ETS| TR 103 119 V1.3.1 (2022-03)

. —

TECHNICAL REPORT

Methods for Testing and Specification (MTS);
The Test Description Language (TDL);
Reference Implementation

2 ETSI TR 103 119 V1.3.1 (2022-03)

Reference
RTR/MTS-TDL103119v131

Keywords
MBT

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness
for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not
limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2022.
All rights reserved.

ETSI

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

3 ETSI TR 103 119 V1.3.1 (2022-03)

Contents

INtellectual Property RIGNES.... ..ottt b e n e n e e 5
01 Yo (o PSS 5
Modal VErDS TEMINOIOQY.......ccveeiieiieeeeie ettt e e e s te e e e s besbe e tesbeeseebesneensessesaeenseseeeseesessens 5
1 o0 0L SR 6
2 L= £ 101 S 6
21 NOIMELIVE FEFEIBINCES ... ecneeeeeeeste ettt ettt st e et e e st e s teste s et eteeneeneeseeeeseesbeebeeneeseeneensenseseesbesaeesesneeneensens 6
22 INfOrMEEIVE FEFEIENCES. ...ttt ettt et ettt a et e st e e seeebe s st eae et enseneeseesbesaeeresneeneeneens 6
3 Definition of terms, symbols and abbreviations............c.covieeiiieeieie e e e 9
31 LIS 0PTSRS 9
3.2 Y 101 9
33 ADDIEVIBLIONS ...ttt etk bt bttt e b b eh e eb e e ae e s e e e e aR e bt sR e eb e e Rt e Rt e e e R et sheebeeneeneennen 9
4 BaSIC PIINCIPIES. ...ttt h bbb e e e e e e st bt bt n e nn e nen e 9
41 100 1 o o P RTRRSRSR 9
4.2 IMPIEMENTALTON SCOPE. ... ettt ettt sttt b bt b et b et b s bbb e s e bt sb e s eb e rs e st bt s e e bt n b e e ebe s e e e ens 10
43 DOCUMENT SETUCTUIE. ...ttt ettt sttt ettt sttt et et e eaeesbe e be e beeatesaeesaeesaeeseeenseaaseameeeseeeaeesbeesbeeaseenseaneeenns 11
5 Graphical Representation EAITOrc.cuoiiiiiieeeenss et 11
51 SCOPE ANA REQUITEIMENTSeiiuieitiesieeteeeeesteseeseeseesaeesteeseesseeseeesaesseesseesseeseansesneesseesseeseanseensenseesnsessensses 11
5.2 Architecture and Technology FOUNAELIONc.ccueiieiieiieie et re e e e e sreenrees 11
521 L€ =10 oo I o] (o] S 11
5.2.2 Structured Test Objective REPIESENTALION..........cccviiiieieceee et aeeneeneeenes 12
53 IMPIEMENLEA FACTTITIEScveitieeteeeee bbb bbbt e bbbt e ens 13
531 CrEatiNng IMOOEIS. ..ottt bbbt b bt b e bt b e b e bt s b et b e sb et eb e s b e e ebesbeneebeebennenen 13
532 Viewing and Editing MOGEIS ..o bbb e 17
533 Exporting Structured Test ODJECHIVES........coiiiiireee bbb 25
534 ValiAATNG MOGEIS ...t bbbt bbbt b et b e b 27
54 USBOE INSIIUCTTIONS.....c.eeeetieeeetese ettt b e bbb bRt bbb et e b et eb e et 27
54.1 Devel OpMmENt ENVIFONIMENTccieiieieeee et et e st e e sae e e e saeesteeaeeseeesaessaesteeseeseenseennesnnesnes 27
542 ENG-USEY TNSITUCTIONS ...ttt ettt b et e e bt bbb et e e e e e sb e besbesbe e e enneneea 29
6 USING TDL WIth TOP......ce ettt e e st eesaesse e tesseeneestesneeneeseeeneesenneas 30
6.1 USBOE SCENAMOSeeeveeetietereeie st ss ettt se st s st b e e st b e e e st bt b e s e s e s e s e e b £ b e s e e E £ b e s e e R e b e e e R e b e e e bt e b e e e st eb et e st ebenn et eee 30
6.2 Defining Structured TESE ODJECHIVEScouiiieiieiieiiieeiet ettt bbb en e 31
6.2.0 (@ o PR 31
6.2.1 DOMaiN Part Of TDL-TO....ccuctiirieiitereeieste ettt sttt ettt b e bbbt bbbt b e ne et be bbb 31
6.2.2 (D= = o L= T T (o P SRRSRS 32
6.2.3 CONFIGUIBLION ...ttt bbbt b e bbbt eb e b e e eh e e b e s e e bt e b e se e bt sb et eb e sb e e ebesbe e ebenbennenen 32
6.2.4 TSt PUIPOSE BENAVIOUF ...ttt ettt et e et e s s e sseesaeentesneesneesneesseenseensenns 33
6.3 Transforming Test Objectivesinto Test DESCIPLIONS.ccviiiiieceee et 34
6.3.1 OVEBIVIBI ..ttt e bt he et e b h e b bt eh e e e e s e b e SE e eE e e R e eh e e e e et e EeHh e eb e e Rt eh e e ae et e besheebesneennennennas 34
6.3.2 D - TSSOSO 34
6.3.3 (@001 1T 11 1= 11 o - 36
6.34 BENAVIOUF ...ttt ettt sttt et e et eeese et e saees e e e emeeeeeeeeeReeaeebeeneeneeeeaeeateeneereeneeneennens 37
6.3.5 Transformation Conventions and ASSUMPLIONS.c.ciiiiereririeerrie et se e sbe e 38
6.4 DEfiNING TESE DESCITPLIONS.c.eceeivereeieetesteeet sttt ettt b et b st b bbb e bbbt b s e bt e e eb e e nnens 40
6.4.1 (@ o PSR 40
6.4.2 Data and CONFIGUIBLION.c.veueiteieeieete sttt sttt ettt b et b e et b e et b e e et b e bbb e ne et ebesb et ebesne s 40
6.4.3 QLIS =TS = Y7 o T L= o B I 0= PSR 41
6.5 Transforming Test Descriptions into TTCN-3 TESL CASES.....cueiieriieiieiesieseesteestessee e see e e e ete e saesseesees 42
6.5.1 OVEIVIBIW ..ttt ettt sttt st et s e et et s ae et e st e st et e s b e e et e s b et eb e e b et e b e e b et e b e e Ee e eb e sbeneebesbe e ebenbeneebenbenensens 42
6.5.2 D - TSSO 42
6.5.3 Lo 1 1T 11 = 11 o o 1P 43
6.5.4 BEINAVIOUF ...ttt bt b e ekt h e b et e b e e e Rt Rt eh e b e Rt e n e e e e e e b sheeb e e e enneneen 44
7 L 1Y o 1= o) 46

ETSI

4 ETSI TR 103 119 V1.3.1 (2022-03)

7.1 SCOPE ANA REGUITEMENTS ...ttt sttt sttt sttt et b e st b et b e b et bt b et e bt b st b e s e et eb e st et eb e b e 46
7.2 Architecture and Technology FOUNTELIONc..ioiiiiiiieiierciese e r e e eb e seene 46
7.3 IMPIEMENLEA FACTTITIEScveitieeteeeee bbb bbbt e bbbt e ens 46
731 APPIYING TNE PIOFIE. ...t bbbt b e bbb 46
732 Hints for the Transformation of UPATDL Modelsinto TDL MOEIS........ccooeieiinereneneeeeeeeee e 47
733 Editing Models with the MOdel EXPIOFEYoccvi ettt 48
734 Editing TDL-specific Properties with the TDL Property VIeWcceecveceeeeneeseesece e 48
735 Editing Models with TDL-SPECIfiC DIAQramMS........ccveiieieiie e see et ete e eee s sae e s sae s e e 48
8 Using TDL with External Data Type SPECITiCalIONS..........coiierierieieeeine st 53
8.1 GENENBIIZEU PrOCESS ... eeueeeereeie ittt e et e et te s teeaees e et e teseestesaeebeeseeneeneese e seseesaesbesneeseeneensesseseesseeneeneenennes 53
811 PIOCESS OVEIVIEI ...ttt ettt ettt ettt e st e e s eesb e s be e st es e e e ameeseeeaesaeeaeeseeneeneeneeseesbesaeeseeneenseseeas 53
812 EXMPIE INSLANTIALION ...ttt et bbbt bbbt b et b bbb 55
8.2 Using TDL with OpenAPI ™ SPECifiCaIONS.......c.coirieiririeieesieee e 56
821 (@ a1 SRS 56
8.2.2 T 0] - 57
8.3 Using TDL With ASN.L SPECITICAIIONS......ceeiieiieiecie et ere e et te e e e e e sreesseeneesaeesneeseenseens 58
8.31 OVEIVIBIW ..otttk etk e bbb 8 bt EeE e R R et R R e AR Rt e b e st e e b et e e b et ne e b et e er st nna 58
8.3.2 T 0] - 60
9 TDL RUNEIME/ EXECULIONeouiiiie ettt sttt st ete e et e saeeneesaesseensensesneeneenneens 62
9.1 JAVE, COUE GENEIBEONc.eeeeteeeieete sttt sttt et eb e et ebese e st b e se e st eb e se e st eb e se e st eb e seeneeb e sEeneeb e se e e ebesbe e ebeebeneeneabenneneas 62
911 N o 11 o (1= SRR 62
912 Test Runtime INterface (TRI) FOF JAVA.c.ciiiiiiiieeee et 64
9121 OVEIVIBW ...ttt ettt ettt ae et e st e s e se e b e seeebe e et eaeemee e eneeseeebeeaeeReemeensensensenseneeseeseesneeneeneenseseens 64
9.1.22 TR SYSIEMATADLETceeieeiiie ettt b e et b st r e 66
9.1.3 /= o o T LT 67
9.14 EXECULANIE COR.......eeeeeete ettt et et r et n et r e n et r e s r et r e r e 68
Annex A: Technical Realisation of the Reference Implementation..........c.ccccovveeviiiccenecceve e, 70
L TS 0 YT U PP TSRS TRURURORPN 71

ETSI

5 ETSI TR 103 119 V1.3.1 (2022-03)

Intellectual Property Rights

Essential patents

IPRs essentia or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI member s and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETS in respect of ETS standards’, which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https./ipr.etsi.org/).

Pursuant to the ETSI Directivesincluding the ETSI IPR Policy, no investigation regarding the essentiality of IPRS,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which areindicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM 2M ™ logo is atrademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

NOTE: Eclipse™, Xtext™, Sirius™, EMF™, Papyrus™, GMF™, Epsilon™, EVL™ are the trade names of a
product supplied by the Eclipse Foundation. OMG®, XMI™ UML™, OCL™, MOF™ are the trade
names of a product supplied by Object Management Group®. Thisinformation is given for the
convenience of users of the present document and does not constitute an endorsement by ETSI of the
product named.

The present document is complementary to the multi-part deliverable covering the Test Description Language (TDL).
Full details of the entire series can be found in part 1 of the multi-part deliverable [i.13].

Modal verbs terminology

In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" areto be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

6 ETSI TR 103 119 V1.3.1 (2022-03)

1 Scope

The present document summarizes technical aspects related to the implementation of TDL within the TDL Open Source
Project (TOP). It describes the implementation details needed for the further development and integration of the tools. It
also provides usage instructions for end users.

The following tools and components are covered in the present document:
. implementation of the TDL meta-model;
. editor for the graphical representation format of TDL ;
. editor for the textual representation format of TDL;
. multiple other types of TDL model editors;

o facilitiesfor checking the semantic validity of models according to the constraints specified in the TDL meta-
mode!;

. implementation and tool-support for the mapping TDL elementsto TTCN-3 code;

. implementation and tool-support for the importing of data definitions from OpenAPI™ and ASN.1
specifications,

. implementation and tool-support for execution of TDL models;
. implementation of the UML profile for TDL; and
e editor supporting the creation and manipulation of UML models applying the UML profilefor TDL.

NOTE: Theimplementation of the UML profile for TDL and the corresponding editor descriptions are not
aligned with the referenced versions of the TDL specification parts, but are related to an earlier release of
the TDL specification parts.

2 References

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] Eclipse Foundation™: Eclipse IDE Website (last visited 20.12.2021).
NOTE: Available at https://eclipse.org.
[i.2] Eclipse Foundation™: Eclipse Xtext™ Website (last visited 20.12.2021).

NOTE: Available at https://eclipse.org/Xtext/index.html.

ETSI

https://eclipse.org/
https://eclipse.org/Xtext/index.html

7 ETSI TR 103 119 V1.3.1 (2022-03)

[i.3] Eclipse Foundation™: Eclipse Sirius™ Website (last visited 20.12.2021).

NOTE: Available at http://www.eclipse.org/sirius/index.html.

[i.4] Eclipse Foundation™: Eclipse Modeling Framework (EMF™) Website (last visited 20.12.2021).

NOTE: Available at http://www.eclipse.org/modeling/emf/.

[i.5] Eclipse Foundation™: Eclipse Papyrus™ Modeling Environment Website (last visited
20.12.2021).

NOTE: Available at https://www.eclipse.org/papyrus.

[i.6] Eclipse Foundation™: UML ™ Profiles Repository Website (last visited 20.12.2021).

NOTE: Available at https://projects.eclipse.org/projects/modeling.upr.

[i.7] Eclipse Foundation™: Graphical Modeling Framework (GMF™) Website (last visited
20.12.2021).

NOTE: Available at http://www.eclipse.org/modeling/gmp/.

[1.8] "Object Constraint Language™ (OMG® OCL ™), Version 2.4", formal/2014-02-03.
NOTE: Available at http://www.omg.org/spec/OCL/2.4/.

[i.9] Eclipse Foundation™: Eclipse OCL™ Website (last visited 20.12.2021).

NOTE: Available at https://projects.eclipse.org/projects/modeling.mdt.ocl.

[i.10] Plutext Pty Ltd: Docx4j Website (last visited 20.12.2021).

NOTE: Available at http://www.docx4java.org/trac/docx4.

[i.11] "OMG® XML ™ Metadata I nterchange (XM1™) Specification", Version 2.4.2, formal/
2014-04-04.

NOTE: Available at http://www.omg.org/spec/MOF/2.4.2/.

[1.12] Eclipse Foundation™: Epsilon™ Validation Language (EVL™) Website (last visited 20.12.2021).

NOTE: Available at http://www.eclipse.org/epsilon/doc/evl/.

[i.13] ETSI ES203 119-1 (V1.6.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 1: Abstract Syntax and Associated Semantics'.

[i.14] ETSI ES203 119-2 (V1.5.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 2: Graphical Syntax”.

[i.15] ETSI ES 203 119-3 (V1.5.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 3: Exchange Format".

[i.16] ETSI ES 203 119-4 (V1.5.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 4: Structured Test Objective Specification (Extension)".

[1.17] ETSI ES 203 119-5 (V1.1.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 5: UML Profilefor TDL".

[1.18] ETSI ES 203 119-6 (V1.3.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 6;: Mapping to TTCN-3".

[i.19] ETSI ES 203 119-7 (V1.3.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 7: Extended Test Configurations'.

[i.20] ETSI ES203 119-8 (V1.1.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 8: Textual Syntax”.

ETSI

http://www.eclipse.org/sirius/index.html
http://www.eclipse.org/modeling/emf/
https://www.eclipse.org/papyrus/
https://projects.eclipse.org/projects/modeling.upr
http://www.eclipse.org/modeling/gmp/
http://www.omg.org/spec/OCL/2.4/
https://projects.eclipse.org/projects/modeling.mdt.ocl
http://www.docx4java.org/trac/docx4j
http://www.omg.org/spec/MOF/2.4.2/
http://www.eclipse.org/epsilon/doc/evl/

8 ETSI TR 103 119 V1.3.1 (2022-03)
[i.21] ETSI EG 203 130 (V1.1.1): "Methods for Testing and Specification (MTS); Model-Based Testing
(MBT); Methodology for standardized test specification development”.
[i.22] The Apache Software Foundation: Apache POl Website (last visited 20.12.2021).

NOTE: Available at https://poi.apache.org.

[i.23] ETSI: The TDL Website (last visited 20.12.2021).
NOTE: Available at https://tdl.etsi.org.
[i.24] ETSI: The TDL Open Source Project Website (last visited 20.12.2021).

NOTE: Available at https://tdl.etsi .org/index.php/open-source.

[i.25] ETSI TS 136 321: "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access
Control (MAC) protocol specification (3GPP TS 36.321)".

[i.26] ETSI TS 103 029: "IMS Network Testing (INT); IMS & EPC Interoperability test descriptions
(3GPP Release 10)".

[1.27] ETSI TS 129 214 (V15.6.0): "Universa Maobile Telecommunications System (UMTS); LTE;

Policy and charging control over Rx reference point (3GPP TS 29.214 version 15.6.0 Release 15)".
[i.28] Javadoc documentation generator for Java™.

NOTE: Available at https://docs.oracle.com/javase/8/docs/technotes/'tool s'windows/javadoc.html.

[i.29] Junit testing framework.
NOTE: Available at https://junit.org.
[1.30] Guice dependency injection framework.

NOTE: Available at https://github.com/google/guice.

[1.31] OpenAPI™ Specification, Version 3.0.3.

NOTE: Available at https://swagger.io/specification/.

[1.32] ETSI EG 203 647 (V1.1.1): "Methods for Testing and Specification (MTS); Methodology for
RESTful APIs specifications and testing".

[1.33] |ETF draft-bhutton-json-schema-00: "JSON Schema: A Media Type for Describing JSON
Documents', December 8, 2020.

NOTE: Available at https://datatracker.ietf.org/doc/html/draft-bhutton-j son-schema-00.

[1.34] Recommendation ITU-T X.680: "Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation”. 02/2021.

[i.35] ETSI TS 103 666-1 (V15.0.0): "Smart Secure Platform (SSP); Part 1. General characteristics
(Release 15)".

[1.36] Recommendation ITU-T X.681: "Information technology - Abstract Syntax Notation One

(ASN.1): Information object specification”. 02/2021.

[1.37] ETSI TS 103 597-3 (V1.1.1): "Methods for Testing and Specification (MTS); Test Specification
for MQTT; Part 3: Performance Tests'.

[1.38] SO 8601: "Date and time format”.

ETSI

https://poi.apache.org/
https://tdl.etsi.org/
https://tdl.etsi.org/index.php/open-source
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://junit.org/
https://github.com/google/guice
https://swagger.io/specification/
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00

9 ETSI TR 103 119 V1.3.1 (2022-03)

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:
abstract syntax: graph structure representing a TDL specification in an independent form of any particular encoding

concr ete syntax: particular representation of a TDL specification, encoded in atextual, graphical, tabular or any other
format suitable for the users of thislanguage

meta-model: modelling elements representing the abstract syntax of a language

System Under Test (SUT): role of acomponent within atest configuration whose behaviour is validated when
executing atest description

TDL model: instance of the TDL meta-model

TDL specification: representation of a TDL model given in a concrete syntax

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

API Application Programming I nterface

ASN.1 Abstract Syntax Notation One

EBNF Extended Backus-Naur Form

EMF Eclipse Modelling Framework

EVL Epsilon Validation Language

GMF Graphical Modelling Framework

MBT Model-Based Testing

MOF Meta-Object Facility

OCL Object Constraint Language

OMG Object Management Group®

SUT System Under Test

TDL Test Description Language

TOP TDL Open Source Project

UML Unified Modelling Language

URI Unified Resource I dentifier

XMI eXtensible Markup Language M etadata I nterchange
4 Basic Principles
4.1 Introduction

To accelerate the adoption of TDL, an implementation of TDL is provided within TOP in order to lower the barrier to
entry for both users and tool vendorsin getting started with using TDL. The implementation comprises graphical and
textual editors, as well as validation facilities, transformation functionalities, and other tools. In addition, the UML
profile for TDL and supporting editing facilities are implemented in order to enable application of TDL in UML-based
working environments and model -based testing approaches.

ETSI

10 ETSI TR 103 119 V1.3.1 (2022-03)

4.2 Implementation Scope

The implementation scope includes a graphical editor according to ETSI ES 203 119-2 [i.14] based on the Eclipse
platform [i.12] and related technologies, covering essential constructs of TDL. For creating and manipulating models,
textual editors for ETSI ES 203 119-8 [1.20] and ETSI ES 203 119-1 [i.13], annex B are implemented based on the
Eclipse platform and related technologies. The applicability of general purpose model editing facilities provided by the
Eclipse platform and related technologies is discussed as well.

For tools that need to import and export TDL models according to ETSI ES 203 119-3 [i.15], corresponding facilities
are implemented based on the Eclipse platform and related technologies. These facilities can be used to transform
textual representations based on ETSI ES 203 119-8 [i.20] and ETSI ES 203 119-1 [i.13] into XMI [i.11] serializations
according to ETSI ES 203 119-3 [i.15] and can be integrated in custom tooling that builds on the Eclipse platform.

An implementation of ETSI ES 203 119-4 [i.16] includes a dedicated textual editor for structured test objectives, which
can be integrated in the textual editor for TDL. The implementation also includes facilities for exporting structured test
objectives to Word™ documents using customisable tabular templates.

An implementation of the UML profile for TDL includes a specification of the TDL UML profile abstract syntax
according to the mapping from the TDL meta-model to TDL stereotypes and UML meta-classes in ETSI

ES 203 119-5 [i.17]. It is integrated with the open source UML modelling environment Eclipse Papyrus [i.5] as an open
TDL UML profile implementation.

