ETSI TR 126 973 v19.0.0 (2025-10)

TECHNICAL REPORT

5G;
Update to fixed-point basic operators
(3GPP TR 26.973 version 19.0.0 Release 19)

=~

& ADVANCED

)

A GLOBAL INITIATIVE

3GPP TR 26.973 version 19.0.0 Release 19 1 ETSI TR 126 973 V19.0.0 (2025-10)

Reference
RTR/TSGS-0426973vj00

Keywords
5G

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B
Association & but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver repository.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fithess
for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not
limited to, the warranties of merchantability, fithess for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2025.
All rights reserved.

ETSI

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

3GPP TR 26.973 version 19.0.0 Release 19 2 ETSI TR 126 973 V19.0.0 (2025-10)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-member s, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETS in respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the
ETSI IPR online database.

Pursuant to the ETSI Directivesincluding the ETSI IPR Policy, no investigation regarding the essentiality of IPRS,
including I PR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETS| Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™, LTE™ and 5G™ logo are trademarks of ETSI registered for the benefit of its Members and of the
3GPP Organizational Partners. oneM 2M ™ |ogo is atrademark of ETSI registered for the benefit of its Members and of
the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Legal Notice

This Technical Report (TR) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be
interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found at 3GPP to ETSI numbering cross-referencing.

Modal verbs terminology

In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" areto be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must” and "must not" are NOT alowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
https://webapp.etsi.org/key/queryform.asp
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

3GPP TR 26.973 version 19.0.0 Release 19 3 ETSI TR 126 973 V19.0.0 (2025-10)

Contents

INtellectual Property RIGNES.... ..ot b e e e en e ns 2
LB INOLICE ...ttt b bt et h b e s e bt e E R e e e s et Rt e bt Rt e e e e e e e e eb e b e e ns 2
Modal VErDS EMINOIOQY.......cceeiiii ettt et e s be et e besaeetesaeeeesteeneebesreensesresaeessesnennes 2
1= 11V o PSSP 4
100 [Tox A o] o SRS 4
1 o0 PRSPPI 5
2 REFEIBINCESceeeeee ettt s e st e bt st et e s e e e et e e e seeseebenbessenee s e e eneeneeneanenrens 5
3 N o] =Y 1] 1P 5
4 Extension to the STL2009 BaSIC OPEIGIOISc..cveerireriinieriesteseeseeesesses e sie st s s e e ssessessessesseseens 6
4.1 Analysis of the gap between current basic operators and modern DSP architeCtures............cccovvevececnieenne, 6
4.2 Test methodology for validating the extended basiC OPErators ... 6
420 LT 1 S 6
42.1 BLIC=- 0= 170 T (o oo P 7
4.2.2 Test results for basic operator MPY 32 16 L......cccocciiieiierieeseesie e see e e e et et e s et e e teeaesnaesneesns 8
4.2.3 TESE FESUITS ...ttt ettt etk b b et et e et se e eb e e bt eh e e h e e e e b e sE e b e e Rt eh e e e e b e b e eb e ebeeneene e e enne s 12
424 TSt FESUITS COMCIUSION. ...ttt bbbt bt bt st e s et e e e b e sb e ebe s st ene e e enee e 12
5 Alternative EV'S Implementation Using the Extended BasiC Operators...........ccoevereereereeieserienesennens 12
51 Merits of an alternative EV'S implementation using the extended basic operators............cccoovveerenncnenenienene 12
52 Example pseudo code to illustrate some of the benefits of modern DSP architectures............ccoceeeeveieneennene. 15
53 Validation of an alternative EV S implementation using updated basiC Operators...........coeerereereneeenenennens 17
531 C-COUB INSPECLION ...ttt bbb e et b e e et bt s b et bt s b et e bt se et eb e sb et eb e sb e e ebenbeneenenbeneenea 17
5.3.2 Objective performance evaluation of the aternative EVS implementation............cccccevvevevcesceeseenieenenns 17
533 Subjective performance evaluation of the alternative EV S implementation............c.ccccoevvveevieeveeseseee. 18
6 L0 0x 11 o S 19
Annex A: EXtended BaSiC OPEr @LOrS.......cceiiiuieiieiieceesie st et ste e e et st e e sresseesaesteeaeesbesreensesresneessesneennas 21
A.1 Basic operatorsthat use 64 bit regiSters/aCCumMUIELOrS...........covevrieirenineree e 21
A.2 Basic operators which use 32 bit precision MUIiplYcocoecviieie i e 26
A.3 Basic operators which use complexX datatyPesS........ccceciiieieeiiiie it 32
A.4 BasiC operators for CONLrol OPEIELIONcieieeeieieirie sttt er e e 40
A.5 Basic operators for uUnSigNed alatyPES.......ccceoveeriririirieriesie et 42
Annex B: Weights of the STL DasiC OPEratorS........ccoviirenineneeeeeee s 43
Annex C: ChANGE NISLONY ...ttt b b e e et nenn s n e 47
L T (0] YT P O T PRSP SR PRURPR 48

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 4 ETSI TR 126 973 V19.0.0 (2025-10)

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z
where;
x thefirst digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.

y the second digit isincremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z thethird digit isincremented when editorial only changes have been incorporated in the document.

Introduction

The last major update to the ITU-T Basic Operators [6] was in 2005, with afollow on update in 2009. These basic
operators serve as afoundation for reference software of codecs specified by 3GPP. During the last severa years,
processors with wide accumulators, and support for single-instruction-multiple-data (SIMD), and very long instruction
word (VLIW) features have become prevalent. The basic operators of 2009 now need to be extended to leverage these
capabilities of modern processors so that implementations with lower mega-cycles-per-second (M CPS) and lower-
power may be realized.

Enhanced Voice Services (EV'S) is one of the recent codecs defined by 3GPP that can leverage these features of modern
processors. The existing EV S reference software would have to be appropriately modified to leverage these extended
basic operators without changing the underlying algorithm. Thisis referred to as an aternative EV S implementation
using the extended basic operators.

This alternative EV S implementation would have to be evaluated to ensure that inter-operability is maintained in
addition to ensuring that voice quality is not impacted.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 5 ETSI TR 126 973 V19.0.0 (2025-10)

1 Scope

The present document covers the following topics:
1) Assessment of the gaps between modern processors and the existing set of basic operators (STL2009) [6].
2) Proposal of an extended set of operators addressing modern DSP architectures as an extension to STL2009.
3) Assessment of merits of an alternative EV S implementation using extended STL2009 Basic Operators.

4) Proposal for validation of an alternative EV S implementation using extended STL 2009 Basic Operators.

2 References

The following documents contain provisions which, through reference in thistext, constitute provisions of the present
document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

- For aspecific reference, subsequent revisions do not apply.

- For anon-specific reference, the latest version applies. In the case of areference to a 3GPP document (including
aGSM document), a non-specific reference implicitly refersto the latest version of that document in the same
Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications'.

2] 3GPP TS 26.442: "Codec for Enhanced Voice Services (EVS); ANSI C code (fixed-point)".

[3] Recommendation ITU-T P.800 (08/1996): "Methods for subjective determination of transmission
quality".

[4] Recommendation ITU-T P.863 (09/2014): "Perceptual objective listening quality assessment”.

[5] 3GPP TS 26.443: "Codec for Enhanced Voice Services (EVS); ANSI C code (floating-point)".

[6] Recommendation ITU-T G.191 (03/10): " Software tools for speech and audio coding
standardization".

[7] 3GPP TR 26.952: "Codec for Enhanced Voice Services (EVS); Performance Characterization
(Release 14)".

3 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An
abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in
3GPP TR 21.905 [1].

SIMD Single Instruction Multiple Data
STL Software tools for speech and audio coding standardization
VLIW Very Long Instruction Word.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 6 ETSI TR 126 973 V19.0.0 (2025-10)

4 Extension to the STL2009 Basic Operators

4.1 Analysis of the gap between current basic operators and
modern DSP architectures

State-of-the-art processor architectures, such as the recent ones from Intel, ARM, QUALCOMM, Texas Instruments
etc., support wide accumulators, SIMD and VLIW capabilities. The last mgjor update to the ITU-T Basic Operators was
in 2005, with afollow on update in 2009 [6]. It appears that these earlier versions of the Basic Operators (2009 and
earlier) were influenced by older DSP architectures such as the Texas Instruments TM S320C5x and TM S320C54x
processors where the accumulator was 40 bits wide.

However, a survey of the state-of-the-art processor architectures shows that most of them support the following
capabilities:

- Wider (64 bit) accumulators and registers.

- Wider accumulators enable additional guard bits which eliminate the need for checking for saturation after every
basic operation.

- SIMD (Single Instruction Multiple Data) instructions which can process vector data. For example, asingle
instruction can process two 32-bit data elements or four 16-bit elementsin parallel.

- VLIW (Very Long Instruction Word) enables several operations to be executed in parallel in asingle cycle.

Basic operatorsthat are friendlier to compilers, and enable SMD and VLIW features to be leveraged, can significantly
reduce implementation time. Improved compiler technology and software development tools interpret data types and
associated basic operators to map them to a processor architecture for better Out-of-box (OOB) performance. Without
this computer assisted optimization, an engineer would have to hand-optimize the code which would result in increased
engineering effort and longer time to market.

Many recent audio/hybrid codecs make extensive use of 16bit x 32bit MAC (multiply and accumulate) and 32bit x
32bit MAC operations which are realized quite differently between VLIW and SIMD architectures and the current
Basic Operators:

- Current STL2009 Basic operators require saturation and truncation after every multiply-accumulate (MAC)
operation to maintain bit-exactness.

- The current Basic operator saturation checks prevent use of SIMD parallelism.

- Tomaintain bit-exactness, cycles are wasted resulting in higher MCPS and power on VLIW and SIMD capable
devices.

- Higher precision variables, such as 64bit operands, are partitioned into smaller width operands, processed and
then put back to the original width. This resultsin an overhead and processor cycles are wasted.

Considering the capabilities of modern processor architectures, as well as the characteristics of the latest speech and
audio codecs, thereis aneed for extending STL2009 with additional basic operators & data typesto better leverage the
capabilities of state-of-the-art processor architectures and characteristics of DSP algorithms.

