

ETSI TR 103 119 V1.3.1 (2022-03)

Methods for Testing and Specification (MTS);
The Test Description Language (TDL);

Reference Implementation

TECHNICAL REPORT

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 2

Reference
RTR/MTS-TDL103119v131

Keywords
MBT

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2022.

All rights reserved.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 5

1 Scope .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 6

3 Definition of terms, symbols and abbreviations ... 9

3.1 Terms .. 9

3.2 Symbols .. 9

3.3 Abbreviations ... 9

4 Basic Principles .. 9

4.1 Introduction .. 9

4.2 Implementation Scope .. 10

4.3 Document Structure .. 11

5 Graphical Representation Editor .. 11

5.1 Scope and Requirements .. 11

5.2 Architecture and Technology Foundation .. 11

5.2.1 Graphical Editor .. 11

5.2.2 Structured Test Objective Representation ... 12

5.3 Implemented Facilities ... 13

5.3.1 Creating Models .. 13

5.3.2 Viewing and Editing Models .. 17

5.3.3 Exporting Structured Test Objectives ... 25

5.3.4 Validating Models .. 27

5.4 Usage Instructions .. 27

5.4.1 Development Environment ... 27

5.4.2 End-user Instructions .. 29

6 Using TDL with TOP ... 30

6.1 Usage Scenarios ... 30

6.2 Defining Structured Test Objectives .. 31

6.2.0 Overview .. 31

6.2.1 Domain part of TDL-TO ... 31

6.2.2 Data definitions ... 32

6.2.3 Configuration .. 32

6.2.4 Test purpose behaviour ... 33

6.3 Transforming Test Objectives into Test Descriptions .. 34

6.3.1 Overview .. 34

6.3.2 Data ... 34

6.3.3 Configurations .. 36

6.3.4 Behaviour .. 37

6.3.5 Transformation Conventions and Assumptions .. 38

6.4 Defining Test Descriptions ... 40

6.4.1 Overview .. 40

6.4.2 Data and Configuration ... 40

6.4.3 Test Behaviour and Time .. 41

6.5 Transforming Test Descriptions into TTCN-3 Test Cases ... 42

6.5.1 Overview .. 42

6.5.2 Data ... 42

6.5.3 Configuration .. 43

6.5.4 Behaviour .. 44

7 UML Profile Editor .. 46

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 4

7.1 Scope and Requirements .. 46

7.2 Architecture and Technology Foundation .. 46

7.3 Implemented Facilities ... 46

7.3.1 Applying the Profile.. 46

7.3.2 Hints for the Transformation of UP4TDL Models into TDL Models ... 47

7.3.3 Editing Models with the Model Explorer ... 48

7.3.4 Editing TDL-specific Properties with the TDL Property View .. 48

7.3.5 Editing Models with TDL-specific Diagrams ... 48

8 Using TDL with External Data Type Specifications .. 53

8.1 Generalized Process ... 53

8.1.1 Process Overview ... 53

8.1.2 Example Instantiation ... 55

8.2 Using TDL with OpenAPI™ Specifications .. 56

8.2.1 Overview .. 56

8.2.2 Examples .. 57

8.3 Using TDL with ASN.1 Specifications .. 58

8.3.1 Overview .. 58

8.3.2 Examples .. 60

9 TDL Runtime / Execution .. 62

9.1 Java: Code generator .. 62

9.1.1 Architecture .. 62

9.1.2 Test Runtime Interface (TRI) for Java .. 64

9.1.2.1 Overview ... 64

9.1.2.2 TRI: SystemAdapter.. 66

9.1.3 Mappings .. 67

9.1.4 Executable Code ... 68

Annex A: Technical Realisation of the Reference Implementation ... 70

History .. 71

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 5

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Technical Report (TR) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

NOTE: Eclipse™, Xtext™, Sirius™, EMF™, Papyrus™, GMF™, Epsilon™, EVL™ are the trade names of a
product supplied by the Eclipse Foundation. OMG®, XMI™, UML™, OCL™, MOF™ are the trade
names of a product supplied by Object Management Group®. This information is given for the
convenience of users of the present document and does not constitute an endorsement by ETSI of the
product named.

The present document is complementary to the multi-part deliverable covering the Test Description Language (TDL).
Full details of the entire series can be found in part 1 of the multi-part deliverable [i.13].

Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 6

1 Scope
The present document summarizes technical aspects related to the implementation of TDL within the TDL Open Source
Project (TOP). It describes the implementation details needed for the further development and integration of the tools. It
also provides usage instructions for end users.

The following tools and components are covered in the present document:

• implementation of the TDL meta-model;

• editor for the graphical representation format of TDL;

• editor for the textual representation format of TDL;

• multiple other types of TDL model editors;

• facilities for checking the semantic validity of models according to the constraints specified in the TDL meta-
model;

• implementation and tool-support for the mapping TDL elements to TTCN-3 code;

• implementation and tool-support for the importing of data definitions from OpenAPI™ and ASN.1
specifications;

• implementation and tool-support for execution of TDL models;

• implementation of the UML profile for TDL; and

• editor supporting the creation and manipulation of UML models applying the UML profile for TDL.

NOTE: The implementation of the UML profile for TDL and the corresponding editor descriptions are not
aligned with the referenced versions of the TDL specification parts, but are related to an earlier release of
the TDL specification parts.

2 References

2.1 Normative references
Normative references are not applicable in the present document.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] Eclipse Foundation™: Eclipse IDE Website (last visited 20.12.2021).

NOTE: Available at https://eclipse.org.

[i.2] Eclipse Foundation™: Eclipse Xtext™ Website (last visited 20.12.2021).

NOTE: Available at https://eclipse.org/Xtext/index.html.

https://eclipse.org/
https://eclipse.org/Xtext/index.html

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 7

[i.3] Eclipse Foundation™: Eclipse Sirius™ Website (last visited 20.12.2021).

NOTE: Available at http://www.eclipse.org/sirius/index.html.

[i.4] Eclipse Foundation™: Eclipse Modeling Framework (EMF™) Website (last visited 20.12.2021).

NOTE: Available at http://www.eclipse.org/modeling/emf/.

[i.5] Eclipse Foundation™: Eclipse Papyrus™ Modeling Environment Website (last visited
20.12.2021).

NOTE: Available at https://www.eclipse.org/papyrus/.

[i.6] Eclipse Foundation™: UML™ Profiles Repository Website (last visited 20.12.2021).

NOTE: Available at https://projects.eclipse.org/projects/modeling.upr.

[i.7] Eclipse Foundation™: Graphical Modeling Framework (GMF™) Website (last visited
20.12.2021).

NOTE: Available at http://www.eclipse.org/modeling/gmp/.

[i.8] "Object Constraint Language™ (OMG® OCL™), Version 2.4", formal/2014-02-03.

NOTE: Available at http://www.omg.org/spec/OCL/2.4/.

[i.9] Eclipse Foundation™: Eclipse OCL™ Website (last visited 20.12.2021).

NOTE: Available at https://projects.eclipse.org/projects/modeling.mdt.ocl.

[i.10] Plutext Pty Ltd: Docx4j Website (last visited 20.12.2021).

NOTE: Available at http://www.docx4java.org/trac/docx4j.

[i.11] "OMG® XML™ Metadata Interchange (XMI™) Specification", Version 2.4.2, formal/
2014-04-04.

NOTE: Available at http://www.omg.org/spec/MOF/2.4.2/.

[i.12] Eclipse Foundation™: Epsilon™ Validation Language (EVL™) Website (last visited 20.12.2021).

NOTE: Available at http://www.eclipse.org/epsilon/doc/evl/.

[i.13] ETSI ES 203 119-1 (V1.6.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 1: Abstract Syntax and Associated Semantics".

[i.14] ETSI ES 203 119-2 (V1.5.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 2: Graphical Syntax".

[i.15] ETSI ES 203 119-3 (V1.5.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 3: Exchange Format".

[i.16] ETSI ES 203 119-4 (V1.5.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 4: Structured Test Objective Specification (Extension)".

[i.17] ETSI ES 203 119-5 (V1.1.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 5: UML Profile for TDL".

[i.18] ETSI ES 203 119-6 (V1.3.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 6: Mapping to TTCN-3".

[i.19] ETSI ES 203 119-7 (V1.3.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 7: Extended Test Configurations".

[i.20] ETSI ES 203 119-8 (V1.1.1): "Methods for Testing and Specification (MTS); The Test
Description Language (TDL); Part 8: Textual Syntax".

http://www.eclipse.org/sirius/index.html
http://www.eclipse.org/modeling/emf/
https://www.eclipse.org/papyrus/
https://projects.eclipse.org/projects/modeling.upr
http://www.eclipse.org/modeling/gmp/
http://www.omg.org/spec/OCL/2.4/
https://projects.eclipse.org/projects/modeling.mdt.ocl
http://www.docx4java.org/trac/docx4j
http://www.omg.org/spec/MOF/2.4.2/
http://www.eclipse.org/epsilon/doc/evl/

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 8

[i.21] ETSI EG 203 130 (V1.1.1): "Methods for Testing and Specification (MTS); Model-Based Testing
(MBT); Methodology for standardized test specification development".

[i.22] The Apache Software Foundation: Apache POI Website (last visited 20.12.2021).

NOTE: Available at https://poi.apache.org.

[i.23] ETSI: The TDL Website (last visited 20.12.2021).

NOTE: Available at https://tdl.etsi.org.

[i.24] ETSI: The TDL Open Source Project Website (last visited 20.12.2021).

NOTE: Available at https://tdl.etsi.org/index.php/open-source.

[i.25] ETSI TS 136 321: "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access
Control (MAC) protocol specification (3GPP TS 36.321)".

[i.26] ETSI TS 103 029: "IMS Network Testing (INT); IMS & EPC Interoperability test descriptions
(3GPP Release 10)".

[i.27] ETSI TS 129 214 (V15.6.0): "Universal Mobile Telecommunications System (UMTS); LTE;
Policy and charging control over Rx reference point (3GPP TS 29.214 version 15.6.0 Release 15)".

[i.28] Javadoc documentation generator for Java™.

NOTE: Available at https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html.

[i.29] Junit testing framework.

NOTE: Available at https://junit.org.

[i.30] Guice dependency injection framework.

NOTE: Available at https://github.com/google/guice.

[i.31] OpenAPI™ Specification, Version 3.0.3.

NOTE: Available at https://swagger.io/specification/.

[i.32] ETSI EG 203 647 (V1.1.1): "Methods for Testing and Specification (MTS); Methodology for
RESTful APIs specifications and testing".

[i.33] IETF draft-bhutton-json-schema-00: "JSON Schema: A Media Type for Describing JSON
Documents", December 8, 2020.

NOTE: Available at https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00.

[i.34] Recommendation ITU-T X.680: "Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation". 02/2021.

[i.35] ETSI TS 103 666-1 (V15.0.0): "Smart Secure Platform (SSP); Part 1: General characteristics
(Release 15)".

[i.36] Recommendation ITU-T X.681: "Information technology - Abstract Syntax Notation One
(ASN.1): Information object specification". 02/2021.

[i.37] ETSI TS 103 597-3 (V1.1.1): "Methods for Testing and Specification (MTS); Test Specification
for MQTT; Part 3: Performance Tests".

[i.38] ISO 8601: "Date and time format".

https://poi.apache.org/
https://tdl.etsi.org/
https://tdl.etsi.org/index.php/open-source
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://junit.org/
https://github.com/google/guice
https://swagger.io/specification/
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 9

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

abstract syntax: graph structure representing a TDL specification in an independent form of any particular encoding

concrete syntax: particular representation of a TDL specification, encoded in a textual, graphical, tabular or any other
format suitable for the users of this language

meta-model: modelling elements representing the abstract syntax of a language

System Under Test (SUT): role of a component within a test configuration whose behaviour is validated when
executing a test description

TDL model: instance of the TDL meta-model

TDL specification: representation of a TDL model given in a concrete syntax

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
ASN.1 Abstract Syntax Notation One
EBNF Extended Backus-Naur Form
EMF Eclipse Modelling Framework
EVL Epsilon Validation Language
GMF Graphical Modelling Framework
MBT Model-Based Testing
MOF Meta-Object Facility
OCL Object Constraint Language
OMG Object Management Group®
SUT System Under Test
TDL Test Description Language
TOP TDL Open Source Project
UML Unified Modelling Language
URI Unified Resource Identifier
XMI eXtensible Markup Language Metadata Interchange

4 Basic Principles

4.1 Introduction
To accelerate the adoption of TDL, an implementation of TDL is provided within TOP in order to lower the barrier to
entry for both users and tool vendors in getting started with using TDL. The implementation comprises graphical and
textual editors, as well as validation facilities, transformation functionalities, and other tools. In addition, the UML
profile for TDL and supporting editing facilities are implemented in order to enable application of TDL in UML-based
working environments and model-based testing approaches.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 10

4.2 Implementation Scope

The implementation scope includes a graphical editor according to ETSI ES 203 119-2 [i.14] based on the Eclipse
platform [i.12] and related technologies, covering essential constructs of TDL. For creating and manipulating models,
textual editors for ETSI ES 203 119-8 [i.20] and ETSI ES 203 119-1 [i.13], annex B are implemented based on the
Eclipse platform and related technologies. The applicability of general purpose model editing facilities provided by the
Eclipse platform and related technologies is discussed as well.

For tools that need to import and export TDL models according to ETSI ES 203 119-3 [i.15], corresponding facilities
are implemented based on the Eclipse platform and related technologies. These facilities can be used to transform
textual representations based on ETSI ES 203 119-8 [i.20] and ETSI ES 203 119-1 [i.13] into XMI [i.11] serializations
according to ETSI ES 203 119-3 [i.15] and can be integrated in custom tooling that builds on the Eclipse platform.

An implementation of ETSI ES 203 119-4 [i.16] includes a dedicated textual editor for structured test objectives, which
can be integrated in the textual editor for TDL. The implementation also includes facilities for exporting structured test
objectives to Word™ documents using customisable tabular templates.

An implementation of the UML profile for TDL includes a specification of the TDL UML profile abstract syntax
according to the mapping from the TDL meta-model to TDL stereotypes and UML meta-classes in ETSI
ES 203 119-5 [i.17]. It is integrated with the open source UML modelling environment Eclipse Papyrus [i.5] as an open
TDL UML profile implementation.

An implementation of ETSI ES 203 119-6 [i.18] includes a partial prototypical implementation of the TDL to TTCN-3
mapping based on the Eclipse platform.

Additional functionalities supporting the importing of data definitions from OpenAPI™ and ASN.1 specifications are
also provided as a prototype.

Figure 4.2-1: TDL tool infrastructure

An schematic overview of the implementation is shown in Figure 4.2-1. The TDL exchange format specified in ETSI
ES 203 119-3 [i.15] serves as a bridge between the different tool components. Textual editors enable the creation and
manipulation of TDL models. Data importers enable the integration and use of existing data specifications in TDL. The
graphical editor is used to edit and visualize TDL models as diagrams. Documentation generation, in particular for
structured test objectives, can be plugged in to produce Word documents for presenting parts of a TDL model in a
format suitable for standardization documents. Test code generation, e.g. for TTCN-3 can be plugged in to produce
executable TTCN-3 code or TTCN-3 skeletons to be refined afterwards.

The implementation is published as part of the TOP [i.24] on the TDL [i.23].

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 11

4.3 Document Structure
The present document contains three main technical clauses focusing on relevant technical details. The Graphical
Representation editor implementing ETSI ES 203 119-2 [i.14], as well as related facilities implementing ETSI
ES 203 119-1 [i.13], ETSI ES 203 119-3 [i.15] and ETSI ES 203 119-4 [i.16] are described in clause 5. Illustrative
examples and guidelines for the use of TDL to address common use cases with the help of the TOP are described in
clause 6. The UML Profile Editor implementing ETSI ES 203 119-5 [i.17] is described in clause 7. The use of TDL
with external data specifications is discussed in clause 8. The implementation of an execution environment for the
testing of RESTful API services with TDL is outlined in clause 9.

NOTE: The UML Profile Editor for TDL complies to an earlier release of the TDL specification parts.

5 Graphical Representation Editor

5.1 Scope and Requirements
TDL graphical editor implementation has two major requirements. The main objective is to provide means to visualize
TDL models according to the graphical notation. The second objective is to facilitate layout of diagrams in a way that is
suitable for documentation. For the second purpose, it is essential to provide graphical editing capabilities. Although
often provided by modelling frameworks, the ability to graphically edit the underlying models (that is, to create new
elements and set their properties) is not considered essential for this implementation.

Eclipse provides several graphical modelling tools to help build editors. Sirius [i.3] was chosen for its declarative
approach that provides separation between meta-model mappings and implementations of graphical elements. With the
existence of predefined common graphical elements, such as containers and connectors, the effort of implementing a
graphical editor with a custom syntax in Sirius is only spent on the parts that diverge from those common elements.

Another area that requires a custom implementation is the layout of graphical elements. This covers both the absolute
placement of nodes on the diagram as well as the size and internal contents of each node. Due to the rather hierarchical
nature of the TDL graphical syntax, several additional base graphical elements are introduced. Some peculiar
limitations of Sirius have also been identified prior to the implementation, which also need appropriate workarounds.
The goal of implementing a diagram layout is to automate diagram creation to the extent that the sizes and contents of
graphical elements are adjusted by layout algorithms while the absolute placement of diagram elements is solved by
using built in layout implementations. This will guarantee that only minimal user interaction with the diagram editor is
needed for achieving the desired layouts.

Diagram export for documentation purposes is provided by the framework. The implementation can provide
complimentary export to the Word document format.

Due to the peculiarities and intended use of structured test objectives, it was determined that instead of graphical shapes
that can be exported as images, the graphical representation are realized as tables exported directly in a Word document
according to user-defined templates. These tables can then be manipulated further as necessary to fit in within an
existing document.

5.2 Architecture and Technology Foundation

5.2.1 Graphical Editor

The TDL graphical editor is built on top of the Eclipse platform to benefit from its wide range of modelling tools. The
main Eclipse projects that are used as basis for this implementation are shown in Figure 5.2.1-1. Sirius is a technology
that allows declarative creation of graphical editors that work with EMF models. It uses GMF [i.7] to create visual
diagram elements and link those to model objects. Model management and serialization is done by EMF [i.4].

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 12

NOTE: Components with grey background are part of the implementation that is covered by the present
document.