An implementation of ETSI ES 203 119-6 [1.18] includes a partial prototypical implementation of the TDL to TTCN-3
mapping based on the Eclipse platform.

Additional functionalities supporting the importing of data definitions from OpenAPI™ and ASN.1 specifications are
also provided as a prototype.

User-defined ASN.1, | | TDL Data Report |« TDL Model TDL Test

TDL Editor OpenAPI, Importer Analyser Generator
etc.

N N

()

\ 4 \ 4

TDL-XF TDL-GR TD'G- Docutme“t Test Code
Editor Editor enerator Generator

Figure 4.2-1: TDL tool infrastructure

An schematic overview of the implementation is shown in Figure 4.2-1. The TDL exchange format specified in ETSI
ES 203 119-3 [i.15] serves as a bridge between the different tool components. Textual editors enable the creation and
manipulation of TDL models. Data importers enable the integration and use of existing data specifications in TDL. The
graphical editor is used to edit and visualize TDL models as diagrams. Documentation generation, in particular for
structured test objectives, can be plugged in to produce Word documents for presenting parts of a TDL model in a
format suitable for standardization documents. Test code generation, e.g. for TTCN-3 can be plugged in to produce
executable TTCN-3 code or TTCN-3 skeletons to be refined afterwards.

The implementation is published as part of the TOP [i.24] on the TDL [i.23].

ETSI

11 ETSI TR 103 119 V1.3.1 (2022-03)

4.3 Document Structure

The present document contains three main technical clauses focusing on relevant technical details. The Graphical
Representation editor implementing ETSI ES 203 119-2 [i.14], aswell as related facilities implementing ETSI

ES 203 119-1[i.13], ETSI ES 203 119-3[i.15] and ETSI ES 203 119-4 [i.16] are described in clause 5. Illustrative
examples and guidelines for the use of TDL to address common use cases with the help of the TOP are described in
clause 6. The UML Profile Editor implementing ETSI ES 203 119-5[i.17] is described in clause 7. The use of TDL
with external data specificationsis discussed in clause 8. The implementation of an execution environment for the
testing of RESTful APl serviceswith TDL isoutlined in clause 9.

NOTE: TheUML Profile Editor for TDL compliesto an earlier release of the TDL specification parts.

5 Graphical Representation Editor

5.1 Scope and Requirements

TDL graphical editor implementation has two major reguirements. The main objective is to provide meansto visualize
TDL models according to the graphical notation. The second objective isto facilitate layout of diagramsin away that is
suitable for documentation. For the second purposg, it is essential to provide graphical editing capabilities. Although
often provided by modelling frameworks, the ability to graphically edit the underlying models (that is, to create new
elements and set their properties) is not considered essential for thisimplementation.

Eclipse provides several graphical modelling toolsto help build editors. Sirius[i.3] was chosen for its declarative
approach that provides separation between meta-model mappings and implementations of graphical elements. With the
existence of predefined common graphical elements, such as containers and connectors, the effort of implementing a
graphical editor with a custom syntax in Siriusis only spent on the parts that diverge from those common elements.

Another areathat requires a custom implementation is the layout of graphical elements. This covers both the absolute
placement of nodes on the diagram aswell as the size and internal contents of each node. Due to the rather hierarchical
nature of the TDL graphical syntax, several additional base graphical elements are introduced. Some peculiar
limitations of Sirius have also been identified prior to the implementation, which also need appropriate workarounds.
The goal of implementing adiagram layout is to automate diagram creation to the extent that the sizes and contents of
graphical elements are adjusted by layout algorithms while the absol ute placement of diagram elementsis solved by
using built in layout implementations. This will guarantee that only minimal user interaction with the diagram editor is
needed for achieving the desired layouts.

Diagram export for documentation purposes is provided by the framework. The implementation can provide
complimentary export to the Word document format.

Dueto the peculiarities and intended use of structured test objectives, it was determined that instead of graphical shapes
that can be exported as images, the graphical representation are realized as tables exported directly in a Word document
according to user-defined templates. These tables can then be manipulated further as necessary to fit in within an
existing document.

5.2 Architecture and Technology Foundation

5.2.1 Graphical Editor

The TDL graphical editor is built on top of the Eclipse platform to benefit from its wide range of modelling tools. The
main Eclipse projects that are used as basis for thisimplementation are shown in Figure 5.2.1-1. Siriusis atechnology
that allows declarative creation of graphical editors that work with EMF models. It uses GMF [i.7] to create visual
diagram elements and link those to model objects. Model management and serialization is done by EMF [i.4].

ETSI

12 ETSI TR 103 119 V1.3.1 (2022-03)

Eclipse platform
N
_/
EMF
TDL Ecore 7 TDL (XF)
. Sirius
Diagram S/”%
specification | ™
% GMF
A TDL
graphical image
editor

NOTE: Components with grey background are part of the implementation that is covered by the present
document.

Figure 5.2.1-1: Dependencies and data flows of the TDL graphical editor

Every EMF model is based on a meta-model that is defined in terms of meta-modelling system named Ecore. The TDL
meta-model in UML format was converted to an Ecore meta-model (TDL Ecore) using the Papyrus UML and EMF
facilities. Furthermore, Java code for the TDL meta-model was generated based on the TDL meta-model.

Sirius creates diagram editors by interpreting diagram specification files. These files contain TDL meta-model
references in the form of Javaor OCL [i.8] queries. OCL support is provided by the Eclipse OCL project [i.9], Java
queries are references to classes that are part of the TDL graphical editor and editor source code. Diagram specifications
also contain definitions of Sirius specific stylesthat are applied to model objects when rendering them on diagrams.
Since the TDL graphical editor requires customized shapes, it has dependencies on both the Sirius API and the Eclipse
GMF. Several extensionsto GMF classes have been implemented in Siriusin order to configure shapes according to the
customized styles. GMF facilities are then used to export the diagrams as images.

Some of the labelsin the graphical shapes, in particular |abels related to data specification and data use have a complex
structure. For their realization, facilities provided by Xtext [i.2] are used to serialize model fragments related to data use
astext according to an annotated EBNF grammar derived from the formal label specificationsin ETS

ES 203 119-2[i.14].

5.2.2 Structured Test Objective Representation

Structured test objectives are exported as tables in a Word document according to user-defined templates. The export
relies on facilities provided by Xtext as well as the Apache POI library [i.22] (previously the Docx4j library [i.10] was
used) providing API for manipulating Word documents. The exporting facilities take a Word document containing one
or more templates in the form of tables with placeholders and a TDL model containing one or more structured test
objectives asinput. The user has to provide the name of the desired template as an additional input. For agiven TDL
specification, the selected template is used to generate a tabular representation for every structured test objective. The
placeholders in the template are replaced by the content seriaized from the corresponding TDL element according to
Xtext mappings in asimilar manner asthe labels for the TDL graphical editor. Existing packaging structures within the
TDL specification are used to organize the generated tabular representations with corresponding headings. The
generation process is sketched in Figure 5.2.2-1. The generated tables in the new Word document can be further
manipulated or merged into an existing document containing additional information. Additional templates may be
defined by the users to suit their specific needs.

ETSI

13 ETSI TR 103 119 V1.3.1 (2022-03)

TDL model

Structured test objective 1

Structured test objective 2

Structured test objective 3

Word file with test objectives

Test objective 1/ Template 1

Structured test objective n

Structured Test

Test objective 2 / Template 1

Obijective
Wl q Test objective 3 / Template 1
Word file with template tables or
Template 1
Template 2 Test objective n / Template 1
Template 3
Select template:
Template n Template 1

Figure 5.2.2-1: Structured test objective generation process

5.3 Implemented Facilities

5.3.1 Creating Models

Overview

Model instances are the primary artefacts for TDL. They carry the semantic information. In a modelling environment
there are various means for creating, viewing, and manipulating model instances of a particular meta-model.
Comprehensive modelling environments typically provide generic facilities that enable working with model instances of
arbitrary meta-models, provided the meta-model is known. Generic facilities provide sufficient capabilities for
performing basic tasks on model instances. However, due to their generic nature, they are often cumbersome to work
with, lack support for certain features that are not expressed in the meta-model directly (unless customized), and do not
provide domain-specific features, such as syntactical customization beyond basic adaptations.

Custom syntax implementations address some of the shortcomings of generic model editors. Such implementations
enable the specification of a customized representation of amodel instance in aformat that is tailored to a specific
group of users. There may be multiple custom syntax implementations mapped to the same meta-model, serving
different stakeholders or even different purposes for the same stakeholder. Custom syntax implementations may cover
only asubset of the meta-model, restricting the access to certain features that are not relevant for specific stakeholders
or purposes. Modelling environments provide platforms for the realization of custom syntax implementations. Custom
syntax implementations may rely on secondary artefacts that store the concrete representation of the TDL model
instance.

TDL model instances may be produced automatically by tools. The exchange format for TDL enables the
interoperability of tools producing model instances and tools for manipulating model instances.

ETSI

14 ETSI TR 103 119 V1.3.1 (2022-03)

Generic Model Editors

The EMF provides facilities for generating basic tree editors for a given meta-model, which can then be customized to
an extent while still remaining within the tree editor paradigm. In addition, the EMF aso provides generic reflective
model editors which provide quick accessto model instances of any meta-model. An example of such an editor for TDL
isshown in Figure 5.3.1-1. The example includes a tree-based editor for manipulating the overall structure of a model
on top and a detailed property view for manipulating individual properties on the bottom.

Extensions to the EMF platform, such as MoDisco, include additional generic facilities such as the MoDisco Model
Browser which provides faceted browsing and editing of model instances. Faceted browsing provides filtering by type,
aswell as deep navigation across references. In addition, MoDisco also includes tabular views on different parts of the
model for aquick overview across multiple dimensions. An example for aTDL model isillustrated in Figure 5.3.1-1.
The example includes a faceted browser on the top for navigating and manipulating the overall structure of amodel, as
well asindividual properties of model elements. On the left side of the faceted browser, model elements can be filtered
by type. Below the faceted browser, atabular editor provides more compact representation of multiple model elements
at the same level in amodel tree, such as the behaviour elements of a block. The property view on the bottom part of the
example still alows the manipulation of properties of selected model elements.

® 8] Java - tdl-examples/3GPP-7.1.3.tdlan2.xmi - Eclipse - /Users/phi...

-l o1s - Set SF Instance Resource

) EBTR Y B - A R RO

= | %536PP-7.1.3.1dla 13 | B 3GPP-7.1.3.dla ™8 = m b |

+ » 4 Test Configuration defaultTC (%)=
. ¥ < Test Description TD_7_1_3_1

] i

¥ < Behaviour Description
¥ < Compound Behaviour
4% Comment
a ¥ 4 Block &
¥ <4 Action Reference
< Annotation
B ¥ <4 Action Reference
< Annotation
¥ <4 Interaction m1
¥ <4 Target
<+ Annotation
< Annotation
¥ < Data Instance Use
¥ 4 Parameter Binding
4 Data Instance Use
> 4 Interaction
> < Interaction
¥ 4 Verdict Assignment

Data Instance Use

b A Intarantian

@
B o

]

ijProp % &Y sync Histo Deb = 0
EPD kgt
Property Value
Data Instance = Structured Data Instance PASS
Name =
Reduction =

:| B |8 Java | @y SVN Repository Exploring +§ Sirius

Selected Object: Data Instance Use

Figure 5.3.1-1: Example of reflective model editor

ETSI

15

ETSI TR 103 119 V1.3.1 (2022-03)

|| Java - tdi-examples, -7.1.3.tdlan2.xmi - Eclipse - /Users/philip-iii/Dev/workspaces,
[JoN | J tdl les/3GPP-7.1.3.tdlan2.xmi - Ecli /U /philip-iii/Dev/works /STF492
M | [owp: SetSFInstance Resource | W | - o bi L ER OO Qi i L
weve : -
& | f3ocleol [J) TdiEditPartProv [J] TopLevelNodeLis i 3GPP-7.1.3.tdla [J] tdIResourceFact fa 3GPP-7.1.3tdla % | 74 g
+] . (x)=
) Types) ¢ ti - Instances BlELLw-
< BehaviourDescription (1)
g 4 Block (3) — g
@ <4 Comment (2) v %, behaviour (9) B
= < Componentinstance (2) » 4 [ActionReference]
& < ComponentType (1) » 4 [ActionReference)
E < CompoundBehaviour (1) » 4 [Interaction] m1

< Connection (1)

<> DatalnstanceUse (12)
< Gatelnstance (1)

< GateReference (2)

4 GateType (1)

<4 Interaction (6)

<4 Member (1)

< Package (1)

<4 ParameterBinding (2)
< Quiescence (1)

<4 SimpleDataType (5)

< StructuredDatalnstance (9)
<4 StructuredDataType (1)
<4 Target (6)

<4 TestConfiguration (1)
<> TestDescription (1)

<4 TestObjective (2)

<% Time (3)

< VerdictAssignment (3)

2 Table Viewer 3

» 4 [interaction)
» 4 [Interaction)

¥ [VerdictAssignment]

¥ e feContainer
© name =
v ¢, verdict (1)
¥ < [DatalnstanceUse]
> ‘e feContainer
© name =
¥ |, datalnstance (1)

¥ 4 [StructuredDatalnstance] PASS

> ‘e feContainer
© name = PASS

© /qualifiedName =

v |, dataType (1)

» <4 [SimpleDataType] Verdict

» <4 [Interaction)
» <4 [Interaction)
» 4 [AlternativeBehaviour]

“[Block] " —> behaviour contents Bl X
[Label) [Metaclass] feContainer ¥ annotation [0.2] © name L, testObjective [0.2] L, action [1..1] L, sourceG:
4 [Acti] Acti ence < [Block] ' 4 [Annotation] null (0) 4 [Action] preCondition N/A
4 [Actiol] Acti ference <4 [Block] = < [Annotation] null (0) <4 [Action] preamble N/A
<4 [Interaction] m1 Interaction < [Block] (0) m1 (0) N/A < [GateRe!
<4 [Interaction) Interaction < [Block] (0) null (0) N/A < [GateRe!
<4 [Interaction] Interaction < [Block] (2) null 4 [TestObjective] TP1 N/A <4 [GateRe!
< [Verdi i] i i 1t < [Block] (0) null) N/A N/A
<4 [Interaction] Interaction < [Block] (0) null (0) N/A < [GateRe!
< [Interaction] Interaction < [Block] (0) null 0) N/A < [GateRe!
4 [AlternativeBehaviour] AlternativeBehaviour < [Block] (2) null 4 [TestObjective] TP2 N/A N/A
* ! Problems & g Progress D Properties £3 -': Synchronize } History ",‘; Debug I'_‘T 5 :‘# =R
Property Value
Name =
Test Objective =
‘ [+ ingava {@ SVN Repository Exploring +& Sirius d Object: [Verdi i]

Figure 5.3.1-2: Example of MoDisco facetted model browser

Textual Editor

ETSI

Xtext [i.2] provides facilities for the automatic generation of adefault textual syntax. It serves as the base for further
refinements resulting in customized syntax definitions. Due to it being automatically generated, it isvery similar in
structure to the meta-model. As a consequence, it is also rather cumbersome to write actual test descriptionsin the
default syntax notation.

16

ETSI TR 103 119 V1.3.1 (2022-03)

The TOP includes a customized textual syntax that implements the syntax from annex B of ETSI ES 203 119-1 [i.13]
and from ETSI ES 203 119-8[i.20]. Apart from the grammar specification, it also includes further customizationsin the
scoping and linking facilities for handling references, imports, and other peculiarities, as well as enhanced semantic
syntax highlighting which provides customisable styles for identifiers based on their type and usage. An example of the
customized editor is shown in Figure 5.3.1-3. It features a textual representation of atest description aswell as linked
tree-based editor showing the same model instance in the tree-based paradigm. Current version of the grammar
specification and the additional customizations can be found in annex A of the present document as part of the
‘org.etsi.mts.tdl. TDLan2*" projects for the syntax from annex B of ETSI ES 203 119-1 [i.13] and as part of the'
org.etsi.mts.tdl. TDLtx*"' projects for the syntax from ETS| ES 203 119-8 [i.20].

[] @® Java - org.etsi.mts.tdl.TDLan2.standalone/samples/3GPP-7.1.3.tdlan2 - Eclipse

3GPP-7.1.3.tdla &% DTest.jav NoneValuel) 18 = &

8 kg

&%

85 //Test configuration definition

86 Test Configuration defaultTC {

87 create Tester SS of type default(T;
create SUT UE of type defaultCT ;

89 connect UE.g to SS.g ;

OT 3w DT 3t 73 =) S

< Time NS)=
< Simple Data Instance five
<4 Gate Type defaultGT
¥ < Component Type defaultCT
Gate Instance g
¥ <4 Test Configuration defaultTC

< Component Instance SS
v]’y\ny } ¢ Component Instance UE
) ¥ <4 Connection
o1 < Gate Reference UE.g
92 //Test description definition 4 Gate Reference SS.g
93 Test Description TD_7_1_3_1 uses configuration defaultTC { ¥ 4 Test Description TD_7_1_3_1
94 //Pre-conditions and preamble from the source document ¥ < Behaviour Description
95 perform action preCondition with { PRECONDITION ; } ; g ‘>i°'2°°“"‘ ‘f“““m
. ommen
“,i per n preamble with { PREAMBLE ; } ; L
97 » 4 Action Reference
98 //Test sequence » 4 Action Reference
99 SS.g sends pdcch (c_rnti=ue) to UE.g with {{] » 4 Interaction
105 S$S.g sen du to UE.g with {[] P4 Intecaction
111 UE.g sends harq_ack to SS.g with {[] P Interaction.
17 4 . - ¥ 4 Verdict Assignment
11 set verdict to PASS ; | % DatalnstanceUse |
11 SS.g sends pdcch (c_rnti=unknown) to UE.g with {[] » 4 Interaction
124 SS.g du to UE.g with {] > 4 Interaction
g [Properties &3 =0
2| 5 2 ~
Property Value

Data Instance
Name
Reduction

i= Simple Data Instance PASS
=

Selected Object: Data Instance Use

Figure 5.3.1-3: Example of customized textual editor for TDL

Similar to the editor for TDL, the TOP also includes a customized textual syntax that istailored for the specification of
structured test objectives. It implements the syntax from annex B of ETS| ES 203 119-4 [i.16] from clause [ref] of ETSI
ES 203 119-4 [i.16]. It dso includes further customizations in the scoping and linking facilities, as well as enhanced
semantic syntax highlighting, in asimilar manner as the editor for TDL. An example of the customized editor is shown
in Figure 5.3.1-4. It features atextual representation of a structured test objective. Current version of the grammar
specification and the additional customizations can be found in annex A of the present document as part of the
‘org.etsi.mts.tdl. TPLan2*" projects for the syntax from annex B of ETSI ES 203 119-4 [i.16] and as part of the
‘org.etsi.mts.tdl. TDLtx*' projects for the syntax from clause [ref] of ETSI ES 203 119-4 [i.16].

Associated tooling provides means for the transformation between different syntax notations and model representations.
Model instances in one notation can be transformed automatically into XMI representations and/or other textual or
graphical syntax representations. This tooling integrates the APIs from different platformsfor task specific automation.
A current version of thistooling and detailed technical information can be found in annex A as part of the
‘org.etsi.mts.tdl.tools.** and 'org.etsi.mts.tdl.rt.*' projects.

ETSI

17 ETSI TR 103 119 V1.3.1 (2022-03)

[) @] Java - org.etsi.mts.tdl.tplan.ui.standalone/samples/data.tplan2x - Eclipse

= [J] ResourceTool.ja cam.tplan2x editor.tplan2x data.tplan2x 82 [x] TDLan2.xtext 6 = =

ke 73 Test Purpose { c
74 TP Id TP/2/1/2 =
75 Test objective "Check file copy with inline data" =
76 Reference "RO11" =
77 PICS Selection =
78 Initial conditions -0
79 with { %
80 the Editor entity oper a8
81 } 5]
82 Expected behaviour
83 nsure that { &
84 when {)=
85 the User entity copies the (predefined) fileWithlLiterals
86 and
87 the Editor entity changes the content 3]
88 }
s . 0
90 the Editor entity displays a file containing
91 path indicating value "/home/workspace/data.tplan2x" , Lb
92 content indicating value "", L
93 size indicating value 0; 3
)4 } 4]
)S }
¢ }

Writable Insert 89:19

Figure 5.3.1-4: Example of customized textual editor for structured test objectives

Import and Export

The TDL implementation relies largely on the import and export facilities provided by the EMF. By default, the EMF
does not activate the GUID support for XMI which is prescribed in ETSI ES 203 119-3 [i.15]. The TDL meta-model
implementation needs to be adapted to activate the GUID support for model elements. The necessary adaptation
involves selecting the correct resource type (XMI) in the generator model and activating the GUID support by
overriding the corresponding method in the TDL resource implementation. Additionally, an implementation of the
operations defined for the elementsin ETSI ES 203 119-1[i.13] and ETSI ES 203 119-4 [i.16] is necessary. This
implementation is realized by means of embedded OCL expressions within the meta-model implementation. The
relevant modifications can be found in the 'org.etsi.mts.tdl.model’ project within annex A.

