an information hiding proxy

In general terms, X can only invoke throttles at the proxy, which forces the proxy to have sufficient functionality to
support GOCAP. The rejection at P of demand destined for X may cause P to become overloaded, and thus P would
request throttling of requests to P at A and B. This is almost what would happen in the case without the proxy, except
that the throttles deployed at A and B do not discriminate between requests destined to X (which is overloaded) and
requests destined to Y and Z (which are not). This means that an overload at X can result in the rejection of requests
destined to Y and Z even when Y and Z have sufficient resources to handle the requests.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 27

6.10 Multiple controls at an overloaded resource
Figure 21 illustrates how the overload control architecture can be used to inter-work with the following sources:

1) sources equipped with NOCA components;

2) sources equipped with an overload control that is driven by reject messages indicating that the target is
overloaded (illustrated by ISUP ACC enabled source in the figure);

3) sources with no overload control; and

4) sources with an overload control driven by restriction messages as part of the protocol used to communicate
with target (illustrated by the use of the draft ES 283 039-3 [1] at the AMG in the figure).

Note that in figure 21 the NOCA architecture's components are indicated by boxes, and the non-NOCA functions are
indicated by ovals.

The target has a single monitoring and mastering function (M) which is monitoring the total arrival and reject rates and
mastering the restriction level. The restriction level is passed to the distribution function (D) which apportions the
restriction among the different NOCA managed restrictions using operator defined weights.

Figure 21: Working with existing or no controls - target is NOCA equipped

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 28

For the NOCA enabled source, the feedback loop is as described above, but the target manages three restrictions locally,
one for each of the other sources. Assuming the restrictions are leaky buckets, then the weights used by the distribution
function could be chosen to ensure that each of the 4 sources gets an equal share of the overloaded resource.
Alternatively the weights could be chosen to share the overload resource in proportion to the normal load generated by
each of the sources.

When a service request arrives at the target, its Communication Application(s) should check if there is a matching local
restriction; and if there is, ask whether the request is to be admitted or not. Note that, if the target has a local Admission
Control (not shown in figure 21), then it is assumed that each arriving request will also be tagged to indicate whether it
has been rejected by the local Admission Control.

If an arriving service request is rejected at the target, either by the target's Admission Control or by an active Local
NOCA throttle, then the logic of the protocol used between the request's source and the target should be followed. In the
examples shown in figure 21 this means that a rejected request from source 2 (running ISUP) should cause an ISUP
release message to be returned; and the release should indicate target overload (ACL set to 1 or 2) and reason cause
(42). A rejected request from source 3 (supporting no overload control) should be returned whatever indication of target
overload the protocol provides. A rejected request (in the example, an Off-hook notification) from source 4 should
follow the logic of H.248.1 [9] and the H.248.1 [9] extension package that embodies ES 283 039-3 [1]. In particular, the
ES 283 039-3 [1] logic running on the target should be applied.

This method scales to any number of external sources.

This method of working with existing non-NOCA overload controls, and uncontrolled sources, has three advantages as
follows:

• existing overload controls do not need to be changed either at the target or at external sources (although some
change to the Communication Application is required at the target to check against local NOCA restrictions);

• the share of the target's capacity each external source, across different protocols, is managed via NOCA by
configuration of the restriction distribution weights;

• the rate of admitted service requests from uncontrolled sources is configurable.

6.11 Specification of standardized control components

6.11.1 Mapping of the M, D & R functions

The overload control architecture has 3 main components, indicated by the boxes in figure 22. Their alignment with the
M, D and R functions is as follows:

• Monitoring and Mastering Function (M):

- This function is realized with two components, the Adaptation Manager and one or more Control
Adaptors. These two components are responsible for adapting the control variable(s) by monitoring the
load information provided by the application (reject rates or cpu occupancy for example). Each active
control at the host is managed by a single Control Adaptor, with the Adaptation Manager responsible for
the instantiation and deletion of each adaptor.

• Distribution Function (D)

- This function is realized by the Control Distribution component. This component receives control
updates from the control adaptors and distributes apportioned restriction levels to the throttle controllers
at appropriate nodes.

• Restriction Function (R)

- This function is realized with two components, the Throttle Manager and zero or more Local Throttles.
The Throttle manager receives restriction updates from the Control Distribution component (either local
or remote) and responds to application queries for request forwarding (by granting or refusing those
requests). The throttle manager is responsible for the instantiation and deletion of each throttle.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 29

Figure 22: Control components (boxes) and non-NOCA system functions (ovals)

The components and functions shown in Figure 22 should be thought of as being located above the top level of the
protocol stacks running at target and source. As an example, the two Comms Application instances running on the
source and target may use ISUP to communicate with each other in establishing and clearing-down voice calls. Beneath
ISUP, the protocol stack (in descending order) could be SIP-I/TCP/IP, SIP-I/SCTP/IP or SIP-I/UDP/IP.

Various non-NOCA system functions need to inter-act with the control components to form a working control. They are
indicated by the oval boxes in Figure 22, and are as follows:

• Management Function:

- This provides a management interface for NOCA components for configuration, status enquiries, control
statistics etc.

• Communications Application:

- This runs the logic of a service application (e.g. VoIP session establishment, routing, charging etc).
There may be several different communication applications running on a server if the server hosts several
different services.

• Load Monitor/Admission Control:

- This provides time series of arrival rates, reject rates, processor occupancy etc. In the case of admission
control, it is assumed that the function is already realized as part of the internal overload management for
the communication application running on the server. (This is a server load-shedding mechanism that
ensures that admitted requests are handled with adequately short response times.) In cases where
admission control is not appropriate, a load monitor is required to provide the NOCA control adapters
with equivalent data in the form of request arrival rates and pseudo reject rates.

Of course, the splitting of functionality between admission/load control (A) and communication application (C) is
somewhat arbitrary - in fact the admission/load control could well be considered as part of the application. It is certainly
application aware (so that it knows which messages to apply admission control to). For the description here, it is
assumed that load/reject information is relayed to NOCA controls by the communication application.

Conceptually, the NOCA- and system-components communicate with each other by sending requests and returning
responses.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 30

A server might be a target in one overload event and a source in another. In that case, it would need the full set of
NOCA components configured and running (in a wholly NOCA network). A server could also be a target and a source
at the same time if it were both overloaded itself and the source of overload elsewhere. This is shown in figure 23. Note
that the application checks the Throttle Manager for admission throttles that apply to requests as they arrive at the node
as well as checking before sending a request on to another node. Although remote throttles are preferred, local
admission throttles may be used when interfacing with other overload controls as described above.

