
FINAL DRAFT

EUROPEAN pr ETS 300 838

TELECOMMUNICATION March 1998

STANDARD

Source: MTA Reference: RE/MTA-002040

ICS: 33.020

Key words: API, ISDN, PCI

Integrated Services Digital Network (ISDN);
Harmonized Programmable Communication Interface (HPCI)

for ISDN

ETSI

European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 4 92 94 42 00 - Fax: +33 4 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1998. All rights reserved.

Page 2
Final draft prETS 300 838: March 1998

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
Final draft prETS 300 838: March 1998

Contents

Foreword ...23

Introduction..23

1 Scope ..25

2 Normative references..26

3 Definitions and abbreviations ..27
3.1 Definitions ..27
3.2 Abbreviations ...28

4 General..29
4.1 Overview ..29
4.2 Requirements ..30
4.3 Reader's guide...31

5 Profile A...31
5.1 Reader's guidance and overview...31

5.1.1 Reader's guide ..31
5.1.2 How to use this profile ...32
5.1.3 Functional overview...33
5.1.4 Connection management ..33
5.1.5 The planes...33
5.1.6 Properties ..33
5.1.7 External equipment (e.g. telephony) ...34
5.1.8 ISDN accesses and the multi-applications environment34
5.1.9 Exchange mechanism...34

5.2 Message overview ...34
5.2.1 Functional model ...34

5.2.1.1 Introduction ..34
5.2.1.2 Architecture..34

5.2.1.2.1 Profile A and its components35
5.2.1.2.2 Profile A architecture36
5.2.1.2.3 Co-ordination cases..............................36

5.2.1.3 Functionality...37
5.2.1.3.1 Introduction ...37
5.2.1.3.2 Resource management37
5.2.1.3.2.1 Attribute sets ...37
5.2.1.3.2.2 Network Connection Objects38
5.2.1.3.2.3 Support of external equipment..............38
5.2.1.3.2.4 Support of security features..................40
5.2.1.3.2.5 Support of manufacturer specific

features...40
5.2.1.3.3 Connection management......................41
5.2.1.3.3.1 Connection set-up and removal............41
5.2.1.3.3.2 Support of supplementary services41
5.2.1.3.4 Data management41

5.2.1.4 Relating functionality to planes ..42
5.2.1.4.1 Optional features42
5.2.1.4.2 Administration Plane.............................42
5.2.1.4.3 Control Plane ..43
5.2.1.4.4 User Plane ..43

5.2.1.5 PUF NAF interactions..43
5.2.1.6 Total interaction overview ..45
5.2.1.7 Identifiers ...47
5.2.1.8 Error handling ..48

5.2.1.8.1 Overview ...48
5.2.1.8.2 Function error handling.........................48

Page 4
Final draft prETS 300 838: March 1998

5.2.1.8.3 Message error handling 49
5.2.2 Information encoding .. 49
5.2.3 Conventions.. 50

5.2.3.1 Address conventions... 50
5.2.3.2 Provision of information .. 50
5.2.3.3 Message conventions ... 50
5.2.3.4 Parameter conventions ... 51

5.2.3.4.1 Parameter ordering 51
5.2.3.4.2 Parameter repetition............................. 51
5.2.3.4.3 Parameter checking 51

5.2.3.5 Default philosophy... 51
5.2.4 User Plane particularities.. 51

5.3 Exchange method ... 52
5.3.1 Registration phase.. 52

5.3.1.1 Overview ... 52
5.3.1.2 PciGetHandles .. 53
5.3.1.3 PciGetProperty.. 54
5.3.1.4 PciRegister.. 56

5.3.2 Deregistration phase... 57
5.3.2.1 PciDeregister... 57

5.3.3 Conversation phase.. 57
5.3.3.1 Sending messages ... 57
5.3.3.2 Receiving messages... 57
5.3.3.3 Receiving messages using the polling method................... 58
5.3.3.4 Receiving messages using signal method.......................... 58
5.3.3.5 PCI Message Parameter Block (PCIMPB).......................... 58
5.3.3.6 PciPutMessage ... 59
5.3.3.7 PciGetMessage... 60
5.3.3.8 PciSetSignal.. 60

