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Foreword 
This Technical Report (TR) has been produced by the 3rd Generation Partnership Project (3GPP). 

The contents of the present document are subject to continuing work within the TSG and may change following formal 
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an 
identifying change of release date and an increase in version number as follows: 

Version x.y.z 

where: 

x the first digit: 

1 presented to TSG for information; 

2 presented to TSG for approval; 

3 or greater indicates TSG approved document under change control. 

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, 
updates, etc. 

z the third digit is incremented when editorial only changes have been incorporated in the document. 

Introduction 
This Report has been produced by ETSI SAGE Task Force 172 on the design of an example set for 3GPP 
Authentication and Key Generation Algorithms.  

The work described in this report was undertaken in response to a request made by 3GPP TSG SA. 

SAGE Version 1.0 of this report was submitted to the 3GPP SA WG3 group in December 2000. Version 1.1 (with 
updated C-code in Annex 4) was approved by TSG SA#10 in December 2000. 
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1 Scope 
This report contains a detailed summary of the work performed during the design and evaluation of the 3GPP 
Authentication Functions denoted as the MILENAGE algorithm set. It contains all results and findings from this work 
and should be read as a supplement to the specifications of the algorithms in ref. [3] and the general project report, ref. 
[4]. 

2 References 
The following documents contain provisions which, through reference in this text, constitute provisions of the present 
document. 

• References are either specific (identified by date of publication, edition number, version number, etc.) or 
non-specific. 

• For a specific reference, subsequent revisions do not apply. 

• For a non-specific reference, the latest version applies.  In the case of a reference to a 3GPP document (including 
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same 
Release as the present document. 

[1] 3G TS 33. 102 V 3.5.0 (2000-07) 3rd Generation Partnership Project; Technical Specification 
Group Services and System Aspects; 3G Security; Security Architecture. 

[2] 3G TS 33. 105 V 3.4.0 (2000-07) 3rd Generation Partnership Project; Technical Specification 
Group Services and System Aspects; 3G Security; Cryptographic Algorithm Requirements. 
(Release 1999) 

[3] ETSI/SAGE Specification. Specification of the MILENAGE Algorithm Set: an Example 
Algorithm Set for the 3GPP Authentication and Key generation Functions, f1, f1*, f2, f3, f4, f5 
and f5*; Document 1: Algorithm Specification. Version: 1.0; Date: 22nd November 2000. 

[4] ETSI/SAGE Report. Report on the Design and Evaluation of the 3GPP Authentication and Key 
generation Functions; Version: 1.0; Date: 22nd November 2000. 

[5] Wassenaar Arrangement, December 1998. http://www.wassenaar.org. 

[6] P. C. Kocher, 'Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other 
Systems', CRYPTO'96, LNCS 1109, Springer-Verlag, 1996, pp. 104-113. 

[7] J. Kelsey, B. Schneier, D. Wagner, C. Hall, Side Channel Cryptanalysis of Product Ciphers', 
ESORICS'98, LNCS 1485, Springer-Verlag, 1998, pp. 97-110. 

[8] L. Goubin, J. Patarin, 'DES and differential power analysis', CHES'99, LNCS 1717, Springer-
Verlag, 1999, pp. 158-172 

[9] P. Kocher, J. Jaffe, B. Jun, 'Differential Power Analysis', CRYPTO'99, LNCS 1666, Springer-
Verlag, 1999, pp. 388-397. 

[10] T. S. Messerges, 'Securing the AES finalists against Power Analysis Attacks', FSE'00, LNCS, 
Springer-Verlag, to appear. 

[11] L. Goubin, J.-S. Coron, 'On boolean and arithmetic masking against differential power analysis,' 
CHES'00, LNCS, Springer-Verlag,  to appear. 

[12] Nechvatal, Barker, Bassham, Burr, Dworkin, Foti and Roback, 'Report on the Development of the 
Advanced Encryption Standard (AES)', NIST, October 2, 2000. 

[13] F. Sano, M. Koike, S. Kawamura and M. Shiba, 'Performance evaluation of AES Finalists on the 
High-End Smart Card', The Third AES Candidate Conference, New York, April 2000. 
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[14] M. Bellare, J. Kilian, P. Rogaway, The Security of Cipher Block Chaining, proceedings of 
Crypto'94, Springer Verlag, pp341-358. 

[15] J. Daemen and V. Rijmen, AES Proposal: Rijndael, AES algorithm submission. September 3, 
1999, available at http://www.nist.gov/aes. 

[16] H. Gilbert and M. Minier, A collision attack on 7 rounds of Rijndael, in The Third AES Candidate 
Conference, printed by the National Institute of Standards and Technology, April 13-14, 2000, pp. 
230-241. 

[17] S. Lucks, Attacking Seven Rounds of Rijndael Under 192-bit and 256-bit Keys, in The Third AES 
Candidate Conference, printed by the National Institute of Standards and Technology, April 13-14, 
2000, pp. 215-229. 

[18] N. Ferguson, et al., Improved Cryptanalysis of Rijndael, in the preproceedings of the Fast Software 
Encryption Workshop 2000, April 10-12, 2000. 

3 Abbreviations 
For the purposes of the present report, the following abbreviations apply:  

AES Advanced Encryption Standard 
AMF Authentication Management Field 
AK Anonymity Key 
AuC Authentication Centre 
CBC Cipher Block Chaining 
CK Cipher Key 
DES Data Encryption Standard 
DPA Differential Power Analysis 
EEPROM Electronically Erasable Programmable Read-Only Memory 
GF(q) The finite field of q elements 
3GPP 3rd Generation Partnership Project 
IPA Inferential Power Analysis 
IK Integrity Key 
IV Initialisation Vector 
K Subscriber Key 
MAC Message Authentication Code 
MAC-A Network Authentication Code 
MAC-S Resynchronisation Authentication Code 
OFB Output feedback mode 
OP a 128-bit Operator Variant Algorithm Configuration Field that is a component of the functions f1, 

f1*, f2, f3, f4, f5 and f5* 
OPC a 128-bit value derived from OP and K and used within the computations of the functions f1, f1*, 

f2, f3, f4, f5 and f5*. 
RAM Random Access Memory 
RES Response to Challenge 
RNC Radio Network Controller 
ROM Read Only Memory 
SAGE Security Algorithms Group of Experts 
SPA Simple Power Analysis 
SQN Sequence Number 
TA Timing Attack 
UE User Equipment 
UMTS Universal Mobile Telecommunications System 
USIM User Services Identity Module 
XRAM Extended RAM 
XRES Expected User Response 
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4 Structure of this report 
The material presented in this report is organised in the subsequent clauses, as follows: 

- Clause 5 provides background information to the design work of the example set for 3GPP Authentication and 
Key generation Functions; 

- Clause 6 provides a summary of the algorithm requirements; 

- Clause 7 describes the design criteria used for the work; 

- Clause 8 consists of a brief presentation of the actual designs; 

- Clause 9 provides some background information on the chosen design; 

- Clause 10 gives an overview of the evaluation work carried out by SAGE 3GPP TF and other parties; 

- Clause 11 contains the conclusions from the work. 

5 Background to the design and evaluation work 
The 3rd Generation Partnership Project (3GPP) is a global initiative dedicated to the development of specifications for 
the next generations of cellular mobile systems. Integration of strong security services is an important feature of this 
system and the general security architecture is defined in ref. [1]. The implementation of these security services must be 
based on a variety of cryptographic functions/algorithms and the requirements for these functions are provided in ref. 
[2]. Out of the full algorithm suite, only the UMTS encryption algorithm (f8 ) and the UMTS integrity algorithm (f9 ) 
are fully standardized. This work was conducted by a dedicated task force based on ETSI SAGE and external experts 
from 3G manufacturers.  

