

DRAFT pr ETS 300 909

November 1996

Source: ETSI TC-SMG

Reference: DE/SMG-020503QR1

ICS: 33.060.50

Key words: Digital cellular telecommunications system, Global System for Mobile communications (GSM)

Digital cellular telecommunications system (Phase 2+); Channel coding (GSM 05.03 version 5.2.1)

ETSI

European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE **Office address:** 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE **X.400:** c=fr, a=atlas, p=etsi, s=secretariat - **Internet:** secretariat@etsi.fr

Tel.: +33 4 92 94 42 00 - Fax: +33 4 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1996. All rights reserved.

Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page.

Contents

For	eword			5		
1	Scope			7		
	1.1	Normativ	/e references	7		
	1.2	Abbrevia	tions	7		
2	Genera	al		8		
	2.1	General	organization	8		
	2.2	Naming	Convention	10		
3	Traffic	Channels (1	ТСН)	11		
	3.1	Speech	channel at full rate (TCH/FS and TCH/EFS)			
		3.1.1	Preliminary channel coding for EFR only			
			3.1.1.1 CRC calculation			
			3.1.1.2 Repetition bits			
			3.1.1.3 Correspondence between input and output of preliminary	/		
			channel coding			
		3.1.2	Channel coding for FR and EFR			
			3.1.2.1 Parity and tailing for a speech frame			
			3.1.2.2 Convolutional encoder			
		3.1.3	Interleaving			
		3.1.4	Mapping on a Burst			
	3.2		channel at half rate (TCH/HS)	13		
		3.2.1	Parity and tailing for a speech frame			
		3.2.2	Convolutional encoder			
		3.2.3	Interleaving			
	 3.2.4 Mapping on a burst 3.3 Data channel at full rate, 12.0 kbit/s radio interface rate (9.6 kbit/s services 					
	3.3		.6))	15		
		3.3.1	.o)) Interface with user unit			
		3.3.1	Block code			
		3.3.2 3.3.3	Convolutional encoder			
		3.3.3 3.3.4	Interleaving			
		3.3.4 3.3.5	Mapping on a Burst			
	3.4		annel at full rate, 6.0 kbit/s radio interface rate (4.8 kbit/s services (TCH/F4.8))			
	5.4	3.4.1	Interface with user unit			
		3.4.1	Block code			
		3.4.2	Convolutional encoder			
		3.4.4	Interleaving			
		3.4.5	Mapping on a Burst	17		
	3.5		annel at half rate, 6.0 kbit/s radio interface rate (4.8 kbit/s services (TCH/H4.8			
	0.0	3.5.1	Interface with user unit	<i>,,</i>		
		3.5.2	Block code			
		3.5.3	Convolutional encoder			
		3.5.4	Interleaving			
		3.5.5	Mapping on a Burst			
	3.6	Data cha	annel at full rate, 3.6 kbit/s radio interface rate (2.4 kbit/s and less services			
		3.6.1	.4)) Interface with user unit			
		3.6.2	Block code			
		3.6.2 3.6.3	Convolutional encoder			
		3.6.3 3.6.4	Interleaving			
		3.6.5	Mapping on a Burst			
	3.7	Data cha	annel at half rate, 3.6 kbit/s radio interface rate (2.4 kbit/s and less services			
		•	2.4)) Interface with user unit			
		3.7.1 3.7.2	Block code			
		0.1.2				

	3.7.3	Convolutional encoder	19
	3.7.4	Interleaving	19
	3.7.5	Mapping on a Burst	19
4 Contro	ol Channels		19
4.1	Slow as	sociated control channel (SACCH)	19
	4.1.1	Block constitution	
	4.1.2	Block code	
	4.1.3	Convolutional encoder	20
	4.1.4	Interleaving	20
	4.1.5	Mapping on a Burst	
4.2	Fast ass	sociated control channel at full rate (FACCH/F)	
	4.2.1	Block constitution	20
	4.2.2	Block code	20
	4.2.3	Convolutional encoder	21
	4.2.4	Interleaving	21
	4.2.5	Mapping on a Burst	21
4.3	Fast ass	sociated control channel at half rate (FACCH/H)	21
	4.3.1	Block constitution	21
	4.3.2	Block code	21
	4.3.3	Convolutional encoder	21
	4.3.4	Interleaving	22
	4.3.5	Mapping on a Burst	
4.4	Broadca	ast control, Paging, Access grant, Notification and Cell broadcast channe	ls
	(BCCH,	PCH, AGCH, NCH, CBCH)	22
4.5	Stand-a	lone dedicated control channel (SDCCH)	23
4.6	Random	n access channel (RACH)	23
4.7	Synchro	nization channel (SCH)	23
4.8	Access	Burst on channels other than RACH	24
4.9	Access	Bursts for uplink access on a channel used for VGCS	
Annex A (inf	ormative):	Summary of Channel Types	36
Annex B (inf	ormative):	Summary of Polynomials Used for Convolutional Codes	37
History			38

Page 4 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

Foreword

This draft European Telecommunications Standard (ETS) has been produced by the Special Mobile Group (SMG) Technical Committee (TC) of the European Telecommunications Standards Institute (ETSI) and is now submitted for the Unified Approval Procedure phase of the ETSI approval procedure.

This ETS specifies the data blocks given to the encryption unit. It includes the specification of encoding, reordering, interleaving and the stealing flag within the digital cellular telecommunications system (Phase 2+).

This ETS is a GSM technical specification version 5, which contains GSM Phase 2+ enhancements/features to the version 4 GSM technical specification. The ETS from which this Phase 2+ ETS has evolved is Phase 2 GSM ETS 300 575 edition 2 with Amendment 1 (GSM 05.03 version 4.3.0).

The contents of this ETS is subject to continuing work within TC-SMG and may change following formal TC-SMG approval. Should TC-SMG modify the contents of this ETS, it will be resubmitted for UAP by ETSI with an identifying change of release date and an increase in version number as follows:

Version 5.x.y

where:

- y the third digit is incremented when editorial only changes have been incorporated in the specification;
- x the second digit is incremented for all other types of changes, i.e. technical enhancements, corrections, updates, etc.

Reference is made within this TS to GSM-TSs (note).

NOTE: TC-SMG has produced documents which give the technical specifications for the implementation of the digital cellular telecommunications system. Historically, these documents have been identified as GSM Technical Specifications (GSM-TSs). These TSs may have subsequently become I-ETSs (Phase 1), or ETSs/ETSI Technical Reports (ETRs) (Phase 2). TC-SMG has also produced ETSI GSM TSs which give the technical specifications for the implementation of Phase 2+ enhancements of the digital cellular telecommunications system. These version 5.x.x GSM Technical Specifications may be referred to as GTSs.

The specification from which this ETS has been derived was originally based on CEPT documentation, hence the presentation of this ETS may not be entirely in accordance with the ETSI drafting rules.

Proposed transposition dates	
Date of latest announcement of this ETS (doa):	3 months after ETSI publication
Date of latest publication of new National Standard or endorsement of this ETS (dop/e):	6 months after doa
Date of withdrawal of any conflicting National Standard (dow):	6 months after doa

Blank page

1 Scope

A reference configuration of the transmission chain is shown in GSM 05.01 [4]. According to this reference configuration, this technical ETS specifies the data blocks given to the encryption unit.

It includes the specification of encoding, reordering, interleaving and the stealing flag. It does not specify the channel decoding method.

The definition is given for each kind of logical channel, starting from the data provided to the channel encoder by the speech coder, the data terminal equipment, or the controller of the Mobile Station (MS) or Base Transceiver Station (BTS). The definitions of the logical channel types used in this technical specification are given in GSM 05.02 [5], a summary is in annex 1.

1.1 Normative references

This ETS incorporates by dated and undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this ETS only when incorporated in it by amendment or revision. For undated references, the latest edition of the publication referred to applies.

- [1] GSM 01.04 (ETR 350): "Digital cellular telecommunication system (Phase 2+); Abbreviations and acronyms".
- [2] GSM 04.08 (ETS 300 940): "Digital cellular telecommunication system (Phase 2); Mobile radio interface layer 3 specification".
- [3] GSM 04.21 (ETS 300 945): "Digital cellular telecommunication system; Rate adaption on the Mobile Station Base Station System (MS BSS) interface".
- [4] GSM 05.01: "Digital cellular telecommunication system (Phase 2+); Physical layer on the radio path General description".
- [5] GSM 05.02 (ETS 300 908): "Digital cellular telecommunication system (Phase 2+); Multiplexing and multiple access on the radio path".
- [6] GSM 05.05: (ETS 300 910): "Digital cellular telecommunication system (Phase 2+); Radio Transmission and Reception".
- [7] GSM 06.10 (ETS 300 580-2): "Digital cellular telecommunication system (Phase 2); Full rate speech transcoding".
- [8] GSM 06.20 (ETS 300 969): "Digital cellular telecommunication system; Half rate speech transcoding".
- [9] GSM 06.60 (ETS 300 726): "Digital cellular telecommunication system ; Enhanced Full Rate (EFR) speech transcoding".