5.4 Administration Plane messages.. 61
5.4.1 ACreateNCOReq .. 62
5.4.2 NCOType and conditional parameter specification 63
5.4.3 ACreateNCOCnf ... 64
5.4.4 ADestroyNCOReq .. 65
5.4.5 ADestroyNCOCnf ... 65
5.4.6 AGetNCOInfoReq... 65
5.4.7 AGetNCOInfoCnf .. 66
5.4.8 AErrorInd .. 66
5.4.9 ASecurityReq.. 66
5.4.10 ASecurityCnf ... 67
5.4.11 AManufacturerReq.. 67
5.4.12 AManufacturerInd ... 68
5.4.13 AChangeNCOReq .. 68
5.4.14 AChangeNCOCnf ... 69

5.5 Control Plane messages ... 69
5.5.1 Introduction ... 69

5.5.1.1 Control Messages classes .. 69
5.5.1.2 Sequencing of Control Plane messages............................. 71

5.5.2 CAlertReq ... 74
5.5.3 CAlertInd... 75
5.5.4 CConnectReq ... 75
5.5.5 CConnectInd... 76
5.5.6 CConnectRsp ... 77
5.5.7 CConnectCnf .. 78
5.5.8 CDisconnectReq... 78
5.5.9 CDisconnectInd .. 78
5.5.10 CDisconnectRsp... 79
5.5.11 CDisconnectCnf.. 79
5.5.12 CProgressInd.. 80
5.5.13 CStatusInd .. 80
5.5.14 CSetupAckInd... 80
5.5.15 CConnectInfoReq ... 81
5.5.16 CProceedingInd .. 81

Page 5
Final draft prETS 300 838: March 1998

5.5.17 CUserInformationReq ...82
5.5.18 CUserInformationInd ...82
5.5.19 CCongestionControlReq ...83
5.5.20 CCongestionControlInd ...83
5.5.21 CSuspendReq ...84
5.5.22 CSuspendCnf ..84
5.5.23 CResumeReq..84
5.5.24 CResumeCnf...85
5.5.25 CNotifyInd..85
5.5.26 CFacilityReq ..86
5.5.27 CFacilityInd..86
5.5.28 CExtEquipAvailabalityInd ..86
5.5.29 CExtEquipBlockDiallingInd..87
5.5.30 CExtEquipKeyPressedInd ...87
5.5.31 CExtEquipOffHookInd ...87
5.5.32 CExtEquipOnHookInd ...88
5.5.33 CAddInfoReq...88
5.5.34 CAddInfoInd ..88
5.5.35 CDtmfReq..89
5.5.36 CDtmfCnf ..89
5.5.37 CDtmfInd ...89
5.5.38 User to User information exchange...90
5.5.39 Implementation of supplementary services...90

5.5.39.1 Advice of Charge during call (AOC-D).................................90
5.5.39.2 Advice of Charge at End of call (AOC-E)91

5.6 User Plane ...91
5.6.1 User Plane Protocols Management Architecture ..91

5.6.1.1 Introduction ..91
5.6.1.2 Message access..92

5.6.1.2.1 The physical layer access
(transparent access)93

5.6.1.2.2 The link layer access93
5.6.1.2.3 The network layer access93

5.6.1.3 Protocols..94
5.6.1.3.1 Supported User Plane protocols...........94
5.6.1.3.2 Protocol selection..................................94
5.6.1.3.2.1 NCOType parameter95
5.6.1.3.2.2 UProtocol parameter.............................95

5.6.1.4 Co-ordination function..95
5.6.1.5 Selection criteria ..97

5.6.1.5.1 NCO Selection: User Plane
information element97

5.6.1.5.2 Action if no NCO available: User
Plane incoming call97

5.6.1.6 User Plane error checking ...97
5.6.1.7 User Plane attribute sets ...97

5.6.2 Layer 1 Protocols...97
5.6.2.1 Transparent B-channel access with byte framing from the

network ..97
5.6.2.1.1 Introduction ...97
5.6.2.1.2 Messages ...98
5.6.2.1.2.1 UDataReq ...98
5.6.2.1.2.2 UDataInd...99
5.6.2.1.2.3 UErrorInd ..99
5.6.2.1.3 Messages parameters100
5.6.2.1.3.1 IdleFlag ...100
5.6.2.1.3.2 NCOType..100
5.6.2.1.3.3 UProtocol ..100
5.6.2.1.3.4 UAttributeName100
5.6.2.1.3.5 UDirection ...101
5.6.2.1.3.6 Cause..101
5.6.2.1.4 State diagram101
5.6.2.1.5 Co-ordination function.........................101

