
 

 

 

 

 

 

ETSI TR 103 626 V1.1.1 (2020-02) 

Autonomic network engineering 
for the self-managing Future Internet (AFI); 
An Instantiation and Implementation of the 

Generic Autonomic Network Architecture (GANA) 
Model onto Heterogeneous Wireless Access Technologies 

using Cognitive Algorithms 

 

  

 

TECHNICAL REPORT 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 2 

 

 

 

  

Reference 
DTR/INT-001-AFI-0027 

Keywords 
autonomic networking, cognition, cognitive, 

control, radio, self-management 

ETSI 

650 Route des Lucioles 
F-06921 Sophia Antipolis Cedex - FRANCE 

 
Tel.: +33 4 92 94 42 00   Fax: +33 4 93 65 47 16 

 
Siret N° 348 623 562 00017 - NAF 742 C 

Association à but non lucratif enregistrée à la 
Sous-Préfecture de Grasse (06) N° 7803/88 

 

Important notice 

The present document can be downloaded from: 
http://www.etsi.org/standards-search 

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or 
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any 

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI 
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver. 

Users of the present document should be aware that the document may be subject to revision or change of status. 
Information on the current status of this and other ETSI documents is available at 

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx 

If you find errors in the present document, please send your comment to one of the following services: 
https://portal.etsi.org/People/CommiteeSupportStaff.aspx 

Copyright Notification 

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying 
and microfilm except as authorized by written permission of ETSI. 

The content of the PDF version shall not be modified without the written authorization of ETSI. 
The copyright and the foregoing restriction extend to reproduction in all media. 

 
© ETSI 2020. 

All rights reserved. 
 

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. 
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and 

of the 3GPP Organizational Partners. 
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and 

of the oneM2M Partners. 
GSM® and the GSM logo are trademarks registered and owned by the GSM Association. 

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx


 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 3 

Contents 
Intellectual Property Rights ................................................................................................................................ 5 

Foreword ............................................................................................................................................................. 5 

Modal verbs terminology .................................................................................................................................... 5 

1 Scope ........................................................................................................................................................ 6 

2 References ................................................................................................................................................ 6 

2.1 Normative references ......................................................................................................................................... 6 

2.2 Informative references ........................................................................................................................................ 6 

3 Definition of terms, symbols and abbreviations ....................................................................................... 9 

3.1 Terms .................................................................................................................................................................. 9 

3.2 Symbols ............................................................................................................................................................ 10 

3.3 Abbreviations ................................................................................................................................................... 10 

4 Principles for Autonomic Networking and Enablers .............................................................................. 13 

4.1 Overview on Autonomics Principles and Enablers, and introduction to the emerging concept of 
"Network compartmentation" ........................................................................................................................... 13 

4.2 Function atomization ........................................................................................................................................ 14 

4.3 Function composition ....................................................................................................................................... 14 

4.4 Closed control loop (s) ..................................................................................................................................... 14 

4.5 Context recognition and adaptation .................................................................................................................. 15 

4.6 Introduction to the GANA Reference Model for Autonomic Networking, Cognitive Networking and 
Self-Management ............................................................................................................................................. 15 

4.6.1 Overview .................................................................................................................................................... 15 

4.6.2 Examples of Autonomic Management & Control (AMC) domains ........................................................... 17 

5 WiSHFUL Architecture ......................................................................................................................... 18 

5.1 Overview .......................................................................................................................................................... 18 

5.1.1 General overview of the WiSHFUL Concepts ........................................................................................... 18 

5.1.2 How Control Programs in the WiSHFUL Architecture are the means to realize (implement) specific 
GANA Decision Elements (DEs) ............................................................................................................... 20 

5.2 WiSHFUL platforms and abstractions ............................................................................................................. 20 

5.3 Adaptation Modules ......................................................................................................................................... 22 

5.4 Unified Program Interface ................................................................................................................................ 22 

5.4.1 Overview on WiSHFUL Unified Program Interfaces (UPIs) ..................................................................... 22 

5.4.2 UPI_M ........................................................................................................................................................ 23 

5.4.3 UPI_N ......................................................................................................................................................... 23 

5.4.4 UPI_R ......................................................................................................................................................... 23 

5.5 WiSHFUL Control Framework ........................................................................................................................ 24 

5.5.1 Control Concepts and programmability enablers implemented in the environments that were 
considered by WiSHFUL ............................................................................................................................ 24 

5.5.2 Interaction models ...................................................................................................................................... 25 

5.5.3 Immediate and delayed commands ............................................................................................................. 25 

5.5.4 Local and remote execution ........................................................................................................................ 25 

5.5.5 Synchronization .......................................................................................................................................... 25 

5.5.6 Packet monitoring and manipulation .......................................................................................................... 26 

5.5.7 Node handling ............................................................................................................................................. 26 

5.5.8 Extensibility of UPI functions .................................................................................................................... 26 

5.6 Hierarchical Control Model .............................................................................................................................. 26 

5.7 Monitor and configuration engines and services .............................................................................................. 28 

5.8 Execution engines, radio and control programs ............................................................................................... 28 

5.8.1 Overview .................................................................................................................................................... 28 

5.8.2 WMP ........................................................................................................................................................... 28 

5.8.3 TAISC ......................................................................................................................................................... 29 

5.9 Intelligence framework (data collection, intelligence composition, action) ..................................................... 29 

6 Impact of Virtualization and Hardware Acceleration Techniques, and Radio Access Network 
Slicing (RAN Slices), to WiSHFUL Concepts and Principles ............................................................... 30 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 4 

7 Instantiation of GANA Functional Blocks by Mapping WiSHFUL architecture components to 
GANA Concepts and Architectural Principles ....................................................................................... 33 

7.1 General Mapping of WiSHFUL Architectural Concepts and Principles to GANA Concepts and 
Principles .......................................................................................................................................................... 33 

7.2 Autonomic networks and General GANA integration with SDN, NFV, Big Data Analytics Applications, 
OSS/BSS Systems, Orchestrators, and Other Management and Control Systems ........................................... 35 

7.3 WiSHFUL Node-level programmability and Mapping to GANA Node-Level and Lower Levels 
Autonomics ...................................................................................................................................................... 37 

7.4 WiSHFUL Network-level programmability and the Mapping to GANA Network Level (Knowledge 
Plane (KP) Level) Autonomics ........................................................................................................................ 39 

7.5 Parameter and Functionality Mappings for DE-to-ME Associations that enable DE implementers to 
implement DEs ................................................................................................................................................. 42 

7.6 Instantiation of the GANA Knowledge Plane (KP) in the WiSHFUL Intelligence Framework ...................... 43 

7.7 Instantiation (Implementation) of GANA Reference Points in the WiSHFUL Architecture 
Implementation ................................................................................................................................................. 44 

8 Additional Resourceful Information that should be considered by Implementers of GANA DEs ........ 52 

9 Conclusions and Further Work ............................................................................................................... 53 

History .............................................................................................................................................................. 54 

 

  



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 5 

Intellectual Property Rights 
Essential patents  

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (https://ipr.etsi.org/). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Trademarks 

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. 
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no 
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does 
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. 

Foreword 
This Technical Report (TR) has been produced by ETSI Technical Committee Core Network and Interoperability 
Testing (INT). 

Modal verbs terminology 
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be 
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

  

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx


 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 6 

1 Scope 
The present document provides a mapping of architectural components for autonomic network management & control 
developed/implemented in the European Commission (EC) funded WiSHFUL Project to the ETSI TC INT AFI Generic 
Autonomic Networking Architecture (GANA) model - an architectural reference model for autonomic networking, 
cognitive networking and self-management. The mapping pertains to architectural components for autonomic decision-
making and associated control-loops in wireless network architectures and their associated management and control 
architectures. 

The objective is to illustrate how the GANA can be implemented using the components developed in the WiSHFUL 
and ORCA Projects. To show the extent to which the WiSHFUL architecture augmented with some virtualization and 
hardware acceleration techniques, developed in the ORCA project, implements the GANA model, in order to guide the 
industry (implementers of autonomics components for autonomic networks and their associated autonomic management 
& control architectures) on how to leverage this work in their efforts on GANA implementations. 

The mapping of the components to the GANA model concepts serves to illustrate how to implement the key abstraction 
levels for autonomics (self-management functionality) in the GANA model for the targeted wireless networks context, 
taking into consideration the work done in ETSI TR 103 495 [i.7]. 

The other objective is to also illustrate the value of joint autonomic management and control of heterogeneous wireless 
access technologies in such a GANA implementation context, with illustration on where Cognitive algorithms for 
autonomics (such as Machine Learning and other AI algorithms) can be applied in joint autonomic management & 
control of heterogeneous wireless access networks. 

The present document answers the question of how to implement the ETSI GANA model using WiSHFUL architecture 
and ORCA concepts. 

NOTE: Trademarks in the present document that are associated with the environments considered by WiSHFUL 
and ORCA projects in their implementation and prototyping of components are only mentioned as 
Citation of the environments on which components were implemented by the the two projects. The 
purpose of the present document is to illustrate to the industry how such WiSHFUL and ORCA 
components can be used to implement the ETSI GANA components in such environments considered by 
the projects, while making it clear that other environments not considered by the two projects can also be 
considered by the industry in implementing GANA components, as the present document does not serve 
to endorse or limit environments in which the GANA components can be implemented. 

2 References 

2.1 Normative references 
Normative references are not applicable in the present document. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] Joao F. Santos, Jonathan van de Belt, Wei Liu, Vincent Kotzsch, Gerhard Fettweis, Ivan Seskar, 
Sofie Pollin, Ingrid Moerman, Luiz A. DaSilva and Johann Marquez-Barja: "Orchestrating next-
generation services through end-to-end network slicing", ORCA white paper. 

NOTE: Available at https://orca-project.eu/wp-
content/uploads/sites/4/2018/10/orchestrating_e2e_network_slices_Final.pdf. 

https://orca-project.eu/wp-content/uploads/sites/4/2018/10/orchestrating_e2e_network_slices_Final.pdf
https://orca-project.eu/wp-content/uploads/sites/4/2018/10/orchestrating_e2e_network_slices_Final.pdf


 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 7 

[i.2] ORCA Deliverable 4.3: "Enhanced operational SDR platforms with end-to-end capabilities". 

NOTE: Available at https://orca-project.eu/wp-content/uploads/sites/4/2019/02/ORCA_D4.3_final.pdf. 

[i.3] WiSHFUL Project Deliverable D3.2: "First operational radio control software platform". 

[i.4] WiSHFUL Project Deliverable D3.4: "Second operational radio control software platform". 

[i.5] WiSHFUL Project Deliverable D4.2: "First operational network control software platform". 

[i.6] WiSHFUL Project Deliverable D4.4: "Second operational network control software platform". 

[i.7] ETSI TR 103 495: "Network Technologies (NTECH); Autonomic network engineering for the 
self-managing Future Internet (AFI); Autonomicity and Self-Management in Wireless 
Ad-hoc/Mesh Networks: Autonomicity-enabled Ad-hoc and Mesh Network Architectures". 

[i.8] Tayeb Ben Meriem, Ranganai Chaparadza, Benoît Radier, Said Soulhi, José-Antonio Lozano- 
López, Arun Prakash, ETSI White Paper No. 16: "GANA - Generic Autonomic Networking 
Architecture - Reference Model for Autonomic Networking, Cognitive Networking and Self-
Management of Networks and Services", First edition, October 2016 
ISBN No. 979-10-92620-10-8. 

[i.9] ETSI TS 103 195-2 (V1.1.1) (2018-05): "Autonomic network engineering for the self-managing 
Future Internet (AFI); Generic Autonomic Network Architecture; Part 2: An Architectural 
Reference Model for Autonomic Networking, Cognitive Networking and Self-Management". 

[i.10] ETSI TR 103 473 (V1.1.2) (2018-12): "Evolution of management towards Autonomic Future 
Internet (AFI); Autonomicity and Self-Management in the Broadband Forum (BBF) 
Architectures". 

[i.11] ETSI TR 103 404: "Network Technologies (NTECH); Autonomic network engineering for the 
self-managing Future Internet (AFI); Autonomicity and Self-Management in the Backhaul and 
Core network parts of the 3GPP Architecture". 

[i.12] IEEE 802.11™-2016: "IEEE Standard for Information technology--Telecommunications and 
information exchange between systems Local and metropolitan area networks--Specific 
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications". 

[i.13] IEEE 802.15.4™: "IEEE Standard for Low-Rate Wireless Networks". 

[i.14] White Paper No.2 of the ETSI 5G: "PoC: ONAP Mappings to the ETSI GANA Model; Using 
ONAP Components to Implement GANA Knowledge Planes and Advancing ONAP for 
Implementing ETSI GANA Standard's Requirements and C-SON: ONAP Architecture". 

NOTE Available at https://intwiki.etsi.org/index.php?title=Accepted_PoC_proposals. 

[i.15] ETSI GS AFI 002: "Autonomic network engineering for the self-managing Future Internet (AFI); 
Generic Autonomic Network Architecture (An architectural Reference Model for Autonomic 
Networking, Cognitive Networking and Self-Management)". 

[i.16] ETSI INT PoC: "5G Network Slices Creation, Autonomic Management & E2E Orchestration, with 
Closed-Loop (Autonomic) Service Assurance for the Slices: IoT (Smart Insurance) Use Case". 

NOTE Available at https://intwiki.etsi.org/index.php?title=Accepted_PoC_proposals. 

[i.17] Advanced Python Scheduler. 

NOTE Available at http://apscheduler.readthedocs.io/en/latest/. 

[i.18] ETSI TS 103 194: "Network Technologies (NTECH); Autonomic network engineering for the 
self-managing Future Internet (AFI); Scenarios, Use Cases and Requirements for Autonomic/Self-
Managing Future Internet". 

https://orca-project.eu/wp-content/uploads/sites/4/2019/02/ORCA_D4.3_final.pdf
https://intwiki.etsi.org/index.php?title=Accepted_PoC_proposals
https://intwiki.etsi.org/index.php?title=Accepted_PoC_proposals
http://apscheduler.readthedocs.io/en/latest/


 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 8 

[i.19] WiSHFUL UPI reference specification for management (M), Network (N), Radio (R) interfaces as 
well as network helpers. 

NOTE Available at https://wishful-project.github.io/wishful_upis/index.html. 

[i.20] Report on Specifications of Integration APIs for the ETSI GANA Knowledge Plane Platform with 
Other Types of Management & Control Systems, and with Info/Data/Event Sources in general. 

NOTE Available at https://intwiki.etsi.org/index.php?title=Accepted_PoC_proposals. 

[i.21] Dunkels A., Gronvall B., Voigt T.: "Contiki a Lightweight and Flexible Operating System for Tiny 
Networked Sensors". In Proceedings of the 9th Annual IEEE™ International Conference on Local 
Computer Networks, Washington, DC, USA, October 2004; pp. 455-462. 

[i.22] E. Blossom. Gnu software radio. 

NOTE Available at http://gnuradio.org. 

[i.23] Ruckebusch P., De Poorter E., Fortuna C., and Moerman I. (2016): "GITAR: Generic extension 
for Internet-of-Things ARchitectures enabling dynamic updates of network and application 
modules". Ad Hoc Networks, Volume 36, Part 1, January 2016, Pages 127-151. 

[i.24] WiSHFUL Project Deliverable D2.1: "High level requirements for testbeds and software 
platforms". 

[i.25] WiSHFUL Project Deliverable D2.2: "Specification of first showcases". 

[i.26] WiSHFUL UPI definition. 

NOTE: Available at https://wishful-project.github.io/wishful_upis/wishful_upis.html. 

[i.27] ZeroMQ Realtime Exchange Protocol. 

NOTE Available at http://rfc.zeromq.org/spec:36. 

[i.28] ORCA (Orchestration and Reconfiguration Control Architecture) project website. 

NOTE Available at https://www.orca-project.eu. 

[i.29] Tarik Kazaz, Wei Liu, Xianjun Jiao, Ingrid Moerman, Francisco Paisana, Clemens Felber, Vincent 
Kotzsch, Ivan Seskar, Tom Vermeulen, Sofie Pollin, Martin Danneberg and Roberto Bomfin: 
"Orchestration and Reconfiguration Control", EUCNC June 2017. Oulu, Finland. 

[i.30] ORCA Deliverable 2.1: "Technical requirements of the ORCA test facility". 