1.2 Abbreviations

Abbreviations used in this ETS are listed in GSM 01.04.

Page 8 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

2 General

2.1 General organization

Each channel has its own coding and interleaving scheme. However, the channel coding and interleaving is organized in such a way as to allow, as much as possible, a unified decoder structure.

Each channel uses the following sequence and order of operations:

- The information bits are coded with a systematic block code, building words of information + parity bits.
- These information + parity bits are encoded with a convolutional code, building the coded bits.
- Reordering and interleaving the coded bits, and adding a stealing flag, gives the interleaved bits.

All these operations are made block by block, the size of which depends on the channel. However, most of the channels use a block of 456 coded bits which is interleaved and mapped onto bursts in a very similar way for all of them. Figure 1 gives a diagram showing the general structure of the channel coding.

This block of 456 coded bits is the basic structure of the channel coding scheme. In the case of full rate speech TCH, this block carries the information of one speech frame. In case of control channels, it carries one message.

In the case of half rate speech TCH, the information of one speech frame is carried in a block of 228 coded bits.

In the case of the Enhanced full rate speech the information bits coming out of the source codec first go though a preliminary channel coding. then the channel coding as described above takes place.

In the case of FACCH, a coded message block of 456 bits is divided into eight sub-blocks. The first four sub-blocks are sent by stealing the even numbered bits of four timeslots in consecutive frames used for the TCH. The other four sub-blocks are sent by stealing the odd numbered bits of the relevant timeslot in four consecutive used frames delayed 2 or 4 frames relative to the first frame. Along with each block of 456 coded bits there is, in addition, a stealing flag (8 bits), indicating whether the block belongs to the TCH or to the FACCH. In the case of SACCH, BCCH or CCCH, this stealing flag is dummy.

Some cases do not fit in the general organization, and use short blocks of coded bits which are sent completely in one timeslot. They are the random access messages of the RACH on uplink and the synchronization information broadcast of the SCH on downlink.

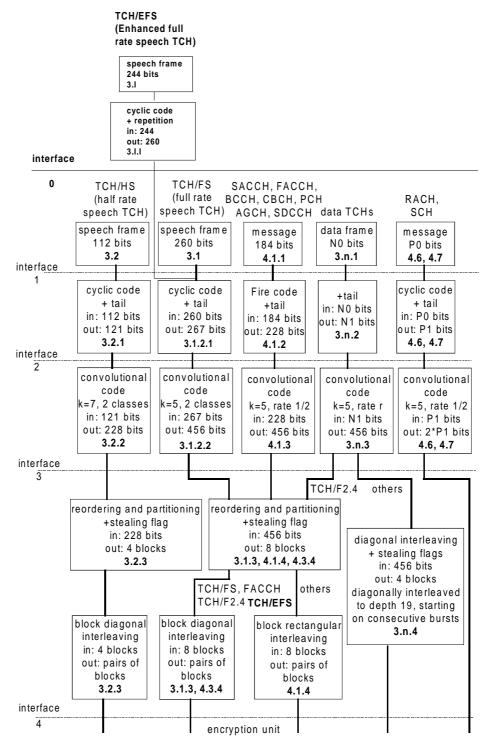


Figure 1: Channel Coding and Interleaving Organization

In each box, the last line indicates the chapter defining the function. In the case of RACH, P0=8 and P1=18; in the case of SCH, P0=25 and P1=39. In the case of data TCHs, N0, N1 and n depend on the type of data TCH.

Interfaces:

- 1) information bits (d)
- 2) information + parity + tail bits (u)
- 3) coded bits (c)
- 4) interleaved bits (e)

Page 10 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

2.2 Naming Convention

For ease of understanding a naming convention for bits is given for use throughout the technical specification:

- General naming:

"k" and "j" for numbering of bits in data blocks and bursts

"K_x" gives the amount of bits in one block, where "x" refers to the data type

"n" is used for numbering of delivered data blocks where

"N" marks a certain data block

"B" is used for numbering of bursts or blocks where

" B_0 " marks the first burst or block carrying bits from the data block with n = 0 (first data block in the transmission)

- Data delivered to the preliminary channel encoding unit (for EFR only):

s(k) for $k=1..., K_s$

- Data delivered by the preliminary channel encoding unit (for EFR only) before bits rearrangement

w(k) for $k=1..., K_W$

- Data delivered to the encoding unit (interface 1 in figure 1):

d(k) for $k = 0, 1, ..., K_d-1$

- Data after the first encoding step (block code, cyclic code; interface 2 in figure 1):

u(k) for $k = 0, 1, ..., K_{U}$ -1

- Data after the second encoding step (convolutional code ; interface 3 in figure 1):

c(n,k) or c(k)	for	k = 0,1,,K _C -1
		n = 0, 1,, N, N+1,

- Interleaved data:

i(B,k) for $k = 0,1,...,K_i-1$ B = B₀, B₀+1,....

- Bits in one burst (interface 4 in figure 1): e(B,k) for k=0,1,114,115 B=B₀,B₀+1,...

3 Traffic Channels (TCH)

Two kinds of traffic channel are considered: speech and data. Both of them use the same general structure (see figure 1), and in both cases, a piece of information can be stolen by the FACCH.

3.1 Speech channel at full rate (TCH/FS and TCH/EFS)

The speech coder (whether Full rate or Enhanced full rate) delivers to the channel encoder a sequence of blocks of data. In case of a full rate and enhanced full rate speech TCH, one block of data corresponds to one speech frame.

For the full rate coder each block contains 260 information bits, including 182 bits of class 1 (protected bits), and 78 bits of class 2 (no protection), (see table 2).

The bits delivered by the speech coder are received in the order indicated in GSM 06.10 and have to be rearranged according to table 2 before channel coding as defined in sections 3.1.1 to 3.1.4. The rearranged bits are labelled $\{d(0), d(1), ..., d(259)\}$, defined in the order of decreasing importance.

For the EFR coder each block contains 244 information bits. The block of 244 information bits, labelled s(1)..., s(244), passes through a preliminary stage, applied only to EFR (see figure 1) which produces 260 bits corresponding to the 244 input bits and 16 redundancy bits. Those 16 redundancy bits correspond to 8 CRC bits and 8 repetition bits, as described in section 3.1.1. The 260 bits, labelled w(1)..w(260), have to be rearranged according to table 7 before they are delivered to the channel encoding unit which is identical to that of the TCH/FS. The 260 bits block includes 182 bits of class 1 (protected bits) and 78 bits of class 2 (no protection). The class 1 bits are further divided into the class 1a and class 1b, class 1a bits being protected by a cyclic code and the convolutional code whereas the class 1b are protected by the convolutional code only.

3.1.1 Preliminary channel coding for EFR only

3.1.1.1 CRC calculation

An 8-bit CRC is used for error-detection. These 8 parity bits (bits w253-w260) are generated by the cyclic generator polynomial: $g(D) = D^8 + D^4 + D^3 + D^2 + 1$ from the 65 most important bits (50 bits of class 1a and 15 bits of class 1b). These 65 bits (*b*(1)-*b*(65)) are taken from the table 5 in the following order (read row by row, left to right):

s39	s40	s41	s42	s43	s44	s48	s87	s45	s2
s3	s8	s10	s18	s19	s24	s46	s47	s142	s143
s144	s145	s146	s147	s92	s93	s195	s196	s98	s137
s148	s94	s197	s149	s150	s95	s198	s4	s5	s11
s12	s16	s9	s6	s7	s13	s17	s20	s96	s199
s1	s14	s15	s21	s25	s26	s28	s151	s201	s190
s240	s88	s138	s191	s241					

The encoding is performed in a systematic form, which means that, in GF(2), the polynomial:

 $b(1)D^{73}+b(2)D^{72}+...+b(65)D^{8}+p(1)D^{7}+p(2)D^{6}+...+p(7)D^{1}+p(8)$

p(1)-p(8): the parity bits (w253-w260)

b(1)-b(65) = the data bits from the table above

when divided by g(D), yields a remainder equal to 0.

3.1.1.2 Repetition bits

The repeated bits are s70, s120, s173 and s223. They correspond to one of the bits in each of the PULSE_5, the most significant one not protected by the channel coding stage.