The remaining cryptographic functions for authentication and key agreement (f0 – f5* ) are allocated to the 
Authentication Centre (AuC) and the USIM. This means that the functions are proprietary to the home environment and 
there is no need for formal standardization of these algorithms. However, the 3G Security Group agreed to develop an 
example set of functions that could be offered to operators that chose not to develop their own solutions. Again a task 
force was set up based on ETSI SAGE enlarged with cryptographers from 3G manufacturers. 

Note that the random challenge generating function f0 is not included in the example set of functions provided by this 
work. The implementation of this function is completely determined by the operator. 

The major design goal for the task force was to design a framework for the authentication and key generation functions 
that was secure and flexible. This goal was achieved through the development of a well-analysed construction using a 
128-bit encryption algorithm as a kernel function and including an additional configuration field parameter selected by 
the operator. The example design recommends the use of the AES algorithm Rijndael as the kernel function, but an 
operator could change this to any block cipher meeting the interface parameters. The list of candidates for the AES 
standard includes a large set of suitable algorithms to choose from. 

The defined set of algorithms is commonly denoted as the MILENAGE algorithms. 
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6 Summary of algorithm requirements 
The requirements for the cryptographic algorithms used in the 3G Security are found in ref. [2]. We include the 
requirements that are essential for the reading of this report. 

6.1 General requirements for 3GPP cryptographic functions and 
algorithms 

The functions should be designed with a view to their continued use for a period of at least 20 years. Successful attacks 
with a workload significantly less than exhaustive key search through the effective key space should be impossible.  

The designers of above functions should design algorithms to a strength that reflects the above qualitative requirements. 

Legal restrictions on the use or export of equipment containing cryptographic functions may prevent the use of such 
equipment in certain countries.  

It is the intention that UE and USIMs that embody such algorithms should be free from restrictions on export or use, in 
order to allow the free circulation of 3G terminals. Network equipment, including RNC and AuC, may be expected to 
come under more stringent restrictions. It is the intention that RNC and AuC that embody such algorithms should be 
exportable under the conditions of the Wassenaar Arrangement, ref.[5]. 

6.2 Authentication and key agreement functions 
The mechanisms for authentication and key agreement described in clause 6.3 of [1] require the following 
cryptographic functions: 

f1 The network authentication function; 

f1* The re-synchronisation message authentication function; 

f2 The user authentication function; 

f3 The cipher key derivation function; 

f4 The integrity key derivation function; 

f5 The anonymity key derivation function; 

f5* The anonymity key derivation function for re-synchronisation 

6.2.1 Implementation and operational considerations 

The functions f1—f5* shall be designed so that they can be implemented on an IC card equipped with an 8-bit 
microprocessor running at 3.25 MHz with 8 kbyte ROM and 300byte RAM and produce AK, XMAC-A, RES, CK and 
IK in less than 500 ms execution time. 

6.2.2 Type of algorithm 

6.2.2.1 f1 

f1: the network authentication function 

f1:   (K; SQN, RAND, AMF) # MAC-A (or XMAC-A) 

f1 should be a MAC function. In particular, it shall be computationally infeasible to derive K from knowledge of 
RAND, SQN, AMF and MAC-A (or XMAC-A).  
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6.2.2.2 f1* 

f1*: the re-synchronisation message authentication function 

f1*: (K; SQN, RAND, AMF) # MAC-S (or XMAC-S) 

f1* should be a MAC function. In particular, it shall be computationally infeasible to derive K from knowledge of 
RAND, SQN, AMF and MAC-S (or XMAC-S). 

6.2.2.3 f2 

f2: the user authentication function  

f2:   (K; RAND) # RES (or XRES) 

f2 should be a MAC function. In particular, it shall be computationally infeasible to derive K from knowledge of RAND 
and RES (or XRES). 

6.2.2.4 f3 

f3: the cipher key derivation function  

f3:   (K; RAND) # CK 

f3 should be a key derivation function. In particular, it shall be computationally infeasible to derive K from knowledge 
of RAND and CK. 

6.2.2.5 f4 

f4: the integrity key derivation function  

f4:   (K; RAND) # IK 

f4 should be a key derivation function. In particular, it shall be computationally infeasible to derive K from knowledge 
of RAND and IK. 

6.2.2.6 f5 

f5: the anonymity key derivation function  

f5:   (K; RAND) # AK 

f5 should be a key derivation function. In particular, it shall be computationally infeasible to derive K from knowledge 
of RAND and AK. 

The use of f5 is optional. 

6.2.2.7 f5* 

f5*: the anonymity key derivation function for re-synchronisation 

f5*:   (K; RAND) # AK 

f5* should be a key derivation function. In particular, it shall be computationally infeasible to derive K from knowledge 
of RAND and AK. 

The use of f5* is optional. 
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7 Design criteria 
Based upon the general requirements, the task force developed a set of design criteria for the work. 

7.1 Cryptographic Criteria 
1. Without knowledge of secret keys, the functions f1, f1*, f2, f3, f4, f5 and f5* should be practically 

indistinguishable from independent random functions of their inputs (RAND||SQN||AMF) and RAND.  

 Examples: Knowledge of the values of one function on a fairly large number of given inputs should not enable 
its values to be predicted on other inputs. The outputs from any one function should not be predictable from the 
values of the other functions (on the same or other inputs). 

2. It should be infeasible to determine any part of the secret key K, or the operator variant configuration field, OP, 
by manipulation of the inputs and examination of the outputs to the algorithm.  

3. Events tending to violate criteria 1 and 2 should be regarded as insignificant if they occur with probability 
approximately 2-128 or less (or require approximately 2128 operations). 

4. Events tending to violate criteria 1 and 2 should be examined if they occur with probability approximately 2-64 
(or require approximately 264 operations) to ensure that they do not have serious consequences. Serious 
consequences would include recovery of a secret key, or ability to emulate the algorithm on a large number of 
future inputs. 

5. The design should build upon well-known structures and avoid unnecessary complexity. This will simplify 
analysis and avoid the need for a formal external evaluation. 

7.2 Implementation Criteria 
In addition to the performance requirements listed in 6.2.1, the task force agreed to ensure that the listed requirements 
would be met even after implementation of protection mechanisms against side channel attacks like differential power 
analysis (DPA). 

7.3 The need for an Operator Variant Algorithm Configuration 
Field 

In response to a request from SA3 the task force decided to include the use of the Operator variant field, OP. This 
configuration field is used for adding operator dependent information to the design even if the choice of the kernel 
function is the same. 

The roles of OP are:  

1. To make each operator's implementation different. 

2. To prevent USIMs for operators being interchangeable, either through trivial modification of inputs and outputs 
or by reprogramming of a blank USIM.  

3. To keep some algorithm details secret. 

4. To provide some protection against a poorly chosen kernel.   

7.4 Criteria for the cryptographic kernel 
The kernel function is used by MILENAGE ("the framework") to produce a 128 bit output value from a 128 bit input 
value from which the output of the specific mode (one of the functions f1 – f5, f1* or f5*) is derived. These output 
values are produced under the control of a 128 bit user specific key K. It should be noted that K is a long term secret 
which must be protected under any circumstances. 
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7.4.1 Implementation and operational considerations 

The performance requirements for the full 3GPP algorithm set are given in 6.2.1. From this budget we allocate at most 
6Kbytes ROM and about 200 bytes RAM to the kernel function. The kernel function shall produce a 128 bit output 
value in less than 50 ms execution time. 

