

ETSI TR 102 794 V1.1.1 (2010-12)

Technical Report

Media Content Distribution (MCD);
3D Gaming Graphics Delivery Overview

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 2

Reference
DTR/MCD-00010

Keywords
content, transport, protocol

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2010.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.

3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered

for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 3

Contents

Intellectual Property Rights .. 4

Foreword ... 4

Introduction .. 4

1 Scope .. 5

2 References .. 5

2.1 Normative references ... 5

2.2 Informative references .. 5

3 Definitions and abbreviations ... 7

3.1 Definitions .. 7

3.2 Abbreviations ... 8

4 Use case(s) and high level requirements .. 8

4.1 Primary use case ... 8

4.2 High level requirements ... 9

4.2.1 Minimize input lag .. 9

4.2.2 Maximize image quality and framerate .. 10

4.2.3 Allow Scalability .. 11

4.2.4 Maximize availability ... 11

4.2.5 Distribution of game processing resources ... 11

4.2.6 Reuse existing infrastructure... 11

4.2.7 Support for a variety of devices .. 11

4.2.8 Authentication and security .. 11

5 Solution approaches for delivery of 3D output of games ... 12

5.1 Streaming 3D graphics primitives .. 12

5.1.1 Main concept .. 12

5.1.2 Benefits/Drawbacks of this approach ... 12

5.2 Streaming Video ... 13

5.2.1 Main concept .. 13

5.2.2 Benefits/Drawbacks of this approach ... 14

5.3 Transport of 3D models .. 14

5.3.1 Main concept .. 14

5.3.2 Benefits/Drawbacks of this approach ... 15

5.4 Progressive transport of adaptive 3D models ... 15

5.4.1 Main concept .. 15

5.4.2 Benefits/Drawbacks of this approach ... 16

6 Overview of existing standards .. 17

7 Conclusions and recommendations .. 19

History .. 20

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 4

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Report (TR) has been produced by ETSI Technical Committee Media Content Distribution (MCD).

The main purpose of the present document is to provide an overview of the topic of 3D Gaming Graphics Delivery. The
present document is meant to create an ETSI MCD view on this topic, and includes use cases, high-level requirements,
an overview of potential solutions and a gap analysis.

The present document's conclusions should assist in the definition of new Work Item(s) for actual standardization,
provided this is necessary and ETSI MCD is the right body.

Introduction
By 2010, there will be over 420 million broadband households worldwide. With the standard set for super-high speed,
always-on connectivity, the way people view entertainment has fundamentally changed and created a new standard for
consumption. Consumers no longer expect their internet access to be only from a desktop PC, now they want it through
the TV in the living room or in the palm of their hand, inside the house and on the go.

Video games are officially a mainstream leisure time activity, and consumers are increasingly demanding their
entertainment to be fully networked and available over multiple platforms. Digital distribution of games is growing and
is becoming a common way to acquire games. Several game publishers and game retailers are using this model as a way
to reach consumers. The main deployment model being used at the moment of writing the present document is where an
end consumer buys the game online after which the game executable and (parts of) the game data are downloaded to his
PC or game console, using a run-time environment that protects the game from being copied.

Consumer electronics devices, such as set-top boxes, TVs, mobile phones and Netbook PCs are not considered real
gaming devices, since they lack the necessary CPU power, graphical performance and memory/storage capacity. So a
download distribution model of 3D games is not very likely to be a viable way to reach consumer electronics devices.
Also, there is a large catalogue of existing games that simply are not written with these platforms in mind.

In order to play 3D games on this kind of devices a streaming model is more appropriate. So, instead of downloading
the game to the end user device, the game is executed on a high-performance server, after which the game output is
streamed to the client. Discussion about the nature and content of what is exchanged between servers and clients
constitutes the topic of the present document. Several technical solutions could be possible. The present document will
describe the benefits and drawbacks of several of these technical solutions.

The end goal of this work is to standardize the protocol(s) needed for streaming the game output to a client. The present
document is meant to create an ETSI MCD view on this topic, and includes use cases, high-level requirements, an
overview of potential solutions and a gap analysis to see which actual standardization work needs to be performed.

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 5

1 Scope
The present document provides an overview of delivery of 3D graphics of games that are running on a
high-performance server to client devices that would otherwise not have the resources to run these games natively. The
present document describes the use cases, high level requirements and different solution approaches, and identifies the
main area(s) where standardization work would be needed. Exploring the nature and content of what is going to be
exchanged between servers and clients constitutes the main topic of the present document

The primary aim for this technology is to enable casual gaming scenarios, and it is not the primary aim to try to satisfy
hardcore gamers, since we have to be realistic about what can be achieved with the current state of networking and
server technology.

Because of the nature of the content and in order to focus on feasible solutions, we may exclude certain type of network
connections to be used, such as using "unreliable" or high-latency wireless connections such as 802.11b/g. We expect to
have a broadband connection between the client and the server, without too many intermediate hops.

In the present document we do not address deployment issues, such as integration into a Content on demand
infrastructure (e.g. user registration, pricing, purchasing), or integration into a QoS framework (e.g. prioritization of
gaming streams compared to other types of streams). Also, use cases and synchronization issues related to multi-player
gaming, whereby different connection speeds/types could result in different response times, are out of scope of the
present document.

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

Not applicable.

2.2 Informative references
The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] Alf Inge Wang, Martin Jarrett and Eivind Sorteberg: "Experiences from Implementing a Mobile
Multiplayer Real-Time Game for Wireless Networks with High Latency", International Journal of
Computer Games Technology Volume 2009, Hindawi Publishing Corporation.