Page 12 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

3.1.1.3 Correspondence between input and output of preliminary channel coding

The preliminary coded bits w(k) for k=1 to 260 are hence defined by:

wk)=s(k) for k=1 to 71 w(k)=s(k-2) for k=74 to 123 w(k)=s(k-4) for k=126 to 178 w(k)=s(k-6) for k=181 to s230 w(k)=s(k-8) for k=233 to s252

Repetition bits:

w(k)=s(70) for k=72 and 73 w(k)=s(120) for k=124 and 125 w(k)=s(173) for k=179 and 180 w(k)=s(223) for k=231 and 232

Parity bits:

w(k)=p(k-252) for k=253 to 260

3.1.2 Channel coding for FR and EFR

3.1.2.1 Parity and tailing for a speech frame

a) Parity bits:

The first 50 bits of class 1 (known as class 1a for the EFR) are protected by three parity bits used for error detection. These parity bits are added to the 50 bits, according to a degenerate (shortened) cyclic code (53,50,2), using the generator polynomial:

 $g(D) = D^3 + D + 1$

The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial:

 $d(0)D^{52} + d(1)D^{51} + ... + d(49)D^3 + p(0)D^2 + p(1)D + p(2)$

where p(0), p(1), p(2) are the parity bits, when divided by g(D), yields a remainder equal to:

 $1 + D + D^2$

b) Tailing bits and reordering:

The information and parity bits of class 1 are reordered, defining 189 information + parity + tail bits of class 1, $\{u(0), u(1), ..., u(188)\}$ defined by:

 $\begin{array}{ll} u(k) &= d(2k) & \text{and} & u(184\text{-}k) = d(2k\text{+}1) & \text{for } k = 0,1,...,90 \\ u(91\text{+}k) &= p(k) & \text{for } k = 0,1,2 \\ u(k) &= 0 & \text{for } k = 185,186,187,188 \text{ (tail bits)} \end{array}$

3.1.2.2 Convolutional encoder

The class 1 bits are encoded with the 1/2 rate convolutional code defined by the polynomials:

$$G0 = 1 + D^3 + D^4$$

 $G1 = 1 + D + D^3 + D^4$

The coded bits $\{c(0), c(1), ..., c(455)\}$ are then defined by:

- class 1: c(2k) = u(k) + u(k-3) + u(k-4) c(2k+1) = u(k) + u(k-1) + u(k-3) + u(k-4) for k = 0,1,...,188 u(k) = 0 for k < 0- class 2: c(378+k) = d(182+k) for k = 0,1,...,77

3.1.3 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$\begin{split} i(B,j) &= c(n,k), \qquad \text{for} \qquad k = 0,1,...,455 \\ n &= 0,1,...,N,N+1,... \\ B &= B_0 + 4n + (k \text{ mod } 8) \\ j &= 2((49k) \text{ mod } 57) + ((k \text{ mod } 8) \text{ div } 4) \end{split}$$

See table 1. The result of the interleaving is a distribution of the reordered 456 bits of a given data block, n = N, over 8 blocks using the even numbered bits of the first 4 blocks ($B = B_0 + 4N + 0, 1, 2, 3$) and odd numbered bits of the last 4 blocks ($B = B_0 + 4N + 4, 5, 6, 7$). The reordered bits of the following data block, n = N+1, use the even numbered bits of the blocks $B = B_0 + 4N + 4, 5, 6, 7$ ($B = B_0 + 4(N+1) + 0, 1, 2, 3$) and the odd numbered bits of the blocks $B = B_0 + 4(N+1) + 4, 5, 6, 7$ ($B = B_0 + 4(N+1) + 0, 1, 2, 3$) and the odd numbered bits of the blocks $B = B_0 + 4(N+1) + 4, 5, 6, 7$. Continuing with the next data blocks shows that one block always carries 57 bits of data from one data block (n = N) and 57 bits of data from the next block (n = N+1), where the bits from the data block with the higher number always are the even numbered data bits, and those of the data block with the lower number are the odd numbered bits.

The block of coded data is interleaved "block diagonal", where a new data block starts every 4th block and is distributed over 8 blocks.

3.1.4 Mapping on a Burst

The mapping is given by the rule:

and

e(B,j) = i(B,j) and e(B,59+j) = i(B,57+j) for j = 0,1,...,56e(B,57) = hI(B) and e(B,58) = hu(B)

The two bits, labelled hl(B) and hu(B) on burst number B are flags used for indication of control channel signalling. For each TCH/FS block not stolen for signalling purposes:

hu(B) = 0	for the first 4 bursts	(indicating status of even numbered bits)
hl(B) = 0	for the last 4 bursts	(indicating status of odd numbered bits)

For the use of hl(B) and hu(B) when a speech frame is stolen for signalling purposes see section 4.2.5.

3.2 Speech channel at half rate (TCH/HS)

The speech coder delivers to the channel encoder a sequence of blocks of data. In case of a half rate speech TCH, one block of data corresponds to one speech frame. Each block contains 112 bits, including 95 bits of class 1 (protected bits), and 17 bits of class 2 (no protection), see tables 3a and 3b.

The bits delivered by the speech coder are received in the order indicated in GSM 06.20 and have to be arranged according to either table 3a or table 3b before channel encoding as defined in sections 3.2.1 to 3.2.4. The rearranged bits are labelled $\{d(0), d(1), ..., d(111)\}$. Table 3a has to be taken if parameter Mode=0 (which means that the speech encoder is in unvoiced mode), while table 3b has to be taken if parameter Mode=1, 2 or 3 (which means that the speech encoder is in voiced mode).

Page 14 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

3.2.1 Parity and tailing for a speech frame

a) Parity bits:

The most significant 22 class 1 bits d(73),d(74),...,d(94) are protected by three parity bits used for error detection. These bits are added to the 22 bits, according to a cyclic code using the generator polynomial:

 $g(D) = D^3 + D + 1$

The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial:

 $d(73)D^{24} + d(74)D^{23} + ... + d(94)D^3 + p(0)D^2 + p(1)D + p(2)$

where p(0), p(1), p(2) are the parity bits, when divided by g(D), yields a remainder equal to:

1+D+D².

b) Tail bits and reordering:

The information and parity bits of class 1 are reordered, defining 104 information + parity + tail bits of class 1, $\{u(0), u(1), ..., u(103)\}$ defined by:

 $\begin{array}{ll} u(k) = d(k) & \mbox{for } k = 0, 1, ..., 94 \\ u(k) = p(k{\text -}95) & \mbox{for } k = 95, 96, 97 \\ u(k) = 0 & \mbox{for } k = 98, 99, ..., 103 \mbox{ (tail bits)} \end{array}$

3.2.2 Convolutional encoder

The class 1 bits are encoded with the punctured convolutional code defined by the mother polynomials:

 ${\rm G4}=1+{\rm D}^2+{\rm D}^3+{\rm D}^5+{\rm D}^6$

 $G5 = 1 + D + D^4 + D^6$

 $\mathsf{G6} = \mathsf{1} + \mathsf{D} + \mathsf{D}^2 + \mathsf{D}^3 + \mathsf{D}^4 + \mathsf{D}^6$

and the puncturing matrices:

(1,0,1)	for {u(0),u(1),,u(94)} (class 1 information bits); and {u(98),u(99),,u(103)} (tail bits).		
(1,1,1)	for {u(95),u(96),u(97)} (parity bits)		

In the puncturing matrices, a 1 indicates no puncture and a 0 indicates a puncture.

The coded bits $\{c(0), c(1), ..., c(227)\}$ are then defined by:

class 1 information bits:

 $\begin{array}{ll} c(2k) &= u(k) + u(k-2) + u(k-3) + u(k-5) + u(k-6) \\ c(2k+1) &= u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-4) + u(k-6) \end{array} \qquad \qquad \mbox{for } k = 0,1,...,94; u(k) = 0 \ \mbox{for } k < 0 \end{array}$

parity bits:

 $\begin{array}{ll} c(3k-95) &= u(k)+u(k-2)+u(k-3)+u(k-5)+u(k-6) \\ c(3k-94) &= u(k)+u(k-1)+u(k-4)+u(k-6) \\ c(3k-93) &= u(k)+u(k-1)+u(k-2)+u(k-3)+u(k-4)+u(k-6) \end{array} for k = 95,96,97 \end{array}$

tail bits:

c(2k+3) c(2k+4)	= u(k)+u(k-2)+u(k-3)+u(k-5)+u(k-6) = u(k)+u(k-1)+u(k-2)+u(k-3)+u(k-4)+u(k-6)	for k = 98,99,,103
class 2 in	formation bits:	
c(k+211)	= d(k+95)	for k = 0,1,,16

3.2.3 Interleaving

The coded bits are reordered and interleaved according to the following rule:

 $i(B,j) = c(n,k) \quad for \quad k = 0,1,...,227 \\ n = 0,1,...,N,N+1,... \\ B = B0 + 2n + b$

The values of b and j in dependence of k are given by table 4.

The result of the interleaving is a distribution of the reordered 228 bits of a given data block, n=N, over 4 blocks using the even numbered bits of the first 2 blocks (B=B0+2N+0,1) and the odd numbered bits of the last 2 blocks (B=B0+2N+2,3). The reordered bits of the following data block, n=N+1, use the even numbered bits of the blocks B=B0+2N+2,3 (B=B0+2(N+1)+0,1) and the odd numbered bits of the blocks B=B0+2(N+1)+2,3. Continuing with the next data blocks shows that one block always carries 57 bits of data from one data block (n=N) and 57 bits from the next block (n=N+1), where the bits from the data block with the higher number always are the even numbered data bits, and those of the data block with the lower number are the odd numbered bits. The block of coded data is interleaved "block diagonal", where a new data block starts every 2nd block and is distributed over 4 blocks.

