ETSI TR 103 394 V1.1.1 (2018-01)

Smart Body Area Networks (SmartBAN); System Description Reference DTR/SmartBAN-008

2

Keywords

MAC, routing support

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: <u>http://www.etsi.org/standards-search</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at <u>https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx</u>

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2018. All rights reserved.

DECT[™], PLUGTESTS[™], UMTS[™] and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP**[™] and LTE[™] are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M** logo is protected for the benefit of its Members.

GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Contents

Intel	llectual Property Rights	4
Fore	eword	4
Mod	lal verbs terminology	4
1	Scope	5
2 2.1 2.2	References Normative references Informative references	7
3 3.1 3.2 3.3	Definitions, symbols and abbreviations Definitions Symbols Abbreviations	7 7
4	Introduction and Background	8
5	Comparisons with Other Related Standards	9
6 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 7 7.1 7.2 7.2	Use Cases Introduction Safety Monitoring Fall Monitoring Stress Monitoring Sleep Monitoring Blood Pressure Fluctuation Monitoring Abnormal Cardiac Rhythm Monitoring Apnea Monitoring Sports Monitoring Sports Monitoring Overview of PHY/MAC System Parameters PHY/MAC Layer Structure	
7.3 8 8.0 8.1 8.2	Example of PHY/MAC Parameters Interoperability and Heterogeneity Management Introduction Heterogeneity management Interoperability management	
9	Radio Frequency (RF) measurement and modelling	
Ann	ex A: Throughput Requirements	
A.1	Downlink Throughput Requirements	19
A.2	Uplink Throughput Requirements	19
Histo	ory	20

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Smart Body Area Network (SmartBAN).

Modal verbs terminology

In the present document "**should**", "**should not**", "**may**", "**need not**", "**will**", "**will not**", "**can**" and "**cannot**" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

1 Scope

The present document describes the system description of Smart BAN.

SmartBAN addresses the five major features below:

- 1) Smart Body Area Networks (SmartBAN) Unified data representation formats, semantic and open data model.
- 2) SmartBAN Data representation and transfer, service and application; Standardized interfaces, APIs and infrastructure for heterogeneity and interoperability management.
- 3) SmartBAN Measurements and Modelling of SmartBAN RF environment.
- 4) Low complexity MAC and routing for SmartBAN.
- 5) Enhanced, ultra-low power PHY for SmartBAN.

The following technologies are also to be defined:

- smart control;
- network management;
- implant communications;
- security; and
- privacy mechanisms.

SmartBAN takes a comprehensive view of BAN from lower layer (e.g. physical layer and MAC layer) to higher layer system aspects and end-to-end (e.g. heterogeneity management and semantic interoperability and monitoring and control). End-to-end connectivity (e.g. SmartBAN to Medical Centre or SmartBAN to SmartBAN) is illustrated by figure 1.

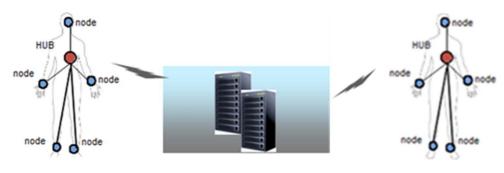
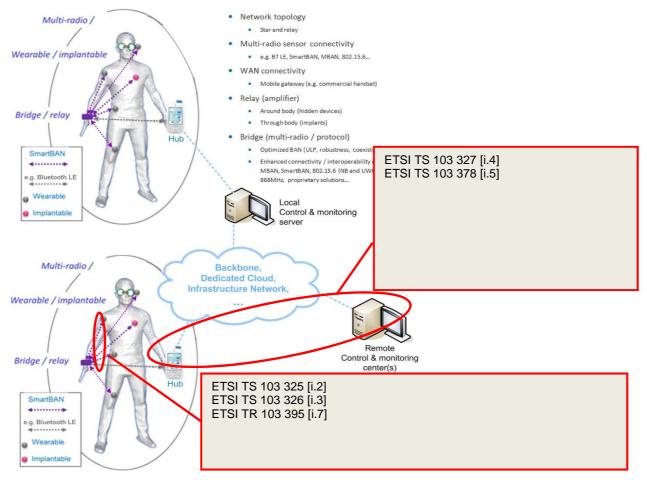


Figure 1: Scope of SmartBAN


SmartBAN facilitates the efficient use of multiple radio technologies. This will be handled in all the layers including semantic interoperabilities and a BAN coordinator will be introduced for that purpose (figure 2). This coordinator will also provide mandatory functionality related to routing and interactions with other application domains that includes e.g. SmartM2M, automotive, smart home environments.