Figure 5.2.1-1: Dependencies and data flows of the TDL graphical editor

Every EMF model is based on a meta-model that is defined in terms of meta-modelling system named Ecore. The TDL
meta-model in UML format was converted to an Ecore meta-model (TDL Ecore) using the Papyrus UML and EMF
facilities. Furthermore, Java code for the TDL meta-model was generated based on the TDL meta-model.

Sirius creates diagram editors by interpreting diagram specification files. These files contain TDL meta-model
references in the form of Java or OCL [i.8] queries. OCL support is provided by the Eclipse OCL project [i.9], Java
queries are references to classes that are part of the TDL graphical editor and editor source code. Diagram specifications
also contain definitions of Sirius specific styles that are applied to model objects when rendering them on diagrams.
Since the TDL graphical editor requires customized shapes, it has dependencies on both the Sirius API and the Eclipse
GMF. Several extensions to GMF classes have been implemented in Sirius in order to configure shapes according to the
customized styles. GMF facilities are then used to export the diagrams as images.

Some of the labels in the graphical shapes, in particular labels related to data specification and data use have a complex
structure. For their realization, facilities provided by Xtext [i.2] are used to serialize model fragments related to data use
as text according to an annotated EBNF grammar derived from the formal label specifications in ETSI
ES 203 119-2 [i.14].

5.2.2 Structured Test Objective Representation

Structured test objectives are exported as tables in a Word document according to user-defined templates. The export
relies on facilities provided by Xtext as well as the Apache POI library [i.22] (previously the Docx4j library [i.10] was
used) providing API for manipulating Word documents. The exporting facilities take a Word document containing one
or more templates in the form of tables with placeholders and a TDL model containing one or more structured test
objectives as input. The user has to provide the name of the desired template as an additional input. For a given TDL
specification, the selected template is used to generate a tabular representation for every structured test objective. The
placeholders in the template are replaced by the content serialized from the corresponding TDL element according to
Xtext mappings in a similar manner as the labels for the TDL graphical editor. Existing packaging structures within the
TDL specification are used to organize the generated tabular representations with corresponding headings. The
generation process is sketched in Figure 5.2.2-1. The generated tables in the new Word document can be further
manipulated or merged into an existing document containing additional information. Additional templates may be
defined by the users to suit their specific needs.

Eclipse platform

GMF

Diagram

specification

TDL (XF)

Diagram
Sirius

EMF

TDL

graphical

editor

Image

TDL Ecore

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 13

Figure 5.2.2-1: Structured test objective generation process

5.3 Implemented Facilities

5.3.1 Creating Models

Overview

Model instances are the primary artefacts for TDL. They carry the semantic information. In a modelling environment
there are various means for creating, viewing, and manipulating model instances of a particular meta-model.
Comprehensive modelling environments typically provide generic facilities that enable working with model instances of
arbitrary meta-models, provided the meta-model is known. Generic facilities provide sufficient capabilities for
performing basic tasks on model instances. However, due to their generic nature, they are often cumbersome to work
with, lack support for certain features that are not expressed in the meta-model directly (unless customized), and do not
provide domain-specific features, such as syntactical customization beyond basic adaptations.

Custom syntax implementations address some of the shortcomings of generic model editors. Such implementations
enable the specification of a customized representation of a model instance in a format that is tailored to a specific
group of users. There may be multiple custom syntax implementations mapped to the same meta-model, serving
different stakeholders or even different purposes for the same stakeholder. Custom syntax implementations may cover
only a subset of the meta-model, restricting the access to certain features that are not relevant for specific stakeholders
or purposes. Modelling environments provide platforms for the realization of custom syntax implementations. Custom
syntax implementations may rely on secondary artefacts that store the concrete representation of the TDL model
instance.

TDL model instances may be produced automatically by tools. The exchange format for TDL enables the
interoperability of tools producing model instances and tools for manipulating model instances.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 14

Generic Model Editors

The EMF provides facilities for generating basic tree editors for a given meta-model, which can then be customized to
an extent while still remaining within the tree editor paradigm. In addition, the EMF also provides generic reflective
model editors which provide quick access to model instances of any meta-model. An example of such an editor for TDL
is shown in Figure 5.3.1-1. The example includes a tree-based editor for manipulating the overall structure of a model
on top and a detailed property view for manipulating individual properties on the bottom.

Extensions to the EMF platform, such as MoDisco, include additional generic facilities such as the MoDisco Model
Browser which provides faceted browsing and editing of model instances. Faceted browsing provides filtering by type,
as well as deep navigation across references. In addition, MoDisco also includes tabular views on different parts of the
model for a quick overview across multiple dimensions. An example for a TDL model is illustrated in Figure 5.3.1-1.
The example includes a faceted browser on the top for navigating and manipulating the overall structure of a model, as
well as individual properties of model elements. On the left side of the faceted browser, model elements can be filtered
by type. Below the faceted browser, a tabular editor provides more compact representation of multiple model elements
at the same level in a model tree, such as the behaviour elements of a block. The property view on the bottom part of the
example still allows the manipulation of properties of selected model elements.

Figure 5.3.1-1: Example of reflective model editor

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 15

Figure 5.3.1-2: Example of MoDisco facetted model browser

Textual Editor

Xtext [i.2] provides facilities for the automatic generation of a default textual syntax. It serves as the base for further
refinements resulting in customized syntax definitions. Due to it being automatically generated, it is very similar in
structure to the meta-model. As a consequence, it is also rather cumbersome to write actual test descriptions in the
default syntax notation.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 16

The TOP includes a customized textual syntax that implements the syntax from annex B of ETSI ES 203 119-1 [i.13]
and from ETSI ES 203 119-8 [i.20]. Apart from the grammar specification, it also includes further customizations in the
scoping and linking facilities for handling references, imports, and other peculiarities, as well as enhanced semantic
syntax highlighting which provides customisable styles for identifiers based on their type and usage. An example of the
customized editor is shown in Figure 5.3.1-3. It features a textual representation of a test description as well as linked
tree-based editor showing the same model instance in the tree-based paradigm. Current version of the grammar
specification and the additional customizations can be found in annex A of the present document as part of the
'org.etsi.mts.tdl.TDLan2*' projects for the syntax from annex B of ETSI ES 203 119-1 [i.13] and as part of the '
org.etsi.mts.tdl.TDLtx*' projects for the syntax from ETSI ES 203 119-8 [i.20].

Figure 5.3.1-3: Example of customized textual editor for TDL

Similar to the editor for TDL, the TOP also includes a customized textual syntax that is tailored for the specification of
structured test objectives. It implements the syntax from annex B of ETSI ES 203 119-4 [i.16] from clause [ref] of ETSI
ES 203 119-4 [i.16]. It also includes further customizations in the scoping and linking facilities, as well as enhanced
semantic syntax highlighting, in a similar manner as the editor for TDL. An example of the customized editor is shown
in Figure 5.3.1-4. It features a textual representation of a structured test objective. Current version of the grammar
specification and the additional customizations can be found in annex A of the present document as part of the
'org.etsi.mts.tdl.TPLan2*' projects for the syntax from annex B of ETSI ES 203 119-4 [i.16] and as part of the
'org.etsi.mts.tdl.TDLtx*' projects for the syntax from clause [ref] of ETSI ES 203 119-4 [i.16].

Associated tooling provides means for the transformation between different syntax notations and model representations.
Model instances in one notation can be transformed automatically into XMI representations and/or other textual or
graphical syntax representations. This tooling integrates the APIs from different platforms for task specific automation.
A current version of this tooling and detailed technical information can be found in annex A as part of the
'org.etsi.mts.tdl.tools.*' and 'org.etsi.mts.tdl.rt.*' projects.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 17

Figure 5.3.1-4: Example of customized textual editor for structured test objectives

Import and Export

The TDL implementation relies largely on the import and export facilities provided by the EMF. By default, the EMF
does not activate the GUID support for XMI which is prescribed in ETSI ES 203 119-3 [i.15]. The TDL meta-model
implementation needs to be adapted to activate the GUID support for model elements. The necessary adaptation
involves selecting the correct resource type (XMI) in the generator model and activating the GUID support by
overriding the corresponding method in the TDL resource implementation. Additionally, an implementation of the
operations defined for the elements in ETSI ES 203 119-1 [i.13] and ETSI ES 203 119-4 [i.16] is necessary. This
implementation is realized by means of embedded OCL expressions within the meta-model implementation. The
relevant modifications can be found in the 'org.etsi.mts.tdl.model' project within annex A.

5.3.2 Viewing and Editing Models

Principles of building model diagrams

The GMF framework that the TDL graphical editor is built upon follows the Model-View-Controller architecture. The
model is an instance of TDL meta-model. The view is comprised of the shapes displayed on the diagram. The controller
takes care of creating the shapes based on model objects and their associations, cross-references, and containments. In
GMF, controllers are called 'editparts'.

The major part of the TDL graphical editor implementation consists of defining the corresponding 'editparts'. In the case
of Sirius, these are not implemented directly but rather defined in terms of mappings. A mapping is a relation between a
certain model object and a shape. Sirius interprets each mapping and uses the appropriate 'editpart' as a controller
providing the mapping configuration data.

Mappings can be defined as nodes, edges, or containers (and some additional items specific to sequence diagrams).
Each mapping includes a reference to the meta-class of the model object that it applies to, as well as the query that is
used to lookup objects from the model based on the current context object. Similar to models and diagrams, mappings
are also hierarchical. Edge mappings also define the queries that determine the corresponding shapes its endpoints
connect to.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 18

Sirius diagrams

Sirius provides several diagram kinds that can be configured by providing diagram-specific model-object mappings. For
TDL, the generic diagram and the sequence diagram are of particular interest.

Generic diagrams contain nodes and connections between the nodes with no specific constraints on their layout.
Composite nodes containing other nodes are also supported, but only a few limited layout options are available for inner
node placement: free-form and table (lines of text).

Sequence diagrams contain vertical parallel lines known as lifelines. Lifelines have headers with labels. Nodes and
connectors between the lifelines - the fragments - are laid out as a horizontal stack. Nodes may cover any number of
lifelines, connectors may only be drawn between two lifelines. Composite nodes containing sub-fragments (called
combined fragments) are also supported.

Sirius editors are defined in configuration files known as viewpoint specifications. The TDL viewpoint specification
defines a single viewpoint that contains two diagram descriptions named "TDL Behaviour" and "Generic TDL".

TDL Behaviour is a sequence diagram description. The root object of such diagrams is an instance of 'TestDescription'.
The diagram description also defines the visual order of elements both horizontally and vertically. The vertical ordering
contains behaviours recursively included in the 'TestDescription' as they occur semantically. The horizontal ordering
contains 'GateReference's that are defined in the 'TestConfiguration' associated with the diagram's 'TestDescription'
instance.

Generic TDL is a generic diagram description. The root object of such diagrams is an instance of 'Package'. There is no
predefined order of objects defined for this diagram kind.

Sirius diagram customization

The Sirius diagram specification model does not provide enough flexibility in terms of configuring all possible layouts
required by the TDL graphical syntax. The diagrams are rendered by interpreting predefined configuration elements that
do not have any extension mechanisms built in. Thus, some simple and composite figures need to be customized at a
lower level.

The Sirius diagram rendering is built on top of the GMF runtime. Thus, it is possible to customize Sirius diagrams by
means of extension points provided by GMF. The 'org.eclipse.gmf.runtime.diagram.ui.editpartProviders' extension
point allows the replacement of default Sirius 'editparts' with customized 'editparts' dynamically, depending on which
model object is being rendered, and depending on which diagram it is being rendered on. Classes defined in the
extensions use mapping identifiers from the diagram specification to decide whether and which custom 'editparts'
should be provided for the rendering of a diagram. All other mappings will rely on the default 'editparts' provided by the
Sirius implementation.

Implemented EditParts

All of the 'editpart' implementations are located in the 'org.etsi.mts.tdl.graphical.sirius.part' package.

The 'MultipartContainerCompartmentEditPart' extends GMF's 'ListCompartmentEditPart'. This class adds grid layout
that allows contained shapes to fill the available area within the container. It also removes all borders from contained
shapes in order to get rid of shadows and places horizontal lines between the contained shapes instead. Lastly, it
removes the ability of being dragged and selected from the contained shapes in order to facilitate moving the whole
compartment shape as one. The mapping that uses this 'editpart' has to be a container.

Figure 5.3.2-1: Example of 'MultipartContainerCompartmentEditPart'

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 19

The 'NodeListWithHeaderEditPart' extends the 'AbstractDiagramListEditPart' from the Sirius API. It is intended to be
used within a 'MultipartContainerCompartmentEditPart' and provides functionality that allows the container to control
its drag and selection handling. It removes all line borders from the contained shapes and replaces the borders with
margins. The mapping that uses this 'editpart' has to be a container with list presentation style. The first label of the
shape is the label of that container's style. The children of that mapping have to be nodes with square style.

Figure 5.3.2-2: Example of 'NodeListWithHeaderEditPart'

The 'TopLevelNodeListWithHeaderEditPart' extends the 'NodeListWithHeaderEditPart' and adds the ability to be
included directly on the diagram or inside a container with free-form presentation style. It also fixes a bug in the
'AbstractDiagramElementContainerEditPart.reInitFigure()' method.

Figure 5.3.2-3: Example of 'NodeListWithHeaderEditPart'

The 'EditPartConfiguration' is used to specify additional style and layout properties supported by some custom
'editparts'. It is used, for example, to draw double border for specified edit parts using a 'TwoLineMarginBorder'.

Figure 5.3.2-4: Example of 'TopLevelImageNodeListWithHeaderEditPart'

The 'NodeContainerEditPart' extends the 'AbstractDiagramContainerEditPart' provided by the Sirius API. The default
container is modified by disabling standalone selection and dragging and delegating those functions to the parent. All
borders are removed from the shape. It is intended to be used as a child of 'MultipartContainerCompartmentEditPart'.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 20

Figure 5.3.2-5: Example of 'NodeContainerEditPart'

The 'InteractionUseConfiguringEditPart' extends the 'AbstractNotSelectableShapeNodeEditPart' provided by the Sirius
API. The class modifies the default interaction use shape by setting custom layout to it. The custom layout stretches the
container's children to fill the available vertical space and leaves sufficient margin to the top for the label of the
container. If the interaction use mapping has image style then the image background is made opaque.

This class is mapped to (an abstract) sub-mapping of interaction use. That mapping does not need to have a style as it
will not be visible. The first label of the interaction use is the label of the container. The rest of the labels are sub-nodes
with square styles.

Figure 5.3.2-6: Example of 'InteractionUseConfiguringEditPart'

The 'MultiPartLabelEditPart' extends the 'TopLevelNodeListWithHeaderEditPart' and adds the ability to place labels
horizontally in a row. This allows mappings that define different fonts for different parts of labels.

Figure 5.3.2-7: Example of 'MultiPartLabelEditPart'

The 'CombinedFragmentLabelEditPart' extends the 'MultiPartLabelEditPart' to inherit support for mixed font labels. It
overrides the default layout behaviour via a 'LayoutListener' from the 'Draw2d' API and places the shape always to the
upper right corner of a combined fragment block.

Figure 5.3.2-8: Example of 'CombinedFragmentLabelEditPart'

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 21

The 'InteractionDecoratorProvider' is contributed via the 'org.eclipse.gmf.runtime.diagram.ui.decoratorProviders'
extension point in order to draw special rotatable shapes at the ends of connectors. This class is configured to work
specifically with 'Interaction's.

Figure 5.3.2-9: Example of 'InteractionDecoratorProvider'

Implemented layouts

All layout implementations are located in the 'org.etsi.mts.tdl.graphical.sirius.layout' package.

The 'SequenceDiagramFreeformLayoutProvider' overrides the default placement of elements on the diagram layer. It
also fixes the layout of shapes modified by the 'InteractionUseConfiguringEditPart' that would otherwise be cropped to
the default size and would not trigger the layout of contents on container resize. It is contributed via the
'org.eclipse.sirius.diagram.ui.layoutProvider' extension point and its use is triggered by the arrange command.

Figure 5.3.2-10: Example of custom figure placement: node with attachment

Figure 5.3.2-11: Example of custom figure placement: under-lapping container

The layout customizations are implemented via the diagram 'arrange' mechanism, which is normally triggered only
when the user invokes the 'arrange' command. Additional triggers are implemented in order to facilitate the automatic
diagram creation upon user creating and updating the model. The 'RefreshExtensionProvider' is contributed via the
'org.eclipse.sirius.refreshExtensionProvider' extension point. It invokes the 'arrange' command when the model is
modified and subsequently reloaded into the diagram editor. The 'LayoutEditPolicyProvider' is contributed via
'org.eclipse.gmf.runtime.diagram.ui.editpolicyProviders' extension point and it invokes the arrange command when a
'GateReference' or 'ComponentInstance' shape is moved by the user in order to keep the under-lapping shape properly
aligned.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 22

Editor-specific meta-model

The Sirius sequence diagram configuration sets implicit requirements on the structure of the meta-model that is used in
the mapping definitions. The TDL meta-model does not comply with these requirements in all cases. For example, the
mappings of combined fragments tend to fail at runtime when the begin and end occurrence objects (as understood by
Sirius) are the same. Since TDL does not define occurrences at all, some adaptation is needed to provide these
occurrence objects. Sirius and the underlying framework require that model objects used in diagrams are defined by a
meta-model. Extending the TDL meta-model with pure fabrications, just to facilitate graphical editor implementations,
would be a bad practice. Therefore, a separate domain-agnostic meta-model was created for this purpose.

The meta-model named 'tdlviewer' is defined in the 'extension.ecore' file and is registered as dynamic. This means that
the meta-model may be used reflectively without any code generation (which is a standard practice with meta-model
implementations in EMF). The 'tdlviewer' contains a single meta-class 'End' with a single attribute 'begin'. The 'begin'
holds a reference to the model object which this instance of 'End' is paired with. The object itself is used as the begin
occurrence in the mappings. The creation of virtual end objects is implemented in the
'org.etsi.mts.tdl.graphical.extensions.BehaviourProvider' class.

Label serialization

Some of the labels in ETSI ES 203 119-2 [i.14] are particularly complex, especially the labels related to 'DataUse'.
Mappings for such labels in the diagrams are realized by means of Xtext. A partial annotated EBNF grammar defines
the relevant mappings. The serialization facilities of Xtext are invoked in the corresponding context in order to obtain
the textual representation of the object of interest (such as a 'DataInstanceUse') only. The implementation of the label
serialization is provided in the 'org.etsi.mts.tdl.graphical.labels.data*' projects. The label serialization is integrated into
the viewpoint by means of the 'org.etsi.mts.tdl.graphical.extensions.DataUseLabelProvider' class which is registered
with the viewpoint specification.

