

ETSI TR 103 119 V1.5.1 (2025-05)

Methods for Testing and Specification (MTS);
The Test Description Language (TDL);

Reference Implementation

TECHNICAL REPORT

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)2

Reference
RTR/MTS-103119v1.5.1

Keywords
language, MBT, testing

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver repository.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2025.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 5

1 Scope .. 6

2 References .. 6

2.1 Normative references .. 6

2.2 Informative references ... 6

3 Definition of terms, symbols and abbreviations ... 8

3.1 Terms ... 8

3.2 Symbols ... 8

3.3 Abbreviations .. 8

4 Basic Principles .. 9

4.1 Introduction ... 9

4.2 Implementation Scope ... 9

4.3 Document Structure ... 10

5 TDL Toolset ... 10

5.1 Graphical Representation Editor ... 10

5.1.1 Scope and Requirements .. 10

5.1.2 Graphical Editor Architecture .. 11

5.2 Structured Test Objective Representation ... 12

5.3 Implemented Facilities .. 13

5.3.1 Creating Models ... 13

5.3.2 Viewing and Editing Models ... 17

5.3.3 Exporting Structured Test Objectives .. 25

5.3.4 Validating Models ... 27

5.4 Usage Instructions ... 27

5.4.1 Development Environment .. 27

5.4.2 End-user Instructions ... 28

6 Using TDL with External Data Type Specifications .. 29

6.1 Generalized Process .. 29

6.1.1 Process Overview .. 29

6.1.2 Example Instantiation .. 31

7 TDL Runtime/Execution .. 32

7.1 Java™: Code generator ... 32

7.1.1 Architecture ... 32

7.1.2 Test Runtime Interface (TRI)... 33

7.1.2.1 Overview .. 33

7.1.2.2 Interface ProviderModule .. 33

7.1.3 Mappings ... 34

7.1.4 Communication Control Flow ... 35

7.1.5 Executable Code .. 36

8 Web-based Editors and Tools ... 39

8.1 Overview ... 39

8.2 Architecture ... 39

8.3 Evaluation and Recommendations .. 40

8.3.1 Overview ... 40

8.3.2 Custom Application ... 40

8.3.3 Web-based IDE Extension ... 41

8.3.4 Recommendation ... 42

Annex A: Technical Realisation of the Reference Implementation ... 43

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)4

Annex B: UML Profile Editor... 44

B.1 Scope and Requirements .. 44

B.2 Architecture and Technology Foundation .. 44

B.3 Implemented Facilities ... 44

B.3.1 Applying the Profile .. 44

B.3.2 Hints for the Transformation of UP4TDL Models into TDL Models ... 45

B.3.3 Editing Models with the Model Explorer .. 46

B.3.4 Editing TDL-specific Properties with the TDL Property View ... 46

B.3.5 Editing Models with TDL-specific Diagrams ... 47

History .. 51

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)5

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI IPR online database.

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™, LTE™ and 5G™ logo are trademarks of ETSI registered for the benefit of its Members and of the
3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of
the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

NOTE: Eclipse™, Xtext™, Sirius™, EMF™, Papyrus™, GMF™, Epsilon™, EVL™ are the trade names of a
product supplied by the Eclipse® Foundation. OMG®, XMI™, UML™, OCL™, MOF™ are the trade
names of a product supplied by Object Management Group®. This information is given for the
convenience of users of the present document and does not constitute an endorsement by ETSI of the
product named.

Foreword
This Technical Report (TR) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is complementary to the multi-part deliverable covering the Test Description Language (TDL).
Full details of the entire series can be found in ETSI ES 203 119-1 [i.13].

Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)6

1 Scope
The present document summarizes technical aspects related to the implementation of TDL within the TDL Open source
Project (TOP). It describes the implementation details needed for the further development and integration of the tools.

NOTE: For end-user information on the TOP tool implementation refer to the TOP tool online documentation
https://labs.etsi.org/rep/top/ide/-/wikis/UserScenarios.

The following tools and components are covered in the present document:

• implementation of the TDL meta-model;

• editor for the graphical representation format of TDL;

• editor for the textual representation format of TDL;

• multiple other types of TDL model editors;

• facilities for checking the semantic validity of models according to the constraints specified in the TDL
meta-model;

• implementation of the importing of data definitions from OpenAPI™ and ASN.1 specifications;

• implementation and tool-support for execution of TDL models;

• implementation of the UML profile for TDL; and

• editor supporting the creation and manipulation of UML models applying the UML profile for TDL.

NOTE: The implementation of the UML profile for TDL and the corresponding editor descriptions are not
aligned with the referenced versions of the TDL specification parts, but are related to an earlier release of
the TDL specification parts.

2 References

2.1 Normative references
Normative references are not applicable in the present document.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents may be useful in implementing an ETSI deliverable or add to the reader's
understanding, but are not required for conformance to the present document.

[i.1] Eclipse Foundation™: Eclipse IDE Website (last visited 12.06.2024).

[i.2] Eclipse Foundation™: Eclipse Xtext™ Website (last visited 12.06.2024).

[i.3] Eclipse Foundation™: Eclipse Sirius™ Website (last visited 12.06.2024).

[i.4] Eclipse Foundation™: Eclipse Modeling Framework (EMF™) Website (last visited 12.06.2024).

https://labs.etsi.org/rep/top/ide/-/wikis/UserScenarios
https://eclipse.org/
https://eclipse.dev/Xtext/index.html
https://eclipse.dev/sirius/index.html
https://projects.eclipse.org/projects/modeling.emf.emf

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)7

[i.5] Eclipse Foundation™: Eclipse Papyrus™ Modeling Environment Website (last visited
12.06.2024).

[i.6] Void.

[i.7] Eclipse Foundation™: Graphical Modeling Framework (GMF™) Website (last visited
12.06.2024).

[i.8] "Object Constraint Language™ (OMG® OCL™), Version 2.4", formal/2014-02-03.

[i.9] Eclipse Foundation™: Eclipse OCL™ (Object Constraint Language) Website (last visited
12.06.2024).

[i.10] Plutext Pty Ltd: Docx4j Website (last visited 12.06.2024).

[i.11] OMG®: "XML™ Metadata Interchange (XMI®) Specification", Version 2.4.2, formal/2014-04-04.

[i.12] Eclipse Foundation™: Epsilon™ Validation Language (EVL™) Website (last visited 12.06.2024).

[i.13] ETSI ES 203 119-1: "Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 1: Abstract Syntax and Associated Semantics".

[i.14] ETSI ES 203 119-2: "Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 2: Graphical Syntax".

[i.15] ETSI ES 203 119-3: "Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 3: Exchange Format".

[i.16] ETSI ES 203 119-4: "Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 4: Structured Test Objective Specification (Extension)".

[i.17] ETSI ES 203 119-5: "Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 5: UML Profile for TDL".

[i.18] ETSI ES 203 119-6: "Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 6: Mapping to TTCN-3".

[i.19] Void.

[i.20] ETSI ES 203 119-8: "Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 8: Textual Syntax".

[i.21] Void.

[i.22] The Apache® Software Foundation: Apache POI™ Website (last visited 12.06.2024).

[i.23] ETSI: The TDL Website (last visited 12.06.2024).

[i.24] ETSI: The TDL Open Source Project Website (last visited 12.06.2024).

[i.25] ETSI TS 136 321: "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access
Control (MAC) protocol specification (3GPP TS 36.321)".

[i.26] Void.

[i.27] Void.

[i.28] Javadoc documentation generator for Java™.

NOTE: Java™ is the trade name of a programming language developed by Oracle Corporation. This information
is given for the convenience of users of the present document and does not constitute an endorsement by
ETSI of the programming language named. Equivalent programming languages may be used if they can
be shown to lead to the same results."

[i.29] Junit testing framework.

[i.30] Guice dependency injection framework.

https://www.eclipse.org/papyrus/
https://projects.eclipse.org/projects/modeling.gmf-runtime
http://www.omg.org/spec/OCL/2.4/
https://projects.eclipse.org/projects/modeling.mdt.ocl
http://www.docx4java.org/trac/docx4j
https://www.omg.org/spec/XMI/2.4.2
http://www.eclipse.org/epsilon/doc/evl/
https://poi.apache.org/
https://tdl.etsi.org/
https://tdl.etsi.org/index.php/open-source
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://junit.org/
https://github.com/google/guice

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)8

[i.31] OpenAPI™ Specification, Version 3.1.1.

[i.32] ETSI EG 203 647 (V1.1.1): "Methods for Testing and Specification (MTS); Methodology for
RESTful APIs specifications and testing".

[i.33] Void.

[i.34] Recommendation ITU-T X.680 (02/2021): "Information technology - Abstract Syntax Notation
One (ASN.1): Specification of basic notation".

[i.35] Void.

[i.36] Recommendation ITU-T X.681 (02/2021): "Information technology - Abstract Syntax Notation
One (ASN.1): Information object specification".

[i.37] Void.

[i.38] Void.

[i.39] ETSI ES 203 119-9: "Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 9: Test Runtime Interfaces".

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

abstract syntax: graph structure representing a TDL specification in an independent form of any particular encoding

concrete syntax: particular representation of a TDL specification, encoded in a textual, graphical, tabular or any other
format suitable for the users of this language

meta-model: modelling elements representing the abstract syntax of a language

System Under Test (SUT): role of a component within a test configuration whose behaviour is validated when
executing a test description

TDL model: instance of the TDL meta-model

TDL specification: representation of a TDL model given in a concrete syntax

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
ASN.1 Abstract Syntax Notation One
EBNF Extended Backus-Naur Form
EMF Eclipse Modelling Framework
EVL Epsilon Validation Language
GMF Graphical Modelling Framework
MOF Meta-Object Facility
OCL Object Constraint Language
OMG Object Management Group®
SUT System Under Test

https://swagger.io/specification/

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)9

TDL Test Description Language
TOP TDL Open Source Project
UML Unified Modelling Language
URI Unified Resource Identifier
XMI eXtensible Markup Language Metadata Interchange

4 Basic Principles

4.1 Introduction
To accelerate the adoption of TDL, an implementation of TDL is provided within TOP in order to lower the barrier to
entry for both users and tool vendors in getting started with using TDL. The implementation comprises graphical and
textual editors, as well as validation facilities, transformation functionalities, and other tools. In addition, the UML
profile for TDL and supporting editing facilities are implemented in order to enable application of TDL in UML-based
working environments and model-based testing approaches.

4.2 Implementation Scope
The implementation scope includes a graphical editor according to ETSI ES 203 119-2 [i.14] based on the Eclipse
platform [i.12] and related technologies, covering essential constructs of TDL. For creating and manipulating models,
textual editor for ETSI ES 203 119-8 [i.20] is implemented based on the Eclipse platform and related technologies. The
applicability of general-purpose model editing facilities provided by the Eclipse platform and related technologies is
discussed as well.

For tools that need to import and export TDL models according to ETSI ES 203 119-3 [i.15], corresponding facilities
are implemented based on the Eclipse platform and related technologies. These facilities can be used to transform
textual representations based on ETSI ES 203 119-8 [i.20] and ETSI ES 203 119-1 [i.13] into XMI [i.11] serializations
according to ETSI ES 203 119-3 [i.15] and can be integrated in custom tooling that builds on the Eclipse platform.