NOTE: Available at: http://downloads.hindawi.com/journals/ijcgt/2009/530367.pdf.

[i.2] Console Gaming: "The Lag Factor", Eurogamer® Network Ltd., 5 September 2009.

NOTE: Available at: http://www.eurogamer.net/articles/digitalfoundry-lag-factor-article?page=3.

[i.3] OpenGL™ ES: "The Standard for Embedded Accelerated 3D Graphics", Khronos Group.

NOTE: Available at: http://www.khronos.org/opengles/.

http://docbox.etsi.org/Reference
http://downloads.hindawi.com/journals/ijcgt/2009/530367.pdf
http://www.eurogamer.net/articles/digitalfoundry-lag-factor-article?page=3
http://www.khronos.org/opengles/

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 6

[i.4] Jurgelionis et al.: "Platform for Distributed 3D Gaming", International Journal of Computer
Games Technology Volume 2009, Article ID 231863.

NOTE: Available at:
http://iphome.hhi.de/fechteler/papers/ijcgt2009_JurgelionisFechtelerEisertBellottiDavidLaulajainenCarmi
chaelPoulopoulosLaikariPeraelaeGloriaBouras.pdf.

[i.5] Philipp Fechteler and Peter Eisert: "Depth Map Enhanced MacroBlock Partitioning for H.264
Video Encoding of Computer Graphics Content", 2009 IEEE International Conference on Image
Processing.

NOTE: Available at: http://iphome.hhi.de/eisert/papers/icip09a.pdf.

[i.6] Hugues Hoppe: "Progressive meshes", SIGGRAPH '96: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, Pages: 99 - 108, ACM
Press/Addison-Wesley Publishing Co., 1996.

NOTE: Available at: http://research.microsoft.com/en-us/um/people/hoppe/pm.pdf.

[i.7] "Progressive forest split compression", SIGGRAPH '98: Proceedings of the 25th annual
conference on Computer graphics and interactive techniques, Pages 123-132, ACM
Press/Addison-Wesley Publishing Co., 1998.

NOTE: Available at: http://mesh.brown.edu/taubin/pdfs/taubin-etal-sg98.pdf.

[i.8] ISO/IEC 15444-1 (2004): "Information technology - JPEG 2000 image coding system: Core
coding system, latest revision 2004".

[i.9] ISO/IEC 14496-1 (2010): "Information technology - Coding of audio-visual objects - Part 1:
Systems".

[i.10] ISO/IEC 14496-10 (2009): "Information technology - Coding of audio-visual objects - Part 10:
Advanced Video Coding".

[i.11] ISO/IEC 19775-1.2 (2008): "X3D™ Architecture and base components, Edition 2".

NOTE: Available at: http://www.web3d.org/x3d/specifications/X3DPublicSpecifications.zip.

[i.12] WebGL™ Specification, Working Draft (27 May 2010), Khronos Group.

NOTE: Available at: https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/doc/spec/WebGL-spec.html.

[i.13] Adobe Systems Incorporated: "Adobe Flash™ Player".

NOTE: Available at: http://www.adobe.com/products/flashplayer/.

[i.14] ISO/IEC 14496-11 (2005): "Information technology - Coding of audio-visual objects -
Part 11: description and application engine".

[i.15] OpenGL™ Graphics with the X Window System (GLX), Version 1.4, December 2005.

NOTE: Available at: http://www.opengl.org/documentation/specs/.

[i.16] John Stavrakakis et al.: "Exposing Application Graphics to a Dynamic Heterogeneous Network",
Proceedings of the 14-th International Conferences in Central Europe on Computer Graphics,
Visualization and Computers.

NOTE: Available at: http://wscg.zcu.cz/wscg2006/papers_2006/full/g23-full.pdf.

[i.17] Greg Humphreys et al.: "Chromium: A Stream-Processing Framework for Interactive Rendering
on Clusters", SIGGRAPH 2002.

NOTE: Available at: http://chromium.sourceforge.net/.

http://iphome.hhi.de/fechteler/papers/ijcgt2009_JurgelionisFechtelerEisertBellottiDavidLaulajainenCarmichaelPoulopoulosLaikariPeraelaeGloriaBouras.pdf
http://iphome.hhi.de/fechteler/papers/ijcgt2009_JurgelionisFechtelerEisertBellottiDavidLaulajainenCarmichaelPoulopoulosLaikariPeraelaeGloriaBouras.pdf
http://iphome.hhi.de/eisert/papers/icip09a.pdf
http://research.microsoft.com/en-us/um/people/hoppe/pm.pdf
http://mesh.brown.edu/taubin/pdfs/taubin-etal-sg98.pdf
http://www.web3d.org/x3d/specifications/X3DPublicSpecifications.zip
https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/doc/spec/WebGL-spec.html
http://www.adobe.com/products/flashplayer/
http://www.opengl.org/documentation/specs/
http://wscg.zcu.cz/wscg2006/papers_2006/full/g23-full.pdf
http://chromium.sourceforge.net/

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 7

[i.18] Micah Dowty et al., VMWare™ Inc.: "GPU virtualization on VMware's hosted I/O architecture",
USENIX Workshop on I/O Virtualization 2008, ACM SIGOPS Operating Systems Review ,
Volume 43 Issue 3.

NOTE: Available at: http://www.usenix.org/event/wiov08/tech/full_papers/dowty/dowty.pdf.

[i.19] Gaikai™, Gaikai™ Inc.

NOTE: Available at: http://www.gaikai.com/.

[i.20] T5 Labs Limited.

NOTE: Available at: http://www.t5labs.com/.

[i.21] Onlive™, Onlive™ Inc.