3.2.4 Mapping on a burst

The mapping is given by the rule:

e(B,j) = i(B,j) and e(B,59+j) = i(B,57+j) for j = 0,1,...,56

and

e(B,57) = hI(B) and e(B,58)=hu(B)

The two bits, labelled hl(B) and hu(B) on burst number B are flags used for indication of control channel signalling. For each TCH/HS block not stolen for signalling purposes:

hu(B) = 0	for the first 2 bursts (indicating status of the even numbered bits)
hI(B) = 0	for the last 2 bursts (indicating status of the odd numbered bits)

For the use of hl(B) and hu(B) when a speech frame is stolen for signalling purposes, see section 4.3.5.

3.3 Data channel at full rate, 12.0 kbit/s radio interface rate (9.6 kbit/s services (TCH/F9.6))

The definition of a 12.0 kbit/s radio interface rate data flow for data services is given in GSM 04.21.

3.3.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 60 information bits (data frames) every 5 ms. Four such blocks are dealt with together in the coding process $\{d(0),...,d(239)\}$. For non-transparent services those four blocks shall align with one 240-bit RLP frame.

Page 16 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

3.3.2 Block code

The block of 4 * 60 information bits is not encoded, but only increased with 4 tail bits equal to 0 at the end of the block.

u(k) = d(k) for k = 0,1,...,239 u(k) = 0 for k = 240,241,242,243 (tail bits)

3.3.3 Convolutional encoder

This block of 244 bits $\{u(0),...,u(243)\}$ is encoded with the 1/2 rate convolutional code defined by the following polynomials:

 $G0 = 1 + D^3 + D^4$ $G1 = 1 + D + D^3 + D^4$

resulting in 488 coded bits $\{C(0), C(1), \dots, C(487)\}$ with

 $\begin{array}{l} C(2k) = u(k) + u(k-3) + u(k-4) \\ C(2k+1) = u(k) + u(k-1) + u(k-3) + u(k-4) \end{array} for \ k = 0,1,...,243 \ ; \ u(k) = 0 \ for \ k < 0 \end{array}$

The code is punctured in such a way that the following 32 coded bits:

 $\{C(11+15j) \text{ for } j = 0, 1, ..., 31\}$ are not transmitted.

The result is a block of 456 coded bits, $\{c(0), c(1), ..., c(455)\}$

3.3.4 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$\begin{split} i(B,j) &= c(n,k) \qquad \mbox{for} \qquad k = 0,1,...,455 \\ n &= 0,1,...,N,N+1,... \\ B &= B_0 + 4n + (k \mbox{ mod } 19) + (k \mbox{ div } 114) \\ j &= (k \mbox{ mod } 19) + 19 \mbox{ (k mod } 6) \end{split}$$

The result of the interleaving is a distribution of the reordered 114 bit of a given data block, n = N, over 19 blocks, 6 bits equally distributed in each block, in a diagonal way over consecutive blocks.

Or in other words the interleaving is a distribution of the encoded, reordered 456 bits from four given input data blocks, which taken together give n=N, over 22 bursts, 6 bits equally distributed in the first and 22nd bursts, 12 bits distributed in the second and 21st bursts, 18 bits distributed in the third and 20th bursts and 24 bits distributed in the other 16 bursts.

The block of coded data is interleaved "diagonal", where a new block of coded data starts with every fourth burst and is distributed over 22 bursts.

3.3.5 Mapping on a Burst

The mapping is done as specified for TCH/FS in section 3.1.4. On bitstealing by a FACCH, see section 4.2.5.

3.4 Data channel at full rate, 6.0 kbit/s radio interface rate (4.8 kbit/s services (TCH/F4.8))

The definition of a 6.0 kbit/s radio interface rate data flow for data services is given in GSM 04.21.

3.4.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 60 information bits (data frames) every 10 ms, $\{d(0), d(1), ..., d(59)\}$.

In the case where the user unit delivers to the encoder a bit stream organized in blocks of 240 information bits every 40 ms (e.g. RLP frames), the bits $\{d(0),d(1),...,d(59),d(60),...,d(60+59), d(2*60),...,d(2*60+59), d(3*60),...,d(3*60+59)\}$ shall be treated as four blocks of 60 bits each as described in the remainder of this section. To ensure end-to-end synchronization of the 240 bit blocks, the resulting block after coding of the first 120 bits $\{d(0),d(1),...,d(60+59)\}$ shall be transmitted in one of the transmission blocks B0, B2, B4 of the channel mapping defined in GSM 05.02.

3.4.2 Block code

Sixteen bits equal to 0 are added to the 60 information bits, the result being a block of 76 bits, $\{u(0),u(1),...,u(75)\}$, with:

u(19k+p) = d(15k+p)	for $k = 0, 1, 2, 3$ and $p = 0, 1,, 14$;
u(19k+p) = 0	for $k = 0, 1, 2, 3$ and $p = 15, 16, 17, 18$.

Two such blocks forming a block of 152 bits $\{u'(0), u'(1), ..., u'(151)\}$ are dealt with together in the rest of the coding process:

u'(k) = u1(k), k=0,1,...,75 (u1 = 1st block)u'(k+76) = u2(k), k=0,1,...,75 (u2 = 2nd block)

3.4.3 Convolutional encoder

This block of 152 bits is encoded with the convolutional code of rate 1/3 defined by the following polynomials:

 $\begin{array}{l} G1 = 1 + D + D^3 + D^4 \\ G2 = 1 + D^2 + D^4 \\ G3 = 1 + D + D^2 + D^3 + D^4 \end{array}$

The result is a block of $3 \times 152 = 456$ coded bits, $\{c(0), c(1), ..., c(455)\}$:

 $\begin{array}{ll} c(3k) &= u'(k) + u'(k-1) + u'(k-3) + u'(k-4) \\ c(3k+1) &= u'(k) + u'(k-2) + u'(k-4) \\ c(3k+2) &= u'(k) + u'(k-1) + u'(k-2) + u'(k-3) + u'(k-4) & \mbox{for} & k = 0,1,...,151; \\ & u'(k) = 0 \ \mbox{for} & k < 0 \end{array}$

3.4.4 Interleaving

The interleaving is done as specified for the TCH/F9.6 in section 3.3.4

3.4.5 Mapping on a Burst

The mapping is done as specified for the TCH/FS in section 3.1.4. On bitstealing for signalling purposes by a FACCH, see section 4.2.5.

3.5 Data channel at half rate, 6.0 kbit/s radio interface rate (4.8 kbit/s services (TCH/H4.8))

The definition of a 6.0 kbit/s radio interface rate data flow for data services is given in GSM 04.21.

3.5.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 60 information bits (data frames) every 10 ms. Four such blocks are dealt with together in the coding process, $\{d(0), d(1), ..., d(239)\}$.

For non-transparent services those four blocks shall align with one complete 240-bit RLP frame.

3.5.2 Block code

The block encoding is done as specified for the TCH/F9.6 in section 3.3.2.

Page 18 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

3.5.3 Convolutional encoder

The convolutional encoding is done as specified for the TCH/F9.6 in section 3.3.3.

3.5.4 Interleaving

The interleaving is done as specified for the TCH/F9.6 in section 3.3.4.

3.5.5 Mapping on a Burst

The mapping is done as specified for the TCH/FS in section 3.1.4. On bitstealing for signalling purposes by a FACCH, see section 4.3.5.

3.6 Data channel at full rate, 3.6 kbit/s radio interface rate (2.4 kbit/s and less services (TCH/F2.4))

The definition of a 3.6 kbit/s radio interface rate data flow for data services is given in GSM 04.21.

3.6.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 36 information bits (data frames) every 10 ms. Two such blocks are dealt with together in the coding process, $\{d(0), d(1), ..., d(71)\}$.

3.6.2 Block code

This block of 72 information bits is not encoded, but only increased with four tail bits equal to 0 at the end of the block.

 $\begin{array}{ll} u(k) = d(k), & k = 0,1,...,71 \\ u(k) = 0 & , & k = 72,73,74,75 \mbox{ (tail bits);} \end{array}$

3.6.3 Convolutional encoder

This block of 76 bits $\{u(0), u(1), ..., u(75)\}$ is encoded with the convolutional code of rate 1/6 defined by the following polynomials:

 $\begin{array}{l} G1 = 1 + D + D^3 + D^4 \\ G2 = 1 + D^2 + D^4 \\ G3 = 1 + D + D^2 + D^3 + D^4 \\ G1 = 1 + D + D^3 + D^4 \\ G2 = 1 + D^2 + D^4 \\ G3 = 1 + D + D^2 + D^3 + D^4 \end{array}$

The result is a block of 456 coded bits:

 ${c(0), c(1),...,c(455)}, defined by$

 $\begin{array}{ll} c(6k) &= c(6k+3) = u(k) + u(k-1) + u(k-3) + u(k-4) \\ c(6k+1) &= c(6k+4) = u(k) + u(k-2) + u(k-4) \\ c(6k+2) &= c(6k+5) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-4), \ \text{for} & k = 0,1,...,75; \\ u(k) &= 0 \ \text{for} \ k < 0 \end{array}$

3.6.4 Interleaving

The interleaving is done as specified for the TCH/FS in section 3.1.3

3.6.5 Mapping on a Burst

The mapping is done as specified for the TCH/FS in section 3.1.4.

