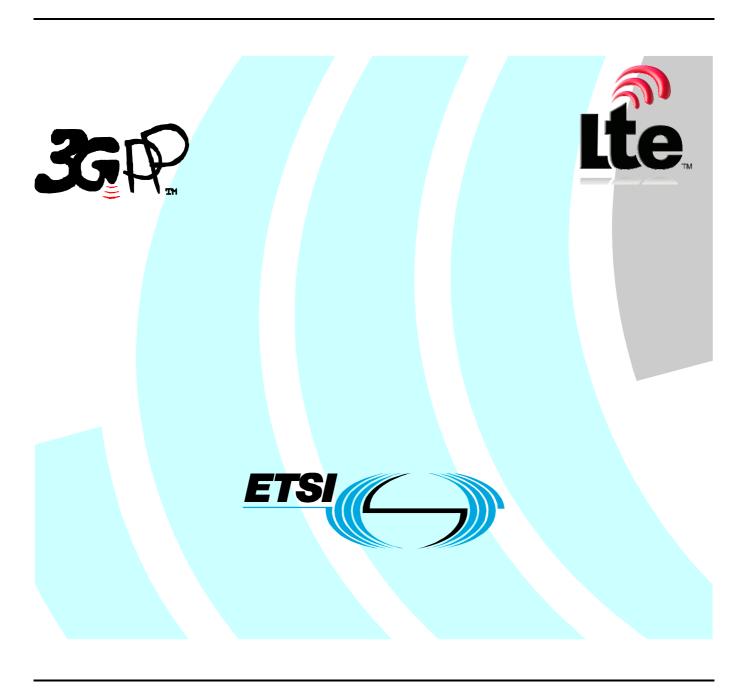
ETSI TR 125 913 V9.0.0 (2010-02)

Technical Report


Universal Mobile Telecommunications System (UMTS);

LTE;

Requirements for Evolved UTRA (E-UTRA)

and Evolved UTRAN (E-UTRAN)

(3GPP TR 25.913 version 9.0.0 Release 9)

Reference
RTR/TSGR-0025913v900

Keywords
LTE, UMTS

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2010.
All rights reserved.

DECTTM, **PLUGTESTS**TM, **UMTS**TM, **TIPHON**TM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.

3GPP[™] is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **LTE**[™] is a Trade Mark of ETSI currently being registered

for the benefit of its Members and of the 3GPP Organizational Partners. **GSM**® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Report (TR) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Contents

Intell	ectual Property Rights	2
Forev	word	2
Forev	word	4
1	Scope	5
2	References	
3	Definitions, symbols and abbreviations	
3.1	Definitions	
3.2	Symbols	5
3.3	Abbreviations	5
4	Introduction	6
5	Objectives	6
6	Capability-related requirements	7
6.1	Peak Data Rate	
6.2	Latency	
6.2.1	C-plane latency	
6.2.1.	1 1 2	
6.2.2	U-Plane Latency	
7	System performance requirements	8
7.1	User throughput	
7.2	Spectrum efficiency	
7.3	Mobility	
7.4	Coverage	
7.5	Further Enhanced MBMS	
7.6	Network synchronization	
8	Deployment-related requirements	
8.1	Deployment Scenarios	
8.2	Spectrum flexibility	
8.3	Spectrum deployment	
8.4	Co-existence and interworking with 3GPP RAT	12
9	Requirements for E-UTRAN architecture and migration	13
10	Radio Resource Management requirements	13
10.1	Enhanced support for end to end QoS	
10.2	Efficient support for transmission of higher layers	
10.3	Support of load sharing and policy management across different Radio Access Technologies	14
11	Complexity requirements	14
11.1	Complexity requirements for overall system	
11.2	Complexity requirements for UE	14
12	General requirements	15
12.1	Cost-related requirements	
12.1	Service-related requirements	
	•	
13	Working history and work plan	
Anne	ex A: Change history	18
Histo	ary	10

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

This document is related to the technical report for the study item "Evolved UTRA and UTRAN" [1]. The objective of the study item is to develop a framework for the evolution of the 3GPP radio-access technology towards a high-data-rate, low-latency and packet-optimized radio access technology.