An implementation of ETSI ES 203 119-4 [i.16] includes a dedicated textual editor for structured test objectives, which
can be integrated in the textual editor for TDL. The implementation also includes facilities for exporting structured test
objectives to Word™ documents using customisable tabular templates.

An implementation of the UML profile for TDL includes a specification of the TDL UML profile abstract syntax
according to the mapping from the TDL meta-model to TDL stereotypes and UML meta-classes in ETSI
ES 203 119-5 [i.17]. It is integrated with the open-source UML modelling environment Eclipse Papyrus [i.5] as an open
TDL UML profile implementation.

An implementation of ETSI ES 203 119-6 [i.18] includes a partial prototypical implementation of the TDL to TTCN-3
mapping based on the Eclipse platform.

Additional functionalities supporting the importing of data definitions from OpenAPI™ [i.31] and ASN.1 [i.34] and
[i.36] specifications are also provided as a prototype.

Figure 4.2-1: TDL tool infrastructure

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)10

A schematic overview of the implementation is shown in Figure 4.2-1. The TDL exchange format specified in ETSI
ES 203 119-3 [i.15] serves as a bridge between the different tool components. Textual editors enable the creation and
manipulation of TDL models. Data importers enable the integration and use of existing data specifications in TDL. The
graphical editor is used to edit and visualize TDL models as diagrams. Documentation generation, in particular for
structured test objectives, can be plugged in to produce Word documents for presenting parts of a TDL model in a
format suitable for standardization documents. Test code generation, e.g. for TTCN-3 can be plugged in to produce
executable TTCN-3 code or TTCN-3 skeletons to be refined afterwards.

The implementation is published as part of the TOP [i.24] on the TDL [i.23].

4.3 Document Structure
The present document contains three main technical clauses focusing on relevant technical details. The Graphical
Representation editor implementing ETSI ES 203 119-2 [i.14], as well as related facilities implementing ETSI
ES 203 119-1 [i.13], ETSI ES 203 119-3 [i.15] and ETSI ES 203 119-4 [i.16] are described in clause 5. Implementation
details for using TDL with external data type specifications are covered in clause 6 of the present document. The
implementation of an execution environment for the testing of RESTful API services with TDL (e.g. as described in
ETSI EG 203 647 [i.32]) is outlined in clause 7. The findings of a feasibility study of a web-based version of the TOP
tool implementation is described in clause 8.

An UML Profile Editor implementing ETSI ES 203 119-5 [i.17] is described in annex B.

NOTE: The UML Profile Editor for TDL complies to an earlier release of the TDL specification parts.

5 TDL Toolset

5.1 Graphical Representation Editor

5.1.1 Scope and Requirements

TDL graphical editor implementation has two major requirements. The main objective is to provide means to visualize
TDL models according to the graphical notation. The second objective is to facilitate layout of diagrams in a way that is
suitable for documentation. For the second purpose, it is essential to provide graphical editing capabilities. Although
often provided by modelling frameworks, the ability to graphically edit the underlying models (that is, to create new
elements and set their properties) is not considered essential for this implementation.

Eclipse provides several graphical modelling tools to help build editors. Sirius [i.3] was chosen for its declarative
approach that provides separation between meta-model mappings and implementations of graphical elements. With the
existence of predefined common graphical elements, such as containers and connectors, the effort of implementing a
graphical editor with a custom syntax in Sirius is only spent on the parts that diverge from those common elements.

Another area that requires a custom implementation is the layout of graphical elements. This covers both the absolute
placement of nodes on the diagram as well as the size and internal contents of each node. Due to the rather hierarchical
nature of the TDL graphical syntax, several additional base graphical elements are introduced. Some peculiar
limitations of Sirius have also been identified prior to the implementation, which also need appropriate workarounds.
The goal of implementing a diagram layout is to automate diagram creation to the extent that the sizes and contents of
graphical elements are adjusted by layout algorithms while the absolute placement of diagram elements is solved by
using built in layout implementations. This will guarantee that only minimal user interaction with the diagram editor is
needed for achieving the desired layouts.

Diagram export for documentation purposes is provided by the framework. The implementation can provide
complimentary export to the Word® document format.

Due to the peculiarities and intended use of structured test objectives, it was determined that instead of graphical shapes
that can be exported as images, the graphical representation is realized as tables exported directly in a Word document
according to user-defined templates. These tables can then be manipulated further as necessary to fit in within an
existing document.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)11

5.1.2 Graphical Editor Architecture

The TDL graphical editor is built on top of the Eclipse platform to benefit from its wide range of modelling tools. The
main Eclipse projects that are used as basis for this implementation are shown in Figure 5.1.2-1. Sirius is a technology
that allows declarative creation of graphical editors that work with EMF models. It uses GMF [i.7] to create visual
diagram elements and link those to model objects. Model management and serialization is done by EMF [i.4].

NOTE: Components with grey background are part of the implementation that is covered by the present
document.

Figure 5.1.2-1: Dependencies and data flows of the TDL graphical editor

Every EMF model is based on a meta-model that is defined in terms of meta-modelling system named Ecore. The TDL
meta-model in UML format was converted to an Ecore meta-model (TDL Ecore) using the Papyrus UML and EMF
facilities. Furthermore, Java™ code for the TDL meta-model was generated based on the TDL meta-model.

Sirius creates diagram editors by interpreting diagram specification files. These files contain TDL meta-model
references in the form of Java or OCL [i.8] queries. OCL support is provided by the Eclipse OCL project [i.9], Java
queries are references to classes that are part of the TDL graphical editor and editor source code. Diagram specifications
also contain definitions of Sirius specific styles that are applied to model objects when rendering them on diagrams.
Since the TDL graphical editor requires customized shapes, it has dependencies on both the Sirius API and the Eclipse
GMF. Several extensions to GMF classes have been implemented in Sirius in order to configure shapes according to the
customized styles. GMF facilities are then used to export the diagrams as images.

Some of the labels in the graphical shapes, in particular labels related to data specification and data use have a complex
structure. For their realization, facilities provided by Xtext [i.2] are used to serialize model fragments related to data use
as text according to an annotated EBNF grammar derived from the formal label specifications in ETSI
ES 203 119-2 [i.14].

Eclipse platform

GMF

Diagram
specification

TDL (XF)

Diagram
Sirius

EMF

TDL
graphical

editor

Image

TDL Ecore

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)12

5.2 Structured Test Objective Representation
Structured test objectives are exported as tables in a Word document according to user-defined templates. The export
relies on facilities provided by Xtext as well as the Apache POI library [i.22] (previously the Docx4j library [i.10] was
used) providing API for manipulating Word documents. The exporting facilities take a Word document containing one
or more templates in the form of tables with placeholders and a TDL model containing one or more structured test
objectives as input. The user has to provide the name of the desired template as an additional input. For a given TDL
specification, the selected template is used to generate a tabular representation for every structured test objective. The
placeholders in the template are replaced by the content serialized from the corresponding TDL element according to
Xtext mappings in a similar manner as the labels for the TDL graphical editor. Existing packaging structures within the
TDL specification are used to organize the generated tabular representations with corresponding headings. The
generation process is sketched in Figure 5.2-1. The generated tables in the new Word document can be further
manipulated or merged into an existing document containing additional information. Additional templates may be
defined by the users to suit their specific needs.

Figure 5.2-1: Structured test objective generation process

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)13

5.3 Implemented Facilities

5.3.1 Creating Models

Overview

Model instances are the primary artefacts for TDL. They carry the semantic information. In a modelling environment
there are various means for creating, viewing, and manipulating model instances of a particular meta-model.
Comprehensive modelling environments typically provide generic facilities that enable working with model instances of
arbitrary meta-models, provided the meta-model is known. Generic facilities provide sufficient capabilities for
performing basic tasks on model instances. However, due to their generic nature, they are often cumbersome to work
with, lack support for certain features that are not expressed in the meta-model directly (unless customized), and do not
provide domain-specific features, such as syntactical customization beyond basic adaptations.

Custom syntax implementations address some of the shortcomings of generic model editors. Such implementations
enable the specification of a customized representation of a model instance in a format that is tailored to a specific
group of users. There may be multiple custom syntax implementations mapped to the same meta-model, serving
different stakeholders or even different purposes for the same stakeholder. Custom syntax implementations may cover
only a subset of the meta-model, restricting the access to certain features that are not relevant for specific stakeholders
or purposes. Modelling environments provide platforms for the realization of custom syntax implementations. Custom
syntax implementations may rely on secondary artefacts that store the concrete representation of the TDL model
instance.

TDL model instances may be produced automatically by tools. The exchange format for TDL enables the
interoperability of tools producing model instances and tools for manipulating model instances.

Generic Model Editors

The EMF provides facilities for generating basic tree editors for a given meta-model, which can then be customized to
an extent while still remaining within the tree editor paradigm. In addition, the EMF also provides generic reflective
model editors which provide quick access to model instances of any meta-model. An example of such an editor for TDL
is shown in Figure 5.3.1-1. The example includes a tree-based editor for manipulating the overall structure of a model
on top and a detailed property view for manipulating individual properties on the bottom.

Extensions to the EMF platform, such as MoDisco, include additional generic facilities such as the MoDisco Model
Browser which provides faceted browsing and editing of model instances. Faceted browsing provides filtering by type,
as well as deep navigation across references. In addition, MoDisco also includes tabular views on different parts of the
model for a quick overview across multiple dimensions. An example for a TDL model is illustrated in Figure 5.3.1-1.
The example includes a faceted browser on the top for navigating and manipulating the overall structure of a model, as
well as individual properties of model elements. On the left side of the faceted browser, model elements can be filtered
by type. Below the faceted browser, a tabular editor provides more compact representation of multiple model elements
at the same level in a model tree, such as the behaviour elements of a block. The property view on the bottom part of the
example still allows the manipulation of properties of selected model elements.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)14

Figure 5.3.1-1: Example of reflective model editor

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)15

Figure 5.3.1-2: Example of MoDisco facetted model browser

Textual Editor

Xtext [i.1] provides facilities for the automatic generation of a default textual syntax. It serves as the base for further
refinements resulting in customized syntax definitions. Due to it being automatically generated, it is very similar in
structure to the meta-model. As a consequence, it is also rather cumbersome to write actual test descriptions in the
default syntax notation.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)16

The TOP includes a customized textual syntax that implements the syntax from annex B of ETSI ES 203 119-1 [i.13]
(up to version 1.7.1) and from ETSI ES 203 119-8 [i.20]. Apart from the grammar specification, it also includes further
customizations in the scoping and linking facilities for handling references, imports, and other peculiarities, as well as
enhanced semantic syntax highlighting which provides customisable styles for identifiers based on their type and usage.
An example of the customized editor is shown in Figure 5.3.1-3. It features a textual representation of a test description
as well as linked tree-based editor showing the same model instance in the tree-based paradigm. Current version of the
grammar specification and the additional customizations can be found in annex A of the present document as part of the
'org.etsi.mts.tdl.TDLan2*' projects for the syntax from annex B of ETSI ES 203 119-1 [i.13] (up to version 1.7.1) and as
part of the ' org.etsi.mts.tdl.TDLtx*' projects for the syntax from ETSI ES 203 119-8 [i.20].