7.4.2 Functional requirements 

The purpose of the kernel function is to map an input value p (the plaintext) to an output value c (the ciphertext) under 
the control of a key K. The key shall be hidden, i.e. it shall be (computationally) infeasible to derive K if an arbitrary 
amount of pairs (p,c) are known and K is fixed. It shall also be infeasible to compute K by repeatingly choosing p, 
applying the kernel function and observing the resulting c several times. The latter chosen plaintext attack shall even be 
impossible if the attacker has access to side channel information, e.g. power consumption or execution timings of an IC 
card which holds an implementation of the kernel function (see also ref. [3], section 5.2). 

Furthermore, it shall be infeasible to compute c given p if K is not known but an arbitrary amount of  plaintext/  
ciphertext pairs are known which were produced using the same K. 

There is no need for the kernel function to be invertible. However, since the input and output values have the same size 
and collisions should be avoided, a bijective function would be a good choice. 

7.4.3 Types and parameters for the kernel 

The kernel is to be a keyed function from n bit blocks to n bit blocks. An example of such a keyed function is a 
symmetric block cipher with a blocksize of n. 

The parameters of the kernel are as follows: 

block length: 128 bits 

key length: 128 bits. 

Both the key and the input/output blocks are unstructured data (at least from the kernel function's view). 

The AES candidates are good examples for kernels, which meet these requirements. 

Interfaces to the kernel: 

The following interfaces to the kernel function are defined: 

data input: X[0], X[1], …, X[127] where X[i] is the data input bit with label i; 
data output: Y[0], Y[1], …, Y[127] where Y[i] is the data output bit with label i; 
key input: K[0], K[1], …, K[127] where K[i] is the key bit with label i. 
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8 The 3GPP MILENAGE algorithms 
The detailed specifications of the 3GPP MILENAGE algorithms are found in ref. [3]. The following diagram shows the 
design of the functions f1, f1*, f2, f3, f4, f5 and f5* using the kernel function denoted EK.. 
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Figure 1: Definition of f1, f1*, f2, f3, f4, f5 and f5* 

Document [3] recommends use of the AES algorithm Rijndael for the kernel function EK, but this choice could be 
replaced by any 128-bit encryption algorithm employing a 128 bit key or keyed function fulfilling the requirements of 
section 7.4. The value OPC is derived from the subscriber key K and the operator dependent value OP by encrypting OP 
using K as the secret key, i.e.  

 OPC = OP ⊕ E[OP]K 

r1, …, r5 are five fixed rotation constants and c1, …, c5 are five fixed addition constants defined in ref. [3]. These 
values will ensure that the inputs to the different functions will be different. Finally, ref. [3] defines which part of the 
outputs that are used for the different functions. 

9 Rationale for the chosen design 

9.1 Block ciphers vs. hash functions 
It was decided to design MILENAGE around a cryptographic kernel function with strong one-wayness properties. To 
be realistic such an approach requires that well scrutinized examples of suitable kernel functions are publicly available 
and preferably on royalty-free basis. Among the cryptographic functions that would offer the required one-wayness 
properties two different types can be identified, block ciphers and hash-functions. The pros and cons offered by these 
two alternatives were weighed up against the specific requirements of the use and the implementation environment. The 
decision of selecting a 128-bit block cipher as a cryptographic kernel was justified by the following aspects.  

1. Efficiency of the smart card implementation. 

 It is required that the kernel function can be efficiently implemented on smart cards with eight-bit processors. 
The known and commonly used hash-functions are all optimised for larger word-size, typically 32 bits. 
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2. Security of the smart card implementation. 

 The DPA and other side channel attacks are better understood and analysed in the open literature for certain 
block ciphers than for any hash-functions. Also protection measures are better developed for certain block cipher 
structures. 

3. Fixed input length. 

 The inputs to the kernel function are parameters of fixed length less than or equal to 128 bits. New block ciphers 
with 128-bit block size are suitable for handling such inputs.  

4. Secret key input. 

 Block ciphers are designed to take a secret key input. For hash-functions such a functionality must be 
constructed artificially. Special keyed modes of operation have been designed for hash functions in the Internet 
and ISO standards. In ISO 9797 Part 2 three MAC algorithms for dedicated hash functions have been specified. 
Two of them take at least two applications of the round function of the hash function, which adds extra 
complexity. One of them, MAC Algorithm 3 is specially designed to take a short maximum 256 bits input and 
only one application of the round function of the hash-function. Of these three MAC algorithms only the Internet 
HMAC standard is freely available 

5. Availability of block ciphers. 

 There have been many block ciphers around for many years and knowledge about their designs and 
implementations are well understood and widely known. Even if published 128-bit block ciphers using a 128-bit 
key have not been around for that many years, the AES process has provided a suite of good candidates for the 
kernel. On the other hand, there are only a handful candidates of hash functions that are considered secure today.  

9.2 The choice of Rijndael 
The task force agreed to propose the block cipher Rijndael for use as the kernel in the f1-f5* constructions. There were 
several arguments to support this choice: 

- It was a strong encryption algorithm. At that time it was one of the five AES finalists. 

- It was effective and fast on several platforms. 

- It was highly suitable for smart card implementation. 

- It was freely available without any kind of IPR limitations. 

- It could be protected against side channel attacks. 

- It had the required input/output interface. 

- It had been published and studied for some time and was built upon the design of a previous algorithm called 
SQUARE.  

In October 2000 Rijndael was chosen as the winner of the AES contest and this should be seen as a strong qualifier for 
its suitability in the 3GPP environment. We refer to ref. [12] for a detailed description on the evaluation and merits of 
Rijndael and the other AES finalists. To quote from the conclusions of this report: 

Rijndael appears to be consistently a very good performer in both hardware and software across a wide range of 
computing environment regardless of its use in feedback or non-feedback modes. Its key setup time is excellent, and its 
key agility is good. Rijndael's very low memory requirements make it well suited for resticted-space environments, in 
which it also demonstrates excellent performance. Rijndael's operations are among the easiest to defend against power 
and timing attacks. Additionally, it appears that some defence can be provided against such attacks without 
significantly impacting Rijndael's performance. 

Note that the kernel function of f1-f5* will only use Rijndael in encryption directions and the concerns related to 
complexity of both encryption and decryption mode will not apply to its use in MILENAGE. 
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9.3 The MILENAGE architecture  

9.3.1 Use of OP 

OP is a 128-bit Operator Variant Algorithm Configuration Field used to provide unique variants of MILENAGE.  

It was discussed if OP should be used directly in the algorithms or rather a derived value should be involved. The task 
force decided to derive a subscriber dependant value OPC from OP and the secret key K in a non-invertible way as 
defined in Section 8. This construction is non-invertible in both variables even if one of them is known. In this case 
there is no need for storage of OP in each USIM. This means that even if the USIM is compromised, the value of OP 
could still be kept secret. 

The value OPC is exclusive ored to input and output of the kernel functions. This will provide additional protection 
against attacks. 

The task force recommends to compute OPC off the USIM as part of the pre-personalisation process. This will simplify 
the algorithms in the card and avoid the storage of OP on the card. 

An operator could also select different values of OP for different subscribers or subscriber groups. 

It is recommended that OP is kept secret, but MILENAGE is designed to be secure even if the value of OP is known to 
the cryptanalyst. 

