

ETSI TR 101 582 V1.1.1 (2014-06)

Methods for Testing and Specification (MTS);
Security Testing;

Case Study Experiences

Technical Report

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 2

Reference
DTR/MTS-101582 SecTestCase

Keywords
analysis, security, testing

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2014.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 3

Contents

Intellectual Property Rights .. 6

Foreword ... 6

Modal verbs terminology .. 6

1 Scope .. 7

2 References .. 7

2.1 Normative references ... 7

2.2 Informative references .. 7

3 Definitions and abbreviations ... 8

3.1 Definitions .. 8

3.2 Abbreviations ... 9

4 Overview on case studies ... 11

5 Banknote processing case study results .. 11

5.1 Case study characterization .. 11

5.1.1 Background ... 11

5.1.2 System under test .. 13

5.1.3 Security risk assessment ... 14

5.2 Security testing approaches .. 15

5.2.1 Detection of vulnerability to injection attacks .. 15

5.2.1.1 Data Fuzzing with TTCN-3... 16

5.2.1.2 TTCN-3 ... 17

5.2.1.3 Data Fuzzing Library .. 18

5.2.2 Usage of unusual behaviour sequences ... 19

5.2.2.1 Behavioural fuzzing of UML sequence diagrams ... 20

5.2.2.2 Online model-based behavioural fuzzing .. 22

5.3 Results .. 23

5.3.1 Requirements coverage ... 23

5.3.2 Test results .. 24

5.4 Summary and conclusion ... 25

6 Banking case study results ... 25

6.1 Case study characterization .. 25

6.2 Security testing approaches .. 26

6.3 Results .. 29

6.4 Summary and conclusion ... 32

7 Radio case study results ... 32

7.1 Case study characterization .. 32

7.1.1 Context of Mobile ad-hoc networks ... 32

7.1.2 Status of the test of security testing at the beginning of the project .. 33

7.1.3 Security testing capabilities targeted... 33

7.1.3.1 Frames analysis ... 34

7.1.3.2 Data alteration ... 34

7.1.3.3 Frames replay .. 35

7.1.3.4 Denial of service ... 36

7.1.3.5 Tampering, malicious code injection .. 36

7.1.3.6 Combination of threats .. 37

7.1.4 Description of the use-case ... 37

7.1.4.1 Specific application used as Use Case .. 38

7.1.4.2 Specific context of the application of security testing tools .. 38

7.1.4.3 Specific context of the initial validation framework ... 38

7.2 Security testing approaches .. 38

7.2.1 General principles of the security testing tools integration ... 38

7.2.1.1 Verification framework adaptation ... 39

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 4

7.2.1.2 Adaptation of the event driven simulation environment ... 39

7.2.2 Properties validated... 41

7.2.3 Active testing .. 41

7.3 Results .. 42

7.4 Summary and conclusion ... 43

8 Automotive case study results .. 43

8.1 Case study characterization .. 43

8.2 Security testing approaches .. 45

8.2.1 Security risk assessment ... 45

8.2.2 Fuzzing ... 46

8.2.3 IOSTS-based passive testing approach ... 47

8.2.3.1 Experimentation results ... 48

8.2.3.2 Future works ... 48

8.2.4 Security monitoring .. 48

8.2.5 Framework .. 50

8.3 Results .. 51

8.4 Summary and conclusion ... 53

9 eHealth case study results... 54

9.1 Case study characterization .. 54

9.1.1 Patient consent .. 55

9.1.2 Device pairing ... 56

9.1.3 New application features .. 56

9.2 Security testing approaches .. 56

9.2.1 Formalization .. 56

9.2.1.1 Entity overview ... 56

9.2.1.2 Environment and sessions ... 58

9.2.1.3 Messages ... 58

9.2.1.4 Goals ... 61

9.2.2 Analysis results using a model checker .. 63

9.2.3 Technical details ... 63

9.2.3.1 eHealth web front-end ... 64

9.2.3.2 Device management platform ... 64

9.2.3.3 Two-factor authentication service ... 64

9.2.4 Improvements of the security model ... 65

9.2.5 Considered security properties and vulnerabilities ... 65

9.2.5.1 Security properties .. 66

9.2.5.2 Vulnerabilities ... 66

9.3 Results by applying the VERA tool ... 66

9.3.1 Password brute force ... 66

9.3.2 File enumeration ... 67

9.3.3 CSRF token checking ... 68

9.3.4 SQL injection .. 69

9.3.5 XSS injection .. 70

9.3.6 Path traversal attack .. 70

9.3.7 Access control ... 71

9.4 Summary and conclusion ... 73

10 Document management system case study results ... 74

10.1 Case study characterization .. 74

10.2 Security testing approaches .. 74

10.2.1 Security risk assessment of the Infobase application scenario .. 74

10.2.1.1 Background ... 74

10.2.1.2 Scope and goal of the case study ... 75

10.2.1.3 Method walk-through .. 75

10.2.1.3.1 Describe general usage scenarios .. 75

10.2.1.3.2 List assets .. 75

10.2.1.3.3 Define security requirements ... 75

10.2.1.3.4 Identify relevant threats ... 75

10.2.1.3.5 Define or derive a Business Worst Case Scenario (BWCS) .. 76

10.2.1.3.6 Generate Security Overview .. 76

10.2.1.3.7 Map BWCS to Technical Threat Scenario (TTS) .. 76

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 5

10.2.1.3.8 Map TTSs to test types .. 77

10.2.1.4 Lessons learned ... 77

10.2.2 Improvements of the security model – detecting Cross-Site Request Forgery at ASLan++ level 78

10.2.2.1 Description of CSRF in Infobase .. 78

10.2.2.2 Modeling CSRF in ASLan++ .. 79

10.2.2.2.1 Client ... 80

10.2.2.2.2 Server .. 81

10.2.2.2.3 Goal ... 82

10.2.2.3 Result of the analysis of the Infobase model ... 82

10.2.3 Mutation-based test generation ... 83

10.2.4 Test automation .. 83

10.2.4.1 The ScenTest tool for scenario-based testing .. 83

10.2.4.2 General approach to test automation of AATs .. 83

10.2.4.3 Derived test case, test execution and test results ... 84

10.2.4.3.1 Test scenario 1: .. 84

10.2.4.3.2 Test scenario 2: .. 85

10.2.4.3.3 Test Scenario 3: ... 86

10.3 Results by applying the VERA Tool .. 87

10.3.1 Considered vulnerabilities .. 87

10.3.2 Cross-Site Scripting (XSS) ... 88

10.3.3 SQL injection .. 89

10.3.4 Password brute-forcing ... 89

10.3.5 Cross-Site Request Forgery (CSRF) ... 90

10.3.6 File enumeration ... 91

10.4 Summary and conclusions .. 92

11 Evaluation and assessment of case study results .. 93

11.1 Approach: Security Testing Improvements Profiling (STIP) ... 93

11.1.1 Security risk assessment ... 95

11.1.2 Security test identification .. 95

11.1.3 Automated generation of test models ... 96

11.1.4 Security test generation ... 96

11.1.5 Fuzzing ... 97

11.1.6 Security test execution automation ... 98

11.1.7 Security passive testing/ security monitoring ... 98

11.1.8 Static security testing .. 99

11.1.9 Security test tool integration ... 99

11.2 Evaluation results: STIP evaluation of the Case Studies .. 100

11.2.1 Evaluation of the banknote processing machine case study ... 100

11.2.2 Evaluation of the banking case study .. 101

11.2.3 Evaluation of the radio protocol case study .. 102

11.2.4 Evaluation of the automotive case study... 103

11.2.5 Evaluation of the eHealth case study .. 103

11.2.6 Evaluation of the document management case study ... 104

Annex A: Bibliography .. 106

History .. 107

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 6

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Report (TR) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "may not", "need", "need not", "will",
"will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms
for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

http://webapp.etsi.org/IPR/home.asp
http://portal.etsi.org/Help/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 7

1 Scope
The present document reports on the application of model-based security testing in different industrial domain. Relevant
case studies and their results are described in terms of system under test, applied tool chain, together with an overview
of the technical requirements. The case studies were conducted as part of ITEA2 DIAMONDS project
(http://www.itea2-diamonds.org/index.html) and SPaCIoS project (http://www.spacios.eu/). The document concentrates
on the results and conclusions from this work, giving an insight into how applicable such methods are today for testing
and indicating the current strengths and weaknesses.

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

Not applicable.

2.2 Informative references
The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] AVANTSSAR Deliverable 2.3 (update): "ASLan++ specification and tutorial", 2011.

NOTE: Available at http://www.avantssar.eu.

[i.2] ITEA2 DIAMONDS Deliverable D5.WP2: "Final Security-Testing Techniques", 2013.

[i.3] ITEA2 DIAMONDS Deliverable D5.WP3: "Final Security Testing Tools", 2013.

[i.4] ITEA2 DIAMONDS Deliverable D5.WP4: "DIAMONDS Security Testing Methodology", 2013.

[i.5] SPaCIoS Deliverable 3.3: "SPaCIoS Methodology and technology for vulnerability-driven security
testing", 2013.

[i.6] SPaCIoS Deliverable 5.1: "Proof of Concept and Tool Assessment v.1", 2011.

[i.7] SPaCIoS Deliverable 5.2: "Proof of Concept and Tool Assessment v.2", 2012.

[i.8] SPaCIoS Deliverable 5.4: "Final Tool Assessment", 2013.

[i.9] A. Ulrich, E.-H. Alikacem, H. Hallal, and S. Boroday: From scenarios to test implementations via
promela: "Testing Software and Systems", pages 236-249, 2010.

[i.10] J. Oudinet, A. Calvi, and M. Büchler: "Evaluation of ASLan mutation operators". In Proceedings
of the 7th International Conference on Tests and Proofs. Springer, June 2013. 20 pages.

http://www.itea2-diamonds.org/index.html
http://www.spacios.eu/
http://docbox.etsi.org/Reference
http://www.avantssar.eu/

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 8

[i.11] OWASP Cross-Site Request Forgery, 2013.

NOTE: Available at https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF).

[i.12] Erik van Veenendaal: "Test Maturity Model integration".

NOTE: Available at http://www.tmmi.org/pdf/TMMi.Framework.pdf.

[i.13] T. Koomen, M. Pool: "Test process improvement - A practical step-by-step guide to structured
testing", Adison Wesley, 1999.

[i.14] Rik Marselis & Ralf van der Ven: "TPI NEXT CLUSTERS FOR CMMI", 2009.

NOTE: Available at
http://www.tmap.net/sites/tmap.net/files/attachments/TPI___NEXT_clusters_for_CMMi_0.pdf.

[i.15] ISO 27000:2009(E): "Information technology - Security techniques - Information security
management systems - Overview and vocabulary", 2009.

[i.16] ISO 31000:2009(E): "Risk management - Principles and guidelines", 2009.

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

asset: anything that has value to the stakeholders (adopted from [i.15])

behavioural fuzzing: security testing technique that creates test procedures by changing a pre-known valid sequence of
messages to an invalid sequence by rearranging messages, repeating and dropping them or just changing the type of
message

consequence: outcome of an event affecting objectives [i.16]

likelihood: chance of something happening [i.16]

model-based behavioral fuzzing: test technique that combines behavioural fuzzing with model-based testing in that
sense, that the pre-known valid sequence valid sequence of messages are given by behavioural models and the test
generation is driven by these models

model-based security risk assessment: security risk assessment technique that is conducted with a formalized
language for documenting assessment results and a clearly defined process for conducting the assessment

model-based security testing: security testing technique that uses models (e.g. threat models, behavioural models) to
automatically or semi-automatically generate accurate and precise security tests

random data fuzzing: test technique that generates input data randomly without any dedicated knowledge on the
SUT's protocols

risk: combination of the consequences of an event with respect to an objective and the associated likelihood of
occurrence (adapted from [i.16])

risk criterion: term of reference against which the significance of a risk is evaluated [i.16]

risk level: magnitude of a risk or combination of risks, expressed in terms of the combination of consequences and their
likelihood [i.16]

security passive testing/ security monitoring: technique of detecting errors, vulnerabilities and security flaws in a
system under test (SUT) by observing its behavior (input/output) without interfering with its normal operations (no
external stimulations)

security requirement: specification of the required security for the system

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
http://www.tmmi.org/pdf/TMMi.Framework.pdf
http://www.tmap.net/sites/tmap.net/files/attachments/TPI___NEXT_clusters_for_CMMi_0.pdf

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 9

security risk: risk caused by a threat exploiting a vulnerability and thereby violating a security requirement

security risk assessment: process for identifying security risks consisting of the following steps: establishing context,
security risk identification, security risk estimation, security risk evaluation, and security risk treatment

security risk model: formal or semi-formal specification of threats, vulnerabilities, unwanted incidents as well as their
likelihood and consequences

security test case: set preconditions, inputs (including actions, where applicable), and expected results, developed to
determine whether the security features of a test item have been implemented correctly or to determine whether or not
the covered part of the test item has vulnerabilities that may harm the availability, confidentiality and integrity of the
test item

security test pattern: Collection of best practices/solution for a known security testing problem. It assembles reusable
parts of a test plan e.g. the security test design techniques and corresponding test completion criteria, a test coverage
item description, applicable test and coverage metrics, estimation on the necessary testing efforts and estimation of test
effectiveness with respect to the given problem. Additionally it may contain also test data and specification and
assumptions on the test environment as well as testing tool requirements.

static security testing: security testing technique that analyses an application without executing it. One of the main
components is code analysis. The code could be source code (in higher languages like C/C++/Java™, etc.) or compiled
binary code (in x86 assembly code or Java bytecode, for example)

threat: potential cause of an unwanted incident [i.15]

unwanted incident: event representing a security risk

vulnerability: weakness of an asset or control that can be exploited by a threat [i.15]

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AAT Abstract Attack Traces
AP Access Point
API Application Program Interface
ATM Asynchronous Transfer Mode
BAM Business Activity Monitoring
BWCS Business Worst Case Scenario
CAN Controller Area Network
CSRF Cross-Site Request Forgery
DBMS DataBase Management Systems
DFD Data-Flow Diagram
DY Dolev-Yao
EH eHealth server
EMF Eclipse Modelling Framework
GSM General System for Mobile communications
GUI Graphical User Interface
HCI Host Controller Interface
HMAC Hash based Message Authentication Code
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
ICT Information and Communication Technology
IDE Integrated Development Environment
IDR Infobase Document Repository
IDS Intrusion Detection System
IOSTS Input-Output Symbolic Transition System
IP Internet Protocol
ITEA Information Technology for European Advancement
JSON JavaScript Object Notation
JSP Java™ Server Pages
LAN Local Area Network

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 10

LHS Left-Hand Side
LTL Linear Temporal Logic
MAC Media Access Control
MBBF Model-Based Behavioural Fuzzing
MBST Model Based Security Testing
MBT Model-Based Testing
MDD Model Driven Development
MSC Message Sequence Charts
NDA Non Disclosure Agreement
OEM Original Equipment Manufacturer
OS Operating System
OSI Open Service Interconnection
OWASP Open Web Application Security Project
PCAP Packet CAPture
PDU Protocol Data Unit
PIN Personal Identification Number
PMR Private Mobile Radio
RLC Radio Link Control
RSA Restricted Stock Awards
RSN Radio Service Network
SAL Security Attestation Level
SATMC SAT-based Model-Checker
SCM Service Control Module
SDU Service Data Unit
Selenium RC Selenium Remote Control
SFR Security Functional Requirement
SIEM Security Information and Event Management
SLA Service Level Agreement
SQL Structured Query Language
STIP Security Testing Improvement Profile
SUT System Under Test
TCI TTCN-3 Control Interface
TCP Transmission Control Protocol
TDMA Time Division Multiple Access
TPI Test Process ImprovementTM
TRI TTCN-3 Runtime Interface
TTCN Testing and Test Control Notation
TTCS Testing & Test Control Sequence
TTS Technical Threat Scenario
UML Unified Modelling Language
UMTS Universal Mobile Telecommunications System
URL Unified Resource Locator
USB Universal Serial Bus
VM Virtual Machine
VPN Virtual Private Network
WAN Wide Area Network
XML eXtended Markup Language
XSS Cross-Site Scripting

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 11

4 Overview on case studies
The present document will provide an overview of the case studies and the final test results from the DIAMONDS
project and the SPaCIoS project.

DIAMONDS: The security of a software-intensive system is directly related to the quality of its software? In particular,
over 90 % of software security incidents are caused by attackers exploiting known software defects. DIAMONDS
addresses this increasing need for systematic security testing methods by developing techniques and tools that can
efficiently be used to secure networked applications in different domains. By developing its model-based security
testing approaches, extending exiting fuzz testing methodologies introducing the security testing pattern catalogue and a
platform for security testing tools, DIAMONDS is building base technologies to offer security tests as a service.

SPaCIoS: State-of-the-art security validation technologies, when used in isolation, do not provide automated support to
the discovery of important vulnerabilities and associated exploits that are already plaguing complex web-based security-
sensitive applications, and thus severely affect the development of the IoS. Moreover, security validation should be
applied not only at production time but also when services are deployed and consumed. Tackling these challenges is the
main objective of the SPaCIoS project, which has been laying the technological foundations for a new generation of
analysers for automated security validation at service provision and consumption time, thereby significantly improving
the security of the IoS. This is being achieved by developing and combining state-of-the-art technologies for penetration
testing, security testing, model checking and automatic learning. These are all being integrated into the SPaCIoS Tool,
which applies a proof of concept on a set of security testing problem cases drawn from industrial and open-source IoS
application scenarios. This will pave the way to transfer project results successfully in industrial practice.

The present document aims to provide insight on these different aspects drawn from experiences in testing within the
case studies:

• Different testing techniques

• Initial results

• Metrics, Comparisons

• Contribution

• Exploitation of Case Study results

• Value of DIAMONDS for the case study users

The project results are evaluated in form of Security Testing Improvement Profiles (STIP).

5 Banknote processing case study results

5.1 Case study characterization
This clause provides the revised case study description and requirements from the Giesecke & Devrient case study in
the banking sector. It presents the applied security testing approaches as well as results achieved. The case study
consists of a banknote processing system that counts and sorts banknotes depending on their currency, denomination,
condition and authenticity.

5.1.1 Background

Banknote processing machines are used in central, large and medium banks and also in CITs (cash in transport) and
other organizations that handle large amounts of banknotes. These machines are usually configured to work in a
network as shown in figure 1. Currency processors, reconciliation stations, vault management systems and control
centres are connected on a network either on a LAN or WAN.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 12

Figure 1: Banknote processing network overview

Different type of information is transferred between network entities. In figure 2 we can see that deposit information is
sent to the vault management from the currency processor.

RS RS

CC CC VMS CP

RS

CC deposit data

Shift + Reject

data

updated

Shift + Reject

configure &

monitor CP

Data Flow:

Figure 2: Data flow in processing network

Configuration and monitoring information is exchanged between the currency processor and the control centre. The
type of information exchanged requires a high degree of security. Table 1 summarizes the requirements imposed by the
Giesecke & Devrient case study.

external
peripherals

external
peripherals

CP CP CP

RS RS VMS

CC CC

CC / GW

LAN WAN

CP = Currency Processor

RS = Reconciliation Station

CC = Control Centre

VMS = Vault Management System

Firewall

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 13

Table 1: Requirements for banknote processing case study

Req. no Requirement Type Description
1 Operating system for test generator

(if specific requirements)
Windows XP™/Windows 7

2 Operating system for monitoring tools
(if specific requirements)

Windows XP™/Windows 7

3 Operating system for test controller framework
(if specific requirements)

Windows XP™/Windows 7

4 Operating system (and platform) for the SUT Windows XP™/Windows 7
5 List of "physical" interfaces for testing (keyboard,

usb, wireless, MAC/Ethernet, ATM, Serial/Parallel
and/or communication bus such as
TTF/CAN/MOST)

Keyboard and USB provided by the VM abstraction layer,
.Net Remoting over Ethernet

6 List of network interfaces/protocols TCP/IP
7 List of API interfaces/protocols

(C, C#, XML/SOAP/REST, SQL, etc.)
.Net remoting over TCP/IP, TTCN-3

8 Programming language used in SUT C/C++/C# .Net 4.0
9 Existing system/protocol models (languages) .Net Remoting

10 Requirements for test controller and/or tool
interconnection/integration

Test execution should be based on existing TTCN-3 test
framework or integrated to work with TTCN-3

11 Requirements for risk modelling Risk models should enable the communication about
threats with non-technical stake holders as well as provide
the basis for test

12 Requirements on security testing approaches, such
as hacking tools (if available), functional test
scripts/plans or fuzzing or other type of negative
testing (or other)

Any tool has to provide a TTCN-3 interface, including
types, functions, and TCI/TRI implementations

13 Requirements for monitoring techniques such as
process/memory monitors, network monitors,
security incident monitors or fault detection monitors
(or other)

Monitoring tools have not to interfere with the operation of
the SUT especially in regards to performance

14 Test environment exists (yes/no) Yes. A TTCN-3 framework is available
15 Physical access to the test environment is possible

to arrange (yes/no)
Possible to arrange

16 Remote access (VPN) to the test environment exists
(yes/no)

No

17 Local copy (virtual setup or similar) is available of
the test environment exists (yes/no)

Yes

18 NDA required from partners to access the test
environment (yes/no)

Yes

5.1.2 System under test

While the banknote processing system consists of several components as depicted in figure 1, the focus of security tests
is on the currency processor and the reconciliation station. The currency processor as well as the reconciliation station
were provided as virtual machines, where external interfaces are replaced by simulation and were supplemented with
snapshots. That allows creating a consistent state of the SUT before executing a test case and is necessary for batch
execution of test cases. The test bed at Fraunhofer FOKUS is depicted in figure 3 and consists of the two virtual
machines, one for the currency processor and another for the reconciliation station. Windows 7-based host system runs
the virtual machines. The main focus of security tests will be the components inside the virtual machines. The available
interfaces are the Message Router (.Net Remoting implementation) over LAN, as well as keyboard, USB and other
peripherals through the hardware abstraction layer of the virtual machine. There is a database running inside the virtual
machine.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 14

Figure 3: Test bed setup for batch execution

Additionally, the executable test system runs on the host system. It is responsible for executing the test cases, starting
the virtual machines with a dedicated snapshot and sending and receiving messages from and to the system under test.
The test framework is written in TTCN-3 (Testing and Test Control Notation version 3) and is executed at Fraunhofer
FOKUS using a test development and execution environment. In order to run the TTCN-3 test cases using this
environment, adapters for encoding and decoding messages were necessary and were adapted from another TTCN-3
test execution environment. By this adaptation, the existing TTCN-3 test framework provided by Giesecke & Devrient
was used for performing security tests.

5.1.3 Security risk assessment

The currency processor is exposed to threats which compromise the accounting accuracy. The following high level
treatments against the threats were identified:

• Restricted access to functions: The access to security functions is restricted to authorized users.

• Operation system access restriction: The access to the operation system, i.e. file system, or process monitor
is restricted to authorized users.

• Prevent Admin Hijacking: Hijacking an administrator account is used to get the privileges of an
administrator account as a user that is not assigned to the administrator group.

• Prevent infiltration/manipulation of software: Software manipulation can be used to fake data or to provoke
errors on the currency processor application.

• Prevent manipulation of application configuration: The configuration of the machine should be secured to
prevent manipulation otherwise it could be possible to change the classification of banknotes.

The underlying threats were used as starting point for the security risk assessment. A security risk assessment following
the CORAS approach was performed and the potential vulnerabilities as well as the consequences of the threats were
analysed.

CORAS is a model-based security risk assessment method developed by SINTEF. It provides several kinds of diagrams
for different phases of the analysis. E.g. threat diagrams are used to analyse threats to a system by determining potential
attackers and vulnerabilities that may be exploited to reach a threat scenario. A threat scenario is a description of how a
threat may lead to an unwanted incident by exploiting vulnerabilities. An unwanted incident is the result of reaching one
or more threat scenarios by exploiting vulnerabilities and has an impact on an organization. This impact is denoted by
assets that are connected with unwanted incidents. Treatment diagrams are the result of analysis of possible mitigations
against the analysed vulnerabilities.

A threat to prevent is a manipulation of the configuration of the SUT that may lead to shedding of banknotes which
should not be shed. It may result from exploiting an authentication bypass vulnerability. The corresponding risk
diagram is depicted in figure 4.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 15

Figure 4: Risk diagram for authentication bypass

5.2 Security testing approaches
As a result of the security risk assessment, several vulnerabilities were considered that should be tested whether they
actually exists within the SUT. In order to generate appropriate tests for these vulnerabilities, security test patterns
provide a suitable way to select test generation techniques or test procedures. Those security test patterns constitute the
link between security risk assessment and security testing. Two security test patterns are fitting to the results of the
security risk assessment.