4.2 Test methodology for validating the extended basic
operators

4.2.0 General

This clause describes a test framework that will compare the fixed-point arithmetic accuracy of the extended basic
operators against a floating-point implementation of the extended basic operators. Each basic operator will be tested for
4 different data patterns.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 7 ETSI TR 126 973 V19.0.0 (2025-10)

In table 1 below, the extended basic operators have been classified into four main classes. The test patterns used for
testing and the build options of the test framework are also shown below.

Table 1: Classification of the extended basic operators

Test framework for extended basic operators

Main class Subclass Total basops Covered basops
64-bit Integer Mac 4 4
64-bit Mac 7 7
64-bit Math 12 12
64-bit scale 7 7
64 bit accumulator 64-bit move 5 0
Complex Math 7 7
Complex Mac 9 9
Complex Move 10 0
Complex Complex Scale 9 9
32*16 bit Enh MAC 6 6
Enhanced 32 bit 32*32 bit Enh MAC 6 6
Control code ops 18 0
Total 100 67

Test data patterns:
- -1.0to 1.0 float range with configurable interval.
- Random numbers.
- Special values: very low level values (e.g., in the range of 1e-3, 1e-6 etc.), nominal and large values
- Custom mode: users can specify their customized array of size N.
Build options:
MSVC 2017 and MSV C 2013 workspaces are provided, with 2 options:
- MSVC 2017/2013 project.
- Gce based makefiles.

4.2.1 Test methodology

In Figure 1 below, ablock diagram explains how to validate the extended STL 2009 Basic Operators implementation
against a reference floating-point implementation. A data generator generates floating-point notation data values that are
then converted into fixed-point notation and these are input to the design under test (DUT) implementation of the
extended STL 2009 Basic Operators implementation. The same fixed-point datais converted into floating-point

notation, and then input to a reference floating-point implementation of the extended STL 2009 Basic Operators. The
fixed-point output of the DUT is converted to floating-point notation, and then compared against the reference floating-
point implementation output and an error value is generated and logged.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 8 ETSI TR 126 973 V19.0.0 (2025-10)

REF Floating Double/Float
point

Basic operator
implementation

Fixed to
float point
conversion

A Absolute /
v percentage
Pake £ / bits error
Generator 5 Irr;:)r
Double / float alculator |——»
Word64/ jr
Word32) '
Float to Wordlﬁf DUT fixed point Eivedta
fixed point STL 2017 basic float point

operator conversion

conversion
Implementation Double/Float

Double/float

Figure 1: Block diagram illustrating how the fixed-point implementation is validated against a
floating-point reference implementation of the extended STL2009 basic operators

In the following clauses, the test results for an example basic operator, Mpy 32 16 1 are reported.

4.2.2 Test results for basic operator Mpy 32 16 1
The setup in figure 1 was used for testing with four different types of data:

1) Random input numbers

2) A sweep from a negative number to a positive number

3) A piecewise sweep from a negative number to a positive number

4) A custom input where a user can specify an array of size N with custom inputs

Figures 2, 3, 4 and 5 illustrate the results of the test for the above four different data types. The error between the fixed-
point implementation and floating-point implementation are extremely small thereby validating the fixed-point
implementation.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 9 ETSI TR 126 973 V19.0.0 (2025-10)

inputl

0.6
2.4 il TR TR FUNA S e - &1 |
0.2 H | | 1 | |
_8:9 Iy Ll iy | "™ | 1l
-04 R | LARLH B (s L Lg K L
-06

0 200 400 600 800 1000

input2

0.6 T P T
83 H ii Ir sl il ol I}. !I I .4 - i di ! "I
9.0 il T i T il | i 1 [
02 A LI ' ' ¥
_8:8 I I 1 1

0 200 400 600 800 1000
03 dut output
(1]} e ——————— Lo o osiae o posa o midfmiere wigk S S e T A S G e e SRS s L e o e St Al o
88 T T ! .
0.1 K | | | 1)
:8% ki kit e R l -----------------------) bt s

0 200 400 600 800 1000

ref output
N T T T

§§ T T e e YTy, Ay "
é)'i) | | | [}
=gz f-R- L PRI A B Sectuted § L0 00 Lot Resuaiil e S e et AR & i Mo

0 200 400 600 800 1000

Figure 2: Test results for basic operator Mpy_32_16_1 using random input. The error between the
fixed-point output and floating-point output is very small.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 10 ETSI TR 126 973 V19.0.0 (2025-10)

O00000

OOKKNN
owvounown

0 200 400 600 800 1000

Figure 3: Test results for basic operator Mpy_32_16 1 using a sweep input. The error between the
fixed-point output and floating-point output is very small.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 11 ETSI TR 126 973 V19.0.0 (2025-10)

©OC0000
oRNONBOY

CO00000
ORNONBO

cooo00

OOHKNN
ouvounown

000000

OO NN
ouvowunown

le-8 error

Figure 4: Test results for basic operator Mpy_32_16 1 using a piecewise sweep input. The error
between the fixed-point output and floating-point output is very small.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 12 ETSI TR 126 973 V19.0.0 (2025-10)

OOCo000
OBNONBOY

TTTTTT

Figure 5: Test results for basic operator Mpy_32_16 1 using a user defined custom input. The error
between the fixed-point output and floating-point output is very small.

4.2.3 Test results

For a complete report of the framework used, as well as the results of the test, please see the attachment
"Baseop_tst_frmwork.zip".

NOTE: The unsigned basic operatorsin clause A.5 were verified separately and are used by the EVS codecin TS
26.442 [2].
4.2.4 Test results conclusion

Based on the results reported in "precision_abs err_report.csv”, it can be concluded that the fixed-point implementation
of the extended basic operators all pass against the reference floating-point implementation of the same extended basic
operators.

5 Alternative EVS Implementation Using the Extended
Basic Operators

5.1 Merits of an alternative EVS implementation using the
extended basic operators

EVS|[2] isasophisticated hybrid audio-speech codec with several modes of operation. As such it has alarge number of
functions. Manually optimizing this large set of functionsis prohibitive from an effort (and therefore time) perspective.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 13 ETSI TR 126 973 V19.0.0 (2025-10)

Implementers will have to rely on computer assisted tools and compiler to get them as close to a final implementation as
possible, and spend the last mile in manual optimization to reach the final target performance. It istherefore imperative
that the basic operators are defined in such a manner that they lend themselves to better leverage the features and
capabilities of modern DSP architectures. Data types need to be mapped to match the processor registers or operand
widths of data used in SIMD (Single Instruction Multiple Data) processing; basic operators need to be mapped to
processor instructions. A standard reference C code written with these aspectsin mind will result in an implementation
that leverages SIMD and VLIW (Very Long Instruction Word) features of the processor better and resultsin an out-of -
the-box (OOB) performance that is quite close to the final desired performance. The compiler can optimize the code
across all the files and functions thereby significantly reducing manual optimization effort. Implementers can go to
market faster.

Figure 6 shows the benefits of creating an alternate reference C code for EV S using the updated basic operator:
1) Reduced hand-optimization efforts lead to reduced total engineering effort, and hence improved time to market.
2) Improved MCPS numbersin OOB and final hand-optimized code.

3) Reduced code size. Reduced MCPS and memory reduces overall power used. This should facilitate extended
battery life.

Benefits of Proposal

Cuiret
Benefit 1: EVE Raf

l;rh::govad Reduced Engg. effort leads to improved TTM
Al Ref
time
Benefit 2: Cumrent =
Improved EVE Rel . . "
battery life —
(due to reduced anRe I T
Cycles) l l . —
Ezgigfaz. FFT Maodification & Intreduction of Control Code Base-Ops
{(Reduced code-size)
memory

Figure 6: Benefits of proposed alternate reference C for EVS

Using the existing standard EV S Reference code version 14.0.0 as a starting point, an alternative C code that leverages
the proposed basic operators has been created. During this creation process, step by step, several key parameters have
been monitored such as the engineering effort spent expressed as time (days, weeks, months), and corresponding
reductionin MCPS.

Figure 7 shows the optimization level achieved versus engineering effort measured in units of time. Asthe figure
shows, the OOB performance of the existing reference C is at 269 M CPS, while the OOB performance of the proposed
alternative EVSreference C codeisat 162 MCPS. Thisisagain of 1.66x achieved in matter of afew days of
engineering effort. Next, time is spent restructuring the code and hand optimizing. The final hand-optimized versionis
at 61.9 MCPS compared to 77.5 MCPS for the existing EV S reference implementation. Thisisagain of 1.25x.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 14 ETSI TR 126 973 V19.0.0 (2025-10)

—_— [Hlustration of the different engineering implementation phases

1a 1k 2a 2k b

RefC
WOT Changed

1922

1748 Ref C Changed
187
152--._'__'_'___. -
Existing EWS 14.0
77.5
106
Altermate EVS 619
days weeks months
-t M
toce Lo tgr sing
Out-of-the-box|0OE] Hand-optimization
phase phase

Figure 7: Impact of alternate reference C at different phases of the implementation process

In table 2, the improvement in weighted million operations per second (WMOPS) of the alternative EVS
implementation using extended basic operators is compared against the WM OPS of the existing EV S standard reference
code using STL2009 basic operators as a baseline. Second row shows a benefit of 1.07x with changing the weights for
STL 2009 basic operators. Third row shows the total benefit of 1.17x with the use of the extended basic operators and
weight change of the existing STL 2009 basic operators.

Table 2: WMOPS based Comparison of the alternative EVS implementation with existing EVS
implementation

. Average WMOPS
EVS Code Base - STL_basops complexity
14.0.0 weights Encoder Decoder | Total Improvement
Over Reference
Reference with . .

STL2009 STL2009 weights as is 53.3 24.2 77.5 1.00x

Reference with With new proposed weights for
STL2009 STL2009 50.6 22.1 72.7 1.07x

With new proposed weights for

Alti\rlir:ﬁthRLezfgrle%nce STL2009 & for extended basic
operators 47.1 18.9 66 1.17x

Following test cases were used for WMOPS and MCPS calculation:
- Encoder test case: -rf HI 3 13200 32 stv32n2.INP stv32n2_rfHI3_13200_32kHz.COD
- Decoder test case: 32 stv32c rfHI3 13200 32kHz.COD stv32c rfHI3 13200.out

The WMOPS numbers reported in Tablel are average WMOPS for this worst case complexity test vector. Please refer
to 3GPP TR 26.952: Codec for Enhanced Voice Services (EVS); Performance Characterization (Release 14) [7], for a
more detailed explanation of WMOPs for EVS.

