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1 Scope 
The present document reports on the application of model-based testing in the telecommunication domain. A relevant 
case study is briefly described in terms of system under test, applied tool chain, together with an overview of the 
technical requirements. The case study was conducted as part of ITEA2 [i.1] D-MINT project [i.2]. The document 
concentrates on the results and conclusions from this work, giving an insight into how applicable such methods are 
today for testing and indicating the current strengths and weaknesses.  

2 References 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
reference document (including any amendments) applies. 

Referenced documents which are not found to be publicly available in the expected location might be found at 
http://docbox.etsi.org/Reference. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee 
their long term validity. 

2.1 Normative references 
The following referenced documents are necessary for the application of the present document. 

Not applicable. 

2.2 Informative references 
The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] ITEA2 web site. 

NOTE: Available at http://www.itea2.org; August 2010. 

[i.2] D-MINT web site. 

NOTE: Available at http://www.d-mint.org; August 2010. 

[i.3] Object Management Group; Systems Modeling Language; Version 1.1; November 2008. 

[i.4] Object Management Group; Unified Modeling Language (UML) Infrastructure; Version 2.1.2; 
November 2007. 

[i.5] ETSI TS 123 002: "Digital cellular telecommunications system (Phase 2+); Universal Mobile 
Telecommunications System (UMTS); Network architecture (3GPP TS 23.002 version 6.10.0 
Release 6)". 

[i.6] Heikki Kaaranen, Ari Ahtiainen, Lauri Laitinen, Siamäk Naghian, and Valtteri Niemi, editors. 
UMTS Networks, 2nd Edition. John Wiley & Sons, Ltd., 2005. 

[i.7] Object Management Group; Object Constraint Language (OCL); Version 2.0; May 2006. 

[i.8] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and B. M. Horowitz. 
Model-based testing in practice. In ICSE '99: Proceedings of the 21st international conference on 
Software engineering, pages 285-294. IEEE Computer Society Press, 1999. 

http://docbox.etsi.org/Reference
http://www.itea2.org/
http://www.d-mint.org/
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[i.9] Wolfgang Prenninger, Mohammad El-Ramly, and Marc Horstmann. Model-Based Testing of 
Reactive Systems, chapter Case Studies. Number 3472 in Advance Lectures of Computer Science. 
Springer, 2005. 

[i.10] ETSI TS 124 008: "Digital cellular telecommunications system (Phase 2+); Universal Mobile 
Telecommunications System (UMTS); Mobile radio interface Layer 3 specification; Core network 
protocols; Stage 3 (3GPP TS 24.008 version 6.10.0 Release 6)". 

[i.11] ISO/IEC 9646-1: 1984, Information technology - Open Systems Interconnection - Conformance 
testing methodology and framework - Part 1: General concepts. 

[i.12] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control 
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)". 

[i.13] Malik, Q.A.; Jaaskelainen, A.; Virtanen, H.; Katara, M.; Abbors, F.; Truscan, D.; Lilius, J.; 
Model-Based Testing Using System vs. Test Models - What Is the Difference?; 17th IEEE 
International Conference and Workshops on Engineering of Computer Based Systems (ECBS); 
2010; 2010; pages: 291 - 299. 

[i.14] Abbors, F.; Backlund, A.; Truscan, D.; MATERA - An Integrated Framework for Model-Based 
Testing; 17th IEEE International Conference and Workshops on Engineering of Computer Based 
Systems (ECBS); 2010; pages: 321 - 328. 

[i.15] Abbors Johan; Increasing the Quality of UML Models Used for Automatic Test Generation; 
Embedded Systems Laboratory, Faculty of Technology, Åbo Akademi University; Master's 
Thesis; 2009. 

[i.16] ITU-T RECOMMENDATION X.680; Information technology - Abstract Syntax Notation One 
(ASN.1): Specification of basic notation. 

[i.17] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control 
Notation version 3; Part 7: Using ASN.1 with TTCN-3". 