Figure 5.3.1-3: Example of customized textual editor for TDL

Similar to the editor for TDL, the TOP also includes a customized textual syntax that is tailored for the specification of
structured test objectives. It implements the syntax from annex C of ETSI ES 203 119-4 [i.16] (up to version 1.5.1) and
from clause 8 of ETSI ES 203 119-4 [i.16]. It also includes further customizations in the scoping and linking facilities,
as well as enhanced semantic syntax highlighting, in a similar manner as the editor for TDL. An example of the
customized editor is shown in Figure 5.3.1-4. It features a textual representation of a structured test objective. Current
version of the grammar specification and the additional customizations can be found in annex A of the present
document as part of the 'org.etsi.mts.tdl.TPLan2*' projects for the syntax from annex C of ETSI ES 203 119-4 [i.16] (up
to version 1.5.1) and as part of the 'org.etsi.mts.tdl.TDLtx*' projects for the syntax from clause 8 of ETSI
ES 203 119-4 [i.16].

Associated tooling provides means for the transformation between different syntax notations and model representations.
Model instances in one notation can be transformed automatically into XMI representations and/or other textual or
graphical syntax representations. This tooling integrates the APIs from different platforms for task specific automation.
A current version of this tooling and detailed technical information can be found in annex A as part of the
'org.etsi.mts.tdl.tools.*' and 'org.etsi.mts.tdl.rt.*' projects.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)17

Figure 5.3.1-4: Example of customized textual editor for structured test objectives

Import and Export

The TDL implementation relies largely on the import and export facilities provided by the EMF. By default, the EMF
does not activate the GUID support for XMI which is prescribed in ETSI ES 203 119-3 [i.15]. The TDL meta-model
implementation needs to be adapted to activate the GUID support for model elements. The necessary adaptation
involves selecting the correct resource type (XMI) in the generator model and activating the GUID support by
overriding the corresponding method in the TDL resource implementation. Additionally, an implementation of the
operations defined for the elements in ETSI ES 203 119-1 [i.13] and ETSI ES 203 119-4 [i.16] is necessary. This
implementation is realized by means of embedded OCL expressions within the meta-model implementation. The
relevant modifications can be found in the 'org.etsi.mts.tdl.model' project within annex A.

5.3.2 Viewing and Editing Models

Principles of building model diagrams

The GMF framework that the TDL graphical editor is built upon follows the Model-View-Controller architecture. The
model is an instance of TDL meta-model. The view is comprised of the shapes displayed on the diagram. The controller
takes care of creating the shapes based on model objects and their associations, cross-references, and containments. In
GMF, controllers are called 'editparts'.

The major part of the TDL graphical editor implementation consists of defining the corresponding 'editparts'. In the case
of Sirius, these are not implemented directly but rather defined in terms of mappings. A mapping is a relation between a
certain model object and a shape. Sirius interprets each mapping and uses the appropriate 'editpart' as a controller
providing the mapping configuration data.

Mappings can be defined as nodes, edges, or containers (and some additional items specific to sequence diagrams).
Each mapping includes a reference to the meta-class of the model object that it applies to, as well as the query that is
used to lookup objects from the model based on the current context object. Similar to models and diagrams, mappings
are also hierarchical. Edge mappings also define the queries that determine the corresponding shapes its endpoints
connect to.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)18

Sirius diagrams

Sirius provides several diagram kinds that can be configured by providing diagram-specific model-object mappings. For
TDL, the generic diagram and the sequence diagram are of particular interest.

Generic diagrams contain nodes and connections between the nodes with no specific constraints on their layout.
Composite nodes containing other nodes are also supported, but only a few limited layout options are available for inner
node placement: free-form and table (lines of text).

Sequence diagrams contain vertical parallel lines known as lifelines. Lifelines have headers with labels. Nodes and
connectors between the lifelines - the fragments - are laid out as a horizontal stack. Nodes may cover any number of
lifelines, connectors may only be drawn between two lifelines. Composite nodes containing sub-fragments (called
combined fragments) are also supported.

Sirius editors are defined in configuration files known as viewpoint specifications. The TDL viewpoint specification
defines a single viewpoint that contains two diagram descriptions named "TDL Behaviour" and "Generic TDL".

TDL Behaviour is a sequence diagram description. The root object of such diagrams is an instance of 'TestDescription'.
The diagram description also defines the visual order of elements both horizontally and vertically. The vertical ordering
contains behaviours recursively included in the 'TestDescription' as they occur semantically. The horizontal ordering
contains 'GateReference's that are defined in the 'TestConfiguration' associated with the diagram's 'TestDescription'
instance.

Generic TDL is a generic diagram description. The root object of such diagrams is an instance of 'Package'. There is no
predefined order of objects defined for this diagram kind.

Sirius diagram customization

The Sirius diagram specification model does not provide enough flexibility in terms of configuring all possible layouts
required by the TDL graphical syntax. The diagrams are rendered by interpreting predefined configuration elements that
do not have any extension mechanisms built in. Thus, some simple and composite figures need to be customized at a
lower level.

The Sirius diagram rendering is built on top of the GMF runtime. Thus, it is possible to customize Sirius diagrams by
means of extension points provided by GMF. The 'org.eclipse.gmf.runtime.diagram.ui.editpartProviders' extension
point allows the replacement of default Sirius 'editparts' with customized 'editparts' dynamically, depending on which
model object is being rendered, and depending on which diagram it is being rendered on. Classes defined in the
extensions use mapping identifiers from the diagram specification to decide whether and which custom 'editparts'
should be provided for the rendering of a diagram. All other mappings will rely on the default 'editparts' provided by the
Sirius implementation.

Implemented EditParts

All of the 'editpart' implementations are located in the 'org.etsi.mts.tdl.graphical.sirius.part' package.

The 'MultipartContainerCompartmentEditPart' extends GMF's 'ListCompartmentEditPart'. This class adds grid layout
that allows contained shapes to fill the available area within the container. It also removes all borders from contained
shapes in order to get rid of shadows and places horizontal lines between the contained shapes instead. Lastly, it
removes the ability of being dragged and selected from the contained shapes in order to facilitate moving the whole
compartment shape as one. The mapping that uses this 'editpart' has to be a container.

Figure 5.3.2-1: Example of 'MultipartContainerCompartmentEditPart'

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)19

The 'NodeListWithHeaderEditPart' extends the 'AbstractDiagramListEditPart' from the Sirius API. It is intended to be
used within a 'MultipartContainerCompartmentEditPart' and provides functionality that allows the container to control
its drag and selection handling. It removes all line borders from the contained shapes and replaces the borders with
margins. The mapping that uses this 'editpart' has to be a container with list presentation style. The first label of the
shape is the label of that container's style. The children of that mapping have to be nodes with square style.

Figure 5.3.2-2: Example of 'NodeListWithHeaderEditPart'

The 'TopLevelNodeListWithHeaderEditPart' extends the 'NodeListWithHeaderEditPart' and adds the ability to be
included directly on the diagram or inside a container with free-form presentation style. It also fixes a bug in the
'AbstractDiagramElementContainerEditPart.reInitFigure()' method.

Figure 5.3.2-3: Example of 'NodeListWithHeaderEditPart'

The 'EditPartConfiguration' is used to specify additional style and layout properties supported by some custom
'editparts'. It is used, for example, to draw double border for specified edit parts using a 'TwoLineMarginBorder'.

Figure 5.3.2-4: Example of 'TopLevelImageNodeListWithHeaderEditPart'

The 'NodeContainerEditPart' extends the 'AbstractDiagramContainerEditPart' provided by the Sirius API. The default
container is modified by disabling standalone selection and dragging and delegating those functions to the parent. All
borders are removed from the shape. It is intended to be used as a child of 'MultipartContainerCompartmentEditPart'.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)20

Figure 5.3.2-5: Example of 'NodeContainerEditPart'

The 'InteractionUseConfiguringEditPart' extends the 'AbstractNotSelectableShapeNodeEditPart' provided by the Sirius
API. The class modifies the default interaction use shape by setting custom layout to it. The custom layout stretches the
container's children to fill the available vertical space and leaves sufficient margin to the top for the label of the
container. If the interaction use mapping has image style then the image background is made opaque.

This class is mapped to (an abstract) sub-mapping of interaction use. That mapping does not need to have a style as it
will not be visible. The first label of the interaction use is the label of the container. The rest of the labels are sub-nodes
with square styles.

Figure 5.3.2-6: Example of 'InteractionUseConfiguringEditPart'

The 'MultiPartLabelEditPart' extends the 'TopLevelNodeListWithHeaderEditPart' and adds the ability to place labels
horizontally in a row. This allows mappings that define different fonts for different parts of labels.

Figure 5.3.2-7: Example of 'MultiPartLabelEditPart'

The 'CombinedFragmentLabelEditPart' extends the 'MultiPartLabelEditPart' to inherit support for mixed font labels. It
overrides the default layout behaviour via a 'LayoutListener' from the 'Draw2d' API and places the shape always to the
upper right corner of a combined fragment block.

Figure 5.3.2-8: Example of 'CombinedFragmentLabelEditPart'

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)21

The 'InteractionDecoratorProvider' is contributed via the 'org.eclipse.gmf.runtime.diagram.ui.decoratorProviders'
extension point in order to draw special rotatable shapes at the ends of connectors. This class is configured to work
specifically with 'Interaction's.

Figure 5.3.2-9: Example of 'InteractionDecoratorProvider'

Implemented layouts

All layout implementations are located in the 'org.etsi.mts.tdl.graphical.sirius.layout' package.

The 'SequenceDiagramFreeformLayoutProvider' overrides the default placement of elements on the diagram layer. It
also fixes the layout of shapes modified by the 'InteractionUseConfiguringEditPart' that would otherwise be cropped to
the default size and would not trigger the layout of contents on container resize. It is contributed via the
'org.eclipse.sirius.diagram.ui.layoutProvider' extension point and its use is triggered by the arrange command.

Figure 5.3.2-10: Example of custom figure placement: node with attachment

Figure 5.3.2-11: Example of custom figure placement: under-lapping container

The layout customizations are implemented via the diagram 'arrange' mechanism, which is normally triggered only
when the user invokes the 'arrange' command. Additional triggers are implemented in order to facilitate the automatic
diagram creation upon user creating and updating the model. The 'RefreshExtensionProvider' is contributed via the
'org.eclipse.sirius.refreshExtensionProvider' extension point. It invokes the 'arrange' command when the model is
modified and subsequently reloaded into the diagram editor. The 'LayoutEditPolicyProvider' is contributed via
'org.eclipse.gmf.runtime.diagram.ui.editpolicyProviders' extension point and it invokes the arrange command when a
'GateReference' or 'ComponentInstance' shape is moved by the user in order to keep the under-lapping shape properly
aligned.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)22

Editor-specific meta-model

The Sirius sequence diagram configuration sets implicit requirements on the structure of the meta-model that is used in
the mapping definitions. The TDL meta-model does not comply with these requirements in all cases. For example, the
mappings of combined fragments tend to fail at runtime when the begin and end occurrence objects (as understood by
Sirius) are the same. Since TDL does not define occurrences at all, some adaptation is needed to provide these
occurrence objects. Sirius and the underlying framework require that model objects used in diagrams are defined by a
meta-model. Extending the TDL meta-model with pure fabrications, just to facilitate graphical editor implementations,
would be a bad practice. Therefore, a separate domain-agnostic meta-model was created for this purpose.