5.2.1 Detection of vulnerability to injection attacks

The security test pattern is described by table 1a.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 16

Table 1a: Test Pattern "Detection of Vulnerability to Injection Attacks"

Pattern name Detection of Vulnerability to Injection Attacks
Context Test pattern kind: Data

Testing Approach(es): Prevention
Problem/Goal Injection attacks (CAPEC 152) represent one of the most frequent security threat

scenarios on information systems. They basically consist in an attacker being able to
control or disrupt the behaviour of a target through crafted input data submitted using an
interface functioning to process data input. To achieve that purpose, the attacker adds
elements to the input that are interpreted by the system, causing it to perform unintended
and potentially security threatening steps or to enter an unstable state.
Although it could never be exhaustive, testing information systems resilience to injection
attacks is essential to increase their security confidence level. This pattern addresses
methods for achieving that goal.

Solution Test procedure template:
1) Identify all interfaces of the system under test used to get input with the external

world, including the kind of data potentially exchanged through those interfaces.
2) For each of the identified interfaces create an input element that includes code

snippets likely to be interpreted by the SUT. For example, if the SUT is
web-based, programming languages and other notations frequently used in that
domain (JavaScript, JAVA™, etc.) will be used. Similarly, if the SUT involves
interaction with a database, notations such as SQL may be used. The
additional code snippets should be written in such a way that their interpretation
by the SUT would trigger events that could easily be observed (automatically)
by the test system. Example of such events include:
− Visual events: e.g. a pop-up window on the screen
− Recorded events: e.g. an entry in a logging file or similar
− Call-back events: e.g. an operation call on an interface provided by the test

system, including some details as parameters
3) Use each of the input elements created at step 2 as input on the appropriate

SUT interface, and for each of those.
− Check that none of the observable events associated to an interpretation of

the injected code is triggered
Known uses
Discussion The level of test automation for this pattern will mainly depend on the mechanism for

submitting input to the SUT and for evaluating potential events triggered by an
interpretation of the added probe code.

Related patterns
(optional)

• CAPEC 152

References

The application of this security test pattern leads to data fuzzing in order to generate injection attack strings that may be
able to as discussed in the following.

5.2.1.1 Data Fuzzing with TTCN-3

In order to test for the above mentioned vulnerabilities identified during security risk assessment, both well established
and new developed methods were applied to the system. Data fuzzing approaches for SQL injection were applied by a
new developed fuzz testing extension for TTCN-3. Data fuzzing sends a large number of invalid values to the system
under test at certain points within a test case. At these points, the values for fuzzing should be retrieved, for instance by
an external function. TTCN-3 external functions retrieve a value from an external function once, buffer this value and
use it each time the external function is called. This is not appropriate for fuzzing where another value has to be
retrieved and sent to the SUT for each invocation. The fuzz testing extension for TTCN-3 complies with this
requirement by requesting values from external fuzz functions each time a value is requested via TTCN-3 valueof or
send. It has been submitted for standardization at ETSI. The fuzzing extension was implemented in the test
development and execution tool.

http://capec.mitre.org/data/definitions/152.html
http://capec.mitre.org/data/definitions/152.html

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 17

5.2.1.2 TTCN-3

In order to be able to apply this method with TTCN-3, there was a need to extend the standardized language to support
fuzz testing. Generally, matching mechanisms are used to replace values of single template fields or to replace even the
entire contents of a template. Matching mechanisms may also be used in-line. A new special construct called a fuzz
function instance can be used like a normal matching mechanism "instead of values" to define the application of a
fuzz operator working on a value or a list of values or templates. The definition of such a function is similar to the
existing TTCN-3 concept of external function with the difference that the call is not processed immediately but
is delayed until a specific value is selected via the fuzz operator. For fuzz testing, such function instances can only
occur in value templates.

The fuzz function instance denotes a set of values from which a single value will be selected in the event of
sending or invoking the valueof() operation on a template containing that instance. The fuzz function may
declare formal parameters and should declare a return type. Since the execution time cannot be predicted, only formal
in parameters are allowed (e.g. no out or inout). For sending purposes or when used with valueof(), fuzz
functions will return a value.

EXAMPLE 1:

fuzz function zf_UnicodeUtf8ThreeCharMutator(
 in template charstring param1) return charstring;

fuzz function zf_RandomSelect(
 in template integer param1) return integer;

template myType myData := {
 field1 := zf_UnicodeUtf8ThreeCharMutator(?),
 field2 := '12AB'O,
 field3 := zf_RandomSelect((1, 2, 3))
}

The fuzz function instance may also be used instead of an inline template.

EXAMPLE 2:

myPort.send(zf_FiniteRandomNumbersMutator(?));

To get one concrete value instance out of a fuzzed template the valueof() operation can be used. At this time the
fuzz function is called and the selected value is stored in the variable myVar.

EXAMPLE 3:

var myType myVar := valueof(myData)

To allow repeatability of fuzzed test cases, an optional seed for the generation of random numbers used to determine
random selection will be used. There will be one seed per test component. Two predefined functions will be introduced
in TTCN-3 to set the seed and to read the current seed value (which will progress each time a fuzz function instance is
evaluated).

EXAMPLE 4:

setseed(in float initialSeed) return float;
getseed() return float;

Without a previous initialization a random value will be used as initial seed.

The above declared fuzz function is implemented as a runtime extension and will be triggered by the TTCN-3 Test
Control Interface (TCI) instead of (TRI), as external functions, in order to accelerate the generation by avoiding the
encoding of the parameters and return values.

More information about the TTCN-3 extension for data fuzzing can be found in the DIAMONDS project deliverable
D5.WP3 [i.3].

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 18

5.2.1.3 Data Fuzzing Library

In order to retrieve a valuable set of fuzzed values, a fuzzing library was implemented. It provides fuzz testing values
from well-established fuzzers. These tools work standalone and thus, cannot be integrated in the existing test execution
environment. So the fuzzing library was developed which allows integration in the test execution environment by using
XML interface provided by it or by accessing the Java™ code directly. The integration of the fuzzing library to the test
development and execution tool was done by implementing external fuzz functions according to the TTCN-3 fuzz
testing extension. These external functions are then used within test cases to retrieve fuzz testing values from the library
and submit them to the system under test.

To preserve platform independence as achieved within Java™ and to minimize dependencies, the fuzzing operators
taken from the fuzzing tools are re-implemented in Java™. This brings benefits for the performance of the library, e.g.
since no integration of Python code is required. To enable regression testing, the fuzzing library returns a seed that can
be used for later requests in order to retrieve the same values. Thus, the requirement for repeatability is fulfilled.

In order to receive fuzzed values from the fuzzing library, a request will be submitted to the library. Such a request
specifies a type that will be fuzzed, e.g. valid lengths and null termination for a string, as shown in figure 5. Additional
information are the number of values to be retrieved (attribute maxValues) as well as a name acting as a user-defined
identifier (attribute name) that can be used for referring this request.

The following types are supported:

• Strings: Different kinds of strings, including filenames, hostnames, SQL query parameters.

• Numbers: Integers and floats, signed or unsigned with different kinds of precisions.

• Collections: Lists and sets. The type of each element is specified by referring one of these four types (strings,
numbers, collections, or data structures) using the value of the name attribute.

• Data structures: Enables the specification of records with several fields where the type of each field is
specified by referring one of these four types (strings, numbers, collections, or data structures) using the value
of the name attribute.

<string name="SimpleStringRequest" maxValues="10">
 <specification type="String" minLength="1" maxLength="5" nullTerminated="true"
 encoding="UTF8" />
 <generator>BadStrings</generator>
 ...
 <validValues>
 <value>ABC</value>
 ...
 <operator>StringCase</operator>
 ...
 </validValues>
</string>

Figure 5: Excerpt from an XML request file

Along with the specification of the data type, it is possible to specify which fuzzing heuristics will be used and which
valid values will be fuzzed. This is of particular interest if a specific kind of invalid input data is needed, e.g. based on
Unicode strings. This allows it to efficiently use the fuzzing library to get certain fuzzed values.

The fuzzing library replies to such a request with a response file containing fuzzed values. These values are
complemented by information on how they were generated. They are grouped by the employed fuzzing generators for
fuzzed values that are generated along the type specification, as well as the employed fuzzing operators, and the valid
values they were applied to. This makes the generation of fuzzed values transparent to the user of the library, and allows
further requests of fuzzed values generated by specific fuzzing operators if a previously generated value revealed some
abnormal behaviour of the SUT.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 19

<string name="SimpleStringRequest" id="ca53abee-0719-43da-a70d-96d61931fb08"
 moreValues="true">
 <generatorBased>
 <generator name="BadStrings">
 <fuzzedValue>+]s}9$# *Y</fuzzedValue>
 <fuzzedValue>0$2)v3D^U1_{X7x,Us\\</fuzzedValue>
 ...
 </generator>
 ...
 </generatorBased>
 <operatorBased>
 <operator name="StringCaseOperator" basedOn="ABC">
 <fuzzedValue>abc</fuzzedValue>
 <fuzzedValue>aBc</fuzzedValue>

 </operator>

 </operatorBased>
</string>

Figure 6: Excerpt from an XML response file

The format of the request file as well as the format of the library's response file is specified using an XML schema. The
parser and serializer for the XML are generated from those XML schemata using the Eclipse Modelling Framework
(EMF).

More information on the fuzzing library can be found in the DIAMONDS project deliverable D5.WP3 [i.3].

5.2.2 Usage of unusual behaviour sequences

The vulnerability from the security risk assessment "Messages are executed without checking authentication"
constitutes a message sequence that is unusual with respect to normal use of the SUT. Therefore, the security test
pattern "Usage of Unusual Behaviour Sequences" is an appropriate starting point for generating test cases that test for
this vulnerability.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 20

Table 1b: The test pattern "Usage of Unusual Behaviour Sequences"

Pattern name Usage of Unusual Behaviour Sequences
Context Test pattern kind: Behaviour

Testing Approach(es): Prevention
Problem/Goal Security of information systems is ensured in many cases by a strict and clear definition of

what constitutes valid behaviour sequences from the security perspective on those systems.
For example, in many systems access to secured data is pre-conditioned by a sequence
consisting of identification, then authentication and finally access. However, based on
vulnerabilities in the implementation of software systems (e.g. in the case of a product
requiring authentication, but providing an alternate path that does not require authentication
– CWE 288), some attacks (e.g. Authentication bypass, CAPEC 115) may be possible by
subjecting the system to a behaviour sequence that is different from what would be normally
expected. In certain cases, the system may be so confused by the unusual sequence of
events that it would crash. Thus potentially making it vulnerable to code injection attacks.
Therefore uncovering such vulnerabilities is essential for any system exposed to security
threats. This pattern describes how this could be achieved through automated testing

Solution Test procedure template:
1) Use a specification of the system to clearly identify the normal behaviour sequence

it expects in interacting with an external party. If possible, model this behaviour
sequence using a notation such as UML, which provides different means for
expressing sequenced behaviour, e.g. sequence diagrams or activity diagrams.

2) Run the normal behaviour sequence (from step 1) on the system and check that it
meets its basic requirements.

3) From the sequence of step 1, derive a series of new sequences whereby the
ordering of events would each time differ from the initial one.

4) Subject the system to each of the new behaviour sequences and for each of those.
− Check that the system does not show exceptional behaviour (no live-

/deadlock, no crashing, etc.)
− Check that no invalid behaviour sequence is successfully executed on the

system (e.g. access to secure data without authentication)
− Check that the system records any execution of an invalid events sequence

(optional)
Known uses Model-based Behavioural fuzzing of sequence diagrams is an application of this pattern
Discussion
Related patterns
(optional)

References CWE 288, CAPEC 115

The application of this security test pattern leads to behavioural fuzzing in order to generate attacks based on invalid
message sequences as discussed in the following.

5.2.2.1 Behavioural fuzzing of UML sequence diagrams

A new fuzzing approach was developed for testing against the vulnerability of an authentication bypass. It consists of
creating invalid message sequences instead of invalid input data by modifying functional test cases. While existing
fuzzing approaches focus on data generation, a few approaches also implicitly or explicitly perform behavioural
fuzzing. These approaches generally use context-free grammars or state machines. The behavioural fuzzing approach
developed in DIAMONDS uses UML sequence diagrams and modifies these. This allows reusing functional test cases
for non-functional security testing. For that purpose, a functional test case from the case study, written in TTCN-3, was
modelled as UML sequence diagram and then used for test case generation. The generated test cases aim at revealing
authentication bypass vulnerabilities by submitting messages for configuring the banknote processing system before or
without authentication.

The fuzzed sequence diagrams are generated as follows: In a first step only one model element at once leading to a
fuzzed sequence diagram representing a test case. For instance, an interaction constraint of a combined fragment of kind
alternatives is negated. This is done for the different model elements and the possibilities to fuzz their behaviour.

In a second step, fuzzing different model elements is combined resulting in fuzzed sequence diagrams each containing
at least two fuzzed model elements. For instance if a sequence diagram is fuzzed on the one hand by negating the
interaction constraint of an alternatives combined fragment and on the other hand by repeating a single message, in the
second step a fuzzed sequence diagram is created by combining these two fuzzed model element in a single fuzzed
sequence diagram. This is done due to the fact that an invalid sequence containing only one invalid element does not
necessarily reveal a vulnerability as showed for data fuzzing.

http://cwe.mitre.org/data/definitions/288.html
http://capec.mitre.org/data/definitions/115.html
http://cwe.mitre.org/data/definitions/288.html
http://capec.mitre.org/data/definitions/115.html

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 21

The third step consists of fuzzing three model elements at once, for example negating the interaction constraint of an
alternative combined fragment and repeating a message within the first interaction operand. This is done for the same
reason as in step 2. The second and the third step are repeated increasing the number of fuzzed model elements in each
iteration.

The number of iterations can be stopped for several reasons depending on the capabilities to get feedback from the
SUT. The modification of elements of UML sequence diagrams is done by a set of fuzzing operators. Each fuzzing
operators performs a single modification of an element in order to generate an invalid message sequence. In the
DIAMONDS project, a set of fuzzing operators for messages, combined fragments, their interaction operands and
guards as well as for state/duration invariants were developed, e.g. Remove Message, Repeat Message or Move
Message, Change Bounds of Loop Combined Fragment, and Negate Guard of an Interaction Operand.

How the approach can be used for testing for an authentication bypass vulnerability is described using a simple example
as given in figure 7. Before the machine can be used, a user has to login with valid login data. If the login was
successful, he is logged in as an operator and may configure the banknote processing machine in order to count money
and at the end the operator logs out. The actions configure and count money are protected as required by the values of
the tag protected. The operator is taking the role of the money counter (tag role) and may access the protected actions
configure and count money.

Figure 7: Simple example of an Activity Diagram with the UMLsec rbac

In order to reduce the number of test cases generated by behavioural fuzzing to a manageable set, a model augmented
with stereotypes regarding role-based access control is helpful. It allows identifying a subset of test cases that are able
to find weaknesses regarding authentication. To achieve that goal, it is necessary to enhance the UMLsec rbac
mechanism to mark such messages that change the authentication state and to allow rbac to be applied to sequence
diagrams. Those messages generally are login and logout messages. For the sake of simplicity, the terms login and
logout are used instead of messages that respectively increase and decrease the authentication state.

Having the piece of information on what messages are login and logout messages, the number of messages considered
by behavioural fuzzing operators as well as their number of applications can be reduced:

• The fuzzing operator Move Message can now only move the login and logout messages. Login messages can
be moved stepwise closer to the logout message to test if the messages appearing after the login can be
successfully executed without authentication. Accordingly, the logout message can be moved stepwise closer
to the login message to test if the logout is successful and no operations can be executed after a logout.

• Remove Message may consider only the login message in order to test if messages that need authentication can
be performed without.

• Repeat Message may only repeat the login and logout message in order to check if the authentication state
remains unchanged by the repeated message.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 22

When considering the example depicted in figure 7, a corresponding test case would look like the one in figure 8 where
the information about protected resources, roles and rights are copied from the activity diagram. Additionally, there is
one more tag authentication with a tuple whose first element contains the information which message performs
authentication and which performs a de-authentication.

Figure 8: Test Case derived from the Activity Diagram in figure 7

More information about model-based behavioural fuzzing can be found in the DIAMONDS project deliverable
D5.WP2 [i.2].

5.2.2.2 Online model-based behavioural fuzzing

Execution of a single test case takes very long time due to start-up times of the virtual machines and initializing them
with a snapshot in order to achieve a consistent state. This step takes several minutes. Because fuzzing approaches
generally result in a large number of test cases, this is a serious impediment. To overcome it, a concept called online
model-based behavioural fuzzing was conceived that improves runtime efficiency by reducing the number of restarts
and initialization of the virtual machines and increases the number of tests executed while the SUT is healthy. Figure 9
illustrates the approach. The current test setup is amended by an online test generator.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 23

Figure 9: Online Model-based Behaviour Fuzzing Approach

This approach is driven by the desire to apply more fuzzing to interesting behaviour and simultaneously use the test
execution time efficiently. The interesting areas in the behaviour model are identified from the riskmodel thus reducing
fuzzing to areas where a vulnerability might be located. At the same time more fuzzing operators can be applied while
the SUT is healthy. This approach has been implemented and tested using the case study. The test framework needed to
be adapted to be able to deal with incorrect sequences which where correctly rejected. The results are very promising
because even though no new vulnerabilities were discovered the number of fuzzing operations per test time has
increased and heightened the confidence in the implementation of the SUT.

Online model-based behavioural fuzzing is an approach to make the test execution for behavioural fuzz testing more
efficient by:

• generating test cases at runtime instead of before execution;

• focusing on interesting regions of a message sequence based on a previously conducted security risk
assessment; and

• reducing the test space by integrating already retrieved test results in the test generation process.

More information about model-based behavioural fuzzing can be found in the DIAMONDS project deliverable
D5.WP2.

5.3 Results

5.3.1 Requirements coverage

The existing TTCN-3 framework including their test adapters were customized for the test development and execution
tool. This was necessary because of subtle differences in the interpretation of the TTCN-3 specification by the different
TTCN-3 test execution environments. For this step, test adapters were reused and adapted (applies to requirements 10
and 14 in table 1). The TTCN-3 test framework provides also simple monitoring of the SUT by observing the timing
behaviour of and the messages received from the SUT. Thus, it does not interfere with the operation of the SUT
(requirement 13).

For enabling fuzzing approaches, a fuzz testing extension for TTCN-3 was developed and implemented for the test
development and execution tool. It allows integrating fuzz data generators from the Fuzzing Library with the test
development and execution tool and use of them in the TTCN-3 code (requirement 12).

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 24

Risk models following the CORAS approach were developed on the basis of the identified threats to prevent. These
models describe on one hand vulnerabilities and on the other hand the threat scenarios and unwanted incidents,
vulnerabilities it may lead to, as well as the impact on assets. An example of an unwanted incident is "The integrity and
confidentiality of the data is compromised" and an example of an asset "Service Availability, SLA Violation" or
"revenue" which are understandable also by non-technical stakeholders. The different vulnerabilities, threat scenarios,
unwanted incidents and assets are connected through edges and thus, risk models allow understanding the relationships
between these elements also for non-technical stakeholders. The identified vulnerabilities in the risk models constitute
the basis for the performed test. Therefore, the requirement that risk models should enable the communication with
non-technical stakeholders as well as providing a reasonable test basis is fulfilled (requirement 11).

The remaining requirements (1-9) regards the technical basis of the SUT that are fulfilled by providing the SUT as a
virtual machine and reusing the test adapter for the communication with the SUT. Requirements 15-18 apply to
technical access to the SUT and organizational issues.

5.3.2 Test results

Based on the risk models, 30 behavioural fuzz test cases were executed on the SUT regarding an authentication bypass.
Additionally, an initial set of 24 test cases using SQL injection to bypass the authentication were executed. No security-
related issues were found. Considering the domain of the case study, banking, this is not surprising because it requires a
much higher level for security resulting in a more secure development process than for other domains.

For measuring the coverage of risks by test cases, it was used an integration platform "Trace Management Platform for
Risk-Based Security Testing" developed during the DIAMONDS project. The integration platform integrates all used
tools, thus it allows for creating links called traces between the different artefacts of risk models, system model
elements, security test patterns and modelled test cases as well as TTCN-3 code for test cases. Additionally, it allows
for tracing back the test verdicts to the risks. Figure 10 shows how this looks like for the Giesecke & Devrient case
study. It shows in each line for a vulnerability from the risk model the test verdict of the test cases that are linked back
to the vulnerabilities from the risk model.

Figure 10: Tabular overview of test execution results and vulnerabilities from the risk model

While the initial traces between vulnerabilities from the risk model, the behavioural model of the SUT and the chosen
security test patterns has to be created manually, the most traces that results from test case generation and execution are
generated automatically. This allows a semi-automatic measurement of risk coverage.

By executing these test cases, the risk of an authentication bypass using behavioural means was covered by applying
behavioural fuzzing. Additionally, the risk of an authentication bypass by malicious input data was partially covered.
SQL injection is one possibility to pass an authentication without valid authentication data. A query to the database
where user input data is used as a parameter may modify the syntax of the query in a way where it e.g. returns a user
record independent from the provided password. Other ways to perform an authentication bypass are by adding or
modifying the records in the database where knowledge of the database schema is used. Since this knowledge was
currently not used, the risk of an authentication bypass was only partially covered by SQL injection. Additionally,
further manipulation of the authentication mechanism may be possible. Therefore, SQL injection is only one possibility
of an authentication bypass using malicious input data. Likewise, the risk of database manipulation by SQL injection is
currently partially covered because of the lack of database schema knowledge.

The Online MBBF approach has been implemented and tested using the case study. The test framework needed to be
adapted to be able to deal with incorrect sequences which where correctly rejected. The results are very promising
because even though no new vulnerabilities were discovered the number of fuzzing operations per test time has
increased and heightened the confidence in the implementation of the SUT.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 25

5.4 Summary and conclusion
Starting the security tests with the development of a risk model to visualize and discuss the vulnerabilities, threats and
consequences has proved useful and will be adopted by the standard development process.

The applied fuzzing approaches allow reusing of existing, functional test cases to test the non-functional security aspect.
This is achieved by using certain inputs (login, manual input of barcodes data that was incorrectly read by the currency
processor) of functional test cases for inserting fuzz test data. Fuzz test data could be easily integrated in a test case
because a TTCN-3 fuzzing extension allows direct access to the fuzz data generator. The developed behavioural fuzzing
approach extends existing functional test cases towards tests of security aspects. Therefore, the applied fuzzing
approaches can take advantage of the effort made for functional testing of the SUT and do not require development of
new test cases for security testing. In combination with the results of the security risk assessment modelled in the risk
diagrams, the focus of the generated security test cases can be narrowed to the identified vulnerabilities and thus, reduce
the number of test cases that are necessary to cover these vulnerabilities. This may help saving resources when
performing security tests.

6 Banking case study results

6.1 Case study characterization
The aim of the Accurate Equity (formerly known as Norse Solutions) case study was to evaluate a process which
combines security risk assessment and security testing when applied to the Norse Options web-portal (which is the
software that Accurate Equity provides to its customers). In the case study, Accurate Equity played the role as domain
expert for Norse Options (the system under test), while the security risk assessment and security testing was conducted
by SINTEF in collaboration with Accurate Equity.

Norse Options is designed to deliver streamlined administration and reporting of all forms of equity based
compensation plans in compliance with the prevailing standards and requirements such as:

• Employee Share Ownership Plans (ESOPs)

• Employee Share Saving Plans (ESSPs)

• Employee Share Purchase Plans (ESPPs)

• Employee Stock Options and Warrants

• Synthetic Options

• Stock Appreciation Rights (SARs)

• Restricted Stock Units (RSUs)

• Restricted Stock Awards (RSAs)

The tool has two kinds of primary users: Employees and Administrators. Employees refer to the employees of
companies that use it as their accounting system for shared based payment. Employees use the tool through a web-based
interface to manage their individual share-based payment. Administrators are typically accounting personnel in
companies that use the same tool. Administrators use it to manage the share-based payment on behalf of the company
they belong to. The tool is structured into a 4-layered architecture as shown in figure 11.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 26

Domain
(database queries)

DB

Service
(business logic)

Control
(GUI and input

control)

JSP

SQL

Java

Java

Java

Web

HTTPS

Domain

layer

Service

layer

Control

layer

MySQL

IE, Opera, Firefox, …

Apache Tomcat 5.5.25

View

layer

Figure 11: Layered architecture of the System Under Test

The view layer is a thin layer used to render web pages. A web browser presents the HTML pages to the users and
communicates using HTTPS to a servlet container. The servlet container translates Java Servlet pages (JSP) into Java™,
compiles these and executes the code. The control layer builds the request-specific HTML to be returned to the view
layer. As part of this, it may request the service layer for business services to be able to fill the HTML with appropriate
data. The control layer also uses the service layer if the request involves updating the data. In addition to generating the
HTML, the control layer sanitizes the input and performs access control to prevent unauthorized access to data and
functions.