[i.18] Thomas Deiß, Andreas J. Nyberg, Stephan Schulz, Risto Teittinen, Colin Willcock; Industrial 
Deployment of the TTCN-3 Testing Technology; IEEE Software, July/August 2006, vol. 23, no. 4; 
pages 48 - 54. 

[i.19] OMG Model Driven Architecture Guide; Version 1.0.1; June 2003. 

[i.20] OMG Meta-Object Facility (MOF) Core Specification; Version 2.0; 2006. 

[i.21] Eclipse Modeling Framework project web page. 

NOTE:  Available at http://www.eclipse.org/modeling/emf/. August 2010. 

[i.22] Tuomas Pääjärvi; Generating Input for a Test Design Tool from UML Design Models; Embedded 
Systems Laboratory; Faculty of Technology; Åbo Akademi University; Master's Thesis; 2009. 

3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

ASN.1 Abstract Syntax Notation, number 1 
BSS Base Station Subsystem 
EMF Eclipse Modelling Framework 
HLR Home Location Register 
MBT Model-Based Testing 
MDA Model Driven Architecture 
MGW Media Gateway 
MOF Meta-Object Facility 
MSC Message Sequence Charts 
OCL Object Constraint Language 
RNS Radio Network Subsystem 

http://www.eclipse.org/modeling/emf/
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SDL System Description Language 
SUT System Under Test 
SysML Systems Modeling Language 
TTCN-3 Testing and Test Control Notation version 3 
UML Unified Modeling Language 

4 Case study introduction 
The case study is introduced by describing three major aspects. First, the System Under Test (SUT) is described in 
clause 4.1. Second, the case study requirements are elaborated in clause 4.2. Third, the related processes and tools are 
introduced in clause 4.3. 

4.1 System Under Test 
The System Under Test in the case study is the Mobile Services Switching Centre Server (MSC Server) of 2nd and 3rd 
generation mobile networks. An example configuration of the network architecture is depicted in Figure 1. The MSC 
Server is connected via standardized interfaces to a 2nd generation, GSM, Base Station Subsystem (BSS), a 3rd 
generation, UMTS, Radio Network Subsystem (RNS), the Home Location Register (HLR) for subscriber data, and the 
Media Gateway (MGW) transporting the actual user data. The mobile is connected to the BSS or RNS, connection to 
the MSC Server it using logical links only. The details of the network architecture are specified in TS 123 002 [i.5]. 
Evolution from 2nd generation GSM systems to 3rd generation UMTS networks and detailed description of the latter 
technology are provided by Kaaranen et al. in [i.6]. 

 

Figure 1: An example configuration of network elements using in the case study 
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4.2 Requirements 
Prior to the case study it was already known that model-based testing was used successfully in several projects in 
industry. For example Dalal et al. list a number of case studies [i.8] and more recent results are explained by Prenninger 
et al. in [i.9]. Hence, in this case study focus was on automation aspects on the model-based testing (MBT) and 
applying MBT in telecommunication domain. 

The automation aspects were covered by the process description and the tool-chain implementation described in 
clause 4.3. This aspect was considered also from legacy perspective, i.e. how MBT can be integrated to the existing 
processes and tools used in telecom product development. 

Many test generation tools used in MBT domain takes test models as input. In contrast to such an approach system 
models were chosen to model behaviour of the system in this case study. Difference of these approaches are explained 
by Malik et al. in [i.13]. The selection was made to exploit system models produced earlier in software development 
process. In addition, the intention was to investigate are the generated tests meaningful and efficient for product 
development in telecom domain. Yet another aspect set for the case study was to investigate reuse of existing material 
available in the telecommunication standards, e.g. use of Message Sequence Charts (MSCs), ASN.1 (Abstract Syntax 
Notation, number 1) definitions. 

In first glance automatic test generation may look like the perfect solution for testing as the test generation is able to 
produce lots of test cases. However, if there are too many test cases, test generation will take too much time. Therefore, 
it was a significant evaluation aspect to find out how long test generation takes, how to control the amount of test cases 
produced by the test generation, and how long it takes to execute the generated test cases. 

