TR 101 666 v1.0.0 (1999-05)

Technical Report

Information technology - Open Systems Interconnection
Conformance testing methodology and framework;
The Tree and Tabular Combined Notation (TTCN)
(Ed. 2++)

ETSI %

2 TR 101 666 V1.0.0 (1999-05)

Reference
DTR/MTS-00061 (ffc00i04.PDF)

Keywords
MTS, testing, TTCN

ETSI

Postal address
F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16
Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Internet

secretariat@etsi.fr
Individual copies of this ETSI deliverable
can be downloaded from
http://www.etsi.org
If you find errors in the present document, send your
comment to: editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1999.
All rights reserved.

ETSI

3 TR 101 666 V1.0.0 (1999-05)

Contents

INtellectual Property RIGNTS i e aaaaaaeaaaeaaaseaeaeeaaeeens 13
[0 L1V 0] (o 13
1 ST el0] o1 PSRRI 14
2 R (ST (=] 410N 14
3 [LS 11 T 0] 1T 16
3.1 Basic terms from [SO/IEC 9B46-1.........coouuiiiieieite et e et e et e e e et e e e et e sttt e e s ts s mmmmmmmm————aa s ean 16
3.2 Terms from ISO/IEC 7498-1

3.3 Terms fromM ISO/IEC L0731 .. ettt e e e e e e e e e e s b e e et e e eeas s s

3.4 Terms from ISO/IEC 8824-1

3.5 Terms from ISO/IEC 8825-1

3.6 TTCON SPECITIC TEIMS ..ttt ettt et e e e e e e e e e e s e s s e e aaabbbb e beeeeaaaaaaaaessaaaannnnnnnenes

4 P o] o1 (VAT 1 0] 1 21
4.1 Abbreviationglefined iN ISO/IEC 9646-1..........ooiuiiiiiiiee et r e e et e e st e s b e e eaans 21.......
4.2 Abbreviations defined iN ISOMEC 9646-2........c.u it e et e e e e e et s e s aas s smmmmmmmemmmmmta s 21
4.3 (@] ([T =1 o] o] (=1V/ =11 T0] 4 1T 22
5 The syntax formsS Of TTCNoooiiiiiiiiiie s e e e e e e e e e e e e e e e e e s e 22
6 (70 01 o] =T g o] 2 23
7 (@4] 0)Y7=T 01110] o 1S 23
7.1 L)oo 18103 110} o 1A TN 23
7.2 SYNLACHC METANOTALION ... ettt ettt et et e e e e e e e e e e s e e e e e e e an s e nnnnnnnrenes 23
7.3 TTCN.GR table PrOfOIrMAScooiiiiiieeeeei ettt e+ —— 11 s 24
7.3.1 L)oo |8 Tox 1] o 24
7.3.2 Single TTCN ODJECE taDIESottt e e e mmmmmmmmmmmnn e 24
7.3.3 Multiple TTCN 0DJECE tabIES ...t e 25
7.3.4 Alternative compact tables ... e 25
7.35 Specification Of PrOfOIMASeei i e e 26
7.4 Free Text and BOUNAEA FrEE TEXL ...c.u ittt e e e et e e et e e st e s emmnesmnsemmnn e seas 26
8 (70} o o115 1T o o3 V2T o T I K A 26
8.1 TESICOMPONENTS ...ttt e ettt e e oo e e e e e et e et eeeetb bbb aa s e e e e e eaaeeeeeeessesbnb s mnnnnmmmmmmmmm e e eeeeeee 26
8.2 TestComponent CONFIQUIALIONSoooiiii ittt e e e e e e e e s e e ebe b e bt e e s cmmmmmmmmmmen s 27
9 TTCN tESE SUILE SITUCTUIE ...cee it e et e et e e et e e st s e saa s e saa s saa s smnrnnneennnsens

9.1 L)oo [0 o3 110] o T
9.2 TeSt GroUp RETEIENCES. ...t

9.3 Test Step Group References

9.4 Default Group REfEIENCES.uuiiiiiiiiiiiee et

9.5 Parts Of @ TTCON 18t SUITE .. .ccuuiietiiiiee et ee et e e et e e et e et e e e st e e st s asba e s sansassansesansaentnsssnssanansns

O I oY) A U1 LS @ AVZ=T V7 =, T 29
10.1 [[a) 0o [0 Tox 1] o PO 29
10.2 BT ST T (ST 0 (S0 T 30
10.3 LTS ST L (SIS (0 [(0 [30
10.4 LIS R OF= oY Lo [TP 32
10.5 TESE SEEP INAEX ...ttt et et e e e e e e e et e e o e e e e ab bbb bbb be e e e e e et e e eaaaaaaaeaaaaaasaesaaaanns 33
10.6 (DS £ 101 L1410 =3 34
10.7 B TN L1 (N T o [0 o £ TP PRPPPP 35
10.8 TRE IMPOIT Pttt et et e e e e e e e e e e e e e e s e m—— 1112111111111 e e 36
10.8.1 L)oo [V Tox 1 [0] o [T 36
10.8.2 1101 oT0] £ €= ST PTP TR TRRTTPP 36

ETSI

4 TR 101 666 V1.0.0 (1999-05)

11 DECIArAtIONS PAIT.....cciiiiiiiiiiiiiiieiie ettt e ettt e e e e e e s s s bttt e e e e e e e e e s s ansbbneeeeeaaeens 37
11.1 1] To 11 L1 o] o P PP PP PURRRO 37
11.2 I I3 V07 €= PRSP 38
11.2.1 T oo 18Tl 1o o I PP PRRR 38
11.2.2 = To L=y = To I I IO NI Y o1 P 38
11.2.3 Test Suite Type DefiNitiONS......cccciiieeee e —— s 40
11.2.3.1 [oo [N ox 1o o [P PP 40
11.2.3.2 Simple Type Definitions using tables ... ————— 40
11.2.3.3 Structured Type Definitions using tables............vvviiiiiiiiiie e 41
11.2.3.4 Test suite type definitions USING ASN.L......uuriiiiiiiee i err e e e e e e e e 42
11.2.3.5 ASN.1 Type Definitions BY REEIENCEvvvviiiie et eeeeeeee s 44
11.3 TTCN operators and TTCN OPEIraAtiONScceeeeiieiiii i e e e e e e e e e e e e e s s e s e eeeemmemn——— e 45
11.3.1 T (oo 18Tl 1o o IR PUP PP PRPT 45
11.3.2 BRI N I 01T = 1o RPN 45
11.3.2.1 T oo (8] od 1T] [P PP 45
11.3.2.2 Predefined arithmetiC OPeratorS........cccee it e mmmmemmenn e 46
11.3.2.3 Predefined relational OPEratorS.........uiiiieeiii i mmmmmmmmnnnnae 46
11.3.24 S g=Te 1=y 1= To I =To o] (ST TaINe] 0= = L] £ 46
11.3.3 PredefiNed OPEIAtIONS i e e e e e e e e e s e r e —————— s a7
11.3.3.1 T oo [N]ox 1T] o [P PP 47
11.3.3.2 Predefined cONVErsion OPEratiONS...........cccccuuiiiiiiiiiiie e e e e e e e e e e e s s s s s e e e e e e e e s emmmmmmmmmmmnnes s 47
11.3.3.2.1 1] oo 18 L1 o] o PR PSP PRPP
11.3.3.2.2 HEX_TO_INT

11.3.3.2.3 127 I 1O T 1 OO
11.3.3.24 INT_TO_HEX

11.3.3.25 A 1 T = N P PSPPI

11.3.3.3 Other predefined operations

11.3.3.3.1 ST o 2SS =1 PP PRRTPR
11.3.3.3.2 ST o [0 1] = PP TPPPPP
11.3.3.3.3 NUMBER_OF _ELEMENTSottt ettt e et e e e s anreeas 49.
11.3.3.34 [N I O T PSR 49
11.34 Test Suite Operation definitions and deSCriPiONScvviivieei i 50
11.3.4.1 [oo [N ox 1o] o [P PRTT PR
11.34.2 PArBIMELEIS ...ttt ettt et e e e e e e e et e s s e mmmeemmm——— e e e e e e e e e s
11.3.4.3 Variables and Identifiers

11.34.4 Procedure StAateMENTSccooiiiiiiiii it

11.3.45 ReturnValue statements

11.3.4.6 F SISy To] 0 0 =T T S = L =T 0 T £
11.3.4.7 LIS P2 1 (=100 1T] TP PRPT
11.3.4.8 LAY 1= T T 1S
11.3.4.9 (O IR S] =1 (=] 0 1= o | PRSPPI
11.3.4.10 Use of Test Suite Operations

11.4 Test Suite Parameter DECIAratioNScvvviieeeiiie e e e e e ss e so— 1112 DD
115 Test Case Selection EXpression DefinitioNS............eii i 56
11.6 Test Suite CoNStaNt DECIAIALIONSvviiiieee e it e e e e e e e s e s ereeeeeeeeeeeassasaaannnnnrnne 57
11.7 Test Suite Constant Declarations by ReferencCe ..o 58
11.8 LI NIV T =L o] =SSR 58
11.8.1 Test Suite Variable Declarations weeeeeereeeeenes D8
11.8.2 Binding Of TeSt SUItE Vari@hIEScoieiiiiiie e+ ——— 59
11.8.3 Test Case Variable DeCIAratioNnsocoiciuiiiiiiiiiiiie et e e e s e e e e e e e e e e e e e seeannannnnnes 60
11.84 Binding of Test Case Variables..........c..uiiiiiiii e e 60
11.9 PCO TYPE DECIAIALIONcciiiiiiiiiiie ettt e e st e e s e e eneeeeeae e s snnneeeaee s 60
11.10 L L@ I 1= Tox =T = 11 o] o PSSP 61
11.11 CP Declarations

11.12 TIMET DECIAIALIONS ...ceee i e i e e e e e e e e s e e s e e ettt e e e e e eeeeeeeee e s e s s ——— e 64
11.13 Test Components and Configuration DecClarations.............cooiiiiiiiiiiiiiiiee e e 65
11.13.1 JLIC=25] O] 4] 0T =T o1 TP 65
11.13.1.1 Y= U T =S A O o0] o T 1T | S 65
11.13.1.2 Parallel TESt COMPONENESciiiiiiiiiiiie ettt s st e e s b et e e e sabbeeee e e s s nnnnneeeeas 66
11.13.1.3 Test CompPoNent DECIAIAtIONS.eiiiiiiiiiieie et e e s be e e e s seneeeee e anes 66

ETSI

5 TR 101 666 V1.0.0 (1999-05)

11.13.2 Test Component Configuration DeCIarationsuuuuveiirieieeeiieiiiiicceiee e e e e enanens 67
11.14 F NS S Y/ o TSI D= {1 T1 1 To] g PSP 69
11.14.1 T 0o [N {ed 1o [PP TP PP 69
11.14.2 ASP Type Definitions USIiNg tablesS...........uuiiiiiiiiiiiii e a e e e e 69
11.14.3 Use of Structured Types within ASP Type DefinitionS..........cevvvviieeeiiiiiiicieer e 70
11.14.4 ASP Type DefinitionNs USING ASN.L.....cccooiiiiiiiciiie e r e e e e e e e e e m—— 71
11.14.5 ASN.1 ASP Type Definitions by REfErENCEe..........uuuiiiiiiiiiiice e e e e e e e
11.15 LD LU R Y =T I 1= T a1 o o 1
11.15.1 T 0o [N {od 1o o [PP TP PP
11.15.2 PDU Type Definitions USING tAbIESccoiiiieieeeee e e e s eessnnnnnnn e e e as
11.15.3 Use of Structured Types within PDU definitions

11.15.4 PDU Type Definitions USING ASNLLoeiiiiiiiiee it r e e e e e s e s s s e s e e ee e e e e e eeeemmnmnnneee s
11.155 ASN.1 PDU Type Definitions by REfErenCe..........c.cuuviiiiiiiiiieeei e
11.16 RIS STUT (=38 =X ToToTo [1aTo I] {o] 1 42F= 11 To] o S
11.16.1 ENcoding DefinitioNS........c.cuuiiiiiiiiieiicieee e

11.16.2 ENcoding VariatiONS.........coooiii i e e e e e e e e e e e e e e e

11.16.3 Invalid Field Encoding DefiNitioNScceeeiiiiiiiiiciiiieecc e

11.16.4 Application of NCOdING FUIESvviiiiiiiiiiiiie e

11.17 CM TYPE DEfiNItIONS ..ceeviiiieee e e e e e e e

11.17.1 Ta e o [N Lol 1o] o [P UPP P OPPPPRTN

11.17.2 CM Type Definitions using tables...........coooiiiiiii e

11.17.3 CM Type DefinitioNs USING ASN.Louiiiiiiiiieee e e e e e e eneees

11.18 String 1enNgth SPECIfICALIONSuuiiiiiiiiiii e« cm——— e
11.19 ASP, PDU and CM Definitions for SEND EVENLSocuuiiieiiiiiiiiee ettt ene e e
11.20 ASP, PDU and CM Definitions for RECEIVE @VENTS..........ccoiiiiiiiiiieiiiiieee ettt s 84
11.21 F L= TS B = 1 a1 (o] L TSR 85
11.21.1 T oo [8Ted 1o o I PR TPR PR 85
11.21.2 e eq =T YT] o) AN 1= Y= 85
D O a1 i = 11 £ = o U
12.1 1] o 11 L1 1o o PO PO PURTP
12.2 LCT=T =T LN o a1 0] TSRS
12.3 Parameterization of constraints

12.4 Chaining Of CONSIIAINTScciiiiieiiii e r e e e e e e e e e e s e s s e

12.5 CoNStraints fOr SEND @VENTSciiiiiiiiiiie ittt e e e e st e e e s e s b b s eaemmmmmeeeeeent e e e e e nnnbees
12.6 Constraints for RECEIVE @VENTS........iuiiiii ettt et e e e e s s e e e e e nereeas 88
12.6.1 = L0t 1T o TR = 11 1= O P

12.6.2 Matching mechanisms -

12.6.3 S oL ol oaY = | T
12.6.4 INSEEAA OF VAIUE ... ettt e e ettt s e bttt e e e e s anes
12.6.4.1 (0] 121 0] =T 141 o | PP
12.6.4.2 @ 31 S STPPRSRI
12.6.4.3 N YAV | 11O
12.6.4.4 N)Y@ (@] 31 PP RRR
12.6.4.5 B2 L1 = T I PRSPPI
12.6.4.6

12.6.4.7

12.6.4.8

12.6.5

12.6.5.1

12.6.5.2 N 0177) o = O
12.6.5.3 LT 001U e= 1o] o DO TP RUR T RTPR
12.6.6 ALIDULES OF VAIUES ...t n e et e e e e e nnbeeas
12.6.6.1 T o 11 o R
12.6.6.2 1 =TT =T o P PPP P PPTPPRRTR
13 Specification of constraints USING tabIES...............cooiiiiiiiiiii e —D)
131 1] o 11 L1 1o o P PO PSR 95
13.2 Structured Type Constraint DECIAratIONSuuieiiiiieeeee e e e e e e e e eemmms—————— s 95
13.3 ASP CONStraint DECIATALIONSceiiiiiiiiiiee ettt e e e st e e e s st b neeesmeeeeeensaeeeeeeeanns 97
134 PDU CONSEraint DECIAIAtIONS.iiutiiiiiei ittt ettt e et e e et e e e s s anbee et e e s sabneeeeesessnneneeeeas 97

ETSI

135 Parameterization Of CONSITAINTSiiiiiiiii e e e e s Smm—— e 99
13.6 Base constraints and modified constraints - .99
13.7 Formal parameter lists in modified CONSLrAINSuviiiiiiiiiieee e ——— 100
13.8 CM CoNstraint DECIArAtIONS.cceiciiiriiiieeie e e e e e e e s e e e e e ae e e e s e e s s s s s eeeenmnmmmmmn e e e e e e e e e s 100
14 Specification of constraints USING ASN.Luuiiiiiiiiiiirererr e e e e e e e e e e e e e e e e e e sennnas 100.
14.1 10T [T o o PSSP 100
14.2 ASN.1 Type Constraint DECIAratiONS..........uuuuiiiiiiiiiieeee i cie e e e e e e e e e s e rrrereeeeeeeeaeeees 101
14.3 ASN.1 ASP Constraint DeCIAratioNnS.............cocciiuiiiiiiiiiiiie e rr e e e e e e e e e s smmmmmmnnneeeeee e e s 102
14.4 ASN.1 PDU Constraint DECIAratiONS............cocciiuuiiiiiiiiiiiieesee e e e e e s ssssssniertreeereeeeaaeeeeeesaessssssnnnsnnnnnes 103
14.5 Parameterized ASN.L CONSIIAINTSuuuiiiiiiiieieeeeeeeiss i reeeree e e e e e s s s s sssasrrr e eeeeesaessessasnnnns 104
14.6 MOAiIfied ASN.L CONSIIAINTSeviiiiiiieeeeeie i e e e e e e e e et e e s s s e e e e reeeaeeeeeeeessaasanaannnnnnrenes 104
14.7 Formal parameter lists in modified ASN.L CONSIIAINTScccuviriiiiiiiiieee e e e e s 105
14.8 ASP Parameter and PDU field names within ASN.1 CONStraintS..........ccuvvvieeeiiiiiiiciiiiiieieeeee e 105.....
14.9 ASN.1 CM CoNnstraint DECIArAtIONS.uuuuiiiiiiiieeeeeee e scs et e e e e e e e e e s s e s s s s s eaebeeee s mmmmnmm——————— s 106
S B e TSR Y o= T oL Toa == o 106
15.1 10T [T 1o o PSPPSR 106
15.2 Test Case dynamiC DENAVIOUNccuuuiiiiiiiiiiie e e e e e e e e e e rr e e e e e e aeaaaeasenaanas 106
15.2.1 Specificationf the Test Case Dynamic Behaviour tablecccccceoiiiiiiiiiiiiiceee e
15.2.2 The Test Case Dynamic Behaviour proformal............ceeeeeeieiiiiciciiiiiieiieiice e e e e e 108
15.2.3 Structure of the Test Case behaviour.............ccccciiiiiiiiiiiceeeec e

15.2.4 Concurrent Test Case Behaviour Description .
15.2.5 Line numbering and CONLINUALION...........uuuiiiiiiiirieee e e e e e e e e s e s er e e e e e e aaeeeaeesaeas

15.3 Test Step dynamiC DENAVIOULc..uiiiiiiiiiiic e e e e e e e e e s s e emmmmm————— e s
15.3.1 Specification of the Test Step Dynamic Behaviour tableccccvvevieiiieie e, 110..
15.3.2 The Test Step Dynamic Behaviour Proforma.............eeeceeeeeeeee i icccciiieeee e 111
154 Default dynamic BENAVIOUTuiiiieiiiici e e—— s 111
15.4.1 DefaUlt DENAVIOU ... e e e e e e e e e e e e s e o ———— 112222 e e 111
15.4.2 Specification of the Default Dynamic Behaviour table ... e 112
15.4.3 The Default Dynamic Behaviour proforma............ccccuviiiiiiiiiiiiiece e eeeeeenenns 113
155 I (EN o= 4 F= 1Y (o TU T o [= o g o) 1 o] o S 113
15.6 B I ST 1] = 110 o SRR, 113
15.7 Tree names and ParamMELEr liSES.......uiiiiiiii i e e e e e e e e e e e e e e e nnnn—— e e e 115
15.7.1 T 0T 18T o PRSP 115
15.7.2 TreeS WIth PArAMELEIS ..uuveiiiiiiiiiiie e e e e e e e e e e e e e st e s ss e b e beeee e e e s e s smmmmmmmmmmmmmm s snsenes 115
15.8 I IO VI3 == 0 = 0SSP 115
15.9 I IO N =S A =T o O 116
15.9.1 Sending and rECEIVING BVENTSccciiiiiic ettt e e e e e s r e e e e e ae e e e s e s s e s raanereeeeeeeeeaeeeees 116
15.9.2 Receiving events

15.9.3 SENAING EVENTS...ceeiiiiiiieeee e e et e e e e e e e e e e s e s e e e et e e e e et e eeeeee e e s s— e
1594 Lifetime of events

15.9.5 Execution of the behaviour tree

15.9.5.1 a0 o 10T 1 SRR
15.9.5.2 The concept of SNAPShOt SEMANTICS.......cceeeeiie i see e mmnnes 119
15.9.5.3 RESIIHCHIONS ON USING EVENTS.....uiiiiiiiiiiiee e e e ciectt e e e e e e e e e e s as st eeee e e s mmeneeeeneeeneneeeees 119
15954 Precautions when using coNCUITENt TTCNuuiiiiiiiiereeiiie i e e e e e e e e eeeeneas 120.
15.9.6 THe IMPLICIT SEND EVENE.....iiiiiiiiie ittt e sttt e s sttt a e e s st e e e eeenasesmmmneseeas 120
15.9.7 The OTHERWISE ©VENL.....ciiiiiiiiiie ittt e sttt e e et e e e e s s it e e e e e s sesnnneeeneeesanes 121
15.9.8 OTHERWISE and cONCUITENT TTCN ...uuuuiiiiiiiiiiiiieeeeee e e e e sessesseeeeieteeaeeeereeeesaeeaeeaeaeeseessnnsannnnnns 122
15.9.9 QLI LI 1 SO 1O Y=Y o 122
15.9.10 Concurrent TTCN events and CONSIIUCTES.uuuuiiiiiirieeeeieiieiiicciieiiereeeer e e e e e e e e e e s e s s e mmmmmmmmns 123
15.9.10.1 LI ST O R 4 AN I o0 1 1 Tt 123
15.9.10.2 LI LT DO 1N == | 123
15.10 B IO NI = o] 1TSS (o) 1P 124
15.10.1 10T 0T34 o R 124
15.10.2 References for ASN.1 defined data ObJECES..........ccvuviiiiiiiiiiieee e e L2
15.10.2.1 T 0T [T o) P 124
15.10.2.2 =TT (o =] (=T (=T g ot 124
15.10.2.3 YN VA (=] (=] (=1 TS 127
15.10.2.4 2 T QY (T €= o= 127

6 TR 101 666 V1.0.0 (1999-05)

ETSI

7 TR 101 666 V1.0.0 (1999-05)

15.10.3 References for data objects defined using tables...............oooociii e s L2
15.10.4 F ST 1o [41T] SO SP

15.10.4.1 1] o [N Tt 1 o] IR TR SPPPPRRPIN
15.10.4.2 ASSIGNMENL FUIES TOr SIHNQ tYPES ...ttt e ee e e e s e
15.10.5 (O U E= 1111 =T TP
15.10.6 Event lines with assignments and qUAlIfIErSc..eeeviiiieei e
15.11 PSBUAO-BVENTS ...ttt ettt e e e e sttt e e e skt b et e e e e e an bbb et e e e e sannneeeaaeeeannbbeeaeeeeannees
15.12 Timer management

15.12.1 T o o [HTed o] o [T PEPPR
15.12.2 ARSI A 3] 0 1= - o o
15.12.3 The CANCEL OPEIAtION.cciiiieiee i i et it e e e e e e e e e e e e e s s s s e et eteeeeeeeeaeeee e s — e
15.12.4 The READTIMER operation

15.13 THE ATTACH CONSIIUCT ...ttt e e e st e e e e s sttt e e e e e st b b e e e e e e s nabbeeeeeeeenenees
15.13.1 T o o [8Ted 1o] o I TR RPPR
15.13.2 Scope Of tree attaChMENT ... e e e e e e e s rmeene e e e e e e e e e e nnnrae
15.13.3 Tree attaChMENT DASICSoiiiiiiiiiiii et ceemmmmme e e e et e e e
15.13.4 The meaning of tree attaChMENtoooiii i emmmmmmmmeeeeeee e
15.13.5 Passing parameterized CONSIIAINTSuuuiiiiiiiiiiiieeeee e s ies et rr e e e e e e e e e e s e s s s s s e eeeeeeeeeesennsnnes
15.13.6 RECUrSIVe tree attaChMENT..........iiiiiiii e s smm e e e e smnee s s neres
15.13.7 Tree attachment and DefaUltS..........uuiiiiiiii e
15.14 Labels and the GOTO CONSIIUCT.......ccieiiiiiiiiee ittt e e st e e e e e s enee e e e e s nebeeas
15.15 THE REPEAT CONSIIUCT ..ceiiiiitiiiie ettt ettt ettt e e e sttt e e e s sttt e e e e s s aabee e e e e e s snabbneeeeeeanns
15.16 The CoNStraintS REFEIENCEciiiiiiieiii e s e e s rr e aneeeee s
15.16.1 Purpose of the Constraints Reference ColUMN...........ooviiiieiiiiiiiiicr e e e e
15.16.2 Passing parameters in Constraint REfErENCESuvviiiiieeiii e e e e e
15.16.3 Constraints and qualifiers and asSIGNMENTScvviiiieiiiii e e e e e e e
15.17 RV =] (o 11 TP RRPRPPPPPRRT
15.17.1 T o e [N Ted 1o] o I PR PRRPR
15.17.2 PrelimMINAry FESUILS.....ceiiiiiie e e e e e e e e e s e e et e e e e e e e e e e« s— a1
15.17.3 T E= Y= o [Tt AR PRRP
15.17.4 Verdicts and OTHERWISEcoooiiiiiiiie ettt st e eemmmmmmeeeen e e
15.17.5 Verdict assignment in CONCUIMTENT TTCN.....uuuuiiiiiiiiiiiee e e e e e e e e s e e e eeeeeeennnns
15.18 The Meaning Of DEAUILS..........uuiiiiiiiiiie e e e e e e e e e e e e e ee s e e s e e s annnnns
15.18.1 T o e [N Ted 1o o IR PRRPT
15.18.2 DefaUlt REFEIENCES ..ot s sttt — e
15.18.3 The RETURN statement

15.18.4 The ACTIVATE SEAtEMENT ...ttt s st e e s st e e e e s rmneeesmmmmnea s ee
15.18.5 Defaults and tree attaChmMeENtooiiiiiii e eeme e e e eeeeane e e
15.18.6 Tree Attachment, Defaults, Activate and RetUM ..o e
15.18.7 Defaults N CREATEooii ittt sttt ettt e e e ettt e e e s s bbb e e e e s s eeesemmmnneeneeeeesnne
15.18.8 DS o103 T To I 1Y PP

G -V L= oo 111 1T o) o
16.1 Page continuation of TTCN tables..........ccccciiiiiiiiiccee e e e e e smmmmmmmmmeeen e e
16.2 Page continuation of dynamic behaviour tables............cccuveiiiiiiieic e e
Annex A: Syntax and static SeMaNtiCS Of TTCNuuuuuiiii e e e e aaens
N A 1 11 e o 11T 1o o 155
A.2 Conventions for the Syntax deSCrIPLION...........uiiiiiiiiiee e 155
A2.1 SyNtactic MEeTANOTAIONeeiiiiiiei e e e e e e e e s

A.2.2 TTCN.MP syntax definitions

A.3 The TTCN.MP syntax productions in BNF ... 156.....
A3.1 BT VIS o 1T = i o o TR 156
A.3.2 TTCON MOUUIE ...ttt e et e e s et e e st e e e s ba e e e sateee e e mmmmmmennmns sasseeeenbeeeeenees 156
A3.2.1 TTCN Module OVEIVIEW Part.........oiiiiii e e e e e eeeeeeeenaaaaas 156
A3211 TTCN MOAUIE EXPOITS...ciiieeeiieiii ittt e e e e e e e e e et e s ettt et e eeeeeaeeaeaeaaeaeeaaeeeeees 157
A3.2.1.2 TTCN MOAUIE SEIUCTUIE....ueeie et e e e e e e e e e e e e e eeaetaa b aeeeaeaaeeseenes 157
A.3.2.2 TTCN Module Import Part .157
A3.221 EXEEINGAL ODJECLS ...ttt ettt e e e e e e e e e e e e mm— 111121111 157

ETSI

8 TR 101 666 V1.0.0 (1999-05)

A.3.2.2.2 [a] oo D 1= Tox b= V= L1 o] o ISP 158
A.3.3 IS A PP PPTPPRRP 158
A3.3.1 THE TESE SUILE OVEIVIEW ...ttt ettt e e s sttt e e+ et 158
A.3.3.2 LIS ST C N 1o [PRSPPI 158
A.3.3.21 The Imported ODBJECE INTO.....ccc e e e e e e e e e e s nnnnes 158
A.3.3.3 TESE SUILE STIUCKTUIEeeiii ettt e e e e ettt e e e e s sttt e e eeeeessammnen e e e e e e e nebeeas
A3.34 LIS R OF= YN [0 To 1= SRR TUTPPPRP
A.3.35 QLIS 00 (= 0 LT [PSSR
A.3.3.6 (D12 10 T o =) PR
A.3.3.7 BI=E RS U1 (N bt oL R
A.3.3.8 THhe IMPOIt Part ...t e e e e e e e e e e e e e e s e e s e nnnnns

A.3.3.9 The Declarations Part

A.3.3.10 Definitions

A.3.3.10.1 General

A.3.3.10.2 Test Suite Type Definitions

A.3.3.10.3 SIMPlE TYPE DEFINItIONSvveeiieiiiiiee e e e e e e e e s mmmmmmmmmmen s sensrenes
A.3.3.10.4 Structured Type DefiNitioNS........cccoeiiii i

A.3.3.10.5 ASN.L Type DEfiNItIONS ...ccce e e e e e e e s

A.3.3.10.6 ASN.1 Type Definitions by REfEreNCEecovvvveeiiiiiii e

A.3.3.10.7 Test Suite Operation DEfiNItIONSuvviiiiiieeeeei e

A.3.3.10.8 Test Suite Operation Procedural Definitions

A3.3.11 Parameterization and Selection

A3.3.11.1 GENETA ... et

A.3.3.11.2 Test Suite Parameter Declarations

A.3.3.11.3 Test Case Selection Expression Definitions

A.3.3.12 (D =TolF= T 1T L PP PPTPT
A3.3.12.1 General

A.3.3.12.2 Test Suite Constant DECIAratiONSc.uueiiie i eeeeeee e
A.3.3.12.3 Test Suite Constant Declarations by Reference..........ccccovvvviciiiiiiiei e 167
A3.3.124 Test Suite Variable DeCIarationsooiuiiiiiiiiiiie e 167
A.3.3.125 Test Case Variable DecClarations.............ouiuiiiiieiiiiiiiie et eeeeesmmeeneeee e s 168
A.3.3.12.6 [L@ I Y/ 0TI =Tl T - 1o o PP 168
A.3.3.12.7 PCO DECIAIALIONSeiiieiiiiiiiie ettt e e st e e e s s st b e e e e e e ssnr e e e e e e e e anarees 168
A.3.3.12.8 (O B LTl F= V= 110 E P PRRTR 169
A.3.3.12.9 TIMEE DECIATALIONS ..ceeeiiiiieiee ettt e e s s bbbt e e s smmmeeeeasnmmms bt e e e s 169
A.3.3.12.10 Test Component DECIAratiONS...........ccoiiiiiieiee e e e e e e e e e e eeeeeeeneeees 170
A.3.3.12.11 Test Component Configuration Declarations..............ccccvviiiieiirieiee e cmmmmmmmeees 170
A.3.3.13 ASP, PDU and CM Type DefiNitiONS.......cuuiiiiiieeieiiic it s e e e s e e e e e e e e s e e e e nnenanes 171
A.3.3.13.1 GBNETAL ...ttt h e e e e e b bttt S———— 1t e e e a1 ns 171
A.3.3.13.2 YN S Y/ 0TI =Y i1 71 o] PP 171
A.3.3.13.3 Tabular ASP Type DefinitioNSccoiiiieee e e e e e snnennneee e 171
A.3.3.13.4 ASN.1 ASP TYpPe DEfiNItIONSuuuiiiiiiiiiieii e e e e e s e s s s e e s mmmmmenmeeensene 172
A.3.3.13.5 ASN.1 ASP Type Definitions by ReferencCeccccvvvviiviiiiiee e e 172
A.3.3.13.6 PDU TyPe DEfiNItIONS ...t e e e e e e e e e e e e e e e s e s w511
A.3.3.13.7 Tabular PDU Type Definitions

A.3.3.13.8 ASN.1 PDU TYPE DEfiNItIONSvviiiiiiiiiiiiei ettt s
A.3.3.13.9 ASN.1 PDU Type Definitions by Referencecccuviiiiieiiiiee s emmeeees 174
A.3.3.13.10 CM TYPE DEFINITIONSevvtiiieeiie it e e e e e e e e e s e s s ee et e e e e e s mmmmmmm————— s rnnes
A.3.3.13.11 Tabular CM Type Definitionccooviiiiiiiee e
A.3.3.13.12 ASN.1 CM Type DefiNItiONSccceeeeieie i

A.3.3.13.13 Varieties of Encoding Definition S
A.3.3.13.13.1 ENcoding DefiNitioNSc.euviiiiiiiiiiiiiiee e e e
A.3.3.13.13.2 ENCOding VariatiONS.uuuiiiiiieee i e e e e e e e e e e s e e s e st rnaee e e e

A.3.3.13.13.3 Invalid Encoding Definitions
A.3.3.13.14 ALIBS DEFINITIONS ...eee ettt e ettt e e s s e e e e e s snreeee s s annbeeeeaeeas
A3.3.14 THhe CONSIIAINTS Pteiiiiiiiiiiiiee e et e st be e e e s e e e e e s nnbeeas
A.3.3.15 Test Suite Type Constraint Declarations

A.3.3.16 Structured Type Constraint Declarations

A.3.3.17 ASN.1 Type Constraint DECIarationNSceuveiieeeeeeiiiiiiciiiieeeer e e ae e e e e e s ssseeerreneenne

A.3.3.18 ASP CoNStraint DECIAIAtIONSuviiiiiiiiiieie et e e e s s s snbee e e e e s e s nebeeas

ETSI

9 TR 101 666 V1.0.0 (1999-05)

A.3.3.19 Tabular ASP Constraint DECIAratioNScccoiiiiiiiiiiiiiiiieie e eee e s eeeeees 178
A.3.3.20 ASN.1 ASP Constraint DECIAratiONSooiiiieiiiiiiieiee ettt e e e e e e e e e eeeeeaeraanes 179
A.3.3.21 PDU CoNStraint DECIAIATIONSuuvuviiiieieie e eeeeeeeeeee et e et e e e e e e e ettt ee e e s e e e e e e e s mnmnmnnssnsenessssnnen 179
A.3.3.22 Tabular PDU Constraint DeCIarations..............uuuuiiiiiiiiiieeeeeieeeeeeetiiiee s e e e e e e e e e eeeeeeeeeesesssnsnnnnnes 179
A.3.3.23 ASN.1 PDU Constraint Declarations

A.3.3.24 CM CONSLraiNt DECIATATIONS ...vuu it e et e e e e e e st e e e e s eaban e e s m—— e
A.3.3.25 Tabular CM Constraint DECIAratioNc.ccvueiiiiieiiee e e e e s e eeee e e e s e s sss————— o LO2
A.3.3.26 ASN.1 CM Constraint Declaration

A.3.3.27 THE DYNAMIC PAIT....eiiiiiiiiiiiie e e e e e e e e e et e s et e e e e e e e e a2 e+ — 11 s
A.3.3.28 LTS O =TT
A.3.3.29 TS S (=T o]] - YRR
A.3.3.30 = = LU L I o - VPSP
A.3.3.31 Behaviour descriptions

A.3.3.32 Y] g T VA Lo U T [T =TT
A.3.3.33 LIS IS =1 0] 1 11T 01
A.3.3.34 e q 0T £ =TT [1 1 PSP
A.3.3.35 LI =T 0] 0 1= = Vo] =SSP
A.3.3.36

A.3.3.36.1

A.3.3.36.2

A.3.3.37

A.3.3.38

A.4 General static SEmMantiCS reQUINEMENTS.........c.ivviiiiieieeiiiieiiieiirrr e s — 193
A4l Yoo 1003 1 o T 193
A.4.2 UNIQUENESS OF IAENTIFIETS .. .vvviiiiiiiiiii e e e r e e e e e e e ememmmmmmnnnaeeeeeeeeeeeeean s 193
A.5 Differences between TTCN.GR and TTCN.MP i 197
Ab5.1 D1 =T Ao RN T TS] - 0 G 197
A5.2 Additional static sSemantics iN the TTCN.MP ..o e eeeeena e eeeees 197
A.6 List of BNF producCtion NUMDET...........cooiiii ettt eemeeemmnn 198
Annex B: Operational Semantics Of TTCNoooiiii s
70 A [a1 4 0 o [o 1T o S

B.2 PrECEUBNCEceiiiiii e ——

B.3 ProCessing Of tESt CASE EITOISuuiiiiiieeiiiiiiiiite et e e e e e e e e e e s« c—

B.4 Converting a modularized test suite to an equivalent expanded test SUItE.............cceevviiiiiiiiiiiiiineeeennn.
B.5 TTCN operational SEMANTICSccceiiiiiiiiiiiiiiii e e e e e e e e e e e e e eeeeaan
B.5.1 [a1 fo o [N od 1 To] o FH PP P PR PPPPPPP PP
B.5.2 The pseudo-code notation

B.5.2.1 g o o [¥ el 1 [o] o PP OO PTPPPTP PO
B.5.2.2 Procedures and fUNCHIONSc.uuiiiieiiiii ittt e e sttt e e st emeneeeeasmmmnsereeeee s
B.5.2.3 PIOCESSES ... ——————— et a e e e s
B.5.24 Natural language Within PSEUAO-COUEoeiiiiiiiiiiiii e emcmmemeeeeeeee e
B.5.2.5 LeVelS and AIEINALIVESccoi ittt s b e e st e e s e anr e e e e e s sabrreeeeenns
B.5.3 EXECULION OF @ TESE SUILEeeiiiieiiieiiie ettt e seem e e nennan e s nnr e e e e s
B.5.3.1 g o o 18 let 1 o] o PP OO PPPPPTPP PO
B.5.4 EXECULION OF & TOSE CABSE. .. .eiiiiiieiiitiii ettt ettt e e ettt e e s s e bttt e+ —— et
B.5.4.1 Execution of a Test Case - PSEUAO-COUE...........uuiiiiiiiiaaaaeai it e e e eeeeeees
B.5.4.2 Execution of a Test Case or Test Component - natural language description

B.5.5 Expanding a set of alterNatives ...

B.5.5.1 INEFOTUCTION ...ttt e e s et e e e s

B.5.5.2 SAVING DEFAUILS ..ottt e e e et £ 222 a2 e e e e e s
B.5.5.3 Expansion of REPEAT CONSIIUCTS........coiiiiiiiiiiiiiiie ettt e e e e e e s emmmmmmmmmmmmnn s
B.5.54 Appending default DENAVIOUNo e e
B.5.5.5 EXpanding attaChed trEES. ittt e e e e e e ee e
B.5.6 Evaluation of @n EVENT LINE........coiiiiiiioiiiei ettt eeemmme s e e eere e e e e e e nnees

ETSI

B.5.6.1
B.5.6.2
B.5.7
B.5.7.1
B.5.7.2
B.5.8
B.5.8.1
B.5.8.2
B.5.9
B.5.9.1
B.5.9.2
B.5.10
B.5.10.1
B.5.10.2
B.5.11
B.5.11.1
B.5.11.2
B.5.12
B.5.12.1
B.5.12.2
B.5.13
B.5.13.1
B.5.13.2
B.5.14
B.5.14.1
B.5.14.2
B.5.15
B.5.15.1
B.5.15.2
B.5.16
B.5.16.1
B.5.16.2
B.5.17
B.5.17.1
B.5.17.2
B.5.17.3
B.5.17.4
B.5.18
B.5.18.1
B.5.18.2
B.5.19
B.5.19.1
B.5.19.2
B.5.20
B.5.20.1
B.5.20.2
B.5.21
B.5.22
B.5.23
B.5.23.1
B.5.23.2
B.5.24
B.5.24.1
B.5.24.2
B.5.25
B.5.26

10 TR 101 666 V1.0.0 (1999-05)

LYo 0o [0 R oo Lo [TP PRRR PP
Natural language description
FUNCHIONS fOr TTCN BVENTSiiiiiiiiiiiiie ettt ettt e e e s sttt e e e s st e et e e e e sas b e e s—— 1121110
Functions for TTCN events - PSEUAO-COUE.........ccuuvuriiiiiiiiiiieeee e e e e e e s eseseerrrre e e e e e aeeeeeeeaesannnanns 208
Functions for TTCN events - natural language descCription............cccovvvviciiiiiieiireeee e seeeeee 208..
Execution Of the SEND ©VENL.........ooiiiiiiiiiie ettt e e emmmeeeeeee e e nneeeas 208
Execution of the SEND event - PSEUAO-COUEooiiiiieiiiiiiiiiiiice e e e e e s e e s smmmmmmmmmnas 208
Execution of the SEND event - natural language description .2009.....
Execution Of the RECEIVE @VENL.......ccoiiiiiiiie ettt e+ o 11 210
Execution of the RECEIVE event - pSEUdO-COUE...........ccooiiiiiiiiiiiiiiiicie e e e e e e e e 210
Execution of the RECEIVE event - natural language description..........cccccvvveveeeeeeeieicccinvvnnnnn. 211.......
Execution of the OTHERWISE @VENL.......cccoiiiiiiiiiiiiiiii ettt se e e e emmne s 211
Execution of the OTHERWISE event - PSEUAO-COAE.......cuiiiiiiiiieeiii it e e e e e e simmnnes 211...
Execution of the OTHERWISE event - natural language description.............cccccccvvvieeieeeeeeeeeeeenn, 2. 21
Execution Of the TIMEOUT ©VENL........ciiiiiiiiie ittt ettt e sttt a e s s e e e s sabsaee e e s snnneeeeeas
Execution of the TIMEOUT event - pSeUdO-COUE............ccoviivviiiiiiiiieiireeee e e e
Execution of the TIMEOUT event - natural language description
Execution Of the DONE @VENTuuuiiiiiiiiiiiie ettt e et mmeeeemmmmmn e e e s
Execution of the DONE event - pSEUAO-COUE........uuuiiiiiiieeeeeiiis ittt ee e e e e e e e e e e s eeeeeeeeeeeas
Execution of the DONE event - natural language description............cccccvvviieeiieeeeeeeee e e
Execution of the IMPLICIT SEND ©VENL........ccuuiiiiiiiiiiiiee e iiiieiee ettt e et e e s meeeeenmmmm e
Execution of the IMPLICIT SEND event - PSEUAO-COUEuuuuiiiiirieeeeeeeiisiiciiinrieeeeeeeeeeeeeemeas 215....
Execution of IMPLICIT SEND - natural language descCription...........ccccuuveeerrereeeeeesiis e 215.....
EXECULION Of @ PSEUAO-EVENLuuiiiiiiiiiiiiiiee e e e e s s e e e e e e e e e e e s s e e st e e —— e 215
Execution of a pseudo-event — pSEUAO-COUEooiiiiiiiiiiiiiiiiireec e mmmmnnae 215
Execution of PSEUDO-EVENTS - natural language descriptionccccccvviiiieeiiereeeee e iesceiens S 21
Execution of BOOLEAN EXPIreSSIONS.cuiiiieeeeiiiiissceitetieeeeeereeteeaeaeessssssssssssssenseeeeeeseesammmmmmmmmmemnseses 216
Execution of BOOLEAN expressions - PSEUAO-COUE..........cccviiiiiiiiuiriiiiireerieeeeeeeesssssnseneseeeenas 216...
Execution of BOOLEAN expressions - natural language description.........ccccccccveeeeeevevicccnvvnnnnnn, I 21
EXECULION Of @SSIgNMENTS....iiii e i ittt e s e e e e e e e e e e e e e e s e s em————— 11 e 216
Execution of assignments - PSEUAO-COUL...........ccoiiiiiiriirriiiieeireer e e e e e e s s e s s e e e e eeeeeeeeeeeenenas 216
Execution of ASSIGNMENTS - natural language descriptioncoovcvciiiieiirieieeee e 216.......
Execution Of TIMER OPEIatiONScciiiiciiiiiiiiieiie e e e e e e e e e s s e s st e e e e e e e e e e e e e s smmmmmmmnmnnene e e e e e e e s 217
Execution of TIMER operations - PSEUAO-COUEccceeeiiiiiiiiiiiiiiieeie e e e e e eeeeeeeenems 217
Execution of START timer - natural language desCriptionccuvveeeeiiiiiiciiiiiieiee e e e e vmmmees 211..
Execution of CANCEL timer - natural language descriptioncccccvviiiiieiee e 217...
Execution of READTIMER - natural language descriptioncccccvvviiierieeeeeee e 217....
FUNCLIONS FOr TTCIN CONSIIUCTS......uueiiieiiiiitiiee ettt e e e e s st e 2 218
Functions for TTCN CONSEIUCES - PSEUAD-COUE.........ccciiiiiciiiiiiieeee e e e e e e e e e e e ee s 218
Functions for TTCN constructs - natural language description.........cccccuveeeevieeeeeee i e 218....
Execution Of the ACTIVATE CONSIIUCT.uiiiiiiiiiiie ittt e
Execution of the ACTIVATE construct - pseudo-code
Execution of the ACTIVATE construct - natural language description..............coeeevvvvieeeeeeeeeennn, 8....... 21
Execution of the CREATE CONSIIUCTuuiiiiiiiiiiiie ettt et smmmmmmeeeen e e 219
Execution of the CREATE event - PSEUAO-COUEuuuriiiiiiiieeeieeiiisciiiieeeeereeree e e e e e s s s s ssmmenneeees 219
Execution of the CREATE event - natural language descCriptioncccovvviviiienreieeeeee s i 219.......
Execution Of the GOTO CONSIIUCEceiiiiiiiiee ittt e e s e e e e e s e e
Execution of the RETURN CONSIIUCT..........coiiiiiiiiiiieiiiiiiiee ettt et e e e smmmmmeeeen e e
B 4L Y/= o X PP PPRPRO
The verdict - PSEUAO-COURcccoi ittt e e e
The VERDICT - natural language descCriptioncccuvvveieeiiiiieeeeieeies s
LI ST @%e) 0] 1 4= o =N 1o o S
The LOG - PSEUAOD-COUE........coei ittt e et e e e e e e e e e e s s e s s eeereeeaeeee e
The conformance log - natural language description
Tree handling functions and ProCEAUIESuuiiiiiiiiieee e e e e e e e e e eeeeeas
Miscellaneous functions used by the pseudo-Code............ccooiiiiiiiiiiiiiiice e

ETSI

11 TR 101 666 V1.0.0 (1999-05)

Annex C: TTCON IMOAUIBS. ...ttt ettt e ettt e e e et e e et e e et e e et e s e e e e s e e eennas 226

L@ A 1011 {0 o [1 o3 1] o [T 226
C.2 TTCN MOAUIE OVEIVIEW PaAIt........iiieiiieee ettt et e et e e e et e e et e e raesranseeennnseanns 226

CcC.21 [T (0o 110 [o T 226
c.2.2 B LI N Y1 To [0 C= TN o o] g £ 226
c.2.3 TTCN MOUUIE STIUCTUIEevvve et ee et e et e e e e s e e e s e ea e e e s s eab s e e s esban s eaeeemnmmsneessssssnsseenes 228
C.24 TS A OF= 1T 1o [, 229
C.25 BIC=E A0S (= [T L= 229
C.2.6 (D1 = 10] L o [229
LOTRC T [0 0] o To] A == o P PPPPPP 229
C31 [T (0o 110 [o T 229
C.3.2 (= = 230
C.33 0T 60 o 230
Annex D: LI ST UL [0 =) PR 231

Annex E: COMPACE PrOfOMMIAS.....euviiiiiiiiiiiiiiii e e e e e e e e e e e aaaaaaaaaaaaaaeaaaesannne 232

o A 1o 1 (oY [0 T3 1o o TR 232
E.2 Compact proformas for CONSITAINTS........cceiiiiei i 232

E.2.1 =0 [T (=0 0 =T g1 PP 232

E.2.2 Compact proformas for ASP constraints
E.2.3 Compact proformas for PDU CONSIAINTSuuiiiiiiiiiiee et s e e e e e s s s e 233

E.2.3.1 T o e [N Ted 1o o I PPPPTPTPPPPRRR 233
E.2.3.2 Parameterized COMPACt CONSIIAINTSuuiiiiiiiieiieeeeie i i e e e e e e e e e e s s e e s nnnnnnnnenees 235
E.2.4 Compact proformas for Structured TYPE CONSIIAINTSuvviiiiiiiiiieeeeeeieiiisieeee e e e e e ee e e e s s smmmmemeeeees 236
E.2.5 Compact proformas for ASN.L CONSIIAINEScceeeiiiiiiiiiiieeeer e s— 2 3O
E.3 Compact proforma for TESt CASESuuuuuuiiiiiiiiee ettt ee e e e e 239
E.3.1 =0 [1= 0 0 =T 1P 239
E.3.2 Compact proforma for Test Case dynamic BEhaVIOUIScccuviiiiiiiiiiicee e 240
Annex F: D= 10 0] 0] L= USSR 241
F.1 Examples of tabular CONSIrAINTSuuuiiiiiiiiiiieeee e s 2D
F.1.1 ASP and PDU definitioNSoooiiiiieiiee ettt e e e e e e e— e 241
F.1.1.1 Flat type defiNItION ...ttt bbb ——— 11111 241
F.1.1.2 Structured TYPe definitioN...... ..o e e e 241
F.1.1.3 Special type PDU, in order to allow use of (static) chaining of constraintscccccccceeeennn. 242........
F.1.2 ASP/PDU CONSITAINTSeiiiie ittt ettt e e e e e e e e e e bbbttt ettt e et aeaaaaeaaesaesa e aaeaaa e aammnnnnsbnnrnne 242
F.1.2.1 = OSSP 242
F.1.2.2 Structured, referring to field groUPScooi e i e 242
F.1.2.3 Chaining, useful for (nested) PDUS iN ASPS ...ttt e 243
F.1.2.4 Parameterized CONSIIAINTS..........uuiiiiiiiiii ettt et e e e e e e e e e e e s s s e neeeeeeeeeeeaaaannnnnenes 243
F.1.2.5 1Y/ FoTe [1iT=To I oloT 0] 1 2=Vl] AT PP U RTTPPRPP 244
F.2 Examples of ASNL CONSIIAINTScooiiiiiiieiiiieiiieiiieiiieiiieiiieeie e s 245
F.2.1 ASP and PDU definitioNSoooiiiiiiiiee ettt e e e e e e e—— e 245
F.2.1.1

F.2.1.2

F.2.1.3 AN ASP AEFINILION ..ottt ¢ — 111222111 246
F.2.2 ASN.L ASP/PDU CONSITAINTSoiiiiiiiieiii ittt e e e e e ettt e e e e e e aaea e e e e s aeeaaaaaaaaeaaeeaeeaaan 247
F.2.2.1 = OSSP 247
F.2.2.2 S 0 [(0 =T PO TRPPRPPI 247
F.2.2.3 Chaining @ PDU CONSIFAINT ...ttt e e e e e e e e e s e s ab e ereeeeeeeeeeeaaeas 248
F.2.2.4 Parameterized CONSITAINTS...........uiiiiiiiiiiiii ettt et e e e e e e e e e e e e s e neeneeeaeeeeaaaannnnrenes 248
F.2.2.5 1Y/ FoTe [1iT=Te I oloT 0] 1 2= 11] AT TP U T RTTPPRPP 249
F.2.3 Further examples 0f ASN.L CONSIFAINTSuuuiiiiiiiiiiiaaa i s s e mmmmmmn s 251

ETSI

12 TR 101 666 V1.0.0 (1999-05)

F.3 Base and modified CONSITAINTScoiiiiiiiiiiiiiiiie et e e e e e eeee e 253
F.4 Type definition USING MACIOS..........oiiiiiiiiiiii ettt aa s mmmmmmmmmmmmn s 254
F.5 USE Of REP E AT L.ttt et e e e e e e s s bbbt ettt e e e e ¢ s— 256
F.6 TeSt SUItE OPEIALIONScco e i s e e— 256
F.7 Example of @ TESt SUItE OVEIVIEWuiiiiiiiieiiie ettt ereeeee e 257
F.8 Example of a Test Case in TTCN.MP FOIM.......uiiiiiiiiiii e 259......
F.9 Use of Component Reference for Field Value Assignment in Constraints.............cccccoeeeeeeiinnnn,
F.L0 MUIt-PArty TESHNGcoeiiiiiiiiieiiieiiieeeeeee ettt e e e ¢ 121110+ 265
F.11 MultipleXing/DemUItIPIEXING.ccccoiiiei e — 266
F.12 Splitting and RECOMDINING.......uuuriiiiieee s —— 266
F.13 MUIti-ProtOCOI T@SE CASES. .. uuuiiiiiiieiiiiiiiiitiie ittt e e ettt e e e e et e e e e e e e e s s s s nnbrreeeeeaeeas 266
F.14 Example of Modular TTCN ... aaeees 267
Annex G: SEYIE GUILE ... n e e e e e nen s 269
L€ 0 R 1 11 o T 1 T3 1 o] o 1RSSR 269
G.2 TESE CASE SITUCTUIE.... ittt oottt e e et ettt e e e e et eetbb e e e e e e eeebba s seenmmmmm e aaeeesennnns 269
G.3 Use of TTCN with different abstract test methods...............oooo 270......
G.3.1 Ta1geTo [0 1o1{ o] o O PP PUUUPTPPPTU 270
G.3.2 TTCN and the LS teSt METNOMuuiiiiiiiiiieee e c——— s 270
G.3.3 TTCN and the DS test Method..........oooii ittt oo mmmmmenn e 270
G.34 TTCN and the CS teSt MEethOduuiiiii e mmmmeee e 270
G.3.5 TTCN and the RS teSt MEethOduuuii e mmmmeee e 271
G4 USE OF DEIAUILS. ... e s eom— e 271
G.5 Limiting the execution time of @ TeSt CaSEeeiiiieiiie s 271.
L ST S (B (ox (1 =0 I I 1= RSP 271
LT A N o] o (=Y =[0I 272
LT T =T o (1= o]] 1 0] S RRSTRRT 272
G.9 Assignments 0N SEND @VENLSccoiiiiiiiiie e 272
G.10 MUII-SEIVICE PCOS...coiiiiiiiiiiieeeeeeeeeee ettt s e e 272
Annex H: 100 1= PSSP PPPP 274
[PO R [o (oo ¥ {1 o] OO TTPRRPPR 274
[P2 0 1= 1T [GO PPPRRPPR 274
[1151 (0 Y2 PP 288

ETSI

13 TR 101 666 V1.0.0 (1999-05)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly availablET& members and non-membersand can be found

in SR 000 314’Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect
of ETSI standards'which is availabléree of chargefrom the ETSI Secretariat. Latest updates are available on the
ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server)
which are, or may be, or may become, essential to the present document.

Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

ETSI

14 TR 101 666 V1.0.0 (1999-05)

1 Scope

The present document defines an informal test notation, called the Tree and Tabular Combined Notation (TTCN), for
OSI conformance test suites, which is independent of test methods, layers and protocols, and which reflects the abstract
testing methodology defined in ISO/IEC 9646-1 and ISO/IEC 9646-2.

It also specifies requirements and provides guidance for using TTCN in the specification of system-independent
conformance test suites for one or more OSI standards. It specifies two forms of the notation: one, a human-readable
form, applicable to the production of conformance test suite standards for OSI protocols; and the other, a machine-
processable form, applicable to processing within and between computer systems.

The present document applies to the specification of conformance test cases that can be expressed abstractly in terms of
control and observation of protocol data units and abstract service primitives. Nevertheless, for some protocols, test
cases may be needed which cannot be expressed in these terms. The specification of such test cases is outside the scope
of the present document, although those test cases may need to be included in a conformance test suite standard.

For example, some static conformance requirements related to an application service may require testing techniques,
which are specific to that particular application.

The specification of test cases in which more than one behaviour description is to be run in parallel is dealt with by the
concurrency features (particularly involving the definition of Test Components and Test Component Configurations).

The present document specifies requirements on what a test suite standard may specify about a conforming realization of
the test suite, including the operational semantics of TTCN test suites.

The present document applies to the specification of conformance test suites for OSI protocols in OSl layers 2 to 7,
specifically including Abstract Syntax Notation One (ASN.1) based protocols. The following are outside the scope of
the present document:

a) the specification of conformance test suites for Physical layer protocols;
b) the relationship between TTCN and formal description techniques;
c) the means of realization of executable test suites (ETS) from abstract test suites.

The present document defines mechanisms for using concurrency in the specification of abstract test cases. Concurrency
in TTCN is applicable to the specification of test cases:

a) in a multi-party testing context;
b) which handle multiplexing and demultiplexing in either a single-party or multi-party testing context;
¢) which handle splitting and recombining in either a single-party or multi-party testing context;

d) in a single-party testing context when the complexity of the protocol or set of protocols handled by the IUT is
such that concurrency can simplify the specification of the test case.

TTCN modules are defined to allow sharing of common TTCN specifications between test suites.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

« References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

« For a specific reference, subsequent revisions do not apply.

< For a non-specific reference, the latest version applies.

ETSI

15 TR 101 666 V1.0.0 (1999-05)

* A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same
number.

ISO 646 (1991): "Information technology - ISO 7-bit coded character set for information interchange”.

ISO/IEC 7498-1 (1994): "Information technology - Open Systems Interconnection - Basic Reference Model: The Basic
Model".

(See also ITU-T Recommendation X.200, 1994.)

ISO/IEC 8824-1 (1995): "Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic
notation”.

(See also ITU-T Recommendation X.680, 1994.)

ISO/IEC 8824-1 (1995)/Amd. 1 (1996): "Information Technology - Abstract Syntax Notation One (ASN.1):
Specification of basic notation - Amendment 1: Rules of extensibility".

(See also ITU-T Recommendation X.680 Amendment 1, 1995.)

ISO/IEC 8824-2 (1995): "Information technology - Abstract Syntax Notation One (ASN.1): Information object
specification”.

(See also ITU-T Recommendation X.681, 1994.)

ISO/IEC 8824-2 (1995)/Amd. 1 (1996): "Information technology - Abstract Syntax Notation One (ASN.1): Information
object specification - Amendment 1: Rules of extensibility".

(See also ITU-T Recommendation X.681 Amendment 1, 1995.)
ISO/IEC 8824-3 (1995): "Information technology - Abstract Syntax Notation One (ASN.1): Constraint specification".
(See also ITU-T Recommendation X.682, 1994.)

ISO/IEC 8824-4 (1995): "Information technology - Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1
specifications".

(See also ITU-T Recommendation X.683, 1994.)

ISO/IEC 8825-1 (1995): "Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)".

(See also ITU-T Recommendation X.690, 1994.)

ISO/IEC 8825-2 (1996): "Information technology - ASN.1 encoding rules: Specification of Packed Encoding Rules
(PER)".

(See also ITU-T Recommendation X.690, 1995.)

ISO/IEC 9646-1 (1994): "Information technology - Open Systems Interconnection - Conformance testing methodology
and framework - Part 1: General concepts".

(See also ITU-T Recommendation X.290, 1995.)

ISO/IEC 9646-2 (1994): "Information technology - Open Systems Interconnection - Conformance testing methodology
and framework - Part 2: Abstract Test Suite specification”.

(See also ITU-T Recommendation X.291, 1995.)

ISO/IEC 9646-4 (1994): "Information technology - Open Systems Interconnection - Conformance testing methodology
and framework - Part 4: Test realization".

(See also ITU-T Recommendation X.293, 1995.)

ISO/IEC 9646-5 (1994): "Information technology - Open Systems Interconnection - Conformance testing methodology
and framework - Part 5: Requirements on test laboratories and clients for the conformance assessment process".

(See also ITU-T Recommendation X.294, 1995.)

ISO/IEC 9646-6 (1994): "Information technology - Open Systems Interconnection - Conformance testing methodology
and framework - Part 6: Protocol profile test specification".

(See also ITU-T Recommendation X.295, 1995.)

ISO/IEC 9646-7 (1995): "Information technology - Open Systems Interconnection - Conformance testing methodology
and framework - Part 7: Implementation Conformance Statements".

(See also ITU-T Recommendation X.296, 1995.)

ISO/IEC 10646-1 (1993): "Information technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1:
Architecture and Basic Multilingual Plane".

ETSI

16 TR 101 666 V1.0.0 (1999-05)

ISO/IEC 10731 (1994): "Information technology - Open Systems Interconnection - Basic Reference Model -
Conventions for the definition of OSI services".

(See also ITU-T Recommendation X.210, 1993.)

3 Definitions

3.1 Basic terms from ISO/IEC 9646-1

For the purposes of the present document, the terms and definitions given in ISO/IEC 9646-1 apply:

a) abstract service primitive

b) abstract testing methodology
c) abstract test case

d) abstract test method

e) abstract test suite

f) conformance log

0) conformance test suite

h) co-ordinated test method

i) distributed test method

) executable test case

k) executable test case error
)] executable test suite

m) fail verdict

n) idle testing state

0) implementation under test
p) inconclusive verdict

q) invalid test event

r local test method

s) lower tester

t) means of testing

u) pass verdict

V) PICS proforma

w) PIXIT proforma

X) protocol implementation conformance statement
y) protocol implementation extra information for testing
7) point of control and observation
aa) remote test method

ab) stable testing state

ac) standardized abstract test suite
ad) static conformance requirements
ae) syntactically invalid test event
af) system under test

ag) testbody

ah) testcase

ai) test case error

aj) test co-ordination procedures
ak) testevent

al) testgroup

am) test group objective

an) testlaboratory

ao) test management protocol

ap) testoutcome

aq) (test) postamble

ar) (test) preamble

as) testpurpose

at) testrealization

au) testrealizer

av) teststep

ETSI

17 TR 101 666 V1.0.0 (1999-05)

aw) test suite

ax) testsystem
ay) upper tester
az) (test) verdict
ba) testing state

3.2 Terms from ISO/IEC 7498-1

For the purposes of the present document, the terms and definitions given in ISO/IEC 7498-1 apply:

a) -layer (particularly for application, session and transport layers)
b) -protocol-data-unit
) -service-access-point

d) subnetwork
e) transfer syntax

3.3 Terms from ISO/IEC 10731

For the purposes of the present document, the terms and definitions given in ISO/IEC 10731 apply:

a) OSil-service-provider

3.4 Terms from ISO/IEC 8824-1

For the purposes of the present document, the terms and definitions given in ISO/IEC 8824-1 apply:

a) bitstring type

b) characterstring type
C) enumerated type

d) external type

e) object identifier

f) octetstring type

o)) real type

h) selection type

i) sequence type

) sequence-of type
K) set type

) set-of type

m) subtype

NOTE: Where there may be ambiguity with TTCN terms these terms are prefixed with the term ASN.1.

3.5 Terms from ISO/IEC 8825-1

For the purposes of the present document, the term given in ISO/IEC 8825-1 applies:

a) encoding

3.6 TTCN specific terms

For the purposes of the present document, the following terms and definitions apply:

applicable encoding rules:actual encoding rules that are to be used when sending or receiving a PDU, after all relevant
encoding defaults and overrides, if any, have been combined

attach construct: TTCN statement which attaches a Test Step to a calling tree

base constraint:specifies a set of default values for each and every field in an ASP or PDU type definition

ETSI

18 TR 101 666 V1.0.0 (1999-05)

base type:type from which a type defined in a test suite is derived

behaviour line: entry in a dynamic behaviour table representing a test event or other TTCN statement together with
associated label, verdict, constraints reference and comment information as applicable

behaviour tree: specification of a set of sequences of test events, and other TTCN statements

blank entry: in a modified compact constraint table a blank entry in a constraint parameter or field denotes that a
constraint value is to be inherited

calling tree: behaviour tree to which a Test Step is attached

compact constraint table:declaration of a set of constraints for an ASP, PDU or Structured Type arranged in a single
table

compact test case tabledeclaration of a set of Test Cases for a given Test Group arranged in a single table
concurrent test casetest case which is specified using concurrent TTCN

concurrent TTCN: TTCN that uses test components and test component configurations in order to express concurrency
in the dynamic behaviour of test cases

constraints part: that part of a TTCN test suite concerned with the specification of the values of ASP parameters and
PDU fields being sent to the IUT, and conditions on ASP parameters and PDU fields received from the IUT

constraints reference:reference to a constraint, given in a behaviour line

co-ordination message [CM]item of structured information which may be transferred from one Test Component to
another at a Co-ordination Point

co-ordination point [CP]: point within a testing environment, assigned to two Test Components in a Test Component
Configuration, where CMs may be exchanged asynchronously between these Test Components

declarations part: that part of a TTCN test suite concerned with the definition and/or declaration of all non-predefined
objects that are used in the test suite

default behaviour: events, and other TTCN statements, which may occur at any level of the associated tree, and which
are indicated in the Default behaviour proforma

default group: named set of default behaviours

default group reference:path specifying the logical location of a Default in the Default Library
default identifier: unique name for a Default

default library: set of the Default behaviours in a test suite

default reference:reference to a Default in the Default Library from a Test Case or Test Step table

derivation path: identifier, consisting of a base constraint identifier concatenated with one or more modified constraint
identifiers, separated by dots and finishing with a dot

dynamic chaining: linking from constraint declarations of an ASP parameter or PDU field to the constraint declaration
of another PDU by means of parameterization. Which PDUs are chained is specified in the constraints reference of a
behaviour line

dynamic part: that part of a TTCN test suite concerned with the specification of Test Case, Test Step and Default
dynamic behaviour descriptions

expanded test suitetest suite with all imported objects expanded. This will be a result of converting of a modularized
test suite according to the algorithm in annex B

explicit external: named object in the External table. An object that is explicitly declared as external in a module is to
be explicitly defined or exported as an external object

explicitly defined object: object for which a definition or declaration exists in the module or test suite

ETSI

19 TR 101 666 V1.0.0 (1999-05)
explicitly exported object: named object in the Exports tables being available for use. If the object is an imported
object, the name of the source object is to be given
explicitly imported object: named object in the Import tables being available for explicit references

exported object: explicitly defined object or explicitly imported object in a source object, made available for use in any
other module or test suite. An exported object is either an explicitly exported object or an implicitly exported object

external object: object being referred to by its name in a module, but neither imported nor explicitly defined. An
external object is to be declared in the External table. An external object may be either explicitly external or implicitly
external

global result variable: predefined test case variable maintained by a Main Test Component in the MPyT context or by
the test case in the SPyT context to record the accumulated effect of all the preliminary results of the test case in order to
determine the test verdict

implicit external: externally declared object in an export table which is omitted from a corresponding Import table

implicitly exported object: explicitly defined object or explicitly imported object, which is not itself explicitly exported
but which is referred to by an explicitly exported object

implicitly imported object: object referred to by some explicitly imported object. The use of an implicitly imported
object is restricted to the explicitly imported objects (from the same source object) referring to it

implicit send event:mechanism used in Remote Test Methods for specifying that the IUT should be made to initiate a
particular PDU or ASP

imported object: object copied from some other source object, being available for use. An imported object is either an
explicitly imported object or an implicitly imported object

level of indentation: indicates the tree structure of a behaviour description. It is reflected in the behaviour description
by indentation of text

local result variable: predefined variable maintained by a Test Component to record the accumulated effect of its
preliminary results

local tree: behaviour tree defined in the same proforma as its calling tree

main test component [MTC]: single Test Component in a Test Component Configuration responsible for creating and
controlling Parallel Test Components and computing and assigning the test verdict

modified constraint: constraint defined for an ASP or a PDU that already has a base constraint, and which makes
modifications on that base constraint

modularized test suite:test suite containing Import tables

module: self-contained collection of TTCN objects. All referenced objects are either explicitly defined in the Module,
are imported from other sources or are defined as external objects in the module

non-concurrent test casetest case, which is specified in TTCN but without using concurrent TTCN

object: element of one of the object categories listed in A.4.2.2 (for TTCN objects with a globally unique identifier) and
A.4.2.6 (for ASN.1 identifiers which are globally unique throughout the test suite)

operational semantics:semantics explaining the execution of a TTCN behaviour tree
original source object:module or test suite where an object is explicitly defined
otherwise event: TTCN mechanism for dealing with unforeseen test events in a controlled way

overview part: that part of a TTCN test suite concerned with presenting an overview of the structure of the test suite,
the structure (if any) of the Test Step Library, the structure (if any) of the Default Library and the association of
selection expressions (if any) with Test Cases and/or Test Groups. This part also provides indexes to Test Cases, Test
Steps and Defaults

ETSI

20 TR 101 666 V1.0.0 (1999-05)

parallel test component [PTC]:test component created by the main test component

preliminary result: result recorded before the end of a test case indicating whether the associated part of the test case
passed, failed or was inconclusive

pseudo-eventpseudo-event is a TTCN expression or Timer operation appearing on a statement line in the behaviour
description without any associated event

qualified event: event that has an associated Boolean expression
receive eventreceipt of an ASP or PDU at a named or implied PCO

result variable: predefined test case variable for storing preliminary results. In non-concurrent TTCN there is one result
variable called R. In concurrent TTCN, there is one global result variable called R, each PTC has a local result variable
called R, and the MTC has a local result variable called MTC_R

root tree: main behaviour tree of a Test Case, occurring at the level of entry into the Test Case
send event:sending of an ASP or PDU to a named or implied PCO

set of alternatives: TTCN statements coded at the same level of indentation and belonging to the same predecessor
node. They represent the possible events, pseudo-events and constructs which are to be considered at the relevant point
in the execution of the Test Case

single constraint table:declaration of a constraint for a single ASP or PDU of a given type arranged in a single table

snapshot semanticssemantic model to eliminate the effect of timing on the execution of a Test Case, defined in terms
of snapshots of the test environment, during which the environment is effectively frozen for a prescribed period

source object:module or test suite which is imported and has a corresponding Import table
specific value:value in TTCN which does not contain any matching mechanism or unbound variable

static chaining: linking from constraint declarations of an ASP parameter or PDU field to the constraint declaration of
another PDU by explicitly referencing a constraint as its value

static semantics:semantic rules that restrict the usage of the TTCN syntax

structured type: collection of one or more ASP parameters or PDU fields which may exist in one or more ASP or PDU
type definition which is defined in a separate declaration and which may be used to specify a portion of a flat structure
or a substructure within the ASP or PDU

submodule: module which is included in another module
test case identifier:uniqgue name for a Test Case

test case variableone of a set of variables declared globally to the test suite, but whose value is retained only for the
execution of a single Test Case

test component:named subdivision of a concurrent test case capable of being executed in parallel with other test
components, and declared as having a fixed number of PCOs and a fixed or maximal number of CPs

test component configuration:fixed arrangement of Test Components, PCOs and CPs that is declared for use in
concurrent test cases

test group reference:path specifying the logical location of a Test Case in the ATS structure

test step group:named set of test steps

test step group referencepath specifying the logical location of a Test Step in the Test Step Library

test step identifier: unique name for a Test Step

test step library: set of the Test Step dynamic behaviour descriptions in the test suite, that are not local Test Steps

test step objectiveinformal statement of what the Test Step is meant to accomplish

ETSI

21 TR 101 666 V1.0.0 (1999-05)

test suite constant:one of a set of constants, not derived from the PICS or PIXIT, which will remain constant
throughout the test suite

test suite parameter:one of a set of constants derived from the PICS or PIXIT which globally parameterize a test suite
test suite variable:one of a set of variables declared globally to a test suite and retains its value between Test Cases
timeout event: event which is used within a behaviour tree to check for expiration of a specified timer

tree attachment: method of indicating that a behaviour tree specified elsewhere (either at a different point in the current
proforma, or as a Test Step in the Test Step Library) is to be included in the current behaviour tree

tree header:identifier for a local tree followed by an optional list of formal parameters for the tree

tree identifier: name identifying a local tree

tree leaf: TTCN statement in a behaviour tree or Test Step which has no specified subsequent behaviour
tree node:single TTCN statement

tree notation: notation used in TTCN to represent Test Cases as trees

TTCN statement: event, a pseudo-event or construct which is specified in a behaviour description

unforeseen test eventtest event which has not been identified as a test event within a foreseen test outcome in the test
suite. It is normally handled using the OTHERWISE event

unqualified event: event that does not have an associated Boolean expression

4 Abbreviations

4.1 Abbreviations defined in ISO/IEC 9646-1

For the purposes of the present document, the following abbreviations defined in ISO/IEC 9646-1, clause 4 apply:

ATS abstract test suite

ASP abstract service primitive

ETS executable test suite

IuT implementation under test

LT lower tester

MOT means of testing

PCO point of control and observation

PICS protocol implementation conformance statement
PIXIT protocol implementation extra information for testing
SUT system under test

TMP test management protocol

uT upper tester

UTCF upper tester control function

LTCF lower tester control function

4.2 Abbreviations defined in ISO/IEC 9646-2

For the purposes of the present document, the following abbreviations defined in ISO/IEC 9646-2, clause 4 apply:

CSs co-ordinated single-layer (test method)
DS distributed single-layer (test method)
LS local single-layer (test method)

RS remote single-layer (test method)
TTCN tree and tabular combined notation

ETSI

22 TR 101 666 V1.0.0 (1999-05)

4.3 Other abbreviations

For the purposes of the present document, the following abbreviations also apply:

ASN.1 abstract syntax notation one

BNF the extended Backus-Naur form used in TTCN

CM co-ordination message

CP co-ordination point

FDT formal description technique

FIFO first in first out

MTC main test component

osl open systems interconnection

PDU protocol data unit

PTC parallel test component

SAP service access point

TCP test co-ordination procedures

TTCN.GR tree and tabular combined notation, graphical form
TTCN.MP tree and tabular combined notation, machine processable form

5 The syntax forms of TTCN

TTCN is provided in two forms:
- agraphical form (TTCN.GR) suitable for human readability;

- a machine processable form (TTCN.MP) suitable for transmission of TTCN descriptions between machines and
possibly suitable for other automated processing.

TTCN.GR is defined using tabular proformas. TTCN.MP is defined using syntax productions which have special
TTCN.MP keywords as terminal symbols instead of the fixed parts of the tabular proferqnabé box lines and
headers).

The syntax productions of TTCN.MP are specified in annex A.

The text description of TTCN.GR is intended to be consistent with the underlying syntax as defined in the TTCN.MP
syntax productions, except for the differences identified in A.5 and the static semantic restrictions specified in annex A
(which are common to both TTCN.MP and TTCN.GR).

If there is any conflict between the TTCN.GR syntax, on the one hand, and the static and operational semantics, on the
other, as described by the text and as described by annex A, then:

a) except for the differences specified in A.5, the TTCN.MP syntax productions shall have precedence over the text
and syntax productions in the body of the present document;

b) the static semantics restrictions specified in A.4 and in the static semantics comments (marked STATIC
SEMANTICS) on the syntax productions in A.3 specify restrictions on what is valid TTCN, restricting what is
allowed according to the syntax productions;

c) similarly, the operational semantics restrictions specified in the operational semantics comments (marked
OPERATIONAL SEMANTICS) on the syntax productions in A.3 specify restrictions on what is valid TTCN at
run-time, restricting what is allowed according to the syntax productions;

d) the static and operational semantics restrictions specified in annex A shall have precedence over the text in the
body of the present document.

If an ATS is specified in TTCN.GR in compliance with the present document, then there is a unique corresponding
TTCN.MP representation of that ATS sharing the same underlying syntax. These two representations have identical
operational semantics. Two different representations of an ATS are equivalent if and only if they have identical
operational semantics.

ETSI

23 TR 101 666 V1.0.0 (1999-05)

NOTE: If there is a standardized ATS specified in TTCN.GR and an apparently equivalent TTCN.MP
representation, but there is a conflict in interpretation of the operational semantics of the two, then the
operational semantics of the TTCN.GR takes precedence, because it is the TTCN.GR version that is the
standardized ATS.

6 Compliance

ATSs that comply with the present document shall satisfy the requirements for either TTCN.GR or TTCN.MP.
NOTE 1: See ISO/IEC 9646-1, clause 10, for an explanation of the use of the term "compliance" in ISO/IEC 9646.

ATSs that comply with the requirements of TTCN.GR shall satisfy the TTCN.GR syntax requirements stated in
clauses 9 through 16 and A.4.

ATSs that comply with the requirements of TTCN.MP shall satisfy the TTCN.MP syntax requirements stated in A.3.

ATSs that comply with the present document shall satisfy the static semantic requirements specified in clauses 7 through
16 and annex A and have operational semantics in accordance with the definition of the operational semantics in
annex B together with the operational semantics restrictions specified in A.3, such that they are semantically valid.

A standardized ATS that complies with the present document shall require that any realization of that test suite that
claims to conform to that standardized ATS shall:

a) have operational semantics equivalent to the operational semantics of the test suite as defined by annex B;
b) meet the additional operational semantics requirements specified in A.3;
c) comply with ISO/IEC 9646-4.

NOTE 2: If, during execution of the executable test case that conforms to the TTCN specification of the
corresponding abstract test case, a static semantic or operational semantic error is detected, then a test
laboratory complying with ISO/IEC 9646-5 will record an abstract or executable test case error,
depending on where the error is located.

7 Conventions

7.1 Introduction

The following conventions have been used when defining the TTCN.GR table proformas and the TTCN.MP grammar.

7.2 Syntactic metanotation

Table 1 defines the metanotation used to specify the extended BNF grammar for TTCN (henceforth called BNF):

Table 1: The TTCN.MP Syntactic Metanotation

u= is defined to be

abc xyz abc followed by xyz

| alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textual grouping

abc the non-terminal symbol abc
abc a terminal symbol abc

"abc" a terminal symbol abc

ETSI

24 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 1: Use of the BNF metanotation:

FormalParList ::= "(" FormalPar&Type {SemiColon FormalPar&Type})"

The following conventions will be used for text used in table proformas:
a) Bold text [ijke this) shall appear verbatim in each actual table in a TTCN test suite;

b) Textin italics like thig shall not appear verbatim in a TTCN test suite. This font is used to indicate that actual
text shall be substituted for the italicized symbol. Syntax requirements for the actual text can be found in the
corresponding TTCN.MP BNF production.

EXAMPLE 2: Suiteldentifiercorresponds to production 3 in annex A.

7.3 TTCN.GR table proformas

7.3.1 Introduction
a) The TTCN.GR is defined using two types of table:
b) single TTCN object tables (see 7.3.2),

which are used to define, declare or describe a single TTCN object such as a PDU declaration or a Test Case dynamic
behaviour;

¢) multiple TTCN object tables (see 7.3.3);

are used to define a number of TTCN objects of the same type in a single table, such as simple type definitions or Test
Case Variables.

7.3.2 Single TTCN object tables

The general layout of a table for a single TTCN object is shown in figure 1:

Title of Table Title
Object Name
Group : (Optional way of grouping together related objects) Header
Comments :This entire comment line is optional.
Object Name ... Other Columns ... Comment
This column is Body
optional
Detailed Comments:This footer is optional. Footer

Figure 1: Generalized layout of a single declaration table

The header of the table contains general information on the object defined in the table. The first item in the header,
namedObject Namgcontains an identifier for the object. A second item, na@redip, may be used to provide an
identifier to group together related objects in the same category. This item is optional. The last itenGoramedts
contains an informal description of the object. This item is optional.

ETSI

25 TR 101 666 V1.0.0 (1999-05)

The body of the table consists of one or more columns. Each column has a title. The rightmost colu@antitiedts
contains informal descriptions of the components of the object specified in the body. It does not exist in all proformas.
In proformas containing a comments column this column can be omitted.

The footer of the table contains one item, naBethiled Commentshis footer can be used for the same purposes as
the comments column in the body of the table. The test suite specifier can use the detailed comments footer in
combination with the comments column, instead of a comments column, or not at all, in which case the footer can be
omitted.

7.3.3 Multiple TTCN object tables

The general layout of a table for multiple TTCN objects is shown below:

Title of Table
Group: (Optional way of grouping together related sets of objects)
Collective Comment:

A comment valid for the below defined/declared objects. This comment has a scope reaching to next
Collective Comment or until the end of this table.

Object Name ... Other Columns ... Comments

Collective Comment:

A comment valid for the below defined/declared objects. This comment has a scope reaching to next
Collective Comment or until the end of this table.

Object Name ... Other Columns ... Comments

Detailed Comments:

Figure 2: Generalized layout of a multiple declaration table

The optionalCollective Commentsiay be used preceding a group of related objects declared in a multiple object table,
both to indicate the grouping and to give a comment that applies to each member of the group or the group as a whole.

This type of table has only a minimal optional header section, which may co@eaduidentifier and &ollective
CommentThe body of the table consists of one or more columns. Each column has a title. The leftmost column, titled
Object Namecontains identifiers of the objects defined or declared in the table. The rightmost column, titled
Commentscontains informal descriptions of the objects defined or declared in the table. It does not exist in all
proformas. When it exists its use is optional for the test suite specifier. The footer of the table is identical to tfe footer
the single table type.

7.3.4 Alternative compact tables

In some cases it is allowed to display a number of single TTCN object tables in an alternative space-saving compact
format. That is, a number of single TTCN object tables may be displayed in a single compact table. The only tables that
may be presented in this format are:

- ASP constraints (tabular and ASN.1);
- PDU constraints (tabular and ASN.1);
- Structured Type constraints;

- ASN.1 Type constraints;

ETSI

26 TR 101 666 V1.0.0 (1999-05)

- Test Case dynamic behaviours.

The formats of these alternative compact proformas are defined in annex E.

7.3.5 Specification of proformas

The present document specifies numerous types of TTCN.GR tables and provides a graphic view of the corresponding
proformas. These proformas conform to the generalized layout of 7.3.2 and 7.3.3. When a column is shaded in a
proforma, this is a reminder that the column is optional.