NOTE Available at https://orca-project.eu/wp-content/uploads/sites/4/2017/01/ORCA_D2.2_Final_v1.1.pdf. 

[i.31] Wei Liu, Joao F. Santos, Jonathan van de Belt, Xianjun Jiao, Ingrid Moerman, Johann Marquez-
Barja, Luiz DaSilva and Sofie Pollin: "Enabling Virtual Radio Functions on Software Defined 
Radio for Future Wireless Networks", to appear in Wireless Personal Communications. 

[i.32] R. Chaparadza, et al.: "SDN Enablers in the ETSI AFI GANA Reference Model for Autonomic 
Management & Control (emerging standard), and Virtualisation Impact". In the proceedings of the 
5th IEEE™ MENS Workshop at IEEE Globecom 2013, December, Atlanta, Georgia, USA. 

[i.33] White Paper No.4 of the ETSI 5G PoC: "ETSI GANA as Multi-Layer Artificial Intelligence (AI) 
Framework for Implementing AI Models for Autonomic Management & Control (AMC) of 
Networks and Services; and Intent-Based Networking (IBN) via GANA Knowledge Planes". 

NOTE Available at https://intwiki.etsi.org/index.php?title=Accepted_PoC_proposals. 

[i.34] White Paper No.1: "C-SON Evolution for 5G, Hybrid SON Mappings to the ETSI GANA Model, 
and achieving E2E Autonomic (Closed-Loop) Service Assurance for 5G Network Slices by Cross-
Domain Federated GANA Knowledge Planes". 

NOTE Available at https://intwiki.etsi.org/images/ETSI_GANA_in_5G_PoC_White_Paper_No_1_v1.28.pdf. 

https://wishful-project.github.io/wishful_upis/index.html
https://intwiki.etsi.org/index.php?title=Accepted_PoC_proposals
http://gnuradio.org/
https://wishful-project.github.io/wishful_upis/wishful_upis.html
http://rfc.zeromq.org/spec:36
https://www.orca-project.eu/
https://orca-project.eu/wp-content/uploads/sites/4/2017/01/ORCA_D2.2_Final_v1.1.pdf
https://intwiki.etsi.org/index.php?title=Accepted_PoC_proposals
https://intwiki.etsi.org/images/ETSI_GANA_in_5G_PoC_White_Paper_No_1_v1.28.pdf


 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 9 

[i.35] White Paper No.3: "Programmable Traffic Monitoring Fabrics that enable On-Demand Monitoring 
and Feeding of Knowledge into the ETSI GANA Knowledge Plane for Autonomic Service 
Assurance of 5G Network Slices; and Orchestrated Service Monitoring in NFV/Clouds". 

NOTE Available at https://intwiki.etsi.org/images/ETSI_5G_PoC_White_Paper_No_3_2019_v1.19.pdf. 

[i.36] White Paper No.5: "Artificial Intelligence (AI) in Test Systems, Testing AI Models and the ETSI 
GANA Model's Cognitive Decision Elements (DEs) via a Generic Test Framework for Testing 
ETSI GANA Multi-Layer Autonomics & their AI Algorithms for Closed-Loop Network 
Automation". 

NOTE Available at https://intwiki.etsi.org/index.php?title=Accepted_PoC_proposals. 

[i.37] White Paper No.6: "Generic Framework for Multi-Domain Federated ETSI GANA Knowledge 
Planes (KPs) for End-to-End Autonomic (Closed-Loop) Security Management & Control for 5G 
Slices, Networks/Services". 

NOTE Available at https://intwiki.etsi.org/index.php?title=Accepted_PoC_proposals. 

3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the following terms apply: 

Autonomic Behaviour (AB): process which understands how desired Managed Entity (ME) behaviours are learned, 
influenced or changed, and how, in turn, these affect other elements, groups and networks [i.18] 

NOTE: In the GANA model, an autonomic behaviour is any behaviour of a DE that is observable on its 
interfaces. A GANA DE is also called an Autonomic Function (AF). 

autonomic networking: networking paradigm that enables network devices or elements (physical or virtual) and the 
overall network architecture and its management and control architecture to exhibit the so-called self-managing 
properties, namely: 

• Auto-discovery of information and entities 

• Self-configuration (auto-configuration), Self-diagnosing, Self-repair (Self-healing) 

• Self-optimization, and other self-* properties 

NOTE 1: Autonomic Networking can also be interpreted as a discipline involving the design of systems (e.g. 
network nodes) that are self-managing at the individual system levels and together as a larger system that 
forms a communication network of systems. 

NOTE 2: The term "autonomic" comes from the autonomic nervous system (a closed control loop structure), which 
controls many organs and muscles in the human body. Usually, humans are unaware of its workings 
because it functions in an involuntary, reflexive manner - for example, humans do not notice when their 
heart beats faster or their blood vessels change size in response to temperature, posture, food intake, 
stressful experiences and other changes to which human are exposed. And their autonomic nervous 
system is always working [i.18]. 

Decision Making Element (DME): functional entity designed and assigned to autonomically manage and control its 
assigned Managed Entities (MEs) by dynamically (re)-configuring the MEs and their configurable and controllable 
parameters in a closed-control loop fashion 

NOTE 1: Decision Making Elements (DMEs) [i.19] referred in short as Decision Elements (DEs) fulfil the role of 
Autonomic Manager Elements. 

NOTE 2: In GANA a DE is assigned (by design) to very specific MEs that it is designed to autonomically manage 
and control (ETSI GS AFI 002 [i.15] provides more details on the notion of ownership of MEs by 
specific DEs required in a network element architecture and the overall network architecture). 

https://intwiki.etsi.org/images/ETSI_5G_PoC_White_Paper_No_3_2019_v1.19.pdf
https://intwiki.etsi.org/index.php?title=Accepted_PoC_proposals
https://intwiki.etsi.org/index.php?title=Accepted_PoC_proposals


 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 10 

Managed Entities (MEs): physical or logical resource that can be managed by an Autonomic Manager Element (i.e. a 
Decision Element) in terms of its orchestration, configuration and re-configuration through parameter settings [i.18] 

NOTE: MEs and their associated configurable parameters are assigned to be managed and controlled by a 
concrete DE such that an ME parameter is mapped to one DE. MEs can be protocols, whole protocol 
stacks, and mechanisms, meaning that they can be fundamental functional and manageable entities at the 
bottom of the management hierarchy (at the fundamental resources layer in a network element or node) 
such as individual protocols or stacks, OSI layer 7 or TCP/IP application layer applications and other 
types of resources or managed mechanisms hosted in a network element (NE) or in the network in 
general, whereby an ME exposes a management interface through which it can be managed. MEs can also 
be composite MEs such as whole NEs themselves (i.e. MEs that embed sub-MEs). 

OpenWRT: According to https://openwrt.org/ OpenWRT is a Linux™ operating system for people who want to install 
high-performance, easily-configured, reliable and robust firmware on a home router or embed the Linux-based software 
in other equipment. 

overlay: logical network that runs on top of another network 

EXAMPLE: Peer-to-peer networks are overlay networks on the Internet. They use their own addressing system 
for determining how files are distributed and accessed, which provides a layer on top of the 
Internet's IP addressing. 

self-advertising: capability of a component or system to advertise its self-model, capability description model, or some 
information signalling message (such as an IPv6 router advertisement message) to the network in order to enable other 
entities to discover it and be able to communicate with it, or to enable other entities to know whatever is being 
advertised 

self-awareness: capability of a component or system to "know itself" and be aware of its state and its behaviours 

NOTE: Knowledge about "self" is described by a "self-model". 

self-configuration: capability of a component or system to configure and reconfigure itself under varying and 
unpredictable conditions 

self-healing: capability of a component or system to detect and recover from problems (manifestations of faults, errors, 
failures, and other forms of degradation) and continue to function smoothly 

self-monitoring: capability of a component or system to observe its internal state, for example by monitoring quality-
of-service metrics such as reliability, precision, rapidity, or throughput 

self-optimization: capability of a component or system to detect suboptimal behaviours and optimize itself to improve 
its execution 

self-organizing function: function that includes processes which require minimum manual intervention 

self-regulation: capability of a component or system to regulate its internal parameters so as to assure a quality-of-
service metric such as reliability, precision, rapidity, or throughput 

3.2 Symbols 
Void. 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

3GPP 3rd Generation Partnership Project 
AB Autonomic Behaviour 
AF Autonomic Function 
AFI Autonomic network engineering for the self-managing Future Internet 
AI Artificial Intelligence 
AMC Autonomic Management & Control 
AN Access Node 
ANS Autonomic Nervous System 

https://openwrt.org/


 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 11 

API Application Programming Interface 
ARM Advanced RISC Machine 
BBF BroadBand Forum 
BSS Business Support System 
CF Control Framework 
CP Control Program 
CPU Central Processing Unit 
C-SON Centralized Self Organizing Network 
DE Decision making Element 
DeMe Rfp_GANA-Level2&3-AccessToProtocolsAndMechanisms 
DME Decision making Element 
E2E End to End 
EC European Commission 
EMS Element Management System 
FlowDesc Flow Description 
F-MBTS Federation MBTS 
FMM Rfp_FederationMBTS- to-FederationMBTS 
FOO Rfp_ONIX-to-ONIX 
FPGA Field Programmable Gate Array 
FuDe Rfp_FunctionLevelDE-to-FunctionLevelDE 
GANA Generic Autonomic Network Architecture 
GCP Global Control Program 
GITAR Generic extension for Internet-of-Things Architectures 
G-MBTS Gouvernance MBTS 
GNU radio GNU's Not Unix™ radio 
GoS Rfp_OSS_to_Governance-MBTS 
GPS Global Positioning System 
IBN Intent Based network 
INT Core Network and Interoperability Testing 
IP Internet Protocol 
IPFIX Internet Protocol Flow Information eXport 
IPv6 Internet Protocol version 6 
IRIS Implementing Radio In Software 
KP Knowledge Plane 
KP DE Knowledge Plane Decision-making Element 
LAN Local Area Network 
LQI Link Quality Indicator 
LTE Long Term Evolution 
MAC Medium Access Control 
MBTS Model Based Translation Service 
MCE Monitor and Configuration Engine 
ME Managed Entity 
ME-to-DE reference point ME to DE 
MIB Management Information Base 
MIPS Microprocessor without Interlocked Pipelined Stages 
MO Managed Object 
NBI NorthBound Interface 

NOTE: See Figures 11 and 12. 

NDPI Native Device Programming Interface 
NE Network Element 
NeDe Rfp_NetworkLevelDE-to-NetworkLevelDE 
NeI Rfp_NetworkLevelDE-to-ONIX-System 
NeM Rfp_EMS_OR_NMS-to-NodeMainDE 
NeMe Rfp_NetworkLevelDE-to-NodeMainDE 
NF Network Function 
NFV Network Function Virtualisation 
NIC Network Interface Card 
NMS Network Management System 
NoDe Rfp_NodeMainDE-to-NodeMainDE 
NoI Rfp_NodeMainDE-to-ONIX-System 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 12 

NTP Network Time Protocol 
ONAP Open Networking Automation Platform 
ONIX Overlay Network for Information eXchange 
OODA Observe, Orient, Decide and Act Loop 
OR logical OR symbol 
ORCA Orchestration and Reconfiguration Control Architecture 
OS Operating System 
OsDE reference point OSS knowledge plane Decision-making Element 
OsDe Rfp_OSS-to-Network-Level-Des 
OSI Open Systems Interconnection 
OsI Rfp_OSS-to-ONIX-System (Network Governance Reference Point: OSS/BSS to ONIX) 
 (Knowledge Plane) 
OSi Rfp_OSS-to-ONIX-System (Network Governance Reference Point: OSS/BSS to ONIX) 
 (Knowledge Plane) 
OSS Operation Support System 
PC Personal Computer 
PER Packet Error Rate 
PHY Physical 
PoC Proof of Concept 
PON Passive Optical Network 
PRR Packet Received Rate 
PTP Precision Time Protocol 
QoS Quality of Service 
RAN Radio Access Network 
RAS Reconfigurable Antenna Systems 
RAT Radio Access Technology 
RF Radio Frequency 
RISC Reduced Instruction Set Computing 
RRH Remote Radio Head 
RSSI Received Signal Strength (power) Indication 
SDN Software Defined Networks 
SDR Software Defined Radio 
SNMP Simple Network Management Protocol 
SON Self Organizing Networks 
TAISC Time Annotated Instruction Set Computer 
TB Technical Body 
TC Technical Committee 
TCP/IP Transfer Control Protocol/Internet Protocol 
TDMA Time Division Multiple Access 
UPI Unified Programming Interface 
UPI_G Unified Programming Interface Global 
UPI_HC Unified Programming Interface Hierarchical Control 
UPI_M Unified Programming Interface Management 
UPI_N Unified Programming Interface Network 
UPI_R Unified Programming Interface Radio 
USRP Universal Software Radio Peripheral 
VoIP Voice over IP 
WARP Wireless open-Access Research Platform 
WG Working Group 
WiFi™ IEEE 802.11™ family of standards 
WiSHFUL Wireless Software and Hardware platforms for Flexible and Unified radio and network controL 
WLAN Wireless Local Area Network 
WMP Wireless MAC Processor 
WSN Wireless Sensor Network 
xDSL any Digital Subscriber Line 
XFSM eXtended Finite State Machines 
xPON any PON 
ZRE ZeroMQ Realtime Exchange protocol 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 13 

4 Principles for Autonomic Networking and Enablers 

4.1 Overview on Autonomics Principles and Enablers, and 
introduction to the emerging concept of "Network 
compartmentation" 

Autonomic networking paradigm aims at creating self-managing networks to overcome the rapidly growing complexity 
of current networks and future networks. The complexity aspect of particular concern is management and control of the 
networks and services they are required to deliver to various service consumers. Management complexity can be 
characterized by factors such as huge number of devices, services to be provisioned and assured, and configuration 
parameters of network resources that need to be configured and dynamically optimized to cope with various workloads 
and challenges the networks encounter daily during their operations, e.g. manifestations of faults/errors/failures/security 
threats and performance degradations on various network resources. The autonomic networking paradigm is the enabler 
for self-driving and self-aware networks and services. 

Autonomic networking mimics biological autonomic systems, especially those complex life forms that are provided 
with an Autonomic Nervous System (ANS) that is not consciously controlled. Analogously to biological systems, 
current networks require a conscious control that is mimicked by a centralized network control where a central entity 
(the brain), receives information from the peripheral elements, knows the status of the whole system, takes decisions 
and finally applies actions by sending commands to peripheral actuators (muscles). Biological and networking 
components share such general principles. However, in many applications in wireless networks, the timing for decisions 
is not compatible with latencies due to the loop from the peripheral sensor to the central intelligence and back to 
peripheral actuators. In such a case, as discussed in clause 5.5, forms of control by delegation has to be taken into 
account. The ETSI GANA standard takes into consideration this issue. 

Autonomic systems require specific capabilities that appear to be in common with current trends in networks, especially 
with wireless networks. These capabilities (functions) include: 

• Autognostic capabilities (self-discovery, awareness, and analysis). 

• Control capabilities on network elements and interfaces. 

• Capabilities to define and verify performance and constraints. 

• Capabilities to identify attacks and run defending actions. 

The WiSHFUL project does not deliberately aim at creating autonomic networks because it is focused on radio and 
network control for experimentation in wireless networks. However, it appears that WiSHFUL naturally fulfils most of 
the principles indicated above and provides key enablers for autonomic networks. The ETSI GANA architectural 
Reference Model for Autonomic Networking, Cognitive Networking and Self-Management of Networks and Services 
(ETSI TS 103 195-2 [i.9]) is purposely designed for autonomic networks and is fully specified in the ETSI standard 
ETSI TS 103 195-2 [i.9] (while a brief introduction to the GANA model is also provided later in the present document); 
it defines high-level requirements and architectural components for self-management networks. Conversely, WiSHFUL 
architecture provides the low-level requirements for wireless autonomic networks, which also map well to the GANA 
framework; in fact, the project defines programmability models and control models for radio and network components. 

GANA Autonomic Management and Control (AMC) software modules called Decision-making-Elements (DEs) are 
meant to be designed in such a way that they employ such models in driving autonomics in a Network 
Element/Function (NE/NF) and in the outer realm (the management and control systems realm) overlay. For more 
details on this subject clause 4.6 of the present document discusses the GANA abstractions levels for autonomicity 
(autonomic/self-management functionality) and how they complement each other. 