Finally, use of test generation differs from non-MBT testing due to fact that the generated tests may change 
significantly after the models are modified and tests are regenerated. In fact, tests may not be comparable between 
different test generation rounds. This required investigations how to trace progress and coverage of testing. 

4.3 Process and tool-chain 
The SUT is tested using a process depicted in Figure 2. Four major phases can be identified from the process. First, 
requirements are processed and described using Systems Modeling Language (SysML) [i.3]. In addition, the system is 
described using Unified Modeling Language (UML) [i.4] models including references to the SysML requirements. The 
models are validated using a set of validation rules in order to improve the quality. Second, tests are generated from the 
models. The test generation phase produces executable test scripts. Third, the test scripts are executed with help of a test 
execution system. The execution phase produces test logs that are used for further analysis. Fourth, tests are analyzed in 
case of failures and requirement coverage tracing is performed. 

Validation

report

Requirements

Test report

Logs

Modelling
Model 

validation

Requirement 

analysis

Test 

evaluation

Test generation

Test 

execution

System 

Under 

Test

Test cases

Models

 

Figure 2: An overview of the case study process 
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The process is supported by a tool-chain developed in the case study. The tool-chain is depicted in Figure 3. UML 
models are edited with a model editor. A model validation tool was used to ensure custom rules implemented using 
Object Constraint Language (OCL) [i.7]. The UML models are transformed with the model validation tool into models 
in a proprietary UML based modelling language and given as input to the test generation tool. The generation tool 
produced test scripts that are executed a protocol simulator. The protocol simulator had the role of a test system. It 
executed test cases by sending and receiving messages, i.e. using asynchronous communication. The test logs produced 
by the protocol simulator were analyzed and evaluated against the original models using the test evaluation tool [i.14]. 

 

Figure 3: Description of the case study tool-chain 

5 Modelling the system 

5.1 Modelling competence 
Lack of modelling competence prior to the case study did not cause any major issues regarding modelling as such. 
Typical minor problems have related to the specifics of the proprietary modelling language used by the test generation 
tool and to Unified Modeling Language (UML). The specific issues are typically related to the complex concurrent 
behaviour and synchronisation of the parallel state charts which can be difficult to comprehend regardless of the 
modelling language. 
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5.1.1 Use of system models 

In the beginning of the case study the use of the system models caused problems for the team that had test programming 
background. The problem was caused by the fact that test programming (and also use of test models) observes the 
behaviour from the test system point of view instead of the system's point of view. However, when using the system 
models, the point of view is the opposite as explained in clause 4.2. For example, when a mobile should send 
LOCATION UPDATING REQUEST message to the MSC Server and the MSC Server should respond with 
LOCATION UPDATING ACCEPT message [i.10]. When observing the behaviour from test system (that is from the 
mobile) point of view, the test system uses following procedure. 

1) Send LOCATION UPDATING REQUEST 

2) Receive LOCATION UPDATING ACCEPT 

However, when modelling the behaviour of the system (that is the MSC Server), the sequence is following. Note that 
although the order of the messages is the same, the operations are the exact opposite. 

1) Receive LOCATION UPDATING REQUEST 

2) Send LOCATION UPDATING ACCEPT 

This logical aspect may look fairly insignificant but it takes time to adapt to this new way of thinking if one has had test 
programming background. For the programmers who have used to look from the SUT's point of view, this should not be 
an issue. At the end, it is easy to find such logical mistakes when test cases are executed. 

For industrial use, describing only the behaviour of the SUT is not sufficient. For example, when testing network 
elements of a telecom network it is necessary to describe the relation of the SUT and other network elements, i.e. the 
environment of the SUT. For this purpose, additional models have been used to describe the network architecture and 
the configurations of the architecture for the tests. Such models are not system models nor test models as such because 
of the models describe both the system under test and the surrounding network. This should be taken into account when 
talking with MBT enthuastics who may debate among themselves on the pros and the cons of system models vs. test 
models. 