Configured mappings

A summary of the mappings is provided in Tables 5.3.2-1 and 5.3.2-2. The details of the diagram mapping definitions
can be found in the Sirius viewpoint-specification file 'org.etsi.mts.tdl.graphical.viewpoint/description/TDL.odesign'
within the 'org.etsi.mts.tdl.graphical.viewpoint' project in annex A.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 23

Table 5.3.2-1: Mappings in the behaviour diagram specification

Meta-class Mapping (<kind>: <identifier>) Editpart (if not default)
GateReference Instance Role: gateReference
GateReference Execution: lifelineExecution
GateReference End Of Life: lifelineEnd
TimeConstraint Node: timeConstraint
TimeLabel Node: timeLabel
Target Basic Message: interaction
 Relation Based Edge: timeConstraintAttachment
 Relation Based Edge: timeLabelAttachment
CompoundBehaviour
ParallelBehaviour
AlternativeBehaviour
UnboundedLoopBehaviour
BoundedLoopBehaviour
ConditionalBehaviour
PeriodicBehaviour
DefaultBehaviour
InterruptBehaviour

Combined Fragment: combinedBehaviour

BoundedLoopBehaviour Container: boundedLoopBehaviour
Node: boundedLoop.keyword
boundedLoop.iteration

CombinedFragmentLabelEditPart

PeriodicBehaviour Container: periodicBehaviour
Node: periodicBehaviour.keyword
Node: periodicBehaviour.iteration

CombinedFragmentLabelEditPart

Block Operand: block
Break
Stop

Interaction Use: globalAction

Assertion Interaction Use: assertion
Node: assertion.config
Node: assertion.condition
Node: assertion.otherwise

InteractionUseConfiguringEditPart

VerdictAssignment Interaction Use: verdictAssignment
Node: verdictAssignment.config

InteractionUseConfiguringEditPart

TimerStart
TimerStop
TimeOut

Interaction Use: timerOperation
Node: timerOperation.config

InteractionUseConfiguringEditPart

Assignment Interaction Use: assignment
Node: assignment.config
Node: assignment.assignment

InteractionUseConfiguringEditPart

ActionReference Interaction Use: actionReference
Node: actionReference.config
Node: actionReference.action
Node: actionReference.actualParameter

InteractionUseConfiguringEditPart

InlineAction Interaction Use: inlineAction
Node: inlineAction.config
Node: inlineAction.Body

InteractionUseConfiguringEditPart

TestDescriptionReference Interaction Use: testDescriptionReference
Node: testDescriptionReference.config
Node: testDescriptionReference. testDescription
Node: testDescriptionReference. actualParameter
Node: testDescriptionReference.
componentBindings

InteractionUseConfiguringEditPart

Wait
Quiescence

Interaction Use: timeOperation
Node: timeOperation.config
Node: timeOperation.period

InteractionUseConfiguringEditPart

ComponentInstance Container: componentInstance
Node: componentInstance.name

TopLevelNodeListWithHeaderEditPart

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 24

Table 5.3.2-2: Mappings in the package diagram specification

Meta-class Mapping (<kind>: <identifier>) Editpart (if not default)
Comment Node: comment
 Relation Based Edge: commentedElement
 Relation Based Edge:

simpleDataInstance_dataType

 Relation Based Edge:
structuredDataInstance_dataType

Connection Element Based Edge: testConfiguration.connection
DataElementMapping Element Based Edge:

dataElementMapping.mapping

 Relation Based Edge:
dataElementMapping.association

AnnotationType Container: annotationType
Node: annotationType.name

TopLevelNodeListWithHeaderEditPart

SimpleDataType Container: simpleDataType
Node: simpleDataType.name

TopLevelNodeListWithHeaderEditPart

Time Container: time
Node: time.name

TopLevelNodeListWithHeaderEditPart

SimpleDataInstance Container: simpleDataInstance
Node: simpleDataInstance.name

TopLevelNodeListWithHeaderEditPart

Package Container: package
Container: package.name
Node: name
Container: package.imports
Node: Import
Container: package.packagedElements
Node: packagedElement

MultipartContainerCompartmentEditPart

NodeListWithHeaderEditPart

Action Container: action
Container: action.name
Node: name
Container: action.parameter
Node: Parameter
Container: action.body
Node: Body

MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart

NodeListWithHeaderEditPart

NodeListWithHeaderEditPart

ComponentType Container: componentType
Bordered: gateInstance
Container: componentType.name
Node: name
Container: componentType.timers
Node: componentType.timer
Container: componentType.variables
Node: componentType.variable

MultipartContainerCompartmentEditPart

NodeListWithHeaderEditPart

TestConfiguration Container: testConfiguration
Container: testConfiguration.name
Node: name
Container: testConfiguration.configuration
Container: testConfiguration.componentInstance
Bordered: testConfiguration.gateReference
Node: testConfiguration.componentInstance.name

MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart

NodeContainerEditPart

TopLevelNodeListWithHeaderEditPart

TestObjective Container: testObjective
Container: testObjective.name
Node: name
Container: testObjective.description
Node: Description
Container: testObjective. objectiveURI
Node: URI

MultipartContainerCompartmentEditPart

NodeListWithHeaderEditPart

StructuredDataType Container: structuredDataType
Container: structuredDataType.name
Node: name
Container: structuredDataType.member
Node: member

MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 25

Meta-class Mapping (<kind>: <identifier>) Editpart (if not default)
StructuredDataInstance Container: structuredDataInstance

Container: structuredDataInstance.name
Node: name
Container:
structuredDataInstance.memberAssignment
Node: memberAssignment

MultipartContainerCompartmentEditPart

NodeListWithHeaderEditPart

DataResourceMapping Container: dataResourceMapping
Container: dataResourceMapping.name
Node: name
Container: dataResourceMapping.resourceURI
Node: resourceURI

MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart

DataElementMapping Container: dataElementMapping
Container: dataElementMapping.name
Node: name
Container:
dataElementMapping.parameterMapping
Node: parameterMapping

MultipartContainerCompartmentEditPart

NodeListWithHeaderEditPart

TestDescription Container: testDescription
Container: testDescription.name
Node: name
Container: testDescription.parameter
Node: Parameter
Container: testDescription.objective
Node: Objective
Container: testDescription.configuration
Node: Configuration
Container: testDescription.behaviour
Container: BehaviourConfiguration
Node: Component

MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart

NodeListWithHeaderEditPart

NodeListWithHeaderEditPart

Function Container: function
Container: function.name
Node: name
Container: function.returnType
Node: function.returnType.keyword
Node: function.returnType.type
Container: function.parameter
Node: Parameter
Container: function.body
Node: Body

MultipartContainerCompartmentEditPart

MultiPartLabelEditPart

NodeListWithHeaderEditPart

5.3.3 Exporting Structured Test Objectives

Structured test objectives are exported as tables in a Word document according to user-defined templates. The
implementation expects templates to be placed in tables and feature the following placeholders which are mapped to the
corresponding elements for a structured test objective referenced as 'self':

• <TESTOBJECTIVENAMELABEL_PLACEHOLDER> mapped to 'self.name'

• <DESCRIPTIONLABEL_PLACEHOLDER> mapped to 'self.description'

• <URIOFOBJECTIVELABEL_PLACEHOLDER> mapped to 'self.objectiveURI', separated by comma in case
of multiple 'objectiveURI's

• <CONFIGURATIONLABEL_PLACEHOLDER> mapped to 'self.configuration.name'

• <PICSSELECTIONLABEL_PLACEHOLDER> mapped to 'self.picsReference'

• <INITIALCONDITIONSLABEL_PLACEHOLDER> mapped to 'self.initialConditions'

• <EXPECTEDBEHAVIOURLABEL_PLACEHOLDER> mapped to 'self.expectedBehaviour'

• <FINALCONDITIONSLABEL_PLACEHOLDER> mapped to 'self.finalConditions'

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 26

• <EXPECTEDBEHAVIOURLABEL_WHENPART_PLACEHOLDER> mapped to
'self.expectedBehaviour.whenClause'

• <EXPECTEDBEHAVIOURLABEL_THENPART_PLACEHOLDER> mapped to
'self.expectedBehaviour.thenClause'

Each template table is expected to have a unique identifier in the heading row. The implementation expects the user to
select an identifier of a template in order to export the structured test objectives according to the corresponding
template. An example of a template based on the syntax specification in ETSI ES 203 119-4 [i.16] is shown on
Table 5.3.3-1. Additionally, shading can be used within templates to hide optional parts when their content is empty.
Multiple related optional compartments can be marked to be hidden, e.g. the heading 'Final Conditions' and the
corresponding compartment, by using the shame shading.

Additional placeholders may be defined by users, however, the implementation also needs to add support for them. The
mappings are currently implemented at a lower level - in code. Additional filtering may be performed to streamline the
output. This may include hiding some keywords and punctuation. The example shown in Table 5.3.3-1 is exported from
the model used in annex B of ETSI ES 203 119-4 [i.16]. A filter has been applied to hide the 'entity' keywords in the
output. Finally, 'EventTemplateOccurrence's may be optionally replaced by the corresponding
'EventOccurrenceSpecification' from the referenced 'EventTemplateSpecification' while applying replacements for
overridden 'Argument's and 'EntityReference's. The details of the export of structured test objectives to Word tables can
be found in the 'org.etsi.mts.tdl.to.docx*' projects in annex A. The example template as well as additional templates are
included in the 'templates.docx' document.

Table 5.3.3-1: Structured test objective template example

TO_1_TABLE_TEMPLATE
TP Id <TESTOBJECTIVENAMELABEL_PLACEHOLDER>
Test Objective <DESCRIPTIONLABEL_PLACEHOLDER>
Reference <URIOFOBJECTIVELABEL_PLACEHOLDER>
PICS Selection <PICSSELECTIONLABEL_PLACEHOLDER>

Initial Conditions
<INITIALCONDITIONSLABEL_PLACEHOLDER>

Expected Behaviour
<EXPECTEDBEHAVIOURLABEL_PLACEHOLDER>

Final Conditions
<FINALCONDITIONSLABEL_PLACEHOLDER>

Table 5.3.3-2: Exported structured test objective according to the template in Table 5.3.3-1

TP Id TP_7_1_3_1_1
Test Objective
Reference ETSI TS 136 321 [i.25], clause 5.3.1
PICS Selection

Initial Conditions
with {
 the UE in the "E-UTRA RRC_CONNECTED state"
}

Expected Behaviour
ensure that {
 when {
 the UE receives a "downlink assignment on the PDCCH for the UE's C-RNTI"
 and

 the UE receives a "data in the associated subframe"
 and

 the UE performs a HARQ operation

 }
 then {
 the UE sends a "HARQ feedback on the HARQ process"
 }
}

Final Conditions

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 27

5.3.4 Validating Models

Overview

Means for defining and validating constraints on models are an integral part of modelling environments. Model
constraints are used to impose semantic restrictions on top of the abstract syntax provided by the meta-model. There are
different approaches for the specification, integration, and validation of such constraints. OCL is the de facto standard
for the specification and realization of constraints on object-oriented meta-models. OCL expressions can be integrated
into the meta-model by means of annotations, which can be used for automated validation of model instances, provided
adequate tool support is available. An alternative approach is the specification constraints as an add-on which can then
be applied to the model instances.

A constraint specification typically consists of a context indicating the meta-class to which the constraint applies, and
an invariant indicating the conditions that will hold true in the given context for valid models. For example, the
requirement "a 'NamedElement' shall have the 'name' property set and the 'name' shall not be an empty String" is
specified in OCL as follows:

context NamedElement
 inv: not self.name.oclIsUndefined() and self.name.size() > 0

where 'self' refers to the instance of the 'NamedElement' meta-class.

Integrated Approach

The integrated approach involves the definition of semantic constraints within the meta-model itself by means of
annotations. Modelling environments can then generate integrated validation facilities based on the annotations. The
validation facilities can be invoked automatically so that immediate feedback can be provided to the users when they
work with models. The main benefit of an integrated approach is that the constraints become an embedded part of the
meta-model. However, there are also certain limitations associated with the integrated approach. Modifications to
constraints would require changing the meta-model and related generated resources. Tool support for constraints
included as embedded annotations is very inconsistent. Immediate feedback while helpful, can sometimes get in the
way. In case a model is refined over multiple steps before it becomes valid, checking constraints at any point before that
would be superfluous.

Add-on Approach

In contrast to the integrated approach, the add-on approach relies on semantics constraints defined separately from the
meta-model. Such constraints can be checked on demand as required by the specific usage scenario. In addition, the
evaluation of such constraints can also be conducted in a more flexible manner, where only subsets of constraints are
checked as necessary at a given point in time, thus limiting the amount of superfluous violations for models which are
known to be incomplete at that point in time. Add-on constraints can also be modified, maintained, and extended
independently from the meta-model. Certain technologies, such as the Epsilon Validation Language (EVL) [i.12] also
extend the capabilities of OCL by providing means to specify guards on constraints determining conditions under which
the evaluation of a constraint is to be skipped.

The constraints for TDL are realized according to the add-on approach within the 'org.etsi.mts.tdl.constraints' project.
The project contains the constraint realization in the 'tdl.evl' file as well as supporting resources for common and
extended functionalities. A standalone launcher is implemented to enable the checking of constraints independent of
other tooling. It can also be used as a foundation for integrated solutions.

5.4 Usage Instructions

5.4.1 Development Environment

TDL graphical editor is built on top of and developed using the Eclipse platform. The Eclipse version in use at the time
of writing the present document is "2019-12".

Steps to set up the development environment:

1) Download and deploy the Eclipse Modeling Tools package.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 28

2) Install additional components using the Eclipse Marketplace:

a) Sirius; and

b) Xtext.

3) Import the following plugin projects:

a) org.etsi.mts.tdl.graphical.viewpoint;

b) org.etsi.mts.tdl.model;

c) org.etsi.mts.tdl.graphical.labels.data; and

d) org.etsi.mts.tdl.graphical.labels.data.ui.

4) Generate resources if necessary:

a) Run the GenerateData.mwe workflows in the org.etsi.mts.tdl.graphical.labels.data project if necessary.

Additional steps for setting up the development environment for the TDL textual editors, constraint implementation,
and export of structured test objectives into Word documents include:

5) Install additional components using Eclipse Marketplace:

a) Epsilon for validation facilities.

6) Import additional plugin projects:

a) org.etsi.mts.tdl.TDLan2 - for editing TDL according to annex B of ETSI ES 203 119-1 [i.13];

b) org.etsi.mts.tdl.TDLan2.ui;

c) org.etsi.mts.tdl.TPLan2 - for editing structured test objectives according to annex B of ETSI
ES 203 119-4 [i.16];

d) org.etsi.mts.tdl.TPLan2.ui;

e) org.etsi.mts.tdl.TDLtx - for editing TDL according to ETSI ES 203 119-8 [i.20] with the default brace-
based syntax;

f) org.etsi.mts.tdl.TDLtx.ui;

g) org.etsi.mts.tdl.TDLtxi - for editing TDL according to ETSI ES 203 119-8 [i.20] with the extended
indentation-based syntax;

h) org.etsi.mts.tdl.TDLtxi.ui;

i) org.etsi.mts.tdl.tools.rt - for common tools for translating model instances in different representations;

j) org.etsi.mts.tdl.tools.rt.ui;

k) org.etsi.mts.tdl.constraints - for OCL constraint implementation;

l) org.etsi.mts.tdl.constraints.ui;

m) org.etsi.mts.tdl.tools.to.docx.poi - for exporting structured test objectives to Word documents (legacy
implementation can be found in org.etsi.mts.tdl.tools.to.docx);

n) org.etsi.mts.tdl.tools.to.docx.poi.ui.

7) Generate resources if necessary:

a) Run the GenerateTDLan2.mwe and/or GenerateTPLan2.mwe, GenerateTDLtx.mwe,
GenerateTDLtxi.mwe workflows in the corresponding projects if necessary.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 29

5.4.2 End-user Instructions

Getting Started

The implementation is available from the TOP website. Up-to-date installation and usage instructions are available on
the website. The fundamental steps can be summarized as follows:

1) Download and deploy the Eclipse Modeling Tools package.

2) Install additional components using the Eclipse Marketplace:

a) Sirius; and

b) Xtext.

3) Install the TOP - TDL Open Source Project using the Eclipse Marketplace and select the desired components.

4) Alternatively, install the additional TDL-components from the TOP update site directly (currently
https://tdl.etsi.org/eclipse/latest/):

a) Open the menu item 'Help' and select the item 'Install new software'.

b) Click the 'Add...' button to add a new repository.

c) Insert the required information: Name: TOP Plugins, Location: https://tdl.etsi.org/eclipse/latest/.

d) Click Ok. In the window, a new set of plugins called TDL should appear.

e) Click on the checkbox to select the desired plugins (or simply all), then click 'Next'.

f) Now follow the instructions to complete the installation.

g) Restart Eclipse when prompted at the end.

Once the TOP is installed, the following steps should be taken before new models can be created with the graphical
editor:

1) Make sure an explorer view is open (Project Explorer or Model Explorer, for example).

2) Select 'New -> Project…' from the 'File' menu or the right-click contextual menu in the explorer view.

3) In the 'New Project' wizard, select new TDL Project.

4) Enter a name for the project and press 'Finish'.

5) In the explorer view, expand the newly created project, expand the 'model.tdl', right-click on the 'Package
Model' and select 'New Representation -> new Generic TDL'.

6) Enter a name for the new diagram and press 'OK'.

7) A new 'Generic TDL' diagram is created where the predefined types are already shown.

8) Start creating new elements by using the palette.

The editing of models with tree editors is described in clause 5.3.1. For creating models with the textual editors, end
users need to create a new file with the file extensions '.tdlan2' for TDL models according to annex B of ETSI
ES 203 119-1 [i.13], '.tdltx' or '.tdltxi for TDL models according to ETSI ES 203 119-8 [i.20] (brace- or indentation-
based, respectively), or with the file extension '.tplan2' for TDL models containing structured test objectives specified
according to annex B of ETSI ES 203 119-4 [i.16]. All files need to be located within projects in Eclipse. The newly
created files are already associated with the respective editor so that the users can benefit from the enhanced editing
capabilities such as syntax checking, syntax highlighting, auto-completion, etc.

https://tdl.etsi.org/eclipse/latest/
https://tdl.etsi.org/eclipse/latest/

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 30

Validating Models

Open the TDL model (with file extensions '.tdl', '.tdlan2', '.tdltx', '.tdltxi', or '.tplan2') with any of the available editors
(reflective, faceted, or textual) and press the 'Validate TDL model' button. Any constraint violations will be shown in a
popup dialog.