7.4 Free Text and Bounded Free Text

Some table entries allow the use of free teat, characters from any of the character sets defined in ISO 10646. The
following restrictions apply:

a) Free Text shall not contain the combination of characters "*/", unless preceded by backslash (\), as this is used
in the TTCN.MP to indicate the end of a Free Text string. This means that double backslash (\\) means
backslash.

b) The combinations of characters "/*" and "*/" which open and close BoundedFreeText strings in the TTCN.MP
shall not appear in the TTCN.GR.,wherever a Bounded FreeText string appears in a table section, as in a Full
Identifier, these combinations of characters shall not be printed.

8 Concurrency in TTCN

8.1 Test Components

TTCN allows the specification of test components which may be executed concurrently. This clause gives an overview
of the additional proformas and mechanisms available in concurrent TTCN. These proformas and mechanisms shall not
be used in ATSs that do not use concurrency (i.e. the use of concurrency is optional).

A tester consists of a Main Test Component (MTC) and zero or more Parallel Test Components (PTCs). In non-
concurrent TTCN it is not necessary to declare the Main Test Component since there is only one test component and the
default is that it is the Main Test Component.

Test components are declared in the Test Component Declarations table. A test component may communicate with the
IUT via one or more Points of Control and Observation (PCOs). Test components may communicate with each other by
exchanging Co-ordination Messages (CMs) through Co-ordination Points (CPs). PTCs may also communicate with the
MTC implicitly, by means of assignments to the global result variable and by the MTC being able to check whether or
not one or more PTCs have terminated execution. The Test Component Configuration Declarations tables are used to
specify (abstract) configurations of test components. These declarations (one for each configuration) show which PCOs
and CPs are used, if any, by the test components. CMs are specified in a manner very similar to the method used to
specify ASPs. ASN.1 may be used for CM specification. CM constraints are also very similar to ASP constraints.
Special proformas are provided for the definition of CM Types and the declaration of CM constraints. CMs are sent and
received using the normal TTCN SEND and RECEIVE statements.

In summary, if concurrent TTCN is used the following proformas shall be used:
a) Test Component Declarations;
b) Test Component Configuration Declarations.
In addition, if concurrent TTCN is used the following proformas may be used:
c) CP Declarations;
d) CM Type Definitions and/or ASN.1 CM Type Definitions, provided that CP declarations are used,;

e) CM Constraints Declarations, provided that CM Type Definitions are used;

ETSI

27 TR 101 666 V1.0.0 (1999-05)

f) ASN.1 CM Constraint Declarations provided that ASN.1 CM Type Definitions are used.

8.2 Test Component Configurations

Some possible configurations of test components are shown in figure 3 and figure 4. In a realization of these abstract
configurations, test components may reside in a single machine or be distributed over several machines.

It is possible to use different PTC configurations in different test cases of an Abstract Test Suite. Each Abstract Test
Case which uses concurrency shall use one of the declared Test Component Configurations.

Note the following valid but unusual cases:

a) a PTC need not have any PCOs;

b) a PTC need not have a CP to an MTC. In such cases the only interaction between the PTC and the MTC will be
the creation of the PTC and the implicit result reports from the PTC, i.e., the MTC has no explicit control over
the PTC after creation;

¢) two PTCs may be connected by more than one CP;

d) atest case whose test component configuration refers to a PTC need not contain any CREATE statement to start
this PTC;

e) atest case whose test component configuration refers to a CP need not contain any SEND or RECEIVE
statements using this CP.

Items a), b) and c) are illustrated in figure 3 and figure 4.

MTCH

MCF1 MCP2 MOP3

CP1 CP2
i TC2 -— | IUB

i PCO_A I PCO_B I PCO_C

Figure 3: Example Test Component Configuration CONFIG1

TC1

MTC2
A
MCP2 MCP3
CP1
TC2 TC4 TCS
o
cpz
PCO_B PCO_D PCO_E

¥

Figure 4: Example Test Component Configuration CONFIG2

ETSI

28 TR 101 666 V1.0.0 (1999-05)

9 TTCN test suite structure

9.1 Introduction

TTCN allows a test suite to be hierarchically structured in accordance with ISO/IEC 9646-1, 8.1. The components of
this structure are:

a) Test Groups;
b) Test Cases;
c) Test Steps.
A TTCN test suite may be completely flag(, have no structure) in which case there are no Test Groups.

TTCN allows the use of Test Step Groups and Default Groups, similar to the concept of Test Groups, in order to
structure Test Steps and Defaults hierarchically. This hierarchical structure is optional.

9.2 Test Group References

TTCN supports a naming structure that shows a conceptual grouping of Test Cases. Test Groups can be nested. Test
Cases can also be stand-alone (see ISO/IEC 9646-1, clause 8, figure 9). The Test Group References define the structure
of the test suite.

EXAMPLE 3: A Transport group reference: TRANSPORT/CLASSO/CONN_ESTAB/

9.3 Test Step Group References

Test steps may be explicitly identified in TTCN and used to structure Test Cases and other Test Steps. Alternatively
Test Steps may be implicit within the behaviour description of a Test Case. Explicit Test Steps may be specified either

- locally within a Test Case or Test Step behaviour description; or
- globally within a Test Step Library, which may be hierarchically structured into Test Step Groups.

NOTE: For example, a preamble may consist of just a few statement lines within a behaviour description of the
Test Case, in which case it is implicit. Alternatively, a preamble may be explicitly specified with its own
behaviour description. If such an explicit preamble is only of use within one Test Case, then it may be
specified locally within that Test Case, but if it is of use in several Test Cases then it should be specified
in the Test Step Library.

Local Test Steps are identified simply by a tree identifier. Global Test Steps are identified by a Test Step identifier.
Global Test Steps also have a Test Step Group Reference, which shows the position of a Test Step in the Test Step
Library. The structure of the Test Step Library is independent of the structure of the test suite.

EXAMPLE 4: Transport Test Step Group Reference:
TRANSPORT/STEP_LIBRARY/CLASSO/CONN_ESTAB/

9.4 Default Group References

Default behaviours (if any) are located in a Default Library.

A Default Group Reference specifies the location of the Default in the Default Library, which may be hierarchically
structured. The Default Library has no influence on the test suite structure itself.

ETSI

29 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 5: Transport Default Group Reference: TRANSPORT/DEFAULT_LIBRAR/CLASSO/

9.5 Parts of a TTCN test suite

An ATS written in TTCN shall have the following four sections in the order indicated:

a) Suite Overview (see clause 10),
which contains the information needed for the general presentation and understanding of the test suite, such as test
references and a description of its overall purpose;

b) Import Part (see 10.8),
which contains the declarations of the objects used in the test suite or module that are imported from a source object;

c) Declarations Part (see clause 11),
which contains the definitions or declarations of all the components that comprise the testgslRREQs, Timers,
ASPs, PDUs, and their parameters or fields);

d) Constraints Part (see clause 12, 13, 14),
which contains the declarations of values for the ASPs, PDUs, and their parameters used in the Dynamic Part. The
constraints shall be specified using:

1) TTCN tables; or
2) the ASN.1 value notation; or
3) both TTCN tables and the ASN.1 value notation.

e) Dynamic Part (see clause 15),
which comprises three sections that contain tables specifying test behaviour expressed mainly in terms of the
occurrence of ASPs or PDUs at PCOs. These sections are:

1) the Test Case dynamic behaviour descriptions;
2) alibrary containing Test Step dynamic behaviour descriptions (if any);

3) alibrary containing Default dynamic behaviour descriptions (if any).

10 Test Suite Overview

10.1 Introduction

The purpose of the Test Suite Overview part of the ATS is to provide information needed for general presentation and
understanding of the test suite. This includes:

a) Test Suite Index (see 10.2);

b) Test Suite Structure (see 10.3);
c) Test Case Index (see 10.4);

d) Test Step Index (see 10.5);

e) Default Index (see 10.6);

f) Test Suite Exports (see 10.7).

ETSI

30 TR 101 666 V1.0.0 (1999-05)

10.2 Test Suite Index

The purpose of the Test Suite Index is to provide information needed for all imported objects in a expanded test suite.
This information is used to easily find the definition of an object.

The Test Suite Index is a complete list of all objects in a expanded test suite and is a result of converting a modularized
test suite to a expanded test suite. This list contains information about each object (e.g. the source object/test suite name,
the original name and the page number in the very original source object).

The Test Suite Index proforma identifies all objects used in a test suite. The following information shall be supplied for
each object:

a) the name of the object

the name with which the object is referred to (e.g. a generated name)
b) the object type

which shall be the same as the type given when the object is defined
c) the name of the source object or the test suite

where the object is defined

d) the original name of the object

the given name when the object is explicitly defined

e) an optional page number

providing the location of the object in the original source object

This information shall be provided in the format shown in the following proforma:

Test Suite Index

Object Name Object Type Source Name Original Object Ref | Page Nr | Comments

Objectldentifier ObjectType Sourceldentifier [ObjectReference] | [Number] [FreeText]

Detailed Comments: [FreeText]

Proforma 0: Test Suite Index

The page number is given when the original source object is standard and the location of the object is unambiguous.

10.3 Test Suite Structure

The Test Suite Structure contains identification of the pertinent reference documents, specification of the structure of the
test suite, a brief description of its overall purpose, and references to the Test Group selection criteria.

The Test Suite Structure shall include at least the following information:
a) the name of the test suite;

b) references to the relevant base standards;

ETSI

c)
d)

e)

)

)

31 TR 101 666 V1.0.0 (1999-05)

a reference to the PICS proforma;
a reference to the partial PIXIT proforma (see ISO/IEC 9646-2, subclause 14.1 and ISO/IEC 9646-7, annex E);

an indication of the test method or methods to which the test suite applies, plus for the Co-ordinated Test
Methods a reference to where the TMP is specified;

other information which may aid understanding of the test suite, such as its version number or how it has been
derived,; this information should be included as a comment;

a list of Test Groups in the test suite (if any),

where the following information shall be supplied for each group:

1)

2)

3)

4)

the Test Group Reference,

where the first identifier may be the suite name, and each successive identifier represents further conceptual
ordering of the test suite. Test Groups shall be listed in the order that their corresponding Test Cases appear in
the ATS. Furthermore, they shall be ordered such that every group within a single group immediately follows that
group. All Test Groups in the test suite shall be listed;

imported test cases may be included under any group, independently under which group they are defined in the
original source object. A new group may be listed that does not occur in the Dynamic Part. This group shall only
contain imported test cases;

the groups of the Dynamic Part shall occur in the same order as they appear there, but the list may be preceded,
interrupted or followed by new groups of imported test cases. For these new groups the page number shall not be
supplied;

the Selection Ref column may contain the identifier of a selection expression applicable to the new test groups.
The new selection expression shall override the specified selection expression in the original test group (if there
is any). The absence of the selection expression identifier in this column indicates that the specified selection
expression in the original test group is omitted (if there is any);

the Test Group Objective column may contain a new informal statement of the objective of the new test group.
This new objective shall override the objective in the imported test group (if any). The absence of the test group
objective in this column indicates that the specified test group objective is omitted;

an optional selection expression identifier,

which references an entry in the Test Case Selection Expression Definitions table used to determine if the Test
Cases in the group apply to specific IUTs. This column may contain the identifier of a selection expression
applicable to the Test Group. If a selection expression identifier is provided for a group, and the referenced
selection expression evaluates to FALSE, then no Test Case in that group shall be selected for execution. If the
selection expression evaluates to TRUE then Test Cases in that group shall be selected for execution depending
on the evaluation of the selection expressions relevant to subgroups of that group and/or individual Test Cases.
Omission of a selection expression identifier is equivalent to the Boolean value TRUE;

the Test Group Objective,
which is an informal statement of the objective of the Test Group;
a page number,

providing the location of the first Test Case of the group in the ATS. The page number listed with each Test
Group Reference in the Test Suite Structure table shall be the page number of the first Test Case behaviour
description in the group.

ETSI

32 TR 101 666 V1.0.0 (1999-05)

This information shall be provided in the format shown in the following proforma:

Test Suite Structure

Suite Name . Suiteldentifier

Standards Ref : Free Text

PICS Ref . Free Text

PIXIT Ref . Free Text

Test Method(s) . FreeText

Comments . [FreeText]

Test Group Reference Selection Ref Test Group Objective Page N
TestGroupReference [SelectExpr- FreeText Number
Identifier]
Detailed Comments: [FreeText]

Proforma 1: Test Suite Structure

10.4 Test Case Index

The Test Case Index contains a complete list of all Test Cases in the ATS. The following information shall be provided
for each Test Case:

a) an optional Test Group Reference (if the ATS is structured into Test Groups),

which defines where in the test suite group structure the Test Case resides. Test Groups shall be listed in the order in
which they exist in the ATS;

b) the Test Case name,

which shall be the identifier provided in the Test Case dynamic behaviour table. Test Cases shall be listed in the order in
which they exist in the ATS;

c) an optional selection expression identifier,

which references an entry in the Test Case Selection Expression Definitions table used to determine if the Test Case
should be selected for execution. This column may contain the identifier of a selection expression applicable to the Test
Case. If a selection expression identifier is provided, and the referenced selection expression evaluates to FALSE, then
the Test Case shall not be selected for execution. If the selection expression evaluates to TRUE then the Test Case shall
be selected for execution depending on the evaluation of the selection expressions for the Test Groups containing the
Test Case. A Test Case is selected if the selection expression for the Test Case, and all groups containing the Test Case,
evaluate to TRUE. Omission of a selection expression identifier is equivalent to the Boolean value TRUE;

d) a description of the Test Case,
which is possibly a shortened form of the test purpose;
e) a page number,

providing the location of the Test Case in the ATS. The page number listed with each Test Case Identifier in the Test
Case Index table shall be the page number of the corresponding Test Case behaviour description.

ETSI

33 TR 101 666 V1.0.0 (1999-05)

This information shall be provided in the format shown in the following proforma:

Test Case Index

Test Group Reference Test Case Id Selection Ref Description Page N
TestGroupReference TestCase- [SelectExpr- FreeText Number
Identifier Identifier]

Detailed Comments: [FreeText]

Proforma 2: Test Case Index

Collective comments may be used in this table according to figure 2.

The complete list of test cases shall include the imported test cases. Explicitly defined Test Cases shall be listed in the
order in which they exist in the ATS. Page numbers shall not be supplied for imported test cases.

The Selection Ref column has similar semantic as the one given in 10.3.

The Description column may contain a new shortened form of the Test Purpose. This new description shall override the
description in the imported test case (if any). The absence of the description in this column indicates that the specified
description is omitted.

10.5 Test Step Index

The Test Step Index contains a complete list of all Test Steps in the ATS. The following information shall be provided
for each Test Step:

a) an optional Test Step Group Reference, (if the ATS is structured into Test Step Groups),

which defines where in the Test Step Library structure the Test Step resides. If the group reference for a Test Step is
missing, then the Test Step is assumed to reside in the same group as the previous Test Step in the index. Test Step
Groups shall be listed in the order in which they exist in the ATS. An explicit Test Step Group Reference shall be
provided for the first Test Step of each group. An explicit Test Step Group Reference shall also be provided for each
Test Step that immediately follows the last Test Step of the group; this is necessary if a Test Step Group contains both
Test Step Groups and Test Steps;

b) the Test Step name,

which shall be the identifier provided in the Test Step dynamic behaviour table. Test Steps shall be listed in the order in
which they exist in the ATS;

¢) a description of the Test Step,
which is possibly a shortened form of the Test Step Objective;
d) apage number,

providing the location of the Test Step in the ATS. The page number listed with each Test Step Identifier in the Test
Step Index table shall be the page number of the corresponding Test Step behaviour description;

ETSI

34 TR 101 666 V1.0.0 (1999-05)

This information shall be provided in the format shown in the following proforma:

Test Step Index

Test Step Group Reference Test Step Id Description Page N
TestStepGroupReference TestStep- FreeText Number
Identifier

Detailed Comments: [FreeText]

Proforma 3: Test Step Index

Collective comments may be used in this table according to figure 2.

The complete list of test steps shall include the imported test steps. Explicitly defined Test Steps shall be listed in the
order in which they exist in the ATS. Page numbers shall not be supplied for imported test steps.

The Description column may contain a new shortened form of the Test Step Objective. This new description shall
override the description in the imported test step (if any). The absence of the description in this column indicates that the
specified description is omitted.

10.6 Default Index

The Default Index contains a complete list of all Defaults in the ATS. The following information shall be provided for
each Default:

a) an optional Default Group Reference, (if the ATS is structured into Default Groups),

which defines where in the Default Library structure the Default resides. If the group reference for a Default is missing,
then the Default is assumed to reside in the same group as the previous Default in the index. Defaults shall be listed in
the order in which they exist in the ATS. An explicit Default Group Reference shall be provided for the first Default of
each group. An explicit Default Group Reference shall also be provided for each Default that immediately follows the
last Default of the group;

b) the Default name,

which shall be the identifier provided in the Default dynamic behaviour table. Defaults shall be listed in the order in
which they exist in the ATS;

¢) a description of the Default,
which is possibly a shortened form of the Default Objective;
d) apage number,

providing the location of the Default in the ATS. The page number listed with each Default Identifier in the Default
Index table shall be the page number of the corresponding Default behaviour description.

ETSI

35 TR 101 666 V1.0.0 (1999-05)

This information shall be provided in the format shown in the following proforma:

Default Index

Default Group Reference Default Id Description Page Nr
DefaultGroupReference Default- FreeText [Number]
Identifier

Detailed Comments: [FreeText]

Proforma 4: Default Index

Collective comments may be used in this table according to figure 2.

The complete list of defaults shall include the imported defaults. Explicitly defined Defaults shall be listed in the order
in which they exist in the ATS. Page numbers shall not be supplied for imported defaults.

The Description column may contain a new shortened form of the Default Objective. This new description shall override
the description in the imported default (if any). The absence of the description in this column indicates that the specified
description is omitted.

10.7 Test Suite Exports

The Test Suite Exports table may be used to specify explicitly which objects in the test suite are designed to be re-usable
and hence may be imported into other test suites or TTCN modules.

The Test Suite Exports proforma is used to identify the objects which may be exported.
The name of the original source object shall be given if the object is itself imported.

If the object is declared as an external object (explicit external) or is an object which is omitted in the imported source
object (implicit external), the keyword EXTERNAL is given instead of the source object name.

Exporting an object of type Enumeration or Named Number requires that the corresponding type is given. The other
objects which are defined in the corresponding type are not exported as well. They are however implicitly exported and
can be referred in other exported objects. The type name is given as a suffix to the object name embedded in brackets.

The following information shall be supplied in the Test Suite Exports table for each of the exported objects:

a) the name of the object
If the object is of type NamedNumber or Enumeration the corresponding type shall be given as a suffix to the object
name embedded in brackets.

b) the object type
c) the name of the original source object if the object is imported, or the object directive EXTERNAL

d) apage number
providing the location of the object in the test suite (no page number shall be given for imported objects)

e) an optional comment

ETSI

36 TR 101 666 V1.0.0 (1999-05)

This information shall be provided in the format shown in the following proforma:

Test Suite Exports

Object Name Object Type Source Name Page Nr Comments
Objectldentifier TTCN_ObjectType [Sourceldentifier | Number [FreeText]
ObjectDirective]

Detailed Comments: [FreeText]

Proforma 5: Test Suite Exports

EXAMPLE 6: Test Suite Exports

Test Suite Exports
Object Name Object Type Source Name Page Nr Comments
String5 SimpleType_Object 3
wait Timer_Object Module_B
INTC TTCN_PDU_Type_Object 13
DEF1 Default_Object TestSuite_1
TC_2 TestCase_Object TestSuite_2
TC_3 TestCase_Object 33
Preamble TestStep_Object EXTERNAL
Detailed Comments:

10.8 The Import Part

10.8.1 Introduction

The purpose of the Import Part is to declare the objects used in the test suite that are imported from a source object. The
effect of the imports is equivalent to having a copy of the imported objects within the test suite.

An object may be imported only if a source object exports it. A test suite without an export table exports all objects
which have a global name. A module and a test suite with at least one export table export the objects contained in the
export tables. An object which is not itself explicitly imported is implicitly imported if an imported object references it.

10.8.2 Imports

The Imports tables identify the source object and provides information on the overall objective of the source object. The
following information shall be supplied in the Imports tables:

a) the name of the source object;
b) a description of the objective of the source object;

c) a full reference to the source object; which should contain a document identifier and other information, such as
version and date;

d) areference to the standards to which the source applies;

e) other information which may aid understanding of the source object; this should be included as a;comment

f) alist of the objects from the imported source object; for each object the following information shall be provided:
1) the name of the object as used in the source object;

2) the type of the object; which shall be the same as the type given in the source object;

ETSI

37 TR 101 666 V1.0.0 (1999-05)

3) the name of the original source object if the object is imported from another source object, the object directive
OMIT or "-" if the object is to be omitted from the set of objects imported from the source object, or the object
directive EXTERNAL if the object is declared as external in the source object.

This information shall be provided in the format shown in the following proforma:

Imports
Source Name . Sourceldentifier
Group . [ImportsGroupReference]
Source Ref . [FreeText]
Standards Ref : [FreeText]
Comments . [FreeText]
Object Name Object Type Source Name Comments
Objectldentifier TTCN_ObjectType [Sourceldentifier | [FreeText]
ObjectDirective]
Detailed Comments: [FreeText]

Proforma 6: Imports

EXAMPLE 7: An Imports table

Imports

Source Name : Module A
Source Ref . {ISO standard 1234}
Standards Ref : 1SO 300 313
Comments : Layer 2 Test Suite

Object Name Object Type Source Name Comments
String5 SimpleType_Obiject
Wait Timer_Object ModuleB 1)
R1_POSTAMBLE TestStep_Object EXTERNAL 2)
TSAP PCO_Type_Object 3)
blue[ColorEnum] Enumeration_Object
a[NN_typel] NamedNumber_Object| OMIT 4)
Detailed Comments:
1) The original source of this timer is ModuleB
2) This test step is declared as external in ModuleA and must be explicitly defined or imported where this moglule is
used.
3) TSAP must be defined in the PCO Type Declaration table.
4) This Named Number is omitted from the imports and hence should be redefined explicitly in the test suite.

11 Declarations Part

11.1 Introduction

The purpose of the declarations part of the ATS is to define and declare all the objects used in the test suite. The
following objects of an ATS referenced from the overview part, the constraints part and the dynamic part shall have
been declared in the declarations part. These objects are:

a) definitions:
1) Test Suite Types (see 11.2.3);

2) Test Suite operations (see 11.3.4);

ETSI

38 TR 101 666 V1.0.0 (1999-05)

b) parameterization and selection of Test Cases:
1) Test Suite Parameters (see 11.4);
2) Test Case Selection Expressions (see 11.5);
c) declarations/definitions:
1) Test Suite Constants (see 11.6 and 11.7);
2) Test Suite Variables (see 11.8.1);
3) Test Case Variables (see 11.8.3);
4) PCO types (see 11.9);
5) PCOs (see 11.10);
6) CPs (see 11.11);
7) Timers (see 11.12);
8) Test Components (see 11.13.1);
9) Test Component Configurations (see 11.13.2);
10) ASP types (see 11.14);
11)PDU types (see 11.15);
12)Encoding Rules (see 219);
13)Encoding Variations (see 11.16.2);
14)Invalid Field Encodings (see 11.16.3);
15)CM types (see 11.17);
16)Aliases (see 11.21).

11.2 TTCN types

11.2.1 Introduction

TTCN supports a number of predefined types and mechanisms that allow the definition of specific Test Suite Types.
These types may be used throughout the test suite and may be referenced when Test Suite Parameters, Test Suite
Constants, Test Suite Variables, ASP parameters, PDU &&ldwe declared.

TTCN is a weakly typed language, in that values of any two types which have the same base type are considered to be
type compatible (e.g. for the purposes of performing assignments or parameter passing).

11.2.2 Predefined TTCN types

A number of commonly used types are predefined for use in TTCN. All types defined in this clause may be referenced
even though they do not appear in a type definition in a test suite. All other types used in a test suite shall be declared in
the Test Suite Type definitions, ASP definitions or PDU definitions and referenced by name.

The following TTCN predefined types are considered to be the same as their counterparts in ASN.1:

a) INTEGER predefined type: a type with distinguished values which are the positive and negative whole
numbers, including zero.

Values of type INTEGER shall be denoted by one or more digits; the first digit shall not be zero unless the value is O;
the value zero shall be represented by a single zero;

ETSI

39 TR 101 666 V1.0.0 (1999-05)

b) BOOLEAN predefined type: a type consisting of two distinguished values.
Values of the BOOLEAN type are TRUE and FALSE;

¢) BITSTRING predefined type: a type whose distinguished values are the ordered sequences of zero, one, or
more bits.

Values of type BITSTRING shall be denoted by an arbitrary number (possibly zero) of zeros and ones, preceded by a
single ' and followed by the pair of characters 'B;

EXAMPLE 8: '01101'B

d) HEXSTRING predefined type: a type whose distinguished values are the ordered sequences of zero, one, or
more HEX digits, each corresponding to an ordered sequence of four bits.

Values of type HEXSTRING shall be denoted by an arbitrary number (possibly zero) of the HEX digits:
0123456789ABCDEF

preceded by a single ' and followed by the pair of characters 'H; each HEX digit is used to denote the value of a semi-
octet using a hexadecimal representation;

EXAMPLE 9: 'ABO1D'H

e) OCTETSTRING predefined type: a type whose distinguished values are the ordered sequences of zero or a
positive even number of HEX digits (every pair of digits corresponding to an ordered sequence of eight bits).

Values of type OCTETSTRING shall be denoted by an arbitrary, but even, number (possibly zero) of the HEX digits:
0123456789ABCDEF

preceded by a single ' and followed by the pair of characters 'O; each HEX digit is used to denote the value of a semi-
octet using a hexadecimal representation;

EXAMPLE 10: 'FF96'O

f) OBJECTIDENTIFIER predefined type: a type whose distinguished values are the set of all object identifiers
allocated in accordance with the rules of ISO/IEC 8824-1: 1994.

g) R_TYPE predefined type:a type consisting of the following distinguished values:
pass, fail, inconc and none

These values are predefined identifiers and as such, are case sensitive. This predefined type is for use with verdicts, see
15.17.

h) CharacterString predefined types types whose distinguished values are zero, one, or more characters from
some character set; the CharacterString types listed in table 2 may be used; they are defined in clause 31 of
ISO/IEC 8824-1: 1994.

ETSI

40 TR 101 666 V1.0.0 (1999-05)

Table 2: Predefined CharacterString Type

NumericString
PrintableString
TeletexString
T61String
VideotexString
VisibleString
ISO646String
IA5String
GraphicString
GeneralString
BMPString
UniversalString

Values of CharacterString types shall be denoted by an arbitrary number (possibly zero) of characters from the character
set referenced by the CharacterString type, preceded and followed by double quote ("); if the CharacterString type
includes the character double quote, this character shall be represented by a pair of double quote in the denotation of any
value.

11.2.3 Test Suite Type Definitions

11.2.31 Introduction

Type definitions to be used as types for data objects and as subtypes for structured ASRS;.e&tke introduced

using a tabular format and/or ASN.1. Wherever types are referenced within Test Suite Type definitions those references
shall not be recursive (neither directly nor indirectly).

11.2.3.2 Simple Type Definitions using tables

To define a new Simple Type, the following information shall be provided:

a) a name for the type;

b) the base type,

where the base type shall be a Predefined Type or a Simple Type. The base type is followed by the type restriction
that shall take one of the following forms:

1) alist of distinguished values of the base type; these values comprise the new type;

2) a specification of a range of values of type INTEGER; the new type comprises the values including the lower
boundary and the upper boundary specified in the range. In order to specify an infinite range, the keyword
INFINITY may be used instead of a value indicating that there is no upper boundary or lower boundary;

3) a specification of a particular length or length range of a predefined or test suite string type; the length value(s)
shall be interpreted according to table 5 in 11.18; only non-negative INTEGER literals or the keyword
INFINITY for the upper bound shall be used;

c) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify an
explicit encoding for the simple type, which overrides the encoding rules and encoding variations applicable to any
PDU in which that simple type is used; the encoding identifier, if any, shall identify either one of the Encoding
Variations or an Invalid Field Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

ETSI

41 TR 101 666 V1.0.0 (1999-05)

This information shall be provided in the format shown in the following proforma:

Simple Type Definitions

Group . [SimpleTypeGroupReference]
Type Name Type Definition Type Encoding Comments
SimpleTypeldentifier Type&Restriction [PDU_FieldEncodingCall] [FreeText]

Detailed Comments: [FreeText]

Proforma 7: Simple Type Definitions

Collective comments may be used in this table according to figure 2.

Where a range is used in a type definition either as a value range or as a length range (for strings) it shall be stated with
the lower of the two values on the left. An integer range shall be used only with a base type of INTEGER or a type
derived from INTEGER. In the latter case, integer range shall be a subrange of the set of values defined by the base

type.

Where a value list is used, the values shall be of the base type and shall be a true subset of the values defined by the base
type. Where a length restriction is used, the set of values for a type defined by this restriction shall be a true subset of th
values defined by the base type.

Values of any two simple types which have the same base type are considered to be type compatible (e.g. for the
purposes of performing assignments or parameter passing).

EXAMPLE 11: Simple Test Suite Type definition

Simple Type Definition
Type Name Type Definition Comments
Transport_classes INTEGER(O, 1, 2, 3, 4) classes that may be used for
transport layer connection

string of length 5

String5 IA5String[5] all numbers from 0 to 127
SeqNumbers INTEGER(0..127) all positive INTEGER numbers
PositiveNumbers INTEGER(Z..INFINITY) string, min. length 10
String10t020 IA5String [10 .. 20] gu:::ggz and max. length 20

11.2.3.3 Structured Type Definitions using tables

Structured Types can be defined in the tabular form to be used for declaring structured objects as subtypes within ASP
and PDU definitions and other Structured Typ&s

The following information shall be supplied for each Structured Type:
a) its name,

where appropriate the full name, as given in the relevant protocol standard, shall be used; if an abbreviation is used,
then the full name shall follow in parentheses;

b) the Encoding Variations to be used for structures of this type within a PDU;

ETSI

42 TR 101 666 V1.0.0 (1999-05)

In order to specify explicit Encoding Variations for entire structured types, which override the Encoding Variations
applicable to any PDU in which this structured type is used, this optional entry shall reference an entry in the
relevant Encoding Variations table (e.g., to change from SD to LD(3)). If this entry is not used, then the applicable
Encoding Variations are those applicable to each PDU within which this structured type is used. See 11.16.4.

c) alist of the elements associated with the Structured Type,
where the following information shall be supplied for each element:
1) its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used,
then the full name shall follow in parentheses;

2) its type and an optional attribute,

where elements may be of a type of arbitrarily complex structure; there shall be no recursive references
(neither directly nor indirectly);

the optional element length restriction can be used in order to give the minimum and maximum length of an
element of a string type (see 11.18);

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify
an explicit encoding for the structured type, which overrides the encoding rules and encoding variations
applicable to any PDU in which that structured type is used; the encoding identifier, if any, shall identify
either one of the Encoding Variations or an Invalid Field Encoding Definition defined in the test suite (e.g.,
LD(10)); see 11.16.4.

The elements of Structured Type definitions are considered to be optienal,instances of these types whole
elements may not be present.

This information shall be provided in the format shown in the following proforma:

Structured Type Definition

Type Name . Structld&Fullld

Group : [StructTypeGroupReference]

Encoding Variation : [EncVariationCall]

Comments . [FreeText]
Element Name Type Definition Field Encoding Comments
Elemld&Fullld Type&Attributes [PDU_FieldEncodingCall] [FreeText]

Detailed Comments: [FreeText]

Proforma 8: Structured Type Definition

11.2.34 Test suite type definitions using ASN.1

Test Suite Types can be specified using ASN.1 This shall be achieved by an ASN.1 definition using the ASN.1 syntax as
defined in ISO/IEC 8824-1. The following information shall be supplied for each ASN.1 type:

a) its name,

where appropriate the full name, as given in the relevant protocol standard, shall be used; if an abbreviation is used, then
the full name shall follow in parentheses;

b) the Encoding Variations to be used for structures of this type within a PDU;

ETSI

43 TR 101 666 V1.0.0 (1999-05)

In order to specify explicit Encoding Variations for entire ASN1_Types, which override the Encoding Variations
applicable to any PDU in which this ASN1_Type is used, this optional entry shall reference an entry in the relevant
Encoding Variations table (e.g., to change from SD to LD(3)). If this entry is not used, then the applicable Encoding
Variations are those applicable to each PDU within which this ASN1_Type is used. See 11.16.4.

c) the ASN.1 type definition,

which shall follow the syntax defined in ISO/IEC 8824-1, except that there is the additional option of specifying an
Encoding Variation or Invalid Field Encoding associated with either the whole ASN1_Type or any ASN.1 Type within
the ASN1_Type. This is done by giving a specific encoding identifier followed by any necessary actual parameter list, in
order to specify explicit encodings for individual fields or other subtypes of a PDU, which override the encoding rules
and encoding variations applicable to the PDU as a whole; the encoding identifier, if any, shall identify either one of the
Encoding Variations or an Invalid Field Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

For identifiers within that definition the dash symbol (-) shall not be used. The underscore symbol (_) may be used
instead. The type identifier in the table header is the name of the first type defined in the table body.

Types referred to from the type definition shall be defined in other ASN.1 type definition tables, be defined by reference
in the ASN.1 type reference table or be defined locally in the same table, following the first type definition. Locally
defined types shall not be used in other parts of the test suite.

ASN.1 type definitions used within TTCN shall not use external type references as defined in ISO/IEC 8824-1: 1994.
ASN.1 comments can be used within the table body. The comments column shall not be present in this table.

Comments in ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of line", whichever
comes first. This prevents a single ASN.1 comment from spanning several lines. ATS specifiers are recommended to
facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with "--".

This information shall be provided in the following proforma:

ASN.1 Type Definition

Type Name : ASN1_Typeld&Fulld

Group . [ASN1_TypeGroupReference]
Encoding Variation . [EncVariationCall]

Comments . [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 9: ASN.1 Type Definition

EXAMPLE 12: An ASN.1 Test Suite Type definition

ASN.1 Type Definition

Type Name . DATE_type
Comments . toillustrate the structure of ASN.1 type definitions
Type Definition

SEQUENCE {

day DAY _type,

month MONTH_type,

year YEAR_type

}

-- local DAY _type --
DAY_type::= INTEGER {first(1), last(31)}

-- MONTH_type and YEAR_type are defined in other ASN.1 Type Definitions tables --

ETSI

44 TR 101 666 V1.0.0 (1999-05)

11.2.3.5 ASN.1 Type Definitions by Reference

Types can be specified by a precise reference to an ASN.1 type defined in an OSI standard or by referencing an ASN.1
type defined in an ASN.1 module attached to the test suite. The following information shall be supplied for each type:

a) its name,

where this name may be used throughout the entire test suite. This name shall be specified without a Fullldentifier;
b) the type reference,

which shall follow the identifier rules stated in ISO/IEC 8824-1: 1994;

¢) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ISO/IEC 8824-1: 1994, and an
optional Objectldentifier; the module shall be unique within the domain of interest;

d) the Encoding Variations to be used for such ASN1_Types within a PDU;

In order to specify explicit Encoding Variations for entire ASN1_Types, which override the Encoding Variations
applicable to any PDU in which this ASN1_Type is used, this optional entry shall reference an entry in the relevant
Encoding Variations table (e.g., to change from SD to LD(3)). If this entry is not used, then the applicable Encoding
Variations are those applicable to each PDU within which this ASN1_Type is used. See 11.16.4.

This information shall be provided in the following proforma:

ASN.1 Type Definitions By Reference

Group . [ASN1_TypeGroupReference]
Type Name Type Reference Module Identifier Encoding Variation Comments
ASN1_Typeld- TypeReference ASN1_Moduleldentifier | [EncVariationCall] [FreeText]
&Fullld

Detailed Comments: [FreeText]

Proforma 10: ASN.1 Type Definitions By Reference

Collective comments may be used in this table according to figure 2.

Since the ASN.1 types imported from ASN.1 modules can contain identifiers, type references and value references that
follow the identifier rules in ISO/IEC 8824-1: 1994, they can contain hyphens. To be able to use the imported
definitions in TTCN it is necessary to change the hyphens in imported identifiers to underscore. This is done in the
import process.

ETSI

45 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 13: The following type definition in an ASN.1 module:
module-1 DEFINITIONS BEGIN
Type-1::=SEQUENCE { fieldl Sub-Type-1,
field2 BIT STRING {first-bit(0), second-bit(1) } }
END

can be imported to TTCN with:

ASN.1 Type Definitions By Reference
Type Name Type Reference Module Identifier Comments
Type_1 Type-1 module-1
Sub_Type 1 Sub-Type-1 module-1

The above reference definition of Type-1 is equivalent to the following definition:

ASN.1 Type Definition

Type Name . Type_1
Comments :

Type Definition
SEQUENCE { fieldl Sub_Type_ 1,

field2 BIT STRING {first_bit(0), second_bit(1) } }

11.3 TTCN operators and TTCN operations

11.3.1 Introduction

TTCN supports a number of predefined operators, operations and mechanisms that allow the definition of Test Suite
Operations. These operators and operations may be used throughout any dynamic behaviour descriptions and
constraints.

11.3.2 TTCN operators

11.3.2.1 Introduction

The predefined operators fall into three categories:
a) arithmetic;
b) relational;
c) Boolean.

The precedence of these operators is shown in table 3. Parentheses may be used to group operands in expressions, a
parenthesized expression has the highest precedence for evaluation.

Within any row in table 3, the listed operators have equal precedence. If more than one operator of equal precedence
appear in an expression, the operations are evaluated left to right.

ETSI

46 TR 101 666 V1.0.0 (1999-05)

Table 3: Precedence of Operators

highest
()
Unary + - NOT
* | MOD AND
Binary + - OR
= < > <> >= <=
lowest

11.3.2.2 Predefined arithmetic operators
The predefined arithmetic operators are:
e MOD

They represent the operations of addition, subtraction, multiplication, division and modulo. Operands of these operators
shall be of type INTEGER.€., TTCN or ASN.1 predefined) or derivations of INTEGHER (subrange). ASN.1
Named Values shall not be used within arithmetic expressions as operands of operations.

The result type of arithmetic operations is INTEGER.

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa.

The result of performing the division operation (/) on two INTEGER values gives the whole INTEGER value resulting
from dividing the first INTEGER by the secondk(, fractions are discarded).

The result of performing the MOD operation on two INTEGER values gives the remainder of dividing the first
INTEGER by the second.
11.3.2.3 Predefined relational operators
The predefined relational operators are:
II:II I II<II | II>II | II<>II |I>:II II<:II

They represent the relations of equality, less than, greater than, not equal to, greater than or equal to and less than or
equal to. Operands of equality (=) and not equal to (<>) may be of an arbitrary type. The two operands shall be
compatible. All other relational operators shall have operands only of type INTEGER or derivatives of INTEGER. The
result type of these operations is BOOLEAN.

In string comparisons BITSTRING, HEXSTRING, OCTETSTRING and all kinds of CharacterStrings may contain the
wildcard characters AnyOrNone (*) and AnyOne (?). In this case the comparison is performed according to the
pattern matching rules defined in 12.6.2.

11.3.24 Predefined Boolean operators

The predefined Boolean operators are

NOT AND OR

They represent the operations of negation, logical AND and logical OR. Their operands shall be of type BOOLEAN
(TTCN or ASN.1 or predefined). The result type of the Boolean operators is BOOLEAN.

The logical AND returns the value TRUE if both its operands are TRUE; otherwise it returns the value FALSE. The
logical OR returns the value TRUE if at least one of its operands is TRUE; it returns the value FALSE only if both
operands are FALSE. The logical NOT is the unary operator that returns the value TRUE if its operand was of value
FALSE and returns the value FALSE if the operand was of value TRUE.

ETSI

47 TR 101 666 V1.0.0 (1999-05)

11.3.3 Predefined operations

11.3.3.1 Introduction

The predefined operations fall into two categories:
a) conversion;
b) others.

Predefined operations may be used in every test suite. They do not require an explicit definition using a Test Suite
Operation Definition table. When a predefined operation is invoked:

a) the number of the actual parameters shall be the same as the number of the formal parameters; and
b) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and
¢) all variables appearing in the parameter list shall be bound.

Each of the predefined operations is presented in the following format:

OPERATION_NAME (FORMAL_PARAMETER_LIST)] RESULT_TYPE
11.3.3.2 Predefined conversion operations

11.3.3.21 Introduction
TTCN supports the following predefined operations for type conversions:
a) HEX_TO_INT converts HEXSTRING to INTEGER,;
b) BIT_TO_INT converts BITSTRING to INTEGER,;
¢) INT_TO_HEX converts INTEGER to HEXSTRING;
d) INT_TO_BIT converts INTEGER to BITSTRING.

These operations provide encoding rules within the context of the operations only. It is invalid to assume these encoding
rules apply outside the domain of the operations in TTCN.

11.3.3.2.2 HEX_TO_INT
HEX_TO_INT(hexvalue:HEXSTRING) INTEGER
This operation converts a single HEXSTRING value to a single INTEGER value.

For the purposes of this conversion, a HEXSTRING shall be interpreted as a positive base 16 INTEGER value. The
rightmost HEX digit is least significant, the leftmost HEX digit is the most significant. The HEX digits O .. F represent
the decimal values O .. 15 respectively.

11.3.3.2.3 BIT_TO_INT
BIT_TO_INT(bitvalue:BITSTRING)J INTEGER
This operation converts a single BITSTRING value to a single INTEGER value.

For the purposes of this conversion, a BITSTRING shall be interpreted as a positive base 2 INTEGER value. The
rightmost BIT is least significant, the leftmost BIT is the most significant. The bits 0 and 1 represent the decimal values
0 and 1 respectively.

11.33.24 INT_TO_HEX

INT_TO_HEX(intvalue, slength:INTEGER) HEXSTRING

ETSI

48 TR 101 666 V1.0.0 (1999-05)

This operation converts a single INTEGER value to a single HEXSTRING value. The resulting stiemgtisHEX
digits long.

For the purposes of this conversion, a HEXSTRING shall be interpreted as a positive base 16 INTEGER value. The
rightmost HEX digit is least significant, the leftmost HEX digit is the most significant. The HEX digits O .. F represent
the decimal values O .. 15 respectively.

If the conversion yields a value with fewer HEX digits than specified in the second parameter, then the HEXSTRING
shall be padded on the left with zeros.

A test case error shall occur if thévalueis negative or if the resulting HEXSTRING contains more HEX digits than
specified in the second parameter.

11.3.3.2.5 INT_TO_BIT
INT_TO_BIT(intvalue, slength:INTEGER) BITSTRING

This operation converts a single INTEGER value to a single BITSTRING value. The resulting stiémgikbits
long.

For the purposes of this conversion, a BITSTRING shall be interpreted as a positive base 2 INTEGER value. The
rightmost BIT is least significant, the leftmost BIT is the most significant. The bits 0 and 1 represent the decimal values
0 and 1 respectively.

If the conversion yields a value with fewer bits than specified in the second parameter, then the BITSTRING shall be
padded on the left with zeros.

A test case error shall occur if thévalueis negative or if the resulting BITSTRING contains more bits than specified
in the second parameter.

11.3.3.3 Other predefined operations

11.3.3.3.1 IS_PRESENT
IS_PRESENT (DataObjectReferenéé)BOOLEAN

As an argument the operation shall take a reference to a field within a data object only if it is defined as being
OPTIONAL or if it has a DEFAULT value. The field may be of any type. The result of applying the operation is the
BOOLEAN value TRUE if and only if the value of the field is present in the actual instance of the data object.
Otherwise the result is FALSE.

The argument of the operation shall have the format as defined in 15.10.2.

EXAMPLE 14: Use of IS_PRESENT:
if received_PDU is of ASN.1 type
SEQUENCE { field_ 1 INTEGER OPTIONAL,
field 2 SEQUENCE OF INTEGER }
then, the operation call
IS_PRESENT(received_PDU.field_1)

evaluates to TRUE if field_1 in the actual instance of received_PDU is present.

11.3.3.3.2 IS CHOSEN
IS_CHOSEN(DataObjectReferendé) BOOLEAN

ETSI

49 TR 101 666 V1.0.0 (1999-05)

The operation returns the BOOLEAN value TRUE if and only if the data object reference specifies the variant of the
CHOICE type that is actually selected for a given data object. Otherwise the result is FALSE. The operation shall not be
applied to data objects or fields of data objects other than those of ASN.1 type CHOICE. The argument of the operation
shall have the format as defined in 15.10.2.

EXAMPLE 15: Use of IS_CHOSEN:
if received_PDU is of ASN.1 type
CHOICE{ pl PDU_typel,
p2 PDU_type2,
p3 PDU_type }
then, the operation call
IS_CHOSEN(received_PDU.p2)

returns TRUE if the actual instance of received_PDU carries a PDU of the type PDU_type2.

11.3.3.3.3 NUMBER_OF ELEMENTS
NUMBER_OF ELEMENTS(Value]l INTEGER

The operation returns the actual number of elements of a value that is of type ASN.1 SEQUENCE OF or SET OF. Its
result is fully compatible with that of the equivalent ASN.1 SIZE constraint applied to objects of these types. The
operation shall not be applied to values other than of ASN.1 type SEQUENCE OF or SET OF. The argument of the
operation shall have the format as defined in 15.10.2.

EXAMPLE 16: Use of NUMBER_OF_ELEMENTS:
if received_PDU is of ASN.1 type
SEQUENCE { field_1 INTEGER OPTIONAL,
field_2 SEQUENCE OF INTEGER}
then, the operation call
NUMBER_OF_ELEMENTS(received_PDU.field_2)
returns the number of elements of the SEQUENCE OF INTEGER within the actual data object received_PDU.

Also, NUMBER_OF_ELEMENTS ({3, 0, 5}) returns 3.

11.3.3.34 LENGTH_OF
LENGTH_OF(Value)d INTEGER

The operation returns the actual length of a value that is of type BITSTRING, HEXSTRING, OCTETSTRING, or
CharacterString or of ASN.1 type BIT STRING or OCTET STRING. The units of length for each string type are
defined in table 5 in 11.18.2.

NOTE: These units of length are compatible with those used in ASN.1 SIZE constraints for objects of ASN.1
types, but not for literal values which in this context in TTCN are considered to be of the corresponding
TTCN type. Thus, an hstring such as 'F3'H which could in ASN.1 be of type BIT STRING or OCTET
STRING, will be interpreted as the TTCN type HEXSTRING.

The argument of the operation shall have the format as defined in 15.10.2.

ETSI

50 TR 101 666 V1.0.0 (1999-05)

The operation shall not be applied to values other than of type BITSTRING, HEXSTRING, OCTETSTRING, or
CharacterString, or of ASN.1 type BIT STRING or OCTET STRING.

EXAMPLE 17: Use of LENGTH_OF
If S is of type BITSTRING or ASN.1 type BIT STRING and ='010'B then LENGTH_OF(S) returns 3
If S is of type HEXSTRING and ='F3'H then LENGTH_OF(S) returns 2
If Sis of type OCTETSTRING and ='F2'0O then LENGTH_OF(S) returns 1
If S is of a CharacterString type and ="EXAMPLE" then LENGTH_OF(S) returns 7
If Sis of ASN.1 type BIT STRING and ='F3'H then LENGTH_OF(S) returns 8
If Siis of ASN.1 type OCTET STRING and ='F3'H then LENGTH_OF(S) returns 1
If Sis of ASN.1 type OCTET STRING and ='01010011'B then LENGTH_OF(S) returns 1
Also, LENGTH_OF (INT_TO_HEX (26, 4)) returns 4
LENGTH_OF ('"F3'H) returns 2

and, LENGTH_OF ("Length_of Example") returns 17

11.3.4 Test Suite Operation definitions and descriptions

11.3.4.1 Introduction

The ATS specifier may define operations specific to a test suite. To define a new operation, the following shall be
provided:

a) a name for the operation;
b) a list of the input parameters and their types.

This is a list of the formal parameter names and types. A colon and then the name of the parameter's type shall follow
each parameter name.

When more than one parameter of the same type is used, the parameters may be specified as a parameter sub-list. When
a parameter sub-list is used, a comma shall separate the parameter names from each other. A colon and then the name of
the type of the parameter shall follow the final parameter in the list.

When more than one parameter and type pair (or parameter list and type pair) is used, semicolons shall separate the
pairs from each other.

Only predefined types and data types as defined in the Test Suite Type definitions, ASP type definitions or PDU type
definitions may be used as types for formal parameters. PCO types shall not be used as formal parameter types. All
parameters shall be passed by value, meaning that in evaluating a call of a test suite operation, the actual parameters are
assigned to the corresponding formal parameters, as if in an assignment statement.

EXAMPLE 18: Parameter lists

The following are equivalent methods of specifying a parameter list using two INTEGER parameters and one
BOOLEAN parameter:

(AZINTEGER; B:IINTEGER; C:BOOLEAN)
(A, BIINTEGER; C:BOOLEAN)

ETSI

51 TR 101 666 V1.0.0 (1999-05)

c) the type of the result,

which shall follow the rules for the parameter types in b);
d) a definition of the operation,

which shall consist of one of the following:

1) a procedural definition, which when evaluated results in the evaluation of a RETURNVALUE statement to
provide the result of the operation, including explanatory comments embedded within the procedural
definition at appropriate places as text delimited by "/*" and "*/", or

2) adescription of the operation in text, possibly including a reference to a publicly available specification of the
algorithm to be applied when the operation is invoked, plus at least one example showing an invocation and
corresponding result; the explanation should begin by stating the operation name, followed by a parenthesized
list containing the parameter names of the operation; this provides a "pattern” invocation for the operation;

e) optionally, further comment describing the operation, provided either in the Comments part of the table header or
in the Detailed Comments area of the table.

The use of procedural definitions is recommended in order to provide precision in the definition of the operations, but a
textual explanation is allowed as an alternative for backwards compatibility.

In the case of a procedural definition, this information shall be provided in the format shown in the following proforma:

Test Suite Operation Procedural Definition

Operation Name . TS_Procld&ParList

Group . [TS_ProcGroupReference]
Result Type : Type

Comments . [FreeText]

Definition

TS_OpProcDef

Detailed Comments: [FreeText]

Proforma 11: Test Suite Operation Procedural Definition

In the case of a textual description, this information shall be provided in the following proforma:

Test Suite Operation Description

Operation Name . TS_Opld&ParList
Group . [TS_OpGroupReference]
Result Type : Type
Comments . [FreeText]
Description
FreeText

Detailed Comments: [FreeText]

Proforma 12: Test Suite Operation Description

ETSI

52 TR 101 666 V1.0.0 (1999-05)

11.3.4.2 Parameters

A test suite operation may be compared to a function in an ordinary programming language. Values shall only be passed
into the operation by formal parameters. Each formal parameter shall be declared to be a Predefined Type, a Test Suite
Type Identifier, ASP Type Identifier, PDU Type Identifier, CM Type Identifier or the metaRijté¢ Test suite

variables, test case variables, test suite constants, test suite parameters and constraints shall not directly be used within
the procedural definition of a test suite operation, but if required in the test suite operation shall be passed as actual
parameters.

There shall be no side-effects, that is, the parameters to the operation shall not be altered as a result of any call of the
operation. Predefined operations and other test suite operations may be used within the procedural definition of a test
suite operation, without having to be passed as actual parameters.

When a Test Suite Operation is invoked:
a) the number of the actual parameters shall be the same as the number of the formal parameters;
b) each actual parameter shall evaluate to an element of its corresponding formal parameter's type;
c) all variables appearing in the actual parameter list shall be bound; and

d) the actual parameters shall be passed by value.

11.3.4.3 Variables and Identifiers

If a procedural definition is used, it may include the declaration of local variables, placed at the head of the procedural
definition, between the keyword#8AR andENDVAR. These variables may be of any type allowed in TTCN. The

scope of these local variables is the procedural definition itself. These declarations declare lists of variable identifiers,
each of a given type and each list may either be declaredI6AEIC or not. Variables, botBTATIC and those not
declared aSTATIC, may be given an optional initial value.

NOTE: Itis recommended always to provl8EATIC variables with an initial value.

The variables which are not declared tcSJATIC are initialized every time the operation is invoked, with the

specified initial value, if any, and thus they shall not convey a value from one evaluation of the test suite operation to
another. Those which are declared t&SFATIC are initialized with the specified initial value, if any, the first time the
operation is invoked within a given test component, or within a given test case if test components are not used, and
thereafter they retain their values from one invocation to the next within that test component or test case.

Variables which are not assigned an initial value are considered to be unbound and shall be explicitly bound to a value
by an assignment in the operation body before being used in an expression. If an unbound variable is used in an
expression then it is a test case error.

Each identifier used in the procedural definition of a test suite operation shall be one of the following:
a) locally declared variable name;
b) atype name, used in a variable declaration;
c) aformal parameter name declared in a formal parameter list of the operation;
d) a test suite operation name.

The scope of formal parameter names and locally declared variable names is the procedural definition of the test suite
operation. Thus, the values of all other types of identifier are not directly accessible within the procedural definition of a
test suite operation. To access such values they shall be passed as actual parameters to the test suite operation.

11.34.4 Procedure Statements

In a procedural definition, following the declaration of local variables, if any, there shall be a procedure statement of one
of the following kinds:

a) a Return statement;

ETSI

53 TR 101 666 V1.0.0 (1999-05)

b) an Assignment statement;
c) an If statement;

d) a While loop;

e) a Case statement;

f) a block containing a sequence of procedure statements separated by semicolons and all enclosed by the keywords
BEGIN andEND.

Comments may be embedded as text within procedural statements, delimited by "/*" and "*/*. Comments shall not be
embedded within other comments.
11.3.4.5 ReturnValue statements

Each evaluation of a test suite operation shall end with the evaluation of a ReturnValue statement, consisting of the
keywordRETURNVALUE followed by an expression. This statement shall return the value of the given expression as
the result of the test suite operation. The type of this result shall match the Result Type specified in the header of the test
suite operation definition table.

11.3.4.6 Assignment statements

The form of Assignment is the same as in the TTCN behaviour descriptions (see 15.10.4), except that it is not enclosed
in parentheses. The DataObjectReference on the left-hand side shall begin with a local variable. If the type of the local
variable is a structured type then the DataObjectReference may access a component of that structure (using a record
reference, array reference or bit reference, as appropriate, see 15.10.2 and 15.10.3).
11.3.4.7 If statements
There are two forms of If statement:

- IF expressiomMHEN procedure-statemeBLSE procedure-statemeBNDIF;

- IF expressioMHEN procedure-statemeBENDIF.

The expression following the keywolid shall be evaluated first and shall evaluate to a Boolean value. If this evaluates
to TRUE then the procedure statement following the keywid#EN shall be evaluated. If the expression evaluates to
FALSE then the procedure statement following the keyvEIr8E, if any, is evaluated. The use of the keyword

ENDIF to end the If statement allows the procedure statements follGWiE§ andELSE to be If statements without
having to be enclosed in a block.

11.3.4.8 While loop
A While loop takes the form:
-WHILE expressiomO procedure-statemeBNDWHILE .

The expression following the keywowHILE shall be evaluated first and shall evaluate to a Boolean value. If it

evaluates tdRUE then the procedure statement following the keyvid@shall be evaluated and then, if no

ReturnValue statement has been evaluated, the process shall be repeated starting with the evaluation of the expression
again. As soon as the expression evaluatBa\t&E the evaluation of the While loop is complete.

ETSI

54 TR 101 666 V1.0.0 (1999-05)

11.3.4.9 Case statement
A Case statement takes one of the two following forms:
- CASE expressiorOF
integer-label_1: procedure-statement_1;

integer-label_2: procedure-statement_2;

integer-label_n: procedure-statement_n;
ELSE

procedure-statement
ENDCASE
- CASE expressiorOF

integer-label_1: procedure-statement_1;

integer-label_2: procedure-statement_2;

integer-label_n: procedure-statement_n;
ENDCASE

The expression following the keywo@ASE shall be evaluated first and shall evaluate to a positive integer which shall
match at most one of the integer labels in the body of the Case statement. The procedure statement following the
matched integer label, if any, shall be evaluated and this completes the evaluation of the Case statement. If, however, the
result of evaluating the expression does not match any of the integer labels, then the procedure statement following the
keywordELSE, if any, shall be evaluated and this completes the Case statement. If, however, there is no match against
an integer label or alBLSE clause, then the result of the Case statement is a test case error. Thus, the Case statement is
equivalent to a nested sequence of If statements, each testing the expression "(expression) = integer-label_i", possibly
followed by anELSE clause at the innermost level of nesting.

11.3.4.10 Use of Test Suite Operations
A test suite operation together with its actual parameter list may be used wherever an expression is allowed.

Each test suite operation should include appropriate error checking. If an error (e.g. division by zero, an invalid
parameter, a type mismatch, or evaluation of an unbound variable) is detected during evaluation of a test suite operation,
it shall result in a test case error.

ETSI

55 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 19: Definition of the operation SUBSTR:

Test Suite Operation Description
Operation Name . SUBSTR (source:lA5String; start_index, length:INTEGER)
Result Type . IA5String

Description

SUBSTR(source, start_index, lengththe string of lengtten starting from indexstart_indexof the
source stringsource

For example: SUBSTR("abcde",3,2) = "cd"
SUBSTR("abcde",1,3) = "abc"

SUBSTR(source, start_index, lesmall only be defined if
start_index>=1,

len>=0, and
start_index+ len <= (length of source+ 1.

Any attempt to evaluate SUBSTR applied to arguments on which it is not defined will result in a test pase
error.

EXAMPLE 20: Definition of the operation NUMBER_OF _INVOCATIONS:

Test Suite Operation Procedural Definition

Operation Name : NUMBER_OF_INVOCATIONS
Result Type : INTEGER
Definition
VAR STATIC COUNT : INTEGER: 0
ENDVAR
BEGIN

COUNT := COUNT + 1;
RETURNVALUE COUNT
END

Detailed Comments: NUMBER_OF_INVOCATIONS() gives an integer value which is equal to the numbgr of
times this operation has been invoked in the current test component, or test case if test components are not usegl.

11.4 Test Suite Parameter Declarations

The purpose of this part of the ATS is to declare constants derived from the PICS and/or PIXIT which are used to
globally parameterize the test suite. These constants are referred to as Test Suite Parameters, and are used as a basis fol
Test Case selection and parameterization of Test Cases.
The following information relating to each Test Suite Parameter shall be provided:
a) its name;
b) its type,
where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;

c) its default value, if any,

which may be used to suggest suitable values for some test suite parameters such as timeout durations;

d) PICS/PIXIT entry reference,

which is a reference to an individual PICS/PIXIT proforma entry that will clearly identify where the value to be used for
this Test Suite Parameter will be found.

ETSI

56 TR 101 666 V1.0.0 (1999-05)

This information shall be provided in the format shown in the following proforma:

Test Suite Parameter Declarations

Group . [TS_ParGroupReference]
Parameter Name Type Default Value PICS/PIXIT Ref Comments
TS_Parldentifier Type [DefaultValue] FreeText [FreeText]

Detailed Comments: [FreeText]

Proforma 13: Test Suite Parameter Declarations

Collective comments may be used in this table according to figure 2.

EXAMPLE 21: Declaration of Test Suite Parameters:

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments
PAR1 INTEGER PICS question xx
PAR2 INTEGER PICS question yy
PAR3 INTEGER PIXIT question zz

11.5 Test Case Selection Expression Definitions

The purpose of this part of the ATS is to define selection expressions to be used in the Test Case selection process. This
part of the ATS shall meet the requirements of ISO/IEC 9646-2.

A selection expression is associated with one or more Test Groups and/or Test Cases by placing its identifier in the Test
Case Selection Reference column of the Test Suite Structuref and/or Test Case Index. An expression may be referenced
by more than one Test Group and/or Test Case.

Use of a selection expression shall be taken to mean that the Test Case is to be run if the selection expression evaluates
to TRUE.

The following information relating to each Test Case Selection Expression shall be provided:
a) its name;
b) a selection expression,

which shall evaluate to a BOOLEAN value, and which shall use only literal values, Test Suite Parameters, Test Suite
Constants and other selection expression identifiers in its terms;

ETSI

57 TR 101 666 V1.0.0 (1999-05)

This information shall be provided in the format shown in the following proforma:

Test Case Selection Expression Definitions

Group : [SelectExprGroupReference]
Expression Name Selection Expression Comments
SelectExprldentifier SelectionExpression [FreeText]

Detailed Comments: [FreeText]

Proforma 14: Test Case Selection Expression Definitions

Collective comments may be used in this table according to figure 2.

11.6 Test Suite Constant Declarations

The purpose of this part of the ATS is to declare a set of names for mahgesived from the PICS or PIXIT that will
be constant throughout the test suite.

The following information relating to each Test Suite Constant shall be provided:
a) its name;
b) its type,

where the type shall be a predefined type, a simple type or an ASN.1 Type (including PDUs, ASPs and CMs expressed
in ASN.1);

c) its value,

where the terms in the value expression shall not contain: Test Suite Variables or Test Case Variables; the value shall
evaluate to an element of the type indicated in the type column.

This information shall be provided in the format shown in the following proforma:

Test Suite Constant Declarations

Group . [TS_ConstGroupReference]
Constant Name Type Value Comments
TS_Constldentifier Type ConstantExpression [FreeText]

Detailed Comments: [FreeText]

Proforma 15: Test Suite Constant Declarations

Collective comments may be used in this table according to figure 2.

EXAMPLE 22: Declaration of Test Suite Constants

ETSI

58 TR 101 666 V1.0.0 (1999-05)

Test Suite Constant Declarations

Constant Name Type Value Comments
TS_CONST1 BOOLEAN TRUE
TS _CONST2 IA5String "A string"

11.7 Test Suite Constant Declarations by Reference

The purpose of this part of the ATS is to declare a set of names for mahgesived from the PICS or PIXIT that will
be constant throughout the test suite.

The following information relating to each Test Suite Constant shall be provided:
a) its name;
b) its type,

where the type shall be a predefined type or an ASN.1 type (including PDU, ASP or CM types expressed in ASN.1)
imported by an ASN.1 Type Definition By Reference from the ASN.1 module identified by the specified module
identifier;

c) its value reference,
where the value shall correspond to an element of the type indicated in the type column;
d) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ISO/IEC 8824-1: 1994, and an
optional Objectldentifier; the module shall be unique within the domain of interest.

This information shall be provided in the format shown in the following proforma:

Test Suite Constant Declarations By Reference

Group . [TS_ConstGroupReference]
Constant Name Type Value Reference Module Identifier Comments
TS_Constldentifier Type ValueReference ASN1_Moduleldentifier [FreeText]

Detailed Comments: [FreeText]

Proforma 16: Test Suite Constant Declarations By Reference

Collective comments may be used in this table according to figure 2.

11.8 TTCN variables

11.8.1 Test Suite Variable Declarations

A test suite may make use of a set of variables which are defined globally for the test suite, and retain their values
throughout the test suite. These variables are referred to as Test Suite Variables.

A Test Suite Variable is used whenever it is necessary to pass information from one Test Case to another. In concurrent
TTCN, Test Suite Variables shall only be used by the MTC.

The following information shall be provided for each variable declaration:

ETSI

59 TR 101 666 V1.0.0 (1999-05)

a) its name;
b) its type,

where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;
c) its initial value (if any),

where the initial value column is used when it is desired to assign an initial value to a Test Suite Variable at its point of
declaration; the terms in the value expression shall not contain: Test Suite Variables or Test Case Variables; the value
shall evaluate to an element of the type indicated in the type column. Specifying an initial value is optional.

This information shall be provided in the format shown in the following proforma:

Test Suite Variable Declarations

Group . [TS_VarGroupReference]
Variable Name Type Value Comments
TS_Varldentifier Type [ConstantExpression] [FreeText]

Detailed Comments: [FreeText]

Proforma 17: Test Suite Variable Declarations

Collective comments may be used in this table according to figure 2.

Since it is possible that any particular Test Case may be run independently of the others in the test suite, it is necessary
that the use made of Test Suite Variables does not make assumptions about the ordering of the Test Case execution.

EXAMPLE 23: Declaration of Test Suite Variables

Test Suite Variable Declarations

Variable Name Type Value Comments

state IA5String "idle" Used to indicate the final
stable state of the previous
Test Case, if any, in order tqg
help determine which
preamble to use.

11.8.2 Binding of Test Suite Variables

Initially Test Suite Variables are unbound. They may become bound (or be re-bound) in the following contexts:
a) atthe point of declaration if an initial value is specified;
b) when the Test Suite Variable appears on the left-hand side of an assignment statement (see 15.10.4);

Once a Test Suite Variable has been bound to a value, the Test Suite Variable will retain that value until either it is
bound to a different value, or execution of the test suite terminates - whichever occurs first.

If an unbound Test Suite Variable is used in the right-hand side of an assignment, then it is a test case error.

ETSI

60 TR 101 666 V1.0.0 (1999-05)

11.8.3 Test Case Variable Declarations

A test suite may make use of a set of variables which are declared globally to the test suite but whose scope is defined to
be local to the Test Case.

In concurrent TTCN, each test component, including the MTC, receives a fresh copy of all Test Case Variables when it
is created. These variables are referred to as Test Case Variables.

The following information shall be provided for each variable declaration:
a) its name;
b) its type,

where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;
¢) itsinitial value (if any),

where the initial value column is used when it is desired to assign an initial value to a Test Case Variable at its point of
declaration; the terms in the value expression shall not contain: Test Suite Variables or Test Case Variables; the value
shall evaluate to an element of the type indicated in the type column. Specifying an initial value is optional.

This information shall be provided in the format shown in the following proforma:

Test Case Variable Declarations

Group . [TC_VarGroupReference]
Variable Name Type Value Comments
TC_Varldentifier Type [ConstantExpression] [FreeText]

Detailed Comments: [FreeText]

Proforma 18: Test Case Variable Declarations

Collective comments may be used in this table according to figure 2.

NOTE: Caution should be exercised when using Test Case Variables as local variables within a Test Step, in order
to avoid usage conflicts with other Test Steps or Test Case Variables. A test suite specifier may avoid
such problems by adopting a naming convention which will result in all such variables being uniquely
named within a test suite.

11.8.4 Binding of Test Case Variables

Initially Test Case Variables are unbound. They may become bound (or be re-bound) in the following contexts:
a) atthe point of declaration if an initial value is specified;
b) when the Test Case appears on the left-hand side of an assignment statement (see 15.10.4).

Once a Test Case Variable has been bound to a value, the Test Case Variable will retain that value until either it is
bound to a different value, or execution of the Test Case terminates - whichever occurs first. At termination of the Test
Case, the Test Case Variable becomes re-bound to its initial value, if one is specified, otherwise it becomes unbound.

If an unbound Test Case Variable is used in the right-hand side of an assignment, then it is a test case error.

11.9 PCO Type Declaration

This part of the ATS lists the set of service boundaries where the PCOs (Points of Control and Observation) are located.

ETSI

61 TR 101 666 V1.0.0 (1999-05)

The following information shall be provided for each PCO types used in the test suite:
a) its name,

which is used to identify the service boundary where the PCO is located;
b) its role,

which shall be declared either as UT or LT in the Role column or by descriptive text in the Comment column; the
predefined identifiel T indicates that the PCO is an upper tester PCQ_@inspecifies a lower tester PCO.

NOTE: In a test suite using concurrency, the role of a PCO type may need to be described in terms of the nature of
the test component and underlying service provider to be coupled by PCOs of this type.

This information shall be provided in the format shown in the following proforma:

PCO Type Declarations
Group . [PCO_GroupReference]
PCO Type Role Comments

PCO_Typeldentifier [PCO_Role] [FreeText]

Detailed Comments: [FreeText]

Proforma 19: PCO Type Declarations

Collective comments may be used in this table according to figure 2.

11.10 PCO Declarations

This part of the ATS lists the set of points of control and observation (PCOs) to be used in the test suite and explains
where in the testing environment these PCOs exist.

NOTE 1: The number of PCOs is, where applicable, as defined in ISO/IEC 9646-1 and ISO/IEC 9646-2 for the test
method(s) identified in the Test Suite Structure table. In TTCN, PCOs may also be used in ways not
described in ISO/IEC 9646-2, for example to communicate with parts of the test system or test
environment not defined in the test suite (e.g. to manipulate frequencies or simulate handovers for radio

protocol testing).

NOTE 2: TTCN behaviour statements specified for execution at the UT PCO should not place requirements beyond
those specified by ISO/IEC 9646-2.

In TTCN the PCO model is based on two First In First Out (FIFO) queues:
- one output queue for sending ASPs and/or PDUs;
- one input queue for receiving ASPs and/or PDUs.

The output queue is assumed to be located within the underlying service-provider or in the case of the UT, within the
IUT.

A SEND event at a PCO is successful when the event is passed from the LT to the service-provider, or when the event is
passed from the UT to the IUT.

For the purpose of receiving events the tester has an input queue. All incoming events are queued and processed by the
tester in the same order they were received, and without loss of any events.

NOTE 3: The queue model is only an abstract model and is not intended to imply a specific implementation.

The following information shall be provided for each PCO used in the test suite:

ETSI

62 TR 101 666 V1.0.0 (1999-05)

a) its name,
which is used in the behaviour descriptions to specify where particular events occur;
b) its type,

as declared in the PCO Type Declaration tables, and which may if necessary be followed by information concerned with
multiplexing requirements to be met immediately below this PCO but above the service boundary; if the activity at two
or more PCOs is to be multiplexed together by the service provider (e.g. onto a single connection end-point) then, in the
PCO declarations for these PCOs, the PCO type shall be followed by the same MuxValue (i.e. a test suite parameter)
given in parentheses; the precise meaning of this test suite parameter shall be specified in the relevant PIXIT;

NOTE 4: See also F.11 for further explanation of MuxValue.

EXAMPLE 24: Use of MuxValue

PCo 1 | L]
MeSAT (MuxA) MN-SAP (MuxA)

MNeServive plus Multiplexing Service Provider T

c) itsrole,

which may be omitted if it is specified in the PCO type declaration tables for each of the PCO types used; if the role is
not specified in a PCO type declaration table then it shall be declared either as UT or LT in the Role column or by
descriptive text in the Comment column; the predefined identiflemdicates that the PCO is an upper tester PCO and
LT specifies a lower tester PCO; if the Role column is used then its contents shall be consistent with the role, if any,
given in the PCO type declaration tables.

NOTE 5: In a test suite using concurrency, the role of a PCO may need to be described in terms of the nature of the
test component and underlying service provider to be coupled by this PCO.

This information shall be provided in the format shown in the following proforma:

PCO Declarations

Group . [PCO_GroupReference]
PCO Name Type Role Comments
PCO_ldentifier PCO_Typeldentifier [PCO_Role] [FreeText]
[(MuxValue)]

Detailed Comments: [FreeText]

Proforma 20: PCO Declarations

Collective comments may be used in this table according to figure 2.

EXAMPLE 25: Declaration of PCOs

ETSI

63 TR 101 666 V1.0.0 (1999-05)

PCO Declarations

PCO Name PCO Type Role Comments

L TSAP LT Transport service accegs
point at the lower tester

Session service access
U SSAP ut point at the upper testef.

Points of control and observation are usually just SAPs, but in general can be any appropriate points at which the test
events can be controlled and observed. However, it is possible to define a PCO to correspetuf ®APs, provided
all the SAPs (Service Access Point) comprising that PCO are:

- at the same locationé., in the LT or in the UT);
- SAPs of the same service.

When a PCO corresponds to several SAPs the appropriate address is used to identify the individual SAP. PCOs are
normally associated with one service access point of the (N-1) service-provider or the IUT.

NOTE 6: A PCO may not be related to a SAP at all. This could be the case when a layer is composed of sublayers
(e.g.,in the Application layer, or in the lower layers, where a subnetwork point of attachment is not a
SAP).

11.11 CP Declarations

CPs are used to facilitate the exchange of CMs between test components. CPs are modelled as two queues, one for each
direction of communication. In this respect they are similar to PCOs (see figure 3). A difference between CPs and PCOs
is that CPs connect two test components, while PCOs connect a test component with the external environment, usually
either the IUT or a service provider.

Figure 5: Model of a CP

CPs can be realized either by local communication or by communication that spans physical boundaries.

Communication via CPs is asynchronous, that is, communication is achieved by one test component sending a CM to its
partner, and its partner receiving the CM when ready. The test component that initiated the CM, however, proceeds with
execution immediately after sending the CM. If it is required that the sending test component suspends its activity until
the CM has been received, a test suite specifier should use a handshake mechanism. An example of how such a
handshake can be specified is shown in figure 6.

A_CP! READY E— A_CP? READY
A_CP? OK A_CP! OK

Figure 6: Example of a simple handshake

All CPs shall be declared. The name of each CP shall be unique within the test suite.

ETSI

64 TR 101 666 V1.0.0 (1999-05)

This information shall be provided in the format shown in the following proforma:

CP Declarations

Group : [CP_GroupReference]
CP Name Comments
CP_ldentifier [FreeText]

Detailed Comments: [FreeText]

Proforma 21: CP Declarations

Collective comments may be used in this table according to figure 2.

11.12 Timer Declarations

A test suite may make use of timers. The following information shall be provided for each timer:
a) the timer name;
b) the optional timer duration,

where the default duration of the timer shall be an expression which may be omitted if the value cannot be established
prior to execution of the test suite; the terms in the value expression shall not contain: Test Suite Variables or Test Case
Variables; the timer duration shall evaluate to an positive INTEGER value;

c) the time unit,

where the time unit shall be one of the following:
1) ps(i.e., picosecond);
2) ns(i.e.,nanosecond);
3) us(i.e., microsecond);
4) ms (i.e., millisecond);
5) s(i.e.,second);
6) min (i.e., minute).

Different timers may use different units within the same test suite. If a PICS or PIXIT entry exists, the timer declaration
shall specify the same units included in the PICS/PIXIT entry.

ETSI

65 TR 101 666 V1.0.0 (1999-05)

This information shall be provided in the format shown in the following proforma:

Timer Declarations

Group . [TimerGroupReference]
Timer Name Duration Unit Comments
Timerldentifier [ConstantExpression] TimeUnit [FreeText]

Detailed Comments: [FreeText]

Proforma 22: Timer Declarations

Collective comments may be used in this table according to figure 2.

Each Test Component gets a fresh copy of all timers when it starts executing its behaviour.

EXAMPLE 26: Declaration of timers

Timer Declarations

Timer Name Duration Unit Comments
wait 15 S General-purpose wait.
no_response A min Used to wait for IUT to connect

or react to connection

establishment, longer duration
than general-purpose wait. Getps
value from PIXIT.

Duration to be established
during execution of the test
suite.

delay_time ms

11.13 Test Components and Configuration Declarations

11.13.1 Test Components

11.13.1.1 Main Test Component

The Main Test Component is intended to fulfil the role of the Lower Tester Control Function (LTCF), as defined in
ISO/IEC 9646-2, 11.5.2. Its behaviour is described in the first tree of the test case behaviour description table and all

trees attached to it. It is responsible for:
a) creating all PTCs required within the current configuration and monitoring their termination;
b) managing CPs that exist between itself and PTCs;

c) computation and assignment of the test verdict using its knowledge of the combined effect of the preliminary
results from the PTCs.

In addition a Main Test Component may manage PCO(s).

ETSI

66 TR 101 666 V1.0.0 (1999-05)

Only the Main Test Component shall directly use Test Suite Variables. Variables can be passed to PTCs in the CREATE
construct. Parameters are passed by value to prevent side effects.

11.13.1.2 Parallel Test Components

Parallel Test Components are intended to fulfil the role of the Lower Testers or Upper Testers. Their behaviour is
described in the tree which is referenced in a CREATE statement in the MTC, and all trees attached to it. A PTC assigns
preliminary results but does not assign test verdicts.

A PTC shall not:
a) use Test Suite Variables;

b) create other test components.

11.13.1.3 Test Component Declarations

If concurrent TTCN is used, this section of the ATS shall declare all individual test components that are used. These test
components are later referenced from the Test Component Configurations declarations which define specific
configurations.

The following information shall be provided for each test component:
a) its name,

which shall be unique throughout the test suite;
b) its role,

which shall indicate whether the test component is the Main Test Component or a Parallel Test Component, and where
at least one test component shall be a Main Test Component, and at least one test component shall be a Parallel Test
Component

¢) number of PCOs used,

where zero or more PCOs may be associated with the test component;
d) number of CPs used,

where zero or more CPs may be associated with the test component;

This information shall be provided in the format shown in the following proforma:

Test Component Declarations

Group . [TCompGroupReference]
Component Name Component Role Nr of PCOs Nr of CPs Comments
TCompldentifier TCompRole Num_PCOs Num_CPs [FreeText]

Detailed Comments: [FreeText]

Proforma 23: Test Component Declarations

Collective comments may be used in this table according to figure 2.

EXAMPLE 27: Declaration of test components

This Test Component Declarations table can be used in conjunction with the Test Component Configurations CONFIG1
and CONFIG2, illustrated in figure 3 and figure 4, and declared in example 28 and example 29.

ETSI

67 TR 101 666 V1.0.0 (1999-05)

Test Component Declarations
Component Name Component Role Nr PCOs Nr CPs Comments

MTC1 MTC 0 3 Used in Config 1

MTC2 MTC 2 Used in Config 2,with a PCO
TC1 PTC 2 Used in Config 1

TC2 PTC 1 3 Used in Config 1 and Config 2
TC3 PTC 1 2 Used in Config 1

TC4 PTC 0 3 Used in Config 2

TC5 PTC 1 0 Used in Config 2, without a CH

11.13.2 Test Component Configuration Declarations

Test components are used to build a logical architecture, or configuration, that facilitates concurrent execution of TTCN
dynamic behaviour trees. Each Test Component configuration that is used in an Abstract Test Case using concurrency
shall be declared.

The following information shall be provided for each Test Component Configuration:

a) its name,

which shall be unique within the test suite, and shall be referenced from a test case dynamic behaviour table header;

a) a list of the test components belonging to the test configuration,

where the following information shall be provided for each test component:

1)

2)

3)

its name,

which shall have been declared as a test component name. Exactly one of the test components in the
configuration shall be declared as an MTC.

PCOs used,

where a list of zero or more declared PCOs is associated with each test component. The number of PCOs in
the list shall be the same as the number of PCOs declared in the relevant Test Components Declaration. No
PCO shall be used more than once in a single configuration (i.e. test components in one configuration shall
not share PCOs).

CPs used,

where a list of zero or more declared CPs is associated with each test component. The number of CPs in the
list for a PTC shall be the same as the number of CPs declared in the relevant Test Components Declaration.
The number of CPs in the list of an MTC shall not exceed the number of CPs declared. No CP name shall
appear more than once in each CP list. Each CP name in the list for one test component shall appear in the list
for exactly one other test component in the configuration. In other words, each CP name used in the
configuration will appear exactly twice in the configuration table. These CP pairs are used to specify the
connectivity of test components in the configuration.

ETSI

This information shall be provided in the format shown in the following proforma:

68

TR 101 666 V1.0.0 (1999-05)

Test Component Configuration Declaration
Configuration Name TCompConfigldentifier
Group [TCompConfigGroupReference]
Comments [FreeText]
Components Used PCOs Used CPs Used Comments
TCompldentifier [PCO_List] [CP_List] [FreeText]
Detailed Comments: [FreeText]
Proforma 24: Test Component Configuration Declaration
Collective comments may be used in this table according to figure 2.
EXAMPLE 28: Test Component Configuration declaration corresponding to figure 3
Test Component Configuration Declaration
Configuration Name CONFIG_1
Components Used PCOs Used CPs Used
MTC1 MCP1, MCP2, MCP3
TC1 PCO_A MCP1, CP1
TC2 PCO_B MCP2, CP1, CP2
TC3 PCO_C MCP3, CP2

EXAMPLE 29: Test Component Configuration declaration corresponding to figure 4

Test Component Configuration Declaration

Configuration Name CONFIG_2
Components Used PCOs Used CPs Used
MTC2 PCO_D MCP2, MCP3
TC2 PCO_B MCP2, CP1, CP2
TC4 MCP3, CP1, CP2
TC5 PCO_E

ETSI

11.14

11.14.1

69 TR 101 666 V1.0.0 (1999-05)

ASP Type Definitions

Introduction

The purpose of this part of the abstract TTCN test suite is to declare the types of ASPs that may be sent or received at
the declared PCOs. ASP type definitions may include ASN.1 type definitions, if appropriate.

11.14.2

ASP Type Definitions using tables

The following information shall be supplied for each ASP:

a) its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, then the full
name shall follow in parentheses;

b) the PCO type associated with the ASP,

If only a single PCO is defined within a test suite, specifying the PCO type in an ASP type definition is optional.

a) a list of the parameters associated with the ASP,

where the following information shall be supplied for each parameter:

1) its name,

where either:

the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, then
the full name shall follow in parentheses; or

the macro symbol (<-) indicating that the entry in the type column identifies a set of parameters that is to
be inserted directly in the list of ASP parameters; the macro symbol shall be used only with Structured
Types defined in the Structured Types definitions;

2) its type and an optional attribute,

where parameters may be of a type of arbitrarily complex structure, including being specified as a Test Suite
Type (either predefined, Simple Type, Structured Type or ASN.1 type); if a parameter is to be structured as a
PDU, then its type may be stated either:

as a PDU identifier to indicate that in the constraint for the ASP this parameter may be chained to a PDU
constraint of a specific PDU type; or

asPDU to indicate that in the constraint for the ASP this parameter may be chained to a PDU constraint
of any PDU type; and where the optional attribute is Length;

in which case the specification may restrict the parameter to a particular length or a range according to 11.18.
The length values shall be interpreted according to table 5 in 11.18. The boundaries shall be specified in
terms of non-negative INTEGER literals, Test Suite Parameters, Test Suite Constants or the keyword
INFINITY.