3.7 Data channel at half rate, 3.6 kbit/s radio interface rate (2.4 kbit/s and less services (TCH/H2.4))

The definition of a 3.6 kbit/s radio interface rate data flow for data services is given in GSM 04.21.

3.7.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 36 information bits (data frames) every 10 ms. Two such blocks are dealt with together in the coding process, $\{d(0), d(1), ..., d(71)\}$.

3.7.2 Block code

The block of 72 information bits is not encoded, but only increased with 4 tail bits equal to 0, at the end of the block.

Two such blocks forming a block of 152 bits $\{u(0), u(1), ..., u(151)\}$ are dealt with together in the rest of the coding process.

u(k)	= d1(k),	$k = 0, 1, \dots, 75$ (d1 = 1st information block)
u(k+76)	= d2(k),	$k = 0, 1, \dots, 75$ (d2 = 2nd information block)
u(k)	= 0,	k = 72,73,74,75,148,149,150,151 (tail bits)

3.7.3 Convolutional encoder

The convolutional encoding is done as specified for the TCH/F4.8 in section 3.4.3.

3.7.4 Interleaving

The interleaving is done as specified for the TCH/F9.6 in section 3.3.4.

3.7.5 Mapping on a Burst

The mapping is done as specified for the TCH/FS in section 3.1.4. On bit stealing for signalling purposes by a FACCH, see section 4.3.5.

4 Control Channels

4.1 Slow associated control channel (SACCH)

4.1.1 Block constitution

The message delivered to the encoder has a fixed size of 184 information bits $\{d(0), d(1), ..., d(183)\}$. It is delivered on a burst mode.

4.1.2 Block code

a) Parity bits:

The block of 184 information bits is protected by 40 extra bits used for error correction and detection. These bits are added to the 184 bits according to a shortened binary cyclic code (FIRE code) using the generator polynomial:

$$g(D) = (D^{23} + 1)^*(D^{17} + D^3 + 1)$$

The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial:

 $d(0)D^{223} + d(1)D^{222} + ... + d(183)D^{40} + p(1)D^{38} + ... + p(38)D + p(39)$

where $\{p(0), p(1), \dots, p(39)\}$ are the parity bits, when divided by g(D) yields a remainder equal to:

 $1 + D + D^2 + ... + D^{39}$.

b) Tail bits

Four tail bits equal to 0 are added to the information and parity bits, the result being a block of 228 bits.

 $\begin{array}{ll} u(k) = d(k) & \mbox{for } k = 0,1,...,183 \\ u(k) = p(k\text{-}184) & \mbox{for } k = 184,185,...,223 \\ u(k) = 0 & \mbox{for } k = 224,225,226,227 \mbox{ (tail bits)} \end{array}$

4.1.3 Convolutional encoder

This block of 228 bits is encoded with the 1/2 rate convolutional code (identical to the one used for TCH/FS) defined by the polynomials:

 $\begin{array}{l} G0 = 1 + D^3 + D^4 \\ G1 = 1 + D + D^3 + D^4 \end{array}$

This results in a block of 456 coded bits: $\{c(0), c(1), ..., c(455)\}$ defined by:

 $\begin{array}{l} c(2k) &= u(k) + u(k-3) + u(k-4) \\ c(2k+1) &= u(k) + u(k-1) + u(k-3) + u(k-4) \end{array} \quad \ \ \text{for } k = 0,1,...,227 \ ; \ u(k) = 0 \ \text{for } k < 0 \end{array}$

4.1.4 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$i(B,j) = c(n,k) \qquad \mbox{for} \qquad k = 0,1,...,455 \\ n = 0,1,...,N,N+1,... \\ B = B_0 + 4n + (k \bmod 4) \\ j = 2((49k) \bmod 57) + ((k \bmod 8) \ div \ 4)$$

See table 1. The result of the reordering of bits is the same as given for a TCH/FS (section 3.1.3) as can be seen from the evaluation of the bit number-index j, distributing the 456 bits over 4 blocks on even numbered bits and 4 blocks on odd numbered bits. The resulting 4 blocks are built by putting blocks with even numbered bits and blocks with odd numbered bits together into one block.

The block of coded data is interleaved "block rectangular" where a new data block starts every 4th block and is distributed over 4 blocks.

4.1.5 Mapping on a Burst

The mapping is given by the rule:

 $\begin{array}{ll} e(B,j)=i(B,j) & \text{ and } e(B,59+j)=i(B,57+j) & \text{ for } j=0,1,...,56\\ \text{and} & \\ e(B,57)=hl(B) & \text{ and } e(B,58)=hu(B) \end{array}$

The two bits labelled hl(B) and hu(B) on burst number B are flags used for indication of control channel signalling. They are set to "1" for a SACCH.

4.2 Fast associated control channel at full rate (FACCH/F)

4.2.1 Block constitution

The message delivered to the encoder has a fixed size of 184 information bits. It is delivered on a burst mode.

4.2.2 Block code

The block encoding is done as specified for the SACCH in section 4.1.2.

4.2.3 Convolutional encoder

The convolutional encoding is done as specified for the SACCH in section 4.1.3.

4.2.4 Interleaving

The interleaving is done as specified for the TCH/FS in section 3.1.3.

4.2.5 Mapping on a Burst

A FACCH/F frame of 456 coded bits is mapped on 8 consecutive bursts as specified for the TCH/FS in section 3.1.4. As a FACCH is transmitted on bits which are stolen in a burst from the traffic channel, the even numbered bits in the first 4 bursts and the odd numbered bits of the last 4 bursts are stolen.

To indicate this to the receiving device the flags hl(B) and hu(B) have to be set according to the following rule:

hu(B) = 1 for the first 4 bursts (even numbered bits are stolen) hl(B) = 1 for the last 4 bursts (odd numbered bits are stolen)

The consequences of this bitstealing by a FACCH/F is for a:

- speech channel (TCH/FS) and data channel (TCH/F2.4): One full frame of data is stolen by the FACCH.
- Data channel (TCH/F9.6):

The bitstealing by a FACCH/F disturbs a maximum of 96 coded bits generated from an input frame of four data blocks. A maximum of 24 of the 114 coded bits resulting from one input data block of 60 bits may be disturbed.

- Data channel (TCH/F4.8):

The bit stealing by FACCH/F disturbs a maximum of 96 coded bits generated from an input frame of two data blocks. A maximum of 48 of the 228 coded bits resulting from one input data block of 60 bits may be disturbed.

NOTE: In the case of consecutive stolen frames, a number of bursts will have both the even and the odd bits stolen and both flags hu(B) and hl(B) must be set to 1.

4.3 Fast associated control channel at half rate (FACCH/H)

4.3.1 Block constitution

The message delivered to the encoder has a fixed size of 184 information bits. It is delivered on a burst mode.

4.3.2 Block code

The block encoding is done as specified for the SACCH in section 4.1.2.

4.3.3 Convolutional encoder

The convolutional encoding is done as specified for the SACCH in section 4.1.3.

Page 22 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

4.3.4 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$i(B,j) = c(n,k) \qquad \mbox{for} \qquad k=0,1,...,455 \\ n=0,1,...,N,N+1,... \\ B=B_0 + 4n + (k \mbox{ mod } 8) - 4((k \mbox{ mod } 8) \mbox{ div } 6) \\ j= 2((49k) \mbox{ mod } 57) + ((k \mbox{ mod } 8) \mbox{ div } 4)$$

See table 1. The result of the reordering of bits is the same as given for a TCH/FS (section 3.1.3) as can be seen from the evaluation of the bit number-index j, distributing the 456 bits over 4 blocks on even numbered bits and 4 blocks on odd numbered bits. The 2 last blocks with even numbered bits and the 2 last blocks with odd numbered bits are put together into 2 full middle blocks.

The block of coded data is interleaved "block diagonal" where a new data block starts every 4th block and is distributed over 6 blocks.

4.3.5 Mapping on a Burst

A FACCH/H frame of 456 coded bits is mapped on 6 consecutive bursts by the rule:

and	e(B,j)=i(B,j)	and	e(B,59+j)=i(B,57+j) for	j=0,1,,56
anu	e(B,57)=hl(B)	and	e(B,58)=hu(B)	

As a FACCH/H is transmitted on bits which are stolen from the traffic channel, the even numbered bits of the first 2 bursts, all bits of the middle 2 bursts and the odd numbered bits of the last 2 bursts are stolen.