NOTE 1: The present document aims to illustrate to autonomics implementers how to use WiSHFUL components 
and components from the ORCA project as well, to implement the GANA framework's multi-layer 
autonomics in order to realize autonomic management and control of heterogeneous wireless access 
technologies using cognitive algorithms. 

NOTE 2: WiSHFUL provides platforms, tools and architectural elements for wireless experimentation. WiSHFUL 
does not take into account security, and the experimental environment is considered trusted. No detection 
of misbehaving nodes is implemented and autonomic capabilities of self-defence are out of scope for the 
WiSHFUL project. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 14 

NOTE 3: WiSHFUL supports most of the key enablers for autonomic networks: network compartmentation, 
function atomization and composition, closed control loop, context recognition and adaptation, which are 
discussed in the following clauses. 

Network compartmentation: Network compartmentation is an emerging concept to consider in networking, e.g. in 
relation to another concept called network slicing. However, note that Network compartmentation is not taken into 
account in WiSHFUL. 

WiSHFUL addresses several communication contexts with heterogeneity in devices, technologies, programmability 
logic. 

4.2 Function atomization 
The emerging quest for wireless access flexibility and adaptability requires programmable services, devised to 
customize the wireless access operations according to specific network and application scenarios instead of 
implementing a specific MAC protocol stack.  

These services are composed by simpler primitives: elementary non-programmable functionalities that are natively 
provided by the system. Primitives deal with low-level atomic actions such as the physical transmission and reception 
of frames. The hierarchical decomposition of traditional MAC/PHY resource control functionalities is preliminary to 
introduce programmability at MAC/PHY levels. A well-defined functional decomposition permits to recompose 
functions programmatically. Such programs permit to shift from configurability obtained by tuning parameters to 
programmability by defining new node behaviours through composed procedures. Atomic decomposition of functions 
allows maximal re-composition freedom but, it conversely introduces complexity in composing smaller functional 
blocks. 

As discussed later in clause 5, WiSHFUL supports several programmable platforms. Most of these platforms pre-
existed WiSHFUL, using the functional decomposition described above. However, WiSHFUL platforms are based on 
different technologies; the decomposition in atomic primitives and the functional composition in services has not a 
unique form but it depends on the underlying technology, being customized for WSN, WLAN or LTE. 

4.3 Function composition 
Function composition permits to build flexible, dynamic and autonomic networks. Functional composition requires a 
language for linking the atomic functional elements as building blocks to link together. Function composition permits to 
define the behavioural logic for wireless nodes both singularly and in groups. Function composition requires also well-
defined application program interfaces for calling the composed services by the radio and network programs. 

4.4 Closed control loop (s) 
Autonomic networks require a closed control loop (s) to maintain the properties of the controlled network/node within 
desired bounds by constantly monitoring target parameters. This general concept appears in WiSHFUL both in direct 
and indirect forms, respectively with control by commands and control by delegation, depending on the status of 
communication capabilities and the desired reaction time. 

The two control principles are also defined and enabled by the ETSI GANA Model's definition of abstractions levels for 
implementing the concepts of "fast control-loops" in Network Elements/Functions (NEs/NFs) and "slow control-loops" 
in the realm of management and control systems of a network, as well as the need for "slow control-loops" to exercise 
policy control of the lower level "fast control-loops" in NEs/NFs. 

In the first case, the central controller directly controls the network elements by instructing them the actual actions to be 
performed. In the second case, the central controller provides the control logic to controllers that run locally on the 
nodes. The most appropriate approach depends on the scenario, as both have pros and cons. 

A single global control takes decisions on the basis of global information, however the latency gained in the path 
between the controller and the controlled element may capture an obsoleted view of the network. Conversely, having 
local controllers provides more timely control with a partial and fragmented vision. Clause 5 illustrates central 
controllers and local controllers and their interworking and mappings to the GANA model concepts. 

NOTE: Clause 4.6 describes the concepts of "slow control-loops" and "fast control-loops" for implementing 
autonomics and how they complement each other. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 15 

4.5 Context recognition and adaptation 
The Autonomic Behaviour (AB) required by complex and dense networks requires first context recognition, then 
context adaptation. Advanced sensing capabilities of wireless nodes, both singularly and in group are required, then a 
kind of 'network intelligence' recognizes the context (using legacy classification techniques or more advanced machine 
learning algorithms), then applies the optimal configuration settings or, even better, the optimal protocol logic. 

The aim to design autonomic networks demonstrates, by itself, that the one-size-fits-all monolithic solution cannot 
adapt to any possible operational context, because not all possible scenarios can be foreseen. Tuneable configuration 
parameters do not provide the required level of flexibility, because instead of spanning the whole fan of behavioural 
logic, they only adjust operating conditions of a pre-defined protocol logic. 

WiSHFUL provides context recognition and adaptation by the means of its intelligent control architecture. WiSHFUL 
architecture coordinates and control wireless nodes at the radio and network levels (mappings of these levels to the 
ETSI GANA levels for autonomics are defined later in the present document). It contains a dedicated framework for 
providing intelligence to the wireless network that includes a Data Collection Component, Intelligence Composition 
Component, Action Component, and a dedicated user interface. 

4.6 Introduction to the GANA Reference Model for Autonomic 
Networking, Cognitive Networking and Self-Management 

4.6.1 Overview 

ETSI TS 103 195-2 [i.9] defines the concept of Autonomic Manager element (called a "Decision-making-Element" 
(DE) in the GANA terminology) as a functional entity that drives a control-loop meant to configure and adapt 
(i.e. regulate) the behaviour or state of a Managed Entity (i.e. a resource) - usually multiple Managed Entities (MEs). 

The ETSI GANA Standardized Framework for AMC (ETSI TS 103 195-2 [i.9]) defines an Intelligent Management and 
Control Functional Block called GANA KP that is an integral part of AMC Systems that provides for the space to 
implement complex network analytics functions performed by interworking Modularized and specialized DEs. 

The KP DEs run as software in the Knowledge Plane and drive self-* operations such as self-adaptation, 
self-optimization, self-monitoring objectives for the network and services by programmatically (re)-configuring 
Managed Entities (MEs) in the network infrastructure through various means possible: e.g. through the NorthBound 
Interfaces available at the OSS (Operations Support System), Service Orchestrator, Domain Orchestrator, SDN 
controller, EMS/NMS, NFV Orchestrator, etc. 

The GANA KP consists of multiple modularized DEs. In contrast to non-modularized management systems, each DE is 
expected to be a module (as atomic block) and that it should address a very specific "management domain (scope of 
management aspects/problems)" such that it can run as a "micro service". 

Examples of autonomic manager elements (i.e. DEs) are: QoS-management-DE, Security-management-DE, Mobility-
management-DE, Fault-management-DE, Resilience & Survivability-DE, Service & Application management-DE, 
Forwarding-management-DE, Routing-management-DE, Monitoring-management-DE, Generalized Control Plane 
management-DE. 

DE components of the GANA KP are "macro" autonomic managers (atomic and modular) that drive logically 
centralized network-wide with slow control loops that operate in "slower timescale" than similar control-loops 
introduced to run in Network Elements (NEs) and operating as "fast control-loops". Macro autonomic managers 
(GANA KP DEs) should be complemented by "micro" Autonomic Manager components (DEs injected into NEs) that 
can be introduced in the Network Elements (physical or virtualized) for driving local intelligence within individual 
network elements to realize "fast control-loops" in network elements. Macro autonomic managers (GANA KP DEs) 
policy control the "micro" autonomic managers (GANA DEs in NEs - i.e. the so-called GANA Level-2 and Level-3 in 
the ETSI TS 103 195-2 [i.9]). 

ETSI TC INT AFI WG's work on E2E autonomic networking involves introducing self-manageability (autonomics) 
properties (e.g. self-configuration, self-diagnosis, self-repair, self-healing, self-protection, self-awareness, etc.) within 
network nodes/functions themselves and also enabling distributed "in-network" self-management within the data plane 
network architectures (and their embedment of "thin control planes"). 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 16 

This low level intelligence (autonomics) achievable by so-called "GANA DEs" that should be instantiated to drive fast 
control-loops within network nodes/elements and to drive horizontal self-adaptive collaborative "in-network" behaviour 
involving the collaboration of certain autonomic nodes is also called "Micro level" autonomics ("fast control loops"). 

The low level autonomics should be complemented and policy-controlled (governed) by higher level autonomics ("slow 
control loops") (at "Macro level") achievable and driven by higher level "GANA DEs" responsible for network-wide 
and logically centralized autonomic management and control of networks and services. At "Macro level", the 
autonomics paradigm (control loops) is introduced outside of network elements, in the outer, logically centralized, 
management and control planes architectures of a particular target network.  

This "realm" for implementing the much more complex, cognitive and analytics algorithms (including Artificial 
Intelligence (AI) Algorithms) for autonomics that operate on network-wide views is called the GANA Knowledge Plane 
(GANA KP). The three key Functional Blocks of the GANA KP are summarized below: 

• GANA Network-Level DEs: Decision-making-Elements (DEs) whose scope of input is network wide in 
implementing "slower control-loops" that perform policy control of lower level GANA DEs (for fast control-
loops) instantiated in network nodes/elements. The Network Level DE are meant to be designed to operate the 
outer closed control loops on the basis of network wide views or state as input to the DEs' algorithms and 
logics for autonomic management and control (the "Macro-Level" autonomics). The Network-Level-DEs 
(Knowledge Plane DEs) can be designed to run as a "micro service". 

• ONIX (Overlay Network for Information eXchange) is a distributed scalable overlay system of federated 
information servers). The ONIX is useful for enabling auto-discovery of information/resources of an 
autonomic network via "publish/subscribe/query and find" mechanisms. DEs can make use of ONIX to 
discover information/context and entities (e.g. other DEs) in the network to enhance their decision making 
capability. The ONIX itself does not have network management and control decision logic (as DEs are the 
ones that exhibit decision logic for Autonomic Management & Control (AMC)).  

• MBTS (Model-Based Translation Service) which is an intermediation layer between the GANA KP DEs and 
the NEs ((Network Elements) - physical or virtual)) for translating technology specific and/or vendors' specific 
raw data onto a common data model for use by network level DEs, based on an accepted and shared 
information/data model. KP DEs can be programmed to communicate commands to NEs and process NE 
responses in a language that is agnostic to vendor specific management protocols and technology specific 
management protocols that can be used to manage NEs and also policy-control their embedded "micro-level" 
autonomics. The MBTS translates DE commands and NE responses to the appropriate data model and 
communication methods understood on either side. The value the MBTS brings to network programmability is 
that it enables KP DEs designers to design DEs to talk a language that is agnostic to vendor specific 
management protocols, technology specific management protocols, and/or vendor specific data-models that 
can be used to manage and control NEs. 

The "GANA" reference model combines perspectives on GANA DE ("Micro-Level" autonomics (defined by the 
so-called GANA levels-1 to Level-3 illustrated in Figure 1)) and the interworking GANA KP DE (with "Macro-Level" 
autonomics (realized by the GANA Knowledge Plane)) as well as the responsible Functional Blocks and Reference 
Points that enable developers to implement autonomics software, with all perspectives combined together so as to 
capture the holistic picture of autonomic networking, cognitive networking and self-management design and operational 
principles.  

This ETSI GANA Framework is illustrated in Figure 1. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 17 

 

Figure 1: Snapshot of the GANA Reference Model and Autonomics Cognitive Algorithms 
for Artificial Intelligence (AI) 

The following technical white papers provide a lot of useful insights regarding the subject of how to interwork fast 
control-loops and slow control-loops. 

NOTE: Clause 7 contains the mappings of the concepts of the WiSHFUL architecture and ORCA concepts to the 
ETSI GANA Model in order to illustrate how they are used to implement the GANA Framework. 

4.6.2 Examples of Autonomic Management & Control (AMC) domains 

The list below shows examples of Autonomic Management & Control (AMC) Aspects (involving knowledge on 
Implementing DE Autonomics (Control-Loops)) for which AMC Domain Experts should be engaged in Design and 
Implementations of Cognitive DEs (for more details refer to the White Paper 16 [i.8] from which the text on examples 
of AMC domains has been extracted): 

• Autonomic QoS-management & control domain: implies the need to Design/Implement Forwarding-
Management_DE. 

• Autonomic Security-management & control domain: implies the need to Design/Implement Security-
Management_DE. 

• Autonomic Mobility-management & control domain: implies the need to Design/Implement Mobility-
Management_DE. 

• Autonomic Fault-management domain: implies the need to Design/Implement Fault-Management_DE. 

• Autonomic Resilience and Survivability management & control domain: implies the need to 
Design/Implement Resilience & Survivability Management_DE. 

• Autonomic Service & Application management domain: implies the need to Design/Implement Service & 
Application Management_DE. 

• Autonomic Forwarding-management & control domain: implies the need to Design/Implement 
Forwarding-Management_DE. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 18 

• Autonomic Routing-management & control domain: implies the need to Design/Implement Routing-
Management_DE. 

• Autonomic Monitoring-management domain: implies the need to Design/Implement Monitoring-
Management_DE. 

• Autonomic Generalized Control Plane management & control domain: implies the need to 
Design/Implement Generalized Control Plane Management_DE. 

NOTE: The various types of Decision Elements (DEs) listed above are defined in ETSI TS 103 195-2 [i.9], and 
their associated mappings to their types of Managed Entities (MEs) - i.e. resources and configurable 
parameters that should be under the responsibility of the specific DE, are also defined in ETSI 
TS 103 195-2 [i.9] and in concrete GANA instantiations onto a particular target implementation oriented 
network architecture and its management and control architecture (e.g. Broadband Forum (BBF) 
architectures (ETSI TR 103 473 [i.10]), 3GPP Backhaul and Core Network (ETSI TR 103 404 [i.11]). 

5 WiSHFUL Architecture 

5.1 Overview 

5.1.1 General overview of the WiSHFUL Concepts 

This clause provides a background on WiSHFUL architecture; this is beneficial for the mapping between the WiSHFUL 
architecture and GANA principles. WiSHFUL permits to abstract the internals of the nodes with a unified 
configuration interface able to work on completely different hardware and software platforms. 

The WiSHFUL project is devised to wireless experimentation. But the concepts introduced by WiSHFUL can be 
applied in general. Autonomous and intelligent systems are generally re-configurable systems and this opens special 
issues in case of wireless systems, whose co-existing in the same radio spectrum demands harmonization, control, 
orchestration and coordinated adaptations of multiple parameters in different protocol layers and in multiple network 
devices, with cross-layer and cross-node mechanisms. 

NOTE 1: As illustrated later, the unified configuration interface can be viewed as a way to implement the GANA 
Model's Rfp_GANA-Level2&3-AccessToProtocolsAndMechanisms Reference Point within a GANA 
Node. 

The WiSHFUL architecture is composed by the following main components: 

• Unified Program Interfaces (UPIs) to implementers for easily prototyping novel and adaptable wireless 
solutions on different radio platforms; 

NOTE 2: As illustrated later, UPIs implement Rfp_GANA-Level2&3-AccessToProtocolsAndMechanisms 
Reference Point within a GANA Node. 

• Control Programs (CPs) that contain the logic to program devices singularly and in groups; 

NOTE 3: As illustrated later, CPs within a Network Node implement GANA-Levels 2 and 3 DEs. 

• a Control Framework (CF) for supporting dynamic on-the-fly reconfigurations of the network nodes 
according to time-varying estimates of the network operating conditions. 

NOTE 4: As illustrated later, the GANA Knowledge Plane provides the space to implement the CF. 

The unified interfaces include UPI_R, UPI_N, UPI_G, UPI_HC, UPI_M. 

The UPI_R permits to configure the node behaviour at the lower MAC and PHY layers, the configuration of the 
transceiver (transmission formats, spectrum, antennas, etc.) and the configuration of the time-critical access rules for 
utilizing the wireless resources. 

NOTE 5: As illustrated later, the (re)-configurable parameters and node behaviour at the lower MAC and PHY 
layers are associated with what are called Managed Entities (MEs) in GANA that are assigned to specific 
GANA DEs. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 19 

The WiSHFUL control framework permits to configure the single radio and provide dynamic radio adaptation and to 
work on a global control program that can in a coordinated way on groups of nodes. 

NOTE 6: As illustrated later, the "global program" can be realized collectively by the multiple DEs of the GANA 
Knowledge Plane (KP), which undergo coordination and synchronization in their actions as described in 
ETSI White Paper No.16 [i.8], ETSI TS 103 195-2 [i.9], and also in the White Paper No.4 [i.33] of the 
ETSI PoC. 