9.3.2 Rotations and constants 

The rotations r1, r2, …,r5 and the addition constants c1, c2, …,c5 are carefully selected to ensure separation between all 
the cryptographic functions involved. It is shown in Section 10.3.2 that the selected values will protect against collisions 
in the input (and thus the output) of the final Ek computations. If an operator decides to implement other values for these 
constants, it is strongly advised that the requirements of Section 5.3 in ref. [3] are taken into account. 

9.3.3 Protection against side-channel attacks 

The protection against side-channel attacks is achieved through the selection of a kernel that allows for a protected 
implementation within the time constraints given by the requirements in Section 6.2.1. No attempts were given to 
provide such protection by the surrounding architecture. 

9.3.4 The number of kernel operations 

For each of the seven functions the input value RAND passes through two complete rounds of the kernel function 
before the output values are produced. The encryption of OP in the pre-personalisation procedure provides an extra 
level of security. The other inputs to f1/f1* are obfuscated by xor with a random value (E[OPC⊕ RAND]K) and an 
unknown constant (OPC) before they enter the kernel function. 

As discussed in Section 10.3.3 there are certain forgery attacks against the proposed architecture that involve 264 
computations. These attacks are not considered feasible within the operational context of 3GPP and would not justify 
the computational overhead of adding another operation of the kernel function. 

9.3.5 Mode of operation 

The f1 and f1* constructions are essentially equivalent to the standard CBC MAC mode applied to the input blocks 
RAND and SQN || AMF || SQN || AMF. The soundness of this construction is theoretically justified by the results in ref. 
[14]. 

The functions f2, f3, f4 and f5 are defined as a kind of double encryption with a "counter-mode" construction caused by 
rotations and constant additions before the second encryption. The soundness of this construction is therefore a direct 
consequence of the use of a strong kernel function. See Section 10.3.1 for more details. 

Section 10.3.2 provides analysis about the necessary separation between the different cryptographic functions involved. 
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10 Evaluation 

10.1 Evaluation criteria 
Due to the fact that the Rijndael (key length =128, block length =128 and number of rounds =10) block cipher has 
undergone an extensive analysis during the AES process [12], the mathematical evaluation to be done by the 3GPP AF 
task force will not duplicate that work and perform extra research on the cryptanalysis of Rijndael, but rather focus 
upon assessing the strength of the construction for deriving the f1 to f5* modes of [2] from a strong 128-bit oriented 
block cipher E. 

The main purpose of the mathematical evaluation is to check that the f1-f5* construction does satisfy the two following 
requirements : 

Under the assumption that the underlying 128-bit block cipher EK is a strong block cipher, i.e. that there is no efficient 
test allowing to distinguish the EK permutation generator from a randomly drawn permutation of {0,1}128 with 
substantially less than 2128 encryption or decryption results and significantly less than 2128  EK operations, 

(1) There must be no attack of complexity substantially less than 2128 EK computations allowing to recover any 
information on the value of K key or to forge outputs of the algorithm for a large set of arbitrary RAND inputs, 
based on the knowledge of  f1-f5* outputs corresponding to any chosen RAND, SQN, AMF inputs, even if the 
OP, ci and ri values are known. 

(2) There must be no other attack enabling to distinguish the 7 function generators K a f1, f1*, f2, f3, f4, f5, f5*  
from independent random functions of the 192-bit input RAND||SQN||AMF (f1 and f1*modes) or the 128-bit 
input RAND (other modes) with substantially less than 264 queries, even if  the OP, ci and ri values are known. 
Thus in particular given any combination of n << 264 f1-f5* outputs related to any chosen inputs, it must be 
computationally infeasible to predict any additional output for any of the fi or fi* function – even if outputs 
corresponding to the same RAND value are known for the other modes.  

For that purpose, the mathematical evaluation needs to consider: 

- the strength of each  of the f1-f5* modes considered individually ;   

- the independence between the f1-f5*modes. 

Given the operational context of use of the algorithm, related key attacks do not need to be considered. 

The mathematical evaluation approach will combine: 

- formal proofs allowing to validate some aspects of the modes construction ; 

- informal security arguments on aspects of the modes construction  not covered by formal proofs ;   

- an investigation of  "certificational attacks", in particular forgery or distinguishing attacks of complexity close to 
the 264 bound of requirement 2.  

The following particular issues need to be taken into account in the analysis: 

- role of the ci and ri constants and security conditions on their values; 

- protection of OPC. 
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10.2 Operational Context 
The evaluation criteria discussed in Section 10.1 are basis for the mathematical analysis conducted below. Besides the 
theoretical work related to the security of MILENAGE, it is also important to consider the operational context in which 
the algorithms are used. It should be borne in mind that in practice the following operational factors exist: 

The prime point of attack is directly on the USIM. In this environment: 

- an attacker has full control over what he can choose for RAND, SQN, AMF. 

- The output of f1 (MAC-A) is checked within the USIM and is not directly available to an attacker. 

- The input/output bandwidth of the USIM is limited (as is its processing power).  As a result the practical rate at 
which input/output pairs can be collected is severely limited (~10 pairs or less per second?). 

10.3 Analysis  
As explained in Section 10.1, the main purpose of the mathematical evaluation is to analyse the construction for the f1 
to f5* functions under the assumption that the 128-bit block cipher used in the construction (e.g. Rijndael) is strong. 
The analysis do not only want to investigate the strength of each of the f1 to f5* functions considered individually, but 
also their cryptographic separation. 

The evaluation results presented here cover the following complementary aspects of the f1-f5* construction : 

- Section 10.3.1considers the f2 to f5* functions and provides a formal proof (in a certain security model) of the 
soundness of the individual functions and their separation; 

- Section 10.3.2 considers the f1-f1* construction and its separation from f2-f5*, and provides informal arguments 
supporting that part of the design; 

- finally, Section 10.3.3 investigates certificational forgery or distinguishing attacks, and checks that none of the 
"attacks" identified is stronger than the attacks requiring 264 queries anticipated in the design criteria. 

10.3.1 A formal proof of the soundness of the f2-f5* construction 

This section contains an investigation of the pseudorandomness of the simplified scheme of Figure 2, which keeps the 
most distinctive features of the actual f2-f5* construction. In Figure 2 a1 to at are assumed to be any t fixed known 
distinct constants. The t parameter denotes the number of distinct output blocks used in the construction. In practice, for 
the f2 to f5* functions, t is equal to 4. 
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Figure 2: A simplified counter mode construction 
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The aim is to give some evidence that there is no way to use any combination of significantly less than 264 output values 
z1 to zt to predict any new zi output value. More generally, it will be shown that if EK behaves as a random permutation 
of the {0,1}n set (where n = 128) , then the x a (z1,z2, ..., zt) function behaves as a random function from {0,1}n to 
{0,1}n⋅t. 

For that purpose, let the occurrences of the EK function in Figure 2 be replaced by a perfect random permutation c* (i.e. 
a uniformly drawn element of the set of {0,1}n permutations). The construction then becomes a random function 
generator (or in other words a random function) f from {0,1}n to {0,1}n.t, that will be compared with a uniformly drawn 
random function f* from {0,1}n to {0,1} n⋅t (cf Figure 3).  

Let A be any distinguishing algorithm of unlimited power that, when input with a ϕ function from {0,1}n to {0,1}n⋅t 
(which can be modelled as an "oracle tape" of a Turing Machine) selects a fixed number q of distinct chosen or 
adaptively chosen input values x1 to xq (the queries), obtains the q corresponding ϕ output values y1 to yq, and based on 
these results tries to determine whether ϕ function is an instance of the f or of the f* generator. Denote by p the 
probability of A to answer 1 when fed with a random instance of f, and by p* the probability of A to output 1 when fed 
with a random instance of f*. 