To indicate this to the receiving device the flags hl(B) and hu(B) have to be set according to the following rule:

hu(B) = 1	for the first 2 bursts (even numbered bits are stolen)
hu(B) = 1 and $hl(B) = 1$	for the middle 2 bursts (all bits are stolen)
hl(B) = 1	for the last 2 bursts (odd numbered bits are stolen)

The consequences of this bitstealing by a FACCH/H is for a:

- speech channel (TCH/HS): two full consecutive speech frames are stolen by a FACCH/H.
- data channel (TCH/H4.8):

The bitstealing by FACCH/H disturbs a maximum of 96 coded bits generated from an input frame of four data blocks. A maximum of 24 out of the 114 coded bits resulting from one input data block of 60 bits may be disturbed.

data channel (TCH/H2.4):

The bitstealing by FACCH/H disturbs a maximum of 96 coded bits generated from an input frame of four data blocks. A maximum of 24 out of the 114 coded bits resulting from one input data block of 36 bits may be disturbed.

NOTE: In the case of consecutive stolen frames, two overlapping bursts will have both the even and the odd numbered bits stolen and both flags hu(B) and hl(B) must be set to 1.

4.4 Broadcast control, Paging, Access grant, Notification and Cell broadcast channels (BCCH, PCH, AGCH, NCH, CBCH)

The coding scheme used for the broadcast control, paging, access grant, notification and cell broadcast messages is the same as for the SACCH messages, specified in section 4.1.

4.5 Stand-alone dedicated control channel (SDCCH)

The coding scheme used for the dedicated control channel messages is the same as for SACCH messages, specified in section 4.1.

4.6 Random access channel (RACH)

The burst carrying the random access uplink message has a different structure. It contains 8 information bits d(0), d(1), ..., d(7).

Six parity bits p(0),p(1),...,p(5) are defined in such a way that in GF(2) the binary polynomial:

 $d(0)D^{13}$ +...+ $d(7)D^6$ + $p(0)D^5$ +...+ p(5), when divided by D^6 + D^5 + D^3 + D^2 + D + 1 yields a remainder equal to D^5 + D^4 + D^3 + D^2 + D + 1.

The six bits of the BSIC, {B(0),B(1),...,B(5)}, of the BS to which the Random Access is intended, are added bitwise modulo 2 to the six parity bits, {p(0),p(1),...,p(5)}. This results in six colour bits, C(0) to C(5) defined as C(k) = b(k) + p(k) (k = 0 to 5) where:

b(0) = MSB of PLMN colour code b(5) = LSB of BS colour code.

This defines {u(0),u(1),..., u(17)} by:

 $\begin{array}{ll} u(k) &= d(k) & \mbox{for } k = 0,1,...,7 \\ u(k) &= C(k{\text -}8) & \mbox{for } k = 8,9,...,13 \\ u(k) &= 0 & \mbox{for } k = 14,15,16,17 \mbox{ (tail bits)} \end{array}$

The bits $\{e(0), e(1), ..., e(35)\}$ are obtained by the same convolutional code of rate 1/2 as for TCH/FS, defined by the polynomials:

and with:

e(2k) = u(k) + u(k-3) + u(k-4)e(2k+1) = u(k) + u(k-1) + u(k-3) + u(k-4) for k = 0,1,...,17; u(k) = 0 for k < 0

4.7 Synchronization channel (SCH)

The burst carrying the synchronization information on the downlink BCCH has a different structure. It contains 25 information bits $\{d(0),d(1),..., d(24)\}$, 10 parity bits $\{p(0),p(1),..., p(9)\}$ and 4 tail bits. The precise ordering of the information bits is given in GSM 04.08.

The ten parity bits $\{p(0), p(1), \dots, p(9)\}$ are defined in such a way that in GF(2) the binary polynomial:

 $d(0)D^{34} + ... + d(24)D^{10} + p(0)D^9 + ... + p(9)$, when divided by: $D^{10} + D^8 + D^6 + D^5 + D^4 + D^2 + 1$, yields a remainder equal to: $D^9 + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D+1$.

Page 24 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

Thus the encoded bits $\{u(0), u(1), \dots, u(38)\}$ are:

 $\begin{array}{ll} u(k) &= d(k) & \mbox{for } k = 0,1,...,24 \\ u(k) &= p(k\text{-}25) & \mbox{for } k = 25,26,...,34 \\ u(k) &= 0 & \mbox{for } k = 35,36,37,38 \mbox{ (tail bits)} \end{array}$

The bits $\{e(0), e(1), ..., e(77)\}$ are obtained by the same convolutional code of rate 1/2 as for TCH/FS, defined by the polynomials:

 $\begin{array}{l} G0 = 1 + D^3 + D^4 \\ G1 = 1 + D + D^3 + D^4 \end{array}$

and with:

 $\begin{array}{ll} e(2k) & = u(k) + u(k-3) + u(k-4) \\ e(2k+1) & = u(k) + u(k-1) + u(k-3) + u(k-4) \mbox{ for } k = 0,1,...,77 \ ; \ u(k) = 0 \ \mbox{ for } k < 0 \end{array}$

4.8 Access Burst on channels other than RACH

The encoding of this burst is as defined in section 4.6 for the random access channel (RACH). The BSIC used shall be the BSIC of the BTS to which the burst is intended.

4.9 Access Bursts for uplink access on a channel used for VGCS

The encoding of this burst is as defined in section 4.5 for the RACH. The BSIC used by the Mobile Station shall be the BSIC indicated by network signalling, or if not thus provided, the last received BSIC on the SCH of the current cell.

Page 25 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

Table 1: Reordering and partitioning of a coded block of 456 bits into 8 sub-blocks

Page 26 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

Importance class	Parameter name	Parameter number	Bit index	Label	Class
1	Log area ratio 1	1	5	d0	
	block amplitude	12,29,46,63	5	d1, d2, d3, d4	
	Log area ratio 1	1	4		
2	Log area ratio 2	2	5		
	Log area ratio 3	3	4		
	Log area ratio 1	1	3		
	Log area ratio 2	2	4		
	Log area ratio 3	3	3		
	Log area ratio 4	4	4		
3	LPT lag	9,26,43,60	6		1
	block amplitude	12,29,43,63	4		with
	Log area ratio 2,5,6	2,5,6	3		parity
	LPT lag	9,26,43,60	5		check
	LPT lag	9,26,43,60	4		
	LPT lag	9,26,43,60	3		
	LPT lag	9,26,43,60	2		
	block amplitude	12,29,43,63	3		
	Log area ratio 1	1	2		
	Log area ratio 4	4	3		
	Log area ratio 7	7	2		
4	LPT lag	9,26,43,60	1	d48, d49	
	Log area ratio 5,6	5,6	2	d50	
	LPT gain	10,27,44,61	1		
	LPT lag	9,26,43,60	0		
	Grid position	11,28,45,62	1		
	Log area ratio 1	1	1		
	Log area ratio 2,3,8,4	2,3,8,4	2		
	Log area ratio 5,7	5,7	1		
	LPT gain	10,27,44,61	0		
	block amplitude	12,29,43,63	2		1
	RPE pulses	1325	2		with
-	RPE pulses	3042	2		parity
5	RPE pulses	4759	2		check
	RPE pulses	6476	2		
	Grid position	11,28,45,62	0		
	block amplitude	12,29,43,63	1		
	RPE pulses RPE pulses	1325 3042	1		
	RPE pulses	3042 4759	1		
	RPE pulses	6467		d181	
	RPE pulses	6876	1	d182	
	Log area ratio 1	1	0	uioz	
	Log area ratio 1 Log area ratio 2,3,6	2,3,6	1		
	0				
	Log area ratio 7	7 8	0		
	Log area ratio 8	o 8,3	0		
6	Log area ratio 8,3 Log area ratio 4	8,3	1		2
0	Log area ratio 4,5	4,5	0		2
	block amplitude	4,5 12,29,43,63	0		
	RPE pulses	1325	0		
	-	3042	0		
	RPE pulses	3042 4759	0		
	RPE pulses				
	RPE pulses	6467	0	4250	
	Log area ratio 2,6	2,6	U	d259	

Table 2: Subjective importance of encoded bits for the full rate speech TCH (Parameter names and
bit indices refer to GSM 06.10)

Parameter Bit Label Class index name R0 d0 1 LPC 3 7 d1 GSP 0-1 2 2 2 d2 GSP 0-2 d3 GSP 0-3 d4 GSP 0-4 2 d5 d6 LPC 1 0 LPC 2 5...1 d7...d11 LPC 3 d12... 6...1 Code 1-2 0 Code 2-2 6...0 Code 1-3 6...0 1 Code 2-3 6...3 LPC3 without 0 R0 0 parity INT-LPC check 0 Code 1-2 1...6 Code 2-1 0...6 Code 1-1 0...6 GSP 0-4 0 GSP 0-3 0 GSP 0-2 0 GSP 0-1 0 LPC 2 0 GSP 0-4 1 GSP 0-3 1 GSP 0-2 1 GSP 0-1 1 LPC 1 1...4 ..d72 LPC 1 5 d73... GSP 0-4 3 GSP 0-3 3 GSP 0-2 3 GSP 0-1 3 LPC2 6...8 1 GSP 0-4 4 4 GSP 0-3 with 4 GSP 0-2 parity GSP 0-1 4 check 6...9 LPC 1 R0 2 10 LPC 1 R0 3,4 Mode 0,1 ...d94 Code 2-4 0...6 d95... Code 1-4 0...6 2 Code 2-3 0...2 ...d111