5.2 Tool support 
Model development can be significantly improved but also hindered by model editors. Obstructions may arise when the 
modelling tool has a lot of features and the features are difficult to use. In such cases modelling slows down due to poor 
usability. In fact, this might slow down modelling significantly and lead to false conclusions on the modelling. 
However, a simple editor is not sufficient either for professional modelling because of eventually models will grow, 
become complex and require maintenance. Hence, the usability is an important factor when choosing model editor. 

During the case study few modelling tools were used but thorough comparison of the tools were not made. The most 
simplistic editor was provided for free as part of the test generation tool to get started with modelling. It is a 
light-weight state-chart drawing tool that lacks model maintenance features. Hence, it is not sufficient for professional 
modeling. The rest of the used tools were fairly complex in terms of features and could not be used efficiently without 
guidance. User manuals and on-line helps are helpful in case of some editors. In case of one of the editors the basic 
modelling did not require any documentation and the tool works fine. However, it is expected that the documentation 
will be thorough enough for unexperienced users when more advanced features are needed for modelling. 

In this case study, the quality of models was assurred with a help of a number of different tools of the tool-chain. The 
model editors provide basic syntax checking. In addition, a set of OCL rules were used perform static semantic analysis 
on the models as described in [i.15]. Also, the tool-chain supports to discover suspicious model constructs, e.g. 
reachability of the states is checked by the test generation tool and incomplete parts of the model are checked by model 
editors or by the test generation tool. 

Various telecommunication specifications exploit ASN.1 notation standardised in ITU-T in X series specifications (for 
basic notation see [i.16]). ASN.1 is used to define types and procedures of protocols exchanged on interfaces of network 
elements. ASN.1 type and procedure definitions are detailed enough for code generation. Hence, it would be beneficial 
for relevant testing project as well to reuse directly the ASN.1 type definitions. However, currently ASN.1 types are not 
supported directly which is a drawback compared to for example TTCN-3 language which has built-in support for 
ASN.1 type definitions [i.17]. 
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6 Test generation 
Test generation is applied for offline mode, i.e. a test is first generated and only after that the test can be executed in 
contrast to online mode where test generation and execution is interleaved by computing a step of a test and execute it 
instantly before performing any actions for the next step. Offline mode has also an advantage of re-executing test cases 
without a need to run the test generation phase again e.g. for regression testing purposes. 

Test generation was performed by using a test generation tool that offered a plug-in for scripts used by the protocol 
simulator. The test generation is done in two phases. First, the test generation tool derives test cases from models 
specified in its own proprietary UML based modelling language. Second, the plug-in rendered the test cases into 
protocol simulator script format. 

The test generation can be controlled using test generator's configuration parameters for algorithmic configuration, 
requirement coverage configuration, and state machine coverage configuration. Test generation parameters can be 
selected individually. Because of this freedom it is easy to define a configuration that leads to very long test generation 
times. Also test generation times depends on the size and the complexity of the models. However, the tool did not 
perform full generation when the model is modified but only for the changed parts of the model. This reduced the test 
generation times after the tests are generated first time. 

At the time of the case study, the test generation tool did not support non-deterministic models in offline mode. This is 
an issue for complex telecom systems that may behave in non-deterministic manner due to a combination of several 
factors (e.g. concurrency, network element internal computation tasks, load balancing) affecting to the behaviour of the 
SUT. Clearly, for complex systems like the MSC Server, this is not sufficient situation. Technically speaking, it is 
possible to get around of this problem by handling non-deterministic cases at the adaptation level of the test system 
instead of the models. However, this leads to increased effort and complexity that should be avoided. 

7 Test execution 
Model-based testing using offline mode has not imposed any major technical changes for test execution tools compared 
to non-MBT approaches. For example, ISO/IEC abstract testing methodology given in [i.11] and general structure of a 
TTCN-3 test system described in [i.12] can be still used. This is in fact a good news from legacy test system point of 
view. It is not necessary to make major modifications for the legacy test systems. Hence, MBT does not create 
additional costs for test execution phase. 