The following theorem, whose proof is given in a more comprehensive paper appended to this report, provides an upper 
bound on the advantage Adv A(f, f*) = |p-p*| of A for distinguishing f from f* in q queries: 

Theorem: Let n be any fixed integer. Denote by c* any perfect random permutation of {0,1}n. Let f = Φ(c*) denote the 
random function of {0,1}n to {0,1}n⋅t obtained by applying the counter mode construction of Figure 3 to c*, and let f* 
denote a perfect random function of {0,1}n to {0,1}n⋅t. For any distinguishing algorithm A using a fixed number q of 
queries we have  

 Adv A(f, f*) ≤ 3⋅t2⋅q2/ 2n+1 
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Figure 3: The two random function generators f and f* to be compared  
c* is a perfect random permutation of {0,1}n, 

f* is a perfect  random function from  {0,1}n to {0,1}n⋅t 

The previous theorem gives some evidence that there is no attack requiring substantially less than 264 queries against the 
slightly simplified version of f2 to f5* in which OPC is omitted (or replaced by a known constant) and the rotations are 
also omitted. It is trivial to adapt the proof of the theorem to accommodate the rotations; and the involvement of OPC 

does not seem to strongly degrade the security of f2 to f5 (it does not seem easy to derive OPC, and even if OP was 
known, it will only provide a very slight information concerning K, namely the EK input-output pair determined by the 
equation E[OP]K= OPC ⊕ OP). 
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Thus in summary, the design of the f2-f5* functions appears to be sound and to comply with the design criteria. 

10.3.2 On the f1-f1* construction and its separation from f2-f5* 

10.3.2.1 Soundness of the f1-f1* construction 

The f1 and f1* constructions seem essentially equivalent to a standard CBC MAC applied to the 2-block message M1|| 
M2, where M1 = RAND and M2 = SQN||AMF||SQN||AMF, with a final truncation of the CBC computation output. 
Moreover f1 and f1* use distinct output bits - so that the cryptographic separation between f1 and f1* appears to be 
sufficient. 

A formal proof of the soundness of the standard CBC MAC was first established by Bellare, Kilian and Rogaway, 
ref.[14]. Some results of [14] can be transposed to the actual f1-f1* construction, using techniques similar to those 
applied in the previous section, to show that if we ignore OPC, but keep the c1 and r1 constants and replace EK by a 
perfect random permutation c*, then the 2-block to 1-block random function f associated with the f1-f1* construction is 
indistinguishable from a random function with substantially less than 264 queries. 

Conversely, there exists a simple internal collision attack against the standard CBC MAC requiring about 264 queries, so 
that the conjectured 264 lower bound is also an upper bound. This internal collision "attack" (which has no practical 
significance in the context of use of f1 and f1*) can be transposed to the f1 and f1* functions, as shown in Section 
10.3.3. 

So in summary the f1-f1* construction appears to be sound, and no stronger weakness than the impractical attacks with 
264 queries anticipated in the design criteria was identified. 

10.3.2.2 Separation between f1-f1* and f2-f5* 

From now on and until the end of Section 10.2, the following short notation for the various input, output and 
intermediate variables involved in the f1-f5* computations will be used (cf Figure 1) : 

- x denotes the RAND input ; 

- y denotes the intermediate value E[RAND ⊕  OPC]K  

- t denotes the SQN||AMF||SQN||AMF additional input; 

- z1, z1*, z2, z3, z4, z5, z5* denote the f1-f5* outputs; 

- zz1, zz2, zz3, zz4, zz5 denote the 128-bit EK outputs from which z1 and z1*, z2 and z5, z3, z4, and z5* are 
respectively extracted; 

- the OPC, r1 to r5, c1 to c5 notations of the f1-f5* specifications are kept. 

This section investigates the independence (as seen from an adversary's point of view) between the f1-f1* functions and 
the f2 to f5* functions. 

In practice it is of importance to look at the pairwise independence between f1 or f1* and any of the f2 to f5* functions. 
A connection between the zz1 128-bit output block from which the f1 or f1* output is extracted and the zzi = zz2, zz3, 
zz4, or zz5 128-bit output blocks from which f2 to f5* outputs are extracted could lead to attacks from an adversary 
who are able to predict events of the form zz1(x,t) = zzi(x'). 

Express zz1 and zzi as : zz1 (x,t) = OPC ⊕ EK(y ⊕ c1⊕ rot(t ⊕ OPC, r1)) and zzi (x) = OPC ⊕ EK(ci ⊕ rot(y ⊕ OPC, ri)). 
Events of the form zz1(x,t) = zzi(x), i.e. collisions involving the same x random challenge value, have to be looked at 
with particular care because : 

- despite the fact that y is unknown, the equation zz1(x,t) = zzi(x), which can be rewritten y ⊕ rot(y, ri) = c1 ⊕ ci 
⊕  rot(t , r1) ⊕  rot(OPC, r1) ⊕ rot(OPC, ri) provides some partial information on OPC because y ⊕ rot(y, ri) is at 
least partially known, and even entirely known if ri = 0 (it is then equal to 0). 

- if an event of the form zz1(x,t) = zzi(x) occurs for a particular (x,t) value, then equation zz1(x',t) = zzi(x') still 
holds for any x' value such that the corresponding y'= EK(x'⊕ OPC) satisfies equation y' ⊕ rot(y', ri) = y ⊕ rot(y, 
ri). Thus if ri = 0, equality zz1(x,t) = zzi(x) for all x values and  this particular t value.  
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The c1 to c5 choices suggested in the f1-f5* specification were made as to avoid any weakness that might result from 
events of the form zz1(x,t) = zzi(x). Due to the facts that:  

- c1 is an even 128-bit word,  

- t is obtained by repeating the 64-bit word SQN||AMF twice, so that t is an even word, 

- all the other ci constants are odd, 

- rotations do not affect the parity of any word, 

the parity of EK
-1(zz1⊕ OPC) = y ⊕ c1⊕ rot(t ⊕ OPC, r1) is equal to the parity of y ⊕ OPC, whereas the parity of  EK

-

1(zzi⊕ OPC) = ci⊕ rot(y ⊕ OPC, ri) is the inverse of the parity of y ⊕ OPC, so that the event zz1(x,t) = zzi(x) can never 
occur. 

So in summary the criteria on the c1 to c5 and r1 to r5 introduced in the f1-f5* specification seem to ensure an effective 
separation of the f1-f1* functions from the f2-f5* functions. 

10.3.3 Investigation of forgery or distinguishing attacks with 264 queries 

This section investigates properties allowing to distinguish the f1-f5* functions from ideal independent random 
functions of their inputs. The trivial birthday based distinguishers allowing to guess that f1-f5* are derived from 
permutations, not only functions, with about 264 known input values is not considered here. 

Several "attacks" against one single function (namely f1 or f1*) or against combinations of several functions requiring 
about 264 queries are identified. Those "attacks" are described in this section. The presentation uses the abbreviated 
notation introduced in section 10.3.2. 

10.3.3.1  An internal collision attack against f1 (or f1*) 

Not surprisingly, the well-known CBC MAC internal collisions attack is applicable to f1: 

Consider a set of about 264 (x,t) pairs such that both the x and t values are pairwise distinct, and the corresponding z1 
64-bit f1 outputs. With a large probability, there exist two (x,t) pairs (x',t') and (x'',t'') such that the two corresponding 
128-bit output words zz'1 and zz"1 collide.  

