

ETSI TR 101 497 V1.1.1 (2002-07)

Technical Report

Digital Audio Broadcasting (DAB);
Rules of Operation for the

Multimedia Object Transfer Protocol

European Broadcasting Union Union Européenne de Radio-Télévision

EBU·UER

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 2

Reference
DTR/JTC-DAB-9

Keywords
DAB, digital, audio, broadcasting, multimedia,

protocol

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.

© European Broadcasting Union 2002.
All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.

TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.fr

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 3

Contents

Intellectual Property Rights ..5

Foreword...5

1 Scope ..6

2 References ..6

3 Definitions and abbreviations...6
3.1 Definitions..6
3.2 Abbreviations ...6

4 General ...6
4.1 Introduction ..6

5 Structural description ...7
5.1 Segmentation of objects ...8
5.1.1 Segmentation of the MOT body ...8
5.1.2 Segmentation of the MOT directory ...8
5.1.3 Segmentation of the MOT header...8
5.2 Mapping of MOT segments into MSC data groups..9
5.3 Packetizing segments - Network level..9
5.3.1 Packet Mode ...9
5.3.2 X-PAD ..9

6 Fields of the MOT Header..11
6.1 Header core ..11
6.2 Header extension ..11
6.2.1 Naming files and directory structures ...12

7 Model of a MOT data decoder and its interfaces ...12
7.1 Network level ...13
7.2 Data group level ...14
7.3 Segmentation and object level..14
7.3.1 General description of the MOT data decoder..14
7.3.2 The reassembly unit ..14
7.3.2.1 MOT directory mode...14
7.3.2.2 MOT header mode ..15
7.3.2.3 Segmentation of MOT bodies ...15
7.3.3 The object management unit ...15
7.3.3.1 MOT directory mode...15
7.3.3.2 MOT header mode ..17
7.3.4 Advanced caching...20
7.4 User application level ...20

8 Transmission Mechanisms ...20
8.1 General ...20
8.2 Data transmission ...21
8.2.1 Single object transmission ..21
8.2.2 Multiple object Transmissions..21
8.3 Update, addition and deletion of objects ..22
8.3.1 Directory mode ...22
8.3.2 Header mode...23

Annex A: Coding ..24

A.1 The MSC data group ..24
A.1.1 Coding of the MSC data group...24
A.1.2 Examples of coding ..25
A.1.2.1 Example 1: MOT object, no segmentation ...25
A.1.2.2 Example 2: MOT object, segmentation ..27

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 4

A.1.2.3 Example 3: MOT directory, no segmentation...30

History ..32

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server)
which are, or may be, or may become, essential to the present document.

Foreword
This Technical Report (TR) has been produced by the Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

NOTE 1: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which is responsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active members in about 60
countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

The Eureka Project 147 was established in 1987, with funding from the European Commission, to develop a system for
the broadcasting of audio and data to fixed, portable or mobile receivers. Their work resulted in the publication of
European Standard, EN 300 401 [1], for DAB (see note 2) which now has worldwide acceptance. The members of the
Eureka Project 147 are drawn from broadcasting organizations and telecommunication providers together with
companies from the professional and consumer electronics industry.

NOTE 2: DAB is a registered trademark owned by one of the Eureka Project 147 partners.

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 6

1 Scope
The present document provides useful information concerning the use of the MOT protocol.

2 References
For the purposes of this Technical Report (TR) the following references apply:

[1] ETSI EN 300 401: "Radio broadcasting systems; Digital Audio Broadcasting (DAB) to mobile,
portable and fixed receivers".

[2] ETSI EN 301 234: "Digital Audio Broadcasting (DAB); Multimedia Object Transfer (MOT)
protocol".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in [1] and [2] apply.

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

DAB Digital Audio Broadcasting
HTML Hyper Text Markup Language
MOT Multimedia Object Transfer
MSC Main Service Channel
PAD Programme Associated Data
X-PAD Extended Programme Associated Data

4 General
MOT is a transport protocol for the transmission of Multimedia content in DAB data channels to various receiver types
with Multimedia capabilities.

4.1 Introduction
Various possibilities for transmitting information are incorporated into a common transport mechanism for different
DAB data channels, so that the access to Multimedia content is unified within the DAB system.

MOT ensures interoperability between:

• different data services and application types;

• different receiver device types and targets;

• equipment from different manufacturers.

Each data service has an associated application specification, and that specification includes the transport mechanisms
for the data content. If the application uses files of information then these are best transported using the MOT protocol
layered onto the DAB transport mechanisms for packet mode and PAD.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 7

The MOT protocol allows objects of a finite length from an information source, i.e. the Content/Service provider to be
conveyed to a destination, i.e. the terminal, as shown in figure 1, where in terms of MOT:

the Content/Service provider is capable of processing various types of Multimedia content (e.g. picture and text files)
in an appropriate way, so that this data is compliant with the MOT specification and can
be fed into a DAB Ensemble multiplexer;

the Terminal is fed from a MOT data decoder capable of processing the multimedia content of a DAB

Ensemble in an appropriate way, so that it is:
 - decoded and presented to the user; or
 - forwarded to a following entity, which then processes the content.

The definition of interfaces between the different entities is not within the scope of the MOT specification.

Figure 1: Overview of MOT entities

5 Structural description
This clause describes the different operations needed in order to transmit a file or a set of files in MOT format on DAB.
MOT provides two modes of operation - directory mode and header mode. The directory mode should be used where a
set of files need to be managed (file addition, deletion and modification), whereas header mode can be used for
applications that have less stringent requirements. The data application specification describes which mode shall be
used.

The directory mode provides a management mechanism for broadcasting MOT objects in a data carousel. A data
carousel is a delivery system that allows an application server to present a set of distinct objects to an application
decoder by cyclically repeating the contents of the carousel.

Within a data carousel, a directory is used to provide a complete description of the contents of the carousel, together
with sufficient information to find the data for each described object. Version control mechanisms applied both to the
objects within the carousel and the directory itself provides the ability to correctly manage updates to the carousel with
minimum effort and at all times ensure that the correct version of an object is used by the application.

If an application requests a particular object, the receiver can easily determine by looking in the directory whether or
not the requested objects exists within the carousel and where to find the object data. If the object the application
requests is not stored in the receiver it may simply wait for the next time that the object is broadcast. If desired, the
receiver may optionally implement caching strategies to reduce the latency of accesses by the application decoder and
improve the performance of the carousel.

The first step in the transmission process is to identify the file and to create the MOT header. The MOT header contains
both pure file identification and additional information. The file is referred to as the MOT body. At this stage the MOT
header and MOT body correspond to a MOT object, which is ready for segmentation.

The header of a MOT object can be transported on its own (in an MSC data group of type 3) or as a part of a MOT
directory (in an MSC data group of type 6).

NOTE: All the steps of the MOT encoding described in this clause are summarized in figures 2 to 5.