This document provides guidance and collects requirements which an evolved UTRA and UTRAN system should meet.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TD RP-040461: "Proposed Study Item on Evolved UTRA and UTRAN".
- [2] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

3 Definitions, symbols and abbreviations

3.1 Definitions

Void

3.2 Symbols

Void

3.3 Abbreviations

For the purposes of the present document, the abbreviations defined in 3GPP TS 21.905 [2] and the following apply:

CAPEX Capital expenditure
CS Circuit Switched
DRX Discontinuous Reception

E-UTRA Evolved UTRA E-UTRAN Evolved UTRAN

HSDPA High Speed Dowlink Packet Access
MIMO Multiple Input Multiple Output

NAS Non Access Stratum
OPEX Operational expenditure
QoS Quality of Service
PS Packet Switched

TCP Transmission Control Protocol

UE User Equipment

4 Introduction

At the 3GPP TSG RAN #26 meeting, the Study Item description on "Evolved UTRA and UTRAN" was approved [1].

The justification of the Study Item was that with enhancements such as HSDPA and Enhanced Uplink, the 3GPP radio-access technology will be highly competitive for several years. However, to ensure competitiveness in an even longer time frame, i.e. for the next 10 years and beyond, a long-term evolution of the 3GPP radio-access technology needs to be considered.

Important parts of such a long-term evolution include reduced latency, higher user data rates, improved system capacity and coverage, and reduced cost for the operator. In order to achieve this, an evolution of the radio interface as well as the radio network architecture should be considered.

Considering a desire for even higher data rates and also taking into account future additional 3G spectrum allocations the long-term 3GPP evolution should include an evolution towards support for wider transmission bandwidth than 5 MHz. At the same time, support for transmission bandwidths of 5MHz and less than 5MHz should be investigated in order to allow for more flexibility in whichever frequency bands the system may be deployed.

5 Objectives

The objective of Evolved UTRA and UTRAN is to develop a framework for the evolution of the 3GPP radio-access technology towards a high-data-rate, low-latency and packet-optimized radio-access technology. Thus the study should focus on supporting services provided from the PS-domain. In order to achieve this, studies should be carried out in at least the following areas:

- Related to the radio-interface physical layer (downlink and uplink):
 - e.g. means to support flexible transmission bandwidth up to 20 MHz, introduction of new transmission schemes and advanced multi-antenna technologies
- Related to the radio interface layer 2 and 3:
 - e.g. signalling optimization
- Related to the UTRAN architecture:
 - identify the most optimum UTRAN network architecture and functional split between RAN network nodes, not precluding considerations on the functional split between UTRAN and CN
- RF-related issues

The targets for the evolution of the radio-interface and radio-access network architecture should be:

- Significantly increased peak data rate e.g. 100 Mbps (downlink) and 50 Mbps (uplink)
- Increase "cell edge bitrate" whilst maintaining same site locations as deployed today
- Significantly improved spectrum efficiency (e.g. 2-4 x Release 6)
- Possibility for a Radio-access network latency (user-plane UE RNC (or corresponding node above Node B) UE) below 10 ms
- Significantly reduced C-plane latency (e.g. including the possibility to exchange user-plane data starting from camped-state with a transition time of less than 100 ms (excluding downlink paging delay))
- Scaleable bandwidth
 - 5, 10, 20 and possibly 15 MHz
 - [1.25,] [1.6,] 2.5 MHz: to allow flexibility in narrow spectral allocations where the system may be deployed
- Support for inter-working with existing 3G systems and non-3GPP specified systems

- Further enhanced MBMS
- Reduced CAPEX and OPEX including backhaul
- Cost effective migration from Release 6 UTRA radio interface and architecture
- Reasonable system and terminal complexity, cost, and power consumption.
- Support of further enhanced IMS and core network
- Backwards compatibility is highly desirable, but the trade off versus performance and/or capability enhancements should be carefully considered.
- Efficient support of the various types of services, especially from the PS domain (e.g. Voice over IP, Presence)
- System should be optimized for low mobile speed but also support high mobile speed
- Operation in paired and unpaired spectrum should not be precluded
- Possibility for simplified co-existence between operators in adjacent bands as well as cross-border co-existence

6 Capability-related requirements

6.1 Peak Data Rate

E-UTRA should support significantly increased instantaneous peak data rates. The supported peak data rate should scale according to size of the spectrum allocation.