The service layer contains the business logic. This means that all calculations are performed in the service layer. The
services are invoked from the control layer and may use the domain layer to persist or retrieve data. Finally, the domain
layer manages the persistent data. It transforms requests from the service layer to SQL queries to the database. The
details of the security testing and the security risk assessment of the case study are confidential, and so are the security
requirements that were addressed. However, in general, one can say that the tool's system handles sensitive financial
information and the main overall security requirements were related to protection of the confidentiality and the integrity
of the sensitive information handled by the tool.

6.2 Security testing approaches
In this clause, an overview is given of the process for test-based security risk assessment that was followed in the
Accurate Equity case study. For a more a description of the current version of this process, see DIAMONDS deliverable
D5.WP4 [i.4].

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 27

Security Risk Analysis

Security Testing

P
ha

se
 1

P
hase 2

P
ha

se
 3

Figure 12: Overview of the steps in the process

The process was divided into three phases. The goal of Phase 1 is first was establish the context and target of
evaluation, and then conduct a security risk assessment of the target of evaluation. This includes defining the scope of
the assessment, identifying security risks w.r.t. the target of evaluation, estimating and evaluating the security risks
based on likelihood and consequence values. Having discovered security risks in Phase 1, the analysis proceeded to
Phase 2 in which security tests were identified and prioritized base on the security risk assessment, and then specified
and executed to explore the security risks. Finally, Phase 3 completed the analysis by validating and updating the risk
models based on the security testing results obtained in Phase 2. Additionally, treatments were suggested in order to
mitigate the vulnerabilities identified during Phase 2. The phases were further decomposed into the following seven
consecutive steps:

• Phase 1: Establish context and target of evaluation, and carry out security risk assessment of the target of
evaluation.

- Step 1 Establish context and target of evaluation.

- Step 2 Risk identification.

- Step 3 Risk estimation.

- Step 4 Risk evaluation.

• Phase 2: Generate and execute security tests that explore the risks identified during the security risk
assessment.

- Step 5 Test case generation and prioritization.

- Step 6 Test execution.

• Phase 3: Validate and update the risk model based on the security test results.

- Step 7 Risk consolidation and treatment.

Phase 1: As indicated by figure 12, the process was two-folded in the sense that it addressed both security risk
assessment and security testing. Security risk assessment was conducted using the CORAS approach for model-based
security risk assessment.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 28

Figure 13: Example of a risk model

In the CORAS security risk assessment process, results are documented using risk models (an example is shown in
figure 13). A CORAS risk model is a directed acyclic graph whose nodes are of one the following kinds:

• Threat: A potential cause of an unwanted incident (illustrated by a man with a warning sign in case of a
human threat).

• Threat scenario: A chain or series of events that is initiated by a threat and that may lead to an unwanted
incident (illustrated by ellipses with warning signs).

• Unwanted incident: An event that harms or reduces the value of an asset (illustrated by box with a star in the
top right corner).

• Asset: Something to which a party assigns value and hence for which the party requires protection (illustrated
by money bags).

Risks are not explicitly shown in the CORAS model of figure 13. However, in the CORAS methodology, risks
correspond to unwanted incidents together with a likelihood value and a consequence value. Hence, the model in
figure 13 describes two risks (implicitly). Relations may be of one of the following kinds:

• Initiates relation going from a threat A to a threat scenario or unwanted incident B, meaning that A initiates
B.

• Leads to relation going from a threat scenario or unwanted incident A to a threat scenario or unwanted
incident B, meaning that A leads to B.

• Harms relation going from an unwanted incident A to an asset B, meaning that A harms B.

In addition, relations may be annotated by a:

• Vulnerability: A weakness, flaw or deficiency that opens for, or may be exploited by, a threat to cause harm
to or reduce the value of an asset (illustrated by red open locks).

Phases 2: Security testing was carried out in a structured manner by (1) identifying and prioritizing potential test
scenarios based on CORAS risk model of Phase 1, (2) selecting the most important test scenarios and refining these into
executable test cases, and (3) executing the concrete test cases. The security tests were carried out automatically, semi-
automatically and manually. The following tools were used in the case study:

• A modelling and development environment that uses the Unified Modelling Language (UML) for designing
architecture for C++ and Java 2 Enterprise Edition (J2EE) applications and web services. It is built on the
Eclipse open-source software framework and includes capabilities focused on architectural code analysis, C++,
and model-driven development (MDD) with the UML.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 29

• A test design automation tool that creates tests based on system models (i.e. model based testing).

• Selenium: Selenium is a suite of tools specifically for testing web applications. The ones used in this case
were Selenium IDE, Selenium Server and Selenium Client Drivers. Selenium IDE is a Firefox plug-in that
does record-and-playback of interactions with the browser. The Selenium Server is needed in order to run
either Selenium RC style scripts or Remote Selenium WebDriver scripts. The Selenium Client Driver is
necessary in order to create scripts that interact with the Selenium Server or create local Selenium WebDriver
scripts (e.g. in order to run the scripts directly from Eclipse).

• OWASP WebScarab: WebScarab is a framework for analysing applications that communicate using the
HTTP and HTTPS protocols. WebScarab has several modes of operation, implemented by a number of
plugins. In its most common usage, WebScarab operates as an intercepting proxy, allowing the operator to
review and modify requests created by the browser before they are sent to the server, and to review and modify
responses returned from the server before they are received by the browser. WebScarab is able to intercept
both HTTP and HTTPS communication. The operator can also review the conversations (requests and
responses) that have passed through WebScarab.

• Eclipse: Eclipse is a multi-language software development environment comprising an integrated
development environment (IDE) and an extensible plug-in system.

• Wireshark: A tool for capturing and analyzing network traffic supporting numerous communication
protocols.

All executed tests were black-box tests, i.e. Norse Options system was tested through its HTTP interface. Part of the
security testing that was carried in the case study was model-based. The modelling and development environment was
used to build a functional model of the SUT which described typical user operations that could be performed on the
client side through a web-browser. Then the test design automation tool was used to generate functional tests that were
exported to Java™ code, and implemented security specific tests in Java™ "on top" of the functional tests that were
generated. Finally the tests were carried out by using Selenium.

Phase 3: In phase 3, the test results were used to verify the correctness of the risk model (produced in phase 1). In
particular, test results taken into account were so that:

• confirmed the presence of a potential vulnerability;

• identified new vulnerabilities that were not previously known;

• were not able to confirm the presence of potential vulnerabilities.

If the test results were found to be in conflict with the risk model, then the risk model was updated to take into account
the additional information obtained by testing. For example, if the presence of a potential vulnerability (whose existence
or non-existence was unknown before the testing), then this typically resulted in the conditional likelihood value of the
relation to which the vulnerability was associated to increase.

6.3 Results
The objective of the evaluation is was assess how useful testing is for gaining confidence in the correctness the risk
models produced in the security risk assessment (phase 1 above). To make the evaluation precise, the focus was
specifically on the degree to which the testing yielded information that caused us to change the risk model. The overall
hypothesis was that:

The risk model created before testing (in phase 1 above) is equal to the risk model after testing (phase 3) above.

If the hypothesis is false, then this means that new information was obtained in the testing step that resulted in the risk
model having to be updated/corrected. The underlying assumption is that this would indicate that process of performing
the tests was useful. If the hypothesis is true however, then on the basis of this fact alone, it is not possible to conclude
that the testing was or was not useful.

The evaluation suggests that the hypothesis is false. In the case study, the risk model had to be updated after testing. In
particular many of the likelihood values of the threat scenarios and risk had to be changed. Moreover, the testing
uncovered vulnerabilities that would never have been uncovered in the security risk assessment phase (phase 1 above),
regardless of the amount of effort spent in this phase. It is then believed that the combination of security risk assessment
and testing is useful.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 30

In the following, more detailed information is provided about the difference between the risk model before and after
testing.

0

5

10

15

20

25

30

35

40

45

50

Before

After

Figure 14: Number of risk model elements before and after testing

Figure 14 shows the number of risk model elements in the risk models before and after testing. Only one element was
deleted after testing (a vulnerability), hence the figure shows that four new vulnerabilities were added after testing, but
no new threats, threat scenarios, unwanted incidents, or assets were added.

Figure 15 shows the number of threat scenarios and risks that were tested. As can be deduced from the figure, 33 % of
the threat scenarios were tested, and 42 % of the risks were tested. Note however, that it was made a distinction between
those model elements that were directly tested from those that were not. One can say that a threat scenario T was
directly tested if T was used a basis for deriving tests. A threat scenario or a risk TR is indirectly tested if there is a
threat scenario or a risk leading up to TR that was directly or indirectly tested. From the figure one can see 14 % of the
threat scenarios were directly tested, and that none of the risks were directly tested.

0

5

10

15

20

25

30

35

40

45

50

Total Total tested Total directly

tested

Threat scenarios

Risks

Figure 15: Number of risks and threat scenarios tested and updated

Figure 16 shows the difference between the threat scenarios and risks that were tested before and after testing. In the
figure, each threat scenario and risk TR has a label of the form i / j which means that TR had a likelihood value of i
before testing, and j after testing. The likelihood scale that was used in the case study can be mapped to a number
between 1 and 5 where 1 represents the most unlikely value and 5 represents the most likely value. All the threat
scenarios and risks whose likelihood values were edited after testing are in the figure 16 given a darker colour than
those threat scenarios and risks that were not edited. Note that all except one risk element whose likelihood values were
edited after testing were estimated to me more likely after testing than before testing.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 31

In figure 16 the threat scenarios that were directly tested are represented by ellipses with a dotted outline; all the other
elements of the diagram are indirectly tested. It can be noted that the level of indirection from the directly tested threat
scenarios to the risks is quite large.

Figure 16: Difference between risk models before and after testing

Based on the previous discussion and the numbers in figure 14, it is noticeable that new vulnerabilities were added to
the risk model after testing, and that no other kinds of risk elements were added. Why did the testing only yield new
information about the vulnerabilities? The main reason for this is that the tests were designed from the threat scenarios.
The threat scenario would typically describe some kind of security attack and the purpose of the tests were to
investigate whether the system had some vulnerability that could be exploited by the attack. In other words, the tests
were designed to uncover vulnerabilities; not unknown assets, threats, threat scenarios, or risks. These elements were
instead part of the context in which the testing was performed.

It is believed that this result is generalizable, i.e. if the process were to be applied in another case study in the future,
then the testing will most likely lead to the identification of new vulnerabilities, but not any other kinds of risk model
elements. It is worth noting that vulnerabilities uncovered by testing in the case study could never have been uncovered
if a security risk assessment had been performed alone (without doing the testing), regardless of the amount of effort
spent. This is because the testing uncovered issues which only appeared in extremely specific circumstances which
could not have been reproduced without execution the system under analysis. As discussed in the previous clause, the
testing resulted in the deletion of exactly one risk element - a vulnerability. The reason why a vulnerability was deleted
after testing was that the testing provided evidence that a potential vulnerability identified in the security risk
assessment phase was actually not present in the system. This led us to remove the vulnerability from the risk model.

It is also believed that in general, testing can result in the deletion of vulnerabilities, since the tests can be designed to
check whether a vulnerability is actually present in the system or not. However, it is unlikely that the test results will
lead to the deletion of any other kinds of risk model elements. As documented figure 16, 11 % of the threat scenarios
and 13 % of the risks were edited after testing. Moreover, only likelihood values were edited after testing.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 32

For all risk elements that were edited (with the exception of one), the likelihood value was increased after testing,
i.e. the risk element was believed to be more likely after testing than before testing. The reason for this was that the
testing uncovered vulnerabilities that were previously unknown, and that led to the belief that certain threat scenarios
were more likely to occur than believed before testing. For one of the threat scenarios, the likelihood values were
decreased after testing as a result of one vulnerability being deleted.

In general, it is believed that when following the process, the testing may uncover information that may cause the
conditional likelihood values of relations to be edited, and this in turn may cause the likelihood values of threat
scenarios and unwanted incidents to be edited after testing. However, it is not believed that the testing can yield
information about the consequence value of risks.

6.4 Summary and conclusion
The partners involved in the case study have gained important practical experience in applying a process which
combines security risk assessment and testing. As a result of the case study, Accurate Equity has increased its
awareness about security in their application, and will continue to use security risk assessment as part of their business
process also after the completion of the DIAMONDS project. SINTEF, will, based on the experiences from the case
study, improve their process for security risk assessment and testing, focusing on improved techniques for test case
identification and prioritization based on security risk assessment results.

Based on the results of the evaluation, it is not possible to claim that the process leads to saved resources. This will
require further evaluation, ideally trying out two different processes on the same systems to compare the effort required.
It is however believed that the testing improved the security risk assessment results. This is because the testing
uncovered information which resulted in the risk model having to be updated based on this information. Furthermore,
the vulnerabilities uncovered by testing in the case study could never have been uncovered if a security risk assessment
had been performed alone (without doing the testing), regardless of the amount of effort spent. This is because the
testing uncovered issues which only appeared in extremely specific circumstances which could not have been
reproduced without execution the system under analysis.

The case study process helped improve the security of the tested software since vulnerabilities were discovered and
treated. In general, an improved security risk model will likely lead to a more secure system, as it gives a more accurate
description of the vulnerabilities of the system and allows for appropriate mitigations/treatments to be identified.

7 Radio case study results

7.1 Case study characterization

7.1.1 Context of Mobile ad-hoc networks

The Radio Protocol Case study is based on ad hoc Radio Network. These protocols cover the following particularities:

• Decentralized mesh network. No Base Station: One major challenge of these networks is to be independent to
any infrastructure between the network units. Each node (also called radio unit) has the capability to integrate
an existing network with self-discovering of the nodes in this neighbourhood and exchange information for the
radio resource provision for the exchange of control and data information.

• Automatic network deployment with no initial planning. One other challenge is that the radio units discovered
in a network may not be initially known i.e. there may not be initial files of registered node identifier to
authenticate or not the access to the network.

• Network continuity whatever may be the stations in the network. A third particularity is that the
communication is done by nodes relaying between the initial and final nodes. These radio nodes implement a
dynamic routing protocol able to interconnect different nodes of a network and allocate the radio resources to
establish an end-to-end traffic communication points.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 33

• "On the move" automatic network re-organization and operation. These radio nodes being mobile, the dynamic
routes may be cut due to the disappearance of radio nodes, the radio resources (as the bandwidth allocated for
the specific neighbour) may be managed with the respect of the number of neighbour and routes established at
a particular instant of the network life.

• End-to-end heterogeneous user services transmission: voice, messages. Different kinds of user services have to
be provided by the network with different requirements in terms of Quality of Service (QoS) as throughput,
latency, link stability. This information has to be taken in account in the link establishment.

Due to their infrastructure less and auto-adaptation particularities, these networks are well fit to be deployed on harsh
environments, and used in the domain of Private Mobile Radio (PMR).

Radio units of an ad-hoc network are interacting. Each radio unit manages the allocation of its radio resources with
respect to the nodes reachable on its neighbourhood and creation of traffic routes. As this allocation management is
dynamic, and offers the capability to a new node to access to the network, the network is particularly sensitive to a node
intrusion.

7.1.2 Status of the test of security testing at the beginning of the project

Until recently, the security analysis of such radio equipment were mainly delegated on communication ciphering
components of the application, dependent on particular values (seeds, keys) manually injected by the user for a specific
mission. These security protections are still used for the protection against threats and malfunctions. However, Due to
more and more nominal protection, these specific trusted components have to be completed with a more global
vulnerability analysis. This analysis explicitly lists the set of security threats to be faced, but does not assume the
capability to verify robustness with respect to these identified potential analysis.

The capability to enrich the validation framework at different stages of the process, in order to combine security testing
with functional verification as result of the DIAMONDS project, is the major requirement from THALES
Communications & Security.

7.1.3 Security testing capabilities targeted

This clause summarizes the list of security testing analysis targeted to be validated at the end of the DIAMONDS
project. As shown in figure 17, the scope of vulnerability analysis is focused on Packet Data Units messages transmitted
over the air between pair nodes. The information of the messages (and potential threats may be applied on) are the
information provided in the header (used to route the traffic) and the data information (traffic, control information)
transmitted in the message.

Figure 17: Global scope of the capture of PDUs exchanged

The threats identified on the general vulnerability analysis on radio protocols are the following.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 34

7.1.3.1 Frames analysis

The on the fly or post analysis from an intrusive node offers the capability to an intrusive node to capture sequences of
messages exchanged between peer entities; and:

• to refine the understanding of the protocol behaviour and detect weaknesses for a second disturbance phase;

• to collect the traffic information exchanged.

Figure 18: Listening and analysis of the data exchanged

Example on the radio protocol:

The sharing of the radio resources is processed with respect to a timing decomposition in timing frames of N slots.
The first slot of a frame is a service slot used to emit/listen information from nodes to be known from the
neighbourhood. The other slots are dedicated to traffic, and contain traffic data from the users and also some
information to maintain the topology. The information of the allocation of some slots in the frame for a particular
peer-to-peer communication is done on these slots. This kind of information may be captured from an intruder node.
It then will know which particular slots are involved in a peer-to-peer communication.

7.1.3.2 Data alteration

One potential threat is, for a node acquiring a more or less fine knowledge of the protocol of the data exchanged, to
send a message instead of a node in the network, with a modified value of the data transmitted. This modification can be
done in randomly modifying the value of fields in the data sent with respect to the data that should be originally sent.
This modification can be done in making a modification explicit of the data to force the receipt to behave differently as
if it should do if it would have received the correct data. The denial of service presented hereafter may be considered as
a particular case of the second case of data alteration. This is illustrated in figure 19.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 35

Figure 19: Data alteration

Example on the radio protocol:

A phantom traffic allocation from an intruder node on a particular node with the allocation of a large set of traffic
slots will imply the traffic performance of the real communications on this node.

7.1.3.3 Frames replay

Another threat situation, as described in figure 20 is to record a particular sequence of messages between two nodes,
with or without modification of this sequence of messages.

Figure 20: Frames replay

Example on the radio protocol:

The request and suppression of allocation dedicated to a particular node can be replayed in another configuration.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 36

7.1.3.4 Denial of service

The particular situation of the denial of service is the interaction in the communication between peer entities. The
intruder node replaces one of the two peer node is acknowledging at its place always positively or negatively, in
function of the disturbance expected.

Figure 21: Denial of service

Example on the radio protocol:

As data alteration, the intruder may send traffic slots at the same time than a particular node, this node will then be
suppressed from the neighbour allocation tables of its neighbourhood nodes, as the service slots will be jammed.

7.1.3.5 Tampering, malicious code injection

The following kind of threat is the injection of malicious code directly integrated in the protocol stack, for example
resulting of a modifying load of new service Over The Air.

Figure 22: Tampering, malicious code injection

Example on the radio protocol:

More accurate behaviour modification can be applied on this kind of threat.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 37

7.1.3.6 Combination of threats

The threats can be composed as a combination of the different situation described in the precedent clause.

Figure 23: Combination of threats

7.1.4 Description of the use-case

The Open Systems Interconnection model (OSI model) shown in figure 24 is a product of the Open Systems
Interconnection effort at the International Organization for Standardization. It is a way of sub-dividing a
communications system into smaller parts called layers. A layer provides services to its upper layer while receiving
services from the layer below, the data exchanged between layers are called Service Data Unit (SDU). The part of this
data to be exchanged over the air between peer-entities is called Packet Data Unit (PDU). A tool, and in particular test
tool for the security, validating services provided by a specific layers of a protocol stack may be applied on the
monitoring and intrusion on the PDU exchanged at this layer level between pair entities, with the hypothesis the tool
will have the capability to catch and extract this specific information at the physical layer the data will be really
exchanged over the air.

Figure 24: OSI layer decomposition

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 38

7.1.4.1 Specific application used as Use Case

The application used as Use Case is a full designed OSI layered ad-hoc protocol application, from Physical to IP
Convergence sub-layer application.

• At physical layer: modulation and demodulation, management of the dwell level of the slots of the TDMA and
definition of the slots of the TDMA.

• At Medium Access Control (MAC) layer: the management of the slot level of the TDMA cycle, the dynamic
allocation of a service slot to each station, the construction of a meshed network (flat), the dynamic allocation
of traffic slots to the station, the forwarding of topology information (bidirectional links between stations) to
the RSN layer and the separation of the packets of data on the traffic slots.

• At Radio Link Control (RLC) layer, the procedure used to route data within the network with single-station
relaying. This routing corresponds to an unconnected mode (hop-by-hop routing. The
segmentation/reassembling procedures for the data coming from upper layers to retransmit them to the format
of the TDMA slots and the queue management procedures according to the quality of service criteria set by
RSN.

• At Radio Service Network (RSN) layer, the route search in the internal addressing plan on RLC request,
updating of the local RLC switching information, Quality of Service (QoS) parameters management applicable
to RLC queues and local route supervision.

• At IP Convergence Sub-layer (IP-CS), the matching of the destination IP address of the IP data with the MAC
address of the network output station, the matching of the user data (IP packets) with the appropriate network
service.

7.1.4.2 Specific context of the application of security testing tools

The properties for security testing focused on the neighbourhood management. The management of the 1 and 2 hops
neighbourhood detection is processed by a specific service in the MAC layer. This service initializes and updates from
PDU exchanged:

• One hop neighbours broadcast channels to emit control signal on lists management.

• Knowledge of the local topology of the One and 2 hops radio node lists.

Information on behaviour and fields of the message exchanged between pair nodes for this neighbourhood management
are given in the DIAMONDS deliverables.

7.1.4.3 Specific context of the initial validation framework

The initial validation framework used for the integration of the tool set was an event based simulation (as ns-3 or
OMNET). The simulations execute the real C/C++ final encoding, and are used for a first functional validation, and
validation of the protocol behaviour of a set of nodes interacting with each other. Scenario files written by hands
describe nodes movements and traffic setups. Log files, tagged by time slot the messages have been sent, capture the
PDUs and SDUs exchanged between layers, and sent over the air.

7.2 Security testing approaches

7.2.1 General principles of the security testing tools integration

The radio equipment design process, as shown in the following picture, validates at different stages the functional
behavior of the radio protocol being designed. At each phase the validation validates requirements by
simulation/execution on demonstrator of scenarios. The security testing approach is to integrate the security testing
tools set into the validation framework at each step of the validation framework.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 39

Figure 25: Steps of the process the DIAMONDS framework is applicable

7.2.1.1 Verification framework adaptation

For each one of the process validation steps, the testing validation environment scheme may be abstracted as the left
side picture below. Functional test are refined from the specification and executed from a scenario driver to the set of
nodes simulated or executed.

The DIAMONDS framework extension consists on the addition of:

• An explicit set of security properties issued from the vulnerability analysis of the protocol being designed.

• The test/scenarios design/specification and generation and execution in order to check the potential violation
of the security properties.

• The integration to the validation framework, of monitoring tools able to test the security properties violation.

• The capability to control the behavior of nodes to make them acting as intruder nodes, for active testing.

Figure 26: Integration of the DIAMONDS framework for one validation process step

7.2.1.2 Adaptation of the event driven simulation environment

Figure 27 shows in the green square the current simulation environment, which means the simulation of a set of "sane"
nodes to validate functional behaviours. This initial environment is adapted in order to integrate the following features.

• A set of security testing properties to be defined from a vulnerability analysis specified by the use of a specific
notation. These properties are used as an entry point of the monitoring tools. The notation needs to be able to
specify properties with sufficient expressivity (timings, occurrences, operations on data, test of absence).

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 40

• An integration of monitoring tools, on which potential violation of the security properties may be tested. The
validation of the properties may be validated, either on trace files generated (which means offline analysis) or
from an API to verify properties on the fly which means online analysis). The offline analysis is done using a
standardized format (ASN1 and PCAP) in order to integrate as smoother as possible the monitoring tools to
the different validation environments used at the different stages of the process.

• The two first bullets allow passive testing, which means verification of behaviours of nodes whose behaviour
has been design to meet the specification of the application. Passive testing does not offer the capability to test
the robustness of the radio network with respect to specific intruder behaviour different from the sane node
behaviour. The initial execution framework environment integrates the capability to instantiate specific nodes.
On these nodes parts of the behaviour related the security testing properties can be controlled by the use of a
specific API. Security testing with the capability to test attacks is called active testing.

• With respect to the topological and traffic flow setup situations, incidence on the activation of threats will be
different. The threats activation is related to a specific context. This initial environment is adapted, from
context information in order to generate automatically scenarios to get nodes in the right situations for security
testing against threats. In addition, directives are sent to the monitoring tools to test the security properties
related to the threat in the context of the scenario (nodes involved, timing slots the threat is effective).

Figure 27: Tools integration (user view)

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 41

7.2.2 Properties validated

19 properties have been specified, implemented and validated, a summary of the description of these properties.