Such a collision occurs iff  

 y' ⊕ c1⊕ rot(t' ⊕ OPC, r1) = y"⊕ c1⊕ rot(t" ⊕ OPC, r1), i.e. iff 

 y' ⊕ rot(t' ⊕ OPC, r1) = y"⊕ rot(t" ⊕ OPC, r1). 

If we XOR each of the t' and t" values with any δt = δSQN||δAMF||δSQN||δAMF difference value, the above condition 
still holds, so that  

 f1(x', t' ⊕ δt) = f1(x", t" ⊕ δt) (i) 

This property can first be used to detect collisions, and then to actually forge new z1 values.  

To detect a collision, one can test each of the approximately 264 [(x',t');(x",t")] partial collisions such that z'1=z"1 
(which can be efficiently enumerated), and then test whether property (i) holds for one or two randomly selected δ 
values. This allows to find a full collision on the entire zz1 output in about 264 operations. Once such a collision  [(x',t') ; 
(x",t")] has been detected, property (i) can be used, for any δ value, to forge z1(x", t" ⊕ δ) based on z1(x', t' ⊕ δ). 

As said before, the above attack is only due to the fact that the f1 function is essentially a standard CBC MAC. Since 
the attack requires about 264 f1 outputs corresponding to distinct RAND inputs, it has no practical significance: the use 
of a f1 mode essentially equivalent to a standard CBC mode seems appropriate in the 3GPP context of operation. 
Moreover, we have not identified any simple modification of f1 allowing to prevent the above internal collisions attack 
(or a variant) while avoiding the introduction of three invocations of EK (instead of two) in each f1 computation. 

10.3.3.2 Forgery or distinguishing attacks against combinations of several modes  

For some particular values of the r1 to r5 and c1 to c5 constants, there may also exist "attacks" against some 
combinations of several modes requiring about 264 queries. 
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10.3.3.2.1 Attacks against combinations of f2-f5 

Two of the one-block outputs zz2 to zz5 corresponding to two equal or distinct random challenges x' and x", denoted 
by zz'i and zz''j (where i and j are distinct values of the set {2, 3, 4, 5}) are equal iff: 

 rot(y', ri) ⊕ rot(y", rj) = ci ⊕ cj  ⊕ rot(OPC, ri) ⊕ rot(OPC, rj) (a) 

In the two following particular cases, there exists a simple attack requiring about 264 queries 

Case 1 : ri = rj (i.e. two of the constant rotations are equal) 

The following forgery attack holds in case 1: given a set of 264 x inputs and the corresponding zzi and zzj outputs. With 
a large probability there exist two input values x' and x'' such that zz'i = zz"j.  It is easy to see, using equation (a) and the 
fact that ri=rj, that one then also has zz"i=zz'j. In other words, if an adversary finds two x' and x'' inputs such that the 
zz'i and zz"j are equal and obtains the zz"i value corresponding to the x'' input, she can forge the zz'j value of zzj 
corresponding to the x' input. Such a phenomenon would be extremely unlikely to happen if zzi and zzj were the 
outputs of two independent permutations of x. 

Case 2 : ri – rj = 64 mod 128 and ci ⊕ cj  belongs to the Im[rot(.,ri) ⊕ rot(.,rj)] 64-dimensional vector subspace of 
{0,1}128 (for instance, ri=0 and rj=64 and ci ⊕ cj consists of two equal 64-bit halves). 

The following distinguishing attack holds in case 2 : given a set of 264 x inputs and the corresponding zzi and zzj 
outputs. With a large probablity, for one of these x values, one has: zzi = zzj. As a matter of fact this equality occurs iff 
rot(y ⊕ OPC, ri) ⊕ rot(y ⊕ OPC, rj)=ci ⊕ cj, and there are 264 possible y ⊕ OPC values satisfying that equation. Such an 
event would be extremely unlikely to occur if zzi and zzj were the outputs of two independent random permutations of 
x. 

10.3.3.2.2 Attacks against combinations of f1-f1* and f2-f5* 

A zz'1 value of the zz1 f1-f*1 output corresponding to a (x', t) input value is equal to a zz"i (i ∈ {2, 3, 4, 5}) one-block 
output of one of the f2-f5*computations corresponding to a x" input value iff  

 y' ⊕ rot(y", ri) = c1⊕ ci ⊕ rot(t , r1) ⊕ rot(OPC, r1) ⊕ rot(OPC, ri) (b) 

As said before, the parities of the c1 to c5 constants prevent equation (b) from being satisfied if y'=y". In some 
particular cases, there nevertheless remain simple "attacks", requiring about 264 queries. 

Case 3 : ri = 0  

The following forgery attack holds in case 3: given a set of 264 (x,t) inputs and the corresponding zz1 and zzi outputs. 
With a large probability there exist x', t' and x'' such that zz'1 (x',t') = zz"i(x"). It is easy to see, using equation (b) and 
the fact that ri=0, that one then also has zz"1(x",t') = zz'i(x'). This allows to forge zz'i(x') based on zz"1(x",t'). If z1 
outputs are available instead of entire zz1 outputs, the above property still leads to a distinguishing "attack" requiring 
about 264 queries. 

Case 4 : r1 ∈ {0, 64} and there exist two distinct values i, j ∈ {2, 3, 4,.5} such that ci ⊕ cj consists of two equal 64-bit 
halves and ri = rj. 

The following forgery attack holds in case 4: given a set of 264 (x,t) inputs and the corresponding zz1 and zzi outputs. 
With a large probability there exist x', ti  and x'' blocks such that zz'1 (x',ti) = zz"i(x"). Let us now replace the ti 
expanded SQN||AMF sequence by the tj = ti ⊕ ci ⊕ cj sequence. It is easy to see, using equation (b), that equality 
zz'i(x',tj) = zz"j(x") also holds (in other words, a collision between a zz1 and a zzi value allows to predict a collision 
between a zz1 value and a zzj value). If z1 outputs are available instead of entire zz1 outputs, the above property still 
leads to a distinguishing "attack" requiring about 264 queries.  

10.3.3.3 Conclusion about the identified forgery or distinguishing attacks 

All the attacks listed above require about 264 queries, and can be considered highly impractical. None of these "attacks" 
is stronger than anticipated in the design criteria. It should also be noted that only the internal collision attack of section 
10.3.3.1 and Case 3 of the previous section applies to the MILENAGE specifications. 
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10.4 Statistical evaluation 
The algorithm "MILENAGE" has been designed such that the only cryptographically strong function used to process 
input depending on a key is the kernel function, which is the block cipher algorithm Rijndael for the example algorithm. 
All other operations used in the algorithm are XOR, cyclic rotation and splitting/concatenation of bit strings. These 
operations do not have any cryptographical properties such as confusion or diffusion. Both the designers and evaluators 
of MILENAGE were thus thoroughly convinced that all statistical tests which are to be performed on MILENAGE only 
yield results about the underlying kernel function. Since it was not the intention of the task force to evaluate Rijndael, 
statistical tests have not been performed as a consequence. Care has been taken on the design that the full entropy of the 
kernel function's outputs is mapped to the outputs of the algorithm (MAC, RES, keys). 

10.5 Published attacks on Rijndael 
This section gives a summary of known and published attacks against reduced variants of Rijndael as described in the 
AES report ref.[12]. 