Figure 23: Structure of a NOCA enabled server

6.11.2 Detailed component description

6.11.2.1 Control Distribution component

A Control Distribution component is located at each NOCA target server.

It is created and configured when the NOCA subsystem is started. It receives control variable updates from the
Adaptation Controller. The information passed to it in a control variable update is the following (some of which may be
pointers to the actual data):

• a list of all (source node, protocol) pairs the control variable should be sent to;

• the identity of the target server;

• the value and nature (maximum admission rate or admission percentage) of the (unscaled) control variable;
and

• the ControlDuration parameter value.

It then refreshes its list of (node, protocol) pairs for which a control update awaits dispatch as follows:

1) adds to the list any control updates for (node, protocol) pairs not in the list;

2) over-writes the update data for matching (node, protocol) pairs in the list;

3) scales the control variable value given the weight that applies to a (node, protocol) pair.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 31

The scaling data is configured via the management system. The ideal scaling values may be affected by topology and
capacity changes. Sub-optimal scaling factors may affect control performance, especially transient behaviour when the
control starts. When choosing scaling values, due consideration needs to be taken of the of the impact of topology and
capacity changes on the control performance.

When informed that a service request from a specific (node, protocol) pair has arrived at the target, the Control
Distribution component extracts the relevant data for that (node, protocol) pair from its list. If the data is a control
update, then it assembles the following data:

• the (source node, protocol) pair the control update should be sent to;

• the identity of the target server;

• the value and nature (maximum admission rate or admission percentage) of the (scaled) control variable; and

• the ControlDuration parameter value.

If the data is a TerminateRestriction command, then it assembles the following data:

• the (source node, protocol) pair a TerminateRestriction message should be sent to;

• the identity of the target server.

If the node identity = target node identity, then the update applies to a Throttle at the target, and the data is passed to the
local Throttle Controller. Otherwise, the data is passed to the Throttle Controller at the remote source.

When informed by the target Adaptation Controller that control against a (node, protocol) pair has ended, then it adds
the following data to the list of control updates to be sent out:

1) the (source node, protocol) pair a TerminateRestriction message should be sent to;

2) the identity of the target server.

6.11.2.2 Adaptation Manager

An Adaptation Manager is located at each target server.

The Adaptation Manager is created and configured when the overload control is armed.

When initialized, the Adaptation Manager creates a special Control Adaptor to monitor load state of the host and master
the NOCA node overload control. This special Control Adapter may be driven by:

• request arrival rate and local admission control reject rate;

• system load state information; or

• system capacity (either static or dynamically derived).

The Adaptation Manager may create, on demand, additional Control Adapters, to support destination load control for
example, that are driven by arrival and reject rate data provided by the application.

The Adaptation Manager sets what kind of control variable each Control Adaptor is to use - the two options are:
admission percentage and leak rate (the latter applies to leaky buckets and to gaps). And it tells it the other relevant
configuration data - including the following:

• initial value of the control variable to send out when feedback control starts;

• Control Duration time interval;

• maximum and minimum values of the control variable;

• goal request arrival rate from the set of (source node, protocol) pairs;

• the lower threshold on the arrival rate;

• the TerminationPending time interval.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 32

6.11.2.3 Control Adaptor

Each Control Adaptor is periodically passed data on the goal arrival rate and the actual arrival rate (or other load
information), and acts upon them as specified in clause 6.12.3 to initiate closed-loop control, update its control variable,
and terminate closed-loop control.

6.11.2.4 Throttle Manager

The Throttle Manager is created and configured when the overload control is armed.

It manages 0 or more active Throttles.

The Throttle Manager starts and stops Throttles when told to by Control Distribution components (either local or
remote). It is informed of the nature of the Throttle, and the specific throttle "address" (source node, protocol, target
node, destination) it applies to. (Some fields may be wild carded - e.g. for node load control, the destination field would
be a wildcard.) When the Throttle Manager is told to start a Throttle it does the following:

1) adds the throttle "address" to a list of active throttles;

2) instantiates and initializes the Throttle - based on knowing the nature of the Throttle (i.e. percent admission
state = initial percentage, leaky bucket state = bucket fill, max fill, and leak rate, or gap state = remaining gap
interval).

When the Throttle manager is told to stop a Throttle by a Control Distribution component, it will be given the throttle
"address" that it applies to. The Throttle Manager then frees any resources used by the Throttle, and removes the
Throttle from its list of active Throttles.

When the Throttle Manager receives a control update from the (local or remote) Control Distribution component, it then
commands the Throttle to apply the new value of the control variable (optionally randomizing first use of it to prevent
synchronization of Throttles).

When the Throttle Manager receives a query from a local Communication Application whether a service request via a
specific protocol to a specific target node can be admitted, it looks for a matching active throttle in its list of active
Throttles. If there is no match, then the query is granted, and the Throttle Manager responds to the Communication
Application. If there is a match with an active throttle then the Throttle Manager asks the Throttle if the request can be
admitted. The Throttle then grants the query or not, and the Throttle Manager replies to the Communication
Application. If multiple throttles match the query, then the request must be accepted by all the throttles in order to be
accepted. This is coordinated by the throttle manager the throttles may need to be updated with the result of the
admission request.

The management function may also request the creation and destruction of throttles by the throttle manager, allowing
the network operator to use the NOCA infrastructure for manually applied restrictions as required.

6.11.2.5 Throttle

Throttles are instantiated and destroyed by the Throttle Manager. They are responsible for the actual request
accept/reject decisions.

6.11.3 Control of the total load offered to a target node

6.11.3.1 Initiation of closed-loop control

The Adaptation Manager, associated with a resource, will have assigned a Control Adaptor to monitor the following
quantities:

• periodically-updated estimates of the total arrival rate of service requests Y(C) at the resource; and

• periodically-updated values for total arrival rate goal YG for service requests to that resource.

When the total request arrival rate exceeds its goal rate, then the Control Adaptor changes state to Closed-Loop control.
It will have been assigned an initial value for its control variable, and it should send that value out as a control update to
the Control Distribution component.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 33

The ControlAdaptor does this by sending a Restrict message to the ControlDistribution component. The message should
contain the following data:

• a list of all (source node, protocol) pairs being controlled by the Control;

• the identity of the target server;

• the value and nature (maximum admission rate or admission percentage) of the control variable; and

• the ControlDuration parameter value.