Table 3a: Subjective importance of encoded bits for the half rate speech TCH for unvoiced speech frames (Parameter names and bit indices refer to GSM 06.20)

Page 28 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

Table 3b: Subjective importance of encoded bits for the half rate speech TCH for voiced speech frames (Parameter names and bit indices refer to GSM 06.20)

Parameter	Bit	Label	Class
name	index		
name LPC 1 LPC 2 GSP 0-1 GSP 0-2 GSP 0-3 GSP 0-4 GSP 0-2 GSP 0-3 GSP 0-2 GSP 0-3 GSP 0-4 GSP 0-2 GSP 0-3 GSP 0-4 Code 1 Code 2 Code 2 GSP 0-1 GSP 0-2 GSP 0-3 GSP 0-1 GSP 0-2 GSP 0-1 GSP 0-2 GSP 0-3 GSP 0-1 GSP 0-2 GSP 0-3 GSP 0-1 GSP 0-2 GSP 0-3 GSP 0-4 INT-LPC LPC 2 LPC 3 LAG 4 LPC 2 LAG 4 LAG 3	index 2,1 64 4 4 4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	Label d0, d1 d2	Class 1 without parity check
INT-LPC LPC 2 LPC 3 LAG 4 LPC 3 LPC 2 LAG 4 LAG 3 LAG 2 LAG 1 LAG 4 LAG 3 LAG 2 LAG 1 LAG 1 LPC 3 LPC 2 LPC 3	0 0 0 1 1 1 0 0 0 2 1 1 1 24 2 5,6		CHOCK
LPC 2 R0 LPC 3 LPC 1 LAG 4 LAG 3 LAG 2 LAG 1 R0	3 0 7 0 3 2 2 2 1	d72	

Parameter	Bit index	Label	Class
name			
LAG 3	3	d73	
LAG 2	3		
LAG 1	3,4		1
LPC 2	7,8		
LPC 1	36		with
R0	2		parity
LAG 1	57		check
LPC 1	710		
R0	3,4		
Mode	0,1	d94	
Code 4	08	d95	2
Code 3	07	d111	

Table 4: Reordering and partitioning of a coded block of 228 bits into 4 sub-blocks for TCH/HS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 151 9 189 7 227 5 15 3 53 1 91 9 129 7 167 5 33 1 71 9 109
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 189 7 227 5 15 3 53 1 91 9 129 7 167 5 205 13 33 1 71 19 109
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 227 5 15 3 53 1 91 9 129 7 167 5 205 3 33 1 71 9 109
	5 15 3 53 1 91 9 129 7 167 5 205 3 33 1 71 9 109
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 53 1 91 9 129 7 167 5 205 3 33 1 71 9 109
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 91 9 129 7 167 5 205 3 33 1 71 19 109
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 91 9 129 7 167 5 205 3 33 1 71 19 109
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 129 7 167 5 205 3 33 1 71 19 109
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 167 5 205 3 33 1 71 9 109
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 205 3 33 1 71 9 109
132 32 13 20 170 70 21 17 208 108 20 20 8 146 9 9 46 184 47	3 33 1 71 9 109
20 170 70 21 17 208 108 20 2	1 71 9 109
208 108 20 8 146 9 46 184 47	9 109
8 146 9 46 184 47	
46 184 47	
	147
	7 185
30 122 10 31 12	
198 86 19	
28 124 29	
66 162 67	
40 104 200 41 10	
142 30 14	3 31
180 68 18	1 69
218 106 21	
50 42 182 51 43	
80 220 8	
118 6 11	
156 44 15	
194 82 19	5 83
60 22 120 61 23	3 121
60 158 6'	
98 196 99	
136 24 13	
70 212 100 71 21	
12 138 13	
50 176 5	
88 214 89	
126 2 12	7 3
80 164 40 81 16	
202 78 20	
34 116 34	
72 154 73	
90 148 26 91 14	
186 64 18	
224 102 22	
16 140 17	7 141
54 178 55	
100 92 216 101 93	
130 20 13	
206 96 20	
36 134 37	
110 74 172 111 75	
112 112 210 113 11	
	11

Table 5: Enhanced Full rate Source Encoder output parameters in order of occurrence and bit allocation within the speech frame of 244 bits/20 ms(Parameter names and bit indices refer to GSM 06.60)

Bits (MSB-LSB)	Description	
s1 - s7	index of 1st LSF submatrix	
s8 - s15	index of 2nd LSF submatrix	
s16 - s23	index of 3rd LSF submatrix	
s24	sign of 3rd LSF submatrix	
s25 - s32	index of 4th LSF submatrix	
s33 - s38	index of 5th LSF submatrix	
	subframe 1	
s39 - s47	adaptive codebook index	
s48 - s51	adaptive codebook gain	
s52	sign information for 1st and 6th pulses	
s53 - s55	position of 1st pulse	
s56	sign information for 2nd and 7th pulses	
s57 - s59	position of 2nd pulse	
s60	sign information for 3rd and 8th pulses	
s61 - s63	position of 3rd pulse	
s64	sign information for 4th and 9th pulses	
s65 - s67	position of 4th pulse	
s68	sign information for 5th and 10th pulses	
s69 - s71	position of 5th pulse	
s72 - s74	position of 6th pulse	
s75 - s77	position of 7th pulse	
s78 - s80	position of 8th pulse	
s81 - s83	position of 9th pulse	
s84 - s86	position of 10th pulse	
s87 - s91	fixed codebook gain	
	subframe 2	
s92 - s97	adaptive codebook index (relative)	
s98 - s141	same description as s48 - s91	
	subframe 3	
s142 - s194	same description as s39 - s91	
subframe 4		

Table 6: Ordering of enhanced full rate speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding) (Parameter names refers to GSM 06.60)

Description	Bits (Table 5)	Bit index within parameter
CLASS 1a: 50 bits (protected by 3 bit TCH-FS CRC)		
LTP-LAG 1	w39 - w44	b8, b7, b6, b5, b4, b3
LTP-LAG 3	w146 - w151	b8, b7, b6, b5, b4, b3
LTP-LAG 2	w94 - w95	b5, b4
LTP-LAG 4	w201 - w202	b5, b4
LTP-GAIN 1	n48	b3
FCB-GAIN 1	w89	b4
LTP-GAIN 2	w100	b3
FCB-GAIN 2	w141	b4
LTP-LAG 1	w45	b2
LTP-LAG 3	w152	b2
LTP-LAG 2	w96	b3
LTP-LAG 4	w203	b3
LPC 1	w2 - w3	b5, b4
LPC 2	w8	b7
LPC 2	w10	b5
LPC 3	w18 - w19	b6, b5
LPC 3	w24	b0
LTP-LAG 1	w46 - w47	b1, b0
LTP-LAG 3	w153 - w154	b1, b0
LTP-LAG 2	w97	b2
LTP-LAG 4	w204	b2
LPC 1	w4 - w5	b3, b2
LPC 2	w11 - w12	b4, b3
LPC 3	w16	b8
LPC 2	w9	b6
LPC 1	w6 - w7	b1, b0
LPC 2	w13	b2
LPC 3	w17	b7
LPC 3	w20	b4
LTP-LAG 2	w98	b1
LTP-LAG 4	w205	b1
CLASS 1b: 132 bits (protected)		
LPC 1	w1	b6
LPC 2	w14 - w15	b1, b0
LPC 3	w21	b3
LPC 4	w25 - w26	b7, b6
LPC 4	w28	b4
LTP-GAIN 3	w155	b3
LTP-GAIN 4	w207	b3
FCB-GAIN 3	w196	b4
FCB-GAIN 4	w248	54
FCB-GAIN 1	w240	54
FCB-GAIN 2	w142	b3
FCB-GAIN 3	w197	b3
FCB-GAIN 4	w249	b3

Page 32 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

Table 6 (continued): Ordering of enhanced full rate speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding) (Parameter names refers to GSM 06.60)

Description	Bits (Table 5)	Bit index within parameter
CRC-POLY	w253 - w260	b7, b6, b5, b4, b3, b2, b1, b0
LTP-GAIN 1	w49	b2
LTP-GAIN 2	w101	b2
LTP-GAIN 3	w156	b2
LTP-GAIN 4	w208	b2
LPC 3	w22 - w23	b2, b1
LPC 4	w27	b5
LPC 4	w29	b3
PULSE 1_1	w52	b3
PULSE 1_2	w56	b3
PULSE 1_3	w60	b3
PULSE 1_4	w64	b3
PULSE 1_5	w68	b3
PULSE 2_1	w104	b3
PULSE 2_2	w108	b3
PULSE 2_3	w112	b3
PULSE 2_4	w116	b3
PULSE 2_5	w120	b3
PULSE 3_1	w159	b3
PULSE 3_2	w163	b3
PULSE 3_3	w167	b3
PULSE 3_4	w171	b3
PULSE 3_5	w175	b3
PULSE 4_1	w211	b3
PULSE 4_2	w215	b3
PULSE 4_3	w219	b3
PULSE 4_4	w223	b3
PULSE 4_5	w227	b3
FCB-GAIN 1	w91	b2
FCB-GAIN 2	w143	b2
FCB-GAIN 3	w198	b2
FCB-GAIN 4	w250	b2
LTP-GAIN 1	w50	b1
LTP-GAIN 2	w102	b1
LTP-GAIN 3	w157	b1
LTP-GAIN 4	w209	b1
LPC 4	w30 - w32	b2, b1, b0
LPC 5	w33 - w36	b5, b4, b3, b2
LTP-LAG 2	w99	b0
LTP-LAG 4	w206	b0
PULSE 1_1	w53	b2
PULSE 1_2	w57	b2