Content/
Service
provider

MOT
encoder

MOT
encoder

Packet mode
encoder

PAD
encoder DAB

ensemble
multiplexer

DAB ensemble
demultiplexer

MOT data
decoder

Terminal

Packet
multiplexer

Audio
encoder

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 8

5.1 Segmentation of objects
The lowest common structure for the two different transport mechanisms for which MOT is defined (Packet Mode and
X-PAD) is MSC data groups. This data group structure is also mapped to PAD transport for compatibility reasons. It is
therefore the goal of the segmentation to map the MOT object into MSC data groups.

The MOT header and body are transported in different types of MSC data group and therefore the segmentation will
apply independently on header and body. The MOT header will be split up in header segments with equal size and a last
header segment with the size of the remaining bytes of the MOT header. The MOT body will be split up in body
segments with equal size and a last body segment with the size of the remaining bytes of the MOT body. The size of
header segments and the size of body segments are independent as well as the size of the last header segment and the
size of the last body segment.

To elaborate a proper segmentation strategy the following considerations should be taken into account:

• minimize the overhead;

• improve the robustness of the transmission;

• facilitate the segment management on MOT data decoder side.

The link between an MOT header (data group type 3) and its MOT body (data groups type 4 or 5) is established by the
TransportId. The TransportId of the MOT header and its MOT body is the same. If scrambled MOT objects are used,
the CA messages related to this object also have the same TransportId.

5.1.1 Segmentation of the MOT body

The segments of the MOT body shall be transported in MSC data group type 4 if they are not scrambled, and in MSC
data group type 5 if they are scrambled.

Segmentation is applied considering the size of the MOT body and the segmentation strategy.

5.1.2 Segmentation of the MOT directory

The segments of the MOT directory shall be transported in MSC Data group type 6. The reason for carrying the MOT
directory segments in its own MSC data group type is:

• to enable the MOT data decoder to focus on recovering the MOT directory. The MOT data decoder can, based
on the knowledge gained from the MOT directory and its own resources, decide to decode or ignore the body
segments of MOT objects.

Segmentation is applied considering the size of the MOT directory and the segmentation strategy.

The MOT directory is never scrambled.

The link between a directory entry inside an MOT directory (data group type 6) is established by the TransportId. The
TransportId of a directory entry and its MOT body is the same. If scrambled MOT objects are used, the CA messages
related to this object also have the same TransportId.

5.1.3 Segmentation of the MOT header

The segments of the MOT header shall be transported in MSC Data group type 3. The reasons for carrying the MOT
header segments in its own MSC Data group type are:

• to enable the MOT data decoder to focus on recovering the MOT header. The MOT data decoder can, based on
the knowledge gained from the MOT header and its own resources, decide to decode or ignore the body
segments of the MOT object related to this MOT header;

• to enable MOT header insertion which is used to reduce the time to collect all segments of the related MOT body
in case of for instance switching on the MOT data decoder.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 9

In order to enable easier access to the header information and to reduce the memory demand in the reassembly unit of
the MOT data decoder, it is recommended to send the MOT header in one MSC data group (which is equivalent to no
segmentation).

The MOT header is never scrambled.

5.2 Mapping of MOT segments into MSC data groups
After the segments have been defined they are associated with a segmentation header and mapped directly into the MSC
data group data field. The signalling for recovering all the segments of the MOT object is done in the MSC data group
session header (Last flag, Segment number and TransportId), see [1].

5.3 Packetizing segments - Network level
This clause describes the process for applying the MSC data groups onto the different transport channels. Only the
MOT specific description is provided.

5.3.1 Packet Mode

The MSC data groups are packetized as described in [1]. The Command flag on network level in Packet Mode is used
to distinguish between command packets (carrying for instance CA commands) and data packets. This Command flag is
set to 1 for packets transporting the MSC data groups type 1, and set to 0 for packets transporting the MSC data groups
type 3, 4, 5 and 6.

5.3.2 X-PAD

The MSC data group is mapped 1 to 1 into an X-PAD data group. Considering this, the X-PAD data group will be split
into X-PAD data subfields for transportation as described in [1]. Since the size of the X-PAD data group can not be
implicitly determined on network level in PAD as the size of the MSC data group in Packet Mode, the X-PAD data
group Length indicator (X-PAD Application type 1) has to be used. This X-PAD data group Length indicator signals
the total size of the following X-PAD data group. It has to be transmitted immediately before the first X-PAD data
subfield of the data group it applies to.

MSC data groups containing MOT data (MSC data groups type 3, 4, 5 and 6) are transported in X-PAD Application
type 12 and 13 where 12 indicates start of X-PAD data group and 13 continuation of X-PAD data group.

MSC data groups containing CA messages (MSC data group type 1) are transported in X-PAD Application type 14 and
15 where 14 indicates start of CA message and 15 continuation of CA message. The differentiation between X-PAD
Application types 12/13 and 14/15 is similar to the mechanism of the command flag in Packet Mode.

For further details on the transmission strategies concerning X-PAD refer to [1].

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 10

File

 Body segment 1Header extensionHeader core Body segment 2 Body segment n…

Segment
Segmentation

headerSegment
Segmentation

header

MSC data
group header

MSC Data Group Type 4 or 5

Session
header

MSC data group
data field

MSC data
group CRC

MSC Data Group Type 3

MSC data
group header

Session
header

MSC data group
data field

MSC data
group CRC

Figure 2: MOT segmentation process for an MOT object

 MOT directory

Segment
Segmentation

header

MSC data
group header

Session
header

MSC data group
data field

MSC data
group CRC

MSC Data Group Type 6

Figure 3: MOT segmentation process for an MOT directory

X-PAD Packet Mode

X-PAD data group

App. Type 1 App. type 12 App. type 13

…

App. type 13

MSC data
group header

MSC Data Group Type 3, 4, 5 or 6

Session
header

MSC data group
data field

MSC data
group CRC

MSC Data Group Type 3, 4, 5 or 6

MSC data
group header

Session
header

X-PAD data group
length indicator

MSC data
group CRC

MSC data group
data field

Packet
header

Packet
data field

Packet
CRC

Packet
header

Packet
data field

Packet
CRC

First packet Last packet

X-PAD data
subfield(s)

X-PAD data
subfield

X-PAD data
subfield

X-PAD data
subfield …

The command flag in the packet header of all packets is set to 0

Figure 4: Splitting up MSC data groups type 3, 4, 5 and 6 into X-PAD data subfields and packets

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 11

X-PAD Packet Mode

X-PAD data group

App. Type 1 App. type 14 App. type 15

…

App. type 15

MSC data
group header

MSC Data Group Type 1

Session
header

MSC data group
data field

MSC data
group CRC

MSC Data Group Type 1

MSC data
group header

Session
header

X-PAD data group
length indicator

MSC data
group CRC

MSC data group
data field

Packet
header

Packet
data field

Packet
CRC

Packet
header

Packet
data field

Packet
CRC

First packet Last packet

X-PAD data
subfield(s)

X-PAD data
subfield

X-PAD data
subfield

X-PAD data
subfield …

The command flag in the packet header of all packets is set to 1

Figure 5: Splitting up MSC data groups type 1 into X-PAD data subfields and packets

6 Fields of the MOT Header
The MOT Header consists of two parts: The header core and the header extension. The header core is a set of four sub
fields that shall be specified, while the header extension is a variable length field that may contain an arbitrary number
of "parameters" to be associated with each file.