The WiSHFUL architecture is shown in Figure 2. It interacts with wireless nodes based on heterogeneous radio 
platforms. 

The WiSHFUL architecture has one global Monitoring and Configuration Engine (MCE) that orchestrates several 
remote MCEs residing on each wireless node of the testbed. The global MCE provides monitor and configuration 
services that can be used by the implementer to write a Global Control Program (GCP), controlling the behaviour of 
the solution under test by means of the UPI_G interface. 

On the other hand, local control programs running on local MCEs control single devices by means of the UPI_R and 
UPI_N interfaces, respectively for radio and network control. The same UPI_R and UPI_N functions are exposed on 
the heterogeneous platforms by means of adaptation modules, hence the need adaptation modules perform some 
translation service between the two sides of a UPI. 

WiSHFUL control framework permits to control programmable wireless nodes by means of unified interfaces. The 
framework allows orchestrating the utilization of both the UPI_R and UPI_N interfaces at a global and local level, thus 
supporting dynamic adaptations of the wireless nodes according to the aggregation of radio parameters monitored by 
different nodes and estimates of the network state. 

 

Figure 2: WiSHFUL architecture, UPIs and supported platforms 

A hardware system and relevant software modules exposing a configuration UPI interface and abstract programming 
model is referred in what follows as platform. This definition generalizes the concept of radio platform to any hardware 
system, which does not necessarily include a radio transceiver (such as intelligent antennas or measurement sensors) 
and can be added to wireless nodes for providing new capabilities. 

According to this vision, a wireless node can be equipped with multiple platforms, including at least one radio platform 
providing communication capabilities; all the platforms are orchestrated as a whole by the WiSHFUL control programs 
running on the wireless node. 

In Figure 3 it is reported an exemplary wireless node (e.g. a multi-technology gateway) which integrates heterogeneous 
hardware technologies, such as ZigBee, WiFi and a configurable antenna system, and the relevant software 
architectures. Thanks to the adaptation modules available for each platform, the node exposes to WiSHFUL the 
aggregated capabilities in a list of available UPI functions. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 20 

The functions abstract the specific node architecture and provide the implementer the possibility to communicate with 
ZigBee and WiFi nodes and to steer the antenna beam in a desired direction. The implementer exploits the complete list 
of supported functions for writing the desired control program. 

 

Figure 3: Example of wireless node supporting three different platforms 

Further details about the WiSHFUL framework can be found in WiSHFUL deliverables [i.3], [i.4], [i.5] and [i.6]. 

5.1.2 How Control Programs in the WiSHFUL Architecture are the means 
to realize (implement) specific GANA Decision Elements (DEs) 

The GANA Standard (ETSI TS 103 195-2 [i.9]) defines and standardizes various Autonomic Functions (Decision-
making- Elements (DEs)) that can be instantiated to operate at NE/NF level and/or within the GANA Knowledge Plane 
(KP). The process called GANA instantiations onto an implementation-oriented network architecture and its associated 
management and control architecture establishes the kinds of GANA DEs that should be instantiated to operate in an 
NE/NF and/or in the GANA Knowledge Plane. 

Various types of Decision Elements (DEs) are defined in ETSI TS 103 195-2 [i.9], and also their associated mappings 
to their types of Managed Entities (MEs) - i.e. resources and configurable parameters that should be under the 
responsibility of the specific DE. 

Specific DEs and their mappings to specific MEs are then further detailed in concrete GANA instantiations onto a 
particular target implementation oriented network architecture and its management and control architecture (e.g. 
Broadband Forum (BBF) architectures (ETSI TR 103 473 [i.10]), 3GPP Backhaul and Core Network (ETSI 
TR 103 404 [i.11])). 

In order to instantiate and implement specific GANA DEs as "control programs" using the WiSHFUL framework, local 
program implementers should use the guiding Table 3 specified in ETSI TS 103 195-2 [i.9] to determine the DEs that 
can be instantiated and implemented to operate at a specific GANA level and the kinds of Managed Entities (MEs) and 
their configurable parameters that are to be autonomically managed and controlled by a specific DE. 

Clause 7.5 of the present document provides more insights on this subject of DE-to-MEs Mappings, and how to use 
some software code of local programs (local controllers) and global programs (global controllers) already implemented 
in WiSHFUL Framework to implement the standardized GANA DEs required to operate at specific GANA Levels. 

5.2 WiSHFUL platforms and abstractions 
The WiSHFUL framework allows the control of heterogeneous platforms, i.e. heterogeneous classes of devices 
(micro-controller devices, general-purposes devices and software defined radio) and radio technologies by means of 
unified interfaces and control models.  

Note that a given wireless technology can be supported by different radio platforms. i.e. by different hardware and 
drivers. For example, the WiSHFUL UPI are available for IEEE 802.11 [i.12] nodes based on commercial interfaces 
(namely, the Atheros™ cards), commercial interfaces with customized non-standard firmware (namely, the Wireless 
MAC Processor), and software defined radios. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 21 

NOTE: The present document is not tied to Atheros™ card. 

While some UPI_R functionalities are technology-agnostic, some others refer to specific technologies and therefore it is 
important to know which technologies are supported by a given platform for accessing these functionalities. 
Consequently, the radio platforms are categorized as WiFi™, LTE, and Lowpan (IEEE 802.15.4 [i.13]) platforms, 
according to the wireless technologies that can be supported. 

WiSHFUL also abstracts the radio platform programming model, in terms of generic execution engine and radio 
programs. According to this model, each radio platform offers the possibility to load several MAC/PHY programs, 
already available for implementers in the WiSHFUL repository, or to define novel wireless protocols and radio 
behaviours by means of high-level programming languages. 

Table 1 provides a summary of the platforms supported in WiSHFUL. 

Table 1: WiSHFUL supported platforms 

Module name Description 
WMP™ Wireless MAC Processor (WMP™) follows a programming model that decouples 

the Medium Access Control protocol logic (described in an abstract form via 
eXtended Finite State Machines - XFSM) from the wireless device design, 
implementing the radio primitives as well as an XFSM execution engine called 
"Wireless MAC processor". The core of the architecture is an execution Engine 
capable of running programs defined as eXtended Finite State Machines 
(XFSMs). The WMP is implemented on a Broadcom™ AirForce54G wireless 
card™ and (partially) on a Software Defined Radio SDR platform (namely, the 
Wireless Open-Access Research Platform™ (WARP) board). 

TAISC™ TAISC™ (Time-Annotated Instruction Set Computer) consist of a cross-platform 
MAC protocol compiler and execution engine. The cross-compilation approach 
allows developers to design MAC protocols once, and then compile them for 
reuse on different radio platforms. This approach has been successfully 
implemented for IEEE 802.15.4 [i.13] MAC protocols on embedded wireless 
nodes (RM090™ and Zolertia™ RE-Mote) and on a Xilinx™ Zynq-based SDR 
platform™ [i.24] and [i.25]. 

IRIS™ IRIS™ is a software defined radio framework that allows users to design and 
construct radios from the composition of user defined signal processing blocks. 
The processing blocks of IRIS are written in C++ and run on the general purpose 
processor of a computer with a Linux™ based operating system. This computer is 
then interfaced to a universal software radio peripheral™ (USRP) frontend device, 
which handles the radio frequency aspects of the radio, which are limited to basic 
up or down conversion and minor filtering in the typical case. 

Atheros™ platform Atheros™-based IEEE 802.11 [i.12] platform is a Commercial off-the-shelf 
IEEE 802.11 [i.12] compliant chip on a Linux™ platform. Following the Software-
Defined Networking (SDN) paradigm the control plane can be separated from the 
data plane and provide an API to allow local or global control programs to 
configure the channel access function. 
In particular, this allows configuring the airtime sharing protocol access like define 
the number and size of time slots in which the transmission is enabled. Moreover, 
for each time slot a medium access policy can be assigned which allows 
restricting the medium access for particular stations (identified by their MAC 
address) and traffic identification (e.g. VoIP or video). The latter can be used to 
program flow-level medium access. 

GNU radio GNU Radio [i.22] is a free software development toolkit that provides signal 
processing blocks to implement software-defined radios and signal-processing 
systems. It can be used with external compatible Radio Frequency (RF) hardware 
in order to deploy SDR transceiver; moreover GNU Radio allows deploying 
innovative solutions in simulation-like environment. 

RAS antenna The Reconfigurable Antenna Systems (RAS) has been developed in the Open 
Call 1 extension of the WiSHFUL project. The antenna is capable of steering the 
radiation pattern dynamically on demand from typical omnidirectional to 
directional shape in the azimuth plane. RAS antenna is fully supported from 
WiSHFUL that provides UPI function to set the antenna direction. 

 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 22 

5.3 Adaptation Modules 
In the initial WiSHFUL architecture, it was initially assumed that each wireless node would have been built on top of a 
single radio platform. For this reason, adaptation modules were designed for mapping the generalized UPI interface into 
platform-specific function calls, thus hiding the implementation details of each platform. 

Wireless nodes can integrate heterogeneous platforms by: 

i) exposing different hardware capabilities and software functions; and 

ii) supporting standard and/or non-standard radio technologies. 

To cope with this generalized view, the WiSHFUL architecture exploits multiple adaptation modules in the same 
wireless node, thus decoupling the wireless node capabilities from a specific radio platform. 

The UPI interface exposed by a wireless node is given by the collection of functions supported by the adaptation 
modules, which have been installed for driving the available platforms. Moreover, the concept of adaptation has been 
further generalized for addressing the purely software architectures implementing the higher layers of the protocol 
stack, such as the operating systems or the traffic source generators. 

In other words, adaptation modules provide a set of UPI functions available in a given wireless node because of the 
installed platforms, operating system and software tools. The complete list of loaded adaptation modules and 
capabilities for each node are reported to the control program by the Monitoring and Configuration Engine (MCE). 

Indeed, only the UPI functions presented in the loaded modules can be called by the control program. All the local 
MCEs and adaptation modules are implemented in Python [i.17] except for Contiki™ sensor nodes [i.21] where, in 
addition to the Python implementation residing on a host Linux™ Personal Computer (PC), also a native C software 
module exists that is used as an interface to the GITAR (Generic extension for Internet-of-Things Architectures) 
reconfiguration services on the node [i.23]. 

GITAR middleware offers a generic solution to integrate a vertical control plane within the protocol stack of 
constrained sensor devices. 

 

Figure 4: WiSHFUL adaptation modules 

Figure 4 shows an example of wireless node with multiple loaded adaptation modules refer both to hardware radio 
platforms and to protocols. 

5.4 Unified Program Interface 

5.4.1 Overview on WiSHFUL Unified Program Interfaces (UPIs) 

WiSHFUL Unified Program Interfaces are grouped according to their goal: management, network control and radio 
control. Additionally, UPI functions are categorized by technology-independent functions and those that are 
technology-specific devoted, respectively, to Wireless Sensor Networks, LTE and WiFi. The same functions can be 
used both locally and globally. The full definition of UPIs can be found in [i.26]. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 23 

5.4.2 UPI_M 

The UPI_M interface provides management functions at any layer, both local and global. UPI_M are used for 
deploying, installing and activating software packages. WiSHFUL considered how to use the concept of a software 
package in the execution environment to deploy such UPIs in the platform. Moreover, it is possible to use the UPI_M 
interface to deploy the radio program on platforms, setup wireless links, etc. The UPI_M is used to enable the use of a 
specific execution environment in a node and also for the initialization of nodes before starting an experiment. 

NOTE: Turning to the ETSI GANA Model, the GANA Knowledge Plane (KP) Platform. 

5.4.3 UPI_N 

Unified Programming Interface - Network (UPI_N) is a set of functions that ensures uniform control of the upper MAC 
and network layer protocol behaviour on heterogeneous devices. The functions forming the interface are generic, their 
implementation is hardware and platform specific and is provided by the Local Monitoring and Configuration engine. 
The user is able to manipulate a wide range of network layer functionality like routing, flow control, queue 
management, priority control and more. UPI_N functions are organized into the following functional groups: 

• Address management 

• Protocol attribute manipulation 

• Traffic control 

• Topology detection and routing control 

NOTE: The UPI_N functions map to what are called Managed Entities (MEs) in the ETSI GANA Model, and the 
MEs should be individually assigned to specific GANA DEs responsible for the autonomic orchestration 
and management and control of their MEs and collaborating with each other to realize a global 
autonomics objective(s). 

The "ME-to-DE" assignments follow the principles of "ME ownership" prescribed in ETSI TS 103 195-2 [i.9] by which 
an ME is owned by only one (1) DE that autonomically manages and controls it. As such, the types of UPI_R functions 
(i.e. ME Types) determine which types of GANA DEs can be implemented to use the UPI_N, either as standalone 
programs or as a "bundled/merged" single program. 

From the implementation point of view, UPI_N functions rely on three modules: module_net_linux, module_iperf for 
the Linux OS; and module_net_contiki for the Contiki OS [i.21]. 

5.4.4 UPI_R 

The UPI_R interface permits monitoring and configuration of radio behaviours of the nodes. Radio control is devised to 
easily prototype novel wireless solutions, which can include dynamic adaptations of the MAC/PHY of the devices. The 
solutions can be platform-agnostic, thanks to the abstractions provided by the UPI_R interface, and can work on 
heterogeneous hardware platforms, including sensors, wireless cards and software-defined-radio. 

UPI_R is responsible of tuning the radio operating frequency, selecting the transmission format, activating wireless 
links towards neighbour nodes, collecting statistics and configuring the medium access logic. The interface acquires 
information about the platform radio capabilities, because different platforms can support different programmability 
models and configuration parameters. 

Then, according to the available capabilities, the interface functionalities can work on three aspects: configuring the 
experimentation platform, at both the hardware and radio program levels, monitoring the node and network conditions 
by accessing all the signals and internal state information of the experimentation platforms, adapting on-the-fly the node 
behaviour by loading and activating - on the fly - context-specific radio programs. 

NOTE: Like in the case of the UPI_N, the UPI_R functions above map to what are called Managed Entities 
(MEs) in the ETSI GANA Model, and the MEs should be individually assigned to specific GANA DEs 
responsible for the autonomic orchestration and management and control of their MEs and collaborating 
with each other to realize a global autonomics objective(s). The "ME-to-DE" assignments follow the 
principles of "ME ownership" prescribed in ETSI TS 103 195-2 [i.9] by which an ME is owned by only 
one (1) DE that autonomically manages and controls it. As such, the types of UPI_R functions (i.e. ME 
Types) determine which types of GANA DEs can be implemented to use the UPI_R, either as standalone 
programs or as a "bundled/merged" single program. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 24 

5.5 WiSHFUL Control Framework 

5.5.1 Control Concepts and programmability enablers implemented in the 
environments that were considered by WiSHFUL 

The WiSHFUL control framework facilitates prototyping of novel control solutions in heterogeneous wireless networks 
according to the WiSHFUL principles: 

• Coordinated collection of information from nodes and execution of control actions on different protocol layers 
(cross-layer), heterogeneous devices (cross-technology) and multiple nodes (cross-node). 

• Existence of a global and consistent view of the entire network, i.e. knowledge about the state of all devices 
and their relationships. 

• Possibility to implement logically centralized and physically distributed control programs, i.e. placing time-
sensitive tasks close to device and off-loading resource greedy tasks to powerful servers. 

• Support for multiple levels of control for scalability reasons, i.e. local control programs handle frequent 
commands and events, while global/hierarchical control programs handle rare events. 

• Support for detecting network changes in proactive and reactive control schemes in control programs. 

• A high-level API for control of operation of individual wireless devices and groups of devices. 

• Location transparency that permits to use same API syntax for execution of commands on local and remote 
devices. 

• Possibility to execute commands on group of nodes/devices. 

Control and optimization of operation of wireless network usually involves tuning parameters of network devices being 
in proximity of each other, i.e. in wireless communication/interference/sensing area. Examples are the radio channel and 
transmit power assignment to co-located Access Points in WiFi [i.12] networks. 

Hence, the control plane requires mechanism to discover the wireless devices in the network and their (wireless) 
relationship. Moreover, this information has to be monitored and updated at run-time. Having a global view of the entire 
wireless network enables control programs to efficiently manage and control of wireless devices. Changes in the 
network state can be detected in two ways, namely proactive and reactive. 