NOTE: Available at: http://www.onlive.com/

[i.22] Tristan Richardson et al.: "Virtual Network Computing (VNC)", IEEE Internet Computing
Volume 2, Number 1, 1998.

NOTE: Available at: http://www.cl.cam.ac.uk/research/dtg/attarchive/pub/docs/att/tr.98.1.pdf.

[i.23] XRT Self-contained Remoting Protocol, ANSI/CEA-2014-A: "Web-based Protocol and
Framework for Remote User Interface on UPnP™ Networks and the Internet (Web4CE),
Annex O".

NOTE: Available at: http://global.ihs.com/search_res.cfm?MID=W097&input_doc_number=CEA-2014.

[i.24] The VirtualGL project.

NOTE: Available at: http://www.virtualgl.org/Main/HomePage.

[i.25] ISO/IEC 14772-1 (1997) and ISO/IEC 14772-2 (2004): "Virtual Reality Modeling
Language (VRML)".

NOTE: Available at: http://www.web3d.org/x3d/specifications/vrml/VRML97Am1/.

[i.26] COLLADA™: "Digital Asset Exchange Schema for Interactive 3D", Khronos Group.

NOTE: Available at: http://www.khronos.org/collada/.

[i.27] Dr. Rémi Arnaud (Sony Computer Entertainment) et al.: "Developing Web Applications with
COLLADA™ and X3D™ Whitepaper", March 25 2007.

NOTE: Available at:
http://www.khronos.org/collada/presentations/Developing_Web_Applications_with_COLLADA_and_X3
D.pdf.

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

casual games: games that typically do not require long-term time commitment or special skills to start playing, targeted
at casual consumers, who comes across the game and can get into gameplay almost immediately

NOTE: Casual gaming does not necessarily mean that it has to be offered for free or that the graphics are
primitive.

hardcore gamer: gamer who spends a considerable amount of time and money on games, and who prioritises gaming
over other leisure activities

http://www.usenix.org/event/wiov08/tech/full_papers/dowty/dowty.pdf
http://www.gaikai.com/
http://www.t5labs.com/
http://www.onlive.com/
http://www.cl.cam.ac.uk/research/dtg/attarchive/pub/docs/att/tr.98.1.pdf
http://global.ihs.com/search_res.cfm?MID=W097&input_doc_number=CEA-2014
http://www.virtualgl.org/Main/HomePage
http://www.web3d.org/x3d/specifications/vrml/VRML97Am1/
http://www.khronos.org/collada/
http://www.khronos.org/collada/presentations/Developing_Web_Applications_with_COLLADA_and_X3D.pdf
http://www.khronos.org/collada/presentations/Developing_Web_Applications_with_COLLADA_and_X3D.pdf

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 8

input lag: time between a user action and its response on the screen

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AVC Advanced Video Coding
BIFS Binary Format for Scenes
COLLADA™ COLLAborative Design Activity
GLX OpenGL™ Extension to the X Window System
GPU Graphics Processing Unit
MCD Media Content Distribution
MMORPG Massive Multiplayer Online Role-Playing Game
OpenGL™ ES OpenGL™ for Embedded Systems
OpenGL™ Open Graphics Library
RTP Realtime Transfer Protocol
SDK Software Development Kit
STB SetTop Box
UDP User Datagram Protocol
VNC Virtual Network Computing
VoD Video on Demand
VRML Virtual Reality Modeling Language
X3D™ eXtensible 3D Graphics

4 Use case(s) and high level requirements

4.1 Primary use case
The primary use case is to offer the ability for a user to play 3D games while part of the game resources (such as the
game graphics, game logic, etc.), are not located on the end user's device but are hosted on a server in the network. The
game's 3D graphics (possibly in conjunction with some game logic) are delivered to the end user's device in a streaming
fashion. This allows an easy and flexible way to access games on a variety of different (thin-client) devices. An
example of such a scenario could be a person on the couch watching TV, that whilst waiting for his favourite show to
start, wants to (spontaneously) play a game to pass the time without having to insert a game DVD or wait for a game
download to finish.

The server device can be located anywhere in a network, for example server in a data center ("cloud server") or a PC at
home. We expect the games to be written for commonly used 3D rendering APIs such as DirectX™ or OpenGL™.

The resulting system's architecture is typically one of the two following ones:

Figure 1: Graphics streaming architecture with game logic running on server

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 9

In this case, a gaming server loads the game executable (and perhaps some related metadata), and starts running the
game on the server. The graphical output and the audio are both encoded into a streaming format, after which the
encoded content is streamed to the client. The client receives the graphics and audio stream content, decodes and
renders the output. The user input (e.g. from a game controller) is sent back to the server and taken into account by the
game for subsequent rendering. Since the client device does not need to resources to run the game, it enables devices
with limited resources, such as TVs, STBs, Netbook PCs etc. to have access to compelling 3D games that would
otherwise not be able to run.

Figure 2: Graphics streaming architecture with (parts of) game logic running on client

In this second architecture, (parts of) the game logic is delivered to (or already present on) the client and executed on
the client device while graphics and audio data are hosted on the server and streamed to the client on request.

4.2 High level requirements
The main requirement for a streaming and distributed processing system for games is to address the concerns of game
play. As any other gaming platform, streaming games from a server faces strong constraints against which an
appropriate solution is required so that gamers do not simply run away from the platform because their experience is not
up to their expectations. The four main constraints for the solution to take into account are: input lag, image quality,
scalability of the service and availability of the service. See clauses 4.2.1 through 4.2.4 for more details. The list below
also contains a couple of other important high level requirements in clause 4.2.5 onwards.