Note that the peak data rates may depend on the numbers of transmit and receive antennas at the UE. The targets for downlink (DL) and uplink (UL) peak data rates are specified in terms of a reference UE configuration comprising:

- a) Downlink capability 2 receive antennas at UE
- b) Uplink capability 1 transmit antenna at UE

For this baseline configuration, the system should support an instantaneous downlink peak data rate of 100Mb/s within a 20 MHz downlink spectrum allocation (5 bps/Hz) and an instantaneous uplink peak data rate of 50Mb/s (2.5 bps/Hz) within a 20MHz uplink spectrum allocation. The peak data rates should then scale linearly with the size of the spectrum allocation.

In case of spectrum shared between downlink and uplink transmission, E-UTRA does not need to support the above instantaneous peak data rates simultaneously.

6.2 Latency

6.2.1 C-plane latency

Significantly reduced C-plane latency

- a) Transition time (excluding downlink paging delay and NAS signalling delay) of less than 100 ms from a camped-state, such as Release 6 Idle Mode, to an active state such as Release 6 CELL_DCH, in such a way that the user plane is established.
- b) Transition time (excluding DRX interval) of less than 50 ms between a dormant state such as Release 6 CELL_PCH and an active state such as Release 6 CELL_DCH.

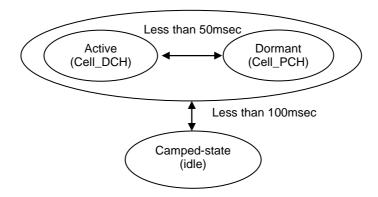


Figure 6.1: An example of state transition

6.2.1.1 C-plane Capacity

The system should be able to support a large number of users per cell with quasi instantaneous access to radio resources in the active state. It is expected that at least 200 users per cell should be supported in the active state for spectrum allocations up to 5 MHz, and at least 400 users for higher spectrum allocation. A much higher number of users is expected to be supported in the dormant and camped state.

6.2.2 U-Plane Latency

Following definitions apply to user-plane latency requirements:

U-Plane Delay Definition – U-plane delay is defined in terms of the one-way transit time between a packet being available at the IP layer in either the UE/RAN edge node and the availability of this packet at IP layer in the RAN edge node/UE. The RAN edge node is the node providing the RAN interface towards the core network.

Specifications shall enable an E-UTRA U-plane latency of less than 5 ms in unload condition (ie single user with single data stream) for small IP packet, e.g. 0 byte payload + IP headers E-UTRAN bandwidth mode may impact the experienced latency

Note: This requirement, more specifically the exact definition of latency, may be revisited and further clarified once there is a 3GPP system end-to-end requirement agreed and the overall system architecture is settled, including the RAN and core network functional split. This means that the network entities between which the U-plane latency requirement of E-UTRAN applies, will finally be defined at a later stage.

7 System performance requirements

It is assumed that the different system performance targets defined in clause 7.1 and 7.2 should be achieved with a single system configuration of E-UTRA and UTRA (i.e. same system configuration used for average/cell edge user throughput or spectral efficiency).

7.1 User throughput

All the targets below are important, however the cell edge targets are significant since they impact the dimensioning of the network and help deliver a more uniform user experience across the cell area. For these reasons, and considering that the average throughput and spectral efficiency will benefit significantly from MIMO and improved orthogonality whereas cell edge performance might not, the cell edge targets are more challenging than the average throughput and spectral efficiency.

The upper limits of the target ranges should also be given serious consideration in order that E-UTRA is as competitive possible.

Downlink

- Target for user throughput per MHz at the 5 % point of the C.D.F., 2 to 3 times Release 6 HSDPA.
- Target for averaged user throughput per MHz, 3 to 4 times Release 6 HSDPA Both targets should be achieved assuming Release 6 reference performance is based on a single Tx antenna at the Node B with enhanced performance type 1 receiver in UE whilst the E-UTRA may use a maximum of 2 Tx antennas at the Node B and 2 Rx antennas at the UE.
- The supported user throughput should scale with the spectrum bandwidth.

Uplink

- Target for user throughput per MHz at the 5 % point of the C.D.F., 2 to 3 times Release 6 Enhanced Uplink (deployed with a single Tx antenna at the UE and 2 Rx antennas at the Node B).
- Target for averaged user throughput per MHz, 2 to 3 times Release 6 Enhanced Uplink (deployed with a single Tx antenna at the UE and 2 Rx antennas at the Node B).
- Both should be achievable by the E-UTRA using a maximum of a single Tx antenna at the UE and 2 Rx antennas at the Node B. Greater user throughput should be achievable using multiple Tx antennas at the UE.
- The user throughput should scale with the spectrum bandwidth provided that the maximum transmit power is also scaled.