In table 3, the improvement in million cycles per seconds (MCPS) of the alternative EV S implementation is compared
against the MCPS of the existing EV S standard reference code on a specific DSP platform using STL2009 basic
operators as a baseline. A gain of 1.25x is observed.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 15 ETSI TR 126 973 V19.0.0 (2025-10)

The gainin final MCPS of 1.25x is significantly more than gain of 1.17x in WMOPS. The explanation isthat the
existing method of computing WMOPS does not address the cycles gained with VLIW where multiple instructions are
executed in parallel. In addition, the current assigned integer weights of 1 or higher for SSIMD and VLIW friendly
instructions does not account for the inherent parallelism possible of processing multiple operandsin asingle cyclein
modern processors.

Table 3: MCPS based Comparison of the alternative EVS implementation with existing EVS
implementation on a Cadence Tensilica HiFi DSP

REFC with STL2009 ALT_REFC with

Perf parameter STL2017 Performance improvement
Total (Enc + Dec) Total (Enc + Dec)
OOB MCPS 269.3 162.5 1.66x
Final MCPS 77.5 61.9 1.25x
Code size — OOB (in K
Bytes) 2117.3 2036.6 1.04x
5.2 Example pseudo code to illustrate some of the benefits of

modern DSP architectures

The following examplesillustrate the benefits of VLIW and SIMD features of modern DSP architectures. The existing
reference code needs to be changed to leverage the extended basic operators that exploit the features of modern DSP
architectures. The following examples with pseudo code show that cycles are reduced from 4 to 2.

Example 1:
Original Reference C Code —
for (i=0: i<N; i++)
{
acc = acc + a[i]*b[il; /* multiply, truncate, and saturate are happening */
}
/* Regular implementation */
/* Multiply, truncate, and satur ate are happening for each element. */

[* Truncate and saturate here imply that order of execution isimportant. Compiler cannot change this order of execution
without violating bit-exactness */

Int_32 acc;

acc = g 0]*b[0]; /* cycle1 */

acc = acc + g[1]*b[1]; /* cycle2*/
acc = acc + a[2]*b[2]; /* cycle 3 */
acc = acc + [3]*b[3]; /* cycle4 */

[* total cycles = 4: For processing 4 elements of array aand b */

/* For N elementsit will take N cycles*/

Example 2:

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 16 ETSI TR 126 973 V19.0.0 (2025-10)

Explanation of:
- How SIMD/VLIW friendly REFC code helps to reduce cycles.

- Why bit-exactnessis violated when VLIW, SIMD features are used.

[* Example 2 - A: Implementation in 2 slots VLIW architecture */.
/* Since truncation and saturation is not required, Accl and Acc2 executed in 1 cyclein two different dots*/
/* Final result in Acc does NOT match acc in regular implementation */

[* This 2-slot implementation is not bit-exact with regular implementation and therefore the need to define alternate
set of bit-streams */

[* Therefore the reference code has to be changed to take benefit of 2-dlot architecture */

Int_64 Accl, Acc2, Acgc;

Accl = g[0]*b[Q]; /* dot 0, cycle 1 */
Acc2 = g[1]*b[1]; /* dot 1, cycle1*/
Accl = Accl + a[2]*b[2]; /* dot 0, cycle 2 */

Acc2 = Acc2 + g 3]*b[3]; /* dlot 1, cycle 2 with VLIW supported */ /* Alternatively, this can be dot O, cycle 2 if 2-way
SIMD is supported asillustrated in Example 2-B */

Acc = Accl + Acc2; /* dot 0, cycle 3. Thiswill be done outside the loop, only once */

/* Total cyclesfor 4 elements =3 */

/* For N elementsit will take (N/2 + 1) cycles*/

/* Example 2 - B: Implementation in 2 dlots VLIW and 2-way SIMD architecture */.
[* Since truncation and saturation is not required, Accl and Acc2 executed in 1 cyclein two different dots*/

/* Ina2-way SIMD architecture, 2 MAC operations can be donein asingle cycle in single dot on two-32bit elements
stored in a 64 bit registers */

[* This SIMD/VLIW implementation is not bit-exact with regular implementation and therefore the need to define
alternate set of bit-streams */

/* Therefore the reference code has to be changed to take benefit of 2-way SIMD and 2-dlot architecture */

Int_64 Accl, Acc2, Acc;

/* One 64-hit register holds two 32 bit elements a[0] and a[1]. Another 64-bit register holds two 32 bit elements b[0]
and b[1]*/

Accl = g[0]*b[0] + a[1]*b[1]; /* dot O, cycle 1 2-way SIMD mac */
Acc2 = g[2]*b[2] + a[3]*b[3]; /* dot 1, cycle 1 2-way SIMD mac*/

Acc = Accl + Acc2; /* dot 0, cycle 2. Thiswill be done outside the loop, only once */

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 17 ETSI TR 126 973 V19.0.0 (2025-10)

/* Total cyclesfor 4 elements =2 */

/* For N elementsit will take (N/4 + 1) cycles*/

In conclusion, for aloop processing N elements,
Example 1 will consume: N Cycles.

Example 2A will consume: (N/2 + 1) cycles.
Example 2B will consume: (N/4 + 1) cycles.

Hence a2-way SIMD, 2-slot architecture, will provide close to 4X improvement in cycles for operationsin aloop as
shown above.

5.3 Validation of an alternative EVS implementation using
updated basic operators

5.3.1 C-code inspection

Before starting the performance evaluation, the C-code of the aternative EV'S implementation will be shared for
inspection, upon request, under NDA. The verification will be reported to SA4.

5.3.2 Objective performance evaluation of the alternative EVS
implementation

For the objective performance validation of the alternative implementation of EV S using the updated set of basic

operators, it is proposed to use the same procedure as has been used to validate the EV S floating-point. Namely, itis

proposed to process a P.800 compatible database [3] [exact database thd] including speech and music and mixed test

samples by the following 4 combinations of the legacy fixed-point EVS [2] encoder and decoder (Ref_fxd) and the
evaluated EV S encoder and decoder (CuT):

a) Ref_fxd encoder — Ref_fxd decoder
b) CuT encoder — CuT decoder

c) Ref fxdencoder — CuT decoder

d) CuT encoder — Ref_fxd decoder

The processing is performed according to EV S-7c¢ and the resulting stimuli are evaluated using POLQA [4] with the
reference item being the direct item of the respective bandwidth and the test items being the EV S conditions. In other
words all stimuli are evaluated against the original signal.

For each condition and for each P.800 sample, the individual POLQA MOS-LQO scores are computed and the
differences for [a) —b)], [@) — €)] and [a) — d)] compared, both for the samplesindividually, and averaged for each test
condition. The proposed alternative EV S implementation and the standardized fixed-point implementation are
considered to perform equivalent if the difference values are within reasonabl e bounds.

It is further proposed to also objectively validate the performance of interoperation of this new EV S implementation
with the standardized EV S floating-point implementation [5] (Ref_flt) to make sure that there are no interoperability
issues when interoperating with the standardized floating-point EV S code. Consequently, two additional combinations
are added:

e) Ref fltencoder — CuT decoder

f) CuT encoder — Ref_flt decoder

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 18 ETSI TR 126 973 V19.0.0 (2025-10)

It is proposed that the objective evaluation is performed for all the conditions that were subjectively evaluated in the
EVS Selection Tests and for all conditions that were subjectively evaluated in the EV S Characterization Tests.

The analysis would follow the template in Table 4 for all theindividual samples and al conditions. Additionaly, for
each test condition, as well asfor al the conditions combined, the following statistics will be also provided — average
difference, minimum difference, maximum difference, standard deviation and 95% confidence interval. For better
visualization, histograms or cumulative distribution functions of the differences may also be provided.

Table 4: Template for result presentation

Input | Bandwidth Bit DTX Level FER/Profil | a)-b) | a)-c) | a—-d) | a—e) | a)-f)
rate e

5.3.3 Subjective performance evaluation of the alternative EVS
implementation

The goal of the subjective performance evaluation of the alternative EV'S implementation isto complement the
objective validation as a sanity check. It coversall relevant configurations with emphasis on most relevant ones to
minimize the number of subjective tests. In particular:

1) Bitrates: All EVS bitrates are included, both of the EV S native modes (5.9, 7.2, 8, 13.2, 13.2 CAM, 16.4, 24.4,
32, 48, 56, 96, 128 kb/s) and the AMR-WB 10 modes (23.85, 23.05, 19.85, 18.25, 15.85, 14.25, 12.65, 8.85 and
6.6 kb/s). Thisis done through constant bitrate conditions or bitrate switching conditionsin order to minimize
the necessary number of subjective experiments, and yet cover al the bitrates.

2) Bandwidth: It is proposed to include only WB and SWB experiments in the subjective evaluation as most
relevant for EV S operation. Further, it is assumed that most of the NB technologies are aso included within WB
or SWB EV S operation. Finally FB operation is algorithmically very similar to the SWB operation.

3) Input levels: 16, 26, 36 dBov input levels are tested.
4) Noisy speech is evaluated in one experiment.
5) Mixed & Music inputs are evaluated in one experiment.

6) Impaired channel & Jitter Buffer Management (JBM) conditions are spread across all experiments. The Frame
Erasure Rates (FERs) or network error profiles have been selected such that they should allow to uncover any
issues in operation in impaired channels, yet the channel is not too bad to significantly influence the test
resolution for clean channel conditions.

7) Rate switching isincluded, as mentioned above.

8) Tandem conditions were not included in the test as it is assumed that any implementation issues should be
uncovered in conditions without tandeming. Further, tandem operation is not foreseen as a major operation use-
casefor EVS.

The methodology used is P.800 ACR or DCR reflecting the EV S Selection and Characterization tests. It is proposed to
use 4 different talkers (two male and two female talkers), and 6 panels of 4 listeners. This set-up gives 96 votes per
condition (6panels*4talkers* 4listeners).