In a proactive approach, the network controller is periodically polling the network entities, while in a reactive approach 
the execution of control program functions is triggered by events generated by the nodes in the network. It should be up 
to the implementer to define the preferred control strategy. 

The WiSHFUL control framework was prototypically implemented. Particular attention was paid to enhance code 
reusability and support for different programming languages as well as enabling the use of specialized external software 
libraries. 

The main prototype is implemented in Python language [i.17] , which makes it possible to run on multiple different 
Operating System host types (Linux, OpenWRT, Mac OS and Windows) and allows for rapid prototyping of control 
programs. An overview of the implementation is presented in Figure 5. 

As WiSHFUL project used only standard and common Python libraries [i.17], it proves that it is possible to run and test 
WiSHFUL implementation on multiple platforms, including x86, "Advanced RISC Machine" (ARM) and 
"Microprocessor without Interlocked Pipelined Stages" (MIPS). In order to also support constrained devices, a 
lightweight C version of the agent-side of the framework was also implemented in Contiki [i.21]. 

In order to support delayed and time-scheduled function execution, the Agent class is equipped with a scheduler 
(Python Apscheduler[i.17]). 

Note that when coordinating multiple nodes by means of time scheduled execution, the nodes in the network require a 
common notion of a global clock (e.g. obtained through use of Global Positioning System (GPS) or time protocols like 
Precision Time Protocol (PTP) or Network Time Protocol (NTP)). 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 25 

 

Figure 5: Implementation overview of WiSHFUL control framework 

5.5.2 Interaction models 

The WiSHFUL control framework supports both proactive and reactive approaches. In the proactive behaviour, local 
or global control programs triggers the execution of UPI functions on wireless nodes like polling. The reactive 
approach is also supported. It includes triggers that occur when specific conditions are fulfilled, and then registered 
callback functions are executed. 

The WiSHFUL MCE supports two types of UPI calls: synchronous blocking UPI calls where the caller, i.e. the 
WiSHFUL control program (local or global), is blocked until the callee returns. The second option is an asynchronous 
non-blocking UPI function call. Here any UPI call returns immediately. The caller has the option to register a callback 
function so the return value of the UPI call can be received at a later time. 

5.5.3 Immediate and delayed commands 

Beside the possibility of immediate execution of UPI functions either using a blocking or non-blocking scheme the 
WiSHFUL MCEs provide the possibility for time-scheduled execution of UPI functions at a particular instant. This is 
important if nodes need to coordinate their actions in time, e.g. a set of nodes perform a time-aligned switching to a new 
channel. The possibility for time-scheduled execution of UPI functions is especially important for global control 
programs and can be used in together with control by delegation, when the connection between the global MCE and 
local ones is not reliable or is not fast enough to meet strict time requirements of low-level protocols. 

5.5.4 Local and remote execution 

WiSHFUL provides full location transparency. Any UPI function can be executed either locally by a local control 
program or remotely by a global control program. In the latter case, the WiSHFUL global MCE transparently serializes 
all input and output arguments. Finally, as with the local execution also the execution of remote functions can be time-
scheduled. This is especially important if a given UPI function needs to be executed at the same time on a set of 
wireless nodes. 

5.5.5 Synchronization 

A wide range of WiSHFUL applications like the centralized control of channel access requires tight time 
synchronization among wireless nodes for time-sensitive control of devices. The way the wireless nodes are time 
synchronized is platform and architecture-dependent. Basically, WiSHFUL distinguishes between systems where a 
backbone network exists. Here in order not to harm the performance of the wireless network the nodes are time 
synchronized using the backbone (e.g. Ethernet) and in some cases using protocol like "Precision Time Protocol" (PTP). 
Wireless nodes without a backbone have to rely on other techniques for time synchronization (e.g. GPS). 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 26 

5.5.6 Packet monitoring and manipulation 

WiSHFUL provides a wide range of functionality for packet forgery, sniffing and injection. Control programs can use 
this to create and inject network packets into the network stack of a node or to receive copies of packets. All WiSHFUL 
nodes support the sniffing and injection on IP layer (layer 3). Packet manipulation in WiSHFUL is provided with an 
object-oriented approach and is based on iptables, packet marking and setting Type-of-Service value. Data flows can be 
marked with FlowDesc then new rules can be installed in iptables of the system under test. 

5.5.7 Node handling 

The WiSHFUL control framework uses ZeroMQ Realtime Exchange Protocol (ZRE) [i.27], for Linux-based nodes that 
are connected to a dedicated control network. This peer-to-peer protocol provides automatic node discovery. This 
functionality is useful for defining radio and network programs that control a set of nodes that is unknown or can 
change over time. 

5.5.8 Extensibility of UPI functions 

WiSHFUL provides an open and extensible architecture, which can be easily extended by new UPI functions. Any new 
introduced UPI function can be implemented in a different way for different platform and architecture. Therefore, in 
WiSHFUL for each platform there is an adaptation module that maps the general UPI call into platform-specific 
implementations. 

Technical details and examples regarding the WiSHFUL control framework are available in [i.3], [i.4], [i.5], [i.6] and 
[i.25]. 

5.6 Hierarchical Control Model 
The orchestration provided by the WiSHFUL framework uses UPI interfaces for controlling components at a global and 
local levels as well as using a hybrid paradigm.  

The control framework provides basic services for coordinating the UPI_R calls, which include time synchronization 
among the nodes (for relying on a common temporal signal), blocking or non-blocking interface calls, time-scheduled 
and remote execution of UPI_R functions, loading of local control programs on the nodes. These services can be 
exploited for the definition of the control programs, which work on both radio and network control. 

The WiSHFUL architecture supports a two-tier control hierarchy: one global Monitoring and Configuration Engine 
(MCE) and several local MCEs that control single devices by means of the UPI_R and UPI_N interfaces. 

The global MCE orchestrates several remote MCEs residing on wireless nodes. Monitor and configuration services are 
defined through Global Control Programs (GCPs). These two tiers work in a coordinated manner, being orchestrated at 
the global level. Indeed, global control programs can instantiate local control programs on wireless nodes, performing a 
sort of control by delegation, or can act directly on the wireless nodes in a coordinated manner. 

Control by delegation is needed when the reconfiguration decisions or the parameters to be monitored have strict time 
constraints, which cannot be guaranteed by the control network. In fact, the physical channel used for conveying control 
messages to/from the global controller can be unreliable and introduce some latency. Since radio performance depends 
on highly variable network conditions (e.g. channel propagation, fading, interference, access timings, etc.), control by 
delegation is particularly important for radio control. The architecture also supports hybrid approaches, in which some 
control operations are managed at the global level, while some others are demanded to wireless nodes. The coordination 
between global and local control programs is obtained by using the UPI_HC, which is the main driver for this 
hierarchical control. 

Figure 2 illustrates how the WiSHFUL radio control works on heterogeneous radio platforms. The global MCE runs 
remotely and allows implementing node configurations that depend on network-level decisions and can be executed in a 
time-coordinated fashion among multiple nodes. 

Each of the WiSHFUL enabled nodes runs a local MCE that offers the same local services and the same UPI_R 
functions on different radio platforms. Interactions between components of the WiSHFUL general architecture are 
reported in Figure 6. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 27 

 

Figure 6: Overview of the components in the general WiSHFUL architecture 

For coordinated control among multiple devices of different nodes, the framework API has to support time 
synchronized execution of functions across multiple network devices. Examples are the coordinated channel switching 
of multiple devices due to appearance of an interference source. 

While it is natural that the device programming interface is different for each wireless technology, in most cases it also 
varies across different implementation of the same technology, i.e. wireless devices of different vendors. The 
unification of the different Native Device Programming Interface (NDPI) is achieved by the introduction of the UPI_R 
and UPI_N interfaces which allow controlling the devices of a heterogeneous network in a unified way. 

 

NOTE: Global controllers (left) handle rare events and commands while local controllers (right) are able to handle 
frequent commands and events. In hierarchical control (middle) there are two control loops, i.e. outer and 
inner. 

Figure 7: Levels of control in WiSHFUL control framework 

In the general SDN concept the control plane is logically centralized enabling control programs to have a global view of 
the entire network. This approach simplifies the development of control programs significantly. However, from a 
practical point of view a centralized controller would introduce a significant delay in the control plane, which could in 
turn prevent time sensitive control logic to be implemented. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 28 

Moreover, transporting all monitoring data from devices to a central node would create a high load on the control plane. 
Sometimes pre-processing data locally at the device is feasible. In this way, the control logic may be partitioned into 
smaller control programs where parts of them would run on the network nodes and others on the central compute node, 
i.e. hierarchical control. 

Another advantage of such a split is the possibility to reuse control programs. For example, an averaging filter may be 
implemented once as a control program and used as a local component in the implementation of more complex 
controllers in the future. 

Figure 7 shows the levels of control in the WiSHFUL control framework. Local control programs handle frequent 
commands and events, while global control programs handle rare events. There is also the possibility for hierarchical 
control where exchange of events between the global control programs and the local control programs is also rare. 

WiSHFUL control framework allows for running multiple control programs communicating with each other and 
provides them with interfaces for controlling wireless devices in a coordinated way. 

5.7 Monitor and configuration engines and services 
WiSHFUL implements its hierarchical control model using Monitoring and Configuration Engines (MCEs), as already 
indicated in clause 5.6. The global MCE orchestrates several remote MCEs residing on each wireless node of the 
testbed. 

The global MCE provides monitor and configuration services that can be used to write a Global Control Program 
(GCP). This is the logic to control and modify the behaviour of wireless nodes. WiSHFUL MCEs collect measurements 
(e.g. throughput, air-time usage, PHY errors, etc.), take decisions, and update the configuration of heterogeneous 
hardware and software platforms. 

MCEs apply their decisions of radio configuration on the radios, this can be done using different programmability 
models that depend on the platform in use (e.g. the Wireless MAC Processor is programmed through xFSMs, Time 
Annotated Instruction Set Computer (TAISC) is programmed with a time-annotated instruction set, etc. as reported in 
Table 1). 

MCEs have a unified way to configure platforms using dedicated unified program interfaces (UPIs), discussed in 
clause 5.4. MCEs correspond to decisions elements in the GANA architecture. The logic to take decisions can be 
composed starting from a WiSHFUL intelligent repository of algorithms for data analysis and manipulation, including 
machine learning algorithms. This is specifically addressed by the WiSHFUL intelligent framework, which will be 
discussed in clause 5.9. 

5.8 Execution engines, radio and control programs 

5.8.1 Overview 

The WiSHFUL architecture clearly splits the execution logic (the radio programs), from the execution engines (the 
actual executor of the behaviour on the programmable platform). This clear decoupling enables maximal exploitation of 
radio functionalities available in current radio chips, as opposed to today radio drivers that restrict radio functionality. 

For example, todays radio drivers for IEEE 802.11 [i.12] do not support TDMA (Time Division Multiple Access) 
operation, while the hardware perfectly supports it. Furthermore, the clean separation between radio control and 
protocol logic is in contrast with today's monolithic implementations, which prevent the ability to separately work on 
the logic for enabling specific protocol features and the definition of these features. In the present document the WMP 
and TAISC programmable platforms are described as representative examples of heterogeneous programmability 
models that are based on execution engines. 

5.8.2 WMP 

The Wireless MAC Processor (WMP) architecture offers the possibility to easy program, load and execute customized 
MAC protocols, by using a platform-independent, extended finite state machines (XFSM) based, high-level 
programming language. This capability is achieved by developing a firmware which does not implement a specific 
protocol, but rather a generic protocol executor called MAC Engine. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 29 

The MAC programs are specified as extended finite state machines (XFSMs), which are built by composing 
elementary hardware actions, in response of specific hardware events and conditions of the hardware internal 
registers. The set of events generated by the hardware, the set of actions coded in pre-defined firmware modules and the 
set of hardware registers whose settings can be tuned and verified, represent the hardware API that cannot be modified 
by the user. 

The MAC program is coded into a transition table and loaded in a memory space deployed on the hardware. Starting 
from an initial (default) state, the MAC engine fetches the table entry corresponding to the state, and loops until a 
triggering event associated with that state occurs. 

It then evaluates the associated conditions on the configuration registers and triggers the associated action and register 
status updates (if any). Next it executes the state transition and fetches the new table entry for the destination state. The 
MAC engine does not need to know to which MAC program a new fetched state belongs to. 

Therefore, code switching is achieved by simply moving from the current protocol state to a target state in a different 
transition table, with a latency of a few Central Processing Unit (CPU) clocks. 

5.8.3 TAISC 

TAISC (Time-Annotated Instruction Set Computer) aims to simplify the development of new protocols for sensor 
nodes. It consists of a cross-platform MAC protocol compiler and an execution engine. This design allows to describe 
MAC protocols in a platform independent language (consisting of a radio platform independent instruction set), 
followed by a straightforward compilation step, yielding dedicated binary code, optimized for specific radio chips. 

The cross-compilation approach allows developers to design MAC protocols once, and then compile them for reuse on 
different radio platforms. To enable time-critical operation, the TAISC compiler adds exact time annotations to every 
instruction of the optimized binary code. The execution engine running on the radio platform, will execute the 
instructions with accurate time control thanks to the provided time annotation. 

The overall TAISC workflow to develop and execute a MAC protocol involves the following steps: 

1) device-agnostic MAC protocol creation. 

 First, the MAC protocol designer creates a high-level, platform independent radio program to describe the 
MAC logic using predefined commands (instructions) in a C-like language, either using high-level C language 
syntax or using a more intuitive drag- and-drop interface. 

 This human readable code consists of a sequence of commands that describe the generic behaviour of the 
MAC protocol and is largely independent of hardware specifics of the final hardware platform; 

2) device specific compilation. 

 Next, this human-readable sequence is compiled by the TAISC compiler into efficient, device-specific binary 
byte code that can be executed by the TAISC execution engine running on the radio platform; 

3) protocol dissemination. 

 Afterwards, the byte code is wirelessly transmitted to the target hardware platform and added to the MAC 
application repository on the local TAISC execution engine; 

4) MAC protocol execution. 

 Finally, the TAISC core executes the byte code. 

5.9 Intelligence framework (data collection, intelligence 
composition, action) 

The WiSHFUL Intelligence Framework uses data collected from the network nodes, applies machine learning 
algorithms and applies configuration actions. The intelligence framework communicates with the control framework by 
the mean of UPIs. The generic functional view can hence be mapped to the conceptual framework for enabling 
intelligence shown in Figure 8. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 30 

 

Figure 8: Conceptual framework for enabling intelligence in the WiSHFUL architecture 

As the UPIs are unified abstractions that span several wireless technology platforms, the components of the intelligence 
framework are generic. The Data Collection Component is a generic software module that interacts with the WiSHFUL 
UPIs to retrieve data about radio and network state (i.e. channel occupancy, link quality indicator (LQI), received signal 
strength (power) indication (RSSI), Packet Received Rate (PRR), topology, etc.), and with the Application to retrieve 
information about the application requirements (e.g. max delay, peak throughput, max Packet Error Rate (PER)). 

The Data Collection Component also implements aggregation functionality. The Intelligence Composition Module 
offers support for composing and configuring several algorithms available in the WiSHFUL Intelligence Repository 
into a self-contained intelligence engine that uses the data provided by the Data Collection Component and triggers 
network and radio configuration through the Action Component. 

The Action Component uses the WiSHFUL UPIs to adjust the configuration of radio and network. The radio and 
network configuration should be viewed as the output of the intelligence process. Such a configuration can deal with 
individual parameters (e.g. centre frequency, backoff delay, etc.), radio processing elements (e.g. filter swapping), a 
waveform (e.g. a modulation and coding scheme) or a protocol (e.g. new MAC scheme). 

The framework allows to support the usual Observe, Orient, Decide and Act loop (OODA loop): the data collection 
component is responsible of gathering data observations and aggregating and filtering the data for extracting the 
features used in the orient phase; the intelligence composition component is responsible of taking decisions on the basis 
of the previous observation and orient phase; the action component is responsible of implementing an adaptation 
decision by reconfiguring the wireless nodes. 