However, MBT has impact on how the tools are used due to fact that requirements are tracked consistently throughout 
the process including test execution phase. Requirement tracking required injection of requirement identifiers into test 
cases and test logs as illustrated in Figure 4. The requirement identifier is denoted as "Req ID" in the figure. 
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Figure 4: Embedded requirement identities in test cases and test logs 

8 Test analysis 
Test analysis refers to a phase that is done after a set of test cases are executed in order to investigate the results of the 
test executions. 

The test analysis phase reports what has been covered by executed test cases. This is achieved by using the information 
embedded into the test logs. For example, in the case of requirement coverage requirement identifiers are injected to 
generated test cases and during the test execution the identifiers are explicitly recorded in to test logs as depicted in 
Figure 4. 

For the succeeded tests, a report is created to provide an overview of the test execution. Also the report contains 
information on the coverage. 

For the failed test cases, a set of OCL constraints are produced based on the test execution logs. These constraints can 
be used by the model editor to express explicitly which parts of the UML models do not correspond to the behaviour of 
the SUT. Although this does not provide a pointer to the root cause of the failure, it automates some of the manual tasks 
typically done in test result analysis phase. In addition, also for the failed test cases the report indicates which of the 
coverage goals are not reached. 

9 Tool integration 
Tool integration aspects focus on how the functionality implemented by individual tools or prototypes were integrated 
in the overall tool-chain. Findings are provided in following clauses. 

9.1 Lack of common exchange format 
A prerequisite for any tool is that it can be integrated into the existing tool-chain. The less work is required for the 
integration, the more likely it is that the tool will be deployed in large scale. A practical but an unfortunate consequence 
of this fact is that a tool with sophisticated and powerful features may be discarded if it is difficult to understand and 
learn how integration can be done. 
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In this case study, the integration of the tools has been an issue that has required a lot of attention. In particular, the 
implementation and the integration of the SUT adapter have required a lot of effort. Although the SUT adapter does not 
have a significant role from a model-based testing point of view, it is an essential entity that supports the 
communication with the system under test. Hence, it is unfortunate that a lot of effort has been spent on the SUT 
adapter that has little to do with model-based testing as such. In the end, this issue is not significantly different from 
similar tool-chains regardless whether model-based technology has been used or not. In fact, this is in-line with our 
previous experiences with test tools and test tool-chains, e.g. on TTCN-3 experiences reported in [i.18]. 

In this case study, similar to many other cases, the problem is solved by implementing a number of adapters to integrate 
tools. However, the use of adapters has few drawbacks. Implementation of adapters requires extra work and the adapter 
adds complexity of the tool-chain. The first issue increases cost of tool development and the second issue reduces the 
performance of the tool-chain. 

A part of the problem is to deal with legacy test tools that may have a history of years or even decades. These tools 
cannot be ignored and hence these tools need special attention. Most of these tools can be integrated to the tool-chain by 
implementing adapters or by using transformations. However, it is somewhat surprising that there is no widely used de-
facto or standardised tool integration frameworks as this issue has been around for years. 

In the context of model-based testing there are few well-known approaches, such as OMG's Model Driven 
Architecture (MDA) [i.19] and related standards like UML and Meta-Object Facility (MOF) [i.20]. In addition, Eclipse 
Modelling Framework (EMF) [i.21] is a Java framework that supports modelling that utilizes the MOF. Although 
OMG's MDA and Eclipse Modelling Framework provide frameworks that support information exchange between tools, 
readily available integration framework is often missing. 

Based on the experience in the past and also on this case study, one of the findings is that if the framework is complex 
and difficult to comprehend, preferably other alternatives will be chosen. Eclipse is fairly good example of this. Eclipse 
web site provides a lot of information on Eclipse framework but for some one who is not familiar with Eclipse it is 
difficult to comprehend how things provided by Eclipse projects could be exploited. In the end, it is difficult to filter out 
from the mass of information what details are relevant and what are not. Although Eclipse is used here as an example, 
similar experiences can be pointed out e.g. with MDA and related standards. It is fair to say that it requires a lot of 
expertise to exploit EMF and MDA in an efficient and feasible way. If the initial learning effort could be reduced, it 
would be more likely that such frameworks would be used more often and possibly become more popular integration 
frameworks.  