Similarly to the objective tests, the following 4 configurations will be tested in all experiments:
a) Ref fxdencoder — Ref_fxd decoder
b) CuT encoder — CuT decoder
c) Ref fxdencoder — CuT decoder

d) CuT encoder — Ref_fxd decoder

Experiment 1 - WB clean speech ACR (17 conditions per codec configuration):

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 19 ETSI TR 126 973 V19.0.0 (2025-10)

-16 dBov clean channel - 5.9 kb/s, switching: 7.2-9.6 kb/s, 13.2-96 kb/s, AMR-WB IO, DTX ON

-26 dBov clean channdl - 7.2 kb/s, 13.2 kb/s, 13.2 kb/s Channel-Aware Mode (CAM), 24.4 kb/s, DTX ON
-36 dBov clean channel - 5.9 kb/s DTX ON, switching: 7.2-9.6 kb/s, 13.2-96 kb/s, AMR-WB |0, DTX OFF
-26 dBov random 3% FER - 5.9 kb/s, switching: 7.2-9.6 kb/s, 13.2-96 kb/s, AMR-WB 10, DTX ON

-26 dBov Profile 8(6.2%) — 13.2 kb/s Channel-Aware Mode (CAM), DTX ON

Experiment 2 - SWB clean speech DCR (6 conditions per codec configuration):
-16 dBov clean channel - 9.6 kb/s, 13.2 kb/s, DTX OFF

-36 dBov clean channel - 24.4 kb/s, switching 32-128 kh/s, DTX ON

-26 dBov Profile 7(3.3%) - switching 9.6 - 24.4 kb/s, DTX ON

-26 dBov Profile 8(6.2%) - 13.2 kb/s CAM, DTX ON

Experiment 3 - SWB noisy speech DCR - 26 dBov, Street noise at 20 dB SNR (6 conditions per codec
configuration):

clean channel - 9.6 kb/s, DTX ON

clean channel - 13.2 kb/s, DTX ON

clean channel - 24.4 kb/s, DTX ON

3% random FER - switching 9.6 - 24.4 kb/s, DTX ON
3% random FER - switching 32 - 128 kb/s, DTX ON
Profile 8(6.2%) - 13.2 kb/s CAM, DTX ON

Experiment 4 - SWB mixed and music DCR (6 conditions per codec configuration):
-16 dBov clean channel - 9.6 kb/s, DTX ON

-26 dBov clean channel - 13.2 kb/s, DTX ON

-36 dBov clean channel - 24.4 kb/s, DTX ON

-26 dBov 3% random FER - switching 9.6 - 24.4 kb/s, DTX ON

-26 dBov 3% random FER - switching 32 - 128 kb/s, DTX ON

-26 dBov Profile 8(6.2%) - 13.2 kb/s CAM, DTX ON

6 Conclusions

During the recent several years, processors with wide accumulators, SIMD support and VLIW features have become
prevalent. On the other hand, the latest major update to the ITU-T Basic Operators [6] that serve as afoundation for
reference software of codecs specified by 3GPP occurred in 2005, with a consequent update in 2009. EVS[2], the latest
speech and audio codec standardized by 3GPP, was specified using those operators.

Given the information collected during the study, it is recommended to submit the proposed new set of basic operators
to the STL GitHub open source environment as an extension of the current ITU-T Basic Operators. It is further
recommended to inform ITU-T Study Group 12 of the new set of basic operators including the updated weights for the

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 20 ETSI TR 126 973 V19.0.0 (2025-10)

current set of basic operators, which have been agreed in 3GPP SA4, and request them to update Recommendation 1 TU-
T G.191 (STL) [6] accordingly so that the new set of basic operators will be available for future codec standardizations.

It was further shown that by implementing the EV S codec using the new set of basic operators, a complexity gain of
about 25% can be obtained for a given example of a modern processor. The corresponding decrease in WM OPS was
about 10%. It is thus recommended to begin normative work with the objective of specifying an alternative
implementation of the EV S codec using the new set of basic operators. The evaluation of the alternative implementation
should follow the guidelines outlined in clause 5.3 of the present document.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 21 ETSI TR 126 973 V19.0.0 (2025-10)

Annex A:
Extended Basic Operators

Name: enh64.c, enh32.c, complex_basop.c, enhUL32.c

Associated header file: enh64.h, enh32.h complex_basop.h, enhUL32.h
Variable definitions:

C _varl, C_var2: 16 bit complex variables

CL_varl, CL_var2: 32 bit complex variables

W_varl, W_var2: 64 bit variables

L_varl, L_var2; 32 bit variables

UL _varl, UL_var2, UL_varout_h, UL_varout_|: 32 bit unsigned variables
varl, var2: 16 bit variables

U_varl, U_varout_|: 16 bit unsigned variables

A.1 Basic operators that use 64 bit
registers/accumulators

W add_nosat (Wvarl, Wvar2) Addsthetwo 64-bit variablesW_varl and W_var2 without saturation
control on 64 hits.

W_sub_nosat (Wvarl, Wyvar?2) Subtracts the two 64-bit variablesW_varl and W_var2 without
saturation control on 64 bits.

W_shl (W_varl, var2) Arithmetically shiftsleft the 64-bit variable W_varl by var2 positions:

if var2 is negative, W_varl is shifted to the least significant bits by (—
var2) positions with extension of the sign bit.

if var2 is positive, W_varl is shifted to the most significant bits by (var2)
positions with saturation control on 64 bits.

W_shr (W_varl, var2) Arithmetically shifts right the 64-bit variable W_varl by var2 positions:

if var2 is negative, W_varl is shifted to the most significant bits by (—
var2) positions with saturation control on 64 bits.

if var2 is positive, W_varl is shifted to the least significant bits by (var2)
positions with extension of the sign bit.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 22 ETSI TR 126 973 V19.0.0 (2025-10)

W_shl_nosat (W_varl, var2) Arithmetically shifts left the 64-bit variable W_varl by var2 positions:

if var2 is negative, W_varl is shifted to the least significant bits by (—
var2) positions with extension of the sign bit.

if var2 is positive, W_varl is shifted to the most significant bits by (var2)
positions without saturation control on 64 bits.

W_shr_nosat (W_varl, var2) Arithmetically shifts right the 64-bit variable W_varl by var2 positions:

if var2 is negative, W_varl is shifted to the most significant bits by (—
var2) positions without saturation control on 64 bits .

if var2 is positive, W_varl is shifted to the least significant bits by (var2)
positions with extension of the sign bit.

W_mult_32 16 (L_varl, var2) Multiplies the signed 32-bit variable L_varl with signed 16-bit variable
var2. Shift the product left by 1 and sign extend to 64-bits without
saturation control.

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and var2 isin 1Q15 format,
then the result is produced in 17Q47 format.

W_mac 32 16 (W_acc, L_varl, var2) Multiplies the signed 32-bit variable L _varl with signed 16-bit variable
var2. Shift the product left by 1 and sign extend to 64-bits without
saturation control;
add this 64 bit value to the 64 bit W_acc without saturation control, and
return a 64 bit result

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and var2 isin 1Q15 format,
then the product is produced in 17Q47 format which is then added to
W_acc (in 17Q47) format. Thefinal result isin 17Q47 format.

W_msu_32 16 (W_acc, L_varl, var2) Multiplies the signed 32-bit variable L_varl with signed 16-bit variable
var2. Shift the product left by 1 and sign extend to 64-bits without
saturation control; subtract this 64 bit value from the 64 bit W_acc
without saturation control, and return a 64 bit result.

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and var2 isin 1Q15 format,
then the product is produced in 17Q47 format which is then subtracted
fromW_acc (in 17Q47) format. The final result isin 17Q47 format.

W_mult0_16 16 (varl, var2) Multiply 16 bit varl by 16 bit var2, sign extend to 64 bits and return the
64 bit result.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 23 ETSI TR 126 973 V19.0.0 (2025-10)

W_mac0_16 16 (W_acc, varl, var2) Multiply 16 bit varl by 16 bit var2, sign extend to 64 bits; add this 64 bit
value to the 64 bit W_acc without saturation control, and return a 64 bit
result

W_msu0_16 16 (W_acc, varl, var2) Multiply 16 bit varl by 16 bit var2, sign extend to 64 bits; subtract this
64 bit value from the 64 bit W_acc without saturation control, and return
a 64 bit result.

W_mult_16 16 (W_acc, varl, var2) Multiply asigned 16 bit varl by signed 16 bit var2, shift the product left
by 1 and sign extend to 64-bits without saturation control and return a 64
bit result

The operation is performed in fractional mode.

For example, if varl isin 1Q15 format and var2 isin 1Q15 format, then
the result is produced in 33Q31 format.

W_mac 16 16 (W_acc, varl, var2) Multiply asigned 16 bit varl by signed 16 bit var2, shift the result left by
1 and sign extend to 64-bits;
add this 64 bit value to the 64 bit W_acc without saturation control, and
return a 64 bit result

The operation is performed in fractional mode.

For example, if varl isin 1Q15 format and var2 isin 1Q15 format, then
the product isin 33Q31 format which is then added to W_acc (in 33Q31
format) to provide afinal result in 33Q31 format.

W_msu 16 16 (W_acc, varl, var2) Multiply asigned 16 bit varl by signed 16 bit var2, shift the result left by
1 and sign extend to 64-bits;
subtract this 64 bit value from the 64 bit W_acc without saturation
control, and return a 64 bit result

The operation is performed in fractional mode.

For example, if varl isin 1Q15 format and var2 isin 1Q15 format, then
the product isin 33Q31 format which is then subtracted from W_acc (in
33Q3L1 format) to provide afinal result in 33Q31 format.

W _deposit32 | (L_varl) Deposit the 32 bit L_varl into the 32 LS bits of the 64 bit output. The 32
MS bits of the output are sign extended

W_deposit32_h (L_varl) Deposit the 32 bit L_varl into the 32 M S bits of the 64 bit output. The 32
LS bits of the output are zeroed.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19

W_sat | (W_var)

W_sat m(W_var)

W_shl_sat | (W_var, varl)

W_extract_| (W_varl)

W_extract_h (W_varl)

W _round48 L (W _varl)

W_round32_s(W_varl)

24 ETSI TR 126 973 V19.0.0 (2025-10)

Saturate the 64 bit variable W_var to 32 bit value and return the lower 32
bits.