The ControlDuration parameter ensures that a Throttle will cease throttling after a time period equal to the
ControlDuration value has elapsed, unless it receives further Restriction messages before then. It is a failsafe
mechanism to ensure that a source control will eventually end if the GOCAP association with the target server has
failed.

6.11.3.2 Adaptation of control variable in the closed-Loop state

While in the Closed-Loop state the ControlAdaptor receives the following data:

• periodically-updated estimates of the total arrival rate of service requests Y(C) at an overloaded resource; and

• periodically updated values for total arrival rate goal YG for service requests to that resource;

and uses it to update its control variable C as follows.

Suppose that Y(C) is a monotonically increasing function of the control variable C, and that the slope of Y(C) is
non-increasing everywhere. This is the case for the following throttle types:

Leaky bucket, with C = maximum bucket leak rate;

Crawford Gap, with C = 1/gap interval;

Percentage thinning, with C = admitted percentage.

Then (see figure 24) given the current value Ci of the control variable and the corresponding total request arrival rate

Y(Ci), draw a straight line from the point (Ci, Y(Ci)) to the coordinate origin, and find the value of C at which this line

intersects the horizontal line Y = YG. Take this as the new value of the control variable:).Y(C / YC C iGi1i =+ .

Figure 24: Adaptation of control variable

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 34

Then, given the two assumptions about Y(C), it follows that if CG < Ci , then CG <= Ci+1 < Ci ; and if CG > Ci, then

CG >= Ci+1 > Ci . That is, the sequence of successive values of the control variable either decreases monotonically and

is bounded below by CG, or increases monotonically and is bounded above by CG. In either case the sequence of

C values must therefore converge (theorem in real analysis); and the limit is CG.

The value of iC should be changed to comply with configurable minimum and maximum values, if its value is either

less than the minimum or greater than the maximum allowed.

Deterministic modelling suggests that, in a network where several servers are overloaded and each applies this
adaptation method to its (neighbouring) sources, the entire set of interacting nearest-neighbour controls converges -
typically in 10 to 20 iterations.

Note that if C = percentage admitted, then Y(C) is an increasing linear function of C, and adaptation takes just one step.
However, a percentage-thinning throttle does not bound its admitted rate (unlike the Crawford gap and leaky bucket);
and, for that reason, the rate restriction methods are preferred. Synchronization of gaps or leaky buckets can occur when
applied at multiple sources. This problem is simply solved by appropriately randomizing the first use of a newly
received gap rate or leaky bucket rate.

Figure 25 shows that the adaptation algorithm will cause the control variable to increase without limit when the
controlled sources, between them, are originating service requests destined for the target server, at a rate less than the
target server's goal arrival rate GY . It would be dangerous to allow this to occur because the sources could suddenly

increase their offered rates to the target.

Figure 25: Adaptation when sources originate requests at a rate < goal arrival rate

Therefore, in the Closed Loop state, if the current arrival rate)(iCY is not significantly greater than the previous arrival

rate)(1−iCY , that is if RateChangeMinArrival)()(1 <− −ii CYCY , where the configurable parameter

MinArrivalRateChange is small and positive, then the next value of the control variable, 1+iC , should revert to 1−iC .

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 35

When the ControlAdaptor has a control update it sends a Restrict message to the ControlDistribution function. The
message should contain the following data:

1) a list of all (source node, protocol) pairs being controlled by the ControlAdaptor;

2) the identity of the target server;

3) the value and nature (maximum admission rate or admission percentage) of the control variable; and

4) the ControlDuration parameter value.

6.11.3.3 Termination of closed-loop control

The ControlAdaptor enters a TerminationPending state when the measured total request arrival rate falls below a lower
threshold on the total arrival rate. It starts a TerminationPending timer, sends a TerminateRestriction message to the
Control Distribution component. The TerminateRestriction message should include the following data:

1) a list of all (source node, protocol) pairs being controlled by the Control; and

2) the identity of the target server.

If the Termination Pending timer expires while the Control is in the TerminationPending state then the ControlAdaptor
reverts to monitoring arrival and goal rates.

If the measured total request arrival rate exceeds the goal rate while the ControlAdaptor is in the TerminationPending
state, then control reverts to Closed-Loop control.

6.11.3.4 Allocation of target capacity between controlled sources, fairness and SLAs

If the Throttles are leaky buckets, then a simple and flexible mechanism is available to apportion the target server's
capacity among the controlled sources. The mechanism ensures that a source with high enough offered load will get at
least a defined proportion of the target's goal arrival rate.

Suppose that there are "n" sources all running leaky bucket throttles. The Target ControlAdaptor's control variable "C"
is then a rate, which can be scaled by the ControlDistribution component before being sent out; so that, for example,
source i is sent the leaky bucket leak rate si C. Impose the conditions that each si lie between 0 and 1, and together they

sum to 1. Then, when used in the apportionment method to be described, si is the guaranteed minimum proportion of the
target server's goal arrival rate that source i gets, provided it originates requests at a high enough rate.

Denote by xi the rate at which source i offers requests to its throttle. Then the admission rate of the throttle as a function

of its leak rate si C is as follows. When the bucket leak rate exceeds xi then the whole stream originating at source i is

admitted at rate xi; and when the bucket leak rate is less than xi then the admitted rate equals the leak rate. (Strictly
speaking, this is true only if the leaky bucket has infinite maximum fill. However, it can be closely approximated by
setting a leaky bucket's maximum fill to about 10).

So the admitted rate at source i as a function of the control variable C equals si C if C < xi / si , and equals xi if C > xi / si

(see figure 26).

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 36

s i
 C

Figure 26: Idealized leaky bucket admission rate function

Summing the "n" source node admission functions, gives the total arrival rate Y(C) at the target node.

Number the sources so that x1/s1 < x2/s2 < … < xn/sn. Then:

• For 11 / sxC < , ∑= n

iCsCY
1

)(, and Y(C) has slope ∑
n

is
1

. At 11 / sxC = , source 1 reaches its

maximum admitted rate of 1x , after which its slope is zero. If the value of the goal arrival rate GY gives

11 / sxC < , then ∑= n

iG CsY
1

, and source i gets the

∑
=

n

i

i
Gi

s

s
YCs

1

 for all i. That is, the goal rate is

divided between the sources in proportion to their weights.

