

ETSI TR 101 202 V1.2.1 (2003-01)

Technical Report

Digital Video Broadcasting (DVB);
Implementation guidelines for Data Broadcasting

European Broadcasting Union Union Européenne de Radio-Télévision

EBU·UER

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 2

Reference
RTR/JTC-DVB-142

Keywords
broadcasting, data, digital, DVB, TV, video

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2003.

© European Broadcasting Union 2003.
All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.

TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

mailto:editor@etsi.org
http://portal.etsi.org/tb/status/status.asp
http://www.etsi.org/

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 3

Contents

Intellectual Property Rights ..5

Foreword...5

1 Scope ..6

2 References ..6

3 Definitions and abbreviations...7
3.1 Definitions..7
3.2 Abbreviations ...7

4 Rules of operation ..9
4.1 Introduction ..9
4.2 Selection of the appropriate profile ..10
4.2.1 Fragmentation of datagrams ...10
4.3 Data Pipe ..11
4.3.1 Usage of the adaptation field ..11
4.4 Asynchronous/Synchronized/Synchronous Data Streaming ..11
4.4.1 Usage of the adaptation field ..11
4.4.2 Asynchronous Data Streaming ...12
4.4.3 Synchronous/Synchronized Data Streaming...12
4.4.4 Synchronous Data Streaming..12
4.4.5 Synchronized Data Streaming...13
4.5 Multiprotocol encapsulation...13
4.5.1 Overview ..13
4.5.2 Data transport..13
4.5.3 Information in the SI...14
4.6 Data carousel ..15
4.6.1 Introduction...15
4.6.2 Data carousel Groups and SuperGroups ...16
4.6.3 Use of the one-layer data carousel ..16
4.6.4 Use of the two-layer data carousel..16
4.6.4.1 The data carousel consists of a single group the description of which is too large for a single

DownloadInfoIndication message...16
4.6.4.2 The data carousel delivers a single version of an application but supports a number of different

receiver profiles...17
4.6.4.3 The data carousel simultaneously delivers more than one version of an application for a single

receiver profile ..17
4.6.5 Assignment and use of transactionId values ...17
4.6.6 Use of descriptors specific to the DVB data carousel...18
4.6.6.1 Type descriptor ...18
4.6.6.2 Name descriptor ..19
4.6.6.3 Info descriptor ...19
4.6.6.4 Module link descriptor ..19
4.6.6.5 CRC32 descriptor..19
4.6.6.6 Location descriptor..19
4.6.6.7 Estimated download time descriptor ...19
4.6.6.8 Group link descriptor ..19
4.6.6.9 Private descriptor ..20
4.6.6.10 Compressed module descriptor ...20
4.6.7 Information in the SI and PSI ...20
4.6.7.1 Descriptor in SI ...20
4.6.7.2 Descriptors in PSI ...21
4.7 Object carousel ...21
4.7.1 Introduction...21
4.7.2 Platform independence ...23
4.7.2.1 Overview...23
4.7.2.2 Supported U-U Objects ...24

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 4

4.7.2.3 Transmission of objects...25
4.7.2.4 Object References ...26
4.7.2.5 Taps and associations..28
4.7.3 BIOP Control Structures ...30
4.7.3.1 Interoperable Object Reference (IOR) ..30
4.7.3.2 BIOP Profile Body ..31
4.7.3.3 Lite Options Profile Body ...33
4.7.3.4 Carousel NSAP address ..34
4.7.4 BIOP Messages...35
4.7.4.1 Directory ...35
4.7.4.2 File ..38
4.7.4.3 Stream ...39
4.7.4.4 Service Gateway ...40
4.7.4.5 StreamEvent ..41
4.7.5 Download Data Carousel Messages..42
4.7.5.1 DownloadInfoIndication ...42
4.7.5.2 DownloadServerInitate ...43
4.7.5.3 DownloadDataBlock ...44
4.7.6 MPEG-2 Sections ...44
4.7.7 Use of PSI descriptors...44
4.7.7.1 Carousel identifier descriptor ..45
4.7.7.2 Association tag descriptor ...46
4.7.7.3 Stream identifier descriptor...47
4.7.7.4 Deferred association tags descriptor..48
4.7.8 Information in the SI and PSI ...48
4.7.8.1 SI Descriptor ...48
4.7.8.2 Descriptors in PSI ...49
4.7.9 Assignment and use of transactionId values ...49

Annex A: DSM-CC messages for data carousel ..51

A.1 dsmccMessageHeader ..51

A.2 dsmccDownloadDataHeader ..52

A.3 DownloadServerInitiate..52

A.4 DownloadInfoIndication ..53

A.5 DownloadDataBlock ..54

A.6 DownloadCancel ..55

Annex B: Encapsulation of DSM-CC messages in MPEG-2 sections ...56

Annex C: Naming of objects in directories ..58

C.1 Data structures used for names in DSM-CC User-to-User API ...58

C.2 Data structures used for names in object carousels ..59

C.3 CORBA strings in object carousels..59

Annex D: Example of an object carousel ...60

Annex E: Bibliography..63

History ..64

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

All published ETSI deliverables shall include information which directs the reader to the above source of information.

Foreword
This Technical Report (TR) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which is responsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active members in about
60 countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

Founded in September 1993, the DVB Project is a market-led consortium of public and private sector organizations in
the television industry. Its aim is to establish the framework for the introduction of MPEG-2 based digital television
services. Now comprising over 200 organizations from more than 25 countries around the world, DVB fosters
market-led systems, which meet the real needs, and economic circumstances, of the consumer electronics and the
broadcast industry.

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 6

1 Scope
The present document provides implementation guidelines for the use and implementation of the Digital Video
Broadcasting (DVB) data broadcast service in a DVB digital broadcast environment including satellite-, cable-,
MMDS- and terrestrial networks.

The guidelines are intended to be highly recommended rules for the usage of the DVB data broadcast specification as
put down in EN 301 192 [1]. As such, they facilitate the efficient and reliable implementation of data broadcast
services. The rules apply to broadcasters, network operators as well as manufacturers.

The rules are specified in the form of constraints on the data broadcast implementation.

The specification of these functions in no way prohibits end consumer device manufacturers from including additional
features, and should not be interpreted as stipulating any form of upper limit to the performance.

NOTE: It is highly recommended that the end consumer device should be designed to allow for future compatible
extensions to the DVB data broadcast specification. All the fields "reserved" (for ISO),
"reserved_future_use" (for ETSI), and "user defined" in the EN 301 192 [1] should be ignored by end
consumer devices not to make use of them. The "reserved" and "reserved_future_use" field may be
specified in the future by the respective bodies, whereas the "user defined" field will not be standardized.

This guidelines document uses the terminology defined in EN 301 192 [1] and should be read in conjunction with that
document.

2 References
For the purposes of this Technical Report (TR) the following references apply:

[1] ETSI EN 301 192 (V1.3.1): "Digital Video Broadcasting (DVB); DVB specification for data
broadcasting".

[2] ISO/IEC 13818-1: "Information technology - Generic coding of moving pictures and associated
audio information: Systems".

[3] ETSI ETS 300 802: "Digital Video Broadcasting (DVB); Network-independent protocols for DVB
interactive services.

[4] ISO/IEC 13818-6: "Information technology - Generic coding of moving pictures and associated
audio information - Part 6: Extensions for DSM-CC".

[5] IETF RFC 791 (1981): "Internet Protocol", J. Postel.

[6] ETSI EN 300 468: "Digital Video Broadcasting (DVB); Specification for Service Information (SI)
in DVB systems".

[7] ETSI EN 300 472: "Digital Video Broadcasting (DVB); Specification for conveying ITU-R
System B Teletext in DVB bitstreams".

[8] ETSI EN 300 743: "Digital Video Broadcasting (DVB); Subtitling system".

[9] OMG Specification (1995): "The Common Object Request Broker: Architecture and
Specification", Revision 2.0.

[10] IETF RFC 1521 (1993): "MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms
for Specifying and Describing the Format of Internet Message Bodies", N. Borenstein, N. Freed.

[11] IETF RFC 1590 (1994): "Media Type Registration Procedure", J. Postel (Updates RFC 1521).

[12] James Rumbaugh (1995): "OMT: The Object Model", JOOP 7.8.

[13] IETF RFC 1112 (1988): "Host extensions for IP multicasting", S.E. Deering.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 7

[14] IETF RFC 2464 (1998): "Transmission of IPv6 Packets over Ethernet Networks", M.Crawford.

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

broadcaster (SERVICE Provider): organization which assembles a sequence of events or programmes to be delivered
to the viewer based upon a schedule

component (ELEMENTARY Stream): one or more entities which together make up an event, e.g. video, audio,
teletext, data

Digital Storage Media - Command & Control (DSM-CC): Refers to the standard ISO/IEC 13818-6.

LLC/SNAP: Refers to the standards ISO/IEC 8802-2 and ISO/IEC 8802-1.

MPEG-2: Refers to the standard ISO/IEC 13818. Systems coding is defined in part 1. Video coding is defined in part 2.
Audio coding is defined in part 3.

multiplex: stream of all the digital data carrying one or more services within a single physical channel

section: syntactic structure used for mapping all service information into ISO/IEC 13818-1

Service Information (SI): digital data describing the delivery system, content and scheduling/timing of broadcast data
streams etc.

NOTE: It includes MPEG-2 Program Specific Information (PSI) together with independently defined extensions.

sub-table: sub-table is comprised of a number of sections with the same value of table_id, table_id_extension and
version_number

NOTE: The table_id_extension field is equivalent to the fourth and fifth byte of a section when the
section_syntax_indicator is set to a value of "1".

table: table is comprised of a number of sections with the same value of table_id

transport stream: data structure defined in ISO/IEC 13818-1

NOTE: It is the basis of the Digital Video Broadcasting (DVB) standards.

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Portability Interface
BIOP Broadcast Inter ORB Protocol
bit/s bits per second
bslbf bit string, left bit first
CDR Common Data Representation
CORBA Common Object Request Broker Architecture
CRC Cyclic Redundancy Check
DDB DownloadDataBlock message of DSM-CC
DII DownloadInfoIndication message of DSM-CC
DSI DownloadServerInitiate message of DSM-CC
DSM-CC U-N DSM-CC User to Network
DSM-CC U-U DSM-CC User to User
DSM-CC Digital Storage Media - Command & Control
DVB Digital Video Broadcasting
EIT Event Information Table

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 8

GIF Graphics Interchange Format
HTML HyperText Markup Language
IDL Interface Definition Language
IETF Internet Engineering Task Force
IOR Interoperable Object Reference
IP Internet Protocol
JPEG Joint Photographic Experts Group
LLC Logical Link Control
MAC Medium Access Control
MPEG Moving Pictures Expert Group
MTU Maximum Transport Unit
NPT Normal Play Time
NSAP Network Service Access Point
OMG Object Management Group
OMT Object Modelling Technique
ORB Object Request Broker
PAT Program Association Table
PCR Program Clock Reference
PES Packetized Elementary Stream
PID Packet Identifier
PLL Phase Locked Loop
PMT Program Map Table
ppm parts per million
PSI Program Specific Information
PTS Presentation Time Stamp
RFC Request For Comments
SDT Service Description Table
SI Service Information
SIS Systems for Interactive Services
SNAP SubNetwork Attachment Point
TS Transport Stream
uimsbf unsigned integer, most significant bit first

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 9

4 Rules of operation
This clause contains some recommendations on the usage of the Digital Video Broadcasting (DVB) data broadcasting
specification.

4.1 Introduction
Figure 4.1 gives an overview of the data broadcast specification as put down EN 301 192 [1].

MPEG-2 Transport Stream

PES Section

DVB
data

piping

service
specific

Application
level interface

: Service specific

: DVB defined

: Other standards (IETF,ISO)

: DSM-CC defined

DVB
data

streaming

service
specific

DVB multi
protocol

service
specific

datagram
spec. (eg
IP/IPX)

DSM-CC
data

service
specific

DSM-CC
data

service
specific

DSM-CC
object

DVB
object

DVB
data

carousel

service
specific

Applications

Data
Piping

Application area:

data_broadcast_id: 0x0001

Data
Streaming

0x0002
0x0003
0x0004

Multi-protocol
encapsulation

0x0005

Data
Carousel

0x0006

Object
Carousel

0x0007

Registered
service

t.b.d

DSM-CC
priv. data

Figure 4.1: Graphical overview and relation to other standards

The basis of the complete specification is formed by the MPEG-2 Transport Stream (TS) as defined in
ISO/IEC 13818-1 [2]. Data information can be transported within this MPEG-2 TS by means of application areas. The
application areas are:

• Data piping.

• Data streaming.

• Multiprotocol encapsulation.

• Data carousel.

Furthermore in figure 4.1 the object carousel is depicted. This carousel is used by the specification for Network
Independent Protocols for Interactive Services ETS 300 802 [3].

A registered service is shown on the right hand side of the figure. DVB allows to register private implementations for
data broadcast services, as described in annex A of EN 301 192 [1].

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 10

Figure 4.1 shows what is standardized by which body. ISO has standardized the MPEG-2 TS in ISO/IEC 13818-1 [2]
and the DSM-CC framework in ISO/IEC 13818-6 [4]. IETF has standardized the Internet Protocol (IP) in RFC 791 [5].
DVB has specified within the data broadcast specification EN 301 192 [1] the DVB data piping, DVB data streaming,
DVB multiprotocol encapsulation, DVB data carousel and DVB object carousel parts. Within figure 4.1 the
encapsulation of the Internet Protocol (IP) is just an example. Other protocols can also be encapsulated.

As shown in figure 4.1, the specification for data broadcast EN 301 192 [1] specifies different service levels for all
application areas. The data piping specification does not give much information on how to get the data out of the
MPEG-2 TS. It more or less only specifies how to put data into MPEG-2 Transport Stream packets. In comparison with
the other application areas a lot of service specific hard- and/or software has to be built to get a service running.

The data streaming specification gives some more functionality, especially for timing. It is possible to do asynchronous
data broadcast, synchronized broadcast or synchronous broadcast. The specification is based on PES packets as defined
in MPEG-2 ISO/IEC 13818-1 [2].

The multiprotocol encapsulation, data carousel and object carousel application areas specifications are all built using the
DSM-CC framework of MPEG-2 ISO/IEC 13818-6 [4]. It is based on MPEG-2 private sections as defined in MPEG-2
ISO/IEC 13818-1 [2]. DVB has added specific information to get the framework working in the DVB environment,
especially in conjunction with the Service Information specification EN 300 468 [6].

In the specification for data broadcast EN 301 192 [1], every application area is defined by two parts as shown in
figure 4.2.

Transport

Control

Application Areas

MPEG 2 TS

#a #b #c #d

Control: SI and PSI
Transport: Databroadcast transport specification

Figure 4.2: Transport and control specification parts

The control specification is part of the EN 300 468 [6] Service Information specification, the transport part of the
specification is part of the EN 301 192 [1] data broadcast specification.

The following clauses give implementation guidelines how to use the different application areas.

4.2 Selection of the appropriate profile
As shown in figure 4.1 there are different ways to transmit data via MPEG-2 DVB Transport Streams. The mechanisms
have different characteristics concerning filtering, overhead, size, etc. The selection of the appropriate mechanism has
to be based on the specific requirements of the target application.

The level of detail of the specification varies for the different profiles. In case of Multiprotocol Encapsulation (see
EN 301 192 [1], clause 7) and Data Carousels (see EN 301 192 [1], clause 9) the specification is very detailed, which
only requires very few application specific definitions, in case of the other profiles there is much freedom.

Furthermore, it is possible to use application areas for other purposes than the recommended ones; e.g. a data carousel
like application can be based on top of Data piping and an IP broadcast one on top of Data streaming. Such
arrangements are of course part of service specific choices.

4.2.1 Fragmentation of datagrams

Generally data of any kind of protocols are transmitted in packetized form ("datagrams"). These datagrams may have
different length. If the data are not packetized or the packetization method is irrelevant or hidden to the DVB
transmission chain the most appropriate way of transmission is the Data Pipe (see EN 301 192 [1], clause 4).

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 11

On the layer of MPEG-2 Transport Stream data are transmitted within packets with a fixed length of 188 bytes
(184 bytes payload), therefore datagrams of higher layers must be fragmented at the transmission side and be
re-assembled at the reception. For fragmentation of the datagrams there are three possible ways (see also figure 4.1):

• Private mechanisms based on the Data Pipe.

• MPEG-2 Packetized Elementary Streams (PES).

• MPEG-2 Sections.

MPEG-2 PES provides a mechanism to transmit datagrams of variable size with a maximum length of 64 kbytes.
Additionally it provides the facility to synchronize different data streams accurately (as used in MPEG for
synchronization of Video and Audio), therefore it was chosen by DVB for the transmission of synchronous and
synchronized but also asynchronous data streams (see EN 301 192 [1], clauses 5 and 6).