The meta-model named 'tdlviewer' is defined in the 'extension.ecore' file and is registered as dynamic. This means that
the meta-model may be used reflectively without any code generation (which is a standard practice with meta-model
implementations in EMF). The 'tdlviewer' contains a single meta-class 'End' with a single attribute 'begin'. The 'begin'
holds a reference to the model object which this instance of 'End' is paired with. The object itself is used as the begin
occurrence in the mappings. The creation of virtual end objects is implemented in the
'org.etsi.mts.tdl.graphical.extensions.BehaviourProvider' class.

Label serialization

Some of the labels in ETSI ES 203 119-2 [i.14] are particularly complex, especially the labels related to 'DataUse'.
Mappings for such labels in the diagrams are realized by means of Xtext. A partial annotated EBNF grammar defines
the relevant mappings. The serialization facilities of Xtext are invoked in the corresponding context in order to obtain
the textual representation of the object of interest (such as a 'DataInstanceUse') only. The implementation of the label
serialization is provided in the 'org.etsi.mts.tdl.graphical.labels.data*' projects. The label serialization is integrated into
the viewpoint by means of the 'org.etsi.mts.tdl.graphical.extensions.DataUseLabelProvider' class which is registered
with the viewpoint specification.

Configured mappings

A summary of the mappings is provided in Tables 5.3.2-1 and 5.3.2-2. The details of the diagram mapping definitions
can be found in the Sirius viewpoint-specification file 'org.etsi.mts.tdl.graphical.viewpoint/description/TDL.odesign'
within the 'org.etsi.mts.tdl.graphical.viewpoint' project in annex A.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)23

Table 5.3.2-1: Mappings in the behaviour diagram specification

Meta-class Mapping (<kind>: <identifier>) Editpart (if not default)
GateReference Instance Role: gateReference
GateReference Execution: lifelineExecution
GateReference End Of Life: lifelineEnd
TimeConstraint Node: timeConstraint
TimeLabel Node: timeLabel
Target Basic Message: interaction
 Relation Based Edge: timeConstraintAttachment
 Relation Based Edge: timeLabelAttachment
CompoundBehaviour
ParallelBehaviour
AlternativeBehaviour
UnboundedLoopBehaviour
BoundedLoopBehaviour
ConditionalBehaviour
PeriodicBehaviour
DefaultBehaviour
InterruptBehaviour

Combined Fragment: combinedBehaviour

BoundedLoopBehaviour Container: boundedLoopBehaviour
Node: boundedLoop.keyword
boundedLoop.iteration

CombinedFragmentLabelEditPart

PeriodicBehaviour Container: periodicBehaviour
Node: periodicBehaviour.keyword
Node: periodicBehaviour.iteration

CombinedFragmentLabelEditPart

Block Operand: block
Break
Stop

Interaction Use: globalAction

Assertion Interaction Use: assertion
Node: assertion.config
Node: assertion.condition
Node: assertion.otherwise

InteractionUseConfiguringEditPart

VerdictAssignment Interaction Use: verdictAssignment
Node: verdictAssignment.config

InteractionUseConfiguringEditPart

TimerStart
TimerStop
TimeOut

Interaction Use: timerOperation
Node: timerOperation.config

InteractionUseConfiguringEditPart

Assignment Interaction Use: assignment
Node: assignment.config
Node: assignment.assignment

InteractionUseConfiguringEditPart

ActionReference Interaction Use: actionReference
Node: actionReference.config
Node: actionReference.action
Node: actionReference.actualParameter

InteractionUseConfiguringEditPart

InlineAction Interaction Use: inlineAction
Node: inlineAction.config
Node: inlineAction.Body

InteractionUseConfiguringEditPart

TestDescriptionReference Interaction Use: testDescriptionReference
Node: testDescriptionReference.config
Node: testDescriptionReference. testDescription
Node: testDescriptionReference. actualParameter
Node: testDescriptionReference.
componentBindings

InteractionUseConfiguringEditPart

Wait
Quiescence

Interaction Use: timeOperation
Node: timeOperation.config
Node: timeOperation.period

InteractionUseConfiguringEditPart

ComponentInstance Container: componentInstance
Node: componentInstance.name

TopLevelNodeListWithHeaderEditPart

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)24

Table 5.3.2-2: Mappings in the package diagram specification

Meta-class Mapping (<kind>: <identifier>) Editpart (if not default)
Comment Node: comment
 Relation Based Edge: commentedElement
 Relation Based Edge:

simpleDataInstance_dataType

 Relation Based Edge:
structuredDataInstance_dataType

Connection Element Based Edge:
testConfiguration.connection

DataElementMapping Element Based Edge:
dataElementMapping.mapping

 Relation Based Edge:
dataElementMapping.association

AnnotationType Container: annotationType
Node: annotationType.name

TopLevelNodeListWithHeaderEditPart

SimpleDataType Container: simpleDataType
Node: simpleDataType.name

TopLevelNodeListWithHeaderEditPart

Time Container: time
Node: time.name

TopLevelNodeListWithHeaderEditPart

SimpleDataInstance Container: simpleDataInstance
Node: simpleDataInstance.name

TopLevelNodeListWithHeaderEditPart

Package Container: package
Container: package.name
Node: name
Container: package.imports
Node: Import
Container: package.packagedElements
Node: packagedElement

MultipartContainerCompartmentEditPart

NodeListWithHeaderEditPart

Action Container: action
Container: action.name
Node: name
Container: action.parameter
Node: Parameter
Container: action.body
Node: Body

MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart

NodeListWithHeaderEditPart

NodeListWithHeaderEditPart

ComponentType Container: componentType
Bordered: gateInstance
Container: componentType.name
Node: name
Container: componentType.timers
Node: componentType.timer
Container: componentType.variables
Node: componentType.variable

MultipartContainerCompartmentEditPart

NodeListWithHeaderEditPart

TestConfiguration Container: testConfiguration
Container: testConfiguration.name
Node: name
Container: testConfiguration.configuration
Container: testConfiguration.componentInstance
Bordered: testConfiguration.gateReference
Node:
testConfiguration.componentInstance.name

MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart

NodeContainerEditPart

TopLevelNodeListWithHeaderEditPart

TestObjective Container: testObjective
Container: testObjective.name
Node: name
Container: testObjective.description
Node: Description
Container: testObjective. objectiveURI
Node: URI

MultipartContainerCompartmentEditPart

NodeListWithHeaderEditPart

StructuredDataType Container: structuredDataType
Container: structuredDataType.name
Node: name
Container: structuredDataType.member
Node: member

MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)25

Meta-class Mapping (<kind>: <identifier>) Editpart (if not default)
StructuredDataInstance Container: structuredDataInstance

Container: structuredDataInstance.name
Node: name
Container:
structuredDataInstance.memberAssignment
Node: memberAssignment

MultipartContainerCompartmentEditPart

NodeListWithHeaderEditPart

DataResourceMapping Container: dataResourceMapping
Container: dataResourceMapping.name
Node: name
Container: dataResourceMapping.resourceURI
Node: resourceURI

MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart

DataElementMapping Container: dataElementMapping
Container: dataElementMapping.name
Node: name
Container:
dataElementMapping.parameterMapping
Node: parameterMapping

MultipartContainerCompartmentEditPart

NodeListWithHeaderEditPart

TestDescription Container: testDescription
Container: testDescription.name
Node: name
Container: testDescription.parameter
Node: Parameter
Container: testDescription.objective
Node: Objective
Container: testDescription.configuration
Node: Configuration
Container: testDescription.behaviour
Container: BehaviourConfiguration
Node: Component

MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart

NodeListWithHeaderEditPart

NodeListWithHeaderEditPart

Function Container: function
Container: function.name
Node: name
Container: function.returnType
Node: function.returnType.keyword
Node: function.returnType.type
Container: function.parameter
Node: Parameter
Container: function.body
Node: Body

MultipartContainerCompartmentEditPart

MultiPartLabelEditPart

NodeListWithHeaderEditPart

5.3.3 Exporting Structured Test Objectives

Structured test objectives are exported as tables in a Word document according to user-defined templates. The
implementation expects templates to be placed in tables and feature the following placeholders which are mapped to the
corresponding elements for a structured test objective referenced as 'self':

• <TESTOBJECTIVENAMELABEL_PLACEHOLDER> mapped to 'self.name'

• <DESCRIPTIONLABEL_PLACEHOLDER> mapped to 'self.description'

• <URIOFOBJECTIVELABEL_PLACEHOLDER> mapped to 'self.objectiveURI', separated by comma in case
of multiple 'objectiveURI's

• <CONFIGURATIONLABEL_PLACEHOLDER> mapped to 'self.configuration.name'

• <PICSSELECTIONLABEL_PLACEHOLDER> mapped to 'self.picsReference'

• <INITIALCONDITIONSLABEL_PLACEHOLDER> mapped to 'self.initialConditions'

• <EXPECTEDBEHAVIOURLABEL_PLACEHOLDER> mapped to 'self.expectedBehaviour'

• <FINALCONDITIONSLABEL_PLACEHOLDER> mapped to 'self.finalConditions'

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)26

• <EXPECTEDBEHAVIOURLABEL_WHENPART_PLACEHOLDER> mapped to
'self.expectedBehaviour.whenClause'

• <EXPECTEDBEHAVIOURLABEL_THENPART_PLACEHOLDER> mapped to
'self.expectedBehaviour.thenClause'

Each template table is expected to have a unique identifier in the heading row. The implementation expects the user to
select an identifier of a template in order to export the structured test objectives according to the corresponding
template. An example of a template based on the syntax specification in ETSI ES 203 119-4 [i.16] is shown on
Table 5.3.3-1. Additionally, shading can be used within templates to hide optional parts when their content is empty.
Multiple related optional compartments can be marked to be hidden, e.g. the heading 'Final Conditions' and the
corresponding compartment, by using the same shading.

Additional placeholders may be defined by users, however, the implementation also needs to add support for them. The
mappings are currently implemented at a lower level - in code. Additional filtering may be performed to streamline the
output. This may include hiding some keywords and punctuation. The example shown in Table 5.3.3-1 is exported from
the model used in annex C of ETSI ES 203 119-4 [i.16] (up to version 1.5.1). A filter has been applied to hide the
'entity' keywords in the output. Finally, 'EventTemplateOccurrence's may be optionally replaced by the corresponding
'EventOccurrenceSpecification' from the referenced 'EventTemplateSpecification' while applying replacements for
overridden 'Argument's and 'EntityReference's. The details of the export of structured test objectives to Word tables can
be found in the 'org.etsi.mts.tdl.to.docx*' projects in annex A. The example template as well as additional templates are
included in the 'templates.docx' document.