5.3.2 Viewing and Editing Models

Principles of building model diagrams

The GMF framework that the TDL graphical editor is built upon follows the Model-View-Controller architecture. The
model is an instance of TDL meta-model. The view is comprised of the shapes displayed on the diagram. The controller
takes care of creating the shapes based on model objects and their associations, cross-references, and containments. In
GMF, controllers are called 'editparts.

The mgjor part of the TDL graphical editor implementation consists of defining the corresponding 'editparts. In the case
of Sirius, these are not implemented directly but rather defined in terms of mappings. A mapping is arelation between a
certain model object and a shape. Sirius interprets each mapping and uses the appropriate 'editpart' as a controller
providing the mapping configuration data.

Mappings can be defined as nodes, edges, or containers (and some additional items specific to sequence diagrams).
Each mapping includes a reference to the meta-class of the model object that it appliesto, aswell asthe query that is
used to lookup objects from the model based on the current context object. Similar to models and diagrams, mappings
are also hierarchical. Edge mappings a so define the queries that determine the corresponding shapes its endpoints
connect to.

ETSI

18 ETSI TR 103 119 V1.3.1 (2022-03)

Sirius diagrams

Sirius provides severa diagram kinds that can be configured by providing diagram-specific model -object mappings. For
TDL, the generic diagram and the sequence diagram are of particular interest.

Generic diagrams contain nodes and connections between the nodes with no specific constraints on their layout.
Composite nodes containing other nodes are also supported, but only afew limited layout options are available for inner
node placement: free-form and table (lines of text).

Sequence diagrams contain vertical parallel lines known aslifelines. Lifelines have headers with labels. Nodes and
connectors between the lifelines - the fragments - are laid out as a horizontal stack. Nodes may cover any number of
lifelines, connectors may only be drawn between two lifelines. Composite nodes containing sub-fragments (called
combined fragments) are also supported.

Sirius editors are defined in configuration files known as viewpoint specifications. The TDL viewpoint specification
defines a single viewpoint that contains two diagram descriptions named "TDL Behaviour" and "Generic TDL".

TDL Behaviour is a sequence diagram description. The root object of such diagramsis an instance of 'TestDescription'.
The diagram description also defines the visual order of elements both horizontally and vertically. The vertical ordering
contains behaviours recursively included in the 'TestDescription’ as they occur semantically. The horizontal ordering
contains 'GateReference's that are defined in the "TestConfiguration' associated with the diagram's 'TestDescription'
instance.

Generic TDL is ageneric diagram description. The root object of such diagrams is an instance of 'Package’. Thereisno
predefined order of objects defined for this diagram kind.

Sirius diagram customization

The Sirius diagram specification model does not provide enough flexibility in terms of configuring all possible layouts
required by the TDL graphical syntax. The diagrams are rendered by interpreting predefined configuration elements that
do not have any extension mechanisms built in. Thus, some simple and composite figures need to be customized at a
lower level.

The Sirius diagram rendering is built on top of the GMF runtime. Thus, it is possible to customize Sirius diagrams by
means of extension points provided by GMF. The 'org.eclipse.gmf.runtime.diagram.ui.editpartProviders extension

point allows the replacement of default Sirius 'editparts with customized 'editparts dynamically, depending on which
model object is being rendered, and depending on which diagram it is being rendered on. Classes defined in the
extensions use mapping identifiers from the diagram specification to decide whether and which custom 'editparts
should be provided for the rendering of adiagram. All other mappings will rely on the default ‘editparts' provided by the
Sirius implementation.

Implemented EditParts
All of the 'editpart' implementations are located in the 'org.etsi.mts.tdl.graphical .sirius.part’ package.

The 'MultipartContainerCompartmentEditPart' extends GMF's 'ListCompartmentEditPart’. This class adds grid layout
that allows contained shapes to fill the available areawithin the container. It also removes all borders from contained
shapesin order to get rid of shadows and places horizontal lines between the contained shapes instead. Lastly, it
removes the ability of being dragged and selected from the contained shapes in order to facilitate moving the whole
compartment shape as one. The mapping that uses this 'editpart' has to be a container.

Package

Elvior.TestCastGenerator.Data

Imports
from Elvior.TestCastGenerator.Configuration all

Elements

Figure 5.3.2-1: Example of '"MultipartContainerCompartmentEditPart’

ETSI

19 ETSI TR 103 119 V1.3.1 (2022-03)

The 'NodeL istWithHeaderEditPart' extends the 'AbstractDiagramListEditPart' from the Sirius API. It isintended to be
used within a'MultipartContainerCompartmentEditPart' and provides functionality that allows the container to control
its drag and selection handling. It removes all line borders from the contained shapes and replaces the borders with
margins. The mapping that uses this 'editpart' has to be a container with list presentation style. Thefirst label of the
shape isthe label of that container's style. The children of that mapping have to be nodes with square style.

Package
Elvior.TestCastGenerator.Data

Elements

Figure 5.3.2-2: Example of 'NodeListWithHeaderEditPart'

The 'TopLevelNodeListWithHeaderEditPart' extends the 'NodeListWithHeaderEditPart' and adds the ability to be
included directly on the diagram or inside a container with free-form presentation style. It also fixes abug in the
‘AbstractDiagramElementContainerEditPart.rel nitFigure()' method.

Test Configuration
TtenzConfig

Tester suT
Tester : Tester SUT: SystemaAdapter
: TestData. GenericPort + TestData.GenericPort

Figure 5.3.2-3: Example of 'NodeListWithHeaderEditPart'

The 'EditPartConfiguration' is used to specify additional style and layout properties supported by some custom
‘editparts. It is used, for example, to draw double border for specified edit parts using a TwoLineMarginBorder'.

Simple Data Type

String

Figure 5.3.2-4: Example of 'TopLevellmageNodeListWithHeaderEditPart'
The 'NodeContainerEditPart' extends the 'AbstractDiagramContainerEditPart’ provided by the Sirius API. The default

container is modified by disabling standal one selection and dragging and del egating those functions to the parent. All
borders are removed from the shape. It isintended to be used as a child of 'MultipartContainerCompartmentEditPart'.

ETSI

20 ETSI TR 103 119 V1.3.1 (2022-03)

Test Configuration
TtenzConfig

Tester suUT

Tester: Tester SUT : SystemaAdapter

Figure 5.3.2-5: Example of 'NodeContainerEditPart'

The 'InteractionUseConfiguringEditPart' extends the 'AbstractNotSel ectabl eShapeNodeEditPart' provided by the Sirius
API. The class modifies the default interaction use shape by setting custom layout to it. The custom layout stretches the
container's children to fill the available vertical space and leaves sufficient margin to the top for the label of the
container. If the interaction use mapping has image style then the image background is made opague.

This class is mapped to (an abstract) sub-mapping of interaction use. That mapping does not need to have astyle as it
will not be visible. Thefirst label of the interaction use isthe label of the container. The rest of the labels are sub-nodes
with square styles.

«<Tester> Tester: Tester | tp : TestData.GenericPort

Assignment

products :=

T
Figure 5.3.2-6: Example of 'InteractionUseConfiguringEditPart'

The 'MultiPartL abel EditPart’ extends the 'TopL evelNodel istWithHeaderEditPart' and adds the ability to place labels
horizontally in arow. This allows mappings that define different fonts for different parts of labels.

Function

add?
Returns 5tring

Figure 5.3.2-7: Example of '‘MultiPartLabelEditPart'

The 'CombinedFragmentL abel EditPart’ extends the ‘M ulti PartL abel EditPart’ to inherit support for mixed font labels. It
overrides the default layout behaviour viaa'LayoutListener' from the '‘Draw2d’ APl and places the shape aways to the
upper right corner of a combined fragment block.

1
iteration: x
|

Figure 5.3.2-8: Example of ‘CombinedFragmentLabelEditPart'

ETSI

21 ETSI TR 103 119 V1.3.1 (2022-03)

The 'InteractionDecoratorProvider' is contributed via the ‘org.eclipse.gmf.runtime.diagram.ui.decoratorProviders

extension point in order to draw specia rotatable shapes at the ends of connectors. This classis configured to work
specifically with 'Interaction's.

[I
"correct password”
le—e b -
|
I

| cache
[

Figure 5.3.2-9: Example of 'InteractionDecoratorProvider'

Implemented layouts
All layout implementations are located in the 'org.etsi.mts.tdl.graphical .sirius.layout' package.

The 'SequenceDiagramFreeformL ayoutProvider' overrides the default placement of elements on the diagram layer. It
also fixes the layout of shapes modified by the 'InteractionUseConfiguringEditPart' that would otherwise be cropped to
the default size and would not trigger the layout of contents on container resize. It is contributed via the
‘org.eclipse.sirius.diagram.ui.layoutProvider' extension point and its use is triggered by the arrange command.

=d == @ Time moment

Figure 5.3.2-10: Example of custom figure placement: node with attachment

sSUT

sut ; TC

err : DefaultPort pl: DefaultPort

Figure 5.3.2-11: Example of custom figure placement: under-lapping container

The layout customizations are implemented via the diagram ‘arrange’ mechanism, which is normally triggered only
when the user invokes the 'arrange’ command. Additional triggers are implemented in order to facilitate the automatic
diagram creation upon user creating and updating the model. The 'RefreshExtensionProvider' is contributed viathe
‘org.eclipse.sirius.refreshExtensionProvider’ extension point. It invokes the ‘arrange’ command when the model is
modified and subsequently reloaded into the diagram editor. The 'LayoutEditPolicyProvider' is contributed via
‘org.eclipse.gmf.runtime.diagram.ui.editpolicyProviders extension point and it invokes the arrange command when a

‘GateReference’ or ‘Componentlnstance' shape is moved by the user in order to keep the under-lapping shape properly
aligned.

ETSI

22 ETSI TR 103 119 V1.3.1 (2022-03)

Editor-specific meta-model

The Sirius sequence diagram configuration sets implicit requirements on the structure of the meta-model that isused in
the mapping definitions. The TDL meta-model does not comply with these requirementsin all cases. For example, the
mappings of combined fragments tend to fail at runtime when the begin and end occurrence objects (as understood by
Sirius) are the same. Since TDL does not define occurrences at all, some adaptation is needed to provide these
occurrence objects. Sirius and the underlying framework require that model objects used in diagrams are defined by a
meta-model. Extending the TDL meta-model with pure fabrications, just to facilitate graphical editor implementations,
would be abad practice. Therefore, a separate domain-agnostic meta-model was created for this purpose.

The meta-model named ‘tdlviewer' is defined in the 'extension.ecore’ file and is registered as dynamic. This means that
the meta-model may be used reflectively without any code generation (which is a standard practice with meta-model
implementations in EMF). The 'tdlviewer' contains a single meta-class 'End' with a single attribute 'begin’. The 'begin'
holds a reference to the model object which this instance of 'End' is paired with. The object itself is used as the begin
occurrence in the mappings. The creation of virtual end objectsisimplemented in the

‘org.etsi.mts.tdl.graphi cal.extensions.BehaviourProvider' class.

Label serialization

Some of the labelsin ETSI ES 203 119-2 [i.14] are particularly complex, especially the labels related to 'DatalUse’.
Mappings for such labelsin the diagrams are realized by means of Xtext. A partial annotated EBNF grammar defines
the relevant mappings. The seriaization facilities of Xtext are invoked in the corresponding context in order to obtain
the textual representation of the object of interest (such as a 'Datal nstanceUse") only. The implementation of the label
serialization is provided in the ‘org.etsi.mts.tdl.graphical .1abels.data* ' projects. The label serialization isintegrated into
the viewpoint by means of the ‘org.etsi.mts.tdl.graphical .extensions.DataUsel abel Provider' class which is registered
with the viewpoint specification.

Configured mappings

A summary of the mappingsis provided in Tables 5.3.2-1 and 5.3.2-2. The details of the diagram mapping definitions
can be found in the Sirius viewpoint-specification file 'org.etsi.mts.tdl.graphical .viewpoint/description/TDL .odesign’
within the 'org.etsi.mts.tdl.graphical .viewpoint' project in annex A.

ETSI

23

ETSI TR 103 119 V1.3.1 (2022-03)

Table 5.3.2-1: Mappings in the behaviour diagram specification

Meta-class Mapping (<kind>: <identifier>) Editpart (if not default)

GateReference Instance Role: gateReference

GateReference Execution: lifelineExecution

GateReference End Of Life: lifelineEnd

TimeConstraint Node: timeConstraint

TimeLabel Node: timeLabel

Target Basic Message: interaction
Relation Based Edge: timeConstraintAttachment
Relation Based Edge: timeLabelAttachment

CompoundBehaviour Combined Fragment: combinedBehaviour

ParallelBehaviour

AlternativeBehaviour

UnboundedLoopBehaviour

BoundedLoopBehaviour

ConditionalBehaviour
PeriodicBehaviour
DefaultBehaviour
InterruptBehaviour

BoundedLoopBehaviour

Container: boundedLoopBehaviour
Node: boundedLoop.keyword
boundedLoop.iteration

CombinedFragmentLabelEditPart

PeriodicBehaviour

Container: periodicBehaviour
Node: periodicBehaviour.keyword
Node: periodicBehaviour.iteration

CombinedFragmentLabelEditPart

Block Operand: block

Break Interaction Use: globalAction
Stop

Assertion Interaction Use: assertion

Node: assertion.config
Node: assertion.condition
Node: assertion.otherwise

InteractionUseConfiguringEditPart

VerdictAssignment

Interaction Use: verdictAssignment
Node: verdictAssignment.config

InteractionUseConfiguringEditPart

TimerStart Interaction Use: timerOperation
TimerStop Node: timerOperation.config InteractionUseConfiguringEditPart
TimeOut
Assignment Interaction Use: assignment
Node: assignment.config InteractionUseConfiguringEditPart
Node: assignment.assignment
ActionReference Interaction Use: actionReference
Node: actionReference.config InteractionUseConfiguringEditPart
Node: actionReference.action
Node: actionReference.actualParameter
InlineAction Interaction Use: inlineAction

Node: inlineAction.config
Node: inlineAction.Body

InteractionUseConfiguringEditPart

TestDescriptionReference

Interaction Use: testDescriptionReference

Node: testDescriptionReference.config

Node: testDescriptionReference. testDescription
Node: testDescriptionReference. actualParameter
Node: testDescriptionReference.
componentBindings

InteractionUseConfiguringEditPart

Wait
Quiescence

Interaction Use: timeOperation
Node: timeOperation.config
Node: timeOperation.period

InteractionUseConfiguringEditPart

Componentinstance

Container: componentinstance
Node: componentinstance.name

TopLevelNodeListWithHeaderEditPart

ETSI

24

ETSI TR 103 119 V1.3.1 (2022-03)

Table 5.3.2-2: Mappings in the package diagram specification

Meta-class

Mapping (<kind>: <identifier>)

Editpart (if not default)

Comment

Node: comment

Relation Based Edge: commentedElement

Relation Based Edge:
simpleDatalnstance_dataType

Relation Based Edge:
structuredDatalnstance_dataType

Connection

Element Based Edge: testConfiguration.connection

DataElementMapping

Element Based Edge:
dataElementMapping.mapping

Relation Based Edge:
dataElementMapping.association

AnnotationType

Container: annotationType
Node: annotationType.name

TopLevelNodeListWithHeaderEditPart

SimpleDataType

Container: simpleDataType
Node: simpleDataType.name

TopLevelNodeListWithHeaderEditPart

Time

Container: time
Node: time.name

TopLevelNodeListWithHeaderEditPart

SimpleDatalnstance

Container: simpleDatalnstance
Node: simpleDatalnstance.name

TopLevelNodeListWithHeaderEditPart

Package

Container: package

Container: package.name

Node: name

Container: package.imports

Node: Import

Container: package.packagedElements
Node: packagedElement

MultipartContainerCompartmentEditPart

NodeListWithHeaderEditPart

Action

Container: action
Container: action.name
Node: name

Container: action.parameter
Node: Parameter
Container: action.body
Node: Body

MultipartContainerCompartmentEditPart
NodelListWithHeaderEditPart

NodeListWithHeaderEditPart

NodelListWithHeaderEditPart

ComponentType

Container: componentType
Bordered: gatelnstance

Container: componentType.name
Node: name

Container: componentType.timers
Node: componentType.timer
Container: componentType.variables
Node: componentType.variable

MultipartContainerCompartmentEditPart

NodelListWithHeaderEditPart

TestConfiguration

Container: testConfiguration

Container: testConfiguration.name

Node: name

Container: testConfiguration.configuration
Container: testConfiguration.componentinstance
Bordered: testConfiguration.gateReference

Node: testConfiguration.componentinstance.name

MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart

NodeContainerEditPart
TopLevelNodeListWithHeaderEditPart

TestObjective

Container: testObjective

Container: testObjective.name

Node: name

Container: testObjective.description
Node: Description

Container: testObjective. objectiveURI
Node: URI

MultipartContainerCompartmentEditPart

NodelListWithHeaderEditPart

StructuredDataType

Container: structuredDataType
Container: structuredDataType.name
Node: name

Container: structuredDataType.member
Node: member

MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart

ETSI

25

ETSI TR 103 119 V1.3.1 (2022-03)

Meta-class

Mapping (<kind>: <identifier>)

Editpart (if not default)

StructuredDatalnstance

Container: structuredDatalnstance
Container: structuredDatalnstance.name
Node: name

Container:
structuredDatalnstance.memberAssignment
Node: memberAssignment

MultipartContainerCompartmentEditPart

NodelListWithHeaderEditPart

DataResourceMapping

Container: dataResourceMapping

Container: dataResourceMapping.name

Node: name

Container: dataResourceMapping.resourceURI
Node: resourceURI

MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart

DataElementMapping

Container: dataElementMapping
Container: dataElementMapping.name
Node: name

Container:
dataElementMapping.parameterMapping
Node: parameterMapping

MultipartContainerCompartmentEditPart

NodeListWithHeaderEditPart

TestDescription

Container: testDescription

Container: testDescription.name
Node: name

Container: testDescription.parameter
Node: Parameter

Container: testDescription.objective
Node: Objective

Container: testDescription.configuration
Node: Configuration

Container: testDescription.behaviour
Container: BehaviourConfiguration
Node: Component

MultipartContainerCompartmentEditPart
NodelListWithHeaderEditPart

NodelListWithHeaderEditPart

NodelListWithHeaderEditPart

Function

Container: function

Container: function.name

Node: name

Container: function.returnType
Node: function.returnType.keyword
Node: function.returnType.type
Container: function.parameter
Node: Parameter

Container: function.body

Node: Body

MultipartContainerCompartmentEditPart

MultiPartLabelEditPart

NodelListWithHeaderEditPart

5.3.3

Exporting Structured Test Objectives

Structured test objectives are exported as tables in a Word document according to user-defined templates. The
implementation expects templates to be placed in tables and feature the following placeholders which are mapped to the
corresponding elements for a structured test objective referenced as 'self'

. <TESTOBJECTIVENAMELABEL_PLACEHOLDER> mapped to 'self.name’

e <DESCRIPTIONLABEL_PLACEHOLDER> mapped to 'self.description'

. <URIOFOBJECTIVELABEL PLACEHOLDER> mapped to 'self.objectiveURI’, separated by commain case
of multiple 'objectiveURI'’s

e <CONFIGURATIONLABEL PLACEHOLDER> mapped to 'self.configuration.name

. <PICSSELECTIONLABEL_PLACEHOLDER> mapped to 'self.picsReference

. <INITIALCONDITIONSLABEL_PLACEHOLDER> mapped to 'self.initial Conditions

. <EXPECTEDBEHAVIOURLABEL_PLACEHOLDER> mapped to 'self.expectedBehaviour'

. <FINALCONDITIONSLABEL_PLACEHOLDER> mapped to 'self.final Conditions

ETSI

26 ETSI TR 103 119 V1.3.1 (2022-03)

° <EXPECTEDBEHAVIOURLABEL_WHENPART_PLACEHOLDER> mapped to
'self.expectedBehaviour.whenClause'

e <EXPECTEDBEHAVIOURLABEL_THENPART_PLACEHOLDER> mapped to
'self.expectedBehaviour.thenClause'

Each template table is expected to have a unique identifier in the heading row. The implementation expects the user to
select an identifier of atemplate in order to export the structured test objectives according to the corresponding
template. An example of atemplate based on the syntax specification in ETSI ES 203 119-4 [i.16] is shown on

Table 5.3.3-1. Additionally, shading can be used within templates to hide optional parts when their content is empty.
Multiple related optional compartments can be marked to be hidden, e.g. the heading 'Final Conditions and the
corresponding compartment, by using the shame shading.

Additional placeholders may be defined by users, however, the implementation also needs to add support for them. The
mappings are currently implemented at alower level - in code. Additional filtering may be performed to streamline the
output. This may include hiding some keywords and punctuation. The example shown in Table 5.3.3-1 is exported from
the model used in annex B of ETSI ES 203 119-4 [i.16]. A filter has been applied to hide the 'entity’ keywordsin the
output. Finally, 'EventTemplateOccurrence's may be optionally replaced by the corresponding
‘EventOccurrenceSpecification' from the referenced 'EventTempl ateSpecification' while applying replacements for
overridden 'Argument's and 'EntityReference's. The details of the export of structured test objectives to Word tables can
be found in the 'org.etsi.mts.tdl.to.docx*' projects in annex A. The example template as well as additional templates are
included in the templates.docx' document.