MPEG-2 Sections can be used to transmit datagrams of variable size with a maximum length of 4 kbytes. The
transmission is asynchronous. MPEG-2 Sections are built in a way that MPEG-2 demultiplexers available on the market
can filter out single sections in hardware which may reduce the required software processing power of the receiver. This
is the main reason why the MPEG-2 Sections have been chosen as the mechanism for the transmission of encapsulated
protocols and data carousels.

For data broadcasting services in the DVB framework the data_broadcast_id_descriptor (EN 300 468 [6]) can be
present in the PMT, i.e. use of this descriptor is optional.

4.3 Data Pipe
The Data Pipe is an asynchronous transportation mechanism for data. The data are inserted directly in the payload of
MPEG-2 Transport packets.

There is no mechanism for fragmentation and reassembly of datagrams defined. This - if required - is part of the
application definition. For instance, the payload_unit_start_indicator could be used to signal the start of a datagram in a
packet while the transport_priority field could signal the end of a datagram.

The continuity_counter shall be used as defined by MPEG (ISO/IEC 13818-1 [2], clause 2.4.3).

4.3.1 Usage of the adaptation field

The main use of the Adaptation Field is stuffing. However, it is possible to use it for other purposes, e.g. the
transmission of PCR.

4.4 Asynchronous/Synchronized/Synchronous Data Streaming

4.4.1 Usage of the adaptation field

According to ISO/IEC 13818-1 [2], clause 2.4.3 a PES packet always has to start at the first payload byte of an
MPEG-2 Transport Packet. This means that for PES packets which are not aligned with the MPEG-2 Transport Packet
there is stuffing necessary. Since MPEG only allows stuffing bytes at the end of the packet for sections and not for PES
(see ISO/IEC 13818-1 [2], clause 2.4.3.3) stuffing can only be achieved by using Adaptation fields. This is no real
constraint for the performance of a decoder since most demultiplexer implementations provide the automatic extraction
of Adaptation Fields and therefore no additional processing power is required.

An Adaptation Field that is only used for stuffing can be created by setting all adaptation field flags
(discontinuity_indicator, random_access_indicator, elementary_stream_priority_indicator, PCR_flag, OPCR_flag,
splicing_point_flag, transport_private_data_flag, adaptation_field_extension_flag) to "0" and inserting the number of
required stuffing bytes.

The elementary_stream_priority_indicator and the adaptation_field_extension_flag shall be set to zero, since the
affiliated features have no meaning for Data Streaming.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 12

4.4.2 Asynchronous Data Streaming

Asynchronous Data Streaming is used in the case that the PES mechanism is of advantage for applications that need the
asynchronous transmission of datagrams.

Since no synchronization is necessary for this kind of transmission the stream_id "private_stream_2" (see
ISO/IEC 13818-1 [2]) has been chosen which implicitly excludes the usage of the PES packet header fields. Therefore
the PES_packet_length field is immediately followed by the datagram.

The definition of the datagram format is part of the private implementation ant therefore not subject of the DVB
specification.

4.4.3 Synchronous/Synchronized Data Streaming

In order to meet the requirements of the Synchronous and Synchronized Data Streaming an additional header, specific
to this DVB application profile has been defined (see EN 301 192 [1], table 1).

The field stream_id shall be set to "private_stream_1", allowing for the usage of the PES header fields, especially the
PTS. Usage of the time stamps requires the definition of Access Units. Since this is application dependant it has not
been defined within the DVB data broadcasting specification.

The first byte of this header (which is from MPEG-2 PES point of view the first payload byte) contains the
data_identifier. It is defined in accordance with the specifications for embedding of EBU-data (EN 300 472 [7]) and
DVB-subtitling (EN 300 743 [8]) and indicates the type of Data Streaming (synchronous /synchronized).

A combination of Synchronized and Synchronous Data Streaming in the same PES packet is not allowed. However,
both types of streaming data can be carried as part of a same program in separate PID's.

The field sub_stream_id may be used for private definition.

The two flags PTS_extension_flag and output_data_rate_flag indicate the existence of an output data rate field and of a
field for PTS extension. The usage of these fields is explained below.

The PES_data_packet_header_length indicates the length of the header and allows the addition of private bytes in the
header.

The DTS field in PES header is of no use while the PTS shall be coded in the same way as defined by MPEG in
ETS 300 802 [3].

4.4.4 Synchronous Data Streaming

Synchronous data streaming may be used if the output data rate at the receiver side needs to be very accurate. The
receiver clock is synchronized by the PCR. The 9 bit PTS_extension is needed to position data access units (a bit, a byte
or few bytes depending on how one defines access units) very accurately over a large range of data rates (kbit/s to
Mbit/s). The 9 bits extends the accuracy of the PTS clock from 11 µs to the same accuracy as a 27 MHz clock (37 ns).
Precise positioning of the data is required if multiple data decoders receiving the same data services (and knowing the
latency through the process) have to output the data at the same time in an aligned way, or if it is required to maintain
synchronization in the data output stream following a temporary loss of signal.

The field output_data_rate is used in order to specify the output data rate for the synchronous data stream. With the
28 bit accuracy (instead of the 400 bit/s resolution of 22 bit ES_rate in PES header) it is possible to implement PLL
(with clock down conversion) with a ratio of data output rate to 27 MHz (±30 ppm) covering a wide range of data rates.
The output_data_rate field conveys the bit rate of the regenerated signal for a synchronous data stream. The encoding of
the bit rate of the data stream into the output_data_rate field depends on the application. Applications which require bit
rates which are a multiple of 1 bit per second may encode the data streams bit rate into the output_data_rate field
directly with the units of output_data_rate as bits/second. Applications which require a continuous range of bit rates to
be regenerated within the 30 ppm tolerance specified by MPEG for the 27 MHz system_clock_frequency may encode
the bit rate of the data stream into the output_data_rate field as:

• output_data_rate = bit rate x M/system_clock_frequency;

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 13

where M is chosen to be a number sufficiently large to express the range of bit rates required for the application with
the desired bit rate accuracy. The practical range of bit rates for synchronous data streaming with a
system_clock_frequency of 27 MHz is 1 bit/s to 27 Mbit/s.

Note that the decoder model described in clause 12 of EN 301 192 [1] is not necessarily applicable if the output data
rate field is used.

ES_rate in the PES header can be used without the output_data_rate field in the PES data_packet for applications where
the 400 bit/s accuracy of ES_rate is adequate (e.g. T1 and E1). If both ES_rate and output_data_rate are present in an
encoded stream, the decoder can use either of the rates.

The recommended buffer size for synchronous data streaming is 4 800 byte. This gives sufficient capacity for a typical
maximum multiplexing jitter of 4 ms and a bit rate up to 9 Mbit/s.

4.4.5 Synchronized Data Streaming

Synchronized Data Streaming is used when the data stream shall be synchronized with another MPEG-2 PES stream.

4.5 Multiprotocol encapsulation

4.5.1 Overview

The multiprotocol encapsulation provides a mechanism for transporting data network protocols on top of the MPEG-2
Transport Streams in DVB networks. It has been optimized for carriage of the Internet Protocol (IP) (RFC 791 [5]), but
can be used for transportation of any other network protocol by using the LLC/SNAP encapsulation. It covers unicast
(datagrams targeted to a single receiver), multicast (datagrams targeted to a group of receivers) and broadcast
(datagrams targeted to all receivers). 48-bit MAC addresses are used for addressing receivers. However, DVB does not
specify how the MAC addresses are allocated to the receivers.

Due to the broadcast nature of DVB networks, security of the data is very important. The encapsulation allows secure
transmission of data by supporting encryption of the packets and dynamically changing MAC addresses.

4.5.2 Data transport

The datagrams are transported in datagram_sections which are compliant to the DSMCC_section format for private
data. The section format provides an efficient format for mapping the datagrams to the MPEG-2 Transport Stream
packets and support filtering of datagrams based on the MAC address using existing hardware or software
demultiplexers.

The section format permits fragmenting datagrams into multiple sections. If the length of the datagram is less or equal
than 4 080 bytes (including the possible LLC/SNAP header), the datagram shall be sent in one section. In case of IP and
the LLC/SNAP header being omitted, the MTU shall be set to 4 080 bytes or less, so that the datagrams will never be
fragmented. In case of IP and the LLC/SNAP header being present the MTU shall be set to 4 074 or less.

The MAC address has been divided into 6 bytes that are located in two groups. The reason for this is that the bytes 5
and 6 are in place of the table_id_extension field of the DSMCC_section while bytes 1, 2, 3 and 4 are in the payload
area of the DSMCC_section.

1 2 3 4 5 6 48-bit MAC address byte:

table
id section

length MAC
address

6 reserved last
section
number

MAC
address

5
MAC

address
4

MAC
address

3
MAC

address
2

MAC
address

1
....

section :

MSB LSB

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 14

Some demultiplexers are able to filter bytes 5 and 6 with hardware while filtering bytes 1, 2, 3 and 4 is done in
software. It is recommended that the two bytes of the MAC address which most probably differentiate the receivers are
put to the bytes 5 and 6. This is normally the case with IEEE MAC addresses and it is recommended that all MAC
addresses are constructed in this way.

Payload scrambling is controlled by a 2-bit field payload_scrambling_control. If the value of these bits is '00', the
payload is not scrambled. If the payload is scrambled, the scrambling algorithm is private to the service. The
mechanism how the scrambling method is signalled to the receiver is not defined by DVB.

MAC address scrambling provides further security by dynamically changing MAC addresses. By changing the control
word that is used for scrambling the MAC addresses periodically, monitoring of the stream can be prevented as the
destination of a particular datagram can not be determined by observing the MAC addresses. It also strengthens the
security as collecting datagrams destined to a single receiver is difficult. The delivery mechanism of control words used
for scrambling the MAC addresses is not defined by DVB.

Address scrambling is controlled in the section header by a 2-bit field address_scrambling_control. If the value is these
bits is '00', the MAC address is not scrambled. It should be noted that using MAC address scrambling without payload
scrambling is of no use, since the protocol address that is part of the datagram is visible in the clear.

The LLC/SNAP encapsulation provides a multiprotocol encapsulation that can be used for carrying any network
protocol, including IP. There is an optimization for carrying IP that allows transmitting IP datagrams without the
LLC/SNAP header. This is controlled by the LLC_SNAP_flag bit in the section header. If the value of the bit is '0', the
payload contains a bare IP datagram. If the value of the bit is '1', the payload contains an LLC/SNAP encapsulation
which consists of the LLC/SNAP structure LLC_SNAP() followed by the datagram bytes. The optimized way of
carrying IP can be used for both IPv4 and IPv6. The section_number and last_section_number fields must both be '0'
when carrying the IP protocol.

The section may contain stuffing after the datagram. The stuffing bytes may be used, for example, for making the
payload of the section to be multiple of a block size when a block encryption code is used. The value of these bytes is
not specified and in case of payload encryption they should not be assigned a fixed value as it would help breaking the
encryption.

The datagram_section has a checksum or a CRC_32 in the end depending on the value of the section_syntax_indicator.
It is recommended to use the CRC_32 as it provides a slightly better protection against bit errors as it can be checked by
hardware in most hardware demultiplexers while the checksum has to be normally checked by software.

4.5.3 Information in the SI

For services using multiprotocol encapsulation, the data_broadcast_descriptor shall be present in the SDT or the EIT.
The multiprotocol_encapsulation_info structure [1] is carried in the selector_byte field.

MAC_address_range field is used for signalling to the receiver which bytes of the MAC_address are significant for
filtering. The significant bytes of the MAC address are at the least significant end of the MAC address.

The MAC_IP_mapping_flag signals whether the mapping of multicast IP addresses to MAC addresses is done
according to RFC 1112 [13] for IPv4 multicast addresses and RFC 2464 [14] IPv6 multicast addresses. It should be
noted that as DVB does not define that the MAC addresses are used as defined by IEEE, alternative, possibly more
optimized, mappings are allowed.

Alignment indicator indicates if the datagram_section is 8-bit aligned or 32-bit aligned to the Transport Stream packets.
8-bit alignment essentially means that it is not aligned. Alignment is useful in implementations which input Transport
Stream packets and rely on the beginning of the section being on a 32-bit boundary for enabling efficient comparison
operations in filtering. The alignment is performed using the adaptation field of the Transport Stream packet and / or
stuffing bytes at the end of the sections.

The max_sections_per_datagram field defines the maximum number of section that are used for carrying a single
datagram (for IP this is restricted to be 1). This defines the maximum length of the datagram. Typically a receiver has to
combine the fragments of the datagram before passing it on, so this field defines the size of the buffer that the receiver
has to have for combining a datagram of the maximum length.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 15

4.6 Data carousel

4.6.1 Introduction

The data carousel is a transport mechanism that allows a server (the broadcast component of an application) to present a
set of distinct data modules to a decoder (a program that is run by a receiver) by cyclically repeating the contents of the
carousel, one or more times. If an application decoder wants to access a particular module from the data carousel, it may
simply wait for the next time that the data for the requested module is broadcast.

A good example of the data carousel concept that is widely understood is the Teletext system. In this system, a
complete set of Teletext pages is cyclically broadcast in some of the lines of an analogue video signal that are not part
of the active picture. When users requests a page, they must usually wait for the next time the page is broadcast. The
maximum length of time the user has to wait can be determined by the time it takes for a complete cycle of the carousel,
which in turn can be deduced from the size of the carousel and the rate at which data can be broadcast.

M3-1

M3-2

M8-3 M8-0
M8-1

block_size
cycle_time
M2: "file1"

M3: "file2"

M8-7

M8-5

M8-6

M8-4

M2-0

M3-0

M8-8

M8-2

download data message (MX-Y):
 DownloadDataBlock ()
 X = module_id
 Y = block_number

download control message:
DownloadServerInitiate () or
DownloadInfoIndication () M8: "file3"

M2_size

M3_size

M8_size

Figure 4.3: Cyclic transmission of information in a data carousel

Within a data carousel the data is structured into Modules, depicted in figure 4.3 as M2, M3 and M8. This could simply
be the contents of a number of files, say "file1", "file2" and "file3" as in this example. Each Module is divided up to
form the payload of one or more download data messages each defined using the DSM-CC DownloadDataBlock
syntax. The number of such messages depends on the size of the Module and the maximum payload of each download
data message. Information describing each Module and any logical grouping is provided by download control
messages, defined using either the DSM-CC DownloadServerInitiate or DownloadInfoIndication syntaxes as
appropriate.

In this example each download message has been inserted only once and DownloadDataBlocks from the same Module
have been inserted adjacent to one another and in order. There are however, no restrictions on how often a particular
message is inserted into a single loop of the carousel and the order and relative position of messages. This allows the
data carousel to be created in whatever way best suits a particular use. In addition the frequency and order of insertion
of messages into the data carousel do not need to be fixed and can change dynamically as required.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 16

4.6.2 Data carousel Groups and SuperGroups

A logically consistent set of Modules within the data carousel may be clustered together to form a Group as defined in
EN 301 192 [1]. The description of the Modules in the Group is provided by a DownloadInfoIndication message. There
are no restrictions on how Modules are associated into Groups and, in particular, one Module may be a member of more
than one Group.

Groups may be clustered together to form a SuperGroup as defined in EN 301 192 [1]. The description of the Groups in
the SuperGroup is provided by a DownloadServerInitiate message.

NOTE: A SuperGroup may contain any number of Groups, even only one.

The structure of the data carousel (in Groups and SuperGroups) does not necessarily reflect the structure of the content.

For purpose of clarification the exact DSM-CC messages are depicted in annex A. Annex B gives information about the
inclusion of DSM-CC messages in MPEG-2 sections.

4.6.3 Use of the one-layer data carousel

If the data carousel consists only of a single Group and the complete description of the Group can be contained within a
single DownloadInfoIndication message (i.e. one-layer of control information) then a one-layer data carousel can be
used. In all other cases a two-layer data carousel should be used.

The DownloadInfoIndication message is the only download control message in the data carousel and is referred to as
the top-level control message.

NOTE: Although there is only one defined download control message there may be multiple insertions of the
same message in a single loop of the data carousel.

An example where a one-layer data carousel would be appropriate would be the delivery of a small HTML based
application (say 10 to 20 Modules) authored to support HTML V1.0 only.

4.6.4 Use of the two-layer data carousel

A two-layer data carousel has one or more DownloadInfoIndication messages and a single DownloadServerInitiate
message (i.e. two-layers of control information). The DownloadServerInitiate message is referred to as the top-level
control message.

A two-layer data carousel should be used in the situations described below. These are the Guidelines for specific
circumstances and can be mixed together as necessary.

4.6.4.1 The data carousel consists of a single group the description of which is too
large for a single DownloadInfoIndication message

In this situation as many DownloadInfoIndication messages as necessary should be used to describe all the Modules in
the large Group. This effectively divides the large Group up into a number of smaller Groups each defined by its own
DownloadInfoIndication message. Since a data carousel can only have a single top-level control message this imposes
the use of a two-layer carousel. To be able to recreate the original large Group the new smaller Groups need to be linked
together. This is achieved by including group_link_descriptor() in the description of each of the new small Groups in
the DownloadServerInitiate message.