Table 5.3.3-1: Structured test objective template example

TO_1_TABLE_TEMPLATE
TP Id <TESTOBJECTIVENAMELABEL_PLACEHOLDER>
Test Objective <DESCRIPTIONLABEL_PLACEHOLDER>
Reference <URIOFOBJECTIVELABEL_PLACEHOLDER>
PICS Selection <PICSSELECTIONLABEL_PLACEHOLDER>

Initial Conditions
<INITIALCONDITIONSLABEL_PLACEHOLDER>

Expected Behaviour
<EXPECTEDBEHAVIOURLABEL_PLACEHOLDER>

Final Conditions
<FINALCONDITIONSLABEL_PLACEHOLDER>

Table 5.3.3-2: Exported structured test objective according to the template in Table 5.3.3-1

TP Id TP_7_1_3_1_1
Test Objective
Reference ETSI TS 136 321 [i.25], clause 5.3.1
PICS Selection

Initial Conditions
with {
 the UE in the "E-UTRA RRC_CONNECTED state"
}

Expected Behaviour
ensure that {
 when {
 the UE receives a "downlink assignment on the PDCCH for the UE's C-RNTI"
 and

 the UE receives a "data in the associated subframe"
 and

 the UE performs a HARQ operation

 }
 then {
 the UE sends a "HARQ feedback on the HARQ process"
 }
}

Final Conditions

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)27

5.3.4 Validating Models

Overview

Means for defining and validating constraints on models are an integral part of modelling environments. Model
constraints are used to impose semantic restrictions on top of the abstract syntax provided by the meta-model. There are
different approaches for the specification, integration, and validation of such constraints. OCL is the de facto standard
for the specification and realization of constraints on object-oriented meta-models. OCL expressions can be integrated
into the meta-model by means of annotations, which can be used for automated validation of model instances, provided
adequate tool support is available. An alternative approach is the specification constraints as an add-on which can then
be applied to the model instances.

A constraint specification typically consists of a context indicating the meta-class to which the constraint applies, and
an invariant indicating the conditions that will hold true in the given context for valid models. For example, the
requirement "a 'NamedElement' shall have the 'name' property set and the 'name' shall not be an empty String" is
specified in OCL as follows:

context NamedElement
 inv: not self.name.oclIsUndefined() and self.name.size() > 0

where 'self' refers to the instance of the 'NamedElement' meta-class.

Integrated Approach

The integrated approach involves the definition of semantic constraints within the meta-model itself by means of
annotations. Modelling environments can then generate integrated validation facilities based on the annotations. The
validation facilities can be invoked automatically so that immediate feedback can be provided to the users when they
work with models. The main benefit of an integrated approach is that the constraints become an embedded part of the
meta-model. However, there are also certain limitations associated with the integrated approach. Modifications to
constraints would require changing the meta-model and related generated resources. Tool support for constraints
included as embedded annotations is very inconsistent. Immediate feedback while helpful, can sometimes get in the
way. In case a model is refined over multiple steps before it becomes valid, checking constraints at any point before that
would be superfluous.

Add-on Approach

In contrast to the integrated approach, the add-on approach relies on semantics constraints defined separately from the
meta-model. Such constraints can be checked on demand as required by the specific usage scenario. In addition, the
evaluation of such constraints can also be conducted in a more flexible manner, where only subsets of constraints are
checked as necessary at a given point in time, thus limiting the amount of superfluous violations for models which are
known to be incomplete at that point in time. Add-on constraints can also be modified, maintained, and extended
independently from the meta-model. Certain technologies, such as the Epsilon Validation Language (EVL) [i.12] also
extend the capabilities of OCL by providing means to specify guards on constraints determining conditions under which
the evaluation of a constraint is to be skipped.

The constraints for TDL are realized according to the add-on approach within the 'org.etsi.mts.tdl.constraints' project.
The project contains the constraint realization in the 'tdl.evl' file as well as supporting resources for common and
extended functionalities. A standalone launcher is implemented to enable the checking of constraints independent of
other tooling. It can also be used as a foundation for integrated solutions.

5.4 Usage Instructions

5.4.1 Development Environment

The latest information on setting up a development environment for the TDL toolset implementation can be found at the
link: Setting up a local development environment.

https://labs.etsi.org/rep/top/ide

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)28

5.4.2 End-user Instructions

Installation

End-user TOP tools installation instructions are available on the website Installation.

Creating TDL models

Once the TOP tools are installed, the following steps allow TDL models to be created with the graphical editor:

1) Make sure an explorer view is open in Eclipse (Project Explorer or Model Explorer, for example).

2) Select 'New -> Project…' from the 'File' menu or the right-click contextual menu in the explorer view.

3) In the 'New Project' wizard, select new TDL Project.

4) Enter a name for the project and press 'Finish'.

5) In the explorer view, expand the newly created project, expand the 'model.tdl', right-click on the
'Package Model' and select 'New Representation -> new Generic TDL'.

6) Enter a name for the new diagram and press 'OK'.

7) A new 'Generic TDL' diagram is created where the predefined types are already shown.

8) Start creating new elements by using the palette.

The editing of models with tree editors is described in clause 5.3.1. For creating models with the textual editors, end
users need to create a new file with the file extensions '.tdlan2' for TDL models according to annex B of ETSI
ES 203 119-1 [i.13] (up to version 1.7.1), '.tdltx' or '.tdltxi for TDL models according to ETSI ES 203 119-8 [i.20]
(brace- or indentation-based, respectively), or with the file extension '.tplan2' for TDL models containing structured test
objectives specified according to annex C of ETSI ES 203 119-4 [i.16] (up to version 1.5.1). All files need to be located
within projects in Eclipse. The newly created files are already associated with the respective editor so that the users can
benefit from the enhanced editing capabilities such as syntax checking, syntax highlighting, auto-completion, etc.

Validating Models

Open the TDL model (with file extensions '.tdl', '.tdlan2', '.tdltx', '.tdltxi', or '.tplan2') with any of the available editors
(reflective, faceted, or textual) and press the 'Validate TDL model' button. Any constraint violations will be shown in a
popup dialog.

Translating Models

Open the XMI or textual representation of a TDL model (with file extensions '.tdl', '.tdltx', '.tdltxi', '.tdlan2', or '.tplan2')
and press the 'Translate TDL model' button. A popup dialog will ask about the desired target representation format. The
translated representation of the TDL model into the target representation will be named the same way as the original
model (with an additional extension '.tdl', '.tdltx', '.tdltxi', '.tdlan2', or '.tplan2') and placed in the same location.

Working with Diagrams

In Sirius and, therefore, in the TDL graphical editor, diagrams are called representations. A representation is always
related to one model element that is the root of the representation. There are two representation kinds in the TDL
viewer. The 'Generic TDL' representation takes an instance of 'Package' as its root and represents the contents of that
'Package' laid out as a graph. The 'TDL Behaviour' representation displays the behaviour of a 'TestDescription' instance
laid out as a sequence diagram.

In order to create a new diagram, open the Create Representation wizard on a project, choose the appropriate
representation kind and on the last page, select the root element matching the chosen representation kind. Created
representation is automatically opened in an editor and the representation also becomes visible in the explorer view
(under the node 'representations.aird').

The diagram editor may be used to adjust the layout of the shapes, although the implementation takes care of most of
the layout tasks.

https://labs.etsi.org/rep/top/ide/-/wikis/Installation

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)29

Exporting Diagrams

Diagrams may be exported to image files. Use the context menu of representation nodes in the explorer view or directly
in the diagram canvas. Note that although it is not necessary to have the diagrams open while editing models, the
diagram editors need to be opened before exporting the diagrams in order to refresh the visual elements with the
semantic model.

Exporting Structured Test Objectives

Open the TDL model (with file extensions '.tdl' or '.tplan2') with any of the available editors (reflective, faceted, or
textual) and press the 'Generate Document' button or select the 'TDL -> Generate Document' from the menu. The
generated Word document will be named the same way as the model (with an additional extension '.docx') and placed in
the same location.

6 Using TDL with External Data Type Specifications

6.1 Generalized Process

6.1.1 Process Overview

Figure 6.1.1-1: Overall process for importing existing external data type specifications in TDL

Formalised data type specifications are sometimes provided as part of the base specification for the systems to be tested.
These can be in the form of protocol definitions, e.g. including data type definitions in ASN.1, or entire interface
specifications, e.g. as informative or normative OpenAPI™ specifications. Requiring TDL users to redefine the data
types present in such specifications can be very time-consuming and error-prone, especially when the base
specifications continue to evolve and the test specifications need to be continuously aligned. Additionally, data
specifications in TDL are inherently abstract and need to be mapped to concrete data implementations in the target
execution platform. The existing formalised data type specifications are also used for the system implementation, where
code generators and compilers provide data type implementations based on the provided specifications. Ideally, the tests
would make use of the generated data type implementations as well.

TDL Data Type Model
(generated)

Data Type Specification
(OpenAPI / ASN.1 / XSD / …)

TDL Behaviour Model
(user defined or generated)

Data Type Implementation
(Java / JavaScript / Python / …)

Test Executable

Encoding / Decoding Adapter

SUT / IUT

Generator / Interpreter

Generator / Compiler TDL Data Type Importer User / Test Generator

Process

Mapping (trace)

Process (optional)

Reference

Target Execution Platform

TDL Tooling

Adaptation*

Encoded or raw data

Encode data in adapter if raw

If mapping not sufficient

1 3

4

10

12

11

7

9

16

8

2

6

5

1815

14

17

13

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)30

In order to make TDL aware of the existing formalised data type specifications, they need to be "imported" in TDL in
the sense that there needs to be a TDL data type model which contains all the relevant information from external data
type specifications, including mappings to the source from which the data types are derived, for traceability and other
purposes. Users or test generation tools can then produce TDL behaviour models and TDL data instances using the TDL
data types derived from the external data type specifications. As there may be differences between the capabilities of the
external data type specification language and TDL, there may also be different ways of deriving the TDL data types. A
set of guidelines can be helpful to ensure consistent derivation and mapping. For example, some languages support
nested anonymous type definitions, whereas TDL only supports "flat" data type definitions. In such cases, the
guidelines indicate how the nested type definitions can be flattened by extracting them and following certain naming
conventions, e.g. based on the name of the containing data definitions. Corresponding tool support is essential for larger
data type specifications. Following an overview of the overall process and an example instantiation, specific guidelines
for OpenAPI™, Yang, and ASN.1 are provided in the subsequent clauses.

The overall process for the importing and use of data types from OpenAPI™, Yang, ASN.1, and other specifications is
outlined in Figure 6.1.1-1. The following aspects need to be considered:

• Data type specifications are used as input (1) for generators or compilers producing (2) data type
implementations in the target execution platform, such as Java™, JavaScript™, or Python™.

• The data type specifications are also used as input (3) for the TDL data type importer, which generates (4) a
TDL data type model.

• The data type model includes mappings to the data type specification (5) for traceability and to the data type
implementation (6) for operationalisation.

• TDL behaviour models (7), which are either defined manually or generated automatically, import and use the
TDL data type model (8) generated from the data type specification.

• The TDL behaviour models and the TDL data type model are then processed by a generator or an interpreter
(9 and 10) to produce a test executable for the target platform (12). The generator or interpreter may also need
to make use of the data type implementation in some cases (11).

• The test executable uses (13) the data type implementation and interfaces (16) with the adapter to
communicate with the SUT/IUT (18).

• For the communication with the SUT/IUT, the data usually needs to be encoded and decoded. Depending on
the circumstances, the test executable may interface with the encoding and decoding functionality directly (14)
or the encoding and decoding may be handled by the adapter (17).

• The encoding and decoding functionality generally relies on the data type implementation (13), but may also
need to make use of the original data type specification (15) if the data type implementation does not include
all the necessary information.