• For 2211 // sxCsx << , ∑+= n

iCsxCY
21)(, and the slope of Y(C) is reduced to the value ∑

n

is
2

(source 1 having slope zero). At 22 / sxC = , source 2 reaches its maximum admitted rate of 2x . If the value

of the goal arrival rate GY gives 2211 // sxCsx << , then ∑+= n

iG CsxY
21 . The goal rate is divided

between the sources so that source 1 gets 1x and source i gets

∑
−=

n
i

i
Gi

s

s
xYCs

2

1)(. That is, source 1 gets

all its stream, and the remaining goal rate capacity)(1xYG − is divided among the remaining sources in

proportion to their weights.

• This pattern continues, with the slope reducing by is as C passes through ii sx / , until the last source attains

its maximum admitted rate at nn sxC /= , after which the slope is zero. That is, Y(C) remains constant at the

value ∑
n

ix
1

.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 37

The graph of Y(C) is illustrated in figure 27.

1

1

s

x

2

2

s

x

3

3

s

x

n

n

s

x

Figure 27: Total arrival rate function Y(C)

A nice feature of this capacity apportionment method is that (generally) sources originating little load will get all of it
forwarded to the target, leaving the remaining goal capacity to be divided between the high load sources in proportion
to their relative weights. This method of apportioning the goal arrival rate is not the same as reserving a set proportion
of it for each source.

The apportionment method could be used to divide the goal arrival rate between competing services if the service type
of a request is known somehow (for example, deduced from its payload). The method therefore might provide a simple
way to enforce an important aspect of service level agreements with different Service Providers.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 38

6.12 Specification of APIs for control components
The interface between the NOCA and other system component (communication application, management system, etc.
will be specified. Figure 28 and figure 29 indicate the possible API calls that would be suitable for the Throttle
Controller and the Adaptation Controller.

Figure 28: Outline API for the Throttle Manager and associated Throttles

Figure 29: Outline API for the Adaptation Manager and associated Control Adaptors

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 39

6.13 Specification of network management interfaces
The management function interacts with NOCA components in four different ways:

1) The NOCA components are instantiated and initialized on enabled equipment by operator intervention via the
management system. It may be that the definition of hosts capable of supporting remote throttles, or from
whom throttle requests would be accepted will be defined by the management system.

2) The management system can be used to instantiate and arm manual controls. These controls are not modified
by the NOCA components, but use the NOCA infrastructure.

3) The management system collects statistics from throttles detailing the numbers of sessions accepted/rejected
by NOCA throttles and the activity of Control Adapters.

4) The management system will collect alarms generated when NOCA components activate new throttles etc or
when internal errors or problem arise.

6.14 Security design
Most of the functions in the NOCA are between elements within the NGN. It is not envisaged that the NOCA would
extend out to the end user and so the security implications are relatively light. The key security risk associated with the
NOCA is GOCAP, in which remote servers send instructions to network elements to reject service requests to particular
destinations. The potential for abusing this functionality to implement denial of service attacks is obvious, especially as
these control associations may cross operator boundaries. The security requirements for GOCAP are described in
clause 7.3.

6.15 Mapping control components to processing cards
Server architectures may differ in the way that they map the various communication applications and the protocol stacks
onto processing cards. In particular, the communication applications may only be located on some of the cards, not all.
For example, processing of the lower part of the protocol stack, that is transport protocols such as UDP/IP or SCTP/IP,
may be done on separate cards from the processing of the communication applications and upper layers of the stack.

The NOCA has been designed to use the following information that is available to communication applications:

• knowledge of which communication protocol (e.g. SIP, LDAP) is being used to convey a service request from
source to target; Throttles are applied against messages in specific protocols;

• knowledge of which messages may be rejected (e.g. SIP INVITE, SIP REGISTER) and which must not
(e.g. SIP RESPONSE, ACK, CANCEL, BYE);

• where relevant, knowledge of called address (e.g. SIP Request-URI), in order to throttle requests relating to a
specific called address where appropriate;

• where relevant, knowledge of called address translation, in order to chain feedback controls in series;

• knowledge of source node identity (throttles apply at specific source nodes against specific protocols).

Consequently, the NOCA components may be located in the following ways:

• either on the processing cards that run communication applications (see figure 30);

• or on a separate NOCA server, which communicates with the processing cards that run communication
applications (see figure 31).

NOTE 1: The mechanism by which NOCA cards communicate with other cards within a single server does not
require standardization, it being an implementation issue for the server vendor.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 40

Figure 30 shows a server with two cards running Communication Applications (indicated by squares) and cards not
running Communication Applications (indicated by circles). It shows NOCA configured on the Communication
Application cards facing outwards to external servers.

NOTE 2: GOCAP could be used internally, for example between the two Communication Application cards, as
indicated.

NOTE 3: It is possible for the cards not running Communication Application to become overloaded (for example,
by high, or unbalanced, signalling load). It is up to the server's vendor to decide how to cope with this
situation. Possible solutions are the following:

• Provide enough processing power on the non Communication Application cards in order to force the
Communication Application cards always to be the bottleneck.

• Provide a mechanism for an overloaded non Communication Application card to indicate to a Communication
Application card that it is overloaded.

GOCAP?

G
O
C
A
P

G
O
C
A
P

server

Comm

s App

Load

Monitor

Admission

Control

Adaptation

Controller

Control

Distribution

 Throttle

Controller

Comm

s App

Load

Monitor

Admission

Control

Adaptation

Controller

Control

Distribution

 Throttle

Controller

Figure 30: NOCA embedded in Communication App cards of a server

Figure 31 shows the same server as figure 30, but with GOCAP running on a separate internal GOCAP server
(indicated by the square box with rounded corners). For this configuration, each Communication Application card has a
GOCAP proxy to manage GOCAP related communications, and the GOCAP server card has the full set of GOCAP
components.

If a Communication Application card were causing overload at an external server then the latter would send NOCA
control updates to the Throttle Controller which would instantiate a throttle. The Communication Application, would
then ask its proxy whether it could send a service request to the external server, and its proxy would forward the request
to the GOCAP server. The GOCAP server would forward the request to the Throttle Controller, and the response would
be conveyed back to the Communication Application.