6.1 Header core
The header core fields are BodySize, HeaderSize, ContentType and ContentSubType. The first two sub fields simply
indicate the length, in bytes, of the body and header respectively. The ContentType and ContentSubType pair of sub
fields may be used to indicate that the associated file is of a particular file type, where that type identifier is taken from
an enumerated list.

In many applications, this list may be sufficient to define all the possible types of file that may be used by the
application. However, since the enumerated list is necessarily constrained to the set of types that have been registered,
an application may choose to use an alternative mechanism to determine file type, if needed, such as using an
application specific parameter (see below). Where an application does not need to use one of the enumerated types
listed in the specification [1], these fields may be set to 0 to indicate general data/object transfer.

6.2 Header extension
Each parameter in the header extension begins with a length indicator followed by a parameter identifier. The parameter
identifier then determines how the following data fields are to be interpreted. The parameter identifier field (ParamId) is
divided into two ranges: 0 to 31 and 32 to 63.

The first set of ParamId values is used for parameters that may be of general applicability to a wide range of
applications. Of particular note is the ContentName parameter which can be used to name each file within a carousel.

The use of the second set of ParamId values is entirely determined by the application specification. An example of an
application specific parameter, taken from the Broadcast Web Site application specification, is the MimeType
parameter which declares the type of each file in the form of a mime type identifier (e.g. "text/html", "image/jpeg",
etc.).

It is important to note that the precise use of parameters to control access to a carousel is defined by the application
specification itself, not the MOT specification.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 12

6.2.1 Naming files and directory structures

As previously discussed, the ContentName parameter is typically used to provide a name for each file within a carousel.
However, the MOT protocol implements a simple Data Carousel that does not support more complex carousel concepts
such as directories. Accordingly, if an application needs to be aware of the notion of a directory structure, then the
directory hierarchy shall be specified through the use of fully qualified paths for the value of the ContentName
parameter.

For example, if we wish to represent two directories ("dir1" and "dir2"), each containing one file ("file1" and "file2")
using an MOT carousel, then the carousel will contain two files with the ContentName parameter set to "dir1/file1" and
"dir2/file2" respectively.

7 Model of a MOT data decoder and its interfaces
The model describes the functionality of the MOT data decoder on different levels including the interfaces to the DAB
receiver and the terminal (see also figure 1). Real implementations may be quite different, optimized according
application specific needs and receiver design constraints etc.

The relations between all the levels described in this clause are summarized in figure 6.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 13

Headers, bodies, directories

MSC data groups

Data Group Decoder

Segments

User application
decoder Terminal

MOT
data
decoder

MOT header

TId x

TId y

TId z

Reassembly Unit

Segmentation Level

Data group Level

Packet Mode

decoder

PAD

decoder

MOT
Bodies

Packets X-PAD data subfields

Network Level

User application
Level

Object Level

Object management

headers directory

MOT body

TId c

TId b

TId a

MOT directory

TId m

Figure 6: General description of a MOT data decoder and its interfaces

7.1 Network level
At the network level packets and/or X-PAD data subfields are processed as described in [1] and complete Data Groups
are passed to the data group level.

In packet mode, the packet address has to be used to identify a particular service component within a subchannel. The
packets are collected by taking into account the Continuity index. The length of the data group is derived by the
First/Last flag and the Useful data length in the packet headers. The validity of each packet is verified by the evaluation
of the packet CRC.

In X-PAD mode, the MSC data group length is derived from the data group Length indicator (Application type 1)
immediately preceding the start of the MOT data group.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 14

7.2 Data group level
The validity of each single MSC data group is verified by the evaluation of the MSC data group CRC. A MOT data
decoder needs to decode only data group types 1, 3, 4, 5 and 6. Data groups with other Data group types are discarded.
The MSC data group data field contains a complete segment (including the segmentation header with RepetitionCount
and SegmentSize). The corresponding segment number and the TransportId are provided by the session header of the
data group. A CRC checked segment, together with its corresponding TransportId and segment number will be passed
to a re-assembly unit working at the segmentation level.

7.3 Segmentation and object level
The reassembly unit reassembles segments with the same TransportId. The reassembly unit processes data groups with
Data group type 3 (MOT header), type 4 (MOT body), type 5 (MOT body and CA parameters), type 6 (MOT directory)
and type 1 (CA messages).

7.3.1 General description of the MOT data decoder

The MOT data decoder consists of two parts:

• The reassembly unit reassembles headers, bodies and the MOT directory.

• The object management controls the reassembly unit, stores the received objects and handles requests by the user
application.

In this general description two operation modes of a MOT data decoder are described:

• The MOT header mode: in this mode MOT headers and bodies are processed.

• The MOT directory mode: in this mode the MOT directory and bodies are processed.

Both reassembly unit and object management unit are in the same mode.

If a stream contains both headers and directory, the MOT data decoder may work in one or the other mode.

7.3.2 The reassembly unit

The functionality of the reassembly unit depends on its operation mode:

• MOT header mode: in this mode MOT headers and bodies are reassembled (Data group types 3 and 4; for CA
also Data group types 1 and 5).

• MOT directory mode: in this mode the MOT directory and bodies are reassembled (Data group types 6 and 4; for
CA also Data group types 1 and 5).

The reassembly unit continuously evaluates the incoming data groups. It shall be prepared that several objects are
transmitted applying interleaving, so that they are to be decoded quasi in parallel. It is not required by the reassembly
unit to evaluate the data group Repetition index or the RepetitionCount of the segmentation header.

7.3.2.1 MOT directory mode

The MOT directory is reassembled and forwarded to the object management. If the MOT directory is forwarded, its
TransportId is stored inside the reassembly unit. From now on all MOT directory data groups transported with this
TransportId are discarded. If a MOT directory data group is received with a different TransportId this means that the
MOT directory is updated and therefore the new MOT directory is reassembled and forwarded and its TransportId
stored.

The object management orders the reassembly unit to reassemble MOT bodies. It is up to the object management to
assure that there is enough memory to store these bodies and still reassemble and forward a new MOT directory.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 15

7.3.2.2 MOT header mode

When a MOT header is forwarded (to the object management), its TransportId is kept in a list inside the reassembly
unit. From now on all MOT header data groups with one of the TransportIds in this list can be ignored, because they are
already known by the Object management. So the list contains the TransportIds of all headers to be discarded. If the
object management removes a MOT header from its memory, it informs the reassembly unit about the TransportId of
the removed header. The reassembly unit will then remove this TransportId from its list and thus accept a MOT header
with this TransportId again.