Table 5.3.3-1: Structured test objective template example

TO 1 TABLE TEMPLATE

TP Id <TESTOBJECTIVENAMELABEL_PLACEHOLDER>
Test Objective <DESCRIPTIONLABEL_PLACEHOLDER>
Reference <URIOFOBJECTIVELABEL_PLACEHOLDER>
PICS Selection <PICSSELECTIONLABEL_PLACEHOLDER>

Initial Conditions

<INITIALCONDITIONSLABEL PLACEHOLDER>
Expected Behaviour
<EXPECTEDBEHAVIOURLABEL_PLACEHOLDER>
Final Conditions

<FINALCONDITIONSLABEL_PLACEHOLDER>

Table 5.3.3-2: Exported structured test objective according to the template in Table 5.3.3-1

TP Id TP 71311

Test Objective

Reference ETSI TS 136 321 [i.25], clause 5.3.1
PICS Selection

Initial Conditions

with {
the UE in the "E-UTRA RRC_CONNECTED state"
}
Expected Behaviour
ensure that {
when {
the UE receives a "downlink assignment on the PDCCH for the UE's C-RNTI"
and
the UE receives a "data in the associated subframe"
and
the UE performs a HARQ operation
then {
the UE sends a "HARQ feedback on the HARQ process"
}
}

Final Conditions

ETSI

27 ETSI TR 103 119 V1.3.1 (2022-03)

5.3.4 Validating Models

Overview

Means for defining and validating constraints on models are an integral part of modelling environments. M odel
constraints are used to impose semantic restrictions on top of the abstract syntax provided by the meta-model. There are
different approaches for the specification, integration, and validation of such constraints. OCL isthe de facto standard
for the specification and realization of constraints on object-oriented meta-models. OCL expressions can be integrated
into the meta-model by means of annotations, which can be used for automated validation of model instances, provided
adeguate tool support is available. An alternative approach is the specification constraints as an add-on which can then
be applied to the model instances.

A constraint specification typically consists of a context indicating the meta-class to which the constraint applies, and
an invariant indicating the conditions that will hold true in the given context for valid models. For example, the
requirement "a 'NamedElement' shall have the 'name' property set and the 'name’ shall not be an empty String" is
specified in OCL asfollows:

cont ext NamedEl enent
inv: not self.nane.ocll|sUndefined() and sel f.nane.size() >0

where 'self' refers to the instance of the 'NamedElement' meta-class.

Integrated Approach

The integrated approach involves the definition of semantic constraints within the meta-model itself by means of
annotations. Modelling environments can then generate integrated validation facilities based on the annotations. The
validation facilities can be invoked automatically so that immediate feedback can be provided to the users when they
work with models. The main benefit of an integrated approach isthat the constraints become an embedded part of the
meta-model. However, there are also certain limitations associated with the integrated approach. Modifications to
constraints would require changing the meta-model and related generated resources. Tool support for constraints
included as embedded annotations is very inconsistent. Immediate feedback while helpful, can sometimes get in the
way. In case amodel is refined over multiple steps before it becomes valid, checking constraints at any point before that
would be superfluous.

Add-on Approach

In contrast to the integrated approach, the add-on approach relies on semantics constraints defined separately from the
meta-model. Such constraints can be checked on demand as required by the specific usage scenario. In addition, the
evaluation of such constraints can also be conducted in a more flexible manner, where only subsets of constraints are
checked as necessary at agiven point in time, thus limiting the amount of superfluous violations for models which are
known to be incomplete at that point in time. Add-on constraints can also be modified, maintained, and extended
independently from the meta-model. Certain technologies, such as the Epsilon Validation Language (EVL) [i.12] also
extend the capabilities of OCL by providing means to specify guards on constraints determining conditions under which
the evaluation of a constraint isto be skipped.

The constraints for TDL are realized according to the add-on approach within the 'org.etsi.mts.tdl.constraints' project.
The project contains the constraint realization in the 'tdl.evl’ file as well as supporting resources for common and
extended functionalities. A standalone launcher isimplemented to enable the checking of constraints independent of
other tooling. It can aso be used as a foundation for integrated solutions.

54 Usage Instructions

54.1 Development Environment

TDL graphical editor is built on top of and developed using the Eclipse platform. The Eclipse version in use at the time
of writing the present document is"2019-12".

Steps to set up the development environment:

1) Download and deploy the Eclipse Modeling Tools package.

ETSI

2)

3)

4)

28 ETSI TR 103 119 V1.3.1 (2022-03)

Install additional components using the Eclipse Marketplace:

a)

b)

Sirius; and

Xtext.

Import the following plugin projects:

a)
b)
<)

d)

org.etsi.mts.tdl.graphical .viewpoint;
org.ets.mts.tdl.model;
org.ets.mts.tdl.graphical.labels.data; and
org.ets.mts.tdl.graphical.labels.data.ui.

Generate resources if necessary:

a)

Run the GenerateData. mwe workflows in the org.etsi.mts.tdl.graphical .|abel s.data project if necessary.

Additional steps for setting up the development environment for the TDL textual editors, constraint implementation,
and export of structured test objectives into Word documents include:

5)

6)

7)

Install additional components using Eclipse Marketplace:

a)

Epsilon for validation facilities.

Import additional plugin projects:

a)
b)

0)

d)

e

f)
9)

h)
i)
)

n)

org.etsi.mts.tdl. TDLan2 - for editing TDL according to annex B of ETSI ES 203 119-1 [i.13];
org.ets.mts.tdl. TDLan2.ui;

org.etsi.mts.tdl. TPLan2 - for editing structured test objectives according to annex B of ETSI
ES 203 119-4 [i.16];

org.ets.mts.tdl. TPLan2.ui;

org.etsi.mts.tdl. TDLtx - for editing TDL according to ETSI ES 203 119-8 [i.20] with the default brace-
based syntax;

org.ets.mts.tdl. TDLtx.ui;

org.ets.mts.tdl. TDLtxi - for editing TDL according to ETSI ES 203 119-8 [i.20] with the extended
indentation-based syntax;

org.etsi.mts.tdl. TDLtxi.ui;

org.etsi.mts.tdl.tools.rt - for common tools for trandating model instancesin different representations;
org.etsi.mts.tdl.tools.rt.ui;

org.etsi.mts.tdl.constraints - for OCL constraint implementation;

org.etsi.mts.tdl.constraints.ui;

org.etsi.mts.tdl.tools.to.docx.poi - for exporting structured test objectives to Word documents (legacy
implementation can be found in org.etsi.mts.tdl.tools.to.docx);

org.ets.mts.tdl.tools.to.docx.poi.ui.

Generate resources if necessary:

a)

Run the GenerateTDLan2.mwe and/or GenerateTPLan2.mwe, GenerateT DL tx.mwe,
GenerateT DL txi.mwe workflows in the corresponding projects if necessary.

ETSI

29 ETSI TR 103 119 V1.3.1 (2022-03)

5472 End-user Instructions

Getting Started

The implementation is available from the TOP website. Up-to-date installation and usage instructions are available on
the website. The fundamental steps can be summarized as follows:

1) Download and deploy the Eclipse Modeling Tools package.
2) Install additional components using the Eclipse Marketplace:
a Sirius; and
b) Xtext.
3) Ingtal the TOP - TDL Open Source Project using the Eclipse Marketplace and select the desired components.

4) Alternatively, install the additional TDL-components from the TOP update site directly (currently
https://tdl .etsi.org/eclipse/latest/):

a) Openthe menuitem 'Help' and select the item 'Install new software'.
b) Click the'Add..." button to add a new repository.

¢) Insert the required information: Name: TOP Plugins, Location: https.//tdl.etsi.org/eclipse/latest/.

d) Click Ok. In the window, anew set of plugins called TDL should appear.

e) Click on the checkbox to select the desired plugins (or smply al), then click 'Next'.
f) Now follow theinstructions to complete the installation.

g) Restart Eclipse when prompted at the end.

Once the TOP isinstalled, the following steps should be taken before new models can be created with the graphical
editor:

1) Makesure an explorer view is open (Project Explorer or Model Explorer, for example).

2) Select 'New -> Project...' from the 'File' menu or the right-click contextual menu in the explorer view.
3) Inthe'New Project' wizard, select new TDL Project.

4) Enter aname for the project and press 'Finish'.

5) Inthe explorer view, expand the newly created project, expand the ‘model.tdl’, right-click on the 'Package
Model' and select 'New Representation -> new Generic TDL".

6) Enter anamefor the new diagram and press'OK".
7) A new 'Generic TDL' diagram is created where the predefined types are already shown.
8) Start creating new elements by using the palette.

The editing of models with tree editorsis described in clause 5.3.1. For creating models with the textual editors, end
users need to create anew file with the file extensions ".tdlan2' for TDL models according to annex B of ETS

ES 203 119-1 [i.13], "tdItx’ or ".tdltxi for TDL models according to ETSI ES 203 119-8[i.20] (brace- or indentation-
based, respectively), or with the file extension ".tplan2' for TDL models containing structured test objectives specified
according to annex B of ETS| ES 203 119-4 [i.16]. All files need to be located within projectsin Eclipse. The newly
created files are already associated with the respective editor so that the users can benefit from the enhanced editing
capabilities such as syntax checking, syntax highlighting, auto-completion, etc.

ETSI

https://tdl.etsi.org/eclipse/latest/
https://tdl.etsi.org/eclipse/latest/

30 ETSI TR 103 119 V1.3.1 (2022-03)

Validating Models

Open the TDL model (with file extensions.tdl', ".tdlan2', ".tdltx’, ".tdltxi", or ".tplan2’) with any of the available editors
(reflective, faceted, or textual) and press the 'Validate TDL model' button. Any constraint violations will be shown in a

popup dialog.

Translating Models

Open the XM or textua representation of a TDL model (with file extensions ".tdl', ".tdltx', "tditxi’, ".tdlan2', or ".tplan2’)
and press the 'Trandate TDL model' button. A popup dialog will ask about the desired target representation format. The
translated representation of the TDL model into the target representation will be named the same way as the original
model (with an additional extension ".tdl', ".tditx’, ".tdltxi', ".tdlan2, or ".tplan2’) and placed in the same location.

Working with Diagrams

In Sirius and, therefore, in the TDL graphical editor, diagrams are called representations. A representation is always
related to one model element that is the root of the representation. There are two representation kinds in the TDL
viewer. The 'Generic TDL' representation takes an instance of 'Package’ asits root and represents the contents of that
'Package’ laid out as a graph. The 'TDL Behaviour' representation displays the behaviour of a 'TestDescription' instance
laid out as a sequence diagram.

In order to create a new diagram, open the Create Representation wizard on a project, choose the appropriate
representation kind and on the last page, select the root element matching the chosen representation kind. Created
representation is automatically opened in an editor and the representation also becomes visible in the explorer view
(under the node 'representations.aird’).

The diagram editor may be used to adjust the layout of the shapes, although the implementation takes care of most of
the layout tasks.

Exporting Diagrams

Diagrams may be exported to image files. Use the context menu of representation nodesin the explorer view or directly
in the diagram canvas. Note that although it is not necessary to have the diagrams open while editing models, the
diagram editors need to be opened before exporting the diagrams in order to refresh the visual elements with the
semantic model.

Exporting Structured Test Objectives

Open the TDL model (with file extensions".tdl' or ".tplan2’) with any of the available editors (reflective, faceted, or
textual) and press the 'Generate Document' button or select the 'TDL -> Generate Document' from the menu. The
generated Word document will be named the same way as the model (with an additional extension '.docx’) and placed in
the same location.

6 Using TDL with TOP

6.1 Usage Scenarios

TDL and TOP can be used in different ways. Depending on the specific goals, different parts of TDL and TOP may be
relevant for a given usage scenario. For different starting points and end goals, the following common use cases may
come into question:

. Defining structured test objectives (or test purposes) with the help of TDL-TO.

. Transforming existing structured test objectivesin TDL-TO into TDL test descriptions.
. Defining test descriptions with the help of TDL.

e Transforming existing test descriptionsin TDL into TTCN-3 test cases.

. Transforming existing test descriptionsin TDL into atarget execution language (see clause 9).

ETSI

31 ETSI TR 103 119 V1.3.1 (2022-03)

. Using existing interface specificationsin OpenAPI™ with TDL (see clause 8.2).

. Using existing protocol specificationsin ASN.1 with TDL (see clause 8.3).

6.2 Defining Structured Test Objectives

6.2.0 Overview

TDL Structured Test Objective (TDL-TO) may be used in several ways in the test developments process. The process
illustrated in this clause is based on the test devel opment process defined in ETSI EG 203 130 (V1.1.1) [i.21]. The
TDL-TO specifies arefinement of a TestObjective' and defines aformal description of atest objective, that may be the
basisfor atransformation to a TDL test description.

Developing atest specification from a base standard the first step after identifying the requirements to be tested, isto
define the test objectives. The entities and events to check the test objectives may then be specified and finally
arguments of events (data values) and timing constraints may be specified. The context in which the required behaviour
executesis defined in the test configuration.

Then the parts of acomplete TDL-TO specification are:
. Domain part.

. Data

Configuration.

Test purpose behaviour.

The domain, data, and configuration parts are common to a set of test purpose behaviour descriptions, while each test
purpose behaviour is specific to asingle test objective. Test purpose behaviours are typically grouped based on different
criteria, e.g. test for normal behaviour and test for invalid behaviour to form atest suite structure. In TDL-TO this
structuring is supported by grouping of test purpose behaviours. To further structure a TDL-TO specification, the
domain, data, configuration and test purpose behaviours may be also separated using the TDL package concept, to
support re-use of basic data definitions and configurations.

6.2.1 Domain part of TDL-TO

The domain part of a TDL-TO specification defines the PICS elements, entities, and events relevant for a set of
TDL-TOs.

ETSI

32 ETSI TR 103 119 V1.3.1 (2022-03)

Domain {

pics:
- NONE

2

entities:
- EPC_PCRF_A
- EPC_PCRF_B
- EPC_PGW_A
- EPC_PGW B
- EPC_MME_A
- EPC_MME_B
- IMS_HSS_A
- IMS_HSS_B

P
events:
- receives
- sends
- triggers
- detachment
- invokes
- create_session_request
- delete_session_request
- termination_SIP_signalling session

Figure 6.2.1-1: TDL-TO Domain example

In Figure 6.2.1-1 an example of a domain specification is shown. The example illustrates the definition of asingle PICS
value. The example also contains the definition of alist of entities that can be referenced in test configuration
definitions and in event occurrences in the behaviour part. Finally, the example shows definition of events that may be
referenced in the event occurrence parts of TDL-TO behaviour descriptions.

6.2.2 Data definitions

In TDL-TO data may be used in the behaviour part without explicit declaration. However, in the data part of the
TDLTO definition structured data types and structured data values may be specified.
Data {
type DiameterMessage;

}
Figure 6.2.2-1: TDL-TO data definition example

Figure 6.2.2-1 illustrates the specification of a single datatype.

6.2.3 Configuration
The configurations part of the TDL-TO specification defines by reference the context in whicha TDL-TO isto be

executed. The Configuration part may contain any number of test configuration as needed for the TDL-TOs to which it
may be associated.

ETSI

33 ETSI TR 103 119 V1.3.1 (2022-03)

Configuration {
Interface Type defaultGT accepts DiameterMessage;
Component Type DiameterComp with gate g of type defaultGT;

Test Configuration CF_VXLTE_INT
containing
Tester component EPC_PGW_A of type DiameterComp
Tester component EPC_PCRF_A of type DiameterComp
SUT component IMS_A of type DiameterComp
connection between EPC_PGW_A.g and EPC_PCRF_A.g

2
Test Configuration CF_VXLTE_RMI
containing
Tester component EPC_PCRF_A of type DiameterComp
Tester component EPC_PCRF_B of type DiameterComp

SUT component IMS_A of type DiameterComp
connection between EPC_PCRF_A.g and EPC_PCRF_A.g

Figure 6.2.3-1: TDL-TO configuration example

The configuration part in Figure 6.2.3-1 shows the definition of two test configurations"CF_VXLTE_INT" and
"CF_VXLTE_RMI". Both test configurations are based on the same component type "DiameterComp™ and gate type
"defaultGT". The 'defaultGT" is specified to accept instances of the datatype 'DiameterM essage’. The test configurations
also specifies the role of involved entities, as tester or SUT component.

6.2.4 Test purpose behaviour

The test behaviour defines the behaviour of a TDL-TO to check a single test objective in terms of a sequence of event
occurrences in areferenced test configuration and with data values and timing constraints.

Package TP_RX {
import all from Sip_Common;
import all from Diameter_Common;

Test Purpose {
TP Id TP_RX_PCSCF_STR_@5
//TP_EPC_7002_21 from ETSI TS 103 029 V5.1.1
Test objective "Verify that IUT after reception of 486 response sends an ST-Request at originating

leg."
Reference
"ETSI TS 129 214 (V15.6.0) [i.27], clauses 4.4.4"
Config Id CF_VXLTE_INT
PICS Selection NONE
Initial conditions with {
the UE_A entity isAttachedTo the EPC_A and
the UE_A entity isRegisteredTo the IMS_A
¥
Expected behaviour
ensure that {
when {
the IMS_P_CSCF_A entity receives a 486_Response INVITE
from the IMS_S CSCF_A entity
b
then {
the IMS P_CSCF_A entity sends the STR containing
Session_Id_AVP;
to the EPC_PCRF_A entity
¥
}
}
b

Figure 6.2.4-1: TDL-TO behaviour example

ETSI

34 ETSI TR 103 119 V1.3.1 (2022-03)

A test purpose behaviour exampleis shown in Figure 6.2.4-1. The test purpose behaviour references the other parts of a
TDL-TO, that isthe domain, data and configuration part, that in this example are al imported from the two packages
'SIP_Common' and 'Diameter_Common'.

A test purpose is assigned a unique id often reflecting its association within atest suite structure. In this example
indicating in the TP name the interface 'RX", the component 'PCSCF', and the message 'STR' relevant for this TP.

The TDL-TO test purpose allows areference to the base standard from where the requirement and test objectiveis
derived. The test objective may can be defined as an informal text string in the field "Test objective”. The condition for
the applying the test purpose in atest execution can be specified in "PICS selection” field. The PICS selection
expression may consist of alist of PICS references combined by logical operators.

The test configuration 'CF_VXLTE_INT' referenced in the example specifies the test configuration used in the test
behaviour specification part.

The event occurrence sequences of the TDL-TO constitutes the core of the test behaviour part. It is split in three
optional parts, the initial condition, the expected behaviour, and final conditions. The exampleillustrates an initial part
wherethe 'UE_A'and 'IMS_A' entities are brought into the state required to check the expected behaviour. The events
'isAttachedTo' and 'isRegisteredTo' may be abstract operations which may often be used in the initial phase of the
TDL-TO specification, to allow for further refinementsin later phases. In the Expected behaviour part the conditional
event occurrence sequences are specified that is assigned the verdict of the test purpose, explicitly or implicitly asisthe
case in this example. The event occurrences in the example illustrates the use of undeclared data instances
'486_Response INVITE' and 'STR', where the latter is further specified to contain the datavalue 'Session_Id_AVP. In
case the test purpose needs to perform operations after the test objective is achieved, such behaviour may be specified in
the final conditions part.

6.3 Transforming Test Objectives into Test Descriptions

6.3.1 Overview

Structured test objectives can be used as a starting point for test descriptions or even for executable test cases. Asthe
abstraction gap between structured tests objectives and executable test casesis often too large, it is recommended to
refine the structured test objectivesinto test descriptionsin a stepwise manner, where at each step there is a smaller
abstraction gap in comparison to the preceding step.

While structured test objectives provide many building blocks for atest description, structured test objectives can
abstract away many of the important details that are essential for the specification of atest description. Some of the
details can be inferred easily, while others allow for different interpretations. In order to narrow down the spectrum of
possible interpretations, it is recommended that guidelines and conventions are defined in advance and enforced during
the specification of the structured test objectives. This can streamline the refinement process and pave the way for
standardized refinement of structured test objectives into test descriptions.

The examples are provided in the textual representation for brevity and convenience. The graphical representation can
be used instead as well.

6.3.2 Data

TDL-TO provides different means for the use of data within a'StructuredTestObjective'. In addition to the use of
defined 'Datal ntances and 'Specia VaueUse's, TDL-TO provides means for the specification of literal 'Vaue'sinline,
within a'StructuredTestObjective'.

The use of defined 'Datal nstance's and 'SpeciaValueUse's does not require particular handling as the same

'Datal nstance's can be used in the resulting TestDescription's. While the concrete syntax may be different, the
underlying model elements are the same. The corresponding 'DataType's may need to be taken into account if a
"TestConfiguration' needs to be inferred from the 'StructuredTestObjective’. Additionally, any qualifying 'Comment's
used to describe further details related to the context of its usage may need to be interpreted according to the existing
conventions (if defined). The examplein Figure 6.3.2-1 illustrates the definition of 'DataType's and 'Datal nstance'sin
TDL-TO. The corresponding data definitions in the textual representation of TDL are shown in Figure 6.3.2-2. Apart
from minor syntactical differences, the underlying model structures are the same. In fact, the TOP tools enable cross
referencing between both notations so that data definitionsin TDL can be reused in TDL-TO and vice-versa.