Translating Models

Open the XMI or textual representation of a TDL model (with file extensions '.tdl', '.tdltx', '.tdltxi', '.tdlan2', or '.tplan2')
and press the 'Translate TDL model' button. A popup dialog will ask about the desired target representation format. The
translated representation of the TDL model into the target representation will be named the same way as the original
model (with an additional extension '.tdl', '.tdltx', '.tdltxi', '.tdlan2', or '.tplan2') and placed in the same location.

Working with Diagrams

In Sirius and, therefore, in the TDL graphical editor, diagrams are called representations. A representation is always
related to one model element that is the root of the representation. There are two representation kinds in the TDL
viewer. The 'Generic TDL' representation takes an instance of 'Package' as its root and represents the contents of that
'Package' laid out as a graph. The 'TDL Behaviour' representation displays the behaviour of a 'TestDescription' instance
laid out as a sequence diagram.

In order to create a new diagram, open the Create Representation wizard on a project, choose the appropriate
representation kind and on the last page, select the root element matching the chosen representation kind. Created
representation is automatically opened in an editor and the representation also becomes visible in the explorer view
(under the node 'representations.aird').

The diagram editor may be used to adjust the layout of the shapes, although the implementation takes care of most of
the layout tasks.

Exporting Diagrams

Diagrams may be exported to image files. Use the context menu of representation nodes in the explorer view or directly
in the diagram canvas. Note that although it is not necessary to have the diagrams open while editing models, the
diagram editors need to be opened before exporting the diagrams in order to refresh the visual elements with the
semantic model.

Exporting Structured Test Objectives

Open the TDL model (with file extensions '.tdl' or '.tplan2') with any of the available editors (reflective, faceted, or
textual) and press the 'Generate Document' button or select the 'TDL -> Generate Document' from the menu. The
generated Word document will be named the same way as the model (with an additional extension '.docx') and placed in
the same location.

6 Using TDL with TOP

6.1 Usage Scenarios
TDL and TOP can be used in different ways. Depending on the specific goals, different parts of TDL and TOP may be
relevant for a given usage scenario. For different starting points and end goals, the following common use cases may
come into question:

• Defining structured test objectives (or test purposes) with the help of TDL-TO.

• Transforming existing structured test objectives in TDL-TO into TDL test descriptions.

• Defining test descriptions with the help of TDL.

• Transforming existing test descriptions in TDL into TTCN-3 test cases.

• Transforming existing test descriptions in TDL into a target execution language (see clause 9).

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 31

• Using existing interface specifications in OpenAPI™ with TDL (see clause 8.2).

• Using existing protocol specifications in ASN.1 with TDL (see clause 8.3).

6.2 Defining Structured Test Objectives

6.2.0 Overview

TDL Structured Test Objective (TDL-TO) may be used in several ways in the test developments process. The process
illustrated in this clause is based on the test development process defined in ETSI EG 203 130 (V1.1.1) [i.21]. The
TDL-TO specifies a refinement of a 'TestObjective' and defines a formal description of a test objective, that may be the
basis for a transformation to a TDL test description.

Developing a test specification from a base standard the first step after identifying the requirements to be tested, is to
define the test objectives. The entities and events to check the test objectives may then be specified and finally
arguments of events (data values) and timing constraints may be specified. The context in which the required behaviour
executes is defined in the test configuration.

Then the parts of a complete TDL-TO specification are:

• Domain part.

• Data.

• Configuration.

• Test purpose behaviour.

The domain, data, and configuration parts are common to a set of test purpose behaviour descriptions, while each test
purpose behaviour is specific to a single test objective. Test purpose behaviours are typically grouped based on different
criteria, e.g. test for normal behaviour and test for invalid behaviour to form a test suite structure. In TDL-TO this
structuring is supported by grouping of test purpose behaviours. To further structure a TDL-TO specification, the
domain, data, configuration and test purpose behaviours may be also separated using the TDL package concept, to
support re-use of basic data definitions and configurations.

6.2.1 Domain part of TDL-TO

The domain part of a TDL-TO specification defines the PICS elements, entities, and events relevant for a set of
TDL-TOs.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 32

Domain {

 pics:
 - NONE

 ;
 entities:

 - EPC_PCRF_A
 - EPC_PCRF_B
 - EPC_PGW_A
 - EPC_PGW_B
 - EPC_MME_A
 - EPC_MME_B
 - IMS_HSS_A
 - IMS_HSS_B
 ;
 events:
 - receives
 - sends

 - triggers
 - detachment
 - invokes
 - create_session_request
 - delete_session_request
 - termination_SIP_signalling_session
 ;

Figure 6.2.1-1: TDL-TO Domain example

In Figure 6.2.1-1 an example of a domain specification is shown. The example illustrates the definition of a single PICS
value. The example also contains the definition of a list of entities that can be referenced in test configuration
definitions and in event occurrences in the behaviour part. Finally, the example shows definition of events that may be
referenced in the event occurrence parts of TDL-TO behaviour descriptions.

6.2.2 Data definitions

In TDL-TO data may be used in the behaviour part without explicit declaration. However, in the data part of the
TDLTO definition structured data types and structured data values may be specified.

Data {
type DiameterMessage;

}

Figure 6.2.2-1: TDL-TO data definition example

Figure 6.2.2-1 illustrates the specification of a single data type.

6.2.3 Configuration

The configurations part of the TDL-TO specification defines by reference the context in which a TDL-TO is to be
executed. The Configuration part may contain any number of test configuration as needed for the TDL-TOs to which it
may be associated.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 33

 Configuration {
 Interface Type defaultGT accepts DiameterMessage;

 Component Type DiameterComp with gate g of type defaultGT;

 Test Configuration CF_VxLTE_INT
 containing
 Tester component EPC_PGW_A of type DiameterComp
 Tester component EPC_PCRF_A of type DiameterComp
 SUT component IMS_A of type DiameterComp
 connection between EPC_PGW_A.g and EPC_PCRF_A.g
 ;

 Test Configuration CF_VxLTE_RMI
 containing
 Tester component EPC_PCRF_A of type DiameterComp
 Tester component EPC_PCRF_B of type DiameterComp
 SUT component IMS_A of type DiameterComp
 connection between EPC_PCRF_A.g and EPC_PCRF_A.g
 ;

 }

Figure 6.2.3-1: TDL-TO configuration example

The configuration part in Figure 6.2.3-1 shows the definition of two test configurations "CF_VxLTE_INT" and
"CF_VxLTE_RMI". Both test configurations are based on the same component type "DiameterComp" and gate type
"defaultGT". The 'defaultGT' is specified to accept instances of the datatype 'DiameterMessage'. The test configurations
also specifies the role of involved entities, as tester or SUT component.

6.2.4 Test purpose behaviour

The test behaviour defines the behaviour of a TDL-TO to check a single test objective in terms of a sequence of event
occurrences in a referenced test configuration and with data values and timing constraints.

Package TP_RX {
 import all from Sip_Common;
 import all from Diameter_Common;

 Test Purpose {
 TP Id TP_RX_PCSCF_STR_05
 //TP_EPC_7002_21 from ETSI TS 103 029 V5.1.1
 Test objective "Verify that IUT after reception of 486 response sends an ST-Request at originating
leg."

 Reference
 "ETSI TS 129 214 (V15.6.0) [i.27], clauses 4.4.4"

 Config Id CF_VxLTE_INT

 PICS Selection NONE

 Initial conditions with {
 the UE_A entity isAttachedTo the EPC_A and
 the UE_A entity isRegisteredTo the IMS_A
 }

 Expected behaviour
 ensure that {
 when {
 the IMS_P_CSCF_A entity receives a 486_Response_INVITE
 from the IMS_S_CSCF_A entity
 }
 then {
 the IMS_P_CSCF_A entity sends the STR containing
 Session_Id_AVP;
 to the EPC_PCRF_A entity
 }

 }
 }
}

Figure 6.2.4-1: TDL-TO behaviour example

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 34

A test purpose behaviour example is shown in Figure 6.2.4-1. The test purpose behaviour references the other parts of a
TDL-TO, that is the domain, data and configuration part, that in this example are all imported from the two packages
'SIP_Common' and 'Diameter_Common'.

A test purpose is assigned a unique id often reflecting its association within a test suite structure. In this example
indicating in the TP name the interface 'RX', the component 'PCSCF', and the message 'STR' relevant for this TP.

The TDL-TO test purpose allows a reference to the base standard from where the requirement and test objective is
derived. The test objective may can be defined as an informal text string in the field "Test objective". The condition for
the applying the test purpose in a test execution can be specified in "PICS selection" field. The PICS selection
expression may consist of a list of PICS references combined by logical operators.

The test configuration 'CF_VxLTE_INT' referenced in the example specifies the test configuration used in the test
behaviour specification part.

The event occurrence sequences of the TDL-TO constitutes the core of the test behaviour part. It is split in three
optional parts, the initial condition, the expected behaviour, and final conditions. The example illustrates an initial part
where the 'UE_A' and 'IMS_A' entities are brought into the state required to check the expected behaviour. The events
'isAttachedTo' and 'isRegisteredTo' may be abstract operations which may often be used in the initial phase of the
TDL-TO specification, to allow for further refinements in later phases. In the Expected behaviour part the conditional
event occurrence sequences are specified that is assigned the verdict of the test purpose, explicitly or implicitly as is the
case in this example. The event occurrences in the example illustrates the use of undeclared data instances
'486_Response_INVITE' and 'STR', where the latter is further specified to contain the data value 'Session_Id_AVP'. In
case the test purpose needs to perform operations after the test objective is achieved, such behaviour may be specified in
the final conditions part.

6.3 Transforming Test Objectives into Test Descriptions

6.3.1 Overview

Structured test objectives can be used as a starting point for test descriptions or even for executable test cases. As the
abstraction gap between structured tests objectives and executable test cases is often too large, it is recommended to
refine the structured test objectives into test descriptions in a stepwise manner, where at each step there is a smaller
abstraction gap in comparison to the preceding step.

While structured test objectives provide many building blocks for a test description, structured test objectives can
abstract away many of the important details that are essential for the specification of a test description. Some of the
details can be inferred easily, while others allow for different interpretations. In order to narrow down the spectrum of
possible interpretations, it is recommended that guidelines and conventions are defined in advance and enforced during
the specification of the structured test objectives. This can streamline the refinement process and pave the way for
standardized refinement of structured test objectives into test descriptions.

The examples are provided in the textual representation for brevity and convenience. The graphical representation can
be used instead as well.

6.3.2 Data

TDL-TO provides different means for the use of data within a 'StructuredTestObjective'. In addition to the use of
defined 'DataIntances' and 'SpecialValueUse's, TDL-TO provides means for the specification of literal 'Value's inline,
within a 'StructuredTestObjective'.

The use of defined 'DataInstance's and 'SpecialValueUse's does not require particular handling as the same
'DataInstance's can be used in the resulting 'TestDescription's. While the concrete syntax may be different, the
underlying model elements are the same. The corresponding 'DataType's may need to be taken into account if a
'TestConfiguration' needs to be inferred from the 'StructuredTestObjective'. Additionally, any qualifying 'Comment's
used to describe further details related to the context of its usage may need to be interpreted according to the existing
conventions (if defined). The example in Figure 6.3.2-1 illustrates the definition of 'DataType's and 'DataInstance's in
TDL-TO. The corresponding data definitions in the textual representation of TDL are shown in Figure 6.3.2-2. Apart
from minor syntactical differences, the underlying model structures are the same. In fact, the TOP tools enable cross
referencing between both notations so that data definitions in TDL can be reused in TDL-TO and vice-versa.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 35

Package data {

 Data {

 type float;

 type position with x of type float, y of type float;

 float -22;

 float -21;

 position startingPosition containing x indicating value -21;

 }

}
Figure 6.3.2-1: Predefined data example in TDL-TO

Package data {

 Type float ;

 Type position (x of type float , y of type float) ;

 float -22 ;

 float -21 ;

 position startingPosition (x = -21) ;

}
Figure 6.3.2-2: Corresponding data in TDL

TDL-TO permits the use of 'LiteralValue's as a flexible way for specifying the arguments of
'EventOccurrenceSpecification's. This can be useful, especially at an early stage, where the data structures and contents
are not fixed yet. 'LiteralValue's may contain descriptions of the structure and contents of the 'LiteralValue'.
Additionally, 'LiteralValue's may be referenced within the same 'StructuredTestObjective'. Any qualifying 'Comment's
used to describe further details related to the context of its usage may need to be interpreted according to the existing
conventions (if defined).

In order to transform 'LiteralValue's, first corresponding 'DataType's and 'DataInstance's need to be inferred. Consider
the following example illustrated in Figure 6.3.2-3, showing a 'LiteralValue' specification within an
'EventOccurrenceSpecification'. The basic structure is the same, but there are no predefined 'DataType's and
'DataInstance's. The inferred 'DataType's and 'DataInstance's are illustrated in Figure 6.3.2-4. The inferred
'DataElement's are prefixed with 'inferred_' for illustrative purposes. The contextual information may provide hints for
more appropriate naming. Apart from the inference, type compatibility and merging needs to be considered. In this
example, it is assumed that 'x' and 'y' are of the same type, otherwise distinct 'DataType's need to be inferred as well. If
a 'StructuredDataInstance' is used only once, it is also possible to specify it as inline 'DataInstanceUse' in TDL.

when {

 the Controller entity sends the start position containing

 x indicating value 22,

 y indicating value 21

 ;

} then {

 the Object entity moves_to the received start position

}

Figure 6.3.2-3: Literal data in TDL-TO

Package inferred_data {

 Type inferred_simple ;

 Type inferred_position (x of type inferred_simple, y of type inferred_simple) ;

 inferred_simple 22 ;

 inferred_simple 21 ;

 inferred_position inferred_start_position (x = 22, y = 21) ;

}
Figure 6.3.2-4: Inferred literal data in TDL

In case existing 'DataInstance's are used and corresponding 'DataMapping's exist, these can be reused as well.
Otherwise, the 'DataMapping's can be defined as part of the refinement process for both existing data specifications and
data specifications inferred from inline literal data specifications.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 36

6.3.3 Configurations

Similar to the use of data, TDL-TO provides different means for the specification of the entities related to an
'EventOccurrenceSpecification'. Abstract entities can be useful, especially at an early stage, where the
'TestConfiguration's are not fixed yet. If 'TestConfiguration's are already specified, the corresponding
'ComponentInstances' can be used in 'EventOccurrenceSpecification's. An example for a simple 'TestConfiguration' and
corresponding 'ComponentType's and 'GateType's specified in TDL-TO is shown in Figure 6.3.3-1. The corresponding
definitions in the textual representation of TDL are showing in Figure 6.3.3-2. The use of defined 'ComponentInstance's
does not require particular handling as the same 'TestConfiguration's can be used in the resulting 'TestDescription's.
Apart from minor syntactical differences, the underlying model structures are the same. The TOP tools enable cross
referencing between both notations so that definitions related to 'TestConfiguration's in TDL can be reused in TDL-TO.

Package base_configuration {

 import all from data;

 Configuration {

 Interface Type wireless accepts position;

 Component Type unit with gate wifi of type wireless;

 Test Configuration basic containing

 Tester component controller of type unit

 SUT component object of type unit

 connection between controller.wifi and object.wifi

 ;

 }

}
Figure 6.3.3-1: Predefined configuration example in TDL-TO

Package base_configuration {

 Import all from data ;

 Gate Type wireless accepts position ;

 Component Type unit having {

 gate wifi of type wireless ;

 }

 Test Configuration basic {

 create Tester controller of type unit ;

 create SUT object of type unit ;

 connect controller.wifi to object.wifi ;

 }

}
Figure 6.3.3-2: Corresponding configuration in TDL

The use of abstract entities provides more flexibility early on, however, it requires clear guidelines and conventions for
the interpretation of the abstract entities. An 'Entity' may be transformed into a 'ComponentInstance' or a 'GateInstance'
depending on the intended interpretation. Hints and conventions regarding the desired interpretation of an 'Entity' can be
provided in the 'Entity' definition, in the context of its use, or outside the TDL-TO specification. Considering the
example illustrated in Figure 6.3.2-3, it can be inferred that the 'Controller' entity and the 'Object' entity have some
means to interact without this being explicitly specified. Figure 6.3.3-3 illustrates one possible 'TestConfiguration'
which can be inferred from the behaviour specification in Figure 6.3.2-3. First, one or more 'GateType's need to be
inferred, then the corresponding 'ComponentType's and their 'GateInstance's. For simplicity, it is assumed that
'Controller' and 'Object' are of the same 'ComponentType', conventions may be put in place to indicate that.
Alternatively, subsequent refinement may further differentiate the 'ComponentType's where appropriate. Finally, the
'TestConfiguration' is inferred, including assigning 'ComponentInstance's with corresponding roles, as well as
'Connection's between the inferred 'GateInstance's. In this example, the roles and 'Connections' are inferred based on the
'EventOccurrenceSpecification's and their context (e.g. when / then clauses, etc.). Similar to 'DataType's, compatible
inferred 'TestConfiguration's, 'ComponentType's, and 'GateType's need to be identified and merged where applicable to
avoid unnecessary duplication.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 37

Package inferred_configuration {

 Import all from data ;

 Gate Type inferred_gate_type accepts inferred_position ;

 Component Type inferred_component_type having {

 gate inferred_gate of type inferred_gate_type ;

 }

 Test Configuration inferred_move_object {

 create Tester Controller of type inferred_component_type ;

 create SUT Object of type inferred_component_type ;

 connect Controller.inferred_gate to Object.inferred_gate ;

 }

}
Figure 6.3.3-3: Inferred configuration in TDL

6.3.4 Behaviour

Initial conditions, expected behaviour, and final conditions in TDL-TO are expressed by means of 'EventSequences'.
'EventSequences' are comprised of 'EventOccurrenceSpecification's. This provides simple generic high-level construct
with loose semantics indicated by the referenced 'Event'. The interpretation of the 'Event' can be indicated in the domain
description and/or refined in the 'EventOccurrenceSpecification'. It is recommended to establish well-defined
specification conventions in order to ensure consistent interpretation. TDL 'TestDescriptions' require more
differentiated specification of behaviour, distinguishing between 'Interaction's, 'Action's, and other kinds of
'Behaviour's. While some assumptions regarding the mapping of 'Event's to 'AtomicBehaviour's can be made intuitively,
it is recommended to define explicit conventions in order to ensure consistent interpretation and transformation. The
example in Figure 6.3.4-1 illustrates a minimal 'StructuredTestObjective' containing only the specification of the
expected behaviour. Assuming the data and configuration related information has been inferred as illustrated in the
previous examples, the corresponding 'TestDescription' inferred from the 'StructuredTestObjective' is shown in
Figure 6.3.4-2. In this scenario, the first 'EventOcurrenceSpecification' in the 'whenClause' is interpreted as an
'Interaction' between the 'Controller' and the 'Object', the latter is assumed to be the implicit opposite entity in the
'EventOcurrenceSpecification'. It is recommended to make opposite entities explicit whenever possible. The second
'EventOcurrenceSpecification' in the 'thenClause' is interpreted as an 'ActionReference'. In this case, it is also necessary
to infer a definition for the action.