7.2 Spectrum efficiency

E-UTRA should deliver significantly improved spectrum efficiency and increased cell edge bit rate whilst maintaining the same site locations as deployed today.

Spectrum efficiency needs to be significantly increased as followings:

Downlink

In a loaded network, target for spectrum efficiency (bits/sec/Hz/site), 3 to 4 times Release 6 HSDPA This should be achieved assuming Release 6 reference performance is based on a single Tx antenna at the Node B with enhanced performance type 1 receiver in UE whilst the E-UTRA may use a maximum of 2 Tx antennas at the Node B and 2 Rx antennas at the UE.

Uplink

In a loaded network, target for spectrum efficiency (bits/sec/Hz/site), 2 to 3 times Release 6 Enhanced Uplink (deployed with a single Tx antenna at the UE and 2 Rx antennas at the Node B). This should be achievable by the E-UTRA using a maximum of a single Tx antenna at the UE and 2Rx antennas at the Node B.

7.3 Mobility

The E-UTRAN shall support mobility across the cellular network and should be optimized for low mobile speed from 0 to 15 km/h. Higher mobile speed between 15 and 120 km/h should be supported with high performance. Mobility across the cellular network shall be maintained at speeds from 120 km/h to 350 km/h (or even up to 500 km/h depending on the frequency band). Voice and other real-time services supported in the CS domain in R6 shall be supported by E-UTRAN via the PS domain with at least equal quality as supported by UTRAN (e.g. in terms of guaranteed bit rate)—over the whole of the speed range. The impact of intra E-UTRA handovers on quality (e.g. interruption time) shall be less than or equal to that provided by CS domain handovers in GERAN.

The mobile speed above 250 km/h represents special case, such as high speed train environment. In such case a special scenario applies for issues such as mobility solutions and channel models. For the physical layer parameterization E-UTRAN should be able to maintain the connection up to 350 km/h, or even up to 500 km/h depending on the frequency band.

The E-UTRAN shall also support techniques and mechanisms to optimize delay and packet loss during intra system handover.

7.4 Coverage

E-UTRA should be sufficiently flexible to support a variety of coverage scenarios for which the performance targets of clause 7.1, 7.2 and 7.3 should be met assuming the reuse of existing UTRAN sites and the same carrier frequency. Reference scenarios shall be defined that are representative of current UTRAN deployments.

When defining reference scenarios to determine whether the targets outlined in this chapter are achieved, especially those for cell edge performance, it should be taken into account that these are based on the assumption of a C/I limited scenario. For C/N limited scenarios (e.g. deep indoor) the improvement expected over HSDPA/Enhanced Uplink Release 6 is not as substantial

E-UTRA should support the following deployment scenarios in terms of maximum cell range:

- up to 5 km: performance targets defined in clause 7.1, 7.2, and 7.3 should be met.
- up to 30 km: slight degradations in the achieved performance for the targets defined in clause 7.1 and more significant degradation for the targets defined in the clause 7.2 is acceptable however mobility performance targets defined in clause 7.3 should be met.
- up to 100 km: should not be precluded by the specifications.

7.5 Further Enhanced MBMS

E-UTRA systems should support enhanced MBMS modes compared to UTRA operation.

Further requirements applicable to MBMS systems are:

As for the unicast case, E-UTRA should be capable of achieving the target performance levels when operating from the same site locations as existing UTRA systems.

Note: In sections referring to MBMS requirements, the term "broadcast" means "point-to-multipoint"

For broadcast transmission, E-UTRA should be capable of achieving the following target performance level at cell edge when operating from the same site locations as existing UTRA systems:

In the deployment scenario where a dedicated carrier is used for broadcast only:

- When operating with the same content for all cells or for a group of cells broadcasting MBMS, the target performance level is FFS. Additionally techniques to improve the cell edge performance should be studied.

Note: In Broadcast mode E-UTRA MBMS should aim the cell edge spectrum efficiency of [1 bit/s/Hz] equivalent to the support at least [16] Mobile TV channels at around [300 kbps] per channel in a 5 MHz carrier in an urban or suburban environment.