ETSI

35 ETSI TR 103 119 V1.3.1 (2022-03)

Package data {
Data {
type float;
type position with x of type float, y of type float;
float -22;
float-21;
position startingPosition containing x indicating value -21;

Figure 6.3.2-1: Predefined data example in TDL-TO

Package data {
Type float ;
Type position { x of type float , y of type float) ;
float-22;
float-21;
position startingPosition { x =-21);

Figure 6.3.2-2: Corresponding data in TDL

TDL-TO permits the use of 'LiteralValue's as a flexible way for specifying the arguments of
'EventOccurrenceSpecification's. This can be useful, especialy at an early stage, where the data structures and contents
are not fixed yet. 'LiteralValue's may contain descriptions of the structure and contents of the ‘LiteralValue'.
Additionally, 'LiteralValue's may be referenced within the same 'StructuredTestObjective’. Any qualifying ‘Comment's
used to describe further details related to the context of its usage may need to be interpreted according to the existing
conventions (if defined).

In order to transform 'LiteralValue's, first corresponding 'DataType's and 'Datal nstance's need to be inferred. Consider
the following exampleillustrated in Figure 6.3.2-3, showing a'LiteralVValue' specification within an
'‘EventOccurrenceSpecification'. The basic structure is the same, but there are no predefined 'DataType's and
'‘Datalnstance's. The inferred 'DataType's and 'Datal nstance's areillustrated in Figure 6.3.2-4. The inferred
'‘DataElement's are prefixed with ‘inferred ' for illustrative purposes. The contextual information may provide hints for
more appropriate naming. Apart from the inference, type compatibility and merging needs to be considered. In this
example, it isassumed that 'x' and 'y" are of the same type, otherwise distinct '‘DataType's need to be inferred as well. If
a'StructuredDatal nstance' is used only once, it is also possible to specify it asinline 'Datal nstanceUse' in TDL.

when {
the Controller entity sends the start position containing
x indicating value 22,
y indicating value 21

}then {
the Object entity moves_to the received start position

}
Figure 6.3.2-3: Literal datain TDL-TO

Package inferred_data {
Type inferred_simple ;
Type inferred_position (x of type inferred_simple, y of type inferred_simple) ;
inferred_simple 22 ;
inferred_simple 21 ;
inferred_position inferred_start_position { x=22,y=21});

Figure 6.3.2-4: Inferred literal data in TDL
In case existing 'Datal nstance's are used and corresponding 'DataM apping's exist, these can be reused as well.

Otherwise, the 'DataM apping's can be defined as part of the refinement process for both existing data specifications and
data specifications inferred from inline literal data specifications.

ETSI

36 ETSI TR 103 119 V1.3.1 (2022-03)

6.3.3 Configurations

Similar to the use of data, TDL-TO provides different means for the specification of the entities related to an
‘EventOccurrenceSpecification'. Abstract entities can be useful, especially at an early stage, where the
TestConfiguration's are not fixed yet. If 'TestConfiguration's are already specified, the corresponding
‘Componentinstances can be used in 'EventOccurrenceSpecification's. An example for asimple TestConfiguration' and
corresponding 'ComponentType's and 'GateType's specified in TDL-TO is shown in Figure 6.3.3-1. The corresponding
definitions in the textual representation of TDL are showing in Figure 6.3.3-2. The use of defined ‘Componentinstance's
does not require particular handling as the same TestConfiguration's can be used in the resulting ‘TestDescription's.
Apart from minor syntactical differences, the underlying model structures are the same. The TOP tools enable cross
referencing between both notations so that definitions related to 'TestConfiguration'sin TDL can be reused in TDL-TO.

Package base_configuration {
import all from data;
Configuration {
Interface Type wireless accepts position;
Component Type unit with gate wifi of type wireless;
Test Configuration basic containing
Tester component controller of type unit
SUT component object of type unit
connection between controller.wifi and object.wifi

Figure 6.3.3-1: Predefined configuration example in TDL-TO

Package base_configuration {

Import all from data ;

Gate Type wireless accepts position ;

Component Type unit having {
gate wifi of type wireless ;

}

Test Configuration basic {
create Tester controller of type unit ;
create SUT object of type unit ;
connect controller.wifi to object.wifi ;

Figure 6.3.3-2: Corresponding configuration in TDL

The use of abstract entities provides more flexibility early on, however, it requires clear guidelines and conventions for
the interpretation of the abstract entities. An 'Entity' may be transformed into a'Componentl nstance' or a 'Gatel nstance'
depending on the intended interpretation. Hints and conventions regarding the desired interpretation of an 'Entity’ can be
provided in the 'Entity’ definition, in the context of its use, or outside the TDL-TO specification. Considering the
exampleillustrated in Figure 6.3.2-3, it can be inferred that the 'Controller’ entity and the 'Object’ entity have some
means to interact without this being explicitly specified. Figure 6.3.3-3 illustrates one possible 'TestConfiguration’
which can be inferred from the behaviour specification in Figure 6.3.2-3. First, one or more 'GateType's need to be
inferred, then the corresponding '‘ComponentType's and their 'Gatel nstance's. For simplicity, it is assumed that
‘Controller' and 'Object' are of the same 'ComponentType', conventions may be put in place to indicate that.
Alternatively, subsequent refinement may further differentiate the '‘ComponentType's where appropriate. Finaly, the
"TestConfiguration' is inferred, including assigning ‘ComponentInstance's with corresponding roles, as well as
'‘Connection's between the inferred 'Gatel nstance's. In this example, the roles and 'Connections are inferred based on the
‘EventOccurrenceSpecification's and their context (e.g. when / then clauses, etc.). Similar to 'DataType's, compatible
inferred 'TestConfiguration's, 'ComponentType's, and 'GateType's need to be identified and merged where applicable to
avoid unnecessary duplication.

ETSI

37 ETSI TR 103 119 V1.3.1 (2022-03)

Package inferred_configuration {
Import all from data ;
Gate Type inferred_gate_type accepts inferred_position ;
Component Type inferred_component_type having {
gate inferred_gate of type inferred_gate_type ;
}

Test Configuration inferred_move_object {
create Tester Controller of type inferred_component_type ;
create SUT Object of type inferred_component_type ;
connect Controller.inferred_gate to Object.inferred_gate ;

Figure 6.3.3-3: Inferred configuration in TDL

6.3.4 Behaviour

Initial conditions, expected behaviour, and final conditionsin TDL-TO are expressed by means of 'EventSequences.
'EventSeguences are comprised of 'EventOccurrenceSpecification's. This provides simple generic high-level construct
with loose semantics indicated by the referenced 'Event'. The interpretation of the 'Event’ can be indicated in the domain
description and/or refined in the 'EventOccurrenceSpecification'. It is recommended to establish well-defined
specification conventions in order to ensure consistent interpretation. TDL "TestDescriptions' require more
differentiated specification of behaviour, distinguishing between 'Interaction's, 'Action's, and other kinds of
‘Behaviour's. While some assumptions regarding the mapping of 'Event's to ‘AtomicBehaviour's can be made intuitively,
it is recommended to define explicit conventionsin order to ensure consistent interpretation and transformation. The
examplein Figure 6.3.4-1 illustrates a minimal 'StructuredTestObjective' containing only the specification of the
expected behaviour. Assuming the data and configuration related information has been inferred asillustrated in the
previous examples, the corresponding 'TestDescription' inferred from the 'StructuredT estObjective' is shown in

Figure 6.3.4-2. In this scenario, the first 'EventOcurrenceSpecification' in the ‘whenClause' is interpreted as an
'Interaction’ between the 'Controller' and the 'Object’, the latter is assumed to be the implicit opposite entity in the
'‘EventOcurrenceSpecification'. It is recommended to make opposite entities explicit whenever possible. The second
‘EventOcurrenceSpecification' in the 'thenClause' is interpreted as an 'ActionReference’. In this casg, it is aso necessary
to infer adefinition for the action.

Test Purpose {
TP Id TP_MOVE_OBJECT_LITERAL
Test objective "Move object to destination with literal values."
Expected behaviour
ensure that {
when {
the Controller entity sends the start position containing
x indicating value 22,
y indicating value 21

}the’n {
the Object entity moves_to the received start position
1
}
1
Figure 6.3.4-1: Expected behaviour specification in TDL-TO

Action move_to (position of type inferred_position);

Test Description TD_MOVE_OBJECT_LITERAL uses configuration inferred_move_object {
Controller.inferred_gate sends inferred_start_position to Object.inferred_gate;
perform action move_to {position = inferred_start_position) on Object;

Figure 6.3.4-2: Corresponding behaviour specification in TDL

If desired, especialy when 'StructuredDatal nstance's are used only once, it is also possible to specify them asinline
'‘DatalnstanceUse'sin TDL. The resulting TestDescription’ for the example in Figure 6.3.4-1 is shown in Figure 6.3.4-3,
where instead of the 'inferred_start_position' 'Datal nstance', the corresponding datais specified inline. Since the
‘Datalnstance’ is used twice in this case, it results in some duplication.

ETSI

38 ETSI TR 103 119 V1.3.1 (2022-03)

Action move_to (position of type inferred_position);

Test Description TD_MOVE_OBJECT_LITERAL_INLINE uses configuration inferred_move_object {
Controller.inferred_gate sends new inferred_position (x = 22, y = 21) to Object.inferred_gate;
perform action move_to (position = new inferred_position (x =22, y = 21)) on Object;

Figure 6.3.4-3: Corresponding behaviour specification in TDL using inline data

The steps for the derivation of "TestDescription's from 'StructuredTestObjective's can be translated to other notations as
well. Fundamentally, the process remains the same, starting with the data definitions, through the test configurations,
and finally the behaviour specifications. The above guidelines can be used as a template for deriving TestDescription's
from other kinds of documents and artifacts as a starting point.

6.3.5 Transformation Conventions and Assumptions
The transformation of 'LiteralValue's involves the following conventions;

. If the 'Content' of the 'LiteralVValue' is empty, the 'LiteralVValue' is mapped to a 'SimpleDataType' with a 'name'
corresponding to the 'name’ of the 'LiteralVValue'. If qualifier 'Comment's are present, a 'SimpleDatalnstance’ is
created with a 'name’ corresponding to the concatenated 'body's of the qualifier 'Comment's. Alternatively, the
'name’ of the 'DataType' can also be prefixed with the concatenated 'body’s of the qualifier 'Comment's. If the
corresponding 'DataType' or 'Datalnstance’ exists, no action is taken.

. If the 'Content’ of the 'LiteralValue' is not empty, the ‘LiteralValue' is mapped to a 'StructuredDataType' with a
‘name’ corresponding to the 'name’ of the 'LiteralValue'. If qualifier ‘Comment’s are present, a
‘StructuredDatalnstance’ is created with a 'name’ corresponding to the concatenated ‘body’s of the qualifier
‘Comment's. Alternatively, the 'name’ of the 'DataType' can also be prefixed with the concatenated ‘body’s of
the qualifier '‘Comment's. If the corresponding 'DataType' or 'Datalnstance’ exists, no action is taken.

. Each 'Content’ element of the 'LiteralValue' is mapped to a ‘Member' within the corresponding
‘StructuredDataType' with a 'name’ corresponding to the 'name’ of the '‘Content'. If a ‘Member" with the same
'name’ exists, no action is taken. The 'DataType' of the ‘Member' corresponds to:

- A new 'DataType' corresponding to the '‘Content’ with a 'name' prefixed with the 'name' of the containing
'StructuredDataType' in case a '‘Content' is directly contained within the 'Content'.

- A (default) 'SimpleDataType' corresponding to the 'LiteralValue' in case a 'LiteralValue' is directly
contained within the ‘Content'.

- The 'DataType' corresponding to the 'dataType' of the 'DatalnstanceUse' in case a 'DataReference’ is
directly contained within the 'Content'.

) Each nested 'Content’ or 'LiteralValue' element is transformed according to the conventions above.

For example, as shown in Figure 6.3.5-1 and Figure 6.3.5-3, for the 'EventOccurrenceSpecification' taken from [i.37], a
corresponding 'StructuredDataType' is created for both the 'LiteralVValue' 'message’ and for the 'payload' '‘Content’ of the
'message’. The 'dataType' for the 'payload’ 'Member" is then set accordingly. Instead, since the ‘value's for the
filterLength' and 'topic_filter' Content's correspond to 'DataReference's to defined 'Datalnstance's, as shown in

Figure 6.3.5-2, the 'dataType's for the corresponding 'Member's in the derived 'SUBSCRIBE_message_payload'
'DataType' are: set to the 'dataType's of the referenced 'Datalnstance’s.

the IUT entity receives a SUBSCRIBE message containing
payload containing
filterLength corresponding to TOPIC_FILTER_LEN_SEC_CVE_01,
topic_filter corresponding to TOPIC_FILTER_LEN_SEC_CVE_01;;
from the ATTACKER_CLIENT entity

Figure 6.3.5-1: 'LiteralValue's and 'DataReference's example (from [i.37])

Data {
UTF8String TOPIC_FILTER_SEC_CVE_01; // topic filter used in TP_MQTT_BROKER_SEC_CVE_001
Int16 TOPIC_FILTER_LEN_SEC_CVE_01; // corresponds to lengthof(TOPIC_FILTER_SEC_CVE_01) +1
}
Figure 6.3.5-2: Corresponding 'Datalnstance’ definitions (from [i.37])

ETSI

39 ETSI TR 103 119 V1.3.1 (2022-03)

Type SUBSCRIBE_message (

)

payload of type SUBSCRIBE_message_payload

Type SUBSCRIBE_message_payload (

filterLength of type Int16,

);

topic_filter of type UTF8String

Figure 6.3.5-3: Resulting 'DataType' specifications in TDL

For the transformation of 'EventOccurrence's into '‘Behaviour's, it is necessary to first derive the corresponding
"TestConfiguration' if no 'TestConfiguration' is specified for the 'StructuredTestObjective'. The derivation of the
"TestConfiguration' involves the following conventions:

Each 'EntityReference’ is transformed a 'ComponentType' and a 'GateType', where the 'GateType' accepts the
'‘DataType's resulting from the transformation of the 'LiteralValue's specified as arguments of the
'‘EventOccurrence'. The 'ComponentType' contains a 'Gatel nstance' of the transformed 'GateType'. If the
‘ComponentType, 'GateType, or 'Gatelnstance' already exists, no action is taken.

A 'TestConfiguration' is constructed with '‘Componentl nstance's of the 'ComponentType's resulting from the
transformation above. It is recommended to use naming conventions, annotations, or other conventionsto
indicate the roles of the '‘ComponentInstance's, otherwise the roles are set to a default value of ‘Tester' or 'SUT'
and need to be adjusted afterwards. While opposite 'EntityReference's are optional, it is recommended that
they are explicitly specified, otherwise an implicit ‘Tester' ‘ComponentInstance’ needs to be assumed and
constructed. If the assumption of an implicit 'Tester' does not hold, the transformed "TestConfiguration' may
need to be adjusted.

Within the "TestConfiguration’, '‘Connection's need to be created between interacting ‘Componentinstance's for
every 'EventOccurrence’. If a'Connection' already exists, no action is taken.

Conventions or comparison between 'TestConfiguration's are recommended to avoid duplicate identical
configurations.

Once a suitable TestConfiguration' is derived, 'EventOccurrence's can be transformed into '‘Behaviour's. There can be
different strategies, ranging from transforming 'EventOccurrence's into detailed ‘Interaction's, to transforming
‘EventOccurrence's into abstract ‘TestDescription' skeletons as containers for manually specified 'Behaviour's. This may
depend on the general test specification process and/or the level of detail of the structured test objective specifications.
Assuming detailed 'Message's as the target, the following conventions can be applied:

A 'TestDescription' using the 'TestConfiguration' resulting from the transformation above is constructed as a
container for the 'Behaviour's. For traceability and in general, it is recommended that the 'TestDescription'
references the 'StructuredTestObj ective' as its 'testObjective'.

In the simplest case, the "TestDescription' contains one '‘CompoundBehaviour' which contains the individual
'‘Behaviour's corresponding to the 'EventOccurrence's.

If desired, the 'CompoundBehaviour' may contain further ‘CompoundBehaviour's corresponding to the
structural blocks of the 'StructuredTestObjective', e.g. "Initial conditions’, "Expected behaviour”, "when/then"-
clauses, etc., so that the resulting 'TestDescription’ more closely reflects the structure of the corresponding
'StructuredTestObjective’. The additional 'CompoundBehaviour's may be annotated to clearly specify their
purpose and potentially also influence how tools represent or treat the individual 'Behaviour's within the
additional '‘CompoundBehaviour's.

The individual 'EventOccurrence's are transformed into corresponding '‘Behaviour's. In the absence of further
information, it needs to be specified what the default '‘Behaviour' should be. In general, suitable conventions
and 'Annotation’s are recommended to ensure easier transformation. Assuming that the target ‘Behaviour' isa
'Message, a'Message' is constructed with the source and target ‘GateReference's corresponding to the
'EntityReference's of the 'EventOccurrence’. The assumptions for the transformation of "TestConfiguration's
apply in this case aswell, particularly when no opposite 'EntityReference’ is specified. A 'DataUse’ isthen
constructed as the argument of the 'Message' based on the 'Literal Value' specified as the argument of the
'‘EventOccurrence’ and the 'DataType's resulting from the transformation above.

ETSI

40 ETSI TR 103 119 V1.3.1 (2022-03)

6.4 Defining Test Descriptions

6.4.1 Overview

In the absence of structured test objectives or other documents which can serve as a starting point, test descriptions can
be defined from scratch. The fundamental stepsin the process involve the definition of datafirst, then configurations,
finally the behaviour. The following examplesillustrate the different steps by means of the graphical syntax for TDL
with the help of the graphical editor.

6.4.2

Since the 'Generic TDL' diagram accommodates both the specification of data- and configuration-related elements, both
are contemplated together. If necessary, separate diagrams can be created instead to capture only data-related or
configuration-related elements separately. In the example shown in Figure 6.4.2-1 the one diagram approach is shown
for conciseness and also to show a complete overview of al relevant elementsin one place. On the top-left side the
predefined simple data types are shown. In the bottom part the verdict-related types and instances are shown. On the
right side behaviour-related definitions for an 'Action’ and a 'TestDescription' are shown. Finally, in the middle part, the
data types, datainstances, aswell as component and gate types and the test configuration are shown. The graphical
editor does provide some more flexibility with regard to the order of creation of the different elements. However, the
fundamental order remains the same - data, configuration, behaviour.

Data and Configuration

Simple Data Type Structured Data Type Structured Data Instance Action
String Position StartPosition MoveTo
Nieimbier == Parameter
Simple Data Type Member
X : Float position : Position
Boolean y : Float
Body
Simple Data Type Component Type
Float Unkt Wireless
Timer DataType:
Simple Data Type
Position
Integer
Variable
Test Description

TD_MOVE_OBJECT

Wifi : Wireless

Test Configuration

Parameter

Test Objective

Basic

Configuration

Basic
Tester D SuT
Controller : Unit | Wifi : Wireless Wifi : Wireless gpject : Unit Behaviour

Figure 6.4.2-1: Data and configuration specification in TDL using the graphical editor

Simple Data Instance

pass

Simple Data Instance

fail

Simple Data Instance

inconclusive

~i—'

~

4

Simple Data Type

Verdict

ETSI

41 ETSI TR 103 119 V1.3.1 (2022-03)

6.4.3 Test Behaviour and Time

The 'TDL Behaviour' diagram allows the visualization and specification of the behaviour of an individual
"TestDescription'. While the TestDescription' itself is defined within a'Generic TDL' diagram, including its name,
parameters, test configuration, and test objectives, the specifics of the behaviour are shown in a separate TDL
Behaviour' diagram. The example shown in Figure 6.4.3-1 illustrates the behaviour of the TD_MOVE_OBJECT'
"TestDescription'. In addition to the basic behaviour, temporal properties of the behaviour areillustrated with the help of
a'TimeLabel' and a ' TimeConstraint'.

Tester SUT

Controller : Unit Object : Unit

Wifi : Wifi :
Wireless Wireless

I [
| StartPosition I . @ StartTime
I

Action

0 | {StartTime}

|
|
| MoveTo
I
I

Figure 6.4.3-1: Test behaviour in TDL using the graphical editor

"TestDescriptionReference's enable the reuse of behaviour definitions. While in some other high-level test specification
languages the use of so-called "datatables’ has been gaining some popularity, TDL provides more sophisticated
facilities both for the definition of data and for the reuse of behaviour. A parameterized TestDescription’ can be
invoked multiple times with different data instances as shown in the example in Figure 6.4.3-2. In the
‘TC_MOVE_AROUND' TestDescription', the TC_MOVE_TO' 'TestDescription isinvoked four times to describe a
test sequence where the 'Object’ needs to move to four positions.

Test Description TC_MOVE_TO (target_position of type inferred_position)
uses configuration inferred_move_object {
Controller.inferred_gate sends parameter target_position to Object.inferred_gate;
perform action move_to (position = parameter target_position) on Object;

}

Test Description TC_MOVE_AROUND
uses configuration inferred_move_object {
execute TC_MOVE_TO (target_position = start_position);
execute TC_MOVE_TO (target_position = open_position);
execute TC_MOVE_TO (target_position = closed_position);
execute TC_MOVE_TO (target_position = end_position);

Figure 6.4.3-2: Test behaviour reuse in TDL using test description references

ETSI

42 ETSI TR 103 119 V1.3.1 (2022-03)

6.5 Transforming Test Descriptions into TTCN-3 Test Cases

6.5.1 Overview

One way to obtain executable test cases from TDL isto transform the test descriptionsinto TTCN-3 code. The
standardized mapping to TTCN-3in ETSI ES 203 119-6 [i.18] specifiesin great detail al the peculiarities that need to
be considered for the derivation of executable test casesin TTCN-3 from TDL. The basic steps remain fundamentally
the same, involve transforming the data definitions, the configuration-related definitions, as well as the behaviour
specifications. All the transformations have to take into account the semantic gaps between both languages, as well as
theintrinsic differences in the levels of abstraction. The standardized mapping is defined for locally ordered test
descriptions only. Thus, if totally ordered test descriptions are the starting point, these first need to be transformed into
locally ordered test descriptions, keeping in mind the differences in semantics and the additional constraintsthat are
imposed by locally ordered test descriptions. The prototypical implementation of the mapping within the TOP provides
automated trandlation for the essential parts necessary for the transformation of TDL 'TestDescription'sto TTCN-3 test
cases.