Security Rule 1 If one node receives two successive MSG_SPHY_DATA_IND messages from the same source,
then these two messages have to be separated by 50 slots (two nodes with close enough to see
each other with no packet loss).

Security Rule 2 If one node receives two MSG_SPHY_DATA_IND messages from different sources, then these
two messages have to have two different time slots.

Security Rule 3 If node A receives from B an MSG_SPHY_DATA_IND message claiming A as a neighbour, then
this means that A received from B at least 3 MSG_SPHY_DATA_IND messages in the last
4 periods (One period = 50 Time Slot).

Security Rule 4 DataUMAC within MSG_SPHY_DATA_IND (SCH) message have to have a management status
equal to 10 and a channel presence equal to 10 (hexa values).

Security Rule 5 Number of neighbours has to be between 0 and 127.
Security Rule 6 DataUMAC within MSG_SPHY_DATA_IND message should have K, J, C as follows: K between

1 and 255, J between 3 and 11 and C between 0 and 7.
Security Rule 7 DataUMAC within MSG_SPHY_DATA_IND message is well formatted.
Security Rule 8 The declared neighbours of a node are distinct.
Security Rule 9 The neighbours declared by a node A do not contain the source node A.
Security Rule 10 The bit Z1 in KJC have to be equal to 0 (Tolerance X% = 0).
Security Rule 11 If node B receives from A an MSG_SPHY_DATA_IND message claiming B as a neighbour with a

bi directivity bit = 1, then this means that A received from A at least 3 MSG_SPHY_DATA_IND
messages in the last 4 periods (One period = 50 TS).

Security Rule 12 The directivity byte in BLOC3 (if any) has to be equal to 0 or 1).
Security Rule 13 KJCs in BLOC2 (if any) has to be different from KJC in BLOC 1).
Security Rule 14 All channels in BLOC2 are distinct.
Security Rule 15 If a node sends a message SPHY_DATA_REQ then receives and SPHY_DATA_IND from

another node, the two messages need to have different broadcast Channels BLOC1.
Security Rule 16 If a node receives two SPHY_DATA_IND messages from two different nodes, the two messages

need to have different broadcast Channels BLOC1.
Security Rule 17 If node A receives from B an MSG_SPHY_DATA_IND message claiming A as a neighbour, then

this means that A already sent at least 3 MSG_SPHY_DATA_REQ messages in the last 4 periods
(One period = 50 TS).

Security Rule 18 If node B receives from A an MSG_SPHY_DATA_IND message claiming B as a neighbour with a
bi-directivity bit = 1, then this means that B already sent at least 4 MSG_SPHY_DATA_REQ
messages in the last 5 periods (One period = 50 TS).

Security Rule 19 If node A receives from B an MSG_SPHY_DATA_IND message claiming A as a neighbour with a
bi-directivity bit = 1, then this means that A already sent an MSG_SPHY_DATA_REQ message
claiming B as a neighbour.

7.2.3 Active testing

7 threats have been specified, implemented and applied on scenarios, a summary of the description of these threats.

Threat 1 The PDU of the spy node take exactly the same values as another received PDU (specially the mac
address) and sent over the air with a wrong timeslot.

Threat 2 The address and broadcast channel of the received station is directly added at the STL list LC at the
first reception (normally impossible before 4 receptions).

Threat 3 Fields of the PDU are forced with bad values (K = 0,J = 12, C = 8,number of neighbours = 128).
Threat 4 The spy node retrieves the canal of broadcast [K, J, C] of a received station and uses it as broadcast

channel for the PDU (uniqueness of the broadcast channel).
Threat 5 The conflict bit Z1 is put at 1 for each channel of the STL list LC.
Threat 6 At the first reception of a received station, this station is directly added at the LC list with the directivity

bit forced at 1.
Threat 7 The spy node puts the received station in the LP list with the directivity bit forced at 1.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 42

7.3 Results
As shown in the previous clauses of the present document, the process followed by the contributors of the Test for
security related to the Radio protocol use case was based on requirements about security testing features. These
requirements identification was the first activity step.

For the next step, the following activities were leaded. The specification, design and integration of the Radio Protocol
use case, with validation through execution of multi nodes, and the analysis between tool providers on the capabilities
to interconnect to each other, and to integrate this test for security flow to the Radio protocol validation environment.
This last step requires (in particular for the monitoring tools designed and used by some partners) a clear knowledge of
the PDU fields of the application and the sequences. These monitoring tools partners have had to implement a specific
parser for these messages, validated on the application.

The next step was the specification of security properties using specific languages as entry point of the monitoring tools.
These notations had to be extended to take in account the expressiveness of the properties using either the monitoring
tool's properties notation or TTCN.

At this stage, passive testing properties were successfully validated at the beginning on files generation of the messages
exchanged during the simulation (offline passive security testing). This validation was in a second time based on APIs
to catch on the fly the messages exchanged (online passive security testing).

The following step was based on the capability to execute behaviors of intruder nodes. In order to integrate this feature,
the execution platform was adapted in order to monitor particular nodes identified as intruders at the simulation set-up.
This monitoring is proceeded by the specification and implementation of a specific API. This API offers the capability
in scenarios to change the behavior of the tagged intruder nodes. This API offers the capability to apply a determined
threat or inform on the assignment of a PDU to be sent at a particular slot time. In the same manner of the specification
of security properties, threats were specified and sent to the simulation, with the test of impact on the set of nodes by the
security properties monitoring. To be effective, the threats have to act in a particular context, to be sure of the
robustness of these nodes. To ease and automate the scenario generation to validate reaction on threats, scenario
modeling and generation with respect to these contexts were implemented with the use of the test design automation
tools set. The information on this context were also provided to the monitoring tools (time period of the threat, nodes
involved) to ease the analysis and diagnosis of the simulations. At this stage online active security testing has been
validated.

THALES Communications & security considers as fully reached the capability to test threats from a vulnerability
analysis as defined in clause 7.1.3.

List of the (main) metrics used to evaluate the projects achievements:

• Capability to validate the generic vulnerability analysis specified at the beginning of the project
Result: This capability was conditioned to the capability to process online active testing, which is the case as
expressed previously.

• % of coverage of properties deduced from a preliminary vulnerability analysis
Result: As the vulnerability analysis was defined at early stage of the project, and due to the close work with
security analysis tools providers, the adaptation of these tools to the specific needs in terms of execution
platform integration and expressiveness of the properties. All the initial properties for security testing were
validated.

• % of reuse of the elements designed for the test from a radio protocol to one another
Result: Similarly to the functional testing, although at coarse grain the vulnerability analysis might be similar,
the tune specification and design of the properties is specific to each protocol. However, a general
vulnerability analysis can be used to help on the exhaustiveness of the security testing verification.

• Independence of the platform evaluation
Result: This measure has been taken in account in order to easily adapt the DIAMONDS tools set to the
different execution environments. The traces generation has been applied according to standards (e.g. ASN1,
PCAP), and the API to inject intruder behaviors has been specified in order to be used in a general manner for
radio protocols or other kind of embedded use cases.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 43

• Cost in terms of expertise and time to specify and validate security properties
Result: The test for security implies an extra effort in terms of properties specification. This effort is similar to
the one for functional testing. The difficulty is to define the right level of vulnerability analysis to be
exhaustive enough in terms of explicit properties. That can be helped by the definition of global security test
patterns common to a particular set of industrial case studies.

7.4 Summary and conclusion
As show in the previous clauses, the test for security framework was integrated into the THALES Communications &
Security execution platform into a real size protocol design (several dozen thousands of lines), with complicate Packet
Data Units formats including correlations between messages (slots allocations behaviour in message sequences). The
monitoring tools succeeded to parse (in a short part time) and exploit these messages traces. The properties on this
protocol were specified, using in an easy to learn notation. The diagnosis window which reports the properties
validated/violated and the information provided in case of property violation are sufficient for a first step analysis. The
API used to control intrusion nodes has been designed in order to be generic and easy to use. Testing tools show
experiments on scenarios generation according to a specific context.

The testing framework designed within the DIAMONDS project, and its successful application on the case study,
demonstrate the efficiency of the tools integration and application framework on the THALES Communications and
Security framework. These tools fulfil the lack of analysis needed to verify robustness against threats from the
vulnerability analysis. The integration of these tools on the THALES execution platforms is scheduled, to be proposed
as a new feature for the specification and analysis of the next radio protocols.

8 Automotive case study results

8.1 Case study characterization
As Information and Communication Technology (ICT) systems become more and more part of daily lives, current and
future vehicles are more and more integrated into ICT networks. The consumer's smartphones, multimedia devices etc.
are linked to the vehicles and allow the drivers or passengers to use the internet, to access their private phone books or
to run their individual applications through the vehicle's integrated infotainment systems.

Today's most common technology to link consumer devices to in-vehicle electronics is Bluetooth, which latest version
is 4.0. Such a wireless connection provides the most comfortable way for the driver to access a variety of services.
However, such a wireless connection implies also the risk of possible misuse which leads to enhanced security issues
and risks for the automotive electronics and with that for the passengers.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 44

Figure 28: Attack surface of a modern vehicle

Recently the complexity of ICT systems and automotive electronics increases dramatically and requires modern
verification and validation methods, which allow handling of complex systems fast and efficiently. This fact is being
addressed in the automotive case study. The case study is provided by Dornier Consulting. The System-Under-Test
(SUT) is an automotive connectivity module, which provides the driver an ability to connect a mobile phone to the
infotainment system. The module itself is connected via the controller area network (CAN) bus to the vehicle. The
phone can be linked via the Bluetooth technology. In this case study the Bluetooth specification 2.1 was used.

An overview of the SUT is shown in figure 29. As mentioned before, it is shown that the SUT is connected to the
vehicle bus via the CAN network. The connection to a mobile phone is possible over the Bluetooth network, whereas
additional USB devices can be attached via a USB interface.

Figure 29: Overview of the SUT

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 45

In figure 30 the test SUT is shown as it was presented during the 2012 ITEA2 symposium in Paris. For demonstration
purpose, a robot was used to visualize the pairing process. In the lab the SUT was triggered with CAN messages.

Figure 30: Demonstration of the SUT at the ITEA symposium in Paris

8.2 Security testing approaches
In this case study four different testing techniques have been applied. All of these techniques are described in work
package 2 in more detail. An overview and the adaption are described below.

8.2.1 Security risk assessment

Similar to other case studies a security risk assessment has been done. This analysis was done with support of the
CORAS approach. For that purpose an analysis with seven different threat scenarios were created. All of these threat
scenarios have been analysed and classified with values for vulnerability, likelihood, and consequence.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 46

Figure 31: Example of a security risk assessment for uploading modified firmware

8.2.2 Fuzzing

Fuzzing is a technique that injects invalid or random input data in order to reveal vulnerabilities or unexpected
behaviour by processing this data. How this input data is generated depends on the data format. Fuzz data generators
specific for certain data formats are generally more successful in finding vulnerabilities than generating invalid input
data randomly without respecting the data format. A fuzzing library that allows fuzz data generation for a wide range of
data formats was developed by Fraunhofer FOKUS and integrated in the test generation and execution environment
do.ATOMS™.

In order to test against the vulnerabilities identified during security risk assessment, corresponding fuzz data generators
were selected. On the basis of the security score, message parameters for a PIN number and a device name are targets of
fuzzed input data. Their data format was specified as well as the fuzz data generators BadStrings, AllBadStrings, and
BoundaryNumbers within a request and the generated fuzz test data were returned by the fuzzing library as depicted in
figure 32.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 47

Figure 32: Fuzzing request using the library

8.2.3 IOSTS-based passive testing approach

Figure 33 shows the framework of the symbolic passive testing approach. In this approach, the passive testing is
performed by integration of two techniques: Symbolic execution and Parametric Trace Slicing. Based on the system
specification or requirements the behaviour/attack scenario is identified for the Bluetooth protocol and modelled using
Input-Output Symbolic Transition System (IOSTS). Then the symbolic execution of the IOSTS model results in a tree
like structure with each branch corresponding to either behaviour or an attack scenario. The trace of the symbolic
execution of IOSTS constitutes the different branches observed in the tree. For the real trace analysis, the parametric
trace slicing approach is applied. The obtained Bluetooth trace is sliced based on the parametric instance observed in the
messages. Then each slice is compared (for the control + data portion) with the traces of the symbolic execution and a
verdict Pass/Fail/Attack-Pass/Inconclusive is provided. Based on the verdicts provided for each slice a final verdict to
show the implementation satisfies the behaviour is provided. A more detailed overview of the symbolic approach is
documented in D5.WP2 [i.2].

Figure 33: Architecture for the symbolic passive testing approach

In addition to the theoretical framework, a symbolic passive testing tool was developed, TestSym-P that helps in the
passive testing approach (a detailed description is provided in the DIAMONDS deliverable D5.WP3 [i.3]). The
algorithms for parametric trace slicing and evaluation logic are explained in the DIAMONDS deliverable D5.WP2 [i.2]
and are implemented in this tool and promising results are obtained.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 48

8.2.3.1 Experimentation results

For the experiments, few traces were provided for the automotive case study. The output from the Bluetooth stack was
provided as Bluetooth traces for the experiments. The Bluetooth traces show a pairing process of a car to the phone as
shown in figure 33. Each of the Bluetooth traces obtained had a different device local name. In order to evaluate the
efficiency of the approach, the experiments were performed in two ways: with unmodified traces and by manually
introducing errors and also by introducing a few fake messages to create an attack scenario in the real trace as detailed
in D5.WP2. The results of the experiments are shown in table 2.

Table 2: Prototype tool results on sample Bluetooth traces

Trace No. Messages No. Slices Trace Output without
errors

P F I Final O/P

Trace Outputs with errors and
attacks

P F I AP Final O/P
1 81 2 1 - 1 I - 1 1 - F
2 89 3 1 - 2 I - - 2 1 AP
3 81 2 1 - 1 I - 1 1 - F
4 81 2 1 - 1 I - - 1 1 AP
5 81 2 1 - 1 I - 1 1 - F
6 81 2 1 - 1 I - - 1 1 AP
7 81 2 1 - 1 I - - 1 1 AP

8.2.3.2 Future works

Currently, the traces are obtained from the Host Controller Interface (HCI) layer, but the efficiency of the approach
could be well appreciated if we could obtain traces from other layers (such as L2CAP layers) as there are more
parameters than it was possible to monitor for performing security check. However, this idea is still under discussion.

8.2.4 Security monitoring

Unlike the active fuzzing testing technique described in clause 8.2.2, passive monitoring does not inject any traffic in
the network nor try to modify it. This is crucial because any injected message/packet during the system operation may
modify the connectivity and communication module (SCM) environment, which is incorporated in an in-vehicle
infotainment system, causing problems or crashes of this module. Passive monitoring intends to understand the
behaviour of the SCM and analyze it according to several security requirements described as a set of security properties.
Thus, the passive monitoring approach seems to be the ideal means for directly verifying the SCM in natural operational
run-time conditions. In addition, with this approach, the tests can be run during the whole service life-time as opposed
to active testing campaigns that are run for a limited period of time.

Security monitoring based on a monitoring tool is performed with the assistance of a network sniffer to capture network
traffic. The analysis is done offline and the pre-captured traces are provided by Dornier Consulting internally by using a
built sniffer with the standard output of the Bluetooth Stack (see figure 34). Indeed, in order to interface the user's
electronic devices, the connectivity module is equipped with a Bluetooth and a USB interface. The Bluetooth interface
allows the user to connect devices like mobiles or a Bluetooth audio to the car. The sniffer collects all the traffic to/from
the device and stores it in a dedicated file.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 49

Trace Generated at 02:34:23pm on August 6, 2012.

HCI-CMD: HCC_RESET +00.000s [Length 0]
HCI-EVT: HCE_COMMAND_COMPLETE +00.005s [Length 4]
 NumHCICommandPackets:1 Command:HCC_RESET
 Status:NO_ERROR
HCI-CMD: HCC_READ_BUFFER_SIZE +00.006s [Length 0]
HCI-EVT: HCE_COMMAND_COMPLETE +00.007s [Length 11]
 NumHCICommandPackets:1 Command:HCC_READ_BUFFER_SIZE
 Status:NO_ERROR
 ACL Buffer Len = 1021, Num ACL Buffers = 8
 SCO Buffer Len = 64, Num SCO Buffers = 1
HCI-CMD: HCC_HOST_BUFFER_SIZE +00.008s [Length 7]
 ACL Buffer Len = 1021, Num ACL Buffers = 120
 SCO Buffer Len = 60, Num SCO Buffers = 20
HCI-EVT: HCE_COMMAND_COMPLETE +00.009s [Length 4]
 NumHCICommandPackets:1 Command:HCC_HOST_BUFFER_SIZE
 Status:NO_ERROR
HCI-CMD: HCC_WRITE_PAGE_TIMEOUT +00.010s [Length 2]
 00 20 .
HCI-EVT: HCE_COMMAND_COMPLETE +00.018s [Length 4]
 NumHCICommandPackets:1 Command:HCC_WRITE_PAGE_TIMEOUT
 Status:NO_ERROR
….

Figure 34: Extract of captured traces

To be able to analyse these traces and retrieve potential security flaws and vulnerabilities, three main stages have been
performed. The first stage was the implementation of a new plugin in a monitoring tool's extract library (cf. the
Bluetooth sniffer block called "SNF plugin" in figure 35) to allow the parsing of the log files provided by the Bluetooth
sniffer and the extraction of relevant data for the security analysis. One of the important extracted attributes was the
events capture time (e.g. +00,006 s) that is crucial for the management of time constraints in the specified security
properties.

Figure 35: Security monitoring of Bluetooth communication

The second stage is the description of the system security goals denoting desired behaviour of the SCM based on the
monitoring tool's security property format. The description specifies the security rules that the studied system has to
respect. In the context of the automotive case study, the main idea was to implement a proof of concept of the
monitoring approach in order to analyse a basic communication scenario composed of 6 steps: (1) Inquiry (2) Connect
to 'Ford Audio' (3) Pair with 'Ford Audio' (4) Discovery of provided services (5) Unpair (6) Disconnect. A set of 3
security properties have been specified denoting the correct order of log files events:

• Pairing with a Bluetooth device has to be preceded by an inquiry and a connection to the device (see figure 36
that specifies the property in an XML format).

• The "unpairing" event with a Bluetooth device is always preceded by a pairing event.

• The discovery of provided services has to occur after a connection to a remote Bluetooth device.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 50

Figure 36: An example of a formal security property in the automotive case study

The last stage deals with the analysis of the security properties. This task is performed by a monitoring tool on a set of
pre-captured traces. No violation has been detected (see next execution report) but some errors have been manually
introduced in the traces to demonstrate the efficiency of the monitoring tool.

Figure 37: Execution report

Passive monitoring can be coupled with DIAMONDS active testing and fuzzing techniques. It can be applied as part of
the testing chain, e.g. after the execution of some security-oriented test cases, in order to collect network traffic and
analyse it based on previously defined security properties. This technique allows detecting potential vulnerabilities and
attacks (i.e. similar to what intrusion detection systems do) such as data alteration and QoS attacks. It can also be used
to assess the robustness of the system under test according to some security requirements.

8.2.5 Framework

The described fuzzing approach for this case study was integrated within the testing framework of the study's
contractor. Following this approach the framework serves as a model based testing (MBT) environment for discreet
interconnected embedded systems. Test cases are generated automatically out of a given system model. The system
model is based on UML and specifies the structure as well as the behaviour of the system under test (SUT). The system
model gets processed by a so called model parser – depending on the UML tool used for creating the system model. The
framework provides a variety of model parser implementations. The test cases can be transferred into a test case library
and can be edited in an easy way by using an editor that shows the transformed test cases as workflows. During test case
creation the system model parser also tries to parameterize the test cases so they are directly executable on the
corresponding SUT test setup. The test case designer also handles test case management as well as the execution of the
test cases and the reporting of the test results. The test execution layer of do.ATOMS™ has a direct access to the
interfaces provided by the SUT and follows a service-orientated approach.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 51

8.3 Results
During the case study 1 836 test cases were generated based on functional test cases. The number of test cases is
controlled by the number of variation, which can be produced with the fuzzing library. The generated test cases have a
modification on the payload of the L2CAP messages. Instead of the original device name a fuzzed string was used. This
string is displayed on the display to start the bonding process. An analysis showed that this string is transmitted by the
Bluetooth hardware in an undecoded way, so that any potential character can be send to the SUT. In addition this is
done before any authorization. Therefore this allows a perfect entry point to find a flaw in the system. Figure 38 shows
the theoretically necessary steps in order to use the described scenario. In order to verify the success of such a test case
and in order to verify the health of the SUT, 11 steps are necessary within one test run. A test run takes in average
36 seconds.

«BluetoothC...

SUT

«BluetoothC...

Phone

Inquiry()

RequestPair(Device=L01058)

«Bluetooth»

Figure 38: Entry point of fuzzed device name scenario

Table 3: Test run results

test cases # errors # Bluetooth errors # discovered flaws duration Comments
1 836 1 1 0 24,75 hours
1 836 3 3 0 15,0 hours
1 633 11 11 0 31,25 hours Framework in debug mode

Bluetooth errors usually appear when the SUT does not show up in the inquiry list. In fact that could be a sign that the
previous test cases might cause the SUT to stop reacting. But usually this is just a random error due to the technology.
All appeared errors have been tested and verified as an inquiry time-out. In figure 39 a failed test case report is shown.
Step 3 usually shows a list of found devices. Since the SUT was not found the step 3 does not report any devices in the
report. Therefore the step 4 failed, since that is the step, which searches for the SUT in the inquiry list. Caused by the
missing SUT in step 3 all the following steps cannot be finished and result in a fail or a time-out.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 52

Figure 39: Report of a test case failed due missing device in the inquiry list

In figure 40 a valid test report is shown. Here it is shown that in step 3 the SUT was found and therefore the entire test
case ran without any errors.

One of the final runs took place in a lab environment and therefore only one Bluetooth error happened. Besides that the
system behaved as expected. It has to be mentioned that the SUT is a device, which is on the market for several years
and used in many different automotive models of the OEM. Nevertheless the described combination of the different
testing technologies including the security risk assessment shows a very interesting approach. The security risk
assessment indicates the weak points of a system and allows a concentrated testing. Using Dornier Consulting's
do.ATOMS™ framework in combination with the Fuzzing Library from Fraunhofer enables a very effective automatic
testing. The 1 836 automatic generated test cases were executed in the laboratory and ran unattended until all 1 836 test
cases finished. During the test runs the framework records the traces, which then can be used for the post analysis.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 53

Figure 40: In contrast to the failed report, this is a report with no Bluetooth error

8.4 Summary and conclusion
The described combination of a security risk assessment, an effective test generation, and the fuzzing approach was new
for the partners of the automotive case study. For upcoming projects Dornier Consulting will consider a feasible
security risk assessment. This security risk assessment can be done independently from the testing approach and is
useful in any means. It enables the awareness for security and shows weaknesses in the system design. Therefore the
security risk assessment is definitively a strong tool for future projects. Based on the presented approach the security
risk assessment is done before the security testing, which then can use the information from the security risk assessment
in order to optimize the testing.

Additional to the security risk assessment the contractor integrated the Fuzzing library to its testing framework.
Therefore it is able to offer the entire approach as a business plan to new and existing customers. In the current version
of the framework the security testing approach is integrated as a separated process. Currently the contractor is working
on a new version of its framework, which will introduce a new test case generation process. This process is suitable for
the security testing approach and enables security testing in the framework. In general this will lead to more secure
systems, as the security risk assessment identifies the vulnerabilities of the system and the fuzzing library allows testing
these vulnerabilities.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 54

9 eHealth case study results

9.1 Case study characterization

Figure 41: The eHealth scenario

In the eHealth scenario (see figure 41), ambulant patients are monitored using mobile devices worn by those patients.
The mobile devices supply doctors with the vital data they recorded about their patients. The data are uploaded to a
central server via wireless communication. From the central server authorized doctors may download the monitored
data. The data recorded by the mobile device should be associated with the correct patient when uploaded to the central
server. Vital medical decisions might be based on them. Patients should consent to a mobile device being associated
with them. The patients' personal data in general and such vital medical data in particular are highly sensitive. Doctors
need to obtain consent of a patient before they are allowed to retrieve patient data from the central server.

Thus it is necessary to model two authorization workflows:

• Patient Consent: The patient grants consent to a doctor who then may access the patient's personal data at the
eHealth server. This workflow is new to the eHealth scenario and documented in this clause for the first time.

• Device Pairing: The patient entitles the mobile monitoring device he is wearing to upload the monitored data
to the eHealth server.