An example would be the delivery of a large HTML based application (say 500+ Modules) authored to support HTML
V1.0 only.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 17

4.6.4.2 The data carousel delivers a single version of an application but supports a
number of different receiver profiles

In this situation the data carousel should consist of a Group for each different receiver profile that is to be supported,
with common Modules shared amongst more than one Group.

An example would be the delivery of a small HTML based application (say 10 to 20 Modules) authored to support
HTML V1.0, V2.0 and V3.0. The data carousel would be structured as a SuperGroup containing three Groups. Many of
the Modules would be common to all three Groups, e.g. GIFs and JPEGs, but some would be specific to only one
Group, e.g. a particular HTML version of a page.

The groupCompatability structure associated with each Group would be used to determine which Group should be
used for a given receiver profile.

4.6.4.3 The data carousel simultaneously delivers more than one version of an
application for a single receiver profile

In this situation the data carousel should consist of a Group for each version of the application being delivered. Since
there is no Group versioning mechanism available, the DownloadServerInitiate message should only reference the
Group that describes the most recent version. This means that new viewers who access the data carousel via the
top-level control message will automatically use this version.

If a new version of the application is to be added to the data carousel whilst still delivering existing versions then a new
Group should be created. The DownloadServerInitiate message should be updated to remove any reference to the
previous "most recent" Group and now reference the new "most recent" Group. This imposes the restriction that the
receiver must store locally the relevant top-level (DownloadServerInitiate) control message if it wishes to continue to
access an older version still being broadcast.

NOTE: The transactionId field in the data_broadcast_descriptor could be used to point directly at the
DownloadInfoIndication message that describes an older version of the Group still in the data carousel.

An example would be using the receiver as a software download interface to a mass storage device where it is desirable
to continue to broadcast a large file to completion even though a more recent version of the same file is also being
broadcast.

4.6.5 Assignment and use of transactionId values

The use of the transactionId in the DVB data carousel is inherited from its use as defined by the DSM-CC
specification, and as such it can appear somewhat complex. The transactionId has a dual role, providing both
identification and versioning mechanisms for download control messages, i.e. DownloadInfoIndication and
DownloadServerInitiate messages. The transactionId should uniquely identify a download control message within a
data carousel, however it should be "incremented" whenever any field of the message is modified.

NOTE: The term "incremented" is used in the DSM-CC specification. Within the scope of the DVB data carousel
this should be interpreted as "changed".

The transactionId has been split up into a number of sub-fields defined in table 4.1. This reflects the due role of the
transactionId (outlined above) and constraints imposed by DVB to reduce the minimum level of filtering required by
receivers. However, to increase interoperability the assignment of the transactionId has been designed to be independent
of the expected filtering in target receivers.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 18

Table 4.1: Sub-fields of the transactionId

Bits Value Sub-field Description
0 User-defined Updated flag This must be toggled every time the control message is

updated
1 to 15 User-defined Identification This must and can only be all zeros for the top-level

control message. All non-top-level control messages
must have one or more non-zero bit(s).

16 to 29 User-defined Version This must be incremented/changed every time the control
message is updated.

30 to 31 Bit 30 - zero
Bit 31 - non-zero

Originator This is defined in the DSM-CC specification
(ISO/IEC 13818-6 [4]) as 0x02 if the transactionId has
been assigned by the network - in a broadcast scenario
this is implicit.

Due to the role of the transactionId as a versioning mechanism any change to any message in the data carousel will
cause the transactionId of the top-level control message to be incremented. The change propagates up through the
structure of the data carousel as follows. Any change to a Module will necessitate incrementing its moduleVersion
field. This change must be reflected in the corresponding field in the description of the Module in the
DownloadInfoIndication message(s) that describes any Group(s) that includes it. Since a field in the
DownloadInfoIndication message is changed its transactionId must be incremented to indicate a new version of the
message. Again (in the case of a two-layer data carousel) this change must be reflected in the corresponding field in the
description of the Group in the DownloadServerInitiate message that describes the SuperGroup. Since fields in the
DownloadServerInitiate message have changed its transactionId must also be incremented. This is useful since just by
looking at the transactionId of the top-level control message a change to any message in the data carousel can be
detected.

If the transactionId of any control message is referenced in the corresponding field of a data_broadcast_descriptor in
SI (see EN 300 468 [6], clause 6.2.6) then this will need to be updated to reflect any changes. One consequence of this
is that changes to the content of the data carousel may necessitate re-acquisition of the modified SI tables. Due to the
repetition rate of SI which can be up to 2 s, this may be an undesired side-effect that reduces the speed of response of
dynamic data services. To avoid this behaviour the value of 0xFFFFFFFF for the contents of the transactionId field in
the data_broadcast_descriptor can be used to indicate any top-level control message is valid.

The encapsulation of download control messages within MPEG-2 Transport Streams is defined in the DSM-CC
specification. It specifies that the 2 least significant bytes of the transactionId field are copied into the
table_id_extension field of the DSMCC_section header. This means that if the PID on which the DVB data carousel is
being broadcast is known the top-level control message can be located without knowing its transactionId by setting up
the section filters for table_id = 0x3B (download control messages) and table_id_extension = 0x0000 or 0x0001.

Table 4.1a reflects the encoding of the section header fields for the different message type.

Table 4.1a: Encoding of DSM-CC section_fields

Message table_
id

table_id_extension version_
number

section_
number

last_section_
number

Download-ServerInitiate
(DSI)

0x3B two LSB bytes of
transaction_id of DSI

0x00 0x00 0x00

Download-InfoIndication
(DII)

0x3B two LSB bytes of
transaction_id of DII

0x00 0x00 0x00

Download-DataBlock
(DDB)

0x3C moduled module
Version % 32

blockNumber % 256 Max(section_
number)

4.6.6 Use of descriptors specific to the DVB data carousel

All descriptors described in this clause are optional.

4.6.6.1 Type descriptor

With this descriptor the type of the Module or Group of the data carousel is transmitted. Its use is proprietary to the
service provider. A string of 'char' fields specifies the type of the module following the Media Type specifications
RFC 1521 [10] and RFC 1590 [11].

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 19

4.6.6.2 Name descriptor

With this descriptor the name of the Module or Group in the data carousel is transmitted. Its use is proprietary to the
service provider.

4.6.6.3 Info descriptor

With this descriptor information about the Module or Group in the data carousel is transmitted. Its use is proprietary to
the service provider.

4.6.6.4 Module link descriptor

The module_link_descriptor provides information about which Modules of one group are to be linked to get a complete
piece of data out of the carousel. Within this descriptor two fields, the position field and the module_id field together
indicate what is the first module in the list (position = 0x00, module_id = next module number), what is the next
module (position = 0x01, module_id = next module number) and what is the last module (position = 0x02) in the list
in case of a multi-module linkage.

4.6.6.5 CRC32 descriptor

With this descriptor CRC-32 calculation over a complete Module is indicated. The CRC-32 bits of the Module are part
of the descriptor.

4.6.6.6 Location descriptor

The location descriptor in a DownloadServerInitiate message indicates on which PID a Group of the data carousel can
be found. The DownloadInfoIndication message of the Group to be found has to be on that PID. The same mechanism
can be used in the DownloadInfoIndication message to find all the Modules on different PIDs.

This is a very powerful means to operate with Groups and Modules for different kinds of users.

4.6.6.7 Estimated download time descriptor

The descriptor for estimated download time has been introduced in order to provide an indication to the receiver of the
time it will take to download a Module or Group.

Some care is needed in how it is used. The download time will obviously be sensitive to the bitrate available to deliver
the data carousel. This may be a problem where the data carousel is produced separately from playout of that carousel.
If playout of the same data carousel is at one bitrate on one day (e.g. 1 Mbit/s) and at another bitrate on the next day
(e.g. 2 Mbit/s) then the estimated download time can not be correct for both (or even either!).

NOTE: One approach would be to calculate the value for estimated download time based on the minimum
playout bitrate. Obviously it may be more practical in some cases for the receiver to simply indicate how
much of the data has been received based on received messages.

4.6.6.8 Group link descriptor

The description of the Modules in a Group is provided by a DownloadInfoIndication message. The number of Modules
that may be described is determined by the maximum size of such a message and the size of the description of each
Module. The encapsulation of such download control messages within MPEG-2 sections limits the maximum size to
just under 4 kbytes. The size of a simple Module description (say basic information and a name descriptor of 30 bytes)
is about 40 bytes. This means that the DownloadInfoIndication message can describe about 100 Modules which will be
sufficient in most cases but not all.

In the later situation as many DownloadInfoIndication messages as necessary should be used to describe all the
Modules in the large Group. This effectively divides the large Group up into a number of smaller Groups each defined
by its own DownloadInfoIndication message. To be able to recreate the original large Group the new smaller Groups
need to be linked together. This is achieved by including group_link_descriptor() in the description of each of the new
small Groups in the DownloadServerInitiate message.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 20

4.6.6.9 Private descriptor

If a service provider has a need for a private descriptor the syntax of the private descriptor in (EN 301 192 [1],
clause 9.2.10) shall be used.

4.6.6.10 Compressed module descriptor

Presence of the compressed_module_descriptor indicates that the data in the module has the "zlib" structure as defined
in RFC 1951. The ZLIB structure is defined as:

zlib structure(){ No. of bytes
compression_method 1
flags_check 1
compressed_data n
check value 4
}

4.6.7 Information in the SI and PSI

Access to the data carousel can be achieved via descriptors in either SI or PSI. This provides some flexibility in how the
service is identified.

4.6.7.1 Descriptor in SI

For services using data carousel(s), the data_broadcast_descriptor shall be present in the SDT or the EIT, i.e. use of this
descriptor is mandatory.

The data_broadcast_id field shall be set to 0x0006 to indicate the use of the DVB data carousel.

The component_tag will identify the PID on which the data carousel is broadcast by association with a similar tag in
the stream_identifier_descriptor() for the particular stream in the PMT.

The data_carousel_info structure (EN 301 192 [1]) is carried in the selector_byte field.

The carousel_type_id indicates which kind of data carousel is used (figure 4 in EN 301 192 [1]).

The use of the transaction_id is depicted above in clause 4.6.4.

The time_out_value_DSI and time_out_value_DII gives some indication to the receiver of how long it shall wait
before assuming an error condition.

The leak_rate is included for optimization of the receiving device. By giving the leak_rate a decoder is able to
compute whether a service can be decoded. The leak rate may also be given in a smoothing_buffer_descriptor or a
maximum_bitrate_descriptor in which case the values given in both descriptors shall be consistent. However, the usage
of a maximum bitrate descriptor is not recommended".

The advantages of using an SI based access to the carousel instead of the PSI one are:

• The transactionId can be used to explicitly identify the top-level control message in the data carousel.

• By including the transactionId field in this descriptor, updates to the data carousel (which will cause a change
in transactionId) can be detected by filtering on just the SI.

NOTE: This behaviour can be avoided by using the special value of transactionId, 0xFFFFFFFF, as described in
clause 4.6.4.

• The descriptor does not consume any space in the PSI tables (which may be a scarce resource).

The disadvantage of using an SI based access to the carousel instead of the PSI one is:

• The repetition period of SI can be up to 2 s which can introduce delay to the initial access of the service.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 21

4.6.7.2 Descriptors in PSI

For services using data carousel(s), the data_broadcast_id_descriptor can be present in the PMT, i.e. use of this
descriptor is optional.

The data_broadcast_id field shall be set to 0x0006 to indicate the use of the DVB data carousel.

The advantage of using this mechanism is that:

• The maximum repetition period of PSI is only 0,1 s which allows fast initial access to the service.

The disadvantages of this mechanism are that:

• There is no transactionId field so explicitly identify the top-level control message. As such only download
control messages from a single data carousel may be transported on the identified elementary stream.

• The descriptor does not provide any information about the time-out period for download control messages.
This information must still be obtained from the descriptor in SI.

• The descriptor consumes some space (albeit small) in the PSI tables.

• The descriptor in SI must still be included as well.

4.7 Object carousel

4.7.1 Introduction

A DSM-CC object carousel facilitates the transmission of a structured group of objects from a broadcast Server to
broadcast Receivers (Clients) using directory objects, file objects and stream objects. The actual directory and content
(object implementations) are located at the Server. The Server repeatedly inserts the mentioned objects in the DVB
compliant MPEG-2 Transport Stream using the object carousel protocol. The object carousel is part of a DVB Service
as shown in figure 4.4. The transmitted directory and file objects contain the content of the objects, while the
transmitted stream objects are references to other streams in the broadcast. The stream objects may also contain
information about the DSM-CC events that are broadcast within a particular stream. DSM-CC events can be broadcast
with regular stream data and can be used to trigger DSM-CC applications.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 22

Directory

File
Stream

(reference)

Stream
(reference)

File

File

File

Directory

Directory

Stream+Events
(references)

Directory

AV Program

Object Carousel

StreamEvents

AV Program

DVB Service

DVB Service

Figure 4.4 Example of including object carousel specification in DVB Services

Multiple Clients can recover the object implementations by reading the repeatedly transmitted carousel data, hence
mimicking the Server's objects in a local object implementation. The objects in the carousel offer Clients a way to
access applications and content used by these applications, more or less as if there was an interactive connection with
the Server.

The following sections provide guidelines regarding the implementation and use of DSM-CC U-U object carousels in
DVB-compliant broadcast networks and in interactive systems compliant to DVB-SIS (ETS 300 802 [3]). This clause
focuses on the following subjects:

• Platform independence;

• Encoding of BIOP control structures used in U-U object carousels;

• Encoding of BIOP data messages used in U-U object carousels;

• Encoding of Download Data Carousel messages;

• Encoding of DSM-CC sections;

• Use of PSI descriptors for object carousels; and

• Use of SI descriptors for object carousels.

The scope is illustrated in figure 4.5 by the area surrounded by thick lines. Figure 4.5 shows the protocol stacks defined
by DVB-SIS for both Broadcast and Interactive Networks.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 23

Broadcast Network Interactive Network

U-U API

MPEG-2 TS

DSM-CC Sections

Download
Data Carousel

Object Carousel
(BIOP)

DSM-CC U-U

Application(s)

PPP-MP

IP

TCP

UNO-CDR / RPC
(IIOP)

Figure 4.5: Place of object carousel protocols in the DVB-SIS framework

4.7.2 Platform independence

4.7.2.1 Overview

The object carousel specification is platform-independent and compatible with the DSM-CC User-to-User specification
of ISO/IEC 13818-6 [4] and with the Object Request Broker (ORB) framework as defined by CORBA (OMG
Specification [9]). Within the DSM-CC User-to-User (U-U) system environment, a structured group of objects is
referred to as a Service Domain. The Service Domain has a Service Gateway which can be seen as the top-level
directory of the structured group of objects. As such the Service Gateway provides a context for the graph of service
names (i.e. object names) that is published to the Clients. A Service Domain can be located at a Server in an interactive
network as well as on a Server in a broadcast Network. In the latter case the objects within the Service Domain are
broadcast by means of an object carousel.

NOTE: For naming of objects please refer to annex C of the present document.

The data and attributes of a single Object within an object carousel are transmitted in a single message. The message
format is specified by the object carousel specification and is referred to as the BIOP message format (Broadcast Inter
ORB Protocol). BIOP messages are broadcast in a single Module of a DSM-CC Data Carousel (ISO/IEC 13818-6 [4]).
One Module may contain one or more BIOP messages. According to the DSM-CC Data Carousel specification each
Module is fragmented into one or more Blocks which are carried in a DownloadDataBlock message. Each
DownloadDataBlock message is of the same size (except for the last block of the Module which may be of a smaller
size) and is transmitted in turn in an MPEG-2 section as specified in (ISO/IEC 13818-6 [4]). The encapsulation rules for
DownloadDataBlock messages in MPEG-2 sections are such that Blocks can be acquired directly from the Transport
Stream using hardware filters found generally on demultiplexers.

Objects within Service Domains are identified using object references. DSM-CC U-U uses the Interoperable Object
Reference (IOR) structure as defined by CORBA. The object reference contains all the information that is necessary to
retrieve the object from one or more Servers in the network. The structure in the IOR that contains the location
information of a single instance of a stored Object is called a profile body. An IOR may contain multiple Profile Bodies
to indicate multiple (network) locations of the object.

The object carousel specification uses two Profile Bodies. These two Profile Bodies: BIOPProfileBody and
LiteOptionsProfileBody, are used to refer to objects that are located either in the same object carousel or in another
object carousel, respectively.

The first Profile Body is called the Broadcast Inter ORB Protocol (BIOP) Profile Body and is solely used to refer to
objects within the same object carousel (i.e. Service Domain). It facilitates the unique identification of the Object using
the identifier of the object carousel, the identifier of the Module in which the object is broadcast, and an unique key that
identifies the object within the Module. The identifier of the object carousel is linked to a DVB-service via a descriptor
in the PMT of the MPEG program.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 24

The second Profile Body is called the Lite Options Profile Body and is used to refer to objects in another Service
Domain (either Interactive or Broadcast). It facilitates applications to connect to another Service Domain using a
globally unique NSAP address format. For Service Domains in DVB-compliant networks the NSAP address is linked to
a particular DVB-service.