The length specifications defined for the ASP parameter type in the Test Suite Type definitions shall not
conflict with the length specifications in the ASP type definitian, the set of strings defined by a length
restriction in an ASP definition shall be a true subset of the set of strings defined by the Test Suite Type
definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no
upper limit of length.

NOTE:

It is usually unnecessary to restrict the length of ASP parameters, but in some cases this may be necessary
in order to effectively restrict the length of a corresponding PDU field in an underlying protocol.

ETSI

70 TR 101 666 V1.0.0 (1999-05)

The parameters of ASP type definitions are considered to be optienal,instances of these types whole
parameters may not be present.

This information shall be provided in the format shown in the following proforma:

ASP Type Definition

ASP Name : ASP_Id&Fullid
Group . [ASP_GroupReference]
PCO Type . [PCO_Typeldentifier]
Comments . [FreeText]
Parameter Name Parameter Type Comments
ASP_ParldOrMacro Type&Attributes [FreeText]

Detailed Comments: [FreeText]

Proforma 25: ASP Type Definition

The Parameter Name and Parameter Type columns shall either be both present or both omitted.

EXAMPLE 30: T_CONNECTrequest Abstract Service Primitive

The figure below shows an example from the Transport Service [ISO 8072]. This could be part of the set of ASPs used
to describe the behaviour of an abstract UT in a DS test suite for the Class 0 Transport. CDA,CGA and QOS are Test
Suite Types [ISO 8073].

ASP Type Definition

ASP Name : CONreq (T_CONNECTrequest)

PCO Type : TSAP

Comments
Parameter Name Parameter Type Comments
Cda (Called Address) CDA ... of upper tester
Cga (Calling Address) CGA ... of lower tester
QoS (Quality of Service) QOS should ensure class 0 is used

Detailed Comments: ASP to be sent at Transport service access point

11.14.3 Use of Structured Types within ASP Type Definitions
There are two possible relationships between a Structured Type and ASP definitions which refer to it, as follows:

a) if a parameter name is given in the definition, then the Structured Type referenced is a substructure. This allows
definition of ASPs containing a multi-level substructure of parameters;

ETSI

71 TR 101 666 V1.0.0 (1999-05)

b) if the macro symbol (<-) is used instead of a parameter name then this is equivalent to a macro expansion; the

entry in the ASP type definition expands directly to a list of parameters without introducing an additional level of
substructure.

The macro symbol shall not be used on the same line as references to types defined in ASN.1 or Simpée, dppes,
Structured Types defined in tabular form can be expanded into other Structured Types as macro expansions.

11.14.4 ASP Type Definitions using ASN.1

Where more appropriate, ASPs can be specified in ASN.1. This shall be achieved by an ASN.1 definition using the
ASN.1 syntax as defined in ISO/IEC 8824-1. The following information shall be supplied for each ASN.1 ASP:

a) its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, then
the full name shall follow in parentheses;

b) the PCO type associated with the ASP,

if only a single PCO is defined within a test suite, specifying the PCO type in an ASP type definition is optional;
c) the ASN.1 ASP type definition,

which shall follow the syntax defined in ISO/IEC 8824-1. For identifiers within that definition the hyphen symbol
(-) shall not be used. The underscore symbol (_) may be used instead. The ASP identifier in the table header is
the name of the first type defined in the table body.

Types referred to from the ASP definition shall be defined in other ASN.1 type definition tables, be defined by
reference in the ASN.1 type reference table or be defined locally in the same table, following the first type
definition. Locally defined types shall not be used in other parts of the test suite.

ASN.1 comments can be used within the table body. The comments column shall not be present in this table.

Comments in ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of line", whichever
comes first. This prevents a single ASN.1 comment from spanning several lines. ATS specifiers are recommended to
facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with "--"

This information shall be provided in the following proforma:

ASN.1 ASP Type Definition

ASP Name : ASP_ld&Fullid

Group . [ASN1_ASP_GroupReference]
PCO Type : [PCO_Typeldentifier]
Comments . [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 26: ASN.1 ASP Type Definition

11.14.5 ASN.1 ASP Type Definitions by Reference

ASPs can be specified by a precise reference to an ASN.1 ASP defined in an OSI standard or by referencing an ASN.1
type defined in an ASN.1 module attached to the test suite. The following information shall be supplied for each ASP:

a) its name,

where this name may be used throughout the entire test suite;

ETSI

72 TR 101 666 V1.0.0 (1999-05)

b) the PCO type associated with the ASP;

if only a single PCO is defined within a test suite, specifying the PCO type in an ASP type definition is optional;
c) the type reference,

which shall follow the identifier rules stated in ISO/IEC 8824-1: 1994;
d) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ISO/IEC 8824-1: 1994 and an
optional Objectldentifier.

This information shall be provided in the following proforma:

ASN.1 ASP Type Definitions By Reference

Group : [ASN1_ASP_GroupReference]
ASP Name PCO Type Type Reference Module Identifier Comments
ASP_Id&Fullld [PCO_Typeldentifier] TypeReference Moduleldentifier [FreeText]

Detailed Comments: [FreeText]

Proforma 27: ASN.1 ASP Type Definitions By Reference

Collective comments may be used in this table according to figure 2.

ASN.1 identifiers type references and value references may contain hyphens. In order to be able to use imported
definitions in TTCN it is necessary to change the hyphens to underscore (see A.4.2.1).

11.15 PDU Type Definitions

11.15.1 Introduction

The purpose of this part of the abstract TTCN test suite is to declare the types of the PDUs that may be sent or received
either directly or embedded in ASPs at the declared PCOs. PDU type definitions may include ASN.1 type definitions, if
appropriate. PDU definitions define the set of PDUs exchanged with the IUT which are syntactically valid with respect

to the ATS but not necessarily valid with respect to the protocol specification.

It is required to declare all fields of the PDUs that are defined in the relevant protocol standard, either explicitly or
implicitly by referring to encoding rules (ASN.1 encoding rules, if applicable).

The encoding of PDU fields shall follow that as defined in the relevant protocol specification unless encoding
information is included in the test suite.

11.15.2 PDU Type Definitions using tables
The definition of PDUs is similar to that of ASPs. The following information shall be supplied for each PDU:
a) its name;

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, then the full
name shall follow in parentheses;

b) the PCO type associated with the PDU,;

if a PDU is sent or received only embedded in ASPs within the whole test suite, specifying the PCO type is optional; if
only a single PCO is defined within a test suite, specifying the PCO type in a PDU type definition is optional,

ETSI

73 TR 101 666 V1.0.0 (1999-05)

¢) the encoding rules to be used for PDUs of this type;

In order to specify explicit encodings for entire PDUs, which override the default global encoding rules for the test suite
as a whole, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g., to change from
BER to DER). If this entry is not used, then the default global encoding rules apply. See 11.16.4.

d) the Encoding Variations to be used for PDUs of this type;

In order to specify explicit Encoding Variations for entire PDUs, which override the default global Encoding Variations
for the test suite as a whole, this optional entry shall reference an entry in the relevant Encoding Variations table (e.g., to
change from SD to LD(3)). If this entry is not used, then the default global Encoding Variations apply. See 11.16.4.

e) alist of the fields associated with the PDU,

where the following information shall be supplied for each field:

1)

2)

3)

its name,
where either:

- the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, then
the full name shall follow in parentheses; or

- the macro symbol (<-) indicating that the entry in the type column identifies a set of fields that is to be
inserted directly in the list of PDU fields; the macro symbol shall be used only with Structured Types
defined in the Structured Type definitions;

its type and an optional attribute;

where fields may be of a type of arbitrarily complex structure, including being specified as a Test Suite Type
(either predefined, Simple Type, Structured Type or ASN.1 type); if a field is to be structured as a PDU, then
its type may be stated either:

- as a PDU identifier to indicate that in the constraint for the PDU this field may be chained to a PDU
constraint of a specific PDU type; or

- asPDU to indicate that in the constraint for the PDU this field may be chained to a PDU constraint of any
PDU type;

and where the optional attribute is Length;

in which case the specification may restrict the field to a particular length or a range according to 11.18. The
length values shall be interpreted according to table 5 in 11.18. The boundaries shall be specified in terms of
non-negative INTEGER literals, Test Suite Parameters, Test Suite Constants or the keyword INFINITY.

The length specifications defined for the PDU field type in the Test Suite Type definitions shall not conflict
with the length specifications in the PDU type definitios., the set of strings defined by a length restriction
in a PDU definition shall be a true subset of the set of strings defined by the Test Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no
upper limit of length.

optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify
explicit encodings for individual fields of a PDU, which override the encoding rules and encoding variations
applicable to the PDU as a whole; the encoding identifier, if any, shall identify either one of the Encoding
Variations or an Invalid Field Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

The fields of PDU type definitions are considered to be optiaralin instances of these types whole fields may
not be present.

ETSI

74

TR 101 666 V1.0.0 (1999-05)

This information shall be provided in the format shown in the following proforma:

PDU Type Definition

PDU Name

Group

PCO Type

Encoding Rule Name
Encoding Variation

PDU_Ild&Fullid
[PDU_GroupReference]
[PCO_Typeldentifier]
[EncodingRuleldentifier]
[EncVariationCall]

Comments [FreeText]
Field Name Field Type Field Encoding Comments
PDU_FieldldOrMacro Type&Attributes [PDU_FieldEncodingCall] [FreeText]

Detailed Comments: [FreeText]

Proforma 28: PDU Type Definition

The Field Name and Field Type columns shall either be both present or both omitted.

EXAMPLE 31: A typical PDU Type Definition

PDU Type Definition

PCO Type : NSAP

PDU Name : INTC (Interrupt Confirm)

Field Name Field Type Comments
GFlI BITSTRING General Format Identifier
LCGN BITSTRING Logical Channel Group Number|
LCN BITSTRING Logical Channel Identifier
PTI OCTETSTRING Packet Type Identifier
EXTRA OCTETSTRING To create long INTC packets

11.15.3 Use of Structured Types within PDU definitions

There are two possible relationships between a Structured Type and PDU definitions which refer to it, as follows:

a) if a field name is given in the definition, then the Structured Type referenced is a substructure. This allows

definition of PDUs containing a multi-level substructure of fields;

b) if the macro symbol (<-) is used instead of a field name then this is equivalent to a macro expansion; the entry in
the PDU type definition expands directly to a list of fields without introducing an additional level of substructure.

The macro symbol shall not be used on the same line as references to types defined in ASN.1 or Simae diylges
Structured Types defined in tabular form can be expanded into other Structured Types as macro expansions.

ETSI

75 TR 101 666 V1.0.0 (1999-05)

11.15.4 PDU Type Definitions using ASN.1

Where more appropriate, PDUs can be specified in ASN.1. This shall be achieved by an ASN.1 definition using the

ASN.

a)

b)

d)

e)

Comments in ASN.1 start with

1 syntax as defined in ISO/IEC 8824-1. The following information shall be supplied for each ASN.1 PDU:

its name, where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is
used, then the full name shall follow in parentheses;

the PCO type associated with the PDU; if a PDU is always sent or received embedded in ASPs, then specification
of the PCO type in the PDU type definition is optional; if only a single PCO is defined within a test suite, then
specification of the PCO type in the PDU type definition is optional;

the encoding rules to be used for PDUs of this type; in order to specify explicit encodings for entire PDUs, which
override the default global encoding rules for the test suite as a whole, this optional entry shall reference an entry
in the relevant Encoding Definitions table (e.g., to change from BER to DER). If this entry is not used, then the
default global encoding rules apply. See 11.16.4.

the Encoding Variations to be used for PDUs of this type; in order to specify explicit Encoding Variations for
entire PDUs, which override the default global Encoding Variations for the test suite as a whole, this optional
entry shall reference an entry in the relevant Encoding Variations table (e.g., to change from SD to LD(3)). If this
entry is not used, then the default global Encoding Variations apply. See 11.16.4.

the ASN.1 PDU type definition, which shall follow the syntax defined in ISO/IEC 8824-1, except that there is the
additional option of specifying an Encoding Variation or Invalid Field Encoding associated with either the whole
ASN1_Type or any ASN.1 Type within the ASN1_Type. This is done by giving a specific encoding identifier
followed by any necessary actual parameter list, in order to specify explicit encodings for individual fields or
other subtypes of a PDU, which override the encoding rules and encoding variations applicable to the PDU as a
whole; the encoding identifier, if any, shall identify either one of the Encoding Variations or an Invalid Field
Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

For identifiers within that definition the hyphen symbol (-) shall not be used. The underscore symbol (_) may
be used instead. The PDU identifier in the table header is the name of the first type defined in the table body.

Types referred to from the PDU definition shall be defined in other ASN.1 type definition tables, be defined by
reference in the ASN.1 type reference table or be defined locally in the same table, following the first type
definition. Locally defined types shall not be used in other parts of the test suite.

ASN.1 comments may be used within the table body. The comments column shall not be present in this table.

and end with either the next occurrence of "--" or with "end of line", whichever

comes first. This prevents a single ASN.1 comment from spanning several lines. ATS specifiers are recommended to
facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with "--".

This information shall be provided in the following proforma:

ASN.1 PDU Type Definition

PDU Name : PDU_Ild&Fulild

Group . [ASN1_PDU_GroupReference]
PCO Type : [PCO_Typeldentifier]

Encoding Rule Name : [EncodingRuleldentifier]
Encoding Variation . [EncVariationCall]

Comments . [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 29: ASN.1 PDU Type Definition

ETSI

76 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 32: An FTAM ASN.1 Definition

ASN.1 PDU Type Definition
PDU Name : F_INIT (F_INITIALIZE_response)

PCO Type

Comments

Type Definition

SEQUENCE {
state_result State_result DEFAULT success,
action_result Action_Result DEFAULT success,
protocol_id Protocol_Version,

-- etc. --

11.15.5 ASN.1 PDU Type Definitions by Reference

PDUs can be specified by a precise reference to an ASN.1 PDU defined in an OSI standard or by referencing an ASN.1
type defined in an ASN.1 module attached to the test suite. ASN.1 identifiers, type references and value references may
contain hyphens. In order to be able to use imported definitions in TTCN it is necessary to change the hyphens to
underscore (see A.4.2.1).

The following information shall be supplied for each PDU:
a) its name,
where this name may be used throughout the entire test suite;
b) the PCO type associated with the PDU,

if a PDU is sent or received only embedded in ASPs within the whole test suite, specifying the PCO type is
optional; if only a single PCO is defined within a test suite, specifying the PCO type in a PDU type definition is
optional;

c) the type reference;
which shall follow the identifier rules stated in ISO/IEC 8824-1: 1994;
d) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ISO/IEC 8824-1: 1994 and an
optional Objectldentifier;

e) the encoding rules to be used for PDUs of this type,

in order to specify explicit encodings for entire PDUs, which override the default global encoding rules for the
test suite as a whole, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g.,
to change from BER to DER). If this entry is not used, then the default global encoding rules apply. See 11.16.4;

f) the Encoding Variations to be used for PDUs of this type;

in order to specify explicit Encoding Variations for entire PDUs, which override the default global Encoding
Variations for the test suite as a whole, this optional entry shall reference an entry in the relevant Encoding
Variations table (e.g., to change from SD to LD(3)). If this entry is not used, then the default global Encoding
Variations apply. See 11.16.4.

ETSI

77 TR 101 666 V1.0.0 (1999-05)

This information shall be provided in the following proforma:

ASN.1 PDU Type Definitions By Reference

Group : [ASN1_PDU_GroupReference]
PDU Name PCO Type Type Reference Module Identifier Enc Rule Enc Variation Comments
. [PCO_Type- o
PDU_Id&Fullid Identifier] TypeReference Moduleldentifier [EncodingRule- [EncVariation- [FreeText]
Identifier] Call]

Detailed Comments: [FreeText]

Proforma 30: ASN.1 PDU Type Definitions By Reference

Collective comments may be used in this table according to figure 2.

11.16 Test Suite Encoding Information

11.16.1 Encoding Definitions

To facilitate specification and testing of the encoding rules of an OSI protocol, if there is any allowed flexibility in the
encoding rules applicable to the protocol, then an encoding definition should be provided. If an encoding definition is
provided, a reference shall be given in the ATS to the specification in which the encoding rules are specified. The
reference may be to the protocol specification itself, or to a separate encoding rules specification. If such a reference
cannot be provided, i.e., the encoding rules of the protocol are not standardized, then the encoding rules shall not be
tested.

The following information shall be provided for each set of encoding rules relevant to the protocol:

a) the Encoding Rule Name, which is a unique identifier to be used throughout the test suite to refer to an encoding
definition;

b) the reference to the relevant standard which defines the encoding rules;
c) a Default Expression, identifying the encoding rules to be used as the default; this Default Expression shall

evaluate to a Boolean value and shall use only Literal Values, Test Suite Parameters, and Test Suite Constants in
its terms;

d) optionally, further comment, provided in the Comments column, or in the Detailed Comments area of the table.

If more than one set of encoding rules may be used for a protocol, the names of the encoding rules shall be listed in the
Encoding Rule Name column of the Encoding Definitions tables. The Encoding Rule Name associated with the Default
Expression which evaluates to TRUE shall be chosen as the default set for the test suite. If more than one Default
Expression or no Default Expression in the Encoding Definitions tables evaluates to TRUE, it shall be a test case error.
If no Default Expression is specified, it is equivalent to the value FALSE being specified.

The information shall be provided in the following proforma:

Encoding Definitions

Group . [EncodingGroupReference]
Encoding Rule Name Reference Default Comments
EncodingRuleldentifier EncodingReference [ConstantExpression] [FreeText]

Detailed Comments: [FreeText]

Proforma 31: Encoding Definitions

ETSI

78 TR 101 666 V1.0.0 (1999-05)

Collective comments may be used in this table according to figure 2.

The encoding rules specified in this proforma apply to PDUs only.

EXAMPLE 33: Encoding Definitions

Encoding Definitions

Encoding Rule Name Reference Default Comments
BER ISO/IEC 8825-1: 1993 TRUE Basic Encoding Rules
PER ISO/IEC 8825-1: 1993 Packed Encoding Rules
DER ISO/IEC 8825-1: 1993 gisltinguished Encoding

ules

Detailed Comments: [FreeText]

11.16.2 Encoding Variations
Admissible variations of each encoding definition that may be used in the test suite may be provided.
To define such Encoding Variations, the following information shall be provided:

a) an Encoding Rule Name, which is the name of the encoding rules identified in the Encoding Definition table to
which this variation applies;

b) an optional Type List, listing the types to which this Encoding Variation may be applied; an empty list means that
the Encoding Variations may be applied to any PDU field. The types may be any PDU type or any type may
occur within a PDU;

c) alist of Encoding Variations,
where the following information shall be supplied for each Encoding Variation:

1) the Encoding Variation name, which is a unique identifier referring to an allowed encoding definition for a
specific type, as contained in the relevant encoding rules specification;

2) a Reference, which is used to identify the section in the encoding rules specification which describes this set
of Encoding Variations;

3) a Default Expression, identifying the Encoding Variation to be used as the default; this Default Expression
shall evaluate to a Boolean value and shall use only Literal Values, Test Suite Parameters, and Test Suite
Constants in its terms;

d) optionally, further comment, provided in the Comments part of the table header, the Comments column, or in the
Detailed Comments area of the table.

The Encoding Variation associated with the expression which evaluates to TRUE shall be chosen as the default
Encoding Variation for the given list of types, if any, or otherwise for all types within the test suite. If more than one
Default Expression in the Encoding Variations tables evaluates to TRUE, it shall be a test case error. If no Default
Expression is specified for an Encoding Variation, it is equivalent to the value FALSE being specified. If no Default
Expressions are specified or if all evaluate to FALSE, the first Encoding Variation shall be taken as the default.

ETSI

79 TR 101 666 V1.0.0 (1999-05)

Encoding variations shall be provided in the format shown in the following proforma:

Encoding Variations

Group . [EncVariationGroupReference]
Encoding Rule Name : EncodingRuleldentifier
Type List . [Typelist]
Comments . [FreeText]
Encoding Variation Reference Default Comments
EncVariationld&ParList VariationReference [ConstantExpression] [FreeText]

Detailed Comments: [FreeText]

Proforma 32: Encoding Variations

EXAMPLE 34: Encoding Variations

Encoding Variations

Encoding Rule Name : BER

Type List : Length
Comments . Length is defined to be an INTEGER type.
Encoding Variation Reference Default Comments
SD 6.3.3.1 TRUE
LD(len: INTEGER) 6.3.3.2

Detailed Comments:

11.16.3 Invalid Field Encoding Definitions

In order to test encoding rules thoroughly, it may be necessary to define illegal variations of the encoding definitions
used by the protocol. Invalid field encoding definitions may be provided for any of the Types used in PDU fields in the
test suite. Once defined, an invalid field encoding definition may be used to override the normal encoding of a specific
PDU Constraint field value of the same Type (see 13.4).

The following information relative to an invalid field encoding definition shall be provided:

a) an Invalid Field Encoding Name, which is a unique identifier to be used throughout the test suite to refer to this
invalid field encoding definition, followed by an optional formal parameter list;

b) an optional Type List, to list the types to which this encoding may be applied; an empty list means that the
encoding definition may be applied to any field of a PDU;

ETSI

80 TR 101 666 V1.0.0 (1999-05)

¢) an Encoding Operation Definition which contains the definition of how the values are to be encoded, which shall
consist of a procedural definition, in the same form as a procedural definition of a Test Suite Operation (11.3.4),
which when evaluated results in the evaluation of a ReturnValue statement to provide the result of the operation,
including explanatory comments embedded within the procedural definition at appropriate places as text
delimited by "/*" and "*/"; explanatory comments shall include an example showing an invocation; the result of
the Encoding Operation shall be a Bitstring with a defined order of transmission, being the encoding of the

relevant value;

d) optionally, further comment describing the operation, provided either in the Comments part of the table header or

in the Detailed Comments area of the table.

The use of procedural definitions is recommended in order to provide precision in the definition of the operations.

If a formal parameter list is specified, the values passed to the encoding operation are used to affect the encoding of the
PDU field. Each formal parameter shall be declared to be a Predefined Type, a Test Suite Type Identifier or a PDU
Type Identifier. For example, an integer value may be passed to an encoding operation that calculates the length of a
PDU field. The way in which parameters passed to the operation are used shall be explained in the encoding operation

definition.
One proforma shall be used for each Invalid Field Encoding Definition.

Invalid Field Encoding Operation Definitions shall be provided in the following proforma:

Invalid Field Encoding Operation Definition

Group . [InvalidFieldEncodingGroupReference]
Operation Name . InvalidFieldEncodingld&ParList
Result Type . [TypeList]
Comments . [FreeText]

Definition

TS_OpProcDef

Detailed Comments: [FreeText]

Proforma 33: Invalid Field Encoding Operation Definition

11.16.4 Application of encoding rules

Encoding rules specified in the test suite are applied to all PDUs sent or received in the Behaviour Part. Encoding rules
may be specified for the whole test suite or for type declarations or constraint declarations, as noted in table 4. The
places in table 4 marked identify the allowed scope of application of each of the kinds of encoding information.

ETSI

81 TR 101 666 V1.0.0 (1999-05)

Table 4: Applicability of Encoding Definitions

Encoding Definitions
Encoding Rules Encoding Variations Invalid Field
Encodings

Precedence Scope of Default Other Default Other
Application

Lowest Test Suite v v

Type
Declarations

PDUs v v v

Structured Types
or ASN.1 Types v v

Simple types or
elements
Constraint
Declarations

PDUs v v v

Structured Types
or ASN.1 Types v v

Highest PDU fields/ v v v
elements

Precedence within a row Lowest Highest

The encoding rules shall be applied according to the precedence values of the rows shown in the first column in table 1,
with "(4)" having the highest priority, and "(1)" having the lowest. Within each row the precedence is from left to right,
with the rightmost entry having the highest precedence. Thus, Constraint field encoding rules have precedence over all
others, while default encoding rules applied at the test suite level may be overridden by any of the other specification
methods. The actual encoding rules to be used for a PDU after all overrides have been applied are referred to as the
applicable encoding rules.

If no encoding information is specified on a structured or ASN.1 Type Constraint, it inherits the encoding rules applied
at the PDU level. Thus, the encoding rules applied to a structured or ASN.1 Type Constraint will vary, based on the
PDU in which it is used. Conversely, if encoding information is specified on a Structured or ASN.1 Type Constraint, it
will override the encoding information of every PDU in which it is used. If such a Structured or ASN.1 Type Constraint
is used in an ASP, the encoding information is ignored.

On RECEIVE events, if no specific encoding rules apply to the incoming PDU, it can be encoded in any variation
allowed by the applicable Encoding Definition (e.g., any form of length encoding allowed by BER).

11.17 CM Type Definitions

11.17.1 Introduction

CM parameters may be of any type that may be specified in TTCN. Simple CMs may contain no associated parameters
or may contain just one parameter, e.g. a natural number, a preliminary result, or a character string like "suspend” or
"continue". More complex CMs may carry additional information, e.g. a whole PDU, a PDU field, or the value read

from a timer. There are no predefined CMs.

11.17.2 CM Type Definitions using tables

CM Types may be declared using TTCN tables. The following information shall be provided for each CM type:

a) its name,

ETSI

82 TR 101 666 V1.0.0 (1999-05)

where each name shall be unique within the test suite;

b) a list of parameters associated with the CM,

where the following information shall be provided for each parameter:
1) its name,
which shall be unique within the CM;
2) its type and an optional attribute,

in the same way as for PDU fields.

in which case the specification may restrict the field to a particular length or a range according to 11.18. The
length values shall be interpreted according to table 5 in 11.18. The boundaries shall be specified in terms of

non-negative INTEGER literals, Test Suite Parameters, Test Suite Constants or the keyword INFINITY.

The length specifications defined for the PDU field type in the Test Suite Type definitions shall not conflict with

the length specifications in the PDU type definitibe,, the set of strings defined by a length restriction in a
PDU definition shall be a true subset of the set of strings defined by the Test Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no upper

limit of length.
All parameters of CMs are optional, that is they may be omitted when the CM is used.

This information shall be provided in the format shown in the following proforma:

CM Type Definition

CM Name : CM_lIdentifier

Group . [CM_GroupReference]
Comments : [FreeText]
Parameter Name Parameter Type Comments
CM_ParldOrMacro Type&Attributes [FreeText]

Detailed Comments: [FreeText]

Proforma 34: CM Type Definition

The Parameter Name and Parameter Type columns shall either be both present or both omitted.

11.17.3 CM Type Definitions using ASN.1

CM Types may be declared using ASN.1. The following information shall be provided for each ASN.1 CM type:
a) its name,
where each name shall be unique within the test suite;

b) the ASN.1 CM type definition,

ETSI

83 TR 101 666 V1.0.0 (1999-05)

which shall follow the syntax defined in ISO/IEC 8824-1. For identifiers within that definition the hyphen symbol
(-) shall not be used. The underscore symbol (_) may be used instead. The PDU identifier in the table header is the
name of the first type defined in the table body.

Types referred to from the PDU definition shall be defined in other ASN.1 type definition tables, be defined by
reference in the ASN.1 type reference table or be defined locally in the same table, following the first type definition.
Locally defined types shall not be used in other parts of the test suite.

ASN.1 comments can be used within the table body. The comments column shall not be present in this table.

Comments in ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of line", whichever
comes first. This prevents a single ASN.1 comment from spanning several lines. ATS specifiers are recommended to
facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with "--".

This information shall be provided in the format shown in the following proforma:

ASN.1 CM Type Definition

CM Name : CM_ldentifier
Group . [ASN1_CM_GroupReference]

Comments : [FreeText]

Type Definition

ASN1_ Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 35: ASN.1 CM Type Definition

11.18 String length specifications

TTCN permits the specification of length restrictions on string tyipesBITSTRING, HEXSTRING,

OCTETSTRING and all CharacterString types, plus the ASN.1 types BIT STRING and OCTET STRING) in the
following instances:

a) when declaring Test Suite Types as a type restriction;

b) when declaring simple ASP parameters, PDU fields and elements of Structured Types as an attribute of the
parameter, field or element type;

¢) when defining ASP/PDU or Structured Type constraints as an attribute of the constraint value.
Length specifications can have the following formats:

a) [Length]

restricting the length of the possible string values of a type to exaaityth

b) [MinLength TO MaxLength] or [MinLength .. MaxLength]

specifying a minimum and a maximum length for the values of a particular string type.

The length boundariekength MinLengthandMaxLengthare of different complexity depending on where they are

used. In all cases, these boundaries shall evaluate to non-negative INTEGER values. For the upper bound the keyword
INFINITY may also be used to indicate that there is no upper limit for the length. Where a range length is specified, the
lower of the two values shall be specified on the left.

ETSI

84 TR 101 666 V1.0.0 (1999-05)

In the context of constraints, length restrictions can also be specified on values of type SEQUENCE OF or SET OF, thus
limiting the number of their elements.

The following table 5 specifies the units of length for different string types:

Table 5: Units of length used in field length specifications

Type Units of Length
BITSTRING or BIT STRING Bits
HEXSTRING Hex digits
OCTETSTRING or OCTET STRING Octets
CharacterString Characters
SEQUENCE OF Elements of its base type
SET OF Elements of its base type

Length specifications shall not conflice., a restriction on a type (set of values) that is already restricted shall specify a
subrange of values of its base type.

EXAMPLE 35: Length specification
Assume the following ASN.1 type definitions:
typel ::= OCTETSTRING [0 .. 25]
type2 ::=typel [15 .. 24]

the length restriction on type2 is correct since type2 comprises all OCTETSTRING values having a minimum length
of 15 and a maximum length of 24, which is a true subset of all OCTETSTRINGSs of a maximum length of 25. On
the other hand:

type2 ::= typel[15 .. 30]

is invalid since it contains values not included in typel.

11.19 ASP, PDU and CM Definitions for SEND events

In ASPs and/or PDUs that are sent from the tester, values for ASP parameters and/or PDU fields that are defined in the
Constraints Part (see clause 12, 13, 14) shall correspond to the parameter or field definition. This means:

a) the value shall be of the type specified for that ASP parameter or PDU field; and
b) each value shall satisfy any relevant length restrictions associated with the type;
c) PDU field values shall be encoded in accordance with applicable encoding rules.

The encoding operations defined in the test suite are performed implicitly as part of the SEND event. Defaults and
overrides are applied, as necessary. Thus, the output of the SEND event is the encoded data to be passed to the relevant
service provider.

11.20 ASP, PDU and CM Definitions for RECEIVE events

For ASPs and/or PDUs received by the tester the ASP and/or PDU Type defines the class of incoming ASPs and/or
PDUs that can match an event specification of that type. An incoming ASP or PDU is considered to be of that class if
and only if:

a) the ASP parameter and/or PDU field values are of the type specified in the ASP and/or PDU definition; and
b) the value satisfies any relevant length restrictions associated with the type;

c) PDU field values can be decoded in accordance with applicable encoding rules.

ETSI

85 TR 101 666 V1.0.0 (1999-05)

In all other cases an incoming ASP and/or PDU does not match an event specification of that type.

In the case of substructured ASPs and/or PDUs, either using Structured Types or ASN.1, the above rules apply to the
fields of the substructure(s) recursively.

11.21 Alias Definitions

11.21.1 Introduction

In order to enhance the readability of TTCN behaviour descriptions, an Alias may be used to facilitate the renaming of
ASP and/or PDU identifiers in behaviour descriptions. This renaming may be done to highlight the exchange of PDUs
embedded in ASPs.

The following information shall be provided for each Alias:
a) an Alias identifier;
b) its expansion,
which is itself an identifier.

This information shall be provided in the format shown in the following proforma:

Alias Definitions

Group . [AliasGroupReference]
Alias Name Expansion Comments
Aliasldentifier Expansion [FreeText]

Detailed Comments: [FreeText]

Proforma 36: Alias Definitions

Collective comments may be used in this table according to figure 2.

11.21.2 Expansion of Aliases
The following rules shall apply:
a) an Alias is an identifier that shall follow the syntax rules for identifier defined in the TTCN.MP;

b) Aliases are not transitive - if one Alias appears as the expansion of another Alias it shall not be exparided (
is a one pass expansion);

c) an Alias shall be used only to replace an ASP identifier or a PDU identifier within a single TTCN statement in a
behaviour tree. It shall be used only in a behaviour description column;

d) the expansion of an Alias shall follow the syntax rules for identifier as defined in the TTCN.MP.

ETSI

86 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 36: Alias definition from a Transport Test Suite:

Alias Definitions

Alias Name Expansion Comments

CR N_DATArequest Alias for the N_DATArequest
ASP used to carry a CR_TPDY

DR N_DATArequest Alias for the N_DATArequest
- ASP used to carry a DR_TPDU

cc N_DATAindication Alias for the
N_DATAiIndication ASP used

to carry a CC_TPDU

NOTE: Because Aliases are treated as macro expansions, the term Aliasldentifier does not appear in the BNF for
TTCN event lines.

12 Constraints Part

12.1 Introduction

An ATS shall specify the values of the ASP parameters and PDU fields that are to be sent or received by the test system.
The constraints part fulfils that purpose in TTCN.

The dynamic behaviour descriptions (see clause 15) shall reference constraints to construct outgoing ASPs and/or PDUs
in SEND events; and to specify the expected contents of incoming ASPs and/or PDUs in RECEIVE events.

Constraints can be specified in either of the two forms:
a) tabular constraints (see clause 13);
b) ASN.1 constraints (see clause 14).

Actual values or constraints on the values of a CM shall be declared in the same way as PDU constraints are to be
declared.

12.2 General principles

This subclause describes the general principles and defines the mechanisms of how to build constraints for SEND events
and how to match RECEIVE events. These principles are common to both the tabular and ASN.1 forms of constraints.

Constraints are detailed specifications of ASPs and/or PDUs. Normally, each constraint is defined specifically for use
with either SEND events or RECEIVE events. A constraint need not be specified if an ASP or CM has no parameters or
if PDU has no fields. Any given constraint may be used in either context, provided the operational semantic restrictions
defined in annex B are met.

The constraint specification of an ASP and/or PDU shall have the same structure as that of the type definition of that
ASP or PDU.

If an ASP and/or PDU is substructured, then the constraints for ASPs and/or PDUs of that type shall have the same
tabular structure or a compatible ASN.1 structiiee, possibly with some groupings).

Structured Types expanded into an ASP or PDU definition by use of the macro symbol (<-) are not considered to be
substructures. Constraints for such ASPs or PDUs shall either have a completely flat strecthee¢lements of an
expanded structure are explicitly listed in the ASP or PDU constraint) or shall reference a corresponding structure
constraint for macro expansion.

ETSI

87 TR 101 666 V1.0.0 (1999-05)

Constraints specify ASP parameter and PDU field values using various combinations of literal values, data object
references, expressions, ASN.1 constructed values, special matching mechanisms and references to other constraints.
Constraints applying to the whole of or part of a PDU may also specify encoding rules to override the general encoding
rules being applied in the test suite. Such encoding rules may be specified for the whole Constraint or for a single field
of the Constraint.

Values of all TTCN or ASN.1 types can be used in constraints. Expressions used in constraints shall evaluate to a
specific value when the constraint is used for sending or receiving events.

Whichever way the values are obtained, they shall correspond to the parameter or field entries in the ASP or PDU type
definitions. This means

a) the value shall be of the type specified for that parameter or field; and
b) the length shall satisfy any restriction associated with the type.

An expression in a constraint shall contain only Values (including, for example, ConstraintValue&Attributes), Test Suite
Parameters, Test Suite Constants, formal parameters, Component References and Test Suite Operations.

A constraint reference (possibly parameterized) is also allowed as a parameter or field value (static chaining).

Neither Test Suite Variables nor Test Case Variables shall be used in constraints, unless passed as actual parameters. In
the latter case they shall be bound to a value and are not changed by the occurrence of a SEND or a RECEIVE event.

Matching mechanisms are defined in 12.6.2.

12.3 Parameterization of constraints

Constraints may be parameterized. In such cases the constraint name shall be followed by a formal parameter list
enclosed in parentheses. The formal parameters shall be used to specify ASP parameter or PDU field values in the
constraint.

A colon and the name of the parameter's type shall follow each formal parameter name. If more than one parameter of
the same type is used, the parameter may be specified as a parameter sub-list. When a parameter sub-list is used, a
comma shall separate the parameter names. A colon and the name of the parameter sub-list's type shall follow the final
parameter in the sub-list. When more than one parameter and type pair (or parameter sub-list and type pair) is used,
semicolons shall separate the pairs from each other.

Literal values, Test Suite Parameters, Test Suite Constants, Test Suite Variables, Test Case Variables and PDU or Test
Suite Type constraints may be passed as actual parameters to a constraint in a constraints reference made from a
behaviour description. The parameters shall not be of PCO type or ASP type.

12.4 Chaining of constraints

Constraints may be chained by referencing a constraint as the value of a parameter or field in another constraint. For
example, the value of the Data parameter of an N-DATAreq (Network Data Request) ASP could be a reference to a T-
CRPDU (Transport Connect Request PDU) PDU constiiagntthe T-CRPDU is chained to the N-DATAreq ASP.

Constraints can be chained in one of two ways, either by:

a) static chaining, where an ASP parameter value or PDU field value in a constraint is an explicit reference to
another constraint; or

b) dynamic chaining, where an ASP parameter value or PDU field value in a constraint is a formal parameter of the
constraint. When such a constraint is referenced from a dynamic behaviour, the corresponding actual parameter
to the constraint is a reference to another constraint (see annex F for examples of static and dynamic chaining).

Wherever constraints are referenced within constraints declarations, those references shall not be recursive (neither
directly nor indirectly).

ETSI

88 TR 101 666 V1.0.0 (1999-05)

Chaining of constraints may only be used if the appropriate declarations have been set up to allow chaining. For
example, if an ASP parameter is to be chained to a PDU constraint, then the ASP parameter shall be declared to be of an
appropriate PDU type or the meta-typBU. In ASN.1 PDU declarations, the PDU type might well be one defined as a
CHOICE of all valid individual PDU types, whereas in tabular PDU declarations the metaBypeould need to be

used to achieve a similar effect. Similarly, if a PDU field is to be chained to a Structure constraint, then the PDU field

shall be declared to be of an appropriate Structured type.

12.5 Constraints for SEND events

Constraints that are referenced for SEND events shall not include wildicardsryValue (?) or AnyOrOmit (*))
unless these are explicitly assigned specific values on the SEND event line in the behaviour description.

In tabular constraints, all ASP parameters and PDU fields are optional and therefore may be omitted using the Omit
symbol, to indicate that the ASP parameter or PDU field is to be absent from the event sent.

In ASN.1 constraints, only ASP parameters and PDU fields declared as OPTIONAL may be omitted. These may be
omitted either by using the Omit symbol or by simply leaving out the relevant ASP parameter or PDU field.

None of the matching mechanisms defined in 12.6.2 except SpecificValue provides a value for an ASP parameter or
PDU field on a SEND event.

In cases where ASN.1 values of type SET or SET OF are used in a constraint, the values of the elements of the set shall
be sent in the order specified by the relevant constraint.

12.6 Constraints for RECEIVE events

12.6.1 Matching values

If a constraint is to be used to construct the values of ASP parameters or PDU fields that a received ASP or PDU shall
match, it shall contain only specific values evaluated as explained in 12.6.3, or special matching mechanisms where it is
not desirable, or possible, to specify specific values. The matching mechanisms specify other ways of matching than
"equal to a specific value".

An incoming ASP and/or PDU matches a constraint used in a RECEIVE event if, and only if, all the following
conditions are met:

a) all the ASP parameters and/or PDU fields are of the type specified in the ASP and/or PDU definitions;
b) the value, alphabet and length satisfies any restriction associated with the type;
c) the ASP parameter and/or PDU field values correctly match those of the constraint;

d) for PDUs, the correct decoding of the PDU has taken place, taking into account applicable encoding rule defaults
and overrides; if encoding rules other than those specified for the constraint have been used to encode the
received PDU, then that received PDU will not match.

In the case of substructured ASPs and/or PDUs, either using Structured Types or ASN.1, the above rules shall apply to
the fields of the substructure(s) recursively.

NOTE: If a RECEIVE event is qualified by a Boolean expression, then a successful match means that both the
incoming ASP and/or PDU must match the constraint and that the qualifier must evaluate to TRUE.

12.6.2 Matching mechanisms

An overview of the supported matching mechanisms is shown in table 6, including the special symbols and the scope of
their application. The left hand column of this table lists all the ASN.1 types and TTCN equivalent types to which these
matching mechanisms apply. The matching mechanisms in the horizontal headings are arranged in four groups:

a) specific values;

ETSI

89 TR 101 666 V1.0.0 (1999-05)

b) special symbols that can be usesteadof values;
c) special symbols that can be ugegidevalues;
d) special symbols which describttributesof values.
Some of the symbols may be used in combination, as detailed in the following clauses.

The shaded area in table 6 indicates the mechanisms that apply to both predefined TTCN and ASN.1 types.

Table 6: TTCN Matching Mechanisms

VALUE INSTEAD OF VALUE INSIDE VALUE | ATTRIBUTES
S - P =

S8 TE. - Sl y
¢ | §5-235838 3. |83 |.¢
T | E=x203% 8848 |QOE |B 8
TV a =] £ 35 & E] 'ﬁ gz o c &
TYPE ®» Ugddgu:mm < < o 8 =
BOOLEAN . T =
INTEGER . . ¥ 8 = 8 .
ENUMERATED . . » s 8 » .
BITSTRING . . » s 8 » . . " .
OCTETSTRING L L e e . » . .
HEXSTRING . . » s 8 » . . " .
CHARSTRINGS L L e e . » . .
SEQUENCE L . s s ¥ » .
SEQUENCE OF L . s s ¥ » . s @ . »
SET . LT T .
SET OF . . 8 e 8 @ . = . . . @
ANY '] . ® & ® @ .
CHOICE . . s ® @ .
OBJECT 1D . s s s 8 » .

In a constraint specification, the matching mechanisms may replace values of single ASP parameters or PDU fields or
even the entire contents of an ASP or PDU.

NOTE: When these matching mechanisms are used singly or in combination, many protocol restrictions can be
specified in the constraints, thereby avoiding undesirable computation details in the behaviour part.

12.6.3 Specific Value

This is the basic matching mechanism. Specific values in constraints are expressions. Unless otherwise specified, a
constraint ASP parameter or PDU field matches the corresponding incoming ASP parameter or PDU field if, and only
if, the incoming ASP parameter or PDU field has exactly the same value as the value to which the expression in the
constraint evaluates.

Two values of a tabular ASP, PDU or Structured Type, or of ASN.1 SEQUENCE or SEQUENCE OF are considered

the same if each of their parameters fields or elements match and are in the same order. For ASN.1 SET and SET OF
types two values are the same if they have the same number of elements, and each element in one value matches exactly
one element in the other value. The elements in a SET or SET OF type value need not be in the same order to match.

ETSI

90 TR 101 666 V1.0.0 (1999-05)

12.6.4 Instead of Value

12.6.4.1 Complement

Complement is an operation for matching that can be used on all values of all types. Complement is denoted by the
keyword COMPLEMENT followed by a list of constraint values. Each constraint value in the list shall be of the type
declared for the ASP parameter or PDU field in which the Complement mechanism is used.

A constraint ASP parameter or PDU field that uses Complement matches the corresponding ASP parameter or PDU
field if and only if the incoming ASP parameter or PDU field does not match any of the values listed in the ValueList.

EXAMPLE 37: Constraints using Complement instead of a value, and with a value list:
Type Constraint
INTEGER COMPLEMENT(5)
INTEGER COMPLEMENT(1, 3, 5)

12.6.4.2 Omit

Omit is a special symbol for matching that can be used on values of all types, provided that the ASP parameter or PDU
field is optional.

In ASN.1 constraints it is also possible to simply leave out an OPTIONAL ASP parameter or PDU field instead of using
OMIT explicitly.

NOTE: In tabular constraints, all parameters, fields and elements are considered to be implicitly optional, and
hence may be omitted using Omit. In ASN.1 constraints, parameters, fields and elements which are not
explicitly marked as OPTIONAL in the type definition are mandatory and cannot be omitted without
violating the type definition. If such a parameter, field or element needs to be omitted from a particular
constraint, either another type needs to be defined in which that parameter, field or element is explicitly
marked as OPTIONAL (perhaps by marking everything as OPTIONAL), or an Invalid Field Encoding
needs to be applied to that parameter, field or element, with the effect of omitting it from the encoding.

In tabular constraints Omit shall be denoted by dash (-). In ASN.1 constraints Omit is denoted by OMIT.

An Omit symbol in a constraint is used to indicate that an optional ASP parameter or PDU field shall be absent.

EXAMPLE 38: Constraint using Omit instead of a value, at top level:
Type Constraint

INTEGER OPTIONAL OMIT

12.6.4.3 AnyValue

AnyValue is a special symbol for matching that can be used on values of all types. In both tabular and ASN.1 constraints
AnyValue is denoted by "?".

A constraint ASP parameter or PDU field that uses AnyValue matches the corresponding incoming ASP parameter or
PDU field if, and only if, the incoming ASP parameter or PDU field evaluates to a single element of the specified type.

EXAMPLE 39: Constraint using Value in combination with AnyValue:
Type Constraint

SEQUENCE OF SET OF INTEGER { ({1, 2},

ETSI

91 TR 101 666 V1.0.0 (1999-05)

s

{1,2,7} }

12.6.4.4 AnyOrOmit

AnyOrOmit is a special symbol for matching that can be used on values of all types, provided that the ASP parameter or
PDU field is declared as optional. In both tabular and ASN.1 constraints AnyOrOmit is denoted by "*".

NOTE: The symbol "*"is used for both AnyOrOmit and AnyOrNone. Ambiguity in interpretation is resolved by
the requirements in 12.6.4.4 and 12.6.5.2.

A constraint ASP parameter or PDU field that uses AnyOrOmit matches the corresponding incoming ASP parameter or
PDU field if, and only if, either the incoming ASP parameter or PDU field evaluates to any element of the specified
type, or if the incoming ASP parameter or PDU field is absent.

EXAMPLE 40: Constraint using Value in combination with AnyOrOmit:
Type Constraint
SEQUENCE OF { id1 SET OF INTEGER, { id1{2, 5},
id2 SET OF INTEGER } id2* }

12.6.4.5 ValueList

ValueList can be used on values of all types. In both tabular and ASN.1 constraints. ValueLists are denoted by a
parenthesized list of values separated by commas.

A constraint ASP parameter or PDU field that uses a ValueList matches the corresponding incoming ASP parameter or
PDU field if, and only if, the incoming ASP parameter or PDU field value matches any one of the values in the
ValueList. Each value in the ValueList shall be of the type declared for the ASP parameter or PDU field in which the
ValueList mechanism is used.

EXAMPLE 41: Constraint using ValueList instead of a specific value, for INTEGER type:
Type Constraint
INTEGER (2, 4,6)

EXAMPLE 42: Constraints using ValueList instead of a specific value, for CHOICE type:
Type Constraint
CHOICE{ aINTEGER, (a2, b TRUE)
b BOOLEAN }

12.6.46 Range

Ranges shall be used only on values of INTEGER type. A range is denoted by two boundary values, separated by ".." or
TO, enclosed by parentheses. A boundary value shall be either

a) INFINITY or -INFINITY;

b) an expression that evaluates to a specific INTEGER value.

ETSI

92 TR 101 666 V1.0.0 (1999-05)

The lower boundary shall be put on the left side of the ".." or TO, the upper boundary at the right side. The lower
boundary shall be less than the upper boundary.

A constraint ASP parameter or PDU field that uses a Range matches the corresponding incoming ASP parameter or
PDU field if, and only if, the incoming ASP parameter or PDU field value is equal to one of the values in the Range.

EXAMPLE 43: Constraint using Range instead of a value:

Type Constraint
INTEGER 1..6)
(-INFINITY .. 8)

(12 .. INFINITY)

12.6.4.7 SuperSet

SuperSet is an operation for matching that shall be used only on values of SET OF type. SuperSet shall be used only in
ASN.1 constraints. SuperSet is denoted by SUPERSET.

A constraint ASP parameter or PDU field that uses SuperSet matches the corresponding incoming ASP parameter or
PDU field if, and only if, the incoming ASP parameter or PDU field contains at least all of the elements defined within
the SuperSet, and may contain more. The argument of SuperSet shall be of the type declared for the ASP parameter or
PDU field in which the SuperSet mechanism is used.

EXAMPLE 44: Constraint using SuperSet instead of a specific value:
Type Constraint
SET OF INTEGER SUPERSET({1, 2, 3})

12.6.4.8 SubSet

SubSet is an operation for matching that can be used only on values of SET OF type. SubSet shall be used only in
ASN.1 constraints. SubSet is denoted by SUBSET.

A constraint ASP parameter or PDU field that uses SubSet matches the corresponding incoming ASP parameter or PDU
field if, and only if, the incoming ASP parameter or PDU field contains only elements defined within the SubSet, and

may contain less. The argument of SubSet shall be of the type declared for the ASP parameter or PDU field in which the
SubSet mechanism is used.

EXAMPLE 45: Constraint using SubSet instead of a specific value:
Type Constraint
SET OF INTEGER SUBSET({2, 4, 6, 8, 10})

12.6.5 Inside Values

12.6.5.1 AnyOne

AnyOne is a special symbol for matching that can be used within values of string types, SEQUENCE OF and SET OF.
In both tabular and ASN.1 constraints AnyOne is denoted by "?".

ETSI

93 TR 101 666 V1.0.0 (1999-05)

Inside a string, SEQUENCE OF or SET OF a "?" in place of a single element means that any single element will be
accepted. If the symbol "?" is needed within a CharacterString as a character, it shall be indicated by "\?". If the symbol
"\" is needed within a CharacterString as a character, it shall be indicated by "\\".

EXAMPLE 46: Constraints using AnyOne:
Type Constraint
IA5String "a?cd"
SEQUENCE OF INTEGER{Y, 2, ? }

NOTE: The "?"in the second example can be interpreted as an AnyValue replacing an INTEGER value, or
AnyOne inside a SEQUENCE OF INTEGER value. Since both interpretations lead to the same set of
events that match the constraint, no problem arises.

12.6.5.2 AnyOrNone

AnyOrNone is a special symbol for matching that can be used within values of string types, SEQUENCE OF and SET
OF. In both tabular and ASN.1 constraints AnyOrNone is denoted by "*".

If a "*" appears at the highest level inside a value of string type, SEQUENCE OF or SET OF, it shall be interpreted as
AnyOrNone.

NOTE: This rule prevents the otherwise possible interpretation of "*" as AnyOrOmit that replaces an element
inside the string, SEQUENCE OF or SET OF.

Inside a string, SEQUENCE OF or SET OF a "*" in place of a single element means that either none, or any number of
consecutive elements will be accepted. The "*" symbol matches the longest sequence of elements possible, according to
the pattern as specified by the symbols surrounding the "*". If the symbol "*" is needed within a CharacterString as a
character, it shall be indicated by "*". If the symbol "\" is needed within a CharacterString as a character, it shall be
indicated by "\".

EXAMPLE 47: Constraints using AnyOne:
Type Constraint
IA5String "ab*z"
SEQUENCE OF INTEGER {1,2,* 10}
SEQUENCE OF IA5String { "ab*z"

*
3

"abc" }

12.6.5.3 Permutation

Permutation is an operation for matching that can be used only on values inside a value of SEQUENCE OF type.
Permutation shall be used only in ASN.1 constraints. Permutation is denoted by PERMUTATION.

Permutation in place of a single element means that any series of elements is acceptable provided it contains the same
elements as the value list in the Permutation, though possibly in a different order. If both Permutation and AnyOrNone
are used inside a value, the AnyOrNone shall be evaluated first. Each element listed in Permutation shall be of the type
declared inside the SEQUENCE OF type of the ASP parameter or PDU field.

ETSI

94 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 48: Constraint using Permutation:
Type Constraint
SEQUENCE OF INTEGER{PERMUTATION (1, 2, 3), 5}

EXAMPLE 49: Constraints using Permutation in combination with AnyOrNone:
Type Constraint
SEQUENCE OF INTEGER {PERMUTATION (1,2,3), *}
{PERMUTATION (1,2,3,%) }

Note that the first constraint matches with incoming ASPs and/or PDUs that consist of a sequence of INTEGER values,
starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2; or 3,2,1 and followed by any number of values of type INTEGER. The
second constraint matches any incoming ASP and/or PDU of type SEQUENCE OF INTEGER, that contains the
elements 1, 2,3 in any order and in any position. It matches, for example; {5,2,7,1,3} and {9,3,7,2,12,1,17}.

12.6.6 Attributes of values

12.6.6.1 Length

Length is an operation for matching that can be used only as an attribute of the following mechanisms: Complement,
AnyValue, AnyOrOmit, AnyOne, AnyOrNone, Permutation, SuperSet and SubSet. It can be used in conjunction with
the IfPresent attribute.

In both tabular and ASN.1 constraints, length may be specified as an exact value or range in string values and
SEQUENCE OF or SET OF values, according to 11.18. The units of length are to be interpreted according to table 5.
The boundaries shall be denoted by expressions which resolves to specific non-negative INTEGER values.
Alternatively, the keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no
upper limit of length.

The length specifications defined for the ASP parameter or PDU field type in the Test Suite Type definitions shall not
conflict with the length specifications in the ASP or PDU constraétthe set of strings defined by a length restriction
in an ASP or PDU constraint shall be a true subset of the set of strings defined by the ASP or PDU definition.

A constraint ASP parameter or PDU field that uses Length as an attribute of a symbol matches the corresponding
incoming ASP parameter or PDU field if, and only if, the incoming ASP parameter or PDU field matches both the
symbol and its associated attribute. The length attribute matches if the length of the incoming ASP parameter or PDU
field is greater than or equal to the specified lower bound and less than or equal to the upper bound. In the case of a
single length value the length attribute matches only if the length of the received ASP parameter or PDU field is exactly
the specified value.

In the case of an omitted parameter, field or element, Length is always considered as matching. Hence, with Omit it is
redundant and with AnyOrOmit and IfPresent it places a restriction on the incoming value, if any.

EXAMPLE 50: Constraints using Value in combination with Length:
Type Constraint

IA5String "ab*ab" [13]

12.6.6.2 IfPresent

IfPresent is a special symbol for matching that can be used as an attribute of all the matching mechanisms, provided the
type is declared as optional. In both tabular and ASN.1 constraints IfPresent is denoted by IF_ PRESENT.

ETSI

95 TR 101 666 V1.0.0 (1999-05)

A constraint ASP parameter or PDU field that uses an IfPresent symbol as an attribute of another symbol matches the
corresponding incoming ASP parameter or PDU field if, and only if, the incoming ASP parameter or PDU field matches
the symbol, or if the incoming ASP parameter or PDU field is absent.

NOTE: The AnyOrOmit symbol (*) has exactly the same meaning as ? IF_PRESENT

EXAMPLE 51: Constraints using Value in combination with IfPresent:
Type Constraint

IA5String OPTIONAL "abcdef" IF_PRESENT

13 Specification of constraints using tables

13.1 Introduction

This clause describes the specification of tabular constraints on Structured Types, ASPs and PDUs. It describes how
single constraint tables can be used to specify constraints on flat (unstructured) ASPs or PDUs and how structured
constraints can be specified by declaring constraints on Structured Types, defined in the Test Suite Types.

In annex C additional tables are defined which allow many single constraint declarations in a single table.

13.2 Structured Type Constraint Declarations

If an ASP or PDU is defined using Structured Types, either as macro expansions or substructures, constraints for these
ASPs or PDUs shall be similarly substructured. The following information shall be supplied for each Structured Type
Constraint:

a) the name of the constraint,

which may be followed by an optional formal parameter list;
b) the structured type name;

c) the derivation path (see 13.6);

d) the Encoding Variations to be used for the Constraint.

In order to specify explicit Encoding Variations for entire Structured Type Constraints, which override the encoding
rules and Encoding Variations applicable to the PDU Constraint in which this Structured Type Constraint is used,
this optional entry shall reference an entry in the relevant Encoding Variations table (e.g., to change from SD to
LD(3)). If this entry is not used, then the encoding rules and Encoding Variations applicable to the PDU Constraint
apply to this Structured Type Constraint as well. See 11.16.4.

e) a constraint value for each element,
where the following information shall be supplied for each element:
1) its name.

Each entry in the element name column shall have been declared in the relevant Structured Type definition. If any of
the original elements is defined as having both a short name and full identifier, the constraint shall not repeat the full
identifier.

If the Structured Type definition refers to another Structured Type by macro expamsjovith "<-" in place of the
element name) then in a corresponding constraint either:

- the individual elements from the Structured Type shall be included directly within the constraints; or

ETSI

96 TR 101 666 V1.0.0 (1999-05)

- the macro symbol (<-) shall be placed in the corresponding position in the Element Name column of the
constraint and the value shall be a reference to a constraint for the Structured Type referenced from this
Structured Type's definition.

Use of Structured Constraints by macro expansion in a constraint shall not be used unless the corresponding
Structured Type definition also references the inner Structured Type by macro expansion.

2) Its value and an optional attribute;

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to a specify
explicit encoding for the individual element of a Structured Type Constraint, which override the encoding
rules and Encoding Variations applicable to the whole Structured Type Constraint, and which also override
any encoding specified for this element in the Structured Type declaration; the encoding identifier, if any,
shall identify either one of the Encoding Variations or an Invalid Field Encoding Definition defined in the test
suite (e.g., LD(10)); see 11.16.4.

The element values for structure constraints shall be provided in the format shown in the following proforma:

Structured Type Constraint Declaration

Constraint Name : Consld&ParList

Group . [StructTypeConstraintGroupReference]
Structured Type . Structldentifier

Derivation Path : [DerivationPath]

Encoding Variation: [EncVariationCall]

Comments . [FreeText]
Element Name Element Value Element Encoding Comments
Elemldentifier ConstraintValue- [PDU_FieldEncodingCall] [FreeText]

&Attributes

Detailed Comments: [FreeText]

Proforma 37: Structured Type Constraint Declaration

This proforma is used in the same way that the PDU Constraint Declaration proforma is used for PDUs (see 13.4).

If an ASP or PDU definition refers to a Structured Type as a substructure of a parameter ice.fiefth(a parameter

name or a field name specified for it) then the corresponding constraint shall have the same parameter or field name in
the corresponding position in the parameter name or field name column of the constraint and the value shall be a
reference to a constraint for that parameter or figdd, {or that substructure in accordance with the definition of the
Structured Type). If the ASP or PDU definition refers to a parameter or field specified as being of metatype PDU then in
a corresponding constraint the value for that parameter or field shall be specified as the name of a PDU constraint, or
formal parameter.

ETSI

97 TR 101 666 V1.0.0 (1999-05)

13.3 ASP Constraint Declarations

The parameter values for ASP constraints shall be provided in the format shown in the following proforma:

ASP Constraint Declaration
Constraint Name : Consld&ParList
Group . [ASP_ConstraintGroupReference]
ASP Type . ASP_ldentifier
Derivation Path : [DerivationPath]
Comments . [FreeText]
Parameter Name Parameter Value Comments

ASP_ParldOrMacro ConstraintValue&Attributes [FreeText]

Detailed Comments: [FreeText]

Proforma 38: ASP Constraint Declaration

The Parameter Name and Parameter Value columns shall either be both present or both omitted.

This proforma is used for ASPs in the same way that the PDU Constraint Declaration proforma is used (see 13.4) except
that encoding information is not relevant and shall not be specified.

13.4 PDU Constraint Declarations

In the tabular format a constraint is defined by specifying a value and optional attributes for each PDU field. The
following information shall be supplied for each PDU constraint:

a) the name of the constraint,

which may be followed by an optional formal parameter list;
b) the PDU type name;

c) the derivation path (see 13.6);

d) the encoding rules to be used for the Constraint;

In order to specify explicit encodings for entire PDU Constraints, which override the encoding rules applicable to the
given PDU type, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g., to
change from BER to DER). If this entry is not used, then the encoding rules applicable to the PDU type apply. See
11.16.4.

e) the Encoding Variations to be used for the Constraint;

In order to specify explicit Encoding Variations for entire PDU Constraints, which override the Encoding Variations
applicable to the given PDU type, this optional entry shall reference an entry in the relevant Encoding Variations
table (e.g., to change from SD to LD(3)). If this entry is not used, then the Encoding Variations applicable to the
PDU type apply. See 11.16.4.

ETSI

98

f) a constraint value for each field,
where the following information shall be supplied for each field:

1) its name.

TR 101 666 V1.0.0 (1999-05)

Each field entry in the field name column shall have been declared in the relevant PDU type definition. If any of
the original PDU fields is defined as having both a short name and full identifier, the constraint shall not repeat

the full identifier;

If the PDU definition refers to a Structured Type by macro expansanwith "<-'
name) then in a corresponding constraint either:

"in place of the PDU field

the individual elements from the Structured Type shall be included directly within the constraints; or

the macro symbol (<-) shall be placed in the corresponding position in the PDU field name column of the

constraint and the value shall be a reference to a constraint for the Structured Type referenced from the PDU

definition.

Use of structured constraints by macro expansion in a constraint shall not be used unless the corresponding PDU

definition also references the same Structured Type by macro expansion.
2) Its value and an optional attribute;

3) optionally, a specific encoding identifier followed by any necessary actua

| parameter list, in order to specify

explicit encodings for individual fields of a PDU Constraint, which override the encoding rules and encoding
variations applicable to the PDU Constraint as a whole, and which override any specific field encoding

applicable to this field for PDUs of this PDU type; the encoding identifier,
the Encoding Variations or an Invalid Field Encoding Definition defined in
11.16.4.

The encoding mechanism shall not be used with ASP constraints.

This information shall be provided in the format shown in the following proforma:

if any, shall identify either one of
the test suite (e.g., LD(10)); see

PDU Constraint Declaration

Constraint Name Consld&ParList

Group [PDU_ConstraintGroupReference]
PDU Type PDU_Identifier
Derivation Path [DerivationPath]
Encoding Rule Name : [EncodingRuleldentifier]

Encoding Variation: [EncVariationCall]

&Attributes

Comments [FreeText]
Field Name Field Value Field Encoding Comments
PDU_FieldldOrMacro ConstraintValue- [PDU_FieldEncodingCall] [FreeText]

Detailed Comments: [FreeText]

Proforma 39: PDU Constraint Declaration

ETSI

99 TR 101 666 V1.0.0 (1999-05)

The Field Name and Field Value columns shall either be both present or both omitted The Field Encoding column shall
not be present as a single column on its own.

EXAMPLE 52: A constraint, called C1, on the PDU called PDU_A

PDU Constraint Declaration

Constraint Name . C1
PDU Type : PDU_A
Derivation Path :
Comments :

Field Name Field Value Comments
FIELD1 (4 .. INFINITY)
FIELD2 TRUE
FIELD3 "A STRING"

13.5 Parameterization of constraints

Constraints may be parameterized using a formal parameter list. The actual parameters are passed to a constraint from a
constraints reference in a behaviour description.

EXAMPLE 53: A parameterized constraint

PDU Constraint Declaration

Constraint Name : C2 (PLINTEGER; P2:BOOLEAN)
PDU Type : PDU_B
Derivation Path :
Comments :

Field Name Field Value Comments
FIELD1 P1
FIELD2 P2
FIELD3 "A STRING"

13.6 Base constraints and modified constraints

For every ASP, PDU or CM type definition at least one base constraint may be specified. In the case in which an ASP or
CM has no parameters or a PDU has no fields, constraints are irrelevant and hence base constraints are unnecessary. A
base constraint specifies a set of base, or default, values or matching symbols for each and every field defined in the

appropriate definition. There may be any number of base constraints for any particular PDU (see annex F for examples).

When a constraint is specified as a modification of a base constraint, any fields not re-specified in the modified
constraint will default to the values or matching symbols specified in the base constraint. The name of the modified
constraint shall be a unique identifier. The name of the base constraint which is to be modified shall be indicated in the
derivation path entry in the constraint header. This entry shall be left blank for a base constraint. A modified constraint
can itself be modified. In such a case the Derivation Path indicates the concatenation of the names of the base and
previously modified constraints, separated by dots (.) A dot shall follow the last modified constraint name. The rules
for building a modified constraint from a base constraint are:

if a parameter or field and its corresponding value or matching symbol is not specified in the modified constraint, then
the value or matching symbol in the parent constraint shall be iusgthé value is inherited);

if a parameter or field and its corresponding value or matching symbol is specified in the modified constraint, then the
specified value or matching symbol replaces the one specified in the parent constraint.

ETSI

100 TR 101 666 V1.0.0 (1999-05)

13.7 Formal parameter lists in modified constraints

If a base constraint is defined to have a formal parameter list, the following rules apply to all modified constraints
derived from that base constraint, whether or not they are derived in one or several modification steps:

a) the modified constraint shall have the same parameter list as the base constraint. In particular, there shall be no
parameters omitted from or added to this list;

b) the formal parameter list shall follow the constraint name for every modified constraint;

c) parameterized ASP parameters or PDU in a base constraint fields shall not be modified or explicitly omitted in a
modified constraint.

13.8 CM Constraint Declarations

The field values for CM constraints shall be provided in the format shown in the following proforma:

CM Constraint Declaration
Constraint Name : Consld&ParList
Group . [CM_ConstraintGroupReference]
CM Type : CM_lIdentifier
Derivation Path : [DerivationPath]
Comments . [FreeText]
Parameter Name Parameter Value Comments

CM_ParldOrMacro ConstraintValue&Attributes [FreeText]

Detailed Comments: [FreeText]

Proforma 40: CM Constraint Declaration

The Parameter Name and Parameter Value columns shall either be both present or both omitted.

This proforma is used for CMs in the same way that the PDU Constraint Declaration proforma is used for PDUs.

14 Specification of constraints using ASN.1

14.1 Introduction

This clause describes a method of specifying Type, ASP and PDU constraints in ASN.1, in a way similar to the
definition of tabular constraints. The normal ASN.1 value declaration is extended to allow the use of the matching
mechanisms. Mechanisms to replace or omit parts of ASN.1 constraints, to be used in modified constraints, are also
defined.

ETSI

101 TR 101 666 V1.0.0 (1999-05)

In other respects, ASN.1 is used in constraints in the same way that it is used in types. In particular,

a) for identifiers within an ASN.1 constraint the dash symbol ("-") shall not be used; the underscore symbol ("_")
may be used instead;

b) ASN.1 constraints shall not use external value references as defined in ISO/IEC 8824-1: 1994;

¢) ASN.1 comments can be used within the table body. The comments column shall not be present in this table.
Comments in ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of line",
whichever comes first. This prevents a single ASN.1 comment from spanning several lines. ATS specifiers are

recommended to facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with "--".

14.2 ASN.1 Type Constraint Declarations

Both ASN.1 ASP constraints and ASN.1 PDU constraints can be structured by using references to ASN.1 Test Suite
Type constraints for values of complex fields. ASN.1 Test Suite Types are defined in the declarations part of the ATS.

The following information shall be supplied for each ASN.1 Type Constraint Declaration:
a) the name of the Constraint,
which may be followed by an optional formal parameter list;
b) the ASN.1 Type name;
¢) the derivation path (see 13.6 and 14.6),

in order to specify explicit Encoding Variations for entire ASN.1 Type Constraints, which override both the

Encoding Variations of the PDU Constraint that references this ASN.1 Type Constraint and the default global
Encoding Variations for the test suite, this optional entry shall reference an entry in the relevant Encoding Variations
table (e.g., to change from SD to LD(3)); if this entry is not used, then the default Encoding Variations apply to all
ASN.1 Type Constraints of this type, unless specifically overridden within a particular Constraint;

d) the Encoding Variations to be used for the Constraint,

if an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the ASN.1
constraint that is taken as the basis of this modification shall be referenced in the table in the derivation path entry.

e) The constraint value,

where the body of the ASN.1 Type Constraint table contains the ASN.1 Constraint Declaration with optional
attributes; all constraint values and attributes defined in 12.6 can be used in ASN.1 constraints.

In order to specify explicit encodings for individual values within an ASN.1 Type Constraint, which override all other
Encoding Variations for the specific ASN.1 Type Constraint encodings (see c) above), the kei@adsdused after

the relevant value, followed by a specific encoding identifier and any necessary actual parameter list. The encoding
identifier shall identify either one of the Encoding Variations or an Invalid Field Encoding Definition defined in the test
suite.

ETSI

102 TR 101 666 V1.0.0 (1999-05)

ASN.1 Type Constraint Declarations shall be specified in the format shown in the following proforma:

ASN.1 Type Constraint Declaration

Constraint Name : Consld&ParlList

Group . [ASN1_TypeConstraintGroupReference]
ASN.1 Type . ASN1_Typeldentifier

Derivation Path . [DerivationPath]

Encoding Variation : [EncVariationCall]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 41: ASN.1 Type Constraint Declaration

This proforma is used for ASN.1 Types in the same way that the ASN.1 PDU Constraint Declaration proforma is used
(see 14.4).

14.3 ASN.1 ASP Constraint Declarations

The following information shall be supplied for each ASN.1 ASP Constraint Declaration:
a) the name of the constraint,
which may be followed by an optional formal parameter list;
b) the ASP type name;
c) the derivation path (see 13.6 and 14.6),

if an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the ASN.1
constraint that is taken as the basis of this modification shall be referenced in the table in the derivation path entry.

d) The constraint value,

where the body of the ASP constraint table contains the ASN.1 Constraint Declaration with optional attributes. All
constraint values and attributes defined in 12.6 can be used in ASN.1 constraints.

ETSI

103 TR 101 666 V1.0.0 (1999-05)

ASN.1 ASP Constraint Declarations shall be specified in the format shown in the following proforma:

ASN.1 ASP Constraint Declaration

Constraint Name : Consld&ParList

Group . [ASN1_ASP_ConstraintGroupReference]
ASP Type . ASP_ldentifier

Derivation Path : [DerivationPath]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 42: ASN.1 ASP Constraint Declaration

This proforma is used for ASN.1 Types in the same way that the ASN.1 PDU Constraint Declaration proforma is used
(see 14.4).

14.4 ASN.1 PDU Constraint Declarations

The following information shall be supplied for each ASN.1 PDU Constraint Declaration:

a) the name of the Constraint,

which may be followed by an optional formal parameter list;
b) the PDU type name;

c) the derivation path (see 13.6 and 14.6);

d) the encoding rules to be used for the Constraint,

in order to specify explicit encodings for entire ASN.1 PDU Constraints, which override the default global encoding
rules for the test suite, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g., to
change from BER to DER); if this entry is not used, then the default encoding rules apply to all ASN.1 PDU Type
Constraints of this type, unless specifically overridden in a particular Constraint;

e) the Encoding Variations to be used for the Constraint,

in order to specify explicit Encoding Variations for entire ASN.1 PDU Constraints, which override the default global
Encoding Variations for the test suite, this optional entry shall reference an entry in the relevant Encoding Variations
table (e.g., to change from SD to LD(3)); if this entry is not used, then the default Encoding Variations apply to all
ASN.1 PDU Type Constraints of this type, unless specifically overridden in a particular Constraint;

if an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the ASN.1
constraint that is taken as the basis of this modification shall be referenced in the table in the derivation path entry.

f) The constraint value,

where the body of the PDU constraint table contains the ASN.1 Constraint Declaration with optional attributes; all
constraint values and attributes defined in 12.6 can be used in ASN.1 constraints.

ETSI

104 TR 101 666 V1.0.0 (1999-05)

In order to specify explicit encodings for individual values within an ASN.1 PDU Constraint, which override the default
global encoding rules or the specific ASN.1 PDU Constraint encodings (see c) and d) above), thekis@nisrdsed

after the relevant value, followed by a specific encoding identifier and any necessary actual parameter list. The encoding
identifier shall identify either one of the Encoding Variations or an Invalid Field Encoding Definition defined in the test
suite.

PDU Constraint Declarations shall be specified in the format shown in the following proforma:

ASN.1 PDU Constraint Declaration

Constraint Name : Consld&ParlList

Group . [ASN1_PDU_ConstraintGroupReference]
PDU Type . PDU_Identifier

Derivation Path . [DerivationPath]

Encoding Rule Name : [EncodingRuleldentifier]

Encoding Variation : [EncVariationCall]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 43: ASN.1 PDU Constraint Declaration

14.5 Parameterized ASN.1 constraints

ASN.1 constraints may be parameterized (see 13.5).

14.6 Modified ASN.1 constraints

ASN.1 constraints can be specified by modifying an existing ASN.1 constraint. Portions of a constraint can be
respecified to create a new constraint by using the REPLACE/OMIT mechanism.

Particular parameters or fields of a base or a modified constraint may be identified through a list of field selectors in
order to replace their defined value by a new value, or to omit the defined value. A ReferenceList consists of the field
selector identifiers (defined in the corresponding type definition) separated by dots which uniquely identify a particular
(possibly structured) field within a PDU (or ASP). A single selector can identify first level fields, whereas nested fields
require the full path.

Replace values shall be used only when a derivation path is specified. Full ASN.1 values shall be used only when a
derivation path is not specified. Values that are REPLACEd or OMITted may be structured.

If a field belongs to a SEQUENCE, SET or CHOICE structure, the position of the field in parentheses may be used as a
replacement for the field selector identifier. This technique shall be used where the identifier is not provided in the
declaration of the field.

ETSI

105 TR 101 666 V1.0.0 (1999-05)

14.7 Formal parameter lists in modified ASN.1 constraints

The requirements of 13.7 also apply to modified ASN.1 constraints.

14.8 ASP Parameter and PDU field names within ASN.1
constraints

When specifying a constraint for an ASP or PDU in ASN.1, the parameter or field identifiers defined in the ASN.1 type
definition for SEQUENCE, SET and CHOICE types may be used in order to identify the particular ASP or PDU
parameters or fields a value stands for. In the case of CHOICE types the identifiers identifying the variant shall be used.
For SEQUENCE types, parameter or field identifiers shall be used whenever the value definition becomes ambiguous
because of omitted values for OPTIONAL parameters or fields. For SET types, parameter or field identifiers shall be
used in all cases.

EXAMPLE 54: Field values in an ASN.1 PDU constraint

Assume the type definition:

ASN.1 PDU Type Definition
PDU Name : XY_PDU
PCO Type
Comments

Type definition
SET { field_1 INTEGER OPTIONAL,
field_2 BOOLEAN,
field_3 INTEGER OPTIONAL,
field_4 INTEGER OPTIONAL }

Then a possible constraint is:

ASN.1 PDU Constraint Declaration
Constraint Name . CONS1

PDU Type : XY_PDU

Derivation Path :

Comments

Constraint Value

[field_1 5,
field_2 TRUE,
field_3 3

}

-- field_4 is not specified => omitted when sending --
-- if identifier field_3 was not used it would be ambiguous whether 3 was the value of --
-- field_3 or field_4, since both are OPTIONAL. --

ETSI

106 TR 101 666 V1.0.0 (1999-05)

14.9 ASN.1 CM Constraint Declarations

The parameter values for CM constraints shall be provided in the format shown in the following proforma:

ASN.1 CM Constraint Declaration

Constraint Name : Consld&ParList

Group . [ASN1_CM_ConstraintGroupReference]
CM Type : CM_lIdentifier

Derivation Path : [DerivationPath]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 44: ASN.1 CM Constraint Declaration

This proforma is used for CMs in the same way that the PDU Constraint Declaration proforma is used for PDUs.

15 The Dynamic Part

15.1 Introduction

The Dynamic Part contains the main body of the test suite: the Test Case, the Test Step and the Default behaviour
descriptions.

15.2 Test Case dynamic behaviour

15.2.1 Specification of the Test Case Dynamic Behaviour table
The title of the table shall be "Test Case Dynamic Behaviour".
The header shall contain the following information:

a) Test Case name,

giving a unique identifier for the Test Case described in the table;

b) Test Group Reference,

giving the full name of the lowest level to the group that contains the Test Case; that full name shall conform to the
requirements of 9.2, and end with a slash (/);

c) Test Purpose,

an informal statement of the purpose of the Test Case, as given in the relevant test suite structure and test purposes
standard (if any) or equivalent part of the test suite standard (if any);

ETSI

107 TR 101 666 V1.0.0 (1999-05)

d) Default Reference,

a list of Default behaviour description identifiers (each including an actual parameter list if necessary), if any, which
apply to the Test Case behaviour description (see 15.4).

The body of the table shall display the following columns and corresponding information:
a) an (optional) line number column (see 15.2.5),
which, if present, shall be placed at the extreme left of the table.
b) a label column,
where labels can be placed to identify the TTCN statements to allow jumps using the GOTO construct (see 15.14);
¢) a behaviour description,

which describes the behaviour of the LT and/or UT in terms of TTCN statements and their parameters, using the tree
notation (see 15.6);

d) a constraints reference column,

where constraint references are placed to associate TTCN statements in a behaviour tree with a reference to specific
ASP and/or PDU values defined in the constraints part (see clause 12);

e) a verdict column,
where verdict or result information is placed in association with TTCN statements in the behaviour tree (see 15.17);
f) an (optional) comments column,

this column is used to place comments that ease understanding of TTCN statements by providing short remarks or
references to additional text in the optional detailed comments section.

The columns c), d), e) and f) shall be displayed in that order, from left to right. It is recommended that the mandatory
label column be placed at the left of the behaviour description. Alternately, the label column may be placed to the right
of the behaviour description.

An (optional) footer can contain detailed comments.

ETSI

108 TR 101 666 V1.0.0 (1999-05)

15.2.2 The Test Case Dynamic Behaviour proforma

The Test Case dynamic behaviour shall be provided in the format shown in the following proforma:

Test Case Dynamic Behaviour

Test Case Name : TestCaseldentifier

Group . TestGroupReference

Purpose . FreeText

Configuration : TCompcConfigldentifier

Defaults . [DefaultRefList]

Comments . [FreeText]

Nr Label Behaviour Description Constraint Ref Verdict Comments
1

2

StatementLine
[Label] . [ConstraintReference]| [Verdict] | [FreeText]
TreeHeader

StatementLine

n

Detailed Comments: [FreeText]

Proforma 45: Test Case Dynamic Behaviour

Column headers of this proforma can be abbreviatdd, ©Gref, V andC. This enables the behaviour tree column to be
as wide as possible in cases of physical paper size limitations.

ETSI

109 TR 101 666 V1.0.0 (1999-05)

15.2.3 Structure of the Test Case behaviour

Each Test Case contains a precise description of sequences of (anticipated) events and related verdicts. This description
is structured as a tree, with TTCN statements as nodes in that tree and verdict assignments at its leaves. In many cases it
is more efficient to use Test Steps as a means of substructuring this tree:

Statement and Yerdict

St

Statement

Stotement and Yerdict
Fiest Ol
st Case v 1
Stafement amd Verdicr

Statement and Yerdict

Slatement

Slitenent

Satemenl Stufemsen:

Strtemnent and Werdict o
Stitement armd Verdict

1: Uinsirsctored Test Case Behaviour 2z Brructured Tess Case Behaviour

Figure 7: Test Case Behaviour Structure

In TTCN this explicit modularization is expressed using Test Steps and the ATTACH construct.

15.2.4 Concurrent Test Case Behaviour Description

If PTCs are used in a test case then the header shall contain the additional entry, Configuration, which shall identify a
Test Component Configuration declared in the Declaration Part.

The first tree in the Test Case Behaviour table plus all attached trees describe the behaviour of the MTC. The MTC
behaviour tree creates PTCs when required and associates each PTC with its own behaviour tree.

If a PTC behaviour is specified as a local tree in the test case behaviour then the Defaults Reference shall be empty. This
restriction prevents a PTC from inheriting the Default Behaviour of the MTC.

A test case shall only use the Test Components that are present in the referenced Test Component Configuration. The
chosen configuration shall determine the set of PCOs and CPs that may be used in the test case. When used, the
Configuration entry in the Test Case Dynamic Behaviour Header shall be provided in the format shown in Proforma 45.

15.2.5 Line numbering and continuation

Since lines in the behaviour description, when printed, may be too long to fit on one line it is necessary to use additional
symbols to indicate the extent of a single behaviour line. There are two available techniques:

a) indicate the beginning of a new behaviour line; an extra line column is added as the leftmost column in the body
of the table; there shall only be an entry in this column on those lines where a new behaviour line starts; the line
numbers used shall be 1, 2, 3,.... and the numbering shall not be restarted when local trees aredéfierd,
is a unique line number for each behaviour line of the behaviour table;

NOTE 1: The line numbers can be used for logging purposes, to record unambiguously which behaviour line was
executed.

NOTE 2: The line numbers can be used as references in the detailed comments section.

b) indicate the continuation of lines; if a line is to be continued within the behaviour description column a hash (#)
symbol shall be placed in the leftmost position of the behaviour column, on the line of the continued text; it is
recommended that the text of the continued part adopts the same level of indentation as the line it is continuing.

ETSI

110 TR 101 666 V1.0.0 (1999-05)

If a line is continued in any column other than the behaviour description column the hash symbol is not required.

EXAMPLE 55: Printing long behaviour line

Recommended style:

Nr | Label Behaviour Description Constraints Ref Verdict | Comments
1 This is a TTCN statement that is too long|t&efl
print on a single line because the columnlis
too narrow
2 This is the next statement line This is a constraint

reference that is too long
to print on one line

3 An alternative statement line Ref2

Alternative style:

Label Behaviour Description Constraints Ref Verdict [Comments
This is a TTCN statement that is too long to Refl
print on a single line because the column

is too narrow

This is the next statement line This is a constraint
reference that is too long

to print on one line

An alternative statement line Ref2

15.3 Test Step dynamic behaviour

15.3.1 Specification of the Test Step Dynamic Behaviour table

The dynamic behaviour of Test Steps is defined using the same mechanisms as for Test Cases, except that Test Steps
can be parameterized (see 15.7). Test Step dynamic behaviour tables are identical to Test Case dynamic behaviour

tables, except for the following differences:
a) the table has the title "Test Step Dynamic Behaviour";

b) the first item in the header is the Test Step name,

ETSI

111 TR 101 666 V1.0.0 (1999-05)

which is a unique identifier for the Test Step followed by an optional list of formal parameters, and their associated
types. These parameters may be used to pass PCOs, constraints or other data objects into the root tree of the Test
Step;

c) the second item in the header is the Test Step Group Reference,

which gives the full name to the lowest level of the Test Step Library group that contains the Test Step; that full
name shall conform to the requirements of (see 9.3), and end with a slash (/);

d) the third item in the header is the Test Step Obijective,

which is an informal statement of the objective of the Test Step.