For example, a 64b wide accumulator is helpful in accumulating 16* 16
multiplies without checking for saturation. However, at the end of the
multiply-and-accumulate loop, we need to return only the 32b value after
checking for saturation.

If W_var isin 33Q31 format, then the result returned will be saturated to
1Q31 format.

Arithmetic right shift the 64 bit variable W_var by 16 bits; saturate the 64
bit value to 32 hit value and return the lower 32 bits.

For example, a 64 bit wide accumulator is helpful in accumulating 32* 16
multiplies without checking for saturation. A 32* 16 multiply gives a 48
bit product; at the end of the multiply-and-accumulate loop, the result is
in the lower 48 hits of the 64 bit accumulator. Now an arithmetic right
shift by 16 bitswill drop the LSB 16 bits. Now we should check for
saturation and return the lower 32 bits.

If W_varisin 17Q47 format, then the result returned will be saturated to
1Q31 format.

Arithmetic left shift the 64 bit W_var by varl positions with lower 32 bit
saturation and return the 32 LSB of 64 bit result.

If varl is negative, the result is shifted to right by (-varl) positions and
sign extended. After shift operation, returns the 32 MSB of 64 bit result.

Return the 32 LSB of a 64 bit variable W_varl.

Return the 32 MSB of a 64 bit variable W_varl.

Rounds the lower 16 bits of the 64-bit input number W_varl into the
most significant 32 bits with saturation. Shifts the resulting bits right by
16 and returns the 32-bit number:

If W_varlisin 17Q47 format, then the result returned will be rounded
and saturated to 1Q31 format.

Rounds the lower 32 bits of the 64-bit input number W_varl into the
most significant 16 bits with saturation. Shifts the resulting bits right by
32 and returns the 16-bit number:

If W_varlisin 17Q47 format, then the result returned will be rounded
and saturated to 1Q15 format.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 25 ETSI TR 126 973 V19.0.0 (2025-10)

W_norm (W_varl) Produces the number of |eft shifts needed to normalize the 64-bit variable
W_varl. If W_varl contains O, return O

Adds the two 64-bit variablesW_varl and W_var2 with 64-bit saturation

W_add (W_varl, W_var2) control. Sets overflow flag. Returns 64-bit result.

W_sub (W_varl, W_var2) Subtracts 64-bit variable W_var2 from W_varl with 64-hit saturation
control. Sets overflow flag. Returns 64-bit result.

W_neg (W_varl) Negates a 64-bit variables W_varl with 64-bit saturation control. Set

overflow flag. Returns 64-bit result.

Returns a 64-bit absolute value of a 64-bit variable W_varl with

W_abs (W_varl) saturation control.

Multiplies the signed 32-bit variable L_varl with signed 32-bit variable
L_var2. Shift the product left by 1 with saturation control. Returns the
64-bit result.

W_mult_32 32 (L_varl, L_var2) The operation is performed in fractional mode.
For example, if L_varl & L_var2 arein 1Q31 format then theresult is
produced in 1Q63 format.
Note that W_mult_32_32(-2147483648, -2147483648) =
9223372036854775807.

Multiplies the signed 32-bit variable L_varl with signed 32-bit variable
W_mult0_32 32 (L_varl, L_var2) L_var2. Returns the 64-bit result.

For example, if L_varl & L_var2 arein 1Q31 format then theresult is
produced in 2Q62 format.

Logically shift the 64-bit input W_var1 left by var2 positions
W_lshl (W_varl, var2) - If var2 is negative, logically shift right W_varl by (-var2)

Logically shift the 64-bit input W_varl right by var2 positions
W_lshr (W_varl, var2) - If var2 is negative, logicaly shift left W_varl by (-var2)

Rounds the lower 32 bits of the 64-bit input number W_varl into the
W_round64 L (W_varl) most significant 32 bits with saturation. Shifts the resulting bits right by

32 and returns the 32-bit number:

If W_varlisin 1Q63 format, then the result returned will be rounded and

saturated to 1Q31 format.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 26 ETSI TR 126 973 V19.0.0 (2025-10)

A.2 Basic operators which use 32 bit precision multiply

Basic operatorsin this clause are useful for FFT and scaling functions where the result of a 32*16 or 32* 32 arithmetic
operation is rounded, and saturated to 32 hit value. There is no accumulation of products in these functions. In functions
that accumulate products, you should use base operatorsin clause A.1.

Mpy_32_16_1(L_varl, var2) Multiplies the signed 32-bit variable L_varl with signed 16-bit variable
var2. Shift the product left by 1 with 48 bit saturation control; Return the
32 MSB of the 48 bit result after truncation of lower 16 bits

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and var2 isin 1Q15 format,
then the product is produced in 17Q47 format which is then saturated,
truncated and returned in 1Q31 format.

Following code snippet describe the operations performed

W _varl =W _mult_32_16 (L_varl, var2);

L var out=W _sat m(W _varl);

Mpy_32_16 r(L_varl, var2) Multiplies the signed 32-bit variable L_varl with signed 16-bit variable
var2. Shift the product left by 1 with 48 bit saturation control; Return the
32 MSB of the 48 bit result after rounding of the lower 16 bits

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and var2 isin 1Q15 format,
then the product is produced in 17Q47 format which is then rounded,
saturated, and returned in 1Q31 format.

Following code snippet describe the operations performed

W _varl =W _mult_32_16 (L_varl, var2);

L _var_out=W _round48 L (W_varl);

ETSI

3GPP TR 26.973 version 19.0.0 Release 19

Mpy_32_32(L_varl, L_var2)

Mpy 32 32 r(L_varl, L_var2)

27 ETSI TR 126 973 V19.0.0 (2025-10)

Multiplies the signed 32-bit variable L_varl with signed 32-bit variable
L_var2. Shift the product left by 1 with 64 bit saturation control; Return
the 32 M SB of the 64 bit result after truncating of the lower 32 bits

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and var2 isin 1Q31 format,
then the product is produced in 1Q63 format which is then truncated,
saturated, and returned in 1Q31 format.

Following code snippet describe the operations performed

W_varl = ((Word64)L_varl * L_var2),

L_var_out =W _extract_h(W_shl(W _varl, 1));

Multiplies the signed 32-bit variable L_varl with signed 32-bit variable
L_var2. Add rounding offset to lower 31 bits of the product. Shift the
result left by 1 with 64 bit saturation control; return the 32 MSB of the 64
bit result with saturation control.

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and L_var2 isin 1Q31 format,
then the result is produced in 1Q63 format which is then rounded,
saturated, and returned in 1Q31 format.

Following code snippet describe the operations performed

W_varl = ((Word64)L_varl * L_var2),

W _varl =W _varl + 0x40000000LL;

W_varl =W_shl (W_varl, 1);

L_var_out =W_extract_h(W_varl);

ETSI

3GPP TR 26.973 version 19.0.0 Release 19

Madd 32 _16(L_var3, L_varl, var2)

Madd 32 16 r(L_var3, L_varl, var2)

28 ETSI TR 126 973 V19.0.0 (2025-10)

Multiplies the signed 32-bit variable L_varl with signed 16-bit variable
var2. Shift the product left by 1 with 48 bit saturation control; Add the 32
bit MSB of the 48 hit result with 32 bit L_var3 with 32 bit saturation
control.

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and var2 isin 1Q15 format,
then the product is produced in 17Q47 format which is then saturated,
truncated to 1Q31 format and added to L_var3in 1Q31 format.

Following code snippet describe the operations performed

L _var_out=Mpy 32 16 1(L_varl, var2);

L var out=L_add(L_var3, L_var_out);

Multiplies the signed 32-bit variable L _varl with signed 16-bit variable
var2. Shift the product left by 1 with 48-bit saturation control; Get the
32-hit MSB from 48-bit result after rounding of the lower 16 bits and add
this with 32-bit L_var3 with 32-bit saturation control.

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and var2 isin 1Q15 format,
then the product is produced in 17Q47 format which is then saturated,
rounded to 1Q31 format and added to L_var3 in 1Q31 format.

Following code snippet describe the operations performed

L _var_out=Mpy 32 16 r(L_varl, var2);

L var out=L_add(L_var3, L_var_out);

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 29 ETSI TR 126 973 V19.0.0 (2025-10)

Msub_32 16(L_var3, L_varl, var2) Multiplies the signed 32-bit variable L_varl with signed 16-bit variable
var2. Shift the product left by 1 with 48 bit saturation control; Subtract
the 32 bit MSB of the 48 bit result from 32 bit L_var3 with 32 bit
saturation control.

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and var2 isin 1Q15 format,
then the product is produced in 17Q47 format which is then saturated,
truncated to 1Q31 format and subtracted from L_var3 in 1Q31 format.

Following code snippet describe the operations performed

L_var_out=Mpy 32 16 1(L_varl, var2);

L_var out=L_sub(L_var3, L_var_out);

Msub_32 16 r(L_var3, L_varl, var2) Multi pligs the signed 32-bit variaple L_vqu with §igned 16-bit variable
var2. Shift the product left by 1 with 48-bit saturation control; Get the
32-bit MSB from 48-bit result after rounding of the lower 16 bits and
subtract this from 32-bit L_var3 with 32-bit saturation control.

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and var2 isin 1Q15 format,
then the product is produced in 17Q47 format which is then saturated,
rounded to 1Q31 format and subtracted from L_var3in 1Q31 format.

Following code snippet describe the operations performed

L _var_out=Mpy 32 16 r(L_varl, var2);

L_var out=L_sub(L_var3, L_var_out);

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 30 ETSI TR 126 973 V19.0.0 (2025-10)

Madd 32 32(L _var3,L_varl, L var2) Multipliesthe signed 32-bit variable L_varl with signed 32-bit variable
L_var2. Shift the product left by 1 with 64 bit saturation control; Add the
32 MSB of the 64 bit result to 32 bit signed variable L_var3 with 32 bit
saturation control.

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and L_var2 isin 1Q31 format,
then the product is saturated and truncated in 1Q31 format which isthen
added to L_var3 (in 1Q31 format), to provide result in 1Q31 format.