4.7.2.2 Supported U-U Objects

The object carousel specification is designed to support a number of the interfaces defined in the Application Portability
Interface (API) of DSM-CC U-U (User-to-User). This section provides guidelines regarding the objects and interfaces
supported within object carousels (see for interface definitions ISO/IEC 13818-6 [4]):

Table 4.2: Objects with supported READER interfaces

Object Supported READER Interfaces
DSM::Directory Access, Directory
DSM::File Base, Access, File
DSM::Stream Base, Access, Stream
DSM::ServiceGateway Access, ServiceGateway
BIOP::StreamEvent Base, Access, Stream, Event

It should be noted that the semantics of the API for broadcast networks will differ slightly from the semantics of the
API for interactive networks. The cause for this lies in the broadcast nature of the network. A typical example is with
the Stream interface where a pause ("now") API call for streams delivered via the broadcast network may freeze the
image on screen but not pause the delivery of the (broadcast) stream.

DVB Guideline: The present document does not provide any guidelines regarding the precise operation of the
DSM-CC U-U interface in Broadcast networks.

The DSM-CC interface Access will return attributes (i.e. object properties like read permission and access times) which
are set to default values because the broadcast of these attributes is not defined in BIOP ISO/IEC 13818-6 [4] and in
ETS 300 802 [3].

DVB Guideline: The present document does not provide any guidelines regarding the broadcasting of Access attributes
in object carousel.

Figure 4.6 shows the relationships between the U-U Objects using OMT notation [12].

StrEventTapStrStatusTap

EventList NameContent

BiopProgramTapBiopEsTap

ServiceGateway

Binding

DirectoryStream

BIOP::StreamEvent1+

Tap

1+

File

IOR

Object

refers to

StrNptTap

Figure 4.6: Supported Objects within object carousel

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 25

In an object carousel the following information is transmitted for each object:

Directory object data: List of Bindings, where each Binding binds a Name to an object
reference (IOR). In addition, each Binding may also contain some
additional attributes of the bound object to support the fast browsing
through directories. In the current object carousel specifications this is
only used for the contentSize attribute for file objects.

File object data: File content data and the contentSize attribute.
Stream object data: A list of identifiers (called Taps) referring to one or more streams in the

Broadcast network. Each Tap refers to either an Elementary Stream
(BiopEsTap) or to a complete MPEG program (BiopProgramTap).
Additionally other identifiers may be present that point to broadcast
channels that contain control information for the stream (such as Taps
that refer to StreamDescriptors for NPT, status/mode and events). The
stream object data also includes the StreamInfo attribute.

ServiceGateway object data: Identical to Directory object because ServiceGateway inherits from
Directory. Special for the ServiceGateway object is that it contains the
Root directory of the Service Domain.

StreamEvent object data: Similar to the Stream object data, but extended with the EventList
attribute and a list of eventIds. These attributes contain a list of
DSM-CC event names and a mapping of those to eventIds.

4.7.2.3 Transmission of objects

The data and attributes of one U-U Object in an object carousel are transmitted in one message. The message format is
specified by the Broadcast Inter ORB Protocol (BIOP) and is referred to as the BIOP Generic Object Message format
(or BIOP message for short). A BIOP Message consists of a MessageHeader, a MessageSubHeader and a
messageBody. The MessageHeader provides information about the version of the BIOP protocol and the length of the
BIOP message. The MessageSubHeader contains information about the conveyed Object such as objectType (File,
Stream, Directory) and objectKey (the unique identifier within a Module). The messageBody depends on the
objectType and contains the actual U-U Object's data. The size of a BIOP message is variable.

BIOP messages are broadcast in Modules of Data Carousels (ISO/IEC 13818-6 [4]). A Module is formed by the one or
more concatenated BIOP Messages (see figure 4.7) and are thus of variable length. Within the Module each Object is
identified by the objectKey. An Object can easily be found by parsing subsequently the objectKey field of the BIOP
message and the length of the BIOP message.

According to the DSM-CC Data Carousel specification each module is fragmented into one or more Blocks which are
carried in a DownloadDataBlock message. Each DownloadDataBlock message is of the same size (except for the last
block of the Module which may be of a smaller size) and is transmitted in turn in an MPEG-2 private section as
specified in ISO/IEC 13818-6 [4]. The encapsulation rules for DownloadDataBlock messages in MPEG-2 private
sections are such that Blocks can be acquired directly from the Transport Stream using hardware filters found generally
on demultiplexers.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 26

Download
Data Carousel :

Modules

and

Blocks

Object Carousel:

BIOP messages Obj-1 (Directory)

Module-1

Obj-3 (File)Obj-2 (Stream)

Block-1 Block-2 Block-3 Block-4 Block-5

Download DataBlock Headers

Message Headers and SubHeaders

DSM-CC
Sections

Section-2Section-1 Section-4Section-3 Section-5

Section Headers

Figure 4.7: Encapsulation and fragmentation of BIOP Messages
in Modules, Blocks, and MPEG-2 sections

The acquisition of an object from the broadcast network requires the complete acquisition of the module in which the
object is contained. This requires knowledge of the delivery parameters of the Module such as module version, module
size, block size, timing and broadcast channel. These delivery parameters are transmitted in a DownloadInfoIndication
message which has to be acquired from the network before acquiring the module (ISO/IEC 13818-6 [4]). One
DownloadInfoIndication message can describe the delivery parameters of multiple modules. The retrieval of an object
from the Broadcast network is therefore a two-step process.

Within BIOP the object reference of the Service Gateway of a Service Domain is transmitted in a
DownloadServerInitiate message (ISO/IEC 13818-6 [4]). This message can be found using information from either the
PSI or the PSI and SI.

4.7.2.4 Object References

BIOP uses CORBA's Interoperable Object Reference (see also ISO/IEC 13818-6 [4] and OMG [9]). An object reference
contains for each network location one Profile Body. The type of Profile Body depends on the protocols that are
necessary to acquire the Object from the Server.

For an IOR that refers to an Object within the same broadcast Service Domain (i.e. within the same object carousel), the
BIOP Profile Body identifies the location of the BIOP message that conveys the Object data and attributes. The BIOP
Profile Body consists therefore of an ObjectLocation component and a ConnBinder component (see figure 4.8).

Figure 4.8 illustrates how the object reference (IOR) with BIOP Profile Body can be resolved into the Object that it
refers to. The ObjectLocation identifies the object in the U-U object carousel by means of the triple carouselId,
moduleId and objectKey. The ConnBinder consists of a sequence of Taps (see clause 4.7.2.5). The Taps identify via the
PMT the streams on which the DownloadInfoIndication message is broadcast that contains the Module Delivery
Parameters of the object.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 27

ObjectLocation

Optional
More Taps

objectKey

Tap

carouselId

moduleId

IOR

BIOPProfileBody

ConnBinder

moduleId

module data

blockNumber

DownloadDataBlock

Module

 Object Object Object Object

1

module delivery
params of other
modules

module delivery param
moduleId

DownloadInfoIndication

Optional
More Taps

Tap 2

1 2 TapUse = BIOP_OBJECT_USETapUse = BIOP_DELIVERY_PARA_USE

PMT PMT

Figure 4.8: How an IOR with BIOP profile body can be resolved into an Object

The ConnBinder shall contain at least one Tap that 'points' via the PMT to the DownloadInfoIndication message. The
moduleId in the IOR is used to determine the appropriate delivery parameters in the DownloadInfoIndication message.
The delivery parameters shall in turn contain at least one Tap that 'points' (also via the PMT) to the
DownloadDataBlock messages that convey the Module. Finally the objectKey from the IOR is used to identify the
Object message in the Module.

Note that both the ConnBinder and the module delivery parameters may contain more than one Tap. Additional Taps
may identify alternative streams where the same Module (with possible other delivery parameters) is transmitted.

For an IOR that refers to an object in another Service Domain the Lite Options Profile Body is used. The Lite Options
Profile Body uses a globally unique NSAP address to identify the Service Domain which may be either Interactive or
Broadcast. For Service Domains in DVB-compliant broadcast networks the NSAP address identifies a particular
DVB-service as specified in EN 301 192 [1] (see figure 4.9).

Figure 4.9 illustrates how the object reference (IOR) with a Lite Options Profile Body can be resolved into the Service
Gateway of a broadcast Service Domain. The Profile Body contains a Service Location component that contains in turn
the NSAP address. The NSAP address identifies the broadcast Service Domain using the triple transport_stream_id,
service_id, and orginal_network_id of the DVB service in which the object carousel is broadcast. Using the PAT and
the PMT of the service the IOR of the Service Gateway is found in a DownloadServerInitiate message. This IOR
contains in turn an BIOP Profile Body that points to the Service Gateway Object of the broadcast Service Domain. The
resolve operation of the BIOP Profile Body is identical as in figure 4.8.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 28

ServiceLocation

service_id

org_network_id

LiteOptions.Pr.Body

NSAP

Transport_id

carousel_id

IOR

DownloadServerInitiate

See
previous
Figure

PMT

path_name()

PAT
ObjectLocation

Optional
More Taps

objectKey

Tap

carouselId

moduleId

IOR

BIOPProfileBody

ConnBinder

Figure 4.9: How an IOR with Lite Options Profile Body can be resolved into a Service Gateway

4.7.2.5 Taps and associations

IORs do not refer to streams directly by means of a PID, because PIDs can be changed by re-multiplexers. DSM-CC
has defined therefore Taps (ISO/IEC 13818-6 [4]) which are used in a similar way as component tags in DVB SI.

A Tap consists of:

id this field is for private use (shall be set to zero if not used)

use field indicating the usage of the Tap.

association_tag (association tag) field to associate the Tap with a particular (Elementary) Stream.

selector optional selector, to select the associated data from the associated (Elementary) Stream.
The presence of the selector depends on the use field.

The following use values are used within object carousels:

1) BIOP_DELIVERY_PARA_USE: The ConnBinder component of an BIOP Profile Body shall include such
Taps to indicate the connections at which the DownloadInfoIndication() messages are broadcast that describe
the module delivery parameters of the Module in which the object is conveyed (see figure 4.10). The selector
field of such Taps contains a transactionId field and a timeout field. The value of the transactionId field shall
be set to the transactionId of the DownloadInfoIndication() message that contains the module delivery
parameters. The timeout field shall be set to the time-out period in microseconds to be used to time out the
acquisition of the DownloadInfoIndication message.

2) BIOP_OBJECT_USE: Used in the DownloadInfoIndication() messages which convey the module delivery
parameters of the Modules to indicate the elementary stream on which the Modules are broadcast. The selector
field is empty.

3) BIOP_ES_USE, BIOP_PROGRAM_USE: The Stream object contains such Taps to indicate the stream(s) that
are associated with the object. Where a BIOP_ES_USE refers to a single Elementary Stream and
BIOP_PROGRAM_USE refers to a complete MPEG-2 Program (DVB Service). The selector field of both
Tap types is empty.

4) STR_STATUS_AND_EVENT_USE, STR_EVENT_USE, STR_STATUS_USE, STR_NPT_USE: The
Stream object and StreamEvent object may contain these Taps to indicate the various sub-streams that are
associated with the object. The selector field of all such Taps is empty.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 29

use

Tap

id

association_tag

selector

transactionId

time-out

PMT
1st descriptor loop

carousel_id_descr

ES loop

PID

carouselId

2nd descriptor loop

association_tag_descr

association_tag

use

selector

module delivery
params of other
modules

module delivery param
moduleId

DownloadInfoIndication

Optional
More Taps

Tap 2

transactionId

Figure 4.10: Use of association_tag descriptor to indicate elementary streams
(TapUse = BIOP_DELIVERY_PARA_USE).

In the course of resolving an object, Clients have to associate the Taps to the connections of the broadcast network.
Clients need, therefore, an association table that makes the association between the Taps and the connections of the
broadcast network. To support the implementation of U-U object carousels in Broadcast Networks based on MPEG-2
Transport Streams, ISO/IEC 13818-6 [4] defines three descriptors that can be inserted into MPEG-2 PMTs:

1) The carousel_identifier_descriptor labels a PMT with a carousel_id, identifying that all association_tags
present in the PMT belong to that U-U object carousel (providing a scope for the association tags (see
figure 4.10).

2) The association_tag_descriptor labels an Elementary Stream with an association_tag, associating all Taps
containing this tag with this Elementary Stream (see figure 4.10). Like a Tap, an association_tag_descriptor
also contains a use field and an optional selector field. Setting this use field to 0x0000, labels the Elementary
Stream that a DownloadServerInitiate message (DSI) is transmitted at this stream. This DSI contains the IOR
of the ServiceGateway.

3) The deferred_association_tags_descriptor contains a list of association_tags that are associated with
(Elementary Streams in) another MPEG-2 program (PMT) or that refer to another program (for use with
BIOP_PROGRAM_USE Taps). Figure 4.11 illustrates the use of the deferred_association_tags_descriptor to
point to another program.

id

Tap

use

association_tag

PMT
1st descriptor loop

carousel_id_descr

ES loop

PID

carouselId

2nd descriptor loop

deferred_assoc_tag_descr

association_tag

descriptors

transport_stream_id

program_number
PAT

PMT
1st descriptor loop

ES loop

PID

2nd descriptor lp.

descriptors

descriptors

PID

2nd descriptor lp.

descriptors

audio

video

org_network_id

Figure 4.11: Use of deferred_association_tag descriptor to indicate an MPEG-2 program
(TapUse = PROGRAM_USE)

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 30

4.7.3 BIOP Control Structures

BIOP control and data structures are defined in ISO/IEC 13818-6 [4] using the platform-independent specification
language OMG IDL (Interface Definition Language) as defined in OMG [9]. The 'bits-on-the-wire' encoding is defined
by the CDR (Common Data Representation, OMG [9]) encoding rules that converts IDL grammar to bits on the wire.
BIOP uses the CDR Lite encoding rules (ISO/IEC 13818-6 [4] which uses maximum length numbers in sequences and
byte alignment. Consequently, CDR Lite achieve a much more compact packing of data, compared to CDR.

NOTE: This also implies that all strings are terminated by a null character and that this character forms part of the
string length. (For an example see in table 4.9 the fields objectKind_length and objectKind_data).

In this clause the BIOP control structures are shown using an MPEG-2 syntax and guidelines are provided concerning
the encoding of the fields. Fields that are affected by the guidelines are shaded. In clause 4.7.4 the BIOP messages are
shown using an MPEG-2 syntax. In the case of any differences between the IDL structures defined in
ISO/IEC 13818-6 [4] and the structures defined in the following clauses, the defined structures in ISO/IEC 13818-6 [4]
will be correct.

4.7.3.1 Interoperable Object Reference (IOR)

DSM-CC uses the Interoperable Object Reference (IOR) format defined by OMG for object references at the Client-
Server Inter-operability Interface. Table 4.3 shows the syntax of the IOP::IOR (ISO/IEC 13818-6 [4]).

Table 4.3: IOP::IOR syntax

Syntax bits Type Value Comment
IOP::IOR {
 type_id_length 32 uimsbf N1
 for (i=0; i<N1; i++) {
 type_id_byte 8 uimsbf + see table 4.4
 }
 if (N1 % 4 ≠ 0) { + CDR alignment rule
 for (i=0; i<(4-(N1 % 4)); i++) {
 alignment_gap 8 uimsbf 0xFF
 }
 }
 taggedProfiles_count 32 uimsbf N2 Profile bodies
 for (n=0; n<N2; n++) {
 IOP::taggedProfile() {
 profileId_tag 32 uimsbf + e.g. TAG_BIOP

e.g. TAG_LITE_OPTIONS
 profile_data_length 32 uimsbf N3
 for (i=0; i<N3; i++) {
 profile_data_byte 8 uimsbf e.g. BIOPProfileBody

e.g. LiteOptionsProfileBody
 }
 }
 }
}

The type_id_byte fields of the IOR form a string representing the type of the object. For object identification in
OMG [9] mechanisms, string ids are used in the form "<Module>::<Interface>". In order to reduce the size of IORs,
DSM-CC defines aliases of 3 characters. The type_ids for Objects used in a DVB object carousels are shown in
table 4.4.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 31

Table 4.4: U-U Objects type_id

Full type_id alias type_id
"DSM::Directory" "dir"
"DSM::File" "fil"
"DSM::Stream" "str"
"DSM::ServiceGateway" "srg"
"BIOP::StreamEvent" "ste"

DVB Guideline: Only the alias type_id fields shall be used with DVB compliant systems. This implies that no
alignment stuffing bytes have to be inserted by the Server when using these aliases.

An IOR that refers to an object transmitted in the same U-U object carousel contains a BIOP Profile Body in the
taggedProfileList. ISO/IEC 13818-6 [4] allows an IOR to contain more than one profile body.

DVB Guideline: DVB compliant receivers shall be able to process at least the first of these profile bodies, while the
other profile bodies may be ignored.

There shall be at least 1 taggedProfile included in an IOR. For objects carried in a broadcast object carousel, the first
taggedProfile shall be either a TAG_BIOP profile or a TAG_LITE_OPTIONS.