15.3.2 The Test Step Dynamic Behaviour proforma

The Test Step dynamic behaviour shall be provided in the format shown in the following proforma:

Test Step Dynamic Behaviour

Test Step Name . TestStepld&ParList

Group . TestStepGroupReference

Objective : FreeText

Defaults . [DefaultRefList]

Comments : [FreeText]

Nr | Label Behaviour Description Constraint Ref Verdict | Comments
1

2

StatementLine

[Label] . [ConstraintReference] [Verdict] | [FreeText]

TreeHeader

StatementLine

n

Detailed Comments: [FreeText]

Proforma 46: Test Step Dynamic Behaviour

Column headers of this proforma can be abbreviatéd @ref, V andC.

15.4 Default dynamic behaviour

15.4.1 Default behaviour

A TTCN Test Case shall specify alternative behaviouet@rypossible event (including invalid ones). It often happens
that in a behaviour tree every sequence of alternatives ends in the same behaviour. This behaviour may be factored out
as default behaviour to this tree. Such Default behaviour descriptions are located in the global Default Library.

ETSI

112 TR 101 666 V1.0.0 (1999-05)

The dynamic behaviour of Defaults is defined using the same mechanisms as for Test Steps, except for the following
restrictions:

a) itis not permitted to specify Default behaviour for the Default behaviour;

b) a default behaviour description may attach local trees (see 15.7.1) but shall not attach Test Steps;
c) if local trees are used in a Default behaviour description, they shall not attach Test Steps;

d) the tree(s) in the behaviour description shall not use the ACTIVATE operation (see 15.18.4).

Both PCOs and other actual parameters may be passed to Default behaviour descriptions in the same way that they may
be passed to Test Steps. The same rules on scope and textual substitution of these parameters apply as described for trec
attachment (see 15.13).

15.4.2 Specification of the Default Dynamic Behaviour table

Default dynamic behaviour tables are identical to Test Step dynamic behaviour tables, except for the following
differences:

a) the table has the title "Default Dynamic Behaviour";
b) the first item in the header is the Default name,

which is a unique identifier for the Default followed by an optional list of formal parameters, and their associated
types. These parameters may be used to pass PCOs, constraints or other data objects into the root tree of the Default;

c) the second item in the header is the Default Group Reference,

which gives the full name of the lowest level to the Default Group that contains the Default; that full name shall
conform to the requirements of (see 9.4), and end with a slash (/);

d) the third item in the header is the Default Objective,

which is an informal statement of the objective of the Default.

ETSI

113 TR 101 666 V1.0.0 (1999-05)

15.4.3 The Default Dynamic Behaviour proforma

The Default dynamic behaviour shall be provided in the format shown in the following proforma:

Default Dynamic Behaviour

Default Name . Defaultld&ParList

Group . DefaultGroupReference

Objective : FreeText

Comments . [FreeText]

Nr | Label Behaviour Description Constraint Ref Verdict | Comments
1

2

StatementLine

[Label] . [ConstraintReference] [Verdict] | [FreeText]

TreeHeader
StatementLine

n

Detailed Comments: [FreeText]

Proforma 47: Default Dynamic Behaviour

Column headers of this proforma can be abbreviatéd @ref, V andC.

15.5 The behaviour description

The behaviour description column of a dynamic behaviour table contains the specification of the combinations of TTCN
statements that are deemed possible by the test suite specifier. The set of these combinations is called the behaviour tree.
Each TTCN statement is a node in the behaviour tree.

15.6 The tree notation

Each TTCN statement shall be shown on a separate statement line. The statements can be related to one another in two
ways:

- as sequences of TTCN statements;
- as alternative TTCN statements.

Sequences of TTCN statements are represented one statement line after the other, each new TTCN statement being
indented once from left to right, with respect to its predecessor.

ETSI

114 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 56: TTCN statements in sequence:

EVENT_A

CONSTRUCT_B
EVENT_C

Statements at the same level of indentation and belonging to the same predecessor node represent the possible
alternative statements which may occur at that time. Henceforth, this set of TTCN statements will be referred to as the
set of alternativesor simplyalternatives

EXAMPLE 57: Alternative TTCN statements:

CONSTRUCT_A1
STATEMENT_A2

EVENT_A3

EXAMPLE 58: Combining sequences and alternatives to build a tree:

EVENT_A
CONSTRUCT_B
EVENT_C
STATEMENT D1
EVENT_D2

Whether a TTCN statement can be evaluated successfully or not depends on various conditions associated with the
statement line. These conditions are not necessarily mutually exclusiygjs possible that for any given moment

more than one statement line could be evaluated successfully. Since statement lines are evaluated in the order of their
appearance in the set of alternatives the first statement with a fulfilled condition will be successful. This might lead to
unreachable behaviour; in particular if statements are encoded as alternatives following statements that are always
successful.

REPEAT and GOTO are always successful. In addition, SEND, IMPLICIT SEND, assignments and timer operations
are successful provided that the accompanying qualifier, if any, evaluates to TRUE.

Graphical indentation of statement lines in the TTCN.GR form is mapped to indentation values in TTCN.MP.

Statements in the first level of alternatives having no predecessor in the root or local tree they belong to, shall have the
indentation value of zero. Statements having a predecessor shall have the indentation value of the predecessor plus one
as their indentation value.

ETSI

115 TR 101 666 V1.0.0 (1999-05)

15.7 Tree names and parameter lists

15.7.1 Introduction

Each behaviour description shall contain at least one behaviour tree. In order that trees may be unambiguously referred
to (such as in an ATTACH construct) each tree has a tree name.

The first tree appearing within a behaviour description is called the root tree. The name of a root tree is the identifier
appearing in the header of its dynamic behaviour table. That is, the tree name of the root tree of a Test Step is the Test
Step Identifier for that Test Step, and likewise for root trees in Test Case dynamic behaviours and Default dynamic
behaviours.

Trees other than the root tree which appear within dynamic behaviour tables are termed local trees. A tree header that
contains the tree name prefixes local trees.

15.7.2 Trees with parameters

All trees, except Test Case root trees, may be parameterized. The parameters may provide PCOs, constraints, variables
or other such items for use within the tree. Test Case root trees shall not be parameterized.

If a tree is parameterized, then a list of formal parameters and their types shall appear within parentheses directly
following the tree name. For example, the formal parameter list for a Test Step root tree shall appear within parentheses
immediately following the Test Step Identifier in the header of the Test Step dynamic behaviour table. Similarly, the
formal parameter list for a local tree shall appear immediately after the tree name in the tree header.

In constructing the formal parameter list, each formal parameter shall be followed by a colon and the name of the type of
the formal parameter. If more than one formal parameter of the same type is present, these may be combined into a sub-
list. When such a sub-list is used, a comma shall separate the formal parameters within the sub-list from each other. A
colon and the formal parameter's type shall follow the final formal parameter in the sub-list.

When there is more than one formal parameter and type pair (or more than one sub-list and type pair), the pairs shall be
separated from each other by semi-colons.

Formal parameters may be of PCO type, ASP type, PDU type, structure type or one of the other predefined or Test Suite
Types.

If a formal parameter of a tree is type PDU then specific fields in the PDU shall not be referenced in the tree. If the
formal parameter is a specific PDU identifier, then specific fields in the PDU may be referenced in the tree.

EXAMPLE 59: Void.
EXAMPLE 60: A Test Step using formal parameters: EXAMPLE_TREE (L:TSAP; X:INTEGER; Y:INTEGER)

EXAMPLE 61: A Test Step using a formal parameters with a sub-list: EXAMPLE_TREE (L:TSAP; X,
Y:INTEGER)

15.8 TTCN statements

The tree notation allows the specification of test events initiated by the Lower Tester(s) or Upper Tester(s) (SEND and
IMPLICIT SEND events), test events received by the Lower Tester(s) or Upper Tester(s) (RECEIVE, OTHERWISE,
TIMEOUT and DONE), constructs (GOTO, ATTACH, REPEAT, CREATE, RETURN and ACTIVATE) and pseudo-
events comprising combinations of qualifiers, assignments and timer operations. These are collectively known as TTCN
statements.

Qualifiers (Boolean expressions), assignments and timer operations can accompany test events. Qualifiers, assignments
and timer operations can also stand alone, in which case they are called pseudo-events.

ETSI

116 TR 101 666 V1.0.0 (1999-05)

15.9 TTCN test events

15.9.1 Sending and receiving events

TTCN supports the initiation (sending) of ASPs and PDUs to named PCOs and acceptance (receipt) of ASPs and PDUs
at named PCOs. The PCO model is defined in 11.10 and 15.9.5.3.Concurrent TTCN supports the sending and receiving
of CMs to named CPs. The CP model is defined in 11.11.

In the simplest form, an ASP identifier or PDU identifier follows the SEND symbol (!) for events to be initiated by the
LT or UT, or a RECEIVE symbol (?) for events which it is possible for the LT or UT to accept. The optional PCO
name is not provided. This form is valid when there is only one PCO in the test suite.

EXAMPLE 62: ICONreq or ?CONind

If more than one PCO exists in a test suite, then a PCO name appearing in the declarations part, or in the formal
parameter list of the tree, shall prefix the SEND symbol or the RECEIVE symbol. The PCO name is used to indicate the
PCO at which the test event may occur.

EXAMPLE 63: L! CONreq or L? CONind

In the case of CPs, the CP identifier shall be used and shall prefix the SEND symbol in the case of sending a CM and
shall prefix the RECEIVE symbol in the case of receiving a CM.

EXAMPLE 64: A_CPIA_CM or A_CP?A_CM

15.9.2 Receiving events

A RECEIVE event line evaluates successfully if an incoming ASP or PDU on the specified PCO matches the event line.
A match occurs if the following conditions are fulfilled:

a) the incoming PDU can be decoded in accordance with the applicable encoding rules;

b) the incoming ASP or PDU is valid according to the ASP or PDU type definition referred to by the event name on
the event line. In particular, all parameters and/or field values shall be of the type defined, and satisfy any length
restrictions specified,;

c) the ASP or PDU matches the constraint reference on the event line;

d) in cases where a qualifier is specified on the event line, the qualifier shall evaluate to TRUE; the qualifier may
contain references to ASP parameters and/or PDU fields.

The incoming event is removed from the PCO queue only when it successfully matches a RECEIVE event line.

In concurrent TTCN the receipt and matching of a CM at a CP is treated in the same manner as described above.

ETSI

117 TR 101 666 V1.0.0 (1999-05)

15.9.3 Sending events

A SEND event line with a qualifier is successful if the expression in the qualifier evaluates to TRUE. Unqualified SEND
events are always successful. The outgoing ASP or PDU that results from a SEND event shall be constructed as follows:

a) All ASP parameter and PDU field values shall be of the type specified in the corresponding definitions, and will
satisfy any length restrictions in the definitions;

b) the value of the ASP parameter and PDU fields shall be set as specified in the constraint referenced on the event
line (see clauses 12, 13 and 14 for an explanation of constructing ASPs or PDUs with constraints);

c) any direct assignments to ASP parameters or PDU fields on the event line will supersede the corresponding value
specified in the constraint, if any;

d) all parameters and/or fields in the outgoing ASP or PDU shall contain specific values or be explicitly omitted
prior to completion of the SEND event;

e) the fully constructed PDU shall be encoded in accordance with the applicable encoding rules.

Generation of an ASP parameter or PDU field value by either the constraints or assignments that violates the declared
type and length restrictions shall cause a test case error.

In concurrent TTCN the sending of CMs at CPs is treated in the same manner as described above.

15.9.4 Lifetime of events

Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE shall be used only to reference ASP
parameter and PDU field values on the statement line itself.

In the case of SEND events, relevant ASP parameters and PDU fields can be set, if required, in appropriate assignments
on the SEND line.

EXAMPLE 65: IA_PDU (A_PDU.FIELD:=3)

The effects of such an assignment shall not persist after the event line in which they occurred.

In the case of RECEIVE events, if relevant ASP parameter and PDU field values need to be subsequently referenced,
either the whole ASP or PDU or a relevant part of it shall be assigned to variables on the RECEIVE line itself. These
variables may then be referenced in subsequent lines.

EXAMPLE 66: ?A_PDU (VAR:=A_PDU.FIELD)

where VAR may be used on event lines subsequent to receipt of A_PDU.

The lifetime of CMs is also restricted to the relevant RECEIVE statement. Identifiers of CM fields may be accessed in a
similar manner as identifiers of PDU fields.

EXAMPLE 67: A_CPIA_.CM or A_CP?A_CM

ETSI

118 TR 101 666 V1.0.0 (1999-05)

15.9.5 Execution of the behaviour tree

15.95.1 Introduction

The test suite specifier shall organize the behaviour tree representing a Test Case or a Test Step according to the
following rules regarding test execution:

a) starting from the root of the tree, the LT or UT remains on the first level of indentation until an event matches. If
an event is to be initiated the LT or UT initiates it; if an event is to be received, it is said to match only if a
received real event occurs and matches the event line;

b) once an event has matched, the LT or UT moves to the next level of indentation. No return to a previous level of
indentation can be made, except by using the GOTO construct;

c) eventlines at the same level of indentation and following the same predecessor event line represent the possible
alternatives which may match at that time. Alternatives shall be given in the order that the test suite specifier
requires the LT or UT to attempt either to initiate or receive them, if necessary, repeatedly, until one matches;

EXAMPLE 68: lllustration of a TTCN behaviour tree

Suppose that the following sequence of events can occur during a test whose purpose is to establish a connection,
exchange some data, and close the connection. The events occur at the lower tester PCO L:

a) CONNECTrequest, CONNECTconfirm, DATArequest, DATAindication, DISCONNECTrequest;
The IUT or the service-provider can thwart progress at any time. This generates two more sequences:
b) CONNECTrequest, CONNECTconfirm, DATArequest, DISCONNECTindication;

¢) CONNECTrequest, DISCONNECTIndication.

The three sequences of events can be expressed as a TTCN behaviour tree. There are five levels of alternatives, and
only three leaves (a to c), because the SEND events L! are always successful. Execution is to progress from left to
right (sequence), and from top to bottom (alternatives). The following figure illustrates this progression, and the
principle of the TTCN behaviour tree:

progression of me -

i EXAMPLE-TREE (L:NSAF)
L CONNEC Treguest

I |—+| TCONNEC Teontirm

n
i I—.-E_f DA T Arcaguest

| L7 DATAsndicacion
M L s msconme: Trequest)
! LT EISCONNEC Timdication 1]

* L e 7 TRISOCOMNNEC Tindicatiom

There are no lines, arrows or leaf names in TTCN. The behaviour tree of the previous example would be represented as
follows:

EXAMPLE 69: A TTCN behaviour tree

ETSI

119

TR 101 666 V1.0.0 (1999-05)

Test Step Dynamic Behaviour

Test Step Name : TREE_EX_1 (L:NSAP)

Group TTCN_EXAMPLES/TREE_EXAMPLE_1/

Objective To illustrate the use of trees.

Defaults

Comments Note - This example can be simplified by using Defaults.

Nr Label Behaviour Description Constraint Ref Verdict Comments
1 L ! CONNECTrequest CR1 Request...
2 L ? CONNECTconfirm CcC1 . Confirm
3 L ! DATArequest DTR1 Send Data
4 L ? DATAiIndication DTI1 Receive Data
5 L ! DISCONNECTrequest DSCR1 PASS Accept
6 s D|ch23:usé:c?T'?r':ﬁEci&nnd'cat'on DSCI1 INCONC | Premature
7 ’ DSCR1 INCONC | Premature

Detailed Comments:

15.9.5.2

The alternative statements at the current level of indentation are processed in their order of appearance. TTCN
operational semantics (see annex B) assume that the status of any of the events cannot change during the process of
trying to match one of a set of alternatives. This implies that snapshot semantics are used for received events and
TIMEOUTsi.e., each time around a set of alternatives a snapshot is taken of which events have been received and
which TIMEOUTSs have fired. Only those identified in the snapshot can match on the next cycle through the alternatives.

15.95.3

The concept of snapshot semantics

Restrictions on using events

In order to avoid test case errors the following restrictions apply:

a) a Test Case or Test Step should not contain behaviour where the relative processing speed of the MOT (Means of

Testing) could impact the results. To prevent such problems, a RECEIVE, OTHERWISE or TIMEOUT event
line shall only be followed by other RECEIVE, OTHERWISE and TIMEOUT event lines in a set of alternatives.
As a consequence, Default trees shall contain only RECEIVE, OTHERWISE and TIMEOUT event lines on the
first set of alternatives.

b) Once there is an event on a PCO or CP queue or a timeout in the timeout list, it can be removed from the queue
or list only by a successful match of the related TTCN statement. In the case of a set of alternatives that includes
RECEIVE statements, the set of expected incoming events shall be fully specified. This means that it shall be a
test case error if, during execution, no match of any of the RECEIVE statements occurs and yet execution
progresses to the next level of alternatives because of a TIMEOUT which occurred after an ASP or PDU, that
was not specified in the set of RECEIVE statements, was received on any one of the relevant PCO or CP queues.
IMPLICIT SEND shall not be used with CMs.

¢) Precautions should be taken when using concurrent TTCN to avoid unreliable results caused by situations in
which the order of receipt of events at different PCOs or CPs is used to determine verdict assignment. The actual
time at which PDU or CM is received, relative to the receipt of other PDUs or CMs, may not be accurately
reflected when executing parallel test components.

ETSI

120 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 70: An incomplete set of RECEIVE events

PARTIAL_TREE PARTIAL_TREE
TASTART T 'ASTART T
?B ?B
? TIMEOUT T ? OTHERWISE
IC FAIL
?D ? TIMEOUT T
IC
= ?D
b)

In a) if D is received in response to !A the test case will assign an erroneous PASS verdict by virtue of the
TIMEOUT. This can be avoided by using the OTHERWISE statement.

d) In concurrent TTCN, the relative ordering of events at different PCOs or different CPs should not affect the
verdict assigned, since this would lead to unrepeatability of results caused by differences in processing and
transmission speeds.

15954 Precautions when using concurrent TTCN

Precautions should be taken when using concurrent TTCN to avoid unrepeatable results caused by situations in which
the order of receipt of events at different PCOs or at different CPs is used to determine verdict assignment. The actual
time at which a PDU or CM is received, relative to the receipt of other PDUs or CMs, may not be accurately reflected
when executing parallel test components.

15.9.6 The IMPLICIT SEND event

In the Remote Test Methods, although there is no explicit PCO above the IUT, it is necessary to have a means of
specifying, at a given point in the description of the behaviour of the LT, that the IUT should be made to initiate a
particular PDU or ASP (but not CM). For this purpose, the implicit send event is defined, with the following syntax:

There is no specification of what is done to the IUT to trigger this reaction, only a specification of the required reaction
itself; the specified ASP or PDU is to be sent by the IUT on the indicatedIBCQ@an take place of the PCO
identifier if there is no ambiguity (only one PCO exists for example).

An IMPLICIT SEND event is always considered to be successful, in the sense that any alternatives coded after, and at
the same level of indentation as the IMPLICIT SEND are unreachable.

An IMPLICIT SEND shall be used only where the relevant OSI standard(s) permit the IUT to send the specified ASP or
PDU at that point in its communication with the LT.

For every IMPLICIT SEND in a test suite, the test suite specifier shall create and reference a question in the partial
PIXIT proforma that permits indication of whether the IMPLICIT SEND can be invoked on demand.

An IMPLICIT SEND event shall not be used unless the test method being used is one of the Remote Test Methods. An
IMPLICIT SEND event shall not be used unless the same effect could have been achieved using the DS test method.

NOTE: For example, when testing a connection-oriented Transport Protocol implementation, if this restriction did
not exist it would be permissible to use IMPLICIT SEND to get the IUT to initiate a CR TPDU because
in the DS test method that effect could be achieved by getting the UT to send a T-CONreq ASP. On the
other hand, it would not be permissible to use IMPLICIT SEND to get the IUT to initiate an N-RstReq
ASP because that effect could not be controlled through the Transport Service boundary. The reason for
this restriction is to prevent Test Cases from requiring greater external control over an IUT than is
provided for in the relevant protocol standard.

When an IMPLICIT SEND event is specified, the associated internal events within the IUT necessary to meet the
requirements of the standard for the protocol being tested are also perfergnae} timer, initialize state variables.

ETSI

121 TR 101 666 V1.0.0 (1999-05)

The semantics of IMPLICIT SEND is that the SUT shall be controlled as necessary in order to cause the initiation of the
specified ASP or PDU. The way in which the SUT is to be controlled should be specified in the PIXIT (or
documentation referenced by the PIXIT).

Neither a final verdict nor a preliminary result shall be associated with an IMPLICIT SEND event.

At an appropriate point following an IMPLICIT SEND, there should be a RECEIVE event to match the ASP or PDU
that should, as a result, have been sent by the IUT.

EXAMPLE 71: EXAMPLE use of IMPLICIT SEND

Test Case Dynamic Behaviour

Test Case Name : IMP1
Group : TTCN_EXAMPLES/IMPLICIT_SEND/
Purpose : A partial tree to illustrate the use of IMPLICIT SEND.
Defaults
Comments :
Nr Label Behaviour Description Constraint Ref Verdict Comments
5 CR1
6 <IUT!CR> CR1
! L?CR ccl
12 L'cc

L ? OTHERWISE

Detailed Comments:

15.9.7 The OTHERWISE event

The predefined event OTHERWISE is the TTCN mechanism for dealing with unforeseen test events in a controlled
way.

OTHERWISE is used to denote that the LT or UT shall acagpineoming event that has not previously matched one
of the alternatives to the OTHERWISE. The tester shall accept any incoming data that it has not been possible to decode
or that has not matched a previous alternative to this OTHERWISE event.

In non-concurrent TTCN, if more than one PCO exists in a test suite, then either a PCO name appearing in the
declarations part, or a formal parameter from the formal parameter list of the tree where that formal parameter is used to
convey a PCO name, shall prefix the OTHERWISE. The PCO name is used to indicate the PCO at which the test event
may occur. Incoming events, including OTHERWISE, are considered only in terms of the given PCO.

ETSI

122 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 72: Use of OTHERWISE with PCO identifiers:

PARTIAL_TREE

PCO1?A
PCO27?B PASS
pPCcO1?C INCONC

PCO2 ? OTHERWISE FAIL

Assume no event is received at PCO1, then receipt of event B at PCO2 results in a PASS verdict. Receipt of any
other event at PCO2 results in a FAIL verdict.

Due to the significance of ordering of alternatives, incoming events which are alternatives following an unconditional
OTHERWISE on the same PCO will never match.

EXAMPLE 73: Incoming events following an OTHERWISE:

PARTIAL_TREE

PCO1?A PASS

PCO1 ? OTHERWISE FAIL
pPCO1?C INCONC

The OTHERWISE will match any incoming event other than A. The last alternative, ?C, can never be matched.

15.9.8 OTHERWISE and concurrent TTCN
In concurrent TTCN, OTHERWISE may be used with CPs as well as PCOs. OTHERWISE on CPs is allowed to

provide an efficient way of handling "all other CMs on this CP".

15.9.9 The TIMEOUT event

The TIMEOUT event allows expiration of a timer, or of all timers, to be checked in a Test Case. When a timer expires
(conceptually immediately before a snapshot processing of a set of alternative events), a TIMEOUT event is placed into
a timeout list. The timer becomes immediately inactive. Only one entry for any particular timer may appear in the list at
any one time. Since TIMEOUT is not associated with a PCO, a single timeout list is used.

When a TIMEOUT event is processed, if a timer name is indicated, the timeout list is searched, and if there is a timeout
event matching the timer name, that event is removed from the list, and the TIMEOUT event succeeds.

If no timer name is indicated, any TIMEOUT event in the timeout list matches. The TIMEOUT event succeeds if the list
is not empty. When this occurs, the entire timeout list is immediately emptied.

EXAMPLE 74: Use of TIMEOUT:

? TIMEOUT T

Since TIMEOUT events are not RECEIVE events they are not rendered unreachable by previously listed OTHERWISE
alternatives.

ETSI

123 TR 101 666 V1.0.0 (1999-05)

15.9.10 Concurrent TTCN events and constructs

The CREATE construct and the DONE event are used in concurrent TTCN.

15.9.10.1 The CREATE construct

The Main Test Component is started at the beginning of Test Case execution. The Main Test Component starts Parallel
Test Components, as needed, by means of the CREATE construct.

This construct invokes a set of Parallel Test Components. For each PTC, there are two arguments. The first is the
identifier of the PTC that is created, which shall match the identifier of a PTC in the Test Component Configuration
referenced in the test case header. The second is a reference to a behaviour tree (i.e. Test Step or local tree), possibly
with a parameter list containing actual values (e.g. PCOs and CPs). The effect of the CREATE construct is that each
PTC listed starts executing its behaviour description in parallel with the execution of the Main Test Component.

NOTE: Passing PCO and CP identifiers to a behaviour tree as actual parameters allows the same behaviour tree to
be used in more than one test component.

The PCOs and CPs used in the execution of the behaviour description associated with a PTC by the CREATE construct
shall only be those determined by the Test Component Configuration for that Test Case.

The execution of a CREATE construct on a PTC which has already been created shall result in a Test Case error. The
execution of a CREATE by any Test Component other than the MTC shall result in a test case error.

In the CREATE construct, PCO identifiers and CP identifiers are passed to a PTC by textual substitution, as is usual in
the ATTACHment of Test Steps. All others parameters are passed by value. This is done to prevent side effects on
variables which could affect the processing of other PTCs, causing unrepeatable results.

15.9.10.2 The DONE event

When the MTC terminates, the final verdict is assigned by the MTC, as calculated up to this moment (15.17.5). The
DONE event can be used in the MTC and the PTCs to find out whether PTCs have already terminated. Test
Components can use this information to determine their own preliminary results and further actions; in particular, the
MTC can avoid terminating before all PTCs have terminated (15.17.5).

A missing argument list is interpreted as being a list of all PTCs stated in a CREATE constructs executed prior to the
execution of the DONE event. A DONE event without an argument list shall only be used by the MTC.

EXAMPLE 75: Use of the DONE event:

PARTIAL_MTC_TREE

CREATE (PTC1: TREEA, PTC2 : TREEB
? DONE (PTC1, PTC2)

NOTE 1: If DONE is the only alternative, it amounts to an order to wait for the specified PTCs to terminate.

NOTE 2: DONE is not a means for the MTC to co-ordinate termination of PTCs.

ETSI

124 TR 101 666 V1.0.0 (1999-05)

15.10 TTCN expressions

15.10.1 Introduction

There are two kinds of expressions in TTCN: assignments and Boolean expressions. Both assignments and Boolean
expressions may contain explicit values and the following forms of reference to data objects:

a) Test Suite Parameters.
b) Test Suite Constants.
c) Test suite and Test Case Variables.
d) Formal parameters of a Test Step, Default or local tree.
e) ASPs and PDUs (on event lines).
Any variables occurring in Boolean expressions and/or on the right hand side of an assignment shall be bound. If an

unbound variable is used this is a test case error.

15.10.2 References for ASN.1 defined data objects

15.10.2.1 Introduction

In order to permit references to components of data objects defined using ASN.1, TTCN provides three access
mechanisms: record references, array references and bit references.

15.10.2.2 Record references

A record reference may be used to reference to a component of a data object of the type SEQUENCE, SET or CHOICE.
A record reference is constructed using a dot notation, appending a dot and the name (component identifier) or number
(component position) of the desired component to the data object identifier. The component identifier, if defined, should
be used in preference to the component position. References to unnamed components are constructed by giving within
parentheses the number which is the position of the component within the type definition. By definition, the implicit
numbering of components starts with zero; hence the third component has position number 2.

ISO/IEC 8824-1: 1994 defines SET types having unordered components. This is relevant only if values of that type are
encoded and sent over the underlying service-provider. TTCN therefore treats data objects of SET type in the same way
as objects of SEQUENCE types., referring to the components with numbatways means a reference to itefield

as declared in the type.

After an ASP or PDU or CM has been received, referring to the component with thé wide}ways return the same
value. There is no change of order of the elements in a SET by any operation in TTCN.

EXAMPLE 76: Component record references

Example_type ::= SEQUENCE {
field_1 INTEGER,
field_2 BOOLEAN,
OCTET STRING |}

ETSI

125 TR 101 666 V1.0.0 (1999-05)

If varl is of ASN.1 type Example_type, then the following could be written:
varl.field_1 which refers to the first INTEGER) field

varl.(3) which refers to the third (unnamed) field

EXAMPLE 77: PDU field references

XY_PDUtype ::= SEQUENCE {

user_data OCTET STRING
}

On a statement line that contains XY_PDUtype, the following could be written:
L? XY_PDU (buffer := XY_PDUtype.user_data)
in order to load the variable buffer with the contents of the user_data field of the incoming PDU.

When a PDU or an ASN.1 type parameter, field or element is chained to an ASP, another PDU, or a CM, a record
reference may be used to identify a component of that PDU or ASN.1 type. The record reference shall identify the
relevant complete sequence of parameter, field or element names separated by dots, starting with a data object identifier
which resolves to the relevant ASP identifier, CM identifier, or (if ASPs are not used in the test suite) PDU identifier.
Beyond this initial data object identifier the sequence shall not contain any PDU identifiers or ASN.1 type identifiers,

but rather just the identifiers of the relevant parameters, fields and elements. This mechanism shall not be used if there is
any ambiguity about the identity of a PDU constraint or ASN.1 type constraint in the sequence. The following example
illustrates the use of record references when chaining of constraints is used (see 12.4).

ETSI

126 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 78: Record references with chaining

ASN.1 ASP Type Definition

ASP1_type ::= SEQUENCE {
par_1 OCTET STRING,
par_2 OCTET STRING,
pdul PDU1_type

}

ASN.1 PDU Type Definition

PDU1_type ::= SEQUENCE {
fieldl OCTET STRING,
field2 OCTET STRING,
f F_type
}

ASN.1 Structure Type Definition

F_type ::= SEQUENCE {
datal IA5STRING,
data2 IA5STRING

When using constraints of type ASP1_type, PDU1_type and F_type, the values of datal and data2 may be
referenced as follows:

ASP1_type.pdul.f.datal
ASP1_type.pdul.f.data2

Similarly the whole PDU field f may be referenced as:
ASP1_type.pdul.f

or the whole PDU may be referenced as:
ASP1_type.pdul

It should be noted that the declarations used in this example could apply to both static chaining and dynamic
chaining, as the differences between the two types of chaining are only visible in the constraints. Thus, the record
reference is independent of the variety of chaining used.

ETSI

127 TR 101 666 V1.0.0 (1999-05)

15.10.2.3 Array references

An array reference may be used to reference a component of a data object of the type SEQUENCE OF or SET OF. An
array reference shall be constructed using a dot notation, appending a dot and the index of the desired component to the
data object identifier. The index, giving the position of the component within the data object (when the object is viewed
as a linear array), is enclosed within square brackets. By definition within ASN.1, the indexing of components starts

with zero. The index may be an expression, in which case it shall evaluate to a non-negative INTEGER.

ISO/IEC 8824-1: 1994 defines SET OF types having unordered components. This is relevant only if values of that type
are encoded and sent over the underlying service-provider. TTCN therefore treats data objects of SET OF type in the
same way as objects of SEQUENCE OF tyge, referring to the components with numbeatways means a reference

to theith field as declared in the type.

After an ASP or PDU or CM has been received, referring to the component with thé wide}ways return the same
value. There is no change of order of the elements in a SET OF by any operation in TTCN.

EXAMPLE 79: Component array references

Array_type ::= SEQUENCE OF { BOOLEAN }

If var2 is of ASN.1 type Array_type, then the following could be written in order to refer to the first BOOLEAN in the
sequence:

var2.[0]
varl.[1-1]

15.10.2.4 Bit references

A bit reference may be used to reference particular bits within a BITSTRING type. For this purpose, data objects of
BITSTRING type are assumed to be defined as SEQUENCE OF {BOOLEAN}. Thus, a bit reference may be
constructed using the index notation as for array references. The leftmost bit has the index zero. An expression used as
an index in a bit reference shall evaluate to a non-negative INTEGER. Alternatively, if certain bits of a BITSTRING are
associated with an identifier (named bits) then this identifier may be used to refer to the bit.

EXAMPLE 80: Bit references

B_type ::= BIT STRING { ack(0), poll(3) }

This defines a BITSTRING type B_type where bit zero is called "ack" and bit three is called "poll".
If b_stris of ASN.1 type B_type, then the following could be written:

b_str.ack := TRUE

b_str.[2] := FALSE
Note that b_str.poll := TRUE and b_str.[3] := TRUE both assign the value TRUE to the "poll" bit.

15.10.3 References for data objects defined using tables
The same syntax as defined in 15.10.2.2 shall be used to construct record references to components of ASPs, PDUs,

CMs and Structured Types defined in tabular form. Chaining of ASPs, PDUs, CMs and Structured Types in tabular form
affects record references in exactly the same way as it does for those defined in ASN.1.

ETSI

128 TR 101 666 V1.0.0 (1999-05)

Where a parameter, field or element is defined to include an item which is a true substructure of a type defined in a
Structured Type table, a reference to the item in the substructure shall consist of the record reference to the parameter,
field or element followed by a dot and the identifier of the item within that Structure.

Where a Structure is used as a macro expansion, the elements in the Structure shall be referenced to as if it was
expanded into the Structure referring to it.

If a parameter, field or element is defined to be of metafpe no reference shall be made to fields of that
substructure.

15.10.4 Assignments

15.10.4.1 Introduction

Test events may be associated with a list of assignments and/or a qualifier. Commas separate assignments and the list is
enclosed in parentheses.

During execution of an assignment the right-hand side shall evaluate to an element of the type of the left-hand side.

The effect of an assignment is to bind the Test Case or Test Suite Variable (or ASP parameter or PDU field) to the value
of the expression. The expression shall contain no unbound variables.

All assignments occur in the order in which they appear, that is left to right processing.

EXAMPLE 81: use of assignments with event lines:

(X:=1)
(Y:=2)
LIA (Y:=0, X:=Y, A field1:=Y)
L?B (Y:=B.field2, X:=X+1)

When PDU A is successfully transmitted the contents of the Test Case Variables X and Y will be zero, and field1 of
PDU A will also contain zero. Upon receipt of PDU B the Test Case Variable Y would be assigned the contents of
field2 from PDU B and the Test Case Variable X would be incremented.

15.10.4.2 Assignment rules for string types

If length-restricted string types are used within an assignment the following rules apply:

a) if the destination string type is defined to be shorter than the source string, the source string is truncated on the
right to the maximum length of the destination string type;

b) if the source string is shorter than that allowed by the destination string type, then the source string is left-aligned
and padded with fill characters up to the maximum size of the destination string type.

Fill characters are:
" " (blank) for all CharacterStrings;
"0" (zero) for BITSTRINGs, HEXSTRINGs and OCTETSTRINGsS.

When an unbounded€., arbitrary length) string type variable is used on the left-hand side of an assignment it shall
become bound to the value of the right-hand side without padding. Padding is only necessary when the variable is of a
fixed length string type.

ETSI

129 TR 101 666 V1.0.0 (1999-05)

15.10.5 Qualifiers

An event may be qualified by placing a Boolean expression enclosed in square brackets after the event. This
qualification shall be taken to mean that the statement is executed only if both the event matches and the qualifier
evaluates to TRUE.

If both a qualifier and an assignment are associated with the same event, then the qualifier shall appear first, any term in
it being evaluated with the values holding before execution of the assignment.

15.10.6 Event lines with assignments and qualifiers

An event may be associated with an assignment, a qualifier or both. If an event is associated with an assignment, the
assignment is executed only if the event matches. If an event is associated with a qualifier, the event may match only if
the qualifier evaluates to TRUE. If an event is associated with both, the event may match only if the qualifier evaluates
to TRUE, and the assignment is executed only if the event matches.

If a RECEIVE event is qualified and the event that has occurred potentially matches the specified event, then the
qualifier shall be evaluated in the context of the event that has occurred. If the qualifier contains a reference to ASP
parameters and/or PDU fields then the values of those parameters and/or fields are taken from the event that has
occurred.

The rules for use of assignments within events are as follows:

a) on a SEND event all assignments are perforaftedthe qualifier is evaluated am@forethe ASP or PDU is
transmitted;

b) on SEND events assignments are allowed for the fields of the ASP or PDU being transmitted;

c) on a RECEIVE event assignments are perforaitea the event occurs and cannot be made to fields of the ASP
or PDU just received.

An assignment to a constraint ASP parameter, PDU field or structure element in the behaviour part will overwrite
constraint values on a SEND event line.

EXAMPLE 82: Use of a qualified SEND event:

PARTIAL_TREE
IA [X:=3]
B

Processing these alternative SEND events the tester will send A only if the value of the variable X is 3. Otherwise it
will send B.

The OTHERWISE event may be used together with qualifiers and/or assignments. If a qualifier is used, this Boolean
becomes an additional condition for accepting any incoming event. If an assignment statement is used, the assignment
will take place only if all conditions for matching the OTHERWISE are satisfied.

ETSI

130 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 83: Using OTHERWISE, qualifiers and assignments:

PARTIAL_TREE (PCO1:XSAP; PCO2:YSAP)

PCO1?A PASS
PCO2?B [X=2] INCONC
PCO1?C PASS
PCO2 ? OTHERWISE [X<>2] (Reason:="X not equal 2") FAIL
PCO2 ? OTHERWISE (Reason:="X equals 2 but event not B") FAIL

Assume that no event is received at PCO1. Receipt of event B at PCO2 when X=2 gives an inconclusive verdict.
Receipt of any other event at PCO2 when X<>2 results in a FAIL verdict and assigns a value of "X not equal 2" to

the CharacterString variable: Reason. If an event is received at PCO2 that satisfies neither of these scenarios then the
final OTHERWISE will match.

Events involving CMs occurring at CPs may also be associated with an assignment, a qualifier or both, in the same
manner as for PDUSs, as described above.

EXAMPLE 84: CMs associated with a qualifier
A_CP!A_CM [X=2]

15.11 Pseudo-events

It is permitted to use assignments, qualifiers and timer operations by themselves on a statement line in a behaviour tree,
without any associated event. These stand-alone expressions are called pseudo-events.

The meaning of such a pseudo-event is as follows:

a) if only a qualifier is specified: the qualifier is evaluated and execution continues with subsequent behaviour, if the
qualifier evaluates to TRUE; if it evaluates to FALSE the next alternative is attempted. If no alternative exists,
then this is a test case error;

b) if only assignments and/or timer operations are specified: the assignments shall be executed from left to right
and/or the timer operations shall be executed from left to right;

c) if assignments and/or timer operations are specified preceded by a qualifier: the qualifier shall be evaluated first
and the assignments and/or timer operations shall be evaluated only if the qualifier evaluates to TRUE.

15.12 Timer management

15.12.1 Introduction

A set of operations is used to model timer management. These operations can appear in combination with events or as
stand-alone pseudo-events.

Timer operations can be applied to:
- an individual timer, which is specified by following the timer operation by the timer name;

- all timers, which is specified by omitting the timer name.

ETSI

131 TR 101 666 V1.0.0 (1999-05)

It is assumed that the timers used in a test suite are either inactive or rédiningning timers are automatically
cancelled at the end of each Test Case. There are three predefined timer operations: START, CANCEL and
READTIMER. More than one timer operation may be specified on an event line if necessary. This is indicated by
separating the operations by commas.

When a timer operation appears on the same statement line as an event and/or a qualifier, the timer operation shall be
executed if, and only if, the event matches and/or the qualifier evaluates to TRUE.

15.12.2 The START operation

The START operation is used to indicate that a timer should start running.

The optional timer value parameter shall be used if no default duration is given, or if it is desired to assign an expiry
time (.e., duration) for a timer that overrides the default value specified in the timer declarations.

Timer values shall be of type INTEGER. The test case writer shall ensure that the optional timer value parameter shall
evaluate to a positive non-zero INTEGER. A test case error shall result if a timer is started with a zero or negative value.

Any variables occurring in the expression specifying the optional timer value shall be bound. If an unbound variable is
used this is a test case error.

When a timer duration is overridden, the new value applies only to the current instance of the timer: any later START
operations for this timer which do not specify a duration will use the duration stated in the timer declarations part.

EXAMPLE 85: Uses of START timer:

the Ti are timer identifiers and the Vi are timer values:
START TO

START TO (V0)

START T1, START T2 (V2)

The START operation may be applied to a running timer, in which case the timer is cancelled, reset and started. Any
entry in the timeout list for this timer shall be removed from the timeout list.

15.12.3 The CANCEL operation

The CANCEL operation is used to stop a running timer.

A cancelled timer becomes inactive. If a TIMEOUT event for that timer is in the timeout list, that event is removed from
the timeout list. If the timer name on the CANCEL operation is omitted, all running timers become inactive and the
timeout list is emptied.

Cancelling an inactive timer is a valid operation, although it does not have any effect.

EXAMPLE 86: Some uses of CANCEL timer:
where the Ti are timer identifiers:

CANCEL

CANCEL TO

CANCEL T1, CANCEL T2

CANCEL T1, START T3

ETSI

132 TR 101 666 V1.0.0 (1999-05)

15.12.4 The READTIMER operation

The READTIMER operation is used to retrieve the time that has passed since the specified timer was started and to
store it into the specified Test Suite or Test Case Variable. This variable shall be of type INTEGER. The time value
assigned to the variable is interpreted as having the time unit specified for the timer in its declaration. By convention,
applying the READTIMER operation on an inactive timer will return the value zero.

EXAMPLE 87: Using READTIMER:

START TimerName (TimerVal)

?EVENT_A
+Tree_A

?EVENT_B
+Tree_B

?EVENT_C
READTIMER TimerName (CurrTime)

+Tree_C

?TIMEOUT TimerName

If EVENT_C is received prior to expiration of the timer named by TimerName, the amount of time which has passed
since starting the timer will be stored in the Test Case or Test Suite Variable CurrTime. The behaviour contained in
Tree_C may use the value of this Test Suite or Test Case Variable.

EXAMPLE 88: READTIMER used in combination with other timer operations:
READTIMER T1 (PASSED_TIME), CANCEL T1
READTIMER T1 (V1), START NEW_TIMER (V1)

15.13 The ATTACH construct

15.13.1 Introduction

Trees may be attached to other trees by using the ATTACH construct.

Test suite and Test Case Variables are global to both the tree that does the attachment (the main tree) and the attached
tree,i.e.,any changes made to variables in an attached tree also apply to the main tree. Tree attachment constructs shall
appear on a statement line by themselves.

ETSI

133 TR 101 666 V1.0.0 (1999-05)

15.13.2 Scope of tree attachment

Behaviour descriptions may contain more than one tree. However, offilsstiieee in the behaviour description is
accessible from outside the behaviour description. Any subsequent trees are considered to be Test Steps local to the
behaviour description, and thus not externally accessible.

It should be noted that only Test Cases are directly executable, while Test Steps are executed only if attached to a Test
Case, or to a Test Step whose point of attachment can be traced back to a Test Case (either directly or via other attached
Test Steps). Test Cases are not attachable.

Tree reference may be Test Step Identifiers or tree identifiers, where:

a) a Test Step Identifier denotes the attachment of a Test Step that resides in the Test Step Library; the Test Step is
referenced by its unique identifier;

b) a tree identifier shall be the name of one of the trees in the current behaviour description; this is attachment of a
local tree.
15.13.3 Tree attachment basics

Given a behaviour tree, it is possible to detach parts of this tree in the form of separate behaviber, fessSteps.
The points where a Test Step has been cut out of the original tree are indicated by the attach symbol (+) followed by
the name assigned to the Test Step.

EXAMPLE 89: Partitioning a large tree into two smaller trees:

TOP_TREE TOP_TREE STEP
A A D1
Al Al D11
D1 + STEP D12
D11 is equivalent to : C and
D12 C1
C + STEP
C1
D1
D11
D12

This operation can be performed not only on the main behaviour tree of the Test Case (the root tree) but also on the Test
Steps detached from it. The attached tree will either be a local tree or a member of the Test Step Library.

Tree attachment can be defined in a more general way than the mere re-insertion of complete Test Steps:

- An attached tree need not contain full paths down to the leaves of the tree it is attachedltingitsee.
Rather, some subsequent behaviour common to all paths of the attached tree may be specified in the calling tree,
namely as behaviour subsequent to the attachment line.

- Some (even top level) lines of the attached Test Step may again have the form +SOME_SUBTREE, calling for
the attachment of further Test Steps.

- Attached Test Steps may be parameterized.

15.13.4 The meaning of tree attachment

The following list defines the tree attachment execution semantics:

ETSI

134 TR 101 666 V1.0.0 (1999-05)
a) The attachment lineg.,+STEP) in the behaviour tree.¢.,TOP_TREE) is formally onee(g.,Ai) in an
ordered set of alternatives:
(AL, ..., Ai, ..., An)

Attaching STEP in this position means expanding the TOP_TREE by inserting the Test Step STEP's top alternatives,
e.g.,(B1, ..., Bm) into this sequence, yielding a new sequence:

(AL, ..., A(i-1), B1, ..., Bm, A(i+1), ..., An)

of alternatives. Any subsequent behaviour to the Bs will be attached together with them.

EXAMPLE 90: Expansion of a Test Step:

b) Any behaviour subsequent to the +STEP line in the tree will become behaviour subsequent to all the leaves of the

attached STEP expanded into the tree;

EXAMPLE 91: Subsequent behaviour to an ATTACH:

TOP_TREE STEP TOP_TREE
A B1 A
Al B11 Al
+ STEP B2 Bl
A3 and is equivalent to | B11
B2
A3

TOP_TREE STEP TOP_TREE
A D1 A
+ STEP D11 D1
B and D2 is equivalent to D11
B
D2
B

d) When an actual parameter list is used on an ATTACH construct, then the actual parameter shall be substituted for
each corresponding formal parameter using simple textual substitution. This substitution shall take place
according to the following scoping rules:

1) Actual parameters on the ATTACH of a local tree shall be substituted for corresponding formals only directly
within that local tree.

2) Actual parameters on the ATTACH of a root tree of a Test Step are substituted for all occurrences of the
corresponding formals within the root tree and any local trees directly within the Test Step.

3) When a parameterized tree is attached:
A) the number of the actual parameters shall be the same as the number of formal parameters;
B) each actual parameter shall evaluate to an element of its corresponding formal parameter type; and

C) formal and actual parameters of test steps shall be used in such a way that only valid TTCN is created by
textual substitution.

ETSI

EXAMPLE 92: Substitution of parameters:

135

+ STEP (U,M,2)

TOP_TREE (L:NSAP; U:TSAP;U:TSAP)
LICONreq (M:=1)

STEP (PCO:TSAP; X,Y:INTEGER)
and PCO?CONind (X:=Y)

is equivalent to:

TOP_TREE (L:NSAP; U:TSAP)
LICONreq (M:=1)
U?CONind (M:=2)

EXAMPLE 93: Scoping rules for parameter substitution:

TR 101 666 V1.0.0 (1999-05)

Test Step Dynamic Behaviour

Test Step Name

: TEST_STEP_1(X,Y:

INTEGER)

Group TTCN_EXAMPLES/PARAMS/STEPS/
Objective To illustrate scoping rules for parameter substitution.
Defaults
Comments
Nr Label Behaviour Description Constraint Ref Verdict Comments
1 ?A Al
2 + TEST_STEP_2 (X)
3 + LOCAL (5)
LOCAL (F: INTEGER)
4 'B B1
5 (TC_VAR=F+Y) PASS

Detailed Comments:
When TEST_STEP_1 is attached by a calling tree, all occurrences of the formal parameters X and Y within the entire ettt @tep
within the local tree LOCAL) will be replaced with the actuals provided. Note that formals X and Y are not automaticélyeslisith

actuals within TEST_STEP_2. However, the actual parameter value for formal X is substituted in the ATTACH c
"+TEST_STEP_2 (X)". This results in the substitution of the actual parameter value X (in TEST_STEP_1) for whatever tonmetdrgar
appears in the declaration of TEST_STEP_2. Finally, note that actual parameter (constant) 5 is substituted for fornmatHétred
LOCAL is attached. This substitution takes place only within the local tree.

pnstruct

E

15.13.5 Passing parameterized constraints

Constraints may be passed as parameters to Test Steps. If the constraint has a formal parameter list then the constraint
shall be passed together with an actual parameter list. The actual parameters of the constraint shall already be bound at
the point of attachment.

EXAMPLE 94: Passing a parameterized constraint:

Suppose that the constraint C1 has a single formal parameter of type INTEGER. TOP_TREE attaches STEP and passes
C1 as a parameter. Note that the constraints reference in STEP is not parameterized:

TOP_TREE

+ STEP (C1(3))

STEP (PAR:A_PDU)

I'A_PDU PAR

ETSI

136 TR 101 666 V1.0.0 (1999-05)

15.13.6 Recursive tree attachment

As tree attachment works recursively (STEP may contain a +SOME_OTHER_TREE line) the tree expansion semantics
may never lead to a tree free of attachment lines.

EXAMPLE 95: A legal recursive tree attachment:

TOP_TREE STEP TOP_TREE
A C A
+ STEP + TOP_TREE one expansion C
B and D is equivalent to + TOP_TREH
B
D
B

A tree shall not attach itself, either directly or indirectly, at its top level of indentation.

NOTE: Itis unnecessary to expand either any Test Step that will not be executed, or any alternatives beyond the
current level until an alternative from the current level has been selected.

EXAMPLE 96: An illegal recursive tree attachment:

TOP_TREE STEP TOP_TREE
A C A
+ STEP D one expansion C
B and + TOP_TREE is equivalent to|: D
B
+ TOP_TREE
B

15.13.7 Tree attachment and Defaults

The expansion of Defaults in a tree shall be completed before this tree is attached anywhere (see 15.18.5).

NOTE: Special care has to be taken where both tree attachment and Defaults are used in a behaviour description.

15.14 Labels and the GOTO construct

A label may be placed in the labels column on any statement line in the behaviour tree.

NOTE 1: Whenever an entry is executed in the behaviour tree for which a label is specified, that label should be
recorded in the conformance log in such a way that it can be associated with the record of the execution of
that entry.

A GOTO to a label may be specified within a behaviour tree provided that the label is associated with the first of a set of
alternatives, one of which is an ancestor node of the point from which the GOTO is to be made. A GOTO shall be used
only for jumps within one treé.e., within a Test Case root tree, a Test Step tree a Default tree or a local tree. As a
consequence, each label used in a GOTO construct shall be found within the same tree in which the GOTO is used. No
GOTO shall be made to the first level of alternatives of local trees, Test Steps or Defaults.

A GOTO shall not refer to a label prior to an ACTIVATE construct which is an ancestor node of the GOTO.

A GOTO shall be specified by placing an arrow (->) or the keyword GOTO, followed by the name of the label, on a
statement line of its own in the behaviour tree.

ETSI

137 TR 101 666 V1.0.0 (1999-05)
A label shall be unique within a tree. If a GOTO is executed, the Test Case shall proceed with the set of alternatives
referred to by the label.
GOTOs shall always be unconditional and therefore always execute.

NOTE 2: A Boolean expression may be placed as the immediate ancestor of a GOTO to gain the effect of a
conditional jump.

EXAMPLE 97: Use of GOTO

Test Case Dynamic Behaviour

Test Case Name . GOTO_EX1
Group : TTCN_EXAMPLES/GOTO_EXAMPLE1/
Purpose . Toillustrate use of labels and GOTO.
Defaults
Comments :

Nr Label Behaviour Description Constraint Ref Verdict Comments

1 LA A Al

2 LB ?B B1

3 LB2 + B_tree

4 | LC ?C Cc1l

5 LD [D=1]

6 GOTO LA

7 LE [E=1]

8 LF 'F F1 FAIL
Detailed Comments:
This example shows a jump to LA. From the same position in that tree it would also be allowed to jump to LB or LD, butnome: jd
allowed to jump to LB2 or LF (because the set of alternatives does not contain an ancestor node of the point from whicls timagie)]
nor to LC or LE (because these are not the first of a set of alternatives).

15.15 The REPEAT construct

This subclause describes a mechanism to be used in behaviour descriptions for iterating a Test Step a number of times.

The tree reference shall be a reference to either a local tree or a Test Step defined in the Test Step Library. For the rules
of attachment see 15.13. The REPEAT construct has the following meaning: first the tree, referred to by the tree
reference, is executed. Then, the qualifier is evaluated. If the qualifier evaluates to TRUE, execution of the REPEAT
construct is completed. If not, the tree is executed again, followed by evaluation of the qualifier. This process is repeated
until the qualifier evaluates to TRUE.

The REPEAT construct can always be executed and should be the last alternative of a series of TTCN statements at the
same level of indentation, as allowed by 15.9.5.3 a).

NOTE: The REPEAT construct is recommended, if applicable, instead of use of GOTO.

ETSI

138 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 98: Use of REPEAT

Test Case Dynamic Behaviour

Test Case Name : RPT_EX1
Group : TTCN_EXAMPLES/REPEAT_EXAMPLE1/
Purpose : Toillustrate use of REPEAT.
Defaults :
Comments :
Nr Label Behaviour Description Constraint Ref Verdict Comments
1 (FLAG := FALSE)
2 A Al
3 REPEAT STEP1 UNTIL [FLAG]
4 'D D1 PASS
STEP1
5 ? B (FLAG:=TRUE) B1
6 ? C (FLAG:= FALSE) C1

Detailed Comments:
This example describes a test that is capable of receiving an arbitrary number of C events at the lower tester PCQ@, until the

awaited message B is received.

15.16 The Constraints Reference

15.16.1 Purpose of the Constraints Reference column

This column allows references to be made to a specific constraint placed on an ASP, PDU or CM. Such constraints are
defined in the constraints part (see clause 12, 13 and 14). The constraints reference shall be present in conjunction with
SEND, IMPLICIT SEND and RECEIVE. A constraints reference is optional if an ASP or CM has no parameters or if a
PDU has no fields. It shall not be present with any other kind of TTCN statement.

The entry Constraints Reference column may be an actual constraint reference, the AnyValue symbol ("?"), or a formal
parameter whose actual parameter shall be a constraint reference or the AnyValue symbol. If AnyValue is used in place
of a constraint reference it means a "don't care" constraint, equivalent to a constraint with AnyOrNone ("*") in every

parameter, field or element.

EXAMPLE 99: A constraint reference without a parameter list:

N_SAP? CR_PDU CR1

15.16.2 Passing parameters in Constraint References

A constraint reference may have an optional parameter list to allow the manipulation of specific constraint values from
the behaviour tree.

The actual parameter list shall fulfil the following:
the number of actual parameters shall be the same as the number of formal parameters; and

each actual parameter shall evaluate to either a value of its corresponding formal type or a matching symbol that can
match a value of that formal type.

ETSI

139 TR 101 666 V1.0.0 (1999-05)

If a constraint is passed as an actual parameter, and that constraint is declared with a formal parameter list, then the
constraint shall also have a (possibly nested) actual parameter list. All variables appearing in the parameter list shall be
bound when the constraint is used. If an unbound variable is used then this is a test case error.

EXAMPLE 100: A constraints reference with a parameter list:

N_SAP? N_DATAreq D1(P1,CR1(P2))

Where D1 is a constraint on N_DATAreq with two parameters (actual parameters P1 and CR1), and CR1 is a constraint
with one parameter (actual parameter P2).

15.16.3 Constraints and qualifiers and assignments

If an event is qualified and also has a constraints reference, this shall be interpreted as: the event matches if, and only if,
both the qualifieandthe constraint hold.

If an event is followed by an assignment and has a constraints reference and/or a qualifier, then this shall be interpreted
as: the assignment is performed if, and only if, the event occurs according to the definition given above.

15.17 Verdicts

15.17.1 Introduction

Entries in the verdict column in Dynamic Behaviour tables shall be either:
- a preliminary result, which shall be given in parentheses;
- or an explicit final verdict.
An entry, of either type, shall not occur on an empty line, or on the following TTCN statements:
a) an ATTACH construct;
b) a REPEAT construct;
c) aGOTO;
d) an IMPLICIT SEND.

NOTE: During Test Case execution, whenever an entry in a behaviour tree occurs for which there is a
corresponding entry in the verdict column of the abstract Test Case, that verdict column information is
intended to be recorded in the conformance log in such a way that it is associated with the record of that
entry in the behaviour tree.

15.17.2 Preliminary results

A predefined variable called R, of the predefined type R_TYPE, is available to each Test Case to store any intermediate
results. These values are predefined identifiers and as such are case sensitive.

R may be used wherever other Test Case Variables may be used, except that it shall not be used on the left-hand side of
an assignment statement. Thus, it is a read-only variable, except for the changes to its value caused by entries in the
verdict column (as specified below).

If a preliminary result is to be specified in the verdict column it shall be one of the following:

a) (P) or (PASS), meaning that some aspect of the test purpose has been achieved;

ETSI

140 TR 101 666 V1.0.0 (1999-05)

b) (1) or INCONC), meaning that something has occurred which makes the Test Case inconclusive for some aspect
of the test purpose;

c) (F) or (FAIL), meaning that a protocol error has occurred or that some aspect of the test purpose has resulted in
failure.

NOTE 1: PASS or P, FAIL or F and INCONC or | are keywords that are used in the verdicts column only. The
predefined identifierpass fail, inconcandnoneare values that represent the possible contents of the
predefined variable R. These predefined identifiers are to be used for testing the variable R in behaviour
lines only.

Whenever a preliminary result is recorded, because the corresponding entry in the behaviour tree is executed, then the
value of the predefined Test Case Variable R shall be changed according to the following table:

Table 7: Calculation of the variable R

Current Value of Entry in verdict column
R (PASS) (INCONC) (FAIL)
none pass inconc fall
pass pass inconc fall
inconc inconc inconc fall
fail fail fail fail

NOTE 2: Thus, the order of precedence (lowehigher) is: N, P, |, F. Even if R has valiadl it can be useful to
record a preliminary result of P or | in order to record in the conformance log that a P or | is appropriate
for some aspect of the test purpose, despite the fact that this will not change the value of R.

15.17.3 Final verdict

If an explicit final verdict is to be specified in the verdict column, it shall be one of the following:
a) P or PASS, meaning that a pass verdict is to be recorded;
b) 1 or INCONC, meaning that an inconclusive verdict is to be recorded;
¢) F or FAIL, meaning that a fail verdict is to be recorded;

d) the predefined variable R, meaning that the value of R is to be taken as the final verdict, unless the value of R is
nonein which case a test case error is recorded instead of a final verdict.

Table 8: Calculation of the final verdict R

Current Value of Entry in verdict column
R PASS INCONC FAIL R
none pass inconc falil *error*
pass pass inconc fall pass
inconc *error* inconc fail inconc
fail *error* *error* fail fail

Whenever, during execution of a Test Case, an explicit final verdict is specified, then this terminates the Test Case. For
compliance with ISO/IEC 9646-2, an explicit final verdict should be specified only if the Test Case has returned to a
suitable stable testing stated.,the idle testing state).

NOTE 1: The termination of the Test Case caused by the specification of an explicit final verdict is necessary, for
example, if the stable state is reached in an attached Test Step when subsequent behaviour is specified in
the calling tree.

If the leaf of the behaviour tree is reached without an explicit final verdict being specified, then the final verdict is
determined as for case d) aboie.(as if R had been put in the verdict column).

ETSI

141 TR 101 666 V1.0.0 (1999-05)

If an explicit final verdict other than R is to be recorded, then that verdict shall be compared with the value in R to
determine whether or not they are consistent. Iffiighen a final verdict of PASS or INCONC shall be regarded as
inconsistent; if R isnconcthen a final verdict of PASS shall be regarded as inconsistent. If there is one of these
inconsistencies, then it is a test case error.

NOTE 2: In such a case, "Test Case Error" should be recorded in the conformance log.

15.17.4 Verdicts and OTHERWISE

An OTHERWISE statement shall not lead to a PASS verdict. It should lead to a FAIL verdict, because the
OTHERWISE could match an invalid test event.

15.17.5 Verdict assignment in concurrent TTCN

In concurrent TTCN, the final verdict is assigned by the MTC, either explicitly in the verdict column or implicitly as a
consequence of MTC termination. Preliminary test results are maintained in the global result variable, which is
accessible to the MTC as the test case variable R. The global result variable is updated whenever a preliminary result or
verdict is recorded in the verdict column by a matched MTC behaviour line. If the MTC terminates without assigning an
explicit verdict, then the verdict shall be determined as if R had been placed in the verdict column (15.17.3 d).

In addition, each PTC shall record at least one preliminary result. This preliminary result is maintained in its local result
variable, which is accessible to the PTC as its test case variable R. When a preliminary result is assigned by a PTC, by
any entry in the verdict column of a matched PTC behaviour line (whether or not the entry is in parentheses), both its
local result variable and the global result variable are automatically updated using the algorithm specified in 15.17.2. In
a PTC, an entry in the verdict column without parentheses around it is not a final verdict, but shall cause termination of
the PTC if that behaviour line matches.

Termination of the MTC before termination of all PTCs shall result in a test case error.

When the MTC uses the R variable in a Boolean expression or an assignment, it accesses the global result variable.
When a PTC uses the R variable in a Boolean expression or an assignment, it accesses its local result variable. The
MTC may also access a local result variable of its own by using the predefined test case variable MTC_R rather than R.
MTC_R is of predefined type R_TYPE. MTC_R is updated whenever a preliminary result is recorded in the verdict
column by a matched MTC behaviour line, but is unaffected by the preliminary results of PTCs.

The value of a PTC's local result variable can be communicated to another PTC only via CMs. The value of the MTC's
local or global result variables can be communicated to a PTC only via CMs.

15.18 The meaning of Defaults

15.18.1 Introduction

In many cases Default behaviour will be used to emphasize a set of interesting paths through a test by declaring the less
interesting common alternatives (+ their subsequent behaviour) as Default behaviour.

The same effect, though less concisely, would be achieved by Test Step attaehqme@EFAULT) as an additional
general last alternative. As opposed to tree attachment, Default behaviour expands into many points of the tree it is
associated with. This property calls for a careful use of Defaults.

ETSI

142

EXAMPLE 101: Identifying a Default tree

TR 101 666 V1.0.0 (1999-05)

TOP_TREE TOP_TREE TOP_TREE
A A Default: COMMON
Al Al A
All All Al
C + COMMON All
D A2 A2
A2 + COMMON B
C B Bl
D Bl
B +COMMON
Bl +COMMON COMMON
C C
D COMMON D
C C
D D

1: the complete set of 2: explicit tree attachment. 3: Default achieves the
alternatives. same as 2.

No Default behaviour shall be specified to a Default behayviaura Default may not have Default behaviour itself.
Tree attachments shall not be used in Default behaviour iteeeBefault behaviour trees shall not attach Test Steps.
Test Cases or Test Steps shall not be referred to as Defaults.

For the execution of a Test Case it is not necessary to expand Defaults everywhere in all the trees referring to them. This
can be seen from an operational description of the meaning of Defaults: in attempting to match a sequence of
alternatives (which may need repeated attempts), each time they all failed to match, the first level of alternatives of the
Default behaviour are attempted as well. If none of these matches either, the sequence is retried with the new states of
timers and queues at all PCOs concerned. If there is a match in the Default, the Default behaviour is pursued at that
point.

To ensure that no subsequent behaviour will occur following the execution of a Default behaviour, the execution of a
leaf of a Default tree, other than a RETURN statement, shall cause the termination of the test case. In order to
accomplish this termination, in a Default tree, every leaf which has no verdict or preliminary result in the verdict column
is implicitly provided with a verdict column entry of "R", and every leaf which has a preliminary result in the verdict
column has that preliminary result implicitly transformed into a final verdict.

15.18.2 Default References

Test Case and Test Step behaviours reference a list of Default behaviours in the Default Library through the Default
entry in the table header.

Each reference in this list locates a Default by its unique identifier. The Defaultldentifier shall be a reference to a
Default defined in the Default Library.

Defaults can be parameterized. The actual parameter list shall fulfil the following:
a) the number of actual parameters shall be the same as the number of formal parameters;
b) each actual parameter shall evaluate to an element of its corresponding formal type; and

c) all variables appearing in the parameter list shall be bound when the constraint is invoked.

ETSI

143 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 102: Default reference

Test Case Dynamic Behaviour

Test Case Name . DEF_EX1

Group : TTCN_EXAMPLES/DEFAULT_EXAMPLE1/

Purpose . Toillustrate the use of Defaults.

Defaults . DEF1 (L)

Comments : The tree of example 69 can be split into this Test Case with the Default behaviour DEHL.
Nr Label Behaviour Description Constraint Ref Verdict Comments
1 L I CONNECTrequest CR1 Request...
2 L ? CONNECTconfirm CC1 ... Confirm
3 L ! DATArequest DTR1 Send Data
4 L ? DATAindication DTI1 Receive Data
5 L ! DISCONNECTrequest DSCR1 PASS Accept

Detailed Comments:

Default Dynamic Behaviour

Default Name . DEF1 (X : XSAP)

Group : TTCN_EXAMPLES/DEFAULTS_LIB/DEFAULT_1/

Objective . lllustration of a simple Default

Defaults

Comments :

Nr Label Behaviour Description Constraint Ref Verdict Comments
1 X ? DISCONNECT Indication DSC2 INCONC| Premature

NOTE: Syntactically, the Default behaviour of the second of the two tables in the above example attaches
X?DISCONNECTiIndication as an alternative to each of the L! and L? statements in the first table.
However, attachment of the Default tree as an alternative to an L! statement that always succeeds is
meaningless.

15.18.3 The RETURN statement

The RETURN statement is an extension of the Default behaviour description capabilities. A RETURN statement shall
only be used in a Default tree.

When the Default expansion of a tree is performed, execution of a RETURN statement will cause processing to continue
at the first alternative in the set of alternatives that caused the Default behaviour to be attempted.

15.18.4 The ACTIVATE statement

The ACTIVATE statement allows the activation of one set of Default behaviours. Instead of being implicitly active for
the duration of the test case, defaults may be activated selectively by the ACTIVATE statement. Default behaviour thus
activated is attempted in the order in which it is specified by the ACTIVATE, e.g., ACTIVATE (Def_1, Def_2) will

cause Def_1 to be executed before Def_2 when default behaviour is needed.

The default behaviour specified in an ACTIVATE statement overrides any active default behaviour, including default
behaviour specified in a test case or test step header.

An ACTIVATE with an empty default reference list, i.e. ACTIVATE(), deactivates all default behaviour.

ETSI

144 TR 101 666 V1.0.0 (1999-05)

15.18.5 Defaults and tree attachment

Whenever tree attachment is used it is important to have a clear understanding of how Defaults apply both to the calling
tree and to the attached Test Step. In order to avoid hidden side-effects the Defaults that apply within an attached Test
Step are defined to be those specified in the table that defines that Test Step. Thus, if the Test Step is defined in the Test
Step Library, then the Defaults that apply are specified in header of the Test Step behaviour table. Alternatively, if the
Test Step is defined locally in the same behaviour table as the calling tree, then the same Defaults apply to both the
calling tree and the attached Test Step.

In order to avoid multiple insertions of Defaults within a set of alternatives, the Default specified for a particular tree do
not apply to the top level of alternatives of that tree unless the tree is the root tree of a Test Case.

In order to generate a correct expansion of a tree it is necessary to expand the Defaults both:

a) before the tree is expanded as an attached tree; and

b) before any of the tree's attached Test Steps are expanded.
The expansion of Defaults is thus local to a single tree and comprises the attachment of the Default tree to the bottom of
every set of alternatives within the tree (except the top set of alternatives for any tree other than the root tree of a Test

Case).

Default expansion rules hold equally in the case where a set of alternatives contains an OTHERWISE event.

EXAMPLE 103: Locality of a Default against a Test Step

TOP_TREE STEP TOP_TREE
A B A
+ STEP C B
D E C
D
STEP E
Default: STEP_DEF D
B
C
STEP_DEF
E
1: TOP_TREE attaches 2: STEP_DEF expanded 3: STEP expanded into
STEP, which has the Default into STEP TOP_TREE
STEP_DEF

ETSI

EXAMPLE 104: Locality of a Default against a calling tree

145

TR 101 666 V1.0.0 (1999-05)

TOP_TREE
Default: TOPDEF
A

+ STEP

TOPDEF
E

STEP
B
C

TOP_TREE
A
+ STEP
E
E

TOP_TREE
A
B
C
E
E

1: TOP_TREE attaches

2: TOP_DEF expanded

3: STEP expanded into

STEP and has the Default into TOP_TREE TOP_TREE
TOP_DEF
EXAMPLE 105: A case of cyclic tree attachment
STEP1 STEP1 STEP1
Default: DEF1 A A
A + STEP2 C
+ STEP_2 B A
B El + STEP2
B
DEF1 STEP2 El
El C D
+ STEP1 E2
STEP2 D B
Default: DEF2 E2 El
C
+ STEP1
D
DEF2
E2
1: STEP_1 and STEP_2 attach each other.2: DEF_1 expanded into 3: After one expansion of the STEP_1 has
STEP_1 and DEF_2 the Default DEF_1.
expanded into STEP_2 Default-free STEP_2 and one

STEP_2 has the Default DEF_2. expansion of the Default-free STEP_1.

NOTE: Such cyclic attachments are discouraged.

15.18.6 Tree Attachment, Defaults, Activate and Return

If the ACTIVATE operation is used within a test case, the semantics of defaults and tree attachment can only be
described dynamically rather than statically. Indeed, the operational semantics of defaults in annex B are specified in
terms of dynamic tree expansion, one level at a time.

In this dynamic semantic model, the specification of a list of defaults in the header is equivalent to prefixing the
behaviour tree with an ACTIVATE of that list of default trees. In a test step, placing a default list in the header is
equivalent to placing an ACTIVATE of that list of default trees between each alternative in the first level of alternatives
and its subsequent behaviour. If a test step is attached which has no defaults specified in the header, then the implied
ACTIVATE operations have no parameters and hence deactivate all defaults.

ETSI

146 TR 101 666 V1.0.0 (1999-05)

Since behaviour subsequent to a tree attachment takes its defaults from the context of the calling tree rather than
attached test step, tree attachment implies the insertion of an ACTIVATE after every non-terminating leaf node (i.e., one
which does not assign a verdict) to restore the defaults to those of the context in which the attachment was made. In the
case of the leaf node being a RETURN, this implies ACTIVATE has to come before the RETURN to ensure that it takes
effect before jumping back into the outer context.

The effect of a combination of defaults and tree attachment is illustrated by the example test case shown in example 106.

EXAMPLE 106: Example test case X_Defl to illustrate the meaning of defaults

Test Case Dynamic Behavioyr Test Step Dynamic Behavipur Test Step Dynamic Behaviour
Test Step Name X _Defl Test Step Name T1 Test Step Name T2
Group Group Group
Purpose Objective Objective
Defaults D1, D2 Defaults :D3, D4 Defaults
L | Behaviour Cref | V L | Behaviour Cref | V L | Behaviour Cref
Description Description Description
X A D
+T1 B E
Y C F
4
+T2

This example test case is equivalent to the one shown in example 107, in which the list of defaults in the test case header
has been replaced by an ACTIVATE of the same list of defaults as the first TTCN statement of the behaviour tree.

ETSI

147 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 107: Alternative specification of example test case X_Defl using ACTIVATE

Test Case Dynamic Behaviour

Test Step Name :X_Defl

Group
Purpose
Defaults
L Behaviour Description Cref \Y,
ACTIVATE(D1,D2)
X
+T1
Y
Y4
+T2

The processing of an ACTIVATE sets the current default context. Progression to the next level of alternatives attaches
the list of default trees in the current default context to the next level of alternatives.

Thus, the evaluation of the example test case shown in example 107 could progress as illustrated in figure 8. Firstly, the
ACTIVATE(D1,D2) statement is evaluated to set the default context to D1 and D2. Then, assuming that X matches, D1
and D2 are attached at the same level of alternatives as T1. When T1 is then expanded, ACTIVATE(D3,D4) is inserted
after the first level of alternatives of that test step, and ACTIVATE(D1,D2) is inserted after the two leaf nodes in order

to restore the default context before the subsequent behaviour, Y, is reached. Assuming that A then matches, the defaults
D1 and D2 are attached redundantly at the same level of alternatives as the ACTIVATE; this is because the current
default context is always appended to the next level of alternatives, indiscriminately, even if the next level of alternatives
consists of a construct or pseudo-event which always matches. When the new ACTIVATE statement is evaluated, the
default context is changed to that applicable to test step T1. Then if B matches, the evaluation progresses to the
ACTIVATE which restores the default context back to that applicable to the root tree.

ETSI

148

#1111
£132

TR 101 666 V1.0.0 (1999-05)

R ———————————
X matches

+T1

+E
+[12

Defanlt Context = D, 122

Defantt Confext = D1, D2

— i~
Expand +T'1

A
ACTIVATE DS I
I5
ACTIVATEIN,)
Y
I
ACTIVATE 1
v
+i3]
+02

Ll

Aomatches

Default Context = D1, D2

AUTIVATEIDA DS

it
ACTIVATIDRL DD
¥
C
ACTIVATED D)
¥
+[11
+132

Default Context = D1, [¥2

—h.
Fwaluane
ACTIVATE

ACTIVATEDL DD
¥
C
ACTIVATERLD2)
b
+13
+iM

EE——

B maiches

AUFIVATEIDLE
Y

+05

+23

Default Context = D3, D4

B TTHITY

ACTIVATI

Default Context = 1203, 14

Y
+111
+32

Default Context = 131, 12

Figure 8: Possible progression of evaluation of example test case X_Defl

Example 108 gives another example test case, this one mixing defaults specified in headers with an explicit ACTIVATE
statement and tree attachment.

ETSI

149 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 108: Example test case X_Def2 to illustrate the meaning of defaults and ACTIVATE

Test Case Dynamic Behaviour Test Step Dynamic Behaviour
Test Step Name X_Def2 Test Step Name T
Group : Group
Purpose : Objective
Defaults :D1 Defaults :D3
L | Behaviour Description | Cref |V L | Behaviour Description Cref |V
X Y
ACTIVATE(D2) z
+T
S
+T
S

The progression of the evaluation of this test case is illustrated in figure 9. This shows the progression of the evaluation
through the two main paths of the test case, showing that the default context applicable to the first S is determined by the
ACTIVATE, whereas the default context applicable to the second S is determined by the defaults specified in the test
case header; neither of these default contexts for the S statements is affected by the preceding tree attachments.

Figure 9 begins by showing the effect of expanding the attachment of T at the first level of alternatives plus the

appending of the initial defaults. If X matches, the evaluation progresses via the ACTIVATE(D2) to the second
occurrence of the attachment of T, with the default context changed to D2 and the attachment of D2 appended at the
same level of alternatives as T. T is then expanded, remembering to insert the two ACTIVATE statement to set the test
step default context and then restore the root tree default context. These changes in the default context are then shown in
the next two stages of the evaluation, assuming that first Y matches and then Z. The result is S with an alternative of the
attachment of D2 being evaluated in default context D2.

The alternative path shown in figure 9 starts with Y matching instead of X. This causes the progression into default
context D3, whereupon if Z matches the default context is restored to be D1. Thus, what is reached down this path of the
progression is S with an alternative of the attachment of D1 being evaluated in default context D1.

ETSI

150 TR 101 666 V1.0.0 (1999-05)

X
ACTIVATE D)
_';
5 1
v s
ACTIVATEIN) —h—_m.;
/ X maiches)
AL IvATRDE and exallate ™ Default Context = D2
+itl
- Fxpand T
hefault Context = DI
W omatches ¥
and evaluate ACTIVATEDS)
ACTIVATE .
ACTIVATINIDD)
S
412
i
ACTIVATED Default Context = D2
) 5 Y maiches
<%
- - . anl evaluale
Defanlt Context = [ACTTVATE
£
ACTIVATEZ)
£ maiches X 5
and evaliate) - -
ACTIVATE Defanlt Context = [33
£ maiches
aned cvaluate
' AUTIVATE
5 5
+I¥ =2
Prefauali Condexi = 1 Dhefmnhi Comiexi = 12

Figure 9: Possible progression of evaluation of example test case X-Def2

The progression of evaluation of example test cases in figure 8 and figure 9 has not shown the expansion of the default
trees. If when the default tree is expanded, it is found that the default tree or any associated local tree contains a
RETURN construct, this is equivalent to a label being placed at the head of the current set of alternatives with every
RETURN construct being replaced by an ACTIVATE, to restore the default context of the calling tree, followed by a
GOTO construct to go to that new label.

All leaf nodes, other than RETURN, of a default behaviour tree in which all local subtrees have been attached have no
subsequent behaviour and so they shall either set a verdict or result in a test case error.

To illustrate this, the example test case given in example 109 will be used.

ETSI

151 TR 101 666 V1.0.0 (1999-05)

EXAMPLE 109: Example test case X_Def3 to illustrate the meaning of defaults and RETURN

Test Case Dynamic Behaviour Default Dynamic Behaviour
Test Step Name X_Def3 Default Name :D1
Group : Test Step Name
Purpose : Objective
Defaults :D1
L | Behaviour Description | Cref | V L | Behaviour Description | Cref |V
X C
Y P D
RETURN
E F

The progression of the evaluation of this example test case is illustrated in figure 10. Firstly, the default tree D1 is
attached at the first level of alternatives of the root tree. D1 is then expanded. Since D1 contains a RETURN statement,
this is a fairly complex expansion. The top event in the level of alternatives at which the attachment occurs is labelled
with a unique label, L. Since the attached tree is a default, its own internal default context is empty because defaults do
not have their own defaults, and therefore an ACTIVATE with no arguments is inserted after the first level of
alternatives of the attached tree. In addition the RETURN statement is replaced by an ACTIVATE to restore the default
context to D1, followed at the next level by GOTO L. Now, when this expanded tree is evaluated, if C matches, it
progresses to the ACTIVATE() statement together with the redundant attachment of the default context, D1. The effect
of evaluating the ACTIVATE() is to empty the default context. Then, if D matches, the ACTIVATE(D1) is evaluated to
restore the default context to D1. This leads to the GOTO statement together with another redundant attachment of the
default context D1. The evaluation of the GOTO then returns the processing to the state in which the label L was added.
Evaluation will continue to cycle round this loop until either X, followed by Y, matches for a pass, or C, followed by E,
matches for a fail.

ETSI

152 TR 101 666 V1.0.0 (1999-05)

X
.
+131

Dt Context = [

Expanwd [, mserting ACTIVATED
and replacing RETURN with a
Label, ACTIVATEII)y and @ (O

L: X
.
[)
ACTIVATED G E.
I - +in
ACTIVATEDNTY Execute GUYTO .
GOTOL (i Betom to E Diefaull Context = 131
I.
Fovalue
Defaull Context = 131 AUTTWATE
AFIVATHID
CHTEN

L matehies

Defauft Context = empty

ACTIVATI) T [matches
I¥
ACTIVATEL 5]
GOTO L ACTIVATED
I e (Y TCYE
+i3 Evaluale I
Default Context = 3] ACTIVATE Delaalt Context = empty

Figure 10: Possible progression of evaluation of example test case X-Def3

15.18.7 Defaults and CREATE

Default behaviour is not inherited by test steps which are used in a CREATE operation, i.e. test steps which execute
their behaviour description in parallel with the MTC. Thus, the scope of Default behaviour in concurrent TTCN is
always local to the MTC or a PTC.

In instances when a test step is used in a CREATE operation, the Default behaviour specified in the test step header shall
be applied at the first level of indentation. This use of Defaults is consistent with the application of Defaults in test
cases.

15.18.8 Defaults and CMs

Default behaviour is applied to every set of alternatives, even those which receive only CMs. This may cause PDUs
which arrive prior to receipt of the executed CM, or PDUs which are already in the PCO queue but not yet received, to
be removed from the PCO queue. To prevent the removal of PDUs from the PCO queue, the Default should be
deactivated, using the ACTIVATE() construct as the event immediately preceding the set of alternatives which receive
only the CM(s).

ETSI

153 TR 101 666 V1.0.0 (1999-05)

16 Page continuation

16.1 Page continuation of TTCN tables

When any TTCN table is too long to fit on a single page the following mechanism shall be used:
a) the words "Continued on next page" shall be priaftat the table line where the split occurs;
b) the words "Continued from previous page" shall be prip&fdrethe continued table on the next page.

Tables may be split at any locatiom,, in their header, body, or footer section. In all cases, the sections tifle (
column headers), shall be repeated on the next page. The complete header may or may not be repeated.

EXAMPLE 110: A continued Test Suite Parameters table

Test Suite Parameter Declarations
Parameter Name Type PICS/PIXIT Ref Comments
PAR1 INTEGER PICS question aa
PAR2 BOOLEAN PICS question bb
PAR3 IASSTRING PIXIT question cc
Continued on next page page n
Continued from previous page page n+1

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments
PAR4 BOOLEAN PICS question dd
PAR5 HEXSTRING PICS question ee

16.2 Page continuation of dynamic behaviour tables

When it is necessary to continue a dynamic behaviour table, then either of the following two mechanisms can be used:
a) modularization,

where some part of the behaviour of the tree is specified as a library (non-local) Test Step, thereby modularizing the
tree and reducing the amount of behaviour for the current proforma to that which will fit on a single page, or

b) page continuation mechanism,

where, in the case of a dynamic behaviour table, in order to aid alignment of indentation levels, the following
additional information shall be presented:

1) the level of indentation (enclosed in square brackets) of the last TTCN statement before the page split occurs,
shall be printed before the words "Continued on next page".