Test Purpose {

 TP Id TP_MOVE_OBJECT_LITERAL

 Test objective "Move object to destination with literal values."

 Expected behaviour

 ensure that {

 when {

 the Controller entity sends the start position containing

 x indicating value 22,

 y indicating value 21

 ;

 } then {

 the Object entity moves_to the received start position

 }

 }

}

Figure 6.3.4-1: Expected behaviour specification in TDL-TO

Action move_to (position of type inferred_position);

Test Description TD_MOVE_OBJECT_LITERAL uses configuration inferred_move_object {

 Controller.inferred_gate sends inferred_start_position to Object.inferred_gate;

 perform action move_to (position = inferred_start_position) on Object;

}

Figure 6.3.4-2: Corresponding behaviour specification in TDL

If desired, especially when 'StructuredDataInstance's are used only once, it is also possible to specify them as inline
'DataInstanceUse's in TDL. The resulting 'TestDescription' for the example in Figure 6.3.4-1 is shown in Figure 6.3.4-3,
where instead of the 'inferred_start_position' 'DataInstance', the corresponding data is specified inline. Since the
'DataInstance' is used twice in this case, it results in some duplication.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 38

Action move_to (position of type inferred_position);
Test Description TD_MOVE_OBJECT_LITERAL_INLINE uses configuration inferred_move_object {
 Controller.inferred_gate sends new inferred_position (x = 22, y = 21) to Object.inferred_gate;
 perform action move_to (position = new inferred_position (x = 22, y = 21)) on Object;
}

Figure 6.3.4-3: Corresponding behaviour specification in TDL using inline data

The steps for the derivation of 'TestDescription's from 'StructuredTestObjective's can be translated to other notations as

well. Fundamentally, the process remains the same, starting with the data definitions, through the test configurations,

and finally the behaviour specifications. The above guidelines can be used as a template for deriving 'TestDescription's

from other kinds of documents and artifacts as a starting point.

6.3.5 Transformation Conventions and Assumptions

The transformation of 'LiteralValue's involves the following conventions:

• If the 'Content' of the 'LiteralValue' is empty, the 'LiteralValue' is mapped to a 'SimpleDataType' with a 'name'

corresponding to the 'name' of the 'LiteralValue'. If qualifier 'Comment's are present, a 'SimpleDataInstance' is

created with a 'name' corresponding to the concatenated 'body's of the qualifier 'Comment's. Alternatively, the

'name' of the 'DataType' can also be prefixed with the concatenated 'body's of the qualifier 'Comment's. If the

corresponding 'DataType' or 'DataInstance' exists, no action is taken.

• If the 'Content' of the 'LiteralValue' is not empty, the 'LiteralValue' is mapped to a 'StructuredDataType' with a

'name' corresponding to the 'name' of the 'LiteralValue'. If qualifier 'Comment's are present, a

'StructuredDataInstance' is created with a 'name' corresponding to the concatenated 'body's of the qualifier

'Comment's. Alternatively, the 'name' of the 'DataType' can also be prefixed with the concatenated 'body's of

the qualifier 'Comment's. If the corresponding 'DataType' or 'DataInstance' exists, no action is taken.

• Each 'Content' element of the 'LiteralValue' is mapped to a 'Member' within the corresponding

'StructuredDataType' with a 'name' corresponding to the 'name' of the 'Content'. If a 'Member' with the same

'name' exists, no action is taken. The 'DataType' of the 'Member' corresponds to:

- A new 'DataType' corresponding to the 'Content' with a 'name' prefixed with the 'name' of the containing

'StructuredDataType' in case a 'Content' is directly contained within the 'Content'.

- A (default) 'SimpleDataType' corresponding to the 'LiteralValue' in case a 'LiteralValue' is directly

contained within the 'Content'.

- The 'DataType' corresponding to the 'dataType' of the 'DataInstanceUse' in case a 'DataReference' is

directly contained within the 'Content'.

• Each nested 'Content' or 'LiteralValue' element is transformed according to the conventions above.

For example, as shown in Figure 6.3.5-1 and Figure 6.3.5-3, for the 'EventOccurrenceSpecification' taken from [i.37], a

corresponding 'StructuredDataType' is created for both the 'LiteralValue' 'message' and for the 'payload' 'Content' of the

'message'. The 'dataType' for the 'payload' 'Member' is then set accordingly. Instead, since the 'value's for the

'filterLength' and 'topic_filter' Content's correspond to 'DataReference's to defined 'DataInstance's, as shown in

Figure 6.3.5-2, the 'dataType's for the corresponding 'Member's in the derived 'SUBSCRIBE_message_payload'

'DataType' are: set to the 'dataType's of the referenced 'DataInstance's.

 the IUT entity receives a SUBSCRIBE message containing
 payload containing
 filterLength corresponding to TOPIC_FILTER_LEN_SEC_CVE_01,
 topic_filter corresponding to TOPIC_FILTER_LEN_SEC_CVE_01;;
 from the ATTACKER_CLIENT entity

Figure 6.3.5-1: 'LiteralValue's and 'DataReference's example (from [i.37])

 Data {
 UTF8String TOPIC_FILTER_SEC_CVE_01; // topic filter used in TP_MQTT_BROKER_SEC_CVE_001
 Int16 TOPIC_FILTER_LEN_SEC_CVE_01; // corresponds to lengthof(TOPIC_FILTER_SEC_CVE_01) + 1
 }

Figure 6.3.5-2: Corresponding 'DataInstance' definitions (from [i.37])

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 39

 Type SUBSCRIBE_message (

 payload of type SUBSCRIBE_message_payload

) ;

 Type SUBSCRIBE_message_payload (

 filterLength of type Int16 ,

 topic_filter of type UTF8String

) ;

Figure 6.3.5-3: Resulting 'DataType' specifications in TDL

For the transformation of 'EventOccurrence's into 'Behaviour's, it is necessary to first derive the corresponding
'TestConfiguration' if no 'TestConfiguration' is specified for the 'StructuredTestObjective'. The derivation of the
'TestConfiguration' involves the following conventions:

• Each 'EntityReference' is transformed a 'ComponentType' and a 'GateType', where the 'GateType' accepts the
'DataType's resulting from the transformation of the 'LiteralValue's specified as arguments of the
'EventOccurrence'. The 'ComponentType' contains a 'GateInstance' of the transformed 'GateType'. If the
'ComponentType', 'GateType', or 'GateInstance' already exists, no action is taken.

• A 'TestConfiguration' is constructed with 'ComponentInstance's of the 'ComponentType's resulting from the
transformation above. It is recommended to use naming conventions, annotations, or other conventions to
indicate the roles of the 'ComponentInstance's, otherwise the roles are set to a default value of 'Tester' or 'SUT'
and need to be adjusted afterwards. While opposite 'EntityReference's are optional, it is recommended that
they are explicitly specified, otherwise an implicit 'Tester' 'ComponentInstance' needs to be assumed and
constructed. If the assumption of an implicit 'Tester' does not hold, the transformed 'TestConfiguration' may
need to be adjusted.

• Within the 'TestConfiguration', 'Connection's need to be created between interacting 'ComponentInstance's for
every 'EventOccurrence'. If a 'Connection' already exists, no action is taken.

• Conventions or comparison between 'TestConfiguration's are recommended to avoid duplicate identical
configurations.

Once a suitable 'TestConfiguration' is derived, 'EventOccurrence's can be transformed into 'Behaviour's. There can be
different strategies, ranging from transforming 'EventOccurrence's into detailed 'Interaction's, to transforming
'EventOccurrence's into abstract 'TestDescription' skeletons as containers for manually specified 'Behaviour's. This may
depend on the general test specification process and/or the level of detail of the structured test objective specifications.
Assuming detailed 'Message's as the target, the following conventions can be applied:

• A 'TestDescription' using the 'TestConfiguration' resulting from the transformation above is constructed as a
container for the 'Behaviour's. For traceability and in general, it is recommended that the 'TestDescription'
references the 'StructuredTestObjective' as its 'testObjective'.

• In the simplest case, the 'TestDescription' contains one 'CompoundBehaviour' which contains the individual
'Behaviour's corresponding to the 'EventOccurrence's.

• If desired, the 'CompoundBehaviour' may contain further 'CompoundBehaviour's corresponding to the
structural blocks of the 'StructuredTestObjective', e.g. "Initial conditions", "Expected behaviour", "when/then"-
clauses, etc., so that the resulting 'TestDescription' more closely reflects the structure of the corresponding
'StructuredTestObjective'. The additional 'CompoundBehaviour's may be annotated to clearly specify their
purpose and potentially also influence how tools represent or treat the individual 'Behaviour's within the
additional 'CompoundBehaviour's.

• The individual 'EventOccurrence's are transformed into corresponding 'Behaviour's. In the absence of further
information, it needs to be specified what the default 'Behaviour' should be. In general, suitable conventions
and 'Annotation's are recommended to ensure easier transformation. Assuming that the target 'Behaviour' is a
'Message', a 'Message' is constructed with the source and target 'GateReference's corresponding to the
'EntityReference's of the 'EventOccurrence'. The assumptions for the transformation of 'TestConfiguration's
apply in this case as well, particularly when no opposite 'EntityReference' is specified. A 'DataUse' is then
constructed as the argument of the 'Message' based on the 'LiteralValue' specified as the argument of the
'EventOccurrence' and the 'DataType's resulting from the transformation above.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 40

6.4 Defining Test Descriptions

6.4.1 Overview

In the absence of structured test objectives or other documents which can serve as a starting point, test descriptions can
be defined from scratch. The fundamental steps in the process involve the definition of data first, then configurations,
finally the behaviour. The following examples illustrate the different steps by means of the graphical syntax for TDL
with the help of the graphical editor.

6.4.2 Data and Configuration

Since the 'Generic TDL' diagram accommodates both the specification of data- and configuration-related elements, both
are contemplated together. If necessary, separate diagrams can be created instead to capture only data-related or
configuration-related elements separately. In the example shown in Figure 6.4.2-1 the one diagram approach is shown
for conciseness and also to show a complete overview of all relevant elements in one place. On the top-left side the
predefined simple data types are shown. In the bottom part the verdict-related types and instances are shown. On the
right side behaviour-related definitions for an 'Action' and a 'TestDescription' are shown. Finally, in the middle part, the
data types, data instances, as well as component and gate types and the test configuration are shown. The graphical
editor does provide some more flexibility with regard to the order of creation of the different elements. However, the
fundamental order remains the same - data, configuration, behaviour.

Figure 6.4.2-1: Data and configuration specification in TDL using the graphical editor

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 41

6.4.3 Test Behaviour and Time

The 'TDL Behaviour' diagram allows the visualization and specification of the behaviour of an individual
'TestDescription'. While the 'TestDescription' itself is defined within a 'Generic TDL' diagram, including its name,
parameters, test configuration, and test objectives, the specifics of the behaviour are shown in a separate 'TDL
Behaviour' diagram. The example shown in Figure 6.4.3-1 illustrates the behaviour of the 'TD_MOVE_OBJECT'
'TestDescription'. In addition to the basic behaviour, temporal properties of the behaviour are illustrated with the help of
a 'TimeLabel' and a 'TimeConstraint'.

Figure 6.4.3-1: Test behaviour in TDL using the graphical editor

'TestDescriptionReference's enable the reuse of behaviour definitions. While in some other high-level test specification
languages the use of so-called "data tables" has been gaining some popularity, TDL provides more sophisticated
facilities both for the definition of data and for the reuse of behaviour. A parameterized 'TestDescription' can be
invoked multiple times with different data instances as shown in the example in Figure 6.4.3-2. In the
'TC_MOVE_AROUND' 'TestDescription', the 'TC_MOVE_TO' 'TestDescription is invoked four times to describe a
test sequence where the 'Object' needs to move to four positions.

Test Description TC_MOVE_TO (target_position of type inferred_position)

uses configuration inferred_move_object {

 Controller.inferred_gate sends parameter target_position to Object.inferred_gate;

 perform action move_to (position = parameter target_position) on Object;

}

Test Description TC_MOVE_AROUND

uses configuration inferred_move_object {

 execute TC_MOVE_TO (target_position = start_position);

 execute TC_MOVE_TO (target_position = open_position);

 execute TC_MOVE_TO (target_position = closed_position);

 execute TC_MOVE_TO (target_position = end_position);

}

Figure 6.4.3-2: Test behaviour reuse in TDL using test description references

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 42

6.5 Transforming Test Descriptions into TTCN-3 Test Cases

6.5.1 Overview

One way to obtain executable test cases from TDL is to transform the test descriptions into TTCN-3 code. The
standardized mapping to TTCN-3 in ETSI ES 203 119-6 [i.18] specifies in great detail all the peculiarities that need to
be considered for the derivation of executable test cases in TTCN-3 from TDL. The basic steps remain fundamentally
the same, involve transforming the data definitions, the configuration-related definitions, as well as the behaviour
specifications. All the transformations have to take into account the semantic gaps between both languages, as well as
the intrinsic differences in the levels of abstraction. The standardized mapping is defined for locally ordered test
descriptions only. Thus, if totally ordered test descriptions are the starting point, these first need to be transformed into
locally ordered test descriptions, keeping in mind the differences in semantics and the additional constraints that are
imposed by locally ordered test descriptions. The prototypical implementation of the mapping within the TOP provides
automated translation for the essential parts necessary for the transformation of TDL 'TestDescription's to TTCN-3 test
cases.

6.5.2 Data

To illustrate the mapping of the data-related elements, consider the example in Figure 6.5.2-1. It illustrates different
data definitions and data uses. The corresponding equivalents in TTCN-3 are shown in Figure 6.5.2-2. The mappings
for data are pretty straightforward in this example. Although the use of data mappings is recommended, in which case
the respective mapping targets are used instead, it is also possible to generate basic data definitions in case no data
mappings are present. Annotations can be used to override assumptions.

 //data types

 Type SESSIONS (id1 of type Integer, id2 of type Integer);

 Type MSG (ses of type SESSIONS, content of type String);

 //data instances

 SESSIONS s1(id1 = 1, id2 = 2);

 SESSIONS s2(id1 = 11, id2 = 22);

 MSG msg1(ses = s1, content = m1);

 //value data instances

 SESSIONS c_s1(id1 = 1, id2 = 2) with {VALUE;};

 MSG c1(ses = s1, content = c1) with {VALUE;};

 Component Type ct having {

 //variables

 variable v1 of type MSG with {VALUE;};

 variable v2 of type MSG;

 gate g of type gt;

 }
Figure 6.5.2-1: Test data example in TDL

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 43

 //data types

 type record SESSIONS {

 integer id1,

 integer id2

 }

 type record MSG {

 SESSIONS ses,

 charstring content

 }

 //templates

 template SESSIONS s1 := {id1:=1, id2:=2}

 template SESSIONS s2 := {id1:=11, id2:=22}

 template MSG msg1 := {ses := s1, content := "m1"}

 //value -> constant

 const SESSIONS c_s1 := {id1:=1, id2:=2}

 const MSG c1 := {ses := c_s1, content := "c1"}

 type component ct {

 //variables

 var MSG v1;

 var template MSG v2;

 port gt g;

 }
Figure 6.5.2-2: Test data equivalents for Figure 6.5.2.1 in TTCN-3

6.5.3 Configuration

With regard to test configurations, there are several concerns to address. TTCN-3 provides means for the dynamic
instantiation and management of test configurations. The essential parts of a configuration include the main test
component which plays a special role, zero or more parallel test components, as well as a unified system interface.
There is a distinction between connecting and mapping ports and there are some restrictions with regard to these. In
TDL the test configuration is defined upfront and remains static. TDL also provides a holistic view where the SUT can
be decomposed into multiple interconnected components. The example in Figure 6.5.3-1 illustrates a minimal test
configuration in TDL. The corresponding mapping in TTCN-3 is illustrated in Figure 6.5.3-2. A unified system
interface needs to be inferred in case there are multiple SUT components. The steps for instantiating and mapping /
connecting the components are encapsulated in a function.

 Gate Type defaultGT accepts

 ACK, PDU, PDCCH, C_RNTI, CONFIGURATION ;

 Component Type defaultCT having {

 gate g of type defaultGT;

 }

 Test Configuration defaultTC {

 create Tester SS of type defaultCT;

 create SUT UE of type defaultCT ;

 connect UE.g to SS.g ;

 }

Figure 6.5.3-1: Test configuration example in TDL

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 44

type port defaultGT_to_map message {

 //this is a port type for SUT-Tester connections

 inout charstring, PDCCH /* ACK, PDU, C_RNTI, CONFIGURATION ; */

}

type port defaultGT_to_connect message {

 //this is a port type for Tester-Tester connections

 inout charstring, PDCCH /* ACK, PDU, C_RNTI, CONFIGURATION ; */

}

type component MTC_CT {

 //component type for MTC

 //variable for the PTC(s) --TESTER component(s) in TDL

 var defaultCT TESTER_SS;

}

type component defaultCT {

 port defaultGT_to_map g_to_map;

 port defaultGT_to_connect g_to_connect;

}

function defaultTC() runs on MTC_CT {

 // Test Configuration defaultTC, mappings, connections

 TESTER_SS := defaultCT.create;

 map (TESTER_SS:g_to_map,system:g_to_map);

}

Figure 6.5.3-2: Test configuration related equivalents for Figure 6.5.3.1 in TTCN-3

6.5.4 Behaviour

In terms of behaviour, TTCN-3 and TDL also have different assumptions. In TTCN-3, the focus is on the test system
view, where all components execute their behaviour concurrently and independently unless there is explicit
synchronization among them. TDL aims to provide a global view with the possibility to specify both locally and totally
ordered behaviour, with explicit or implicit synchronization respectively. For the standardized mapping to TTCN-3 only
the local ordering is taken into consideration. User-defined mappings may also tackle the totally ordered behaviour. In
the example shown in Figure 6.5.4-1 a locally ordered 'TestDescription' is illustrated. The corresponding mappings in
TTTCN-3 are shown in Figures 6.5.4-2, 6.5.4-3, and 6.5.4-4. First, the default handling needs to be taken care of. This
involves the definition of altsteps to handle deviations from the specified behaviour as well as quiescence, which is
illustrated in Figure 6.5.4-2. Then the actual test behaviour from the test system's point of view is translated to a
function as illustrated in Figure 6.5.4-3. Finally, in Figure 6.5.4-4 a test case is defined which takes care of activating
the default behaviour, instantiating the test configuration, as well as starting the actual test behaviour.