4.7.3.2 BIOP Profile Body

The BIOP Profile Body has a LiteComponentProfile structure which follows the MultipleComponentProfile structure.
Table 4.5 shows the syntax of the BIOP Profile Body including the mandatory ObjectLocation component and
ConnBinder Component.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 32

Table 4.5: BIOP Profile Body syntax

Syntax bits Type Value Comment
BIOPProfileBody {
 profileId_tag 32 uimsbf 0x49534F06 TAG_BIOP (BIOP Profile Body)
 profile_data_length 32 uimsbf *
 profile_data_byte_order 8 uimsbf 0x00 big endian byte order
 liteComponents_count 8 uimsbf N1
 BIOP::ObjectLocation {
 componentId_tag 32 uimsbf 0x49534F50 TAG_ObjectLocation
 component_data_length 8 uimsbf *
 carouselId 32 uimsbf +
 moduleId 16 uimsbf +
 version.major 8 uimsbf 0x01 BIOP protocol major version 1
 version.minor 8 uimsbf 0x00 BIOP protocol minor version 0
 objectKey_length 8 uimsbf N2
 for (k=0; k<N2; k++) {
 objectKey_data_byte 8 uimsbf +
 }
 }
 DSM::ConnBinder {
 componentId_tag 32 uimsbf 0x49534F40 TAG_ConnBinder
 component_data_length 8 uimsbf *
 taps_count 8 uimsbf N3
 BIOP::Tap {

 id 16 uimsbf 0x0000 user private
 use 16 uimsbf 0x0016 BIOP_DELIVERY_PARA_USE
 association_tag 16 uimsbf +
 selector_length 8 uimsbf 0x0A
 selector_type 16 uimsbf 0x01
 transactionId 32 uimsbf *
 timeout 32 uimsbf *
 }
 for (m=0; m<N3-1; m++) {
 BIOP::Tap {

 id 16 uimsbf 0x0000 user private
 use 16 uimsbf 0x0016 BIOP_DELIVERY_PARA_USE
 association_tag 16 uimsbf +
 selector_length 8 uimsbf N4
 for (i=0; i<N4; i++) {
 selector_data_byte 8 uimsbf
 }
 }
 }
 }
 for (n=0;n<N5;n++) { N5=N1-2
 BIOP::LiteComponent {
 componentId_tag 32 uimsbf +
 component_data_length 8 uimsbf N6
 for (i=0; i<N6; i++) {
 component_data_byte 8 uimsbf
 }
 }
 }
}

DVB Guideline: The byte_order field shall have the value of 0x00 meaning that following data is encoded using
big-endian byte ordering.

The carouselId field provides a context for the moduleId field. It uniquely identifies the carousel within the Broadcast
Network and allows the distributed implementation of the carousel.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 33

DVB Guideline: The BIOP Profile Body shall only be used to refer to Objects within the same carousel. I.e. the value
of the carouselId is equal to the carouselId of the object carousel in which the IOR is transmitted. To refer to Objects in
another carousel use the Lite Options Profile Body.

DVB Guideline: The list of LiteOptionComponents shall contain exactly 1 BiopObjectLocation and exactly
1 DsmConnectionBinder as the first two components in that order.

The moduleId identifies the module in which the object is conveyed within the carousel.

The objectKey identifies the object within the module in which it is broadcast. This field is a series of bytes that is
supplied by the server and which is only meaningful to the server.

DVB Guideline: The value of the objectKey length field shall be less than or equal to 0x04.

Multiple Taps may share the same association tag, enabling one Elementary Stream to be used for more than one
purpose. Table 4.6 shows the defined Tap uses.

Table 4.6: Allowed Tap use definitions for Taps in a BIOP Profile Body

TapUse field Value Broadcast on PID
BIOP_DELIVERY_PARA_USE 0x16 Module delivery parameters
BIOP_OBJECT_USE 0x17 BIOP objects in Modules

DVB Guideline: If the BIOP_DELIVERY_PARA_USE tap is present in the ConnBinder component then it will be the
first tap in the ConnBinder.

DVB Guideline: DVB compliant receivers may skip over the BIOP_OBJECT_USE taps in BIOP Profile Bodies in
IORs.

DVB Guideline: The id field shall be set to zero if not used.

The semantics of the fields of a Tap with a TapUse value of BIOP_DELIVERY_PARA_USE are described below:

• The use field indicates the use of the Tap. The value of this field shall be BIOP_DELIVERY_PARA_USE.

• The association_tag identifies the broadcast channel (i.e. the Elementary Stream) on which the
DownloadInfoIndication() message is broadcast.

The selector field shall contain a selectorType of value MESSAGE (=0x0001) and the transactionId and timeout fields.
The value of the transactionId field shall be set to the transactionId of the DownloadInfoIndication() message that
contains the module delivery parameters. The timeout field shall indicate the time-out period in microseconds to be
used to time out the acquisition of the DownloadInfoIndication() message.

The semantics of the fields of a Tap with a TapUse value of BIOP_OBJECT_USE are described below:

• The use field indicates the use of the Tap. The value of this field shall be BIOP_OBJECT_USE.

• The association_tag identifies the broadcast channel (i.e. Elementary Stream) on which the Modules are
broadcast.

• The selector field shall be of 0 length.

NOTE: Taps with a TapUse value of BIOP_OBJECT_USE should, however, in DVB compliant systems be used
only in the DownloadInfoIndication messages and not in the IORs.

4.7.3.3 Lite Options Profile Body

To refer to an Object in another Service Domain, an IOR is present that contains a ServiceLocation component in an
Lite Options Profile Body. When a DSM-CC U-U API user attempts to resolve a Name (Directory::resolve, see
ISO/IEC 13818-6 [4], clause 5), that results in the encounter of such an IOR, a SERVICE_XFR exception is raised. A
SERVICE_XFR exception carries the ServiceLocation structure found in the Lite Options Profile Body of the IOR. The
API user may use the serviceDomain from the ServiceLocation structure for a subsequent attach to the new
ServiceGateway. The optional pathName contains the path within that ServiceGateway to find the Object.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 34

A Lite Options Profile Body has a LiteComponentProfile structure which follows the MultipleComponentProfile
structure. Table 4.7 shows the syntax of an Options Profile Body, that conveys a ServiceLocation component.

Table 4.7: Syntax of Options Profile Body with ServiceLocation component

Syntax bits Type Value Comment
LiteOptionsProfileBody {
 profileId_tag 32 uimsbf 0x49534F05 TAG_LITE_OPTIONS (Lite Options

Profile Body)
 profile_data_length 32 uimsbf *
 profile_data_byte_order 8 uimsbf 0x00 big endian byte order
 component_count 8 uimsbf N1
 DSM::ServiceLocation {
 componentId_tag 32 uimsbf 0x49534F46 TAG_ServiceLocation
 component_data_length 32 uimsbf *
 serviceDomain_length 8 uimsbf 0x14 Length of carousel NSAP address
 serviceDomain_data() 160 uimsbf + DVBcarouselNSAPaddress

(see table 4.8)
 CosNaming::Name() { pathName
 nameComponents_count 32 uimsbf N2
 for (i=0; i<N2; i++) {
 id_length 32 uimsbf N3 NameComponent id
 for (j=0; j<N3 j++) {
 id_data_byte 8 uimsbf +
 }
 kind_length 32 uimsbf N4 NameComponent kind
 for (j=0; j<N4 j++) {
 kind_data_byte 8 uimsbf + as type_id (see table 4.4)
 }
 }
 initialContext_length 32 uimsbf N5
 for (n=0; n<N5 n++) {
 InitialContext_data_byte 8 uimsbf
 }
 }
 }
 for (n=0;n<N6;n++) { N6=N1-1
 BIOP::LiteOptionComponent{
 componentId_tag 32 uimsbf +
 component_data_length 8 uimsbf N7
 for (i=0; i<N7; i++) {
 component_data_byte 8 uimsbf
 }
 }
 }
}

DVB Guideline: The ServiceLocation component shall be the first component in the profile body.

4.7.3.4 Carousel NSAP address

Each instance of a U-U object carousel represents a Service Domain. Each Service Domain has a globally unique
identifier that identifies a particular instance of a carousel, called the Carousel NSAP address (Network Service Access
Point).

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 35

Table 4.8: DVB Carousel NSAP Address syntax

Syntax bits Type Value Comment
DVBcarouselNSAPaddress()
 AFI 8 uimsbf 0x00 NSAP for private use
 Type 8 uimsbf 0x00 Object carousel NSAP Address.
 carouselId 32 uimsbf +
 specifierType 8 uimsbf 0x01 IEEE OUI
 specifierData { IEEE OUI } 24 uimsbf 0x<DVB> Constant for DVB OUI
 dvb_service_location () {
 transport_stream_id 16 uimsbf +
 original_network_id 16 uimsbf +
 service_id 16 uimsbf + (= MPEG-2 program_number)
 reserved 32 bslbf 0xFFFFFFFF
 }
}

The semantics of the AFI, type, carouselId, specifierData, transport_stream_id, original_network_id, and service_id,
and fields are as defined in EN 301 192 [1].

4.7.4 BIOP Messages

4.7.4.1 Directory

The BIOP::DirectoryMessageBody structure consists of a loop of Bindings. A binding correlates an object name
(i.e. bindingName) to an IOR and provides additional information about the object. The IOR must include the BIOP
Profile Body when the referenced object belongs to the Carousel.

Strings shall be terminated by the character "0x0".

The BIOP Directory message is an instantiation of the generic object message format.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 36

Table 4.9: BIOP::DirectoryMessage syntax

Syntax bits Type Value Comment
BIOP::DirectoryMessage() {
 magic 4x8 uimsbf 0x42494F50 "BIOP"
 biop_version.major 8 uimsbf 0x01 BIOP major version 1
 biop_version.minor 8 uimsbf 0x00 BIOP minor version 0
 byte_order 8 uimsbf 0x00 big endian byte ordering
 message_type 8 uimsbf 0x00
 message_size 32 uimsbf *
 objectKey_length 8 uimsbf N1
 for (i=0; i<N1; i++) {
 objectKey_data_byte 8 uimsbf +
 }
 objectKind_length 32 uimsbf 0x00000004
 objectKind_data 4x8 uimsbf 0x64697200 "dir" type_id alias
 objectInfo_length 16 uimsbf N2 objectInfo
 for (i=0; i<N2; i++) {
 objectInfo_data_byte 8 uimsbf +
 }
 serviceContextList_count 8 uimsbf N3 serviceContextList
 for (i=0; i<N3; i++) {
 context_id 32 uimsbf
 context_data_length 16 uimsbf N9
 for (j=0; j<N9; j++) {
 context_data_byte 8 uimsbf +
 }
 }
 messageBody_length 32 uimsbf *
 bindings_count 16 uimsbf N4
 for (i=0; i<N4; i++) { Binding
 BIOP::Name(){
 nameComponents_count 8 uimsbf N5
 for (i=0; i<N5; i++) {
 id_length 8 uimsbf N6 NameComponent id
 for (j=0; j<N6; j++) {
 id_data_byte 8 uimsbf +
 }
 kind_length 8 uimsbf N7 NameComponent kind
 for (j=0; j<N7; j++) {
 kind_data_byte 8 uimsbf + as type_id (see table 4.4)
 }
 }
 }
 bindingType 8 uimsbf + 0x01 for nobject

0x02 for ncontext
 IOP::IOR() + objectRef (see table 4.3)
 objectInfo_length 16 uimsbf N8
 for (j=0; j<N8; j++) {
 objectInfo_data_byte 8 uimsbf +
 }
 }
}

The semantics of the fields of the BIOP::DirectoryMessageBody are defined below:

The byte_order field indicates the byte ordering used for the following subsequent elements of the message (including
message_size). A value of FALSE (0) indicates big-endian byte ordering, and TRUE (1) indicates little endian ordering.

DVB Guideline: The byte_order field shall have the value of 0x00 meaning that following data is encoded using
big-endian byte ordering.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 37

The objectKey field identifies the object that is conveyed in this message. It is identical to the objectKey that is present
in the BIOP::ObjectLocation component of the IOR of the object. The value of the objectKey is only meaningful to the
Broadcast Server and is not interpreted by the Client. It will however be used by the Client for a byte by byte
comparison to compare this objectKey with the objectKey from an IOR.

DVB Guideline: The value of the objectKey length field shall be less than or equal to 0x04.

The objectKind field identifies the kind of the object that is conveyed in this message. It is identical to the type_id
string that is present in the IOR of the object (see clause 4.7.3.1 and table 4.4). The value of the objectKind defines the
syntax and semantics of the objectInfo field and the messageBody field.

DVB Guideline: The objectKind of a Directory message shall be "dir".

The objectInfo field contains some or all of the attributes of this object. The syntax and semantics of this field are
dependent of the value of the objectKind field.

The serviceContextList may be used to pass user private data related to the object interfaces. Its use will not be defined
by this specification.

DVB Guideline: DVB compliant receivers shall be able to skip over the ServiceContextList field.

The bindingName field (i.e. id and kind) contains the path specification of the object (as defined by CosNaming).

DVB Guideline: The BIOP::Name the name shall contain exactly one NameComponent thus nameComponents_count
shall be set to 1.

The bindingType field indicates the type of the object binding. Binding can either be of type 'ncontext' when the name
is bound to a Directory or ServiceGateway object or 'nobject' when the name is bound to an object other than Directory
or ServiceGateway.

BindingType 'composite' is not supported for U-U object carousels.

The objectRef field contains the IOR of the object.

The objectInfo field may contain some of the attributes of the bound object as well as user private information about
the object. If attributes of the bound object are carried in this field they shall be the first structures that are encapsulated
in this field.

DVB Guideline: DVB compliant receivers shall be able to skip over information in the objectInfo field.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 38

4.7.4.2 File

The FileMessageBody contains the file data as an octet stream.

Table 4.10: BIOP::FileMessage syntax

Syntax bits Type Value Comment
BIOP::FileMessage() {
 Magic 4x8 uimsbf 0x42494F50 "BIOP"
 biop_version.major 8 uimsbf 0x01 BIOP major version 1
 biop_version.minor 8 uimsbf 0x00 BIOP minor version 0
 byte_order 8 uimsbf 0x00 big endian byte ordering
 message_type 8 uimsbf 0x00
 message_size 32 uimsbf *
 objectKey_length 8 uimsbf N1
 for (i=0; i<N1; i++) {
 objectKey_data_byte 8 uimsbf +
 }
 objectKind_length 32 uimsbf 0x00000004
 objectKind_data 4x8 uimsbf 0x66696C00 "fil" type_id alias
 objectInfo_length 16 uimsbf N2
 DSM::File::ContentSize 64 uimsbf + objectInfo
 for (i=0; i<N2-8; i++) {
 objectInfo_data_byte 8 uimsbf +
 }
 serviceContextList_count 8 uimsbf N3 serviceContextList
 for (i=0; i<N3; i++) {
 context_id 32 uimsbf
 context_data_length 16 uimsbf N9
 for (j=0; j<N9; j++) {
 context_data_byte 8 uimsbf +
 }
 }
 messageBody_length 32 uimsbf *
 content_length 32 uimsbf N4
 for (i=0; i<N4; i++) {
 content_data_byte 8 uimsbf + actual file content
 }
}

The semantics of the fields of the BIOP::File message are identical as for the BIOP::Directory message except the
following rules:

The objectKind field identifies the kind of the object that is conveyed in this message. It is identical to the type_id
string that is present in the IOR of the object (see clause 4.7.3.1 and table 4.4). The value of the objectKind defines the
syntax and semantics of the objectInfo field and the messageBody field.

DVB Guideline: The objectKind of a File message shall be "fil".

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 39

4.7.4.3 Stream

DVB Guideline: The objectKind of a Stream message shall be "str".

The BIOP::StreamMessageBody consists a sequence of Taps that are associated with the stream object.