2) on the continued page, the level of indentation (enclosed in square brackets) of the first TTCN statement in
the continued table, shall be printed after the words "Continued from previous page".

ETSI

154 TR 101 666 V1.0.0 (1999-05)

It may be necessary in the case of lengthy Test Cases to indent to a different level than the stated one. In such cases
the stated level of indentation enclosed in square brackets will be aligned with the chosen indentation of the first
statement line in the continued table. To further aid alignment of indentation levels, additional indications of
indentation levels may also be given.

ETSI

155 TR 101 666 V1.0.0 (1999-05)

Annex A:
Syntax and static semantics of TTCN

A.l Introduction

This annex defines the syntax and the static semantics of TTCN. There are two forms of TTCN, a graphical form
(TTCN.GR) and a machine processable form (TTCN.MP). For the human user the graphical form of TTCN, the
TTCN.GR, takes advantage of an easily understood visual interpretation. However, TTCN.GR does not readily lend
itself to machine processing. The TTCN.MP addresses this problem and serves the following purposes:

a) to provide a formal syntax for TTCN in BNF;

b) to act as a transfer syntax;

c) to ease automated derivation of ETSs from ATSs;

d) other machine processing.

NOTE: Automated derivation of ETSs is outside the scope of the present document.

This annex also defines the static semantics for both TTCN.GR and TTCN.MP.

A.2 Conventions for the syntax description

A.2.1 Syntactic metanotation

Table A.1 defines the metanotation used to specify the extended form of BNF grammar for TTCN (henceforth called
BNF):

Table A.1: The TTCN.MP Syntactic Metanotation

= is defined to be

abc xyz abc followed by xyz

| alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textual grouping

ab the non-terminal symbol abc
abc a terminal symbol abc

"abc" a terminal symbol abc

In the metanotation, concatenation binds more tightly than the alternative operator. Hence "abc def | ghi jkI" is
equivalent to "(abc def) | (ghi jkI)".

A.2.2 TTCN.MP syntax definitions

Complete tables defined in TTCN.GR are represented in TTCN.MP by productions of the kind:
$Begin_ KEYWORD $End_KEYWORD
EXAMPLE A.1: TS_PARdcls ::$Begin_TS_PARdcI§TS_PARdcl}+ $End_TS_PARdcls

Normally, these productions contain at least one mandatory component.

ETSI

156 TR 101 666 V1.0.0 (1999-05)

Both sets of lines of a table and individual lines.(sets of fields in a table) are represented by productions of the kind:
$KEYWORD voet e e $End_KEYWORD
Begin does not appear in the opening keyword.

EXAMPLE A.2: TS_PARdcl ::=$TS_PARdcITS_PARid TS_PARtype PICS_PIXIT [Comment]
$End_TS_PARdcl

Individual fields in a line are represented by:
SKEYWORD ... oo oot et e e
There is no closing keyword.
EXAMPLE A.3: TS_Parlid ::=$TS_Parld TS_Parldentifier
EXAMPLE A.4: TS Parlidentifier ::= Identifier
Sets of tables, up to and including the test suite, are represented by productions of the kind:
$KEYWORD eev e $End_KEYWORD

EXAMPLE A.5: ASP_TypeDefs ::$ASP_TypeDefdTTCN_ASP_TypeDefs] [ASN1_ASP_TypeDefs]
$End_ASP_TypeDefs

All other productions defining non-terminal symbols have no keywords at the beginning or the end of the right-hand
expression.

EXAMPLE A.6: Timerldentifier ::= Identifier

When parsing TTCN.MP, any symbol not allowed within an identifier may denote the end of an identifier. In some cases
it is necessary to insert one or more separators at the end of an identifier in order to separate it from another identifier or
keyword (e.g. when an identifier is followed by a keyword sudB¥a®r OR); the separators are Space characters, Tab
characters and Carriage Return characters.

A.3 The TTCN.MP syntax productions in BNF

A.3.1 TTCN Specification

1 TTCN_Specification ::= TTCN_Module | Suite

A.3.2 TTCN Module

2 TTCN_Module ::=3TTCN_Module TTCN_Moduleld TTCN_ModuleOverviewPart
[TTCN_ModulelmportPart] [DeclarationsPart] [ConstraintsPart] [DynamicBamd TTCN_Module

3 TTCN_Moduleld :: $TTCN_Moduleld TTCN_Moduleldentifier

4 TTCN_Moduleldentifier ::= Identifier

A.3.2.1 TTCN Module Overview Part

5 TTCN_ModuleOverviewPart ::$TTCN_ModuleOverviewPart TTCN_ModuleExports
[TTCN_ModuleStructure] [TestCaselndex] [TestSteplndex] [Defaultindex]
$End_TTCN_ModuleOverviewPart

ETSI

157 TR 101 666 V1.0.0 (1999-05)

A3.2.11 TTCN Module Exports

6 TTCN_ModuleExports ::$Begin_TTCN_ModuleExportsTTCN_Moduleld [TTCN_ModuleRef]
[TTCN_ModuleObijective] [StandardsRef] [PICSref] [PIXITref] [TestMethods] [Comment] ExportedObjects
[Comment]$End_TTCN_ModuleExports

7 TTCN_ModuleRef ::=53TTCN_ModuleRef BoundedFreeText
8 TTCN_ModuleObjective ::$TTCN_ModuleObjective BoundedFreeText
9 ExportedObjects ::$ExportedObjects {ExportedObject}$End_ExportedObjects

10 ExportedObject ::$ExportedObject Objectld ObjectType [Sourcelnfo] [CommeEnd_ExportedObject
11 Objectld ::=$Objectld Objectldentifier

12 Objectldentifier ::= Identifier | ObjectTypeReference

13 ObjectTypeReference ::= Identifier "[" Identifier "]"

/* STATIC SEMANTICS - The first Identifier is a NamedNumber or an Enumeration and the Identifier contained in
brackets is the name of the corresponding type. */

14 ObjectType ::$0bjectType TTCN_ObjectType

15 TTCN_ObjectType:= SimpleType_Object| StructType_Object| ASN1_Type_Object| TS_Op_Object|
TS_Proc_Object|] TS_Par_Object| SelectExpr_Object] TS_Const_Object| TS_Var_Object |
TC_Var_Object | PCO_Type_Object| PCO_Object| CP_Object| Timer_Object | TComp_Object |
TCompConfig_Object| TTCN_ASP_Type_Object| ASN1_ASP_Type_Object
TTCN_PDU_Type_Object| ASN1_PDU_Type_Objeci TTCN_CM_Type_Object |
ASN1_CM_Type_Object| EncodingRule_Object| EncodingVariation_Object |
InvalidFieldEncoding_Object | Alias_Object | StructTypeConstraint_Object |
ASN1_TypeConstraint_Object| TTCN_ASP_Constraint_Object| ASN1_ASP_Constraint_Object
TTCN_PDU_Constraint_Object| ASN1_PDU_Constraint_Object| TTCN_CM_Constraint_Object |
ASN1_CM_Constraint_Object| TestCase_Object TestStep Object | Default_Object |
NamedNumber_Object| Enumeration_Object

16 Sourcelnfo ::$Sourcelnfo (Sourceldentifier | ObjectDirective)
[* STATIC SEMANTICS - The Sourceldentifier is the name of the original source object . */

17 Sourceldentifier ::= Suiteldentifier | TTCN_Moduleldentifier
18 ObjectDirective ::= OmitEXTERNAL

A3.21.2 TTCN Module Structure

19 TTCN_ModuleStructure ::$Begin_TTCN_ModuleStructure Structure&Objectives [Comment]
$End_TTCN_ModuleStructure

A.3.2.2 TTCN Module Import Part

20 TTCN_ModulelmportPart ::$TTCN_ModulelmportPart [ExternalObjects] [ImportDeclarations]
$End_TTCN_ModulelmportPart

A.3.2.2.1 External Objects

21 ExternalObjects ::$Begin_ExternalObjects{ExternalObject}+ [CommentpEnd_ExternalObjects
22 ExternalObject ::$ExternalObject ExternalObjectld ObjectType [CommetEnd_ExternalObject
23 ExternalObjectld ::$ExternalObjectld ExternalObjectldentifier

24 ExternalObjectldentifier ::= Objectldentifier | TS_Opld&ParList | Consld&ParList | TestStepld&ParList

ETSI

158 TR 101 666 V1.0.0 (1999-05)

A3.2.2.2 Import Declarations

25 ImportDeclarations ::$lmportDeclarations {ImportsOrGroup}+$End_ImportDeclarations

26 ImportsOrGroup ::= Imports | ImportsGroup

27 ImportsGroup ::3$ImportsGroup ImportsGroupld {ImportsOrGroup}$End_ImportsGroup

28 ImportsGroupld ::$ImportsGroupld ImportsGroupldentifier

29 Imports ::=$Begin_Imports Sourceld [ImportsGroupRef] [SourceRef] [StandardsRef] [Comment]
ImportedObjects [Commen$lEnd_Imports

30 Sourceld ::=$Sourceld Sourceldentifier

31 ImportsGroupRef ::$ImportsGroupRef ImportsGroupReference

32 ImportsGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/*] {ImportsGroupldentifier "/"}

33 ImportsGroupldentifier ::= Identifier

34 SourceRef ::$SourceRefBoundedFreeText

35 ImportedObjects ::8ImportedObjects {ImportedObject}+$End_ImportedObjects

36 ImportedObject ::$lmportedObject Objectld ObjectType [Sourcelnfo] [CommeB&End_ImportedObject

A.3.3 Test suite

37 Suite ::=$Suite Suiteld SuiteOverviewPart [ImportPart] DeclarationsPart ConstraintsPart DynamicPart
$End_Suite

[* STATIC SEMANTICS - Suiteld shall be the same as the Suiteld declared in TestSuiteStructure table (Suite

Structure). */

38 Suiteld ::=$Suiteld Suiteldentifier
39 Suiteldentifier ::= Identifier

A.3.3.1 The Test Suite Overview

40 SuiteOverviewPart::$SuiteOverviewPart[TestSuitelndex] SuiteStructure TestCaselndex [TestStepindex]
[Defaultindex] [TestSuiteExport§End_SuiteOverviewPart

A.3.3.2 Test Suite Index

41 TestSuitelndex ::$Begin_TestSuitelndeX{Objectinfo} [Comment]$End_TestSuitelndex

A.3.3.2.1 The Imported Object Info

42 Objectinfo ::=$Objectinfo Objectld ObjectType Sourceld OrigObjectld [PageNum] [Comment]
$End_Objectinfo

43 PageNum ::$PageNumPageNumber
44 PageNumber ::= Number
45 OrigObjectld ::=$0rigObjectld Objectldentifier

A.3.3.3 Test Suite Structure

46 SuiteStructure ::$Begin_SuiteStructureSuiteld StandardsRef PICSref PIXITref TestMethods [Comment]
Structure&Objectives [Commer$End_SuiteStructure

47 StandardsRef ::$StandardsRefBoundedFreeText
48 PICSref ::=$PICSref BoundedFreeText

ETSI

159 TR 101 666 V1.0.0 (1999-05)

49 PIXITref ::=$PIXITref BoundedFreeText

50 TestMethods ::$TestMethodsBoundedFreeText

51 Comment ::=$Comment[BoundedFreeText]

52 Structure&Objectives ::8Structure&Obijectives {Structure&Objective}$End_Structure&Objectives

53 Structure&Objective ::$Structure&Objective TestGroupRef SelExprld Objective
$End_Structure&Objective

54 SelExprld ::=$SelectExprld [SelectExpridentifier]

A.3.3.4 Test Case Index

55 TestCaselndex ::$Begin_TestCaselndeXf[CollComment] Caselndex}+ [Commen$End_TestCaselndex
56 CollComment ::=$CollComment [BoundedFreeText]

57 Caselndex ::$CaselndexTestGroupRef TestCaseld SelExprld Descripieimd_Caselndex
[* STATIC SEMANTICS - Test Cases shall be listed in the order that they exist in the dynamic part. */

[* STATIC SEMANTICS - An explicit TestGroupRef shall be provided for each TestCase which belongs to a
TestGroup. */

58 Description ::=$Description BoundedFreeText

A.3.3.5 Test Step Index

59 TestSteplndex ::$Begin_TestSteplndeX[CollComment] Stepindex} [Commen$lEnd_TestStepindex

60 Steplndex ::$SteplndexTestStepRef TestStepld Descriptbiand_Steplndex
[* STATIC SEMANTICS - TestStepld shall not include a formal parameter list. */

[* STATIC SEMANTICS - Test Steps shall be listed in the order that they exist in the dynamic part. */
[* STATIC SEMANTICS - An explicit TestStepRef shall be provided for each TestStep which belongs to a StepGroup.
*/

A.3.3.6 Default Index

61 Defaultindex ::=$Begin_Defaultindex{[CollComment] Defindex} [Comment$End_Defaultindex

62 Defindex ::=$Deflndex DefaultRef Defaultld DescriptiochEnd_Deflndex
[* STATIC SEMANTICS - Defaultld shall not include a formal parameter list. */

[* STATIC SEMANTICS - Defaults shall be listed in the order that they exist in the dynamic part. */

[* STATIC SEMANTICS - An explicit DefaultRef shall be provided for each Default which belongs to a DefaultGroup.
*/

A.3.3.7 Test Suite Exports

63 TestSuiteExports::$Begin_TestSuiteExportsExportedObjects [CommerEnd_TestSuiteExports
A.3.3.8 The Import Part

64 ImportPart ::=$ImportPart ImportDeclaration$End_ImportPart

A.3.3.9 The Declarations Part

65 DeclarationsPart ::$DeclarationsPart Definitions Parameterization&Selection Declarations
ComplexDefinitionsBEnd_DeclarationsPart

ETSI

160 TR 101 666 V1.0.0 (1999-05)

A.3.3.10 Definitions

A.3.3.10.1 General

66

Definitions ::= [TS_TypeDefs] [EncodingDefs] [TS_OpDefs] [TS_ProcDefs]

A.3.3.10.2 Test Suite Type Definitions

67

TS_TypeDefs ::$TS_TypeDefs{SimpleTypeDefsOrGroup} [StructTypeDefs] [ASN1_TypeDefs]
{ASN1_TypeRefsOrGroup$End_TS_ TypeDefs

A.3.3.10.3 Simple Type Definitions

68
69

70
71

72
73

74
75

76
77
78

[* STATIC SEMANTICS - There shall be no recursive references (neither directly nor indirectly) in Type&Restriction.

*

79

SimpleTypeDefsOrGroup ::= SimpleTypeDefs | SimpleTypeGroup

SimpleTypeGroup ::$SimpleTypeGroup SimpleTypeGroupld {SimpleTypeDefsOrGroup}+
$End_SimpleTypeGroup

SimpleTypeGroupld ::$SimpleTypeGroupld SimpleTypeGroupldentifier

SimpleTypeDefs ::$Begin_SimpleTypeDef§SimpleTypeGroupRef] {{CollComment] SimpleTypeDef}+
[Comment]$End_SimpleTypeDefs

SimpleTypeGroupRef ::$SimpleTypeGroupRefSimpleTypeGroupReference
SimpleTypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifidr{Simple TypeGroupldentifier
II/II}

SimpleTypeGroupldentifier ::= Identifier

SimpleTypeDef ::$SimpleTypeDefSimpleTypeld SimpleTypeDefinition [PDU_FieldEncoding] [Comment]
$End_SimpleTypeDef

SimpleTypeld ::$SimpleTypeld SimpleTypeldentifier
SimpleTypeldentifier ::= Identifier
SimpleTypeDefinition ::$SimpleTypeDefinition Type&Restriction

Type&Restriction ::= Type [Restriction]

[* STATIC SEMANTICS - Type shall be either PredefinedType or SimpleType. */

80

[* STATIC SEMANTICS - The set of values defined by Restriction shall be a true subset of the values of the base type.

*

81

Restriction ::= LengthRestriction | IntegerRange | SimpleValueList

LengthRestriction ::= SingleLength | RangeLength

[* STATIC SEMANTICS - LengthRestriction shall be provided only when the base type is a string type (i.e.,
BITSTRING, HEXSTRING, OCTETSTRING or CharacterString) or derived from a string type. */

82
83

SingleLength ::= "[" ConstantExpression "]"
RangelLength ::="[" LowerBound To UpperBound "]"

[* STATIC SEMANTICS - LowerBound shall evaluate to a hon-negative number. */

[* STATIC SEMANTICS - LowerBound shall be less than UpperBound. */

84

IntegerRange ::="(" LowerBound To UpperBound ")"

[* STATIC SEMANTICS - LowerBound shall be less than UpperBound. */

85

LowerBound ::= ConstantExpression | MitN&INITY

[* STATIC SEMANTICS - ConstantExpression shall evaluate to an INTEGER value */

ETSI

161 TR 101 666 V1.0.0 (1999-05)

86 UpperBound ::= ConstantExpressidNFINITY
[* STATIC SEMANTICS - ConstantExpression shall evaluate to an INTEGER value */

87 To:=TO|"."
88 SimpleValuelList ::= "(" ConstantExpression {Comma ConstantExpression } ")"

[* STATIC SEMANTICS - The ConstantExpression shall be of the base type and shall be a true subset of the values
defined by the base type. */

A.3.3.10.4 Structured Type Definitions

89 StructTypeDefs ::$StructTypeDefs{StructTypeDefOrGroup}#$End_StructTypeDefs
90 StructTypeDefOrGroup ::= StructTypeDef | StructTypeGroup

91 StructTypeGroup ::$StructTypeGroup StructTypeGroupld {StructTypeDefOrGroup}+
$End_StructTypeGroup

92 StructTypeGroupld ::8StructTypeGroupld StructTypeGroupldentifier

93 StructTypeDef ::$Begin_StructTypeDefStructld [StructTypeGroupRef] [EncVariationld] [Comment]
ElemDcls [CommentpEnd_StructTypeDef

94 Structld ::=$Structld Structld&Fullld
95 Structld&Fullld ::= Structldentifier [Fullldentifier]

96 Fullldentifier ::= "(" BoundedFreeText ")"
[* STATIC SEMANTICS - Some TTCN objects allow names, as given in the appropriate protocol standard to be
abbreviated. If an abbreviation is used then Fullldentifier shall be given in the declaration of the object. */

97 Structldentifier ::= Identifier

98 StructTypeGroupRef ::$StructTypeGroupRef StructTypeGroupReference

99 StructTypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {StructTypeGroupldentifier
"y

100 StructTypeGroupldentifier ::= Identifier

101 ElemDcls ::=$ElemDcls{ElemDcl}+ $End_ElemDcls

102 ElemDcl ::=$ElemDcl ElemIdElemType [PDU_FieldEncoding] [CommeEnd_ElemDcl

103 Elemld ::= $Elemld ElemId&Fullid

104 Elemld&Fullld ::= ElemIdentifier [Fullldentifier]

105 Elemldentifier ::= Identifier

106 ElemType ::$ElemType Type&Attributes
[* STATIC SEMANTICS - There shall be no recursive references (neither directly nor indirectly) in Type&Attributes.
*/

[* STATIC SEMANTICS - A structure element Type shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier, or
PDU. */

A.3.3.10.5 ASN.1 Type Definitions

107 ASN1_TypeDefs ::$ASN1_TypeDef{ASN1_TypeDefOrGroup}+$End_ASN1_ TypeDefs
108 ASN1_ TypeDefOrGroup ::= ASN1_TypeDef | ASN1_TypeGroup

109 ASN1_TypeGroup ::$8ASN1_TypeGroupASN1_TypeGroupld {ASN1_TypeDefOrGroup}+
$End_ASN1_TypeGroup

110 ASN1_TypeGroupld ::3ASN1_TypeGroupld ASN1_TypeGroupldentifier

111 ASN1_TypeDef ::$Begin_ASN1_TypeDeASN1_Typeld [ASN1_TypeGroupRef] [EncVariationld]
[Comment] ASN1_TypeDefinition [CommerfEnd_ASN1_ TypeDef

112 ASN1_Typeld ::$ASN1_Typeld ASN1_Typeld&Fullld

113 ASN1_Typeld&Fullld ::= ASN1_Typeldentifier [Fullldentifier]

114 ASN1_Typeldentifier ::= Identifier

115 ASN1_TypeGroupRef :: $ASN1_TypeGroupRefASN1_TypeGroupReference

ETSI

162 TR 101 666 V1.0.0 (1999-05)

116 ASN1_TypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASN1_TypeGroupldentifier
II/II}
117 ASN1_TypeGroupldentifier ::= Identifier

118 ASN1_TypeDefinition ::3ASN1_TypeDefinition ASN1_Type&LocalType$End_ASN1_TypeDefinition
119 ASN21_Type&LocalTypes ::= ASN1_Type {ASN1_LocalType}

[* STATIC SEMANTICS - Types referred to from the ASN1_Type definition shall be defined in other ASN.1 type
definition tables, be defined by reference in the ASN.1 type reference table or be definedilegally (
ASN1_LocalTypes) in the same table, following the first type definition. */

[* STATIC SEMANTICS - ASN1_LocalTypes shall not be used in other parts of the test suite. */

120 ASN1_Type ::= Type
/* REFERENCE - Where Type is a non-terminal defined in ISO/IEC 8824-1: 1994:

Type ::= BuiltinType | ReferencedType | ConstrainedType
For the purposes of TTCN, the production in ISO/IEC 8824-1: 1994 which states:

SubtypeElements ::=SingleValue | ConstrainedSubtype | ValueRange | PermittedAlphabet |
SizeConstraint | TypeConstraint |

InnerTypeConstraint

is redefined to be

SubtypeElements ::=SingleValue | ConstrainedSubtype | ValueRange | PermittedAlphabet |
SizeConstraint | TypeConstraint |

InnerTypeConstraint | ASN1_Encoding

This means that ASN1_Encoding can be applied anywhere that a TypeConstraint can be applied: to the whole of an
ASN1_Type or any ASN.1 Type within the ASN1_Type or to a SET OF or SEQUENCE OF type (by placing the
ASN1_Encoding in parentheses immediately after the keyword SET or SEQUENCE - unlike for a SizeConstraint in
such a position, the parentheses are required since there is no backwards compatibility argument for allowing their
omission).
For the purpose of TTCN, the following productions in ISO/IEC 8824-1: 1994:
BuiltinType ::=

BitStringType |

BooleanType |

CharacterStringType |

ChoiceType |

EmbeddedPDUType |

EnumeratedType |

ExternalType |

InstanceOfType |

IntegerType |

NullType |

ObjectClassFieldType |

ObjectldentifierType |

OctetStringType |

RealType |

SequenceType |

SequenceOfType |

SetType |

SetOfType |

TaggedType

ReferencedType ::=
DefinedType |
UsefulType |
SelectionType |
TypeFromObject |
ValueSetFromObjects

DefinedType ::=

Externaltypereference |
typereference |

ETSI

163 TR 101 666 V1.0.0 (1999-05)

ParameterizedType |
ParameterizedValueSetType

Elements ::=
SubtypeElements |
ObjectSetElements |
"(" ElementSetSpec)"

are redefined to be

BuiltinType ::=
BitStringType |
BooleanType |
CharacterStringType |
ChoiceType |
EmbeddedPDUType |
EnumeratedType |
ExternalType |
IntegerType |
NullType |
ObjectldentifierType |
OctetStringType |
RealType |
SequenceType |
SequenceOfType |
SetType |
SetOfType |
TaggedType

ReferencedType ::=
DefinedType |
UsefulType |
SelectionType |

DefinedType ::=
Externaltypereference |
typereference |

Elements ::=
SubtypeElements |
"(" ElementSetSpec ") */

[* STATIC SEMANTICS - Each terminal type reference used within the Type production shall be one of the following:
ASN1_LocalType typereference, TS_Typeldentifier or PDU_ldentifier. */

[* STATIC SEMANTICS - ASN.1 type definitions used within TTCN shall not use external type references as defined
in ISO/IEC 8824-1: 1994. */

121 ASN1_LocalType ::= Typeassignment
/* REFERENCE - Where Typeassignment is a non-terminal defined in ISO/IEC 8824-1: 1994. */

[* STATIC SEMANTICS - ASN.1 type definitions used within TTCN shall not use external type references as defined
in ISO/IEC 8824-1. */

A.3.3.10.6 ASN.1 Type Definitions by Reference

122 ASN1_TypeRefsOrGroup ::= ASN1_TypeRefs | ASN1_TypeRefsGroup

123 ASN1_TypeRefsGroup :$ASN1_TypeRefsGroupASN1_TypeRefsGroupld {ASN1_TypeRefsOrGroup}+
$End_ASN1_TypeRefsGroup

124 ASN1_TypeRefsGroupld :3ASN1_TypeRefsGroupldASN1_TypeGroupldentifier

ETSI

164 TR 101 666 V1.0.0 (1999-05)

125 ASN1_TypeRefs ::$Begin_ASN1_TypeRef§ASN1_TypeRefsGroupRef] {{CollComment]
ASN1_TypeRef}+ [CommentpEnd_ASN1 TypeRefs

126 ASN1_TypeRefsGroupRef :3ASN1_TypeRefsGroupRefASN1_TypeGroupReference

127 ASN1_TypeRef ::$ASN1_TypeRefASN1_Typeld ASN1_TypeReference ASN1_Moduleld
[EncVariationld] [Comment$End_ASN1_TypeRef
[* STATIC SEMANTICS - ASN1_Typeld shall not be specified with a Fullldentifier. */

128 ASN1_TypeReference :$3ASN1_TypeReferencdypeReference

129 TypeReference ::= typereference
/* REFERENCE - Where typereference is a nhon-terminal defined in ISO/IEC 8824-1: 1994. */

[* STATIC SEMANTICS - If the ASN.1 type definition has a reference to another type in the same ASN.1 Module, the
referenced type is implicitly imported (in the same way as for a TTCN module). */

130 ASN1_Moduleld ::=3ASN1_Moduleld ASN1_Moduleldentifier

131 ASN1_ Moduleldentifier ::= Moduleldentifier
/* REFERENCE - Where Moduleldentifier is a non-terminal defined in ISO/IEC 8824-1: 1994. */

[* STATIC SEMANTICS - Moduleldentifier shall be unique within the domain of interest. */

A.3.3.10.7 Test Suite Operation Definitions

132 TS_OpDefs ::$TS_OpDefs{TS_OpDefOrGroup}+$End_TS_OpDefs

133 TS_OpDefOrGroup ::= TS_OpDef | TS_OpDefGroup

134 TS_OpDefGroup ::$TS_OpDefGroup TS_OpDefGroupld {TS_OpDefOrGroup}+
$End_TS_OpDefGroup

135 TS_OpDefGroupld ::$TS_OpDefGroupld TS_OpDefGroupldentifier

136 TS_OpDefGroupldentifier ::= Identifier

137 TS_OpDef ::%$Begin_TS_OpDefTS_Opld [TS_OpGroupRef] TS_OpResult [Comment] TS_OpDescription
[Comment]$ENd_TS_OpDef

138 TS_Opld ::=TS_Opld TS_Opld&ParList

139 TS_Opld&ParList ::= TS_Opldentifier [FormalParList]
[* STATIC SEMANTICS - A Test Suite Operation formal parameter Type shall be a PredefinedType,
TS_Typeldentifier, PDU_Identifier or ASP_Identifier, or the meta-typaJ*/

140 TS_Opldentifier ::= Identifier

141 TS_OpGroupRef ::8TS_OpGroupRefTS_OpGroupReference

142 TS_OpGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_OpGroupldentifier "/"}
143 TS_OpGroupldentifier ::= Identifier

144 TS_OpResult ::$TS_OpResultTypeOrPDU
[* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier or
ASP_Identifier, or the meta-tygeDU. */

145 TS_OpDescription ::8TS_OpDescriptionBoundedFreeText

A.3.3.10.8 Test Suite Operation Procedural Definitions

146 TS_ProcDefs ::$TS_ProcDefs[TS_ProcDefOrGroup$End_TS_ProcDefs
147 TS_ProcDefOrGroup ::= TS_ProcDef | TS_ProcDefGroup

148 TS_ProcDefGroup ::$TS_ProcDefGroupTS_ProcDefGroupld {TS_ProcDefOrGroup}+
$End_TS_ProcDefGroup

149 TS_ProcDefGroupld ::$TS_ProcDefGroupld TS_ProcDefGroupldentifier
150 TS_ProcDefGroupldentifier ::= Identifier

ETSI

165 TR 101 666 V1.0.0 (1999-05)

151 TS_ProcDef ::$Begin_TS_ProcDeflS_Procld [TS_ProcGroupRef] TS_ProcResult [Comment]
TS_ProcDescription [CommerEnd_TS_ProcDef

152 TS_Procld ::3$TS_Procld TS_Procld&ParList

153 TS_Procld&ParList ::¥S_Procldentifier [FormalParList]
[* STATIC SEMANTICS - A procedural Test Suite Operation formal parameter Type shall be a PredefinedType,
TS_Typeldentifier, PDU_Identifier or ASP_Identifier, or the meta-typaJ*/

154 TS_Procldentifier ::= Identifier

155 TS_ProcGroupRef :$TS_ProcGroupRefTS_ProcGroupReference

156 TS_ProcGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_ProcGroupldentifier "/"}
157 TS_ProcGroupldentifier ::= Identifier

158 TS_ProcResult ::$TS_ProcResultTypeOrPDU
[* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier or
ASP_Identifier, or the meta-tygeDU. */

159 TS_ProcDescription ::$TS_ProcDescriptionTS_OpProcDe$End_TS_ ProcDescription

160 TS_OpProcDef ::= [VarBlock] ProcStatement

/* NOTE - Comments are allowed within TS_OpProcDef, starting with "/*" and ending with "*/", but it is assumed that
these comments are removed before the syntax is parsed. Hence the BNF does not include the syntax of such embedded
comments. */

161 VarBlock ::=VAR VarDclsENDVAR

162 VarDcls ::= {VarDcl SemiColon}

163 VarDcl ::= BTATIC] Varldentifiers Colon TypeOrPDU [Colon Value]

164 Varldentifiers ::= Varldentifier {Comma Varldentifier}

165 Varldentifier ::= Identifier

166 ProcStatement ::= ReturnValueStatement | Assignment | IfStatement | WhileLoop | CaseStatement | ProcBlock
167 ReturnValueStatement RETURNVALUE Expression

168 IfStatement ::# ExpressiolTHEN {ProcStatement SemiColon}E[SE {ProcStatement SemiColon}+]
ENDIF

169 WhileLoop ::=WHILE ExpressiorDO {ProcStatement SemiColon}ENDWHILE

170 CaseStatement :GASE ExpressiorOF {CaseClause SemiColon}-E[SE {ProcStatement SemiColon}+]
ENDCASE

171 CaseClause ::= IntegerLabel Colon ProcStatement
172 IntegerLabel ::= Number | TS_Parldentifier | TS_Constldentifier
173 ProcBlock ::=BEGIN {ProcStatement SemiColon}END

A.3.3.11 Parameterization and Selection

A.3.3.11.1 General

174 Parameterization&Selection ::= {TS_ParDclsOrGroup} {SelectExprDefsOrGroup}

A.3.3.11.2 Test Suite Parameter Declarations

175 TS _ParDclsOrGroup ::= TS_ParDcls | TS_ParDclsGroup

176 TS_ParDclsGroup :$TS_ParDclsGroupTS_ParDclsGroupld {TS_ParDclsOrGroup}+
$End_TS_ParDclsGroup

177 TS_ParDclsGroupld :$TS_ParDclsGroupld TS_ParDclsGroupldentifier
178 TS_ParDclsGroupldentifier ::= Identifier

179 TS_ParDcls ::$Begin_TS_ParDcldTS_ParGroupRef] {{CollComment] TS_ParDcl}+ [Comment]
$End_TS_ParDcls

ETSI

166 TR 101 666 V1.0.0 (1999-05)

180 TS_ParGroupRef :$TS_ParGroupRefTS_ParGroupReference
181 TS_ParGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_ParGroupldentifier "/"}
182 TS_ParGroupldentifier ::= Identifier

183 TS_ParDcl ::83TS_ParDclTS_Parld TS_ParType [TS_ParDefault] PICS_PIXITref [Comment]
$End_TS_ParDcl

184 TS_Parld ::$TS_Parld TS_Parldentifier
185 TS_Parldentifier ::= Identifier

186 TS_ParType ::$TS_ParTypeTypeOrPDU
[* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_ldentifier or
ASP_Identifier, or the meta-tygeDU. */

187 TS_ParDefault ::8TS_ParDefault[ConstantExpression]
/* OPERATIONAL SEMANTICS - ConstantExpression shall evaluate to an element of its declared type. */

188 PICS_PIXITref ::=PICS_PIXITref BoundedFreeText

A.3.3.11.3 Test Case Selection Expression Definitions

189 SelectExprDefsOrGroup ::= SelectExprDefs | SelectExprDefsGroup

190 SelectExprDefsGroup :$SelectExprDefsGroupSelectExprDefsGroupld {SelectExprDefsOrGroup}+
$End_SelectExprDefsGroup

191 SelectExprDefsGroupld :$SelectExprDefsGroupld SelectExprDefsGroupldentifier
192 SelectExprDefsGroupldentifier ::= Identifier

193 SelectExprDefs ::$Begin_SelectExprDefdSelectExprGroupRef] {{CollComment] SelectExprDef}+
[Comment]$End_SelectExprDefs

194 SelectExprGroupRef : $SelectExprGroupRefSelectExprGroupReference

195 SelectExprGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {SelectExprGroupldentifier
npmy

196 SelectExprGroupldentifier ::= Identifier

197 SelectExprDef ::$SelectExprDefSelectExprld SelectExpr [CommeSEnd_SelectExprDef

198 SelectExprld ::$SelectExprld SelectExprldentifier

199 SelectExprldentifier ::= Identifier

200 SelectExpr ::$SelectExprSelectionExpression

201 SelectionExpression ::= ConstantExpression
/* OPERATIONAL SEMANTICS - SelectionExpression shall evaluate to a specific BOOLEAN value. */

[* STATIC SEMANTICS - ConstantExpression shall not recursively refer (neither directly nor indirectly) to the
SelExpridentifier being defined by that Expression. */

A.3.3.12 Declarations

A.3.3.12.1 General
202 Declarations ::= {TS_ConstDclsOrGroup} {TS_ConstRefsOrGroup} {TS_VarDclsOrGroup}

{TC_VarDclsOrGroup} {PCO_TypeDclsOrGroup} {PCO_DclsOrGroup} {CP_DclsOrGroup}
{TimerDclsOrGroup} {TcompDclsOrGroup} [TCompConfigDcls]

A.3.3.12.2 Test Suite Constant Declarations

203 TS_ConstDclsOrGroup ::= TS_ConstDcls | TS_ConstDclsGroup

204 TS_ConstDclsGroup :$TS_ConstDclsGroupTS_ConstDclsGroupld {TS_ConstDclsOrGroup}+
$End_TS_ConstDclsGroup

ETSI

167 TR 101 666 V1.0.0 (1999-05)

205 TS_ConstDclsGroupld :$TS_ConstDclsGroupld TS_ConstDclsGroupldentifier
206 TS_ConstDclsGroupldentifier ::= Identifier

207 TS_ConstDcls ::$Begin_TS_ConstDcl§TS_ConstGroupRef] {{CollComment] TS_ConstDcl}+ [Comment]
$End_TS_ConstDcls

208 TS_ConstGroupRef :$TS_ConstGroupRefTS_ConstGroupReference
209 TS_ConstGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_ConstGroupldentifier "/"}
210 TS_ConstGroupldentifier ::= Identifier

211 TS_ConstDcl ::$TS_ConstDcITS_Constld TS_ConstType TS_ConstValue [Comment]
$End_TS_ConstDcl

212 TS_Constld ::$TS_ConstldTS_Constldentifier
213 TS_Constldentifier ::= Identifier

214 TS_ConstType ::$TS_ConstTypeType
[* STATIC SEMANTICS - Type shall not be a structured type, PDU type, ASP type or CM type expressed in tabular
form. */

215 TS_ConstValue ::$TS_ConstValueConstantExpression
/* OPERATIONAL SEMANTICS - ConstantExpression shall evaluate to an element of its declared type. */

A.3.3.12.3 Test Suite Constant Declarations by Reference

216 TS_ConstRefsOrGroup ::= TS_ConstRefs | TS_ConstRefsGroup

217 TS_ConstRefsGroup :$7S_ConstRefsGroupTS_ConstRefsGroupld {TS_ConstRefsOrGroup}+
$End_TS_ConstRefsGroup

218 TS_ConstRefsGroupld :$TS_ConstRefsGroupldTS_ConstRefsGroupldentifier
219 TS_ConstRefsGroupldentifier ::= Identifier

220 TS_ConstRefs ::$Begin_TS_ConstRef§TS_ConstRefsGroupRef] {{CollComment] TS_ConstRef}+
[Comment]$End_TS_ConstRefs

221 TS_ConstRefsGroupRef $3TS_ConstRefsGroupReflS_ConstGroupReference

222 TS_ConstRef ::$TS_ConstRefTS_Constld TS_ConstType ASN1_ValueReference ASN1_Moduleld
[Comment]$ENd_TS_ConstRef

[* STATIC SEMANTICS - Type in TS_ConstType shall be either a PredefinedType or an ASN1_Type imported by an

ASN.1 Type Definition By Reference from the module referenced by ASN1_Moduleld. */

223 ASN1 ValueReference :3ASN1_ValueReferenc&/alueReference

224 ValueReference ::= valuereference
/* REFERENCE - valuereference is a non-terminal defined in ISO/IEC 8824-1: 1994. */

[* STATIC SEMANTICS - The value shall correspond to an element of the type in TS_ConstType. */

A.3.3.12.4 Test Suite Variable Declarations

225 TS_VarDclsOrGroup ::= TS_VarDcls | TS_VarDclsGroup

226 TS_VarDclsGroup ::8TS_VarDclsGroup TS_VarDclsGroupld {TS_VarDclsOrGroup}+
$End_TS_VarDclsGroup

227 TS_VarDclsGroupld ::$TS_VarDclsGroupld TS_VarDclsGroupldentifier
228 TS_VarDclsGroupldentifier ::= Identifier

229 TS_VarDcls ::%$Begin_TS_VarDcls[TS_VarGroupRef] {{[CollComment] TS_VarDcl}+ [Comment]
$End_TS_VarDcls

230 TS_VarGroupRef ::8TS_VarGroupRef TS_VarGroupReference

231 TS_VarGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) /"] {TS_VarGroupldentifier "/"}
232 TS_VarGroupldentifier ::= Identifier

233 TS_VarDcl ::=$TS_VarDcl TS_Varld TS VarType TS_VarValue [Comme#ifnd_TS_VarDcl

234 TS_Varld ::=$TS_Varld TS_Varldentifier

ETSI

168 TR 101 666 V1.0.0 (1999-05)

235 TS_Varldentifier ::= Identifier

236 TS_VarType ::$TS_VarType TypeOrPDU
[* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier or
ASP_Identifier, or the meta-tygeDU. */

237 TS_VarValue ::$TS_VarValue [ConstantExpression]

A.3.3.12.5 Test Case Variable Declarations

238 TC_VarDclsOrGroup ::= TC_VarDcls | TC_VarDclsGroup

239 TC_VarDclsGroup ::$TC_VarDclsGroup TC_VarDclsGroupld {TC_VarDclsOrGroup}+
$End_TC_VarDclsGroup

240 TC_VarDclsGroupld ::$TC_VarDclsGroupld TC_VarDclsGroupldentifier
241 TC_VarDclsGroupldentifier ::= Identifier

242 TC_VarDcls ::5$Begin_TC_VarDcls[TC_VarGroupRef] {{CollComment] TC_VarDcl}+ [Comment]
$End_TC_VarDcls

243 TC_VarGroupRef ::$TC_VarGroupRef TC_VarGroupReference

244 TC_VarGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TC_VarGroupldentifier "/"}
245 TC_VarGroupldentifier ::= Identifier

246 TC_VarDcl ::=$TC_VarDcl TC_Varld TC_VarType TC_VarValue [CommesEnd_TC_VarDcl

247 TC_Varld ::= §C_Varld TC_Varldentifier

248 TC_Varldentifier ::= Identifier

249 TC_VarType ::$TC_VarType TypeOrPDU
[* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier or
ASP_Identifier, or the meta-tygeDU. */

250 TC_VarValue ::=TC_VarValue [ConstantExpression]

A.3.3.12.6 PCO Type Declaration

251 PCO_TypeDclsOrGroup ::= PCO_TypeDcls | PCO_TypeDclsGroup

252 PCO_TypeDclsGroup :3PCO_TypeDclsGroupPCO_TypeDclsGroupld {PCO_TypeDclsOrGroup}+
$End_PCO_TypeDclsGroup

253 PCO_TypeDclsGroupld :$PCO_TypeDclsGroupld PCO_TypeDclsGroupldentifier
254 PCO_TypeDclsGroupldentifier ::= Identifier

255 PCO_TypeDcls ::$Begin_PCO_TypeDcl§PCO_TypeGroupRef] {{CollComment] PCO_TypeDcl}+
[Comment]$End_PCO_TypeDcls

256 PCO_TypeGroupRef :3PCO_TypeGroupRefPCO_GroupReference

257 PCO_TypeDcl ::$PCO_TypeDclPCO_Typeld RoleOrComme$iEnd_PCO_TypeDcl
258 PCO_Typeld ::$PCO_Typeld PCO_Typeldentifier

259 PCO_Typeldentifier ::= Identifier

260 RoleOrComment ::= P_Role [Comment] | Comment
/* NOTE - Since each PCO_Type in a PCO Type Declaration Table has to have a role specified in either the Role or
Comment column, at least one of P_Role or Comment is required to be present. */

A.3.3.12.7 PCO Declarations

261 PCO_DclsOrGroup ::= PCO_Dcls | PCO_DclsGroup

262 PCO_DclsGroup ::$PCO_DclsGroupPCO_DclsGroupld {PCO_DclsOrGroupBEnd_PCO_DclsGroup
263 PCO_DclsGroupld ::$PCO_DclsGroupld PCO_DclsGroupldentifier

264 PCO_DclsGroupldentifier ::= Identifier

ETSI

169 TR 101 666 V1.0.0 (1999-05)

265 PCO_Dcls ::%$Begin_PCO_DcldPCO_GroupRef] {{CollComment] PCO_Dcl}+ [Comment]
$End_PCO_Dcls

[* STATIC SEMANTICS - To be in accordance with ISO/IEC 9646-1 the number of PCOs shall relate to the test

method used. */

266 PCO_GroupRef ::$PCO_GroupRefPCO_GroupReference
267 PCO_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {PCO_Groupldentifier "/"}
268 PCO_Groupldentifier ::= Identifier

269 PCO_Dcl ::5PCO_DcIPCO_Id PCO_Typeld&MuxValue [P_Role] [Commefignd_PCO_Dcl
270 PCO_Id ::=$PCO_Id PCO_Identifier

271 PCO_Identifier ::= Identifier

272 PCO_Typeld&MuxValue ::$PCO_Typeld PCO_Typeldentifier ["'(" MuxValue ")"]

273 MuxValue ::= TS_Parldentifier

274 P_Role ::=33PCO_Role[PCO_Role]

275 PCO_Role ::™JT |LT

A.3.3.12.8 CP Declarations

276 CP_DclsOrGroup ::= CP_Dcls | CP_DclsGroup

277 CP_DclsGroup ::$CP_DclsGroupCP_DclsGroupld {CP_DclsOrGroup}$End_CP_DclsGroup
278 CP_DclsGroupld ::$CP_DclsGroupld CP_DclsGroupldentifier

279 CP_DclsGroupldentifier ::= Identifier

280 CP_Dcls ::%Begin_CP_DcldCP_GroupRef] {{CollComment] CP_Dcl}+ [Commer#End_CP_Dcls
281 CP_GroupRef ::$CP_GroupRefCP_GroupReference

282 CP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {CP_Groupldentifier "/"}
283 CP_Groupldentifier ::= Identifier

284 CP_Dcl ::=$CP_DcICP_Id [Comment$End_CP_Dcl

285 CP_Id ::=$CP_ld CP_ldentifier

286 CP_Identifier ::= Identifier

A.3.3.12.9 Timer Declarations

287 TimerDclsOrGroup ::= TimerDcls | TimerDclsGroup

288 TimerDclsGroup ::3%TimerDclsGroup TimerDclsGroupld {TimerDclsOrGroup}$End_TimerDclsGroup

289 TimerDclsGroupld ::$TimerDclsGroupld TimerDclsGroupldentifier
290 TimerDclsGroupldentifier ::= Identifier

291 TimerDcls ::=$Begin_TimerDcls[TimerGroupRef] {{CollComment] TimerDcl}+ [Comment]
$End_TimerDcls

292 TimerGroupRef ::$TimerGroupRef TimerGroupReference
293 TimerGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TimerGroupldentifier "/"}
294 TimerGroupldentifier ::= Identifier

295 TimerDcl ::=$TimerDcl Timerld Duration Unit [Commen$End_TimerDcl
296 Timerld ::=$Timerld Timerldentifier

297 Timerldentifier ::= Identifier

298 Duration ::=$Duration [ConstantExpression]
[* OPERATIONAL SEMANTICS - ConstantExpression shall evaluate to a non-zero positive INTEGER. */

299 Unit ::=$Unit TimeUnit
300 TimeUnit ::=ps|ns|us|ms|s|min

ETSI

170 TR 101 666 V1.0.0 (1999-05)

[* STATIC SEMANTICS - If a timer is derived from the PICS/PIXIT then the timer declaration shall specify the same
units as the PICS/PIXIT entry. */

A.3.3.12.10 Test Component Declarations

301
302

303
304
305

306
307
308
309
310
311
312
313
314
315
316
317

TCompDclsOrGroup ::= TCompDcls | TCompDclsGroup

TCompDclsGroup ::$TCompDclsGroup TCompDclsGroupld {TCompDclsOrGroup}+
$End_TCompDclsGroup

TCompDclsGroupld ::$TCompDclsGroupld TCompDclsGroupldentifier
TCompDclsGroupldentifier ::= Identifier

TCompDcls ::=$Begin_TCompDcls[TCompGroupRef] {{CollComment] TCompDcl}+ [Comment]
$End_TCompDcls

TCompGroupRef ::$TCompGroupRef TCompGroupReference

TCompGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TCompGroupldentifier "/"}
TCompGroupldentifier ::= Identifier

TCompDcl ::=$TCompDcl TCompld C_Role NumOf_PCOs NumOf_CPs [Commé&#hd_TCompDcl
TCompld ::=$TCompld TCompldentifier

TCompldentifier::= Identifier

C_Role ::=$TCompRoleTCompRole

TCompRole ::MTC |PTC

NumOf_PCOs ::$NumOf_PCOsNum_PCOs

Num_PCOs ::= Number

NumOf_CPs ::$NumOf_CPsNum_CPs

Num_CPs ::= Number

A.3.3.12.11 Test Component Configuration Declarations

318
319
320

321
322
323

324
325
326
327

328
329

TCompConfigDcls ::$TCompConfigDcls {TCompConfigDclOrGroup}+$End_TCompConfigDcls
TCompConfigDclOrGroup ::= TCompConfigDcl | TCompConfigDclGroup

TCompConfigDclGroup ::$TCompConfigDclGroup TCompConfigDclGroupld
{TCompConfigDclOrGroup}+$End_TCompConfigDclGroup

TCompConfigDclGroupld ::$TCompConfigDclGroupld TCompConfigDclGroupldentifier
TCompConfigDclGroupldentifier ::= Identifier

TCompConfigDcl ::$Begin_TCompConfigDclTCompConfigld [TCompConfigGroupRef] [Comment]
TCompConfiginfos [Commen§End_TCompConfigDcl

TCompConfigld ::5$TCompConfigld TCompConfigldentifier
TCompConfigldentifier ::= Identifier
TCompConfigGroupRef ::3TCompConfigGroupRef TCompConfigGroupReference

TCompConfigGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{TCompConfigGroupldentifier "/"}

TCompConfigGroupldentifier ::= Identifier
TCompConfigInfos ::$TCompConfiginfos {TCompConfiginfo}+ $End_TCompConfiginfos

[* STATIC SEMANTICS - Exactly one of the TCompConfiginfos shall be for a Test Components which has a
TCompRole which i$TC. */

330

331
332
333

TCompConfiginfo ::=TCompConfiginfo TCompUsed PCOs_Used CPs_Used [Comment]
$End_TCompConfiginfo

TCompUsed ::$TCompUsedTCompldentifier
PCOs_Used ::$PCOs_UsedPCO_List]
PCO_List ::= PCO_ldentifier {Comma PCO_Identifier}

ETSI

171 TR 101 666 V1.0.0 (1999-05)

[* STATIC SEMANTICS - The number of PCOs in the PCO_List shall be the same as in the Test Component
declaration. */

[* STATIC SEMANTICS - A given PCO_ldentifier shall not be used more than once in the same Test Component
Configuration. */

334 CPs_Used ::$CPs_UsedCP_List]

335 CP_List ::= CP_lIdentifier {Comma CP_ldentifier}
[* STATIC SEMANTICS - For a PTC, the number of CPs in the CP_List shall be the same as in the Test Component
declaration. */

[* STATIC SEMANTICS - For an MTC, the number of CPs in the CP_List shall be no more than the number in the
Test Component declaration. */

[* STATIC SEMANTICS - A given CP_ldentifier shall not appear more than once in a given CP_List. */

[* STATIC SEMANTICS - Each CP_ldentifier which is used in a Test Component Configuration shall appear in the
CP_List of precisely two Test Components in that Configuration. */

A.3.3.13 ASP, PDU and CM Type Definitions

A.3.3.13.1 General

336 ComplexDefinitions ::= [ASP_TypeDefs] [PDU_TypeDefs] [CM_TypeDefs] {AliasDefsOrGroup}
[* STATIC SEMANTICS - PDUs shall be optional */

A.3.3.13.2 ASP Type Definitions

337 ASP_TypeDefs ::$ASP_TypeDefdTTCN_ASP_TypeDefs] [ASN1_ASP_TypeDefs]
{ASN1_ASP_TypeDefsByRefOrGrou@End_ASP_TypeDefs

A.3.3.13.3 Tabular ASP Type Definitions

338 TTCN_ASP_TypeDefs :: $TTCN_ASP_TypeDefs{TTCN_ASP_TypeDefOrGroup}+
$End_TTCN_ASP_TypeDefs

339 TTCN_ASP_TypeDefOrGroup ::= TTCN_ASP_TypeDef | TTCN_ASP_TypeDefGroup

340 TTCN_ASP_TypeDefGroup :$TTCN_ASP_TypeDefGroupTTCN_ASP_TypeDefGroupld
{TTCN_ASP_TypeDefOrGroup}$End_TTCN_ASP_TypeDefGroup

341 TTCN_ASP_TypeDefGroupld :$TTCN_ASP_TypeDefGroupld ASP_Groupldentifier

342 TTCN_ASP_TypeDef ::$Begin_TTCN_ASP_TypeDefASP_Id [ASP_GroupRef] PCO_Type [Comment]
ASP_ParDcls [Commen§lEnd_TTCN_ASP_TypeDef

343 ASP_Id ::=3ASP_Id ASP_Id&Fullld
344 ASP_Id&Fullld ::= ASP_Identifier [Fullldentifier]

345 ASP_|dentifier ::= Identifier
[* STATIC SEMANTICS - Identifier may be Aliasldentifier provided that it is being used in the behaviour column of a
behaviour table (i.e. in a Behaviour Description). */

346 ASP_GroupRef ::8ASP_GroupRefASP_GroupReference
347 ASP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASP_Groupldentifier "/"}
348 ASP_Groupldentifier ::= Identifier

349 PCO_Type ::$PCO_Type[PCO_Typeldentifier]
[* STATIC SEMANTICS - If there is no PCO_Type declaration table then, PCO_Typeldentifier shall be one of the
PCO types used in the PCO declaration table. */

[* STATIC SEMANTICS - If only a single PCO is defined within a test suite then PCO_Typeldentifier is optional. */

ETSI

172 TR 101 666 V1.0.0 (1999-05)

350 ASP_ParDcls ::$ASP_ParDcIs{ASP_ParDcl}$End_ASP_ParDcls
351 ASP_ParDcl ::$ASP_ParDclASP_Parld ASP_ParType [Comme#i§nd_ASP_ParDcl
352 ASP_Parld ::3ASP_Parld ASP_ParldOrMacro

353 ASP_ParldOrMacro ::= ASP_Parld&Fullld | MacroSymbol
[* STATIC SEMANTICS - The MacroSymbol shall be used only in combination with a reference to a Structured Type.
*

354 ASP_Parld&Fullld ::= ASP_Parldentifier [Fullldentifier]
355 ASP_Parldentifier ::= Identifier

356 ASP_ParType ::$ASP_ParTypeType&Attributes
[* STATIC SEMANTICS - Type shall be a PredefinedType or TS_Typeldentifier, PDU_Identifiefpor */

A.3.3.13.4 ASN.1 ASP Type Definitions

357 ASN1_ASP_TypeDefs :$3ASN1_ASP_TypeDef§ASN1_ASP_TypeDefOrGroup}
$End_ASN1_ASP_TypeDefs

358 ASN1_ASP_TypeDefOrGroup ::= ASN1_ASP_TypeDef | ASN1_ASP_TypeDefGroup

359 ASN1_ASP_TypeDefGroup :$ASN1_ASP_TypeDefGroupASN1_ASP_TypeDefGroupld
{ASN1_ASP_TypeDefOrGroup}$End_ASN1_ASP_TypeDefGroup

360 ASN1_ASP_TypeDefGroupld :3ASN1_ASP_TypeDefGroupldASN1_ASP_Groupldentifier

361 ASN1_ASP_TypeDef ::$Begin_ASN1_ASP_TypeDeASP_Id [ASN1_ASP_GroupDef] PCO_Type
[Comment] ASN1_TypeDefinition [CommerfEnd_ASN1_ASP_TypeDef

362 ASN1_ASP_GroupRef :3ASN1_ASP_GroupRefASN1_ASP_GroupReference

363 ASN1_ASP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{ASN1_ASP_Groupldentifier "/"}

364 ASN1_ASP_Groupldentifier ::= Identifier

A.3.3.13.5 ASN.1 ASP Type Definitions by Reference

365 ASN1_ASP_TypeDefsByRefOrGroup ::= ASN1_ASP_TypeDefsByRef | ASN1_ASP_TypeDefsByRefGroup

366 ASN1_ASP_TypeDefsByRefGroup $ASN1_ASP_TypeDefsByRefGroup
ASN1_ASP_TypeDefsByRefGroupld {ASN1_ASP_TypeDefsByRefOrGroup}+
$End_ASN1_ASP_TypeDefsByRefGroup

367 ASN1_ASP_TypeDefsByRefGroupld $ASN1_ASP_TypeDefsByRefGroupld
ASN1_ASP_Groupldentifier

368 ASN1_ASP_TypeDefsByRef :$Begin_ASN1_ASP_TypeDefsByR4ASN1_ASP_DefsByRefGroupRef]
{[CollIComment] ASN1_ASP_TypeDefByRef}+ [CommerEnd_ASN1_ASP_TypeDefsByRef

369 ASN_ASP_DefsByRefGroupRef :3ASN1_ASP_DefsByRefGroupReASN1_ASP_GroupReference

370 ASN1_ASP_TypeDefByRef :$ASN1_ASP_TypeDefByReASP_Id PCO_Type ASN1_TypeReference
ASN1_Moduleld [CommentfEnd_ASN1 ASP_TypeDefByRef
[* STATIC SEMANTICS - ASP_Id shall not be specified with a Fullldentifier. */

A.3.3.13.6 PDU Type Definitions

371 PDU_TypeDefs ::$PDU_TypeDefd TTCN_PDU_TypeDefs] [ASN1_PDU_TypeDefs]
{ASN1_PDU_TypeDefsByRefOrGrougfEnd_PDU_TypeDefs

A.3.3.13.7 Tabular PDU Type Definitions

372 TTCN_PDU_TypeDefs ::$TTCN_PDU_TypeDefs{TTCN_PDU_TypeDefOrGroup}+
$End_TTCN_PDU_TypeDefs

373 TTCN_PDU_TypeDefOrGroup ::= TTCN_PDU_TypeDef | TTCN_PDU_TypeDefGroup

ETSI

173 TR 101 666 V1.0.0 (1999-05)

374 TTCN_PDU_TypeDefGroup :$TTCN_PDU_TypeDefGroup TTCN_PDU_TypeDefGroupld
{TTCN_PDU_TypeDefOrGroup}+End_TTCN_PDU_TypeDefGroup

375 TTCN_PDU_TypeDefGroupld : $TTCN_PDU_TypeDefGroupld PDU_Groupldentifier

376 TTCN_PDU_TypeDef ::$Begin_TTCN_PDU_TypeDefPDU_Id [PDU_GroupRef] PCO_Type

[PDU_Encodingld] [EncVariationld] [Comment] PDU_FieldDcls [CommesEhd_TTCN_PDU_TypeDef
[* STATIC SEMANTICS - If a PDU is sent or received only embedded in ASPs within the whole test suite, then
PCO_Typeldentifier (in PCO_Type) is optional. */

377 PDU_Id ::=$PDU_|d PDU_Id&Fullld
378 PDU_Id&Fullld ::= PDU_Identifier [Fullldentifier]

379 PDU_ Identifier ::= Identifier
[* STATIC SEMANTICS - Identifier may be Aliasldentifier provided that it is being used in the behaviour column of a
behaviour table (i.e. in a Behaviour Description). */

380 PDU_GroupRef ::$PDU_GroupRefPDU_GroupReference

381 PDU_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {PDU_Groupldentifier "/"}
382 PDU_Groupldentifier ::= Identifier

383 PDU_Encodingld ::$PDU_Encodingld[EncodingRuleldentifier]

384 PDU_FieldDcls ::$PDU_FieldDcls{PDU_FieldDcl} $End_PDU_FieldDcls

385 PDU_FieldDcl ::=$PDU_FieldDclPDU_Fieldld PDU_FieldType [PDU_FieldEncoding] [Comment]
$End_PDU_FieldDcl

386 PDU_Fieldld ::=$PDU_Fieldld PDU_FieldldOrMacro

387 PDU_FieldldOrMacro ::= PDU_Fieldld&Fullld | MacroSymbol
[* STATIC SEMANTICS - The MacroSymbol shall be used only in combination with a reference to a Structured Type.
*/

388 MacroSymbol ::= "<-"
389 PDU_Fieldld&Fullld ::= PDU_Fieldldentifier [Fullldentifier]
390 PDU_Fieldldentifier ::= Identifier

391 PDU_FieldType ::$PDU_FieldTypeType&Attributes
[* STATIC SEMANTICS - Type shall be a PredefinedType or TS_Typeldentifier, PDU_IdentifieD0r */

392 Type&Attributes ::= (Type [LengthRestriction]) | PDU
/* OPERATIONAL SEMANTICS - The set of values defined by LengthRestriction shall be a true subset of the values
of the base type. */

[* STATIC SEMANTICS - LengthRestriction shall be provided only when the base type is a string type (i.e.,
BITSTRING, HEXSTRING, OCTETSTRING or CharacterString) or derived from a string type. */

A.3.3.13.8 ASN.1 PDU Type Definitions

393 ASN1_PDU_TypeDefs ::3ASN1_PDU_TypeDef{ASN1_PDU_TypeDefOrGroup}
$End_ASN1_PDU_TypeDefs

394 ASN1_PDU_TypeDefOrGroup ::= ASN1_PDU_TypeDef | ASN1_PDU_TypeDefGroup

395 ASN1_PDU_TypeDefGroup :$ASN1_PDU_TypeDefGroupASN1_PDU_TypeDefGroupld
{ASN1_PDU_TypeDefOrGroup}$End_ASN1_PDU_TypeDefGroup

396 ASN1_PDU_TypeDefGroupld :$3ASN1_PDU_TypeDefGroupldASN1_PDU_Groupldentifier

397 ASN1_PDU_TypeDef ::$Begin_ASN1_PDU_TypeDePDU_Id [ASN1_PDU_GroupRef] PCO_Type
[PDU_Encodingld] [EncVariationld] [Comment] ASN1_TypeDefinition [Comment]
$End_ASN1 PDU_TypeDef
[* STATIC SEMANTICS - If a PDU is sent or received only embedded in ASPs within the whole test suite, then
PCO_Typeldentifier (in PCO_Type) is optional. */

398 ASN1_PDU_GroupRef ::3ASN1_PDU_GroupRefASN1_PDU_GroupReference

ETSI

174 TR 101 666 V1.0.0 (1999-05)

399 ASN1_PDU_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{ASN1_PDU_Groupldentifier "/"}

400 ASN1_PDU_Groupldentifier ::= Identifier

A.3.3.13.9 ASN.1 PDU Type Definitions by Reference

401 ASN1_PDU_TypeDefsByRefOrGroup ::= ASN1_PDU_TypeDefsByRef | ASN1_PDU_TypeDefsByRefGroup

402 ASN1_PDU_TypeDefsByRefGroup $ASN1_PDU_TypeDefsByRefGroup
ASN1_PDU_TypeDefsByRefGroupld {ASN1_PDU_TypeDefsByRefOrGroup}+
$End_ASN1_PDU_TypeDefsByRefGroup

403 ASN1_PDU_TypeDefsByRefGroupld $3ASN1_PDU_TypeDefsByRefGroupld
ASN1 _PDU_Groupldentifier

404 ASN1_PDU_TypeDefsByRef :$Begin_ASN1_PDU_TypeDefsByR4ASN1_PDU_DefsByRefGroupRef]
{[CollIComment] ASN1_PDU_TypeDefByRef}+ [CommerfEnd_ASN1 PDU_TypeDefsByRef

405 ASN1 PDU_DefsByRefGroupRef :3ASN1_PDU_DefsByRefGroupReASN1 PDU_GroupReference

406 ASN1_PDU_TypeDefByRef ::3ASN1_PDU_TypeDefByRePDU_Ild PCO_Type ASN1_TypeReference
ASN1_ Moduleld [PDU_Encodingld] [EncVariationld] [CommeB&nd_ASN1 PDU_TypeDefByRef

[* STATIC SEMANTICS - If a PDU is sent or received only embedded in ASPs within the whole test suite, then

PCO_Typeldentifier (in PCO_Type) is optional. */

[* STATIC SEMANTICS - PDU_Id shall not be specified with a Fullldentifier. */

A.3.3.13.10 CM Type Definitions

407 CM_TypeDefs ::8CM_TypeDefs[TTCN_CM_TypeDefs] [ASN1_CM_TypeDef§End_CM_TypeDefs

A.3.3.13.11 Tabular CM Type Definition

408 TTCN_CM_TypeDefs ::$TTCN_CM_TypeDefs{TTCN_CM_TypeDefOrGroup}+
$End_TTCN_CM_TypeDefs

409 TTCN_CM_TypeDefOrGroup ::= TTCN_CM_TypeDef | TTCN_CM_TypeDefGroup

410 TTCN_CM_TypeDefGroup ::$TTCN_CM_TypeDefGroup TTCN_CM_TypeDefGroupld
{TTCN_CM_TypeDefOrGroup}+$End_TTCN_CM_TypeDefGroup

411 TTCN_CM_TypeDefGroupld ::$TTCN_CM_TypeDefGroupld CM_Groupldentifier

412 TTCN_CM_TypeDef ::$Begin_TTCN_CM_TypeDefCM_Id [CM_GroupRef] [Comment] CM_ParDcls
[Comment]$End_TTCN_CM_TypeDef

413 CM_Id ::=$CM_Id CM_Identifier

414 CM_Identifier ::= Identifier

415 CM_GroupRef :: $CM_GroupRef CM_GroupReference

416 CM_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {CM_Groupldentifier "/"}
417 CM_Groupldentifier ::= Identifier

418 CM_ParDcls ::3CM_ParDcls {CM_ParDcl} $End_CM_ParDcls

419 CM_ParDcl ::=$CM_ParDcl CM_Parld CM_ParType [Commer#End_CM_ParDcl

420 CM_Parld ::=$CM_Parld CM_ParldOrMacro

421 CM_ParldOrMacro ::= CM_Parldentifier | MacroSymbol
[* STATIC SEMANTICS - The MacroSymbol shall be used only in combination with a reference to a Structured Type.
*

422 CM_Parldentifier ::= Identifier
423 CM_ParType ::$CM_ParType Type&Attributes

ETSI

175 TR 101 666 V1.0.0 (1999-05)

A.3.3.13.12 ASN.1 CM Type Definitions

424 ASN1_CM_TypeDefs ::$ASN1_CM_TypeDefs{ASN1_CM_TypeDefOrGroup}+
$End_ASN1 CM_TypeDefs

425 ASN1 _CM_TypeDefOrGroup ::= ASN1_CM_TypeDef | ASN1_CM_TypeDefGroup

426 ASN1_CM_TypeDefGroup ::$ASN1_CM_TypeDefGroupASN1_CM_TypeDefGroupld
{ASN1_CM_TypeDefOrGroup}+$End_ASN1_CM_TypeDefGroup

427 ASN1_CM_TypeDefGroupld ::3ASN1_CM_TypeDefGroupld ASN1_CM_Groupldentifier

428 ASN1_CM_TypeDef ::$Begin_ASN1_CM_TypeDefCM_Id [ASN1_CM_GroupRef] [Comment]
ASN1_TypeDefinition [Commen$End_ASN1 CM_TypeDef

429 ASN1_CM_GroupRef ::8ASN1_CM_GroupRefASN1_CM_GroupReference

430 ASN1_CM_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASN1_CM_Groupldentifier
II/II}

431 ASN1_CM_Groupldentifier ::= Identifier

A.3.3.13.13 Varieties of Encoding Definition

432 EncodingDefs ::$EncodingDefs{EncodingDefinitionsOrGroup} [EncodingVariations]
[InvalidFieldEncodingDefspEnd_EncodingDefs

A.3.3.13.13.1 Encoding Definitions

433 EncodingDefinitionsOrGroup ::= EncodingDefinitions | EncodingDefinitionsGroup

434 EncodingDefinitionsGroup ::$EncodingDefinitionsGroup EncodingDefinitionsGroupld
{EncodingDefinitionsOrGroup}$End_EncodingDefinitionsGroup

435 EncodingDefinitionsGroupld ::$3EncodingDefinitionsGroupld EncodingGroupldentifier

436 EncodingDefinitions ::$Begin_EncodingDefinitions[EncodingGroupRef] {{CollComment]
EncodingDefinition}+ [CommentpEnd_EncodingDefinitions

437 EncodingGroupRef ::$3EncodingGroupRefEncodingGroupReference
438 EncodingGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {EncodingGroupldentifier "/"}
439 EncodingGroupldentifier ::= Identifier

440 EncodingDefinition ::3$EncodingDefinition EncodingRuleld EncodingRef EncodingDefault [Comment]
$End_EncodingDefinition

[* OPERATIONAL SEMANTICS - No more than one EncodingRuleldentifier shall have an EncodingDefault which

evaluates to TRUE*/

441 EncodingRuleld ::$EncodingRuleld EncodingRuleldentifier
442 EncodingRuleldentifier ::&dentifier

443 EncodingRef ::$EncodingRefEncodingReference

444 EncodingReference :BoundedFreeText

445 EncodingDefault ::$EncodingDefault[ConstantExpression]
[* STATIC SEMANTICS - ConstantExpression shall evaluate to a boolean value */

A.3.3.13.13.2 Encoding Variations

446 EncodingVariations ::$EncodingVariations {EncodingVariationSetOrGroup}$End_EncodingVariations
447 EncodingVariationSetOrGroup ::= EncodingVariationSet | EncodingVariationSetGroup

448 EncodingVariationSetGroup :$EncodingVariationSetGroup EncodingVariationSetGroupld
{EncodingVariationSetOrGroup}$End_EncodingVariationSetGroup

449 EncodingVariationSetGroupld :$EncodingVariationSetGroupld EncVariationGroupldentifier

450 EncodingVariationSet ::$Begin_EncodingVariationSetEncodingRuleld [EncVariationGroupRef]
Encoding_TypelList [Comment] EncodingVariationList [ComméiEhd_EncodingVariationSet

ETSI

176 TR 101 666 V1.0.0 (1999-05)

451 EncVariationGroupRef ::$EncVariationGroupRef EncVariationGroupReference

452 EncVariationGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{EncVariationGroupldentifier "/"}

453 EncVariationGroupldentifier ::= Identifier
454 EncodingVariationList ::$EncodingVariationList {EncodingVariation}+$End_EncodingVariationList
455 Encoding_TypeList ::$Encoding_TypeList[TypeList]

456 TypelList ::=Type {Comma Type}
[* STATIC SEMANTICS - Type shall not be an ASP_Identifier, PDU_Identifier or Structldentifier, since such types
may be encoded by encoding rules but not by field encodings. */

457 EncodingVariation ::$EncodingVariation EncodingVariationld VariationRef VariationDefault [Comment]
$End_EncodingVariation

/* OPERATIONAL SEMANTICS - No more than one Encodingldentifier shall have a VariationDefault which evaluates

to TRUE. */

458 EncodingVariationld ::$EncodingVariationld EncVariationld&ParList
459 EncVariationld&ParList ::= EncVariationldentifier [FormalParList]
460 EncVariationldentifier ::= Identifier

461 VariationRef ::=$VariationRef VariationReference

462 VariationReference ::BoundedFreeText

463 VariationDefault ::=$VariationDefault [ConstantExpression]

A.3.3.13.13.3 Invalid Encoding Definitions

464 InvalidFieldEncodingDefs ::$InvalidFieldEncodingDefs{InvalidFieldEncodingDefOrGroup}+
$End_InvalidFieldEncodingDefs

465 InvalidFieldEncodingDefOrGroup ::= InvalidFieldEncodingDef | InvalidFieldEncodingGroup

466 InvalidFieldEncodingGroup ::$invalidFieldEncodingGroup InvalidFieldEncodingGroupld
{InvalidFieldEncodingOrGroup}#$End_InvalidFieldEncodingGroup

467 InvalidFieldEncodingGroupld :$invalidFieldEncodingGroupld InvalidFieldEncodingGroupldentifier

468 InvalidFieldEncodingDef ::$Begin_InvalidFieldEncodingDefInvalidFieldEncodingld
[InvalidFieldEncodingGroupRef] Encoding_TypeList [Comment] InvalidFieldEncodingDefinition [Comment]
$End_InvalidFieldEncodingDef

469 InvalidFieldEncodingld ::$InvalidFieldEncodingld InvalidFieldEncodingld&ParList

470 InvalidFieldEncodingld&ParList ::fnvalidFieldEncodingldentifier [FormalParList]

471 InvalidFieldEncodingldentifier ::&dentifier

472 InvalidFieldEncodingGroupRef : $invalidFieldEncodingGroupRef InvalidFieldEncodingGroupReference

473 InvalidFieldEncodingGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier)
""{InvalidFieldEncodingGroupldentifier"/"}

474 InvalidFieldEncodingGroupldentifier ::= Identifier

475 InvalidFieldEncodingDefinition ::$InvalidFieldEncodingDefinition TS_OpProcDef
$End_InvalidFieldEncodingDefinition

/* OPERATIONAL SEMANTICS - TS_OpProcDef shall produce a BitString result, to be interpreted as the encoding to

be transmitted high order bit first. */

A.3.3.13.14 Alias Definitions

476 AliasDefsOrGroup ::= AliasDefs | AliasDefsGroup

477 AliasDefsGroup ::$AliasDefsGroup AliasDefsGroupld {AliasDefsOrGroup}$End_AliasDefsGroup
478 AliasDefsGroupld ::$AliasDefsGroupld AliasDefsGroupldentifier

479 AliasDefsGroupldentifier ::= Identifier

480 AliasDefs ::=$Begin_AliasDefqAliasGroupRef] {[CollComment] AliasDef}+ [Commen8End_AliasDefs

ETSI

177 TR 101 666 V1.0.0 (1999-05)

481 AliasGroupRef ::$AliasGroupRef AliasGroupReference

482 AliasGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {AliasGroupldentifier "/"}
483 AliasGroupldentifier ::= Identifier

484 AliasDef ::=$AliasDef Aliasld Expandedld [Commen$lEnd_AliasDef

485 Aliasld ::=$Aliasld Aliasldentifier

486 Aliasldentifier ::= Identifier
[* STATIC SEMANTICS - An Aliasldentifier shall be used only in a statement line of a behaviour description. */

[* STATIC SEMANTICS - An Aliasldentifier shall be used only where an ASP_Identifier or PDU_Identifier is valid. */

487 Expandedld ::$Expandedid Expansion
488 Expansion ::= ASP_Identifier | PDU_Identifier

A.3.3.14 The Constraints Part

489 ConstraintsPart ::3ConstraintsPart [TS_TypeConstraints] [ASP_Constraints] [PDU_Constraints]
[CM_ConstraintspEnd_ConstraintsPart

A.3.3.15 Test Suite Type Constraint Declarations

490 TS_TypeConstraints :$TS_TypeConstraints[StructTypeConstraints] [ASN1_TypeConstraints]
$End_TS_TypeConstraints

A.3.3.16 Structured Type Constraint Declarations

491 StructTypeConstraints :$StructTypeConstraints {StructTypeConstraintOrGroup}+
$End_StructTypeConstraints

492 StructTypeConstraintOrGroup ::= StructTypeConstraint | StructTypeConstraintGroup

493 StructTypeConstraintGroup $StructTypeConstraintGroup StructTypeConstraintGroupld
{StructTypeConstraintOrGroup}$End_StructTypeConstraintGroup

494 StructTypeConstraintGroupld :$StructTypeConstraintGroupld StructTypeConstraintGroupldentifier

495 StructTypeConstraint :$Begin_StructTypeConstraint Consld [StructTypeConstraintGroupRef] Structld
DerivPath [EncVariationld] [Comment] ElemValues [CommestEhd_StructTypeConstraint
[* STATIC SEMANTICS - The Fullldentifier that is part of Struct_Id shall not be used. */

[* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

496 StructTypeConstraintGroupRef $StructTypeConstraintGroupRef StructTypeConstraintGroupReference

497 StructTypeConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier)
""{StructTypeConstraintGroupldentifier"/"}

498 StructTypeConstraintGroupldentifier ::= Identifier

499 EncVariationld ::$EncVariationld [EncVariationCall]

500 EncVariationCall ::= EncVariationldentifier [ActualParList]
501 ElemValues ::$ElemValues{ElemValue}+ $End_ElemValues

502 ElemValue ::5$ElemValue Elemld ConsValue [PDU_FieldEncoding] [Comme$nd_ElemValue
[* STATIC SEMANTICS - The Fullldentifier that is part of Elemld shall not be used. */

[* STATIC SEMANTICS - Elemld shall have been declared in the type related to the constraint. */

[* STATIC SEMANTICS - Parameterized Element values in a base constraint shall not be modified or explicitly
omitted in a modified constraint. */

503 PDU_FieldEncoding ::$PDU_FieldEncoding[PDU_FieldEncodingCall]

ETSI

178 TR 101 666 V1.0.0 (1999-05)

504 PDU_FieldEncodingCall ::= EncVariationCall | InvalidFieldEncodingCall
505 InvalidFieldEncodingCall ::= InvalidFieldEncodingldentifier (ActualParList | "(" ")")

A.3.3.17 ASN.1 Type Constraint Declarations

506 ASN1_TypeConstraints :3ASN1_TypeConstraints{ASN1_TypeConstraintOrGroup}+
$End_ASN1_TypeConstraints

507 ASN1_TypeConstraintOrGroup ::= ASN1_TypeConstraint | ASN1_TypeConstraintGroup

508 ASN1_TypeConstraintGroup :$ASN1_TypeConstraintGroupASN1_TypeConstraintGroupld
{ASN1_TypeConstraintOrGroup}$End_ASN1_TypeConstraintGroup

509 ASN1_TypeConstraintGroupld :$3ASN1_TypeConstraintGroupld ASN1_TypeConstraintGroupldentifier

510 ASN1_TypeConstraint :$Begin_ASN1_TypeConstraintConsld [ASN1_TypeConstraintGroupRef]
ASN1_Typeld DerivPath [EncVariationld] [Comment] ASN1_ConsValue [Comment]
$End_ASN1_TypeConstraint

[* STATIC SEMANTICS - The Fullidentifier that is part of ASN1_Typeld shall not be used. */

[* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

511 ASN1_TypeConstraintGroupRef $ASN1_TypeConstraintGroupRef
ASN1_TypeConstraintGroupReference

512 ASN1TypeConstraintGroupReference::=[(Suiteldentifier
TTCN_Moduleldentifier)"/"{ASNL1 TypeConstraintGroupldentifier'/"}

513 ASN1_TypeConstraintGroupldentifier ::= Identifier

A.3.3.18 ASP Constraint Declarations

514 ASP_Constraints :$ASP_Constraints[TTCN_ASP_Constraints] [ASN1_ASP_Constraints]
$End_ASP_Constraints

A.3.3.19 Tabular ASP Constraint Declarations

515 TTCN_ASP_Constraints :$TTCN_ASP_Constraints{TTCN_ASP_ConstraintOrGroup}+
$End_TTCN_ASP_Constraints

516 TTCN_ASP_ConstraintOrGroup ::= TTCN_ASP_Constraint | TTCN_ASP_ConstraintGroup

517 TTCN_ASP_ConstraintGroup : 33 TCN_ASP_ConstraintGroup TTCN_ASP_ConstraintGroupld
{TTCN_ASP_ConstraintOrGroup}$End_TTCN_ASP_ConstraintGroup

518 TTCN_ASP_ConstraintGroupld :$37TCN_ASP_ConstraintGroupld ASP_ConstraintGroupldentifier

519 TTCN_ASP_Constraint ::$Begin_TTCN_ASP_ConstraintConsld [ASP_ConstraintGroupRef] ASP_Id
DerivPath [Comment] ASP_ParValues [ComméiEnd_TTCN_ASP_Constraint
[* STATIC SEMANTICS - The Fullidentifier that is part of ASP_Id shall not be used. */

[* STATIC SEMANTICS - If an ASP is substructured, then the constraints for ASPs of that type shall have the same
structure*/

[* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

520 ASP_ConstraintGroupRef :$3ASP_ConstraintGroupRef ASP_ConstraintGroupReference

521 ASP_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{ASP_ConstraintGroupldentifier "/"}

522 ASP_ConstraintGroupldentifier ::= Identifier
523 ASP_ParValues :$ASP_ParValues{ASP_ParValue}J$End_ASP_ParValues

ETSI

179 TR 101 666 V1.0.0 (1999-05)

524 ASP_ParValue ::$ASP_ParValueASP_Parld ConsValue [Comme®End_ASP_ParValue
[* STATIC SEMANTICS - The Fullldentifier that is part of ASP_Parld shall not be used. */

[* STATIC SEMANTICS - ASP_Parld shall have been declared in the type related to the constraint. */

[* STATIC SEMANTICS - If an ASP definition refers to a Structured Type as a substructure of a parametath a

parameter name) then the corresponding constraint shall have the same parameter name in the corresponding position in
the parameter name column of the constraint and the value shall be a reference to a constraint for that pardoreter (

that substructure in accordance with the definition of the Structured Type). */

[* STATIC SEMANTICS - If an ASP definition refers to a parameter specified as being of metatype PDU then in a
corresponding constraint, the value for that parameter shall be specified as the name of a PDU constraint, or formal
parameter. */

[* STATIC SEMANTICS - Use of structured constraints by macro expansion in a constraint shall not be used unless the
corresponding ASP definition also references the same Structured Type by macro expansion. */

[* STATIC SEMANTICS - Parameterized ASP parameter values in a base constraint shall not be modified or explicitly
omitted in a modified constraint. */

A.3.3.20 ASN.1 ASP Constraint Declarations

525 ASN1_ASP_Constraints :3ASN1_ASP_ConstraintfASN1_ASP_ConstraintOrGroup}+
$End_ASN1_ASP_Constraints

526 ASN1_ASP_ConstraintOrGroup ::= ASN1_ASP_Constraint | ASN1_ASP_ConstraintGroup

527 ASN1_ASP_ConstraintGroup $ASN1_ASP_ConstraintGroupASN1_ASP_ConstraintGroupld
{ASN1_ASP_ConstraintOrGroup}$End_ASN1_ASP_ConstraintGroup

528 ASN1_ASP_ConstraintGroupld $ASN1_ASP_ConstraintGroupld
ASN1_ASP_ConstraintGroupldentifier

529 ASN1_ASP_Constraint :$3Begin_ASN1_ASP_ConstrainConsld [ASN1_ASP_ConstraintGroupRef]
ASP_Id DerivPath [Comment] ASN1_ConsValue [Commé&iihd_ASN1_ASP_Constraint
[* STATIC SEMANTICS - The Fullidentifier that is part of ASP_Id shall not be used. */

[* STATIC SEMANTICS - If an ASP is substructured, then the constraints for ASPs of that type shall have a
compatible ASN.1 structuré €., possibly with some groupings). */

[* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

530 ASN1_ASP_ConstraintGroupRef $ASN1_ASP_ConstraintGroupRef
ASN1_ASP_ConstraintGroupReference

531 ASN1_ASP_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{ASN1_ASP_ConstraintGroupldentifier "/"}

532 ASN1_ASP_ConstraintGroupldentifier ::= Identifier

A.3.3.21 PDU Constraint Declarations

533 PDU_Constraints ::3PDU_Constraints[TTCN_PDU_Constraints] [ASN1_PDU_Constraints]
$End_PDU_Constraints

A.3.3.22 Tabular PDU Constraint Declarations

534 TTCN_PDU_Constraints :$TTCN_PDU_Constraints{TTCN_PDU_ConstraintOrGroup}+
$End_TTCN_PDU_Constraints

535 TTCN_PDU_ConstraintOrGroup ::= TTCN_PDU_Constraint | TTCN_PDU_ ConstraintGroup

536 TTCN_PDU_ConstraintGroup :$3TTCN_PDU_ConstraintGroup TTCN_PDU_ConstraintGroupld
{TTCN_PDU_ConstraintOrGroup}$End_TTCN_PDU_ConstraintGroup

ETSI

180 TR 101 666 V1.0.0 (1999-05)

537 TTCN_PDU_ConstraintGroupld :37TCN_PDU_ConstraintGroupld PDU_ConstraintGroupldentifier

538 TTCN_PDU_Constraint ::3Begin_TTCN_PDU_ConstraintConsld [PDU_ConstraintGroupRef] PDU_Id
DerivPath [EncRuleld] [EncVariationld] [Comment] PDU_FieldValues [Comment]
$End_TTCN_PDU_Constraint

[* STATIC SEMANTICS - The Fullldentifier that is part of PDU_Id shall not be used. */

[* STATIC SEMANTICS - If a PDU is substructured, then the constraints for PDUs of that type shall have the same
structure*/

[* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

539 PDU_ConstraintGroupRef :$PDU_ConstraintGroupRef PDU_ConstraintGroupReference

540 PDU_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{PDU_ConstraintGroupldentifier "/"}

541 PDU_ConstraintGroupldentifier ::= Identifier

542 EncRuleld ::$EncRuleld [EncodingRuleldentifier]

543 Consld ::=$Consld Consld&ParList

544 Consld&ParList ::= Constraintldentifier [FormalParList]
545 Constraintldentifier ::= Identifier

546 DerivPath ::=$DerivPath [DerivationPath]

547 DerivationPath ::= {Constraintldentifier Dot}+
[* STATIC SEMANTICS - If a constraint definition is a modification of an existing constraint, the name of the
constraint that is taken as the basis of this modification shall be referenced in the table in the derivation path entry. */

[* STATIC SEMANTICS - The first Constraintldentifier in DerivationPath shall be a base constraint identifier. */

[* STATIC SEMANTICS - The DerivationPath shall be the complete list of constraints in the order in which their
modifications to the base constraint are to be applied. */

[* STATIC SEMANTICS - There shall be no white space between Constraintldentifier and Dot. */

548 PDU_FieldValues ::$PDU_FieldValues{PDU_FieldValue}$End_PDU_FieldValues

549 PDU_FieldValue ::$PDU_FieldValuePDU_Fieldld ConsValue [PDU_FieldEncoding] [Comment]
$End_PDU_FieldVvalue
[* STATIC SEMANTICS - The Fullldentifier that is part of PDU_Fieldld shall not be used. */

[* STATIC SEMANTICS - PDU_Fieldld shall have been declared in the type related to the constraint. */

[* STATIC SEMANTICS - If a PDU definition refers to a Structured Type as a substructure of d.&eldi¢h a field

name) then the corresponding constraint shall have the same field name in the corresponding position in the field name
column of the constraint and the value shall be a reference to a constraint for thaefidéal that substructure in

accordance with the definition of the Structured Type). */

[* STATIC SEMANTICS - If a PDU definition refers to a field specified as being of metatype PDU then in a
corresponding constraint, the value for that field shall be specified as the name of a PDU constraint, or formal
parameter. */

[* STATIC SEMANTICS - Use of structured constraints by macro expansion in a constraint shall not be used unless the
corresponding PDU definition also references the same Structured Type by macro expansion. */

[* STATIC SEMANTICS - Parameterized PDU field values in a base constraint shall not be modified or explicitly
omitted in a modified constraint. */

550 ConsValue ::$ConsValueConstraintValue&Attributes
/* OPERATIONAL SEMANTICS - ConsValue shall evaluate to an element of the type specified for the ASP
parameter, PDU field or structure element. This may include matching symbols compatible with the specified type. */

551 ConstraintValue&Attributes ::= ConstraintValue ValueAttributes

ETSI

181 TR 101 666 V1.0.0 (1999-05)

[* NOTE - ConstraintValue&Attributes can be reached via DefinedValue in the ASN.1 syntax. See the reference on the
production 739 for Value. */

[* STATIC SEMANTICS - ConstraintValue shall fulfil all restrictions defined for the ASP parameter, PDU field or
structure element type, including value ranges, value lists, alphabet restrictions and/or length restrictions and shall fulfil
the restrictions defined by ValueAttributes. */

/* OPERATIONAL SEMANTICS - Any length specifications defined for the ASP parameter or PDU field type in the
Test Suite Type declarations shall not conflict with the length specifications in the ASP or PDU type definition. */

[* STATIC SEMANTICS - Neither Test Suite Variables nor Test Case Variables shall be used in constraints, unless
passed as actual parameters. In the latter case they shall be bound to a value and shall not be changed. */

552 ConstraintValue ::= ConstantExpression | MatchingSymbol | ConsRef
/* OPERATIONAL SEMANTICS - ConstantExpression shall evaluate to an element of the specified type. */

553 MatchingSymbol ::= Complement | Omit | AnyValue | AnyOrOmit | ValueList | IntegerRange | SuperSet |
SubSet | Permutation
/* NOTE - No matching symbol is considered to be a specific value. */

554 Complement ::= COMPLEMENT ValuelList

555 Omit ;= Dash | OMIT
[* STATIC SEMANTICS - In ASN.1 constraints Omit shall be used only for ASP parameters or PDU fields that are
declared OPTIONAL or DEFAULT. */

556 AnyValue ::="?"
557 AnyOrOmit ::= "*"

558 Valuelist ::= "(" ConstraintValue&Attributes {Comma ConstraintValue&Attributes} ")"
[* STATIC SEMANTICS - Each ConstraintValue&Attributes shall be of the type declared for the ASP parameter, PDU
field, or structure element in which the ValueList is used. */

559 SuperSet ::SUPERSET"(" ConstraintValue&Attributes)"
[* STATIC SEMANTICS - The argument to SuperSeg,, ConstraintValue&Attributes, shall be of type SET OF. */

560 SubSet :: SUBSET"(" ConstraintValue&Attributes)"
[* STATIC SEMANTICS - The argument to SubSie¢,, ConstraintValue&Attributes, shall be of type SET OF. */

561 Permutation ::PERMUTATION ValueList
[* STATIC SEMANTICS - The Permutation shall be used only inside a value of type SEQUENCE OF. */

[* STATIC SEMANTICS - The ValueList shall be of the type specified in the SEQUENCE OF. */

562 ValueAttributes ::= [LengthRestrictiodH_PRESENT] [ASN1_Encoding]
[* STATIC SEMANTICS - In ASN.1 constraints IF_PRESENT shall be used only for ASP parameters or PDU fields
that are declared OPTIONAL or DEFAULT. */

[* STATIC SEMANTICS - ASN1_Encoding shall only be used for ValueAttributes in ASN.1 Type Constraints and
ASN.1 PDU Constraints. */

[* STATIC SEMANTICS - LengthRestriction shall be used only for ASP parameters, PDU fields or structure element
that are declared as BITSTRING, HEXSTRING, OCTETSTRING, CharacterString, SEQUENCE OF or SET OF. */

[* STATIC SEMANTICS - LengthRestriction shall be used only in combination with the following mechanisms:
Specificvalue, Complement, Omit, AnyValue, AnyOrOmit, AnyOrNone and Permutation. */

[* STATIC SEMANTICS - The set of values defined by LengthRestriction shall be a true subset of the values allowed
by the ASP parameter's, PDU field's or structure element's declared type. */

563 ASN1_Encoding ::£NC PDU_FieldEncodingCall

ETSI

182 TR 101 666 V1.0.0 (1999-05)

A.3.3.23 ASN.1 PDU Constraint Declarations

564 ASN1_PDU_Constraints :3ASN1_PDU_Constraints{ASN1_PDU_ConstraintOrGroup}+
$End_ASN1 PDU_Constraints

565 ASN1_PDU_ConstraintOrGroup ::= ASN1_PDU_Constraint | ASN1_PDU_ConstraintGroup

566 ASN1_PDU_ConstraintGroup :$3ASN1_PDU_ConstraintGroupASN1_PDU_ConstraintGroupld
{ASN1_PDU_ConstraintOrGroup}$End_ASN1_PDU_ConstraintGroup

567 ASN1_PDU_ConstraintGroupld :3ASN1_PDU_ConstraintGroupld
ASN1_PDU_ConstraintGroupldentifier

568 ASN1 _PDU_Constraint :$Begin_ASN1_ PDU Constraint Consld [ASN1_PDU_ConstraintGroupRef]
PDU_Id DerivPath [EncRuleld] [EncVariationld] [Comment] ASN1_ConsValue [Comment]
$End_ASN1_PDU_Constraint

[* STATIC SEMANTICS - The Fullldentifier that is part of PDU_Id shall not be used. */

[* STATIC SEMANTICS - If a PDU is substructured, then the constraints for PDUs of that type shall have a compatible
ASN.1 structurei(e., possibly with some groupings). */

[* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

569 ASN1_PDU_ConstraintGroupRef $ASN1_PDU_ConstraintGroupRef
ASN1_PDU_ConstraintGroupReference

570 ASN1 PDU_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{ASN1_PDU_ConstraintGroupldentifier "/"}

571 ASN1_PDU_ConstraintGroupldentifier ::= Identifier
572 ASN1_ConsValue ::3ASN1_ConsValueConstraintValue&AttributesOrReplad&End_ASN1_ConsValue
573 ConstraintValue&AttributesOrReplace ::= ConstraintValue&Attributes | Replacement {Comma Replacement}

574 Replacement ::REPLACE ReferenceLisBY ConstraintValue&AttributesQMIT ReferenceList
[* STATIC SEMANTICS - Replacement shall be used only when DerivPath is specified. */

[* STATIC SEMANTICS - Parameterized replaced values in a base constraint shall not be modified or explicitly
omitted in a modified constraint. */

575 Referencelist ::= (ArrayRef | Componentldentifier | ComponentPosition) {ComponentReference}

A.3.3.24 CM Constraint Declarations

576 CM_Constraints ::$CM_Constraints [TTCN_CM_Constraird] [ASN1_CM_Constraird]
$End_CM_Constraints

A.3.3.25 Tabular CM Constraint Declaration

577 TTCN_CM_Constraints :$TTCN_CM_Constraints {TTCN_CM_ConstraintOrGroup}+
$End_TTCN_CM_Constraints

578 TTCN_CM_ConstraintOrGroup ::= TTCN_CM_Constraint | TTCN_CM_ConstraintGroup

579 TTCN_CM_ConstraintGroup :$TTCN_CM_ConstraintGroup TTCN_CM_ConstraintGroupld
{TTCN_CM_ConstraintOrGroup}$End_TTCN_CM_ConstraintGroup

580 TTCN_CM_ConstraintGroupld :$TTCN_CM_ConstraintGroupld CM_ConstraintGroupldentifier

581 TTCN_CM_Constraint ::$Begin_TTCN_CM_Constraint Consld [CM_ConstraintGroupRef] CM_Id
DerivPath [Comment] CM_ParValues [Comme$iEind_TTCN_CM_Constraint

582 CM_ConstraintGroupRef : 3CM_ConstraintGroupRef CM_ConstraintGroupReference

583 CM_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{CM_ConstraintGroupldentifier "/"}

584 CM_ConstraintGroupldentifier ::= Identifier

ETSI

183 TR 101 666 V1.0.0 (1999-05)

585 CM_ParValues ::3CM_ParValues{CM_ParValue}$End_CM_ParValues

586 CM_ParValue ::$CM_ParValue CM_Parld ConsValue [Commer§End_CM_ParValue
[* STATIC SEMANTICS - CM_Parld shall have been declared in the type related to the constraint. */

A.3.3.26 ASN.1 CM Constraint Declaration

587 ASN1_CM_Constraints :$3ASN1_CM_Constraints{ASN1_CM_ConstraintOrGroup}+
$End_ASN1 CM_Constraints

588 ASN1_CM_ConstraintOrGroup ::= ASN1_CM_Constraint | ASN1_CM_ConstraintGroup

589 ASN1_CM_ConstraintGroup :$ASN1_CM_ConstraintGroup ASN1_CM_ConstraintGroupld
{ASN1_CM_ConstraintOrGroup}-$End_ASN1_CM_ConstraintGroup

590 ASN1_CM_ConstraintGroupld :3ASN1_CM_ConstraintGroupld ASN1_CM_ConstraintGroupldentifier

591 ASN1_CM_Constraint ::3Begin_ASN1_CM_ConstraintConsld [ASN1_CM_ConstraintGroupRef] CM_Id
DerivPath [Comment] ASN1_ConsValue [CommeBEnd_ ASN1 CM_Constraint

592 ASN1_CM_ConstraintGroupRef :3ASN1_CM_ConstraintGroupRef
ASN1_CM_ConstraintGroupReference

593 ASN1_CM_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{ASN1_CM_ConstraintGroupldentifier "/"}

594 ASN1_CM_ConstraintGroupldentifier ::= Identifier

A.3.3.27 The Dynamic Part

595 DynamicPart ::$DynamicPart [TestCases] [TestStepLibrary] [DefaultsLibrafnd_DynamicPart

A.3.3.28 Test Cases

596 TestCases :$TestCaseqTestGroup | TestCase}$End_TestCases

597 TestGroup ::$TestGroup TestGroupld {TestGroup | TestCase$End_TestGroup
598 TestGroupld ::$TestGroupld TestGroupldentifier

599 TestGroupldentifier ::= Identifier

600 TestCase ::$Begin_TestCasd estCaseld TestGroupRef TestPurpose [Configuration] DefaultsRef
[Comment] BehaviourDescription [Commefnd_TestCase

601 TestCaseld ::$TestCaseldTestCaseldentifier
602 TestCaseldentifier ::= Identifier
603 TestGroupRef ::$TestGroupRef TestGroupReference

604 TestGroupReference ::= [Suiteldentifier "/"] {TestGroupldentifier "/"}
[* STATIC SEMANTICS - There shall be no white space on either side of the "/"s. */

605 TestPurpose ::$TestPurposeBoundedFreeText

606 Configuration ::=$Configuration TCompConfigldentifier

607 DefaultsRef::$DefaultsRef[DefaultRefList]

608 DefaultRefList ::= DefaultReference {Comma DefaultReference}
609 DefaultReference ::= Defaultldentifier [ActualParList]

A.3.3.29 Test Step Library

610 TestStepLibrary ::$TestStepLibrary {TestStepGroup | TestStepBEnd_TestStepLibrary

611 TestStepGroup :$TestStepGroupTestStepGroupld {TestStepGroup | TestSteplEnd_TestStepGroup
612 TestStepGroupld ::$TestStepGroupld TestStepGroupldentifier

613 TestStepGroupldentifier ::= Identifier

ETSI

184 TR 101 666 V1.0.0 (1999-05)

614 TestStep ::$Begin_TestSteprestStepld TestStepRef Objective DefaultsRef [Comment]
BehaviourDescription [CommerEnd_TestStep

615 TestStepld ::$TestStepld TestStepld&ParList

616 TestStepld&ParList ::= TestStepldentifier [FormalParList]
617 TestStepldentifier ::= Identifier

618 TestStepRef ::$TestStepRefTestStepGroupReference

619 TestStepGroupReference ::= [Suiteldentifier "/"] {TestStepGroupldentifier "/"}
[* STATIC SEMANTICS - There shall be no separator on either side of the "/"s. */

620 Objective ::=$Objective BoundedFreeText

A.3.3.30 Default Library

621 DefaultsLibrary ::$DefaultsLibrary {DefaultGroup | Default}+#$End_DefaultsLibrary
622 DefaultGroup ::%DefaultGroup DefaultGroupld {DefaultGroup | Default}$End_DefaultGroup
623 DefaultGroupld ::$DefaultGroupld DefaultGroupldentifier

624 Default ::=$Begin_DefaultDefaultld DefaultRef Objective [Comment] BehaviourDescription [Comment]
$End_Default

[* STATIC SEMANTICS - BehaviourDescription shall not use tree attachment except for attaching localerees (

Default behaviour trees shall not attach Test Steps). */

625 DefaultRef ::=$DefaultRef DefaultGroupReference
626 Defaultld ::=$Defaultld Defaultld&ParList

627 Defaultld&ParList ::= Defaultldentifier [FormalParList]
628 Defaultldentifier ::= Identifier

629 DefaultGroupReference ::= [Suiteldentifier "/"] {DefaultGroupldentifier "/"}
[* STATIC SEMANTICS - There shall be no white space on either side of the "/"s. */

630 DefaultGroupldentifier ::= Identifier

A.3.3.31 Behaviour descriptions

631 BehaviourDescription ::$BehaviourDescription RootTree {LocalTree 5End_BehaviourDescription
632 RootTree ::= {BehaviourLine}+

633 LocalTree ::= Header {BehaviourLine}+

634 Header ::$Header TreeHeader

635 TreeHeader ::= Treeldentifier [FormalParList]

636 Treeldentifier ::= Identifier

637 FormalParList ::= "(" FormalPar&Type {SemiColon FormalPar&Type} ")"

638 FormalPar&Type ::= FormalParldentifier {Comma FormalParldentifier} Colon FormalParType
639 FormalParldentifier ::= Identifier

640 FormalParType ::= Type | PCO_TypeldentifieDU | CP | TIMER
[* STATIC SEMANTICS - In a test suite operation or an encoding operation FormalParType shall not be a PCO type or
the keyword CP*/

[* STATIC SEMANTICS - If a formal parameter is of typ®U then that formal parameter shall not be used with a
component reference (i.e. specific fields of the PDU cannot be referenced). */

A.3.3.32 Behaviour lines

641 BehaviourLine ::$BehaviourLine Labelld Line Cref Verdictld [Commen$lEnd_BehaviourLine
642 Line ::=$Line Indentation StatementLine

ETSI

185 TR 101 666 V1.0.0 (1999-05)

643 Indentation ::="[" Number "]"
[* STATIC SEMANTICS - Statements in the first level of alternatives in a behaviour description shall have the
indentation value zero. */

[* STATIC SEMANTICS - Statements having a predecessor shall have the indentation value of the predecessor plus one
as their indentation value. */

644 Labelld ::=$Labelld [Label]
645 Label ::= Identifier
646 Cref ::=$Cref [ConstraintReference]

647 ConstraintReference ::= ConsRef | FormalParldentifier | AnyValue

[* STATIC SEMANTICS - ConsRef shall be present in conjunction with SEND, IMPLICIT SEND and RECEIVE and
shall have a type which is consistent with (i.e. the same as or a subset of) the type of ASP, PDU or CM specified in the
SEND, IMPLICIT_SEND or RECEIVE statement. A ConstraintReference is not needed for ASPs and CMs that have no
parameters or PDUs that have no fields. It shall not be present with any other kind of TTCN statement. */

[* STATIC SEMANTICS - FormalParldentifier shall resolve to a ConsRef. */

[* STATIC SEMANTICS - ConstraintReferences on SEND events shall not include any MatchingSymbol except Omit
unless the MatchingSymbol is explicitly assigned specific values on the SEND event line. */

648 ConsRef ::= Constraintldentifier [ActualCrefParList]

649 ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"
[* STATIC SEMANTICS - See static semantics on production 699. */

650 ActualCrefPar ::= Value
/* NOTE - Through Value, it is possible to reach MatchingSymbol, TS_Parldentifier, TS_Constldentifier,
TS Varldentifier, TC_Varldentifier, FormalParldentifier or ConsRef. */

651 Verdictld ::=$Verdictld [Verdict]

652 Verdict ::= Pass | Fail | Inconclusive | Result

[* STATIC SEMANTICS - Verdict shall not occur corresponding to entries in the behaviour tree which are any of the
following: empty, an ATTACH construct, a REPEAT construct, a GOTO construct, an IMPLICIT SEND or a
RETURN. */

653 Passi= PASS|P|"(" PASS")" | "(" P")"
654 Fail :=FAIL |F|"("FAIL ")"|"(" F")"
655 Inconclusive :#NCONC |1 | "("INCONC ")" | "(" I)"

656 Result ;:=R | MTC_R
[* STATIC SEMANTICS - R shall not be used on the LHS of an assignment. */

[* STATIC SEMANTICS - MTC_R shall be used only in the MTC. */

A.3.3.33 TTCN statements

657 StatementLine ::= (Event [Qualifier] [AssignmentList] [TimerOps]) | (Qualifier [AssignmentList]
[TimerOps]) | (AssignmentList [TimerOps]) | TimerOps | Construct | ImplicitSend

658 Event ::= Send | Receive | Otherwise | Timeout | Done

[* STATIC SEMANTICS - A Receive, Otherwise or Timeout event shall only be followed by other Receive, Otherwise
and Timeout events through the remainder of the set of alternatives in a fully expanded tree. As a consequence, Default
trees will contain only Receive, Otherwise and Timeout events on the first level of alternatives. */

659 Qualifier ::= "[" Expression "]"
/* OPERATIONAL SEMANTICS - Qualifier shall evaluate to a specific BOOLEAN value. */

660 Send ::= [PCO_lIdentifier | CP_Identifier | FormalParldentifier] "!" (ASP_Identifier | PDU_Identifier |
CM_Identifier)

ETSI

186 TR 101 666 V1.0.0 (1999-05)

[* STATIC SEMANTICS - PCO_Identifier, CP_Identifier or FormalParldentifier shall be present unless the test suite
uses only one PCO and no CP. */

[* STATIC SEMANTICS - FormalParldentifier shall resolve to a PCO _Identifier or CP_Identifier.*/

[* STATIC SEMANTICS - Only CMs may be exchanged on CPs and only ASPs and PDUs may be exchanged on
PCOs. */

661 ImplicitSend ::= "<"UT | PCO_ldentifier | FormalParldentifier) "!" (ASP_Identifier | PDU_Identifier) ">"
[* STATIC SEMANTICS - ImplicitSend shall not be used unless the test method being used is one of the Remote Test
Methods. */

[* STATIC SEMANTICS - FormalParldentifier shall resolve to a PCO _Identifier.*/

662 Receive ::= [PCO_Identifier | CP_Ildentifier | FormalParldentifier] "?" (ASP_Identifier | PDU_Identifier |
CM_Identifier)

[* STATIC SEMANTICS - PCO_Identifier, CP_Identifier or FormalParldentifier shall be present unless the test suite

uses only one PCO and no CP. */

[* STATIC SEMANTICS - Only CMs may be exchanged on CPs and only ASPs and PDUs may be exchanged on
PCOs. */

[* STATIC SEMANTICS - FormalParldentifier shall resolve to a PCO_Identifier or CP_Identifier.*/

663 Otherwise ::= [PCO_Identifier | CP_ldentifier | FormalParldentifierDPHERWISE
[* STATIC SEMANTICS - PCO_ldentifier, CP_Identifier or FormalParldentifier shall be present unless the test suite
uses only one PCO and no CP. */

[* STATIC SEMANTICS - FormalParldentifier shall resolve to a PCO_Identifier or CP_Identifier.*/

664 Timeout ::= "?'TIMEOUT [Timerldentifier | FormalParldentifier]
[* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

665 Done ::= "?'DONE "(" [TCompldList])"
666 TCompldList ::= TCompldentifier {Comma TCompldentifier}
667 Construct ::= GoTo | Attach | Repeat | Return | Activate | Create

668 Activate ::=ACTIVATE "(" [DefaultRefList] ")"
[* STATIC SEMANTICS - The ACTIVATE construct shall not be used in Default behaviour tables. */

669 Return ::=RETURN
[* STATIC SEMANTICS - The RETURN construct shall not be used except in Default behaviour trees (including any
local trees within Default behaviour tables). */

670 Create ::CREATE "(" CreateList ")"
671 Createlist ::= CreateTComp {Comma CreateTComp}

672 CreateTComp ::= TCompldentifier Colon TreeReference [ActualParList]
[* STATIC SEMANTICS - TCompldentifier shall not be of Role MTC */

673 GoTo ::= (*>" | GOTO) Label
[* STATIC SEMANTICS - The label column shall contain labels referenced from the GoTo. */

/* STATIC SEMANTICS - Label shall be associated with the first of a set of alternatives, one of which is an ancestor
node of the point from which the GoTo is to be made. */

[* STATIC SEMANTICS - GoTo shall be used only for jumps within one tree,within a Test Case root tree, a Test
Step tree a Default tree and a local tree; and thus, each label used in a GoTo construct shall be found within the tree in
which the GoTo is used. */

[* STATIC SEMANTICS - There shall be no ACTIVATE operation as an ancestor node of the GoTo construct on the
branch of the tree between the Label and the GoTo. */

ETSI

187 TR 101 666 V1.0.0 (1999-05)

[* STATIC SEMANTICS - No GoTo shall be made to the first level of alternatives of local trees, Test Steps or
Defaults. */

674 Attach ::= "+" TreeReference [ActualParList]
[* STATIC SEMANTICS - TreeReference shall not attach itself, either directly or indirectly, at its top level of
indentation. */

[* STATIC SEMANTICS - The number of the actual parameters shall be the same as the number of the formal
parameters. */

[* STATIC SEMANTICS - Formal and actual parameters of test steps shall be used in such a way that only valid TTCN
is created by textual substitution. */

[* STATIC SEMANTICS - LiteralValue, TS_Parldentifier, TS_Constldentifier, TS _Varldentifier, TC_Varldentifier,
ConsRef, MatchingSymbol, FormalParldentifier, PCO _ldentifier and CP_ldentifier may be passed as actual parameters
to an attached tree. */

675 Repeat ::REPEAT TreeReference [ActualParLidtINTIL Qualifier
[* STATIC SEMANTICS - TreeReference shall not attach itself, either directly or indirectly, at its top level of
indentation. */

[* STATIC SEMANTICS - The number of the actual parameters shall be the same as the number of the formal
parameters. */

[* STATIC SEMANTICS - LiteralValue, TS_Parldentifier, TS_Constldentifier, TS_Varldentifier, TC_Varldentifier,
ConsRef, MatchingSymbol, FormalParldentifier, PCO _ldentifier and CP_Ildentifier may be passed as actual parameters
to the tree in a REPEAT statement. */

676 TreeReference ::= TestStepldentifier | Treeldentifier
[* STATIC SEMANTICS - Treeldentifier shall be the name of one of the trees in the current behaviour descaption,
local trees are not accessible outside the behaviour description in which they are specified. */

677 ActualParList ::= "(" ActualPar {Comma ActualPar} ")"
[* STATIC SEMANTICS - The number of the actual parameters shall be the same as the number of the formal
parameters. */

/* OPERATIONAL SEMANTICS - Each actual parameter shall resolve to a specific value compatible with the type of
its corresponding formal parameter, or in the case of predefined operations compatible with the types for which the
operation is defined. */

[* STATIC SEMANTICS - If a parameter is a parameterized constraint then the constraint shall be passed together with
its actual parameter list. */

[* STATIC SEMANTICS - The actual parameters shall be bound. */

[* STATIC SEMANTICS - If the type of the formal parameter is PDU, then the actual parameter's type shall be declared
as PDU or as a specifRDU type. */

678 ActualPar ::= Value | PCO_ldentifier | CP_Ildentifier | Timerldentifier

/* NOTE - Through Value, it is possible to reach MatchingSymbol, TS_Parldentifier, TS_Constldentifier,
TS Varldentifier, TC_Varldentifier, FormalParldentifier or ConsRef. */

A.3.3.34 Expressions

679 ConstantExpression ::= Expression

[* STATIC SEMANTICS - ConstantExpression shall not contain TS_Variables or TC_Variables and shall resolve to a
constant value */

680 AssignmentList ::= "(" Assignment {Comma Assignment} ")"
681 Assignment ::= DataObjectReference ":=" Expression

ETSI

188 TR 101 666 V1.0.0 (1999-05)

[* STATIC SEMANTICS - Except within a Procedural Definition or an Encoding Definition, the LHS of Assignment
shall only resolve to: TS_Varldentifier, TC_Varldentifier, reference to the field of a variable or reference to an ASP
parameter or PDU field that is to be sent. */

[* STATIC SEMANTICS - Within a procedure definition of a TSOp or EncodingOp, the DataObject Identifier on the
left-hand side of an assignment shall be a Varldentifier. */

[* STATIC SEMANTICS - The expression shall contain no unbound variables. */

/* OPERATIONAL SEMANTICS - The Expression on the RHS of Assignment shall evaluate to an explicit value of the
type of the LHS. */

682 Expression ::= SimpleExpression [RelOp SimpleExpression]
/* OPERATIONAL SEMANTICS - If both SimpleExpressions and the RelOp exist then the SimpleExpressions shall
evaluate to specific values of compatible types. */

/* OPERATIONAL SEMANTICS - If RelOp is "<" | ">" | ">="| "<=" then each SimpleExpression shall evaluate to a
specific INTEGER value. */

/* STATIC SEMANTICS - ASN.1 Named Values shall not be used within arithmetic expressions as operands of
operations. */

683 SimpleExpression ::= Term {AddOp Term}

/* OPERATIONAL SEMANTICS - Each Term shall resolve to a specific value. If more than one Term exists and if
AddOp is "OR" then the Terms shall resolve to type BOOLEAN; if AddOp is "+" or "-" then the Terms shall resolve to
type INTEGER. */

684 Term ::= Factor {MultiplyOp Factor}

/* OPERATIONAL SEMANTICS - Each Factor shall resolve to a specific value. If more than one Factor exists and if
MultiplyOp is "AND" then the Factors shall resolve to type BOOLEAN; if MultiplyOp is "*" or "/" then the Factors
shall resolve to type INTEGER. */

685 Factor ::= [UnaryOp] Primary

/* OPERATIONAL SEMANTICS - The Primary shall resolve to a specific value. If UnaryOp exists and is "NOT" then
Primary shall resolve to type BOOLEAN,; if the UnaryOp is "+" or "-" then Primary shall resolve to type INTEGER. */

686 Primary ::= Value | DataObjectReference | OpCall | SelectExpridentifier | "(" Expression)"
[* STATIC SEMANTICS - SelectExprldentifier shall only be used within selection expressions. */

/* NOTE - Through Value, it is possible to reach MatchingSymbol, TS_Parldentifier, TS_Constldentifier,
TS_Varldentifier, TC_Varldentifier, FormalParldentifier or ConsRef. */

687 DataObjectReference ::= DataObjectldentifier {ComponentReference}
[* STATIC SEMANTICS - Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE shall
be used only to reference ASP parameter and PDU field values on the statement line itself. */

[* STATIC SEMANTICS - Each ComponentReference shall only reference an ASP parameter, PDU field, structure
element or ASN.1 value explicitly declared in the object that immediately precedes in the DataObjectReference. */

[* STATIC SEMANTICS - DataObjectldentifier shall not be a Varldentifier except within a procedure definition of a
TestSuiteOperation or EncodingOperation. */

688 DataObjectldentifier ::= TS_Parldentifier| TS_Constldentifier | TS_Varldentifier | TC_Varldentifier |
FormalParldentifier | ASP_Identifier | PDU_Identifier | CM_Identifier | Varldentifier

689 ComponentReference ::= RecordRef | ArrayRef | BitRef
[* STATIC SEMANTICS - RecordRef shall be used to reference ASN.1 SEQUENCE, SET and CHOICE components.
It shall not be used to reference components of any other ASN.1 type. */

[* STATIC SEMANTICS - RecordRef shall be used to reference ASP parameters, PDU fields and structure elements in
the tabular form. */

ETSI

189 TR 101 666 V1.0.0 (1999-05)

[* STATIC SEMANTICS - ArrayRef shall be used to reference ASN.1 SEQUENCE OF and SET OF components. It
shall not be used to reference components of any other ASN.1 type. */

690 RecordRef ::= Dot (Componentldentifier | ComponentPosition)
[* STATIC SEMANTICS - The Componentldentifier form of RecordRef shall always be used to reference ASN.1
SEQUENCE, SET and CHOICE components when an identifier is declared for the component. */

[* STATIC SEMANTICS - The Componentldentifier form of RecordRef shall always be used to reference ASP
parameters, PDU fields and structure elements declared in the tabular form. */

[* STATIC SEMANTICS - The ComponentPosition form of RecordRef shall always be used to reference ASN.1
SEQUENCE, SET and CHOICE components when an identifier is not declared for the component. */

I* STATIC SEMANTICS - Structldentifier shall not be used if the relevant structure is used as a macro.
Structldentifiers and PDU_Identifiers shall not be included in a RecordRef when a parameter, field or element is
chained to a PDU or structure and the RecordRef is to identify a component of that PDU or structure. */

[* STATIC SEMANTICS - Where a structure is used as a macro expansion, the elements in the structure shall be
referred to as if it was expanded into the ASP or PDU referring to it. */

[* STATIC SEMANTICS - If a parameter, field or element is defined to be of metatype PDU no reference shall be made
to fields of that substructure. */

691 Componentldentifier ::= ASP_Parldentifier | PDU_Fieldldentifier | CM_Parldentifier | Elemldentifier |
ASNL1_Identifier

692 ASN1_Identifier ::= Identifier
[* NOTE - ASN1_Identifier identifies a field within ASN.1 SEQUENCE, SET or CHOICE type. */

[* STATIC SEMANTICS - An ASN1_Identifier associated with a NamedValue shall not be used unless the value is
within a SEQUENCE, SET or CHOICE type. */

[* STATIC SEMANTICS - An ASN1_Identifier shall be provided to identify the variant in a CHOICE type. */

[* STATIC SEMANTICS - An ASN1_Identifier shall be provided whenever the value definition becomes ambiguous
because of omitted OPTIONAL values in a SEQUENCE type. */

693 ComponentPosition ::= "(" Number ")"
694 ArrayRef ::= Dot "[* ComponentNumber "]

695 ComponentNumber ::= Expression
/* OPERATIONAL SEMANTICS - ComponentNumber shall evaluate to a non-negative specific INTEGER value. */

696 BitRef ::= Dot (Bitldentifier | "[" BitNumber "T")

697 Bitldentifier ::= Identifier
[* NOTE - Bitldentifier identifies a particular bit within an ASN.1 BIT STRING. */

698 BitNumber ::= Expression
/* OPERATIONAL SEMANTICS - BitNumber shall evaluate to a non-negative specific INTEGER value. */

699 OpCall ::= Opldentifier (ActualParList | "(" ")")
[* STATIC SEMANTICS - See static semantics on production 699. */

700 Opldentifier ::= TS_Opldentifier | TS_Procldentifier | PredefinedOpldentifier

701 PredefinedOpldentifier :BIT_TO_INT |[HEX_TO_INT [INT_TO_BIT |INT_TO_HEX |IS_CHOSEN|
IS_PRESENT|LENGTH_OF [NUMBER_OF_ELEMENTS

702 AddOp ::="+"|"-" IOR

/* OPERATIONAL SEMANTICS - Operands of the "+", "-" operators shall be of type INTEGERTTCN or

ASN.1 predefined) or derivations of INTEGERe(, subrange). Operands of the OR operator shall be of type

BOOLEAN (TTCN or ASN.1 predefined) or derivatives of BOOLEAN. */

703 MultiplyOp ::= "*" | "/* [MOD | AND

ETSI

190 TR 101 666 V1.0.0 (1999-05)

/* OPERATIONAL SEMANTICS - Operands of the "*", "/" and MOD operators shall be of type INTEGER (
TTCN or ASN.1 predefined) or derivations of INTEGER (subrange). Operands of the AND operator shall be of
type BOOLEAN (TTCN or ASN.1 predefined) or derivatives of BOOLEAN. */

704 UnaryOp ::= "+"|"-"NOT

/* OPERATIONAL SEMANTICS - Operands of the "+", "-" operators shall be of type INTEGERTTCN or
ASN.1 predefined) or derivations of INTEGERe(, subrange). Operands of the NOT operator shall be of type
BOOLEAN (TTCN or ASN.1 predefined) or derivatives of BOOLEAN. */

705 Relop = n_n | ||<|| I ||>|| | ||<>|| ||>:|| ||<:||

A.3.3.35 Timer operations

706 TimerOps ::= TimerOp {Comma TimerOp}
707 TimerOp ::= StartTimer | CancelTimer | ReadTimer

708 StartTimer ::=START (Timerldentifier | FormalParldentifier) ["(" TimerValue ")"]
[* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

709 CancelTimer ::£ANCEL [Timerldentifier | FormalParldentifier]
[* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

710 TimerValue ::= Expression
/* OPERATIONAL SEMANTICS - Timervalue shall evaluate to a non-zero positive INTEGER. */

711 ReadTimer ::READTIMER (Timerldentifier | FormalParldentifier) "(" DataObjectReference ")"
[* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

[* STATIC SEMANTICS - The DataObjectReference shall only resolve to TS_Varldentifier, TC_Varldentifier, or
reference to the field of a variable. */

/* OPERATIONAL SEMANTICS - The DataObjectReference shall resolve to type INTEGER. */

A.3.3.36 Types

712 TypeOrPDU ::= TypeRDU
713 Type ::= PredefinedType | ReferenceType

A.3.3.36.1 Predefined types

714 PredefinedType ::= INTEGER | BOOLEAN | BITSTRING | HEXSTRING | OCTETSTRING |
OBJECTIDENTIFIER | R_Type | CharacterString

715 CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString | VisibleString | IA5String |
GraphicString | GeneralString | T61String | ISO646String | BMPString | UniversalString

A.3.3.36.2 Referenced types

716 ReferenceType ::= TS_Typeldentifier | ASP_Identifier | PDU_ldentifier | CM_ldentifier

[* STATIC SEMANTICS - All types, other than the predefined types, used in a test suite shall be declared in the Test
Suite Type definitions, ASP type definitions, PDU type definitions or CM type definitions, and referenced by name. */

717 TS_Typeldentifier ::= SimpleTypeldentifier | Structldentifier | ASN1_Typeldentifier

ETSI

191 TR 101 666 V1.0.0 (1999-05)

A.3.3.37 Values

718 Value ::= LiteralValue | ASN1_Value [ASN1_Encoding]
/* REFERENCE - Where ASN1_Value is the non-terminal Value as defined in ISO/IEC 8824-1: 1994. For the purposes
of TTCN, the following production defined in ISO/IEC 8824-1: 1994:

DefinedValue ::= Externalvaluereference | valuereference | ParameterizedValue
is redefined to be:

DefinedValue ::= ConstraintValue&Attributes | valuereference
This means that ASN.1 external references are not allowed in TTCN, but the full possibilities of
ConstraintValue&Attributes as defined in production 562 are allowed within ASN.1 values in TTCN. This means that
expressions, matching symbols, constraint references, value lengths, IF_PRESENT, and ASN.1 field encoding
operations are all included.
For the purpose of TTCN, the following productions in ISO/IEC 8824-1: 1994:
BuiltinValue ::=

BitStringValue |

BooleanValue |

CharacterStringValue |

ChoiceValue |

EmbeddedPDUValue |

EnumeratedValue |

ExternalValue |

InstanceOfValue |

IntegerValue |

NullValue |

ObjectClassFieldValue |

ObjectldentifierValue |

OctetStringValue |

RealVvalue |

SequenceValue |

SequenceOfValue |

SetValue |

SetOfValue |

TaggedValue

ReferencedValue ::=
DefinedValue |
ValueFromObiject

are redefined to be

BuiltinValue ::=
BitStringValue |
BooleanValue |
CharacterStringValue |
ChoiceValue |
EmbeddedPDUValue |
EnumeratedValue |
ExternalValue |
IntegerValue |
NullValueValue |
ObjectldentifierValue |
OctetStringValue |
RealVvalue |
SequenceValue |
SequenceOfValue |
SetValue |
SetOfValue |
TaggedValue

ETSI

192 TR 101 666 V1.0.0 (1999-05)

ReferencedValue ::=
DefinedValue */

[* STATIC SEMANTICS - ASN.1 Named Values shall not be used within arithmetic expressions as operands of
operations. */

719 LiteralValue ::= Number | BooleanValue | Bstring | Hstring | Ostring | Cstring | R_Value
720 Number ::= (NonZeroNum {Num})J

721 NonZeroNum ::4 |2|3]4|5]|6]7|8]9

722 Num ::=0 | NonZeroNum

723 BooleanValue ::¥RUE | FALSE

724 Bstring ::="" {Bin | Wildcard} "B
725 Bin:=0|1

726 Hstring ::= """ {Hex | Wildcard} ""H

727 Hex :=NumA |[B|C|D |E[F

728 Ostring ::= " {Oct | Wildcard} ""O

729 Oct 1= Hex Hex

730 Cstring = """ {Char | Wildcard | "\"} "™

731 Char ::= /* REFERENCE - A character defined by the relevant CharacterString type. */
/* LEXICAL REQUIREMENT - If the CharacterString type includes the character " (double quote), this character shall
be represented by a pair of " (double quote) in the denotation of any value. */

732 Wildcard ::= AnyOne | AnyOrNone

733 AnyOne ::="?"
[* STATIC SEMANTICS - AnyOne shall be used only within values of string types, SEQUENCE OF and SET OF. */

734 AnyOrNone ::="*"
[* STATIC SEMANTICS - AnyOrNone shall be used only within values of string types, SEQUENCE OF and SET OF.
*

735 R_Value ::=pass|fail |inconc|none

736 Identifier ::= Alpha{AlphaNum | Underscore | DoubleColon}
[* STATIC SEMANTICS - All Identifiers referenced in a TTCN test suite shall be explicitly declared in the test suite,
explicitly declared in an ASN.1 type definition referenced by the test suite or be a TTCN predefined identifier. */

[* STATIC SEMANTICS - DoubleColon shall only be used in identifiers which are declared in an Import table.
Identifiers containing DoubleColon shall not appear in an Export table. The DoubleColon is used to separate the name
of a TTCN Module from an identifier originally specified in that TTCN Module. */

737 Alpha ::= UpperAlpha | LowerAlpha

738 AlphaNum ::= Alpha | Num

739 UpperAlpha ;A A |[B|C|D|E|F|[G|H]I |J|K LM |N|O|P|Q|RI|S|T|U|V|W [X]Y |Z

740 LowerAlpha ::=a|b|c|d]e|f|g|h]i]j|k|I|m|n]o|p|g]|r]|s|t]u]v|w]|x]|y]|z

741 ExtendedAlphaNum ::# REFERENCE - A character from any character set defined in ISO/IEC 10646. */
742 BoundedFreeText ;" FreeText™*/"

743 FreeText ::= {ExtendedAlphaNum}
/* LEXICAL REQUIREMENT - Free Text shall not contain the string "*/" unless preceded by backslash ("\"). */

A.3.3.38 Miscellaneous productions

744 Comma ::=""

745 Dot ::="."
746 Dash ::="-"
747 Minus ::="-"

ETSI

193 TR 101 666 V1.0.0 (1999-05)

748 SemiColon ::=";"

749 DoubleColon ::= Colon Colon
750 Colon ::=""
751 Underscore ::=

A.4 General static semantics requirements

A.4.1 Introduction

Static semantics requirements that are related to specific BNF productions are specified as comments on the relevant
productions, in the following format:

I* STATIC SEMANTICS - ... */

All other static semantic requirements that are common to both TTCN.GR and TTCN.MP are specified in the remainder
of A.4. Additional static semantics in the TTCN.MP are specified in A.5.2.

A.4.2 Uniqueness of identifiers

In some cases test suites may make references to items defined in other OSI standards. In particular, references to
ASN.1 type definition modules according to ISO/IEC 8824-1: 1994 may be made in the type definitions. Names from
those modules (such as identifiers of subfields within structured ASN.1 type definitions) may be used throughout the test
suite.

Since the rules for identifiers in ASN.1 and TTCN conflict, the following conventions apply:

type references, module identifiers and value references made within the various ASN.1 type definitions tables shall
comply to the requirements for identifiers defined in ISO/IEC 8824-1: 1994,

for identifiers used within the other parts of a test suite dash (-) characters shall be replaced with underscores().

Within some TTCN tables part of the ASN.1syntax can be used to define types .In that case, ASN.1 rules shall be
followed for identifiers, with the exception that dash (-) characters shall not be used. Underscores (_) may be used
instead. All other requirements defined by ISO/IEC 8824-1: 183, Type identifiers shall start with an upper case
letter, and field identifiers within structured ASN.1 definitions shall start with a lower case letter) apply to TTCN test
suites wherever ASN.1 is used.

All identifiers of the following TTCN objects shall be unique throughout the test suite:
a) Test Suite Types;
b) Test Suite Operations;
c) Test Suite Parameters;
d) Test Case Selection Expressions;
e) Test Suite Constants;
f) Test Suite Variables;
g) Test Case Variables;
h) PCO types;

NOTE 1: If there is no PCO type declaration table, then PCO types are implicitly declared in the PCO declaration
table, in which case the uniqueness refers to the meaning of the PCO type - the same PCO type may occur
several times in the PCO declaration table with the same meaning.

ETSI

i) PCOs;
j) CPs;
k) Timers;

I) Test Components;

m) Test Component Configurations;

n) ASP types;

0) PDU types;

p) CM types;

q) Structured Types;

r) Encoding Rules;

s) Encoding Variations;

t) Invalid Field Encodings;
u) Aliases;

v) ASP constraints;

w) PDU constraints;

X) CM constraints;

y) Structure constraints;
z) Test Cases;

aa) Test Steps;

ab) Defaults;

ac) Encoding Rule Names;
ad) Encoding Variation Names;

ae) Invalid Field Encoding Names.

All the following TTCN object references shall be unique throughout the test suite:

a) Test Group References;
b) Test Step Group References;

c) Default Group References.

194

ETSI

TR 101 666 V1.0.0 (1999-05)

195 TR 101 666 V1.0.0 (1999-05)

TTCN reserved words are listed in table A.2 These reserved words shall not be used as identifiers in a TTCN test suite.
All TTCN reserved words and TTCN identifiers are case sensitive.

The ASN.1 reserved words are listed in table A.3. These reserved words shall not be used as identifiers in a TTCN test

suite.

Table A.2: TTCN Reserved Words

ACTIVATE IF PDU

AND IF_PRESENT PERMUTATION
BEGIN INCONC PrintableString
BITSTRING inconc ps
BIT_TO_INT INFINITY PTC
BOOLEAN INTEGER R

BY INT_TO_BIT READTIMER
CANCEL INT_TO_HEX REPEAT
CASE IS_CHOSEN REPLACE
COMPLEMENT IS_PRESENT RETURN

CP IuT RETURNVALUE
CREATE LT R_Type

DO min S

DONE MOD START

ELSE ms STATIC

ENC MTC SUPERSET
END MTC_R SUBSET
ENDCASE NOT TeletexString
ENDIF ns THEN
ENDVAR OF TIMEOUT
ENDWHILE OMIT TIMER

F OR TO

FAIL OTHERWISE TRUE

fail P UNTIL

FALSE LENGTH_OF us
GeneralString none uT

GOTO NUMBER_OF_ELEMENTS VAR
GraphicString NumericString VideotexString
HEXSTRING OCTETSTRING VisibleString
HEX_TO_INT OBJECTIDENTIFIER WHILE

| PASS

IA5String pass

Table A.3: ASN.1 Reserved Words

ABSENT EXTERNAL OPTIONAL
ABSTRACT-SYNTAX FALSE PDV

ALL FROM PRESENT
APPLICATION GeneralString PRIVATE
AUTOMATIC GeneralizedTime PrintableString
BEGIN GraphicString REAL

BIT IA5String SEQUENCE
BMPString IDENTIFIER SET
BOOLEAN IMPLICIT SIZE
CHARACTER IMPORTS STRING
CHOICE INCLUDES SYNTAX
CLASS INSTANCE T61String
COMPONENT INTEGER TRUE
COMPONENTS INTERSECTION TeletexString
CONSTRAINED 1SO646String TYPE-IDENTIFIER
DEFAULT MAX UNION
DEFINITIONS MIN UNIQUE
EMBEDDED NULL UNIVERSAL
END NumericString UniversalString
ENUMERATED OBJECT UTCTime
EXCEPT ObjectDescriptor VideotexString
EXPLICIT OCTET VisibleString
EXPORT OF WITH

ETSI

196 TR 101 666 V1.0.0 (1999-05)
NOTE 2: Table A.3 contains a number of keywords which at present have no support within this standard. Those
keywords have been reserved to facilitate future integration of ASN.1 1994 features into TTCN.

When ASN.1 is used in a TTCN test suite, ASN.1 identifiers from the following list shall be unique throughout the test
suite, regardless of whether the ASN.1 definition is explicit or implicit by reference:

a) Typeldentifiersof an ASN.1 Type Definition;
b) identifiers occurring in an ASN.1 ENUMERATED type as distinguished values;
¢) identifiers occurring in lamedNumberLisif an ASN.1 INTEGER type.

The names of ASP parameters shall be unique within the ASP in which they are declared. The names of PDU fields shall
be unique within the PDU in which they are declared. The names of CM parameters shall be unique within the CM in
which they are declared.

If a Structured Type is used as a macro expansion, then the names of the elements within the Structured Type shall be
unigue within each ASP, PDU or CM where it will be expanded.

Labels used within a tree shall be unique within a freg Test Case root tree, Test Step tree, Default tree, local tree).

The tree header identifier used for local trees shall be unique within the dynamic behaviour description in which they
appear, and shall not be the same as any identifier having a unique meaning throughout the test suite.

NOTE 3: This means that a local tree identifier may have the same name as a local tree identifier in another
behaviour description, but not the same as another Test Step in the Test Step Library.

The formal parameter names which may optionally appear as part of the following shall be unique within that formal
parameter list, and shall not be the same as any identifier having a unique meaning throughout the test suite:

a) Test suite operations definition;

b) Tree header of a local tree;

c) Test Step Identifier;

d) Default Identifier;

e) Parameterized constraint declaration.

A formal parameter name contained in the formal parameter list of a local tree header shall take precedence over a
formal parameter name contained in the formal parameter list of the Test Step in which it is defined, within the scope of
that local formal parameter list.

In concurrent TTCN, PCOs and CPs used in a Test Case shall only be those determined by the Test Component
configuration for that Test Case.

Each identifier used in the procedural definition of a test suite operation shall be one of the following:
a) locally declared variable name;
b) atype name, used in a variable declaration;
c) aformal parameter name declared in a formal parameter list of the operation;
d) a test suite operation name.

The scope of formal parameter names and locally declared variable names is the procedural definition of the test suite
operation.. Thus, the values of all other types of identifier are not directly accessible within the procedural definition of
a test suite operation. To access such values they shall be passed as actual parameters to the test suite operation.

The constraints for TTCN Structured Types, TTCN ASPs, TTCN PDUs and TTCN CMs shall not be specified using
ASN.1 tables (i.e., ASN.1 Type Constraints, ASN.1 ASP Constraints, ASN.1 PDU Constraints or ASN.1 CM
Constraints). Conversely, the constraints for ASN.1 Types, ASN.1 ASPs, ASN.1 PDUs and ASN.1 CMs shall not be
specified using TTCN tables (i.e., Structured Type Constraints, TTCN ASP Constraints, TTCN PDU Constraints or
TTCN CM Constraints).

ETSI

197 TR 101 666 V1.0.0 (1999-05)

NOTE 4: However, when ASPs or PDUs are chained to other PDUs, the enclosing ASP or PDU may, for example,
be specifiied in tabular TTCN, whereas the enclosed PDU may be specified in ASN.1.

A5 Differences between TTCN.GR and TTCN.MP

A.5.1 Differences in syntax
The following is a list of syntax differences between TTCN.MP and TTCN.GR:
a) TTCN.MP uses keywords as delimiters between entries, while TTCN.GR uses boxes;

b) TTCN.MP uses an explicit denotation of indentation levels for test events, while indentation is indicated visually
in TTCN.GR;

¢) TTCN.MP contains an extra occurrence of the suite identifier, which is used to facilitate identification of the
ATS in an automated method;

d) in TTCN.MP the Test Case behaviour descriptions are explicitly grouped by the inclusion of appropriate Test
Group ldentifiers in sequence before the Test Case behaviour descriptions belonging to each group; this
information duplicates information contained in the Test Case Index and in the Test Group References of the Test
Case behaviour descriptions;

e) the Test Suite Structure, Test Case Index, Test Step Index and Default Index tables require a page number for
each entry; since page numbers are not relevant in the machine processable form they are not reflected in the
TTCN.MP;

f) TTCN.GR supports both single and compact proformas for ASP and PDU constraints and Test Cases; the TTCN
only supports BNF for the single table format and the presentation of a number of single tables in TTCN.GR
compact format is a display issue; when mapping a compact constraints table to TTC#L,giRdle format),
blank fields due to modification shall be omitted,;

g) the symbols "/*" and "*/" which open and close BoundedFreeText strings in the TTCN.MP shall not appear in
the TTCN.GR;

h) there are two alternative positions for the labels column in behaviour description tables in TTCN.GR, whereas
there is a fixed position for the labels in TTCN.MP;

i) page and line continuation are TTCN.GR features which are not represented in the TTCN.MP;
j) page and line numbering are TTCN.GR features which are not represented in the TTCN.MP;

k) ifin TTCN.GR group references are used with definitions, declarations or constraints to indicate an hierarchical
grouping of objects, then in TTCN.MP each relevant group identifier is inserted before the syntax for the group
of tables which share that group identifier and the syntax for the group identifier and following group of tables
are enclosed in the appropriate TTCN.MP keywords, relevant to the type of object.

A.5.2 Additional static semantics in the TTCN.MP

The following is a list of the additional static semantics in the TTCN.MP:

a) inthe TTCN.MP, statements in the first level of alternatives having no predecessor in the root or local tree they
belong to have the indentation value of zero; statements having a predecessor shall have the indentation value of
the predecessor plus one as their indentation value;

b) in the TTCN.MP, the Test Suite Structure information is in the form of Test Group Identifiers preceding Test
Case behaviour descriptions shall be the same structure as defined by the part of the Test Suite Structure relevant
to Test Groups and that defined by the Test Case Index.

ETSI

198 TR 101 666 V1.0.0 (1999-05)

A.6 List of BNF production number

Void.

ETSI

199 TR 101 666 V1.0.0 (1999-05)

Annex B:
Operational Semantics of TTCN

B.1 Introduction

Annex A describes the syntax of TTCN by means of BNF production rules and restrictions on these productions the
observance of which may be verified either statically or dynamically.

This annex defines the semantics of TTCN by describing an abstract procedure that executes syntactically valid TTCN
test suites. This procedure starts, for each Test Case, an abstract "TTCN machine" that evaluates this Test Cases by
means of the creation, expansion and interpretation of an "EvaluationTree", dealing with one level (ordered set of
alternatives in a certain position in the tree) at a time. In the execution of concurrent TTCN, additional TTCN machines
are started, one for each created PTC. These machines work in the same way as the principal TTCN machine, which is
then executing the main test component. The necessary PCOs and CPs, connecting TTCN machines with their
environment and with each other, are assumed to exist already and to be initially empty.

The abstract procedure (EVALUATE_TEST_SUITE) and the TTCN machines (EVALUATE_TEST_CASE,
EVALUATE_TEST_COMPONENT) are described in clause B.5. EvaluationTree has the form of a TTCN behaviour
tree, but enriched by additional components. In a TTCN machine it is initially set to be the indicated Test Case or Test
Step root tree, or local tree. In the course of test case execution, EvaluationTree is expanded, and "control" generally
moves down the EvaluationTree, except in the execution of GOTOs and RETURNS, where control moves up.

The additional tree components, introduced for technical reasons, are the following: each node (alternative) has, besides
the denoted StatementLine, a Boolean value IsDefault, telling whether the node stems from a Default Behaviour Table;
each level has, besides the denoted list of StatementLines, a Boolean value IsExpanded, telling whether the level has
already been expanded.

It is not required that a real TTCN machine be built in a way that it works internally exactly as the abstract one. TTCN
operational semantics define only how a real TTCN machine should behave externally, i.e. with respect to PCO and CP
queues, timers and the timer list, and test component termination information. Implementation details are irrelevant.

B.2 Precedence

Operational semantics for TTCN are supplied in the following clauses in a mixture of pseudo-code and natural language.
Where these two notations overlap they are meant to have identical meanings. If the pseudo-code and natural language
conflict, this is an error, and should be reported back to the standards organization via a defect report. In such a case,
pending correction of the defect by the standards organization, the pseudo-code will take precedence over the natural
language text.

B.3 Processing of test case errors

Within the main body of the present document, as well as within annex A and this annex, conditions are described that
result in the detection of test case errors. The observation of a test case error shall be recorded in the conformance log
and lead to the abortion of the Test Case.

Without being explicitly mentioned in the following, a test case error is always detected dynamically if any part of an
expression does not evaluate to a defined value. Expressions are evaluated, among other occasions, in the application of
assignments, qualifiers, and constraints.

ETSI

200 TR 101 666 V1.0.0 (1999-05)

B.4 Converting a modularized test suite to an equivalent
expanded test suite

This algorithm does not handle error cases. It requires that the objects are unique in the scope where they are defined
and used.

In the conversion from modularized test suite to a expanded test suite, there is a need for the renaming of some imported
TTCN objects (in order to avoid name clashes). In this rename process two options are allowed:

a) the original name is retained as defined in the declaration/definition of the object;

b) the new name is constructed by concatenation of the module identifier and the original name of the object. They
shall be separated by two underscores, e.g. ModuleA__ConnectionRequest.

The principle of this algorithm is, for each source object, make a temporary copy of it, expand the copy, then mark each
object to be imported and finally merge each marked object into the importing suite.

In expanding imported sources all explicitly and implicitly imported objects are renamed to Module::Identifier, if they
were not already renamed at import. Every module shall have a unique identifier. In the expanded test suite all explicitly
and implicitly imported objects are clearly recognizable and because every module has to have a unique name, name
clashes are not possible.

procedure expand() Make a temporary copy of the whole source
begin

for (every source Sin ImportPart)do

begin Expand the copy of the source (Recursi
copy (Si);
expand (Si);

rename_explicitly_imported (Si) Rename att-occurrences of explicitly

rename_implicitly_imported (Si) imparted objects
for (every marked_imported Ok Si)do Qn\
begin Rename all occurrences of implicitly

merge (OKk); imported objects
end \
end
end Merge all objects from Si with unique name

procedure rename_explicitly_imported (S) Lookup in the "import table"Sor

begin \
for (every object Oiin "import table" for Sdo

begin Only rename if not already renamed at import
mark_imported (Oi);

end

if not already_renamed (Otfjien

begin
rename_source_and_references (Oi, S);

end

if omitted (Oi)or is_external (Oithen

begin Rename all occurrences
remove_imported_mark (Oi);

end

end

procedure rename_implicitly_imported (S)

ETSI

201 TR 101 666 V1.0.0 (1999-05)

begin Only rename if not already renamed
for (every object Oj referenced by @i S)do
begin

mark_imported (Oj);
if not already_renamed (Ojhpen
begin
rename_source_and_references (Oj, S);
end
end
end

B.5 TTCN operational semantics

B.5.1 Introduction

TTCN behaviour trees are evaluated one level of alternatives at a time. At each level, defaults are appended, attachment
constructs are expanded, and REPEAT constructs are replaced. This produces a set of alternatives that can be evaluated
to discover which one successfully matches and thereby determines which set of alternatives to proceed to next. The
requirements for what constitutes a match for a TTCN statement depend on what is coded on that behaviour line, and are
described in this semantics text.

B.5.2 The pseudo-code notation

B.5.2.1 Introduction

TTCN semantics are defined using a simple functional approach that explains the execution of a TTCN Test Case
behaviour description, involving the step-wise expansion of an evaluation tree, and the execution of nodes of this tree.
These functions are intended as an aid to understanding TTCN semantics and are not intended to be associated with any
particular execution model or high level programming language. They are not meant to be direct methods for executing
TTCN.

Keywords of pseudo-code are printed in bold font, grgcedure, function, begin, end, if, then, else In the header of
their definition, procedure, process, and function names are highlighted by bold font to facilitate lookup. For the same
reason, the data type of a function is highlighted. Apart from this, data types are not dealt with explicitly.

B.5.2.2 Procedures and functions

Many statements aprocedure calls.Function expressions may be used wherever a value of the associated type is
needed. They obtain their value (and are immediately terminatedjum , followed by a value expression.

Procedure and function parameters are generally "throughput parameters”, i.e. formal parameters that may be both
"read" and "written to". In particular, functions may have "side effects" and are essentially "procedures with a value".
Variables in a procedure or function body that are neither formal parameters nor any of the global ones mentioned above
are local variables of this body, without explicit declaration.

Care is taken that:
- parameters are read only when they have a defined value;
- terms are used as actual parameters only where the procedure or function does not assign;

- avalue to the respective formal parameter, i.e. the parameter is purely an input parameter.

ETSI

202 TR 101 666 V1.0.0 (1999-05)

B.5.2.3 Processes

Processedehave like procedures, except that they are each run on a separate TTCN machine. They are not executed in
a nested fashion. In a process, global data objects may be declared, such that they are available in all procedures and
functions called in the process without being explicitly passed along as parameters. Avoiding long parameter lists makes
the pseudo-code easier to read. Of course, instances of global objects exist independently in each process (TTCN
machine). There is no relationship between global objects in different processes.

In this annex, the following objects are treated as global objects in each process:
- EvaluationTree, of the Test Case (or Main Test Component) or Parallel Test Component.
- CurrentLevel, to be expanded or matched.
- Defaults, the current default context, used in default expansion.
- Snapshot, the temporarily fixed view of the environment.
- ReturnLevel, to be considered after the execution of a RETURN statement.
- ReturnDefaults, the default context of the ReturnLevel.
- SendObject, the ASP, PDU, or CM to be sent next.
- ReceiveObject, the ASP, PDU, or CM received last.
Thus, each TTCN machine will have its own EvaluationTree, etc.

Other objects, however, are accessible from all processes. The relevant state of the "environment of
EVALUATE_TEST_SUITE", i.e. the contents of the relevant PCOs and CPs, as well as the lists of expired timers, the
values of timers, and the list of terminated parallel test components, are assumed to be globally accessible from all test
components and need not be passed explicitly as parameters. Similarly, Test Suite Parameters, Test Suite Constants, and
Test Suite Variables are assumed to be accessible from all test case or test component processes.

B.5.2.4 Natural language within pseudo-code

Some parts of pseudo-code are written in natural language, in order to limit the complexity of this annex. These parts are
enclosed by /# and #/. Such parts represent statements, for-loop details, or expressions of pseudo-code and are assumed
to be executed or evaluated, when they are encountered.

Pure comments, intended for the human reader, not to be executed or evaluated by a TTCN machine, are enclosed by (*
and *).

B.5.2.5 Levels and alternatives

A level visited in a tree denotes both a position in the tree and the ordered set of alternatives at this level.

An alternative visited in a tree determines a level position in the tree, c¢f. LEVEL_OF in B.5.25. The alternative denotes
simultaneously a position in that level, a BehaviourLine, a StatementLine, etc.

Thus, levels and alternatives in a tree are pointers, but the unpacking of the data objects they point at is done implicitly.

B.5.3 Execution of a Test Suite

B.5.3.1 Introduction

The Test Suite is executed in the main procedure, EVALUATE_TEST_SUITE. Every Main Test Component (Test Case
in the non-concurrent case) is executed on an abstract TTCN machine executing EVALUATE_TEST_CASE. Each
Parallel Test Component is executed on an independent TTCN machine, performing
EVALUATE_TEST_COMPONENT.

ETSI

203 TR 101 666 V1.0.0 (1999-05)

e procedure EVALUATE_TEST_SUITE (TestSuiteld)

(* This procedure introduces unique names for all TTCN trees, including local subtrees. It sets Test Suite specific data objects
and evaluates each Test Case whose selection expressions become TRUE. *)
begin
for /# every Test Case, Test Step or Default behaviour Tatlkein TestSuiteld #/ do
begin
/# Rename all local trees of Table such that they become unique throughout the test suite and different from any Test
Case, Test Step or Default behaviour table name in the Test Suite. #/;
/# Rename accordingly in Table all references to local trees in attachments. #/;
/# Every node in every behaviour tree gets a new Boolean component "IsDefault".
This component is set to TRUE for all nodes in Default Dynamic Behaviour Tables
and FALSE for all nodes in all other tables. #/;
end,
for /# every Default behaviour tablablein TestSuiteld #/ do
begin
/# For each leaf of the behaviour tree which does not have an entry in the verdict column assign the verdict R. #/
/# or each leaf of the behaviour table which has a preliminary result assigned, change the preliminary result to a
verdict by removing the parentheses around it. #/
end;
Evaluated := /# empty list of Test Case Identifiers #/;
/# Set values of Test Suite Parameters, Test Suite Constants, and, where to be initialized, of Test Suite Variables #/;
for /# every Test Case Identifi€éCld of TestSuiteld that is not yet in Evaluated #/ do (* in any order *)
begin
SelEx := /# conjunction of the selection expressions of all test groups containing Test Case TCld (directly or via
lower groups) #/;
if EVALUATE_BOOLEAN(SelEx) then
start processEVALUATE_TEST_CASE (TCld);
/# add TCId to the list Evaluated #/;
end
end

B.5.4 Execution of a Test Case

B.5.4.1 Execution of a Test Case - pseudo-code

e process EVALUATE_TEST_CASHTestCasel}l

(* This process initializes the EvaluationTree by the Test Case root tree and the default context by the Defaults references listed
with the Test Case Behaviour Description. It moves control to the top level of alternatives and calls their evaluation. *)

global EvaluationTree, CurrentLevel, Defaults, Snapshot, ReturnLevel, ReturnDefaults, SendObject, ReceiveObject;
begin
/# Initialize Test Case Variables, global R and MTC_R, PCOs, CPs, Timers, and the Timeout List of TestCaseld. #/;
EvaluationTree := ROOT_TREEstCasel}f
(* EvaluationTree is a growing finite tree built up by pasting together and expanding copies of trees from the test case
behaviour description and from the test step and default libraries. A component IsExpanded is added to each level. *)
CurrentLevel := FIRST_LEVEL(EvaluationTree) ;
(* A level denotes both a position in a tree and the ordered set of alternatives at this position. *)
ReturnLevel := CurrentLevel,
Defaults := DEF_REF_LISTestCasell
ReturnDefaults := Defaults;
EVALUATE_LEVELS ();
(* This includes, by nested calls, the evaluation of all relevant subsequent levels in the growing evaluation tree. *)
end

ETSI

204 TR 101 666 V1.0.0 (1999-05)

e procedure EVALUATE_LEVELS ()

(* This procedure first expands and evaluates CurrentLevel, which is the currently active level of alternatives of
EvaluationTree. Defaults gives the currently active default context. The alternatives contained in CurrentLevel are
processed in their order of appearance, if necessary in repeated foundntAlternatives the loop variable of the
for-loop, denoting the currently considered alternative in CurrentLevel. By the snapshot mechanism, in each round of
matching attempts through CurrentLevel, the status of the environment considered does not change, giving each such
round an instantaneous character.

Save for dynamically detected test case errors, the evaluation of CurrentLevel includes the successful evaluation of an
alternative. This is followed by the assignment of a verdict and the evaluation of the next level, and hence, by induction, of
all levels that control subsequently moves to. *)
begin
if NOT IS_EXPANDED() then
(* By this condition we avoid expanding levels repeatedly which are targets of GOTOs. *)
EXPAND_CURRENT_LEVEL ();
(* Now the current level is free of REPEATSs and attachments, and includes the necessary defaults. *)
repeat
(* ... performing rounds through current level, trying to match an alternative.*)
TAKE_SNAPSHOTY();
(* ... of the incoming PCO and CP queue(s), the relevant timeout list, and the termination status of any other
test components. *)
for /# everyCurrentAlternativein CurrentLevel, in the given order #/ do
(* try to match the current alternative. Note that an alternative visited in a tree determines a level position in the tree
and
denotes, depending on the context it is used in, a position in that level, a BehaviourLine, a StatementLine, etc. *)
begin
if EVALUATE_EVENT_LINE (CurrentAlternativejhen
(* In the absence of Test Case errors the Test Component or Test Case will terminate inside the
EVAL_VERDICT_ENTRY or GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT call
of the innermost recursive instance of EVALUATE_LEVELS, e.g.
if there is a final verdict or no next level. Then, the for-loop will be aborted, too. *)
begin
if /# Alternative has a verdict column en¥grdictEntry #/then
EVAL_VERDICT_ENTRY (VerdictEntry);
GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT(CurrentAlternative);
EVALUATE_LEVELS();
end
end
until SNAPSHOT_FIXED();
(* SNAPSHOT_FIXED returns TRUE if Snapshot cannot change any more. *)
LOG(TEST_CASE_ERROR);
STOP_TEST_CASE();
end

B.5.4.2 Execution of a Test Case or Test Component - natural language
description

Step 1.Evaluation begins at the numerically lowest (in TTCN.MP), i.e. the leftmost (in TTCN.GR), level of
indentation of the root tree.

Step 2.Expand current level to include all defaults explicitly, and to replace all tree attachments, as long as
necessary, as well as all REPEATS, by their expansions.

Step 3.Take a snapshot of the incoming PCO and CP queue(s) and the timeout list.
NOTE 1: The act of taking a snapshot does not remove an event from any PCO or CP.
Consider the first behaviour line at the current level of alternatives.

Step 4.Evaluate the TTCN statement on the current behaviour line

The evaluation of each type of TTCN statement is specified in the operational semantics for that TTCN statement
type.

ETSI

205 TR 101 666 V1.0.0 (1999-05)

Step 5.If the TTCN statement evaluates to a successful match, then go to Step 6.

Otherwise, if there are more alternatives in the current set of alternatives, consider the next behaviour line in the set
of alternatives and go to Step 4.

If there are no more alternatives, and yet all PCO and CP queues relevant to this set of alternatives contain at least
one event, and all timers relevant to Timeout statements in the set of alternatives are in the timeout list, then stop the
Test Case and indicatest case error

NOTE 2: Under these conditions none of the set of alternatives can ever match.

In all other cases —i.e. there are no more alternatives and the next snapshot might show a different picture — go to
Step 3.

Step 6.1f a preliminary verdict is coded, process it as in B.5.23.2.
Step 7.If a leaf node in the tree or a node with a final verdict has been reached, then go to Step 8.
Otherwise, determine and consider the next level to be evaluated and go to Step 2.

Step 8.Use final verdict, or, if not specified, the current value of the preliminary result variable R, as the final
verdict of the Test Case as in B.5.23.2 and B.5.25.

B.5.5 Expanding a set of alternatives

B.5.5.1 Introduction

This subclause defines how to expand a set of alternatives in preparation for evaluating which alternative matches.

This is done in four steps:

a) saving the Default context, if labelled level,
b) attachment of the current set of Default behaviour trees;
c) expansion of attached trees, if necessary, recursively, until there are no more attachment alternatives in the set;

d) expansion of REPEAT constructs, replacing them by a subtree in which tree attachments and GOTO constructs
occur in lower levels only.

procedure EXPAND_CURRENT_LEVEL ()
begin
if /# CurrentLevel has a label #/ then
SAVE_DEFAULTS ();
APPEND_DEFAULTS ();
EXPAND_ATTACHMENTS (EvaluationTree, CurrentLevel, Defaults);
(* CurrentLevel is now free of tree attachments. *)
EXPAND_REPEATS ();
[# Component IsExpanded of CurrentLevel #/ := TRUE;
end

B.5.5.2 Saving Defaults

procedure SAVE_DEFAULTS ()
begin
[# Replace CurrentLevel and its subsequent behaviour in the EvaluationTree by ACTIVATE (Defaults), followed by
CurrentLevel and its subsequent behaviour, with the label of the former CurrentLevel moved to the ACTIVATE line. #/;
/# Consider new ACTIVATE line as the CurrentLevel #/;
end

ETSI

206 TR 101 666 V1.0.0 (1999-05)

B.5.5.3 Expansion of REPEAT constructs

If RepeatedTredenotes a particular TreeReference together with its ActualParListantitiondenotes a particular
Boolean expression, atabel denotes a label not used anywhere else, then "RERefp€atedTre&NTIL
[Conditior]" can be replaced by:

| TRUE}
toibel + RepearedTree
[MOFE {Comeliviony]
- el
| Cemmelivion |

Lines describing subsequent behaviour of the REPEAT construct follow@#teditior] in this expansion, with an
additional indentation of one level.

e procedure EXPAND_REPEATS()
begin
for /# every alternativé in CurrentLevel, in the given order #/ do
begin
if /# A is of the form REPEAT RepeatedTree UNTIL [Condition] #/ then
begin
Subsequent := SUBSEQUENT_BEHAVIOUR_TO (EvaluationTree,A);
Label := NEW_LABEL ();
(* Create a label which has been used neither in the (relabelled) Test Suite nor in the EvaluationTree. *)
Expansion := MAKE_TREE ("[TRUE]",
MAKE_TREE (Label: "+" RepeatedTree,
MAKE_TREE ("[NOT(" Condition ")]",
"->" Label,
MAKE_TREE ("[" Condition "",
Subsequent,
)
),
);
REPLACE_ALT_TREE (EvaluationTree, CurrentLevel, A, Expansion);
end
end
end

B.5.5.4 Appending default behaviour

During evaluation of a test case, at each level of alternatives there is a current list of Default Tree References. This list
comes either from the list in the appropriate Dynamic Behaviour Table, or from the most recently evaluated ACTIVATE
construct. The appending of the Defaults is done by adding, for each entry in the current list of Defaults, the construct "+
DefaultReference" to the end of the set of alternatives.

e procedure APPEND_DEFAULTS()

begin
for /# everyD in Defaults, in the given order éb
begin
APPEND_TO_LEVEL (EvaluationTree, CurrentLevel, "+" D);
(* EvaluationTree and CurrentLevel are updated by appending the attachment of D to CurrentLevel. *)
end
end

ETSI

207 TR 101 666 V1.0.0 (1999-05)

B.5.5.5 Expanding attached trees

Attached trees are expanded by replacing the attach cons{festStepwith the tree or, where applicable, the root tree

of TestSte@mnd subsequently, if there is behaviour specified following and indented from the Attach construct, to insert
this behaviour after and indented from each leaf in the attached tree. Since attached trees may have their own list of
default tree references in the header of the test step dynamic behaviour table, the expansion of tree attachment has to
ensure that if any event on the first level of alternatives of the attached tree matches then the defaults context is changed,
and if a leaf node of that attached tree is reached without a verdict being assigned then the defaults context of the calling
tree is restored before the subsequent behaviour is evaluated. These changes in defaults context are most easily
described in terms of the insertion of appropriate ACTIVATE constructs in the relevant places. If the attached tree is in
fact a default tree, then there will be no default references in its header, so the ACTIVATE constructs that are inserted

on entering that tree will have no parameters and thereby will deactivate all defaults within the scope of the default tree.

The attached trees on Level are expanded using the following procedure:

e procedure EXPAND_ATTACHMENTS (Tree, Level, OuterDefaults)

begin
for /# every alternativé in Level in Tree, in the given order #/ do
begin
if /# Ais an ATTACH construct, i.e. of the form "+" AttachedTreeld ActualParList #/ then
begin
Subsequent ;= SUBSEQUENT_BEHAVIOUR_TO (Tree,A);
AttachedTree ;= ROOT_TREE (AttachedTreeld);
REPLACE_PARAMETERS (AttachedTreeld, AttachedTree, ActualParList);
(* This replaces the formal parameters in AttachedTree by the actual parameters specified in ActualParList,
doing so by textual substitution *)
RELABEL(AttachedTree);
NewDefaults := DEF_REF_LIST(AttachedTreeld);
NewLevel := FIRST_LEVEL(AttachedTree);
EXPAND_ATTACHMENTS (AttachedTree, NewLevel, NewDefaults);
EXPAND_SUBTREE (AttachedTree, Subsequent, NewDefaults, OuterDefaults);
*le. Insert ACTIVATE(NewDefaults) below first level of AttachedTree &
Attach ACTIVATE(OuterDefaults) and Subsequent to each leaf node of AttachedTree *)
REPLACE_ALT_TREE(Tree, Level, A, AttachedTree);
end
end
end

e procedure EXPAND_SUBTREE (SubTree, Subsequent, InnerDefaults, OuterDefaults)

(* This procedure first inserts ACTIVATE(InnerDefaults) below the first level of SubTree
and then attaches ACTIVATE(OuterDefaults) and Subsequent to each leaf node of SubTree. *)
begin

Level := FIRST_LEVEL(SubTree);
for /# every alternativé of Level in SubTree #lo
begin

SubOfA := SUBSEQUENT_BEHAVIOUR_TO (SubTree, A);

ActTree := MAKE_TREE(A,

MAKE_TREE("ACTIVATE(" InnerDefaults ")",
SubOfA,),);

REPLACE_ALT_TREE(SubTree, Level, A, ActTree);
end
for /# every leafA in SubTree #flo
begin

LeafTree := MAKE_TREE (A,

MAKE_TREE ("ACTIVATE(" OuterDefaults ")",
Subsequent,),);

REPLACE_ALT_TREE(SubTree, LEVEL_OF(SubTree, A), A, LeafTree);

end
end

The expansion of attached trees is also explained in 15.13.

ETSI

208 TR 101 666 V1.0.0 (1999-05)

B.5.6 Evaluation of an Event Line

B.5.6.1 Pseudo-code
« function EVALUATE_EVENT_LINE (Alternative) :BOOLEAN

(* This function calls EVALUATE_EVENT, EVALUATE_PSEUDO_EVENT or EVALUATE_CONSTRUCT,
depending on what type of StatementLine the current alternative is *)

begin
case STATEMENT_LINE_TYPE_OF(Alternative)f
begin
EVENT: if EVALUATE_EVENT (Alternative) thenreturn TRUE; else return FALSE;
PSEUDO_EVENT: if EVALUATE_PSEUDO_EVENT(Alternative)then return TRUE; else returnFALSE;
CONSTRUCT: (* Construct can now only be GoTo, Return, Activate, Create. *)
if EVALUATE_CONSTRUCT (Alternativethen return TRUE; else returnFALSE;
end
end

B.5.6.2 Natural language description

Evaluate the TTCN statement on the current behaviour line, based on the statement type, i.e. whether it is an event, a
pseudo-event, or a construthe evaluation of each type of TTCN statement is specified in the operational semantics
for that TTCN statement type in the following subsections.

B.5.7 Functions for TTCN events

B.5.7.1 Functions for TTCN events - pseudo-code

« function EVALUATE_EVENT (Alternative) :BOOLEAN

(* This function calls SEND, RECEIVE, OTHERWISE, TIMEOUT , DONE, or IMPLICIT SEND, depending on what type of
event the current alternative is *)

begin
caseEVENT_TYPE_OF(Alternativepf
begin
SEND : if SEND (Alternative) thenreturn TRUE; elsereturn FALSE;
RECEIVE: if RECEIVE (Alternative) thenreturn TRUE; elsereturn FALSE;
OTHERWISE: if OTHERWISE (Alternative) thenreturn TRUE; elsereturn FALSE;
TIMEOUT: if TIMEOUT (Alternative) thenreturn TRUE; elsereturn FALSE;
DONE: if DONE (Alternative) thenreturn TRUE; elsereturn FALSE;
IMPLICIT_SEND: if IMPLICIT_SEND (Alternative) thenreturn TRUE; else returnFALSE;
end
end

B.5.7.2 Functions for TTCN events - natural language description

If the TTCN statement is an event, then it will be evaluated as specified in B.5.8 for a SEND event, B.5.9 for a
RECEIVE event, B.5.10 for an OTHERWISE event, B.5.11 for a TIMEOUT event, B.5.12 for a DONE event, or
B.5.13 for an IMPLICIT SEND event.

B.5.8 Execution of the SEND event

B.5.8.1 Execution of the SEND event - pseudo-code

 function SEND (SendLine) BOOLEAN

ETSI

209 TR 101 666 V1.0.0 (1999-05)

begin
[#Read PCOorCPidentifier,
ASPorPDUorCMidentifier,
Qualifier,
Assignments,
TimerOperations,
ConstraintsReference from SendLine #/;
if EVALUATE_BOOLEAN (Qualifier)then
begin
BUILD_SEND_OBJECT (ASPorPDUorCMidentifier, ConstraintsReference);
EXECUTE_ASSIGNMENTS (Assignment);
SEND_EVENT (PCOorCPidentifier, ConstraintReference);
TIMER_OPS (TimerOperations);
LOG(PCOorCPidentifier, SendObject);
return TRUE;
end
else return FALSE;
end

e procedure BUILD_SEND_OBJECT (ASPorPDUorCMidentifier, ConstraintsReference)
begin
SendObject := /# an instanceA$PorPDUorCMidentifier
whose parameters/fields have the values specifi&blmgtraintsReference;#/
end

e procedure SEND_EVENT (PCOorCPidentifier, ConstraintsReference)
begin
/# Encode SendObject according to applicable encoding rules and variations,
see ConstraintsReference and associated type definitions #/;
/# Put encoded SendObject at the end of OUTPUT_Q(PCOorCPidentifier) #/;
end

B.5.8.2 Execution of the SEND event - natural language description

The contents of the ASP or PDU or CM, as specified in the named Constraints Reference entry, are to be sent. Note that
if there is a qualifier, the SEND can be executed only if that qualifier evaluates to TRUE.

Step 1. If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.
« If the qualifier evaluates to FALSE, the SEND cannot succeed.
* If the qualifier evaluates to TRUE, then continue with Step 2.

Step 2. Create an ASP or PDU or CM as specified in the named Constraints Reference.

If the dynamic chaining feature has been used, then the value specified in the Constraints Reference entry will
be assigned to the appropriate parameter or field of the ASP or PDU or CM to be sent.