Test Description Implementation TD_7_1_3_1

 uses configuration defaultTC {

 SS.g sends pdcch (c_rnti=ue) to UE.g;

 SS.g sends mac_pdu to UE.g;

 UE.g sends harq_ack to SS.g with {

 test objectives : TP1 ;

 };

 set verdict to PASS ;

 SS.g sends pdcch (c_rnti=unknown) to UE.g;

 SS.g sends mac_pdu to UE.g;

 alternatively {

 UE.g sends harq_ack to SS.g ;

 set verdict to FAIL ;

 } or {

 gate SS.g is quiet for five ;

 set verdict to PASS ;

 } with {

 test objectives : TP2 ;

 }

}

Figure 6.5.4-1: Test behaviour example in TDL

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 45

altstep to_handle_deviations_from_TDL_description_AS () {

 [] any port.receive {

 setverdict(fail);

 mtc.stop;

 }

 //if nothing happens, a timer is started

 //before every receive instruction

 //and the timer is here

 //or we can leave the timeout for

 //the execute instruction called with the optional

 //timer parameter - but in this case

 //the final verdict will be 'error'

}

altstep quiescence_handler_AS (timer quiescence) {

 //for all quiescence that is not connected to a gate

 [] any port.receive{

 setverdict(fail);

 mtc.stop;

 }

 [] quiescence.timeout {

 setverdict(pass);

 }

}

Figure 6.5.4-2: Required altstep definitions in TTCN-3

function behaviourOfTESTER_SS() runs on defaultCT {

 timer quiescence;

 activate(to_handle_deviations_from_TDL_description_AS());

 g_to_map.send(modifies pdcch := {c_rnti := ue})

 g_to_map.send(mac_pdu);

 g_to_map.receive(harq_ack);

 setverdict(pass);

 /*Test Objective Statisfied: TP2 */

 g_to_map.send(modifies pdcch := {c_rnti := unknown});

 g_to_map.send(mac_pdu);

 quiescence.start(five);

 alt{

 [] g_to_map.receive(harq_ack){

 setverdict(fail);

 }

 [] quiescence_handler_AS(quiescence);

 /*Test Objective Statisfied: TP2 */

 }

}

Figure 6.5.4-3: Behaviour mapping for Figure 6.5.4-1 in TTCN-3

testcase TD_7_1_3_1() runs on MTC_CT

 system defaultCT

{

 activate(to_handle_deviations_from_TDL_description_AS());

 defaultTC();

 TESTER_SS.start(behaviourOfTESTER_SS());

 all component.done;

}

Figure 6.5.4-4: Test case integrating all steps for mapping Figure 6.5.4-1 to TTCN-3

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 46

7 UML Profile Editor

7.1 Scope and Requirements
The UML Profile for TDL (UP4TDL) was developed to enable the application of TDL in UML based working
environments. UP4TDL introduces TDL-related domain-specific concerns to the UML meta-model by means of
stereotypes which extend UML meta-classes with additional properties, relations, or constraints. The implementation of
the UP4TDL covers basic functionalities to support the creation and manipulation of UML models applying the
UP4TDL profile.

NOTE: The UML profile editor description are not aligned with the latest version of the TDL specification parts,
but are related to an earlier release of the TDL specification parts.

7.2 Architecture and Technology Foundation
The UML based editor is also built on top of the Eclipse platform. At a high level, it contains two main components: the
UML Profile for TDL (UP4TDL) implementation described in ETSI ES 203 119-1 [i.13], annex C, and the facilities for
editing UP4TDL models. The profile is static. This allows the implementation of derived properties. The profile
implementation is independent of the editing facilities provided in the context of this reference implementation and can
be used by other UML tools. A model-to-model transformation from UP4TDL models to TDL Ecore models allows
generating TDL in the XMI format specified in ETSI ES 203 119-3 [i.15].

The TDL profile implementation is located in the 'org.etsi.mts.up4tdl' project, while the validation implementation is
located in the 'org.etsi.mts.up4tdl.validation' project. The implementation of the editing facilities can be found in the
'org.etsi.mts.up4tdl.diagram.*' projects. The 'ElementType' framework is used for manipulating model elements in
Papyrus. Specialized 'ElementType's are in located in the 'org.etsi.mts.up4tdl.service.type' project.

7.3 Implemented Facilities

7.3.1 Applying the Profile

Overview

A UML profile allows users to build models with additional constraints and specific properties, while still relying on the
UML meta-model. A UP4TDL model is then a UML model with additional constraints and properties tailored towards
the domain of TDL.

Stereotype

The extension mechanism of a UML profile is based on stereotypes. A stereotype of a UML profile always extends
(directly or indirectly) a UML meta-class. For example the 'ComponentInstance' concept from TDL extends the
'Property' concept of UML and it has the specific property allowing users to define its role ('Tester' or 'SUT').

Applying the UP4TDL profile on a UML model

Applying UP4TDL concepts on a UML model implies the application of UP4TDL stereotypes on UML elements. To
do this, the UP4TDL profile (or one of its sub-profiles) will be added to the package (or the model) containing the UML
element as shown in Figure 7.3.1-1.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 47

Figure 7.3.1-1: UML profile application

The stereotype applied on the UML model allow the specification of stereotype properties. In Figure 7.3.1-2, the
stereotype 'ComponentInstance' is applied to a 'UML::Property'. This allows the user to specify the role property, in this
case, 'tester'.

Figure 7.3.1-2: Stereotype property specification

7.3.2 Hints for the Transformation of UP4TDL Models into TDL Models

Overview

Most translations are straightforward one-to-one mappings between UP4TDL concepts and concepts from TDL
meta-model. The exceptions are detailed below.

ElementImport

In TDL, 'ElementImport' can reference several 'Element's, while in UML, the corresponding concept
'UML::ElementImport' concept (direct mapping without stereotype) can only reference one. So the model-to-model
transformation can potentially turn one 'TDL::ElementImport' into several 'UML::ElementImport's.

SimpleDataInstance and StructuredDataInstance

Both 'SimpleDataInstance' and 'StructuredDataInstance' are mapped to the same concept 'UML::InstanceSpecification'.
To determine whether it is a simple or a structured instance, one needs to check the type of the
'UML::InstanceSpecification'. If the 'InstanceSpecification's type is a 'PrimitiveType', then it is a 'SimpleDataInstance',
otherwise it is a 'StructuredDataInstance'.

Property Identification

There are two direct mappings from 'UML::Property' to TDL concepts - for 'TDL::Variable' and 'TDL::Member'. In
order to determine which kind of property it is, one needs to check the container. If the property is contained in a
'ComponentInstance', then it corresponds to a 'Variable'. Otherwise, if the property is contained in a 'DataType', then it
corresponds to a 'Member'.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 48

7.3.3 Editing Models with the Model Explorer

As shown in clause 6.2.1, UP4TDL elements can be created from UML elements by applying a stereotype on them.
Both steps can be performed in a row from the model explorer, using TDL specific 'New TDL Child' creation options.
The model elements are sorted in the 'New TDL Child' menu according to the diagram they are supposed to appear in,
as shown in Figure 7.3.3-1.

Figure 7.3.3-1: Adding TDL-stereotyped elements

7.3.4 Editing TDL-specific Properties with the TDL Property View

Editing the properties of a UP4TDL model with the standard property view, can be inconvenient for two reasons. On
the one hand, some properties from the UML base meta-class are not relevant for the associated TDL 'Element'. On the
other hand, some properties of a TDL 'Element' are not properties of the base meta-class. Even when the properties of a
TDL 'Element' and the base UML 'Element' match, they might not have the same name. Editing a UP4TDL model
would then require expertise in both UML and TDL, as well as knowledge of the UP4TDL profile specifics. There is a
'TDL Tab' for the property view, which makes the task of editing TDL specific properties easier. Figure 7.3.4-1
illustrates the property view of a 'ComponentInstance', which contains its 'Name', 'Type', and 'Role' properties.

Figure 7.3.4-1: Editing TDL-specific properties

7.3.5 Editing Models with TDL-specific Diagrams

Overview

Editing a UP4TDL model can be done using the property view and model explorer only. In order to provide a graphical
representation of a model being edited, TDL Diagrams specializing UML Diagrams are implemented. There are 3 kinds
of TDL Diagrams: TDL DataDefinition Diagram, TDL TestConfiguration Diagram and TDL TestDescription Diagram.
There are two main editing facilities for all of these diagrams: the creation of an element using the 'palette' and the 'drag
and drop' of an existing element from the model explorer.

The TDL-specific diagrams can be initialized from the model explorer as shown in Figure 7.3.5-1.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 49

Figure 7.3.5-1: Creating TDL-specific diagrams

The TDL DataDefinition Diagram

The DataDefinition Diagram is based on the UML Class Diagram. It is used to represent the following TDL Elements:

• StructuredDataType

• SimpleDataType

• MemberAssignment

• Member

• DataElementMapping

• DataResourceMapping

• ParameterMapping

• DataInstance

• GateType

The palette for the TDL DataDefinition diagram is shown in Figure 7.3.5-2.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 50

Figure 7.3.5-2: DataDefinition Diagram palette

The TDL TestConfiguration Diagram

The TestConfiguration Diagram is based on the UML Composite Diagram. It is used to represent the following TDL
elements:

• TestConfiguration

• ComponentInstance

• ComponentType

• GateInstance

• Connection

• Variable

The palette for the TDL TestConfiguration Diagram is shown in Figure 7.3.5-3. An example of the TDL
TestConfiguration Diagram is shown in Figure 7.3.5-4.

Figure 7.3.5-3: TestConfiguration Diagram palette

Figure 7.3.5-4: TestConfiguration Diagram example

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 51

The following specific behaviours have been implemented for the TestConfiguration Diagram:

• Dragging a 'ComponentType to a 'ComponentInstance' specifies the type of the 'ComponentInstance'.

• Dragging a 'GateType' to a 'GateInstance' specifies the type of the 'GateInstance'.

• Dragging a 'GateInstance' from the palette on a 'ComponentInstance' adds it to its 'ComponentType'.

Editing a TDL TestDescription Diagram

The TestDescription Diagram is based on the UML Sequence Diagram. It is used to represent the following TDL
elements:

• TestDescription

• Annotation

• Comment

• Lifeline

• CombinedBehaviours:

- Block

- CompoundBehaviour

- AlternativeBehaviour

- ParalleleBehaviour

- UnboundedLoopBehaviour

- BoundedLoopBehaviour

- ConditionalBehaviour

- ExceptionalBehaviour

- InteruptBehaviour

- PeriodicBehaviour

• AtomicBehaviours:

- ActionReference

- Assignment

- Interaction

- TestDescriptionReference

- VerdictAssignment

The palette for the TDL TestDescription Diagram is shown in Figure 7.3.5-5.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 52

Figure 7.3.5-5: TestDescription Diagram palette

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 53

8 Using TDL with External Data Type Specifications

8.1 Generalized Process

8.1.1 Process Overview

Figure 8.1.1-1: Overall process for importing existing external data type specifications in TDL

Formalised data type specifications are sometimes provided as part of the base specification for the systems to be tested.
These can be in the form of protocol definitions, e.g. including data type definitions in ASN.1, or entire interface
specifications, e.g. as informative or normative OpenAPI™ specifications. Requiring TDL users to redefine the data
types present in such specifications can be very time-consuming and error-prone, especially when the base
specifications continue to evolve and the test specifications need to be continuously aligned. Additionally, data
specifications in TDL are inherently abstract and need to be mapped to concrete data implementations in the target
execution platform. The existing formalised data type specifications are also used for the system implementation, where
code generators and compilers provide data type implementations based on the provided specifications. Ideally, the tests
would make use of the generated data type implementations as well.

In order to make TDL aware of the existing formalised data type specifications, they need to be "imported" in TDL in
the sense that there needs to be a TDL data type model which contains all the relevant information from external data
type specifications, including mappings to the source from which the data types are derived, for traceability and other
purposes. Users or test generation tools can then produce TDL behaviour models and TDL data instances using the TDL
data types derived from the external data type specifications. As there may be differences between the capabilities of the
external data type specification language and TDL, there may also be different ways of deriving the TDL data types. A
set of guidelines can be helpful to ensure consistent derivation and mapping. For example, some languages support
nested anonymous type definitions, whereas TDL only supports "flat" data type definitions. In such cases, the
guidelines indicate how the nested type definitions can be flattened by extracting them and following certain naming
conventions, e.g. based on the name of the containing data definitions. Corresponding tool support is essential for larger
data type specifications. Following an overview of the overall process and an example instantiation, specific guidelines
for OpenAPI™ and ASN.1 are provided in the subsequent clauses.

TDL Data Type Model
(generated)

Data Type Specification
(OpenAPI / ASN.1 / XSD / …)

TDL Behaviour Model
(user defined or generated)

Data Type Implementation
(Java / JavaScript / Python / …)

Test Executable

Encoding / Decoding Adapter

SUT / IUT

Generator / Interpreter

Generator / Compiler TDL Data Type Importer User / Test Generator

Process

Mapping (trace)

Process (optional)

Reference

Target Execution Platform

TDL Tooling

Adaptation*

Encoded or raw data

Encode data in adapter if raw

If mapping not sufficient

1 3

4

10

12

11

7

9

16

8

2

6

5

1815

14

17

13

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 54

The overall process for the importing and use of data types from OpenAPI™, ASN.1, and other specifications is
outlined in Figure 8.1.1-1. The following aspects need to be considered:

• Data type specifications are used as input (1) for generators or compilers producing (2) data type
implementations in the target execution platform, such as Java™, JavaScript™, or Python™.

• The data type specifications are also used as input (3) for the TDL data type importer, which generates (4) a
TDL data type model.

• The data type model includes mappings to the data type specification (5) for traceability and to the data type
implementation (6) for operationalisation.

• TDL behaviour models (7), which are either defined manually or generated automatically, import and use the
TDL data type model (8) generated from the data type specification.

• The TDL behaviour models and the TDL data type model are then processed by a generator or an interpreter
(9 and 10) to produce a test executable for the target platform (12). The generator or interpreter may also need
to make use of the data type implementation in some cases (11).

• The test executable uses (13) the data type implementation and interfaces (16) with the adapter to
communicate with the SUT / IUT (18).

• For the communication with the SUT / IUT, the data usually needs to be encoded and decoded. Depending on
the circumstances, the test executable may interface with the encoding and decoding functionality directly (14)
or the encoding and decoding may be handled by the adapter (17).

• The encoding and decoding functionality generally relies on the data type implementation (13), but may also
need to make use of the original data type specification (15) if the data type implementation does not include
all the necessary information.

The outlined process is simplified and generalized. In practice, there may be different stages in the TDL behaviour
model specification, including the definition of structured test objectives, the definition of totally ordered test
descriptions, as well as the refinement of the totally ordered test descriptions into locally ordered test descriptions.
Depending on the context, some of the stages may be required or omitted. The overall process remains the same as only
the level of detail in the TDL behaviour models is affected in the different stages. While structured test objective
specifications may not necessarily need to be concerned with details of the target execution platform, including the data
type implementations, the test executable, and the adaptation layer, the mapping information for the target platform can
be already provided by the TDL data type importer from the start for reference, or be added later.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 55

8.1.2 Example Instantiation

Figure 8.1.2-1: Example instantiation of the overall process from Figure 8.1.1-1

A concrete example for the outlined process is illustrated in Figure 8.1.2-1. It includes snippets from the following
artefacts:

• Given a data type specification in OpenAPI™ (1), the corresponding tooling can be used to generate data type
implementations in Java (2), JavaScript, and other target languages.

• Based on the data type specification, the TDL data model (4) including the mappings to the data type
specification (5) and the data type implementation in Java (6) are generated.

• A user then specifies the TDL data instances and behaviour models (7) using the generated TDL data model
(8).

• With the help of the above artefacts, a test executable can be assembled either by means of code generation or
by means of interpretation. Corresponding encoding and decoding functionalities may be provided by third-
party components or rely on the generated data type implementation.