What does the initial setup for the scenario look like? It is assumed that doctors, patients, and devices are registered at
the central eHealth server and equipped with the necessary credentials, like passwords or other shared secrets. The
doctor, for instance in a consultation session, personally may hand over the initial credentials to the patient. Patients can
use these credentials to log in at the central server, to manage their personal data and to view the data recorded about
them by the mobile devices associated with them.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 55

What is the role of the mobile monitoring device? If a patient requires monitoring by a mobile device, the doctor for
instance may hand over an appropriate device to the patient. These devices then monitor the vital signs of the patients,
e.g. take their blood pressure, monitor their pulse, or measure their blood sugar. The mobile monitoring devices upload
the recorded data to the central eHealth server. There, once the patient's consent has been obtained, doctors can view
such data in order to choose an appropriate treatment for their patients.

Which mobile monitoring devices may upload data about which patients? Patients have to explicitly authorize a mobile
monitoring device to upload monitoring data about themselves to the eHealth server. For this the patient needs to "pair"
with the mobile device first. Only then the monitoring data recorded by the mobile device are associated with that
patient. Only at most one patient may be paired with a mobile monitoring device at a given time.

Which doctors may access which patients' data at the central server? Doctors require explicit prior consent of their
patients before they can access these patients' data. The central server obtains that consent on behalf of the doctor from
the patient. Only after successfully having obtained this consent, the central server grants the doctor access to sensitive
patient data.

The overall message workflow is sketched in figure 42. Some details of the two main sub-workflows, "pairing" and
"consent" are introduced right here, a more formal modelling is provided in clause 9.4.

Figure 42: The overall workflow

9.1.1 Patient consent

How is the consent of a patient obtained? The consent workflow is newly introduced in this clause. It comprises a two-
factor authorization both via the patient's account at the eHealth server and the patient's browser on the one hand and the
patient's smart mobile on the other hand. First, the doctor applies for patient consent at the central server (1). Then the
central sever both sends a consent request to the patient's account at the central server (2) and to the smart mobile
associated with that patient (3). The patient has to grant consent both via the account, using a normal browser (4) and
via the smart phone, using a special application (5). A consent is granted successfully only, if the patient has consented
both ways.

What data may doctors access after having obtained consent? Doctors may view a patient's personal data (d-ip), as well
as the patient's monitoring data uploaded by mobile devices paired with that patient (d-im).

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 56

9.1.2 Device pairing

What does the "pairing" workflow look like? In order to authorize the mobile monitoring device, the patient powers on
the device (6). After turning it on, the device initiates the communication procedure defined by the device profile of
OAuth 2.0, connecting to the pre-configured central eHealth server via wireless communication in order to request
"pairing" (7) and receiving a nonce. The central eHealth server communicates a pairing nonce to the mobile device (8).
The device displays this nonce to the patient (9, assumed to be for that patient's eyes only). The patient then logs in at
the central server and confirms pairing with the device by supplying the pairing nonce (10). Thus the patient has
authorized the mobile monitoring device to upload monitoring data to the eHealth serve. From then onwards the central
server associates the mobile device with the patient.

How is the mobile device authenticating after pairing? The server supplies the device with credentials via wireless
communication (11). Whenever that device uploads (12) monitoring data to the central server supplying the credentials,
the server associates this data with the patient the device is paired with. The mobile devices can send monitoring data to
the server in real time, or in case there are any connection problems, retain the information internally until the
connection is re-established and then send a burst containing all stored information.

9.1.3 New application features

The eHealth application scenario described in [i.8] has been expanded to include a number of new features. As
described, the eHealth system seen in figure 41 can be used to gather patient information which is recorded by patient
monitoring devices. In addition, the eHealth system provides a dashboard, which the doctors can use to monitor in real
time the data gathered for the different patients, while ensuring the confidentiality of all such patient information.

After having obtained the patient's explicit consent (=authorization), the doctor can use the web front-end in order to
access a dashboard containing detailed information about the individual patient. Such a patient consent the doctor can
request through the dashboard, resulting in a two-factor authorization request to the specified patient. After the patient
has accepted the request through both the web portal and a special mobile application, the doctor is granted special
rights to access patient information. This allows a doctor to access the patient information including any mobile
monitoring data associated with that patient and uploaded by mobile monitoring devices previously paired with
(=authorized by) that patient.

9.2 Security testing approaches

9.2.1 Formalization

9.2.1.1 Entity overview

The formal model of the eHealth system knows five types of agents (see Listing 1): a central server; doctors, patients,
smart mobiles, and mobile monitoring devices recording patient data.

types
 server < agent; % central server
 doctor < agent; % doctor
 patient < agent; % patient
 smart < agent; % smart mobile of patient
 device < agent; % mobile monitoring device

Listing 1: Actor types in the eHealth system

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 57

The eHealth server (see Listing 2) knows doctor D, patient P, his smart mobile S and his mobile monitoring device M.
Associated with S is a pre-shared secret between S and EH.

entity
 EHealth (D: doctor, % D may get infos after Consent and Pairing
 P: patient, % EH can authenticate P
 S: smart, % EH trusts registered Patient's Smart Mobiles
 M: device, % EH can authenticate M
 Actor: server) {

Listing 2: eHealth actor header

Doctor D (see Listing 3) knows patient P, whose data he wants to access, and the eHealth server EH, where they are
stored. D has a pre-existing trust relationship with EH, he is registered there. D also knows the mobile monitoring
device, which is worn by P and uploading monitoring data to EH, where D wants to access them.

entity
 Doctor (Actor: doctor,
 P: patient, % D personally knows Patient P
 M: device, % M is given to P by D
 EH: server) % D knows trustworthy EH

Listing 3: Doctor actor header

Patient P (see Listing 4) knows doctor D whom he trusts. He knows the mobile monitoring device M he wears. He has
an account at eHealth server EH and can log in there to perform certain tasks. Of course P also knows his smart mobile
S. But to keep the model efficient, no communication between P and S was explicitly modelled. Instead it was assumed
that P is operating S, so the actions performed by S are in fact being triggered and thus authorized by P.

entity
 Patient (D: doctor, % D has to be a doctor always
 Actor: patient,
 M: device, % M is given to P by D
 EH: server) % P knows trustworthy EH

Listing 4: Patient actor header

Smart Mobile S (see Listing 5) is owned and operated by patient P. To simplify the model, it was assumed that
everything that is known to P also can be known to S. For instance, S is aware, which doctor D is acceptable to P for
giving consent to. S also is aware, which consent text would be acceptable to P (made known via a suitable fact).
S knows the eHealth server EH, with which it has a pre-shared secret (made known by an appropriate fact).

entity
 SmartMobile (D: doctor, % acceptable Doctor
 Actor: smart, EH: server) { % M knows trustworthy EH

Listing 5: Smart mobile actor header

The mobile monitoring device M (see Listing 6) is worn by P. Thus any information displayed by M is assumed to be
only visible to P. P can operate M. M has a pre-existing relationship to EH. It can communicate securely with EH via a
wireless connection, e.g. via GSM / UMTS.

entity
 MobileDev (P: patient, % P physically owns M
 Actor: device,
 EH: server) { % M knows trustworthy EH

Listing 6: Mobile monitoring device actor header

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 58

9.2.1.2 Environment and sessions

The session entity instantiates the party involved and informs them about their fellow actors (see Listing 7). It assigns a
smart mobile S to patient P and pre-shares the necessary secret SK between S and the central eHealth server by
declaring an appropriate fact.

body { % of entity Session
 P->owns(S);
 SK := fresh();
 S->has(SK);
 new Doctor (D, P, M EH);
 new EHealth (D, P, M, S, EH);
 new Patient (D, P, EH);
 new SmartMobile(D, S, EH);
 new MobileDev (P, M, EH);
}

Listing 7: eHealth session entity

In order to render the model manageable, the model is split into two parts. At the end of the consent workflow (see
Listing 8) the doctor can access general personal data about the patient. For the pairing workflow (see Listing 9) it is
assumed the consent workflow having already been performed. Thus the doctor, already in possession of the patient's
consent, can access the mobile monitoring data after successful pairing.

For each sub-model, two identical sessions were in parallel to check for potential replay attacks and confusion between
sessions.

body { % of entity Environment
 any D P S. Session(D, P, S, eh)
 where (D != P) & (D != S) & (D != eh) &
 (P != S) & (P != eh) & (S != eh);
 any D P S. Session(D, P, S, eh)
 where (D != P) & (D != S) & (D != eh)
 & (P != S) & (P != eh) & (S != eh);}

Listing 8: eHealth sessions for consent

body { % of entity Environment
any D P M. Session(D, P, M, eh)
 where (D != P) & (D != M) & (D != eh)
 & (P != eh) & (P != M) & (M != eh);
 any D P M. Session(D, P, M, eh)
 where (D != P) & (D != M) & (D != eh)
 & (P != eh) & (P != M) & (M != eh);}

Listing 9: eHealth sessions for pairing

9.2.1.3 Messages

The detailed message workflows for each of the two authorization workflows, consent and pairing, are given in the
following.

Consent. The consent requested by a doctor D from a patient P was modelled via a two-factor authentication of P using
the eHealth server's web interface and her smart mobile S as follows. Figure 43 gives an overview of the message flow.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 59

Figure 43: Message flow: patient consent

D has to obtain P's explicit consent to access P's personal data stored as the eHealth server. For this D sends an
appropriate request to the eHealth server (1), indicating patient P whose consent is sought. On receiving such a request
from doctor D for consent by P, the eHealth server initiates the consent process.

First the eHealth server (see Listing 10) sends two consent request messages, one to P (2) and the other one to the Smart
Mobile S registered as belonging to P (3). The eHealth server and S have a pre-shared secret SK. Included in the request
is the text of the consent and information which D is asking this consent. P will only give consent, if both the text of the
consent and D are acceptable to P. Only if P grants consent both at his account at the eHealth server using his browser
and via his smart mobile S, then the eHealth server accepts the consent as having been granted.

select {
% -- (1) Doctor may request Patient Consent
 on ((?D *->* Actor: consent_request_D(?P)
 & !(?P->hasConsented(?D))) & ?P->owns(?S)): % (1)
{
Text := fresh();
Text->isAcceptable;
NonceP := fresh();
Actor *->* P: consent_request_P(NonceP,D,Text); % (2)
% It is assumed that the patient has securely logged in at the eHealth server
NonceS := fresh();Actor -> S: consent_request_S(NonceS,D,Text); % (4)
}
}

Listing 10: eHealth server: consent request

As indicated by the starred arrow *->* (see messages 1 and 2), it is assumed that there is already a secure connection
between EH and D as well as EH; and P. This is usually achieved by a HTTPS web session where P has successfully
logged in to EH's web server using his browser. For the connection of EH with S it is not assumed any channel
protection at all, as indicated by the simple arrow -> (see message 4). For both requests, a nonce is used as unique
identifier for the matching response.

Then the eHealth server, as shown in Listing 11 awaits response from both P (3) and her smart mobile S (5). If both are
positive and the HMAC used to authenticate the response from S using the pre-shared secret SK, it can conclude that
the consent has been granted, which it is modelled by the introduction of the fact P->hasConsented(D):

select {
on (P *->* Actor: consent_response_P(P_consent:(NonceP),accepted) % (3)
 & S->has(?SK) &
 S -> Actor: consent_response_S(S_consent:(NonceS),accepted, % (5)
 hmac(secret_EH_S:(?SK),NonceS.accepted.D.Text))):
 {
 P->hasConsented(D);
 }
}

Listing 11: eHealth server: consent responses

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 60

After this, as shown in Listing 12, the doctor can successfully request personal Information from the eHealth server
(d-ip). The server will check for the consent, before forwarding the patient's personal information to the doctor (d-ip-r).

select { on (D *->* Actor: info_request_D_P(?Nonce, P) % (d-ip)
 & P->hasConsented(D)):
 {
 InfoP := fresh(); % simulates P's personal information
 Actor *->* D: info_response_D_P (Nonce, P, secret_EH_D:(InfoP));
 }
}

Listing 12: eHealth server: information delivery

Pairing Via device pairing, a patient authorizes a mobile monitoring device to upload monitoring data to the central
eHealth server on behalf of that patient.

Figure 43a: Message flow: device pairing

A mobile monitoring device worn by the patient has to be entitled to upload that patient's monitoring data to the eHealth
server. This is done by the patient pairing with the mobile monitoring device, thus assuring the eHealth server of the
required patient consent. The procedure is sketched in figure 41.

The patient P needs to trigger the mobile monitoring device M (6) to make it connect to the eHealth server EH to obtain
the pairing nonce (see Listing 13). M connects to the pre-configured EH (7), which returns the pairing nonce (8), which
M forwards (displays) to P (9).

% (6) P turns on M, (7) M contacts EH
% EH knows M's public device key and can authenticate M
%

?P *->* Actor: pairing_request(?P);
Actor *->* EH: pairing_request(P);
% (8) EH returns a nonce for P via M
% (9) M forwards this confirmation request to P
%
EH *->* Actor: second_factor_request(secret_EH_P_M:(?Nonce),EH);
Actor *->* P: second_factor_request(Nonce,EH);

Listing 13: Mobile device: pairing initiation

Once M displays (=sends) the pairing nonce to P (9), P logs in at his account at the central eHealth server EH and
submits the pairing nonce (10, see Listing 14). Then EH forwards suitable credentials to M (11), which in future can use
these credentials to authenticate to EH. M now can successfully upload monitoring data to EH (12), has it has been
authorized to do so by P. All data uploaded by M are associated with P at EH.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 61

} select {
 % (10) Patient, logged in, confirms the Nonce message to EH
 % (11) EH sends Access Code to M
 on (P *->* Actor: pairing_confirmation(EH_P_pair:(Nonce)) &
 existsAssignmentRequest(?M,secret_EH_P_M:(Nonce))
 & !P->hasPaired(?M) & !?M->hasCredentials(?,?)):
 {
 retract existsAssignmentRequest(M,Nonce);
 P->hasPaired(M);
 secret_EH_M:(AccessCode) := fresh();
 secret_EH_M:(TokenType) := fresh();
 M->hasCredentials(AccessCode,TokenType);
 Actor *->* M: accessToken_response(AccessCode,TokenType);
 }
} select {
 % (12) Devices may send Data about the Patient they are assigned to
 on (M ->* Actor:
 upload_data(EH_M_upload:(?AccessCode),
 ?TokenType,secret_DeviceData:(?DeviceData))
 & P->hasPaired(M) & M->hasCredentials(?AccessCode,?TokenType)):
 {
 M->hasUploadedData(P);
 % DeviceData may become part of the data retrievable by P from EH.
 }
} % select

Listing 14: eHealth server: pairing finalization

After a mobile monitoring device has successfully been paired with a patient, a doctor with prior patient consent can
access the confidential monitoring data uploaded by that mobile device for that patient (d-im, d-im-r, see Listing 15).

select {
 on (D *->* Actor: info_request_D_P_M(?Nonce, P, M) % (d-im)
 & P->hasConsented(D) & P->hasPaired(M)):
 {
 InfoM := fresh();
 Actor *->* D: info_response_D_P_M (Nonce, P, M, secret_EH_D:(InfoM));
 }
} % select

Listing 15: eHealth server: monitoring information delivery

9.2.1.4 Goals

Authenticity. The main goals of two-factor patient consent are that the consent responses by both the patient P herself
(via EH's web interface) and by her smart mobile S are authentic and cannot be re-played (see P_consent and S_consent
in Listing 16). In the pairing process, the eHealth server authenticates the patient on the successful return of the pairing
nonce (see EH_P_pair), assuming, that only the patient physically possessing the mobile device can read the pairing
nonce on the device's display. A successfully paired device on subsequent uploads is authenticated by the eHealth
server via special device credentials (see EH_M_upload).

goals
P_consent:(_) P *->> EH; % P's response has to be authentic and fresh
S_consent:(_) S *->> EH; % S's response has to be authentic and fresh
EH_P_pair :(_) P *-> EH; % EH authenticates P on Nonce
EH_M_upload :(_) M *-> EH; % EH authenticates M on AccessCode

Listing 16: eHealth authenticity goals

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 62

Secrecy. For the authenticity protection of response by the smart mobile S in the consent workflow an HMAC is used
with a pre-shared symmetric key SK between EH, P, and its S. Its secrecy is given as a secondary goal (see
secret_EH_S in Listing 17). In the pairing workflow, the pairing nonce is to be kept secret between three parties, the
eHealth server, the mobile monitoring device and the patient (see secret_EH_P_M). After a mobile device has
successfully been paired with a patient, it receives and has to keep secret its personal access credentials (see
secret_EH_M). The monitoring data uploaded by the device has to be kept confidential by the eHealth server (see
secret_DeviceData). For reasons of simplicity secrecy is required between the eHealth server and the mobile device
only, and do neither include patients, nor doctors. Of course the doctor has to keep the patient's personal secret (see
secret_EH_D). For reasons of simplicity secrecy is required between the eHealth server and the doctor only, and neither
includes the patient nor the mobile monitoring device.

secret_EH_S :(_) {EH,S}; % the secret key for HMAC, shared among EH and S,
 % logically also by P, but this is ignored here.
secret_EH_P_M :(_) {EH,M,P}; % the pairing confirmation nonce
secret_EH_M :(_) {EH,M}; % AccessCode and TokenType
secret_DeviceData :(_) {EH,M}; % the data about P uploaded by M
secret_EH_D :(_) {EH,D};
% Personal Data about P, shared among EH and D,
% logically also by P and maybe M, but this is
% ignored here.

Listing 17: eHealth secrecy goals

Authorization. A doctor may only access personal information regarding a patient, if the patient has given prior
consent (see Listing 18). This is monitored by a suitable LTL formula. Once the eHealth server has assured the consent
process has finished appropriately, it raises a fact that the patient has consented to the doctor. Once the doctor receives
the patient's personal data, he raises a fact to note down this event. If the doctor manages to obtain that information
without prior patient consent, the LTL formula would be violated.

Prior_consent: forall D P.
[](D->hasReceivedPInfo(P) => (P->hasConsented(D)));
% Doctor may only read P's personal Information, if the Patient
% has consented beforehand to be this doctor's patient.
% NOTE: Strictly "<->" should be used before "hasConsented", but Tools
% have Problems with "<->".

Listing 18: Patient consent necessity

A mobile monitoring device may only upload monitoring data about a patient to the central eHealth server, if it had
been authorized to do so by the patient. This is monitored by a suitable LTL formula (see Listing 19). The eHealth
server itself checks the proper authorization of a mobile device that requests uploading of monitoring data for a given
patient (see Listing 20). It records a fact about the successful upload. If however a mobile monitoring device would be
able to upload data prior to pairing, the LTL formula would be violated.

Prior_pairing: forall P M. [](M->hasUploadedData(P) => (P->hasPaired(M)));
% M may only upload data about P to EH, once it has been
% authorized to do so by the patient via the pairing process.

Listing 19: eHealth server: device pairing necessity

If the doctor wants to obtain access to the mobile monitoring data of that patient, the patient should have not only given
prior general consent to that doctor, but he also should have authorized the mobile monitoring device to upload these
data. This is monitored by a suitable LTL formula. The eHealth server both raises appropriate facts once patient consent
has been obtained and the patient has paired with (=authorized) the mobile device. The doctor in turn raises a fact once
he has obtained the confidential monitoring data. If the doctor would manage to obtain these data without prior patient
consent or before the patient had paired with the device, then the LTL formula would be violated.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 63

Prior_consent_and_pairing: forall DPM. [](D->hasReceivedMInfo(P,M) => (P->hasConsented(D) & (P-
>hasPaired(M))));
% D may only read P's Data uploaded by M, if the patient has consented
% beforehand to be this doctor's patient and if the patient beforehand
% has paired with that mobile device.
% NOTE: Strictly "<->" should be used before "hasConsented" and "hasPaired",
% but Tools have Problems with "<->".
% Warning regarding 'Goal "Prior_consent..." is active ...' may be ignored.

Listing 20: Patient consent and pairing necessity

Non-Goals. Privacy protection is a main focus of the overall application. It can, however, not directly be focused in the
formalization.

As with the semantics of the secrecy goals, privacy support is not supported well in the modelling language, and the
model checkers cannot detect all privacy violations this way, particularly regarding those among otherwise lawful
participants (excluding the intruder).

It was attempted to provide some workaround by combining authentication of entities and authorization via suitable
LTL formulas in the workflows. This however implies an instrumentation of the model source code with manually set
and retracted facts.

Still the aim was not to perfect protection of all potentially privacy relevant data. The aim was not to protect user
privacy completely in this scenario. The objective was to explore the effectiveness of the security controls regarding the
IT Security properties of authenticity, authorization and integrity. If an attempt had been made to require complete
encryption and authentication for every privacy sensitive piece of information that is being transmitted, many potential
attack vectors would be missed, whose detection is desirable. Thus the present model would be much more vulnerable
regarding privacy than it is necessary.

Non-repudiation is out of scope for the eHealth model. The security mechanisms used mostly are of the symmetric kind,
the actions are not signed and/or witnessed. Also plain accountability is not the focus for the eHealth model, thus no
logs are kept. However all relevant entities are carefully authenticated and authorized, so basically, appropriate logs
could be kept and actions could be matched to the parties that initiated them.

9.2.2 Analysis results using a model checker

Violations of the given goals were looked for using the model checker CL-AtSe. On the final version of the model, no
attacks were found.

There was a spurious attack on a previous version of the model, which was due to a mismatch in the assignment of pre-
shared secrets SK and smart mobiles S that occurred when two sessions ran in parallel for the same doctor with two
different S. This problem was solved using facts of the form S->has(SK).

9.2.3 Technical details

The eHealth server consists of three different components which are able to interact with each other as well as with
external providers:

1) eHealth Web Front-End

2) Device management platform

3) Two-Factor Authentication Service

In the described eHealth scenario, the server side of all three components runs on top of a Tomcat server and is located
within the same trust zone. Additionally, all three components directly access databases which are also located within
the same trust zone. This trust zone provides a single web interface (over HTTPS) for all incoming communication.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 64

9.2.3.1 eHealth web front-end

The eHealth Web Front-End provides a web interface for doctors and patients. It is able to use other components, such
as the device management platform or the two-factor authentication service, in order to present both with a user-friendly
dashboard with available information.

After being authorized by the user using the two-factor authentication service, doctors are able to monitor in real time
the data from the patient such as heart rate or blood pressure. Additionally, external information such as the registered
patient location can be retrieved and presented using external providers. This capability is demonstrated in the prototype
through the Google maps API.

Figure 43b: The eHealth web front-end

9.2.3.2 Device management platform

The device management platform is a central component of the eHealth system which can be used in order to manage
medical devices for patient monitoring. Besides providing functionality for setting up new devices, a system is available
for assigning them to users based on the OAuth 2.0 Device profile. Additionally, the device management platform
provides an interface for the gathering of data from those patient monitoring devices as well as interfaces for retrieving
this information after proper authentication.

These functions are implemented as RESTful services on a Tomcat server. Therefore the platform can be easily
integrated in a wide variety of different scenarios. A primitive web interface that calls on those web services is also
available as part of the device management platform, although it is instead recommended to integrate the functionality
directly in the web application, as can be seen in the eHealth Web Front-End.

9.2.3.3 Two-factor authentication service

The Two-Factor Authentication Service consists of two components, a RESTful web service running on Tomcat and an
Android™ application, and can be called upon in order to request to perform an additional authentication through the
use of mobile devices. By sending a request to the web service, the eHealth web front-end is able to ask the two-factor
authentication service to send an authentication request to a specific user. This user is then able to either confirm, or
deny the request using the Android™ application.

All communication with between the two components is initiated by the Android™ application, and is performed by
sending JSON objects through RESTful web services. As in the case of the device management platform, this design
principle allows a flexible integration of this component in larger systems. While the communication itself is performed
through HTTPS, a signature mechanism has been implemented in order to protect against Man-in-the-Middle-style
attacks.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 65

Figure 44: The Android™ application

9.2.4 Improvements of the security model

The previous version eHealth security model comprised only the pairing workflow. The consent workflow is new to the
eHealth model in this version. It was necessary to model the consent workflow to match the actual implementation of
the eHealth system, as this process was included in the implementation of the eHealth server.

The former model implemented a lot of the details, flexibility and functionality of the eHealth server. For instance
modelled patients and doctors were explicitly by logging in at and out from the eHealth server using their passwords. A
session management was also provided for each of the participants and password changing facilities. The eHealth server
was modelled as real server, operating in a loop and accepting the various requests in a more or less arbitrary fashion.
This resulted in many messages and in the model being rather inefficient and hard to check, especially with more than
one session.

In this version the eHealth server was simplified. It only accepts the predefined workflows in the predefined order and
does not model any login and logout procedures not germane to the actual workflow in focus. Instead of an explicit
login, known parties are authenticated with a simple *->*, and those parties are assumed to be able to establish a secure
communication channel. Session management is replaced by a simple nonce for request-response-pairing. The two sub-
workflows, pairing and consent, have been split into two separate sub-models, where the pairing workflow assumes the
consent workflow already having taken place and vice versa. This results in an efficient and more easily manageable
model so that model checkers can handle two simultaneous sessions.