If a Communication Application card were overloaded by external servers, then the card's Load Monitoring and/or
Admission functions would notify the card's GOCAP proxy of high loads and/or reject events. That proxy would
forward the notifications to the proxy at the GOCAP server, which would pass them to the Adaptation Controller. The
latter then begins load/reject monitoring and adaptation of the control variable. Control variable updates are sent to the
external server by the NOCA Control Distribution component.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 41

Comm

s App

Load

Monitor

Admission

Control

Adaptation

Controller

Control

Distribution

 Throttle

Controller

Comm

s App

Load

Monitor

Admission

Control

GOCAP

proxy

GOCAP

proxy

GOCAP

proxy

Figure 31: Server with internal NOCA card

6.16 Performance proving
Tests to prove that overload controls perform adequately fall into two main types:

Deterministic, i.e. calls are generated with constant inter-arrival times. This type of test is designed in such a way that
the behaviour of the system is very precisely determined. It enables testing of whether:

• the overload control logic is working correctly;

• parameter values are being correctly assigned;

• measurements (for statistics) are being correctly calculated.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 42

Realistic load and configuration: These types of tests are designed to determine the behaviour of the overload control
when the test set-up is configured to mimic a more realistic network configuration, including the random nature of real
traffic. Optimal or near-optimal parameter values would be used. It enables a determination of whether the observed
behaviour sufficiently closely matches that determined by modelling (discrete event simulation), and hence whether the
code implements the end-to-end overload control design faithfully.

In each of the above two cases, it is the end-to-end behaviour of the control that is being tested, and therefore such tests
should cover both the overload detection and the restriction schemes.

The following testing and modelling facilities will be required:

• call generators able to mimic the call state machine at source nodes, including the relevant parts of the
overload control (if real servers are not available);

• equipment able to measure response times and calling rates (before and after restriction at source nodes, and
admitted and rejected at the target node) on a second-by-second basis - required to understand the fast
dynamics of the end-to-end control of powerful servers under overload;

• very high calling-rate generation (for example several thousand calls per second) to overload large capacity
servers;

• a realistic model of the end-to-end overload control (usually a detailed simulation) - required to check that all
parameter values cope well over the required range of overload scenarios;

• a comparison of test measurements with the simulation model's results - required if the full range of overload
scenarios cannot be generated in a test facility.

7 GOCAP requirements

7.1 Introduction
Whereas clause 6 describes the nodal behaviours required to implement a distributed processing overload scheme,
clause 7 describes the requirements for the Generic Overload Control Application Protocol (GOCAP). The GOCAP is
proposed to define an optional parallel interface to an existing control interface which supports the real time
management of dynamic transaction request peaks between components in or interfacing to the control plane of a NGN.
The use of such functionality removes the unpredictable and undesirable degradation of such components, allows
systems to maintain their real-time processing profile whilst maximizing the effective transactions.

The relationship of a generic overload control interface between architectural entities is represented below
(see figure 32) where an existing control interface can optionally have a parallel generic overload control interface. This
approach in no way changes the control interface Ca, rather the overload control interface is used to affect the behaviour
of the client. For simplicity the model shows a client / server relationship, with the request source as the client and the
target as the server, but it should be noted that on many control interfaces the demand can be sourced by both
architectural entities, i.e. in both directions so that either end can be simultaneously acting as both a client and a server.

Control Interface

Ca

Generic Overload
Control Interface

Ga

Restriction
Function

Client Entity Server Entity

Demand

Conditioned
Demand

Load
Monitoring
and control
functions

Figure 32: Relationship of generic overload control interface

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 43

7.2 Transport requirements
GOCAP is aimed at supporting real time applications and therefore requires the following network transport
characteristics:

a) GOCAP requires a reliable transport mechanism so that crucial overload control messages are not lost at the
very time when the control requests are causing the server to approach overload. (High demand peaks can
occur during conditions such as control packet or even media stream packet loss, as resultant application
misbehaviour often results in multiple user repeated attempts.)

b) GOCAP requires a transport mechanism that does not introduce significant delay that would affect the speed at
which a control was applied to a source.

c) A transport layer failure may precipitate server overload, so it is important that GOCAP sessions should be
able to survive such failures. The GOCAP transport mechanism should, therefore, be resilient or capable of
fast restoration.

It is recommended the use of SCTP multi-homing associations should be at least an option for meeting these
requirements.

7.3 Security requirements
GOCAP, by its very nature, can intrinsically be used for Denial of Service (DoS) attacks from just a single source
spoofing a control client. Native GOCAP is susceptible to Masquerade and "Man-in-the-Middle" attacks, (as are the
same mechanisms built into existing protocols). Therefore there shall be an option for underlying transport mechanisms
to provide authentication of the transport end-points and privacy of the information flows. The special security issues
related to the use of GOCAP between different network operators also needs to be taken into account. In particular it
shall not be possible for one operator to cause restriction of request flows that do not terminate or transit that operators
network.

It is recommended that the defined GOCAP transport profiles include mandatory options for transport links such as TLS
or IPsec.

7.4 General requirements

7.4.1 Overload of GOCAP dialogues

In GOCAP deployments it shall be assumed that:

a) the priority given by client and server entities to processing GOCAP messages is at the expense of processing
the control protocol messages;

b) consequently the proportion of the server or client entity processing used is a significantly small percentage of
that available and therefore no overload controls are required at the GOCAP level.

7.4.2 Administrative requirements

7.4.2.1 General

a) Multiple GOCAP dialogues from different clients to one server shall be supported.

b) Multiple control protocols from a single client to a server shall be supported via multiple GOCAP dialogues.

c) GOCAP shall support multiple overload control methods and be extensible for new methods to be added in
latter versions.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 44

7.4.2.2 Version identification

a) All GOCAP messages shall identify the current protocol version.

b) GOCAP dialogues shall convey information on the control protocol and its characteristics to ensure that it the
parallel control stream is unambiguously associated with the GOCAP dialogue.