Page 6
Final draft prETS 300 838: March 1998

5.6.2.1.6 Selection criteria................................. 101
5.6.2.1.7 Specific error handling 101
5.6.2.1.8 Static attributes................................... 101
5.6.2.1.8.1 AttributeSet parameters 101
5.6.2.1.8.2 Static attribute content........................ 102

5.6.3 Layer 2 Protocols .. 102
5.6.3.1 ISO 7776 protocol ... 102

5.6.3.1.1 Introduction... 102
5.6.3.1.2 Messages... 103
5.6.3.1.2.1 UConnectReq..................................... 103
5.6.3.1.2.2 UConnectInd 103
5.6.3.1.2.3 UConnectRsp..................................... 103
5.6.3.1.2.4 UConnectCnf...................................... 104
5.6.3.1.2.5 UDisconnectReq 104
5.6.3.1.2.6 UDisconnectInd.................................. 104
5.6.3.1.2.7 UDataReq... 104
5.6.3.1.2.8 UDataInd .. 105
5.6.3.1.2.9 UReadyToReceiveReq....................... 105
5.6.3.1.2.10 UReadyToReceiveInd 106
5.6.3.1.3 Messages parameters........................ 106
5.6.3.1.3.1 L2ConnectionMode 106
5.6.3.1.3.2 L2FrameSize...................................... 107
5.6.3.1.3.3 L2WindowSize 107
5.6.3.1.3.4 L2XID ... 107
5.6.3.1.3.5 NCOType ... 107
5.6.3.1.3.6 UProtocol.. 108
5.6.3.1.3.7 UAttributeName.................................. 108
5.6.3.1.3.8 UDirection... 108
5.6.3.1.3.9 Cause... 108
5.6.3.1.3.10 Origin.. 109
5.6.3.1.4 State diagram..................................... 109
5.6.3.1.5 Co-ordination function 110
5.6.3.1.6 Selection criteria................................. 110
5.6.3.1.7 Specific error handling and codes...... 110
5.6.3.1.8 Static attributes................................... 110
5.6.3.1.8.1 AttributeSet parameters 110
5.6.3.1.8.2 Static attribute content........................ 110

5.6.3.2 HDLC protocol... 111
5.6.3.2.1 Introduction... 111
5.6.3.2.2 Messages... 111
5.6.3.2.2.1 UDataReq... 111
5.6.3.2.2.2 UDataInd .. 112
5.6.3.2.3 Messages parameters........................ 112
5.6.3.2.3.1 NCOType ... 112
5.6.3.2.3.2 UProtocol.. 112
5.6.3.2.3.3 UAttributeName.................................. 113
5.6.3.2.3.4 UDirection... 113
5.6.3.2.4 State diagram..................................... 113
5.6.3.2.5 Co-ordination function 113
5.6.3.2.6 Selection criteria................................. 113
5.6.3.2.7 Specific error handling and codes...... 113
5.6.3.2.8 Static attributes................................... 114
5.6.3.2.8.1 AttributeSet parameters 114
5.6.3.2.8.2 Static attribute content........................ 114

5.6.3.3 HDLC protocol with error... 114
5.6.3.3.1 Introduction... 114
5.6.3.3.2 Messages... 115
5.6.3.3.2.1 UDataReq... 115
5.6.3.3.2.2 UDataInd .. 115
5.6.3.3.3 Messages parameters........................ 115
5.6.3.3.3.1 NCOType ... 116
5.6.3.3.3.2 UProtocol.. 116
5.6.3.3.3.3 UAttributeName.................................. 116

Page 7
Final draft prETS 300 838: March 1998

5.6.3.3.3.4 UDirection ...116
5.6.3.3.3.5 Cause..117
5.6.3.3.3.6 State diagram117
5.6.3.3.4 Co-ordination function.........................117
5.6.3.3.5 Selection criteria117
5.6.3.3.6 Specific error handling117
5.6.3.3.7 Static attributes117
5.6.3.3.7.1 AttributeSet parameters......................117
5.6.3.3.7.2 Static attribute content117