6

Figure 2: Summary of the SmartBAN environment main constraints

Figure 3 provides a an example of a possible future multi-radio (e.g. narrowband 2,4 GHz and UWB). The controller may be e.g. a handset or other device while other, simpler devices (e.g. smart watch or wristband) may serve as a relay/bridge within the BAN offering enhanced performance/robustness (e.g. relay around hidden devices) as well as opening the door for optimized SmartBAN solutions with enhanced connectivity (multi-radio).

2 References

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

- [i.1] IEEE Std. 802.15.6TM-2012: "IEEE Standard for Local and metropolitan area networks Part 15.6: Wireless Body Area Networks".
- [i.2] ETSI TS 103 325 (V1.1.1) (04-2015): "Smart Body Area Network (SmartBAN);Low Complexity Medium Access Control (MAC) for SmartBAN".
- [i.3] ETSI TS 103 326 (V1.1.1) (04-2015): "Smart Body Area Network (SmartBAN);Enhanced Ultra-Low Power Physical Layer".
- [i.4] ETSI TS 103 327: "Smart Body Area Networks (SmartBAN); Service and application standardized enablers and interfaces, APIs and infrastructure for interoperability management".
- [i.5] ETSI TS 103 378 (V1.1.1) (12-2015): "Smart Body Area Networks (SmartBAN) Unified data representation formats, semantic and open data model".
- [i.6] ETSI TS 103 378 (V1.2.1): "Smart Body Area Networks (SmartBAN) Unified data representation formats, semantic and open data model".
- [i.7] ETSI TR 103 395: "Smart Body Area Network (SmartBan); Measurements and modelling of SmartBAN Radio Frequency (RF) environment".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

example 1: text used to clarify abstract rules by applying them literally

3.2 Symbols

For the purposes of the present document, the following symbols apply:

- * Mathematical multiplication of the term immediately preceding the symbol and the term
- D Delay
- ⊕ eXclusive OR (XOR)

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

BAN	Rody Area Network
BCH Code	Body Area Network
	Bose- Chaudhuri- Hocquenghem Code
BTLE	BlueTooth Low Energy
Dch	Data Channel
ECG	ElectroCardioGram
FCS	Frame Check Sequence
FEC	Forward Error Correction
IoT	Internet of Things
ISM	Industrial, Scientific and Medical
MAC	Medium Access Control
O&M	Observations and Measurements
OntoSensor	OntoSensor sensor ontology
OWL DL	Web Ontology Language Description Logic
OWL	Web Ontology Language
PHY	Physical Layer
PSDU	Physical Layer Service Data Unit
QoS	Quality of Service
RF	Radio Frequency
SensorML	Sensor Model Language
SSN	Semantic Sensor Network
SWSSN	Web-based Semantic Sensor
UWB	Ultra Wide Band
WSN	Wireless Sensor Network
WSSN	Wireless Semantic Sensor Network

4 Introduction and Background

Modern medical and health monitoring equipment are moving towards the trend of wireless connectivity between the data collection or control centre and the medical devices or sensors. Therefore, the need for a standardized communication interface and protocol between the actors are required. This network of actors performing some medical monitoring or functions is called a Smart Body Area Network (SmartBAN).

BAN uses small sensing devices and will need to meet the following technical requirements.

- Very high energy efficiency: BAN sensing nodes needs to be small and have batteries capable of providing sufficient power without charging.
- 2) Co-existence between other BANs or systems: One of the possible channels for BAN is the Industrial, Scientific, and Medical (ISM) band which is used by wireless LANs and other systems. Additionally, BANs are moving with each other as the BAN users are moving. BAN is required to co-exist with other systems and neighbouring BANs.
- 3) Optimum control of QoS: The sensing data has various transmission rates, allowable delay and allowable packets error rate. BAN should facilitate the transfer of these various sensing data with optimum QoS. Additionally, for medical care, minimizing the latency of emergency signals is also important.
- 4) Timely Access mechanism: Node needs to connect to an intended hub within a short time.

In the present document, the system level description of SmartBAN is given. It also contains possible use cases for SmartBANs.