Using the dynamic chaining feature has the effect of storing a copy of the named constraint into the named
parameter or field of the ASP or PDU or CM being built for comparison. The structure defined for the
associated Constraints Reference is used for this named parameter or field.

Step 3. If there is an Assignment statement, then that assignment will be performed as in B.5.16, in particular possibly
changing the ASP or PDU or CM to be sent.

Step 4. The ASP or PDU or CM is now fully filled in according to the specifications given. The LT or UT will encode
the PDUs (but not ASPs or CMs, apart from PDUs embedded in such) according to the applicable encoding
rules. The LT or UT will send the ASP with its embedded encoded PDUs, or the encoded PDU. If a PCO or CP
was stated, the ASP or PDU or CM is to be sent at that PCO or CP. If the PCO was natestétedest uses
a single PCO - then the ASP or PDU is sent from the lower PCO, because a CP cannot be implied.

ETSI

210 TR 101 666 V1.0.0 (1999-05)

Step 5. If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed as in B.5.17.

Step 6 Record in the conformance log the following information, as well as the information specified in B.5.24.2:
* the PCO or CP at which the SEND occurred;
« the fully defined ASP, PDU or CM that was sent.

B.5.9 Execution of the RECEIVE event

B.5.9.1 Execution of the RECEIVE event - pseudo-code

« function RECEIVE (ReceiveLine } BOOLEAN
begin
l#Read PCOorCPidentifier,

ASPorPDUorCMidentifier,

Qualifier,

Assignments,

TimerOperations,

ConstraintsReference from ReceivelLine #/;
if /# INPUT_Q (PCOorCPidentifier) is not emptythén
begin

if (OBJECT_MATCHES(PCOorCPidentifier, ASPorPDUorCMidentifier, ConstraintsReference)
AND EVALUATE_BOOLEAN (Qualifier))then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
REMOVE_OBJECT (PCOorCPidentifier);
LOG(PCOorCPidentifier, ReceiveObject);
return TRUE;
end
elsereturn FALSE;
end
elsereturn FALSE;
end

« function OBJECT_MATCHES (PCOorCPidentifier, ASPorPDUorCMidentifier, ConstraintsRefere@&OLEAN
begin
ReceiveObject :## copy of encoded object at head of INPUT_Q(PCOorCPidentifier) #/;
if /# ReceiveObject can be decoded according to applicable encoding rules and variations,
as given by ConstraintsReference and associated type definititnen#/
begin
/# decode it, to yield new version of ReceiveObject #/;
if (/# ReceiveObjeds of type ASPorPDUorCMidentifier #/
AND
[# parameters/fields of ReceiveObject have values matching the ConstraintsRefer¢ines #/)
return TRUE;
elsereturn FALSE;
end
elsereturn FALSE;
end

» procedure REMOVE_OBJECT (PCOorCPidentifier),
begin
[# remove object at head of INPUT_Q(PCOorCPidentifier) #/;
end

ETSI

211 TR 101 666 V1.0.0 (1999-05)

B.5.9.2 Execution of the RECEIVE event - natural language description

Step 1.

If the snapshot that was taken when beginning the current iteration of checking this level of alternatives for
matching shows that thererisincoming ASP or PDU or CM, then this RECEIVE cannot match.

Otherwise, continue to Step 2.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

If a PCO or CP was stated, the ASP or PDU or CM shall have been received at that PCO or CP. If the PCO was
not statedi.e., the test suite uses a single PCO, - then the ASP or PDU shall have been received at the lower
PCO. Note that a CP cannot be implied.

The incoming PDUs are decoded according to the applicable encoding rules. A copy is made of the decoded
incoming PDU or of the incoming ASP or CM with decoded nested PDUs.

If the qualifier, possibly using values from the incoming data object, evaluates to FALSE, the RECEIVE cannot
match. Otherwise, continue to step 5.

A copy of the expected ASP or PDU or CM pattern is assembled, using the structure defined in the ASP or
PDU or CM declaration plus the values, matching mechanisms and chained Constraints References specified in
the named Constraints Reference.

This copy is comparied against the incoming ASP or PDU or CM, and its decoded PDUs or the decoded PDU
to determine if the RECEIVE can match as specified. Only if the RECEIVE did match successfully, continue to
Step 6.

The incoming ASP or PDU or CM which has just matched will be removed from the incoming PCO or CP
gueue and discarded.

If there are Assignment statements, then they will be performed as in B.5.16.2.

If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed as in B.5.17.

Record in the conformance log the following information, as well as the information specified in B.5.24.2:
* the PCO or CP at which the RECEIVE occurred,;

« the fully defined ASP, PDU or CM that was received.

B.5.10 Execution of the OTHERWISE event

B.5.10.1 Execution of the OTHERWISE event - pseudo-code

 function OTHERWISE (OtherwiseLine) : BOOLEAN
begin

end

l#Read PCOorCPidentifier,
Qualifier,
Assignments,
TimerOperations from OtherwiseLine #/;
if (M INPUT_Q (PCOorCPidentifier) is not empty #/
AND EVALUATE_BOOLEAN (Qualifier))then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
REMOVE_OBJECT (PCOorCPidentifier);
LOG(PCOidentifier, ReceivedObject);
return TRUE;
end
elsereturn FALSE;

ETSI

212 TR 101 666 V1.0.0 (1999-05)

B.5.10.2 Execution of the OTHERWISE event - natural language description

The tester shall accept any incoming data that it has not been possible to decode or that has not matched a previous
alternative to this OTHERWISE event. Note that if there is a qualifier, the OTHERWISE can only match if that qualifier
evaluates to TRUE.

Step 1. If the qualifier evaluates to FALSE, the OTHERWISE cannot match. Otherwise, continue to step 2.

Step 2. If the snapshot that was taken when beginning the current iteration of checking this level of alternatives for
matching shows that there is no incoming ASP, PDU or CM, then this OTHERWISE cannot match.

Otherwise, continue to Step 3.

Step 3. If a PCO was stated, the ASP or PDU shall have been received at that PCO. If a CP was stated, the CM shall
have been received at that CP. If the PCO was not stðe test uses a single PCO, then the ASP or PDU
shall have been received at the lower PCO, because a CP cannot be implied.

Step 4. The incoming ASP, PDU or CM will be removed from the incoming PCO or CP queue and discarded.
Step 5. If there are Assignment statements, then they will be performed as in B.5.16.2.

Step 6. If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed as in B.5.17.

Step 7. Record in the conformance log the following information, as well as the information specified in B.5.24.2:
* the PCO or CP at which the OTHERWISE occurred,;
 the ASP, PDU or CM that was received.

B.5.11 Execution of the TIMEOUT event

B.5.11.1 Execution of the TIMEOUT event - pseudo-code

- function TIMEOUT (TimeoutLine) BOOLEAN
begin
/# Read Timerldentifier,

Qualifier,
Assignments,
TimerOperations from TimeoutLine #/;
if EVALUATE_BOOLEAN (Qualifier)then
begin
if TIMER_EXPIRED (Timerldentifierthen
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG(Timerldentifier);
return TRUE;
end
elsereturn FALSE;
end
elsereturn FALSE;
end

ETSI

begin

213 TR 101 666 V1.0.0 (1999-05)

function TIMER_EXPIRED (Timerldentifier): BOOLEAN

if /# Timerldentifieris not empty #then
begin
if /# timeout notification from Timerldentifier is in copy of timeout list in Snapshtheti
begin
/# delete timeout notification from Timerldentifier in actual timeout list #/;
/# stop and reset the timer Timerldentifier #/;
return TRUE;
end
else return FALSE;
end
else(* Timerldentifier not specified *)
begin
if /# any timeout notification is in copy of timeout list in Snapshdhén
begin
/# stop and reset all timers mentioned in actual timeout list#/; [# delete all

timeout notifications in actual timeout list #/; return TRUE;

end

end
else returnFALSE;
end

B.5.11.2 Execution of the TIMEOUT event - natural language description

The tester will check to see if the named timer has expired. (If no timer name is given, the tester will checlaiy see if
timer has expired.) Note that if there is a qualifier, the TIMEOUT is only considered as matching if that qualifier
evaluates to TRUE.

Step 1.

Step 2.

Step 3.
Step 4.

Step 5.

If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.
« If the qualifier evaluates to FALSE, the TIMEOUT cannot match.
* If the qualifier evaluates to TRUE, then continue with Step 2.

See if any of the timers explicitly or implicitly named on the TIMEOUT event have been running, but have
expired.

« If no timer identifier is specified, then the tester shall check to seg/timer that had been running has now
expired. If so, all timers which have timed out are reset (and left stopped). The timeout entry (entries) is (are)
removed from the timeout list.

« If a timer identifier is specified, then the tester shall check to see if this timer had been running, but has now
expired. If so, the expired timer is reset (and left stopped). The timeout entry is removed from the timeout list.

« If no timers have expired the TIMEOUT event can not matehthe next alternative will be attempted.
If there is an Assignment statement, then that assignment will be performed as in B.5.16.2.

If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed as in B.5.17.

Record in the conformance log the information specified in B.5.24, as well as the name of the timer that
expired.

ETSI

214

B.5.12 Execution of the DONE event

B.5.12.1 Execution of the DONE event - pseudo-code

« function DONE (DoneLine) :BOOLEAN
begin
/# Read TComplList,

Qualifier,

Assignments,

TimerOperations from Doneline #/;
if EVALUATE_BOOLEAN (Qualifier) ANDALL_TERMINATED(TComplList) then
begin

EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG(TCompList);
return TRUE;
end
elsereturn FALSE;
end

» function ALL_TERMINATED (TComplList) : BOOLEAN
begin
if TCompList=/# EmptyList #then
TComplList := /# list of all created Parallel Test Components #/;
for /# everyTCompin TComplList #/do
begin
if /# TComp has not terminated in the Snapshtieti
return FALSE;
end
return TRUE;
end

TR 101 666 V1.0.0 (1999-05)

B.5.12.2 Execution of the DONE event - natural language description

The termination status of the given list of Test Components is to be checked. If all given components have terminated (at

the time of the last SNAPSHOT) then the event matches, provided that the qualifier also evaluates to TRUE.

Step 1. If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.

* If the qualifier evaluates to FALSE, the DONE cannot succeed.

« If the qualifier evaluates to TRUE, the continue to Step 2.

Step 2. If all test components listed in TCompList had terminated at the time of the last SNAPSHOT, then continue to

Step 3, otherwise this DONE cannot match.

Step 3. If there is an Assignment statement, then that assignment will be performe

Step 4. If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be

performed as in B.5.17.

Step 5. Record in the conformance log the information specified in B.5.24, as well

ETSI

d asin B.5.16.

as the TComplList.

215 TR 101 666 V1.0.0 (1999-05)

B.5.13 Execution of the IMPLICIT SEND event

B.5.13.1 Execution of the IMPLICIT SEND event - pseudo-code

e function IMPLICIT_SEND (Alternative) :BOOLEAN
begin
/# Execute IMPLICIT_SEND according to natural language descrigtion
return TRUE;
end

B.5.13.2 Execution of IMPLICIT SEND - natural language description

The IUT is induced to do whatever is necessary to send the contents of the ASP or PDU, as specified in the constraints
reference entry of the alternative.

If the dynamic chaining feature has been used, then the value specified in the Constraints Reference entry will be
assigned to the appropriate parameter or field of the ASP or PDU to be sent.

IMPLICIT SENDing always succeeds.

B.5.14 Execution of a pseudo-event

B.5.14.1 Execution of a pseudo-event — pseudo-code

« function EVALUATE_PSEUDO_EVENT (PseudoEventLing: BOOLEAN
begin
/# Read Qualifier,
Assignments,
TimerOperations from PseudoEventLine #/;
if EVALUATE_BOOLEAN (Qualifier) then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG();
return TRUE;
end
elsereturn FALSE;
end

B.5.14.2 Execution of PSEUDO-EVENTS - natural language description

If the TTCN statement is a pseudo-event, then it will be evaluated as specified in B.5.15 for a Boolean Expression,
B.5.16 for an Assignment Statement, B.5.17 for a timer operation (START, CANCEL, or READTIMER).

After completion of the pseudo-event, record in the conformance log the information specified in B.5.24.

ETSI

216 TR 101 666 V1.0.0 (1999-05)

B.5.15 Execution of BOOLEAN expressions

B.5.15.1 Execution of BOOLEAN expressions - pseudo-code

e function EVALUATE_BOOLEAN (Qualifier) :BOOLEAN

begin
if /# Qualifier is empty #then
return TRUE;
else
begin
if /# Qualifier evaluate® TRUE #/then
return TRUE;
elsereturn FALSE;
end
end

B.5.15.2 Execution of BOOLEAN expressions - natural language description

A Boolean expression.€., qualifier) specifies a condition that is to be tested. This condition will either be TRUE or
FALSE. A Boolean expression may be stated as part of a statementlifan(the same line with a SEND, RECEIVE,
TIMEOUT, or OTHERWISE), or as a statement line on its ove,@s a pseudo-event).

Step 1. The Boolean expression shall be evaluated to determine if the condition specified is TRUE or FALSE. The
normal rules of Boolean Logic apply, with the precedence rules specified in 11.4.2.1.

B.5.16 Execution of assignments

B.5.16.1 Execution of assignments - pseudo-code

e procedure EXECUTE_ASSIGNMENTS (AssignmentList)
begin
for /# every assignme@urrentAssignmerih AssignmentList, in the given orderdt
begin
/# Execute CurrentAssignment #/;
end
end

B.5.16.2 Execution of ASSIGNMENTS - natural language description

The assignment list is evaluated in left to right order. In each assignment, the variable on the left-hand side of that
statement is to take on the value of the expression on the right-hand side of the statement. This expression is evaluated
observing the precedence indicated in table 3.

If the assignment is performed in a Send line, the left-hand side may denote an ASP-, PDU- or CM-component, referring
to the object to be sent. If the assignment is performed in a Receive line, the expression may refer to components of the
ASP-, PDU- or CM to be received.

ETSI

217 TR 101 666 V1.0.0 (1999-05)

B.5.17 Execution of TIMER operations

B.5.17.1 Execution of TIMER operations - pseudo-code

e procedure TIMER_OPS (TimerOperations)

begin

end

for /# everyTimerOperationin TimerOperations #io
caseTIMER_OP_TYPE_OF(TimerOperationf

begin
START_TIMER: START_TIMER(TimerOperation);
CANCEL_TIMER: CANCEL_TIMER(TimerOperation);
READ_TIMER: READ_TIMER(TimerOperation);
end

e procedure START_TIMER (TimerOperation)

begin

end

[# perform as in B.5.17.2 #/;

e procedure CANCEL_TIMER (TimerOperation)

begin

end

[# perform as in B.5.17.3 #/;

e procedure READ_TIMER (TimerOperation)

begin

end

[# perform as in B.5.17.4 #/;

B.5.17.2 Execution of START timer - natural language description

Step 1.

Step 2.

If the timer is already running, cancel it and continue to Step 2. Otherwise continue directly to Step 2.

The timer is to be started with an initial value indicating no time has passed. Any entry for this timer in the
timeout list is removed from the list.

B.5.17.3 Execution of CANCEL timer - natural language description

The CANCEL timer operation specifies that a timer (or timers) is to stop ticking.

Step 1.

Step 2.

Determine the name of the timer(s) to be cancelled:
« if no timer identifier is specified, then canedl timers;
« if a timer identifier is specified, then cancel the timer with this timer identifier.

The status of the named or implied timer(s) is to be set to "not running". The amount of time elapsed for the
timer(s) is to be set to zero. If the timeout list contains an entry for the timer(s), the entry (entries) is (are)
removed from the list.

B.5.17.4 Execution of READTIMER - natural language description

The READTIMER operation specifies that the amount of time that has passed for a currently running timer is to be
stored into a variable. The timer continues to run without interruption.

Step 1.

Interrogate the value of the timer having the specified name. If the amount of time passethésunits
declared for this timer type, stanénto the named variable.

ETSI

218 TR 101 666 V1.0.0 (1999-05)

If the timer is not currently running, the named variable shall be set to zero.

B.5.18 Functions for TTCN constructs

B.5.18.1 Functions for TTCN constructs - pseudo-code

e function EVALUATE_CONSTRUCT (Construct) BOOLEAN

(* As the EvaluationTree is expanded at the CurrentLevel, the REPEAT and ATTACH constructs are not encountered here. *)

begin
caseCONSTRUCT_TYPE_OF(Construct) of

begin

ACTIVATE: ACTIVATE(Construct);

CREATE: CREATE (Construct);

GOTO: (* no action here, see GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT *);

RETURN: (* no action here, see GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT *);
end

return TRUE;
end

B.5.18.2 Functions for TTCN constructs - natural language description

If the TTCN statement is a TTCN construct, then it will be evaluated as specified in B.5.19 for an ACTIVATE
construct, as specified in B.5.20 for a CREATE construct, as specified in B.5.21 for a GOTO construct, or as specified
in B.5.22 for a RETURN construct. There is no need to deal with REPEATS, as they all have been replaced in the
CurrentLevel.

TTCN constructs will always succeed.

B.5.19 Execution of the ACTIVATE construct

B.5.19.1 Execution of the ACTIVATE construct - pseudo-code

« procedure ACTIVATE (ActivateLine)

begin
/# Read DefRefList from ActivateLine #/;
Defaults:=DefRefList;
LOG(DefRefList);

end

B.5.19.2 Execution of the ACTIVATE construct - natural language description
Change the current defaults context to the DefaultRefList that appears as parameter to the ACTIVATE construct.
Step 1 Change default context to DefaultRefList.

Step 2. Record in the conformance log the following information as well as the information specified in B.5.24:

 the DefaultRefList.

ETSI

219 TR 101 666 V1.0.0 (1999-05)

B.5.20 Execution of the CREATE construct

B.5.20.1 Execution of the CREATE event - pseudo-code

- procedure CREATE (CreateLine) BOOLEAN
begin

/# Read CreateList from CreatelLine #/;

for /# every(TCompldentifier, TreeReference, ActualParLisrawn from CreatelList #o

begin
start processEVALUATE_TEST_COMPONENT(TCompldentifier, TreeReference, ActualParList);
(* This starts the concurrent evaluation of TreeReference. *)
LOG(TCompldentifier, TreeReference, ActualParList);

end

end

e process EVALUATE_TEST_COMPONENT(TCompld, TreeReference, ActualParList)

(* This process initializes the EvaluationTree by the appropriate Test Step root tree or local tree and the default context by
the Defaults references listed with the corresponding behaviour table. It moves control to the top level of alternatives and
calls their evaluation. *)

global EvaluationTree, CurrentLevel, Defaults, Snapshot, ReturnLevel, ReturnDefaults, SendObject, ReceiveObject;
begin
/# Initialize the local instances of Test Case Variables, local R, Timers, and the Timeout List of TCompld. #/;
EvaluationTree := ROOT_TREE(TreeReference);
(* EvaluationTree is a growing finite tree built up by pasting together and expanding copies of trees from the test case
behaviour description and from the test step and default libraries. A component IsSExpanded is added to each level. *)
REPLACE_PARAMETERS (TreeReference, EvaluationTree, ActualParList);
CurrentLevel := FIRST_LEVEL(EvaluationTree) ;
(* A level denotes both a position in a tree and the ordered set of alternatives at this position. *)
ReturnLevel := CurrentLevel;
Defaults := DEF_REF_LIST(TreeReference);
ReturnDefaults := Defaults;
EVALUATE_LEVELS ();

(* This includes, by nested calls, the evaluation of all relevant subsequent levels in the growing evaluation tree. *)
end

B.5.20.2 Execution of the CREATE event - natural language description
The evaluation of the given Test Component is to be started.

Step 1. Evaluation of TCompldentifier, bound to TreeReference, is started, with the ActualParList parameters
replacing the Formal Parameters by textual substitution in TreeReference. All Test Case Variables, the local
result variable R, timers and the local timeout list are provided afresh for the sole use by this test component.

Step 2. Record in the conformance log the following information as well as the information specified in B.5.24:
» the TCompldentifier;
» the TreeReference;

* the ActualParList.

B.5.21 Execution of the GOTO construct

Control is transferred to the set of alternatives having the specified target label in the labels column. Execution now
continues at this new level.

In pseudo-code, the GOTO construct is performed as a part of GOTO_NEXT_LEVEL _OR_STOP_WITH_VERDICT.

ETSI

220 TR 101 666 V1.0.0 (1999-05)

B.5.22 Execution of the RETURN construct

Control is transferred to the set of alternatives from which the defaults were entered the last time. Execution now
continues at this new level.

In pseudo-code, the RETURN construct is performed as a part of
GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT.

B.5.23 The verdict

B.5.23.1 The verdict - pseudo-code

e procedure EVAL_VERDICT_ENTRY (VerdictEntry)
begin
[# Expand VerdictEntry to full word, e.g. (P) becomes (PASS) #/,
if /# VerdictEntry is a preliminary verdict "("PrelimVerdict")" then

begin
UPDATE_PRELIM (PrelimVerdict, /# local R, or MTC_R in case of Main Test Component #/);
UPDATE_PRELIM (PrelimVerdict, /# global R #/);
end
else (* VerdictEntry is a final verdict. *)
begin
if /# Current process is EVALUATE_TEST_CASEti#n
begin
EXCLUDE_INCOMPATIBLE_ENTRY (VerdictEntry, /# global R #/);
LOG(VerdictEntry);

/# assign final verdict in main test component or test case #/;
TERMINATE_TEST_CASE();

end

else(* Process is EVALUATE_TEST_COMPONENT *)

begin
EXCLUDE_INCOMPATIBLE_ENTRY (VerdictEntry, /# local R #/);
UPDATE_PRELIM (VerdictEntry, /# global R #/);
stop process;

end

end
end

e process EXCLUDE_INCOMPATIBLE_ENTRY (Entry, RVal)

begin
if ((Entry ="R" AND /# RVal = none #/) OR
(Entry = "PASS" AND /# Rval = inconc #/) OR
(Entry = "PASS" AND /# Rval = fail #/) OR
(Entry = "INCONC" AND /# Rval = fail #/)) then
begin
LOG(TestCaseError);
STOP_TEST_CASE();
return FALSE;
end
else return TRUE;
end

ETSI

221 TR 101 666 V1.0.0 (1999-05)

» procedure UPDATE_PRELIM (PrelimVerdict, ResultVar)
begin
if (ResultVar = none OR
(ResultVar = pass ANPrelimVerdict <> PASS) OR
(ResultVar = inconc AND PrelimVerdict = FAIL)then
begin
/# replace value of ResultVar by PrelimVerdict in lower case letters #/;
LOG("("PrelimVerdict")");
end
end

B.5.23.2 The VERDICT - natural language description

If a verdict is coded, process the verdict.

» If the verdict is preliminary, i.e. enclosed in parentheses, then the local and global result variables will be updated

according to the verdict algorithm in 15.17.2. Note that in the Main Test Component the local R is denoted by
MTC_R. The stated verdict is recorded in the conformance log.

» If the verdict is R, then, in non-concurrent TTCN or in the Main Test Component, the current value of R (the
only or the global R) will be used as the verdict of the Test Case. If R is set to none, raise a test case error.

» If the verdict is PASS, INCONC or FAIL, then, in non-concurrent TTCN or in the Main Test Component, the
stated verdict will be used as the final verdict for the Test Case. If the final verdict is inconsistent with local or
global R, raise a TestCaseError.

* In Parallel Test Components, a final verdict R, PASS, INCONC or FAIL, is used to update the global R like a
preliminary verdict. The stated verdict is recorded in the conformance log. A final verdict terminates the
evaluation of the Test Component.

B.5.24 The Conformance Log

B.5.24.1 The LOG - pseudo-code

» procedure LOG(/# any number of arguments #/)
begin
[# log the line number of the event line (if any) #/;
[# log the label associated with the event line (if any) #/;
[# log the arguments passed to LOG #/;
[# log the assignment(s) made (if any) #/;
[# log the timer operation(s) performed (if any) #/;

[# log current time #/; (* current time may be actual or relative *)
end

B.5.24.2 The conformance log - natural language description
Record the following information in the conformance log:

« the line number of the event line (if any);

« the label associated with the event line (if any);

« other arguments defined elsewhere in this annex associated with the event line (if any), e.g. the final or
preliminary verdict, or the data object sent or received;

e the assignment(s) made (if any);

ETSI

222 TR 101 666 V1.0.0 (1999-05)

» the timer operation(s) performed (if any);

« time stamp.

B.5.25 Tree handling functions and procedures

To facilitate lookup, the procedures and functions are defined in alphabetical order.

e procedure APPEND_TO_LEVEL (Tree,Level, Alternative)
begin
/# Update Level and Tree by appending Alternative as new last alternative in Level in Tree #/;
end

e function FIRST_LEVEL (Tree) : LEVEL
begin
return /# the set of alternatives at the first level of indentation of Tree, i.e. the numerically lowest (in TTCN.MP),
i.e. the leftmost (in TTCN.GR), level of indentation of the root tree #/;
end

e procedure GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT (Alternative)
begin

(* search the next level to evaluate, if any *)

if /# Alternative is of the type "GOTO Label" or "-> Label'ti#én
CurrentLevel := /# the unique level labelled with Label #/;

else if/# Alternative is of the type "RETURN" #ien

begin
CurrentLevel := ReturnLevel;
Defaults := ReturnDefaults;

end

else if/# Alternative is a leaf of EvaluationTree #/; (* but not a RETURN or GOTthen
EVAL_VERDICT_ENTRY("R"); (* This will stop the execution of the process. *)

else
CurrentLevel := /# set of alternatives at next level of indentation below Alternative #/;

(* save information for coming RETURN statements *)
if /# Component IsDefault of CurrentLevel #/ = FALBIEN
begin
ReturnLevel := CurrentLevel;
ReturnDefault := Default;
end
end

« function IS_EXPANDED () : BOOLEAN
begin
return /# Component IsExpanded of CurrentLevel #/;
end

e function LEVEL_OF (Tree, Alternative) LEVEL

begin
return /# the level in Tree of which this Alternative is a member #/;
end

ETSI

223 TR 101 666 V1.0.0 (1999-05)

function MAKE_TREE (Statement, Treel, TreeZfREE

begin
return /# the following tree:
Statement
Treel
Tree2 #l

(* Treel and/or Tree2 may be empty, denoted by an empty parameter position in the call of MAKE_TREE. *)
end

function NEW_LABEL () :LABEL
begin
return /# a label which has not yet been used in the execution of this Test Component, nor in the (relabelled) Test Suite
#l ;
(* This may be achieved by means of counters and test component names. *)
end

procedure RELABEL (Tree)

begin
for /# each label originally occurring in Tree #/ do
begin
NewLabel := NEW_LABEL();
for /# each occurrence bfin Tree, in the label column or as the target of a GOTO #/ do
begin
/# replace L by NewLabel #/;
end
end
end

procedure REPLACE_ALT_TREE (Tree, Level, A, ReplacementTree)
begin
(* Alis an alternative in Level, which is a level in Tree *)
/# In Tree, replace the subtree of Tree consisting of
A and SUBSEQUENT_BEHAVIOUR_TO (Tree, A) by ReplacementTree,
with all values of IsDefault in ReplacementTree set to the IsDefault-value of A,
and all values of IsExpanded of levels in ReplacementTree set to FALSE. #/;
end

procedure REPLACE_PARAMETERS (Treeld, Tree, ActualParList)
begin
/# Replace the formal parameters in Tree by the actual parameters specified in ActualParList,
doing so by textual substitution in Tree, using the formal parameter list accessible via Treeld. #/;
end

function ROOT_TREE (Treeld) TREE

begin
return /# its root tree if Treeld denotes a Test Case or Test Step or Default Behaviour Table —
otherwise the local tree with this name. Each level gets a new Boolean component
"IsExpanded", initialized with value FALSE, indicating that this level has not yet been expanded. #/;
end

function SUBSEQUENT_BEHAVIOUR_TO (Tree, Alternative fREE
begin
return /# the subtree below Alternative in Tree #/;

(* This would be Tree3 if Tree has the form:

Treel
Tree2
Alternative
Tree3
Tree4d
Tree5 *)
end

ETSI

224 TR 101 666 V1.0.0 (1999-05)

B.5.26 Miscellaneous functions used by the pseudo-code

e function CONSTRUCT_TYPE_OF(Construct) : CONSTRUCT_TYPE
begin
return /# ACTIVATE, CREATE, GOTO, or RETURN, as appropriate #/;
end

» function DEF_REF_LIST (TreeReference) : DEFAULT_REF_LIST
begin
return /# the default reference list in the header of the corresponding table in the case of a test step in the test step library,
or the empty list in the case of default behaviour, or in the case of a local tree attachment the current value of Defaults
(i.,e. the currently active defaults in the calling tree)#/;
end

e function EVENT_TYPE_OF (Alternative) :EVENT_TYPE
begin
return /# SEND, RECEIVE, OTHERWISE, TIMEOUT, DONE, or IMPLICIT_SEND, as appropriate #/;
end

« function INPUT_Q (PCOorCPidentifier) QUEUE
begin
if /# PCOorCPidentifiets empty #then
return /# default PCO input queue #/;
elsereturn /# input queue identified by PCOorCPidentifier #/;
end

e function OUTPUT_Q(PCOorCPidentifier) QUEUE
begin
if # PCOorCPidentifiers empty #then
return /# default PCO output queue #/;
elsereturn /# output queue identified by PCOorCPidentifier #/;
end

e function SNAPSHOT_FIXED () : BOOLEAN
begin
if /# all relevant PCO and CP queue(s) have some event(s) on them and all relevant timers havé/dkgred
return TRUE;
else return FALSE;
end

e function STATEMENT_LINE_TYPE_OF (Alternative) :STATEMENT_LINE_TYPE
begin
return /# EVENT, PSEUDO_EVENT, or CONSTRUCT, as appropriate #/;
end

e procedure STOP_TEST_CASK)
begin
[# stop all running processes #/;
end
* procedure procedure TAKE_SNAPSHOT)

(* A snapshot of the incoming PCO and CP queue(s), the relevant timeout list, and the termination status of any other test
components is taken. The act of taking a snapshot does not remove an event from any PCO, CP or timeout list.*)

ETSI

225

begin

[# save current PCO and CP input queues in Snapshot #/;

[# save current timeout list in Snapshot #/;

[# save current list of terminated Test Components in Snapshot #/;
end

procedure TERMINATE_TEST_CASE()
begin
if /# any Parallel Test Component processes are still running #/ then
LOG(TEST_CASE_ERROR);
STOP_TEST_CASE();
end

function TIMER_OP_TYPE_OF (Alternative) :TIMER_OP_TYPE
begin
return /# START_TIMER, CANCEL_TIMER, or READ_TIMER, as appropriate #/;
end

ETSI

TR 101 666 V1.0.0 (1999-05)

226 TR 101 666 V1.0.0 (1999-05)

Annex C:
TTCN Modules

C.1 Introduction

A TTCN Module shall contain the following sections in the order indicated:
a) TTCN Module Overview Part
b) Import Part
c) Declarations Part
d) Constraints Part

e) Dynamic Part

C.2 TTCN Module Overview Part

C.2.1 Introduction

The purpose of the TTCN Module Overview Part of a module is to provide information needed for the use of the
module by other modules or test suites. This includes:

a) TTCN Module Exports
b) TTCN Module Structure
c) Test Case Index

d) Test Step Index

e) Default Index

C.2.2 TTCN Module Exports

The TTCN Module Exports table identifies the module and provides information on the overall objective of the TTCN
Module (e.g. constraints library for a particular protocol).

The name of the original source object shall be given if the object is imported.

If the object is declared as an external object (explicit external) or is an object which is omitted in the imported source
object (implicit external), the keyword EXTERNAL is given instead of the source object name.

Exporting an object of type Enumeration or Named Number requires that the corresponding type is given. The other
objects which are defined in the corresponding type are not exported as well. They are however implicitly exported and
can be referred in other exported objects. The type name is given as a suffix to the object name embedded in brackets.

The following information shall be supplied in the TTCN Module Exports:
a) the name of the TTCN Module;
b) a description of the objective of the module;
c) a full reference of the TTCN module;

d) references to the relevant base standards if any;

ETSI

227 TR 101 666 V1.0.0 (1999-05)

e) areference to the PICS proforma if any;
f) areference to the PIXIT proforma if any;
g) an indication of the test method(s) if any;
h) other information which may aid understanding of the TTCN Module, this should be included as a comment;

i) alist of exported objects
where the following information shall be supplied for each exported object:

1) the name of the object.

If the object is of type NamedNumber or Enumeration the corresponding type shall be given as a suffix to the
object name embedded in brackets.

2) The object type;
3) the name of the original source object if the object is imported, or the object directive EXTERNAL;

4) a page number
providing the location of the object in the module (no page number shall be given for imported objects).

This information shall be provided in the format shown in the following proforma:

TTCN Module Exports
TTCN Module Name : TTCN_Moduleldentifier

Objective : [FreeText]

TTCN Module Ref : [FreeText]

Standards Ref . [FreeText]
PICS Ref : [FreeText]
PIXIT Ref . [FreeText]
Test Method(s) . [FreeText]
Comment : [FreeText]
Object Name Object Type Source Name Page Nr Comments
Objectldentifier TTCN_ObjectType [Sourceldentifier | Number [FreeText]

ObjectDirective]

Detailed Comments: [FreeText]

Proforma C.1: TTCN Module Exports

EXAMPLE C.1: TTCN Module Exports

ETSI

228 TR 101 666 V1.0.0 (1999-05)

TTCN Module Exports

TTCN Module Name : TTCN_Module_A

Objective : Toillustrate the use of the TTCN Module Exports table
TTCN Module Ref :

Standards Ref

PICS Ref

PIXIT Ref

Test Method(s)

Comments
Object Name Object Type Source Name Page Nr Comments
String5 SimpleType_Object 3
wait Timer_Object Module_B
INTC TTCN_PDU_Type_Object 13
DEF1 Default_Object TestSuite_1
TC 2 TestCase_Object TestSuite_2
TC 3 TestCase_Object 33
Preamble TestStep_Object EXTERNAL

C.2.3 TTCN Module Structure

The TTCN Module Structure contains a list of Test Groups in the module (if any). The following information shall be
supplied for each group:

a) the Test Group Reference,

where the first identifier may be the module name, and each successive identifier represents further conceptual
ordering of the module.

b) An optional selection expression identifier;
c) the Test Group Objective;

d) a page number (page number shall not be supplied for imported groups).

ETSI

229 TR 101 666 V1.0.0 (1999-05)

This information shall be provided in the format shown in the following proforma:

TTCN Module Structure
Test Group Reference TestGroupReference Test Group Obijective Page Nr

TestGroupReference TestGroupReference FreeText [Number]

Detailed Comments: [FreeText]

Proforma C.2: TTCN Module Structure

The static semantics described in the "10.3 Test Suite Structure" are applicable for TTCN Module Structure.

C.2.4 Test Case Index

The definition of the Test Case Index for modules is the same as the definition of Test Case Index for Test Suites.

C.2.5 Test Step Index

The definition of the Test Step Index for modules is the same as the definition of Test Step Index for Test Suites.

C.2.6 Default Index

The definition of the Default Index for modules is the same as the definition of Default Index for Test Suites.

C.3 Import Part

C.3.1 Introduction

The purpose of the Import Part of a module is to declare the objects which are not explicitly defined but have been used.
These objects are either declared as external objects or are imported from other source objects. This part includes:

a) External;

b) Import.

ETSI

230 TR 101 666 V1.0.0 (1999-05)

C.3.2 External

The External Objects table lists the objects being referred to by their identifier in the TTCN module, but neither
imported nor explicitly defined. An external object lets the importer know what he has to define, when importing the

TTCN module.
The following information shall be supplied for each external object:
a) the Object identifier and parameters,
parameters are included when the object is a Test Suite Operation, a Constraint or a Test Step;
b) the object type;
c) an optional comment.

This information shall be provided in the format shown in the following proforma:

External Objects
Object Name Object Type Comments

Identifier | TS_Opld&ParList | TTCN_ObjectType [FreeText]
Consld&ParList | TestStepld&ParList

Detailed Comments: [FreeText]

Proforma C.3: External Objects

EXAMPLE C.2: External Objects

External Objects
Object Name Object Type Comments
CRC (P:A_PDU) TS_Op_Object
CONSTRAINT_A (acstr:T_CONNECT) TTCN_PDU_Constraint_Object
TESTSTEP_A (INTEGER) TestStep_Object
DEF3 Default_Object
C.3.3 Import

The definition of the Import for modules is the same as the definition of Import for Test Suites (see 10.8).

ETSI

231 TR 101 666 V1.0.0 (1999-05)

Annex D:
Test Suite Index

Void.

ETSI

232 TR 101 666 V1.0.0 (1999-05)

Annex E:
Compact proformas

E.1 Introduction

As an option, many Constraints and/or many Test Cases can be printed in a single table. This may be useful to highlight
relations between the single constraints and/or single Test Cases. This annex states the requirements for using compact
Constraints proformas and/or compact Test Cases proformas and gives some examples. These proformas are specific
and differ from the generalized layouts given in 7.3. Since the new proformas are only another way to present the same
information, there is no TTCN.MP associated with it. The information contained in a compact Constraints and/or
compact Test Cases table can be translated in the TTCN.MP associated with the many single constraint tables and/or
many Test Case tables that have the same information contents.

E.2 Compact proformas for constraints

E.2.1 Requirements

It shall only be allowed to print many single constraint tables as a single compact constraint table if:
a) the constraints have the same ASP type, PDU type, Structured Type or ASN.1 Type;

b) there is no encoding information specified in any of the single constraint table headers nor in the encoding
column of any of those tables (ASN.1 encodings spefified in ASN.1 Value may, however, be specified in
compact proformas); and

c) there are no entries in the comments column of any single constraint table.

NOTE: If the single constraints tables only have comments in the detailed commentd.tagtiee Comments
column is empty), then it is possible to print these constraints in the compact format. In such cases the
individual detailed comments from the single proformas should be collected and printed as a single
comment in the detailed comments footer of the compact proforma.

ETSI

233

TR 101 666 V1.0.0 (1999-05)

E.2.2 Compact proformas for ASP constraints

In cases where a constraint contains only a few parameters, or when there are only a small number of constraints, the

constraints may be presented in the compact version of the ASP constraints proforma:

ASP Constraints Declarations

ASP Type

ASP_Identifier

&Par I,n'_\'.'z

Parh 4

dAnributes ., /

Consld-
&Parlive
i

Derivation-
ot
Path,,

ConstraintValue-
* A pipidar e
A rtribute S 7

&Anribures 0

Constraint Derivation Parameter Name Comments
Name Path .
ASP Parfdentifie r ASP Parfdentifie T
Comsld- Derivation- ConstraintValue- Constreaint Value- FreeT
&P:u'f..".i.‘r), P‘”’r’.f {{-.sl.r;'.l'!hm;-.'.'lu. &f\r:f'.‘hnw.\j firee f'l'!"ri'
. M
Consld- Derivation- ConstraimValie- ConatraintValue-

[FreeText]4

ConseraintVilue-

&A it L

Hru?{,u,”r

This proforma is used for ASPs and their parameters in the same way that PDU Constraints Declarations proforma is

Proforma E.1: (Compact) ASP Constraints Declarations

used for PDUs and their fields (see E.2.3).

E.2.3 Compact proformas for PDU constraints

E.23.1

In cases where a constraint contains only a few fields, or when there are only a small number of constraints, the

Introduction

constraints may be presented in the compact version of the PDU constraints proforma:

PDU Constraints Declarations
DU Type : PDU _ldenrifier
Constraint Derivation Field Name Comments
Name Path i o . .
,=1..'>J-'_Pu.l'!..":’fzrr_,l‘mrl'. .*L":P_Pfrr'Mf’.rr.r.{.".'.-'r“
Consld- Derivation- ConseraintValue- ConstraintValue- FreeT,
, , Creeleat
L'ZPn'r'.f,:.\rll. Pcn'.’-'lif KA ?!l"l’hlf.’t'.\j 1 ‘.'i-zfl-.ff-"n"?m'{“-'; . {reels 'II-"
Consfd- Derivarion- ConstrainiValue- ConstraintValue-
-_';:Pfrrf.i.\rz ‘r-m.ﬁ: g{;,‘ifl’f'f.!']!rfg'.\:_f d.';.ﬂl.frl'a'ufﬂf.'fr-'-'-_,l” ,.".F'r[-'.:'T}f.l.'.l'_-_.
Consldd- Dervation- ConstraintValue- CanstrainiValie- | FreeText]
. . . o
&f’{u'f,r.'.'.fm Path c'iafl..f.'."u"w{“-m ; &A r!r'r.h!r.ff*.sm i

ETSI

234 TR 101 666 V1.0.0 (1999-05)

Proforma E.2: (Compact) PDU Constraints Declarations

The compact constraints proforma has field names across the top of the proforma, and different instances of the PDU
constraints in rows within the proforma. If there affields in the PDU type definition then there shalhifeeld
columns in the compact constraint proforma.

The derivation path column is optional; however, it shall be used to specify the derivation path of modified constraints
(see 13.6). A compact table can collect several base constraints (as illustrated in example C.1) or can collect a base
constraint and its modified constraints as in example C.2. When modified constraints are declared in a compact table,
the fields not modified in the modified constraints appear as boxes left blank as the intersection of the modified
constraint row and of the field column. When mapping a compact table to TTCNeMBirfgle format), blank fields

due to inheritance shall be omitted. Fields not specified in modified constraints are left blank in modified constraints.

EXAMPLE E.1: Constraints using the compact constraints proforma

PDU Type Definition

PDU Name : PDU_B
PCOType : XSAP
Comment :

Field Name Field Type Comments
FIELDI INTEGER
FIELD2 BOOLEAN
FIELD3 LA5String

EXAMPLE E.1.1: Given the declaration of PDU_B to be

PDU Type Definition

PDU Name : PDU_B
PCOType : XSAP
Comment :

Field Name Field Type Comments
FIELDI INTEGER
FIELD2 BOOLEAN
FIELD3 LA5String

ETSI

235 TR 101 666 V1.0.0 (1999-05)

EXAMPLE E.1.2: The constraints on PDU_B using the compact constraints proforma could be

PDU Constraints Declarations
PDU Type: PDU_RB
Constrainl Name Field Name Commenis
FIELDI FIELDZ2 FIELDA

CNI 3 TRUE “A string”

CN2 i4,5.6) FALSE "A string”

CN3 0 ;)

|

The constraints reference in the dynamic part might then contain entries such as PDU_B[CN1] and PDU_B[CNZ2]

EXAMPLE E.1.3: The inheritance mechanism using the compact constraint proforma

PDU Constraints Declarations

PDU Type: FDU_A
Constraint Derivation Field Name Comments
Name Path
FIELDI FIELD2 FIELD3 FIELDM

CNG 0 'FF'H OB TRUE
CNI NI 1
N2 CNOCN.,) 7

E.2.3.2 Parameterized compact constraints

Compact constraints may also be parameterized. In such cases the parameter lists shall be appended to the constraint
name and occur in the constraint name column of compact constraint proformas.

EXAMPLE E.2: A parameterized compact constraint

ETSI

236 TR 101 666 V1.0.0 (1999-05)

PDU Constraints Declarations
PDU Type: PDU_X
Constraint Field Name Comments
MName Pl -

51 1] 0

52 0 |

53 I 0

54 I |

SHAINTEGER) |1 A

The invocation of the constraints on PDU_X in a Test Step may be made as follows: S1, S2, S3, S4, S5(0), S5(1) or
S5(Var) where Var is a Test Case or Test Suite Variable.

E.2.4 Compact proformas for Structured Type constraints

Compact Structured Type constraints shall be provided in the following proforma:

Structured Type Constraints Declarations

Structure Type: : Structidentifier

Consldd-

2 T
&P f,.'.'n.fr”

Devivation-
Puar hr -

ConstraineValue-
e
&eAttrifare S T

Constraint Derivation Field MName Comments

MName Path . .) i

A .'_‘rP_Prn'h.l'mF.j,f:w'} ASP_Parl; .fwm__m’.l'”
Crmnxld- Dertvarion- ComsiraintValue- ConstraintValue- (FreeText]
¥ L FJT N A i Adir . ree s exr|]

&.Fcrr[.r.\rll. ffr!.".; KA rtribnie 5p deAttrifatare Sin

Consld- Derivation- ConstraimValue- ConstraintValue-
&.F’.rr:'i.f.\'f_? Path, &.-'in'rrr'b.lr!f'.wzl; f.t’.-.:’&.f.f.":'l":'.'n'r._?l” ff"r?JrJ'I}{rF."z

ConstraintValuwe-

&A rrr'rfurff*.\'ﬂur

[Free .irfJ.lLI_.f”_I

Proforma E.3: (Compact) Structured Type Constraints Declarations

EXAMPLE E.3: Use of structured compact constraints

The PDU_Y consists of five fields named Y1 through Y5. The fields Y1, Y2 and Y3 have been combined into the
Structured Type called A. In the following, the first table shows the constraints defined on PDU_Y. The second and
third tables convey the same information as the last table.

The second and third tables show the Structured Type A's constraint specification using the single constraint proformas,
while the last table shows A's constraint using the compact constraint proforma. Both figures also use the modification
mechanism.

ETSI

237 TR 101 666 V1.0.0 (1999-05)

For the following tables, it can be seen that if the constraint YY1 was used, the values for field Y1 through Y5 would be
0,0,0,0,1 respectively, where the values for fields Y1 through Y3 are derived from the Structured Type A using
constraint Al. If the constraint YY2 was used, the values for Y1 through Y5 would be 0,3,0,1,0 respectively, where the
values for fields Y1 through Y3 are derived from the Structured Type A using constraint A2.

EXAMPLE E.3.1: A PDU constraints table that uses a Structured Type (called A)

PDU Constraints Declarations
PDU Type: PDU_Y
Constraint Name Field Name Comments
A Y4 Y3
YYI Al 0 1
Y¥2 A2 l 0
YY3 A2 0 1

EXAMPLE E.3.2: Al is a base constraint of Structured Type A

Structured Type Constraint Declaration

Constraint Name : Al
Structured Type : A
Derivation Path
Comment

Element Name Element Value Comments
Y]]
Y2 0
Y3]

EXAMPLE E.3.3: The Structured Type constraint, A2, is a modified constraint derived from Al

Structured Type Constraint Declaration
Constraint Name @ A2
Structured Type @ A
Derivation Path Al
Comment :
Element Name Element Value Comments
Y2 3

EXAMPLE E.3.4: Structured Type A's constraints A1 and A2 in the compact form

ETSI

238 TR 101 666 V1.0.0 (1999-05)

Structured Type Constraints Declarations

Structured Type Name: A

Constraint
Mame

Derivation Element Name Comments
Path

Y1 Y2 Y3

Al

0 0 0

Al

[F%)

When using Structured Types within PDU Constraint Declarations, each field name used within the Structured Type
definition shall exactly match the name (or short name, if both the short name and full name were defined) of the PDU
field which it represents from the original PDU type definition.

E.2.5 Compact proformas for ASN.1 constraints

The following proformas shall be used for compact ASN.1 ASP, ASN.1 PDU and ASN.1 Type constraints definitions

respectively:

ASN.1 ASP Constraints Declarations
ASP Type: ASP_ldentifier
Constraint name ASN.1 Value
Consld&ParList ConstraintValue&Attributes
Consld&ParList, ConstraintValue&Attributes

Proforma E.4: (Compact) ASN.1 ASP Constraints Declarations

ETSI

239 TR 101 666 V1.0.0 (1999-05)

ASN.1 PDU Constraints Declarations
PDU Type . PDU_lIdentifier
Constraint name ASN.1 Value
Consld&ParList ConstraintValue&Attributes
Consld&ParList, ConstraintValue&Attributes

Proforma E.5: (Compact) ASN.1 PDU Constraints Declarations

ASN.1 Type Constraints Declarations
Type Name : ASN1_Typeldentifier
Constraint name ASN.1 Value
Consld&ParList ConstraintValue&Attributes
Consld&ParList, ConstraintValue&Attributes

Proforma E.6: (Compact) ASN.1 Type Constraints Declarations

E.3 Compact proforma for Test Cases

E.3.1 Requirements

It is only permitted to print many single Test Case dynamic behaviour tables as a single compact Test Case dynamic
behaviour table when the following rules apply:

a) all single Test Case dynamic behaviour tables shall belong to the same Test Group;

ETSI

240 TR 101 666 V1.0.0 (1999-05)

b) all single Test Case dynamic behaviour tables shall have either the same Default tree or no Default tree; it is
recommended that there be no Default tree;

c) the behaviour description of each single Test Case dynamic behaviour table shall consist of a single ATTACH
construct.

E.3.2 Compact proforma for Test Case dynamic behaviours

Where a series of Test Cases have essentially the same dynamic behaviour and differences occur only in the referenced
constraints€.g.,tests for parameter variations of ASPs and/or PDUS), the Test Cases may be presented in the compact

version of the Test Case dynamic behaviour proforma:

Test Case Dynamic Behaviours

Group . TestGroupReference

Defaults . DefaultReference
Test Case Name Purpose Test Step Attachment Comments
TestCaseldentifier FreeText Attach [FreeText]

Detailed Comments: [FreeText]

Proforma E.7: (Compact) Test Case Dynamic Behaviours

Each row in the body of this proforma describes a single Test Case. If the compact Test Case proforma is used the single
table replaces a series of Test Case dynamic behaviour tables in the behaviour part of the test suite.

The comments column contains comments pertaining to individual Test Cases against each attachment.

Test Cases within compact Test Case proforma may form a subset of their group and shall appear in the order indicated
in the Test Case Index.

EXAMPLE E.4: A compact Test Case table that defines a series of tests for FTAM

Test Case Dynamic Behaviours
Group + RIBVIPV/ILMICR/OV
Default :
Test Case Name Purpose Test Step Attachment

OVERIDEI Omit the overide parameter, + OVERRIDE (FCRERQ_001, FCRERF_001)
when file exists.

OVERIDEZ Omit the overide parameter, + OVERRIDE (FCRERQ_002, FCRERP_002)
when file does not exist,

ETSI

241

TR 101 666 V1.0.0 (1999-05)

Annex F (informative):
Examples

F.1

F.1.1 ASP and PDU definitions

F.1.1.1 Flat type definition

Examples of tabular constraints

I'DU Type Definition

PDU Name :
PCO Type
Comment @ Hivstration of TTCN mechanisms

T_CONNECTI

Field Name Field Type

Comments

Source BITSTRING [4]
Destination BITSTRING [4]
T _Class INTEGER{(hod

UserData LASString

Length is 4 hits
Length is 4 bats
Defined as a simple type

F.1.1.2 Structured Type definition

PDU Type Definition

PDU Name :
PCO Type
Comment

T_CONNECT2

Miustration of TTCN mechanisms

Field Name Field Type

Comments

T_Addresses
T _Class
UserDiata

T_AddressInfo
INTEGER 04
IASSting

Defined as a simple type

Structured Type Definition

Type Name : T_Addressinfo

Comments Can be used in all Transport PRU examples.

Element Name Type Definition

Comments

Source
Diegstination

BITSTRING [4]
BITSTRING [4]

Length is 4 hits
Length is 4 hits

ETSI

242

TR 101 666 V1.0.0 (1999-05)

F.1.1.3 Special type PDU, in order to allow use of (static) chaining of

constraints

ASP Type Definition

ASP Name
PCO Type
Comment

N_DATArequest
N_SAP
For itlustration only

Parameter Name

Parameter Type

Comments

CallingNetwork Address
CalledNetwork Address
Connectionldentifier
Data

HEXSTRING
HEXSTRING
HEXSTRING
PDL

To enable chaining of constraints

F.1.2 ASP/PDU constraints

F.1.2.1 Flat

PDU Constraint Declaration

Constraint Name
PDLU Type
Derivation Path

: TCON_Classd_1
: T_CONNECTI

Comment
Field MName Ficld Value Comments
Source TS _Parl
Destination TS _Par?
T_Class 4
UserDxn "testing, testing”
F.1.2.2 Structured, referring to field groups
PDU Constraint Declaration
Constraimt Name : TCON_Class4 2
PDU Type : T_CONNECTZ
Derivation Path
Comment
Field Name Field Value Comments

T_Addresses

T _Class
UserData

WrongAddress

._1

“one, two, three"

WrongAddress is a reference to a
structured type constraint,

ETSI

243 TR 101 666 V1.0.0 (1999-05)

Structured Type Constrain Declaration

Constraint Name @ WrongAddress
Structured Type @ T_AddressInfo
Derivation Path

Comment

Element Name Element Value Comments
Source TS _Parl
Destination "HHY B

F.1.2.3 Chaining, useful for (nested) PDUs in ASPs

ASP Constraint Declaration

Constraint Name : N_DATAreq_With_T_CON_Class4_|
ASP Type : N_DATArequest
Derivation Path
Comments : TCON_Class4_1 is a PDU constraint (i.¢., chaining)

Parameter Name Parameter Value Comments
CallingMNetwork Address TS_Par3
CalledNetwork Address TS_Pard
Connectionldentifier "TABCDEFH
Data TCON_Class4_1

F.1.2.4 Parameterized constraints

It is possible to parameterize flat, structured and chained constraints. The following example shows parameterization to
pass a value.

PDU Constraint Declaration

Constraint Name @ TCON_lclass: INTEGER)
PDU Type : T_CONMNECTI
Derivation Path
Comment

Field Mame Field Value Comments
Source T B
Diestination 7
T_Class class class s a formal parameter
UserDxata ?

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:

TCON_1(4) or TCON_I1(TCvariable)

ETSI

244 TR 101 666 V1.0.0 (1999-05)

Field values may be whole (chained) PDUs:

ASP Consiraint Declaration

Constraint Name : N_DATAreq_With_T_CON{A_Constraint’T_CONNECT2)
ASP Type : N_DATArequest
Derivation Path
Comments : TCON_Classd_1is a PDU constraint {i.¢., chaining)

Parameter Name Parameter Value Comments
CallingNetwork Address TS _Par3
CalledNetwork Address TS _Pard
Connectionldentifier "123456TH
Data A Constraint A_Constraint is a formal parameter

This constraint can be called as, for example:
N_DATAreq_With_TCON(TCON_Class4 _2)

Since the actual parameter is a constraint name, which can itself be parameterized, it is possible to express an arbitrary
depth of nesting of PDUs.

F.1.2.5 Modified constraints

It is possible to use existing constraints and modify them to define new constraints. This can be done with flat, structured
and parameterized constraints.

PDU Constraint Declaration
Constraint Name : TCON_ClassD_|
PDU Type : T_COMNECTI
Derivation Path : TCON_Class4_1.
Comment : Class 00 is acceplable
Ficld Name Field Yalue Comments
T _Class {l

Wildcards can be used for values:

PDU Constraint Declaration
Constraint Name : TCON_AnvClass
PDLU Type : T_CONNECTI
Derivation Path : TCON_Class4_1.
Comment : Any class (0 .. 4) is acceptable
Field Name Field Value Comments
T Class 7

This is considered to be bad style, however. It is better to use the more general constraint as a base.

It is also possible to delete whole fields:

ETSI

245

TR 101 666 V1.0.0 (1999-05)

PDU Constraint Declaration

PDU Type

Comment

Constraint Name

Derivation Path

TCON_Erroneous_NoClass

T_CONNECT

TCON_Class4_1.

Mo class present

Field MName

Field Value

Comments

T _Class

T_Class ormitted

F.2

F.2.1

F.2.1.1

Examples of ASN1 constraints

ASP and PDU definitions

Flat

ASN.1 PDU Type Definition

PCO Type
Comment

PDU Name

T_CONNECTI

Type Definition

SEQUENCE [source

destination
I_Class
userDiain

-- oaly to illustrate use of ASN. 1 in TTCN

BITSTRING (S1ZE (4.4,
BITSTRING (SIZE (4..4)),
INTEGER (0.4,
IASSing OFTIONAL

ETSI

F.2.1.2 Structured

246 TR 101 666 V1.0.0 (1999-05)

ASN.1 PDU Type Definition

PDU Name : T _CONNECT2
PCO Type

Comment

Type Definition

SEQUENCE 1 _Addresses
t_Class

userData

— ponly to illustrate use of ASN.T in TTCN

T_Addressinio,
INTEGER (0.4},
LASString

i
¥

-- expansion of T_AddressInfo can be found in a table of its own

Related ASN.1 productions that are normally in one ASN.1 module may be distributed over more tables in TTCN:

ASN.1 Type Definition

Type Name: T_Addressinfo

Comments:

Type Definition

BITSTRING (51ZE (4.4,
BITSTRING (5I7E (4..4)),

SEQUENCE | source

destinagion

F.2.1.3 An ASP definition

ASN.1 ASP Type Definition

ASP Name N_DATArequest
PCO Type : N_SAP
Comment

Type Definition

SEQUENCE I callingNetwork Address
calledMNetwork Address
connectionidentifier
data

OCTETSTRING,
OCTETSTRING,
OCTETSTRING,
T_PDLS

-- gven number of octets
-- even number of ociets
-- even number of octets

ETSI

247

TR 101 666 V1.0.0 (1999-05)

ASN.1 Type Definition

Type Name: T_PDUS
Comments:

Type Definition

CHOICE [t T_CONNECTI,
12 T_CONNECTZ
]

F.2.2 ASN.1 ASP/PDU constraints

F.2.2.1 Flat

ASN.1 PDU Constraint Declaration
Constraint Name : TCON_Classd_1
PDU Type : T_CONNECTI
Derivation Path
Comments
Consiraint Value
| source TS_PARIL,
TS_PARZ2. -- field identifier can be omitted if desired
t_Class <.
userData "testing, testing”
]

F.2.2.2 Structured

ASN.1 PDU Constraint Declaration
Constraint Name : TCON_Class4 2
PDU Type : T_CONNECT2
Derivation Path :
Comments
Constraint Value
{ t_Addresses WrongAddress, -~ a reference to a PDU field constraint
t_Class 4,
userDara "one, two, three”
|

ETSI

248

TR 101 666 V1.0.0 (1999-05)

ASN.1 Type Constraint Declaration

Constraint Name
Structured Type
Derivation Path
Comments

Wrong Address
T_Addressinto

Constraint Value

{ source
destination

}

QLU

TS_PARI,

F.2.2.3 Chaining a PDU constraint

ASN.1 ASP Constraint Declaration

Constraint Name
ASP Type
Derivation Path
Comments

N_DATAreq_ With_TCON_Class4_1
N_DATArequest

Constraint Value

{ callingMNetwork Address
callednetwork Address
connection] dentifier

TS_PAR_3,
TS_PAR_4.
"ABCDEFH,

data tl TCON _Class_4 | -- chaining 10 a PDLU constraing

F.2.2.4 Parameterized constraints

ASN.1 constraints may be parameterized like TTCN tabular constraints, for example:

ASN.1 PDU Constraint Declaration

TCON_Hclass INTEGER)
T_CONNECTI

Constrainl Name
PDU Type
Derivation Path
Comments

Consiraint Value

{ source OB,
destination 2, - wildeard
t_Class class, - formal parameles
userData ?

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:

TCON_1(4) or TCON_1(TCvariable)

ETSI

249 TR 101 666 V1.0.0 (1999-05)

A parameter may also represent a whole chained PDU:

ASN.1 ASP Constraint Declaration

Constraint Name @ N_DAT Areq_With_TCON{a_constraing: T_CONNECTZ)

ASP Type 1 N_DATArequest
Derivation Path
Comments
Constraint YValue
[callingNerwork Address TS_PAR_3,
callednetwork Address TS_PAR_4.
connection]ldentitier 1234567 H.
data 12 a_constraint

-- a_constraint is a formal parameter containing a whole PDU

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:

N_DATAreq_With_ TCON(TCON_Class4_2)

Since the actual parameter is a constraint name, which itself can be parameterized, it is possible to express an arbitrary
depth of nesting.

F.2.2.5 Modified constraints

New constraints may be constructed by modifying already defined constraints using the REPLACE mechanism:

ASN.1 PDU Constraint Declaration

Constrainl Name : TCON_Class0_1
PDU Type : T_CONNECT!

Derivation Path : TCON_Classd_1.
Comments :

Constraint ¥alue

REPLACE 1_Class BY 0

Wildcards can be used as replacements as well:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_AnyClass
PDU Type . T_CONNECT]
Derivation Path : TCON_Classd_1.

Comments

Consiraint Value

REPLACE t_Class BY 7

ETSI

250 TR 101 666 V1.0.0 (1999-05)

To specify fields that shall be omitted, the OMIT mechanism is used:. This is only allowed if the field is declared as
OPTIONAL:

ASN.1 PDU Constraint Declaration

Constraint Name 1 TCON_NollserData

PDU Type : T _CONNECTI

Derivation Path ¢ TCON_Classd_1TCON_AnyClass,
Comments

Constraint Value

OMIT UserData

It is possible to modify ASN.1 parameterized constraints, but note that the parameterized fields themselves can not be
replaced:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_Zclass: INTEGER)

PDU Type : T_CONNECTI
Derivation Path : TCOMN_L.
Comments

Constraint Value

REPLACE userData BY "CPS"

ETSI

251 TR 101 666 V1.0.0 (1999-05)

F.2.3 Further examples of ASN.1 constraints

Definition of an FTAM F_INITIALIZEresponse PDU, made in an ASN.1 PDU type definition table:

ASN.1 PDU Type Definition

PDU MName @ F_INITIALIZEresponse
PCO Type

Comment

Type Delinition

SEQUENCE |
state_result
action_result
protocol _version
implementation_information
pru'-:%:H[:L[EUI‘:___l.:r:ul!t:kl___:lmnilgt*mt'lll
service_class
functional _units
atrribute_groups
shared_ASE_information
ftam_guality_ot_service
contents_type_list
diagnostic

checkpoint_window

Stare_Result DEFAULT success,
Action_Resolt DEFAULT success,
Protocol_Version DEFAULT { version_1 |,
Implementation_Information OPTIONAL,
21 IMPLICIT BOOLEAN DEFAULT FALSE.
Service_Class DEFAULT | transfer_class .
Functional _Units,

Attribute_Groups DEFAULT [],
Shared_ASE_Information OPTTONAL,
FTAM _Quality_Of_Service,
Contents_Type_List OPTIONAL,
Diagnostic OPTIONAL,

[B] IMPLICIT INTEGER DEFAULT 1

The fields of the PDU (State_Result, Action_Result etc.) are declared in ASN.1 Type Definitions.

For example, Functional_Units:

ASN.1 Type Definition

Type Name: Functional _Units
Comments:

Type Delinition

[4] IMPLICTE BITSTRING
{ readil),

write (3.
file_access (4)
limited_file_management {3},
enhanced_file_management {G),
grouping (7).
fadu_locking (8),
recovery (9],
restart_data_transter (10}

ETSI

252 TR 101 666 V1.0.0 (1999-05)

A base constraint, F_INITrsp_001, on the F-INITIALIZEresponse is declared In the constraints part:

ASN.1 PDU Constraint Declaration

Constraint Name 1 F_INTTrsp_001]

PDU Type : F_INITIALIZEresponse
Derivation Path

Comments

Constraint Value

{
state_result State_Resule_ 001,
action_result Action_Result_(H}H,
protocol _version Protocol _Version_001,
implementation_information Implementation_Information_001,
presentiation_context_management FALSE,
service_class Service_Class_001
functional_units Functional_Unis_ (01,
attribute_groups Attribute_Groups_001,
shared_ASE_information Shared_ASE_Information_ 001,
ftam_quality_of_service FTAM_Quality_OFf_Service_001,
conients_type_list Contents_Type_List_(01,
diagnostic Diagnostic 0,
checkpoint_window I

1

A constraint on Functional_Units, Functional_Units_001, is declared in an ASN.1 PDU field constraint declaration:

ASN.1 Type Constraint Declaration

Constraint Name : Functional _Units_(H
Structured Type @ Functional_LUnis
Derivation Path

Comments

Constraint Value

"001°B -- Write only

ETSI

253

TR 101 666 V1.0.0 (1999-05)

A second constraint, F_INITrsp_002 can be built by modifying the base constraint, F_INIT_rsp001:

ASN.1 PDU Constraint Declaration

Constraint Name
PDU Type
Derivation Path

F_INITrsp_{x)2
F_INITIALIZEresponse
F_INITrsp_0{1,

Comments
Constraint Value
OMIT implementation_information.
REPLACE presentation_context_management BY TRUE,
REPLACE functional_units BY Functional_Unies_(002,
REPLACE checkpoint_window BY 7

where Functional_Units_002 is an ASN.1 PDU Constraint Declaration.

F.3 Base and modified constraints

Suppose that we have the following PDU type definition:

PDU Type Definition

PDL Name PDU_R
PCO Type
Commenits This is the declaration of the protocol data unit PDU_B

Field Name

Field Type Comments
FIELDI INTEGER
FIELDZ HEXSTRING
FIELD3 BITSTEIMNC:
FIEL.ID4 BOOLEAN
A base constraint for PDU_B could be:
PDU Constraint Declaration
Constraint Name 1 0
PDU Type PDIL_B
Derivation Path
Comments :
Field Name Field Value Comments
FIELDI 0
FIELD2 ‘FF'H
FIELID3 Y B
FIELD4 TRUE

ETSI

254 TR 101 666 V1.0.0 (1999-05)

A modified constraint C1 to the base constraint CO could be:

PDU Constraint Declaration
Constraint Name : Cl
PDU Type s PDU_E
Derivation Path S
Comments :
Field Name Field Value Comments
FIELD In the base CO this field value 15 O

We can further build on C1:

PDU Constraint Declaration

Constraint Name : C2
PDU Type : PDU_B
Derivation Path s (LT
Comments :

Field Name Field Value Comments
FIELD?2 - This field is omitted
FIELD3 ? Any legal value accepted

Reference to a modified constraint in a behaviour tree is made using its name.

F.4 Type definition using macros

PDU type definition with macro symbol:

PDU Type Definition

PDU Name : T_CONNECT3
PCO Type

Comment : Hivstration of TTCN macro mechanism

Field Name Field Type Comments
<- T _AddressGroup
T Class INTEGERO4 Defined as a simple ype
UserData LASSwing

ETSI

255

TR 101 666 V1.0.0 (1999-05)

Structured Type Definition

Type Name :
Comments :

T_AddressGroup

Element Name

Type Definition

Comments

Source
Destination

BITSTRING [4]
BITSTRING [4]

Length is 4 bits
Length is < bits

PDU Constraint Declaration

Constraint Name
PDU Type
Derivation Path
Comment

TCON_Class4_3
T_CONNECT3

Ficld Name

Field Value

Comments

T Class
UserDiata

GoodAddress

4

"one, two, threg”

Reference to the structured type con-
straint declaration.

Structured Type Constraint Declaration

Constraint Name
Structured Type
Derivation Path
Comment

sood Address
T_AddressGroup

Element Name

Element Value

Comments

Source
Diestination

VI0TB
THrB

ETSI

256 TR 101 666 V1.0.0 (1999-05)

F.5 Use of REPEAT

Test Case Dynamic Behaviour

Test Case Name : RPT_EX2
Group . TTCN_EXAMPLES/REPEAT_EXAMPLE2/
Purpose . Tollustrate use of REPEAT and parameter passing by textual substitution.
Defaults
Comments
Nr Label Behaviour Description Constraint Ref Verdict Comments
1 (FLAG := FALSE, COUNTER :=0)
2 A Al
3 REPEAT STEP2 (FLAG, COUNTER)
UNTIL [FLAG OR COUNTER=3]
4 [FLAG]
5 D D1 PASS
6 [CONTER=3]
7 lE El FAIL
STEP2 (FL:BOOLEAN; NUMBER:INTEGER)
8 ? B (FL:=TRUE) B1
9 ? C (FL:= FALSE, NUMBER := NUMBER + 1 C1

Detailed Comments:

This example shows how repeated execution of STEP2 can be ended either by reception of message B, or reception of dassgethdn
the lines following the REPEAT construct, Boolean expressions are used to describe that in the case where B is receiedd, isntes Sy
sent, and in the case where three other messages are received Eis to be sent.

This example also illustrates the effect of parameter passing by textual substitution. This means that FL is replacedcabg RNWN@GBER is
replaced by COUNTER, thus making it possible for FLAG and COUNTER to obtain the results of the assignments in STEP2.

F.6 Test suite operations

Using a Test Suite Operation to set a checksum:

Test Suite Operation Definition

Operation Name : CRCO(P:A_PDLU)
Result Type : INTEGER
Comment :

Description

Calculate and return the checksum of the PDU P according to the CRC algorithm.
NOTE - In a real ATS this operation wounld be described in greater degail,

ETSI

257 TR 101 666 V1.0.0 (1999-05)

PDU Constraint Declaration

Constrainlt Name : CONSI
PDLU Type : A_PDIL
Derivation Path
Comment :
Field MName Field Value Comments

Checksum

A_PDU.Checksum ;= CRC{CONS 1} in the approprait SEND event in a behaviour description will set the Checksum
in the constraint CONST.

F.7 Example of a Test Suite Overview

In the Test Suite Structure table shown below, a hierarchy of the groups and Test Cases in the suite is defined. Within
this structure, test selection expressions are identified which govern the selection of Test Groups and the Test Cases for
execution. For example, SELEXP_100 is referenced as the controlling expression for Feature X of the protocol. If
Feature X is not supported, none of the Test Cases in the suite which are within the Feature X group will be selected.

Test Suite Structure

Suite Name : TEST_SUITE_A
Standards Ref ISOMEC xxxx
PICS Ref : ISOMEC aaaa
PIXIT Rel ¢ ISOVIEC bhbbh
test notation(s) + D8 1est method
Comments ¢ This is an example only.

Test Group Reference Selection Rel Test Group Objective Page Nr
FEATURE_X SELEXP_[00 | Test opticnal Feature X 50
FEATURE X/ATTR_A Test mandatory Attnbute A S0
FEATURE_X/ATTR_A/NEGOTIATION SELEXP_I01 | Test optional Attribute A negotiation A0
FEATURE_X/ATTR_AMSAGE Test Attribute A usage lili]
FEATURE_X/ATTRE_B Test mandatory Feature Y B0

To determine whether or not Feature X is supported, SELEXP_100 must be evaluated. This is done by determining
whether or not the Test Suite Parameter in SELEXP_il00TST_FX, is TRUE. If it is, the processing within the

group continues. Note that tests for attribute A will be selected (no expression), but that tests for the optional negotiation
feature of Attribute A will only be selected if SELEXP_101 is TRUE.

ETSI

258 TR 101 666 V1.0.0 (1999-05)
Test Case Index
Test Group Reference Test Case Id | Selection Ref Description Page Nr
FEATURE_X/ATTR_AMNEGOTIATION FX_ANEG_I | SELEXP_102 | Req. Aur. A, valid neg. S0
FX_ANEG_2 | SELEXP_102 | Reg. Awtr. A, invalid neg. 52
FX_ANEG_3 Rev, Attr, A, invalid neg. 54
FX_ANE(G_ 4 Rov, Aur. A, invalid neg. 56
FEATURE_X/ATTR_AJISAGE FX_AUSE_] SELEXP_103 | Use Acr. A (VATL=0). 60
FX_AUSE_2 Rov, Ater. A 62
FX_ALSE 3 Row. Afir, A 64

If Attribute A negotiation is supported, Test Case FX_ANEG_01 through FX_ANEG_04 are candidates for selection.
However, Test Cases '01' and '02' will only be chosen if the additional selection expression SELEXP_102 is TRUE. Test
Case FX_ANEG_01 will only be selected if the PICS indicates that a value of zero for Attribute A is supported.

The PICS and PIXIT questions used in the test selection expressions are declared as Test Suite Parameters.

Test Suite Parameter Declarations

Parameter Name

Type

PICS/PIXIT Ref

Comments

TSP_FX
TSP_FXA_N
TSP_EXA_NINIT
TSP_FEXA_MINWVAL

BOOLEAN
BOOLEAN
BOOLEAN
INTEGER

PICS question FX1
PICS question FX2
PICS question FX3
PIXIT question FXVAL

(): Feature X supported?
(): Feat. X neg supported?
Q) Does [UT req. neg?

O Will TUT use VAL=0

The test selection expressions are declared as Boolean expressions, as defined in 11.5.

Test Case Selection Expression Definitions

Expression Name

Selection Expression

Comments

SELEXP_100
SELEXP_I10]
SELEXP_102
SELEXP_103

TSP_FX
TSP_FXA_N
TSP_FXA_NINIT
TSP_FXA_VAL=0

Feature X supponted.
Feature X negotiation

Req. Feature X negotiation
Accept Feature X val=(),

ETSI

259 TR 101 666 V1.0.0 (1999-05)

F.8 Example of a Test Case in TTCN.MP Form

For the sample Test Case given below:

Test Case Dynamic Behaviour

Test Case Name ¢ PACKET/PA/PROPER/T_(2

Reference T 7.02

Purpose : Verify the TUT acknowledges a Clear cause code 05 while in state pd

Default

Comment

Nr | Label Behaviour Description Constraints Ref Verdict | Comments
0 +R1_PREAMBLE(SV()
1 +P4D1_PREAMBLE
2 CLEAR START TD CLE_D{LC) clear cause=5
3| L CLEARC CANCEL TD CLRC_0(LC) (PASS)
A +R1_POSTAMBLE
5 MWLEAR CANCEL TD CLR_LLC) (PASS)
i +R1_POSTAMBLE
7 TRESTART [RST_ON_ERR] CANCEL TD STRT_DTEA (PASS}
8 'RESTARTC STRTC
9 +R1_POSTAMBLE
10 +DIC_UNEXPECTED
11 -= L1
12 +RERT_UNEXPECTED
13 TTIMEQUT TD FAIL
14 MO THERWISE CANCELTD FAIL

The TTCN.MP that corresponds to this table is:

$BeginTestCase
$TestCaseldT_7_02
$TestGroupRefPACKET/P4/PROPER/T_02
$TestPurpose* Verify the IUT acknowledges a Clear cause code 05 while in state p4 */
$DefaultsRef

$BehaviourDescription

$BehaviourLine

$Label

$Line[0] +R1_PREAMBLE(SVC)

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line[1] +P4D1_PREAMBLE

$Cref

$Verdict

ETSI

260

$End_BehaviourLine
$BehaviourLine

$Label

$Line[2] ICLEAR START TD

$CrefCLR_0(LC)

$Verdict

$Comment /* clear cause =5 */
$End_BehaviourLine
$BehaviourLine

$LabellL1

$Line [3] ?CLEARC CANCEL TD

$CrefCLRC_0(LC)

$Verdict(PASS)

$End_BehaviourLine
$BehaviourLine

$Label

$Line [4] +R1_POSTAMBLE

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] ?CLEAR CANCEL TD

$CrefCLR_LO(LC)

$Verdict(PASS)
$End_BehaviourLine
$BehaviourLine

$Label

$Line[4] +R1_POSTAMBLE

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

ETSI

TR 101 666 V1.0.0 (1999-05)

261

$Line[3] ?2RESTART [RST_ON_ERR] CANCEL TD

$CrefSTRT_DTEA

$Verdict(PASS)
$End_BehaviourLine
$BehaviourLine

$Label

$Line[4] IRESTARTC

$CrefSTRTC

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line[5] +R1_POSTAMBLE

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] +D1C_UNEXPECTED

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line[4] > L1

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line[3] +RSRT_UNEXPECTED

$Cref

$Verdict

$End_BehaviourLine

ETSI

TR 101 666 V1.0.0 (1999-05)

262 TR 101 666 V1.0.0 (1999-05)

$BehaviourLine

$Label

$Line[3] ?TIMEOUT TD

$Cref

$VerdictFAIL
$End_BehaviourLine
$BehaviourLine

$Label

$Line[3] POTHERWISE CANCEL TD

$Cref

$VerdictFAIL
$End_BehaviourLine

$End_BehaviourDescription

$ENnd_TestCase

The layout shown here is only intended to aid readability.

F.9 Use of Component Reference for Field Value
Assignment in Constraints

When a number of field values in a received PDU has to be assigned to the fields in several subsequent send PDUs, the
Dynamic Behaviour table can become cluttered with lengthy assignment statements using the dot notation.

TTCN allows PDU field value assignments in the constraint tables using component reference associated with a formal
parameter. Received ASPs or PDUs in the Behaviour table may be assigned to a variable and subsequently passed as an
actual parameter in the constraints reference to a formal parameter in the constraint table. The constraint table then
specifies the required field assignments using the formal parameter and its components. The following tables illustrate
these principles:

Figure F.1 illustrates possible field assignments in the behaviour specification without the use of component reference.

Test Case Dynamic Behaviour

Test Case Name : STYLE1L

Group : TTCN_EXAMPLES/

Purpose . Toillustrate the use of component references in the behaviour description.

Defaults :

Comments :

Nr Label Behaviour Description Constraint Ref Verdict Comments
1 ?InASP (v := InASP.userdata) Cinl
2 IOutASP Coutl

(OutASP.userdata.FieldA := v.Field2,
OutASP.userdata.FieldC := v.Field3)

Detailed Comments:

Figure F.1: Lengthy assignment statements clutter the behaviour description

ETSI

263 TR 101 666 V1.0.0 (1999-05)

Figure F.2 illustrates the simplification of the behaviour specification resulting from the use of component reference in
constraints.

Test Case Dynamic Behaviour

Test Case Name o TTCN_EXAMPLES/STYLEI

Reference o ST_EXI

Purpose : Toillustrate the use of component references in the behaviour description

Default

Nr Label Behaviour Description Constraints Ref Verdict Comments
! NnASPv:=InASP userdala) Cinl
2 HOutASP Cour2(v)

Figure F.2: Lengthy assignment statements are removed form the behaviour description

For simplicity, the definitions of all required ASP and PDU types have been omitted.

The ASP types InNASP and OutASP consist of the single parameter field userdata, which is of the type InPDU and
OutPDU respectively. INPDU contains the three fields Field1, Field2 and Field3, which all are of the type IA5String.

OutPDU contains the three fields FieldA, FieldB and FieldC, which also are of the type IA5String.
v has to be declared as a Test Case Variable of a PDU type.

The following tables give the required ASP and PDU constraint declarations:

ASP Constraint Declaration
Constraint Name @ Coutl
ASF Type i OwASF
Derivation Path :
Comments H
Parameter Name Parameter Value Commenls
userdata CoutPDLN
ASFP Constraint Declaration
Constraint Name @ Cowt2(p; PDU)
ASP Type : OutASP
BPerivation Path
Comments :
Parameter Name Parameter Value Comments
userdata CoutPDUZ2(p)

ETSI

264 TR 101 666 V1.0.0 (1999-05)
ASP Constraint Declaration
Constraint Name Cinl
ASP Type 1 InASP
Derivation Path :
Comments :
Parameter Name Paramecter Value Comments
userdata CinPDU
PDU Constraint Declaration
Constraint Name ComPDN
P Type : OwPDU
Derivation Path :
Commenis :
Field Name Field Value Comments
FieldA AT
FieldB B
FieldC "
PDU Constraint Declaration
Constraint Name : CoutPDU2(p : InPDLI)
PDU Type o OwlPDU
Derivation Path
Comments
Field Name Field Value Comments
Field A p.Field2
FieldB i
FieldC p.Field3

PDU Constraint Declaration

Constraint Name
PDU Type
Derivation Path H
Comments :

CinPDyU
InPIDL

Field Name

Field Value

Comments

Field]
Field?

Field3

ETSI

265 TR 101 666 V1.0.0 (1999-05)

F.10 Multi-Party Testing

Figure F.3 illustrates a test component configuration for a typical multi-party testing context. Only a single upper tester
is shown, since communication among multiple upper testers and/or Upper Tester Control Function (UTCF) is only
applicable to contexts that exclusively use the local test method.

In the example shown in figure F.3, for simplicity, each lower tester is specified by a single PTC and the LTCF is
specified by the MTC. Another PTC is used to specify the upper tester. Co-ordination points are used between the lower
tester PTCs and the MTC.

This is a straightforward use of concurrency to meet multi-party requirements, but it should not be taken to imply that
there has to be a one to one relationship between lower testers and PTCs, or between the LTCF and the MTC, or
between the upper tester and a PTC.

MTC_LTCF
F
PTC_
uT
J
PTC
LT3 t
PTC_ PCO_UT
prc_ | 112
LT1
&

? T PCO_LT3
PCO_LT2
PFCO_LT1 l

'

X - Service Provider(s)

Figure F.3: Example Test Component Configuration for Multi-Party Testing with a Single Upper Tester

ETSI

266 TR 101 666 V1.0.0 (1999-05)

F.11 Multiplexing/Demultiplexing

PCOTMuxA) PCO2(MuxA)

Figure G4 1)

Figure (.4 a)

Figure F.4: Possible Configurations for Multiplexing/Demultiplexing Test Cases

F.12 Splitting and Recombining

In order to specify test cases involving splitting and recombining, there is no alternative to specifying explicitly the
splitting and recombining behaviour in the test case. Concurrency can be used to separate the splitting and recombining
behaviour into one test component, MTC1 in F.5, from the protocol behaviour that lies above this function by using a

second test component, PTC1 in F.5.

PCOa [PCOb | PCOC

Figure F.5: Possible Configuration for Splitting/Recombining Test Cases

F.13 Multi-Protocol Test Cases

Multi-protocol test cases, including those using the embedded variants of the test methods, can use concurrent TTCN in
order to separate the behaviour associated with each protocol into a different test component, as illustrated in F.6, which
shows an example configuration for testing Session embedded under FTAM

ETSI

267 TR 101 666 V1.0.0 (1999-05)

FTAM -
CP_ACSE
¥
ACKSE e

CP_Presentation

¥

Presentation ok

CP_Session

Y

Session

PCO_Transport

Figure F.6: Possible Configuration for Multi-Protocol Testing - Session embedded under FTAM

F.14 Example of Modular TTCN

—_ M1 -
I's M2
Imgart impert Midiibe Exparts Module Exports
Mame: N1 Homs: M2 Nams: M1 Hame: 2}
Sourceld Sourcald
g a o .y
I PRE o PR
Test Slep Test Case Tast Step
Name: PHE Name: [Hame: PRE
+ PRE

TS (expaniled)

Tesl Step Test Casa Tesl Sleg
Mame: I'RE Kame: TO Hame: M2 'RE
+ M2X_P'RE b

Figure F.7: Example of Modular TTCN

ETSI

268 TR 101 666 V1.0.0 (1999-05)

The test step PRE (which is defined in the module M2) is implicitly imported from M1 in TS

ETSI

269 TR 101 666 V1.0.0 (1999-05)

Annex G (informative):
Style guide

G.1 Introduction

This annex presents some recommended style rules that can be employed when using TTCN. The aim is to provide a
basic consistency between the TTCN styles used by different test suite specifiers.