7.4.3 GOCAP dialogues

7.4.3.1 GOCAP dialogue establishment

a) For a control protocol that registers one entity with the other entity, the registrar shall default to the GOCAP
Master and the source of registration request the GOCAP Slave.

b) For control protocols that do not register one entity with the other, each entity's management system shall be
capable of designating which entity is the Master and which is the Slave.

c) All Master / Slave designations shall only have scope for the individual dialogue between two entities. E.g. for
three entities in a linear control chain, the middle entity must be able to be a Master to one entity and
simultaneously be a Slave to the other if required.

d) GOCAP Masters shall be responsible for invoking the opening of the appropriate transport link to the Slave. If
an attempt to establish a transport link fails, it will be reattempted after a configurable time interval.

e) The Master entity's management system shall attempt to establish a transport link a configurable number of
times, before reporting a failure back to the entity's management system. When this retry count is reached it
shall be reset and link establishment attempts shall continue.

f) Once the transport path has been established between the two entities a GOCAP dialogue shall be established
by the designated Master.

g) Each entity shall report any GOCAP dialogue establishment failure to its management system.

h) To facilitate interoperability and upgrades, the GOCAP dialogue establishment shall negotiate the GOCAP
version to be used.

i) GOCAP dialogue establishment shall agree if the overload control relation is from Master to Slave only, Slave
to Master only or if bi-directional control is allowed for the supported protocol.

j) GOCAP dialogue establishment shall exchange the Control Protocol name and version to which it refers. A
mismatch of Control Protocol name and version shall result in a dialogue failure.

k) GOCAP dialogue establishment shall exchange the overload control method being used (e.g. gapping,
percentage call restriction, scaled restriction rates, etc). A mismatch of overload control mechanism shall result
in a dialogue failure.

l) GOCAP dialogue establishment shall exchange the type address / request reference to which restriction
requests will be applied, e.g. ITU-Recommendation E.164 [10], national/private telephone numbers, URIs, etc.

m) GOCAP dialogue establishment shall exchange the Control Protocol "end point identifiers" to which it refers.
If these identifiers do not match those expected for the parallel control path, this shall result in a dialogue
failure.

n) A GOCAP Master shall poll its Slave with a request to open a dialogue. The time between of poll attempts
shall be configurable by the management system.

o) The GOCAP Master entity's management system shall support configuring the number of failed poll attempts
allowed, before reporting a failure back to its management system.. In event of failure, this counter is reset and
polling continued. Subsequent failures are to be reported to the management system. Once a dialogue is
established, the server shall continue and report success to the management system.

p) Each request to open a dialogue shall be identifiable by a sequence number and all responses shall use this to
identify the associated request.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 45

q) If a dialogue exchange has occurred but fails to negotiate a dialogue (e.g. the Master and Slave cannot agree
the GOCAP version to use), the Master shall halt polling until restarted by an action from its management
system. Such a situation would require manual intervention and reconfiguration and therefore the GOCAP
establishment shall cease pending a management restart.

r) If the underlying transport layer reports that the data connection is lost, the GOCAP Master shall automatically
attempt to re-establish the transport path and then the GOCAP dialogue as described above.

s) A Master shall open up a separate GOCAP dialogue for each control protocol supported even if a dialogue has
already been established to the same client for a different control protocol.

7.4.4 GOCAP dialogue status monitoring

a) When a dialogue has been successfully established, both entities in a dialogue shall poll the other with a status
request to ensure that the overload control process is active at the other end. The poll rate shall be individually
configurable per GOCAP dialogue by each entities own management system. The time from dialogue
establishment and the first poll shall be randomly chosen within the configured polling period.

b) Each status request shall be identifiable by a sequence number provided by the source of the request and all
responses shall use this to identity the associated request.

c) When a status request is acknowledged the normal poll cycle shall continue but if a status response is not
received within some configurable interval, the source entity shall repeat the status request. If a response is not
received after a certain number of repeat requests, the GOCAP dialogue shall be deemed to be lost and a new
dialogue initiated. Loss of GOCAP dialogue shall be reported to the management entity.

d) Loss of the underlying transport link shall be indicated to the GOCAP Master which shall automatically
attempt to re-establish the transport connection.

7.4.5 GOCAP restrict message requirements

a) When an overload is detected by the load monitoring function within the control protocol server, a restrict
request shall be issued.

b) All restrict requests shall be identified by a sequence number so as to identify repeat requests.

c) All restrict requests shall have a duration validity field which specifies the default number of seconds the
restriction is valid unless updated with a new restriction message. Subsequent restriction requests with
identical restriction criteria shall overwrite the duration field to that in the new request.

d) If the client entity in unable to accommodate a restriction request, it shall indicate this to the server via a
negative acknowledgement. Negative acknowledgements shall be notified to both GOCAP Slave and Master
entities management systems.

NOTE 1: Positive acknowledgements may not be required if the transport can indicate to GOCAP delivery failure.

e) Negative acknowledgement shall indicate what aspect of the request could not be accommodated.

NOTE 2: Specific negative acknowledgements may minimize the work done in constructing and sending positive
acknowledgement.

f) If a restrict request fails to be delivered, resending will be attempted a number of times after which the failure
shall be notified to the requesting entity's management system.

g) The control protocol server shall send restriction requests that shall be applied to:

1) all destination addresses;

2) partial destination addresses;

3) an individual destination address.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 46

h) All TISPAN NGN address formats shall be supported.

i) As appropriate to the type of address, individual characters shall be capable of being wild carded.

EXAMPLE 1: For a wildcard character "?" an E.164 number might be represented by 199236367?1. This would
apply only to 19923637611, 19923636721, 19923636731, …………, 19923636791.

j) As appropriate to the type of address, individual address fields should be capable of being wild-carded.

EXAMPLE 2: For a wildcard character "*", a URI with IP address might be restricted with
telepromotion.bigco@10.153.42.*. This would apply to all session requests to the
telepromotion.bigco at the sub-net 10.153.42.

k) For E.164 and telephone numbers it shall be possible to wildcard digit at the end of a number string.

EXAMPLE 3: For a wildcard character of "*", then 44147360* would apply to addresses strings where the first
eight digits matched the restriction string, i.e. 441473603377 would be a match.

l) It shall be possible to up apply simultaneous restrictions where address wild-carding overlaps if one address
can be determined as more specific than another. In this situation the more specific address type will have
priority.

EXAMPLE 4: For telephone numbers this means that longest length has priority so that a restriction to
14023391182? would take precedence over 140233911*.

7.5 GOCAP example Meta-protocol

7.5.1 Dialogue establishment messages

7.5.1.1 Open dialogue message

The following psuedo-protocol is an expression of the requirements for an OPEN dialogue message, initiated by the
GOCAP Server.