5

Comparisons with Other Related Standards

	Parameter	SmartBAN concept	BTLE	IEEE 802.15.6™ [i.1]
	System Architecture	Hub + smart relay coordination	One hub	One hub
General system specs	Networking communication interoperability (SmartBAN and non- SmartBAN nodes)	Yes	No	No
	Smart relay	Yes	No	No
	FEC (forward error correction)	Yes	No	Yes
	Initial set up time	Fast	Less fast	Less fast
	Spread spectrum hopping	No	Yes	Yes (in limited cases)
	Channel reassignment	Yes	No	Multiple channel
	Very low latency emerging messaging	Very fast (timeslot)	No	Medium (superframe)
PHY/MAC	Reutilization of scheduled unused time slots (efficiency parameter)	Yes	No	No
	Energy consumption/efficiency	Low (e.g. long sleep times)	Low	Medium
	Network complexity	Star concept + multi hub relay (planned)	Star concept	Star concept + relay
	Semantic approach, semantic interoperability, heterogeneity management, IoT compliance	Yes	No	No
Smarts	Additional semantic and data analytic enablers (e.g. semantic discovery, reasoning/rules)	Yes	No	No
	Automatic node discovery (e.g. semantic discovery of nodes, composition)	Yes	Partially	No
	Coexistence management by coordinator	High	Low	Low

Table 1

9

6 Use Cases

6.0 Introduction

A number of use cases have been identified as potential scenarios for SmartBAN in this clause. These use cases serve as examples of scenarios from which the requirements are derived.

6.1 Safety Monitoring

Table 2

Category	Healthcare	Elderly care					
Situations	Home	Outdoors					
Example of Use case							
	Attaching patch-type sensors on an elderly adult body, an alert signal and his/her pulse data are transmitted to the data server when he/she feels physically sick. These data and signal are also reported to care workers						
Necessity of	accurate time	Yes					
stamping on	the sensor data						

6.2 Fall Monitoring

(body motion, posture)

64 Hz - 1 kHz

Table 3

Category Healthcare Elde		Iderly care	F	itness				
Situations Home Ou		Outdoors						
	Example of Use case							
	Attaching patch-type sensors on an elderly adult body, an alert signal is transmitted to the data server when							
detecting his/her fall			allel transmitt	ed to ca	are workers ir	nmedia	ately.	
Necessity of accura	Yes							
the sensor data								
Sensors		ampling rate quantization	/ Bit rat	te	Communic distanc		# of Nodes	Real time/ Non real time
Accelerometer/gyros all-in-one sensor (min number of sensors attached on a boo	ultiple 5 are	10 - 16 bit, 00 Hz - 1 kHz	5 kbps - 16	6 kbps	up to 1,5	m	1 to 3	Real time, Near real time

6.3 Stress Monitoring

Category	Healthcare						
Situations	Home	Ou	utdoors	Office			
Example of Use case							
Logging daily physical and emotional stress and use the data for health management.							
Necessity of accurate time			Yes				
stamping	on the sensor data	a					
Sensors Sampling rate/		Bit rate	Communication distance		# of Nodes	Real time/ Non real time	
quantization		C40 has 10 khas					
•		640 bps - 16 kbps	up to 1,5 r	n	1	Non real time	
ECG	64 Hz - 1 kH	1Z					

Table 4

6.4 Sleep Monitoring

Category	Healthcare Medic		cal			
Situations	Home	Hospi	ital			
			Example of Use cas	e		
Checking asleep treatment.	conditions and u	se the data for	people's need for be	tter sleep. The data	is utilized	for insomnia
Necessity of a	ccurate time star	nping on the	Yes			
	sensor data					
Sensors	Sensors Sampling rate/ quantization		Bit rate	Communication	# of	Real time/
	quanti	zation		distance	Nodes	Non real time
Pulse wave or ECG		6 bit,	640 bps - 16 kbps	up to 1,5 m	1 Nodes	Non real time

Table 5

6.5 Blood Pressure Fluctuation Monitoring

Category	Medical				
Situations	Home H	lospital			
		Example of Use	case		
Monitoring blood	pressure fluctuation. It	is assisted in diagno	sis of high blood-pr	ressure.	
	of accurate time	Yes			
stamping o	n the sensor data				
Sensors Sampling rate/ quantization		Bit rate	Communication distance	# of Nodes	Real time/ Non real time
ECG	10 - 16 bit, 64 Hz - 1 kHz	640 bps - 16 kbps	up to 1,5 m	1	Real time
		640 bps - 16 kbps	up to 1,5 m	-	Real time