NOTE: As mentioned in the Scope (clause 1), the primary focus is on the requirements for the 3D gaming
graphics delivery protocol. Deployment issues such as user registration, content selection and purchase
are outside the scope of the present document. Also, inter-destination synchronization of multi-user
games graphics is out of scope of the present document.

4.2.1 Minimize input lag

Input lag, i.e. the time between a user action and its response on the screen, is probably concern #1 for many of the
gamers.

Input lag can be broken down into the following subcomponents:

• input detection time (usually negligible, if we assume the latest wired USB and wireless controllers)

• input information transport time (if information is not handled locally)

• input information management in the game or game engine

• game rendering after input management (actual creation of the output frame)

• transport time of the game rendering data (if not displayed locally)

• display rendering (actual display of the video frame on screen)

Network phenomena, such as latency, jitter, lack of bandwidth or packet loss can introduce additional lag. The solution
needs to take these networking aspects into account and minimize their effects on the gameplay.

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 10

Figure 3: Graphical illustration of input lag

The effects of input lag on the user depend on the user's own sensitivity to it. A hardcore gamer would certainly not put
up with a minimum amount of lag while an occasional player would probably not even notice it.

In the application of gaming, the type of game being played is another important factor that may increase one's
perception of lag as players' expectations on game play may considerably change depending on the type of the game.

In the present document, we will distinguish:

• Slow paced games (such as chess games and typical MMORPGs such as World of Warcraft™): in slow paced
games, input lag is usually not a problem. Slight delays (up to 500 ms) are usually tolerable (see section 2
of [i.1] for more information).

• Medium paced games (such as platform games like Super Mario™ 64, and sports games): in medium paced
games, delays higher than 150 ms or 200 ms would probably be noticeable by gamers (see section 2 of [i.1] for
more information).

• High paced games (such as fast-action shooters like Unreal Tournament™ or Crysis™, or fighting games): in
high paced games, the reaction time requirement for the user is usually very strict and typically any lag over
100 ms affects the gaming experience (see section 2 of [i.1] for more information).

NOTE 1: Current console games typically have an average lag of about 133 ms (see [i.2]).

NOTE 2: There may not be one unique solution that can fit the constraints imposed by any type of games streamed
on any kind of network with the current state of technology. As a consequence, in the present document,
we may envisage to recommend a different approach in function of game streaming context and its effects
on user's quality of experience.

4.2.2 Maximize image quality and framerate

For some gamers, the image quality of the video game is very important. This is especially true for PC gamers who
have the capability to play their video games with different quality settings. In order to obtain the highest possible
quality; some would regularly update their hardware or even sacrifice framerate (and consequently input lag as well).
However, others prefer a higher framerate over highest possible image quality.

It is perceived that under a certain level of image quality, the gaming experience becomes highly impacted.
Nevertheless, Nintendo™ proved with the Wii™ that image quality is not necessarily #1 criterion for all gamers. For
framerates below a certain level, the gaming experience also becomes highly impacted.

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 11

So on the one hand we need to maximize image quality and framerate, on the other hand, we should make the solution
flexible enough to allow selection of different quality levels (e.g. level of details rendered by the client).

4.2.3 Allow Scalability

Being able to play a game with the same experience whether there is just one player or thousands of players playing
together is also an important requirement for gamers. For games running on a server, this is a major issue since many
players are sharing the same server even if playing a mono-player video game. While players may understand that the
gaming experience in multi-player games may decrease while the number of players increase, it may be very difficult to
have them understand that the same thing happens with mono-player games too.

Scalability is not only important for gamers, but also for the service providers that distribute the game, since the
scalability of the solution directly affects the cost involved to run the game. The more players that can be served by a
single server, the lower the cost to deploy the game. This affects the price range at which streaming of games can be
offered.

The solutions studied in the present document should take into account the eventuality of adapting quality depending on
the server's resources.

4.2.4 Maximize availability

Availability is not an issue players are usually familiar with, since on their PC or game consoles they can pretty much
play their video games whenever they want. But with games running on a server in the network, the situation is
different and it is obviously important that the service is always available to users. The solution needs to be robust in
dealing with certain network aspects (i.e. such as jitter and packet loss). If the connection to the server is lost, the
solution should be able to detect if the network and/or the server are not available anymore, and should make the user
aware of this.

4.2.5 Distribution of game processing resources

Transferring most of the game processing from the local client to a server, eventually shared by several gamers, is the
core of this subject. All proposed solutions need to obey this distribution of computation resources between client and
server and the associated handling of input events. The distribution of resources needs to be done in such a way as to
minimize the effects on game play (i.e. as defined by clauses 4.2.1 through 4.2.4).

4.2.6 Reuse existing infrastructure

It is desirable that the solution(s) can run on existing network and server infrastructures, without requiring specific
adaptations. This reduces the cost of deployment.

In order to bootstrap the problem of the availability of content, it is also important that the solution allows reuse of the
large catalogue of existing 3D games based on DirectX™ or OpenGL™, with little or no adaptation needed to the
source code of the game.

4.2.7 Support for a variety of devices

The solution should allow for a multitude of different devices to be used as clients, and should not depend for example
on a particular operating system or single screen resolution.

The solution should allow at least have the ability to use keyboard, mouse and standard game controllers, or a
combination thereof as user input. The solution should preferably be extensible to other types of user input devices for
games.

4.2.8 Authentication and security

The solution should support some form of client authentication to make sure that only authorized clients can start/enter
a game session provided by the server.

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 12

5 Solution approaches for delivery of 3D output of
games

The following clauses describe different approaches for the delivery of 3D graphics output of games to thin-client
devices.