The outlined process is simplified and generalized. In practice, there may be different stages in the TDL behaviour
model specification, including the definition of structured test objectives, the definition of totally ordered test
descriptions, as well as the refinement of the totally ordered test descriptions into locally ordered test descriptions.
Depending on the context, some of the stages may be required or omitted. The overall process remains the same as only
the level of detail in the TDL behaviour models is affected in the different stages. While structured test objective
specifications may not necessarily need to be concerned with details of the target execution platform, including the data
type implementations, the test executable, and the adaptation layer, the mapping information for the target platform can
be already provided by the TDL data type importer from the start for reference, or be added later.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)31

6.1.2 Example Instantiation

Figure 6.1.2-1: Example instantiation of the overall process from Figure 6.1.1-1

A concrete example for the outlined process is illustrated in Figure 6.1.2-1. It includes snippets from the following
artefacts:

• Given a data type specification in OpenAPI™ (1), the corresponding tooling can be used to generate data type
implementations in Java (2), JavaScript, and other target languages.

• Based on the data type specification, the TDL data model (4) including the mappings to the data type
specification (5) and the data type implementation in Java (6) are generated.

• A user then specifies the TDL data instances and behaviour models (7) using the generated TDL data model
(8).

• With the help of the above artefacts, a test executable can be assembled either by means of code generation or
by means of interpretation. Corresponding encoding and decoding functionalities may be provided by third-
party components or rely on the generated data type implementation.

While this example illustration is built around an OpenAPI™ specification with Java as the target platform, the same
process can be applied to other target platforms or other kinds of data type specifications, such as Yang or ASN.1
specifications. The TOP provides basic capabilities for importing data type specifications from OpenAPI™ Yang and
ASN.1, which can be optionally installed in addition to the core meta-model implementation and the different editors.

Further details on the implemented support for external data types in TOP can be found in the online user
documentation.

openapi : 3. 1. 0
i nf o:
 t i t l e: ' Li br ar y'
 ver s i on: ' 0. 1'
pat hs : { }
component s :
 schemas:
 Li br ar yBook:
 t ype: obj ect
 pr oper t i es:
 t i t l e:
 t ype: st r i ng
 aut hor s :
 t ype: ar r ay
 i t ems:
 t ype: st r i ng
 Li br ar y:
 t ype: obj ect
 pr oper t i es:
 addr ess :
 t ype: st r i ng
 books:
 t ype: ar r ay
 i t ems:
 $r ef : ' #/ component s / schemas/ Li br ar yBook'

Package gener at ed_f r om_mappi ng_convent i ons_yaml {
 Type st r i ng;

 Use " mappi ng_convent i ons. yaml " as SOURCE_MAPPI NG; / / (5)
 Use " gener at ed/ j ava" as TARGET_MAPPI NG; / / (6)

 Type Li br ar yBook (
 t i t l e of t ype st r i ng,
 aut hor s of t ype Li br ar yBook___aut hor s
) ;
 Col l ec t i on Li br ar yBook___aut hor s of t ype s t r i ng;

 Map Li br ar yBook t o " #/ component s / schemas/ Li br ar yBook"
 i n SOURCE_MAPPI NG as Li br ar yBook_SOURCE_MAPPI NG;
 Map Li br ar yBook t o " Li br ar yBook"
 i n TARGET_MAPPI NG as Li br ar yBook_TARGET_MAPPI NG;

 Type Li br ar y (
 addr ess of t ype s t r i ng,
 books of t ype Li br ar y___books
) ;
 Col l ec t i on Li br ar y___books of t ype Li br ar yBook;
 Map Li br ar y t o " #/ component s / schemas/ Li br ar y"
 i n SOURCE_MAPPI NG as Li br ar y_SOURCE_MAPPI NG;
 Map Li br ar y t o " Li br ar y"
 i n TARGET_MAPPI NG as Li br ar y_TARGET_MAPPI NG;
}

Package mappi ng_usage {
 I mpor t al l f r om gener at ed_f r om_mappi ng_convent i ons_yaml ;

 / / exampl e dat a i ns t ances
 Li br ar y exampl eLi br ar y (
 addr ess = “ Sophi a- Ant i pol i s , Fr ance” ,
 books = {
 new Li br ar yBook(
 t i t l e = " TOP Gui de" ,
 aut hor s = {
 " Mar t t i Käär i k " ,
 " Fi nn Kr i s t of f er sen" ,
 " et al . "
 }
) ,
 new Li br ar yBook(
 t i t l e = " I nt r oduct i on t o TDL"
) ,
 TDLTut or i al
 }
) ;
 Li br ar yBook TDLTut or i al (
 t i t l e = “ Get t i ng St ar t ed wi t h TDL"
)

 / / exampl e behav i our model s
}

publ i c Li br ar yBook t i t l e(St r i ng t i t l e) {
 t hi s . t i t l e = t i t l e;
 r et ur n t hi s ;
}

@j avax. annot at i on. Nul l abl e
@Api Model Pr oper t y (val ue = " ")
publ i c St r i ng get Ti t l e() {
 r et ur n t i t l e;
}

publ i c voi d set Ti t l e(St r i ng t i t l e) {
 t hi s . t i t l e = t i t l e;
}

publ i c Li br ar yBook aut hor s(Li st <St r i ng> aut hor s) {
 t hi s . aut hor s = aut hor s ;
 r et ur n t hi s ;
}

publ i c Li br ar yBook addAut hor s I t em(St r i ng aut hor s I t em) {
 i f (t hi s . aut hor s == nul l) {
 t hi s . aut hor s = new Ar r ayLi s t <St r i ng>() ;
 }
 t hi s . aut hor s. add(aut hor s I t em) ;
 r et ur n t hi s ;
}

Generator / Compiler TDL Data Type Importer User / Test Generator

1 3

7

8

2

6

5

4

Process

Mapping (trace)

Process (optional)

Reference

Target Execution Platform

TDL Tooling

Adaptation*

https://labs.etsi.org/rep/top/ide/-/wikis/UserScenarios
https://labs.etsi.org/rep/top/ide/-/wikis/UserScenarios

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)32

7 TDL Runtime/Execution

7.1 Java™: Code generator

7.1.1 Architecture

A code generator converts TDL test descriptions to Java code and provides a runtime environment as well as a Test
Runtime Interface (TRI) for users to implement the adaptation to real test environment and SUT. As an alternative to
interpreter, code generation removes the dependencies to TDL meta-model and simplifies deployment of the executable
tests.

The source code for the code generator is available in TOP [i.24] in 'org.etsi.mts.tdl.execution.java.codegen' project.
The project includes code documentation in Javadoc [i.28] format and instructions for setup and use.

Code generator

*.codegen

UI

*.eclipse

Runtime

.rt.

TRI

*.tri

TDL model

JUnit

Guice

Adapters

Eclipse

Figure 7.1.1-1: Project structure and dependencies of Java code generator

In addition to code generator, the 'org.etsi.mts.tdl.execution.java.codegen' project provides various User Interface (UI)
components for triggering and configuring the code generation. Runtime code has dependencies to JUnit [i.29] for its
test reporting and assertion functions as well as Guice [i.30] for resolving platform adapter implementations. The
interfaces that should be realized and provided by end users are collectively called Test Runtime Interface (TRI).

In Guice parlance, the component that provides (Guice term for associating a class to a type) interface realizations is
called a module. The name of the module that provides the TRI interface bindings (the 'adapter module') is configured
in generator settings. It may provide implementations for following interfaces (listed in 'ProviderModule' class):

• 'SystemAdapter': a required component that manages interactions between runtime and SUT;

• 'Validator': a required component that provides data matching functionality;

• 'Reporter': an optional component that implements test logging;

• 'PredefinedFunctions': optional customized implementation of TDL predefined functions; and

• 'RuntimeHelper': optional customized implementation of various environment specific functions.

Default implementations for 'PredefinedFunctions' and 'RuntimeHelper' are provided by the runtime.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)33

Adapter module

PredefinedFunctions RuntimeHelper

SystemAdapter Validator Reporter

ProviderModule

TestControl <ComponentType>

<TestDescription_

ComponentInstance>

PredefinedFunctions

(default impl.)

RuntimeHelper

(default impl.)

Figure 7.1.1-2: Structure of runtime classes of Java code generator

The core component of the execution engine is 'TestControl', which is the base for all generated tester components. It
provides access to instances of TRI components and contains helper functions to handle complex execution logic (such
as alternatives) and asynchronous nature of interactions and time operations.

For each TDL 'ComponentType', a Java class is generated that extends the 'TestControl'. It adds fields for variables and
timers and invokes the adapter module. A sub-class of the component type class is generated for each tester
'ComponentInstance' participating in a 'TestDescription'. The component classes include time labels and provide the test
execution code that can be invoked by the JUnit framework.

7.1.2 Test Runtime Interface (TRI)

7.1.2.1 Overview

TDL runtime interfaces are specified in [i.39].

7.1.2.2 Interface ProviderModule

implements com.google.inject.Module

Example of Guice injector module that is used by execution engine to configure the environment specific adapters.

Note that this interface should only be used as an example to provide all relevant implementations and it should not be
implemented directly, as extending it breaks the annotation declarations.

Methods:

public org.etsi.mts.tdl.execution.java.tri.PredefinedFunctions
providePredefinedFunctions(org.etsi.mts.tdl.execution.java.tri.RuntimeHelper helper)

public org.etsi.mts.tdl.execution.java.tri.Reporter provideReporter()

public org.etsi.mts.tdl.execution.java.tri.RuntimeHelper
provideRuntimeHelper()

public org.etsi.mts.tdl.execution.java.tri.SystemAdapter

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)34

provideSystemAdapter()

public org.etsi.mts.tdl.execution.java.tri.Validator provideValidator()

7.1.3 Mappings

Most mappable TDL model elements are mapped to appropriate Java elements for test execution. In TDL, mapping
specifications consist of two levels: resource mapping and element mapping. Resource mappings should refer to either
Java package or class (using qualified names). Element mappings should refer to either Java class, field or method.

As the mappings can refer to different kinds of Java elements, then a predefined annotation should be added to both
resource and element mappings in one of following combinations:

• resource mapping with 'JavaPackage' annotation and element mapping with 'JavaClass' annotation; or

• resource mapping with 'JavaClass' annotation and element mapping with either 'JavaField', 'JavaStaticField',
'JavaMethod' or 'JavaStaticMethod' annotation.

Those annotations are provided by the Java model that is part of the TDL standard implementation.

Following mappable TDL elements do not require any annotations as the mapped Java element is clear:

• 'SimpleDataInstance's in 'EnumDataType' are mapped to Java enum literals;

• 'Time' types are mapped to Java longs; and

• 'Members are mapped to Java fields.

The TDL Java model provides mappings for predefined TDL 'SimpleDataType's. TDL predefined functions are mapped
to appropriately named functions with function parameter types replaced with corresponding Java types.

In addition to predefined 'Time' instance 'Second', the code generator also supports 'Time' instances named
'MilliSecond' and 'NanoSecond' using name-based mapping and assuming that appropriate type mappings (to Java long)
are also provided.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)35

JavaClass JavaStaticField JavaMethodJavaStaticMethod

ActionDataInstance

SimpleDataType

StructyuredDataType

CollectionDataType

EnumDataType

JavaPackage JavaClass

ProcedureSignature

Member

<Predefined

SimpleDataType>

Integer, Boolean,

String

Time
EnumDataType->

SimpleDataInstance

JavaField

Figure 7.1.3-1: Required annotations for Java mappings

When an element mapping refers to a non-static Java field or method then 'RuntimeHelper' TRI interface is called to get
an instance object to use with the field or method specification. The class from corresponding resource mapping is used
as the argument for that call.