The security supervision of the eHealth model was improved by introducing suitable LTL formulas checking the
authorization policies of the eHealth system.

9.2.5 Considered security properties and vulnerabilities

The following security properties and vulnerabilities are considered in the experiments discussed within the present
document.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 66

9.2.5.1 Security properties

The focus is on verifying the security properties of:

1) Authenticity

2) Authorization

3) Integrity

Privacy: The aim is not primarily to protect user privacy in this scenario. The objective is to explore the effectiveness of
the security controls with respect to protecting the IT-Security properties of authenticity, authorization and integrity. If
encryption was required for every privacy sensitive piece of information that is being transmitted, many attack vectors
would be missed, whose detection is desirable. However by using a strict and supervised authorization policy, personal
patient data are protected to a certain extent.

Accountability: Non-repudiation is out of scope for the eHealth model. The security mechanisms used mostly are of the
symmetric kind. Also plain accountability is not in focus for the eHealth model, thus no logs are kept.

9.2.5.2 Vulnerabilities

Similarly as for InfoBase, vulnerabilities were considered from a representative set of the most common low-level
security vulnerabilities in web-applications (see for instance OWASP Top 10
https://www.owasp.org/index.php/Category: OWASP_Top_Ten_Project) and corresponding to a refinement of the
analysis performed in [i.11]. The vulnerabilities considered are:

1) Cross-site Scripting (XSS)

2) SQL Injection

3) Password brute-forcing

4) Cross-Site Request Forgery (CSRF)

5) File Enumeration

6) Path traversal

9.3 Results by applying the VERA tool
In the following the experiments are described on applying Vera on the eHealth application. Due to the nature of the
attacker models so far available for Vera, the efforts concentrated on testing the Web application that allows patients
and doctors to interact with the system and not the protocols with the mobile devices. The doctors (usernames: "watson"
and "doctor") and the patients (usernames: "hyde", "duck" and "mouse") can interact with the web application after they
had logged in. Vulnerabilities were looked for with Vera on the views of "watson", a doctor, and "hyde", a patient. As
described in previous clauses, the doctor is able submit a consent request and the patient can accept or decline it. Both
have the rights to edit their personal information.

9.3.1 Password brute force

Brute-force attack uses a given login name and tries to login in with a commonly used password pool in the login
interface of eHealth. The library of known user accounts is:

• watson (doctor)

• hyde (patient)

With this information and other system details, the resulting configuration file in Vera is depicted in figure 45.

https://www.owasp.org/index.php/Category:%20OWASP_Top_Ten_Project

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 67

Figure 45: Configuration for password brute force

A partial view of the results of brute forcing with a set of commonly used passwords is depicted in figure 46. Vera was
able to find the password of the patient "watson".

Figure 46: One successful test case for user watson

9.3.2 File enumeration

To be able to distinguish between different attack scenarios, the tests run for configuration files, backups, administrative
interfaces and other hidden files and functionalities in the case of logged users (patients or doctors) and not
authenticated users.

To test for logged users, the session ID of a logged user should be set in the configuration file has to be updated to the
current one. It can be retrieved for instance by intercepting a package between the browser and the server (by using a
proxy like Burp).

For instance in figures 47 and 48 excerpts are shown of the configuration file and the results of a file enumeration attack
for authenticated users.

Figure 47: Configuration for file enumeration with cookies

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 68

Figure 48: Results for file enumeration with cookies

In both cases, a list of possible files was found, but it was not possible to find hidden files (the files were false positives,
see figure 49).

Figure 49: eHealth response to the file enumeration attack

9.3.3 CSRF token checking

To check for the presence of CSRF tokens, Vera was applied on the following pages of the eHealth application:

Instantiation library
1 IO=[

2 "eHealthSec/pages/login",

3 "eHealthSec/pages/home",

4 "eHealthSec/pages/edit",

5 "eHealthSec/pages/consent"

6]

In this case the session ID of logged users (doctors and patients) was also considered to check if there were noticeable
differences, for instance figure 50 depicts the configuration of Vera using a doctor's session and figure 51 the results of
the test.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 69

Figure 50: Configuration for token, session ID of the doctor

In both cases (for doctors and patients), no CSRF token was found:

Figure 51: No successful result, session ID of the doctor

9.3.4 SQL injection

To test for SQL injections, different user roles were also used, to maximize the attack surface. For instance the
configuration file for a patient is reproduced in figure 52 and the obtained results in figure 53. It was not possible to find
any SQL injection vulnerability in the eHealth application.

Figure 52: Configuration file for SQL for patient's login

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 70

Figure 53: No successful/failed results

9.3.5 XSS injection

The testing efforts were focused in the edit (to edit personal data) and consent (to issue new consent requests) sites of
the eHealth application. It was possible to find two different kinds of reflected XSS injection in the edit site, as depicted
in figure 54 with the configuration illustrated in figure 55.

Figure 54: Configuration file for checking the "edit function" of eHealth

Figure 55: Successful results

9.3.6 Path traversal attack

The path traversal attack was applied to all available sites of the eHealth application, but it was not possible to detect
any such vulnerability.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 71

9.3.7 Access control

To be able to test for access control violations a new attacker model was defined in Vera. This attacker tries to iterate
the ID of a given parameter to exploit poorly implemented (or non-existent) access control mechanisms.

Through the GUI of the eHealth webpage, the following access control should be existing: If a doctor logs in the
eHealth system, he can send patient consent request under the URL /eHealthSec/pages/consent. And to a given patient,
he can just send one time request and then he should wait for the response, whether the patient accept the request or not.
If the patient has accepted the request, he will be able to access his data. The doctor should not be able to send further
consent requests in this case, since the permission has already been granted.

Using VERA with the model "Access Control" (see figure 56), a weakness by the access control in eHealth is found:
One can always send consent request with an available "pid" to any patient with a doctor login, so that a patient can
receive more than one consent request from a doctor. The attack process is illustrated in figure 57.

Figure 56: State machine model of access control flow

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 72

Figure 57: Doctor home and patient home screens

Doctor John H. Watson can send now three possible patients consent request, because Duck Donald and Mouse Mickey
are already his patients. Nevertheless, and attacker can still send a couple of consents request to both those patients who
have already consented, filling the patient's inbox with spam.

Figure 58: The consent page of patient Edward Hyde

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 73

Figure 59: The home page of patient Edward Hyde with a consent request from himself

The VERA test results are summarized as follows:

1 models/access_control.xml test results 2013-06-07 17:08:30.912281
2
3 Config:
4 URL="http://localhost :8086/ eHealthSec/pages/consent"
5 Cookie="cookiename=cookievalue; mycookie=myvalue; JSESSIONID=3
ABA2F9837A7A6343AB40B1C2E831589"
6 Header1={}
7 Header2={'Content -Type ': 'application/x-www-form -urlencoded '}
8 Check_Info=["eHealth", "Home", "Consent"]
9
10
11 2 Successful test cases:
12 5 is an available pid and one can select by tampering the request
13 6 is an available pid and one can select by tampering the request
14
15 5 Failed test cases:
16 1 is not an available pid
17 3 is not an available pid
18 4 is not an available pid
19 9 is not an available pid
20 10 is not an available pid

Listing 21: Vera test results of eHealth

There is another access control flaw in the eHealth application. A patient should not be able to access the request
consent page. But if a patient has login and then visits the ../eHealthSec/pages/consent, he can also send consent
requests, as depicted in figure 58. He can for example send a consent request to himself, as depicted in figure 59.

9.4 Summary and conclusion
In the third project year of SPaCIoS, the various approaches and technologies from the project were further improved
and - most importantly - integrated into a common SPaCIoS Tool environment. Using this tool environment, a number
of testing exercises were executed on the suggested application scenarios. Most tools and technologies could be applied
to more than one application scenario. In the following, the results from the individual tools and technologies are
summarized.

VERA, low-level attacker models and testing. The VERA tool was successfully applied on eHealth. In general, positive
experiences were made due to its ease of use and simplicity to setup the tool. However the results from its interactive
application are prone to false positives that require manual checks afterwards.

Formalization of problem cases Several application scenarios were subjected to further formalization of selected
problem cases. Updated ASLan++ models were obtained from eHealth. It proves that ASLan++ is an effective language
to model and formulate security related behavior and properties.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 74

Using the workflow of the SPaCIoS Tool it was possible to create a seamless methodology for model-based testing of
security properties and vulnerability-driven testing from attacker models. The SPaCIoS deliverable D5.4 [i.8] will
discuss further the performance of the different tools and technologies in more detail and compare it to existing work in
security testing.

10 Document management system case study results

10.1 Case study characterization
The Infobase Document Repository (IDR) is a document management system that allows for the secure management
and sharing of any documents or data files using only a web browser. It is provided by Siemens to offer a collaboration
platform for joint projects involving external partners.

The repository mechanism supports web-based administration of text and binary files of any kind, e.g. text documents,
spreadsheet tables, and even executables, in a hierarchical storage structure. The following characteristics can be noted:

1) Upload and download of entire directory trees as zip archives

2) Version management

3) File locking for team-oriented editing

4) Cut/copy/paste mechanisms for files and directory trees via a clipboard

5) Symbolic links

6) Fine-granular access control (for users, groups, and company), where to each object in the repository
individual access rights can be allocated

For a thorough high-level overview of the Infobase case study, see SPaCIoS deliverable 5.1 [i.6], clause 7.1. The next
clause describes the execution of a systematic security risk assessment of the document management application, which
provides initial direction for the test and validation steps that follow. Afterwards, the specification-based testing
approach is described that comprises the steps:

1) specification of security models in ASLan++ and model-checking of required security goals;

2) mutation of the correct model to generate abstract attack traces (AATs) using the SPaCiTE tool;

3) implementation of the AATs in a test automation environment and execution of the concrete tests. A second
series of experiments follows the vulnerability-driven testing approach using the VERA tool. It performs tests
based on a description of potential attacker behavior using the initial analysis results as a guide.

10.2 Security testing approaches

10.2.1 Security risk assessment of the Infobase application scenario

10.2.1.1 Background

Today's security testing is often not systematic not enough standardized. In particular, there are no clearly defined
criteria for selecting relevant tests. Thus different analysts come to different results and sound quality assurance is
hardly possible.

Literature suggests basing the choice and prioritization of tests on risk considerations but lacks a systematic approach
for a traceable transition from abstract and business-oriented security risk assessment into the concrete and technical
security testing world. In SPaCIoS deliverable 3.3 [i.5] it is recommended to bridge this gap in two steps:

1) The first one bridges between high-level and non-technical "business worst case scenarios" and less abstract
"technical threat scenarios" using a technical description of the system and a systematic STRIDE-based
elicitation approach.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 75

2) The second is a rule-based step that maps technical thread scenarios to "test types", that is, to classes of tests
that need to be adapted to the particular system under validation.

10.2.1.2 Scope and goal of the case study

In this clause, it is outlined how the proposed procedure was applied to the Infobase application which was introduced
in the SPaCIoS deliverables 5.1 [i.6] and 5.2 [i.7]. The goal of this effort was to apply the methodology to a real world
example and in this way, first and foremost, to collect practical experiences and lessons learned to improve
practicability and thus acceptance for future real-world assessments. This being the main purpose, and to avoid getting
lost in details, not all steps were presented in all detail and the (intermediate) results are often not complete in this
exposition. A secondary goal of the effort is to find which parts of the methodology could be simplified in order to find
the most important vulnerabilities but with a much less effort.

The rest of this clause is structured as follows: In the first part, a short general description of all steps of the method is
given, and the results of their exemplary application on Infobase are presented. The second part contains the lessons
learned and the suggestions for possible improvements.

10.2.1.3 Method walk-through

10.2.1.3.1 Describe general usage scenarios

Briefly describing the main usage scenarios helps to get a basic understanding of the SUT's purpose and its external
actors. Both are prerequisites for all subsequent steps. The following scenarios were noted:

• The system allows to store, upload and download files (artefacts)

• The possibly sensitive artefacts can be shared with other, possibly external, users based on pre-defined access
control properties

10.2.1.3.2 List assets

In this step, the system owner lists the non-technical assets that the SUT comprises, uses, and protects. In case of the
document management application, these were, among other things:

• The sensitive repository content such as contract documents or price lists

• The correct functioning of the repository

10.2.1.3.3 Define security requirements

Security requirements consist of a tuple of a non technical asset and a security property. Considering the previous
results, security requirements of the following type were derived:

• (sensitive artefact [class], confidentiality)

• (sensitive artefact [class], integrity)

• (repository, availability)

10.2.1.3.4 Identify relevant threats

After a discussion with the Infobase responsible and considering the usage scenarios, two main groups of possible
attackers were identified:

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 76

Figure 60: Infobase security overview with two different user roles

• Internal attackers, that is, legitimate users of the system such as employees or external partners with
permission to use the system

• External attackers with no user accounts, in particular competing companies willing to perform industrial
espionage

10.2.1.3.5 Define or derive a Business Worst Case Scenario (BWCS)

A BWCS is given by the non-technical description of a possible situation that might disrupt the achievement of
objectives. The BWCSs should -to be useful for the purposes relate to the previously elaborated assets. Assuming a
violation of each of the previously collected security requirements leads to a minimal set of relevant BWCSs. Given the
above elaborated requirements, the following BWCSs were noted:

• Sensitive artefacts are disclosed to or modified by unauthorized internal or by external attackers (impact rating:
high)

• The entire repository is made unavailable (impact rating: medium)

10.2.1.3.6 Generate Security Overview

The security overview is the result of a technical system description which captures and structures the security relevant
technical aspects of the SUT. Besides providing a better technical understanding of the SUT, the security overview is
crucial for the transition from security risk assessment results to security tests: It contains the data flow diagram
elements that are part of the TTSs and provides the technical system information needed to identify and instantiate
appropriate test types. Figure 60 shows the simplified and truncated Infobase Security Overview.

10.2.1.3.7 Map BWCS to Technical Threat Scenario (TTS)

There are two approaches to the mapping of BWCS to technical threat scenarios: (1) Top-down For every BWCS,
examine which technical threats could lead to the BWCS. (2) Bottom-up For each DFD model element, brainstorm if
any technical threat could pose a security problem which could lead to a, possibly not yet identified, BWCS. Practical
experience suggests that analyzing each model element in a DFD is often time-consuming and leads to overlapping
results for different elements. Alternatively, one can instead examine entire data flows from source to sink or system
interactions with external actors:

1) Sensitive artefacts are disclosed to or modified by external attackers:

- (P1, Escalation of Privilege)

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 77

- (DF5(Web Srv. -> DBMS), Spoofing)

- (DF6 (Employee -> Web Srv.), Spoofing)

- etc.

2) The entire repository is made unavailable:

- (P1, Denial of Service)

- (DS8, Denial of Service)

10.2.1.3.8 Map TTSs to test types

The TTSs are still too abstract and need to be further concretized. For this purpose, the concept of test types was
suggested. The rules that map TTSs to test types have the following structure:

1) A pattern in an annotated DFD. Besides a mandatory TTS which includes the security property violation, the
pattern can include additional system elements and further annotations.

2) The level of sophistication for the security tests. It is determined by risk considerations such as the expected
attacker and the desired assurance.

3) A reference to the suggested test type that fits to the above characteristics.

Given the intermediate results from the previous steps and applying the exemplary rules listed in the appendix yields the
following test types:

10.2.1.4 Lessons learned

The limited time frame of real world security assessments is the most significant obstacle for the industrial application
of the proposed full risk-based test selection procedure. (This is also true for any other analysis method that requires
additional time). Indeed, security risk assessment and system pre-analysis do take time and care should be taken that
they do not consume too much of the available time budget planned for practical testing which – at the end of the day –
yields the actual "tangible" results: exploitable vulnerabilities that the system owner should fix.

Therefore the analysis method should be as light-weight as possible. Once the analysts have understood the framework
and the dependencies of the steps, may be advised not to apply all proposed steps in full detail. This will help to get "the
biggest security bang for the buck". Many security practitioners and paying customers do not want to spend much time
analyzing the security architecture of the system. This activity is perceived by them as a less exciting "overhead", which
goal is planning and prioritizing which test to perform. They would rather start with practical security tests as soon as
possible, especially if the effort and time dedicated to the total activity is rather restricted.

The Infobase case study indicated that increased traceability for security test selection is appreciated but may not be
sufficient for a sustainable industry acceptance. The latter would be easier to achieve if the security risk assessment
method provides the following additional benefits:

1) Improved test coverage by suggesting a large number of adequate test types, especially less common ones that
may not be thought of by the ordinary tester.

2) More concrete indications for test selection that goes beyond the test type. For example, instead of suggesting
Intermediate Security Attestation Level fuzzing test for interface registry, one could add the exact location of
the value, its type, and the functions the fuzzing data passes.

The first benefit can be achieved with a well-stocked test library; the second requires more technical effort but could
leverage the information extracted for a more technical security overview.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 78

10.2.2 Improvements of the security model – detecting Cross-Site Request
Forgery at ASLan++ level

10.2.2.1 Description of CSRF in Infobase

In this clause the aim is to validate the Infobase specification with respect to Cross-Site Request Forgery (CSRF).
Considering that the objective is to search for CSRF at ASLan/ASLan++ level, it is first defined how to model a web
application scenario for this purpose.

In order to exploit a CSRF vulnerability, and attack a web application (in this context, with "attacking a web
application" it is meant that an intruder can perform requests to the web application that it should not be allowed to do),
mainly three parties have to get involved: an intruder, a user and a server. The intruder is the entity that wants to exploit
the vulnerability and attack the web application hosted on the server. The server is then the entity that represents the
web application host and, finally, the user entity is the honest agent who interacts with the web application (i.e. with the
server).

Figure 61: CSRF MSC

If the web application is vulnerable to CSRF, the intruder can trick the user to perform requests to the server in behalf of
him (figure 61). This attack scenario can be summarized by the following five steps:

1) The user logs in to the web application (authentication phase).

2) The server sends a cookie to the user who will store it (in the web browser). From this point on, the cookie will
be automatically attached by the web browser to every request sent by the user to the server.

3) The intruder sends to the user a malicious link containing a request for the web application on the server.

4) If the user follows the link, the web browser will automatically attach the cookie and will send the malicious
request to the server.

5) The web application cannot distinguish a request made by the intruder and forwarded by the user from one
made and sent by an honest agent, and then it accept the request.

The state-of-the-art protections against this vulnerability are mainly two and can be used together:

1) The server asks the user for a confirmation at every request the user sends to the server.

2) A secret (e.g. a pseudo-random token) shared between the user and the server has to be attached at every
request.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 79

In figure 62 the model of a web application that uses both CSRF protection mechanisms is reported. In this way, the
intruder cannot simply send a request to the user and wait for its execution. In fact, the user will not confirm the request
and the browser will not automatically add the secret to the request.

Figure 62: CSRF protection MSC

The objective is to check if the Infobase protections against CSRF are strong enough; that is, to check if there is a way
for the intruder to bypass protections and commit a request that it is not allowed to do.

It is important to observe that, from the given description of CSRF an intruder uses the user as an oracle. The intruder
does not see the communication between the user and the server but it will send a request to the user and wait for it to
be executed (figure 63). where it is shown the scenario from the intruder point of view that cannot see the
communication between the other two entities.

10.2.2.2 Modeling CSRF in ASLan++

In this clause it is described how the Infobase ASLan++ specifications, to check for CSRF, are defined. In order to
check for CSRF in the ASLan++ specifications two entities are considered: Client/Oracle entity and Server entity.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 80

10.2.2.2.1 Client

In the Client entity there is a first authentication phase to obtain the cookie and logging in to the web application.

Figure 63: CSRF Oracle MSC-the image is from the intruder point of view
and the grey part is not visible to the intruder

% sends his/her name and password to the server’s login service
Actor ->* Server: Actor.UserName.Password;
% the server 's login service responds to the login request with a cookie
select { on (Server *->* Actor: ?Cookie &
?Cookie=cookie(UserName ,?,?)): {} }

After this phase, the Client can perform requests to the Server asking for services. When a user wants to send a request
to the Infobase system, it first load the web page using a web browser. The Server produces the web page and sends it
together with a CSRF token (i.e. a fresh pseudo-random token linked to the session ID of the Client). At specification
level it is possible to model this mechanism by creating a variable Request that the Client want to submit. When the
Client sends this Request to the Server, the latter will generate and send the token back to the Client. Now the Client
sends the Request together with the cookie and the CSRF token as follows.

% load request page with the csrf token
% user asks for a web page
% and the server sends it to him/her together with a csrf token

Actor *->* Server: Cookie.Request;
Server *->* Actor: ?CSRFToken;
Actor *->* Server: Cookie.Request.CSRFToken;

Between the authentication and the request submission part, a reception of a message is added. This message contains a
variable Request and it is sent from an unknown entity: ?-> Actor: ?Request;. In this way, the scenario in which the
Client receives a malicious email from a third party is modelled; the email contains a link to submit a request to the web
application.

Finally, the Client will receive from the Server the confirmation that the request has been executed by the web
application.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 81

% the Server’s frontend sends back to the user the answer
% of the repository
% To avoid replay of an answer that does not fit to the current
% request, "Request" is added:
%
Server *->* Actor: Request.?Answer;
UserName->got(Answer);

10.2.2.2.2 Server

The server entity accepts three different kinds of requests: authentication, request for a web page and request that it has
to commit to the web application.

With authentication request a Client (not already authenticated) sends to the Server its username and password asking to
log in. The Server will check the received credentials and, if they are correct, it will generate a Cookie that will be sent
back to the Client.

% Case 1: login service receives the user request
 %% and generation of a new cookie for the session
%

on((? ->* Actor: ?UserIP.?UserName.?Password
 & !dishonest_usr(?UserName) |
% In case the user is dishonest, the UserIP may be forged,
% and therefore it is not required auth_Login:(?UserName)
% nor secret_Password:(?Password)
% as these implicitly rely on UserIP.
% In this model, it is sufficient to state
% secret_Password:(Password) at the Client.

?->* Actor: ?UserIP.?UserName.?Password & dishonest_usr(?UserName)) &
% checks if the data are available in the database
%% "select..on" is more efficient than "if"

loginDB->contains((?UserName,?Password,?Role))): {

% At this point, it was checked, using the password,
% that the user is legitimate.
% With the query, the role of the legitimate user is extracted.
% It creates the cookie and sends it back to the user
Nonce := fresh(); Cookie := cookie(UserName,Role,Nonce);
% adds the Cookie into the DB associated
% with the name of the user
cookiesDB->add(Cookie);

% uses the IP address sent by the client
% to communicate the cookie to the correct user

Actor *->* UserIP: Cookie; }

The second type of request is a web page request. The Client asks for a web page before sending a request to the web
application. Here the Client is already logged in and then it sends the request together with the Cookie. The Server will
check the Cookie and generate a fresh token that will send back to the Client.

% Case 2:having a cookie, a user makes a request to the frontend
%% without the CSRF token
%% and receives the respective token from the repository

on(?UserIP *->* Actor: cookie(?UserName,?Role,?Nonce).?Request & cookiesDB-
>contains(cookie(?UserName,?Role,?Nonce))): {
CSRFToken:=fresh(); csrfTokenDB->add((UserIP,Request,CSRFToken)); Actor *->* UserIP: CSRFToken;
}

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 82

The third case is when a Client sends a request to the Server. The Server checks the cookie and the token and commit
the request.

%% Case 3: having a cookie, a user makes a request to the frontend
%% and receives the respective answer from the repository
on(?UserIP *->* Actor: cookie(?UserName,?Role,?Nonce).?Request.? CSRFToken &

% checks if the token is the right one
csrfTokenDB->contains((?UserIP,?Request,?CSRFToken)) &

% checks if the user is allowed to do this request
% and if the user is linked to the cookie

checkPermissions(?UserName,?Request) & cookiesDB->contains(cookie(?UserName,?Role,?Nonce))): {

% if the user has the right credential, then the frontend
% sends the request to the repository which will return the
% answer

Answer := answerOn(Request);

%% shortcut for simplicity: no extra Repository

commit(Request); Actor *->* UserIP: Request.Answer; }

% Case 3: otherwise the user is either a cheater
% who has not achieved
% his goal or a user that has an invalid cookie to issue
% the request
}

10.2.2.2.3 Goal

The goal is to check if there is a way for the intruder to commit a request to the web application.

csrf_goal: [](!commit(intruderRequest));

From the specification, the only way that the intruder has to commit a request is to bypass the CSRF protection
(i.e. CSRF Token).