5.6.3.4 PPP protocol..117
5.6.3.4.1 Introduction ...117
5.6.3.4.2 Messages ...118
5.6.3.4.2.1 UConnectReq119
5.6.3.4.2.2 UConnectInd.......................................119
5.6.3.4.2.3 UConnectRsp119
5.6.3.4.2.4 UConnectCnf120
5.6.3.4.2.5 UDisconnectReq.................................120
5.6.3.4.2.6 UDisconnectInd120
5.6.3.4.2.7 UDataReq ...120
5.6.3.4.2.8 UDataInd...121
5.6.3.4.2.9 UErrorInd ..121
5.6.3.4.3 Messages parameters121
5.6.3.4.3.1 NCOType..122
5.6.3.4.3.2 UProtocol ..122
5.6.3.4.3.3 UAttributeName122
5.6.3.4.3.4 UDirection ...122
5.6.3.4.3.5 PPPCause ..123
5.6.3.4.3.6 PPPDiagnostic123
5.6.3.4.3.7 PPPNegotiation...................................124
5.6.3.4.3.8 PPPOrigin ...125
5.6.3.4.4 State diagram126
5.6.3.4.5 Co-ordination function.........................126
5.6.3.4.6 Selection criteria126
5.6.3.4.7 Specific error handling and codes126
5.6.3.4.7.1 Errors ..126
5.6.3.4.7.2 Causes..127
5.6.3.4.8 Static attributes127
5.6.3.4.8.1 AttributeSet parameters......................127
5.6.3.4.8.2 Static attribute content128
5.6.3.4.9 Protocol specific NAF property

information ..128
5.6.3.5 SDLC protocol ...128

5.6.3.5.1 Introduction ...128
5.6.3.5.2 Messages ...129
5.6.3.5.2.1 UConnectReq130
5.6.3.5.2.2 UConnectInd.......................................130
5.6.3.5.2.3 UConnectRsp130
5.6.3.5.2.4 UConnectCnf131
5.6.3.5.2.5 UDisconnectReq.................................131
5.6.3.5.2.6 UDisconnectInd131
5.6.3.5.2.7 UDataReq ...131
5.6.3.5.2.8 UDataInd...132
5.6.3.5.2.9 UExpeditedDataReq132
5.6.3.5.2.10 UExpeditedDataInd.............................132
5.6.3.5.2.11 UReadyToReceiveReq133
5.6.3.5.2.12 UReadyToReceiveInd.........................133
5.6.3.5.3 Messages parameters133
5.6.3.5.3.1 L2ConnectionMode.............................134
5.6.3.5.3.2 L2FrameSize.......................................134
5.6.3.5.3.3 L2WindowSize135
5.6.3.5.3.4 L2XID..135
5.6.3.5.3.5 NCOType..135
5.6.3.5.3.6 ReadyFlag...135

Page 8
Final draft prETS 300 838: March 1998

5.6.3.5.3.7 UProtocol.. 136
5.6.3.5.3.8 UAttributeName.................................. 136
5.6.3.5.3.9 UDirection... 136
5.6.3.5.3.10 UserData .. 136
5.6.3.5.3.11 SDLCCause 136
5.6.3.5.3.12 SDLCOrigin .. 137
5.6.3.5.4 State diagram..................................... 137
5.6.3.5.5 Co-ordination function 137
5.6.3.5.6 Selection criteria................................. 137
5.6.3.5.7 Specific error handling and codes...... 138
5.6.3.5.7.1 Invalid use of user messages............. 138
5.6.3.5.7.2 Causes ... 138
5.6.3.5.8 Static attributes................................... 138
5.6.3.5.8.1 AttributeSet parameters 138
5.6.3.5.8.2 Static attribute content........................ 139