Following code snippet describe the operations performed
L _var_out=Mpy 32 32(L_varl, L_var2);

L var out=L_add(L_var3, L_var_out);

Multiplies the signed 32-bit variable L_varl with signed 32-bit variable
L_var2. Add rounding offset to lower 31 bits of the product. Shift the
Madd_32 32 r(L_var3, L_varl, result left by 1 with 64-bit saturation control; get the 32 MSB of the 64-
L_var2) bit result with saturation and add this with 32-bit signed variable L_var3
with 32-hit saturation control.

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and L_var2 isin 1Q31 format,
then the product is saturated and rounded in 1Q31 format which is then
added to L_var3 (in 1Q31 format), to provide result in 1Q31 format.

Following code snippet describe the operations performed

L _var_out=Mpy 32 32 r(L_varl, L_var2);

L var out=L_add(L_var3, L_var_out);

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 31 ETSI TR 126 973 V19.0.0 (2025-10)

Msub 32 32(L_var3, L_varl, L_var2) Multipliesthe signed 32-bit variable L_varl with signed 32-bit variable
L_var2. Shift the product left by 1 with 64 bit saturation control; Subtract
the 32 MSB of the 64 bit result from 32 bit signed variable L_var3 with
32 hit saturation control.

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and L_var2 isin 1Q31 format,
then the product is saturated and truncated in 1Q31 format which isthen
subtracted from L_var3 (in 1Q31 format), to provide result in 1Q31
format.

Following code snippet describe the operations performed

L var_out=Mpy 32 32(L_varl, L_var2);

L var out=L_sub(L_var3, L_var_out);

Multiplies the signed 32-bit variable L_varl with signed 32-bit variable
Msub_32 32 r(L_var3, L_varl, L_var2. Add rounding offset to lower 31 bits of the product. Shift the
L_var2) result left by 1 with 64-bit saturation control; get the 32 MSB of the 64-
bit result with saturation and Subtract this from 32-bit signed variable
L_var3 with 32-bit saturation control.

The operation is performed in fractional mode.

For example, if L_varlisin 1Q31 format and L_var2 isin 1Q31 format,
then the product is saturated and rounded in 1Q31 format which isthen
subtracted from L_var3 (in 1Q31 format), to provide result in 1Q31
format.

Following code snippet describe the operations performed

L var_out=Mpy 32 32 r(L_varl, L var2);

L var out=L_sub(L_var3, L_var_out);

ETSI

3GPP TR 26.973 version 19.0.0 Release 19

32 ETSI TR 126 973 V19.0.0 (2025-10)

A.3 Basic operators which use complex data types

CL_shr (CL_varl, var2)

CL_shl (CL_varl, var2)

Arithmetically shiftsright the real and imaginary parts of the 32 bit
complex number CL_varl by var2 positions

If var2 is negative, real and imaginary parts of CL_varl are shifted to the
most significant bits by (-var2) positions with 32-bit saturation control.

If var2 is positive, real and imaginary parts of CL_varl are shifted to the
least significant bits by (var2) positions with sign extension

Following code snippet describe the operations performed on real &
imaginary part of acomplex number.

CL_result.re=L_shr(CL_varl.re, L_shift val);
CL_result.im=L_shr(CL_varl.im, L_shift_val);

Arithmetically shift left the real and imaginary parts of the 32 bit
complex number CL_varl by L_shift_val positions

If var2 is negative, real and imaginary parts of CL_varl are shifted to the
least significant bits by (-var2) positions with sign extension

If var2 is positive, real and imaginary parts of CL_varl are shifted to the
most significant bits by (var2) positions with 32-bit saturation control

Following code snippet describe the operations performed on real &
imaginary part of acomplex number.

CL_result.re=L_shl(CL_varl.re, L_shift va);

CL_result.im=L_shl(CL_varl.im, L_shift val);

ETSI

3GPP TR 26.973 version 19.0.0 Release 19

CL_add (CL_varl, CL_var2)

CL_sub (CL_varl, CL_var2)

33 ETSI TR 126 973 V19.0.0 (2025-10)

Adds the two 32 bit complex numbers CL_varl and CL_var2 with 32-bit
saturation control.

Real part of the 32 bit complex number CL_varl is added to Real part of
the 32 bit complex number CL_var2 with 32 bit saturation control. The
result forms the real part of the result variable.

Imaginary part of the 32 bit complex number CL_varl is added to
Imaginary part of the 32 bit complex number CL_var2 with 32 bit
saturation control. The result forms the imaginary part of the result
variable.

Following code snippet describe the operations performed on real &
imaginary part of acomplex number.

CL_result.re= L_add(CL_varl.re, CL_var2.re);

CL_result.im=L_add(CL_varl.im, CL_var2.im);

Subtract the two 32 bit complex numbers CL_varl and CL_var2 with 32-
bit saturation control

Real part of the 32 bit complex number CL_var2 is subtracted from Real
part of the 32 bit complex number CL_varl with 32 bit saturation
control. The result formsthe real part of the result variable.

Imaginary part of the 32 bit complex number CL_var2 is subtracted from
Imaginary part of the 32 bit complex number CL_varl with 32 bit
saturation control. The result forms the imaginary part of the result
variable.

Following code snippet describe the operations performed on real &
imaginary part of acomplex number.

CL_result.re=L_sub(CL_varl.re, CL_var2.re);

CL_result.im =L_sub(CL_varl.im, CL_var2.im);

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 34 ETSI TR 126 973 V19.0.0 (2025-10)

CL_scale (CL_var, varl) Multiply the real and imaginary parts of a 32 bit complex number
CL_var by a 16-bit varl. The resulting 48 bit product for each part is
rounded, saturated and 32 bit MSB of 48 bit result are returned.

Following code snippet describe the operations performed on real &
imaginary part of acomplex number.

CL_result.re=Mpy_32 16 r(CL_var.re, varl);

CL_result.im=Mpy_32 16 r(CL_var.im, varl);

CL_dscale (CL_var, varl, var2) Multiply the real parts of a 32 bit complex number CL_var by a 16-bit
varl and imaginary parts of a 32 bit complex number CL_var by a 16-bit
var2. The resulting 48 bit product for each part is rounded, saturated and
32 bit MSB of 48 bit result are returned.

Following code snippet describe the operations performed on real &
imaginary part of a complex number.

CL_result.re=Mpy_32 16 r(CL_var.re, varl);
CL_result.im=Mpy_32 16 r(CL_var.im, var2);

CL_msu_j (CL_varl, CL_var2) Multiply the 32 bit complex number CL_var2 with j and subtract the
result from the 32 bit complex number CL_varl with saturation control.

Following code snippet describe the operations performed on real &
imaginary part of a complex number.

CL_result.re=L_add(CL_varl.re, CL_var2.im);

CL_result.im=L_sub(CL_varl.im, CL_var2.re);

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 35 ETSI TR 126 973 V19.0.0 (2025-10)

CL_mac_j (CL_varl, CL_var2) Multiply the 32 bit complex number CL_var2 with j and add the result to
the 32 bit complex humber CL_varl with saturation control.

Following code snippet describe the operations performed on real &
imaginary part of acomplex number.

CL_result.re=L_sub(CL_varl.re, CL_var2.im);

CL_result.im=L_add(CL_varl.im, CL_var2.re);

CL_move (CL_var) Copy the 32 bit complex humber CL_var to destination 32 bit complex
number

CL_Extract_real (CL_var) Return the real part of a 32 bit complex number CL_var

CL_Extract_imag (CL_var) Return the imaginary part of a 32 bit complex number CL_var

CL_form(L_re, L_im) Combine the two 32 bit variable L_reand L_im and return a 32 bit

complex number.

Following code snippet describe the operations performed on real &
imaginary part of acomplex number.

CL_result.re=L_re;

CL_result.im=1L_im;

ETSI

3GPP TR 26.973 version 19.0.0 Release 19

CL_multr_32x16(CL_var, C_coeff)

CL_negate (CL_var)

CL_conjugate(CL_var)

CL_mul_j (CL_var)

36 ETSI TR 126 973 V19.0.0 (2025-10)
Multiplication of 32 bit complex number CL_var with a 16 bit complex
number C_coeff.

The formula for multiplying two complex numbers, (x+iy) and (u+iv) is

(xHy)* (utiv) = (xu—yv) +i(xv + yu);

Following code snippet describe the operations performed on real &
imaginary part of a complex number.

W_tmpl =W _mult_32_16(CL_var.re, C_coeff.re);

W_tmp2 =W_mult_32_16(CL_var.im, C_coeff.im);
W_tmp3 =W_mult_32_16(CL_var.re, C_coeff.im);
W_tmp4 =W_mult_32_16(CL_var.im, C_coeff.re);

CL_resre=W_round48 L(W_sub_nosat (W_tmpl, W_tmp2));
CL_resim=W_round48 L(W_add nosat (W_tmp3, W_tmp4));

For example, if the real and imaginary part of complex variable CL_var
arein 1Q31 format, and C_coeff in 1Q15 format, then the intermediate
products would be in 17Q47 format. The round operation will convert the
result of addition/subtraction from 17Q47 format to 1Q31 format.

Negate the 32 bit complex humber, saturate and return.

Following code snippet describe the operations performed on real &
imaginary part of a complex number.

CL_result.re=L_negate(CL_var.re);

CL_result.im = L_negate(CL_var.im);

Negate only the imaginary part of complex number CL_var with
saturation. No change in the real part.

Following code snippet describe the operations

CL_result.re=CL_var.re;
CL_result.im = L_negate(CL_var.im);

Multiplication of a 32 bit complex number CL_var with j and return a 32
bit complex number.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 37 ETSI TR 126 973 V19.0.0 (2025-10)

CL_swap_rea_imag (CL_var) Swap real and imaginary parts of a 32 bit complex number CL_var and
return a 32 bit complex number.

C add (C varl, C var2) Adds the two 16 bit complex numbers C_varl and C_var2 with 16-bit
saturation control.

Following code snippet describe the operations performed on real &
imaginary part of acomplex number.

C _result.re=add(C varl.re, C var2.re);

C _result.im = add(C_varl.im, C_var2.im);

C sub (C_varl, C var2) Subtract the two 16 bit complex numbers C_varl and C_var2 with 16-bit
saturation control

Following code snippet describe the operations performed on real &
imaginary part of acomplex number.