1 <acflaw> <authz>checkPermissions |contains</authz> </acflaw>

Listing 22: Configuration for the ACFlaw operator used for the Infobase's model

To model that the intruder wants to submit a request that an honest agent does not, a particular request
(intruderRequest) in the Session entity is introduced as follows:

body { %% of the Environment entity
role1->can_exec(request1);
role1->can_exec(intruderRequest);
role2->can_exec(request2);
any UserIP. Session(UserIP, usr1, role1, request1)
where !dishonest(UserIP);
new Session(i , usr2, role2, request1);
}

10.2.2.3 Result of the analysis of the Infobase model

Both SATMC and CL-Atse concludes that the specification is safe with respect to the CSRF goal. This means that the
CSRF protection (i.e. CSRF token) cannot be bypassed, in the modeled scenario, from the DY intruder.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 83

10.2.3 Mutation-based test generation

From the three semantic mutation operators presented in [i.10], one is applicable to the Infobase model, namely the
Access Control Flaw (ACFlaw) operator.

The purpose of the ACFlaw operator is to inject into the original model a "Missing Authorization" vulnerability. This
task is carried out by removing a symbolic function that models an authorization check from the set of facts that has to
hold in order to trigger a transition step. Although the applied modification is of syntactical nature, i.e. removing a fact
from the LHS of a step, the ACFlaw operator is a semantic operator because its application has to be narrowed to a
specific set of facts built with the symbolic functions modeling an authorization check.

The mutant operator cannot identify which symbolic functions model authorization checks, therefore the modeler has to
provide a configuration file containing a regular expression that the ACFlaw operator uses to identify only the facts
build using those specific functions.

Listing 22 shows the configuration file used to specify that checkPermissions and contains are the symbolic functions
that model an authorization check throughout the specification.

While checkPermission has been defined by us in the model, "contains" is a symbol defined in the ASLan Prelude
File [i.1] which states what are the elements present in a set (e.g. contains(Set,E) means that E is in the set E). The
function symbol contains has been included in the configuration file because in the Infobase model there are checks on
the presence of credentials into a database (modeled using the sets loginDB and cookiesDB) on the server side.
Therefore, removing these checks from the LHS of the steps in the original model, corresponds to removing
authorizations checks. In fact, by removing those facts, the intruder can perform actions he is not allowed to execute.

Applying the ACFlaw operator, 4 mutants are obtained, out of which 3 led to an AAT that are described and taken into
account for the concretization phase.

10.2.4 Test automation

Test automation in this context is concerned with deriving executable tests from the abstract attack traces generated
using the mutation-based test generation technique introduced in clause 8.5. In the following clauses the test automation
process and the test tool ScenTest which is used to generate executable test code are described.

10.2.4.1 The ScenTest tool for scenario-based testing

ScenTest is a tool that enables the description of test scenarios, i.e. test cases, as UML sequence diagrams and the
generation of executable JUnit tests. It supports the black-box test of concurrent and distributed systems based on
message-based communication. The tool builds on a software modeling tool for modeling the test scenarios and the
Eclipse framework as the IDE. A test scenario that is expressed in terms of UML sequence diagrams consists of a single
System Under Test (SUT) lifeline and one or more lifelines that describe the different interfaces and interaction points
of the SUT with its environment, which is replaced by the tester during test execution. The interaction flow of messages
can be strictly sequential, concurrent, or alternative. An entire test suite can be described as a set of test scenarios. In
addition, various test scenario fragments (scenario building blocks) can be combined into a single test scenario graph,
from which new test scenarios for test execution can be generated according to structural coverage criteria such as node
or edge coverage. A comprehensive description of ScenTest is provided in [i.9].

10.2.4.2 General approach to test automation of AATs

Figure 64 depicts the complete test automation process followed for deriving executable tests from the abstract attack
traces generated using the mutation-based test generation technique. The process can be summarized as follows:

Manually concretize the attack traces by mapping them to a SUT specific test scenario.

Represent the test scenario as message-exchanges between the involved parties (the testers) and the SUT in terms of a
UML sequence diagram.

Develop a Test Adaptor that maps the test logic to the SUT logic and handles connection and communication with the
SUT. The test adaptor also the place where the test verdict is declared. The test verdict is the condition to be satisfied to
consider a test as "Passed".

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 84

The generated test cases are represented as executable JUnit (http://www.junit.org) tests. The tool HtmlUnit
(http://htmlunit.sourceforge.net) is used within the Test Adaptor to emulate the system ï£¡s client, which is a web
browser in the case of Infobase system. HtmlUnit can emulate different browsers and different versions of a specific
browser. Therefore it allows for full control over the emulated browser which is of great importance when dealing with
complex test scenarios. Additionally, the emulated browsers provided by HtmlUnit
GUI-less. Avoiding testing over browser GUI makes testing more independent of operating system features and
browser-specific implementations. Other features like the full support of JavaScripts and reliance on an HTML object
model allow to validate web pages to the finest level of detail.

10.2.4.3 Derived test case, test execution and test results

In this clause a listing of attack traces and the test case derived from them are provided as well as the test execution
results.

10.2.4.3.1 Test scenario 1:

Infobase_Scene1_contains_step008

Generated abstract attack trace. Follows a listing of the exchanged messages according the generated attack traces used
to derive this test case.

Figure 64: Test automation approach implemented in ScenTest

1 <?> ->* server : UserIP(123).UserName(123).Password (123)
2 server *->* <UserIP(123)> :
3 cookie(UserName(123),Role(123),n123(Nonce))

Listing 23: AAT Infobase_Scene1_contains_step008

Concretized abstract test case (figure 65)

• Pre-condition:

- Martin Tester (Quality Ltd.) is an Infobase registered user.

• Test sequence:

- Martin Tester attempts to log in with a valid user name and an invalid password.

• Expected result: The user should not be allowed to log in and receive a valid cookie from the Infobase system.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 85

Result from test run (figure 65): The user was not allowed to log in and did not receive a valid cookie from the Infobase
system. Test PASSED.

Figure 65: Test automation for Infobase_Scene1_contains_step008

10.2.4.3.2 Test scenario 2:

Infobase_Scene1_contains_step010

Generated abstract attack trace. Follows a listing of the exchanged messages according the generated attack traces used
to derive this test case.

4 <i> *->* server :
5 cookie(usr1,Role(127),Nonce(127)).request1 server *->* <i>
6 : request1.answerOn(request1)

Listing 24: AAT Infobase_Scene1_contains_step010

Concretized abstract test case (figure 66)

• Pre-condition:

- Thomas Hacker has no permission to access Infobase.

• Test sequence:

- Thomas Hacker (an intruder) constructs a fake cookie to be used for Infobase requests.

- Thomas Hacker attempts to send a request to Infobase using his fake cookie.

• Expected result: The intruder Thomas Hacker should not be allowed to execute his request.

Result from test run (figure 66): The intruder was not allowed to execute his request. Test PASSED.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 86

Figure 66: Test automation for Infobase_Scene1_contains_step010

10.2.4.3.3 Test Scenario 3:

Infobase_Scene1_checkPermissions_step010

Generated abstract attack trace. Follows a listing of the exchanged messages according the generated attack traces used
to derive this test case.

7 UserIP(125) ->* <server > : UserIP(125).usr1.n113(Password)
8 <?> ->* server : i.usr2.n111(Password) server *->* <i>:
9 cookie(usr2 ,role2 ,n125(Nonce)) <i> *->* server :
10 cookie(usr2 ,role2 ,n125(Nonce)).request1 server *->* <i> :
11 request1.answerOn(request1)

Listing 25: AAT Infobase_Scene1_checkPermissions_step010

Concretized abstract test case (see figure 67)

• Pre-condition

• Maggie Lee and Martin Tester are registered users

• Maggie Lee has the required privileges to access the repository "Spacios"

• Martin Tester does not have the requires privileges to access the repository "Spacios"

• Test sequence

• Maggie Lee retrieves (downloads) the document README.txt from the repository "Spacios"

• Martin Tester attempts to retrieve the document README.txt from the repository "Spacios"

• Expected result: It has not to be possible for Martin Tester to retrieve the file README.txt from the repository
"Spacios"

Result from test run (figure 67): It was not possible for Martin Tester to retrieve the file. Test PASSED.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 87

10.3 Results by applying the VERA Tool

10.3.1 Considered vulnerabilities

In the following it is summarized the low-level vulnerabilities considered for this problem case. The considered
vulnerabilities are a representative set of:

Figure 67: Test automation for Infobase_Scene1_checkPermissions_step010

The most common low-level security vulnerabilities in web-applications and correspond to a refinement of the analysis
performed in [i.6]. For the most common level security vulnerabilities in web-applications, see for instance
OWASP-Top-10 https://www.owasp.org/index.php/Category: OWASP_Top_Ten_Project.

Cross-Site Scripting (XSS)

The presence of this vulnerability allows attackers to execute arbitrary JavaScript code on the client side, if the user is
misled into visiting maliciously prepared links. As a consequence, an attacker can potentially get hold of session IDs
(depending on the cookie configuration for the site), steal confidential information stored in the site and manipulate user
requests among others, thus posing a threat to confidentiality and integrity goals.

SQL Injection

Allows attackers to execute SQL statements to the database. Depending on the privileges of the application, this can
have several damaging effects, ranging from authentication by-pass (by adding trivial conditions to password checkers
for example, the infamous "OR 1=1" injection) and reading/writing data of the application database, to even execution
of OS commands and thus complete takeover of the server hosting the application.

Weak passwords

If the application does not enforce the use of strong passwords attackers can try to guess credentials by brute-force. This
is usually done by trying lists of commonly used passwords (typically in the order of magnitude of the few thousands).
The probability of success of attackers is increased if the application does not have a lock-out mechanism for repeated
unsuccessful login attempts for a given account.

https://www.owasp.org/index.php/Category:%20OWASP_Top_Ten_Project

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 88

CSRF vulnerabilities

Allow attackers to trick users into issue requests to the server with potentially malicious side-effects (such as change
permissions, modify sensitive data), by exploiting the fact that the browser will always send cookies to the victim
domain even if the requests are issued by a malicious web-site. To prevent this issue, critical requests should contain an
extra random value associated to the user session that is not contained in the cookies. The server can thus check for the
validity of this extra value (called CSRF token). Attackers would have to guess for this value to craft valid malicious
requests.

File Enumeration

Hidden administrative interfaces, old backup copies of source code and vulnerable scripts that are not referenced by the
main application URLs can be automatically found by attackers searching for this hidden files/folders based on
commonly used file-names and extensions. As a consequence, attackers can expand their attack surface on their
application (by for instance gaining unrestricted access to the data-base in case of a miss-configured database
administration interface).

Path traversal

Web-applications may refer to system resources directly by providing a path (for instance to present log files, images,
etc.). If this path is partially constructed with user input, attackers can potentially manipulate it to access arbitrary
systems resources by traversing the directory structure of the server.

The document management application implementation was tested against attacker models for a number of
vulnerabilities using the VERA approach. A number of security issues present in the current version of Infobase were
found: one instance was found of persistent cross-site scripting, a hidden administration interface and missing
protection against brute force attacks. The results and lessons learned are detailed in the following clauses.

10.3.2 Cross-Site Scripting (XSS)

It was applied the general injection model described in [i.5] with JavaScript payloads to InfoBase, but obtained no
interesting results. However, during these tests it was noticed that some interesting tests cases were being neglected
because the initial model did not take CSRF tokens present in InfoBase into account. This triggered the development of
a generalized injection model.

After applying this model to InfoBase, a stored XSS injection vulnerability was found in the issue reporting site, as
depicted in figure 68.

Figure 68: Successful XSS injection by adding a new comment on an issue using
<script>alert(document.cookie);</script>

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 89

Since the InfoBase cookies are not protected with the HTTP_only flag, it was possible to directly read the session ID,
which indicates that an adversary might steal this sensitive information if he manage to trick a logged user into reading
a malicious comment that exploits this vulnerability. Here is reported an excerpt of the results as reported by VERA:

1 models/token_inj.xml test results 2013-05-17 17:34:31.853168
2
3 Config:
4 URL="http://localhost :8086/"
5 Cookie="JSESSIONID=F66D0F63033496C466213E73A52D3C98"
6 Method="GET"
7 Header=""
8 Header2={'content -type ': 'application/x-www-form -urlencoded'}
9 Path="support/Issue/view.do?reqCode=view&type=1&id=28203"
10 Action="support/Issue/IssueComment/create.do"
11 Ignore_Form_Fields=[['reqCode ', '_history_id_ ']]
12 Test_Input="comment"
13 Test_Content="TokenXSSTest"
14 Correct_Fields={’reqCode’:’saveNew’}
15
16 1 Successful test cases:
17 Injection "<script>alert(document.cookie);</script> to form 1" is successful
18
19 1 Failed test cases:
20 Injection "<IMGSRC%3d"javascript:alert(’XSS’);">toform1 " failed

10.3.3 SQL injection

To be able to test for SQL injection, the modified injection model was necessary as discussed in the previous clause.
However, no SQL injection vulnerability was found in InfoBase.

10.3.4 Password brute-forcing

The goal of this experiment was to test the password brute force model as introduced in [i.5] to the InfoBase
implementation, in particular to the log-in main interface (figure 70). For readability, this model is recalled in figure 69.

Figure 69: Model "password_brute_force"

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 90

For this purpose, the following known user accounts were fed to the instantiation library: Administrator and
RepositoryAdmin. For the password payload a library was used containing commonly used passwords, successfully
finding the password of the Administrator user (admin).

Figure 70: Infobase user login interface

In the following it is reported the used configuration and a partial result of the experiments for these account.

1 models/password_brute_force.xml test results 2013-05-17 17:33:39.057231
2
3 Config:
4 URL="http://localhost:8086/"
5 Cookie=""
6 Header={’content-type’: ’application/x-www-form-urlencoded ’}
7 Username_Field_Name="_requested_url_=%2F&_modname_=infobase
&_login_param_=true&_nopki_=true&login_"
8 Username_Field_Value="Administrator"
9 Password_Field_Name="password_"
10
1 Successful test cases:
admin

10.3.5 Cross-Site Request Forgery (CSRF)

Testing for Cross-site Request Forgery in an automated way is a challenging task, because the side-effects of a
vulnerable action may vary widely from application to application. Therefore the focus was on a task that is more
amenable to automatic testing: validating the strength of CSRF tokens. Infobase has CSRF tokens for most POST and
GET request, making it a difficult target for these kind of attacks.

A model reported was developed, that automatically assesses whether the CSRF tokens of an application are
regenerated within a session. In general, the longer the validity of a CSRF token is, the weaker guarantees it provides. It
was found that most tokens within Infobase are regenerated after every visit of their containing website, whereas some
of them are valid for the whole session, as summarized in the following result excerpt:

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 91

1 models/token.xml test results 2013-05-17 18:31:09.363780
2
3 Config:
4 URL="http://localhost :8086/"
5 Cookie="JSESSIONID=F66D0F63033496C466213E73A52D3C98"
6 Method="GET"
7 Header=""
8 Token_Names=['org.apache.struts.taglib.html.TOKEN ',' _infobase_token ']
9 Ignore_Form_Fields=[['reqCode ', '_history_id_ ']]
10
11 105 Successful test cases:
12 http://localhost:8086/ quickSearch.do?reqCode=quickSearch&
modname=infobase&searchType=text¶meter=a Form1 has a strong token: _infobase_token
13 http://localhost:8086/commons/favorites/Favorite/create.do? reqCode=create&favoriteMenu=true
Form1 has a strongtoken: org.apache.struts.taglib.html.TOKEN
14 http://localhost:8086/commons/favorites/Favorite/create.do? reqCode=create&favoriteMenu=true
Form1 has a strong token: _infobase_token
15 ...
16
17 43 Failed test cases:
18 http://localhost:8086/info.do?reqCode=menuAction Form1 has a weak token:
org.apache.struts.taglib.html.TOKEN
19 http://localhost:8086/system/registry/search.do?reqCode= search Form1 has a weak token:
org.apache.struts.taglib.html.TOKEN
20 http://localhost:8086/system/layout/search.do?reqCode= search Form1 has a weak token:
org.apache.struts.taglib.html.TOKEN
21 ...

10.3.6 File enumeration

The File Enumeration model of figure 71 was applied to InfoBase, with an instantiation library containing common
directory and file names, in order to detect hidden interfaces to the system or forgotten backup files.

Figure 71: File enumeration model

The model checks if the tested file is found by looking at the response code. Initially, all responses different to 404 (not
found) were marked as successful. As a result, the following restricted files (response code 401) were obtained, possibly
belonging to the webserver management interface:

http://192.168.42.128:8080/webdav
http://192.168.42.128:8080/webdav/index.html
http://192.168.42.128:8080/webdav/index.html
http://192.168.42.128:8080/webdav/servlet/org.apache.catalina.servlets. WebdavServlet/
http://192.168.42.128:8080/webdav/servlet/webdav/
http://192.168.42.128:8080/webdav/index.html

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 92

By manually accessing those pages an authentication interface was obtained as shown in figure 72. Those files are
potentially interesting for attackers to expand their attack surface: for instance, by trying password brute forcing or
standard passwords. This issue was not further tested.

http://localhost:8085/info2www’(../../../../../../../bin/mailroot</etc/ passwd> Status: 505
http://localhost:8085/scripts/slxweb.dll/getfile?type=Library&file= [invalidfilename] Status: 505
http://localhost:8085/clusterframe.jsp Status: 200
http://localhost:8085/webdav Status: 401
http://localhost:8085/webdav/index.html Status: 401
http://localhost:8085/nsn/..%5Cutil/copy.bas Status: 400
http://localhost:8085/nsn/..%5Cutil/del.bas Status: 400

Figure 72: An "Authentication Required" dialog appears by request the above mentioned URLs

On the other hand, several false positives were also obtained. All URLs with response status 200 400 401 505 are
marked as successful, but in this case these URLs are not available. For example:

http://localhost:8085/info2www’(../../../../../../../bin/mailroot</etc/ passwd> Status: 505
http://localhost:8085/scripts/slxweb.dll/getfile?type=Library&file= [invalidfilename] Status: 505
http://localhost:8085/clusterframe.jsp Status: 200
http://localhost:8085/webdav Status: 401
http://localhost:8085/webdav/index.html Status: 401
http://localhost:8085/nsn/..%5Cutil/copy.bas Status: 400
http://localhost:8085/nsn/..%5Cutil/del.bas Status: 400

After manually checking those addresses, it was found that the server configuration automatically returned certain
response codes to those particular URLs, but the files were not physically present in the server.

10.4 Summary and conclusions
In the third project year of SPaCIoS, the various approaches and technologies from the project were improved further
and most importantly integrated into a common SPaCIoS Tool environment. Using this tool environment, a number of
testing exercises were executed on the suggested application scenarios. Most tools and technologies could be applied to
more than one application scenario. In the following, the results from the individual tools and technologies are
summarized.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 93

SPaCiTE, mutation-based testing and test execution The approach was applied in the application scenario of the
document management application. The tool SPaCiTE is well integrated into the overall SPaCIoS Tool environment.
Based on the ASLan security model and a selection of mutants to be applied the tool generates automatically AATs.
After manual inspection of these AATs, they can be implemented and made executable using external test technologies,
e.g. as demonstrated in the document management application scenario.

VERA, low-level attacker models and testing The VERA tool was successfully applied on the document management
application. In general, positive experiences were made due to its ease of use and simplicity to setup the tool. However
the results from its interactive application are prone to false positives that require manual checks afterwards.

Formalization of problem cases Several application scenarios were subjected to further formalization of selected
problem cases. Updated ASLan++ models were obtained from the document management application. It proves that
ASLan++ is an effective language to model and formulate security related behavior and properties.

Using the workflow of the SPaCIoS Tool it was possible to create a seamless methodology for model-based testing of
security properties and vulnerability-driven testing from attacker models. The upcoming SPaCIoS deliverable D5.4 [i.8]
will discuss further the performance of the different tools and technologies in more detail and compare it to existing
work in security testing.

11 Evaluation and assessment of case study results
To analyse the effectiveness of the model-based security testing techniques, tools and methods the DIAMONDS project
has developed a profiling and assessment scheme called STIP (Security Testing Improvement Profile), which allows an
objective, detailed analysis and evaluation of the case studies. The scheme allows an assessment of model-based
security testing processes and shows how security testing techniques, tools and methods fit together. Finally STIP may
be used to provide recommendations for other on how to pragmatically integrate results from research to improve
security-testing processes on hand. STIP was applied to all of the case studies in the DIAMONDS project and to the two
case studies from the SPaCIoS project. The approach can be used to effectively assess and compare model-based
security software testing processes and develop process improvements by leveraging the maturity of such a process in
certain key areas.

11.1 Approach: Security Testing Improvements Profiling (STIP)
The Security Testing Improvement Profiling Scheme (STIP Scheme) has been developed in the DIAMONDS project to
assess the maturity and performance of the case studies and their model-based security testing processes. The approach
was based on the general ideas of TMMi [i.12] and TPI™ [i.13], [i.14]. Thus, a selected set of key areas were defined as
considered relevant for model-based security testing. The key areas describe major aspects or activities in a security
testing process and are chosen in that way, that they are aligned with the DIAMONDS MBST methodology and that
they cover the most relevant DIAMONDS innovations. The key areas were defined to be self-contained and distinct so
that each of the areas represents a relevant aspect of a MBST process. Table 4 lists the key areas that have been defined
to assess the DIAMONDS project and are the ones that build the basis for the STIP Evaluation.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 94

Table 4: Key areas in security testing

Key area Description
Security risk assessment Security risk assessment is a process for identifying security risks.
Security test identification Test identification is the process of identifying test purposes and

appropriate security testing methods, techniques and tools.
Automated generation of test models For model-based security testing (e.g. fuzzing, mutation based

testing) various kinds of models are required, which can be either
created manually or generated automatically.

Security test generation Security test generation is about the automation of security test
design.

Fuzzing Fuzzing is about injecting invalid or random inputs in order to reveal
unexpected behave or to identify errors and expose potential
vulnerabilities.

Security test execution automation The automation of security test execution conducts the automatic
application of malicious data to the SUT, the automatic assessment of
the SUT's state and output to clearly identify a security flaw, and the
automatic control of the test execution with respect to different kind of
coverage.

Security passive testing/ security monitoring Security monitoring based on passive testing consists of detecting
errors, vulnerabilities and security flaws in a system under test (SUT)
or in operation by observing its behaviour (input/output) without
interfering with its normal operations.

Static security testing Static security testing involves analysing application without executing
it. One of the main components is code analysis.

Security test tool integration Tool integration is the ability of tools to cooperate with respect to data
interchange.

For each of the key areas a four level performance scale was defined with levels that are hierarchically organized and
build on each other. The levels can be used to evaluate concrete security testing processes with respect to their
performance in the belonging key area. Each level with a higher number represents an improvement for the underlying
security testing process.

Figure 73: STIP performance level scheme

STIP provides an objective, detailed analysis and evaluation of the DIAMONDS research & development. It shows how
tools, techniques and methodologies fit together and provide recommendations for other on how to pragmatically
integrate the results to improve security-testing processes on hand. Each higher level is better than its prior level in
terms of time (faster), money (cheaper) and/or quality (better). The key areas and the respective maturity levels are
described in the following clauses.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 95

11.1.1 Security risk assessment

Security risk assessment is a process for identifying security risks consisting of the following steps: establishing
context, security risk identification, security risk estimation, security risk evaluation, and security risk treatment.

Table 5: Progress level for security risk assessment

Name Description
L1 Informal security risk assessment Security risk assessment is a process for identifying

security risks consisting of the following steps: establishing
context, security risk identification, security risk estimation,
security risk evaluation, and security risk treatment.

L2 Model-based security risk assessment At this level, the security risk assessment is conducted in
an unstructured manner without a specific
notation/language for document risk assessment results or
a clearly defined process for conducting the security risk
assessment.

L3 Model and test-based security risk assessment At this level, the security risk assessment is conducted with
a language for documenting assessment results and a
clearly defined process for conducting the assessment.

L4 Automated model and test-based security risk
assessment

At this level, the model-based security risk assessment is
uses testing for verifying the correctness of the risk
assessment results.

11.1.2 Security test identification

Test identification is the process of identifying test purposes and appropriate security testing methods, techniques and
tools. This can either be done by means of analysing the requirements of a system or by taking additional sources of
information on the system, the relevance of its features and its environment (e.g. threat models, security risk
assessments).

Table 6: Progress level for security test identification

Name Description
L1 Security test identification based on

requirements analysis
Test identification can be based on the analysis of the
functional security requirements (SFR) and their coverage
through testing. Often these requirements have priority
numbers that additionally provide guidance on the
importance of a requirement and the related test purpose.

L2 Security test identification based on
threat/vulnerability models

Security threat/vulnerability models additionally allow for the
identification of penetration tests that are based on
estimations on potential threats and potential vulnerabilities.
This allows testing for unwanted incidents that are not
covered by the security functional requirements.

L3 Security test identification based on risk models
and test pattern

The combination of risk models and security test pattern
additionally provides best practices for the identification and
selection of testing means dedicated to well-known classes
of threats or vulnerabilities. This approach provides extensive
guidance to identify adequate test purposes and to apply
approved security testing methods, techniques and tools.