Table 6 (continued): Ordering of enhanced full rate speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding) (Parameter names refers to GSM 06.60)

Description	Bits (Table 5)	Bit index within parameter
PULSE 1_3	w61	b2
PULSE 1_4	w65	b2
PULSE 1_5	w69	b2
PULSE 2_1	w105	b2
PULSE 2_2	w109	b2
PULSE 2_3	w113	b2
PULSE 2_4	w117	b2
PULSE 2_5	w121	b2
PULSE 3_1	w160	b2
PULSE 3_2	w164	b2
PULSE 3_3	w168	b2
PULSE 3_4	w172	b2
PULSE 3_5	w176	b2
PULSE 4_1	w212	b2
PULSE 4_2	w216	b2
PULSE 4_3	w220	b2
PULSE 4_4	w224	b2
PULSE 4_5	w228	b2
PULSE 1 1	w54	b1
PULSE 1 2	w58	b1
PULSE 1_3	w60	b1
PULSE 1 4	w62	b1
PULSE 2_1	w106	b1
PULSE 2_2	w100	b1
PULSE 2_3	w110	b1
PULSE 2_4	w114	b1
PULSE 3_1	w110	b1
PULSE 3_2	w165	b1
PULSE 3_3	w169	b1
PULSE 3_4	w109	51
PULSE 4_1	w173	b1
PULSE 4_3	w213	b1
PULSE 4_4	w221	b1
FCB-GAIN 1	w225	b1
FCB-GAIN 2 FCB-GAIN 3	w144 s199	b1 b1
FCB-GAIN 3 FCB-GAIN 4	w251	b1
LTP-GAIN 4		b1
LTP-GAIN 1 LTP-GAIN 2	w51	b0b0
	w103	
LTP-GAIN 3	w158	b0
LTP-GAIN 4	w210	<u>b0</u>
FCB-GAIN 1	w93	<u>b0</u>
FCB-GAIN 2	w145	<u>b0</u>
FCB-GAIN 3	w200	b0

Page 34 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

Table 6 (continued): Ordering of enhanced full rate speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding) (Parameter names refers to GSM 06.60)

Description	Bits (Table 5)	Bit index within parameter
FCB-GAIN 4	w252	b0
PULSE 1_1	w55	b0
PULSE 1_2	w59	b0
PULSE 1_3	w63	b0
PULSE 1_4	w67	b0
PULSE 2_1	w107	b0
PULSE 2_2	w111	b0
PULSE 2_3	w115	b0
PULSE 2_4	w119	b0
PULSE 3_1	w162	b0
PULSE 3_2	w166	b0
PULSE 3_3	w170	b0
PULSE 3_4	w174	b0
PULSE 4_1	w214	b0
PULSE 4_3	w222	b0
PULSE 4_4	w226	b0
LPC 5	w37 - w38	b1, b0
CLASS 2: 78 bits (unprotected)		
PULSE 1_5	w70	b1
PULSE 1_5	w72 - w73	b1, b1
PULSE 2_5	w122	b1
PULSE 2_5	w124 - s125	b1, b1
PULSE 3_5	w177	b1
PULSE 3_5	w179 - w180	b1, b1
PULSE 4_5	w229	b1
PULSE 4_5	w231 - w232	b1, b1
PULSE 4_2	w217 - w218	b1, b0
PULSE 1_5	w71	b0
PULSE 2_5	w123	b0
PULSE 3_5	w178	b0
PULSE 4_5	w230	b0
PULSE 1_6	w74	b2
PULSE 1_7	w77	b2
PULSE 1_8	w80	b2
PULSE 1_9	w83	b2
PULSE 1_10	w86	b2
PULSE 2_6	w126	b2
PULSE 2_7	w129	b2
PULSE 2_8	w132	b2
PULSE 2_9	w135	b2
PULSE 2_10	w138	b2
PULSE 3_6	w181	b2
PULSE 3_7	w184	b2
PULSE 3_8	w187	b2
PULSE 3_9	w190	b2

Table 6 (concluded): Ordering of speech parameters for the channel encoder(subjective importance of encoded bits) (after preliminary channel coding)(Parameter names refers to GSM 06.60)

Description	Bits (Table 5)	Bit index within parameter
PULSE 3_10	w193	b2
PULSE 4 6	w233	b2
PULSE 4 7	w236	b2
PULSE 4_8	w239	b2
PULSE 4_9	w242	b2
	w245	b2
PULSE 1 6	w75	b1
PULSE 1_7	w78	b1
PULSE 1_8	w81	b1
 PULSE 1_9	w84	b1
 PULSE 1_10	w87	b1
PULSE 2_6	w127	b1
PULSE 2_7	w130	b1
PULSE 2_8	w133	b1
PULSE 2_9	w136	b1
PULSE 2_10	w139	b1
PULSE 3_6	w182	b1
PULSE 3_7	w185	b1
PULSE 3 8	w188	b1
PULSE 3_9	w191	b1
PULSE 3_10	w194	b1
PULSE 4_6	w234	b1
PULSE 4 7	w237	b1
PULSE 4_8	w240	b1
PULSE 4_9	w243	b1
PULSE 4_10	w246	b1
PULSE 1_6	w210	b0
PULSE 1_7	w79	b0
PULSE 1_8	w82	b0
PULSE 1_9	w85	b0
PULSE 1_10	wee wee	b0
PULSE 2 6	w128	b0
PULSE 2_7	w120	b0
PULSE 2_8	w134	b0
PULSE 2_9	w137	b0
PULSE 2_10	w137	b0
PULSE 3_6	w140	b0
PULSE 3_7	w185	b0
PULSE 3_8	w180	b0
PULSE 3_9	w189 w192	b0
PULSE 3_10	w192 w195	b0
PULSE 4 6	w195 w235	b0
PULSE 4_0	w235 w238	b0
PULSE 4_7	w238 w241	b0
PULSE 4_8 PULSE 4_9	w241	b0 b0
PULSE 4_9 PULSE 4_10	w244 w247	b0 b0
FULSE 4_10	₩∠41	DU

Annex A (informative): Summary of Channel Types

TCH/EFS	enhanced full rate speech traffic channel
TCH/FS:	full rate speech traffic channel
TCH/HS:	half rate speech traffic channel
TCH/F9.6:	9.6 kbit/s full rate data traffic channel
TCH/F4.8:	4.8 kbit/s full rate data traffic channel
TCH/H4.8:	4.8 kbit/s half rate data traffic channel
TCH/F2.4:	2.4 kbit/s half rate data traffic channel
TCH/H2.4:	2.4 kbit/s half rate data traffic channel
SACCH:	slow associated control channel
FACCH/F:	fast associated control channel at full rate
FACCH/H:	fast associated control channel at half rate
SDCCH:	stand-alone dedicated control channel
BCCH:	broadcast control channel
PCH:	paging channel
AGCH	access grant channel
RACH:	random access channel
SCH:	synchronization channel
CBCH:	cell broadcast channel

Annex B (informative): Summary of Polynomials Used for Convolutional Codes

- G0 = 1+ D³ + D⁴ TCH/FS, TCH/EFS, TCH/F9.6, TCH/H4.8, SDCCH, BCCH, PCH, SACCH, FACCH, AGCH, RACH, SCH
- G1 = 1 + D + D³ + D⁴ TCH/FS, TCH/EFS, TCH/F9.6, TCH/H4.8, SACCH, FACCH, SDCCH, BCCH,PCH, AGCH, RACH, SCH, TCH/F4.8, TCH/F2.4, TCH/H2.4
- G2 = 1 + D² + D⁴ TCH/F4.8, TCH/F2.4, TCH/H2.4
- G3 = 1 + D + D² + D³ + D⁴ TCH/F4.8, TCH/F2.4, TCH/H2.4
- $G4 = 1 + D^2 + D^3 + D^5 + D^6$ TCH/HS
- $G5 = 1 + D + D^4 + D^6$ TCH/HS
- $G6 = 1 + D + D^2 + D^3 + D^5 + D^6 TCH/HS$

Page 38 Draft prETS 300 909 (GSM 05.03 Version 5.2.1): November 1996

History

Document history			
March 1996	Publication of GTS 05.03 version 5.0.0		
May 1996	Publication of GTS 05.03 version 5.1.0		
August 1996	Publication of GTS 05.03 version 5.2.0		
November 1996	Unified Approval Procedure	UAP 58:	1996-11-18 to 1997-03-14