Table 6

6.6 Abnormal Cardiac Rhythm Monitoring

Table 7

Category	Medical							
Situations	Home	Outdoors	Offi	ce Hospita		al		
	Example of Us							
Attaching a long time (24 hour) applicable sensor on a person v					heart disea	ase, a	rrhythi	mia is detected.
	accurate time	Yes						
stamping on t	he sensor data							
Sensors	Sampling rate	Bit rate	;	Commu	nication	#	of	Real time/
	/quantization			distance		No	des	Non real time
ECG	10 - 16 bit,	640 bps - 16	kbps	up to	1,5 m	1	I	Real time
	64 Hz - 1 kHz							
Pulse	10 - 16 bit,	640 bps - 16	kbps	up to 1,5 m		1	1	Real time
	64 Hz - 1 kHz							
Accelerometer	10 - 16 bit,	640 bps - 16 kbps		up to	1,5 m	1	I	Real time
/gyroscopic	64 Hz - 1 kHz							
sensor								

11

6.7 Apnea Monitoring

Table 8

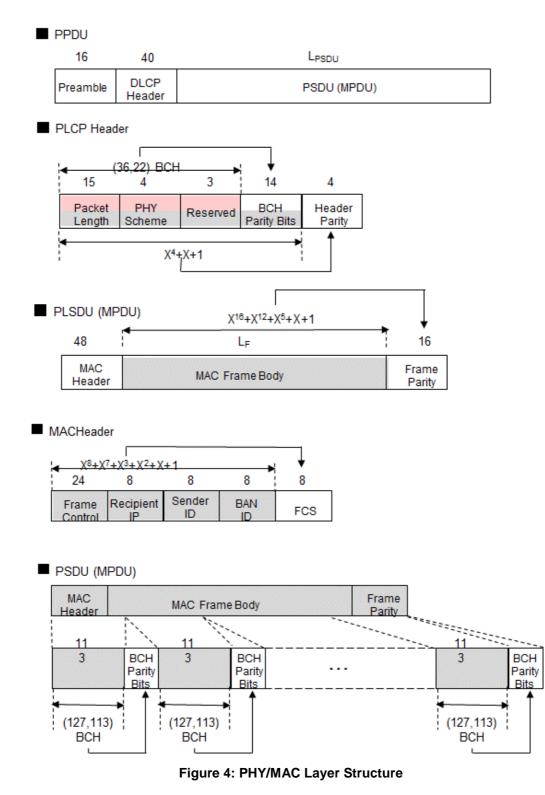
Category	Medical				
Situations	Home	Hospital			
<u>.</u>	·	Example of Use	case		
Attaching patch	-type sensors on a per	son with a sleep probl	em, it is detected a	symptom of	apnea and
treated.					·
Necessity	of accurate time	Yes/No			
stamping o	n the sensor data				
Sensors	Sampling rate/	Bit rate	Communication	# of	Real time/
	quantization		distance	Nodes	Non real time
ECG	10 - 16 bit,	640 bps - 16 kbps	up to 1,5 m	1	Non real time
	64 Hz - 1 kHz				
Acceleromete	r/ 10 - 16 bit,	640 bps - 16 kbps	up to 1,5 m	1	Non real time
		1			
gyroscopic	64 Hz - 1 kHz				

6.8 Sports Monitoring

	Table 9							
Situations	Outdoors							
		Examp	le of Use	case				
	ount of activity and ginto a bad habit.	estimating calorie	es burned	up during sp	orts. Che	ecking pi	tching form and	
	ty of accurate time		S					
stamping	on the sensor data	a						
Sensors	Sampling ra aquantizati		ate	Communic distanc		# of lodes	Real time/ Non real time	
pulse wave o ECG	or 10 - 16 bit 64 Hz - 1 kH	,	16 kbps	up to 1,5	m	1	Real time	
Accelerato (body motio posture)		,	16 kbps	up to 1,5	m ´	1 to 6	Real time	

7 Overview of PHY/MAC

7.1 System Parameters


The technical requirements for SmartBAN PHY parameters are listed as below.