5.6.3.6 V.110 protocol ... 139
5.6.3.6.1 Introduction... 139
5.6.3.6.2 Messages... 140
5.6.3.6.2.1 UConnectReq..................................... 140
5.6.3.6.2.2 UConnectInd 140
5.6.3.6.2.3 UConnectRsp..................................... 140
5.6.3.6.2.4 UConnectCnf...................................... 141
5.6.3.6.2.5 UDisconnectReq 141
5.6.3.6.2.6 UDisconnectInd.................................. 141
5.6.3.6.2.7 UDataReq... 141
5.6.3.6.2.8 UDataInd .. 142
5.6.3.6.2.9 UReadyToReceiveReq....................... 142
5.6.3.6.2.10 UReadyToReceiveInd 142
5.6.3.6.3 Messages parameters........................ 143
5.6.3.6.3.1 NCOType ... 143
5.6.3.6.3.2 ReadyFlag .. 143
5.6.3.6.3.3 UProtocol.. 144
5.6.3.6.3.4 UAttributeName.................................. 144
5.6.3.6.3.5 UDirection... 144
5.6.3.6.3.6 V.110Cause.. 144
5.6.3.6.3.7 V.110Origin .. 144
5.6.3.6.3.8 FlowControlMechanism...................... 145
5.6.3.6.3.9 FlowControlCharacters 145
5.6.3.6.3.10 MomentNumber 145
5.6.3.6.3.11 V.110BChannelDisconnection............ 145
5.6.3.6.4 State diagram..................................... 146
5.6.3.6.5 Co-ordination function 146
5.6.3.6.6 Selection criteria................................. 146
5.6.3.6.7 Specific error handling and codes...... 146
5.6.3.6.7.1 Invalid use of User Plane messages.. 147
5.6.3.6.7.2 Causes ... 147
5.6.3.6.8 Static attributes................................... 147
5.6.3.6.8.1 AttributeSet parameters 147
5.6.3.6.8.2 Static attribute content........................ 147

5.6.4 Layer 3 protocols .. 147
5.6.4.1 ISO 8208 protocol and ETS 300 080 protocol 148

5.6.4.1.1 Introduction... 148
5.6.4.1.2 Description of messages.................... 148
5.6.4.1.2.1 UConnectReq..................................... 150
5.6.4.1.2.2 UConnectInd 150
5.6.4.1.2.3 UConnectRsp..................................... 151
5.6.4.1.2.4 UConnectCnf...................................... 152
5.6.4.1.2.5 UDisconnectReq 152
5.6.4.1.2.6 UDisconnectInd.................................. 153
5.6.4.1.2.7 UDataReq... 153
5.6.4.1.2.8 UDataInd .. 153
5.6.4.1.2.9 UExpeditedDataReq........................... 154
5.6.4.1.2.10 UExpeditedDataInd 154

Page 9
Final draft prETS 300 838: March 1998

5.6.4.1.2.11 UResetReq ...154
5.6.4.1.2.12 UResetInd...155
5.6.4.1.2.13 UResetRsp ...155
5.6.4.1.2.14 UResetCnf ..155
5.6.4.1.2.15 UDataAcknowledgeReq......................156
5.6.4.1.2.16 UDataAcknowledgeInd156
5.6.4.1.2.17 UReadyToReceiveReq156
5.6.4.1.2.18 UReadyToReceiveInd.........................157
5.6.4.1.3 Messages parameters157
5.6.4.1.3.1 Algorithm...158
5.6.4.1.3.2 Bilateral closed user group (Bcug)......158
5.6.4.1.3.3 Bit_DQM ...159
5.6.4.1.3.4 CalledDTEAddress159
5.6.4.1.3.5 CalledDTEAddressExt159
5.6.4.1.3.6 CallingDTEAddress160
5.6.4.1.3.7 CallingDTEAddressExt160
5.6.4.1.3.8 ExpeditedData160
5.6.4.1.3.9 FacilityData ...160
5.6.4.1.3.10 FastSelect ...161
5.6.4.1.3.11 GroupID ..161
5.6.4.1.3.12 L2ConnectionMode.............................161
5.6.4.1.3.13 L2FrameSize.......................................162
5.6.4.1.3.14 L2WindowSize162
5.6.4.1.3.15 L2XID..162
5.6.4.1.3.16 L3ConnectionMode.............................162
5.6.4.1.3.17 L3IncomingVCCount...........................162
5.6.4.1.3.18 L3OutgoingVCCount...........................163
5.6.4.1.3.19 L3TwoWayVCCount163
5.6.4.1.3.20 NCOType..163
5.6.4.1.3.21 PacketSize ..163
5.6.4.1.3.22 QOSParameters164
5.6.4.1.3.23 ReadyFlag...165
5.6.4.1.3.24 ReceiptConfirm165
5.6.4.1.3.25 RespondingDTEAddress165
5.6.4.1.3.26 RespondingDTEAddressExt165
5.6.4.1.3.27 TEI ..165
5.6.4.1.3.28 UProtocol ..166
5.6.4.1.3.29 UAttributeName166
5.6.4.1.3.30 UDirection ...166
5.6.4.1.3.31 UserData...166
5.6.4.1.3.32 WindowSize ..167
5.6.4.1.3.33 X213Cause ...167
5.6.4.1.3.34 X213Origin..167
5.6.4.1.3.35 X25Cause ...167
5.6.4.1.3.36 X25Diagnostic.....................................168
5.6.4.1.4 State diagram168
5.6.4.1.5 Co-ordination function.........................170
5.6.4.1.6 Selection criteria170
5.6.4.1.6.1 NCO Selection170
5.6.4.1.6.1.1 Packet size negotiation170
5.6.4.1.6.1.2 Window size negotiation170
5.6.4.1.6.1.3 Effective packet size and window size