- When operating with cell specific content the target performance level is FFS.

In the deployment scenario where a carrier is shared between broadcast & unicast traffic:

- The target performance at cell edge for broadcast traffic should be in line with the existing target performance for the unicast traffic.

Note: Additionally techniques to improve the cell edge performance without modifying the system designed for unicast could be used.

Interruption time requirements:

It is understood than the total service interruption perceived by the user is caused by different factors: E-UTRAN, CN, Application. The following targets only concern the E-UTRAN part.

The following requirements should be based on the response from SA on the overall service requirements requested in LS to TSG SA on service requirements for LTE MBMS (Tdoc06-0216).

a) The interruption time when changing between two broadcast streams (e.g.: two TV Channels) received in the same cell should be less than FFS.

- b) The interruption time when changing between a broadcast stream and a unicast stream of the same service type (e.g.: TV Channel) received in the same cell should be less than FFS.
- c) The interruption time when changing between two broadcast streams (e.g.: two TV Channels) received on different carriers should be less than FFS.
- d) The interruption time when changing between a broadcast stream and a unicast stream of the same service type (e.g.: TV Channel) but received on different carriers should be less than FFS.
- e) The interruption time when changing between a broadcast stream on one cell and a unicast stream of the same service (e.g.: same TV Channel) on a different cell, but received on the same carrier, should be less than FFS.

E-UTRA should provide enhanced support for MBMS services. Specifically, E-UTRA support for MBMS should take the following requirements into account:

- a) Physical Layer Component Re-use in order to reduce E-UTRA terminal complexity, the same fundamental modulation, coding and multiple access approaches used for unicast operation should apply to MBMS services, and the same UE bandwidth mode set supported for unicast operation should be applicable to MBMS operation. E-UTRA broadcast transmission shall be supported on a dedicated carrier for broadcast traffic or a carrier shared (in Frequency or Time Domain) with unicast traffic. E-UTRA broadcast transmission should use the same fundamental modulation, coding and multiple access whether it is deployed on dedicated carrier or a carrier shared with unicast.
- Note: In the case of broadcast transmission being supported on a dedicated MBMS carrier, modifications aiming at a simpler solution optimised for Downlink-only traffic and reducing UE complexity whilst maximising the usage of the radio resource should show a clear benefit.
- **b) Voice and MBMS** the E-UTRA approach to MBMS should permit simultaneous, tightly integrated and efficient provisioning of dedicated voice and MBMS services to the user.
- c) Data and MBMS The E-UTRA approach to MBMS should permit simultaneous, tightly integrated and efficient provisioning of dedicated data and MBMS services to the user.
- **d) Unpaired MBMS Operation** the deployment of E-UTRA carriers bearing MBMS services in unpaired spectrum arrangements should be supported

7.6 Network synchronization

It is expected that the system performance requirements defined in this TR should be achieved in a network deployment not using any inter-site time synchronization. However optimizations based on inter-site time synchronization should be supported provided these bring sufficient benefits.

8 Deployment-related requirements

8.1 Deployment Scenarios

There is a huge range of deployment scenarios that could be considered however at a high-level E-UTRAN shall support the following two deployment scenarios:

- Standalone deployment scenario: In this scenario the operator is deploying E-UTRAN either with no previous network deployed in the area or it could be deployed in areas where there is existing UTRAN/GERAN coverage but for any reason there is no requirement for interworking with UTRAN/GERAN (e.g. standalone wireless broadband application).
- Integrating with existing UTRAN and/or GERAN deployment scenario: In this scenario it is assumed that the operator is having either a UTRAN and/or a GERAN network deployed with full or partial coverage in the same geographical area. It is assumed that the GERAN and UTRAN networks respectively can have differently levels of maturity.

The exact nature of the deployment and the associated requirements (e.g. common equipment, inter-working) will be driven by the demand for mobile services and the competitive environment.