6 Impact of Virtualization and Hardware Acceleration 
Techniques, and Radio Access Network Slicing 
(RAN Slices), to WiSHFUL Concepts and Principles 

The H2020 ORCA project [i.28] extends the WiSHFUL architecture with more advanced software defined radio 
support. The main focus of ORCA is offer real-time software defined solutions that are reconfigurable and 
reprogrammable at runtime and that support end-to-end communication between real-life applications in realistic 
wireless network setting (involving many nodes sharing the same wireless environment). 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 31 

The ORCA project focuses on 3 key features [i.29], [i.30], as illustrated in Figure 9: 

• Softwarization (Software'rization) is the movement towards using software rather than hardware to perform 
the processing of network functions. By processing a functionality, which was previously done on dedicated 
hardware, in software and programmable logic, wireless networks become more reconfigurable. 
Softwarization is realized by a programmable framework, which is a modular, flexible, extensible, and 
reusable software framework that provides general functionality with a wide set of configurations that can be 
used for creating specific applications. An example of a programmable framework is the WiSHFUL 
framework that offers many configuration options for controlling and monitoring of wireless networks. The 
result of softwarization of radio functionalities is additional flexibility at two different levels: 

- Parameters level flexibility refers to the capability to modify reconfigurable parameters within a radio 
function (e.g. a threshold in a preamble detection block or a modulation scheme in various symbol level 
processing blocks). 

- Composition level flexibility refers to the capability to transfer information in a wireless channel by 
connecting softwarized radio functions in a chain. Radio functions can be placed on different hardware 
entities, such as dedicated hardware, programmable logic chips field-programmable gate array (FPGA), 
embedded processors, general purpose computers, servers in the cloud, etc. From cloud to FPGA, each of 
the listed options has its own advantage; in general on the cloud end, there is more flexibility and ease of 
configuration, whereas at the FPGA side there is a higher processing speed. Softwarized radio functions 
can be further replaced, added, or removed according to real-time requirements. Radio functions 
flexibility at composition level allows the instantiation of different RATs on the same hardware 
infrastructure. 

• Virtualization is the partitioning or aggregation of real radio resources (e.g. spectrum, time, space/beam) in 
order to create isolated radio slices, each slice supporting a specific service and tailoring virtualized radio 
functions to a specific wireless context of the service. Virtual radio resources can be flexibly sized depending 
on context, to real radio resources that are fixed in size. For example multiple transceiver chains of virtualized 
radio functions can be mapped to isolated radio channels within the available spectrum. Channels can have 
equal or different channels widths according to traffic demands in each radio slice. Alternatively, multiple real 
radio resources can be combined as if they were one large virtual resource (e.g. multiple carriers within the 
same RAT or multiple RATs can aggregated to increase the wireless capacity). The entity that is responsible 
for virtualization is called the hypervisor. Virtualization (together with softwarization) enables sharing of the 
same infrastructure for multiple concurrent RATs by multiple network providers. 

• Orchestration is the placement of functionality in the different hardware entities, and the management and 
control of softwarized and/or virtualized radio resources. The entity that is responsible for orchestration called 
the orchestrator. An example of orchestrator is the WiSHFUL control program. 

 

Figure 9: Illustration of Softwarization, virtualization and 
orchestration principles in the H2020 ORCA project 

SOFTWARIZATIONHARDWARE

antenna

RF frontend
ADC/DAC

FPGA/ASIC

embedded 
controller

host PC

edge/fog/cloud 
server

D
IG
IT
A
L

A
N
A
L
O
G

programmable 
logic (PL)

software

software

software SO
FT

 C
O

D
IN

G

RF FE 
driver

antenna 
driver

H
A

RD
 C

O
D

IN
G

VIRTUALISATION

► sharing of 
hardware/infrastructure

►enablers for creation of 
virtual resources (V1, 
V2,…) on softwarized
resources (R1, R2,…)

►e.g. spectrum & time 
slicing & RAT aggregation

DATA 
PLANE

CONTROL 
PLANE

ORCHESTRATION

►placement of softwarized
resources 

► composition of 
PHY/MAC/IP stack in 
isolated slices

►network-wide runtime 
monitoring & control of 
resources and slices 
(reconfigurability) 

►network-wide management 
of resources and slices 
(add, delete, update)

IP  stack 

MAC

PHY

V
1 IP  stack 

MAC

PHY

V
2

IP  stack 

MAC

PHY

V
N

…

IP
 
st
a
c
k

M
A
C

P
H
Y

IP  stack 
control

MAC 
control

PHY 
control

V1

R1 

V2

V3

SLICING

R2

V4 

R3

AGGREGATION

PROGRAMMABLE FRAMEWORK HYPERVISOR ORCHESTRATOR

MAIN SW ENTITY



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 32 

The ORCA features can be mapped to the WiSHFUL architecture as follows: 

• The ORCA programmable framework can be mapped to the WiSHFUL Monitoring and Control Engine 
(MCE) exposing UPIs. The ORCA project extends the WiSHFUL programmable framework with a flexible 
PHY and advanced PHY control. 

• The ORCA orchestrator can be mapped to the WiSHFUL control program(s). The ORCA project extends the 
management capabilities with deployment, installation and activation of radio processing function in 
programmable logic on FPGA. 

• While the main focus of WiSHFUL is on Softwarization, the ORCA project also develops hypervisor 
capabilities for radio virtualization (both in software and programmable logic). 

The vision of ORCA for end-to-end cross-domain orchestration is presented in Figure 10, [i.1], [i.2] and [i.31]. 
End-to-end networks can comprise multiple network segments, e.g. radio access networks, transport and core networks, 
and data centre networks, and these network segments are typically built for different purposes. 

Network segments also use different media, such as optical fibre, copper cables, and wireless spectrum, and thus 
employ different technologies and protocols, e.g. xPON, xDSL and LTE, with unique configurations, policy 
enforcement and QoS management. 

Hence, the creation of E2E network slices to provide guaranteed performance requires the slicing of each individual 
network segment, and the subsequent combination of these network segment slices. Network slices within a network 
segment are managed by an entity called an orchestrator, that orchestrates the use of network resources and the 
placement of functionality in a network segment, and also defines the configuration, policies, and management of a 
network segment. 

In the ORCA vision, each network segment should have their own orchestrator, tailored to the segment's particularities, 
as illustrated in Figure 10 for the case of an E2E network with a wired and a wireless segment. 

The communities behind each network segment have their own abstractions and models to manage the particularities of 
each segment. The use of a separate orchestrator for each network segment reduces complexity and breaks down the 
larger E2E network. In this way, each segment orchestrator can focus on a limited number of well-defined tasks, 
reducing the software complexity, both in terms of design and implementation. 

E2E network slicing will require a combination of multiple types of orchestrators. Different types of orchestrators are 
deployed according to the type of resources being managed: wired network orchestrators for managing NFV (Network 
Function Virtualisation) and SDN (Software Defined Networking) and for establishing paths and deploying services; 
wireless network orchestrators for managing RRHs (Remote Radio Heads) and SDRs for creating RATs and 
provisioning radio access. 

It is expected that there exists an entity with a global view of the available resources and the capabilities of each 
orchestrator for establishing and managing flexible E2E networks, leveraging the virtualization of each network 
segment. This entity would be an orchestrator of orchestrators, which coordinates the interaction between the 
underlying virtualized infrastructure, namely a hyperstrator. 

The hyperstrator would sit on top of different orchestrators for controlling the E2E allocation of resources and 
management of the entire network. It would be the responsible for mapping high-level E2E network requirements into 
the require sites for the different networks segments, while each of the underlying orchestrators would then map their 
own requisites into a realization using the available virtualized resources. 

The hyperstrator knows the available resources and the status of the current services by gathering information from its 
underlying orchestrators. Moreover, the hyperstrator should coordinate the combination of slices between network 
segments for creating E2E network slices. Therefore, it is crucial for the hyperstrator to be aware of the points of 
presence between network segments, as these are the places where network segments interface and interconnect. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 33 

 

NOTE: The hyperstrator receives service requests and decides the service resource requirements for each 
network segment and delegates these to each segment orchestrator. Each orchestrator then provisions 
resources and deploys services as a chain of virtual functions. 

 
Figure 10: Cross-domain orchestration 

7 Instantiation of GANA Functional Blocks by Mapping 
WiSHFUL architecture components to GANA 
Concepts and Architectural Principles 

7.1 General Mapping of WiSHFUL Architectural Concepts and 
Principles to GANA Concepts and Principles 

This clause provides a mapping between functional components of the GANA and the WiSHFUL architectures. It is 
worth noting that the two architectures have been designed independently and that the WiSHFUL architecture was not 
specifically designed for autonomic networks, as its main focus is for simplifying wireless experimentation on 
heterogeneous radio platforms. 

However, they both enable combining and interworking centralized and distributed control for network and services 
[i.8]. The comparative analysis of the two architectures reveals a good matching of their components, justified by the 
common concepts and principles that are behind, indicated in clause 4 (network compartmentation, function 
atomization and composition, closed control loop, context recognition and adaptation). 

In some cases, the mapping of the functional blocks is almost perfect, with small differences only in naming 
conventions, in other cases there are significant differences in concepts and functional elements. 

The architectural components of GANA and WiSHFUL are compared in tabular form in Table 2 with specific focus on 
the enabling elements for autonomic networks. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 34 

Table 2: Comparison and Mapping between GANA and WiSHFUL concepts 

GANA WiSHFUL ARCHITECTURE 

 

 

Node-Main-DE - Decision-making Element Local MCE - Local Monitor and Configuration Engine 
Function level DE  
Protocol level DE 

These Decision-making Elements (DEs) are embedded in the 
programmable platforms and are out of the scope of WiSHFUL 
goals. However, WiSHFUL provides adaptation modules to make 
such function and protocol levels available to node-level decision-
making elements in a unified form (UPIs). 

Additionally, clause 7.3, provided in the present document, 
provides insights on how Function Level DEs (GANA Level 2 DEs) 
can be implemented jointly with the Node-Main-DE (GANA 
Level 3) within the same space of abstraction in a Node but still 
preserving the GANA hierarchy and interactions among the GANA 
Level 3 and Level 2 DEs and making both levels use a unified API 
(UPI) to dynamically and autonomically configure the Managed 
Entities (MEs) of the Node. 

Network level DE Global Control Program (Controller), with a Global MCE - Global 
Monitor and Configuration Engine that serves the multiple 
Knowledge Plane (KP) DEs. 

The clause "Network-level programmability and the Mapping to 
GANA Network Level (Knowledge Plane (KP) Level) Autonomics", 
provided in clause 7.4, provides insights on how the GANA 
Knowledge Plane DEs (Network Level DEs) and other entities of 
the Knowledge Plane such as MBTS and ONIX can be 
implemented in the WiSHFUL framework. 

Reference Point (Rfp) UPI (Various UPIs defined and implemented in the WiSHFUL 
framework can be used to realize some corresponding Reference 
Points defined in the GANA Framework). 

More details can be found in clause 7.7 provided in the present 
document. 

Horizontal Reference Point 
(for communication between peer components of 
Network Elements) 

WiSHFUL does not define, by proposal, any specific 
communication interface between peer components because this 
choice is left to the implementer, which can use existing protocols 
or define new ones. 

Vertical Reference Point 
(for communication between Network Elements and 
the knowledge plane) 

UPI_R and UPI_N  

Network Element Programmable wireless node 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 35 

GANA WiSHFUL ARCHITECTURE 
Managed Entity (ME) • Radio Program. 

• Control Program. 
• Wireless Node. 
• Other Configurable resources and parameters in the 

Node, including Protocol Stacks, Network Interface 
Cards (NIC), monitoring components and mechanisms, 
physical and virtual resources such as memory, 
configurable system (operating system) functions, and 
other types of MEs that derive from Table 3 in ETSI 
TS 103 195-2 [i.9] (more details on this subject are found 
in the clause 7.5. 

Knowledge Plane (KP) Global Control Programs, Global MCE + WiSHFUL intelligence 
Repository 

 

WiSHFUL does not distinguish the four levels of abstractions provided by GANA (protocol-level, function-level, node-
level, network-level) but only radio and network levels. 

In WiSHFUL, decision-making entities (DE) at protocol and function levels are embedded in the programmable 
platforms that are supported by the project and that were defined externally to the project. This means that those DE 
have heterogeneous reference points therefore WiSHFUL provides adaptation modules in order to expose unified 
vertical reference points, which are named Unified Program Interface (UPI) in WiSHFUL. 

This vision does not contrast with the statement in ETSI TR 103 495 [i.7], that is reported in the following: "Since the 
Protocol-Level involves embedding an intrinsic control loop within an individual protocol, it may not be necessary to 
introduce such "intelligence" into individual protocols, but rather to focus on introducing autonomicity (control loops) 
at higher levels of abstraction, starting from the level directly above (i.e. the Function-Level that defines "functions" 
which abstract individual protocols and mechanisms), up to the Network-Level". 

7.2 Autonomic networks and General GANA integration with 
SDN, NFV, Big Data Analytics Applications, OSS/BSS 
Systems, Orchestrators, and Other Management and 
Control Systems 

The question of how to apply GANA principles for Automated and Autonomic Management & Control (AMC) in 
environments involving Software Defined Networking paradigm (SDN), NFV, Big Data Analytics and other 
management and control systems that may be targeted for use in those environments, is answered by work already done 
in ETSI on GANA and SDN, GANA and NFV and the Unified architecture for ETSI GANA, SDN, NFV, Big Data, and 
E2E Orchestration, as illustrated on Figure 11 and Figure 12 taken from [i.20] and [i.32]. The following resources 
provide much more additional useful information on this subject: 

• ETSI TS 103 195-2 [i.9] 

• ETSI White Paper No.16 [i.8] 

• ETSI TR 103 473 [i.10] 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 36 

 

NOTE: This figure also addresses the subject of KP integration with Event Sources, Data Sources and 
Info/Knowledge Sources. 

 
Figure 11: The Integration of the GANA Knowledge Plane (KP) with various management and control 

systems through which the Knowledge Plane can selectively program the network 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 37 

 

Figure 12: Multi-Layer Autonomics and the integration of the GANA Knowledge Plane with 
Orchestrators, SDN Controllers, NFV, and OSS/BSS systems 

7.3 WiSHFUL Node-level programmability and Mapping to 
GANA Node-Level and Lower Levels Autonomics 

Figures 13, 14, 15 and 16 illustrate how the WiSHFUL implementation provides for an approach to implementing the 
GANA Node's internal API that enables GANA Levels 2 and 3 DE innovators to implement and load the DEs to drive 
the autonomic operations of a network node (Network Element/Function (NE/NF)) as described in ETSI 
TS 103 195-2 [i.9]. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 38 

 

NOTE: This figure also addresses how the same API can be used by DEs to access and configure other types of 
managed resources or mechanisms. 

 
Figure 13: How the WiSHFUL Implementation provides an Implementation of the API that enables 

DEs to access and configure protocol stacks and OSI layer 7 or TCP/IP application layer applications 

 

Figure 14: A GANA level 2 or Level 3 DE is Local Control Program 
in the WiSHFUL Framework 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 39 

 

NOTE: This figure also provides illustrations on the Linux environment already experimented within the WiSHFUL 
Project. 

 
Figure 15: A GANA level 2 or Level 3 DE is treated as a Local Control Program 

in the WiSHFUL Framework 

 

Figure 16: A GANA level 2 or Level 3 DE is treated as a Local Control Program 
in the WiSHFUL Framework (with additional insights concerning contexts) 

7.4 WiSHFUL Network-level programmability and the Mapping 
to GANA Network Level (Knowledge Plane (KP) Level) 
Autonomics 

Figure 17 illustrates how to use WiSHFUL Network-level programmability components to implement GANA 
Knowledge Plane level autonomics, as well as illustrating how the integrate that with lower level GANA autonomics in 
the NE/NF level (GANA Levels 2 and 3 DEs). 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 40 

 

Figure 17: A GANA level 2 or Level 3 DE is treated as a Local Control Program 
in the WiSHFUL Framework, and a GANA Knowledge Plane (KP) Level DE is a Global Control 

Program in the WiSHFUL Framework 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 41 

 

NOTE: This figure also provides illustrations of the Contiki [i.21] and Linux Nodes experimented with in WiSHFUL 
Project. 

 
Figure 18: A GANA level 2 or Level 3 DE is Local Control Program in the WiSHFUL Framework 

and a GANA Knowledge Plane (KP) Level DE is a Global Control Program in the WiSHFUL Framework 

 

Figure 19: Various implementations scenarios that can be considered 
in implementing GANA DEs as controllers 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 42 

7.5 Parameter and Functionality Mappings for DE-to-ME 
Associations that enable DE implementers to implement 
DEs 

As already discussed in clause 5, the GANA Standard (ETSI TS 103 195-2 [i.9]) defines and standardizes various 
Autonomic Functions (Decision-making- Elements (DEs)) that can be instantiated to operate at NE/NF level and/or 
within the GANA Knowledge Plane (KP). 