5.1 Streaming 3D graphics primitives

5.1.1 Main concept

The main concept behind this solution approach is the following:

Figure 4: Streaming 3D graphics primitives

The server device executes the game executable. Instead of sending the DirectX™ commands to the graphics card
(i.e. the Graphics Processing Unit (GPU)), a software layer intercepts the DirectX™ commands. A streaming layer than
analyzes and processes these commands to make them suitable to be streamed over the network to the client device
using a protocol suitable for sending and encoding these 3D graphics primitives and commands.

The client device then receives the stream of 3D graphics primitives and commands and forwards them to the 3D
graphics API, for example using OpenGL™ for Embedded Systems (OpenGL™ ES) [i.3]. The client device then
renders the 3D graphics output into its framebuffer, which is shown to the user.

This solution approach assumes the presence of some hardware acceleration functions to enable 3D rendering by the
client device. With the uptake of 3D hardware acceleration for mobile phones and other embedded devices (e.g. using
OpenGL™ ES), such support is likely to become commonplace.

See [i.4] for more information about this approach.

5.1.2 Benefits/Drawbacks of this approach

Benefits:

• The server does not need to render the actual graphics of the game. This makes it a very scalable solution. A
single server can serve many clients. It also means that common data center technology available today can be
used for streaming games. It does not need GPU support, which is typically available only in specialized data
centers. This is important to keep the deployment costs down.

• Since it does not need to render the graphics on the server, the latency is usually lower than for example using
a video streaming solution.

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 13

• Since it is primarily the client who is in control of the output to be rendered, the graphical output remains
sharp whilst allowing for scaling to different resolutions.

Drawbacks:

• The graphical detail and/or resolution may need to be adjusted to suit the hardware capabilities of the client
device's 3D rendering functionality.

• The bitrate is typically not constant. Complex scenes require more bandwidth than simple scenes.

5.2 Streaming Video

5.2.1 Main concept

The main concept behind this solution approach is the following:

Figure 5: Video streaming

The server device executes the game executable. It renders the 3D graphics of the game (using its GPU) into a
framebuffer. The graphics of this framebuffer are captured and compressed into a video stream, which is sent to the
client, using a (standard) video streaming protocol, such as H.264/MPEG-4 AVC [i.10] over RTP/UDP.

The client device receives the video stream, decodes it and renders it into its framebuffer, which is shown to the user.

Note that because of the low latency demands of streaming 3D games, the video streaming solution needs to be
implemented with low-latency encoding/decoding an a minimum of buffering on both client and server end:

• For the server it means that it cannot perform its compression based on interpolating multiple input frames,
such as is done e.g. for compressing B-frames, multi-pass encoding, multi-frame encoding. Basically, the
frame has to be compressed and sent to the client as soon as it has been rendered in the server's framebuffer.

• For the client it means a video frame has to be decoded and displayed as soon as it is received. This is different
to Video on Demand (VoD) streaming where typically large buffering is used to remove the effects of network
jitters. It more resembles solutions that are used for video conferencing, where low-latency encoding and
decoding is an important aspect.

Note that standard H.264/MPEG-4 AVC [i.9] is flexible enough to cope with these low latency requirements. See [i.5]
and also [i.4] for more information.

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 14

5.2.2 Benefits/Drawbacks of this approach

Benefits:

• No dependency on 3D hardware acceleration on the client device. The graphical details and resolution solely
depends on the server's rendering capabilities (and server resources available).

• Bitrate can remain quite constant.

Drawbacks:

• Since the server needs to render the actual graphics of the game, the solution is very heavy for server devices
and is therefore less scalable. The solution depends on 3D GPU hardware acceleration and preferably also
video encoding hardware acceleration, both of which are typically only available in specialized data centers.
This is likely to increase the deployment cost.

• Since it needs to render the graphics and perform video compression, the latency is typically higher than with a
3D graphics streaming solution.

• During the video rendering encoding/decoding process some sharpness of the graphics may be lost.

5.3 Transport of 3D models

5.3.1 Main concept

The main concept behind this solution approach is the following:

Figure 6: Transport of 3D Models

The server device executes the game executable. Instead of calling the low-level DirectX™ API, it calls a higher level
3D streaming API, which allows the author of the game to send a description of (parts) of the 3D models that constitute
the 3D scene to the client. This solution could be extended by allowing the author to send scripts along with the 3D
models for execution by the client. This could then handle some of the game logic, e.g. to change the 3D model's view
or the viewing angle into the scene, on the client without needing a roundtrip to the server.

The client receives the description of the 3D models and renders them. Depending on the solution, it may also need to
execute scripts that allow the user to interact with the 3D models without needing a roundtrip to the server.

This solution is typically used for 3D games or 3D applications for deployment in web browsers. The game publisher
needs to develop its game specifically with this deployment model in mind, since it relies on a different API than e.g.
DirectX™. Various solutions are being developed in this area that allow for this new breed of web applications to be
created, such as X3D™ (successor of VRML) [i.11], WebGL™ [i.12], and Adobe Flash™ [i.13]. Also extensions to
MPEG were developed to allow for this kind of scenarios, such as MPEG-4 Part 11 Binary Format for
Scenes (BIFS) [i.14].

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 15

5.3.2 Benefits/Drawbacks of this approach

Benefits:

• The server does not need to render the actual graphics of the game. This makes it a very scalable solution. A
single server can serve many clients. It also means that common data center technology available today can be
used for the deployment of games. It does not need GPU support, which is typically available only in
specialized data centers. This is important to keep the deployment costs down.

• Since it does not need to render the graphics on the server, the latency is usually lower than for example using
a video streaming solution.