The object management orders the reassembly unit to reassemble MOT bodies. It is up to the object management to
assure that there is enough memory to store these bodies and still reassemble and forward new MOT headers.

7.3.2.3 Segmentation of MOT bodies

Reassembly of MOT bodies is independent from the mode the reassembly unit is in. If the object management requests
a body, the reassembly unit gets a request indicating which bodies are to be reassembled. This request will include the
TransportId and size of the bodies and maybe also the SegmentSize (if given in the MOT directory). The reassembly
unit can thus allocate memory for the requested bodies.

The TransportId is not only used to reassemble all segments of a header or a body of a MOT object, but also to establish
the link between header and body and to link them to the related CA messages, if applicable. If the reassembly unit is
ordered to reassemble a body it shall collect data groups of type 4 (unscrambled body) or data groups of type 5 and 1
(scrambled body/CA messages).

7.3.3 The object management unit

The object management stores objects and permits the user application to request objects, e.g. by their ContentName or
the object with a MOT label. The object management tries to reduce the object access time and thus includes some
caching strategy.

Although the terminal will allocate the greatest part of its memory to the storage of the objects, it shall be prepared for
situations, where the size and number of objects exceeds the memory resources. In such cases, the object management
can make use of additional information on the relevance and availability of the object, i.e. by the parameters
RetransmissionDistance and Priority in the header/directory of the object for optimal use of memory.

The object management unit evaluates the MOT parameters and makes these parameters available to the user
application. If an object expires due to an ExpireTime parameter, this object is removed from memory and it is signalled
to the user application that the object is no longer valid and should be removed from the presentation. No object is
forwarded to the application layer before its StartValidity.

According to the model described in this clause, it is the object management which orders the reassembly unit to decode
the multiple bodies. If memory capacity of the object management allows, the object management will order to decode
all body segments as they are incoming, either sequentially one after the other or interleaved, quasi in parallel. (Since it
already knows the size of the bodies from the header/directory, it can assure that there is enough memory for the
reassembly unit to hold all bodies reassembled in parallel and the headers/directory).

The functionality of the object management depends on its operation mode.

7.3.3.1 MOT directory mode

If a MOT directory is transmitted, the object management will be informed by the reassembly unit after the MOT
directory is completely reassembled. The object management can then order the reassembly unit either to reassemble all
incoming bodies or- in case of memory shortage - to select the specific objects that are to be reassembled, e.g. by
starting to request first the object with an MOT label or objects with a high Priority parameter until all objects have
been received. If there is not enough memory to hold all objects within the carousel, the object management uses a
caching strategy that determines which objects should be stored. A very simple caching strategy would require the
reassembly unit to reassemble only the body of the object that is currently requested by the user application and to
cache these bodies. A more advanced strategy will try to load bodies before they are requested by the user application
and thus reduce access time.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 16

To improve the startup time when a new service is selected by the user, the object management orders the reassembly
unit to forward all completely reassembled bodies regardless of their TransportId even before the MOT directory is
received. Note however that this request will not include the size of the bodies. Therefore the reassembly unit cannot
allocate memory for all bodies. The object management should store these bodies so that they can be accessed by the
user application immediately after the directory has been received.

If a new directory is forwarded by the reassembly unit, the object management compares the old directory and the new
one and removes all objects from the cache that are no longer signalled within the directory. If an object is transmitted
with a different TransportId but still has the same VersionNumber parameter, this means, that there might have been a
change in the header of the object or in the segmentation of the object, but the body of the object is still the same.
Therefore the object management can keep the body of an object if its VersionNumber and the VersionNumber
signalled within the directory are the same.

EXAMPLE: TId is used as an abbreviation for TransportId. If an object appears more than once in the example,
it is assumed that it has the same content, i.e. the same header and body.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 17

MOT directory Actions to do
after reception

of the MOT directory

Objects in the cache

TId 100

TId 2 “b”

TId 3 “c”

TId 4 “d”

TId 1 “a”

� store objects with TId
1, 2 ,3 ,4

TId 1

TId 2

TId 3

TId 4

TId 101

TId 3 “c”

TId 4 “d”

TId 5 “e”

TId 2 “b”

� delete object with TId 1
� keep objects with TId

2, 3, 4
� store object with TId 5

TId 2

TId 3

TId 4

TId 5

TId 102

TId 3 “c”

TId 4 “d”

TId 5 “e”

TId 6 “b”

� delete object with TId 2
� keep objects with TId

3, 4, 5
� store object with TId 6

TId 3

TId 4

TId 5

TId 6

TId 103

TId 7 “c”

TId 8 “d”

TId 5 “e”

TId 6 “b”

� delete objects with TId
3, 4

� keep objects with TId
6, 5

� store objects with TId
7, 8

7.3.3.2 MOT header mode

The object management can uniquely identify and access an object - at least within one MOT stream - by its
ContentName.

In MOT header mode the reassembly unit continuously checks for headers and forwards these to the object
management.

All received MOT headers forwarded from the reassembly unit are collected to form a list of currently transmitted
objects; this list will be called LH (list of headers) from now on.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 18

If a header is forwarded from the reassembly unit, the object management checks if a header for the same object is
already in the LH; this is done by comparing the ContentNames. If a header with the same ContentName is found, the
object management compares the VersionNumbers of the two headers. If the VersionNumbers are different, the body of
this object (if present) shall be removed from memory. Note that the reassembly unit will not forward headers with the
TransportId of an already stored header.

If a header of an object is received again but with a different TransportId, the new header replaces the old one. The
TransportId of the old (removed) header is signalled to the reassembly unit so that the reassembly unit is prepared that
from then on the same TransportId may be used by the provider for a new object later on. From then on the reassembly
unit accepts a header with this TransportId. If the body of a header is not already stored and especially if the body is
already requested by the user application, the object management will request the reassembly of the body. A request to
the reassembly unit includes the TransportId and the size of all bodies that should be reassembled.

The content of the LH can be queried by the user application. The user application can e.g. request the object with the
MOT label.

The terminal can never be sure that its LH contains the headers of all objects that are currently broadcast. Therefore if
an object with a certain ContentName is requested and its header is in the LH, the object management knows that this
object was once broadcast, but not if it is still broadcast. If the body is stored inside the MOT data decoder, it can be
forwarded to the user application. If it is not stored, the object management shall order the reassembly of this body. But
since the MOT standard does not require that the TransportId of an object is kept the same as long as the object is not
changed, the object management shall not assume that the TransportId is the same as in the header already stored in the
LH. The object management can order the reassembly unit to reassemble the body with the given TransportId, but if the
header with the requested ContentName is received again but with a different TransportId, the object management unit
shall forward the new TransportId of the body to the reassembly unit.