C result.re=sub(C varl.re, C var2.re);

C _result.im = sub(C_varl.im, C_var2.im);

C_mul_j (C_var) Multiplication of a 16 bit complex number with j and return a 16 bit
complex number

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 38 ETSI TR 126 973 V19.0.0 (2025-10)
C_multr (C_varl, C var2) Multiplication of 16 bit complex number C_varl with 16 bit complex
number C_var2 which resultsin a 16 bit complex number.

The formula for multiplying two complex numbers, (x+iy) and (u+iv) is

(xHy)* (utiv) = (xu—yv) +i(xv + yu);

Following code snippet describe the operations performed on real &
imaginary part of acomplex number.

W_tmpl =W _mult_16 16(C varl.re, C var2.re);

W_tmp2 =W_mult_16 16(C varl.im, C_var2.imj;
W_tmp3 =W _mult_16 16(C varl.re, C var2.im);
W_tmp4 =W_mult_16 16(C varl.im, C_var2.re);

C_result.re = round_fx(W_sat_| (W_sub_nosat (W_tmpl, W_tmp2)));
C result.im=round fx(W_sat | (W_add nosat (W_tmp3, W_tmp4)));

C form (re, im) Combine the two 16 bit variable re and im and return a 16 bit complex
number
CL_scale 32(CL_varl, L_var2) Multiply the real and imaginary parts of a 32-bit complex number

CL_varl by a32-hit L_var2.

The resulting 64-bit product for each part is rounded, saturated and 32 bit
MSB of 64-bit result are returned.

Following code snippet describe the operations performed on real &
imaginary part of acomplex number.

CL_result.re=Mpy 32 32 r(CL_varl.re, L_var2);
CL_result.im=Mpy_32_32 r(CL_varl.im, L_var2);

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 39 ETSI TR 126 973 V19.0.0 (2025-10)

CL_dscale 32(CL_varl, L_var2, Multiply the real parts of a 32-bit complex humber CL_varl by a 32-bit

L_var3) L_var2 and imaginary parts of a 32-bit complex number CL_varl by a
32-bit L_var3. The resulting 64-bit product for each part is rounded,
saturated and 32 bit MSB of 64-bit result are returned.

Following code snippet describe the operations performed on real &
imaginary part of a complex number.

CL_result.re= Mpy_32_32_r(CL_varl.re, L_var2);
CL_result.im=Mpy_32 32 r(CL_varl.im, L_var3);

CL_multr_32x32(CL_varl, CL_var2) complex multiplication of CL_varl and CL_var2. Multiplicationisin
fractional mode. Both input and outputs are in 1Q31 format.

W_tmpl=W_mult_32_32(CL_varl.re, CL_var2.re);

W_tmp2 =W_mult_32_32(CL_varl.im, CL_var2.im);
W_tmp3=W_mult_32_32(CL_varl.re, CL_var2.im);
W_tmp4 =W_mult_32_32(CL_varl.im, CL_var2.re);

CL_resre=W_round64 L(W_sub (W_tmpl, W_tmp2));
CL_resim=W_round64 L(W_add (W_tmp3, W_tmp4));

C _mac r(CL_varl, C var2, var3) Multiplies real and imaginary part of C_var2 by var3 and shifts the result
left by 1. Adds the 32-bit result to CL_varl with saturation. Rounds the
16 least significant bits of the result into the 16 most significant bits with
saturation and shifts the result right by 16. Returns a 16-bit complex
result.

C result = CL_round32_16(CL_add(Cl_varl,
C _scale(C var2, var3)));

C _msu_r(CL_varl, C var2, var3) Multiplies real and imaginary part of C_var2 by var3 and shifts the result
left by 1. Subtract the 32-bit result from CL_varl with saturation. Rounds
the 16 least significant bits of the result into the 16 most significant bits
with saturation and shifts the result right by 16. Returns a 16-bit complex
result.

C_result = CL_round32_16(CL_sub(Cl_varl,
C scale(C var2, vard)));

CL_round32_16(CL_varl) Rounds the lower 16 bits of the 32-bit complex number CL_varl into the
most significant 16 bits with saturation. Shifts the resulting bits right by
16 and returns the 16-bit complex number.

If real and imaginary of CL_varlisin 1Q31 format, then the result
returned will be rounded and saturated to 1Q15 format.

C _Extract_real(C_varl) Return the real part of a 16-bit complex number C_var

C_Extract_imag (C_varl) Return the imaginary part of a 16-bit complex number C_var

ETSI

3GPP TR 26.973 version 19.0.0 Release 19

C_scae(C varl,var2)

C_negate(C_varl)

C_conjugate(C_varl)

C_shr(C_varl, var2)

C shl(C varl,var2)

40 ETSI TR 126 973 V19.0.0 (2025-10)
Multiply the real and imaginary parts of a 16-bit complex number C_var
by a 16-bit varl. Returns 32-bit complex number

Negate the 16-bit complex number, saturate and return a 16 bit complex
number.

Negate only the imaginary part of a 16 bit complex number C_varl with
saturation. No change in the real part.

Arithmetically shifts right the real and imaginary parts of the 16-bit
complex number C_varl by var2 positions.

If var2 is negative, real and imaginary parts of C_varl are shifted to the
most significant bits by (-var2) positions with 16-bit saturation control.

If var2 is positive, real and imaginary parts of C_varl are shifted to the
least significant bits by (var2) positions with sign extension

Arithmetically shift left the real and imaginary parts of the 16-bit
complex number C_varl by var2 positions

If var2 is negative, real and imaginary parts of C_varl are shifted to the
least significant bits by (-var2) positions with sign extension

If var2 is positive, real and imaginary parts of C_varl are shifted to the
most significant bits by (var2) positions with 16-bit saturation control

A.4 Basic operators for control operation

The following basic operators should be used in the control processing part of the reference code. They are expected to
help compilers generate more efficient code for control sections of the reference C code. In addition, they also help in

computing a more accurate representation of
operations) of the reference code.

LT_16(vaerl, var2)

GT_16(varl, var2)

LE_16(varl, var2)

GE_16(varl, var2)

EQ_16(varl, var2)

NE_16(varl, var2)

control code operations in the total WM OPs (weighted millions of

Return 1 if 16 bit variable varl is less than 16 bit variable var2, else
return O

Return 1 if 16 bit variable varl is greater than 16 bit variable var2, else
return O

Return 1 if 16 bit variable varl isless than or equal to 16 bit variable
var2, elsereturn 0.

Return 1 if 16 bit variable varl is greater than or equal to 16 bit variable
var2, elsereturn 0

Return 1 if 16 bit variable varl is equal to 16 bit variable var2, else return
0

Return 1 if 16 bit variable varl is not equal to 16 bit variable var2, else
return O

ETSI

3GPP TR 26.973 version 19.0.0 Release 19

LT _32(L_varl, L_var2)

GT_32(L_varl, L_var?2)

LE 32(L_varl, L_var2)

GE_32(L_varl, L_var2)

EQ 32(L_varl, L_var2)

NE_32(L_varl, L_var2)

LT_64(W_varl, W_var2)

GT_64(W_varl, W_var2)

LE_64(W_varl, W_var2)

GE_64(W_varl, W_var2)

NE_64(W_varl, W_var2)

EQ_64(W_varl, W_var2)

41 ETSI TR 126 973 V19.0.0 (2025-10)

Return 1 if 32 bit variable L_varl islessthan 32 bit variable L_var2, else
return O

Return 1 if 32 bit variable L_varl is greater than 32 bit variable L_var2,
elsereturn 0

Return 1 if 32 bit variable L_varl isless than or equal to 32 hit variable
L_var2, elsereturn 0

Return 1 if 32 bit variable L_varl is greater than or equal to 32 bit
variable L_var2, elsereturn 0.

Return 1 if 32 bit variable L_varl isequal to 32 bit variable L_var2, else
return O

Return 1 if 32 bit variable L_varl isnot equal to 32 bit variable L_var2,
elsereturn 0

Return 1 if 64 bit variable W_varl isless than 64 bit variable W_var2,
elsereturn 0

Return 1 if 64 bit variable W_varl is greater than 64 bit variable W_var2,
elsereturn 0

Return 1 if 64 bit variable W_varl isless than or equal to 64 bit variable
W_var2, elsereturn 0

Return 1 if 64 bit variable W_varl is greater than or equal to 64 bit
variable W_var2, else return 0.

Return 1 if 64 bit variable W_varl is not equal to 64 bit variable W_var2,
elsereturn 0

Return 1 if 64 bit variable W_varl isequal to 64 bit variable W_var2,
elsereturn 0

ETSI

3GPP TR 26.973 version 19.0.0 Release 19

42 ETSI TR 126 973 V19.0.0 (2025-10)

A.5 Basic operators for unsigned data types

UL_addNs (UL_varl, UL_var2, *varl)

UL_subNs (UL _varl, UL_var2, *varl)

norm_ul (UL_varl)

UL _Mpy 32 32(UL_varl, UL _var2)

Mpy_32 32 uu(UL_varl, UL _var2,
*UL_var3, *UL_vard)

Mpy_ 32 16 uu(UL_varl, U varl,
UL_varout_h, U_varout_I)

UL_deposit_I(U_varl)

Adds the two unsigned 32-bit variables UL_varl and UL_var2 with
overflow control, but without saturation. Returns 32-bit unsigned result.
varlisset to 1if wrap around occurred, otherwise 0.

Subtracts the 32-bit usigned variable UL_var2 from the 32-bit unsigned
variable UL_varl with overflow control, but without saturation. Returns
32-bit unsigned result. varl is set to 1 if wrap around (to "negative")
occurred, otherwise 0.

Produces the number of left shifts needed to normalize the 32-bit
unsigned variable UL_varl for positive values on the interval with
minimum of 0 and maximum of Oxffffffff. If UL_varl contains 0, return
0.

Multiplies the two unsigned values UL_varl and UL_var2 and returns
the lower 32 hits, without saturation control.

UL _varl and UL_var2 are supposed to bein Q32 format.

The result is produced in Q64 format, the 32 LS bits.