The process called GANA instantiations onto an implementation-oriented network architecture and its associated 
management and control architecture establishes the kind of GANA DEs that should be instantiated to operate in an 
NE/NF and/or in the GANA Knowledge Plane. 

Various types of Decision Elements (DEs) are defined in ETSI TS 103 195-2 [i.9], and also their associated mappings 
to their types of Managed Entities (MEs) - i.e. resources and configurable parameters that should be under the 
responsibility of the specific DE. 

Specific DEs and their mappings to specific MEs are then further detailed in concrete GANA instantiations onto a 
particular target implementation oriented network architecture and its management and control architecture (e.g. 
Broadband Forum (BBF) architectures (ETSI TR 103 473 [i.10]), 3GPP Backhaul and Core Network (ETSI 
TR 103 404 [i.11])). 

The following is the approach that should be taken by implementers of DEs when using the WiSHFUL Framework and 
the code that is already implemented the WiSHFUL Proof-of-Concept (PoC): 

1) DEs implementers should first produce a table that provides a Mapping of the GANA standardized DEs to 
their corresponding Managed Entities (MEs) and the associated configurable parameters of the MEs while 
respecting the 1-to-1 Mapping of DE to an ME Parameter ("1-ME-Param" to "1-DE Mapping") as described in 
ETSI TS 103 195-2 [i.9]. This means that for the environment in which the WiSHFUL framework is to be 
applied in implementing the GANA a table that is a concretization (instantiation) of Table 3 found in ETSI 
TS 103 195-2 [i.9] should be produced. The produced table should capture the DE-to-ME mappings such that 
the GANA standardized DEs that can be implemented in a specific NE/NF type and/or in the GANA 
Knowledge Plane have their corresponding mappings to the ME and parameters they are supposed to 
autonomically management and control. 

2) Once the table of DEs-to-MEs Mappings Table has been created, DE implementers can use some software 
code of local programs (local controllers) and global programs (global controllers) already implemented in 
WiSHFUL Framework to implement the standardized GANA DEs required to operate at specific GANA 
Levels. It may happen that some controllers (local and global programs) already implemented in the 
WiSHFUL Framework do not necessarily map 1-to-1 with the DEs in the table of DEs-to-MEs Mappings. 

Since the GANA framework allows to implement DEs in two ways as illustrated in Figure 20 below (extracted from 
ETSI TS 103 195-2 [i.9]) it should be possible to still be able to use the code of some controllers (programs) in the 
WiSHFUL framework to implement GANA DEs in either of the approaches indicated in Figure 20 below. 

 

Figure 20: Illustration of possible approach to implementing GANA Levels 2, 3 and 4 
DEs at run-time (extract from ETSI TS 103 195-2 [i.9]) 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 43 

7.6 Instantiation of the GANA Knowledge Plane (KP) in the 
WiSHFUL Intelligence Framework 

Figure 21 provides insights on the integration of the GANA Knowledge Plane DEs, MBTS, ONIX, Global MCE, 
GANA Levels 2&3 and Local MCE in the WiSHFUL Framework. 

Regarding the ONIX part, ETSI TS 103 195-2 [i.9] provides more insights on how the ONIX system can be 
implemented, while the diagram illustrates an example of an Information Server member of an ONIX system (namely a 
Security Information and Incidents related Repository). 

 

Figure 21: Integration of the GANA Knowledge Plane DEs, MBTS, Global MCE, 
GANA Levels 2&3 and Local MCE in the WiSHFUL Framework 

Figure 22 provides insights on how Data Collection Component, Intelligence Composition Component and Action 
Component are to be considered in design of a DE, and the various algorithms that can be employed in DE 
implementations while some algorithms may be implemented on Data Collectors to run as some cognitive algorithms 
execute to derive knowledge and stream the knowledge to KP DEs. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 44 

 

NOTE: This figure also provides insights on the various algorithms that can be employed in DE implementations 
while some algorithms may be implemented on Data Collectors. 

 
Figure 22: How Data Collection Component, Intelligence Composition Component and Action 

Component are to be considered in design of a DE 

7.7 Instantiation (Implementation) of GANA Reference Points in 
the WiSHFUL Architecture Implementation 

This clause provides insights on GANA Reference Points implementation in the WiSHFUL Architecture. 

NOTE: Table 3 has been extracted from clause 6.3 of ETSI TS 103 195-2 [i.9], and a column (last column) has 
been indicated to comment on the implementation of the corresponding Reference Point (Rfp) in the 
WiSHFUL Architecture. All the Reference Points (Rfps) and their associated acronyms are described in 
ETSI TS 103 195-2 [i.9]. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 45 

Table 3: Reference Point in GANA and corresponding Reference Point (Rfp) 
in the WiSHFUL Architecture 

Reference Point 
Name (see note 1) 

Alias Name 
of the Rfp 

Characteristic Information 
communicated over the 

Reference Point 

Additional Comments on 
where the Reference 

Point is described 

Implementation of the 
Reference Point in the 
WiSHFUL Architecture 

Rfp_GANA-
Level2&3-
AccessToProtocolsA
ndMechanisms 
(see note 2) 
 
See note 5 

DeMe • Views: e.g. event 
notifications, monitoring 
data are communicated to 
Function-level-DEs by 
their specifically assigned 
Managed Entities (MEs)-
i.e. Protocols, Stacks and 
Mechanisms (see 
clause 6.4.2.1 in ETSI 
TS 103 195-2 [i.9] and 
clauses 9.11.5 and 9.11.6 
of ETSI GS AFI 002 [i.15] 
on assignment of DEs to 
specific types of MEs). 

• Commands are issued 
by a specific Function-
Level-DE e.g. Function-
Level-Routing-
Management-DE, to its 
specifically assigned 
Managed Entities (i.e. 
protocols and 
mechanisms such as 
routing protocols and 
mechanisms) in order to 
(re)-configure and 
regulate the behaviour of 
the ME(s). 

This node/device internal 
interface is meant to 
enable the loading of DEs 
coming from other parties 
other than the device 
vendor. The DEs would 
access and autonomically 
manage and control the 
Protocols and 
Mechanisms of the device. 
See clause 9.6 of ETSI 
GS AFI 002 [i.15]. 
See Figure 19 in ETSI 
GS AFI 002 [i.15]. 
 
 
See also clause 6.4.2.1 in 
ETSI TS 103 195-2 [i.9]. 

This has been 
implemented in the 
WiSHFUL architecture 
as an API of a Network 
Node (GANA Node) as 
discussed in clauses 5 
to 7 of the present 
document. 

Rfp_FunctionLevelD
E-to-
FunctionLevelDE 

FuDe 
FFuDe (for 
federated 
AMC across 
different 
domains) 

• Trust and 
Authentication 
exchange of messages 
and other types of 
messages exchanges 
necessary. 

• Domain Type(s) to 
which a DE involved is 
bound need to be 
exchanged. Domain 
Identifier(s) of DEs 
hosted by entities 
belonging to different 
administrative domains 
need to be exchanged. 

See clauses 9.8 and 11.10 
of ETSI GS AFI 002 [i.15]. 
See Figure 20 and 
Figure 34 in ETSI 
GS AFI 002 [i.15]. 
For Domain Type(s) and 
Domain Identifier(s) refer 
to the clause on 
Federation in GANA and 
in ETSI GS AFI 002 [i.15]. 
See also clauses 6.4.3.1 
and 6.4.4.2 in ETSI 
TS 103 195-2 [i.9]. 

This is for Further Study, 
on the components of 
the WiSHFUL 
architecture 
implementation and/or 
other communications 
means (e.g. protocols or 
APIs) that can be used 
by DE implementers that 
innovate distributed 
algorithms that involve 
FunctionLevelDE-to-
FunctionLevelDE across 
as set of NEs/NFs along 
a path in the network 
infrastructure. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 46 

Reference Point 
Name (see note 1) 

Alias Name 
of the Rfp 

Characteristic Information 
communicated over the 

Reference Point 

Additional Comments on 
where the Reference 

Point is described 

Implementation of the 
Reference Point in the 
WiSHFUL Architecture 

• Views can be 
communicated by a 
particular Function-
Level-DE to other peer 
Function-level-DEs on 
other nodes/devices, 
especially concerning 
events or issues a 
function of a node e.g. 
Routing-Function cannot 
resolve (by performing 
some action) without 
jeopardizing network 
integrity (objectives). 

• Control Information 
exchange between 
Function-Level-DEs via 
the DE-2-DE 
interactions to achieve a 
"network-intrinsic 
management and 
control". Such 
interactions may include 
the notion of 
"compartment formation, 
policies of operation and 
compartment 
management" by DE-2-
DE communication in a 
distributed fashion. 

Rfp_NodeMainDE-
to-NodeMainDE 

NoDe 
FNoDe (for 
federated 
AMC across 
different 
domains) 

Similar types of Characteristic 
Information as in the case of 
the Reference Point 
"Rfp_FunctionLevelDE-to-
FunctionLevelDE". The 
difference being the scope for 
which the Characteristic 
Information applies i.e. this 
case applies to the scope of 
the node/device level than a 
particular Function-Level 
(lower level). 

See clauses 9.8 and 11.10 
in ETSI GS AFI 002 [i.15]. 
See Figure 20 and  
Figure 34 in ETSI 
GS AFI 002 [i.15]. 
 
See also clauses 6.4.3.2 
and 6.4.4.3 in ETSI 
TS 103 195-2 [i.9]. 

This is for Further Study, 
on the components of 
the WiSHFUL 
architecture 
implementation and/or 
other communications 
means (e.g. protocols or 
APIs) that can be used 
by DE implementers that 
innovate distributed 
algorithms that involve 
NodeMainDE-to-
NodeMainDE across as 
set of NEs/NFs along a 
path in the network 
infrastructure. 

Rfp_NetworkLevelD
E-to-NodeMainDE 

NeMe • Trust and 
Authentication 
exchange of messages 
and other types of 
messages exchanges 
necessary. 

• Domain Type(s) to 
which a DE involved is 
bound need to be 
exchanged. Domain 
Identifier(s) of DEs 
hosted by entities 
belonging to different 
administrative domains 
need to be exchanged. 

See clauses 9.8, 9.9 and 
9.13.5 in ETSI 
GS AFI 002 [i.15]. 
See Figure 21, Figure 22 
and Figure 34 in ETSI 
GS AFI 002 [i.15]. 
For Domain Type(s) and 
Domain Identifier(s) refer 
to the clause on 
Federation in GANA in 
ETSI GS AFI 002 [i.15]. 
 
See also clause 6.4.2.3 in 
ETSI TS 103 195-2 [i.9]. 

This has been 
implemented in the 
WiSHFUL architecture 
by UPIs described in 
clauses 5 to 7 of the 
present document. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 47 

Reference Point 
Name (see note 1) 

Alias Name 
of the Rfp 

Characteristic Information 
communicated over the 

Reference Point 

Additional Comments on 
where the Reference 

Point is described 

Implementation of the 
Reference Point in the 
WiSHFUL Architecture 

• Views are communicated 
to Network-level-DEs, 
especially concerning 
events or issues a 
node/device cannot 
resolve (by performing 
some action) without 
jeopardizing network 
integrity (objectives). 

• Commands may be 
issued by a Network-
Level-DE to the node or 
to a Function-Level-DE 
via the Node-Main-DE. 

Rfp_ModelBasedTra
nslationService-to-
NodeMainDE 

NeMe • This is a refinement of 
the Reference Point 
"Rfp_NetworkLevelDE-
to-NodeMainDE" to 
involve a case whereby 
Network-Level-DEs 
communicate with a 
Node-Main-DE via a 
Model-Based-Translation 
Service (MBTS) that 
translates COMMANDS 
from Network-Level-DEs 
and RESPONSES from 
nodes/devices to a form 
usable by the targeted 
entity. 

See clauses 9.13.5 and 
11.7 in ETSI 
GS AFI 002 [i.15]. 
See Figure 64 and  
Figure 34 in ETSI 
GS AFI 002 [i.15]. 
 
See also clause 6.4.2.5 in 
ETSI TS 103 195-2 [i.9]. 

This has been 
implemented in the 
WiSHFUL architecture 
by UPIs described in 
clauses 5 to 7 of the 
present document. 

Rfp_AMC-
ModelBasedTranslati
onService-to-ONIX 

NoI • Trust and 
Authentication 
exchange of messages 
and other types of 
messages exchanges 
necessary. 

See clauses 9.13.5 and 
11.7 in ETSI 
GS AFI 002 [i.15]. 
See Figure 64 and  
Figure 34 in ETSI 
GS AFI 002 [i.15]. 
 
See also clause 6.5.1 
NoI Rfp in ETSI 
TS 103 195-2 [i.9]. 

This is for Further Study, 
on how the WiSHFUL 
architecture 
implementation (in 
relation to the Global 
MCE component and its 
embedment of an MBTS 
function) can be 
integrated with an ONIX 
implementation. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 48 

Reference Point 
Name (see note 1) 

Alias Name 
of the Rfp 

Characteristic Information 
communicated over the 

Reference Point 

Additional Comments on 
where the Reference 

Point is described 

Implementation of the 
Reference Point in the 
WiSHFUL Architecture 

• Operations/Messages 
for Storing and 
Retrieving Information 
from the ONIX system. 
For example, the MBTS 
can use the 
publish/subscribe 
services of the ONIX that 
enable Advanced Auto-
Discovery of Information 
and Resources, to 
retrieve Information 
about Network 
Elements/Nodes, such as 
Capability Description 
Models of individual 
nodes/devices, 
self-advertised/published 
by an individual 
node/device upon 
initialization. Capability 
Models of a node/device 
include technological 
features supported, 
including management 
protocols supported and 
Information about 
Managed Objects (MOs) 
of the technologies (e.g. 
protocols, etc.). 
Capability Models may 
include apart from 
technological features, 
vendor information. 

Rfp_NetworkLevelD
E-to-
NetworkLevelDE 

NeDe 
FNeDE (for 
federated 
AMC across 
different 
domains) 

• "Views" such as Policy 
changes by the human 
operator; challenges to 
the network's operation 
from the perspective of a 
particular DE e.g. 
detected faults, threats, 
etc.; "views" 
communicated from 
lower-Level DEs in 
nodes/devices that 
require Net-Level-DEs to 
share and act upon if 
necessary. 

• Domain Type(s) to 
which a DE involved is 
bound need to be 
exchanged. Domain 
Identifier(s) of DEs 
hosted by entities 
belonging to different 
administrative domains 
need to be exchanged. 

• Negotiations and 
Synchronization of 
Actions and Policies. 

This Reference Point 
between Network-Level-
DEs is independent of the 
types of Network-Level-
DEs and so should be 
considered as a common 
type of Reference Point 
between any Network-
Level-DEs. 
See clauses 9.9, 9.13.5 
and 11.7 in ETSI 
GS AFI 002 [i.15]. 
See Figure 22, Figure 34 
and Figure 64 in ETSI 
GS AFI 002 [i.15]. 
For Domain Type(s) and 
Domain Identifier(s) refer 
to the clause on 
Federation in GANA in 
ETSI GS AFI 002 [i.15]. 
 
See also clauses 4.3.3 
and 6.4.4.4 in ETSI 
TS 103 195-2 [i.9]. 

This is for Further Study, 
on the components of 
the WiSHFUL 
architecture 
implementation and/or 
other communications 
means (e.g. protocols or 
APIs) that can be used 
by DE implementers that 
innovate logically 
centralized algorithms 
for Knowledge Plane 
DEs that involve 
NetworkLevelDE-to-
NetworkLevelDE 
communications 
requirements. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 49 

Reference Point 
Name (see note 1) 

Alias Name 
of the Rfp 

Characteristic Information 
communicated over the 

Reference Point 

Additional Comments on 
where the Reference 

Point is described 

Implementation of the 
Reference Point in the 
WiSHFUL Architecture 

Rfp_NetworkLevelD
E-to-Data_Storage 

NeI • Trust and 
Authentication 
exchange of messages 
and other types of 
messages exchanges 
necessary. 

• Operations/Messages 
from the DE for 
retrieval of Data or 
(Knowledge created out 
of raw data) from a 
storage such as Data 
Collector that gathers 
data such as: IPFIX 
Data, SNMP BulkStats 
Data, NetFlow Data, 
Flow Traces, Traffic 
Matrix, etc., OR Any Data 
that is not suitable to be 
stored and shared 
through the ONIX 
system. 