negotiation ..170
5.6.4.1.6.2 Action if no NCO available170
5.6.4.1.7 Specific error handling and codes170
5.6.4.1.7.1 Invalid use of User Plane messages ..171
5.6.4.1.7.2 Other errors ..171
5.6.4.1.7.3 Causes..171
5.6.4.1.8 AttributeSet ...172
5.6.4.1.8.1 AttributeSet parameters......................172
5.6.4.1.8.2 Static attribute content172

5.6.4.2 T.70NL protocol ...173
5.6.4.2.1 Introduction ...173

Page 10
Final draft prETS 300 838: March 1998

5.6.4.2.2 Messages... 173
5.6.4.2.2.1 UDataReq... 174
5.6.4.2.2.2 UDataInd .. 174
5.6.4.2.3 Messages parameters........................ 174
5.6.4.2.3.1 Bit_DQM... 175
5.6.4.2.3.2 NCOType ... 175
5.6.4.2.3.3 PacketSize ... 175
5.6.4.2.3.4 UProtocol.. 176
5.6.4.2.3.5 UAttributeName.................................. 176
5.6.4.2.3.6 UDirection... 176
5.6.4.2.4 State diagram..................................... 176
5.6.4.2.5 Co-ordination function 176
5.6.4.2.6 Selection criteria................................. 176
5.6.4.2.7 Specific error handling and codes...... 176
5.6.4.2.8 Static attributes................................... 176
5.6.4.2.8.1 AttributeSet parameters 176
5.6.4.2.8.2 Static attribute content........................ 177

5.6.5 V.120 Protocol .. 177
5.6.5.1 Introduction ... 177
5.6.5.2 Messages.. 177

5.6.5.2.1 UDataReq... 178
5.6.5.2.2 UDataInd .. 178
5.6.5.2.3 UReadyToReceiveReq....................... 178
5.6.5.2.4 UReadyToReceiveInd 179
5.6.5.2.5 UErrorInd.. 179

5.6.5.3 Messages parameters .. 179
5.6.5.3.1 NCOType ... 180
5.6.5.3.2 ReadyFlag .. 180
5.6.5.3.3 UProtocol.. 180
5.6.5.3.4 UAttributeName.................................. 180
5.6.5.3.5 UDirection... 181
5.6.5.3.6 Cause... 181
5.6.5.3.7 LowerLayerReference........................ 181
5.6.5.3.8 BlockType... 181
5.6.5.3.9 V120FunctionMode 181

5.6.5.4 State diagram.. 182
5.6.5.5 Co-ordination function... 182
5.6.5.6 Selection criteria.. 182
5.6.5.7 Specific error handling .. 182
5.6.5.8 Static attributes ... 182

5.6.5.8.1 AttributeSet parameters 182
5.6.5.8.2 Static attribute content........................ 182

5.6.5.9 Protocol specific NAF property information....................... 182
5.6.5.10 Impact on the Control Plane ... 182

5.6.6 T.30 protocol... 183
5.6.6.1 Overview of T 30 messages ... 183
5.6.6.2 Sequencing of User Plane messages............................... 185
5.6.6.3 Detail of T.30 protocol messages 185