GOCAP: Version n.m ;Client GOCAP version
Message: OPEN
Server Ref: string ; reference unique to the Server
Client Ref: ; null
Svr Seq No: nnnnnnnn ;
Clnt Seq No: ; null
Versions: n.m n.m ….. n.m ; list of version numbers supported
Cntrl Type: (S->C | C->S | S<-> C) ; Server to Client or Client to Server or bi-directional control
 ; i.e. overload control commands issues from server to
 ; client only or from both Server and Client
Cntrl Prot: string n.m ; name as defined in the Protocol Classification register & version
OvlCtl Type: Gap | Perc | etc ;type of overload control mechanism supported
Server Id: string ; identifier of Server as used in Control Protocol
Client Id: string ; identifier of Client as used in Control Protocol

7.5.1.2 Open dialogue acknowledgement message

The following pseudo-protocol is an expression of the requirements for an OPEN ACKNOWLEDGE dialogue message
in response to an OPEN request. The fields are checked by the client have an OK or FAIL indication added to them.
A dialogue shall only be deemed to be successful if all checked fields indicate "OK".

GOCAP: Version n.m
Message: OPEN_ACK ; dialogue open acknowledgement
Server Ref: string ; Server Ref as in associated OPEN request
Client Ref: ; null
Svr Seq No: nnnnnnnn ; Sequence No. as in associated OPEN request
Clnt Seq No: ; null
Versions: n.m (OK | FAIL) ; OK =version number to be used, FAIL=no version match
Cntrl Type: (S->C | C->S | S<-> C) (OK | FAIL)
 ; Control Type as in the associated OPEN request.
Cntrl Prot: string n.m (OK | FAIL) ; name and version as defined in the
 ; Protocol Classification register + version number

mailto:telepromotion.bigco@10.153.42.*

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 47

OvlCtl Type:Gap (OK | Fail) | Perc (OK | Fail) | etc
 ;type of overload control mechanism supported
Server Id: string (OK | FAIL) ; identifier of Server as used in Control Protocol
Client Id: string (OK | FAIL) ; identifier of Client as used in Control Protocol

7.5.2 Dialogue status messages

The following psuedo-protocol is an expression of the requirements for dialogue status request and response messages.

7.5.2.1 Status message originated by a server

GOCAP: Version n.m ; negotiated GOCAP version
Message: STATUS ;
Server Ref: string ; reference unique to the Server
Client Ref: ; null
Svr Seq No: nnnnnnnn ;
Clnt Seq No: ; null

7.5.2.2 Status message originated by a client

GOCAP: Version n.m ; negotiated GOCAP version
Message: STATUS ;
Server Ref: ; null
Client Ref: string ; reference unique to the Client
Svr Seq No: ; null
Clnt Seq No:nnnnnnnn ;

7.5.2.3 Status acknowledge message in response to a request originated by a server

GOCAP: Version n.m ; negotiated GOCAP version
Message: STATUS_ACK ;
Server Ref: string ; reference unique to the Server
Client Ref: ; null
Svr Seq No: nnnnnnnn ;
Clnt Seq No: ; null

7.5.2.4 Status acknowledge message in response to a request originated by a client

GOCAP: Version n.m ; negotiated GOCAP version
Message: STATUS_ACK ;
Server Ref: ; null
Client Ref: string ; reference unique to the Client
Svr Seq No: ; null
Clnt Seq No:nnnnnnnn ;

7.5.3 Overload restriction messages

The following pseudo-protocol is an expression of the requirements for overload restriction request and response
messages.

7.5.3.1 Restrict request message

GOCAP: Version n.m ; negotiated GOCAP version
Message: RESTRICT ;
Server Ref: string | null ; null if initiated from client
Client Ref: string | null ; null is initiated from server
Svr Seq No: string | null ; null if initiated from client
Clnt Seq No:string | null ; null if initiated from server
Class: nn ; Session type class number as defined in the
 ; Protocol Classification register
Param: p.qr |40%|etc ; restriction parameter depending on the negotiated restriction
 ; type e.g. for gapping it would be the gap time
 ;in seconds (to 2 decimal places), for proportional restriction it
 ; would be a percentage of sessions admitted, etc
 ; shortest window to allow a new session origination
Adrs Type: string ; type of address in the Adrs field e.g. E.164, tel No., URI,

Adrs: string ; address range to which restriction applies
Duration: 60->3600 ; No. seconds the restriction applies unless updated.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 48

7.5.3.2 Restrict negative acknowledgement message

GOCAP: Version n.m ; negotiated GOCAP version
Message: RESTRICT_NACK ;
Server Ref: string | null ; null if initiated from client
Client Ref: string | null ; null is initiated from server
Svr Seq No: string | null ; null if initiated from client
Clnt Seq No:string | null ; null if initiated from server
Param: p.qr |40%|etc (OK|FAIL) ; OK = Accepted, Fail = number of restriction conditions
 ;full in source limiter
Adrs Type: string (OK | FAIL) ; address type OK= recognized, FAIL = unrecognised
Adrs: string (OK | FAIL) ; address string or wild-carding
 ; OK= recognized, FAIL = unrecognised

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 49

Annex A:
Example information flows
To make clear some of the logic described above, the following message flows demonstrate the information being
passed between the different NOCA entities when NOCA is being used to protect against server overload. Figure 33
shows a simple session in which application App1 on Server1 sends a request to App2 on Server2. To service this
request requires App2 to consult application running on Server3 and Server4. Server2 has local admission control (as
part of App1). The message flow shows how this simple request is handled.

Figure 33: A simple session

Figure 34 shows the simple request in an environment in which NOCA is deployed. In this case, there are no NOCA
throttles instantiated (none of the servers in overloaded). Of course App1 and App2 do not know that there are no active
throttles, which is why each request is offered to the throttle controller even though there are no active throttles.

Figure 34: A simple call in a GOCAP enabled system with no overload

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 50

When the systems are overloaded, NOCA throttles will be instantiated. Figure 35 shows a successful session when
Server2 and Server3 are both overloaded.

Server 2

App 1 Throttle Manager 1 Throttle1.2 App 2 Throttle Manager 2 Throttle 2.3 Adaption ManagerAdmission 2 Server 3

Admit?

Admit?

Yes

Yes

Request

Admit?

Yes

Admit?

Admit?

Yes

Yes

Request to App on Server3

Control adaptor 2

Request_admitted

Request_admitted

Establish required

server ID

Reply

Server 4

Admit?

Yes

Request to App on Server4

Reply

Establish next

required

server ID

Reply

Gocap functions

on servers 3 & 4

ommitted for

simplicity

Admit?