• Knowledge created out 
of raw data by 
Algorithms running on 
the Data Storage, that 
operate on raw data 
and create Knowledge 
for export to the 
Knowledge Plane (i.e. 
to Net-Level-DEs). 

• Data that may need to 
be communicated by 
the Storage to the 
particular DE. 

See clauses 11.7 and 
9.13.7 in ETSI 
GS AFI 002 [i.15]. 
See Figure 64 and 
Figure 38 in ETSI 
GS AFI 002 [i.15]. 
 
See also clause 6.5.2 in 
ETSI TS 103 195-2 [i.9]. 

This is for Further Study, 
on the components of 
the WiSHFUL 
architecture 
implementation and/or 
other communications 
means (e.g. protocols or 
APIs) that can be used 
by DE implementers that 
innovate logically 
centralized algorithms 
for Knowledge Plane 
DEs and their need to 
consume Knowledge 
extracted from raw data 
stored on a Data 
Collector by 
Analytics/Cognitive 
Algorithms running on 
the Data Storage 
component/server (Data 
Collector). More details 
on this subject can be 
found in ETSI 
TS 103 195-2 [i.9] with 
regards to the RAT 
(Representation, 
Acquisition and 
Translation) Function 
that can be implemented 
on a Data Collector and 
made to integrate with 
the GANA Knowledge 
Plane components. 

Rfp_NetworkLevelD
E-to-ONIX-System 

NeI • Trust and 
Authentication 
exchange of messages 
and other types of 
messages exchanges 
necessary. 

• Operations/Messages 
for Storing and 
Retrieving Information 
from the ONIX system. 

See clauses 9.13.4 and 10 
in ETSI GS AFI 002 [i.15] 
on the Use of Network 
Profiles, Policies, 
Objectives, Config-Data, 
and Capabilities of 
network elements; and 
11.7 in ETSI 
GS AFI 002 [i.15]. 
See Figure 64 of ETSI 
GS AFI 002 [i.15]. 
See also clause 6.5.2 in 
ETSI TS 103 195-2 [i.9]. 

This is for Further Study, 
on how the WiSHFUL 
architecture 
implementation (in 
relating to the KP DEs 
as global programs) can 
be integrated with an 
ONIX implementation. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 50 

Reference Point 
Name (see note 1) 

Alias Name 
of the Rfp 

Characteristic Information 
communicated over the 

Reference Point 

Additional Comments on 
where the Reference 

Point is described 

Implementation of the 
Reference Point in the 
WiSHFUL Architecture 

Rfp_NodeMainDE-
to-ONIX-System 

NoI • Trust and 
Authentication 
exchange of messages 
and other types of 
messages exchanges 
necessary. 

• Operations/Messages 
for Storing and 
Retrieving Information 
from the ONIX system. 

See clauses 9.13.4 and 10 
in ETSI GS AFI 002 [i.15] 
on the Use of Network 
Profiles, Policies, 
Objectives, Config-Data, 
and Capabilities of 
network elements; and 
clause 11.7 in ETSI 
GS AFI 002 [i.15]. 
See also Figure 34 in 
clause 9.13.5 in ETSI 
GS AFI 002 [i.15] 
See Figure 64 and  
Figure 34 in ETSI 
GS AFI 002 [i.15]. 
 
See also clause 6.5.1 in 
ETSI TS 103 195-2 [i.9]. 

This is for Further Study, 
on how the WiSHFUL 
architecture 
implementation (in 
relating to the Node 
internal local program 
implemented as a GANA 
Node-Main-DE and its 
interworking with the 
local MCE) can be 
integrated with an ONIX 
implementation. 

Rfp_OSS-to-ONIX-
System 

OsI • Trust and 
Authentication 
exchange of messages 
and other types of 
messages exchanges 
necessary. 

• Operations/Messages 
for Storing and 
Retrieving (mainly) 
Information from the 
ONIX system. 

See clauses 11.7 and 11.8 
in ETSI GS AFI 002 [i.15]. 
See Figure 67 in 
particular, Figure 64 and 
Figure 68 in ETSI 
GS AFI 002 [i.15]. 
 
See also clause 6.5.3 in 
ETSI TS 103 195-2 [i.9]. 

This is not specific to the 
WiSHFUL architecture, 
and there are some 
solutions that either 
already exist or can be 
developed in the 
industry. 

Rfp_OSS-to-
Network-Level-DEs 

OsDe • Trust and 
Authentication 
exchange of messages 
and other types of 
messages exchanges 
necessary. 

• Management 
COMMANDS normally 
sent to the network by 
an OSS through the so-
called "network-adapter 
interface" need to be 
rather sent directly to the 
Network-Level-DE 
(considering that they are 
ones that take the full 
responsibility of 
performing Autonomic 
Management of the 
Network), and NOT to 
the network directly. 

This case applies to 
configurations where OSS 
systems are integrated to 
co-exist and interwork 
harmoniously with 
Network-Level-DEs in the 
overall management of the 
network. 
 
The current (today's) 
OSS-Network Interface 
would need to be 
"re-directed" towards 
Network-Level-DEs 
(assuming that Network-
Level-DEs take full 
responsibility for network 
management and control). 
See clauses 11.7 and 11.8 
in ETSI GS AFI 002 [i.15]. 
See Figure 67 in 
particular, Figure 64 and 
Figure 68 in ETSI 
GS AFI 002 [i.15]. 
See also clause 6.4.2.4 in 
ETSI TS 103 195-2 [i.9]. 

This is not specific to the 
WiSHFUL architecture, 
and there are some 
solutions that either 
already exist or can be 
developed in the 
industry. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 51 

Reference Point 
Name (see note 1) 

Alias Name 
of the Rfp 

Characteristic Information 
communicated over the 

Reference Point 

Additional Comments on 
where the Reference 

Point is described 

Implementation of the 
Reference Point in the 
WiSHFUL Architecture 

Rfp_EMS_OR_NMS-
to-NodeMainDE 

NeM • Trust and 
Authentication 
exchange of messages 
and other types of 
messages exchanges 
necessary. 

• Management 
COMMANDS targeting 
nodes/devices designed 
following GANA 
principles. A Manager in 
the sense of a traditional 
EMS/NMS, may create a 
"Wrapper 
packet/message that 
encapsulates a 
COMMAND" e.g. a 
SET/WRITE COMMAND 
on a Variable, and send 
the packet/message to 
the Node-Main-DE of a 
node/device where the 
Node-Main-DE extracts 
the COMMAND and 
relays it to the 
appropriate Function-
Level-DE responsible for 
autonomically managing 
and controlling the ME 
targeted by the 
COMMAND. The DE 
then reasons about 
whether to apply the 
COMMAND, and if yes, 
the DE executes the 
COMMAND directly on 
the ME's management-
interface OR issues the 
COMMAND via the 
"loopback interface" to 
the local Management 
Agent (on the 
node/device) for 
execution if the DE 
manages and controls 
the ME indirectly through 
the Management Agent 
(see note 3). 

This case applies to 
configurations where 
today's management 
systems are integrated to 
co-exist and interwork 
harmoniously with 
Network-Level-DEs in the 
overall management of the 
network. 
 
See clauses 11.7 and 11.8 
in ETSI GS AFI 002 [i.15]. 
See Figure 64 and 
Figure 68, see also 
Figure 63 in ETSI 
GS AFI 002 [i.15]. 
 
See also clause 6.4.2.5 in 
ETSI TS 103 195-2 [i.9]. 

This is not specific to the 
WiSHFUL architecture, 
and there are some 
solutions that either 
already exist or can be 
developed in the 
industry. 

Rfp_ONIX-to-ONIX FOO • Domain information 
(including Domain 
Type(s), Domain 
Identifier(s)) exchange 
that may be conveyed 
through a local ONIX 
instance to facilitate for 
federated AMC. 

See clause 6.4.4.5 in ETSI 
TS 103 195-2 [i.9]. 

This is not specific to the 
WiSHFUL architecture, 
and there are some 
solutions that either 
already exist or can be 
developed in the 
industry. 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 52 

Reference Point 
Name (see note 1) 

Alias Name 
of the Rfp 

Characteristic Information 
communicated over the 

Reference Point 

Additional Comments on 
where the Reference 

Point is described 

Implementation of the 
Reference Point in the 
WiSHFUL Architecture 

Rfp_FederationMBT
S- to-
FederationMBTS 

FMM • Domain information 
(including Domain 
Type(s), Domain 
Identifier(s) exchange 
between F-MBTS 
instances that enable two 
domains to exchange 
information and control 
messages for enabling 
federated AMC across 
the domains-information 
and control messages 
that need to be translated 
if the domains involved 
use different data models 
and information types 
and formats that are all to 
be employed in federated 
AMC. 

See clause 6.4.4.6 in ETSI 
TS 103 195-2 [i.9]. 

This is not specific to the 
WiSHFUL architecture, 
and there are some 
solutions that either 
already exist or can be 
developed in the 
industry. 

Rfp_OSS_to_G-
MBTS 

GoS • Input to the Knowledge 
Plane that is generated 
by an OSS Tool on the 
Governance interface 
(refer to OsI, OsDe Rfps) 
and is input to G-MBTS 
for translation into the 
language, data model(s) 
and data formats 
employed by the GANA 
Knowledge Plane DEs. 

See clause 6.4.2.6 in ETSI 
TS 103 195-2 [i.9]. 

This is not specific to the 
WiSHFUL architecture, 
and there are some 
solutions that either 
already exist or can be 
developed in the 
industry. 

NOTE 1: "to" in the name does not mean unidirectional communication only. In some of the cases communication may 
be initiated by either party and can be bi-directional. 

NOTE 2: "GANA-Level2" is also called "Function-Level". 
NOTE 3: An alternative to this approach is presented in the corresponding clause in ETSI GS AFI 002 [i.15] where this 

reference point is defined. 
NOTE 4: Annex C in ETSI TS 103 195-2 [i.9] presents one of the ways in which this Reference Point can be 

implemented, that of using a unified API. Another may the reference point may be implemented is through the 
traditional approach of using means such as SNMP, by which the GANA Level 3 and Level-2 DEs locally 
manage and control their MEs through the local SNMP agent and the MIBs implemented for those MEs. 

NOTE 5: Rfp_GANA-Level2-AccessToProtocolsAndMechanisms defined in ETSI GS AFI 002 [i.15] is synonymous to this 
Rfp that considers both GANA Level2 and Level3 access to Protocols And Mechanisms that are on the 
Resources Layer of a GANA node (NE) (see note 4). 

 

8 Additional Resourceful Information that should be 
considered by Implementers of GANA DEs 

The following Technical White Papers from the 5G PoC [i.16] by ETSI TC INT AFI WG provides very useful 
additional resourceful information that should be considered by implementers of GANA DEs: 

1) White Paper No.1 [i.34] 

2) White Paper No.2 [i.14] 

3) White Paper No.3 [i.35] 

4) White Paper No.4 [i.33] 

5) White Paper No.5 [i.36] 

6) White Paper No.6 [i.37] 



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 53 

9 Conclusions and Further Work 
The present document has provided an Instantiation and Implementation of the ETSI Generic Autonomic Network 
Architecture (GANA) Model onto Heterogeneous Wireless Access Technologies using Cognitive Algorithms by using 
the WiSHFUL Framework and Components that have been implemented in a European Commission (EC) - funded 
WiSHFUL H2020 Project. 

Moreover, the present document goes further to illustrate how the concepts developed in another European Commission 
(EC) - funded project, ORCA, can be applied together with components developed in the WiSHFUL project, to 
implement ETSI GANA's Multi-Layer Autonomics in Heterogeneous Wireless Access Technologies using Cognitive 
Algorithms. 

Therefore, the document answers the question of how to implement the ETSI GANA model using WISHFUL 
architecture and ORCA concepts. 

The UPIs implemented by WiSHFUL Project can now be adopted by the industry and community at large, and the UPIs 
can be standardized as an ETSI Technical Specification (TS) for example [i.19] provides the definitions of the UPIs that 
can be standardized and possibly extended by the industry as may be required into the future. 

Regarding Further Work, the following are some of the work that could be performed: 

1) A further study can be performed regarding how to implement some of the GANA Reference Points (Rfps) in 
the WiSHFUL Architecture that have been identified in the present document as subjects for further study. 

2) DEs implementers should first produce a table that provides a Mapping of the GANA standardized DEs to 
their corresponding Managed Entities (MEs) and the associated configurable parameters of the MEs while 
respecting the 1-to-1 Mapping of DE to an ME Parameter ("1-ME-Param" to "1-DE Mapping") as described in 
ETSI TS 103 195-2 [i.9]. What this means is that for the environment in which the WiSHFUL framework is to 
be applied in implementing the GANA a table that is a concretization (instantiation) of Table 3 found in ETSI 
TS 103 195-2 [i.9] should be produced. The produced table should capture the DE-to-ME mappings such that 
the GANA standardized DEs that can be implemented in a specific NE/NF type and/or in the GANA 
Knowledge Plane have their corresponding mappings to the ME and parameters they are supposed to 
autonomically management and control. 

3) Standardization of UPIs by producing an ETSI TS (Technical Specification) that is dedicated to detailing and 
elaborating all the aspects concerning UPIs. 

  



 

ETSI 

ETSI TR 103 626 V1.1.1 (2020-02) 54 

History 

Document history 

V1.1.1 February 2020 Publication 

   

   

   

   

 


	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Principles for Autonomic Networking and Enablers
	4.1 Overview on Autonomics Principles and Enablers, and introduction to the emerging concept of "Network compartmentation"
	4.2 Function atomization
	4.3 Function composition
	4.4 Closed control loop (s)
	4.5 Context recognition and adaptation
	4.6 Introduction to the GANA Reference Model for Autonomic Networking, Cognitive Networking and Self-Management
	4.6.1 Overview
	4.6.2 Examples of Autonomic Management & Control (AMC) domains


	5 WiSHFUL Architecture
	5.1 Overview
	5.1.1 General overview of the WiSHFUL Concepts
	5.1.2 How Control Programs in the WiSHFUL Architecture are the means to realize (implement) specific GANA Decision Elements (DE

	5.2 WiSHFUL platforms and abstractions
	5.3 Adaptation Modules
	5.4 Unified Program Interface
	5.4.1 Overview on WiSHFUL Unified Program Interfaces (UPIs)
	5.4.2 UPI_M
	5.4.3 UPI_N
	5.4.4 UPI_R

	5.5 WiSHFUL Control Framework
	5.5.1 Control Concepts and programmability enablers implemented in the environments that were considered by WiSHFUL
	5.5.2 Interaction models
	5.5.3 Immediate and delayed commands
	5.5.4 Local and remote execution
	5.5.5 Synchronization
	5.5.6 Packet monitoring and manipulation
	5.5.7 Node handling
	5.5.8 Extensibility of UPI functions

	5.6 Hierarchical Control Model
	5.7 Monitor and configuration engines and services
	5.8 Execution engines, radio and control programs
	5.8.1 Overview
	5.8.2 WMP
	5.8.3 TAISC

	5.9 Intelligence framework (data collection, intelligence composition, action)

	6 Impact of Virtualization and Hardware Acceleration Techniques, and Radio Access Network Slicing (RAN Slices), to WiSHFUL Conc
	7 Instantiation of GANA Functional Blocks by Mapping WiSHFUL architecture components to GANA Concepts and Architectural Princip
	7.1 General Mapping of WiSHFUL Architectural Concepts and Principles to GANA Concepts and Principles
	7.2 Autonomic networks and General GANA integration with SDN, NFV, Big Data Analytics Applications, OSS/BSS Systems, Orchestrat
	7.3 WiSHFUL Node-level programmability and Mapping to GANA Node-Level and Lower Levels Autonomics
	7.4 WiSHFUL Network-level programmability and the Mapping to GANA Network Level (Knowledge Plane (KP) Level) Autonomics
	7.5 Parameter and Functionality Mappings for DE-to-ME Associations that enable DE implementers to implement DEs
	7.6 Instantiation of the GANA Knowledge Plane (KP) in the WiSHFUL Intelligence Framework
	7.7 Instantiation (Implementation) of GANA Reference Points in the WiSHFUL Architecture Implementation

	8 Additional Resourceful Information that should be considered by Implementers of GANA DEs
	9 Conclusions and Further Work
	History