6.5.2 Data

To illustrate the mapping of the data-related elements, consider the example in Figure 6.5.2-1. It illustrates different
data definitions and data uses. The corresponding equivalentsin TTCN-3 are shown in Figure 6.5.2-2. The mappings
for data are pretty straightforward in this example. Although the use of data mappings is recommended, in which case
the respective mapping targets are used instead, it is also possible to generate basic data definitions in case no data
mappings are present. Annotations can be used to override assumptions.

//data types
Type SESSIONS (id1 of type Integer, id2 of type Integer);
Type MSG (ses of type SESSIONS, content of type String);

//data instances

SESSIONS s1{id1 =1, id2 = 2);
SESSIONS s2{id1 =11, id2 = 22);
MSG msgl(ses = s1, content = m1);

//value data instances
SESSIONS c_s1(id1 = 1, id2 = 2) with {VALUE;};
MSG cl{ses = s1, content = c1) with {VALUE;};

Component Type ct having {
//variables
variable v1 of type MSG with {VALUE;};
variable v2 of type MSG;
gate g of type gt;
}
Figure 6.5.2-1: Test data example in TDL

ETSI

43 ETSI TR 103 119 V1.3.1 (2022-03)

//data types

type record SESSIONS {
integer id1,
integer id2

}

type record MSG {
SESSIONS ses,
charstring content

}

//templates

template SESSIONS s1 := {id1:=1, id2:=2}

template SESSIONS s2 := {id1:=11, id2:=22}
template MSG msgl := {ses :=s1, content := "m1"}

//value -> constant
const SESSIONS ¢_s1 :={id1:=1, id2:=2}
const MSG cl := {ses := c_s1, content :="c1"}

type component ct {
//variables
var MSG v1;
var template MSG v2;
portgtg;
}
Figure 6.5.2-2: Test data equivalents for Figure 6.5.2.1 in TTCN-3

6.5.3 Configuration

With regard to test configurations, there are several concernsto address. TTCN-3 provides means for the dynamic
instantiation and management of test configurations. The essential parts of a configuration include the main test
component which plays a special role, zero or more parallel test components, as well as a unified system interface.
Thereis adistinction between connecting and mapping ports and there are some restrictions with regard to these. In
TDL the test configuration is defined upfront and remains static. TDL also provides a holistic view where the SUT can
be decomposed into multiple interconnected components. The example in Figure 6.5.3-1 illustrates a minimal test
configuration in TDL. The corresponding mapping in TTCN-3 isillustrated in Figure 6.5.3-2. A unified system
interface needs to be inferred in case there are multiple SUT components. The steps for instantiating and mapping /
connecting the components are encapsulated in afunction.

Gate Type defaultGT accepts
ACK, PDU, PDCCH, C_RNTI, CONFIGURATION ;

Component Type defaultCT having {
gate g of type defaultGT;
}

Test Configuration defaultTC {
create Tester SS of type defaultCT;
create SUT UE of type defaultCT ;
connect UE.gto SS.g;

Figure 6.5.3-1: Test configuration example in TDL

ETSI

44 ETSI TR 103 119 V1.3.1 (2022-03)

type port defaultGT_to_map message {

//this is a port type for SUT-Tester connections

inout charstring, PDCCH /* ACK, PDU, C_RNTI, CONFIGURATION ; */
}

type port defaultGT_to_connect message {

//this is a port type for Tester-Tester connections

inout charstring, PDCCH /* ACK, PDU, C_RNTI, CONFIGURATION ; */
1

type component MTC_CT {
//component type for MTC
//variable for the PTC(s) --TESTER component(s) in TDL
var defaultCT TESTER_SS;

}

type component defaultCT {
port defaultGT_to_map g_to_map;
port defaultGT_to_connect g_to_connect;

}

function defaultTC() runs on MTC_CT {
// Test Configuration defaultTC, mappings, connections
TESTER_SS := defaultCT.create;
map (TESTER_SS:g_to_map,system:g_to_map);

}

Figure 6.5.3-2: Test configuration related equivalents for Figure 6.5.3.1in TTCN-3

6.5.4 Behaviour

In terms of behaviour, TTCN-3 and TDL also have different assumptions. In TTCN-3, the focusis on the test system
view, where all components execute their behaviour concurrently and independently unlessthere is explicit
synchronization among them. TDL aimsto provide a global view with the possibility to specify both locally and totally
ordered behaviour, with explicit or implicit synchronization respectively. For the standardized mapping to TTCN-3 only
the local ordering is taken into consideration. User-defined mappings may also tackle the totally ordered behaviour. In
the example shown in Figure 6.5.4-1 alocally ordered 'TestDescription' isillustrated. The corresponding mappingsin
TTTCN-3 are shown in Figures 6.5.4-2, 6.5.4-3, and 6.5.4-4. Firgt, the default handling needs to be taken care of. This
involves the definition of atsteps to handle deviations from the specified behaviour as well as quiescence, which is
illustrated in Figure 6.5.4-2. Then the actual test behaviour from the test system's point of view istranslated to a
function asillustrated in Figure 6.5.4-3. Finally, in Figure 6.5.4-4 atest case is defined which takes care of activating
the default behaviour, instantiating the test configuration, as well as starting the actual test behaviour.

Test Description Implementation TD_7_1 3 1
uses configuration defaultTC {

SS.g sends pdcch {c_rnti=ue) to UE.g;

SS.g sends mac_pdu to UE.g;

UE.g sends harg_ack to SS.g with {
test objectives : TP1;

b

set verdict to PASS ;
SS.g sends pdcch {c_rnti=unknown) to UE.g;
SS.g sends mac_pdu to UE.g;

alternatively {
UE.g sends harg_ack to SS.g;
set verdict to FAIL;
tor{
gate SS.g is quiet for five ;
set verdict to PASS ;
}with {
test objectives : TP2 ;
1

Figure 6.5.4-1: Test behaviour example in TDL

ETSI

45

altstep to_handle_deviations_from_TDL_description_AS () {
[1 any port.receive {
setverdict(fail);
mtc.stop;
}
//if nothing happens, a timer is started
//before every receive instruction
//and the timer is here
//or we can leave the timeout for
//the execute instruction called with the optional
//timer parameter - but in this case
//the final verdict will be 'error’

}

altstep quiescence_handler_AS (timer quiescence) {
//for all quiescence that is not connected to a gate
[] any port.receive{
setverdict(fail);
mtc.stop;
}
[1 quiescence.timeout {
setverdict(pass);
}
}

ETSI TR 103 119 V1.3.1 (2022-03)

Figure 6.5.4-2: Required altstep definitions in TTCN-3

function behaviourOfTESTER_SS() runs on defaultCT {
timer quiescence;
activate(to_handle_deviations_from_TDL_description_AS());

g_to_map.send(modifies pdcch := {c_rnti := ue})
g_to_map.send(mac_pdu);
g_to_map.receive(harg_ack);

setverdict(pass);

/*Test Objective Statisfied: TP2 */

g_to_map.send(modifies pdcch := {c_rnti := unknown});
g_to_map.send(mac_pdu);

quiescence.start(five);

alt{
[1 g_to_map.receive(harqg_ack){

setverdict(fail);

}
[1 quiescence_handler_AS{quiescence);
/*Test Objective Statisfied: TP2 */

}

}

Figure 6.5.4-3: Behaviour mapping for Figure 6.5.4-1 in TTCN-3

testcase TD_7_1_3_1() runs on MTC_CT
system defaultCT
{
activate(to_handle_deviations_from_TDL_description_AS());
defaultTC();
TESTER_SS.start(behaviourOfTESTER_SS());
all component.done;

}

Figure 6.5.4-4: Test case integrating all steps for mapping Figure 6.5.4-1to TTCN-3

ETSI

46 ETSI TR 103 119 V1.3.1 (2022-03)

7 UML Profile Editor

7.1 Scope and Requirements

The UML Profilefor TDL (UPATDL) was developed to enable the application of TDL in UML based working
environments. UPATDL introduces TDL -related domain-specific concerns to the UML meta-model by means of
stereotypes which extend UML meta-classes with additional properties, relations, or constraints. The implementation of
the UPATDL covers basic functionalities to support the creation and manipulation of UML models applying the
UPATDL profile.

NOTE: TheUML profile editor description are not aligned with the latest version of the TDL specification parts,
but are related to an earlier release of the TDL specification parts.

7.2 Architecture and Technology Foundation

The UML based editor is also built on top of the Eclipse platform. At ahigh level, it contains two main components: the
UML Profilefor TDL (UPATDL) implementation described in ETSI ES 203 119-1 [i.13], annex C, and the facilities for
editing UPATDL models. The profileis static. This allows the implementation of derived properties. The profile
implementation is independent of the editing facilities provided in the context of this reference implementation and can
be used by other UML tools. A model-to-model transformation from UPATDL modelsto TDL Ecore models allows
generating TDL in the XMI format specified in ETSI ES 203 119-3[i.15].

The TDL profile implementation is located in the ‘org.etsi.mts.up4tdl’ project, while the validation implementation is
located in the ‘org.etsi.mts.up4tdl.validation' project. The implementation of the editing facilities can be found in the
‘org.etsi.mts.up4tdl.diagram.*' projects. The 'ElementType' framework is used for manipulating model elementsin
Papyrus. Specialized 'ElementType's are in located in the 'org.etsi.mts.up4tdl.service.type' project.

7.3 Implemented Facilities

7.3.1 Applying the Profile

Overview

A UML profile allows users to build models with additional constraints and specific properties, while till relying on the
UML meta-model. A UPATDL model isthen aUML model with additional constraints and properties tailored towards
the domain of TDL.

Stereotype

The extension mechanism of aUML profileis based on stereotypes. A stereotype of a UML profile always extends
(directly or indirectly) a UML meta-class. For example the ‘Componentinstance' concept from TDL extends the
'Property’ concept of UML and it has the specific property alowing usersto defineitsrole (‘'Tester' or 'SUT).

Applying the UP4TDL profile on a UML model

Applying UPATDL concepts on aUML model implies the application of UPATDL stereotypes on UML elements. To
do this, the UPATDL profile (or one of its sub-profiles) will be added to the package (or the model) containing the UML
element as shown in Figure 7.3.1- 1.

ETSI

a7 ETSI TR 103 119 V1.3.1 (2022-03)

TDL Model

UmL Profile applications

Commonts MName Location

Etnile B4 UPATDL pathmap://UPATDL_PROFILE/updtdl.profile.urml

Advanced B% TestConfigurations pathmap://UPATDL_PROFILE/updtdl.profile.urnl
B% Datas pathrmap://UP4TDL_PROFILE/updtdl.profile.uml
BE% DatalUses pathrmap://UP4TDL_PROFILE/updtdl.profile.uml
E% Behaviors pathrmap://UP4TDL_PROFILE/updtdl.profile.uml
BE% CombinedBehaviors pathrmap://UP4ATDL_PROFILE/updtdl.profile.uml
E% AtomicBehaviors pathrmap://UP4TDL_PROFILE/updtdl.profile.uml
B% TimeConcepts pathrmap://UP4TDL_PROFILE/updtdl.profile.uml

Figure 7.3.1-1: UML profile application

The stereotype applied on the UML model allow the specification of stereotype properties. In Figure 7.3.1-2, the
stereotype ‘Componentinstance' is applied to a'UML::Property'. This allows the user to specify the role property, in this
case, 'tester'.

] Properties 53

= Componentlnstancel : ComponentTypel

oL Applied stereotypes:

UML 4 ComponentInstance (from UP4TDL:TestConfigurations)
. [& role: Role [1] = tester

Comments

Profile

Style

Appearance

Figure 7.3.1-2: Stereotype property specification

7.3.2 Hints for the Transformation of UP4TDL Models into TDL Models

Overview

Most trand ations are straightforward one-to-one mappings between UPATDL concepts and concepts from TDL
meta-model. The exceptions are detailed below.

Elementimport

In TDL, 'ElementImport' can reference severa 'Element's, whilein UML, the corresponding concept
'UML::Elementimport' concept (direct mapping without stereotype) can only reference one. So the model-to-model
transformation can potentially turn one 'TDL::Elementimport' into several 'UML::Elementimport's.

SimpleDatalnstance and StructuredDatalnstance

Both 'SimpleDatal nstance' and 'StructuredDatal nstance' are mapped to the same concept 'UML ::InstanceSpecification'.
To determine whether it isa simple or a structured instance, one needs to check the type of the
‘UML.::InstanceSpecification'. If the 'InstanceSpecification's type is a 'PrimitiveType, then it is a'SimpleDatal nstance,
otherwise it is a'StructuredDatal nstance'.

Property Identification

There are two direct mappings from 'UML ::Property’ to TDL concepts - for 'TDL::Variable' and "TDL::Member'. In
order to determine which kind of property it is, one needs to check the container. If the property iscontained in a
'‘Componentinstance, then it correspondsto a'Variable'. Otherwise, if the property is contained in a'DataType', then it
corresponds to a 'Member'.

ETSI

48 ETSI TR 103 119 V1.3.1 (2022-03)

7.3.3 Editing Models with the Model Explorer

Asshownin clause 6.2.1, UPATDL elements can be created from UML elements by applying a stereotype on them.
Both steps can be performed in a row from the model explorer, using TDL specific 'New TDL Child' creation options.
The model elements are sorted in the 'New TDL Child" menu according to the diagram they are supposed to appear in,
asshownin Figure 7.3.3-1.

4 = TDL Model
§ Q IS S J— F Pronerties 57
Developer r
- & «Com P . .
Diagrd S R .h» TestConfigurationl
Mew SysML Child r TestCenfigurationl
MNew Child L3 |
instances
Mew Relationship 3
Mew TOL Child | = Annotation
Mew Diagram b | = TestObjective Comment
E] MNew Table ¥ | B TestObjective Class
M Delete Delete TestConfigurations Concepts P
F initi 4
]l Rename B Data Definitions Concepts
TestDescription Concepts »
ST sl Tirme Concepts 3
Redo Ctrl+Y

Figure 7.3.3-1: Adding TDL-stereotyped elements

7.3.4 Editing TDL-specific Properties with the TDL Property View

Editing the properties of a UPATDL model with the standard property view, can be inconvenient for two reasons. On
the one hand, some properties from the UML base meta-class are not relevant for the associated TDL 'Element’. On the
other hand, some properties of a TDL 'Element’ are not properties of the base meta-class. Even when the properties of a
TDL 'Element' and the base UML 'Element' match, they might not have the same name. Editing a UPATDL model
would then require expertise in both UML and TDL, as well as knowledge of the UPATDL profile specifics. Thereisa
‘TDL Tab' for the property view, which makes the task of editing TDL specific properties easier. Figure 7.3.4-1
illustrates the property view of a'Componentlnstance', which containsits 'Name', 'Type', and 'Role' properties.

[C] Properties 532

= Componentlnstancel : ComponentTypel

TDL Rele tester

S MName Componentlnstancel
Comments

Profile Type E ComponentTypel

Figure 7.3.4-1: Editing TDL-specific properties

7.3.5 Editing Models with TDL-specific Diagrams

Overview

Editing a UPATDL model can be done using the property view and model explorer only. In order to provide a graphical

representation of amodel being edited, TDL Diagrams specializing UML Diagrams are implemented. There are 3 kinds
of TDL Diagrams: TDL DataDefinition Diagram, TDL TestConfiguration Diagram and TDL TestDescription Diagram.
There are two main editing facilities for all of these diagrams: the creation of an element using the 'palette’ and the 'drag
and drop' of an existing element from the model explorer.

The TDL-specific diagrams can be initialized from the model explorer as shown in Figure 7.3.5-1.

ETSI

The TDL DataDefinition Diagram

4 |B2 TDLM

49

ETSI TR 103 119 V1.3.1 (2022-03)

2 =

E3)

A
&

Y A

Developer
Profiles

Mew Child

Mew Relationship
Mew TDL Child
Mew Diagram
Mew Table
Delete

Rename

Undo

Redo

Cut

Copy
Paste

Refactor
Import
Export
Validation

Create Submodel

Delete

F2

Ctrl+Z
Ctrl+Y

Ctrl+X
Ctrl+C
Ctrl+V

Activity Diagram

Class Diagrarm
Communication Diagram
Component Diagram
Compaosite Structure Diagram
Deployment Diagrarm
Interaction Overview Diagram
Package Diagram

Sequence Diagram

d =& o o® B Yol o 3

StateMachine Diagram

HE TDL DataDefiniticn Diagram

TDL TestCenfiguration Diagram

Er{' TDL TestDescription Diagram
, Timing Diagram

_’.
g= UseCase Diagram

Figure 7.3.5-1: Creating TDL-specific diagrams

The DataDefinition Diagram is based on the UML Class Diagram. It is used to represent the following TDL Elements:

StructuredDataType
SimpleDataType

MemberA ssignment

Member

DataElementMapping

DataResourceMapping

ParameterMapping

Datalnstance

GateType

The palette for the TDL DataDefinition diagram is shown in Figure 7.3.5-2.

ETSI

50

StructuredDataType
[Z] Datalnstance
GateType
SimpleDataType

¥ Memberfssignment

= Member

ETSI TR 103 119 V1.3.1 (2022-03)

&5 DataElementMapping (AssociationClass)

=] DataResourceMapping (Class)
E ParameterMapping (Class)

Figure 7.3.5-2: DataDefinition Diagram palette

The TDL TestConfiguration Diagram

The TestConfiguration Diagram is based on the UML Composite Diagram. It is used to represent the following TDL

elements:

TestConfiguration
Componentinstance
ComponentType
Gatelnstance
Connection

Variable

The palette for the TDL TestConfiguration Diagram is shown in Figure 7.3.5-3. An example of the TDL
TestConfiguration Diagram is shown in Figure 7.3.5-4.

[=TDL

Figure 7.3.5-3: TestConfiguration Diagram palette

ComponentTypel

=] TestCenfiguration (Class)

E ComponentType (Class)

=1 Componentlnstance (Property)
& Connector

=1 Variable

o Gatelnstance

TestConfigurationl

[] gatel: GateTypel PP
+ Variablel: Integer

SUTComponentType

Componentlnstancel: Componenﬂypeﬂ
«ComponentInstances
role=tester

gatel

| ComponentInstance: SUTComponentType

ole=SUT

=Componentlnstances

gatel

I:E gatel: GateTypel

Figure 7.3.5-4: TestConfiguration Diagram example

ETSI

The following specific behaviours have been implemented for the TestConfiguration Diagram:

Editing a TDL TestDescription Diagram

The TestDescription Diagram is based on the UML Sequence Diagram. It is used to represent the following TDL

Dragging a'ComponentType to a'Componentinstance' specifies the type of the 'Componentinstance'.
Dragging a'GateType' to a 'Gatel nstance' specifies the type of the 'Gatel nstance'.

Dragging a'Gatelnstance' from the palette on a'Componentl nstance’ adds it to its ‘ComponentType'.

elements:

The palette for the TDL TestDescription Diagram is shown in Figure 7.3.5-5.

TestDescription

Annotation

Comment

Lifeline

CombinedBehaviours:

Block
CompoundBehaviour
AlternativeBehaviour
ParalleleBehaviour
UnboundedL oopBehaviour
BoundedL copBehaviour
Conditional Behaviour
Exceptional Behaviour
InteruptBehaviour

PeriodicBehaviour

AtomicBehaviours:

ActionReference
Assignment

Interaction
TestDescriptionReference

VerdictAssignment

51

ETSI

ETSI TR 103 119 V1.3.1 (2022-03)

52 ETSI TR 103 119 V1.3.1 (2022-03)

== AtomicBehavior 40

Eﬁ} ActionReference (Behavior Execution
Specification)

=1 Annetation
3 Assignment
=1 Comment
B Interaction
! Lifeline
El] TestDescriptionReference
3 VerdictAssignement
= CombinedBehavior 0
[| Bleck
Ell CompoundBehavior
EL] AlternativeBehavior
ELl ParallelBehavior
EL UnBoundedLoopBehavior
EL BoundedlLoopBehavior
El] ConditionalBehavior
L] ExceptionalBehavior
InterruptBehaviour
El] PeriodicBehavior

m

Figure 7.3.5-5: TestDescription Diagram palette

ETSI

53 ETSI TR 103 119 V1.3.1 (2022-03)

8 Using TDL with External Data Type Specifications

8.1 Generalized Process

8.1.1 Process Overview

TDL Tooling —> Process
[- Process (optional)
Target Execution Platform Mapping (trace)
Data Type Specification . Adaptation*
(OpenAPl / ASN.1/XSD / ...) @; Sptation > Reference
oY : G
Y : "
Generator / Compiler TDL Data Type Importer User / Test Generator
o] :
OF ; o) @1
N Data Type Implementation A TDL Data Type Model G) TDL Behaviour Model
(Java / JavaScript / Python / ...) G) (generated) (user defined or generated)
13 l
tfmapping not sufficient Gl) Generator / Interpreter <9>

OF; '

Encoded or raw data
— Test Executable Ié
® e
. . Encode d d f
—] Encoding / Decoding neode daain adapter firaw Adapter
SUT/IUT

Figure 8.1.1-1: Overall process for importing existing external data type specifications in TDL

Formalised data type specifications are sometimes provided as part of the base specification for the systemsto be tested.
These can be in the form of protocol definitions, e.g. including data type definitionsin ASN.1, or entire interface
specifications, e.g. asinformative or normative OpenAPI ™ specifications. Requiring TDL users to redefine the data
types present in such specifications can be very time-consuming and error-prone, especially when the base
specifications continue to evolve and the test specifications need to be continuously aligned. Additionally, data
specificationsin TDL are inherently abstract and need to be mapped to concrete data implementations in the target
execution platform. The existing formalised data type specifications are also used for the system implementation, where
code generators and compilers provide data type implementations based on the provided specifications. Ideally, the tests
would make use of the generated data type implementations as well.