• Since it allows some of the 3D model manipulations to be performed by the client without needing a roundtrip
to the server, which can be supplemented with scripts provided by the server, the latency can be further
reduced.

• Since it is primarily the client who is in control of the output to be rendered, the graphical output remains
sharp whilst allowing for scaling to different resolutions.

• Low bandwidth requirements.

Drawbacks:

• The game needs to be specifically created or redesigned to fit this deployment scenario. This makes it very
hard to deploy existing games.

• 3D model manipulation and in particular execution of scripts using a scripting environment demands resources
on the client. A scripting solution is typically a lot slower than a high performance game executable written in
efficient C++ code.

• The graphical detail and/or resolution may need to be adjusted to suit the hardware capabilities of the client
device's 3D rendering functionality.

5.4 Progressive transport of adaptive 3D models

5.4.1 Main concept

The main concept behind this solution approach is the following:

Figure 7: Progressive transport of adaptive 3D models

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 16

This is a variant of the model defined in clause 5.3 to optimize the transport and rendering of 3D models. In this case
the 3D model descriptions are progressive and adaptive. The idea is that objects and textures of the scene are sent with
a very low level of detail. So their representation is much lighter than the equivalent OpenGL™ primitives. They can be
transported and rendered very quickly, and hence may improve the framerate, reduce initial startup time, and reduce
memory and bandwidth usage. Of course, such a low level of detail may not be satisfying. For each object of the scene,
a set of very small rules can, then, be sent progressively which allow the client to re-construct higher levels of details up
to the original one. Rules are fast to download and are requested on demand, depending on the need of details of the
renderer (objects far in the scene do not need a high level of detail to be correctly rendered) and/or on the abilities of the
client device (in terms of CPU, memory, GPU, bandwidth). Hence, the format is progressive.

Independently from the downloading of rules, for each frame, the renderer computes the most relevant level of details
for each object and texture depending on a large set of criteria. These could be the position and/or the speed of this
object in the frame of reference, the abilities of the client device, or a level of interest of the object according to the
game logic. Then rules are applied on each object in order to refine or to degrade it as requested by the renderer. Hence,
the format is adaptive.

Note that there are several ways in which (part of) the relevant game logic/rules could be deployed:

a) The game logic/rules can be preloaded on the device (e.g. by loading it from a CD or by downloading it in
advance of execution). In this case it will run "natively" on the machine. This program is responsible for
requesting the root part of the scene graph from the server.

b) The game logic is not pre-loaded (i.e. it is scripted). In this case the client is requested to download the root
part of the Scene Graph that contains the scripts. These scripts are then transferred from the server and
executed on the client.

Up to now, this solution is typically used for 3D games or 3D applications for deployment in web browsers (e.g.
Google™ Earth). In order to allow the 3D model descriptions to be progressive and adaptive, the game publisher
typically needs to take these aspects into account whilst developing its 3D game, by using dedicated SDK features.

This kind of solution may be applied as an extension to 3D description formats such as X3D™ [i.11] or 3D APIs such
as OpenGL™ or Direct3D™. Direct3D™ implements the "Progressive Meshes" technology as described in [i.6] [i.7].
Also the extensions to MPEG, such as MPEG-4 Part 11 Binary Format for Scenes (BIFS) [i.14] could be used as a basis
for progressive transport of adaptive 3D models. Some progressive and adaptive textures formats are already
standardised, such as JPEG2000 [i.8].

5.4.2 Benefits/Drawbacks of this approach

Benefits:

• Same as for "Transport of 3D Models" defined in clause 5.3. In addition:

- It reduces initial startup time, and reduces memory and bandwidth usage, since never too much data is
sent across.

- It allows easy optimization of the framerate.

- The graphical detail and/or resolution can be automatically adjusted to suit the hardware capabilities of
the client device's 3D rendering functionality.

Drawbacks:

• The game typically needs to be redesigned or created specifically to fit this deployment scenario. This makes it
very hard to deploy existing games.

• Since the client device has some automatically adjustable control over the level of graphical details (depending
on various factors, such as the graphical capabilities of the client), the quality of the graphical output may not
be predictable to content authors.

• Dynamic 3D model manipulation and in particular if this is done using a scripting environment demands
resources on the client.

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 17

6 Overview of existing standards
Analyze existing standards that may have overlap and/or may be applicable to parts of the solution.

Streaming 3D graphics:

This solution needs an efficient encoding format for 3D graphics primitives. Here are some standardized and
non-standardized solutions that may be relevant in this area:

1) GLX [i.15] - GLX is an acronym for "OpenGL™ Extension to the X Window System". This protocol provides
the transport and remote rendering of 3D OpenGL™ graphics commands. It also includes the binding to
specific parts of the X Window System to control the remote display configuration. The protocol (although not
actively developed anymore) is specified by the Khronos industry consortium and falls under the realm of
OpenGL™ protocols/APIs developed by that consortium. Despite that it has several dependencies on the X
Window System typically only supported by Unix/Linux clients, and the solution should not be limited to
devices having support for the X Window System, there may be elements that can be reused, in particular the
binary representation of OpenGL™ commands. Note that GLX does not define compression of the data
stream. Compression of the GLX datastream may need to be defined, in order to reduce the network load.
GLX itself does not describe the backchannel for user input (such as keyboard and mouse events). It does
depend on the X Window System protocol to support these events.

2) During the years, several non-standardized and commercial solutions, such as Lumino [i.16], Chromium [i.17],
and VMWare™ [i.18], have been implemented that provide some alternative solutions to GLX for streaming
OpenGL™ commands or that extend GLX with additional features such as session suspend/resume
mechanisms and GPU virtualization for cloud computing environments. The documentation of these
technologies shows several techniques on how to improve GLX that may be interesting to take into account
whilst developing a protocol for streaming of 3D gaming graphics.