5.6.6.3.1 UConnectReq..................................... 185
5.6.6.3.2 UConnectInd 186
5.6.6.3.3 UConnectRsp..................................... 186
5.6.6.3.4 UConnectCnf...................................... 186
5.6.6.3.5 UDisconnectReq 186
5.6.6.3.6 UDisconnectInd.................................. 187
5.6.6.3.7 UDataReq... 187
5.6.6.3.8 UDataInd .. 187
5.6.6.3.9 UDataAcknowledgeReq 188
5.6.6.3.10 UDataAcknowledgeInd....................... 188
5.6.6.3.11 UReadyToReceiveReq....................... 188
5.6.6.3.12 UReadyToReceiveInd 189
5.6.6.3.13 UInformationInd.................................. 189
5.6.6.3.14 URegisterMailBoxReq........................ 189
5.6.6.3.15 URegisterMailBoxCnf......................... 190

Page 11
Final draft prETS 300 838: March 1998

5.6.6.3.16 UDestroyMailBoxReq..........................190
5.6.6.3.17 UDestroyMailBoxCnf...........................190
5.6.6.3.18 ULocalPollingInd190
5.6.6.3.19 ULocalPollingRsp................................191
5.6.6.3.20 URemotePollingReq191
5.6.6.3.21 URemotePollingInd.............................191
5.6.6.3.22 USwitchToVoiceModeReq..................191
5.6.6.3.23 USwitchToVoiceModeCnf...................192
5.6.6.3.24 USwitchToVoiceModeInd....................192
5.6.6.3.25 USwitchToVoiceModeRsp192

5.6.6.4 Message parameters...193
5.6.6.4.1 CalledDTEAddress193
5.6.6.4.2 NCOType..193
5.6.6.4.3 DataBlock ...194
5.6.6.4.4 DataDescription195
5.6.6.4.5 MailBoxMnemonic195
5.6.6.4.6 MailBoxNumber196
5.6.6.4.7 MailBoxType196
5.6.6.4.8 NegociatedCharacteristic....................197
5.6.6.4.9 OctetInverted198
5.6.6.4.10 PageAcknowledgement198
5.6.6.4.11 Password ..198
5.6.6.4.12 PollingNumber198
5.6.6.4.13 PollingFlag ..198
5.6.6.4.14 ReceivePageQuality199
5.6.6.4.15 RemoteDesignation199
5.6.6.4.16 SwitchFlag ..199
5.6.6.4.17 T30Cause ...199
5.6.6.4.18 T30Characteristics..............................200
5.6.6.4.19 UseOfStrips ..200

5.7 Message parameters ...200
5.7.1 AdditionInformation ...200
5.7.2 Algorithm ...201
5.7.3 BearerCap ...201
5.7.4 CalledNumber ...201
5.7.5 CalledSubaddress ...202
5.7.6 CallingNumber...202
5.7.7 CallingSubaddress ..203
5.7.8 CAttributeName...203
5.7.9 CauseToNAF...203
5.7.10 CauseToPUF...203
5.7.11 CDirection..204
5.7.12 ChannelIdentification...204
5.7.13 ChargingInfo..204
5.7.14 CompletionStatus ..205
5.7.15 CongestionLevel..205
5.7.16 ConnectedNumber ..205
5.7.17 ConnectedSubaddress..205
5.7.18 ControllerID ...206
5.7.19 CPMessageMask ..206
5.7.20 CPParameterMask..206
5.7.21 DateTime...207
5.7.22 Display...207
5.7.23 DtmfDigits..207
5.7.24 DtmfGapDuration ..207
5.7.25 DtmfOperation...208
5.7.26 DtmfResult...208
5.7.27 DtmfToneDuration...208
5.7.28 ExtEquipAvailability ...208
5.7.29 ExtEquipBlockDialling ...209
5.7.30 ExtEquipKeyPressed...209
5.7.31 ExtEquipName ..209
5.7.32 Facility ...209