In order to make TDL aware of the existing formalised data type specifications, they need to be "imported” in TDL in
the sense that there needs to be a TDL data type model which contains all the relevant information from external data
type specifications, including mappings to the source from which the data types are derived, for traceability and other
purposes. Users or test generation tools can then produce TDL behaviour models and TDL data instances using the TDL
data types derived from the external data type specifications. Asthere may be differences between the capabilities of the
external datatype specification language and TDL, there may also be different ways of deriving the TDL data types. A
set of guidelines can be helpful to ensure consistent derivation and mapping. For example, some languages support
nested anonymous type definitions, whereas TDL only supports "flat" data type definitions. In such cases, the
guidelines indicate how the nested type definitions can be flattened by extracting them and following certain naming
conventions, e.g. based on the name of the containing data definitions. Corresponding tool support is essential for larger
data type specifications. Following an overview of the overall process and an example instantiation, specific guidelines
for OpenAPI™ and ASN.1 are provided in the subsequent clauses.

ETSI

54 ETSI TR 103 119 V1.3.1 (2022-03)

The overall process for the importing and use of data types from OpenAPI™, ASN.1, and other specificationsis
outlined in Figure 8.1.1-1. The following aspects need to be considered:

Data type specifications are used as input (1) for generators or compilers producing (2) data type
implementations in the target execution platform, such as Java™, JavaScript™, or Python™.

The data type specifications are al'so used as input (3) for the TDL data type importer, which generates (4) a
TDL datatype model.

The data type model includes mappings to the data type specification (5) for traceability and to the data type
implementation (6) for operationalisation.

TDL behaviour models (7), which are either defined manually or generated automatically, import and use the
TDL datatype model (8) generated from the data type specification.

The TDL behaviour models and the TDL data type model are then processed by a generator or an interpreter
(9 and 10) to produce atest executable for the target platform (12). The generator or interpreter may also need
to make use of the data type implementation in some cases (11).

The test executable uses (13) the data type implementation and interfaces (16) with the adapter to
communicate with the SUT / IUT (18).

For the communication with the SUT / IUT, the data usually needs to be encoded and decoded. Depending on
the circumstances, the test executable may interface with the encoding and decoding functionality directly (14)
or the encoding and decoding may be handled by the adapter (17).

The encoding and decoding functionality generally relies on the data type implementation (13), but may also
need to make use of the original data type specification (15) if the data type implementation does not include
all the necessary information.

The outlined processis simplified and generalized. In practice, there may be different stagesin the TDL behaviour
model specification, including the definition of structured test objectives, the definition of totally ordered test
descriptions, as well as the refinement of the totally ordered test descriptionsinto locally ordered test descriptions.
Depending on the context, some of the stages may be required or omitted. The overall process remains the same as only
the level of detail in the TDL behaviour modelsis affected in the different stages. While structured test objective
specifications may not necessarily need to be concerned with details of the target execution platform, including the data
type implementations, the test executable, and the adaptation layer, the mapping information for the target platform can
be already provided by the TDL data type importer from the start for reference, or be added later.

ETSI

55 ETSI TR 103 119 V1.3.1 (2022-03)

8.1.2 Example Instantiation

TDL Tooling —> Process

Process (optional)
Mapping (trace)
Adaptation* ———> Reference

Target Execution Platform

i
typesstring
aiors €--
oo array

tens
type:string

obj ect

ype: string

pe:array

tems
sref: ' r,mnem s/ schemas/ Li br ar yBook'

)

Generator / Compiler I | TDL Data Type Importer I | User / Test Generator

o1 o))

public LibraryBook title(String title) {
this.title = title;
return this;

Package gener ated_f rom nappi ng_conventi ons_yant { Package mappi ng_usage {

Type string; Inport all from generated_from mappi ng_conventions_yan ;
) Use " mappi ng_convent i o 11" as SCURCE_MAPPING //(5) //exanpl e data instances
Use “generated/java’ as TARGET_MAPPING //(6) Library exanpl eLibrary (
address = * Sophi a- Anti po nce’,
Type Li brar yBook (books = {

title of type string, new Li braryBook(

authors of type LibraryBook___aut hors title = TP &

@avax. annot ati on. Nul | abl e
@Api Nbdel Proper ty(val ue = "")
public String getTitle() {
return title;
))i authors = {
ol I ection LibraryBook___authors of type string; Martti Kadri k",
public void setTitle(String title) { Finn Kristoffer

this.title = title; Map LibraryBook to "/ component hemas/ Li brar yBo ta

} (€= =t o in SOURCE_MAPPI NG as Li braryBook_SOURCE_MAPPI NG; }
Map LibraryBook to “LibraryBook),
public LibraryBook authors(List<String> authors) { in TARGET_MAPPING as Li braryBook_TARGET_MAPPI NG new Li braryBook(
this.authors = authors; title = >duction to TOL
return this; Type Library ().
} address of type string, TDLTut ori al
books of type Library___books }
public LibraryBook addAuthorsitem(String authorsitem {):):
if (this.authors == null) { ol lection Library___books of type LibraryBook; Li braryBook TOLTutorial (
this.authors = new ArrayList<string>(); Mep Library to mponent mas/ Li bra title = “Getting Started wit
) in SOURCE_MAPPING as Li brary_SOURCE_MAPPI NG)
thi s aut hors. add(aut hor sl tem ; Mep Library to r
return this; in TARGET_MAPPI NG as Li brary_TARGET_MAPPI NG I/ exanpl e behaviour nodel s
} } }

Figure 8.1.2-1: Example instantiation of the overall process from Figure 8.1.1-1

A concrete example for the outlined processisillustrated in Figure 8.1.2-1. It includes snippets from the following
artefacts:

. Given a data type specification in OpenAPI ™ (1), the corresponding tooling can be used to generate data type
implementationsin Java (2), JavaScript, and other target languages.

. Based on the data type specification, the TDL data model (4) including the mappings to the data type
specification (5) and the data type implementation in Java (6) are generated.

. A user then specifies the TDL data instances and behaviour models (7) using the generated TDL data model
(8).

e With the help of the above artefacts, atest executable can be assembled either by means of code generation or
by means of interpretation. Corresponding encoding and decoding functionalities may be provided by third-
party components or rely on the generated data type implementation.

While this exampleillustration is built around an OpenAPI™ specification with Java as the target platform, the same
process can be applied to other target platforms or other kinds of data type specifications, such as ASN.1 specifications.
The TOP provides basic capabilities for importing data type specifications from OpenAPI™ and ASN.1, which can be
optionally installed in addition to the core meta-model implementation and the different editors.

ETSI

56 ETSI TR 103 119 V1.3.1 (2022-03)

8.2 Using TDL with OpenAPI™ Specifications

8.2.1 Overview

The OpenAPI ™ Specification [i.31] (previously known as the Swagger Specification) is anotation for the specification
of interfaces for RESTful web services. In addition to data-related information, OpenAPI™ specifications also include
paths to identify resources by means of URLS, along with applicable operations, and corresponding request and
response specifications. While these can be used to derive skeletons for structured test objectives and test descriptions
asoutlined in ETSI EG 203 647 [i.32], within the present document, the focusis solely on data-related information.
Further information and guidelines regarding the use of OpenAPI ™ for specification and testing at ETSI can be found
in ETSI EG 203 647 [i.32].

In addition to a set of primitive data types, OpenAPI™ provides means for defining structured data types. The
specification is an extension of the JISON schema [i.33]. Data type schemas may be defined inline or in a schemas
object which enables reuse of those definitions. In the present document, only the latter is considered. Future editions
may add guidelines for inline data definitions as well.

The built-in primitive typesin OpenAPI ™ are mapped to TDL according to the conventionsin Table 8.2.1-1. The
mapping relieson a TDL library of predefined types and constraints. As OpenAPI ™ specifications may include format
specifications for types, a generic constraint (OpenAPIFormat) with corresponding quantifiers may be used to capture
thisinformation in the derived TDL data model. Non-standard formats may be present in an OpenAPI™ specification
aswell. The generic constraint can be used for such formats as well.

Table 8.2.1-1: OpenAPI™ Built-in Type Mapping

OpenAPI™ Type Type in TDL Constraints Formats and Patterns
integer Integer OpenAPIFormat int32, int64
number Real OpenAPIFormat float, double
string String OpenAPIFormat e-mail, password
boolean Boolean

A structured type in OpenAPI™ is either an ‘array’ with member type declaration ('items' object) or an 'object’ with a set
of properties (‘properties object). Consequently, the transformation of OpenAPI™ datatypesinto TDL datatypes
involves the following conventions:

. If the data type corresponds to one of the primitive data types within the OpenAPI™ library asindicated in
Table 8.2.1-1, the Type' is mapped to the corresponding 'SimpleDataType' from Table 8.2.1-1.

. If the datatypeisan 'object’, it is mapped to a'StructuredDataType' with a'name’ corresponding to the name of
the OpenAPI™ data type.

. If the datatypeisan 'array’, it is mapped to a'CollectionDataType' with a'name’ corresponding to the name of
the OpenAPI™ data type. The data type indicated in the 'items' object is mapped to the corresponding
'DataType' asthe 'itemType' of the 'CollectionDataType'. If 'minltems and 'maxItems are specified for the
‘array', the corresponding predefined constraints need to be added to the 'CollectionDataType'.

. Each item in the 'properties’ object of the '‘object’ object is mapped to a'Member' within the corresponding
'StructuredDataType' with a'name’ corresponding to the property. If a'Member' with the same 'name’ exists,
no action istaken. All 'Member's are to be marked as optional, except for 'Member's corresponding to
properties which are listed in the 'required' array of the 'object'. The 'dataType' of the 'Member' corresponds to:

- A new 'DataType' corresponding to the ‘type' of the property with a'name' prefixed with the 'name’ of the
containing 'StructuredDataType' in case a property is of ‘type’ 'object’.

- A 'SimpleDataType' corresponding to the 'type' of the property in case the 'SimpleDataType' is one of the
predefined 'DataType's within the OpenAPI™ library asindicated in Table 8.2.1-1.

. Nested 'objects are transformed according to the conventions above.

. If the property contains an ‘enum'’ array, it is mapped to an 'EnumDataType' with a‘'name’ corresponding to the
name of the property. The items contained in the ‘enum'’ array are mapped to 'SimpleDatal nstance's of the
'EnumDataType' that are contained in the 'EnumDataType'.

ETSI

57 ETSI TR 103 119 V1.3.1 (2022-03)

e Corresponding 'DataElementMapping's are created for the defined data types. 'DataElementMapping's for
'DataType's derived from anonymous (inline) data types are not created. The 'DataElementMapping's may
include target platform mappings in addition to the source mappings to the OpenAPI ™ specifications.

8.2.2 Examples

As an example consider the OpenAPI™ snippet shown in Figure 8.2.2-1 and the derived TDL data type model snippet
showing in Figure 8.2.2-2. Corresponding 'StructuredDataType's are created for both the ‘Library' and 'LibraryBook'
data types, aswell as for the nested anonymous 'object's and 'array's, which are prefixed with 'Library __"and
‘LibraryBook " accordingly. Thiswould also apply to additional anonymous 'object's and ‘array’s nested further
within the 'object's. The 'dataType's for the corresponding ‘Member's are then set accordingly. Finally, both source and
target (for Javain this example) 'DataElementMapping's are provided.

components:
schemas:
LibraryBook:
type: object
properties:
title:
type: string
authors:
type: array
items:
type: string
reviewers:
type: array
items:
type: string
Library:
type: object
properties:
address:
type: string
books:
type: array
items:
Sref: '#/components/schemas/LibraryBook'

Figure 8.2.2-1: OpenAPI™ example including nested anonymous data types

Type LibraryBook {
String title,
LibraryBook___authors authors,
LibraryBook___reviewers reviewers
)
Collection LibraryBook___authors of String
Collection LibraryBook___reviewers of String

Type Library {
String address,
Library___books books

)

Collection Library___books of LibraryBook

Use "mapping_conventions.yaml|" as SOURCE_MAPPING
Use "generated/java" as TARGET_MAPPING
Map LibraryBook to "#/components/schemas/LibraryBook"
in SOURCE_MAPPING as LibraryBook_SOURCE_MAPPING
Map LibraryBook to "LibraryBook"
in TARGET_MAPPING as LibraryBook_TARGET_MAPPING
Map Library to "#/components/schemas/Library"
in SOURCE_MAPPING as Library_SOURCE_MAPPING
Map Library to "Library"
in TARGET_MAPPING as Library_TARGET_MAPPING

Figure 8.2.2-2: Corresponding flattened TDL definitions for Figure 8.2.2-1

ETSI

58 ETSI TR 103 119 V1.3.1 (2022-03)

8.3 Using TDL with ASN.1 Specifications

8.3.1

ASN.1 (Abstract Syntax Notation One) Recommendation ITU-T X.680 [i.34] is a standardized language for the
specification of datatypes and data structures. As the name implies, the specifications are abstract and therefore
independent of a specific target platform. The specifications provide the information about the structure and encoding of
the data which can be processed by generators or compilersto produce data type implementations for the desired target
language and platform, including codecs for encoding and decoding the data for transmission. While TDL is not
concerned with the encoding and decoding at the specification level, in many cases the test execution platform needs to
include codes for the operationalisation of the tests.

Overview

When ASN.1 specifications are imported in TDL, the level of detail may vary from the bare essentials, including the
datatypes only, to including additional constraints, and even encoding information (where applicable). The additional
information can be utilised for early validation of the TDL specifications. Whileit is also possible to specify constant
valuesin ASN.1, these are not covered in the guidelines at present.

ASN.1 includes a set of built-in types, some of which are mapped to TDL according to the conventionsin Table 8.3.1-1.
The mapping relieson a TDL library of predefined types and constraints. The generic constraints (ASN1String,
ASN1DateTime, ASN1Real, ASN1Objectldentifier) may be used to provide additional patterns for the contents of data
instances of the corresponding data typesto facilitate validation. Alternatively, atool may implement implicit validation
based on the underlying types.

Table 8.3.1-1: ASN.1 Built-in Type Mapping

ASN.1 Type Type in TDL Constraints Examples and Patterns
BITSTRING BITSTRING ASN1String "1101'B", also "Named BITS" () : [0]1]+'B
OCTETSTRING OCTETSTRIN |ASN1String "A3B2'H", "10010'B": [A-F|0-9]+'H

G
BMPString BMPString ASN1String " 16 bit Character
IA5String IA5String ASN1String "Hallo": 8 bit ASCII
GeneralString GeneralString |ASN1String : all graphic/character sets, SPACE, DELETE
GraphicString GraphicString |ASN1String : all graphic sets, SPACE
NumericString NumericString |ASN1String "34 8": [0-9, SPACE]+
PrintableString PrintableString |ASN1String "Black, Blue + Brown": [a-z,A-Z,'()+,-.?:/=,SPACE]
TeletexString TeletexString ASN1String :CCITTT.101
T61String T61String ASN1String :CCITTT.101
UniversalString UniversalString |ASN1String : 1ISO10646
UTF8String UTF8String ASN1String : ASCII + Control
VideotexString VideotexString |ASN1String :CCITT T.100, T.101
VisibleString and VisibleString ASN1String : ASCII Printing
1ISO646String
UTCTime UTCTime ASN1DateTime "991231235959+0200":
YYMMDDhhmm([ss]Z
GeneralizedTime GeneralizedTim |ASN1DateTime "20200425175522.214+0200":
e YYYYMMDDHH[MMI[SSI.fff]]]Z (ISO 8601 [i.38])
DATE Date ASN1DateTime "1636-09-18":
YYYY-MM-DD
TIME-OF-DAY TimeOfDay ASN1DateTime "18:30:23"
HH:mm:ss
DATE-TIME DateTime ASN1DateTime "2000-11-22T18:30:23":
YYYY-MM-DDThh:mm:ss
INTEGER Integer
REAL Real ASN1Real
BOOLEAN Boolean
NULL Null
OBJECT Objectldentifier |ASN1Objectldentifier |id-ssp OBJECT IDENTIFIER ::= { itu-t (0) identified-
IDENTIFIER organization (4) etsi (0) smart-secure-platform (3666)
partl (1) }
RELATIVE OBJECT |Objectldentifier |ASN1Objectldentifier |Relative_id_ssp RELATIVE-OID ::= { smart-secure-
IDENTIFIER platform (3666) partl (1) }

ETSI

59 ETSI TR 103 119 V1.3.1 (2022-03)

The transformation of ASN.1 datatypesinto TDL data types involves the following conventions:

If the data type corresponds to one of the predefined 'DataType's within the ASN.1 library asindicated in
Table 8.3.1-1, the ASN.1 Type' is mapped to the corresponding TDL 'SimpleDataType' from Table 8.3.1-1.
For the supported ASN.1 types the following additional restrictions apply:

- NULL typeisonly used in the scope of a Choice type where if there is no information, the corresponding
aternativeis activated.

If the ASN.1 data typeisa'SequenceType, a'SetType', or a'ChoiceType, it is mapped to a
'StructuredDataType' with a'name' corresponding to the name of the ASN.1 datatype. In the case of
'‘ChoiceType, a'Congtraint’ with the predefined 'union’ ‘ConstraintType' is applied to the corresponding
'StructuredDataType', and al 'Member's are marked as optional.

If the ASN.1 data typeis a'SequenceOf Type' or a'SetOf Type, it is mapped to a 'CollectionDataType' with a
'name’ corresponding to the name of the ASN.1 data type. The 'Type' indicated for the 'SequenceOf Type' or
'SetOf Type' is mapped to the corresponding 'DataType' as the 'itemType' of the 'CollectionDataType'.

Each 'ComponentType' in the 'ComponentTypeList' of the 'SequenceType', 'SetType', or 'ChoiceType' is
mapped to a'Member' within the corresponding 'StructuredDataType' with a 'name' corresponding to the
'identifier' of the 'ComponentType'. If a'Member' with the same 'name’ exists, no action istaken. The
'dataType' of the 'Member' corresponds to:

- A new 'DataType' corresponding to the 'Type' of the '‘ComponentType' with a'name’ prefixed with the
‘name’ of the containing 'StructuredDataType' in case a'ComponentType' is directly contained within
another ‘ComponentType'.

- A 'SimpleDataType' corresponding to the 'Type' of the '‘ComponentType' in case the 'SimpleDataType' is
one of the predefined 'DataType's within the ASN.1 library asindicated in Table 8.3.1-1.

Nested 'ComponentType's are transformed according to the conventions above.

If the ASN.1 datatypeis an 'EnumeratedType, it is mapped to an 'EnumDataType' with a 'name'
corresponding to the name of the ASN.1 data type. The contained 'Enumerationltem's are mapped to
‘SimpleDatal nstance's of the 'EnumDataType' that are contained in the 'EnumDataType'. There are no
guidelines for 'NamedNumber's at present.

Corresponding '‘DataElementMapping's are created for the defined data types. 'DataElementMapping's for
'DataType's derived from anonymous (inline) data types are not created. The 'DataElementMapping's may
include target platform mappings in addition to the source mappings to the ASN.1 specifications.

For the following built-in types not mentioned in Table 8.3.1-1, the transformations to TDL types are done as follows:

UnrestrictedCharacterStringType: Replace the CHARACTER STRING type with its associated type obtained
by expanding inner subtyping in the associated type of the CHARACTER STRING type (see clause 44.5 of
Recommendation ITU-T X.680 [i.34]) to the corresponding TDL type.

EmbeddedPDV Type: Replace any EMBEDDED PDV type with its associated type obtained by expanding
inner subtyping in the associated type of the EMBEDDED PDV type (see clause 36.5 of Recommendation
ITU-T X.680 [i.34]) to the corresponding TDL type.

External Type: replace the EXTERNAL type with its associated type obtained by expanding inner subtyping in
the associated type of the EXTERNAL type (see clause 37.5 of Recommendation ITU-T X.680 [i.34]) to the
corresponding TDL type.

InstanceOf Type: Replace the INSTANCE OF type with its associated type obtained by substituting
INSTANCE OF DefinedObjectClass by its associated ASN.1 type (see clause C.7 of Recommendation
ITU-T X.681[i.36]) and map all ASN.1 typesto their TDL types according to Table 8.3.1-1.