G.2 Test case structure

In order to have a better analysis of test results and to identify easily whether or not the test purpose is achieved, the
consideration of the following points on structuring Test Cases is suggested:

a) the test suite specifier should clearly identify the preamble and postamble sub-trees;

b) the postamble and the preamble should be specified through a single test tree attachment (local to the Test Case
or from the Test Step Library) in the Test Case main behaviour tree. Such test trees may attach subsequent sub-
trees;

c) once the preamble and postamble(s) sub-trees are identified within a Test Case main behaviour tree, the
remaining events in the Test Case main behaviour tree may be considered to be related to theitest body (
events related to the test purpose).

Using this mechanism the boundaries between preamble, test body and postamble within a Test Case can be easily
identified. Labels may be used to indicate the start and end of the test body in the conformance log.

EXAMPLE G.1: Identification of pre- and post ambles

Test Case Dynamic Behaviour
Test Case Name : ST_EX1
Group : TTCN_EXAMPLES/STYLE1/
Purpose . Toillustrate identification of pre- and post ambles.
Defaults :
Comments
Nr Label Behaviour Description Constraint Ref Verdict Comments
1 + Preamble related to purpode
2 TA Al
3 Body ?B B1
4 CinBody ?C C1 (PASS)
5 + postamble_1 related to purposg
6 DinBody ?D D1 (PASS)
7 + postamble_2 related to purposg
8 ?E El INCONC
9 ? OTHERWISE FAIL
Detailed Comments:

Since final verdicts cause termination of Test Case execution, a test suite specifier can not assign a final verdict in the
body if it is necessary to enter the postamble. Still, it is desirable to give a verdict at the point in the Test Case where th
test purpose is achieved and not hide verdicts in postambles. It is therefore recommended to state preliminary results in
the verdict column if a test purpose is achieved but a postamble should still be executed. In the definition of the
postamble, a test suite specifier may use the result variable R as a verdict assigned at the leaves of the behaviour tree, to
indicate that if no errors were encountered in the postamble the verdict is determined in the test body.

ETSI

270 TR 101 666 V1.0.0 (1999-05)

G.3 Use of TTCN with different abstract test methods

G.3.1 Introduction

This subclause ties the TTCN with the abstract test methods defined in ISO/IEC 9646-2. It gives the TTCN syntax used
to express the occurrence of events at PCOs, and constraint references for the various abstract test methods.

It is assumed that the ASP type definitions define the type of the UserData parameter as PDU. It is therefore possible to
use chaining of constraintisd(., to refer to a constraint for an ASP that contains a PDU in the UserData parameter), as a
reference to an ASP constraint that has a PDU constraint as an actual parameter.

G.3.2 TTCN and the LS test method

Possible TTCN events:
Behaviour Description Constraints Reference
LT! N_ASP N_ASPconstraint (N_PDUconstraint)

LT? N_ASP N_ASPconstraint (N_PDUconstraint)

UT! T_ASP T_ASPconstraint
UT? T_ASP T_ASPconstraint

G.3.3 TTCN and the DS test method

Possible TTCN events:
Behaviour Description Constraints Reference
LT! N_ASP N_ASPconstraint (T_PDUconstraint)

LT? N_ASP N_ASPconstraint (T_PDUconstraint)

UT! T_ASP T_ASPconstraint
UT? T_ASP T_ASPconstraint

G.3.4 TTCN and the CS test method

Possible TTCN events:

Behaviour Description Constraints Reference

LT! N_ASP N_ASPconstraint (T_PDUconstraint)
LT? N_ASP N_ASPconstraint (T_PDUconstraint)

Exchanging TM_PDUs between the LT and TM protocol implementation in the IUT, via the connection that is used for
testing. Note that in this case the PDU definition shall have declared its UserData field as of type PDU.

LT! N_ASP N_ASPconstraint (T_PDUconstraint (TM_PDUconstraint))
LT? N_ASP N_ASPconstraint (T_PDUconstraint (TM_PDUconstraint))

ETSI

271 TR 101 666 V1.0.0 (1999-05)

G.3.5 TTCN and the RS test method

Possible TTCN events:

Behaviour Description Constraints Reference

LT! N_ASP N_ASPconstraint (T_PDUconstraint)

LT? N_ASP N_ASPconstraint (T_PDUconstraint)

Since there is no UT or TMP the IMPLICIT SEND is used to describe send events at the side of the IUT connection.
<IUT! N_ASP> N_ASPconstraint (T_PDUconstraint)

<IUT! T_PDU> T_PDUconstraint

G.4 Use of Defaults

As a matter of style, a test suite specifier should avoid situations where the attempt of an alternative of a Default
behaviour is the normal specification of #pectedehaviour of the IUT. It would be the case for instance if a Test

Step represents the behaviour of the LT or UT and the IUT, when valid test events are sent, and if the responses of the
IUT to invalid or inopportune test events sent by the LT or UT were specified in Defaults implicitly attached to that Test
Step when called by other Test Cases. Such Defaults would have to bear Pass verdicts.

This is not a recommended practice, when the attachment of a Default tree is left unspecified and carries a degree of
uncertainty. Explicitly attached trees or the main tree should be used instead.

G.5 Limiting the execution time of a Test Case

In previous versions of TTCN, an ELAPSE statement was defined, allowing the test case specifier to limit the abnormal
duration of a Test Case, if for instance a snapshot processing never ends, or if an uncontrolled recursion of tree
attachment occurs.

The ELAPSE statement is no longer part of TTCN, as the problem it was intended to solve is considered to be outside
the scope of test suite specification.

To limit the execution time of a Test Case, it is now recommended that the test realizers implement local mechanisms in
the means of testing. Explicit timers can be used together with the TIMEOUT event whenever a limit needs to be placed
on waiting for an event to occur.

G.6 Structured Types

a) In pre-DIS versions of TTCN, generic fields and generic values were defined as features allowing either to group
several fields or values in a constraint table, and/or to reuse such a group in several constraint tables of similar
contents;

b) In this version, the grouping of ASP parameters and PDU (ex-data types) fields is introduced first in the
declarations part, for the sake of completeness of that part, and consistency with the use of ASN.1 in TTCN.
Refer to 11.2.3.3 for a definition of the Structured Type definition tables. Once a Structured Type is declared, it
can be used by one or more ASP type or PDU type definitions. The ASP and PDU definition table can therefore
be "flat" (no group, or a group introduced by a macro call), or structured (by means of structure specifications for
named ASP parameters or PDU fields);

¢) Inthe constraint part, structure elements has to be assigned values in Structured Type constraint tables. The
names of these constraints can be used in the base ASP or PDU constraint tables as values.

ETSI

272 TR 101 666 V1.0.0 (1999-05)

The ASP and PDU constraint tables can therefore also be:

- flat, i.e., assigning values to all parameters or fields individually, and only referring to the structure constraint
tables by macro call; or

- structuredj.e., replacing values of declared groups of parameters or fields by names of group constraints.

d) If the declared ASP or PDU is structured by use of some ASP parameters or PDU fields being specified by
referenced to structure elements, then the constraints have to have the same structure.

Whichever form is used, ASP/PDU constraints can also be:
- modified; and

- parameterized, by means of a parameter to be bound to a field/parameter value or to a Structured Type
constraint.

e) The Structured Type constraint tables replace the generic field tables of previous versions of TTCN;
f) The concept of generic values is deleted;

g) Examples are given in annex F.

G.7 Abbreviations

In previous versions of TTCN, it was allowed to declare, in a specific table, abbreviations to be used in the behaviour
columns of the Test Cases and Test Steps. This facility proved to be confusing and has been restricted so that only the
names of ASPs and PDUs, when used in event lines, can be abbreviated. This facility is now called Alias.

G.8 Test descriptions

Informal behaviour descriptions, giving more detail than the test purposes, but less detail than the TTCN specification of
the Test Cases may, if desired, be included in a standardized ATS.

Such test descriptions may use text, time sequence diagrams or any other notation and be located in the comments field
of tables, an informative annex or both.

The TTCN specifications of the Test Cases always take precedence over such informal test descriptions.

G.9 Assignments on SEND events

TTCN allows for overwriting constraint values prior to a SEND event in an assignment statement on the event line. This
means that first the data to be sent is constructed from the constraint definition and then the assignments are executed.

This feature should be used with care since it may lead to confusion for the test suite reader what the actual value is that
is to be sent. In particular, it is considered to be bad style to use the same constraint for both sending and receiving.

G.10 Multi-service PCOs

Where a PCO covers more than one SAP the precise specification of such a PCO is given by the set of ASPs and PDUs
that can occur.

EXAMPLE G.2: An FTAM PCO

ETSI

273 TR 101 666 V1.0.0 (1999-05)

PCO Declarations

PO Mairme

B 'r}in.'

Rale

Coanments

A_P_SAPs

P I,I'ul-r:|§|~. which we e obvserve ol ACSE
ASPy and all Presensstion ASPs excepa P-C0N-
NECT, P<EELEASE angd P-ABORT.

The PCO "L" is of type A_P_SAPs which is able to observe all ACSE and Presentation ASPs, excluding P-CONNECT,
P-RELEASE and P-ABORT. The type column shows which SAPs belong to the set to be observed by the PCO, "A" and

"P", each SAP separated by underscore (

). The comments column describes exactly what can be seen by the PCO.

This method is extensible to many SAPs, each of which would be separated by an underscore.

ETSI

274 TR 101 666 V1.0.0 (1999-05)

Annex H (informative):
Index

H.1 Introduction

This annex presents an alphabetical index of terms and acronyms used in the present document. For each term or
acronym, the index gives a set of references in terms of clause, figure and table numbers, either in the main body, or in
the annexes of part 3. The significance of each reference is indicated as follows:

a) definitions of the terms and acronyms arbalu;
b) major uses of the term or acronyms arisdilics;

¢) other uses are in normal font.

H.2 The Index

A

ABSENT:A.4.2.5

Abstract Service Primitivel, 4.1

Abstract Syntax Notation Oné.3
ABSTRACT SYNTAX:A.4.2.5

Abstract test casé, 8.2, 11.13.215.17.1
Abstract test suitet, 2, 4.1, 8.2

Abstract testing methodolog§:

Access to behaviour descriptidhb.13.2
ACTIVATE procedureB.5.19.1
ACTIVATE: 15.4.1,15.14 15.18.415.18.4 15.18.615.18.6 A.4.2.4B.5.5.4B.5.5.5B.5.18.2B.5.19.2
Actual parameterst5.13.515.16.2
ActualParList.B.5.5.3

Alias definition:11.1, A.3.3.13.14

ALL: A.4.2.5

Ancestor nodel5.14

AND: A4.2.4
AnyOne:12.6.5.112.6.6.1
AnyOrNone:12.6.5.212.6.5.312.6.6.1
AnyOrOmit: 12.6.4.412.6.6.1
AnyValue:12.6.4.312.6.5.112.6.6.1
APPEND_DEFAULTSB.5.5.4
APPEND_TO_LEVEL:B.5.25

Applicable encoding rules3.6.1
APPLICATION: A.4.2.5

Arithmetic operatorsi1.3.2.2

Array referencesl5.10.2.3

ASN.1 ASP constraint€4.2 14.3,A.4.2.15
ASN.1 ASP type definition11.14

ASN.1 CM constraintsl4.9,A.4.2.15
ASN.1 CM type:11.17.3

ASN.1 commentsl1.2.3.411.15.414.1
ASN.1 compact constraintk.2.5

ASN.1 constraint declaratiod2.6.6.1 14,A.3.3.22 E.2.5 F.2
ASN.1 constraint12.6.6.2

ASN.1 constraints12.1, 12.6.5.214.1
ASN.1 dash symbolt4.1

ASN.1 defined data object$5.10.2
ASN.1 encoding rulest1.15.1

ASN.1 identifier:3.6.48

ETSI

275 TR 101 666 V1.0.0 (1999-05)

ASN.1 module11.2.3.511.14.5

ASN.1 PDU constraint declaratioh4.4

ASN.1 PDU constraintst4.2 A.4.2.15

ASN.1 PDU type definition11.15

ASN.1 type constraint$t.3.4,11.16.4 14.2,A.4.2.15

ASN.1 type definition11.2.3.4 11.2.3.511.18.214.514.8 A.4.2.1A.4.2.6

ASN.1type:11.2.3.411.2.3.511.8.111.8.311.14.211.14511.15.412.6.2

ASN.1:1,2,4.3 8.1,9.511.2.211.2.3.411.6 11.7,11.14.311.14.411.14511.15411.15.511.17.312.2 12.6.],
12.6.4.215.10.2A.42.1A.425E.2.1, G.6

ASP constraint compact proforma:2.2

ASP constraint declaratioB.6.62 13.3, d)A.5.1, E.2.5

ASP constraints?.3.4

ASP identifier:11.21

ASP parameter3.6.66 11.2.1 11.14.2 12.5 12.6.2 12.6.3,12.6.4.1 12.6.4.2 12.6.4.3 12.6.4.4 12.6.4.5 12.6.4.7
12.6.4.812.6.5.112.6.5.312.6.6.2

ASP specified by referenc#1.14.5

ASP type definition3.6.3 3.6.68 11.1,11.2.2 11.14, 11.19, 11.2@.3.3.19A.3.3.22G.3.1

ASP type:11.3.4.214.3 15.7.2

ASP: 3.6.9 3.6.13 3.6.25 3.6.38 3.6.44 3.6.57 3.6.6Q 3.6.68 4.1, 8.1, 9.5 11.2.1 11.2.2 11.2.3.3 11.3.4.1
11.3.4.211.6 11.7,11.1Q 11.14,11.14.211.14.311.14.411.14511.15 11.15.1 11.15.511.16.4 11.19
11.2Q 11.21,12.1, 12.4 12.6.1, 12.6.3,13.2 13.6 14.5 14.6 14.8 15.2.1.315.9, 15.9.5.315.9.6 15.10.1
15.10.2.215.10.2.315.10.3 15.10.6 15.16.1 A.4.2.7 A.4.2.8 B.5.2.3B.5.8.2 B.5.9.2 B.5.10.2 B.5.11.2
B.5.12.2B.5.13.2B.5.16.2E.2.1, G.6, G.7,G.10

ASPs specified in ASN.1t1.14.4

Assignment rules15.10.4.2

Assignment:11.3.4.3 11.3.4.6 11.8.2 11.8.4 15.6 15.8 15.9.3 15.9.4 15.10.1 15.10.4,15.10.5 15.10.6,15.11],
15.16.3,15.17.2 B.5.16, G.9

ATS:3.6.744.1,6,10.1,10.2 10.310.4 10.511.1,11.3.4.1b),11.9 11.14.411.16.112.1, A.1, A5.1

Attach construct3.6.2 15.2.315.8 15.17.1 B.5.5.4B.5.5.5E.3.1

ATTACH: 15.9.10.115.13.115.13.4.1E.3.1

Attached tree15.13.3

Attachment construcB.5.1

Attribute: 11.15.211.18.113.4

Attributes of values12.6.6

AUTOMATIC: A.4.2.5

B

Backus-Naur Forn4.3

Base constrainf3.6.3 3.6.24 3.6.44 13.6,13.7, A.3.3.19A.3.3.22E.2.3 F.3

Base type3.6.4 11.18.2

BEGIN:11.3.4.4A.4.2.5

Behaviour description3.6.4Q 3.6.55 3.6.78 3.6.9Q 11.1Q 11.21, 12.1, 12.3 15.2.1 15.2.1.3 15.2.5 15.5,15.13.2
15.15A4.2.10A5.1,A52E.3.1G.3 G.8

Behaviour line3.6.5 3.6.14 3.6.25 15.2.5B.5.1

Behaviour tree3.6.6 3.6.8 3.6.42 3.6.49 3.6.59 3.6.83 3.6.84 3.6.85 3.6.87 15.2.1.315.2.2 15.4.1 15.5 15.9.5,
15.11 15.13.315.13.4.115.14 15.16.215.17 15.18.1B.5.1, B.5.5.4B.5.5.5 G.2

BehaviourLineB.5.2.5

BER:11.15.211.15.411.15.511.16.413.4 14.4

Binding of variables11.8.4

Bit reference15.10.2.4

BIT: A.4.2.5

BIT_TO_INT:11.3.3.2.111.3.3.2.3A.4.2.4

BITSTRING:11.2.211.18 15.10.2.415.10.4.2A.4.2.4

Blank entry:3.6.7

BMPString:A.4.2.5

BNF grammar for TTCN7.2

BNF:4.3 7.2 A3

Boolean expressior5.10.1

Boolean operatord1.3.2.4

BOOLEAN:11.2.211.3.3.3.111.3.3.3.2b), 15.10.2.4A.4.2.4 A.4.2.5 B.5.15

Bound variable11.8.2,15.16.2 15.18.2

Bounded free tex{7.4

BUILD_SEND_OBJECTB.5.8.1

ETSI

276 TR 101 666 V1.0.0 (1999-05)

BY: A.4.2.4

C

Calling tree:3.6.2 3.6.8 3.6.42 15.13.315.17.315.18.5

CANCEL operation15.12.3

CANCEL:15.12.115.12.3A.4.2.4B.5.14.2B.5.17

CANCEL_TIMER:B.5.17.1

CASE OF ELSE11.3.4.9

CASE:11.3.4.9A.4.2.4

Chaining of constraintst2.4, 15.10.2.2, 15.10.3, F.1.1.3, F.1.2.3, F.2.2.3, G.3.1

CHARACTER:A.4.2.5

Characterstring typet1.3.3.3.411.18.1

CharacterStringl1.2.2 12.6.5.112.6.5.215.10.4.2

CHOICE:11.3.3.3.212.4 14.5 14.8 15.10.2.215.10.2.3A.4.2.5

CLASS:A.4.2.5

CM constraint declarationd:3.8

CM parametersl1.17.1

CMtype:11.17.2,11.17.3

CM: 3.6.16 4.3 8.1, 11.3.4.2 11.6 11.7, 11.11 11.17.1 11.17.2 12.1, 13.6 13.8 14.9 15.9.2 15.9.3 15.9.4
15.9.5.315.9.5.4 15.9.8 15.10.2.2 15.10.2.315.10.3 15.10.6 15.16.1 15.17.5 15.18.8 A.4.2.7 A.4.2.8
B.5.2.3B.5.8.2B.5.9.2B.5.10.2B.5.11.2B.5.12.2B.5.16.2

CMs and defaults15.18.8

Collective comment7.3.3,11.2.3.2

Compact constraint tabl&.6.7, 3.6.9 13.1, E.1, E.2

Compact proformasAnnex E

Compact test case tab®:6.1Q E.1, E.3

Complement matching operatidh?2.6.4.1

COMPLEMENT:A.4.2.4

Complement12.6.4.112.6.6.1

Complex CMs11.17.1

Compliance$6, 15.17.3

Component of data object5.10.2.2, 15.10.2.3

COMPONENT:A.4.2.5

Component3.6.72

Concurrent test case behaviollf.2.4

Concurrent test cas8:6.17, 3.6.72

Concurrent TTCN3.6.11 3.6.12 3.6.47

Conflict between TTCN form$

Conformance logl5.17 B.3, B.5.20.2B.5.23.2 B.5.24,B.5.24.2G.2

Conformance test suité:

CONSTRAINED:A.4.2.5

Constraint declaration8.6.25

Constraints for RECEIVEL2.6

Constraints par3.6.13 9.5, 12,15.2.1.315.16.1 A.3.3.36.2

Constraints referenc&.6.5 3.6.14 3.6.25 12.2 12.3 15.2.1.3 15.16, 15.16.1B.1, B.5.8.2 B.5.9.2 B.5.10.2B.5.11.2
B.5.12.2B.5.13.2G.3

Construct3.6.61, 3.6.90 15.2.1.315.8 15.9.515.17.1 15.18.1 B.5.18

CONSTRUCT_TYPE_OFB.5.26

Coordinated test metho.3.4

Coordination message declaratio8sl

Coordination messag8.6.15 4.3, 8.1

Coordination point declaration8:1

Coordination point modelt1.11

Coordination point3.6.15 3.6.16 4.3

CP:3.6.72 3.6.734.3 8.2,11.11 11.13.1.111.13.1.311.13.2 15.2.4 15.9.5.315.9.8 15.9.10.1 15.10.6 A.4.2.4
A.4.2.13B.1,B.5.4.2F.11

CREATE and defaultst5.18.7

Create constructt5.9.10.1

CREATE procedureB.5.20.1

CREATE:8.2,11.13.1.111.13.1.215.9.1015.9.10.115.9.10.215.18.7A.4.2.4 B.5.18.2 F.15

CurrentLevelB.5.2.3

D

ETSI

277 TR 101 666 V1.0.0 (1999-05)

Data object12.2, 15.10.1

Declaration by referencd1.7

Declarations par3.6.17 9.5,11.1, 15.9.1 A.3.3.36.2G.6

DEF_REF _LISTB.5.26

Default behaviour proform&.6.18 B.1

Default behaviour3.6.18 3.6.19 3.6.22 15.1,15.2.1 15.4,15.18.1 15.18.215.18.4B.5.5 B.5.5.4,G .4
Default duration11.12

Default dynamic behaviouB.6.26 9.5

Default expansionl5.18.3

Default expressiont1.16.1 11.16.2

Default group referenc&.6.2Q 9.4, 10.6

Default group3.6.19 9.1

Default identifier:3.6.21 10.6 15.18.2 A.4.2.11

Default index:10.1, 10.6 A.5.1

Default library:3.6.2Q 3.6.22 3.6.23 3.6.52 9.4, 10.6 15.4.1, 15.18.2
Default objective10.6

Default reference3.6.23 15.2.1 15.18.2B.5.5.4

Default tree15.10.1 15.14 15.18.1 15.18.3A.3.3.33A.4.2.9E.3.1, G4
Default value13.6

DEFAULT: 11.3.3.3.115.18.1 A.4.2.5

Default:15.4.1, 15.18,15.18.2 15.18.6 B.5.1, B.5.2.3B.5.5.1 B.5.5.4B.5.5.5 G.4
Defect reportB.2

Definition by referencell.7

DEFINITIONS:A.4.2.5

DER:11.15.211.15.411.15.513.4 14.4

Derivation path3.6.24 13.4, 13.6 14.3 d), 14.4 A.3.3.22E.2.3
Derivation:A.1

Detailed commentst1.3.4.1

Distinguished valueA.4.2.6

Distributed test methodt.2, G.3.3

D0:11.3.4.8A.4.2.4

Done event15.9.10.2
DONE:15.9.1015.9.10.2A.4.2.4B.5.7.2B.5.12.2 F.15

Dot notation:15.10.2.2, 15.10.2.3

DS:4.2

Dynamic behaviour3.6.12 11.13.2

Dynamic chaining3.6.25 12.4

Dynamic part3.6.26 9.5,11.1, 15,A.3.3.36.2

E

EBDIF:A.4.2.4

Element:15.10.3

ELSE:A.4.2.4

EMBEDDED:A.4.2.5

Encoding definition11.3.3.2.111.15.211.15.411.15.511.16.111.16.211.16.4
Encoding operatiorit1.16.3

Encoding rules precedenckl.16.4
Encoding rules11.16.111.16.211.16.4
Encoding variations11.2.3.211.2.3.311.2.3.411.2.3.511.15.211.15.411.15.511.16.213.2 13.4 14.2 14.4
END:11.3.44A.4.2.4A.4.2.5
ENDCASE:11.3.4.9A.4.2.4
ENDIF:11.3.4.7

ENDVAR: 11.3.4.3A.4.2.4
ENDWHILE: 11.3.4.8A.4.2.4
Enumerated typeA.4.2.6
ENUMERATED:A.4.2.5A.4.2.6
Equivalence of TTCN form$

ETS:4.1
EVAL_VERDICT_ENTRY:B.5.23.1
EVALUATE_BOOLEAN: B.5.15.1
EVALUATE_CONSTRUCT:B.5.18.1
EVALUATE_EVENT: B.5.7.1
EVALUATE_EVENT_LINE: B.5.6.1
EVALUATE_LEVELS:B.5.4.1

ETSI

278 TR 101 666 V1.0.0 (1999-05)

EVALUATE_PSEUDO_EVENTB.5.14.1
EVALUATE_TEST_CASEB.1,B.5.3.1B.5.4.1
EVALUATE_TEST_COMPONENT

B.5.3.1
EVALUATE_TEST_COMPONENTB.1, B.5.20.1
EVALUATE_TEST_SUITE:B.1,B.5.2.3B.5.3.1
Evaluation treeB.1, B.5.2.1 B.5.2.3
Event line:15.9 15.10.1 15.10.4.115.10.6 G.7, G.9
Event matching15.10.6
EVENT_TYPE_OFB.5.26
Examples of tabular constraints:1
ExamplesAnnex F
EXCEPT:A.4.2.5
EXCLUDE_INCOMPATIBLE_ENTRY:B.5.23.1
Executable test case errér5
Executable test casé:5
Executable test suitd; 4.1
EXECUTE_ASSIGNMENTB.5.16.1
Execution of a test suit®.5.3
EXPAND_ATTACHMENTS:B.5.5.5
EXPAND_CURRENT_LEVEL:B.5.5.1
EXPAND_REPEATSB.5.5.3
EXPAND_SUBTREEB.5.5.5
Expanded test suit&.6.27
Expanding a set of alternative3:5.5.1
Expanding modularized test suit#:4
Expansion of aliase4:1.21
Expansion of default tree$5.13.7
Explicit external:3.6.28
EXPLICIT: A.4.2.5
Explicitly defined object3.6.29 3.6.32 3.6.33 3.6.36
Explicitly exported object3.6.3Q 3.6.32 3.6.36
Explicitly external object3.6.33
Explicitly imported object3.6.31, 3.6.32 3.6.36 3.6.37 3.6.39 10.8.1
Explicitly imported:B.1
EXPORT:A.4.2.5
Export:11.9
Exported object3.6.32
Exporting object typel0.7
External object3.6.28 3.6.33
External objectsC.3.1, C.3.2
EXTERNAL: 10.7,10.8.2 A.4.2.5C.2.2
Externally declared objecB.6.35
Externally defined objecB.6.46

F

F:15.17.215.17.3A.4.2.4

FAIL: 15.17.115.17.215.17.315.17.415.18.1 A.4.2.4B.5.23.2

Fail: 3.6.54

FALSE:10.3 10.4 11.2.2 11.3.3.3.111.3.3.3.211.3.4.711.3.4.811.16.1 11.16.2 15.11, A4.2.4 A.4.2.5B.5.8.2
B.5.9.2B.5.10.2B.5.11.2B.5.12.2B.5.15.2

FDT:4.3

Field encoding definition11.2.3.211.2.3.411.15.211.15.411.16.313.4

Field:15.10.3

FIFO:4.3 11.10

Final verdict:15.9.10.215.17.1 15.17.315.18.1 G.2

FIRST_LEVEL:B.5.25

Formal Description Techniqud-.3

Formal description techniqué:

Formal parameter list2.3 13.4, 13.7,d), 14.7,14.7,15.9.1 15.16.2 A.4.2.11 A.4.2.12

Formal parameter name precederfsdt.2.12

Formal paramete/A.4.2.14

Formal parameter®.6.85 15.7.2 15.13.5

ETSI

279 TR 101 666 V1.0.0 (1999-05)

Free text7.4
FROM:A.4.2.5

G

GeneralizedTimeA.4.2.5

GeneralStringA.4.2.4 A.4.2.5

Global result variable3.6.34

Global test step9.3.2

GOTO constructl5.14

GOT0:15.2.1.315.6 15.8 15.9.5.115.14 15.17.1 A.4.2.4B.1,B.5.5.1 B.5.18.2B.5.21,B.5.21, B.5.22
GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICTB.5.21 B.5.22 B.5.25

GraphicStringA.4.2.4 A.4.2.5

H

HEX_TO_INT:11.3.3.2.111.3.3.2.2A.4.2.4
HEXSTRING:11.2.211.18.111.18.215.10.4.2A.4.2.4
Hyphen symbol11.15.4

|

I: 15.17.215.17.3A.4.2.4

IA5String:A.4.2.4A.4.2.5

IDENTIFIER: A.4.2.5

Idle testing statel5.17.3

IF THEN ELSE:11.3.4.7

IF THEN:11.3.4.7

IF:A.4.2.4

IF_PRESENTA.4.2.4

IfPresent12.6.6.112.6.6.2

llegal variations of encodind:1.16.3

Implementation Under Test. 1

Implicit external:3.6.35

Implicit send event3.6.38 15.9.6

IMPLICIT SEND: 15.6 15.8 15.9.5.315.9.6 15.16.1 15.17.1 B.5.7.2B.5.13.2G.3.5

IMPLICIT: A.4.2.5

IMPLICIT_SEND:B.5.13.1

Implicitly exported object3.6.32 3.6.36

Implicitly external object3.6.33

Implicitly imported object3.6.37 3.6.37 3.6.39 10.8.1, B.1

Import part:9.5, 10.8.1C.1

IMPORT:A.4.2.5

Import: 10.8.2,C.3.1, C.3.3

Imported object3.6.27 3.6.30 3.6.333.6.3910.8.1B.4

INCLUDES:A.4.2.5

INCONC:15.17.115.17.215.17.3A.4.2.4B.5.23.2

Inconclusive verdict15.17.3

Indentation:3.6.61, 15.2.5 15.6 15.9.5 15.15 A.5.1, A5.2B.5.5.3

Index notation15.10.2.4

INFINITY: 11.2.3.211.14.211.15.211.17.211.18.212.6.4.612.6.6.1A.4.2.4

INPUT_Q:B.5.26

Inside values12.6.5

INSTANCE:A.4.2.5

INT_TO BIT:11.3.3.2.111.3.3.2.5A.4.2.4

INT_TO_HEX:11.3.3.2.111.3.3.2.4A.4.2.4

INTEGER:11.2.211.2.3.211.3.3.3.311.12 11.14.211.17.211.18.212.6.4.6 12.6.5.1 12.6.5.312.6.6.1 15.10.2.3
15.10.2.415.12.215.12.4 A 4.2.4 A.4.2.5A.4.2.6

INTERSECTION:A.4.2.5

Invalid field encoding definition14.2 14.4

Invalid field encoding11.2.3.311.16.312.6.4.2

Invalid test eventl5.17.4

IS CHOSEN:11.3.3.3.2A.4.2.4

IS_EXPANDED:B.5.25

IS PRESENT11.3.3.3.1A.4.2.4

IsDefault:B.1

ETSI

280 TR 101 666 V1.0.0 (1999-05)

IsExpandedB.1
ISO646StringA.4.2.5
IUT: 3.6.133.6.384.1,10.3 11.10 11.11,11.15.115.9.6 A.4.2.4G.3.4 G.4

L

Label:3.6.5 15.2.1.315.14

Length:11.18.212.6.6.1

LENGTH_OF:11.3.3.3.4A.4.2.4

Level of indentation3.6.40

LEVEL _OF:B.5.2.5B.5.25

Levels of alternatived8.5.2.5

Lifetime of events15.9.4

Line continuation15.2.5,A.5.1

Literal values11.16.111.16.2

Local result variable3.6.41, B.5.20.2

Local test method4.2, G.3.2

Local test step9.3.2

Local tree:3.6.42 3.6.85 3.6.86 15.2.5 15.4.1 15.6 15.10.1 15.13.2 15.13.3 15.13.4.1 15.15 A.4.2.9 A.4.2.10
A4.2.11A5.2

Local variables11.3.4.311.3.4.411.3.4.6

Location of object10.7

LOG procedureB.5.24.1

Lower Tester Control Functiod:. 1

Lower tester4.1, 11.13.1.2

LS:4.2

LT: 4.1, 11.9 11.1Q 15.2.1.3 15.8 15.9.1 15.9.5.1 15.9.6 15.9.7 A.4.2.4 B.5.8.2 B.5.9.2 B.5.10.2 B.5.11.2
B.5.12.2G.4

LTCF:4.1

M

Macro expansionl2.2 13.2 13.4, 15.10.315.10.3A.3.3.34A.4.2.8
Macro symbol11.14.311.15.3

Main test componen8.6.34 3.6.43 3.6.534.3,8.1, 11.13.1.111.13.1.315.9.10.1B.5.2.3B.5.3.1 B.5.23.2
MAKE_TREE:B.5.25

Matching ASP12.6.1

Matching attributes of value32.6.2

Matching inside valuegt2.6.2

Matching instead of value32.6.2

Matching mechanisn8.6.65 12.2, 12.5 12.6.3,14.1, 15.9.9
Matching mechanismgd:2.6.2

Matching PDU:12.6.1

Matching values in constraint$2.6.1

MAX: A.4.2.5

Means of Testingd.1, G.5

MIN: A.4.2.5

min:A.4.2.4

MOD: A.4.2.4

Modified ASN.1 constraintst4.6,14.7, 14.7

Modified constraints3.6.7, 3.6.24 3.6.44 13.6,13.7, A.3.3.19A.3.3.22E.2.3 E.24 F.1.25F.2.2.5 F.3,G.6
Modular TTCN:F.14

Modularized test suite3.6.45

Module constraints par€.1

Module declarations par€.1

Module default indexC.2.1, C.2.6

Module dynamic partC.1

Module exportsC.2.2

Module import partC.3

Module structureC.2.3

Module test case inde&.2.1, C.2.4

Module test step indeC.2.1, C.2.5

Module:3.6.28 3.6.29 3.6.32 3.6.33 3.6.46 3.6.50 3.6.69 10.8.1B.1,B.4
MOT: 4.1, 15.9.5.3

MPyT: 3.6.34

ETSI

281 TR 101 666 V1.0.0 (1999-05)

ms:A.4.2.4

MTC:3.6.584.3,8.1,8.211.8.1,11.8.311.13.1.211.13.215.2.4 15.9.10.215.17.515.18.7
MTC_R:3.6.58 15.17.5

Multi-party testing:F.10

Multiplexing/demultiplexingF.11

Multi-protocol test case$:.13

MuxValue:11.10,F.11

N

NEW_LABEL: B.5.25

Non-concurrent test casg:6.47

none:A.4.2.4

NOT:A.4.2.4

ns:A.4.2.4

NULL: A.4.2.5
NUMBER_OF_ELEMENTS11.3.3.3.3A.4.2.4
NumericStringA.4.2.4 A.4.2.5

(0]

Object group7.3.2

Object name7.3.2, 7.3.3

OBJECT:A.4.2.5

Object:3.6.48 3.6.50 10.8.2

OBJECT_MATCHESB.5.9.1

ObjectDescriptorA.4.2.5

OBJECTIDENTIFIER:11.2.2 A.4.2.4

OCTET:A.4.2.5

OCTETSTRING:11.2.2 11.3.3.3.411.18.111.18.215.10.4.2

OF:A4.2.4

Omit symbol:12.5

OMIT: 10.8.214.6 A.4.2.4

Omit: 12.6.4.2

Open Systems Interconnectigh3

Operational semanticg; 3.6.49 5, 6, 15.9.5.2 Annex B, B.5

OPTIONAL:11.3.3.3.111.3.3.3.312.512.6.4.212.6.6.214.5 14.8 A.4.25

OR:A4.2.4

Order of receipt of event5.9.5.4

Original source objec8.6.50

0sl:1,2,4.3 A4.2.1

Otherwise evenf3.6.51, 15.9.7

OTHERWISE functionB.5.10.1

OTHERWISE: 3.6.91, 15.8 15.9.5.3 15.9.7 15.9.8 15.10.6 15.17.4 15.18.5 A.3.3.33 A.4.2.4 B.5.7.2 B.5.10.2
B.5.15.2

OUTPUT_Q:B.5.26

Overview part3.6.52

P

P:15.17.215.17.3A.4.2.4

Page continuatiort6, 16.1, 16.2A.5.1

Parallel test componeri#.6.43 3.6.534.3, 8.1, 11.13.1.211.13.1.315.9.10.1B.5.2.3B.5.3.1 B.5.23.2

Parameter listi2.3 13.5, 13.7, 14.715.2.1 15.7,15.9.1, 15.13.4.115.16.215.18.2 A.3.3.19A.3.3.22E.2.3.2

Parameter3.6.13 3.6.66 3.6.68 d), 11.15.2 11.19 13.5,14.5 15.9.4 15.10.3 A.3.3.19 A.3.3.22 A.3.3.34 A4.2.7
G.6

Parameterizatior8.6.25 11.1, 11.4 15.18.2 /* STATIC SEMANTICS A.3.3.19A.3.3.22 A.3.3.23

Parameterized compact constraifis?.3.2

Parameterized constrai®:6.7, 12.3, 13.5A.4.2.11 F.1.2.4, F.1.2.5,F.2.2.4

PASS:15.17.115.17.215.17.315.17.4 A.4.2.4B.5.23.2

Pass3.6.54

Passing of constraintd5.13.5

Passing parameter$5.16.2

PCO declaration11.10,11.15.2

PCO model15.9.1

PCO queueib.9.2

ETSI

282 TR 101 666 V1.0.0 (1999-05)

PCO type11.9,11.15.212.3 15.7.2

PC0:3.6.57 3.6.6Q0 3.6.72 3.6.734.1, 8.1, 8.2 9.5 10.7,11.3.4.111.911.10 11.12, 11.13.1.111.13.1.311.13.2
11.14.2 11.14.4 11.145 11.15.1 11.15.2 11.15.4 11.15.5 15.2.4 15.3.1 15.4.1 15.9 15.9.1 15.95.3
15.9.5.415.9.6 15.9.7 15.9.8§ 15.9.10.115.18.1 15.18.8 A.4.2.13B.1, B.5.4.2 B.5.8.2 B.5.9.2 B.5.10.2
B.5.11.2B.5.12.2F.11, G.10

PDU constraint compact proforma:2.3

PDU constraint declaratio®.6.62 13.2, 13.4,A.5.1

PDU constraints7.3.4,11.16.312.6.6.113.4 14.1

PDU field value:11.2Q0 12.2 12.4 12.6.4.512.6.4.6 15.9.315.9.4

PDU field: 3.6.66 11.2.1 11.16.3 11.17.1 12.1, 12.5 12.6.2 12.6.3,12.6.4.1 12.6.4.2 12.6.4.3 12.6.4.4 12.6.4.5
12.6.4.712.6.4.812.6.5.112.6.5.312.6.6.2

PDU identifier:11.15.211.21, 15.9.1

PDU specification in ASN.111.15.5

PDU type definition3.6.3 3.6.68 11.15, 11.19, 11.203.4 E.2.3 F.4,G.6

PDU type:11.3.4.211.8.1 11.8.313.4 14.4 15.7.2

PDU: 3.6.1, 3.6.9 3.6.13 3.6.25 3.6.38 3.6.44 3.6.57 3.6.6Q 3.6.66 3.6.68 4.3, 7.3.1, 9.5, 11.2.1 11.2.2 11.2.3.2
11.23.311.23.411.23.511.34.111.3.4.211.6 11.7,11.1Q 11.14.211.15.1 11.15.2 11.15.3 11.154
11.15.5 11.16.2 11.16.4 11.17.1 11.17.2 11.17.3 12.6.3,13.2 13.6 14.5 14.6 14.8 15.9 15.9.5.3
15.9.5.4 15.9. 15.10.1 15.10.2.2 15.10.2.3 15.10.3 15.10.4.1 15.10.6 15.16.1 15.18.8 A.3.3.19
A3.3.22A3334A4.24 A425A4.27A428B.5.23B.5.8.2B.59.2B.5.10.2B.5.11.2 B.5.12.2
B.5.13.2B.5.16.2E.2.1, G.3.1

PERMUTATION:A.4.2.4

Permutation12.6.5.312.6.6.1

PICS proformall.4

PICS:3.6.803.6.81,4.1,10.311.411.6 11.7,11.12 C.2.2

PIXIT proforma:11.4

PIXIT: 3.6.803.6.81,4.1,10.311.411.6 11.7,11.10 11.12 15.9.6 C.2.2

Point of attachmentt5.13.5

Point of control and observatiof:1, 8.1

PostambleG.2

PreambleG.2

Precautions for concurrent TTCl15.9.5.4

Precedence of assignments and qualifitts10.6

Precedence of operatoiable 3 -

Precedence of pseudo-everits.11

Precedencel5.17.2A.4.2.11B.2,G.8

Predefined typell.3.4.2d),11.6 11.7,11.8.1, 11.15.211.16.3

Predefined variable3.6.41

Preliminary result variabld3.5.4.2

Preliminary result3.6.34 3.6.41, 3.6.54 3.6.58 11.13.1.111.13.1.215.9.10.215.17.1 15.17.2

PRESENTA.4.2.5

PrintableStringA.4.2.5

PRIVATE:A.4.2.5

Procedural definition of test suite operatién4.2.14

Procedural definition11.3.4.3

Procedure statemerit1.3.4.4

Protocol Data Unitl, 4.3

Protocol errorl5.17.2

Protocol Implementation Conformance Statemérit:

Protocol Implementation eXtra Information for Testidgl

ps:A.4.2.4

Pseudo-code keywordB.5.2.1

Pseudo-code notatioB.5.2

Pseudo-code preceden&?2

Pseudo-code procedures and functidh&.2.2

Pseudo-code proceds:5.2.3

Pseudo-code with natural language5.2.4

Pseudo-code8.5.2.3B.5.2.4B.5.5.4

Pseudo-even.6.55 3.6.61 3.6.90 15.8 15.11,B.5.1, B.5.5.4 B.5.14,B.5.14.2

PTC:3.6.584.3,8.1,8.211.13.1.111.13.1.211.13.215.2.4 15.9.10.115.9.10.215.17.515.18.7

Q
Qualified event3.6.56

Quialifier evaluation15.10.6

ETSI

283 TR 101 666 V1.0.0 (1999-05)

Qualifier: 15.6 15.8 15.9.2 15.10.4.115.10.515.11 15.15 15.16.3
Queuel5.9.2

R

R:3.6.5815.17.215.17.315.17.515.18.1 B.5.23.2G.2
R_TYPE:11.2.215.17.215.17.5

R_Type:A.4.2.4

Range11.18.212.6.4.612.6.6.1

READ_TIMER:B.5.17.1

READTIMER operation15.12.4

READTIMER:15.12.115.12.4 A.4.2.4B.5.14.2B.5.17

REAL: A.4.2.5

Receive evenB3.6.57 11.20,12.1,12.2 15.9.2,15.10.4.1A.3.3.33
RECEIVE function:B.5.9.1

RECEIVE:8.1,8.2,11.16.415.9.4 15.9.5.315.9.6 15.10.6 15.16.1 B.5.7.2B.5.9.2 B.5.15.2
ReceiveObjectB.5.2.3

Record referenced5.10.2.2

Recursive tree attachmedts.13.6

References in chaining of constrairit&.10.2.2

References using tablek5.10.3

RELABEL: B.5.25

Relational operatord1.3.2.3

Remote test method.6.38 4.2, 15.9.6 G.3.5
REMOVE_OBJECTB.5.9.1

REPEAT construct15.15

REPEAT:15.6 15.8 15.1515.17.1A.4.2.4B.5.1 B.5.5B.5.5.1 B.5.5.3B.5.5.5B.5.18.2
RepeatTreeB.5.5.3

REPLACE:14.6 A.4.2.4

REPLACE_ALT_TREEB.5.25

REPLACE_PARAMETERSB.5.25

Restrictions on using events5.9.5.3

Result type11.3.4.5

Result variable3.6.58 3.6.58

RETURN statementt5.18.3

RETURN:15.18.115.18.3 15.18.6,15.18.6B.1, B.5.2.3B.5.18.2B.5.22
ReturnDefaultsB.5.2.3

ReturnLevelB.5.2.3

RETURNVALUE:11.3.4.111.3.45A.4.2.4

Root tree3.6.59 15.6 15.13.315.13.4.115.14 15.18.5A.4.2.9A.5.2
ROOT_TREEB.5.25

RS:4.2

S

SAP:4.3,11.10 G.10

SAVE_DEFAULTS:B.5.5.2

Scope of tree attachmet5.13.2

Scoping rules15.13.4.1

sec:A.4.2.4

Selection expressio®.6.52 11.5,F.7

Selection11.1, b), F.7

Semantics of TTCNB.1

Send event3.6.6Q 11.19,12.1, 12.2 15.9.3,15.10.4.1B.5.8, G.9
SEND function:B.5.8.1

SEND:8.1,8.2,11.1012.5 15.9.415.10.6 B.5.7.2B.5.15.2
SEND_EVENT:B.5.8.1

SendObjectB.5.2.3

SEQUENCE OF INTEGER12.6.5.112.6.5.3

SEQUENCE OF11.3.3.3.311.18.212.6.3,12.6.5.112.6.5.212.6.5.3
SEQUENCE:12.6.3,14.5 14.8 15.10.2.215.10.2.315.10.2.4A.4.2.5
Service Access Poin.3

Set of alternatives3.6.61, 15.6 15.9.5.215.9.915.13.4.115.18.5A.3.3.33B.5.5.4B.5.5.5
SETOF:11.3.3.3.311.18.212.5 12.6.312.6.4.712.6.4.812.6.5.112.6.5.212.6.6.1
SET:12.5 12.6.3,14.5 14.8 15.10.2.215.10.2.3A.4.2.5

ETSI

284

Simple CMs:11.17.1

Simple type11.2.3.211.6 11.7,11.14.211.14.311.15.211.15.3
Single constraint tabl8.6.62 13.1L E.1, E.2.1, E.2.4
SIZE:A.4.2.5

Snapshot semantic3:6.63 15.9.5.2
SNAPSHOT:B.5.12.2

SNAPSHOT_FIXEDB.5.26

Specific value3.6.65 12.2 12.6.3,12.6.4.512.6.6.115.9.3
Splitting and Recombining:.12

SPyT:3.6.34

Stable testing statd:5.17.3

Standardized ATS.5, G.8

START operation15.12.2
START:15.12.115.12.2A.4.2.4B.5.14.2
START_TIMER:B.5.17.1
STATEMEMT_LINE_TYPE_OFB.5.26

Statement lineB.1

StatementLineB.5.2.5

Static chaining3.6.66 12.4

Static conformance requirements:

STATIC SEMANTICS:A.4.1

Static semantic3.6.67 5, Annex A, 390B.1
STATIC:11.3.4.3A.4.2.4

Step-wise expansioi3.5.2.1
STOP_TEST_CASEB.5.26

STRING:A.4.2.5

Structure:15.10.3

Structured type constraint declaratid®.2

Structured type constraintg:3.4,A.4.2.15E.2.4

TR 101 666 V1.0.0 (1999-05)

Structured type3.6.9 3.6.68 11.2.3.311.2.3.311.14.211.14.311.15.211.15.311.18.1 11.20 12.6.1 12.6.3,13.1

13.213.4 15.10.3A.3.3.19A.3.3.22A4.28E.2.1, E.24 G.6

Structured types within ASP typ#1.14.3
Style guide Annex G

Submodule3.6.69

Subsequent behaviout5.13.3
SUBSEQUENT_BEHAVIOUR_TOB.5.25
SUBSET:A.4.2.4
SubSet12.6.4.812.6.6.1

Substructure3.6.68 11.20 13.3 15.10.3A.3.3.19A.3.3.22A.3.3.34

SubtreeB.5.5.4 G.4

Suite overview part9.5
Suite overview10.1
SUPERSETA.4.2.4
SuperSetl12.6.4.712.6.6.1
SUT:4.1

Syntactic metanotatiord.2.1
Syntax definition5

Syntax forms of TTCNS
Syntax production5, A.3
SYNTAX: A.4.2.5

System Under Tes#.1

T
T61String:A.4.2.5

Tabular ASP type definitiorit3.1
Tabular PDU type definitiont3.1
TAKE_SNAPSHOTB.5.26
TCP:4.3

TeletexStringA.4.2.5
TERMINATE_TEST_CASEB.5.26
Test bodyG.2

Test case dynamic behaviowr:3.1, 7.3.4, 9.5, 15.215.18.2 A.5.1, A.5.2 E.3, E.3.2

Test case error processirg):3

Test case erro1.3.3.2.411.3.3.2.511.16.111.16.215.9.3 15.9.10.1 15.12.215.17.3B.5.4.2

ETSI

285 TR 101 666 V1.0.0 (1999-05)

Test case execution pseudo-codeb.4.1

Test case execution, natural langudgés.4.2

Test case identifie3.6.70

Test case indext0.1, 10.4p), A.5.2

Test case root tred5.7.2

Test case selection expressitf:.3

Test case selectioii1.], d), b)

Test case terminatiod:1.8.4

Test case variable3.6.34 3.6.58 3.6.71 7.3.1, 11.6 11.7, 11.8.1 11.8.3,11.8.4 11.12 12.3 15.10.1 15.10.4.1
15.13.115.17.2B.5.20.2

Test case writelG.5

Test casel, 3.6.1Q 3.6.11 3.6.12 3.6.23 3.6.26 3.6.34 3.6.47, 3.6.52 3.6.54 3.6.59 3.6.6], 3.6.63 3.6.7Q 3.6.71,
3.6.733.6.743.6.823.6.899.1,9.2 9.3.1,9.5 10.3 10.4,d), b), 11.8.311.8.4 15.1, 15.2.1 15.3.1, 15.4.]
15.9.5.1 15.9.10.1 15.12.1 15.12.4 15.13.2 15.14 15.17.2 15.18.1 15.18.4 A.4.2.13 B.5.2.1 B.5.2.3
B.5.3.1B.5.4,E.3.2 G.2,G.5 G.8

Test component configuration declarati@nl

Test component configuratio8:6.12 3.6.16 3.6.43 3.6.73 8.2,11.13.1.311.13.215.2.4 A.4.2.13

Test component declaratiod:1, 11.13.1.3

Test componenB.6.12 3.6.15 3.6.16 3.6.41, 3.6.43 3.6.533.6.72 3.6.73 11.12 15.9.10.2

Test coordination procedure$:3

Test event3.6.5 3.6.6 3.6.91 15.8 15.9,15.10.4.1A.5.1

Test group identifierA.5.1, A.5.2

Test group objectivet0.3,C.2.3

Test group referenc8.6.74 9.2,10.3 10.4 15.2.1 A.5.1, C.2.3

Test group3.6.10 3.6.529.1,9.2,10.3 10.4 A5.2 C.2.3E.3.1

Test laboratory6.5

Test management protocdl:1

Test methodG.3

Test outcome3.6.91

Test purposel5.2.1, G.2, G.8

Test realizerG.5

Test result3.6.54

Test step dynamic behavio®:6.78 9.5, 15.315.18.2

Test step group referené®6.76 9.3.2 10.5

Test step groud.6.75 9.1, 9.3.1, 10.6

Test step identifier3.6.77 10.5 A.4.2.11

Test step index10.1, 10.5A.5.1

Test step library3.6.52 3.6.76 3.6.78 3.6.84 9.3.1,9.3.2 10.5 15.3.1, 15.13.215.13.315.15 15.18.5A.4.2.10G.2

Test step objective3.6.79 10.5 15.3.1

Test step root tred:5.7.2

Test step3.6.2 3.6.8 3.6.23 3.6.26 3.6.75 3.6.76 3.6.77 3.6.79 3.6.84 3.6.87 9.1, 9.3.1, 9.3.2 10.5 15.1, 15.2.3
15.3.1 15.4.1 15.9.5.1 15.9.10.1 15.13.2 15.13.3 15.13.4.1 15.13.5 15.15 15.18.1 15.18.5 A4.2.12
B.5.5.5

Test suite constan8.6.8Q 11.2.1 b), 11.6,11.6 11.7,11.14.211.15.212.3 B.5.2.3

Test suite constant$1.16.111.16.211.17.215.10.1

Test suite exportst0.1

Test suite index10.1, 10.2

Test suite operation descriptidhl.3.4

Test suite operation procedural definitidri:.3.4

Test suite operation, assignmeht:.3.4.6

Test suite operation, CASE1.3.4.9

Test suite operation, 1A:1.3.4.7

Test suite operation, parameter passiipg3.4.2

Test suite operation, RETURNVALUHB:1.3.4.5

Test suite operation, variablekl.3.4.3

Test suite operation, WHILE:1.3.4.8

Test suite operatiort1.3.4.211.3.4.311.16.3A.4.2.14

Test suite operation§:.6

Test suite paramete3.6.81 11.2.1 11.4,b), 11.15.211.16.111.16.211.17.212.3 15.10.1 B.5.2.3F.7

Test suite parameters1.14.2

Test suite specifiet5.9.5.1 G.1, G.2 G.4

Test suite structurd®, 10.1, 10.315.2.1 A.5.1, A5.2 F.7

Test suite type definitiort1.2,11.15.212.6.6.1

Test suite typel1.2.3.411.3.4.111.3.4.211.8.111.8.311.14.211.16.311.17.214.2

ETSI

286 TR 101 666 V1.0.0 (1999-05)

Test suite variable3.6.82 11.2.1,11.6 11.7,11.8.1,11.8.1,11.8.211.8.311.12 11.13.1.111.13.1.212.3 15.10.4.1
15.13.1B.5.2.3

Test suite:3.6.4 3.6.13 3.6.17 3.6.22 3.6.26 3.6.27 3.6.29 3.6.32 3.6.45 3.6.48 3.6.5Q 3.6.52 3.6.71 3.6.78
3.6.8Q0 3.6.81, 3.6.82 3.6.91, 9.1, 9.2, 10.1, 10.8.1, 11.2.1 11.2.3.211.4 11.12 11.15.2 15.12.4 A.4.2.6§
A.4.2.10

Test systemi2.1

Test verdict3.6.34 3.6.43

Textual substitution15.13.4.1B.5.20.2

THEN:A.4.2.4

Timeout event3.6.83 15.9.9

TIMEOUT function:B.5.11.1

TIMEOUT: 15.8 15.9.5.215.9.5.315.9.915.12.3A.3.3.33A4.2.4B.5.7.2B.5.11.2B.5.15.2G.5

Timer declaration11.12

Timer managemeni:5.12

Timer name15.9.9

Timer operation3.6.55 15.8 15.11, 15.12.1, B.5.17

Timer value:15.12.2

Timer:3.6.83 15.9.9 G.5

TIMER_EXPIRED:B.5.11.1

TIMER_OP_TYPE_OFB.5.26

TIMER_OPS:B.5.17.1

TMP:4.1,10.3

TO:11.18.212.6.4.6A.4.2.4

Transfer syntaxA.1

Transformation algorithnB.1

Tree and Tabular Combined Notatigh2

Tree attach symbol5.13.3

Tree attachmen8.6.84 15.4.] c¢), 15.13,15.13.1 15.13.2, 15.13.)OTE ; 15.18.5, 15.18.6, B.5.5.6.2 G.5

Tree heade3.6.85 A.4.2.10A.4.2.11

Tree identifier:3.6.85 3.6.86 A.4.2.10

Tree leaf3.6.87

Tree namel5.7

Tree node3.6.88

Tree notation3.6.89 15.2.1.3 15.6

TreeReferenceB.5.5.3

Trees with parameterd5.7.2

TRUE:10.3 10.4 11.2.2 11.3.3.3.111.3.3.3.211.3.4.711.3.4.8 b), 11.16.1 11.16.2 15.6 15.10.5 15.10.6 15.1],
15.12.115.15 A.4.25B.5.8.2B.5.9.2B.5.10.2B.5.11.2B.5.12.2B.5.15.2

TTCN ASP constraintsA.4.2.15

TTCN CM constraintsA.4.2.15

TTCN expression3.6.55 15.10

TTCN graphical form4.3

TTCN machineB.1, B.5.2.3B.5.3.1

TTCN machine-processable fordh.3

TTCN module exportsC.2.1

TTCN module overview par€.1, C.2

TTCN module structureC.2.1

TTCN object:7.3.1,7.3.2 7.3.37.3.4

TTCN operations11.3

TTCN operators11.3

TTCN PDU constraintsA.4.2.15

TTCN semanticsB.5.2.1

TTCN statement3.6.2 3.6.6 3.6.18 3.6.61, 3.6.87 3.6.88 3.6.90 15.2.1.315.2.3 15.5 15.6 15.8,15.16.1 B.5.1

TTCN type:11.2

TTCN.GR:4.3,5,6,7.1,7.3.57.4,15.6 A.1, A.41 A5

TTCN.MP:4.3/5,6,7.1,7.4,11.2.3.411.14.411.15.414.1,156 A.1, A.4.1, A5,E.1, F.8

TTCN:4.2

Type definition using macro$:.4

Type definitions using ASN.111.2.3.4

Type list:11.16.3

Type:11.16.3

TYPEIDENTIFIER:A.4.2.5

U

ETSI

287 TR 101 666 V1.0.0 (1999-05)

Unbound variable3.6.65 15.10.4.1
Unbound variablest1.3.4.3
Underscore symbolt1.14.411.15.4
Unforeseen test everd:6.51 3.6.91
Unforseen test event$5.9.7

UNION: A.4.2.5

UNIQUE:A.4.2.5

Units of length:11.18.2
UNIVERSAL: A.4.2.5
UniversalStringA.4.2.5

Unqualified event3.6.92

UNTIL: A.4.2.4
UPDATE_PRELIM:B.5.23.1

Upper tester4.1,11.13.1.2
us:A.4.2.4

Use of REPEATF.5

UT:4.1,11.9 11.1015.2.1.315.9.1 15.95.115.9.7A.4.2.4B.5.8.2B.5.9.2B.5.10.2B.5.11.2B.5.12.2G .4
UTCTime:A.4.2.5

V

Value:11.3.4.2

ValueList:12.6.4.5

VAR: 11.3.4.3

Variable declaratiorA.4.2.14
Variable nameA.4.2.14
Variables:11.3.4.3

Verdict assignmentt5.17.5
Verdict:3.6.511.13.1.115.2.1.315.2.3 15.17, B.5.22B.5.23.2G.2
VideotexString: VisibleStringA.4.2.5
VisibleString:A.4.2.5

W

WHILE DO: A.4.2.4
WHILE: A.4.2.4
Wildcards:12.5
WITH: A.4.2.5

ETSI

288

TR 101 666 V1.0.0 (1999-05)

History

Document history

V1.0.0

May 1999

Publication

ISBN 2-7437-3098-6
Dépébt légal : Mai 1999

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions
	3.1 Basic terms from ISO/IEC 9646-1
	3.2 Terms from ISO/IEC 7498-1
	3.3 Terms from ISO/IEC 10731
	3.4 Terms from ISO/IEC 8824-1
	3.5 Terms from ISO/IEC 8825-1
	3.6 TTCN specific terms

	4 Abbreviations
	4.1 Abbreviations defined in ISO/IEC 9646-1
	4.2 Abbreviations defined in ISO/IEC 9646-2
	4.3 Other abbreviations

	5 The syntax forms of TTCN
	6 Compliance
	7 Conventions
	7.1 Introduction
	7.2 Syntactic metanotation
	7.3 TTCN.GR table proformas
	7.3.1 Introduction
	7.3.2 Single TTCN object tables
	7.3.3 Multiple TTCN object tables
	7.3.4 Alternative compact tables
	7.3.5 Specification of proformas

	7.4 Free Text and Bounded Free Text

	8 Concurrency in TTCN
	8.1 Test Components
	8.2 Test Component Configurations

	9 TTCN test suite structure
	9.1 Introduction
	9.2 Test Group References
	9.3 Test Step Group References
	9.4 Default Group References
	9.5 Parts of a TTCN test suite

	10 Test Suite Overview
	10.1 Introduction
	10.2 Test Suite Index
	10.3 Test Suite Structure
	10.4 Test Case Index
	10.5 Test Step Index
	10.6 Default Index
	10.7 Test Suite Exports
	10.8 The Import Part
	10.8.1 Introduction
	10.8.2 Imports

	11 Declarations Part
	11.1 Introduction
	11.2 TTCN types
	11.2.1 Introduction
	11.2.2 Predefined TTCN types
	11.2.3 Test Suite Type Definitions
	11.2.3.1 Introduction
	11.2.3.2 Simple Type Definitions using tables
	11.2.3.3 Structured Type Definitions using tables
	11.2.3.4 Test suite type definitions using ASN.1
	11.2.3.5 ASN.1 Type Definitions by Reference

	11.3 TTCN operators and TTCN operations
	11.3.1 Introduction
	11.3.2 TTCN operators
	11.3.2.1 Introduction
	11.3.2.2 Predefined arithmetic operators
	11.3.2.3 Predefined relational operators
	11.3.2.4 Predefined Boolean operators

	11.3.3 Predefined operations
	11.3.3.1 Introduction
	11.3.3.2 Predefined conversion operations
	11.3.3.2.1 Introduction
	11.3.3.2.2 HEX_TO_INT
	11.3.3.2.3 BIT_TO_INT
	11.3.3.2.4 INT_TO_HEX
	11.3.3.2.5 INT_TO_BIT

	11.3.3.3 Other predefined operations
	11.3.3.3.1 IS_PRESENT
	11.3.3.3.2 IS_CHOSEN
	11.3.3.3.3 NUMBER_OF_ELEMENTS
	11.3.3.3.4 LENGTH_OF

	11.3.4 Test Suite Operation definitions and descriptions
	11.3.4.1 Introduction
	11.3.4.2 Parameters
	11.3.4.3 Variables and Identifiers
	11.3.4.4 Procedure Statements
	11.3.4.5 ReturnValue statements
	11.3.4.6 Assignment statements
	11.3.4.7 If statements
	11.3.4.8 While loop
	11.3.4.9 Case statement
	11.3.4.10 Use of Test Suite Operations

	11.4 Test Suite Parameter Declarations
	11.5 Test Case Selection Expression Definitions
	11.6 Test Suite Constant Declarations
	11.7 Test Suite Constant Declarations by Reference
	11.8 TTCN variables
	11.8.1 Test Suite Variable Declarations
	11.8.2 Binding of Test Suite Variables
	11.8.3 Test Case Variable Declarations
	11.8.4 Binding of Test Case Variables

	11.9 PCO Type Declaration
	11.10 PCO Declarations
	11.11 CP Declarations
	11.12 Timer Declarations
	11.13 Test Components and Configuration Declarations
	11.13.1 Test Components
	11.13.1.1 Main Test Component
	11.13.1.2 Parallel Test Components
	11.13.1.3 Test Component Declarations

	11.13.2 Test Component Configuration Declarations

	11.14 ASP Type Definitions
	11.14.1 Introduction
	11.14.2 ASP Type Definitions using tables
	11.14.3 Use of Structured Types within ASP Type Definitions
	11.14.4 ASP Type Definitions using ASN.1
	11.14.5 ASN.1 ASP Type Definitions by Reference

	11.15 PDU Type Definitions
	11.15.1 Introduction
	11.15.2 PDU Type Definitions using tables
	11.15.3 Use of Structured Types within PDU definitions
	11.15.4 PDU Type Definitions using ASN.1
	11.15.5 ASN.1 PDU Type Definitions by Reference

	11.16 Test Suite Encoding Information
	11.16.1 Encoding Definitions
	11.16.2 Encoding Variations
	11.16.3 Invalid Field Encoding Definitions
	11.16.4 Application of encoding rules

	11.17 CM Type Definitions
	11.17.1 Introduction
	11.17.2 CM Type Definitions using tables
	11.17.3 CM Type Definitions using ASN.1

	11.18 String length specifications
	11.19 ASP, PDU and CM Definitions for SEND events
	11.20 ASP, PDU and CM Definitions for RECEIVE events
	11.21 Alias Definitions
	11.21.1 Introduction
	11.21.2 Expansion of Aliases

	12 Constraints Part
	12.1 Introduction
	12.2 General principles
	12.3 Parameterization of constraints
	12.4 Chaining of constraints
	12.5 Constraints for SEND events
	12.6 Constraints for RECEIVE events
	12.6.1 Matching values
	12.6.2 Matching mechanisms
	12.6.3 Specific Value
	12.6.4 Instead of Value
	12.6.4.1 Complement
	12.6.4.2 Omit
	12.6.4.3 AnyValue
	12.6.4.4 AnyOrOmit
	12.6.4.5 ValueList
	12.6.4.6 Range
	12.6.4.7 SuperSet
	12.6.4.8 SubSet

	12.6.5 Inside Values
	12.6.5.1 AnyOne
	12.6.5.2 AnyOrNone
	12.6.5.3 Permutation

	12.6.6 Attributes of values
	12.6.6.1 Length
	12.6.6.2 IfPresent

	13 Specification of constraints using tables
	13.1 Introduction
	13.2 Structured Type Constraint Declarations
	13.3 ASP Constraint Declarations
	13.4 PDU Constraint Declarations
	13.5 Parameterization of constraints
	13.6 Base constraints and modified constraints
	13.7 Formal parameter lists in modified constraints
	13.8 CM Constraint Declarations

	14 Specification of constraints using ASN.1
	14.1 Introduction
	14.2 ASN.1 Type Constraint Declarations
	14.3 ASN.1 ASP Constraint Declarations
	14.4 ASN.1 PDU Constraint Declarations
	14.5 Parameterized ASN.1 constraints
	14.6 Modified ASN.1 constraints
	14.7 Formal parameter lists in modified ASN.1 constraints
	14.8 ASP Parameter and PDU field names within ASN.1 constraints
	14.9 ASN.1 CM Constraint Declarations

	15 The Dynamic Part
	15.1 Introduction
	15.2 Test Case dynamic behaviour
	15.2.1 Specification of the Test Case Dynamic Behaviour table
	15.2.2 The Test Case Dynamic Behaviour proforma
	15.2.3 Structure of the Test Case behaviour
	15.2.4 Concurrent Test Case Behaviour Description
	15.2.5 Line numbering and continuation

	15.3 Test Step dynamic behaviour
	15.3.1 Specification of the Test Step Dynamic Behaviour table
	15.3.2 The Test Step Dynamic Behaviour proforma

	15.4 Default dynamic behaviour
	15.4.1 Default behaviour
	15.4.2 Specification of the Default Dynamic Behaviour table
	15.4.3 The Default Dynamic Behaviour proforma

	15.5 The behaviour description
	15.6 The tree notation
	15.7 Tree names and parameter lists
	15.7.1 Introduction
	15.7.2 Trees with parameters

	15.8 TTCN statements
	15.9 TTCN test events
	15.9.1 Sending and receiving events
	15.9.2 Receiving events
	15.9.3 Sending events
	15.9.4 Lifetime of events
	15.9.5 Execution of the behaviour tree
	15.9.5.1 Introduction
	15.9.5.2 The concept of snapshot semantics
	15.9.5.3 Restrictions on using events
	15.9.5.4 Precautions when using concurrent TTCN

	15.9.6 The IMPLICIT SEND event
	15.9.7 The OTHERWISE event
	15.9.8 OTHERWISE and concurrent TTCN
	15.9.9 The TIMEOUT event
	15.9.10 Concurrent TTCN events and constructs
	15.9.10.1 The CREATE construct
	15.9.10.2 The DONE event

	15.10 TTCN expressions
	15.10.1 Introduction
	15.10.2 References for ASN.1 defined data objects
	15.10.2.1 Introduction
	15.10.2.2 Record references
	15.10.2.3 Array references
	15.10.2.4 Bit references

	15.10.3 References for data objects defined using tables
	15.10.4 Assignments
	15.10.4.1 Introduction
	15.10.4.2 Assignment rules for string types

	15.10.5 Qualifiers
	15.10.6 Event lines with assignments and qualifiers

	15.11 Pseudo-events
	15.12 Timer management
	15.12.1 Introduction
	15.12.2 The START operation
	15.12.3 The CANCEL operation
	15.12.4 The READTIMER operation

	15.13 The ATTACH construct
	15.13.1 Introduction
	15.13.2 Scope of tree attachment
	15.13.3 Tree attachment basics
	15.13.4 The meaning of tree attachment
	15.13.5 Passing parameterized constraints
	15.13.6 Recursive tree attachment
	15.13.7 Tree attachment and Defaults

	15.14 Labels and the GOTO construct
	15.15 The REPEAT construct
	15.16 The Constraints Reference
	15.16.1 Purpose of the Constraints Reference column
	15.16.2 Passing parameters in Constraint References
	15.16.3 Constraints and qualifiers and assignments

	15.17 Verdicts
	15.17.1 Introduction
	15.17.2 Preliminary results
	15.17.3 Final verdict
	15.17.4 Verdicts and OTHERWISE
	15.17.5 Verdict assignment in concurrent TTCN

	15.18 The meaning of Defaults
	15.18.1 Introduction
	15.18.2 Default References
	15.18.3 The RETURN statement
	15.18.4 The ACTIVATE statement
	15.18.5 Defaults and tree attachment
	15.18.6 Tree Attachment, Defaults, Activate and Return
	15.18.7 Defaults and CREATE
	15.18.8 Defaults and CMs

	16 Page continuation
	16.1 Page continuation of TTCN tables
	16.2 Page continuation of dynamic behaviour tables

	Annex A: Syntax and static semantics of TTCN
	A.1 Introduction
	A.2 Conventions for the syntax description
	A.2.1 Syntactic metanotation
	A.2.2 TTCN.MP syntax definitions

	A.3 The TTCN.MP syntax productions in BNF
	A.3.1 TTCN Specification
	A.3.2 TTCN Module
	A.3.2.1 TTCN Module Overview Part
	A.3.2.1.1 TTCN Module Exports
	A.3.2.1.2 TTCN Module Structure

	A.3.2.2 TTCN Module Import Part
	A.3.2.2.1 External Objects
	A.3.2.2.2 Import Declarations

	A.3.3 Test suite
	A.3.3.1 The Test Suite Overview
	A.3.3.2 Test Suite Index
	A.3.3.2.1 The Imported Object Info

	A.3.3.3 Test Suite Structure
	A.3.3.4 Test Case Index
	A.3.3.5 Test Step Index
	A.3.3.6 Default Index
	A.3.3.7 Test Suite Exports
	A.3.3.8 The Import Part
	A.3.3.9 The Declarations Part
	A.3.3.10 Definitions
	A.3.3.10.1 General
	A.3.3.10.2 Test Suite Type Definitions
	A.3.3.10.3 Simple Type Definitions
	A.3.3.10.4 Structured Type Definitions
	A.3.3.10.5 ASN.1 Type Definitions
	A.3.3.10.6 ASN.1 Type Definitions by Reference
	A.3.3.10.7 Test Suite Operation Definitions
	A.3.3.10.8 Test Suite Operation Procedural Definitions

	A.3.3.11 Parameterization and Selection
	A.3.3.11.1 General
	A.3.3.11.2 Test Suite Parameter Declarations
	A.3.3.11.3 Test Case Selection Expression Definitions

	A.3.3.12 Declarations
	A.3.3.12.1 General
	A.3.3.12.2 Test Suite Constant Declarations
	A.3.3.12.3 Test Suite Constant Declarations by Reference
	A.3.3.12.4 Test Suite Variable Declarations
	A.3.3.12.5 Test Case Variable Declarations
	A.3.3.12.6 PCO Type Declaration
	A.3.3.12.7 PCO Declarations
	A.3.3.12.8 CP Declarations
	A.3.3.12.9 Timer Declarations
	A.3.3.12.10 Test Component Declarations
	A.3.3.12.11 Test Component Configuration Declarations

	A.3.3.13 ASP, PDU and CM Type Definitions
	A.3.3.13.1 General
	A.3.3.13.2 ASP Type Definitions
	A.3.3.13.3 Tabular ASP Type Definitions
	A.3.3.13.4 ASN.1 ASP Type Definitions
	A.3.3.13.5 ASN.1 ASP Type Definitions by Reference
	A.3.3.13.6 PDU Type Definitions
	A.3.3.13.7 Tabular PDU Type Definitions
	A.3.3.13.8 ASN.1 PDU Type Definitions
	A.3.3.13.9 ASN.1 PDU Type Definitions by Reference
	A.3.3.13.10 CM Type Definitions
	A.3.3.13.11 Tabular CM Type Definition
	A.3.3.13.12 ASN.1 CM Type Definitions
	A.3.3.13.13 Varieties of Encoding Definition
	A.3.3.13.13.1 Encoding Definitions
	A.3.3.13.13.2 Encoding Variations
	A.3.3.13.13.3 Invalid Encoding Definitions

	A.3.3.13.14 Alias Definitions
	A.3.3.14 The Constraints Part

	A.3.3.15 Test Suite Type Constraint Declarations
	A.3.3.16 Structured Type Constraint Declarations
	A.3.3.17 ASN.1 Type Constraint Declarations
	A.3.3.18 ASP Constraint Declarations
	A.3.3.19 Tabular ASP Constraint Declarations
	A.3.3.20 ASN.1 ASP Constraint Declarations
	A.3.3.21 PDU Constraint Declarations
	A.3.3.22 Tabular PDU Constraint Declarations
	A.3.3.23 ASN.1 PDU Constraint Declarations
	A.3.3.24 CM Constraint Declarations
	A.3.3.25 Tabular CM Constraint Declaration
	A.3.3.26 ASN.1 CM Constraint Declaration
	A.3.3.27 The Dynamic Part
	A.3.3.28 Test Cases
	A.3.3.29 Test Step Library
	A.3.3.30 Default Library
	A.3.3.31 Behaviour descriptions
	A.3.3.32 Behaviour lines
	A.3.3.33 TTCN statements
	A.3.3.34 Expressions
	A.3.3.35 Timer operations
	A.3.3.36 Types
	A.3.3.36.1 Predefined types
	A.3.3.36.2 Referenced types

	A.3.3.37 Values
	A.3.3.38 Miscellaneous productions

	A.4 General static semantics requirements
	A.4.1 Introduction
	A.4.2 Uniqueness of identifiers

	A.5 Differences between TTCN.GR and TTCN.MP
	A.5.1 Differences in syntax
	A.5.2 Additional static semantics in the TTCN.MP

	A.6 List of BNF production number

	Annex B: Operational Semantics of TTCN
	B.1 Introduction
	B.2 Precedence
	B.3 Processing of test case errors
	B.4 Converting a modularized test suite to an equivalent expanded test suite
	B.5 TTCN operational semantics
	B.5.1 Introduction
	B.5.2 The pseudo-code notation
	B.5.2.1 Introduction
	B.5.2.2 Procedures and functions
	B.5.2.3 Processes
	B.5.2.4 Natural language within pseudo-code
	B.5.2.5 Levels and alternatives

	B.5.3 Execution of a Test Suite
	B.5.3.1 Introduction

	B.5.4 Execution of a Test Case
	B.5.4.1 Execution of a Test Case - pseudo-code
	B.5.4.2 Execution of a Test Case or Test Component - natural language description

	B.5.5 Expanding a set of alternatives
	B.5.5.1 Introduction
	B.5.5.2 Saving Defaults
	B.5.5.3 Expansion of REPEAT constructs
	B.5.5.4 Appending default behaviour
	B.5.5.5 Expanding attached trees

	B.5.6 Evaluation of an Event Line
	B.5.6.1 Pseudo-code
	B.5.6.2 Natural language description

	B.5.7 Functions for TTCN events
	B.5.7.1 Functions for TTCN events - pseudo-code
	B.5.7.2 Functions for TTCN events - natural language description

	B.5.8 Execution of the SEND event
	B.5.8.1 Execution of the SEND event - pseudo-code
	B.5.8.2 Execution of the SEND event - natural language description

	B.5.9 Execution of the RECEIVE event
	B.5.9.1 Execution of the RECEIVE event - pseudo-code
	B.5.9.2 Execution of the RECEIVE event - natural language description

	B.5.10 Execution of the OTHERWISE event
	B.5.10.1 Execution of the OTHERWISE event - pseudo-code
	B.5.10.2 Execution of the OTHERWISE event - natural language description

	B.5.11 Execution of the TIMEOUT event
	B.5.11.1 Execution of the TIMEOUT event - pseudo-code
	B.5.11.2 Execution of the TIMEOUT event - natural language description

	B.5.12 Execution of the DONE event
	B.5.12.1 Execution of the DONE event - pseudo-code
	B.5.12.2 Execution of the DONE event - natural language description

	B.5.13 Execution of the IMPLICIT SEND event
	B.5.13.1 Execution of the IMPLICIT SEND event - pseudo-code
	B.5.13.2 Execution of IMPLICIT SEND - natural language description

	B.5.14 Execution of a pseudo-event
	B.5.14.1 Execution of a pseudo-event - pseudo-code
	B.5.14.2 Execution of PSEUDO-EVENTS - natural language description

	B.5.15 Execution of BOOLEAN expressions
	B.5.15.1 Execution of BOOLEAN expressions - pseudo-code
	B.5.15.2 Execution of BOOLEAN expressions - natural language description

	B.5.16 Execution of assignments
	B.5.16.1 Execution of assignments - pseudo-code
	B.5.16.2 Execution of ASSIGNMENTs - natural language description

	B.5.17 Execution of TIMER operations
	B.5.17.1 Execution of TIMER operations - pseudo-code
	B.5.17.2 Execution of START timer - natural language description
	B.5.17.3 Execution of CANCEL timer - natural language description
	B.5.17.4 Execution of READTIMER - natural language description

	B.5.18 Functions for TTCN constructs
	B.5.18.1 Functions for TTCN constructs - pseudo-code
	B.5.18.2 Functions for TTCN constructs - natural language description

	B.5.19 Execution of the ACTIVATE construct
	B.5.19.1 Execution of the ACTIVATE construct - pseudo-code
	B.5.19.2 Execution of the ACTIVATE construct - natural language description

	B.5.20 Execution of the CREATE construct
	B.5.20.1 Execution of the CREATE event - pseudo-code
	B.5.20.2 Execution of the CREATE event - natural language description

	B.5.21 Execution of the GOTO construct
	B.5.22 Execution of the RETURN construct
	B.5.23 The verdict
	B.5.23.1 The verdict - pseudo-code
	B.5.23.2 The VERDICT - natural language description

	B.5.24 The Conformance Log
	B.5.24.1 The LOG - pseudo-code
	B.5.24.2 The conformance log - natural language description

	B.5.25 Tree handling functions and procedures
	B.5.26 Miscellaneous functions used by the pseudo-code

	Annex C: TTCN Modules
	C.1 Introduction
	C.2 TTCN Module Overview Part
	C.2.1 Introduction
	C.2.2 TTCN Module Exports
	C.2.3 TTCN Module Structure
	C.2.4 Test Case Index
	C.2.5 Test Step Index
	C.2.6 Default Index

	C.3 Import Part
	C.3.1 Introduction
	C.3.2 External
	C.3.3 Import

	Annex D: Test Suite Index
	Annex E: Compact proformas
	E.1 Introduction
	E.2 Compact proformas for constraints
	E.2.1 Requirements
	E.2.2 Compact proformas for ASP constraints
	E.2.3 Compact proformas for PDU constraints
	E.2.3.1 Introduction
	E.2.3.2 Parameterized compact constraints

	E.2.4 Compact proformas for Structured Type constraints
	E.2.5 Compact proformas for ASN.1 constraints

	E.3 Compact proforma for Test Cases
	E.3.1 Requirements
	E.3.2 Compact proforma for Test Case dynamic behaviours

	Annex F (informative): Examples
	F.1 Examples of tabular constraints
	F.1.1 ASP and PDU definitions
	F.1.1.1 Flat type definition
	F.1.1.2 Structured Type definition
	F.1.1.3 Special type PDU, in order to allow use of (static) chaining of constraints

	F.1.2 ASP/PDU constraints
	F.1.2.1 Flat
	F.1.2.2 Structured, referring to field groups
	F.1.2.3 Chaining, useful for (nested) PDUs in ASPs
	F.1.2.4 Parameterized constraints
	F.1.2.5 Modified constraints

	F.2 Examples of ASN1 constraints
	F.2.1 ASP and PDU definitions
	F.2.1.1 Flat
	F.2.1.2 Structured
	F.2.1.3 An ASP definition

	F.2.2 ASN.1 ASP/PDU constraints
	F.2.2.1 Flat
	F.2.2.2 Structured
	F.2.2.3 Chaining a PDU constraint
	F.2.2.4 Parameterized constraints
	F.2.2.5 Modified constraints

	F.2.3 Further examples of ASN.1 constraints

	F.3 Base and modified constraints
	F.4 Type definition using macros
	F.5 Use of REPEAT
	F.6 Test suite operations
	F.7 Example of a Test Suite Overview
	F.8 Example of a Test Case in TTCN.MP Form
	F.9 Use of Component Reference for Field Value Assignment in Constraints
	F.10 Multi-Party Testing
	F.11 Multiplexing/Demultiplexing
	F.12 Splitting and Recombining
	F.13 Multi-Protocol Test Cases
	F.14 Example of Modular TTCN

	Annex G (informative): Style guide
	G.1 Introduction
	G.2 Test case structure
	G.3 Use of TTCN with different abstract test methods
	G.3.1 Introduction
	G.3.2 TTCN and the LS test method
	G.3.3 TTCN and the DS test method
	G.3.4 TTCN and the CS test method
	G.3.5 TTCN and the RS test method

	G.4 Use of Defaults
	G.5 Limiting the execution time of a Test Case
	G.6 Structured Types
	G.7 Abbreviations
	G.8 Test descriptions
	G.9 Assignments on SEND events
	G.10 Multi-service PCOs

	Annex H (informative): Index
	H.1 Introduction
	H.2 The Index

	History