Yes

The application checks the request

with the local throttle manager -

but there is no local throttle for this

source (it is remote)

Figure 35: A successful session during overload on Server2 and Server3

We can see in figure 36 how Server2 is protected by the remote throttle on the source.

Figure 36: A session rejected by the NOCA throttle at Server1 protecting Server2

Figure 37 shows how the overloaded server, Server3, is protected by the throttle on Server2. Notice that the NOCA
throttle for Server3 should be consulted as soon as Server3 is identified as supporting the session as that helps to reduce
the processing load on Server2. In this case it is assumed that the session is rejected if throttled, but App2 could be
configured to pass the request onto another server.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 51

Figure 37: A session rejected by the GOCAP throttle protecting Server3

In figure 38 shows a GOCAP interworking scenario, where the source is not GOCAP aware. This means that that there
is no NOCA throttle on the source, and requests arriving at Server2 are not controlled. Server2 is overloaded and has
deployed an admission throttle (Throttle2.2) to regulate the arrivals from the source. Obviously, a local throttle does not
protect the host any more than local admission control, but NOCA allows them as it enables the controlled
apportionment of processing resource between competing request sources and reduces the unfair throttling of those
sources that do support overload control.

Figure 39 shows a request rejected by the local NOCA throttle. These locally rejected requests are treated as if rejected
by App1 remotely as far as the NOCA Adaptation Manager is concerned, and so the local admission control decision is
not passed to Adaptation Manager and does not contribute to the target rejection rate of the system.

Finally, figure 40 shows a request rejected by the local admission control, and this rejection information is passed to the
Adaptation Manager.

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 52

Figure 38: A successful session using a local throttle on Server2

Server 2

App 1 Throttle 2.2App 2 Throttle Manager 2 Throttle 2.3 Adaption ManagerAdmission 2 Server 3

Admit?

Admit?

No

No

Request

Admit?

Yes/No

Control adaptor 2 Server 4

Reply -Reject

We still have to reject

the call properly - hope-

fully at less processing

effort than accepting it.

If the req is rejected by the local GOCAP

throttle, then it is as if the req has not

reached Server2 - we are emulating a

rejection on Server 1. So we do not

send the rejection notification to the

Control Adaptor regardless of whether

or not the local AC marks the request

for rejection.

Figure 39: Rejection of a session request from Server1 by local throttle at Server2

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 53

Server 2

App 1 Throttle 2.2App 2 Throttle Manager 2 Throttle 2.3 Adaption ManagerAdmission 2 Server 3

Admit?

Admit?

Yes

Yes

Request

Admit?

No

Control adaptor 2 Server 4

Reply -Reject

We still have to reject

the call properly - hope-

fully at less processing

effort than accepting it.

If the call is accepted by the local GOCAP

throttle, then the fate of the request is

simply dependant on the local admission

control. The outcome of the local

admission control is always forwarded

to the adaption manager in this case.

Request_rejected

Request_rejected

Figure 40: Rejection of a session request by App2 admission control at Server

ETSI

ETSI TR 182 015 V1.1.1 (2006-10) 54

History

Document history

V1.1.1 October 2006 Publication

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Requirements for NGN overload controls
	4.1 NGN overload scenarios
	4.1.1 Processing overload sizes
	4.1.2 Media stimulated events
	4.1.3 Disasters
	4.1.4 Network Failures
	4.1.5 Conclusion

	4.2 Impact of overload on resources and customer behaviour
	4.3 NGN Interfaces requiring overload controls
	4.4 NGN architectural factors
	4.5 GOCAP requirements

	5 Overload control design rules
	6 Detailed NGN overload control architecture
	6.1 Control architecture: General approach
	6.2 Options for locating components (M, D and R)
	6.2.1 Case 1: protocol supports reject of service requests by the target with an indication of overload
	6.2.2 Case 2: protocol supports an indication of overload, but not rejection of service requests
	6.2.3 Case 3: protocol supports neither rejection of service requests nor indication of overload
	6.2.4 Preferred locations of components

	6.3 Destination load control
	6.3.1 Control loops in series
	6.3.2 Called address translation

	6.4 Control of server overload
	6.4.1 Control loops in series

	6.5 Joint control of destination- and server-overload
	6.6 AMG to MGC fan-in issue
	6.7 Discriminating between importance levels
	6.8 Interworking with load balancing and forking
	6.9 Interworking with information hiding proxies
	6.10 Multiple controls at an overloaded resource
	6.11 Specification of standardized control components
	6.11.1 Mapping of the M, D & R functions
	6.11.2 Detailed component description
	6.11.2.1 Control Distribution component
	6.11.2.2 Adaptation Manager
	6.11.2.3 Control Adaptor
	6.11.2.4 Throttle Manager
	6.11.2.5 Throttle

	6.11.3 Control of the total load offered to a target node
	6.11.3.1 Initiation of closed-loop control
	6.11.3.2 Adaptation of control variable in the closed-Loop state
	6.11.3.3 Termination of closed-loop control
	6.11.3.4 Allocation of target capacity between controlled sources, fairness and SLAs

	6.12 Specification of APIs for control components
	6.13 Specification of network management interfaces
	6.14 Security design
	6.15 Mapping control components to processing cards
	6.16 Performance proving

	7 GOCAP requirements
	7.1 Introduction
	7.2 Transport requirements
	7.3 Security requirements
	7.4 General requirements
	7.4.1 Overload of GOCAP dialogues
	7.4.2 Administrative requirements
	7.4.2.1 General
	7.4.2.2 Version identification

	7.4.3 GOCAP dialogues
	7.4.3.1 GOCAP dialogue establishment

	7.4.4 GOCAP dialogue status monitoring
	7.4.5 GOCAP restrict message requirements

	7.5 GOCAP example Meta-protocol
	7.5.1 Dialogue establishment messages
	7.5.1.1 Open dialogue message
	7.5.1.2 Open dialogue acknowledgement message

	7.5.2 Dialogue status messages
	7.5.2.1 Status message originated by a server
	7.5.2.2 Status message originated by a client
	7.5.2.3 Status acknowledge message in response to a request originated by a server
	7.5.2.4 Status acknowledge message in response to a request originated by a client

	7.5.3 Overload restriction messages
	7.5.3.1 Restrict request message
	7.5.3.2 Restrict negative acknowledgement message

	Annex A: Example information flows
	History