Table 4.11: BIOP::StreamMessage syntax

Syntax bits Type Value Comment
BIOP::StreamMessage() {
 magic 4x8 uimsbf 0x42494F50 "BIOP"
 biop_version.major 8 uimsbf 0x01 BIOP major version 1
 biop_version.minor 8 uimsbf 0x00 BIOP minor version 0
 byte_order 8 uimsbf 0x00 big endian byte ordering
 message_type 8 uimsbf 0x00
 message_size 32 uimsbf *
 objectKey_length 8 uimsbf N1
 for (i=0; i<N1; i++) {
 objectKey_data_byte 8 uimsbf +
 }
 objectKind_length 32 uimsbf 0x00000004
 objectKind_data 32 uimsbf 0x73747200 "str" type_id alias
 objectInfo_length 16 uimsbf N6
 DSM::Stream::Info_T { objectInfo
 aDescription_length 8 uimsbf N2 aDescription
 for (i=0; i<N2; i++) {
 aDescription_bytes 8 uimsbf +
 }
 duration.aSeconds 32 simsbf + AppNPT seconds
 duration.aMicroSeconds 16 uimsbf + AppNPT micro seconds
 audio 8 uimsbf +
 video 8 uimsbf +
 data 8 uimsbf +
 }
for (i=0; i=N6-(N2+10); i++) {
 objectInfo_byte 8 uimsbf +
}
 serviceContextList_count 8 uimsbf N3 serviceContextList
 for (i=0; i<N3; i++) {
 context_id 32 uimsbf
 context_data_length 16 uimsbf N9
 for (j=0; j<N9; j++) {
 context_data_byte 8 uimsbf +
 }
 }
 messageBody_length 32 uimsbf *
 taps_count 8 uimsbf N4
 for (i=0; i<N4; i++) {

 id 16 uimsbf 0x0000 undefined
 use 16 uimsbf + (see table 4.12)
 association_tag 16 uimsbf +
 selector_length 8 uimsbf 0x00 no selector
 }
}

The stream field contains one or more Taps that are associated with this stream object. Regarding the content of the
stream either one or more Taps are present with a TapUse value of BIOP_ES_USE or one Tap is present with a TapUse
value of BIOP_PROGRAM_USE. In the first case, the stream consists of a number of elementary streams, each
elementary stream is identified by a BIOP_ES_USE Tap. In the second case the stream consists of an MPEG-2
Program, identified by a BIOP_PROGRAM_USE Tap.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 40

The semantics of the fields of a Tap that points to an elementary stream are described below:

• The use field indicates the use of the Tap. The value of this field shall be BIOP_ES_USE.

• The association_tag identifies the broadcast Elementary Stream.

• The selector field shall be empty.

The semantics of the fields of a Tap that points to an MPEG-2 Program are described below:

• The use field indicates the use of the Tap. The value of this field shall be BIOP_PROGRAM_USE.

• The association_tag identifies the MPEG-2 Program Map Table (PMT) that describes the broadcast program.
The association_tag value will correspond with an association_tag value in a
deferred_association_tags_descriptor, that points to the PMT (see clause 4.7.7.4).

• The selector field shall be empty.

Note that the Taps in a stream may also refer to NPT (Normal Play Time), status and event elementary streams.

Table 4.12: Allowed Tap use definitions for Taps in a BIOP::StreamMessage

TapUse field Value Broadcast on PID
STR_NPT_USE 0x000B Stream NPT Descriptors
STR_STATUS_AND_EVENT_USE 0x000C Both Stream Mode and Stream Event

Descriptors
STR_EVENT_USE 0x000D Stream Event Descriptors
STR_STATUS_USE 0x000E Stream Mode Descriptors
BIOP_ES_USE 0x0018 Elementary Stream (Video/Audio)
BIOP_PROGRAM_USE 0x0019 Program (DVB Service) Reference

4.7.4.4 Service Gateway

The syntax and semantics of the Service Gateway message are identical to the syntax and semantics of the
BIOP::Directory message except the following:

DVB Guideline: The objectKind of a ServiceGateway message shall be "srg".

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 41

4.7.4.5 StreamEvent

Table 4.13: BIOP::StreamEventMessage syntax

Syntax bits Type Value Comment
BIOP::StreamEventMessage() {
 magic 4x8 uimsbf 0x42494F50 "BIOP"
 version.major 8 uimsbf 0x01 BIOP major version 1
 version.minor 8 uimsbf 0x00 BIOP minor version 0
 byte_order 8 uimsbf 0x00 big endian byte ordering
 message_type 8 uimsbf *
 message_size 32 uimsbf *
 objectKey_length 8 uimsbf N1
 for (i=0; i<N1; i++) {
 objectKey_data_byte 8 uimsbf +
 }
 objectKind_length 32 uimsbf 0x00000004
 objectKind_data 4x8 uimsbf 0x73746500 "ste" type_id alias
 objectInfo_length 16 uimsbf N6
 DSM::Stream::Info_T {
 aDescription_length 8 uimsbf N2 aDescription
 for (i=0; i<N2; i++) {
 aDescription_bytes 8 uimsbf + see BIOP::StreamMessage()
 }
 duration.aSeconds 32 simsbf + see BIOP::StreamMessage()
 duration.aMicroSeconds 16 uimsbf + see BIOP::StreamMessage()
 audio 8 uimsbf + see BIOP::StreamMessage()
 video 8 uimsbf + see BIOP::StreamMessage()
 data 8 uimsbf + see BIOP::StreamMessage()
 }
 DSM::Event::EventList_T {
 eventNames_count 16 uimsbf N3
 for (i=0; i<N3; i++) {
 eventName_length 8 uimsbf N4
 for (j=0; j<N4; j++) {
 eventName_data_byte 8 uimsbf + (including zero terminator)
 }
 }
 }
for (i=0; i=N6-(N2+10)-
(2+N3+sum(N4)); i++) {

8 uimsbf +

 objectInfo_byte
}
 serviceContextList_count 8 uimsbf 0x00 Empty serviceContextList
 for (i=0; i<N3; i++) {
 context_id 32 uimsbf
 context_data_length 16 uimsbf N9
 for (j=0; j<N9; j++) {
 context_data_byte 8 uimsbf +
 }
 }
 messageBody_length 32 uimsbf *
 taps_count 8 uimsbf N5
 for (i=0; i<N5; i++) {

 id 16 uimsbf 0x0000 undefined
 use 16 uimsbf + (see table 4.12)
 association_tag 16 uimsbf +
 selector_length 8 uimsbf 0x00 no selector
 }
 eventIds_count 8 uimsbf N3 (= eventNames_count)
 for (i=0; i<N3; i++) {
 eventId 16 uimsbf +
 }
}

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 42

DVB Guideline: The objectKind of a StreamEvent message shall be "ste".

The eventIdList contains the eventIds that are correlated to the event names published in the EvenList_T attribute. The
sequence count of the eventIds shall be equal to the sequence count of the EventNames.

NOTE: DSM-CC events do not correspond to DVB-SI events.

4.7.5 Download Data Carousel Messages

4.7.5.1 DownloadInfoIndication

The delivery parameters of the module in the broadcast network are conveyed in a DownloadInfoIndication() message
(ISO/IEC 13818-6 [4]). One DownloadInfoIndication() message can convey the module delivery parameters of multiple
Modules of the same U-U object carousel. The following semantics apply to the fields of the DownloadInfoIndication()
message:

The transactionId field shall have the same value as the transactionId value encapsulated in the selector of the
BIOP_DELIVERY_PARA_USE Taps of the IORs of the objects that are carried in Modules described in this message.

DVB Guideline: If any field of the DownloadInfoIndication message changes, its transaction_id shall be incremented
by a positive integer value to a new unique value.

The downloadId field shall have the same value as the downloadId field of the DownloadDataBlock() messages which
carry the Blocks of the Modules described in this message. Consequently, the value of this field shall be equal to the
carouselId of the U-U object carousel.

The blockSize field contains the block size of all the DownloadDataBlock() messages which convey the Blocks of the
Modules described in this message.

The windowSize, ackPeriod, tCDownloadWindow, and tCDownloadScenario fields are not used and are set to zero.

The compatibilityDescriptor() field is not used and has a zero length.

The moduleId, moduleSize, and moduleVersion fields semantics are in ISO/IEC 13818-6 [4], clause 7.3.2.

The moduleInfoLength field defines the length in bytes of the moduleInfo field for the described module.

The moduleInfoBytes field shall contain the BIOP::ModuleInfo structure. The BIOP::ModuleInfo structure provides
additional delivery parameters and the Taps that are used to broadcast the Modules in the network. The syntax and
semantics of the BIOP::ModuleInfo structure are shown in table 4.14.

Table 4.14: BiOP:: ModuleinfoMessage syntax

Syntax bits Type Value Comment
BIOP::ModuleInfo() {
 ModuleTimeOut 32 uimsbf +
 BlockTimeOut 32 uimsbf +
 MinBlockTime 32 uimsbf +
 taps_count 8 uimsbf N1
 for (j=0; j<N1; j++) {

 Id 16 uimsbf 0x0000 user private
 Use 16 uimsbf 0x0017 BIOP_OBJECT_USE
 association_tag 16 uimsbf +
 selector_length 8 uimsbf 0x00
 }
 UserInfoLength 8 uimsbf N2
 for (j=0; j<N2; j++) {
 userInfo_data_byte 8 uimsbf + (including zero terminator)
 }
}

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 43

The moduleTimeOut field gives the time out value in microseconds that may be used to time out the acquisition of all
Blocks of the Module.

The blockTimeOut field gives the time out value in microseconds that may be used to time out the reception of the
next Block after a Block has been acquired.

The minBlockTime field indicates the minimum time period that exists between the delivery of two subsequent Blocks
of the described Module. Clients may use this value to adjust their acquisition procedures for optimization purposes.

The Taps field of BIOP::ModuleInfo shall contain at least one Tap with the TapUse value of BIOP_OBJECT_USE.
This Tap shall point to the network connection on which the Modules are broadcast. The semantics of the fields of this
Tap are described in clause 4.7.2.5.

The userInfo field of BIOP::ModuleInfo shall be structured as a loop of descriptors which enables the use of Module
descriptors as defined in DVB Data Carousels.

DVB Guideline: The receiver shall support especially the compressed_module_descriptor (tag 0x09) used to signal that
the module is transmitted in compressed form.

The use of the privateDataLength and privateDataByte fields is not defined by this specification.

DVB Guideline: DVB compliant receivers shall be able to skip over the private data field.

4.7.5.2 DownloadServerInitate

The IOR of the Service Gateway is broadcast by means of DownloadServerInitiate() messages.

The following semantics apply on the fields of the DownloadServerInitiate() message:

The serverId field shall be set to 20 bytes with the value 0xFF. The Carousel Specifier is defined below.

The compatibilityDescriptor() field is not used and has a zero length.

The privateDataLength field of the DownloadServerInitiate() message defines the length in bytes of the
privateDataByte fields that follow this field.

The data in the privateDataByte field of the DownloadServerInitiate() message shall contain the
BIOP::ServiceGatewayInfo structure. The syntax and semantics of the BIOP::ServiceGatewayInfo structure are defined
in table 4.15:

Table 4.15: ServiceGatewayInfo() syntax

Syntax bits Type Value Comment
ServiceGatewayInfo () {
 IOP::IOR() + (see table 4.3)
 downloadTaps_count 8 uimsbf N1 software download Taps
 for (i=0; i<N1; i++) {
 Tap() 8 uimsbf +
 }
 serviceContextList_count 8 uimsbf N2 serviceContextList
 for (i=0; i<N2; i++) {
 context_id 32 uimsbf
 context_data_length 16 uimsbf N9
 for (j=0; j<N9; j++) {
 context_data_byte 8 uimsbf +
 }
 }
 userInfoLength 16 uimsbf N3 user info
 for (i=0; i<N3; i++) {
 userInfo_data_byte 8 uimsbf +
 }
}

The objectRef field contains the IOR of the ServiceGateway.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 44

The semantics of the Taps field and serviceContextList is not defined in the present document.

The user info field shall be structured as a descriptor loop. The descriptors in this loop shall be either descriptors as
defined in the DVB Data Broadcasting Specification or private descriptors.

4.7.5.3 DownloadDataBlock

The DownloadData Message is defined in [4]. The use of the fields is defined in the DSM-CC specification
(ISO/IEC 13818-6 [4]).

4.7.6 MPEG-2 Sections

ISO/IEC 13818-1 [2] defines a private_section structure which DSM-CC uses to provide re-assembly of Transport
Stream Packets into DSM-CC messages. DSM-CC defines additional semantics on private_sections to support
additional DSM-CC requirements. Called DSMCC_section, the structure is compatible with the private_section syntax
so that compliant MPEG-2 Systems decoders may be used. The DSM-CC_section syntax is defined in
ISO/IEC 13818-6 [4].

DVB Guideline: The encoding of the table_id_extension, version_number, section_number, and last_section_number
are defined in table 4.16.

Table 4.16: Encoding of DSMCC_section fields

Message table_
id

table_id_extension version_
number

section_
number

last_section_
number

Download-
ServerInitiate
(DSI)

0x3B two LSB bytes of
transaction_id of DSI

0x00 0x00 0x00

Download-
InfoIndication (DII)

0x3B two LSB bytes of
transaction_id of DII

0x00 0x00 0x00

Download-
DataBlock (DDB)

0x3C moduleId module
Version % 32

blockNumber %
256

Max(section_
number)

DVB Guideline: For DownloadServerInitiate messages the 2 least significant bytes of the transaction_id shall be in the
range 0x0000 - 0x0001.

DVB Guideline: DownloadInfoIndication messages the 2 least significant bytes of the transaction_id shall be in the
range 0x0002 - 0xFFFF.

DVB Guideline: DVB has put some limitations to the basic DSM-CC specification regarding the transaction_id field to
allow for easy filtering options to customer decoders. In particular, DSI messages have a value of 0x0000 or 0x0001 for
the two LSB bytes. This enables receivers to bootstrap the carousel by setting up the section filters for table_id=0x3B
(DownloadControlMessages) and table_id_extension= 0x0000 or 0x0001. Once the DSI message has been acquired the
receiver can set up the section filter to listen to the other value of the two LSB bytes of the transaction_id. This shall
trigger the receiver immediately once the carousel content is being updated.

4.7.7 Use of PSI descriptors

The object carousel specification in ISO/IEC 13818-6 [4] is network independent and is applicable for any type of
Broadcast Network. Network independence is achieved by using the Tap concept. A Tap facilitates a reference to a
particular network connection by means of an association tag. In the course of resolving an object, Clients have to
associate the Taps to broadcast connections of the network. Clients need therefore an association table that makes the
associations between the Taps and the connections of the broadcast network.

For the implementation of U-U object carousels on top of Broadcast Networks that are based on MPEG-2 Transport
Streams, the PSI mechanisms facilitate:

1) the association of a MPEG-2 Program (i.e. PMT) with an object carousel;

2) the association of a Tap with a PID or a MPEG-2 Program;

3) the localization of the PID on which the IOR of the Service Gateway is broadcast; and

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 45

4) the distributed implementation of an object carousel on top of multiple MPEG-2 Programs.

This clause explains the use of three MPEG-2 descriptors that provide this functionality (see also ISO/IEC 13818-6 [4]).

4.7.7.1 Carousel identifier descriptor

The carousel identifier descriptor facilitates the association between a MPEG-2 Program and an object carousel. The
syntax and semantics of the carousel_identifier_descriptor() are described in table 4.17 (see ISO/IEC 13818-6 [4]).

This optional mechanism allows to acquire the ServiceGateWay of a ServiceDomain without first loading the
Download Server Initiate and Download Indication Information messages.

Table 4.17: carousel_identifier_descriptor

Syntax bits Type Value Comment
carousel_identifier_descriptor () {
 descriptor_tag 8 uimsbf 0x13
 descriptor_length 8 uimsbf *
 carousel_id 32 uimsbf +
 FormatId 8 uimsbf Registered Identifier of the

FormatSpecifier

 FormatSpecifier(){
 FormatSpecifier_byte 8 uimsbf (see table 4.17a)

N2 bytes
 }
 for (i=0;i<N1;i++){
 private_data_byte 8 uimsbf
 }
}

DVB Guideline: The carousel_identifier_descriptor() shall be inserted in the second descriptor loop of the PMT
(ES_info) corresponding to the elementary stream carrying the DSI of the object carousel. This allows more than one
object carousel per MPEG-program and implicitly identifies the PID on which each carousel should be booted from.

The insertion of a carousel_identifier_descriptor() is also necessary to support the use of the
DVBcarouselNSAPaddress, such as in the resolution of a LiteOptionsProfileBody reference.

The FormatId identifies the format of a FormatSpecifier carried in the private data field of the descriptor. The syntax
and semantics of this structure are defined in table 4.17a.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 46

Table 4.17a: FormatSpecifier in the carousel_identifier_descriptor

FormatId
Value

Format Specifier
Definition

length
[bits]

Comment

0x00 no FormatSpecifier A value of 0x00 indicates the absence of a
formatSpecifier. Thus the location of the
ServiceGateway is only possible through the "standard"
way interpreting the DSI and DII messages.

0x01 FormatSpecifier{
 ModuleVersion
 ModuleId
 BlockSize
 ModuleSize
 CompressionMethod
 OriginalSize
 TimeOut
 ObjectKeyLength
 for (i=0;i<N1;i++{
 ObjectKeyData
 }
}

8
16
16
32
8
32
8
8

8

This FormatSpecifier is an aggregation of the fields
necessary to locate the ServiceGateway, also found in
the DSI and DII messages.

NOTE: All field types are "uimsbf".

timeout in seconds

Object key of the service gateway object

0x02...0x7F reserved for future use The format Id values from 0x02 to 0x7F are reserved for
future use of DVB

0x80...0xFF reserved for private use The format Id values from 0x80 to 0xFF are reserved for
private use

FormatId 0x01 identifies that the FormatSpecifier contains information (also found in the DSI and DII messages) that
can be used to locate the ServiceGateway of the object carousel. Supporting this FormatID may have consequences for
the broadcast server since this information must be kept consistent with changes to the ServiceGateway object and the
module in which it is delivered.

DVB Guideline: The presence of the FormatSpecifier with FormatId 0x01 implies that the DSI message and the
module containing the ServiceGateway are carried on the same PID.