Parameter	SmartBAN Requirements					
Coexistence/robustness	Good (low interference to other systems, high tolerance to interference)					
Data rates	Nominally 1 kbps to 100 kbps (vital sign monitoring), up to 1 Mbps					
Transmission rate (PHY)	Up to 1 Mbps					
Network topology	Star network+ optionally relay and mesh are envisioned					
Power consumption (node)	To be defined					
Channel reassignment	Yes					
FEC	BCH (127,113,t=2), repetitions (2,4)					
QoS control	Priority based control and cross layer optimization. Emergency signal transmission supported					
Reliability	Robust to shadowing and multipath interference					
Max. node capacity	up to 16 nodes (typically 8)					
Range	< 2 m inside single BAN					
Latency	10 ms (real-time, high priority transmissions), approx. 100 ms regular traffic					
Security/privacy	 3-level: 1) unsecured; 2) authentication; 					
	authentication and encryption, To be defined.					

Table 10

7.2 PHY/MAC Layer Structure

Figure 4 shows the PHY and MAC layer structure. A MAC frame consists of MAC header, MAC body and FCS. In PHY layer, the MAC frame is fragmented into 1 143 bit sequences and each sequence is encoded by (127,113) BCH code and these BCH codewords form a PSDU having the length of L_{PSDU} . Adding a 16 bit preamble and a 37 bit PHY header to the PSDU, a PHY frame is generated.

7.3 Example of PHY/MAC Parameters

A typical examples of PHY/MAC parameters are listed below.

Parameter	SmartBAN Requirements	Example values		
	Beacon interval [ms]	100,00		
Dch Structure	Beacon length [ms]	0,45		
	Scheduled period length [ms]	80,00		
	Control/Management period length [ms]	10,00		
	Inactive period length [ms]	9,55		
	Beacon data size [bits]	224		
Deb Bassan	PHY symbol rate [kbps]	500		
Dch Beacon	PHY mod [bit/sym]	1		
	PHY data rate [kbps]	1		
	Uplink period ratio [%]	90		
Scheduled Access period	Uplink period length [ms]	72		
	Uplink period length/Beacon interval [%]	72		
	PHY symbol rate [kbps]	1 000		
	PHY mod [bit/sym]	1		
	FEC rate	0,89		
	PHY data rate [kbps]	890		
	Transmittable data bits during uplink period [bits]	64 080		

Table 11

8 Interoperability and Heterogeneity Management

8.0 Introduction

BANs are made of a growing number of small sensing devices and are used in multiple use cases for which data procurement, collection, monitoring and control are mandatory. Generally domain dedicated, those devices are provided by an increasing number of manufacturers, which leads to interoperability problems (e.g. heterogeneous interfaces and/or grounding, heterogeneous descriptions, profiles, models, etc.). Interoperability management is thus a SmartBAN key requirement and should be handled. Furthermore, data provided by these BANs are very heterogeneous because they are coming from sensing/actuating nodes with various abilities (e.g. different sensing ranges, formats, coding schemes, etc.). This entails managing data level heterogeneity. Therefore, data heterogeneity management is another SmartBAN key requirement that should also be handled.

For handling BAN interoperability management, the design of a BAN-dedicated open and extensible framework, provided with standardized APIs, for generic interactions with BAN devices (or nodes) and corresponding data/information, becomes mandatory. This kind of open middleware/framework will enable vertical interoperability within a given application domain, such as e.g. well-being, m-health, tele-health, safety/emergency, entertainment, etc. It will also ease the cross domain interworking of in particular devices, which represents a first step towards the horizontal management of BAN multiple vertical application domains. Finally, the SmartBAN open framework should also be provided with interworking components (entities, APIs or gateways) for allowing interactions with non SmartBAN enabled environments. Interoperability of multiple and new BAN technologies not only implies a generic interconnection between BANs components (sensors, actuators, relays, concentrators and hubs) but also a shared and mutual understanding of BAN devices and environment description, as well as of exchanged data format (syntactic and structural interoperability among frameworks). This is manageable through the use of a common and standardized metadata description format. All the aforementioned issues will be handled within ETSI TS 103 327 [i.4].