The Rijndael specification describes a truncated differential attack on 4, 5, and 6 round variants of Rijndael [15], based 
on a 3 round distinguisher of Rijndael. This attack is called the "Square" attack, named after the cipher on which the 
attack was first mounted. 

In Ref. [16], truncated differentials are used to construct a different distinguisher on 4 rounds, based on the 
experimentally confirmed existence of collisions between some partial functions induced by the cipher. This 
distinguisher leads to a collision attack on 7 round variants of Rijndael.  

The other papers that present attacks on variants of Rijndael build directly on the Square attack. In Ref. [17], the Square 
attack is extended to 7 round variants of Rijndael by guessing an extra round of subkeys. Table 1 indicates the results 
for the 192 and 256-bit key sizes, where the total number of operations remains below those required for exhaustive 
search. Similar attacks are described in Ref. [18]. 

Table 1: Summary of reported attacks related to Rijndael versions 

Reference Round (Key size) Type of attack Texts Memory Operations 
[15] 4 

5 
6 

Truncated Diff  
Truncated Diff  
Truncated Diff. 

29 

211 

232 

small 
small 
7⋅232 

29 

240 

272 

[18] 6 
7 (192) 
7 (256) 

7 
8 (256) 
9 (256) 

Truncated Diff. 
Truncated Diff. 
Truncated Diff 
Truncated Diff 
Truncated Diff 
Related Key 

6⋅232 
19⋅232 
21⋅232 

2128 - 2119 

2128 - 2119 

277 

7⋅232 
7⋅232 
7⋅232 
261 
2101 
NA 

244 
2155 
2172 
2120 
2204 
2224 

[17] 7 (192) 
7 (256) 

Truncated Diff 
Truncated Diff 

[16] 7 (192, 256) Truncated Diff 

232 
232 
232 

7⋅232 
7⋅232 
7⋅232 

2184 
2200 
2140 

 
It should be noted that many of the reported attacks shown in table 1 are related to versions of Rijndael with larger 
keylength than used in MILENAGE. 

The attacks reported in ref. [18] are improved by a partial summing technique that reduces the number of operations. 
The partial summing technique is also combined with a technique for trading off operations for information, yielding 
attacks on 7 and 8 round variants that require almost the entire codebook. The same paper also presents a related key 
attack on a 9 round variant with 256-bit keys. This attack requires not only encryptions of chosen plaintexts under the 
secret key, but also encryptions under 255 other keys that are related to the secret key in a manner chosen by the 
adversary. 
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10.6 Complexity evaluation 

10.6.1 Complexity of draft Rijndael implementation  

A straightforward implementation result in 8051 assembly language (no optimisations made) without taking advantage 
of Rijndael's rather particular linear component achieves the following results: 

RAM: 48 bytes 

ROM: about 1k 

Cycles: 30.000 

Max 6 applications (5 + 1 if OPc is computed on the card at each authentication) of Rijndael are considered: 180.000 
cycles, which takes 55,38 ms @ 3.25 Mhz. 

10.6.2 Estimate complexity of  modes 

Once Rijndael is implemented, considering the f1-f5 construction of the modes, we obtain: 

RAM:  

 RAND/E_K(RAND xor OPc)/IK 16 bytes 

 OPc: 16 bytes 

 SQN xor AK || AMF || MAC-A  / CK / SQN_MS xor AK* || AMF* || MAC-S: 16 bytes 

 RES: 8 bytes 

 K: 16 bytes 

Total: 72 bytes 

 

ROM: 5*200 bytes = 1k 

Cycles: overhead of 5*15.000 cycles = 75.000 cycles, which gives 23,07 ms overhead @ 3.25 Mhz. 

10.6.3 Estimate of total MILENAGE 

RAM: 120 bytes 

ROM: 2k 

Cycles: 255.000, which represents 78,46 ms @ 3.25 Mhz. 

10.6.4 SPA/DPA, Timing attack countermeasures 

See Section 10.8 for a wider discussion on these implementation attacks and the possibility for protection against such 
attacks. 

RAM: additional 280 bytes XRAM  

ROM: no significant change 

Cycles: (180.000 + 75.000)*3 = 765.000 cyles, which takes 235 ms @ 3.25 Mhz. 



 

ETSI 

ETSI TR 135 909 V8.0.0 (2009-02) 243GPP TR 35.909 version 8.0.0 Release 8 

10.6.5 Conclusion on algorithm complexity 

The figures given in this section are rough estimates on complexity for a Rijndael kernel with and without full 
DPA/SPA/TA protections.  

For an unmasked kernel and unmasked modes, the total estimate for the f1 – f5* functions fits into 2k of ROM, using 
120 bytes of RAM and executing under 80 ms @ 3.25 Mhz for our draft implementation. This lies well within the 
required 8k of ROM, 300 bytes of RAM and 500 ms execution time. 

For a masked version of the kernel and modes, the total estimate for the f1-f5 functions still meets the requirement of 8k 
of ROM, furthermore executing in less then 235 ms @ 3.25 Mhz for our draft implementation. However, masking 
techniques such as those described later on in this evaluation report require at least 256 additional bytes of XRAM, 
which sums up to slightly under 400 bytes of RAM for the kernel and modes." 

Additional comment: The Task Force's expertise is in the design of the specified cryptographic functions. It is not 
familiar with (and doesn't really want to know) the fine detail of the wider context within the USIM. For example the 
Task Force do not know the USIM command set; the time involved in getting parameters into and out of the USIM; 
exactly how the cryptographic functions will be called in an operational environment; whether all results will be 
calculated at once or whether some results (e.g. CK) will be retrieved before others (e.g. IK) are calculated. 

The Task Force have ensured to the best of its ability that the example algorithm set can be implemented efficiently, and 
that the size and performance parameters lie well within the requirements given in ref [2] to allow for other operational 
constraints that lie outside of its control. 

10.7 External complexity evaluations 
As part of the AES process there have been a number of investigations into physical realisations of Rijndael and these 
have included implementations for smartcards and protection against DPA. The results of three of these investigations 
are reproduced here. 

Ref. [10] reports the following results for evaluating the Rijndael algorithm against DPA. The algorithm was 
implemented on a 32-bit ARM processor, both unmasked and masked against DPA. Security Cost is the ratio of 
Masked to Unmasked. 

 

 Cycle count RAM (bytes) ROM (bytes) 
Unmasked 7.086 52 1.756 

Masked 13.867 326 2.393 
Security Costs 1.96 6.27 1.36 

 
The following results are given in ref. [13] and show the complexity and the performance of Rijndael implemented on a 
Toshiba T6N55 chip that contains a Z80 microprocessor and a coprocessor on a smart card. Internal means the size of 
required CRAM for the coprocessor's operations. External means the other work area. 

 

 Total RAM Internal RAM External 
RAM 

ROM (bytes) Time 
(clocks) 

Encrypt 34 32 2 700 25.494 
Schedule 32 32 0 280 10,318 

Total 66 64 2 980 35.812 
 
The Rijndael Specification itself, ref. [15], gives the following table for three different implementations on the Intel 
8051 microprocessor: 

 

Number of Cycles Code Length (bytes) 
4065 768 
3744 826 
3168 1016 

 
Ref. [15] also provides the following results for an implementation on a Motorola 68HC08 microprocessor: 

 

Number of Cycles Required RAM(bytes) Code Length (bytes) 
8390 36 919 
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10.8 Evaluation of side channel attacks 
In this section we will focus on the resistance of MILENAGE against side-channel attacks, or 'implementation attacks', 
i.e. attacks which make use of an additional (physical) information channel [7] through which secrets might leak. These 
additional channels include, but are not limited to, timing measurements [6], power consumption [8], [9], [10], 
[11]electromagnetic radiation, etc. 