4.7.7.2 Association tag descriptor

The association_tag_descriptor (ISO/IEC 13818-6 [4]) facilitates the association between an association_tag and a PID
and is therefore similar as the stream_identifier descriptor of DVB SI (EN 300 468 [6]). The assocation_tag descriptor
uses however 16-bit assocation_tag (as opposed to the 8-bit component_tag of the stream_identifer_descriptor) and
facilitates the identification of the PID on which the ServiceGateway is broadcast. The latter function allows receivers
to bootstrap the object carousel efficiently from a PMT with a large number of PIDs. To label a PID with a particular
association_tag value, the Server shall insert the association_tag descriptor in the descriptor loop of that PID.

The syntax and semantics of the association_tag_descriptor are described in table 4.18.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 47

Table 4.18: association_tag_descriptor

Syntax bits Type Value Comment
association_tag_descriptor () {
 descriptor_tag 8 uimsbf 0x14
 descriptor_length 8 uimsbf *
 association_tag 16 uimsbf +
 use 16 uimsbf 0x0000

0x0100-0x1FFF
0x2000-0xFFFF

DSI with IOR of SGW
DVB reserved
user private

 if (use == 0x0000) {
 selector_length 8 uimsbf 0x08
 transaction_id 32 uimsbf + transaction_id of DSI
 timeout 32 uimsbf + timeout for DSI
 } else if (use == 0x0001) {
 selector_length 8 uimsbf 0x00
 } else {
 selector_length 8 uimsbf N1
 for (i=0; i<N1; i++) {
 selector_byte 8 uimsbf
 }
 }
 for (i=0; i<N2; i++) {
 private_data_byte 8 uimsbf private data
 }
}

The use field may indicate the usage of the PID and shall specify the syntax and semantics of the selector field. If the
use value equals 0x0000 then the DownloadServerInitiate message that carries the IOR of the Service Gateway is
broadcast on this PID. In this case the data in the selector_byte fields shall contain the transaction_id and a timeout
value.

The semantics of the transaction_id and timeout fields are as follows.

The value of the transaction_id field shall correspond to the transaction_id of the DownloadServerInitiate() message
that conveys the IOR of the Service Gateway of the U-U object carousel. Except when the transaction_id in the
association_tag_descriptor has the value of 0xFFFFFFFF. This value indicates that the transaction_id of the
DownloadServerInitiate() message is not known at this point, but all DownloadServerInitiate() messages broadcast on
the identified PID are valid. A transaction_id value of 0xFFFFFFFF may be used when the content of the
DownloadServerInitiate() message is allowed to change (and thus the transaction_id in the message changes), without
the need to update the PMT that contains the association_tag_descriptor.

The timeout field shall indicate the time-out period in microseconds that may be used to time out the acquisition of the
DownloadServerInitiate() message. A special value of the timeout (0xFFFFFFFF) indicates that no timeout value is
known at this point. Allowing a 'static' PMT as described above.

DVB Guideline: The default value for the use field shall be 0x0100. This means that the associated PID may or may
not broadcast a DSI message.

DVB Guideline: DVB reserves the range of 0x0101 to 0x01FF for the use field for future use.

4.7.7.3 Stream identifier descriptor

The stream_identifier_descriptor [DVB-SI] facilitates the association between a component_tag and a PID in an
efficient way and may be used instead of (or in combination with) the association_tag descriptors. However since the
component_tag field of a stream_identifier_descriptor is only an 8-bit field a mapping is necessary between
component_tags and assocation_tags.

DVB Guideline: A stream_identifier_descriptor in the descriptor loop of a PID shall be equivalent with an
association_tag_descriptor for that PID with an association_tag value of LSB = <component_tag> and a use value of
0x0100.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 48

NOTE: This matching provides the flexibility to distribute the object carousel over multiple elementary streams
and still use the same component_tag value in the different PMTs to refer to this particular data broadcast
service.

4.7.7.4 Deferred association tags descriptor

An object carousel may use multiple PIDs, Services, and Transport Streams to broadcast the objects and associated
control information. To facilitate Clients with the localization of all association_tags that are used in the different
MPEG-2 Programs for the object carousel, a descriptor is defined that may be inserted in the first descriptor loop of the
PMTs of the MPEG-2 Programs that implement the object carousel. The deferred_assocation_tags_descriptor contains
association_tags that are used within the object carousel but that are not associated with a PID in the PMT in which the
descriptor resides. The deferred_association_tags_descriptor contains therefore a forward reference to an MPEG-2
Program that does contain the PID to which the association tag is linked. Multiple deferred association tags descriptors
may be inserted in a PMT if necessary.

In addition a deferred_association_tag_descriptor may be used to refer to another DVB service (MPEG-2 program) as a
result of a BIOP_PROGRAM_USE Tap.

NOTE: Deferred_association_tags must be used whenever an object carrousel is broadcast using multiple
services. For every service that carries a part of the carrousel, the list of deferred association_tags must be
complete to avoid failing or false mapping of association_tags.

The syntax and semantics of the deferred_association_tags_descriptor() are described in table 4.19.

Table 4.19: deferred_association_tags_descriptor

Syntax bits Type Value Comment
deferred_association_tags_descriptor () {
 descriptor_tag 8 uimsbf 0x15
 descriptor_length 8 uimsbf *
 association_tags_loop_length 8 uimsbf 2xN1 length in bytes
 for (n=0; n<N1 ; n++) {
 association_tag 16 uimsbf +
 }
 transport_stream_id 16 uimsbf +
 program_number 16 uimsbf +
 org_network_id 16 uimsbf +
 for (n=0; n<N ; n++) {
 Private_data_byte 8 uimsbf +
 }
}

4.7.8 Information in the SI and PSI

For signalling just the use of the DVB object carousel the data_broadcast id shall be set to 0x0007.

NOTE: If the use of the object carousel forms part of a specification which has registered a data_broadcast id, this
alternative value (with the appropriate syntax for the selector fields) may be used instead.

4.7.8.1 SI Descriptor

The data_broadcast_descriptor in the SI can be used with the above value to indicate the presence of an DVB object
carousel within a Service.

In this case the selector field of the data_broadcast_descriptor contains a loop of object names that allows the
bootstrapping of applications within the object carousel. The loop contains an ISO_639_language_code field which can
be used (for example) to start an application based on preferred language.

DVB Guideline: The object names used in the data_broadcast_descriptor shall exist in the object carousel.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 49

4.7.8.2 Descriptors in PSI

The data broadcast_id descriptor can be used in a similar way as for data carousels (see clause 4.6.7.1).

4.7.9 Assignment and use of transactionId values

The use of the transactionId in the object carousel is inherited from its use as defined by the DSM-CC specification, and
as such it can appear somewhat complex. The transactionId has a dual role, providing both identification and versioning
mechanisms for control messages, i.e. DownloadInfoIndication and DownloadServerInitiate messages. The
transactionId should uniquely identify a download control message within a data carousel, however it should be
"incremented" whenever any field of the message is modified.

NOTE: The term "incremented" is used in the DSM-CC specification. Within the scope of the UK DTT object
carousel this should be interpreted as "changed".

An object carousel are carried on top the data carousels and may be distributed over multiple data carousels. By a data
carousel used below the object carousel, we mean in this specification a set of DownloadInfoIndication message
transmitted on a single PID and the DownloadDataBlock messages carrying the modules described in the
DownloadInfoIndication messages. The DownloadDataBlock messages may be spread on other elementary streams
than the DownloadInfoIndication messages. The DownloadServerInitiate message in the context of object carousels is
considered to be part of the top level of the object carousel and not associated with any data carousel.

When a module is changed, the version number of the module needs to be changed. This implies that the
DownloadInfoIndication message that references the module needs to be also updated. Since the
DownloadInfoIndication is updated, the transactionId needs to be also changed. However, the transactionId of the
DownloadInfoIndication message is used in other messages also, but the need to change the other messages should
specifically be avoided and the implications of updating a module should be limited to the module itself and the
DownloadInfoIndication that references the module. Therefore, additional rules on the usage of the transactionId have
been specified as follows.

The transactionId has been split up into a number of sub-fields defined in table 4.20. This reflects the dual role of the
transactionId (outlined above) and constraints imposed to reduce the effects of updating a module. However, to increase
interoperability the assignment of the transactionId has been designed to be independent of the expected filtering in
target receivers.

Table 4.20: Sub-fields of the transactionId

Bits Value Sub-field Description
0 User-defined Updated flag This must be toggled every time the control message is

updated
1 to 15 User-defined Identification This must and can only be all zeros for the

DownloadServerInitiate message. All other control
messages must have one or more non-zero bit(s).

16 to 29 User-defined Version This must be incremented/changed every time the control
message is updated.

30 to 31 Bit 30 - zero
Bit 31 - non-zero

Originator This is defined in the DSM-CC specification
ISO/IEC 13818-6 [4] as 0x02 if the transactionId has
been assigned by the network - in a broadcast scenario
this is implicit.

Due to the role of the transactionId as a versioning mechanism, any change to a control message will cause the
transactionId of that control message to be incremented. Any change to a Module will necessitate incrementing its
moduleVersion field. This change must be reflected in the corresponding field in the description of the Module in the
DownloadInfoIndication message(s) that describes it. Since a field in the DownloadInfoIndication message is changed
its transactionId must be incremented to indicate a new version of the message.

Also, any change in the DownloadServerInitiate message implies that its transactionId must also be incremented.
However, when the transactionId is divided into subfields as specified above, updating a message will change only the
Version part of the transactionId while the Identification part remains the same.

Since the transactionId is used also for identifying the messages when referencing the messages in other structures, it is
very desirable that these referenced would not need to be updated every time the control message is update. Therefore
the following rule shall be applied when locating the messages based on the references:

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 50

When locating a message based on the transactionId value used for referencing the message, only the Identification part
(bits 1...15) shall be matched.

Using this rule, the implications of updating a module can be limited to the module itself and the
DownloadInfoIndication message describing the module. Also, this implies that if a receiver wants to find out if a
particular module that it has retrieved earlier has changed, it needs to filter the DownloadInfoIndication message that
described that module and check if it has been changed.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 51

Annex A:
DSM-CC messages for data carousel
This annex contains the syntax of the DSM-CC Download messages as defined per July 12 1996. The semantic
description of each field indicates where possible the value to use when implementing a DVB Data Carousel using this
protocol.

A.1 dsmccMessageHeader
Table A.1: MPEG-2 DSM-CC Message Header Format

Syntax Number of Bytes
dsmccMessageHeader() {
 protocolDiscriminator 1
 dsmccType 1
 messageId 2
 transactionId 4
 reserved 1
 adaptationLength 1
 messageLength 2
 if(adaptationLength>0) {
 dsmccAdaptationHeader()
 }

}

The protocolDiscriminator field is used to indicate that the message is a MPEG-2 DSM-CC message. The value of
this field shall be 0x11.

NOTE: The use of protocolDiscriminator 0x11 is dependent upon the response of ITU-T SG11 and ISO/IEC
JTC1 to a liaison letter requesting that this value be assigned to DSM-CC.

The dsmccType field is used to indicate the type of MPEG-2 DSM-CC message. The value of this field shall be 0x03
to indicate that the message is a U-N Download message.

The messageId field indicates the type of message which is being passed. The values of the messageId are defined
within the scope of the dsmccType.

The transactionId field is used for session integrity and error processing and shall remain unique for a period of time
such that there will be little chance that command sequences collide. The transactionId is of local significance, i.e. the
value should be chosen by the broadcast server.

The reserved field is ISO/IEC 13818-6 [4] reserved. This field shall be set to 0xFF.

The adaptationLength field indicates the total length in bytes of the adaptation header.

The messageLength field is used to indicate the total length in bytes of the message following this field. This length
includes any adaptation headers indicated in the adaptationLength and the message payload indicated by the messageId
field.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 52

A.2 dsmccDownloadDataHeader
Table A.2: DSM-CC Download Data Header Format

Syntax Number of Bytes
dsmccDownloadDataHeader() {
 ProtocolDiscriminator 1
 DsmccType 1
 MessageId 2
 DownloadId 4
 Reserved 1
 AdaptationLength 1
 MessageLength 2
 for(adaptationLength>0) {
 dsmccAdaptationHeader()
 }

}

The protocolDiscriminator field is used to indicate that the message is a MPEG-2 DSM-CC message. The value of
this field shall be 0x11.

NOTE: The use of protocolDiscriminator 0x11 is dependent upon the response of ITU-T SG11 and ISO/IEC
JTC1 to a liaison letter requesting that this value be assigned to DSM-CC.

The dsmccType field is used to indicate the type of MPEG-2 DSM-CC message. The value of this field shall be 0x03
to indicate that the message is a U-N Download message.

The messageId field indicates the type of message which is being passed. The values of the messageId are defined
within the scope of the dsmccType.

The downloadId field is used to associate the download data messages and the download control messages of a single
instance of a download scenario

The reserved field is ISO/IEC 13818-6 [4] reserved. This field shall be set to 0xFF.

The adaptationLength indicates the total length in bytes of the adaptation header.

The messageLength field is used to indicate the total length in bytes of the message following this field. This length
includes any adaptation headers indicated in the adaptationLength and the message payload indicated by the messageId
field.

A.3 DownloadServerInitiate
Table A.3: DownloadServerInitiate message

Syntax Number of Bytes
DownloadServerInitiate() {
 dsmccMessageHeader()
 serverId 20
 compatibilityDescriptor()
 privateDataLength 2
 for(i=0;i<privateDataLength;i++) {
 privateDataByte
 }

1

}

The serverId field shall be set to 20 bytes with the value 0xFF (i.e. the field is not used).

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 53

The compatibilityDescriptor() structure shall only contain the compatibilityDescriptorLength field of the
compatibilityDescriptor as defined in DSM-CC (ISO/IEC 13818-6 [4]). It shall be set to the value 0x0000 (i.e. the
field is not used).

The privateDataLength field defines the length in bytes of the following structure.

The privateDataByte fields shall convey the GroupInfoIndication structure defined in the DVB Specification for Data
Broadcasting (EN 301 192 [1]).

A.4 DownloadInfoIndication
Table A.4: DownloadInfoIndication message

Syntax Number of Bytes
DownloadInfoIndication() {
 dsmccMessageHeader()
 downloadId 4
 blockSize 2
 windowSize 1
 ackPeriod 1
 tCDownloadWindow 4
 tCDownloadScenario 4
 compatibilityDescriptor()
 numberOfModules 2
 for(i=0;i< numberOfModules;i++) {
 moduleId 2
 moduleSize 4
 moduleVersion 1
 moduleInfoLength 1
 for(i=0;i< moduleInfoLength;i++) {
 moduleInfoByte
 }

1

 }
 privateDataLength 2
 for(i=0;i< privateDataLength;i++) {
 privateDataByte
 }

1

}

The downloadId field is the identifier of the download scenario in progress. The downloadId shall be uniquely
defined within the Network for data carousel scenario and unique within the connection for the flow-controlled and
non-flow-controlled scenarios. This identifier shall be used in all of the subsequent DownloadDataBlock,
DownloadDataRequest, and DownloadCancel messages used by the download scenario in progress.

The blockSize field is the length in bytes of the data in every block carried in the DownloadDataBlock messages,
except for the last block of each module which may be smaller than blockSize.

The windowSize is unused for broadcast data carousel scenarios and shall be set to 0.

The ackPeriod is unused for broadcast data carousel scenarios and shall be set to 0.

The tCDownloadWindow is unused for broadcast data carousel scenarios and shall be set to 0.

The tCDownloadScenario field indicates the time out period in microseconds for the entire download scenario in
progress.

The compatibilityDescriptor() structure shall only contain the compatibilityDescriptorLength field of the
compatibilityDescriptor as defined in DSM-CC (ISO/IEC 13818-6 [4]). It shall be set to the value 0x0000 (i.e. the
field is not used).

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 54

The numberOfModules field is the number of modules described in the loop following this field. For flow-controlled
and non-flow controlled download scenarios, the loop describes all the modules that have to be downloaded by the
Client. For the data carousel scenario, the loop describes a subset of all the modules associated with this data
carousel, although it may describes all of them.

The moduleId field is an identifier for the module that is described by the moduleSize, moduleVersion, and
moduleInfoByte fields. The moduleId is unique within the scope of the downloadId.

The moduleSize field is the length in bytes of the described module.

The moduleVersion field is the version of the described module.

The moduleInfoLength field defines the length in bytes of the moduleInfo field for the described module.

The moduleInfoByte fields shall convey a list of descriptors. Each list will define one or more attributes of the
associated module. Note that the interpretation of these fields is different when the moduleId is in the range 0xFFF0 to
0xFFFF. In this case, these fields carry the ModuleInfo structure as defined by DAVIC.

The privateDataLength field defines the length in bytes of the following privateDataByte field.

The privateDataByte field is user defined.

A.5 DownloadDataBlock
Table A.5: DownloadDataBlock

Syntax Number of Bytes
DownloadDataBlock() {
 dsmccDownloadDataHeader()
 moduleId 2
 moduleVersion 1
 reserved 1
 blockNumber 2
 for(i=0;i<N;i++) {
 blockDataByte
 }

1

}

The moduleId field identifies to which module this block belongs.