For handling data heterogeneity, the solution consists of the formalization and the specification of a shared semantic for SmartBANs, expressed within a common open data model and provided with the associated ontology. This open data model and ontology will provide the required generic description for BAN entities and corresponding data (including monitoring and control ones). This data model, should be in particular designed for handling any kind of BAN devices and measured data (which is still not the case of existing WSNs data models). The SmartBAN data model should also be sufficiently semantically rich for e.g. allowing similarity detection and conflict resolution. But this semantic enrichment of the SmartBAN data model should not be done at the expense of the mandatory low complexity constraint of SmartBANs (i.e. right balance should be found between semantic richness and complexity). This then made also compulsory the design of a modular data model and ontology for SmartBANs. Furthermore, if SmartBAN automated monitoring and control functionalities want to be enabled, as well as if the design of new SmartBAN services and applications wants to be eased, service level data model should be addressed and added to the SmartBAN open data model and associated ontology.

The SmartBAN service ontology will in particular brings BAN devices and associated services discovery and composition functionalities, as well as their reusability at application level. It will also ease the BAN measuring data fusion.

Finally, if the SmartBAN service level semantic data model is designed by addressing semantic interoperability, then it will also provide a solution for SmartBAN application interoperability and will guarantee common expectations for BAN Devices/data accesses. All the aforementioned issues will be handled within ETSI TS 103 378 [i.5], except the SmartBAN service level data model and ontology specification and formalization that will be covered in a revision to be published as V.1.2.1 [i.6].

Figure 5 summarizes SmartBAN interoperability/heterogeneity management constraints. However, the following reminder should be made: BAN interoperability and heterogeneity management have to be handled by taking into account the other strong constraints already pointed out in the present documents (see clause 5 of ETSI TS 103 378 [i.5]) and in particular low complexity, ultra-low power and dynamicity (e.g. node mobility, topology changes).

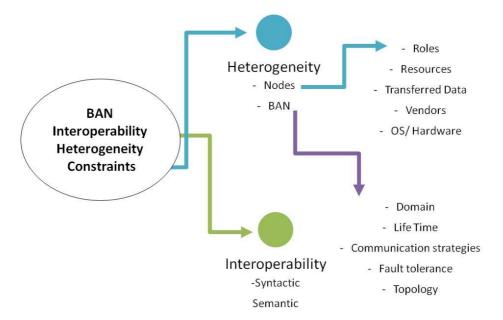


Figure 5: SmartBAN interoperability/heterogeneity management constraints

8.1 Heterogeneity management

As already introduced in clause 8.0, SmartBAN data are very heterogeneous and this entails managing data level heterogeneity. For handling this heterogeneity, the SmartBAN retained solution consists of the formalization and the specification of BAN dedicated shared semantic, expressed within a common semantic open data model and provided with the associated ontology. In order to take into account the BAN low complexity strong requirement, the SmartBAN semantic data model should be designed as a modular model where some classes could be implemented in the sensor/actuator nodes depending on its resource's availability, and some other could be implemented and processed in more capable nodes like e.g. the hub. For that reason, its ontology is divided into three main parts [i.5]: BAN, Nodes (i.e. hub, relays, sensors, and actuators), and Process (Process and Measurement). The SmartBAN semantic open data model and ontology is fully described in ETSI TS 103 378 [i.5]. Table 12 compares, in a non-exhaustive way, the SmartBAN ontology with mostly used WSN ontologies.

	SmartBAN ontology (non exhaustive list)	SensorML/ O&M	OntoSensor	SSN	WSSN	SWSSN
Semantic						
Annotation	Semantic Language	-	OWL DL	OWL DL	OWL DL	OWL DL
	Semantic Rules	-	-	-	-	-
WSN/WBAN						
Service Model	Yes	-	-	-	-	-
WSN/WBAN	Location/Topology/Application Domain	Yes	-	-	-	-
	Contact	Yes	Yes	-	-	-
Sensor/Nodes	Physical	Yes	Yes	Yes	-	Yes
	Link/Geo-location	Yes	Yes	Yes	Yes	Yes
	Identity & Manufacturing	Yes	Yes	Yes	Yes	Yes
	Memory Components	-	Yes	Yes	Yes	Yes
	Energy Source	-	-	-		Yes
	State	-	-	-	Yes	-
	Interfaces	Yes		-	-	-
	Trust Level	-	-	-	-	-
Observation	Inputs/Outputs	Yes	Yes	Yes	Yes	Yes
	Feature of Interest	Yes	Yes	Yes	Yes	Yes
	Accuracy	Yes	Yes	Yes	Yes	-
	Frequency	Yes	Yes	Yes	Yes	-
	Response Model	Yes	Yes	Yes	Yes	Yes
	Unit of Measurement	Yes	Yes	-	-	Yes
	Communication Process		-	-	-	Yes
Data	Data Type	Yes	-	-	-	Yes
	Acquisition Policy	-	Yes	Yes	Yes	Yes
	Data Quality	-	-	-		-
	Data State	-	-	-	Yes	-
Others	Routing/Fault Management	-	-	-		-
	Validity	Yes	Yes	-	Yes	-
	Legal/Security	Yes	Yes	-	Yes	-
	Compression	-	-	-	-	-