If no header from a requested object is stored in the LH, the object management shall wait until the header with the
requested ContentName is received and immediately after receiving the header it shall order reassembly of the body.

Since the MOT data decoder cannot assume that the requested object will ever be received, a timeout has to be used and
after its expiration an error can be signalled to the user application.

If an object including its associated attributes, i.e. its parameters, has been successfully and completely assembled in the
reassembly unit, the object is passed over to the object management in the Terminal. The object management will then
evaluate the ContentName and the VersionNumber and, depending on the caching strategy and the user application, it
will decide whether to pass the object directly to the user application decoder or to store or to discard the object. If a
previous version of the object has been forwarded to the user application decoder and is currently presented and now a
new version has been received, it shall be passed to the user application decoder.

The object management can uniquely identify and access an object - at least within one MOT stream- by its
ContentName together with its VersionNumber^. So these parameters may be used as key parameters for storing and
retrieving header and body of an object in a data base, whereas the TransportId is valid only during the transport time of
the object (see also clause 3.1 in [2]). It is not intended to be used as a key parameter for accessing the object.

Because the terminal will always keep only one version of an object, i.e. the latest received version, the ContentName
(without VersionNumber) is already sufficient for the object management to identify the object. But in any case it has to
keep track of the VersionNumber of that object: If a new version of an object is received, i.e. its VersionNumber is
different from that of the stored object, the terminal will replace the old version, i.e. the memory of the old version will
be released.

If the header of an object has changed and if this is signalled by a Header Update object (ContentType MOT Transport,
second method for updating headers), the terminal will replace the header of the object with ContentName and
VersionNumber by the extension parameters of the Header Update object. Note that a Header Update may not contain a
VersionNumber, therefore the original VersionNumber shall be kept!

If the object management removes a header from its memory, this shall be signalled to the reassembly unit because the
reassembly unit will forward every header with a given TransportId only once and after forwarding it to the object
management it will ignore header segments with this TransportId.

EXAMPLE: TId is used as an abbreviation for TransportId. If an object appears more than once in the example,
it is assumed that it has the same content, i.e. the same header and body. It is assumed that after
reception of a header the object management orders the reassembly unit to reassemble its body.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 19

Arriving objects Actions to do
after reception
of an object

Objects in the cache List of Headers (LH)
after reception
of the last object

a-> store object
with TId 1
b-> store object
with TId 2
c-> store object
with TId 3
d-> store object
with TId 4

1 "a"
2 "b"
3 "c"
4 "d"

b c d e

TId 2 TId 3 TId 4 TId 5

b-> keep object with
TId 2
c-> keep object with
TId 3
d-> keep object with
TId 4
e-> store object with
TId 5

1 "a"
2 "b"
3 "c"
4 "d"
5 "e"

b-> store object with
TId 6 and delete
object with TId 2 (the
ContentName is the
same but the TId has
changed)
c-> keep object with
TId 3
d-> keep object with
TId 4
e-> keep object with
TId 5

1 "a"
6 "b"
3 "c"
4 "d"
5 "e"

b-> keep object with
TId 6
c-> store object with
TId 7 and delete
object with Tid 3
d-> store object with
TId 8, and delete
object with Tid 4
e-> keep object with
TId 5

1 "a"
6 "b"
7 "c"
8 "d"
5 "e"

The object "a" is deleted by the service provider with the MOT parameter ExpireTime or by the terminal when the
cache is full.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 20

7.3.4 Advanced caching

The MOT directory or a MOT header contains object descriptions of broadcast objects and their TransportIds, but it
does not signal when which body is broadcast. Therefore an object management strategy that reassembles objects with
the highest priority first might have a bad startup time since all other objects broadcast before these objects are ignored.
The reassembly unit might signal to the object management which body TransportIds are currently broadcast. E.g. if the
first segment of any body is received, this could be signalled to the object management unit. The object management
could then order the reassembly of this body.

Using the time when the first body segment is received and the RetransmissionDistance parameter of the object can also
be used by the object management unit to predict the time of the next retransmission of the body. This permits advanced
caching strategies.

It is also possible to evaluate the data group Repetition index (see clause 5.3.3.1 in [1]) or the RepetitionCount of the
segmentation header (see clause 6.1.1 in [2]).

However, such additional processing by the reassembly unit and object management unit is just optional.

7.4 User application level
The user application level requests objects from the MOT data decoder and presents them. The specification of the user
application level is not a part of MOT.

8 Transmission Mechanisms

8.1 General
When transmitting data in a radio broadcast system, the service provider always has to take in consideration that the
terminal may miss data due to:

• The receiver being switched off, out of signal or tuned to another service or ensemble.

• Bad reception due to the conditions of the radio channel (bit errors).

Without an interaction channel the receiver does not have the possibility to demand retransmission of lost data.
Therefore MOT uses some mechanisms which permit data to be repeated and so allow the receiver several opportunities
to receive objects and to ensure the correct reception:

• Repetition on data group level.

• Repetition on object level.

• Retransmission of objects.

• Insertion of MOT headers.

Transmission errors may cause the receiver to fail in decoding the data, therefore it is strongly recommended to use one
or more of the four mentioned mechanisms to ensure the reception, although the use of them decreases the useful bit
rate.

MOT also provides another mechanism in order to permit the transmission/reception of objects in parallel: Interleaving
of objects in an MOT stream.

Interleaving can be used to insert high priority objects into the MOT stream during transmission of big objects with a
long transmission time.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 21

8.2 Data transmission
This clause details the main differences and characteristics of the single object transmission and multiple object
transmission mechanisms.

8.2.1 Single object transmission

The non-cyclic transmission scheme (see figure 7) is useful when only one object is needed at a time, for example in a
slide show.

Object A

Figure 7: Single object transmission

Repetition and insertion of MOT headers (see figure 8) can be used to ensure reliable reception.

A A AA

Repetition Last repetition

Figure 8: Single object transmission with repetitions

8.2.2 Multiple object Transmissions

Multiple object transmission is intended for user applications that need to have several objects available on the terminal
at the same time. If the terminal requests a MOT object that is not already cached, it has to wait for the next cycle. An
example for such a user application is a broadcast web site.

Each object is transmitted several times in a cyclic manner with a cycle time between each transmission (see figure 9).
The cycle time between subsequent transmissions of an object may vary.

A

cycle time

A A… … …

Figure 9: Multiple object transmission

Within a cycle, repetition and insertion of MOT header can be used to ensure the reception (see figure 10). In a new
cycle the object is retransmitted. The content of the object can be the same or can be updated.

A

cycle time

A A… …A A A …

Repetition Retransmission

Figure 10: Multiple object transmission with repetitions

The different objects in the cyclic MOT stream are identified by their ContentNames. If in a retransmission the Header-,
Body- or SegmentSize of an object have been changed, the TransportId shall be changed. If the body has been updated,
the VersionNumber shall be increased by 1 modulo 256. If nothing is changed, the TransportId should remain the same.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 22

It is recommended to transmit the most important objects (e.g. the HTML pages on the top of the hierarchy or the most
visited pages of a broadcast web site) more frequently than the others to improve the access to the service.