While this example illustration is built around an OpenAPI™ specification with Java as the target platform, the same
process can be applied to other target platforms or other kinds of data type specifications, such as ASN.1 specifications.
The TOP provides basic capabilities for importing data type specifications from OpenAPI™ and ASN.1, which can be
optionally installed in addition to the core meta-model implementation and the different editors.

openapi : 3. 1. 0
i nf o:
 t i t l e: ' Li br ar y'
 ver s i on: ' 0. 1'
pat hs : { }
component s :
 schemas:
 Li br ar yBook:
 t ype: obj ect
 pr oper t i es:
 t i t l e:
 t ype: st r i ng
 aut hor s :
 t ype: ar r ay
 i t ems:
 t ype: st r i ng
 Li br ar y:
 t ype: obj ect
 pr oper t i es:
 addr ess :
 t ype: st r i ng
 books:
 t ype: ar r ay
 i t ems:
 $r ef : ' #/ component s / schemas/ Li br ar yBook'

Package gener at ed_f r om_mappi ng_convent i ons_yaml {
 Type st r i ng;

 Use " mappi ng_convent i ons. yaml " as SOURCE_MAPPI NG; / / (5)
 Use " gener at ed/ j ava" as TARGET_MAPPI NG; / / (6)

 Type Li br ar yBook (
 t i t l e of t ype st r i ng,
 aut hor s of t ype Li br ar yBook___aut hor s
) ;
 Col l ec t i on Li br ar yBook___aut hor s of t ype s t r i ng;

 Map Li br ar yBook t o " #/ component s / schemas/ Li br ar yBook"
 i n SOURCE_MAPPI NG as Li br ar yBook_SOURCE_MAPPI NG;
 Map Li br ar yBook t o " Li br ar yBook"
 i n TARGET_MAPPI NG as Li br ar yBook_TARGET_MAPPI NG;

 Type Li br ar y (
 addr ess of t ype s t r i ng,
 books of t ype Li br ar y___books
) ;
 Col l ec t i on Li br ar y___books of t ype Li br ar yBook;
 Map Li br ar y t o " #/ component s / schemas/ Li br ar y"
 i n SOURCE_MAPPI NG as Li br ar y_SOURCE_MAPPI NG;
 Map Li br ar y t o " Li br ar y"
 i n TARGET_MAPPI NG as Li br ar y_TARGET_MAPPI NG;
}

Package mappi ng_usage {
 I mpor t al l f r om gener at ed_f r om_mappi ng_convent i ons_yaml ;

 / / exampl e dat a i ns t ances
 Li br ar y exampl eLi br ar y (
 addr ess = “ Sophi a- Ant i pol i s , Fr ance” ,
 books = {
 new Li br ar yBook(
 t i t l e = " TOP Gui de" ,
 aut hor s = {
 " Mar t t i Käär i k " ,
 " Fi nn Kr i s t of f er sen" ,
 " et al . "
 }
) ,
 new Li br ar yBook(
 t i t l e = " I nt r oduct i on t o TDL"
) ,
 TDLTut or i al
 }
) ;
 Li br ar yBook TDLTut or i al (
 t i t l e = “ Get t i ng St ar t ed wi t h TDL"
)

 / / exampl e behav i our model s
}

publ i c Li br ar yBook t i t l e(St r i ng t i t l e) {
 t hi s . t i t l e = t i t l e;
 r et ur n t hi s ;
}

@j avax. annot at i on. Nul l abl e
@Api Model Pr oper t y (val ue = " ")
publ i c St r i ng get Ti t l e() {
 r et ur n t i t l e;
}

publ i c voi d set Ti t l e(St r i ng t i t l e) {
 t hi s . t i t l e = t i t l e;
}

publ i c Li br ar yBook aut hor s(Li st <St r i ng> aut hor s) {
 t hi s . aut hor s = aut hor s ;
 r et ur n t hi s ;
}

publ i c Li br ar yBook addAut hor s I t em(St r i ng aut hor s I t em) {
 i f (t hi s . aut hor s == nul l) {
 t hi s . aut hor s = new Ar r ayLi s t <St r i ng>() ;
 }
 t hi s . aut hor s. add(aut hor s I t em) ;
 r et ur n t hi s ;
}

Generator / Compiler TDL Data Type Importer User / Test Generator

1 3

7

8

2

6

5

4

Process

Mapping (trace)

Process (optional)

Reference

Target Execution Platform

TDL Tooling

Adaptation*

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 56

8.2 Using TDL with OpenAPI™ Specifications

8.2.1 Overview

The OpenAPI™ Specification [i.31] (previously known as the Swagger Specification) is a notation for the specification
of interfaces for RESTful web services. In addition to data-related information, OpenAPITM specifications also include
paths to identify resources by means of URLs, along with applicable operations, and corresponding request and
response specifications. While these can be used to derive skeletons for structured test objectives and test descriptions
as outlined in ETSI EG 203 647 [i.32], within the present document, the focus is solely on data-related information.
Further information and guidelines regarding the use of OpenAPI™ for specification and testing at ETSI can be found
in ETSI EG 203 647 [i.32].

In addition to a set of primitive data types, OpenAPI™ provides means for defining structured data types. The
specification is an extension of the JSON schema [i.33]. Data type schemas may be defined inline or in a schemas
object which enables reuse of those definitions. In the present document, only the latter is considered. Future editions
may add guidelines for inline data definitions as well.

The built-in primitive types in OpenAPI™ are mapped to TDL according to the conventions in Table 8.2.1-1. The
mapping relies on a TDL library of predefined types and constraints. As OpenAPI™ specifications may include format
specifications for types, a generic constraint (OpenAPIFormat) with corresponding quantifiers may be used to capture
this information in the derived TDL data model. Non-standard formats may be present in an OpenAPITM specification
as well. The generic constraint can be used for such formats as well.

Table 8.2.1-1: OpenAPI™ Built-in Type Mapping

OpenAPITM Type Type in TDL Constraints Formats and Patterns
integer Integer OpenAPIFormat int32, int64
number Real OpenAPIFormat float, double
string String OpenAPIFormat e-mail, password
boolean Boolean

A structured type in OpenAPI™ is either an 'array' with member type declaration ('items' object) or an 'object' with a set
of properties ('properties' object). Consequently, the transformation of OpenAPI™ data types into TDL data types
involves the following conventions:

• If the data type corresponds to one of the primitive data types within the OpenAPI™ library as indicated in
Table 8.2.1-1, the 'Type' is mapped to the corresponding 'SimpleDataType' from Table 8.2.1-1.

• If the data type is an 'object', it is mapped to a 'StructuredDataType' with a 'name' corresponding to the name of
the OpenAPI™ data type.

• If the data type is an 'array', it is mapped to a 'CollectionDataType' with a 'name' corresponding to the name of
the OpenAPI™ data type. The data type indicated in the 'items' object is mapped to the corresponding
'DataType' as the 'itemType' of the 'CollectionDataType'. If 'minItems' and 'maxItems' are specified for the
'array', the corresponding predefined constraints need to be added to the 'CollectionDataType'.

• Each item in the 'properties' object of the 'object' object is mapped to a 'Member' within the corresponding
'StructuredDataType' with a 'name' corresponding to the property. If a 'Member' with the same 'name' exists,
no action is taken. All 'Member's are to be marked as optional, except for 'Member's corresponding to
properties which are listed in the 'required' array of the 'object'. The 'dataType' of the 'Member' corresponds to:

- A new 'DataType' corresponding to the 'type' of the property with a 'name' prefixed with the 'name' of the
containing 'StructuredDataType' in case a property is of 'type' 'object'.

- A 'SimpleDataType' corresponding to the 'type' of the property in case the 'SimpleDataType' is one of the
predefined 'DataType's within the OpenAPI™ library as indicated in Table 8.2.1-1.

• Nested 'objects are transformed according to the conventions above.

• If the property contains an 'enum' array, it is mapped to an 'EnumDataType' with a 'name' corresponding to the
name of the property. The items contained in the 'enum' array are mapped to 'SimpleDataInstance's of the
'EnumDataType' that are contained in the 'EnumDataType'.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 57

• Corresponding 'DataElementMapping's are created for the defined data types. 'DataElementMapping's for
'DataType's derived from anonymous (inline) data types are not created. The 'DataElementMapping's may
include target platform mappings in addition to the source mappings to the OpenAPI™ specifications.

8.2.2 Examples

As an example consider the OpenAPI™ snippet shown in Figure 8.2.2-1 and the derived TDL data type model snippet
showing in Figure 8.2.2-2. Corresponding 'StructuredDataType's are created for both the 'Library' and 'LibraryBook'
data types, as well as for the nested anonymous 'object's and 'array's, which are prefixed with 'Library___' and
'LibraryBook___' accordingly. This would also apply to additional anonymous 'object's and 'array's nested further
within the 'object's. The 'dataType's for the corresponding 'Member's are then set accordingly. Finally, both source and
target (for Java in this example) 'DataElementMapping's are provided.

components:

 schemas:

 LibraryBook:

 type: object

 properties:

 title:

 type: string

 authors:

 type: array

 items:

 type: string

 reviewers:

 type: array

 items:

 type: string

 Library:

 type: object

 properties:

 address:

 type: string

 books:

 type: array

 items:

 $ref: '#/components/schemas/LibraryBook'

Figure 8.2.2-1: OpenAPI™ example including nested anonymous data types

 Type LibraryBook (

 String title,

 LibraryBook___authors authors,

 LibraryBook___reviewers reviewers

)

 Collection LibraryBook___authors of String

 Collection LibraryBook___reviewers of String

 Type Library (

 String address,

 Library___books books

)

 Collection Library___books of LibraryBook

 Use "mapping_conventions.yaml" as SOURCE_MAPPING

 Use "generated/java" as TARGET_MAPPING

 Map LibraryBook to "#/components/schemas/LibraryBook"

 in SOURCE_MAPPING as LibraryBook_SOURCE_MAPPING

 Map LibraryBook to "LibraryBook"

 in TARGET_MAPPING as LibraryBook_TARGET_MAPPING

 Map Library to "#/components/schemas/Library"

 in SOURCE_MAPPING as Library_SOURCE_MAPPING

 Map Library to "Library"

 in TARGET_MAPPING as Library_TARGET_MAPPING

Figure 8.2.2-2: Corresponding flattened TDL definitions for Figure 8.2.2-1

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 58

8.3 Using TDL with ASN.1 Specifications

8.3.1 Overview

ASN.1 (Abstract Syntax Notation One) Recommendation ITU-T X.680 [i.34] is a standardized language for the
specification of data types and data structures. As the name implies, the specifications are abstract and therefore
independent of a specific target platform. The specifications provide the information about the structure and encoding of
the data which can be processed by generators or compilers to produce data type implementations for the desired target
language and platform, including codecs for encoding and decoding the data for transmission. While TDL is not
concerned with the encoding and decoding at the specification level, in many cases the test execution platform needs to
include codes for the operationalisation of the tests.

When ASN.1 specifications are imported in TDL, the level of detail may vary from the bare essentials, including the
data types only, to including additional constraints, and even encoding information (where applicable). The additional
information can be utilised for early validation of the TDL specifications. While it is also possible to specify constant
values in ASN.1, these are not covered in the guidelines at present.

ASN.1 includes a set of built-in types, some of which are mapped to TDL according to the conventions in Table 8.3.1-1.
The mapping relies on a TDL library of predefined types and constraints. The generic constraints (ASN1String,
ASN1DateTime, ASN1Real, ASN1ObjectIdentifier) may be used to provide additional patterns for the contents of data
instances of the corresponding data types to facilitate validation. Alternatively, a tool may implement implicit validation
based on the underlying types.

Table 8.3.1-1: ASN.1 Built-in Type Mapping

ASN.1 Type Type in TDL Constraints Examples and Patterns
BITSTRING BITSTRING ASN1String "1101'B", also "Named BITS" () : [0|1]+'B
OCTETSTRING OCTETSTRIN

G
ASN1String "A3B2'H", "10010'B": [A-F|0-9]+'H

BMPString BMPString ASN1String "": 16 bit Character
IA5String IA5String ASN1String "Hallo": 8 bit ASCII
GeneralString GeneralString ASN1String : all graphic/character sets, SPACE, DELETE
GraphicString GraphicString ASN1String : all graphic sets, SPACE
NumericString NumericString ASN1String "34 8": [0-9, SPACE]+
PrintableString PrintableString ASN1String "Black, Blue + Brown": [a-z,A-Z,'()+,-.?:/=,SPACE]
TeletexString TeletexString ASN1String : CCITT T.101
T61String T61String ASN1String : CCITT T.101
UniversalString UniversalString ASN1String : ISO10646
UTF8String UTF8String ASN1String : ASCII + Control
VideotexString VideotexString ASN1String : CCITT T.100, T.101
VisibleString and
ISO646String

VisibleString ASN1String : ASCII Printing

UTCTime UTCTime ASN1DateTime "991231235959+0200":
YYMMDDhhmm[ss]Z

GeneralizedTime GeneralizedTim
e

ASN1DateTime "20200425175522.214+0200":
YYYYMMDDHH[MM[SS[.fff]]]Z (ISO 8601 [i.38])

DATE Date ASN1DateTime "1636-09-18":
YYYY-MM-DD

TIME-OF-DAY TimeOfDay ASN1DateTime "18:30:23":
HH:mm:ss

DATE-TIME DateTime ASN1DateTime "2000-11-22T18:30:23":
YYYY-MM-DDThh:mm:ss

INTEGER Integer
REAL Real ASN1Real
BOOLEAN Boolean
NULL Null
OBJECT
IDENTIFIER

ObjectIdentifier ASN1ObjectIdentifier id-ssp OBJECT IDENTIFIER ::= { itu-t (0) identified-
organization (4) etsi (0) smart-secure-platform (3666)
part1 (1) }

RELATIVE OBJECT
IDENTIFIER

ObjectIdentifier ASN1ObjectIdentifier Relative_id_ssp RELATIVE-OID ::= { smart-secure-
platform (3666) part1 (1) }

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 59

The transformation of ASN.1 data types into TDL data types involves the following conventions:

• If the data type corresponds to one of the predefined 'DataType's within the ASN.1 library as indicated in
Table 8.3.1-1, the ASN.1 'Type' is mapped to the corresponding TDL 'SimpleDataType' from Table 8.3.1-1.
For the supported ASN.1 types the following additional restrictions apply:

- NULL type is only used in the scope of a Choice type where if there is no information, the corresponding
alternative is activated.

• If the ASN.1 data type is a 'SequenceType', a 'SetType', or a 'ChoiceType', it is mapped to a
'StructuredDataType' with a 'name' corresponding to the name of the ASN.1 data type. In the case of
'ChoiceType', a 'Constraint' with the predefined 'union' 'ConstraintType' is applied to the corresponding
'StructuredDataType', and all 'Member's are marked as optional.

• If the ASN.1 data type is a 'SequenceOfType' or a 'SetOfType', it is mapped to a 'CollectionDataType' with a
'name' corresponding to the name of the ASN.1 data type. The 'Type' indicated for the 'SequenceOfType' or
'SetOfType' is mapped to the corresponding 'DataType' as the 'itemType' of the 'CollectionDataType'.

• Each 'ComponentType' in the 'ComponentTypeList' of the 'SequenceType', 'SetType', or 'ChoiceType' is
mapped to a 'Member' within the corresponding 'StructuredDataType' with a 'name' corresponding to the
'identifier' of the 'ComponentType'. If a 'Member' with the same 'name' exists, no action is taken. The
'dataType' of the 'Member' corresponds to:

- A new 'DataType' corresponding to the 'Type' of the 'ComponentType' with a 'name' prefixed with the
'name' of the containing 'StructuredDataType' in case a 'ComponentType' is directly contained within
another 'ComponentType'.

- A 'SimpleDataType' corresponding to the 'Type' of the 'ComponentType' in case the 'SimpleDataType' is
one of the predefined 'DataType's within the ASN.1 library as indicated in Table 8.3.1-1.

• Nested 'ComponentType's are transformed according to the conventions above.

• If the ASN.1 data type is an 'EnumeratedType', it is mapped to an 'EnumDataType' with a 'name'
corresponding to the name of the ASN.1 data type. The contained 'EnumerationItem's are mapped to
'SimpleDataInstance's of the 'EnumDataType' that are contained in the 'EnumDataType'. There are no
guidelines for 'NamedNumber's at present.

• Corresponding 'DataElementMapping's are created for the defined data types. 'DataElementMapping's for
'DataType's derived from anonymous (inline) data types are not created. The 'DataElementMapping's may
include target platform mappings in addition to the source mappings to the ASN.1 specifications.

For the following built-in types not mentioned in Table 8.3.1-1, the transformations to TDL types are done as follows:

• UnrestrictedCharacterStringType: Replace the CHARACTER STRING type with its associated type obtained
by expanding inner subtyping in the associated type of the CHARACTER STRING type (see clause 44.5 of
Recommendation ITU-T X.680 [i.34]) to the corresponding TDL type.

• EmbeddedPDVType: Replace any EMBEDDED PDV type with its associated type obtained by expanding
inner subtyping in the associated type of the EMBEDDED PDV type (see clause 36.5 of Recommendation
ITU-T X.680 [i.34]) to the corresponding TDL type.

• ExternalType: replace the EXTERNAL type with its associated type obtained by expanding inner subtyping in
the associated type of the EXTERNAL type (see clause 37.5 of Recommendation ITU-T X.680 [i.34]) to the
corresponding TDL type.

• InstanceOfType: Replace the INSTANCE OF type with its associated type obtained by substituting
INSTANCE OF DefinedObjectClass by its associated ASN.1 type (see clause C.7 of Recommendation
ITU-T X.681 [i.36]) and map all ASN.1 types to their TDL types according to Table 8.3.1-1.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 60

8.3.2 Examples

For example, as shown in Figure 8.3.2-1 and Figure 8.3.2-2, for the 'NodeDescriptor' and related type definitions taken
from [i.35], a corresponding 'StructuredDataType' is created, including derived 'DataType's for the nested 'aNode'
anonymous 'ContentType', as well as the 'aLink', 'aFile', and 'aDirectory' anonymous 'ContentType's nested further
within the 'aNode' 'ContentType'. The 'dataType's for the corresponding 'Member's are then set accordingly. The
'DataType' for the 'NodeIdentity' type as well as the derived 'DataType' for the 'aNode' 'Member' are assigned a
'Constraint' with the 'union' 'ConstraintType'.