7.1.4 Communication Control Flow

'SystemAdapter' implements the communication mechanisms between test execution and SUT. The interface includes
methods to support both message- and procedure-based interactions. For procedure calls, the interface defines separate
methods depending on whether the tester is the caller or the callee. The encoding and decoding of data is generally done
by the 'SystemAdapter'.

A 'SystemAdapter' implementation is assumed to be able to handle multiple concurrent calls to 'receive' method. The
implementation of the 'receive' method should block until a message is received that corresponds to the data type that
was provided or the call is interrupted by the caller. This means that incoming packets should support repeated decoding
attempts.

If no 'receive' calls are active when a packet arrives then the 'SystemAdapter' notifies all registered 'Receiver's and pass
undecoded data to them. This also happens when none of the waiting 'receive' calls correspond to received data (that is,
decoding with expected type does not succeed). The registered 'Receiver's are generally used to detect discrepancies
between tester and SUT behaviour.

'ignoreUntil' is a special case of receive method, which ignores and discards (that is, does not pass to asynchronous
'Receiver's) incoming data until one arrives that matches (in terms of both type and values) the expected data. A
'Validator' instance may be used for matching.

The 'call' method blocks until a reply is received (or the call is interrupted by the caller) and it returns either the return
value or an exception. It is up to the caller to determine, the semantics of the returned value. The 'receiveCall' method
works similarly to the 'receive' method.

The following diagram describes an example scenario of sending a message and receiving two alternative responses and
a default handling with asynchronous 'Receiver'.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)36

Figure 7.1.4-1: Example of method calls involving the SystemAdapter

To avoid excessive adaptation, the execution engine supports calling procedures directly (bypassing the system adapter)
if the 'ProcedureSignature's are mapped to Java methods (see clause 7.1.3). This code generation feature is configurable
in settings.

7.1.5 Executable Code

Most TDL behaviours have obvious counterparts in Java. For those elements and the ones that are explicitly mapped,
the Java code generation is little more than language translation.

A special control structure is implemented for the handling of asynchronous events (either time- or interaction-related)
and execution of out-of-order blocks (exceptional and alternative behaviours).

Tester
System

Adapter
Validator Reporter

send

matches

behaviourStarted

comment*

receive

behaviourCompleted

testObjectiveReached

setVerdict*

addReceiver

receive

removeReceiver

receive

parallel

receive any

receive alt-1

receive alt-2

matches

setVerdict*

setVerdict

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)37

CompletionService

ExecutorService

Callable

Future returns ExecutionResult

TimeResult InteractionResult

use

is submitted to

is converted to

take()

schedule

execution

TestControl

<TestDescription_

ComponentInstance>

create + submit

register

to control

process

get future

ExceptionalBehaviour

Future<TimeoutResult> timeConstraint(Constraint constraint)

...

Future<TimeoutResult> timeout(Timer timer)

Future<TimeoutResult> sleep(long period)

Future<InteractionResult> receive(Data expected)

ExceptionalBehaviour getExceptionalBehaviour(Future<ExecutionResult> future)

void addExceptionalBehaviour(ExceptionalBehaviour b)

Future<ExecutionResult> next()

future

behaviour

isInterrupt

Figure 7.1.5-1: Event handling component dependencies in TDL Java runtime

The 'TestControl' class provides utility methods for creating and scheduling (submitting) the callable for various
asynchronous behaviours. It also enables/disables any added/removed 'ExceptionalBehaviour's. Internally, Java's
'CompletionService' is used to take the first completed future and pass it to test code for processing.

Figure 7.1.5-2 describes an example scenario of receiving a message with time constraint while a default behaviour is
activated.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)38

Test

Code

Test

Control

Completion

Service

exc = addExceptionalBehaviour()

next_event_future = next()

removeExceptionalBehaviour(exc)

future = submit(receive)

submit(exceptionals)

receive_future = receive()

receive_constraint_future = timeConstraint() future = submit(timeout)

add to stack

cancel futures

take()

remove

from stack

alt

[next_event_future == receive_future]

[next_event_future == receive_constraint_future]

[else]

set verdict fail

data = receive_future.get()

validate data

exc = getExceptionalBehaviour(next_event_future)

execute exc.behaviour

Figure 7.1.5-2: Event handling process in TDL Java runtime

JUnit framework annotation is used to mark generated test description method as JUnit test case, which allows easy
execution with any JUnit tool. JUnit assertions are used to validate data.

'TimeLabel' class is implemented in runtime according to the semantics specified in [i.13]. The time label mechanism is
also used to implement TDL 'Timer's. All time units are converted into milli-seconds for internal evaluation.

Special treatment of TDL 'VariableUse's is needed as the TDL assumes that all data is immutable while in Java that is
not the case. 'RuntimeHelper' 'clone' method is used to clone structured variable values before they are assigned as
arguments to parameterized 'DataUse's. This prevents potential modifications of variables.

Following TDL features are currently not supported by the code generator (as the present document reflects a specific
milestone):

• 'ParallelBehaviour' and 'PeriodicBehaviour'

• 'OptionalBehaviour'

• 'TestDescriptionReference' arguments

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)39

8 Web-based Editors and Tools

8.1 Overview
This clause provides guidance on the design and use of web-based editors for creating and managing test descriptions in
TDL. It is based on a first exploration of available technologies and potential implementation and integration of
necessary components for the realisation of web-based editors for TDL. The editors enable users to create, edit, and
delete TDL test descriptions in a user-friendly and efficient manner, without the need to install and set up and software.
This clause describes the architecture of web-based editors, as well as the recommended best practices for its
implementation. It also provides examples of how the editor can be realised and used to create various types of test
descriptions and outlines the benefits of using the editor for TDL test description management. This clause is intended
for developers, testers, and other stakeholders involved in the creation and management of TDL test descriptions.

The recent trend towards web-based infrastructures and Software-as-a-Service (SaaS) models for deploying Integrated
Development Environments (IDEs) offers benefits, such as eliminating the need for complex software installation and
configuration, enabling deployment in shared cloud environments, and ensuring platform independence. However, in
scenarios where both desktop and web applications need to be supported, it is optimal to choose a technology stack that
supports both. While it allows for the distribution of different language services, such as compilers and generators,
across multiple platforms, it also presents challenges requiring a careful consideration, e.g. regarding the
responsiveness.

This clause explores different means for implementing web-based editors for TDL, including integration into an IDE
framework such as Eclipse Theia and a prototype standalone editor. The focus is on investigating the feasibility of using
a modular architecture to support various products and evaluating the reusability of components to ensure productive
and cost-efficient development. The exploration aims to identify the necessary adjustments and components needed to
build both a simpler editor and one that can be integrated into an existing system, providing an ideal solution for
different application areas and target groups.

8.2 Architecture
Web-based applications are typically divided into frontend and backend components. The frontend components include
the user interface, which in a web-based editor for TDL will at the very least include an editor that provides syntax
highlighting and error reporting, ideally also content assist and navigability. The editor would connect to a backend that
processes the content of the editor and performs all the necessary tasks, providing feedback. The backend typically
comprises a language server as well as generators or other components that can also be exposed through user interface
elements in the frontend. A language server for TDL can be derived from the textual editors for TDL by making use of
the facilities provided by the underlying framework.

The following components from TOP are the minimum subset for basic functionality including support for the
brace-based textual syntax:

• org.etsi.mts.tdl.model: meta-model implementation for TDL

• org.etsi.mts.tdl.common: shared functionalities

• org.etsi.mts.tdl.tx: TDL textual syntax implementation

• org.etsi.mts.tdl.tx.ide: IDE and language server implementation for the TDL textual syntax

In addition, the org.etsi.mts.tdl.txi and org.etsi.mts.tdl.txi.ide components are needed for supporting the
indentation-based syntax. Similarly, corresponding components are needed for supporting the legacy syntaxes for TDL.

A generic architecture for a web-based TDL editor is outlined in Figure 8.2-1. TDL support can be added with a
frontend extension providing the user interface components as well as integration with the text editor component. In the
backend, necessary components from the TOP project could be reused and exposed as services through defined
interfaces, e.g. RESTful APIs or similar.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)40

Figure 8.2-1: Generic architecture for a web-based TDL editor

8.3 Evaluation and Recommendations

8.3.1 Overview

To explore the feasibility for implementing a web-based editor for TDL, both as a standalone component for integration
of an arbitrary custom applications and as an extension for integration in existing web-based IDEs, two prototypes were
created. The potential advantages and disadvantages of both options are summarised below, based on the experiences
with the preparation of the prototypes.

8.3.2 Custom Application

In a custom web application, there is full flexibility in the way the editor is used and integrated, however, all
functionalities need to be setup and integrated from scratch. While there may be available components for the target
platform, they still need to be adapted and integrated for use with the web-based TDL editor. The prototype
implementation is based on existing guides on how to get started. It only covers rudimentary functionalities beyond the
editing, including an example for integrating a code-generation and execution based on the editor content. The
generation example only counts the number of AnnotationType definitions. A console view shows the results from the
execution. The backend includes a basic language server and generator component. An example of the resulting
application is shown in Figure 8.3.2-1.

The prototypical implementation demonstrated the feasibility of incorporating TDL-specific editors in a custom web
application, divided into frontend and backend components. The architecture allows for the addition of more
components, as shown with the code generation functionality. Challenges were encountered due to dependencies and
modifications needed for language server. Integrating a graphical viewer or editor, as well as other capabilities can be a
next step for a custom application.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)41

Figure 8.3.2-1: Web-based TDL editor in a custom application

8.3.3 Web-based IDE Extension

The host web-based IDE provides the basic workbench capabilities including a basic text editor that can be connected to
a language server in order to provide augmented editing capabilities. Rather than starting from scratch, the emf.cloud
demonstrator was used as a starting point as it provides many of the needed functionalities and the necessary
integrations. The EMF.cloud project aims to adapt the Eclipse Modelling Framework for use in web-based platforms.
The demonstrator is built on top of Eclipse Theia and showcases common functionalities for model-based
domain-specific language tooling, including textual, graphical, and form-based editors backed by the same underlying
model which is exposed by means of a model-server component. Using the demonstrator as a blueprint, adaptations for
TDL-specific editors were identified and prototypically implemented. An example is shown in Figure 8.3.3-1.

The prototypical implementation demonstrated the feasibility of incorporating TDL-specific editors in a web-based
IDE. However, the integration process was complex and required extensive debugging. The demonstrator code base is
moving very fast, with frequent major refactorings and updates to dependencies leading to compatibility issues and
unexpected bugs. Despite these challenges, the prototype implementation can serve as a foundation for future activities,
such as integrating a graphical editor and other capabilities.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)42

Figure 8.3.3-1: Web-based TDL editor in an online IDE

8.3.4 Recommendation

Two web-based editors were prototypically implemented, each with its own set of challenges. Building the editor from
scratch appeared more promising for simple tasks, providing better control compared to the complex platform of
Eclipse Theia and the emf.cloud demonstrator. It is also better suited for integration in other custom platforms and
applications, as well as for demonstration and learning purposes, e.g. on the TDL website. However, for larger
programming teams, constructing a full-fledged IDE is better suited. The resulting artifacts can also be used for other
IDEs, such as Visual Studio Code.