8.3 Update, addition and deletion of objects
When objects are updated, added or deleted at the broadcast server, the corresponding change is signalled to the
receiver.

An object is updated if its content (body), header or segmentation are changed.

A new object always uses a new TransportId.

When directory mode is used, the update, deletion and addition of objects is easily detected by the receive terminal
comparing the new MOT directory (which has a new TransportId) with the old one.

When an object is modified, the VersionNumber shall be incremented.

A new object may be transmitted at any time.

When an object is deleted, the signalling method depends on whether directory mode or header mode is being used.

8.3.1 Directory mode

The directory object describes the exact state of the data carousel. Therefore, when the content of the carousel is
changed, the directory object is also changed. The same procedure therefore applies whether the change of content is
due to the update, addition or deletion of an object in the carousel.

The MOT directory shall be updated if there is any change to the information carried in the MOT directory. This
situation occurs when:

• one or more of the fields in the MOT directory describing the data carousel is changed;

• one or more of the directory entries is changed.

The addition or deletion of an object from the data carousel causes an update of the MOT directory since this affects the
content of the directory entries.

An update of an object carried in the data carousel also causes an update of the MOT directory since the TransportId
and VersionNumber carried in the directory entry for these object have to be changed.

The update of the MOT directory is signalled by a change of TransportId. When the MOT data decoder receives a Data
group type 6, it shall compare its TransportId with the TransportId for the current MOT directory. If they not are equal,
the MOT directory has been updated and the MOT data decoder shall try to reassemble the new MOT directory in order
to replace the old MOT directory. The new MOT directory becomes valid as soon as it is completely reassembled.
When the new directory becomes valid, the old directory becomes invalid and should be deleted.

When a new MOT directory becomes valid, the object management unit shall:

• update parameters describing the carousel;

• delete objects not longer listed in the directory;

• update objects that have been subject to changes:

- if the TransportId has been changed but the VersionNumber for an object remains the same, only the
parameters describing the object have been updated, but not the content of the body;

- if both the TransportId and the VersionNumber have been changed, both the parameters and the body of the
object have been changed. (It is not possible to update only the body and not the parameters of an object
since at least the TransportId and VersionNumber parameters shall be changed when the body is updated);

• store objects listed in the directory. If there is not enough free memory to store all objects, the object
management can apply a storing strategy based on information received from the directory, e.g. the priority of
objects.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 23

When an object body in the data carousel is updated, it shall be preceded by an update of the MOT directory.

The MOT directory may be updated at any time regardless whether the data carousel has completed a full turn or not.

To ensure that as many receivers as possible receive the update of the MOT directory as quickly as possible, the data
inserter may increase the repetition rate of the directory.

8.3.2 Header mode

If the information carried in the body of an object is updated, the complete new object has to be transmitted. While
ContentName will be the same, the VersionNumber shall be incremented and the BodySize may also change. Therefore
a new body and a new header have to be transmitted. The segments of the updated object will be transmitted with a new
TransportId.

A new object can be added at any time. It will have a new ContentName and will have a new TransportId.

When an object is deleted, a header update with the corresponding ContentName and no VersionNumber (thus it refers
to all versions) and the ExpireTime set to "Now" shall be transmitted as soon as possible. The body does not need to be
transmitted any longer. The updated header should be transmitted a few times to allow all receiver terminals to delete
the object.

MOT provides two methods to signal a change in the header information of an object:

• changing the TransportId;

• sending a Header Update.

The first method shall be used, when the header information is to be changed and the transmission of the body is to be
continued. Then the transmission of the new object with new header (but with the same body) is started, while
segmentation (for both, the body and the updated header) is done with a new TransportId.

The second method shall be used, when only the header is changed, but the body is not sent anymore (for example when
an object is deleted). With the HeaderUpdate the TriggerTime(s) can be overwritten, before the (last original)
TriggerTime becomes valid.

Regardless of which of the two methods have been applied by the transmission side, the MOT data decoder on
reception side shall pass the object (at least the updated header information) to the user application decoder.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 24

Annex A:
Coding

A.1 The MSC data group

A.1.1 Coding of the MSC data group
The MSC data group is the lowest common level for the transport of MOT in Packet Mode and PAD. This clause will
try to explain the coding of the MSC data group relevant for MOT and make a short example of how to code one.

The following parameters/flags occur in the MSC data group. For the structure of the MSC data group and the
individual coding of the parameters please refer to [1].

MSC data group header Description
Extension flag Indicates whether the Extension field is present or not.

In case of MOT, the extension field is currently only present for the data group type 5 since the
field and this type are specified for the transport of CA parameters.

CRC flag Indicates whether there is a MSC data group CRC or not. In the case of transport of MOT
objects in PAD it is more than strongly recommended that there is a MSC data group CRC
(CRC flag set to 1) since there is no other error detection. In Packet Mode there is further error
detection on network level but the MSC data group CRC is in this case useful for the detection
of packet loss.

Session flag The session flag indicates the presence of the last flag and segment number. It might always
be set to 1 but it shall be set to 1 in the following cases:

� for the data groups containing MOT header, if the MOT header needs to be split into more

than one segment;
� for the data groups containing MOT body, if the MOT body needs to be split into more

than one segment;
� for the data groups containing MOT directory, if the MOT directory needs to be split into

more than one segment.

The reason is that if there are several MOT segments the last flag and segment number are
needed in order to identify individual segments.

If there is only one segment in a MOT header, body or directory, it is recommended to set the
Session flag to 0 for this part of the object and thereby omit the last flag and segment number.

User access flag The User access flag indicates if the User access field is present or not. In the case of MOT
this flag shall be set to 1 since the User access field contains the TransportId which is
mandatory for MOT objects.

Data group type The Data group type indicates the type of data conveyed in the MSC data field. For MOT
(DSCTy == 60, resp. AppTy == 12...15) the types 3, 4, 5 and 6 are used.

3: indicates that the data group contains a MOT header segment.
4: indicates that the data group contains a MOT body segment.
5: indicates that the data group contains an encrypted MOT body segment and CA

parameters. If CA is used, Data group type 1 is used to carry CA parameters.
6: indicates that the data group contains a MOT directory segment.

Continuity index Shall be used as defined in [1]. Continuity index is incremented for each data group of a
certain type with a content different from the immediately preceding data group. Useful in order
to detect whether complete data groups are lost during reception.

Repetition index Shall be used as defined in [1]. The Repetition index is used to indicate repetitions on MSC
data group level.

Extension field For MOT only used for Data group type 5 and contains parameters related to CA.
Session header Only present if the Session flag is set.
Last Indicates whether this MSC data group is the last segment of a group of segments

(corresponding to one MOT header or one body).
If there is only one segment it is recommended to omit the last flag and segment number by
setting the Session flag to 0. Although this is equal to set the Session flag, set the last flag to 1
and the segment number to 0 indicating last and only segment.