9.2 On-line mode 
At the time of the case study was performed the use of the on-line mode in the case study was not investigated in-depth. 
The reason for not including the on-line mode was the runtime performance of the model-based testing tool that did not 
meet the real-time requirements set by the SUT. 

However, initial attempts to model exploited on-line mode and based on experiences on the early stage mock-up 
modelling it was considered that the on-line mode may be beneficial in context that do not have strict real-time 
requirements. The major advantage the on-line mode offers is caused by its ability to provide rapid feedback between 
model development and execution. 

9.3 Offline mode 
The current tool-chain with off-line mode has been demonstrated in several occasions and it is proven to work in 
practise. Currently the off-line mode consists of model validation and test generation tools and a protocol stack 
simulator. The model validation tool is used to perform UML to proprietary language transformation [i.22]. From the 
generated models the test generation tool generates tests. The generation is done using a special plug-in that outputs 
scripts for the protocol simulator. The produced scripts can be executed with the protocol simulator which also provides 
the SUT adapter functionality. The model validation tool can also be used to trace requirements from models to test 
scripts and also to test logs, and back-trace requirements from test scripts to UML models of the SUT. 

Several test cases have been executed using the current tool-chain. Although the tool-chain works well it still requires 
more work to satisfy all the original requirements. For example, the existing setup lacks support for statistical testing 
and ability to pay special attention to functionality that has revealed most of the faults. Although, these features can be 
considered additional features, the features are important in order to convince the users to swap their existing tool set 
with a tool set that provides more advanced features. 
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10 Special issues 
Special issues clause describes issues that are not related to any the process or the tools described in  the present 
document. Instead, the special issues list topics that are general by nature. 

10.1 Model-based testing and telecommunication standards 
Various telecommunication specifications exploit ASN.1 notation standardised in ITU-T X series (for basic syntax 
see [i.16]). ASN.1 is used to define types and procedures of protocols exchanged on interfaces of network elements. 
ASN.1 type and procedure definitions are detailed enough for code generation. Hence, it would be beneficial for 
relevant testing project as well to reuse directly the ASN.1 type definitions. However, use of ASN.1 definitions cannot 
be used as part of UML models which is a drawback compared to for example TTCN-3 language [i.17]. Similar 
problems exist with other languages and notations. For example, use of System Description Language (SDL) 
descriptions cannot be reused as such and message sequence charts embedded as figures need to be redrawn using UML 
as the available message sequence charts are not in a machine processable format. 

Although standards are primarily abstract descriptions instead of concrete descriptions, reuse of the definitions that are 
parts of standards, would speed up development of the products that are based on the standards. 

Obviously, tool providers can influence on this issue by providing transformations between the languages and the 
formats. However, currently it seems that there is no consensus and no de-facto or standardised exchange format exists. 

Naturally this requires balancing between the standardisation organisations, tool vendors and customers' demands. 

10.2 Coverage 
Test scripts written manually are fairly static by nature in terms of the purpose of the test cases. Once a test script is 
written its main purpose remains more or less the same. After a while test engineers become familiar with the test script 
names and know immediately what the test script is all about. 

In case of test generation the situation is different. There are no guarantees that the content of test cases will remain the 
same for each test generation rounds, i.e. whenever test generation is performed, the content of test cases may change 
completely. 

Therefore, measuring test coverage by listing a set of test cases does not provide meaningful results. Instead, other 
approaches have to be used. One approach is to use techniques that provide coverage information on the model 
structure, e.g. state coverage, transition coverage, branch coverage. Although these techniques provide systematic and 
valuable information on test coverage, other approaches are needed to be more precise on the what the model suppose 
to do. An approach to deal with this aspect is to embed requirements or other information that can be tracked throughout 
the process and the tool-chain. If the requirements are detailed enough and express the product requirements, then the 
requirement coverage can be achieved and worthwhile of considering. 
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