The web-based editor can be accessed via this link: https://top.etsi.org/ttfs/page-test/index.html.

https://top.etsi.org/ttfs/page-test/index.html

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)43

Annex A:
Technical Realisation of the Reference Implementation
The technical representation of the TDL reference implementation is available as an open source project available on
the TOP website. The open source project serves as a possible starting point for implementing and extending tools for
TDL as described in the present document. An open source project is well suited for a technical contribution which can,
over time, evolve beyond the scope of the present document. Further information regarding the use of the technical
representation as well as contributing to it can be found on the TDL website.

http://top.etsi.org/
https://tdl.etsi.org/index.php/open-source

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)44

Annex B:
UML Profile Editor

B.1 Scope and Requirements
The UML Profile for TDL (UP4TDL) was developed to enable the application of TDL in UML based working
environments. UP4TDL introduces TDL-related domain-specific concerns to the UML meta-model by means of
stereotypes which extend UML meta-classes with additional properties, relations, or constraints. The implementation of
the UP4TDL covers basic functionalities to support the creation and manipulation of UML models applying the
UP4TDL profile.

NOTE: The UML profile editor description is not aligned with the latest version of the TDL specification parts,
but are related to an earlier release of the TDL specification parts.

B.2 Architecture and Technology Foundation
The UML based editor is also built on top of the Eclipse platform. At a high level, it contains two main components: the
UML Profile for TDL (UP4TDL) implementation described in ETSI ES 203 119-1 [i.13], annex C, and the facilities for
editing UP4TDL models. The profile is static. This allows the implementation of derived properties. The profile
implementation is independent of the editing facilities provided in the context of this reference implementation and can
be used by other UML tools. A model-to-model transformation from UP4TDL models to TDL Ecore models allows
generating TDL in the XMI format specified in ETSI ES 203 119-3 [i.15].

The TDL profile implementation is located in the 'org.etsi.mts.up4tdl' project, while the validation implementation is
located in the 'org.etsi.mts.up4tdl.validation' project. The implementation of the editing facilities can be found in the
'org.etsi.mts.up4tdl.diagram.*' projects. The 'ElementType' framework is used for manipulating model elements in
Papyrus. Specialized 'ElementType's are in located in the 'org.etsi.mts.up4tdl.service.type' project.

B.3 Implemented Facilities

B.3.1 Applying the Profile

Overview

A UML profile allows users to build models with additional constraints and specific properties, while still relying on the
UML meta-model. A UP4TDL model is then a UML model with additional constraints and properties tailored towards
the domain of TDL.

Stereotype

The extension mechanism of a UML profile is based on stereotypes. A stereotype of a UML profile always extends
(directly or indirectly) a UML meta-class. For example the 'ComponentInstance' concept from TDL extends the
'Property' concept of UML and it has the specific property allowing users to define its role ('Tester' or 'SUT').

Applying the UP4TDL profile on a UML model

Applying UP4TDL concepts on a UML model implies the application of UP4TDL stereotypes on UML elements. To
do this, the UP4TDL profile (or one of its sub-profiles) will be added to the package (or the model) containing the UML
element as shown in Figure B.3.1-1.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)45

Figure B.3.1-1: UML profile application

The stereotype applied on the UML model allow the specification of stereotype properties. In Figure B.3.1-2, the
stereotype 'ComponentInstance' is applied to a 'UML::Property'. This allows the user to specify the role property, in this
case, 'tester'.

Figure B.3.1-2: Stereotype property specification

B.3.2 Hints for the Transformation of UP4TDL Models into
TDL Models

Overview

Most translations are straightforward one-to-one mappings between UP4TDL concepts and concepts from TDL
meta-model. The exceptions are detailed below.

ElementImport

In TDL, 'ElementImport' can reference several 'Element's, while in UML, the corresponding concept
'UML::ElementImport' concept (direct mapping without stereotype) can only reference one. So the model-to-model
transformation can potentially turn one 'TDL::ElementImport' into several 'UML::ElementImport's.

SimpleDataInstance and StructuredDataInstance

Both 'SimpleDataInstance' and 'StructuredDataInstance' are mapped to the same concept 'UML::InstanceSpecification'.
To determine whether it is a simple or a structured instance, one needs to check the type of the
'UML::InstanceSpecification'. If the 'InstanceSpecification's type is a 'PrimitiveType', then it is a 'SimpleDataInstance',
otherwise it is a 'StructuredDataInstance'.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)46

Property Identification

There are two direct mappings from 'UML::Property' to TDL concepts - for 'TDL::Variable' and 'TDL::Member'. In
order to determine which kind of property it is, one needs to check the container. If the property is contained in a
'ComponentInstance', then it corresponds to a 'Variable'. Otherwise, if the property is contained in a 'DataType', then it
corresponds to a 'Member'.

B.3.3 Editing Models with the Model Explorer
As shown in clause B.3.1, UP4TDL elements can be created from UML elements by applying a stereotype on them.
Both steps can be performed in a row from the model explorer, using TDL specific 'New TDL Child' creation options.
The model elements are sorted in the 'New TDL Child' menu according to the diagram they are supposed to appear in,
as shown in Figure B.3.3-1.

Figure B.3.3-1: Adding TDL-stereotyped elements

B.3.4 Editing TDL-specific Properties with the TDL Property View
Editing the properties of a UP4TDL model with the standard property view, can be inconvenient for two reasons. On
the one hand, some properties from the UML base meta-class are not relevant for the associated TDL 'Element'. On the
other hand, some properties of a TDL 'Element' are not properties of the base meta-class. Even when the properties of a
TDL 'Element' and the base UML 'Element' match, they might not have the same name. Editing a UP4TDL model
would then require expertise in both UML and TDL, as well as knowledge of the UP4TDL profile specifics. There is a
'TDL Tab' for the property view, which makes the task of editing TDL specific properties easier. Figure B.3.4-1
illustrates the property view of a 'ComponentInstance', which contains its 'Name', 'Type', and 'Role' properties.

Figure B.3.4-1: Editing TDL-specific properties

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)47

B.3.5 Editing Models with TDL-specific Diagrams

Overview

Editing a UP4TDL model can be done using the property view and model explorer only. In order to provide a graphical
representation of a model being edited, TDL Diagrams specializing UML Diagrams are implemented. There are 3 kinds
of TDL Diagrams: TDL DataDefinition Diagram, TDL TestConfiguration Diagram and TDL TestDescription Diagram.
There are two main editing facilities for all of these diagrams: the creation of an element using the 'palette' and the 'drag
and drop' of an existing element from the model explorer.

The TDL-specific diagrams can be initialized from the model explorer as shown in Figure B.3.5-1.

Figure B.3.5-1: Creating TDL-specific diagrams

The TDL DataDefinition Diagram

The DataDefinition Diagram is based on the UML Class Diagram. It is used to represent the following TDL Elements:

• StructuredDataType

• SimpleDataType

• MemberAssignment

• Member

• DataElementMapping

• DataResourceMapping

• ParameterMapping

• DataInstance

• GateType

The palette for the TDL DataDefinition diagram is shown in Figure B.3.5-2.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)48

Figure B.3.5-2: DataDefinition Diagram palette

The TDL TestConfiguration Diagram

The TestConfiguration Diagram is based on the UML Composite Diagram. It is used to represent the following
TDL elements:

• TestConfiguration

• ComponentInstance

• ComponentType

• GateInstance

• Connection

• Variable

The palette for the TDL TestConfiguration Diagram is shown in Figure B.3.5-3. An example of the
TDL TestConfiguration Diagram is shown in Figure B.3.5-4.

Figure B.3.5-3: TestConfiguration Diagram palette

Figure B.3.5-4: TestConfiguration Diagram example

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)49

The following specific behaviours have been implemented for the TestConfiguration Diagram:

• Dragging a 'ComponentType to a 'ComponentInstance' specifies the type of the 'ComponentInstance'.

• Dragging a 'GateType' to a 'GateInstance' specifies the type of the 'GateInstance'.

• Dragging a 'GateInstance' from the palette on a 'ComponentInstance' adds it to its 'ComponentType'.

Editing a TDL TestDescription Diagram

The TestDescription Diagram is based on the UML Sequence Diagram. It is used to represent the following
TDL elements:

• TestDescription

• Annotation

• Comment

• Lifeline

• CombinedBehaviours:

- Block

- CompoundBehaviour

- AlternativeBehaviour

- ParalleleBehaviour

- UnboundedLoopBehaviour

- BoundedLoopBehaviour

- ConditionalBehaviour

- ExceptionalBehaviour

- InterruptBehaviour

- PeriodicBehaviour

• AtomicBehaviours:

- ActionReference

- Assignment

- Interaction

- TestDescriptionReference

- VerdictAssignment

The palette for the TDL TestDescription Diagram is shown in Figure B.3.5-5.

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)50

Figure B.3.5-5: TestDescription Diagram palette

ETSI

ETSI TR 103 119 V1.5.1 (2025-05)51

History

Document history

V1.1.1 February 2018 Publication

V1.2.1 September 2020 Publication

V1.3.1 March 2023 Publication

V1.4.1 September 2023 Publication

V1.5.1 May 2025 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Basic Principles
	4.1 Introduction
	4.2 Implementation Scope
	4.3 Document Structure

	5 TDL Toolset
	5.1 Graphical Representation Editor
	5.1.1 Scope and Requirements
	5.1.2 Graphical Editor Architecture

	5.2 Structured Test Objective Representation
	5.3 Implemented Facilities
	5.3.1 Creating Models
	5.3.2 Viewing and Editing Models
	5.3.3 Exporting Structured Test Objectives
	5.3.4 Validating Models

	5.4 Usage Instructions
	5.4.1 Development Environment
	5.4.2 End-user Instructions

	6 Using TDL with External Data Type Specifications
	6.1 Generalized Process
	6.1.1 Process Overview
	6.1.2 Example Instantiation

	7 TDL Runtime/Execution
	7.1 JavaŽ: Code generator
	7.1.1 Architecture
	7.1.2 Test Runtime Interface (TRI)
	7.1.2.1 Overview
	7.1.2.2 Interface ProviderModule

	7.1.3 Mappings
	7.1.4 Communication Control Flow
	7.1.5 Executable Code

	8 Web-based Editors and Tools
	8.1 Overview
	8.2 Architecture
	8.3 Evaluation and Recommendations
	8.3.1 Overview
	8.3.2 Custom Application
	8.3.3 Web-based IDE Extension
	8.3.4 Recommendation

	Annex A: Technical Realisation of the Reference Implementation
	Annex B: UML Profile Editor
	B.1 Scope and Requirements
	B.2 Architecture and Technology Foundation
	B.3 Implemented Facilities
	B.3.1 Applying the Profile
	B.3.2 Hints for the Transformation of UP4TDL Models into TDL Models
	B.3.3 Editing Models with the Model Explorer
	B.3.4 Editing TDL-specific Properties with the TDL Property View
	B.3.5 Editing Models with TDL-specific Diagrams

	History