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 25

MSC data group header Description
Segment number Indicates the number of the segment related to that the first segment is numbered 0 and

incremented for each new segment.
User access field The User access field is present if the User access flag is set. In the case of MOT it shall

present since the TransportId is located in the User access field and mandatory for MOT
objects.

Rfa Shall be used as defined in [1].
TransportId flag Indicates the presence of the TransportId. In the case of MOT it shall always be set to 1 since

the TransportId is mandatory. The TransportId flag also has influence of the parameter length
in the User access field as follows:

0: no TransportId End user address field, max 15 bytes
1: TransportId, 2 bytes End user address field, max 13 bytes

Length indicator Shall be used as defined in [1].
TransportId The TransportId is mandatory for MOT, shall be coded as defined in [1] and used as described

in other clauses of the present document.
End User address field Shall be used as defined in [1].
MSC data group data
field

The MSC data group data field contains the MOT segment which consist of the segmentation
header and the MOT data (header or body) as specified in [2]. The maximum size of the MSC
data group data field is 8 191 bytes as specified in [1].

MSC data group CRC Present if the CRC flag is set. In the case of PAD it is strongly recommended to use the MSC
data group CRC since there is no further error detection in PAD.

A.1.2 Examples of coding
We will now make three examples of the coding of the MSC data group.

A.1.2.1 Example 1: MOT object, no segmentation

We will transmit a file with the attributes:

File size 30 bytes
File type text file, ISO Latin 1
File name Testfile.txt

Using the following transport attributes for MOT:

Segmentation of MOT header None
Segmentation of MOT body None
Repetition None on Transport or Object level
Transport Packet mode
Continuity index Is in this example set to zero indicating that each data group is the first of its type
TransportId In this example set to 1010101010101010. Shall be set according to the rules

described in the present document

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 26

Coding of first MSC data group (MOT header)

Parameter Binary
coding

Explanation

Extension flag 0 No extension field
CRC flag 1 CRC present
Session flag 0 No last flag and segment number
User access flag 1 User access field present
Data group type 0011 MOT header (DSCTy == 60)
Continuity index 0000 Continuity index from the previous data group of same type + 1, modulo

16
Repetition index 0 No data group repetition
Extension field None Omitted since no CA
Last None Omitted since only one segment. The complete MOT header is in the

MSC data group
Segment number None Omitted since only one segment. The complete MOT header is in the

MSC data group
Rfa 000
Id flag 1 TransportId present
Length indicator 0010 Two bytes of TransportId, no End user address
TransportId 10101010

10101010
TransportId number according to the rules described in the present
document

End User address field None No End user address
MSC data group data field 000

0000000010110
00000000
00000000
00000001
1110
00000000
10110
000001
000000001
11001100
00001101
00000000
"Testfile.txt"

RepetitionCount, 3 bits no object repetition
SegmentSize, 13 bits 22 bytes
BodySize, 28 bits 30 bytes

HeaderSize, 13 bits 22 bytes

ContentType, 6 bits text
ContentSubType, 9 bits ISO Latin 1
ContentName, 2 + 13 bytes Testfile.txt

MSC data group CRC xxxxxxxx
xxxxxxxx

2 bytes CRC check sum dependent on the content of the data group.
Calculated as specified in [1]

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 27

Coding of second MSC data group (MOT Body)

Parameter Binary
coding

Explanation

Extension flag 0 No extension field
CRC flag 1 CRC present
Session flag 0 No last flag and segment number
User access flag 1 User access field present
Data group type 0100 MOT body (DSCTy == 60)
Continuity index 0000 Continuity index from the previous data group of same

type + 1, modulo 16
Repetition index 0 No data group repetition
Extension field None Omitted since no CA
Last None Omitted since only one segment. The complete MOT body is in the

MSC data group
Segment number None Omitted since only one segment. The complete MOT body is in the

MSC data group
Rfa 000
TransportId flag 1 TransportId present
Length indicator 0010 Two bytes of TransportId, no End user address
TransportId 10101010

10101010
TransportId number according to the rules described in the present
document

End User address field None No End user address
MSC data group data field 000

00000000
11110

RepetitionCount 3 bits
SegmentSize 13 bits

MOT body (file) 30 bytes

MSC data group CRC xxxxxxxx
xxxxxxxx

2 bytes CRC check sum dependent on the content of the data group.
Calculated as specified in [1]

A.1.2.2 Example 2: MOT object, segmentation

We will transmit a file with the attributes:

File size 1 000 bytes
File type HTML file
File name Test_html.htm

Using the following transport attributes for MOT:

Segmentation of MOT header None
Segmentation of MOT body 500 byte segments
Repetition None on Transport or Object level
Transport Packet mode
Continuity index Is in this example set to zero indicating that each data group is the first of its

type
TransportId In this example set to 1111000011110000. Shall be set according to the

rules described in the present document

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 28

Coding of first MSC data group (MOT header)

Parameter Binary coding Explanation
Extension flag 0 No extension field
CRC flag 1 CRC present
Session flag 0 No last flag and segment number
User access flag 1 User access field present
Data group type 0011 MOT header (DSCTy == 60)
Continuity index 0000 Continuity index from the previous data group of same

type + 1, modulo 16
Repetition index 0 No data group repetition
Extension field None Omitted since no CA
Last None Omitted since only one segment. The complete MOT header is in the

MSC data group
Segment number None Omitted since only one segment. The complete MOT header is in the

MSC data group
Rfa 000
TransportId flag 1 TransportId present
Length indicator 0010 Two bytes of TransportId, no End user address
TransportId 11110000

11110000
TransportId number according to the rules described in the present
document

End User address field None No End user address
MSC data group data field 000

00000000
10111
00000000
00000000
00111101
000
00000000
10111
000001
000000010
11001100
00001110
00000000
"Test_html.
htm"

RepetitionCount, 3 bits no object repetition
SegmentSize, 13 bits 23 bytes

BodySize, 28 bits 1 000 bytes

HeaderSize, 13 bits 23 bytes

ContentType, 6 bits text
ContentSubType, 9 bits html
ContentName, 2 + 14 bytes Test_html.htm

MSC data group CRC xxxxxxxx
xxxxxxxx

2 bytes CRC check sum dependent on the content of the data group.
Calculated as specified in [1]

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 29

Coding of second MSC data group (MOT body segment 1)

Parameter Binary coding Explanation
Extension flag 0 No extension field
CRC flag 1 CRC present
Session flag 1 Last flag and segment number present
User access flag 1 User access field present
Data group type 0100 MOT body (DSCTy == 60)
Continuity index 0000 Continuity index from the previous data group of same

type + 1, modulo 16
Repetition index 0 No data group repetition
Extension field None Omitted since no CA
Last 0 first segment
Segment number 00000000