8.2 Spectrum flexibility

- a) Support for spectrum allocations of different size
 - E-UTRA shall operate in spectrum allocations of different sizes, including 1.25 MHz, 1.6MHz (intended primarily for use due spectrum compatibility on the bands with 1.28 Mcps TDD), 2.5 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz. in both the uplink and downlink. Operation in paired and unpaired spectrum shall be supported.
 - 2) E-UTRA shall enable the flexibility to support broadcast transmission in both modes: "Downlink-only", and "Downlink and Uplink" allowing an optimised usage of the available spectrum.
 - 3) E-UTRA shall enable the flexibility to modify the radio resource allocation for broadcast transmission according to specific demand or operator's policy. Eg: Emergency situation, special local or global events.
 - 4) Unnecessary fragmentation of technologies for paired and unpaired band operation shall be avoided. This shall be achieved with minimal additional complexity.
- b) Support for diverse spectrum arrangements
 - 1) The system shall be able to support (same and different) content delivery over an aggregation of resources including Radio Band Resources (as well as power, adaptive scheduling, etc) in the same and different bands, in both uplink and downlink and in both adjacent and non-adjacent channel arrangements.
 - 2) The degree to which the above requirement is supported is conditioned on the increase in UE and network complexity and cost.
 - 3) A "Radio Band Resource" is defined as all spectrum available to an operator.

8.3 Spectrum deployment

E-UTRA is required to cope with following scenarios:

- a) Co-existence in the same geographical area and co-location with GERAN/3G on adjacent channels.
- b) Co-existence in the same geographical area and co-location between operators on adjacent channels.
- c) Co-existence on overlapping and/or adjacent spectrum at country borders.
- d) E-UTRA shall be possible to operate standalone, i.e. there is no need for any other carrier to be available.
- e) All frequency bands should be allowed following release independent frequency band principles

Note In case of border co-ordination requirement, other aspects such as possible scheduling solutions should be considered together with physical layer behaviour.

8.4 Co-existence and interworking with 3GPP RAT

The following requirements are applicable to inter-working between E-UTRA and other 3GPP systems:

- a) E-UTRAN Terminals supporting also UTRAN and/or GERAN operation should be able to support measurement of, and handover from and to, both 3GPP UTRA and 3GPP GERAN systems correspondingly with acceptable impact on terminal complexity and network performance.
- b) E-UTRAN is required to efficiently support inter-RAT measurements with acceptable impact on terminal complexity and network performance, by e.g. providing UE's with measurement opportunities through downlink and uplink scheduling.
- The interruption time during a handover of real-time services between E-UTRAN and UTRAN is less than 300 msec
- d) The interruption time during a handover of non real-time services between E-UTRAN and UTRAN should be less than 500 msec

- e) The interruption time during a handover of real-time services between E-UTRAN and GERAN is less than 300 msec
- f) The interruption time during a handover of non real-time services between E-UTRAN and GERAN should be less than 500 msec
- g) Non-active terminals (such as one being in Release 6 idle mode or CELL_PCH) which support UTRAN and/or GERAN in addition to E-UTRAN shall not need to monitor paging messages only from one of GERAN, UTRA or E-UTRA
- h) The interruption time during a handover between an E-UTRA broadcast stream and a UTRAN unicast stream providing the same service (e.g. same TV channel) is less than FFS. (Value to be agreed following SA guidance)
- i) The interruption time during a handover between an E-UTRA broadcast stream and a GERAN unicast stream providing the same service (e.g. same TV channel) is less than FFS. (Value to be agreed following SA guidance)
- j) The interruption time during a handover between an E-UTRA broadcast stream and a UTRAN broadcast stream providing the same service (e.g. same TV channel) is less than FFS. (Value to be agreed following SA guidance)

The above requirements are for the cases where the GERAN and/or UTRAN networks provide support for E-UTRAN handover.

Reduction in network and terminal complexity and cost by not mandating support for the measurements and handovers to/from GERAN/UTRAN should be considered.

Note: The interruption times above are to be considered as maximum values. These values may be revisited when the overall architecture and the E-UTRA physical layer has been defined in more detail.

9 Requirements for E-UTRAN architecture and migration

- a) A single E-UTRAN architecture should be agreed.
- b) The E-UTRAN architecture shall be packet based, although provision should be made to support systems supporting real-time and conversational class traffic.
- c) E-UTRAN architecture shall minimize the presence of "single points of failure" where possible without additional cost for backhaul.
- d) E-UTRAN architecture shall simplify and minimize the introduced number of interfaces where possible
- e) Radio Network Layer (RNL) and Transport Network Layer (TNL) interaction should not be precluded if in the interest of improved system performance
- f) E-UTRAN architecture shall support an end-to-end QoS. The TNL shall provide the appropriate QoS requested by the RNL.
- g) QoS mechanism(s) shall take into account the various types of traffic that exists to provide efficient bandwidth utilization: "Control Plane" traffic, "User Plane" traffic, O&M traffic etc.
- h) The E-UTRAN shall be designed in such a way to minimize the delay variation (jitter) for e.g. TCP/IP for packet communication.