ETSI

60 ETSI TR 103 119 V1.3.1 (2022-03)

8.3.2 Examples

For example, as shown in Figure 8.3.2-1 and Figure 8.3.2-2, for the 'NodeDescriptor' and related type definitions taken
from [i.35], a corresponding 'StructuredDataType' is created, including derived 'DataType's for the nested 'aNode'
anonymous 'ContentType', aswell asthe 'aLink’, ‘aFile, and 'aDirectory’ anonymous '‘ContentType's nested further
within the 'aNode' 'ContentType'. The 'dataType's for the corresponding 'Member's are then set accordingly. The
‘DataType' for the 'Nodel dentity' type as well as the derived 'DataType' for the 'aNode' 'Member' are assigned a
‘Constraint’ with the ‘union’ 'ConstraintType'.

NodeDescriptor ::= SEQUENCE
{
aNodeName NodeName, -- Node name
aShortName UUID, -- Short node name
aNode CHOICE
{
aLink SEQUENCE
{
aLlinkedFileldentity Nodeldentity, -- Identity of the linked SSP file
aLinkedFileSize FileSize -- Size of the linked SSP file
b
aFile SEQUENCE
{
aFileSize FileSize -- Size of the SSP file
b
aDirectory SEQUENCE
{
}
b
aMetaData SEQUENCE OF MetaDatum OPTIONAL, -- Optional meta data
aACL SET OF AccessControl OPTIONAL -- Access Control List attribute

}

/* Node identity */
NodeName ::= UTF8String (SIZE(1..16)) -- node name encoded in UTF-8
NodeReference ::= SEQUENCE (SIZE(1..6)) OF NodeName -- pathname and node name

Nodeldentity ::= CHOICE
{

aShortName UUID, -- UUID of file reference using absolute pathname
aNodeReference NodeReference -- Node reference

}
Figure 8.3.2-1: ASN.1 example including nested anonymous data types (excerpt from [i.35])

ETSI

61 ETSI TR 103 119 V1.3.1 (2022-03)

Type NodeDescriptor (
aNodeName of type NodeName,
aShortName of type UUID,
aNode of type NodeDescriptor___aNode,
optional aMetaData of type NodeDescriptor____aMetaData,
optional aACL of type NodeDescriptor___aACL
)
Type NodeDescriptor___aNode { union } (
alLink of type NodeDescriptor___aNode___alink,
aFile of type NodeDescriptor___aNode___ aFile,
aDirectory of type NodeDescriptor___aNode___aDirectory
)

Collection NodeDescriptor____aMetaData of type MetaDatum;
Collection NodeDescriptor___aACL of type AccessControl;

Type Nodeldentity { union } {
aShortName of type UUID,
aNodeReference of type NodeReference
)
Collection NodeReference of type NodeName;
Type NodeDescriptor___aNode___ alink {
aLinkedFileldentity of type Nodeldentity,
aLinkedFileSize of type FileSize
)
Type NodeDescriptor____aNode___aFile (
aFileSize of type FileSize
)
Figure 8.3.2-2: Corresponding TDL definitions (excerpt) for Figure 8.3.2-1

As an example consider the ASN. 1 snippet shown in Figure 8.3.2-3 and the derived TDL data type model snippet
showing in Figure 8.3.2-4. Corresponding 'StructuredDataType's are created for both the 'Library' and 'Document’ data
types, aswell as for the nested anonymous 'ContentType's, which are prefixed with ‘Library "and 'Document___ '
accordingly. Thiswould also apply to additional anonymous 'ContentType's nested further within the 'ContentType's.
The 'dataType's for the corresponding 'Member's are then set accordingly. The derived 'DataType'
'‘Document____number' for the 'number' ‘ContentType' of type 'CHOICE' is assigned a 'Constraint' with the ‘union’
'‘CongtraintType'. Default values are not present in the derived TDL datamodel, as TDL does not support default values
for type definitions. However, a data type implementation in the target platform may include default values. In TDL itis
possible to define a data instance which provides default values which can be overridden when the data instance is used.

Finally, source 'DataElementM apping's are provided.

Library ::= SEQUENCE {
address UTF8String DEFAULT "Sophia-Antipolis, France",
documents SEQUENCE OF Document
}

Document ::= SEQUENCE {
tite UTF8String (SIZE(1..128)),
status ENUMERATED {draft, published, historical},
authors SEQUENCE OF UTF8String,
number CHOICE {
es INTEGER,
eg INTEGER,
tr INTEGER
} OPTIONAL,
updated DATE
}
Figure 8.3.2-3: ASN.1 example including nested anonymous data types

ETSI

62 ETSI TR 103 119 V1.3.1 (2022-03)

Type Library {
address of type UTF8String,
documents of type Library__documents
)
Type Document (
title of type UTF8String,
status of type Document___status,
authors of type Document___authors,
optional number of type Document___number,
updated of type Date
)
Collection Library___documents of type Document;
Collection Document___authors of type UTF8String;
Type Document___number { union } (
es of type Integer,
eg of type Integer,
tr of type Integer
)
Enumerated Document___status {
Document___status draft;
Document___status published;
Document___status historical;
}
Use "example-1-library.asn" as SOURCE_MAPPING;
Map Library to "Library"” in SOURCE_MAPPING as Library_MAPPING;
Map Document to "Document"” in SOURCE_MAPPING as Document_MAPPING;

Figure 8.3.2-4: Corresponding flattened TDL definitions (excerpt) for Figure 8.3.2-3

9 TDL Runtime / Execution

9.1 Java: Code generator

9.1.1 Architecture

A code generator converts TDL test descriptions to Java code and provides a runtime environment aswell asa Test
Runtime Interface (TRI) for usersto implement the adaptation to real test environment and SUT. As an alternative to
interpreter, code generation removes the dependencies to TDL meta-model and simplifies deployment of the executable
tests.

The source code for the code generator is available in TOP[i.24] in 'org.etsi.mts.tdl .execution.java.codegen' project.
The project includes code documentation in Javadoc [i.28] format and instructions for setup and use.

org.etsi.mts.tdl.execution.java.codegen

Code generator Ul
*.codegen *.eclipse

TDL model

Runtime

* rpx Adapters

Figure 9.1.1-1: Project structure and dependencies of Java code generator

ETSI

63 ETSI TR 103 119 V1.3.1 (2022-03)

In addition to code generator, the 'org.etsi.mts.tdl.execution.java.codegen' project provides various User Interface (Ul)
components for triggering and configuring the code generation. Runtime code has dependencies to JUnit [i.29] for its
test reporting and assertion functions as well as Guice [i.30] for resolving platform adapter implementations. The
interfaces that should be realized and provided by end users are collectively called Test Runtime Interface (TRI).

In Guice parlance, the component that provides (Guice term for associating a class to atype) interface realizationsis
called amodule. The name of the module that providesthe TRI interface bindings (the ‘adapter modul€) is configured
in generator settings. It may provide implementations for following interfaces (listed in 'ProviderModul€' class):

e 'SystemAdapter": arequired component that manages interactions between runtime and SUT;

. 'Validator': arequired component that provides data matching functionality;

. 'Reporter': an optional component that implements test logging;

e 'PredefinedFunctions’: optional customized implementation of TDL predefined functions; and

e 'RuntimeHelper': optional customized implementation of various environment specific functions.

Default implementations for 'PredefinedFunctions’ and 'RuntimeHel per’ are provided by the runtime.

PredefinedFunctions RuntimeHelper

SystemAdapter

i

ProviderModule Adapter module
‘ ponentType>

Runtime

TestControl

PredefinedFunctions RuntimeHelper g
(default impl.) (default impl.) scription_
ponentinstance>

Figure 9.1.1-2: Structure of runtime classes of Java code generator

The core component of the execution engine is 'TestControl', which is the base for all generated tester components. It
provides access to instances of TRI components and contains hel per functions to handle complex execution logic (such
as alternatives) and asynchronous nature of interactions and time operations.

For each TDL 'ComponentType', a Java class is generated that extends the TestControl'. It adds fields for variables and
timers and invokes the adapter module. A sub-class of the component type classis generated for each tester
'‘Componentlnstance' participating in a 'TestDescription'. The component classes include time labels and provide the test
execution code that can be invoked by the JUnit framework.

ETSI

64 ETSI TR 103 119 V1.3.1 (2022-03)

9.1.2 Test Runtime Interface (TRI) for Java

9121 Overview

The TRI consists of functional interfaces that are used to perform environment specific operations and various classes
of information objects that are passed to or returned from as arguments of those operations.

The info classes are used to specify the following:
. gate and connection information for 'SystemAdapter’;
. data types and values as arguments for interactions;
e test execution verdicts; and

) annotations for the above.

ETSI

65 ETSI TR 103 119 V1.3.1 (2022-03)

ElementAnnotation

key name
value id
N
GateReference
| gate
Object getValue() endPoints [2] component
Object getType() role
A\

<<enum>>

ComponentinstanceRole
parameterName

<<Interface>> <<Interface>>

StopException

Receiver

ProviderModule

void receive(String body, Connection connection)

A

|
1
Provided by adapter module |
|

<<Interface>>

SystemAdapter

PredefinedFunctions
void configure(Connection[] connections)

Data receive(Data expected, Connection connection)

<<Interface>> Data ignoreUntil(Data expected, Connection connection)

RuntimeHelper Data call(Object operation, Data[] arguments, Data expectedReturn, Data expectedException, ..)

Data[] receiveCall(Object operation, Data[] expectedArguments, Connection connection)

boolean equals(Object 00, Object ol)

<T> T clone(T object) void replyCall(Object operation, Data returnValue, Data exception, Connection connection)

<A> A getInstance(Class<A> clazz) void addReceiver(Receiver r)

|
|
|
|
|
|
|
|
|
|
|
: void send(Data message, Connection connection)
|
|
|
|
|
|
|
|
|
|
|

void removeReceiver(Receiver r)

e ———
|

<<Interface>>

<<Interface>> Reporter
Validator
void comment(String body)
boolean matches(Data expected, Data actual) void testObjectiveReached(String uri, String description)
void setVerdict(Verdict verdict) throws StopException void behaviourStarted(String kind, String id, Object... properties)

void behaviourCompleted(String id)

void runtimeError(Throwable t)

Figure 9.1.2.1-1: Java TRl interfaces and classes

'PredefinedFunctions class implements all predefined functions as specified in TDL [i.13].

'RuntimeHelper' class provides utilities for cloning Java objects and determining object equality possibly in
environment dependent manner. It also provides instances of Java classes for the runtime where required (see
clause 9.1.3).

'Validator' provides matching of received and expected data and manages test execution verdicts. 'Validator' may stop
the test execution if a calculated or provided verdict so dictates by throwing a 'StopException'.

'‘Reporter' may be provided for logging or other purposes and it receives information from runtime about executed
behaviours with comments and covered test objectives.

ETSI

66 ETSI TR 103 119 V1.3.1 (2022-03)

9.1.2.2 TRI: SystemAdapter

‘SystemAdapter' implements the communi cation mechanisms between test execution and SUT. The interface includes
methods to support both message- and procedure-based interactions. For procedure calls, the interface defines separate
methods depending on whether the tester isthe caller or the callee. The encoding and decoding of datais generally done
by the 'SystemAdapter.

A 'SystemAdapter’ implementation is assumed to be able to handle multiple concurrent calls to ‘receive’ method. The
implementation of the 'receive’ method should block until a message is received that corresponds to the data type that
was provided or the call isinterrupted by the caller. This means that incoming packets should support repeated decoding
attempts.

If no 'receive calls are active when a packet arrives then the 'SystemAdapter' notifies all registered 'Receiver's and pass
undecoded data to them. This also happens when none of the waiting 'receive cals correspond to received data (that is,
decoding with expected type does not succeed). The registered 'Receiver's are generally used to detect discrepancies
between tester and SUT behaviour.

‘ignoreUntil' is a special case of receive method, which ignores and discards (that is, does not pass to asynchronous
'Receiver's) incoming data until one arrives that matches (in terms of both type and values) the expected data. A
‘Validator' instance may be used for matching.

The 'call' method blocks until areply is received (or the call isinterrupted by the caller) and it returns either the return
value or an exception. It is up to the caller to determine, the semantics of the returned value. The 'receiveCall' method
works similarly to the 'receive’ method.

The following diagram describes an example scenario of sending a message and receiving two alternative responses and
a default handling with asynchronous 'Receiver'.

System .
I I
I I

comment*
I r—behaviourStarted
tisendgbi

parallel |

|
; ———receive—»
receive alt-1 |

[
| ———matches—»
[
[

Y_Y

|
|
|
|
|
|
|
|

%setVerdict*—b“

. I | | [
receive alt-2 i

%recelveﬂ } }

I ——matches—» I

} %setVerdict*—b“ }

receive any .
%add Recelver—b“ }
[¢—receive— I
“fremoveReceiver%“ }

—————————setVerdict———»
\

behaviourCompleted- 1>
»
>

testObjectiveReached-
|

|
|
| |
|]
| |
[I
Figure 9.1.2.2-1: Example of method calls involving the SystemAdapter
To avoid excessive adaptation, the execution engine supports calling procedures directly (bypassing the system adapter)

if the 'ProcedureSignature's are mapped to Java methods (see clause 9.1.3). This code generation feature is configurable
in settings.

ETSI

67 ETSI TR 103 119 V1.3.1 (2022-03)

9.1.3 Mappings

Most mappable TDL model elements are mapped to appropriate Java elements for test execution. In TDL, mapping
specifications consist of two levels: resource mapping and element mapping. Resource mappings should refer to either
Java package or class (using qualified names). Element mappings should refer to either Java class, field or method.

Asthe mappings can refer to different kinds of Java elements, then a predefined annotation should be added to both
resource and element mappings in one of following combinations:

e resource mapping with ‘JavaPackage' annotation and element mapping with 'JavaClass' annotation; or

. resource mapping with 'JavaClass' annotation and element mapping with either ‘JavaField', ‘JavaStaticField’,
‘JavaMethod' or 'JavaStaticM ethod' annotation.

Those annotations are provided by the Java model that is part of the TDL standard implementation.
Following mappable TDL elements do not require any annotations as the mapped Java element is clear:
. 'SimpleDatal nstance's in 'EnumDataType' are mapped to Java enum literals;
e 'Time types are mapped to Javalongs,; and
e 'Member's are mapped to Javafields.

The TDL Java model provides mappings for predefined TDL 'SimpleDataType's. TDL predefined functions are mapped
to appropriately named functions with function parameter types replaced with corresponding Java types.

In addition to predefined 'Time' instance 'Second', the code generator aso supports Time' instances named
'MilliSecond' and 'NanoSecond' using name-based mapping and assuming that appropriate type mappings (to Java long)
are also provided.

Java model, part of TDL standard implementation

DataResourceMapping annotations Type mappings TDL model

Integer, Boolean, <Predefined
JavaPackage JavaClass String SimpleDataType>

A A

DataElementMapping annotations

JavaField JavaStaticField
EnumDataType Datalnstance ProcedureSignature

StructyuredDataType
p e Mapped without annotations

q , EnumDataType-> .
CollectionDataType SimpleDataType D ED-talnstance

Figure 9.1.3-1: Required annotations for Java mappings

ethod JavaMethod

ETSI

68 ETSI TR 103 119 V1.3.1 (2022-03)

When an element mapping refers to a non-static Java field or method then 'RuntimeHelper' TRI interfaceis called to get
an instance object to use with the field or method specification. The class from corresponding resource mapping is used
as the argument for that call.

914 Executable Code

Most TDL behaviours have obvious counterpartsin Java. For those elements and the ones that are explicitly mapped,
the Java code generation is little more than language trandlation.

A special control structure isimplemented for the handling of asynchronous events (either time- or interaction-rel ated)
and execution of out-of-order blocks (exceptional and alternative behaviours).

TestControl
Future<TimeoutResult> timeConstraint(Constraint constraint)
Future<TimeoutResult> timeout(Timer timer)
. Future<TimeoutResult> sleep(long period)
ExecutorService . :
Future<InteractionResult> receive(Data expected)
void addExceptionalBehaviour(ExceptionalBehaviour b)
take() ExceptionalBehaviour getExceptionalBehaviour(Future<ExecutionResult> future)
Future<ExecutionResult> next()
CompletionService
schedule
create + submit execution
)) get future
is submitted to
Callable
omponentinstance>
) register ExceptionalBehaviour
is converted to
to control
future
process behaviour
— —— —returns— — — — ExecutionResult isinterrupt

InteractionResult

Figure 9.1.4-1: Event handling component dependencies in TDL Java runtime

The "TestControl' class provides utility methods for creating and scheduling (submitting) the callable for various
asynchronous behaviours. It also enables/disables any added/removed 'Exceptional Behaviour's. Internally, Java's
'‘CompletionService' is used to take the first completed future and passit to test code for processing.

Figure 9.1.4-2 describes an example scenario of receiving a message with time constraint while a default behaviour is
activated.

ETSI

69 ETSI TR 103 119 V1.3.1 (2022-03)

Completion

Service

|
:Iadd to stack I
|

:—future = submit(timeout)—b:

|
future = submit(receive}—p
submit(exceptionals)——

— take)———— P

[next_event_future == receive_constraint_future]

t
|
|
|
|
|
[next_event_future == receive_future] :
|
|
|
|
|
|
|

[else]

remove
|
from stack

Figure 9.1.4-2: Event handling process in TDL Java runtime

JUnit framework annotation is used to mark generated test description method as JUnit test case, which allows easy
execution with any JUnit tool. JUnit assertions are used to validate data.

‘TimeL abel' classisimplemented in runtime according to the semantics specified in [i.13]. The time label mechanismis
also used to implement TDL 'Timer's. All time units are converted into milli-seconds for internal evaluation.

Specia treatment of TDL 'VariableUse's is needed as the TDL assumes that all dataisimmutable while in Javathat is
not the case. 'RuntimeHelper' 'clone’ method is used to clone structured variable values before they are assigned as
arguments to parameterized 'DataUse's. This prevents potential modifications of variables.

Following TDL features are currently not supported by the code generator (as the present document reflects a specific
milestone):

. 'ParallelBehaviour' and 'PeriodicBehaviour'
. 'Optional Behaviour'

. ‘TestDescriptionReference’ arguments

ETSI

70 ETSI TR 103 119 V1.3.1 (2022-03)

Annex A:
Technical Realisation of the Reference Implementation

The technical representation of the TDL reference implementation is available as an open source project available at
http://top.etsi.org/. The open source project serves as a possible starting point for implementing and extending tools for
TDL as described in the present document. An open source project iswell suited for atechnical contribution which can,
over time, evolve beyond the scope of the present document. Further information regarding the use of the technical
representation as well as contributing to it can be found at https:/tdl.etsi.org/index.php/open-source.

ETSI

http://top.etsi.org/
https://tdl.etsi.org/index.php/open-source

71

ETSI TR 103 119 V1.3.1 (2022-03)

History
Document history
V111 February 2018 Publication
V121 September 2020 | Publication
V131 March 2022 Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Basic Principles
	4.1 Introduction
	4.2 Implementation Scope
	4.3 Document Structure

	5 Graphical Representation Editor
	5.1 Scope and Requirements
	5.2 Architecture and Technology Foundation
	5.2.1 Graphical Editor
	5.2.2 Structured Test Objective Representation

	5.3 Implemented Facilities
	5.3.1 Creating Models
	5.3.2 Viewing and Editing Models
	5.3.3 Exporting Structured Test Objectives
	5.3.4 Validating Models

	5.4 Usage Instructions
	5.4.1 Development Environment
	5.4.2 End-user Instructions

	6 Using TDL with TOP
	6.1 Usage Scenarios
	6.2 Defining Structured Test Objectives
	6.2.0 Overview
	6.2.1 Domain part of TDL-TO
	6.2.2 Data definitions
	6.2.3 Configuration
	6.2.4 Test purpose behaviour

	6.3 Transforming Test Objectives into Test Descriptions
	6.3.1 Overview
	6.3.2 Data
	6.3.3 Configurations
	6.3.4 Behaviour
	6.3.5 Transformation Conventions and Assumptions

	6.4 Defining Test Descriptions
	6.4.1 Overview
	6.4.2 Data and Configuration
	6.4.3 Test Behaviour and Time

	6.5 Transforming Test Descriptions into TTCN-3 Test Cases
	6.5.1 Overview
	6.5.2 Data
	6.5.3 Configuration
	6.5.4 Behaviour

	7 UML Profile Editor
	7.1 Scope and Requirements
	7.2 Architecture and Technology Foundation
	7.3 Implemented Facilities
	7.3.1 Applying the Profile
	7.3.2 Hints for the Transformation of UP4TDL Models into TDL Models
	7.3.3 Editing Models with the Model Explorer
	7.3.4 Editing TDL-specific Properties with the TDL Property View
	7.3.5 Editing Models with TDL-specific Diagrams

	8 Using TDL with External Data Type Specifications
	8.1 Generalized Process
	8.1.1 Process Overview
	8.1.2 Example Instantiation

	8.2 Using TDL with OpenAPIŽ Specifications
	8.2.1 Overview
	8.2.2 Examples

	8.3 Using TDL with ASN.1 Specifications
	8.3.1 Overview
	8.3.2 Examples

	9 TDL Runtime / Execution
	9.1 Java: Code generator
	9.1.1 Architecture
	9.1.2 Test Runtime Interface (TRI) for Java
	9.1.2.1 Overview
	9.1.2.2 TRI: SystemAdapter

	9.1.3 Mappings
	9.1.4 Executable Code

	Annex A: Technical Realisation of the Reference Implementation
	History