0000000
first segment

Rfa 000
TransportId flag 1 TransportId present
Length indicator 0010 Two bytes of TransportId, no End user address
TransportId 11110000

11110000
TransportId number according to the rules described in the present
document

End User address field None No End user address
MSC data group data field 000

00001111
10100

RepetitionCount, 3 bits no object repetitions
SegmentSize, 13 bits 500 bytes

MOT body segment, 500 bytes, first half of file

MSC data group CRC xxxxxxxx
xxxxxxxx

2 bytes CRC check sum dependent on the content of the data group.
Calculated as specified in [1]

Coding of third MSC data group (MOT body segment 2)

Parameter Binary coding Explanation
Extension flag 0 No extension field
CRC flag 1 CRC present
Session flag 1 last flag and segment number present
User access flag 1 User access field present
Data group type 0100 MOT body (DSCTy == 60)
Continuity index 0001 Continuity index from the previous data group of same

type + 1, modulo 16
Repetition index 0 No data group repetition
Extension field None Omitted since no CA
Last 1 Last segment
Segment number 00000000

0000001
Second (and last) segment

Rfa 000
TransportId flag 1 TransportId present
Length indicator 0010 Two bytes of TransportId, no End user address
TransportId 11110000

11110000
TransportId number according to the rules described in the present
document

End User address field None No End user address
MSC data group data field 000

00001111
10100

RepetitionCount, 3 bits no object repetitions
SegmentSize, 13 bits 500 bytes

MOT body segment, 500 bytes, second half of file

MSC data group CRC xxxxxxxx
xxxxxxxx

2 bytes CRC check sum dependent on the content of the data group.
Calculated as specified in [1]

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 30

A.1.2.3 Example 3: MOT directory, no segmentation

We will transmit a MOT directory for a data carousel containing 2 objects:

Object 1

File size 30 bytes
File type Text file, ISO Latin 1
File name Testfile.txt
TransportId 1010101010101010

Object 2

File size 1 000 bytes
File type HTML file
File name Test_html.htm
TransportId 1111000011110000

The following transport attributes for the MOT directory will be used:

Segmentation of MOT directory None
Repetition None on transport or object level
Transport Packet Mode
NumberOfObjects 2
CarouselPeriod 1,5 seconds
SegmentSize (in data carousel) variable
DirectoryExtension None
TransportId (for MOT directory) 1100110011001100

Coding of the MSC data group (MOT directory)

Parameter Binary
coding

Description

Extension flag 0 No extension field
CRC flag 1 CRC present
Session flag 0 No last flag and segment number
User access flag 1 User access field present
Data group type 0110 MOT directory (DSCTy == 60)
Continuity index 0000 Continuity index from the previous data group of same

type + 1, modulo 16
Repetition index 0 No data group repetition
Extension field None Omitted since no CA
Last None Omitted since only one segment. The complete MOT directory is in the

MSC data group
Segment number None Omitted since only one segment. The complete MOT directory is in the

MSC data group
Rfa 000
TransportId flag 1 TransportId present
Length indicator 0010 Two bytes of TransportId, no End user address
TransportId 11001100

11001100
TransportId number according to the rules described in the present
document

End User address field None No End user address

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 31

Parameter Binary
coding

Description

MSC data group data field

MOT directory

Directory Entry 1

Directory Entry 2

000
00000001
11110

00
00000000
00000000
00000000
111110
00000000
00000010
00000000
00000000
00001111
0
00
00000000
00000

00000000
00000000
10101010
10101010
00000000
00000000
00000001
1110
00000000
10110
000001
000000001
11001100
00001101
00000000
"Testfile.txt"
11110000
11110000
00000000
00000000
00111101
000
00000000
10111
000001
000000010
11001100
00001110
00000000
"Test_html.
htm"

RepetitionCount, 3 bits no object repetitions
SegmentSize, 13 bits size of the MOT directory
 segment, 62 bytes

Rfu, 2 bits shall be set to zero
DirectorySize, 30 bits size of the MOT directory, 62 bytes

NumberOfObjects, 16 bits 2 files in the data carousel

CarouselPeriod, 24 bits 1,5 seconds

Rfu, 1bit shall be set to zero
Rfa, 2bits shall be set to zero
SegmentSize, 13 bits size of MOT body segments in the
 data carousel, set to zero since
 differs between objects in the data
 carousel
DirectoryExtentionLength no DirectoryExtension field

TransportId, 16 bits TransportId of Testfile.txt

BodySize, 28 bits 30 bytes

HeaderSize, 13 bits 22 bytes

ContentType, 6 bits text
ContentSubType, 9 bits ISO Latin 1
ContentName, 2 + 13 bytes Testfile.txt

TransportId, 16 bits TransportId of Test_html.htm

BodySize, 28 bits 1 000 bytes

HeaderSize, 13 bits 23 bytes

ContentType, 6 bits text
ContentSubType, 9 bits html
ContentName, 2 + 14 bytes Test_html.htm

MSC data group CRC xxxxxxxx
xxxxxxxx

2 bytes CRC check sum dependent on the content of the data group.
Calculated as specified in [1]

ETSI

ETSI TR 101 497 V1.1.1 (2002-07) 32

History

Document history

V1.1.1 July 2002 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 General
	4.1 Introduction

	5 Structural description
	5.1 Segmentation of objects
	5.1.1 Segmentation of the MOT body
	5.1.2 Segmentation of the MOT directory
	5.1.3 Segmentation of the MOT header

	5.2 Mapping of MOT segments into MSC data groups
	5.3 Packetizing segments - Network level
	5.3.1 Packet Mode
	5.3.2 X-PAD

	6 Fields of the MOT Header
	6.1 Header core
	6.2 Header extension
	6.2.1 Naming files and directory structures

	7 Model of a MOT data decoder and its interfaces
	7.1 Network level
	7.2 Data group level
	7.3 Segmentation and object level
	7.3.1 General description of the MOT data decoder
	7.3.2 The reassembly unit
	7.3.2.1 MOT directory mode
	7.3.2.2 MOT header mode
	7.3.2.3 Segmentation of MOT bodies

	7.3.3 The object management unit
	7.3.3.1 MOT directory mode
	7.3.3.2 MOT header mode

	7.3.4 Advanced caching

	7.4 User application level

	8 Transmission Mechanisms
	8.1 General
	8.2 Data transmission
	8.2.1 Single object transmission
	8.2.2 Multiple object Transmissions

	8.3 Update, addition and deletion of objects
	8.3.1 Directory mode
	8.3.2 Header mode

	Annex A: Coding
	A.1 The MSC data group
	A.1.1 Coding of the MSC data group
	A.1.2 Examples of coding
	A.1.2.1 Example 1: MOT object, no segmentation
	A.1.2.2 Example 2: MOT object, segmentation
	A.1.2.3 Example 3: MOT directory, no segmentation

	History