8.2 Interoperability management

As already introduced in clause 8.0, an important issue to be considered for SmartBANs is their heterogeneity in terms of node models and profiles, data gathered (e.g. sensing ranges, formats, coding schemes and metadata), communication protocols and/or grounding, and applications. Within the same BAN, each node, which could also be coming from different manufacturers, could offer different processing functionalities and could require different resources depending, in particular, on its role (node, actuator or sink). This leads to interoperability problems. For managing this interoperability, the SmartBAN retained solution consists of the design and the specification of a BAN-dedicated open and extensible framework, provided with standardized APIs, for generic interactions with BANs' devices (or Nodes) and for generic sharing and management of corresponding data/information. The design choices that have been retained for this SmartBAN open framework (see ETSI TS 103 327 [i.4]) is to rely on a distributed multi agent based IoT architecture. The SmartBAN open and extensible framework and corresponding generic APIs are fully described in ETSI TS 103 327 [i.4]. Its High Level Architecture is summarized in figure 6.

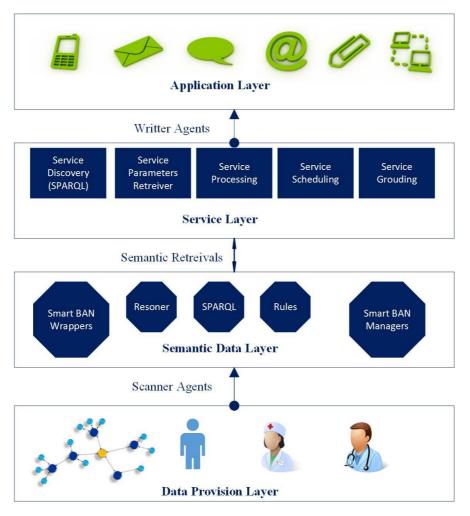


Figure 6: SmartBAN open framework High Level Architecture

As shown in figure 6, ETSI SmartBAN architecture comprises 4 layers: Data Provision, Semantic Data, Service and Application. Each of those layers provides a set of both agents and generic feature modules that offers a cohesive set of services. Figure 6 also shows that ETSI SmartBAN architecture model is fully relying on SmartBAN semantic data/service models and corresponding ontologies specified in ETSI TS 103 378 [i.5] and is also addressing semantic interoperability.

9 Radio Frequency (RF) measurement and modelling

The RF measurement and modelling specify the state-of-the-art and the future investigations on coexistence for allowing smart body area network (SmartBAN) devices to properly work and co-operate in the Industrial, Scientific and Medical (ISM) band. Interference appears to be one of the major threats as well as coexistence with other existing systems radiating in the same portion of the frequency spectrum. ETSI TR 103 395 [i.7] describes the experimental measurements and coexistence analysis done in Finland and Italy in order to specify the requirements for the SmartBAN compatible devices. In particular, a stochastic mathematical model of the interference based on real measurements in hospitals is proposed, as well as a complete simulator for proving the performance of SmartBAN devices, including physical and MAC layer.

Annex A: Throughput Requirements

A.1 Downlink Throughput Requirements

The downlink throughput requirements are for further study.

A.2 Uplink Throughput Requirements

The uplink throughput requirements is listed as follows:

Application	Sampling Rate (kHz)	Data Rate (kbps)	Communication Distance (mm)
ECG	1	16	1 500
Temperature	0,001	0,1	1 500
Accelerometer	1	96	1 500
SpO2	1	16	1 500

Table A.1: Uplink Throughput Requirements

19

History

Document history				
V1.1.1	January 2018	Publication		

20