L4 Risk-based security test identification +
prioritization

Risk-based security test identification and prioritization
combines the advantages of Level 3 with a prioritization of
the test purposes by considering probabilities of the
unwanted incident and estimations on their consequences
(quantified security risks). The integration of test identification
with security risk assessment allows for a problem and
business specific prioritization of the identified tests purposes
and testing approaches.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 96

11.1.3 Automated generation of test models

For model-based security testing (e.g. fuzzing, mutation based testing), a template or various levels of behavioural
models are required. These templates or models can be either created manually or generated automatically from the
system's input and output.

Table 7: Progress level for automated generation of test models

Name Description
L1 Block-based structural intelligence (stateless) The template (file or network traffic) is automatically

converted into a flat model consisting of data elements
such as Type-Value pairs, like in HTTP header values, or
web form data. Recognition of basic data types such as
strings and integers. No intelligence on data sub-structures,
sequences or dynamic content is used.

L2 State-aware or sequence-aware models
(stateful)

Sequences of messages are converted into sequence
diagrams or state-charts, with message names or purposes
automatically added as meta data into the model.

L3 Structural model (stateful) The template (file or network traffic) is automatically
converted into a structural multi-level meta-model that
understands data values, their substructures, and can
understand the protocol layers in the message sequences
(IPv4, TCP, HTTP, XML). Testing can be targeted to a
specific layer.

L4 Automatically generated full behavioural model
(stateful)

The template (file or network traffic) is automatically
converted into a full behavioural model that understands
functional elements such as length fields, check-sums, and
other complex data elements such as URLs in the
structure. Encodings and decodings are performed
automatically. Sequences are included in the models, and
variables between messages within a sequence or
between sequences can be used.

11.1.4 Security test generation

Security test generation is about the automation of security test design. The initial level consists in a fully manual
design of security tests, and the higher level consists in an optimized security test generation process, including a
complete coverage of targeted security properties and/or vulnerabilities.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 97

Table 8: Progress level for security test generation

Name Description
L1 Fully manual security test design At this level, security test engineers define and execute manually

security tests. This first level of maturity is labour-extensive and
bound to the ingenuity of single security test engineers.

L2 Supported security test design At this level, security test design activity is supported by some
tools, such as intrusive proxies (e.g. OWASP WebScarab?), or
ad-hoc testware, to help them to develop security tests. The
coverage of security properties and vulnerabilities is not fully
controlled and the results are still bound to the ingenuity of
security test engineers.

L3 Dynamic Application Security Testing At this level, tools like web application vulnerability scanners
ensure an automated test generation and execution based on
security test patterns. This ensures a systematic discovery of
known vulnerabilities (depending of the capabilities of the tool-
set). The limit is the blindness of such tools, that does not use
any behavioural knowledge of the application. This leads to false
positive and false negative.

L4 Automated Model-based security testing At this level, modelling of attacks, security test patterns and
behavioural aspects of the System Under Test leads to an
automated test generation of accurate and precise security tests.
This level use a continuous process from security risk
assessment to automated test generation supported by
modelling activities.

11.1.5 Fuzzing

Fuzzing is about injecting invalid or random inputs in order to reveal unexpected behaviour to identify errors and
expose potential vulnerabilities. Ideally, fuzzers generate semi-valid input data, i.e. input data that is invalid only in
small portions. Depending on fuzzer's knowledge about the protocol, fuzzers can generate totally invalid to semi-valid
input data.

Table 9: Progress level for fuzzing

Name Description
L1 Random data fuzzing Random-based fuzzers generate randomly input data. They do

not know nearly anything about the SUT's protocol.
L2 Model-based data fuzzing Model-based fuzzers employ a model of the protocol. The model

is executed on- or offline to generate complex interactions with
the SUT. Thus, it is possible to fuzz data after passing a
particular point (e.g. after authentication).

L3 Model-based evolutionary fuzzing Model-based evolutionary fuzzers learn the mutations of the
protocol by feeding the SUT with data and interpreting its
responses or other information available from the SUT by using
evolutionary algorithms. Model-based evolutionary fuzzing
complements model-based data fuzzing by optimizing the
fuzzing with respect to information gained from the SUT.

L4 Model-based data and behavioural fuzzing Model based data and behavioural fuzzing combines data
fuzzing with behaviour fuzzing. Behaviour fuzzing addresses a
complete other class of vulnerabilities by stimulating the SUT
with invalid sequences of messages. This allows for additional
identify flaws in the security functionality e.g. vulnerabilities in the
authentication logic.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 98

11.1.6 Security test execution automation

During active security testing, the test environment applies malicious input data based on attack scenarios in order to
find existing security flaws. The automation of security test execution conducts the automatic application of malicious
data to the SUT, the automatic assessment of the SUT's state and output to clearly identify a security flaw, and the
automatic control of the test execution with respect to source code coverage, data coverage, or other kind of coverage
that are gained by extensively monitoring the SUT.

Table 10: Progress level for security test execution

Name Description
L1 Manual security testing The initial level intents to stress the system with manual attack

scenarios.
L2 Automated application of test scenarios

(black box)
At this level test cases are implemented as test scripts that
stimulate the SUT with malicious scenarios and data. Scenarios
or data are either implemented or generated beforehand or
generated on the fly.

L3 Automated assessment of the system's
output

The test scripts are applied to control the stimulation of the
system as well as the automated assessment of the SUT's state
and output to clearly identify misbehaviour and unwanted
incidents.

L4 Automated assessment of the system's
internal states (e.g. code/data coverage)

The test scripts are applied to control the stimulation of the
system as well as the automated assessment of the SUT's state
and output to clearly identify misbehaviour and unwanted
incidents. Additionally the test environment controls code or data
related coverage criteria by additional sources of information
(e.g. instrumentation of the SUT).

11.1.7 Security passive testing/ security monitoring

Security monitoring based on passive testing consists of detecting errors, vulnerabilities and security flaws in a system
under test (SUT) or in operation by observing its behaviour (input/output) without interfering with its normal operations
(no external stimulations).

Table 11: Progress level for security passive testing/security monitoring

Name Description
L1 Security Information and Event

Management (SIEM) and Business Activity
Monitoring (BAM)

SIEM and BAM technology provides real-time analysis of
security alerts generated by networks and applications.
SIEM/BAM solutions come as software, appliances or managed
services, and are also used to log security data and generate
reports for compliance purposes. This type of solution is installed
at the system level and, in general, is customized for the
targeted business.

L2 Signature based analysis and anomaly
based analysis.

Intrusion detection techniques can be divided into signature-
based and anomaly-based. In signature-based schemes given
patterns are searched for, limiting the detection to known
attacks. In anomaly-based schemes the goal is to detect
behaviour that is deemed abnormal.

L3 Context aware security monitoring and
model driven analysis

The security analysis is based on the monitoring of events
obtained from different levels (physical environment, hardware,
network, operating system, end-user specific applications, etc.).
The analysis correlates different events to detect complex attack
behaviours.

L4 Intelligent monitoring for security checking To be able to detect 0-days attacks, intelligent monitoring uses
techniques, such as statistics, performance evaluation, and
machine learning to improve intrusion and anomaly detection. An
example of a machine learning technique used is supervised
learning based on regression or classification analysis.
Regression analysis allows modelling the interaction and relation
between different variables using a mathematical equation.
Statistical classification allows identifying to which predefined
group a new observation belongs to.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 99

11.1.8 Static security testing

Static security testing involves analysing application without executing it. The main objective of static security testing is
to find vulnerabilities in the applications that are caused by code level bugs, missing functionality, configuration error
etc. One of the main components is code analysis. The code could be source code (in higher languages like
C/C++/Java™, etc.) or compiled binary code (in x86 assembly code or Java byte code, for example). The main
advantage of static analysis is the whole execution coverage of the application. However, it suffers from false positives.

Table 12: Progress level for static security testing

Name Description
L1 High Level Threat Model A high level design diagram (e.g. Use-case) is analysed to understand

the overall architecture of the application. One of the main objectives
is to produce a data flow diagram and a class/module dependency
diagram (at higher level, e.g. between modules/classes etc.) of the
application. By analysing such high level diagrams, various security
mechanisms can be identified that should be in place e.g. session
management, cryptographic primitives etc.

L2 Input Output Data Validation Most of the time, application makes use of well-known library
functions for getting input and then performs specific operations on
that data by again calling well known library functions. However, if not
used with caution, such functions can make application vulnerable.
Therefore, at all points in the code where these functions are called, it
is necessary to make sure that the input data is validated as per the
"expected data properties" (interface specifications, preconditions
while calling a particular function etc.). This is also termed as "input
sanitization". This analysis can be done manually or by automated
tools.

L3 Intra- and Inter-procedural Analysis At this level, the analysis gets more complex as it addresses the
issues that are at low-level when compared to above levels. Intra-
procedural analysis examines each function of the application to verify
various dataflow and control flow related properties, like data
dependence, buffer overflow, null pointer usage etc. Inter-procedural
analysis extends dataflow and control flow analysis across functions.
This analysis can detect insecure usage of input data by tracing it
across functions (i.e. by computing information-flow). This analysis
can be used to establish "non-interference" which is a well-known
technique for access control. When performed at binary level, this
analysis may also be useful for analysing malware embedded binaries
(with limited scope due to various factors like code obfuscation, self-
modification, virtualization etc.).

L4 Validating Security Vulnerabilities i.e.
exploitability of errors

At this level, the emphasis is on reducing the false positives that are
produced at Level 3. Using techniques like symbolic execution and
static taint analysis, it can be established that certain inputs are
feasible to exploit weakness in the application. When coupled with
concurrent execution, the process can even be more practical to be
applied on real world large applications. The results from this level
can be used to prioritize the patching mechanism.

11.1.9 Security test tool integration

Tool integration is the ability of tools to cooperate. Typically, tools work on their own data structures that are well
suited to the task, which needs to be performed with or by the tool. So the tool can only process data that is relevant for
the tool. Tools can save and load their internal data to a file which may have a proprietary format. In such cases it is
very difficult to make use of the tool specific data in a different context than the respective tools. So the question is how
to transfer the data between the tools

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 100

Table 13: Progress level for security test tool integration

Name Description
L1 Separated tools No integration. All tools work separately. Tools do not always need to

be integrated. If a tool has a good user interface that is consistent with
the host platform, does not share or require data other tools, or has
limited relationships with other resources, there may be no need to
integrate it with other tools. However, if larger processes are
considered this is not feasible for all of the tools.

L2 Bilateral tool coupling (tool coalition) A tool coalition is based on point-to-point connection between tools.
Tool coalitions are often used in small and ad-hoc environments but
have problems when it comes to more tools and larger environments
(no scalability).

L3 Common data model and traceability
tool federation

Tool federations are based on a central integration platforms and
repositories that provides a common set of data to be exchanged and
respective interfaces. Tool federations better fit to larger tool
environments because the existence of a common set of interfaces
eases the integration of new tools. However, the definition of a
common data set and common interfaces is more complex as defining
bilateral tool couplings.

L4 Live cycle support Live cycle support is focusing not only on data exchange but on how
tools may interact in order to support specific activities in a
development or testing process. For this kind of integration a common
data model is complemented with a life cycle model that specifies the
activities and the roles of tools with respect to the activities. Besides
interfaces for data exchange, the tools provide interfaces that
propagate life cycle events, which are used trigger actions in other
tools. Tool integration platforms with live cycle support pose strict
integration requirements on the tools to be integrated.

11.2 Evaluation results: STIP evaluation of the Case Studies
The DIAMONDS project has carried out eight case studies that show the applicability of the DIAMONDS innovations
in relevant industrial domains like Banking, Smart Cards, Industrial Automation, Radio Protocols,
Transport/Automotive, and Critical Infrastructures. The STIP approach has been used to evaluate all of the
DIAMONDS case studies. To explicitly show the progress that has been made during the DIAMONDS project, two
assessments were carried out for each case study. The first assessment explicitly considers the application of the
DIAMONDS techniques & tools and thus provides us an impression of the security testing processes in the case studies
at the end of the DIAMONDS project. The second assessment intentionally disregards the results DIAMONDS and thus
gives us an impression of the maturity of the testing processes before DIAMONDS.

11.2.1 Evaluation of the banknote processing machine case study

Banknote processing machines are used in central, large and medium banks and also in CITs (cash in transport) and
other organizations that handle large amounts of banknotes. These machines are usually configured to work in a
network. During the DIAMONDS project the focus of security tests has been on two major subsystems of a banknote
processing machine, the currency processor and the reconciliation station. The currency processor as well as the
reconciliation station was provided as virtual machines, where external interfaces are replaced by simulation. The main
focus of the research applied to this case study have been the development of techniques and tools for risk-based
security testing as well as model-based fuzz testing and their integration into an integrated platform for traceability and
security test automation. The overall approach can be summarized as follows: A comprehensive model based security
risk assessment that indicates potential threats, vulnerabilities, and incidents as well as related probabilities and
consequences, is used as a basis for the identification and selection of appropriate security test pattern. These pattern
cover security testing best practices in a domain independent a reusable way, for example, the application of fuzz
testing techniques like MBBF. Once identified, the most appropriate security testing approach is applied and assessed
with respect to the risk values from the security risk assessment.

In order to assess the results of the DIAMONDS project on the case study one can look at the Security Test
Improvement Profile (STIP) before the start of the project and now. Figure 74 shows the score before the project started
in red and after the project in blue. The case study advanced in nearly every aspect of model-based security testing.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 101

Figure 74: Security Test Improvement Profile Comparison
of the Banknote Processing Machine Case Study

Therefore the case study gained from nearly all developments of the DIAMONDS project with the exception of
monitoring. The biggest gains were made in the areas where the case study was used as a driver for the research project.
Moreover the case study provided an interesting field to research and application of security testing techniques.

11.2.2 Evaluation of the banking case study

In order to assess the results of the DIAMONDS project on the case study one can look at the Security Test
Improvement Profile (STIP) before the start of the project and now. Figure 75 shows the score before the project started
in red and after the project in blue.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 102

Figure 75: Security Test Improvement Profile Comparison
of the Banking Case Study

11.2.3 Evaluation of the radio protocol case study

In order to assess the results of the DIAMONDS project on the case study one can look at the Security Test
Improvement Profile (STIP) before the start of the project and now. Figure 76 shows the score before the project started
in red and after the project in blue.

Figure 76: Security Test Improvement Profile Comparison
of the Radio Protocol Case Study

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 103

11.2.4 Evaluation of the automotive case study

In order to assess the results of the DIAMONDS project on the case study one can look at the Security Test
Improvement Profile (STIP) before the start of the project and now. Figure 77 shows the score before the project started
in red and after the project in blue.

Figure 77: Security Test Improvement Profile Comparison
on the Automotive Case Study

11.2.5 Evaluation of the eHealth case study

eHealth is an area of rapid innovation. Many different solutions are being discussed that intend to integrate mobile
Patient Monitoring and centralized or distributed electronic Health Records Management systems. Siemens is
developing, testing, and assessing the security of different variants to implement such a system. The one used in this
study incorporates device credentials bootstrapping (via device pairing) and two important privacy principles (two-
factor user authentication and patient consent) in a user-friendly solution.

The main focus of the research applied to this case study has been the development of techniques and tools for model-
based security risk assessment as well as attacker-model low level vulnerability testing. The overall approach can be
summarized as follows: A comprehensive model of the application was constructed (using ASLan++) and model-
checked to verify that no design errors were present in the model. After a couple of revisions a final design was chosen
and implemented. Based on the model, the possible attacker interfaces and general strategies and possible
implementation faults (low-level vulnerabilities) were determined. Once identified, the most appropriate security testing
approach was applied (using the VERA tool), that revealed in fact the presence of implementation faults creating low-
level vulnerabilities. Standard, advanced fuzzing tools were also used, not in the scope of the project. Static monitoring
and static testing were not used.

In order to assess the results of the case study one can look at the Security Test Improvement Profile (STIP) before the
start of the project and now. Figure 78 shows the score before the project started in red and after the project in blue. The
case study advanced in nearly every aspect of model-based security testing.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 104

Figure 78: Security Test Improvement Profile Comparison on the eHealth Case Study

11.2.6 Evaluation of the document management case study

The Infobase Document Repository (IDR) is a document management system that supports the collaboration of
different users, with different security levels and from different administrative domains. The management and sharing
of documents or other types of files is done via a web browser. It is provided to offer a platform for joint projects
involving external partners. The repository mechanism supports web-based administration of text and binary files of
any kind, e.g. text documents, spreadsheet tables, and even executables, in a hierarchical storage structure. The system
includes a fine-granular access control for the different users, groups, and company, where each object in the repository
can be bound to different access rights.

The overall approach and the main focus of the research applied to this case study have been threefold: 1) the
development of techniques and tools for a model-based security risk assessment based on annotated, technical Data-
Flow diagrams, 2) a mutation-based testing approach, where ASLan++ models were mutated to feed into a test-
generator and test-driver, and, finally, 3) an attacker-model low level vulnerability-based testing procedure.

The can be summarized as follows: A data-flow model was constructed and analyzed for technical indicators of possible
attack points. Then a comprehensive model of the (already existing) application was constructed (using ASLan++) and
model-checked to verify that no design errors were present. Based on the two models (DFD and ASLan++) the possible
attacker interfaces and general strategies and possible implementation faults (low-level vulnerabilities) were
determined. Once identified, the most appropriate security testing approach was applied (using the VERA tool), that
revealed in fact the presence of implementation faults creating low-level vulnerabilities. Standard, advanced fuzzing
tools were also used, not in the scope of the project. Static monitoring and static testing were not used.

In order to assess the results of the SPaCIoS project on the case study one can look at the Security Test Improvement
Profile (STIP) before the start of the project and now. Figure 79 shows the score before the project started in red and
after the project in blue. The case study advanced in nearly every aspect of model-based security testing.

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 105

Figure 79: Security Test Improvement Profile Comparison
on the Document Server Case Study

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 106

Annex A:
Bibliography
ITEA2 DIAMONDS Deliverable D5.WP1: "Final Case Study Results", 2013.

SPaCIoS. Deliverable 2.2.1: "Method for assessing and retrieving models", 2013.

SPaCIoS. Deliverable 2.2.2: "Combined black-box and white-box model inference", 2013.

SPaCIoS. Deliverable 2.3.1: "Definition and Description of Security Goals", 2012.

SPaCIoS. Deliverable 2.4.1: "Definition of Attacker Behavior Models", 2012.

SPaCIoS. Deliverable 3.2: "SPaCIoS Methodology and technology for property-driven security testing", 2013.

SPaCIoS. Deliverable 4.2: "SPaCIoS Tool v.1 and Validation methodology patterns (final version)", 2012.

SOGETI: Website of SOGETI, 2009.

NOTE: Available at http://www.sogeti.nl/.

TMMi Foundation, Website of the TMMi Foundation.

NOTE: Available at http://www.tmmi.org/.

http://www.sogeti.nl/
http://www.tmmi.org/

ETSI

ETSI TR 101 582 V1.1.1 (2014-06) 107

History

Document history

V1.1.1 June 2014 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview on case studies
	5 Banknote processing case study results
	5.1 Case study characterization
	5.1.1 Background
	5.1.2 System under test
	5.1.3 Security risk assessment

	5.2 Security testing approaches
	5.2.1 Detection of vulnerability to injection attacks
	5.2.1.1 Data Fuzzing with TTCN-3
	5.2.1.2 TTCN-3
	5.2.1.3 Data Fuzzing Library

	5.2.2 Usage of unusual behaviour sequences
	5.2.2.1 Behavioural fuzzing of UML sequence diagrams
	5.2.2.2 Online model-based behavioural fuzzing

	5.3 Results
	5.3.1 Requirements coverage
	5.3.2 Test results

	5.4 Summary and conclusion

	6 Banking case study results
	6.1 Case study characterization
	6.2 Security testing approaches
	6.3 Results
	6.4 Summary and conclusion

	7 Radio case study results
	7.1 Case study characterization
	7.1.1 Context of Mobile ad-hoc networks
	7.1.2 Status of the test of security testing at the beginning of the project
	7.1.3 Security testing capabilities targeted
	7.1.3.1 Frames analysis
	7.1.3.2 Data alteration
	7.1.3.3 Frames replay
	7.1.3.4 Denial of service
	7.1.3.5 Tampering, malicious code injection
	7.1.3.6 Combination of threats

	7.1.4 Description of the use-case
	7.1.4.1 Specific application used as Use Case
	7.1.4.2 Specific context of the application of security testing tools
	7.1.4.3 Specific context of the initial validation framework

	7.2 Security testing approaches
	7.2.1 General principles of the security testing tools integration
	7.2.1.1 Verification framework adaptation
	7.2.1.2 Adaptation of the event driven simulation environment

	7.2.2 Properties validated
	7.2.3 Active testing

	7.3 Results
	7.4 Summary and conclusion

	8 Automotive case study results
	8.1 Case study characterization
	8.2 Security testing approaches
	8.2.1 Security risk assessment
	8.2.2 Fuzzing
	8.2.3 IOSTS-based passive testing approach
	8.2.3.1 Experimentation results
	8.2.3.2 Future works

	8.2.4 Security monitoring
	8.2.5 Framework

	8.3 Results
	8.4 Summary and conclusion

	9 eHealth case study results
	9.1 Case study characterization
	9.1.1 Patient consent
	9.1.2 Device pairing
	9.1.3 New application features

	9.2 Security testing approaches
	9.2.1 Formalization
	9.2.1.1 Entity overview
	9.2.1.2 Environment and sessions
	9.2.1.3 Messages
	9.2.1.4 Goals

	9.2.2 Analysis results using a model checker
	9.2.3 Technical details
	9.2.3.1 eHealth web front-end
	9.2.3.2 Device management platform
	9.2.3.3 Two-factor authentication service

	9.2.4 Improvements of the security model
	9.2.5 Considered security properties and vulnerabilities
	9.2.5.1 Security properties
	9.2.5.2 Vulnerabilities

	9.3 Results by applying the VERA tool
	9.3.1 Password brute force
	9.3.2 File enumeration
	9.3.3 CSRF token checking
	9.3.4 SQL injection
	9.3.5 XSS injection
	9.3.6 Path traversal attack
	9.3.7 Access control

	9.4 Summary and conclusion

	10 Document management system case study results
	10.1 Case study characterization
	10.2 Security testing approaches
	10.2.1 Security risk assessment of the Infobase application scenario
	10.2.1.1 Background
	10.2.1.2 Scope and goal of the case study
	10.2.1.3 Method walk-through
	10.2.1.3.1 Describe general usage scenarios
	10.2.1.3.2 List assets
	10.2.1.3.3 De?ne security requirements
	10.2.1.3.4 Identify relevant threats
	10.2.1.3.5 De?ne or derive a Business Worst Case Scenario (BWCS)
	10.2.1.3.6 Generate Security Overview
	10.2.1.3.7 Map BWCS to Technical Threat Scenario (TTS)
	10.2.1.3.8 Map TTSs to test types

	10.2.1.4 Lessons learned

	10.2.2 Improvements of the security model Œ detecting Cross-Site Request Forgery at ASLan++ level
	10.2.2.1 Description of CSRF in Infobase
	10.2.2.2 Modeling CSRF in ASLan++
	10.2.2.2.1 Client
	10.2.2.2.2 Server
	10.2.2.2.3 Goal

	10.2.2.3 Result of the analysis of the Infobase model

	10.2.3 Mutation-based test generation
	10.2.4 Test automation
	10.2.4.1 The ScenTest tool for scenario-based testing
	10.2.4.2 General approach to test automation of AATs
	10.2.4.3 Derived test case, test execution and test results
	10.2.4.3.1 Test scenario 1:
	10.2.4.3.2 Test scenario 2:
	10.2.4.3.3 Test Scenario 3:

	10.3 Results by applying the VERA Tool
	10.3.1 Considered vulnerabilities
	10.3.2 Cross-Site Scripting (XSS)
	10.3.3 SQL injection
	10.3.4 Password brute-forcing
	10.3.5 Cross-Site Request Forgery (CSRF)
	10.3.6 File enumeration

	10.4 Summary and conclusions

	11 Evaluation and assessment of case study results
	11.1 Approach: Security Testing Improvements Profiling (STIP)
	11.1.1 Security risk assessment
	11.1.2 Security test identification
	11.1.3 Automated generation of test models
	11.1.4 Security test generation
	11.1.5 Fuzzing
	11.1.6 Security test execution automation
	11.1.7 Security passive testing/ security monitoring
	11.1.8 Static security testing
	11.1.9 Security test tool integration

	11.2 Evaluation results: STIP evaluation of the Case Studies
	11.2.1 Evaluation of the banknote processing machine case study
	11.2.2 Evaluation of the banking case study
	11.2.3 Evaluation of the radio protocol case study
	11.2.4 Evaluation of the automotive case study
	11.2.5 Evaluation of the eHealth case study
	11.2.6 Evaluation of the document management case study

	Annex A: Bibliography
	History