Streaming video:

This solution needs low latency encoding/decoding of video (similar to video chat). Here are some standardized and
non-standardized streaming video formats that may be relevant in this area:

1) MPEG-4 [i.9] - MPEG-4 is an ISO/IEC standard developed by MPEG (Moving Picture Experts Group).
MPEG-4 is a framework of technologies for compression of audio/video content and the delivery of
multimedia. When considering video streaming of games, MPEG-4 Part 10 Advanced Video Coding (AVC)
(also known as H.264) [i.10], is especially worth attention as this codec achieves very high data compression
and it is also designed with network streaming in mind. However, encoding A/V content in H.264/MPEG-4
AVC is typically slow, and steps need to be taken in the implementation to achieve low-latency encoding.
Several ways exist to achieve low latency encoding of games. One of the ways is to make use of the game's 3D
depth map and projection matrices to allow for efficient calculation of the motion vectors in a scene, as
described in [i.5]. It makes sense to combine the low latency encoding with a transport protocol such as RTP
over UDP to stream the video, and as little buffers on the client and server as possible, in order to speed up the
transport and rendering. Several companies are looking into this type of streaming, such as Gaikai™ [i.19], T5
Labs [i.20] and Onlive™ [i.21]. Note that the latter has developed its own proprietary video codec, whereas
the first two are looking into using standard MPEG-4 encoding to deliver 3D games.

2) A solution that is similar to MPEG-4 video streaming and that is supported as a mode by many standardized
and non-standardized Remote User Interface protocols, such as VNC [i.22] and XRT [i.23] is by making use
of Motion JPEG. Motion JPEG (also known as M-JPEG) is an informal name for a class of video formats
where each video frame of a digital video sequence is separately compressed as a JPEG image. Whereas
traditional remote framebuffer based remote UI solutions such as VNC are not suitable for 3D gaming
(because they are optimized for sending only those parts of the screen that have been updated), several variants
of these protocols, such as VirtualGL/TurboVNC [i.24], have been developed that can compress every 3D
frame as a JPEG image by using a highly optimized JPEG codec and send the generated sequence of JPEG
images to the client. This enables remoting of 3D games in a similar fashion as solutions based on MPEG-4
video streaming.

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 18

Transport of 3D models:

This solution needs a generic format for describing 3D models (and its interaction). Here are some standardized and
non-standardized streaming video formats that may be relevant in this area:

1) X3D™ [i.11] - X3D™ is an ISO Standard, maintained by the Web3D Consortium, targeted at encoding of
interactive 3D content, intended to be used in web or broadcast-based environment. X3D™ is the successor of
the well known language VRML [i.25]. X3D™ is an XML based specification for describing and
communicating 3D scenes and objects. It can also include runtime behavioural descriptions (using scripting). It
operates on higher level of abstraction than 3D APIs such as OpenGL™ and DirectX™, which allows
flexibility in the transmission and execution. Because of its higher level of abstraction it is also more concise,
which can contribute to lower bitrates for transmission. In addition, the standard also defines a mapping to a
compact binary encoding of the XML data in order to further reduce the network load. Unfortunately, the
higher level of abstraction also means that it would be difficult to use it for the delivery of existing DirectX™
or OpenGL™ based games, without needing to rewrite the source code of those games. However, for new
web-based 3D applications that do not depend on these APIs, it is quite a powerful format.

2) MPEG-4 BIFS [i.14] - MPEG-4 BIFS is a scene description and application engine that has been developed
by the MPEG consortium as part of the MPEG-4 framework of standards and technologies [i.9]. BIFS or
Binary Format for Scenes is a binary format for 2D and 3D multimedia content is defined in MPEG-4 Part 11
[i.14]. The scenes are described in language constructs inherited from VRML [i.25].However, its bitstream
representation is completely different, and MPEG-4 BIFS adds several distinguishing features on top of
VRML, in particular data streaming which means that the client can receive the data incrementally and renders
it as needed. In basic VRML the scene would first have to be completely transferred from the server to the
client before rendering, leading to long latency. MPEG-4 defines a scene update mechanism using BIFS
commands as a way to allow scene components to be animated. MPEG-4 BIFS is designed to be used in
broadcast and video streaming based applications. Therefore, in MPEG-4 BIFS the 3D application can be seen
as a temporal stream. It contains various mechanisms to allow the 3D VRML content to be synchronized with
playback of audio video content.

3) COLLADA™ [i.26] - COLLADA™ is an interchange file format for interactive 3D applications. It is a
standard created by the Khronos group and was designed as an intermediate format aimed at gaming industry
and intended for bringing together content and assets from different editing tools. Several game publisher use
this intermediate format whilst developing their games. The COLLADA™ format is typically used during the
process of transformation the game assets as they journey from content creation tools that use higher level
description paradigms to platform-specific optimized API descriptions. Although it shares many
commonalities with X3D™, it was not designed to describe detailed lower level run-time behaviour and for
efficient delivery of the network, some aspects which are addressed by X3D™ (see [i.27] for more
information), so it is not the most obvious choice for delivery of 3D gaming graphics, although the direct link
with content authoring tools is definitely an advantage.