10 Radio Resource Management requirements

This clause does not pre-suppose any particular architecture.

10.1 Enhanced support for end to end QoS

The E-UTRAN shall be enhanced to support improved QoS control, enabling a more optimal matching of service, application and protocol requirements (including higher layer signalling) to RAN resources and radio characteristics.

10.2 Efficient support for transmission of higher layers

The E-UTRAN shall provide mechanisms to support the efficient transmission and operation of higher layer protocols over the radio interface, such as IP header compression.

10.3 Support of load sharing and policy management across different Radio Access Technologies

The E-UTRAN shall provide mechanisms to support load sharing and policy management between E-UTRA and other RATs (GERAN, UTRA). To minimize latency when data needs to be transferred, reselection mechanisms to direct UEs towards appropriate RATs when the UEs are in a dormant state, as well as the active state, should be considered. Support for end to end QoS during inter RAT handover should be considered

11 Complexity requirements

11.1 Complexity requirements for overall system

E-UTRAN shall satisfy the required performance. Additionally, system complexity shall be minimized in order to stabilize the system & inter-operability in earlier stage and decrease the cost of terminal & UTRAN. For these requirements, the following shall be taken into account:

- a) Minimize the number of options
- b) No redundant mandatory features
- c) Reduce the number of necessary test cases, e.g. Reduce the number of states of protocols, minimize the number of procedures, appropriate parameter range and granularity

11.2 Complexity requirements for UE

The E-UTRA and E-UTRAN Requirements should minimize the complexity of the E-UTRA UE in terms of size, weight, battery life (standby and active) consistent with the provision of the advanced services of the E-UTRA/UTRAN.

For these requirements, the following shall be taken into account;

- a) UE complexity in terms of supporting multi-RAT (GERAN/UTRA/E-UTRA) should be considered when considering the complexity of E-UTRA features.
- b) The mandatory features shall be kept to the minimum.
- There shall be no redundant or duplicate specifications of mandatory features, or for accomplishing the same task.
- d) The number of options shall be minimized. Sets of options shall be realizable in terms of separate distinct UE "types/capabilities". Different UE "types/capabilities" shall be used to capture different complexity vs. performance trade-offs, e.g. for the impact of multiple antennas.
- e) The number of necessary test cases shall be minimized so it is feasible to complete the development of the test cases in a reasonable timeframe after the Core Specifications are completed. No unnecessary test cases shall be developed.

12 General requirements

12.1 Cost-related requirements

Cost related requirements for the E-UTRA and E-UTRAN are:

- a) Backhaul communication protocols should be optimized.
- b) The E-UTRAN architecture should reduce the cost of future network deployment whilst enabling the usage of existing site locations.
- c) All the interfaces specified shall be open for multi-vendor equipment interoperability.
- d) UE complexity and power consumption shall be minimized/optimized. Complicated UTRAN architecture and unnecessary interfaces should be avoided.
- e) More efficient and easy to use OAM&P.

12.2 Service-related requirements

The E-UTRA should efficiently support various types of service. These must include currently available services like web-browsing, FTP, video-streaming or VoIP, and more advanced services (e.g. real-time video or push-to-x) in the PS-domain.

VoIP should be supported with at least as good radio, backhaul efficiency and latency as voice traffic over the UMTS CS networks.