10.8.1 Evaluation of the kernel algorithm 

Rijndael has been chosen as a kernel function for the 3GPP authentication algorithm. As most block ciphers, it uses 
simple linear operations such as bit shifts and rotations, exclusive or operations, as well as substitutions through a non 
linear 8 by 8 bit S-box.  

Similarly to DES, Rijndael is vulnerable to SPA (Simple Power Analysis), DPA (Differential Power Analysis) and 
timing attacks. These attacks may however be thwarted by using adequate software and hardware protections on the 
mobile station. Note however that some techniques and/or methods for such protections might be subject to pending 
patents. 

10.8.1.1 Timing Attacks 

We refer to [6] for a complete description of timing attacks. In the case of Rijndael, the most vulnerable operation is the 
polynomial remaindering over GF(28). In practice, this operation is implemented either by a 1-bit shift to the left, 
followed by a conditional exclusive-or with the modulus, or by a conditional table look-up. In both cases, the 'if' 
operation may leak information on intermediate results, and thus reveal parts of the secret key. 

Therefore, care should be taken to ensure that this operation is implemented in constant time using operations that are 
the same, whatever the intermediate result. In particular, no 'if', 'case' or otherwise conditional 'jump' and 'call' 
instructions should be used. The MixColumn routine shall be implemented in an 'operation constant' way. 

In this way, efficient protection against timing attacks is easily achieved. 

10.8.1.2 Simple Power Analysis 

Every block cipher is vulnerable to Simple Power Analysis. We refer to [9] and [10] for a complete description of this 
attack. In a very simple approach, an attacker monitors the power consumption curves of the device while executing 
cryptographic operations on different input data. The overall form of the curve reveals which actual data are being 
manipulated, thus leaking information on the secret key. This kind of attack may be thwarted by appropriate hardware 
countermeasures such as random noise generators or current scramblers on the device. Ad-hoc wait states or dummy 
instruction routines may be added in order to confuse the 'visual' analysis as much as possible. 

It is a simple matter to provide good resistance against Simple Power Analysis. 

10.8.1.3 Differential Power Analysis 

We refer to [8], [9], [10] and [11] for a detailed description of Differential Power Analysis. Rijndael, as many other 
block ciphers is vulnerable to DPA. In particular, bytewise key-addition followed by a non-linear substitution table is 
generally enough to attack a block cipher successfully, meaning that the entire secret key may be recovered using a few 
hundred power curves. The attacker defines a selection function, which consists for example in one output bit of the 
non-linear S-box. The differential attack proceeds as follows: 

- Guess the value of a given secret key byte. 

- Using knowledge of the input (or output) data, compute the estimated one-bit result of the substitution of the 
input byte exclusive-ored with the key byte, according to the selection function. 

- Sort the power curves according to the one-bit result and compute the mean of all curves in each of the two 
resulting sets. 

- Subtract the two means and visualise the resulting curve. 

- Repeat for all key guesses. 
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- For at most a few key guesses, the resulting curve will show a DPA 'peak' (whereas all other curves will be 
completely flat). These key guesses comprise the right key byte. 

- Iterate on other key bytes and complete the whole secret key by exhaustive search as appropriate. 

In the case of Rijndael, the secret key may be found byte by byte using a few hundred curves. Thus Rijndael is as 
vulnerable to DPA as DES. 

We refer to [8], [10] and [11] for protections and countermeasures against this attack. All input data as well as the secret 
key may be masked by a random value throughout the cryptographic computations. Special care should be taken when 
handling the S-box, as this component is non-linear. Following [10], a boolean masked table S' can be defined in terms 
of S, and of the input and output masks r_in and r_out, such that S'[x] = S[x ⊕ r_in] ⊕  r_out. This masked table S' 
takes inputs that are masked with r_in and produces outputs that are masked with r_out. Thus the look-up operation is 
convertible into an operation which can 'handle' random boolean masks. All other components in Rijndael are linear and 
are thus not affected by the random masks. 

The masks should be refreshed at every execution on different input data, in order to decorrelate every cryptographic 
operation from the actual value of the manipulated bytes. Together with hardware countermeasures against SPA, these 
protections should achieve a reasonable level of security against first order power attacks. 

10.8.1.4 Other side channels 

Other side channels such as carry bit propagation analysis or differential electromagnetic radiation or IPA (Inferential 
Power Analysis) are still under investigation in the open literature and are thus not addressed in this evaluation report. 

10.8.2 Evaluation of the f1-f5 modes 

The authentication and key derivation modes use Rijndael as the kernel function. As such, these modes are equally 
vulnerable to the different power and timing attacks. They can be efficiently protected by the same methods as for the 
kernel function itself. In particular, random boolean masking should also be applied to each function individually, not 
only to the underlying kernel. 

10.8.2.1 Operator Constants (OP or OPc) 

The use of secret operator constants enables to mask the real inputs to the kernel function, but side-channel attacks may 
still be applied to recover the exclusive or between these constants and the first round-key of the kernel. Subsequently, 
the second round-key may be derived and finally the original key may be recovered. 

Thus, the operator constants have the effect of transforming a straightforward known plaintext attack into a slightly but 
not significantly more complex attack. Care should be taken to protect the operator constants as well as the secret key of 
the block cipher itself. This is achieved using above mentioned masking techniques. 

10.8.2.2 Rotations and constants 

These values are meant to be publicly defined and need not be protected in any way. However, if an operator chooses to 
diversify them, computations involving the rotations and constants should also be protected against timing and power 
attacks using previously mentioned techniques. 

10.8.3 Conclusion on side channel attacks 

Rijndael as a kernel function is vulnerable to side-channel attacks but may be efficiently protected against these attacks 
on the USIM. The modes do not add any security with respect to this kind of attacks and in case secret values such as an 
operator constant, rotations and other constants are used, it is strongly advised to protect them by random boolean 
masking together with the kernel function. 
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11 Conclusions 
The MILENAGE algorithm set forms a complete set of cryptographic functions suitable for use in the 3GPP 
authentication framework. It constitutes a well-founded architecture based upon a highly trusted kernel and achieves all 
goals related to efficiency and security. The design supports the possibility for operator specific modifications by 
introduction of dedicated parameters and interchangeable modules. 

The combination of the mathematical analysis carried out by the ETSI SAGE Task Force and related external 
evaluation results support the soundness of the design. This report includes a description of certain forgery attacks with 
complexity lower than the security level set by the 128 bits subscriber key, but it is explained that these attacks have 
been considered during the design process and are not considered to be feasible within the operational context of 3GPP. 

The Task Force has specifically considered the threat of different side channel attacks and the report provides references 
to several techniques that can be used to ensure that MILENAGE can be implemented in a way that protect the USIM. 
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Annex A (informative): 
Change history 

Change history 
TSG SA

# 
Version CR Tdoc SA New 

Version 
Subject/Comment 

SP-11 SAGE 
v 1.0 

- SP-010144 4.0.0 Approved as Release 4 

SP-16 4.0.0 - - 5.0.0 Release 5 version created 
SP-26 5.0.0 - - 6.0.0 Release 6 version created 
SP-36 6.0.0 - - 7.0.0 Release 7 version created 
SP-42 7.0.0 - - 8.0.0 Release 8 version created 
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History 

Document history 

V8.0.0 February 2009 Publication 
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