4) WebGL™ [i.12] - WebGL™ is a standard created by the Khronos group aimed at bringing 3D graphics to the
Web by introducing a Javascript API derived from OpenGL™ ES 2.0 that can be used in HTML5 canvas
elements. Unlike X3D™, it operates at a much lower abstraction level. This means application development
can stay much closer to well known OpenGL™ API constructs. However, it does make extensive use of
Javascript, which does come with a performance penalty compared to native C++ code. Because typically a
big part of the 3D application scripting sources get transferred to the client before executing the application
inside the web browser, WebGL™ shares many of the characteristics as the more pure model based
approaches such as X3D™ and COLLADA™. A list of these characteristics can be found in clause 5.3 of the
present document.

Progressive transport of adaptive 3D models:

There are currently no known standardized solutions in this area, or standards that clearly make use of a progressive
model for transporting adaptive 3D models.

However, there are some standards such as JPEG2000 [i.8] and MPEG-4 BIFS [i.14] that could be used as a basis for
progressive transport of adaptive 3D models. The ability of adapting the 3D content based on criteria such as
bandwidth, rendering speed, etc. is a powerful concept, and hence may be useful to take into account whilst designing
any network based solution of delivery of 3D graphics.

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 19

7 Conclusions and recommendations
Various technical solution approaches can be considered for the delivery of 3D gaming graphics from a client to a
server. These approaches range from streaming 3D graphics primitives, video of the rendered graphics output, to the
(progressive) transport of 3D models. Each of these solution approaches has some possibilities of delivering 3D gaming
graphics to thin clients, however, each of the solutions comes with its own set of advantages and disadvantages, as
described in clause 5 of the present document.

A solution based on streaming 3D graphics primitives would seem to be the best solution to fit the high-level
requirements as described in clause 4, with the main advantage being the ability to reuse existing infrastructure and the
scalability of the server. Since the 3D rendering capabilities of the embedded devices are becoming commonplace and
more powerful, the disadvantage that the solution depends on the 3D capabilities of the client seems to become less of a
problem.

A video streaming solution does not have this dependency on the availability of 3D rendering hardware support on the
client, the main disadvantage of the video streaming solution is that it is very heavy on the server, because of the
rendering and video compression. This makes the solution more costly to deploy, less scalable, and therefore less
attractive. The additional steps (as graphically depicted in clause 5.2) are likely to increase the latency of the solution.
However, as the costs for server based graphics solutions will decrease, there will be deployments in the market that
make use of a video streaming solution.

Model based solutions are often used for adding 3D content to websites and for a variety of 3D applications, including
3D games (locally run). However, they are not a generic solution for delivery of games. For example, it would not be
possible to reuse existing games created for DirectX™ execution environments, without rewriting of the game's source
code. No commercial study has been done to estimate whether rewriting of part of the code of a game has to be
considered as a major drawback or not, as happened for example in the past to support new devices/platforms (such as
smartphones, game consoles). For model based solutions based on scripting environments, and other high-level
technologies such as XML, a possible performance penalty needs to be taken into account when porting games to such
environment.

The solution of using progressive transport of adaptive models was also described in the present document. There are no
clearly defined standards in this area, and the general idea and ability of adapting the 3D content based on criteria such
as bandwidth, rendering speed, etc. is a very useful idea to take into account in designing any network based solution of
delivery of 3D graphics, and may offer some technical advantage to game developers. Therefore, this technology should
not be ruled out of the proposition.

The overview of technologies and standards in clause 6 shows that there is currently not really a standardized solution
for streaming 3D graphics primitives of games. In particular a solution that is:

a) geared towards OpenGL™ ES, which is designed for embedded devices such as cellphones and TVs,

b) does not depend on X Window System,

c) for which a clear backchannel is defined for user input devices such as game controllers,

d) which is optimized for low latency.

For the other solution approaches, such as video streaming, there seems to be a less obvious gap in standardization.
Analysis shows that it would be possible to use existing standards, such as video streaming based on H.264/MPEG-4
AVC in conjunction with a low latency encoder, to achieve the ability to stream video games. The model
based/scripting based approaches typically target a different use case, and various standards have already been devised
in that area, such as X3D™ of the Web3D consortium, and WebGL™ and COLLADA™ of the Khronos group. None
of these standards currently address progressive transport of adaptive models. This is something however that would be
interesting to consider for any solution dealing with the delivery of 3D gaming graphics.

Given the focus of games running on high-performance servers and the current gaps in standards for 3D graphics
streaming, the recommendation of the present document is to define and standardize a protocol for streaming of 3D
games, based on streaming OpenGL™ ES graphics primitives that is independent of X Window System, and that takes
into account the high-level requirements as described in the present document. This recommendation should not
preclude that ETSI may work later on complementary solutions such as model based/scripting based approaches.

ETSI

ETSI TR 102 794 V1.1.1 (2010-12) 20

History

Document history

V1.1.1 December 2010 Publication

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Use case(s) and high level requirements
	4.1 Primary use case
	4.2 High level requirements
	4.2.1 Minimize input lag
	4.2.2 Maximize image quality and framerate
	4.2.3 Allow Scalability
	4.2.4 Maximize availability
	4.2.5 Distribution of game processing resources
	4.2.6 Reuse existing infrastructure
	4.2.7 Support for a variety of devices
	4.2.8 Authentication and security

	5 Solution approaches for delivery of 3D output of games
	5.1 Streaming 3D graphics primitives
	5.1.1 Main concept
	5.1.2 Benefits/Drawbacks of this approach

	5.2 Streaming Video
	5.2.1 Main concept
	5.2.2 Benefits/Drawbacks of this approach

	5.3 Transport of 3D models
	5.3.1 Main concept
	5.3.2 Benefits/Drawbacks of this approach

	5.4 Progressive transport of adaptive 3D models
	5.4.1 Main concept
	5.4.2 Benefits/Drawbacks of this approach

	6 Overview of existing standards
	7 Conclusions and recommendations
	History