13 Working history and work plan

Working history and sork plan of this Study Item is summarized as following milestones per TSG RAN meetings. Work plan for SAE is included taking into account alignment between LTE and SAE work:

TSG RAN #28 (June 05)

- Revised Work plan
- Requirement TR Approved
 - Deployment Scenarios included
 - Requirements on Migration Scenarios included

TSG RAN #29 (September 05)

- Revised Work plan

TSG RAN #30 (December 05)

- Revised Work plan
- Physical Layer basics
 - Multiple access scheme
 - Macro-diversity or not

TSG RAN #31 (March 06)

- High-level concept of L1 key issues
- Simulation conditions for the system evaluation

- Radio Interface Protocol Architecture
 - Functions of RRC, MAC etc
- RAN Architecture
 - Radio interface protocol termination points
 - RRC, Outer ARQ etc. termination points
 - Key concepts on Security
- States and state transitions
 - Final state model
 - State transition between EUTRA and UTRA/GERA
- Intra EUTRA mobility in Active mode
- Revised work plan

TSG RAN #32 (June 06)

- Remaining L1 key issues for evaluation
 - Down-selection from multiple alternatives on HARQ, Link Adaptation, Scheduling, MIMO, Interference mitigation, including key aspects on related L1/L2 signaling
 - Principles of access procedures, i.e. cell search and random access (including L2 aspects)
- Methodology for the system evaluation
- RF scenarios
 - Spectrum aggregation, etc
- UE capabilities
- Core Network Architecture related to EUTRA/UTRA/GSM
- Overall System Architecture: Nodes and interfaces related to EUTRA/UTRA/GSM
- Remaining security issues
- Remaining issues on Intra EUTRA in Idle mode and EUTRA-UTRA/GSM mobility in Active and Idle modes
- Service requirements
- Legal intercept requirements
- RAN TR25.912 ready for approval
 - TR having stage 2 level of details in order for smooth transition to Work Item phase
 - The TR shall include performance assessments, UE capabilities, and system and terminal complexities
- Mobility between 3GPP and non-3GPP accesses
- Remaining issues on QoS concept
- MBMS
- Documentation of overall system migration scenarios
- Optimal routing and roaming including local breakout
- Addressing/identification requirements and solutions

- Work Items created and their time plans agreed

Annex A: Change history

Table A.1: Draft History

	Change history							
Date	TSG #	TSG Doc.	Subject/Comment	Old	New			
13/5/'05			First version		0.0.1			
23/5/'05			Revised version according to e-mail discussion	0.0.1	0.0.2			
25/5/05			Revised version according to e-mail discussion	0.0.2	0.0.3			
2/6/05	RAN#28	RP-050371	Captured the all text proposals agreed in the LTE meeting in Quebec	0.0.3	2.0.0			
3/6/05	RAN#28	RP-050384	A new clause for work plan was added. Submitted for approval at TSG RAN #28	2.0.0	2.1.0			
25/6/05			Publication after approval	2.1.0	7.0.0			

Table A.2: Release 7 CRs approved at TSG RAN #29

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-050622	25.913	0002		Rel-7	Modification on clause 12.1 (b) on re-use	F	7.0.0	7.1.0	RANFS-Evo
RP-050638	25.913	0004	1	Rel-7	Introduction of high-level deployment scenarios	F	7.0.0	7.1.0	RANFS-Evo
RP-050643	25.913	0005	1	Rel-7	Clarifications to interworking requirements	F	7.0.0	7.1.0	RANFS-Evo
RP-050616	25.913	0007		Rel-7	Change of LTE Work Plan	F	7.0.0	7.1.0	RANFS-Evo

Table A.3: Release 7 CR approved at TSG RAN #30

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-050905	25.913	0009	-	Rel-7	Revision of LTE Work Plan	F	7.1.0	7.2.0	RANFS-Evo

Table A.4: Release 7 CRs approved at TSG RAN #31

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-060210	25.913	0010	2	Rel-7	Introducing the support of 1.6MHz bandwidth	В	7.2.0	7.3.0	RANFS-Evo
RP-060220	25.913	0011	3	Rel 7	Introduction of specific requirements for support of	В	7.2.0	7.3.0	RANFS-Evo
					MBMS broadcast transmission in LTE				
RP-060207	25.913	0013		Rel-7	Revision of LTE Work Plan	F	7.2.0	7.3.0	RANFS-Evo

Table A.5: Release 8 CRs approved at TSG RAN #42

Meetin	TSG doc	CR	Rev	Release	Subject	New vers	Work item
RP-42				Rel-8	Upgrade to Rel-8 with no technical change	8.0.0	

	Change history									
Date	TSG #	TSG Doc.	CR	Rev	Subject/Comment	Old	New			
2009-12	RP-46	-	-	-	Upgrade to the Release 9 - no technical change	8.0.0	9.0.0			

History

	Document history								
V9.0.0	February 2010	Publication							