NodeDescriptor ::= SEQUENCE

{

 aNodeName NodeName, -- Node name

 aShortName UUID, -- Short node name

 aNode CHOICE

 {

 aLink SEQUENCE

 {

 aLinkedFileIdentity NodeIdentity, -- Identity of the linked SSP file

 aLinkedFileSize FileSize -- Size of the linked SSP file

 },

 aFile SEQUENCE

 {

 aFileSize FileSize -- Size of the SSP file

 },

 aDirectory SEQUENCE

 {

 }

 },

 aMetaData SEQUENCE OF MetaDatum OPTIONAL, -- Optional meta data

 aACL SET OF AccessControl OPTIONAL -- Access Control List attribute

}

/* Node identity */

NodeName ::= UTF8String (SIZE(1..16)) -- node name encoded in UTF-8

NodeReference ::= SEQUENCE (SIZE(1..6)) OF NodeName -- pathname and node name

NodeIdentity ::= CHOICE

{

 aShortName UUID, -- UUID of file reference using absolute pathname

 aNodeReference NodeReference -- Node reference

}

Figure 8.3.2-1: ASN.1 example including nested anonymous data types (excerpt from [i.35])

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 61

 Type NodeDescriptor (

 aNodeName of type NodeName,

 aShortName of type UUID ,

 aNode of type NodeDescriptor___aNode ,

 optional aMetaData of type NodeDescriptor___aMetaData ,

 optional aACL of type NodeDescriptor___aACL

);

 Type NodeDescriptor___aNode { union } (

 aLink of type NodeDescriptor___aNode___aLink,

 aFile of type NodeDescriptor___aNode___aFile ,

 aDirectory of type NodeDescriptor___aNode___aDirectory

);

 Collection NodeDescriptor___aMetaData of type MetaDatum;

 Collection NodeDescriptor___aACL of type AccessControl;

 Type NodeIdentity { union } (

 aShortName of type UUID,

 aNodeReference of type NodeReference

);

 Collection NodeReference of type NodeName;

 Type NodeDescriptor___aNode___aLink (

 aLinkedFileIdentity of type NodeIdentity,

 aLinkedFileSize of type FileSize

);

 Type NodeDescriptor___aNode___aFile (

 aFileSize of type FileSize

);

Figure 8.3.2-2: Corresponding TDL definitions (excerpt) for Figure 8.3.2-1

As an example consider the ASN.1 snippet shown in Figure 8.3.2-3 and the derived TDL data type model snippet
showing in Figure 8.3.2-4. Corresponding 'StructuredDataType's are created for both the 'Library' and 'Document' data
types, as well as for the nested anonymous 'ContentType's, which are prefixed with 'Library___' and 'Document___'
accordingly. This would also apply to additional anonymous 'ContentType's nested further within the 'ContentType's.
The 'dataType's for the corresponding 'Member's are then set accordingly. The derived 'DataType'
'Document___number' for the 'number' 'ContentType' of type 'CHOICE' is assigned a 'Constraint' with the 'union'
'ConstraintType'. Default values are not present in the derived TDL data model, as TDL does not support default values
for type definitions. However, a data type implementation in the target platform may include default values. In TDL it is
possible to define a data instance which provides default values which can be overridden when the data instance is used.
Finally, source 'DataElementMapping's are provided.

Library ::= SEQUENCE {

 address UTF8String DEFAULT "Sophia-Antipolis, France",

 documents SEQUENCE OF Document

 }

 Document ::= SEQUENCE {

 title UTF8String (SIZE(1..128)),

 status ENUMERATED {draft, published, historical},

 authors SEQUENCE OF UTF8String,

 number CHOICE {

 es INTEGER,

 eg INTEGER,

 tr INTEGER

 } OPTIONAL,

 updated DATE

 }

Figure 8.3.2-3: ASN.1 example including nested anonymous data types

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 62

 Type Library (

 address of type UTF8String,

 documents of type Library___documents

);

 Type Document (

 title of type UTF8String,

 status of type Document___status ,

 authors of type Document___authors ,

 optional number of type Document___number ,

 updated of type Date

);

 Collection Library___documents of type Document;

 Collection Document___authors of type UTF8String;

 Type Document___number { union } (

 es of type Integer,

 eg of type Integer ,

 tr of type Integer

);

 Enumerated Document___status {

 Document___status draft;

 Document___status published;

 Document___status historical;

 }

 Use "example-1-library.asn" as SOURCE_MAPPING;

 Map Library to "Library" in SOURCE_MAPPING as Library_MAPPING;

 Map Document to "Document" in SOURCE_MAPPING as Document_MAPPING;

Figure 8.3.2-4: Corresponding flattened TDL definitions (excerpt) for Figure 8.3.2-3

9 TDL Runtime / Execution

9.1 Java: Code generator

9.1.1 Architecture

A code generator converts TDL test descriptions to Java code and provides a runtime environment as well as a Test
Runtime Interface (TRI) for users to implement the adaptation to real test environment and SUT. As an alternative to
interpreter, code generation removes the dependencies to TDL meta-model and simplifies deployment of the executable
tests.

The source code for the code generator is available in TOP [i.24] in 'org.etsi.mts.tdl.execution.java.codegen' project.
The project includes code documentation in Javadoc [i.28] format and instructions for setup and use.

Code generator

*.codegen

UI

*.eclipse

Runtime

.rt.

TRI

*.tri

TDL model

JUnit

Guice

Adapters

Eclipse

Figure 9.1.1-1: Project structure and dependencies of Java code generator

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 63

In addition to code generator, the 'org.etsi.mts.tdl.execution.java.codegen' project provides various User Interface (UI)
components for triggering and configuring the code generation. Runtime code has dependencies to JUnit [i.29] for its
test reporting and assertion functions as well as Guice [i.30] for resolving platform adapter implementations. The
interfaces that should be realized and provided by end users are collectively called Test Runtime Interface (TRI).

In Guice parlance, the component that provides (Guice term for associating a class to a type) interface realizations is
called a module. The name of the module that provides the TRI interface bindings (the 'adapter module') is configured
in generator settings. It may provide implementations for following interfaces (listed in 'ProviderModule' class):

• 'SystemAdapter': a required component that manages interactions between runtime and SUT;

• 'Validator': a required component that provides data matching functionality;

• 'Reporter': an optional component that implements test logging;

• 'PredefinedFunctions': optional customized implementation of TDL predefined functions; and

• 'RuntimeHelper': optional customized implementation of various environment specific functions.

Default implementations for 'PredefinedFunctions' and 'RuntimeHelper' are provided by the runtime.

Adapter module

PredefinedFunctions RuntimeHelper

SystemAdapter Validator Reporter

ProviderModule

TestControl <ComponentType>

<TestDescription_

ComponentInstance>

PredefinedFunctions

(default impl.)

RuntimeHelper

(default impl.)

Figure 9.1.1-2: Structure of runtime classes of Java code generator

The core component of the execution engine is 'TestControl', which is the base for all generated tester components. It
provides access to instances of TRI components and contains helper functions to handle complex execution logic (such
as alternatives) and asynchronous nature of interactions and time operations.

For each TDL 'ComponentType', a Java class is generated that extends the 'TestControl'. It adds fields for variables and
timers and invokes the adapter module. A sub-class of the component type class is generated for each tester
'ComponentInstance' participating in a 'TestDescription'. The component classes include time labels and provide the test
execution code that can be invoked by the JUnit framework.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 64

9.1.2 Test Runtime Interface (TRI) for Java

9.1.2.1 Overview

The TRI consists of functional interfaces that are used to perform environment specific operations and various classes
of information objects that are passed to or returned from as arguments of those operations.

The info classes are used to specify the following:

• gate and connection information for 'SystemAdapter';

• data types and values as arguments for interactions;

• test execution verdicts; and

• annotations for the above.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 65

<<Interface>>

RuntimeHelper

PredefinedFunctions

<<Interface>>

Reporter<<Interface>>

Validator

<<Interface>>

SystemAdapter

ElementElementAnnotation

Data

Verdict

StopException
<<Interface>>

ProviderModule

Connection

<<Interface>>

Receiver

Argument
<<enum>>

ComponentInstanceRole

GateReference

boolean equals(Object o0, Object o1)

<T> T clone(T object)

...

void comment(String body)

void testObjectiveReached(String uri, String description)

void behaviourStarted(String kind, String id, Object... properties)

void behaviourCompleted(String id)

void runtimeError(Throwable t)

boolean matches(Data expected, Data actual)

void setVerdict(Verdict verdict) throws StopException

void configure(Connection[] connections)

void send(Data message, Connection connection)

name

Data receive(Data expected, Connection connection)

Data call(Object operation, Data[] arguments, Data expectedReturn, Data expectedException, ..)

id

key

value

Object getValue()

Object getType()

...

endPoints [2]

void receive(String body, Connection connection)

Data ignoreUntil(Data expected, Connection connection)

void addReceiver(Receiver r)

parameterName

<A> A getInstance(Class<A> clazz)

Data[] receiveCall(Object operation, Data[] expectedArguments, Connection connection)

void replyCall(Object operation, Data returnValue, Data exception, Connection connection)

void removeReceiver(Receiver r)

gate

component

role

Figure 9.1.2.1-1: Java TRI interfaces and classes

'PredefinedFunctions' class implements all predefined functions as specified in TDL [i.13].

'RuntimeHelper' class provides utilities for cloning Java objects and determining object equality possibly in
environment dependent manner. It also provides instances of Java classes for the runtime where required (see
clause 9.1.3).

'Validator' provides matching of received and expected data and manages test execution verdicts. 'Validator' may stop
the test execution if a calculated or provided verdict so dictates by throwing a 'StopException'.

'Reporter' may be provided for logging or other purposes and it receives information from runtime about executed
behaviours with comments and covered test objectives.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 66

9.1.2.2 TRI: SystemAdapter

'SystemAdapter' implements the communication mechanisms between test execution and SUT. The interface includes
methods to support both message- and procedure-based interactions. For procedure calls, the interface defines separate
methods depending on whether the tester is the caller or the callee. The encoding and decoding of data is generally done
by the 'SystemAdapter'.

A 'SystemAdapter' implementation is assumed to be able to handle multiple concurrent calls to 'receive' method. The
implementation of the 'receive' method should block until a message is received that corresponds to the data type that
was provided or the call is interrupted by the caller. This means that incoming packets should support repeated decoding
attempts.

If no 'receive' calls are active when a packet arrives then the 'SystemAdapter' notifies all registered 'Receiver's and pass
undecoded data to them. This also happens when none of the waiting 'receive' calls correspond to received data (that is,
decoding with expected type does not succeed). The registered 'Receiver's are generally used to detect discrepancies
between tester and SUT behaviour.

'ignoreUntil' is a special case of receive method, which ignores and discards (that is, does not pass to asynchronous
'Receiver's) incoming data until one arrives that matches (in terms of both type and values) the expected data. A
'Validator' instance may be used for matching.

The 'call' method blocks until a reply is received (or the call is interrupted by the caller) and it returns either the return
value or an exception. It is up to the caller to determine, the semantics of the returned value. The 'receiveCall' method
works similarly to the 'receive' method.

The following diagram describes an example scenario of sending a message and receiving two alternative responses and
a default handling with asynchronous 'Receiver'.

Tester
System

Adapter
Validator Reporter

send

matches

behaviourStarted

comment*

receive

behaviourCompleted

testObjectiveReached

setVerdict*

addReceiver

receive

removeReceiver

receive

parallel

receive any

receive alt-1

receive alt-2

matches

setVerdict*

setVerdict

Figure 9.1.2.2-1: Example of method calls involving the SystemAdapter

To avoid excessive adaptation, the execution engine supports calling procedures directly (bypassing the system adapter)
if the 'ProcedureSignature's are mapped to Java methods (see clause 9.1.3). This code generation feature is configurable
in settings.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 67

9.1.3 Mappings

Most mappable TDL model elements are mapped to appropriate Java elements for test execution. In TDL, mapping
specifications consist of two levels: resource mapping and element mapping. Resource mappings should refer to either
Java package or class (using qualified names). Element mappings should refer to either Java class, field or method.

As the mappings can refer to different kinds of Java elements, then a predefined annotation should be added to both
resource and element mappings in one of following combinations:

• resource mapping with 'JavaPackage' annotation and element mapping with 'JavaClass' annotation; or

• resource mapping with 'JavaClass' annotation and element mapping with either 'JavaField', 'JavaStaticField',
'JavaMethod' or 'JavaStaticMethod' annotation.

Those annotations are provided by the Java model that is part of the TDL standard implementation.

Following mappable TDL elements do not require any annotations as the mapped Java element is clear:

• 'SimpleDataInstance's in 'EnumDataType' are mapped to Java enum literals;

• 'Time' types are mapped to Java longs; and

• 'Member's are mapped to Java fields.

The TDL Java model provides mappings for predefined TDL 'SimpleDataType's. TDL predefined functions are mapped
to appropriately named functions with function parameter types replaced with corresponding Java types.

In addition to predefined 'Time' instance 'Second', the code generator also supports 'Time' instances named
'MilliSecond' and 'NanoSecond' using name-based mapping and assuming that appropriate type mappings (to Java long)
are also provided.

JavaClass JavaStaticField JavaMethodJavaStaticMethod

ActionDataInstance

SimpleDataType

StructyuredDataType

CollectionDataType

EnumDataType

JavaPackage JavaClass

ProcedureSignature

Member

<Predefined

SimpleDataType>

Integer, Boolean,

String

Time
EnumDataType->

SimpleDataInstance

JavaField

Figure 9.1.3-1: Required annotations for Java mappings

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 68

When an element mapping refers to a non-static Java field or method then 'RuntimeHelper' TRI interface is called to get
an instance object to use with the field or method specification. The class from corresponding resource mapping is used
as the argument for that call.

9.1.4 Executable Code

Most TDL behaviours have obvious counterparts in Java. For those elements and the ones that are explicitly mapped,
the Java code generation is little more than language translation.

A special control structure is implemented for the handling of asynchronous events (either time- or interaction-related)
and execution of out-of-order blocks (exceptional and alternative behaviours).

CompletionService

ExecutorService

Callable

Future returns ExecutionResult

TimeResult InteractionResult

use

is submitted to

is converted to

take()

schedule

execution

TestControl

<TestDescription_

ComponentInstance>

create + submit

register

to control

process

get future

ExceptionalBehaviour

Future<TimeoutResult> timeConstraint(Constraint constraint)

...

Future<TimeoutResult> timeout(Timer timer)

Future<TimeoutResult> sleep(long period)

Future<InteractionResult> receive(Data expected)

ExceptionalBehaviour getExceptionalBehaviour(Future<ExecutionResult> future)

void addExceptionalBehaviour(ExceptionalBehaviour b)

Future<ExecutionResult> next()

future

behaviour

isInterrupt

Figure 9.1.4-1: Event handling component dependencies in TDL Java runtime

The 'TestControl' class provides utility methods for creating and scheduling (submitting) the callable for various
asynchronous behaviours. It also enables/disables any added/removed 'ExceptionalBehaviour's. Internally, Java's
'CompletionService' is used to take the first completed future and pass it to test code for processing.

Figure 9.1.4-2 describes an example scenario of receiving a message with time constraint while a default behaviour is
activated.

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 69

Test

Code

Test

Control

Completion

Service

exc = addExceptionalBehaviour()

next_event_future = next()

removeExceptionalBehaviour(exc)

future = submit(receive)

submit(exceptionals)

receive_future = receive()

receive_constraint_future = timeConstraint() future = submit(timeout)

add to stack

cancel futures

take()

remove

from stack

alt

[next_event_future == receive_future]

[next_event_future == receive_constraint_future]

[else]

set verdict fail

data = receive_future.get()

validate data

exc = getExceptionalBehaviour(next_event_future)

execute exc.behaviour

Figure 9.1.4-2: Event handling process in TDL Java runtime

JUnit framework annotation is used to mark generated test description method as JUnit test case, which allows easy
execution with any JUnit tool. JUnit assertions are used to validate data.

'TimeLabel' class is implemented in runtime according to the semantics specified in [i.13]. The time label mechanism is
also used to implement TDL 'Timer's. All time units are converted into milli-seconds for internal evaluation.

Special treatment of TDL 'VariableUse's is needed as the TDL assumes that all data is immutable while in Java that is
not the case. 'RuntimeHelper' 'clone' method is used to clone structured variable values before they are assigned as
arguments to parameterized 'DataUse's. This prevents potential modifications of variables.

Following TDL features are currently not supported by the code generator (as the present document reflects a specific
milestone):

• 'ParallelBehaviour' and 'PeriodicBehaviour'

• 'OptionalBehaviour'

• 'TestDescriptionReference' arguments

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 70

Annex A:
Technical Realisation of the Reference Implementation
The technical representation of the TDL reference implementation is available as an open source project available at
http://top.etsi.org/. The open source project serves as a possible starting point for implementing and extending tools for
TDL as described in the present document. An open source project is well suited for a technical contribution which can,
over time, evolve beyond the scope of the present document. Further information regarding the use of the technical
representation as well as contributing to it can be found at https://tdl.etsi.org/index.php/open-source.

http://top.etsi.org/
https://tdl.etsi.org/index.php/open-source

ETSI

ETSI TR 103 119 V1.3.1 (2022-03) 71

History

Document history

V1.1.1 February 2018 Publication

V1.2.1 September 2020 Publication

V1.3.1 March 2022 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Basic Principles
	4.1 Introduction
	4.2 Implementation Scope
	4.3 Document Structure

	5 Graphical Representation Editor
	5.1 Scope and Requirements
	5.2 Architecture and Technology Foundation
	5.2.1 Graphical Editor
	5.2.2 Structured Test Objective Representation

	5.3 Implemented Facilities
	5.3.1 Creating Models
	5.3.2 Viewing and Editing Models
	5.3.3 Exporting Structured Test Objectives
	5.3.4 Validating Models

	5.4 Usage Instructions
	5.4.1 Development Environment
	5.4.2 End-user Instructions

	6 Using TDL with TOP
	6.1 Usage Scenarios
	6.2 Defining Structured Test Objectives
	6.2.0 Overview
	6.2.1 Domain part of TDL-TO
	6.2.2 Data definitions
	6.2.3 Configuration
	6.2.4 Test purpose behaviour

	6.3 Transforming Test Objectives into Test Descriptions
	6.3.1 Overview
	6.3.2 Data
	6.3.3 Configurations
	6.3.4 Behaviour
	6.3.5 Transformation Conventions and Assumptions

	6.4 Defining Test Descriptions
	6.4.1 Overview
	6.4.2 Data and Configuration
	6.4.3 Test Behaviour and Time

	6.5 Transforming Test Descriptions into TTCN-3 Test Cases
	6.5.1 Overview
	6.5.2 Data
	6.5.3 Configuration
	6.5.4 Behaviour

	7 UML Profile Editor
	7.1 Scope and Requirements
	7.2 Architecture and Technology Foundation
	7.3 Implemented Facilities
	7.3.1 Applying the Profile
	7.3.2 Hints for the Transformation of UP4TDL Models into TDL Models
	7.3.3 Editing Models with the Model Explorer
	7.3.4 Editing TDL-specific Properties with the TDL Property View
	7.3.5 Editing Models with TDL-specific Diagrams

	8 Using TDL with External Data Type Specifications
	8.1 Generalized Process
	8.1.1 Process Overview
	8.1.2 Example Instantiation

	8.2 Using TDL with OpenAPIŽ Specifications
	8.2.1 Overview
	8.2.2 Examples

	8.3 Using TDL with ASN.1 Specifications
	8.3.1 Overview
	8.3.2 Examples

	9 TDL Runtime / Execution
	9.1 Java: Code generator
	9.1.1 Architecture
	9.1.2 Test Runtime Interface (TRI) for Java
	9.1.2.1 Overview
	9.1.2.2 TRI: SystemAdapter

	9.1.3 Mappings
	9.1.4 Executable Code

	Annex A: Technical Realisation of the Reference Implementation
	History