The moduleVersion field identifies the version of the module to which this block belongs.

The reserved field is reserved by ISO/IEC 13818-6 [4] and shall be set to 0xFF.

The blockNumber field identifies the position of the block within the module. Block number 0 shall be the first block
of a module.

The blockDataByte conveys the data of the block.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 55

A.6 DownloadCancel
Table A.6: DownloadCancel message

Syntax Number of Bytes
DownloadCancel() {
 dsmccMessageHeader()
 downloadId 4
 moduleId 2
 blockNumber 2
 downloadCancelReason 1
 reserved 1
 privateDataLength 2
 for(i=0;i<privateDataLength;i++) {
 privateDataByte
 }

1

}

The downloadId field is the identifier of the instance of the download scenario in progress. It shall be used this to
associate the DownloadCancel message to a particular download scenario in progress or data carousel.

The moduleId and blockNumber fields indicate the last processed DownloadDataBlock message at the time of the
cancel. If no data blocks have been processed, these fields shall be set to 0.

The downloadCancelReason field contains a reason code that explains the reason for the cancellation.

The reserved field is reserved by ISO/IEC 13818-6 [4] and shall be set to 0xFF.

The privateDataLength field defines the length in bytes of the following privateDataByte fields.

The use of the privateDataByte field is not specified by the DVB Data Carousel and may be used for proprietary
information.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 56

Annex B:
Encapsulation of DSM-CC messages in MPEG-2 sections
This annex illustrates how DSM-CC messages are encapsulated in MPEG-2 sections. Please refer to the DSM-CC
specification for the precise semantics.

When DSM-CC Download messages are encapsulated in MPEG-2 Transport Streams, the DSMCC_section syntax shall
be used. This structure inherits all of the Private_section syntax as defined in ISO/IEC 13818-1 [2]. Special semantics
apply to the encoding of particular fields in the DSMCC_section header. The mapping of the DSMCC_section into
MPEG-2 Transport Stream Packets and the maximum length of a DSMCC_section are governed by the semantics for
Private_sections defined in ISO/IEC 13818-1 [2].

In some implementations, it is desirable to use the CRC_32 available in Private_sections. Because some systems may
have difficulty calculating a CRC_32, the DSMCC_section syntax defines an alternative to using CRC_32. To be
consistent with ISO/IEC 13818-1 [2], if the section_syntax_indicator is set to '1', then the CRC_32 shall be present and
correct. In the case where the section_syntax_indicator is '0', the syntax of the section is the same as when the
section_syntax_indicator is '1', except that the CRC_32 field is replaced with the checksum field. The resultant syntax is
still compliant to ISO/IEC 13818-1 [2], since the payload following the section_length field shall be treated as private
data.

Since the section_syntax_indicator bit itself may be subject to a bit error, the private_indicator field shall be set to the
complement of the section_syntax_indicator value. If the section_syntax_indicator is '0', then the private_indicator shall
be verified to be '1', and if it is not, the section has suffered an error. Similarly, if the section_syntax_indicator is '1' then
private_indicator shall be '0'.

When section_syntax_indicator is '0' (CRC is not used) and the checksum field has been set to 0, another form of error
detection shall be provided at a different layer. This requirement is imposed to ensure the DSMCC_section maintains
the minimal requirements this specification imposes on its transport protocol.

For syntax and semantics related to the carriage of private_sections (and therefore DSMCC_sections) within the MPEG
Transport Stream, see ISO/IEC 13818-1 [2], clause 2.4.4, Program specific information. This includes the setting of the
payload_unit_start_indicator, the presence of the pointer_field in the Transport Stream packet payload, and the use of
packet stuffing bytes.

Unless otherwise restricted, DSM-CC tables (i.e., one or more DSMCC_sections with the same table_id) may be
contained in Transport Stream packets with the same value PID as other private_section formatted tables (e.g. in
ISO/IEC 13818-1 [2] stream_type 0x05), if table_id parsing is done.

When DownloadDataBlock messages are carried in MPEG-2 Transport Streams, only DownloadDataBlock messages
with the same value of downloadId shall be contained in Transport Stream packets with the same value PID. This
means that each PID can only deliver download data messages from a single data carousel. There is no such restriction
specified for downloadcontrol messages, allowing such messages from any number of data carousels to be transported
in the same elementary stream. In these cases the transactionId of a particular top-level control message must be
explicitly identified using the data_broadcast_descriptor in SI to achieve predictable behaviour.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 57

Table B.1: DSM-CC Section Format

Syntax N° of bits Mnemonic
DSMCC_section() {
 table_id 8 uimsbf
 section_syntax_indicator 1 bslbf
 private_indicator 1 bslbf
 reserved 2 bslbf
 dsmcc_section_length 12 uimsbf
 table_id_extension 16 uimsbf
 reserved 2 bslbf
 version_number 5 uimsbf
 current_next_indicator 1 bslbf
 section_number 8 uimsbf
 last_section_number 8 uimsbf
 if(table_id == 0x3A) {
 LLCSNAP()
 }
 else if (table_id == 0x3B) {
 userNetworkMessage()
 }
 else if (table_id == 0x3C) {
 downloadDataMessage()
 }
 else if (table_id == 0x3D) {
 DSMCC_descriptor_list()
 }
 else if (table_id == 0x3E) {
 for (i=0;i<dsmcc_section_length-9;i++) {
 private_data_byte
 }
 }
 if(section_syntax_indicator == '0') {
 checksum 32 uimsbf
 }
 else {
 CRC_32 32 rpchof
 }
}
NOTE 1: The DownloadServerInitiate message, the DownloadInfoIndication message, and the

DownloadCancel message are in the userNetworkMessage class.
NOTE 2: The DownloadDataBlock message is within the downloadMessage class.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 58

Annex C:
Naming of objects in directories
In DSM-CC, the Directory objects provide a hierarchical tree-like directory structure (actually, the directory structure
can be even more general graph than a tree). Each Directory object may contain references to other Directories
(i.e. subdirectories) and other objects. When a Object is bound to a Directory, a name string is assigned to it that
uniquely identifies the object within that directory. The ServiceGateway object is the root directory of the directory
hierarchy. The path that includes the names starting from the ServiceGateway via possible subdirectories to an object
identifies that object uniquely within the object carousel. An object can possibly be bound to multiple directories and
thus have many paths all pointing to the same object.

The following conventions for delimiting names and directories are the following:

a) The forward slash "/" shall be used as a delimiter between directory names and object names.

b) The forward slash is not allowed as part of a name.

Relative path names are not required therefore no other convention is necessary.

For various reasons, DSM-CC and the object carousels use many slightly different data structures for storing the path in
different contexts. Thus, in different contexts the data structures that are used for storing the path may be different while
they are still referring to the same path, i.e. name strings in the data structures are the same.

C.1 Data structures used for names in DSM-CC
User-to-User API

The User-to-User API uses two different data structures for the path in different contexts. The reason for this is that the
Directory object of DSM-CC inherits from the CosNaming::NamingContext object of CORBA. DSM-CC however adds
some functionality to that and for this additional functionality it has been necessary to define a separate data structure
for passing the path information.

The CosNaming::NameComponent is the basis for all name data structures. It represents one part of the whole path
name to the object, i.e. the name within one subdirectory. The NameComponent structure contains two fields: id and
kind. The id field contains the actual name string and the kind field contains the type of the object.

The CosNaming::Name is a sequence of NameComponets and represents the whole path. However, this structure
normally identifies the relative path starting from the directory where it is used in. When the Name is used in the
ServiceGateway, it naturally represents the full absolute path.

In some functions, the Name is carried inside a structure called CosNaming::Binding. In addition to the Name, the
Binding contains a field that identifies the BindingType. The purpose of the BindingType is to identify a classification
of the object that the Name points to.

DSM-CC has defined another data structure for the path, the DSM::PathSpec. The PathSpec consists of a sequence of
DSM::Step structures. The Step contains the same NameComponent as is used in the CosNaming::Name and also an
additional process flag that is used in some functions to inform if the operation should be applied to this part of the path
or not. When the PathSpec is used in DSM-CC, there is usually another parameter also: a PathType. The PathType
identifies the way how the PathSpec should be interpreted. It differentiates between the two different ways how the
PathSpec is used. When the PathType is DEPTH, the meaning of the PathSpec is equivalent to the Name, i.e. it is a
relative path down the directory hierarchy starting from the current directory. However, when the PathType is
BREADTH, the NameComponents in the PathSpec are used to identify multiple different objects within the same
directory.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 59

C.2 Data structures used for names in object carousels
For optimizing the transportation, the object carousels use slightly different data structures than the U-U API. These
data structures are however intended to be equivalent with the ones that are used in the API.

The BIOP::NameComponent is equivalent to the CosNaming::NameComponent, but the maximum lengths for the
strings have been added to optimize the encoding.

The BIOP::Name is equivalent to the CosNaming::Name, but it defines an upper bound for the number of
NameComponents in it to optimize the encoding.

The DirectoryMessage of the object carousels provides the necessary information for implementing the Directory
object. The Directory message contains BIOP::Bindings that include the Name that identifies the path to the object
starting from this directory and the Interoperable Object Reference that contains the necessary information to locate the
actual object. The BIOP::Binding is different from the CosNaming::Binding so that the BIOP::Binding contains the
object reference while the CosNaming::Binding does not. This is because in the object carousels, it is used to carry the
location of the object, while in the API the location of the object is not visible to the application but internal to the
Directory object.

C.3 CORBA strings in object carousels
In a number of places object carousel messages include text strings. These are all formatted in accordance with
clause 12.3.2 of CORBA V2.0. I.e. the text is preceded by a length of 1, 2 or 4 bytes, depending of the coding, field and
followed by a null terminator. In general this is can be seen clearly in the syntax tables that follow. However, for clarity
CORBA format strings are used in the following places:

Table C.1: Location of CORBA format strings

String location
objectKind_data BIOP::FileMessage syntax
objectKind_data, id_data, kind_data BIOP::DirectoryMessage syntax
objectKind_data BIOP::StreamMessage syntax
objectKind_data, eventName_data BIOP::StreamEventMessage syntax
type_id_byte BOP::IOR syntax
id_data, kind_data Syntax of Options Profile Body with

ServiceLocation component

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 60

Annex D:
Example of an object carousel
Figure D.1 illustrates an object carousel that is distributed over three elementary streams belonging to the same service.

The DownloadServerInitiate (DSI) message is carried on the first elementary stream. It contains the object reference
that points to the service gateway. The tap with the BIOP_ DELIVERY_PARA_USE points to a
DownloadInfoIndication (DII) message that provides the information about the module and the location where the
module is being broadcasted. In the example, the service gateway object is in the module number 1 that is carried on the
second elementary stream (indicated by a BIOP_OBJECT_USE tap structure in the DII message).

The Service Gateway object is a root directory that, in this example, references three subdirectories. Taps with
BIOP_DELIVERY_PARA_USE are used in the object references of the subdirectories to provide links to the modules
via the DownloadInfoIndication (DII) message. The two first subdirectories "dir1" and "dir2" are referenced in the DII
message that is carried in the first elementary stream. The third subdirectory is referenced in the DII message carried in
the third elementary stream.

In this example, the two first elementary streams carry the messages of one logical data carousel while the third
elementary stream carries the messages of another logical data carousel.

All these belong to the same object carousel. In the example, the third elementary stream contains the objects in the
"dir3" subdirectory and the objects in the "dir1" and "dir2" subdirectories are distributed over the first and second
elementary stream.

It is important to note that the third elementary stream may originate from a completely separate source than the first
two elementary streams. The directory hierarchy and objects contained in the third elementary stream are "mounted" in
the root directory by providing the "dir3" directory entry with the appropriate location information.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 61

Figure D.1: Example object carousel

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 62

This type of structure could be used, for example, in a national information service that contains some regional parts.
The common national parts could be carried in this example case on the two first elementary streams that are distributed
unmodified in the whole country. The regional parts are carried in the third elementary stream that is locally inserted at
each region. From the application's point of view, the common national parts are in the "dir1" and "dir2" subdirectories
while the regional parts are in the "dir3" subdirectory.

Another example where this type of structure could be used is if the service contains multiple independent applications.
In this case, each application could be placed in its own subdirectory and these subdirectories might be carried as
separate data carousels on different elementary streams.

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 63

Annex E:
Bibliography
ISO/IEC 8802-1: "Information technology - Telecommunications and information exchange between systems - Local
and metropolitan area networks - Specific requirements - Part 1: Overview of Local Area Network Standards".

ISO/IEC 8802-2: "Information technology - Telecommunications and information exchange between systems - Local
and metropolitan area networks - Specific requirements - Part 2: Logical link control".

IETF RFC 1951: "DEFLATE Compressed Data Format Specification version 1.3".

ISO/IEC 13818-2: "Information technology - Generic coding of moving pictures and associated audio
 information - Part 2: Video".

ISO/IEC 13818-3: "Information technology - Generic coding of moving pictures and associated audio
information - Part 3: Audio".

ETSI

ETSI TR 101 202 V1.2.1 (2003-01) 64

History

Document history

V1.1.1 February 1999 Publication

V1.2.1 January 2003 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Rules of operation
	4.1 Introduction
	4.2 Selection of the appropriate profile
	4.2.1 Fragmentation of datagrams

	4.3 Data Pipe
	4.3.1 Usage of the adaptation field

	4.4 Asynchronous/Synchronized/Synchronous Data Streaming
	4.4.1 Usage of the adaptation field
	4.4.2 Asynchronous Data Streaming
	4.4.3 Synchronous/Synchronized Data Streaming
	4.4.4 Synchronous Data Streaming
	4.4.5 Synchronized Data Streaming

	4.5 Multiprotocol encapsulation
	4.5.1 Overview
	4.5.2 Data transport
	4.5.3 Information in the SI

	4.6 Data carousel
	4.6.1 Introduction
	4.6.2 Data carousel Groups and SuperGroups
	4.6.3 Use of the one-layer data carousel
	4.6.4 Use of the two-layer data carousel
	4.6.4.1 The data carousel consists of a single group the description of which is too large for a single DownloadInfoIndication
	4.6.4.2 The data carousel delivers a single version of an application but supports a number of different receiver profiles
	4.6.4.3 The data carousel simultaneously delivers more than one version of an application for a single receiver profile

	4.6.5 Assignment and use of transactionId values
	4.6.6 Use of descriptors specific to the DVB data carousel
	4.6.6.1 Type descriptor
	4.6.6.2 Name descriptor
	4.6.6.3 Info descriptor
	4.6.6.4 Module link descriptor
	4.6.6.5 CRC32 descriptor
	4.6.6.6 Location descriptor
	4.6.6.7 Estimated download time descriptor
	4.6.6.8 Group link descriptor
	4.6.6.9 Private descriptor
	4.6.6.10 Compressed module descriptor

	4.6.7 Information in the SI and PSI
	4.6.7.1 Descriptor in SI
	4.6.7.2 Descriptors in PSI

	4.7 Object carousel
	4.7.1 Introduction
	4.7.2 Platform independence
	4.7.2.1 Overview
	4.7.2.2 Supported U-U Objects
	4.7.2.3 Transmission of objects
	4.7.2.4 Object References
	4.7.2.5 Taps and associations

	4.7.3 BIOP Control Structures
	4.7.3.1 Interoperable Object Reference (IOR)
	4.7.3.2 BIOP Profile Body
	4.7.3.3 Lite Options Profile Body
	4.7.3.4 Carousel NSAP address

	4.7.4 BIOP Messages
	4.7.4.1 Directory
	4.7.4.2 File
	4.7.4.3 Stream
	4.7.4.4 Service Gateway
	4.7.4.5 StreamEvent

	4.7.5 Download Data Carousel Messages
	4.7.5.1 DownloadInfoIndication
	4.7.5.2 DownloadServerInitate
	4.7.5.3 DownloadDataBlock

	4.7.6 MPEG-2 Sections
	4.7.7 Use of PSI descriptors
	4.7.7.1 Carousel identifier descriptor
	4.7.7.2 Association tag descriptor
	4.7.7.3 Stream identifier descriptor
	4.7.7.4 Deferred association tags descriptor

	4.7.8 Information in the SI and PSI
	4.7.8.1 SI Descriptor
	4.7.8.2 Descriptors in PSI

	4.7.9 Assignment and use of transactionId values

	Annex A: DSM-CC messages for data carousel
	A.1 dsmccMessageHeader
	A.2 dsmccDownloadDataHeader
	A.3 DownloadServerInitiate
	A.4 DownloadInfoIndication
	A.5 DownloadDataBlock
	A.6 DownloadCancel

	Annex B: Encapsulation of DSM-CC messages in MPEG-2 sections
	Annex C: Naming of objects in directories
	C.1 Data structures used for names in DSM-CC User-to-User API
	C.2 Data structures used for names in object carousels
	C.3 CORBA strings in object carousels

	Annex D: Example of an object carousel
	Annex E: Bibliography
	History