Operates like aregular 32x32-bit unsigned int multiplication in ANSI-C.
Multiplies the two unsigned 32-bit variables UL_varl and UL_var2.
The operation is performed in fractional mode.

UL _varl and UL_var2 are supposed to bein Q32 format.

Theresult is produced in Q64 format: UL_varout_h pointsto the 32 MS
bits while UL_varout_| points to the 32 LS bits.

Multiplies the unsigned 32-bit variable UL_varl with the unsigned 16-bit
variable U_varl.

The operation is performed in fractional mode :
UL _varl is supposed to bein Q32 format.
U_varl is supposed to be in Q16 format.

Theresult is produced in Q48 format: UL_varout_h pointsto the 32 MS
bits while U_varout_| pointsto the 16 LS bits.

Deposit the 16-bit U_varl into the 16 L S bits of the 32-bit output. The 16
MS bits of the output are not sign extended.

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 43

ETSI TR 126 973 V19.0.0 (2025-10)

Annex B:

Weights of the STL basic operators

This annex contains alist of the existing STL2009 and new extensions referred to as STL2017 basic operators and their
weights for the modern DSP architectures.

Legends

STL-2009 basic operators

STL-2017 Complex basic operators

STL-2017 64-bit basic operators

STL-2017 Enhanced 32-bit basic operators

STL-2017 Unsigned basic operators

STL-2017 Control code basic operators

BASOPS

Complexity Weights

Existing
STL2009 as is Updated

Comments

add

sub

abs s

shl

shr

extract_h

extract |

mult

L mult

negate

round

L _mac

L _msu

L macNs

L msuNs

L _add

L sub

L add c

L sub c

L_negate

L_shl

L shr

mult_r

shr r

Reduced to reflect modern processor architecture

mac_r

msu_r

L_deposit_h

L_deposit_|

L shr r

Reduced to reflect modern processor architecture

L abs

L sat

Reduced to reflect modern processor architecture

norm s

div_s

norm |

movel6

move32

Reduced to reflect modern processor architecture

Logicl6

Logic32

Reduced to reflect modern processor architecture

Test

Reduced to reflect modern processor architecture

S_Mmax

s _min

L _max

NSNS NN AN AR R NN N N N N N A N NN N N N NI N NS SN NSNS NS AN N N RN SN
NS AR AR S NS N Y A N S S N S SN N N NN N N S S SN S S S N N N N S eSS

ETSI

3GPP TR 26.973 version 19.0.0 Release 19

44

ETSI TR 126 973 V19.0.0 (2025-10)

BASOPS

Complexity Weights

Existing
STL2009 as is

Updated

Comments

L min

L40 max

L40_min

shl r

Reduced to reflect modern processor architecture

L shl r

Reduced to reflect modern processor architecture

L40 shr r

Reduced to reflect modern processor architecture

L40 shl r

Reduced to reflect modern processor architecture

norm_L40

L40 shl

L40 shr

L40 negate

L40_add

L40 sub

L40 abs

L40 mult

L40_mac

mac r40

L40 msu

msu_r40

Mpy_32_16_ss

Mpy_32 32_ss

Reduced to reflect modern processor architecture

L _mult0

L_macO

L _msu0

Ishl

Ishr

L _Ishl

L _Ishr

L40_Ishl

L40 Ishr

s_and

s_or

S _xor

L and

L or

L xor

rotl

rotr

L rotl

L rotr

L40_set

Reduced to reflect modern processor architecture

L40_deposit_h

L40_deposit_|

L40_deposit32

Extract40 H

Extract40 L

L_Extract40

L40 round

L saturate40

round40

IF

GOTO

BREAK

SWITCH

FOR

WHILE

CONTINUE

L mls

Reduced to reflect modern processor architecture

div_|

i mult

ARG NN A NN N AR R R N N NN N A A A R N N I NN NS NSNS S NS NS NN N N N NI NS N N N N NN NN N Y NI N NS N NS N A N DS

Reduced to reflect modern processor architecture

CL shr

CL_shl

H RN RN N AR R R R NN N N N I I S S A S S S N S N S A SN N N S Y Y S S S S S N E E DI Y S

ETSI

3GPP TR 26.973 version 19.0.0 Release 19

45

ETSI TR 126 973 V19.0.0 (2025-10)

BASOPS

Complexity Weights

Existing
STL2009 as is

Updated

Comments

CL _add

CL_sub

CL_scale

CL_dscale

CL_msu_j

CL_mac_j

CL_move

CL_Extract real

CL_Extract_imag

CL form

CL multr 32x16

CL_negate

CL_conjugate

CL_mul_j

CL_swap_real_imag

C _add

C sub

C_mul_j

C_multr

C form

CL_scale 32

CL_dscale 32

CL_multr_32x32

C mac r

C msu r

CL round32 16

C_Extract_real

C_Extract_imag

C scale

C_negate

C_conjugate

C_shr

C_shl

move64

W _add nosat

W _sub _nosat

W_shl

W_shr

W _shl nosat

W shr nosat

W mac 32 16

SIMD and VLIW friendly basops

W_msu_32_16

SIMD and VLIW friendly basops

W_mult_32_16

SIMD and VLIW friendly basops

W_mult0_16_16

SIMD and VLIW friendly basops

W macO 16 16

SIMD and VLIW friendly basops

W msu0 16 16

SIMD and VLIW friendly basops

W_mult_16_16

SIMD and VLIW friendly basops

W _mac 16 16

SIMD and VLIW friendly basops

W msu 16 16

SIMD and VLIW friendly basops

W shl sat |

W sat |

W _sat m

W_deposit32_|

W_deposit32_h

W_extract |

W _extract h

W _round48 L

W _round32_s

W_norm

W_add

W sub

W_neg

SN AR AR AR AN N N N N SN S S S S N N S S S S E N N N N S SN N N S S SN Y D Y S S S S N I S S Y N T S

ETSI

3GPP TR 26.973 version 19.0.0 Release 19

46

ETSI TR 126 973 V19.0.0 (2025-10)

Complexity Weights

Existing
BASOPS STL2009 as is Updated Comments
W_abs 1
W_mult_32_32 1
W_mult0_32 32 1
W_lIshl 1
W_Ishr 1
W_round64 L 1
Mpy 32 16 1 1
Mpy 32 16 r 1
Mpy_32_32 1
Mpy 32 32 r 1
Madd 32_16 1
Madd 32 16 r 1
Msub_32_16 1
Msub 32 16 r 1
Madd_32_32 1
Madd 32 32 r 1
Msub_32_32 1
Msub 32 32 r 1
UL_addNs 1 Previous weight, when used in the EVS codec [2], was 2
UL_subNs 1 Previous weight, when used in the EVS codec [2], was 2
UL Mpy 32 32 1 Previous weight, when used in the EVS codec [2], was 2
Mpy 32 32 uu 2 Previous weight, when used in the EVS codec [2], was 4
Mpy 32 16 uu 2 Previous weight, when used in the EVS codec [2], was 4
norm_ul 1 Previous weight, when used in the EVS codec [2], was 2
UL_deposit_| 1 Previous weight, when used in the EVS codec [2], was 2
LT 16 1
GT 16 1
LE_16 1
GE_ 16 1
EQ 16 1
NE_16 1
LT 32 1
GT_32 1
LE 32 1
GE_32 1
EQ 32 1
NE 32 1
LT 64 1
GT_64 1
LE 64 1
GE_64 1
EQ 64 1
NE_64 1

ETSI

3GPP TR 26.973 version 19.0.0 Release 19 a7 ETSI TR 126 973 V19.0.0 (2025-10)

Annex C:
Change history

Change history

Date Meeting |TDoc CR | Rev [Cat |Subject/Comment New
version

2017-12 | SA#78 SP-170834 Presented to TSG SA#78 for information 1.0.0

2018-03 | SA#79 SP-180029 Presented to TSG SA#79 for approval 2.0.0

2018-03 Version 15.0.0 approved at TSG SA#79 15.0.0

2018-09 | SA#81 SP-180653 (000 | 2 F |Corrections, modification of Experiment 4 and addition to 15.1.0

4 fixed-point basic operators

2018-12 | SA#82 | SP-180972 gOO - | F [Correction of CR implementation 15.2.0

2018-12 | SA#82 | SP-180972 200 - F |Correction of an invalid EVS test configuration 15.2.0

2020-07 | SA#88-e Version Upgrade for Release 16 16.1.0

2022-04 - - - - - |Update to Rel-17 version (MCC) 17.0.0

2022-12 | SA#98-e | SP-221055 Inclusive language review — Update to fixed-point basic 17.1.0

operators
2024-03 - - - - - _|Update to Rel-18 version (MCC) 18.0.0
2025-10 - - - - | - [Update to Rel-19 version (MCC) 19.00

ETSI

3GPP TR 26.973 version 19.0.0 Release 19

48

ETSI TR 126 973 V19.0.0 (2025-10)

History

Document history

V19.0.0

October 2025

Publication

ETSI

	Intellectual Property Rights
	Legal Notice
	Modal verbs terminology
	Foreword
	Introduction
	1 Scope
	2 References
	3 Abbreviations
	4 Extension to the STL2009 Basic Operators
	4.1 Analysis of the gap between current basic operators and modern DSP architectures
	4.2 Test methodology for validating the extended basic operators
	4.2.0 General
	4.2.1 Test methodology
	4.2.2 Test results for basic operator Mpy_32_16_1
	4.2.3 Test results
	4.2.4 Test results conclusion

	5 Alternative EVS Implementation Using the Extended Basic Operators
	5.1 Merits of an alternative EVS implementation using the extended basic operators
	5.2 Example pseudo code to illustrate some of the benefits of modern DSP architectures
	5.3 Validation of an alternative EVS implementation using updated basic operators
	5.3.1 C-code inspection
	5.3.2 Objective performance evaluation of the alternative EVS implementation
	5.3.3 Subjective performance evaluation of the alternative EVS implementation

	6 Conclusions
	Annex A: Extended Basic Operators
	A.1 Basic operators that use 64 bit registers/accumulators
	A.2 Basic operators which use 32 bit precision multiply
	A.3 Basic operators which use complex data types
	A.4 Basic operators for control operation
	A.5 Basic operators for unsigned data types

	Annex B: Weights of the STL basic operators
	Annex C: Change history
	History