Page 12
Final draft prETS 300 838: March 1998

5.7.33 GroupID .. 211
5.7.34 High Layer Compatibility (HLC) .. 211
5.7.35 Key.. 211
5.7.36 Keypad.. 212
5.7.37 Low Layer Compatibility.. 212
5.7.38 ManufacturerCode.. 212
5.7.39 NCOID .. 212
5.7.40 NCOType.. 213
5.7.41 NotificationIndicator .. 213
5.7.42 NumberComplete ... 213
5.7.43 ProgressIndicator.. 213
5.7.44 RequestID... 214
5.7.45 SelectorID ... 214
5.7.46 Signal .. 214
5.7.47 SuspendID .. 215
5.7.48 TEI .. 215
5.7.49 UProtocol .. 215
5.7.50 UAttributeName .. 216
5.7.51 UDirection ... 216
5.7.52 UserToUserInfo .. 216
5.7.53 V42BisCompression ... 216
5.7.54 AttributeSet Parameters ... 216
5.7.55 Administration AttributeSet parameters.. 217
5.7.56 AddressSet parameter.. 217

5.8 Selection criteria.. 218
5.8.1 NCO Selection .. 218

5.8.1.1 Control Plane information elements.................................. 218
5.8.2 Action if no NCO available.. 219

5.8.2.1 Control Plane incoming call... 219
5.8.2.2 User Plane incoming call .. 219

5.9 Error checking and codes ... 219
5.9.1 Administration Plane... 219
5.9.2 Control Plane .. 219

5.9.2.1 Invalid state for message .. 219
5.9.2.2 Mandatory parameters.. 220
5.9.2.3 Optional Parameter Content Error 220

5.9.3 Errors in facility requests .. 220
5.9.4 User Plane .. 220
5.9.5 Function return codes ... 220
5.9.6 Administration Plane return code.. 221
5.9.7 Control Plane causes.. 223
5.9.8 User Plane causes.. 224

5.10 Security ... 224
5.10.1 General aspects of security in ISDN... 225
5.10.2 Security in Profile A... 225
5.10.3 Increasing security in Profile A ... 225

6 Profile B .. 226
6.1 Reader guidance... 226
6.2 Message overview... 226

6.2.1 General message protocol ... 226
6.2.2 Type definitions... 227
6.2.3 Message structure .. 227
6.2.4 Manufacturer specific expansion .. 228
6.2.5 Table of messages ... 228

6.3 Exchange mechanism... 230
6.3.1 Message queues .. 230
6.3.2 Operations on message queues... 231

6.3.2.1 Registering an application... 231
6.3.2.2 Messages from application to Profile B............................. 231
6.3.2.3 Messages from Profile B to application............................. 231
6.3.2.4 Releasing an application ... 231
6.3.2.5 Other operations ... 232

Page 13
Final draft prETS 300 838: March 1998

6.3.2.6 Manufacturer specific expansion232
6.3.3 Table of operations..232

6.4 Administration Plane..232
6.5 Control Plane ...232
6.6 User Plane ...233
6.7 Message descriptions ..233

6.7.1 ALERT_REQ...234
6.7.2 ALERT_CONF...234
6.7.3 CONNECT_REQ...234
6.7.4 CONNECT_CONF ..235
6.7.5 CONNECT_IND ..235
6.7.6 CONNECT_RESP...236
6.7.7 CONNECT_ACTIVE_IND ...237
6.7.8 CONNECT_ACTIVE_RESP..238
6.7.9 CONNECT_B3_ACTIVE_IND...238
6.7.10 CONNECT_B3_ACTIVE_RESP ...238
6.7.11 CONNECT_B3_REQ ..238
6.7.12 CONNECT_B3_CONF..239
6.7.13 CONNECT_B3_IND..239
6.7.14 CONNECT_B3_RESP ..240
6.7.15 CONNECT_B3_T90_ACTIVE_IND...240
6.7.16 CONNECT_B3_T90_ACTIVE_RESP ...241
6.7.17 DATA_B3_REQ...241
6.7.18 DATA_B3_CONF ..241
6.7.19 DATA_B3_IND ..242
6.7.20 DATA_B3_RESP...243
6.7.21 DISCONNECT_B3_REQ ..244
6.7.22 DISCONNECT_B3_CONF..244
6.7.23 DISCONNECT_B3_IND..244
6.7.24 DISCONNECT_B3_RESP ..245
6.7.25 DISCONNECT_REQ...245
6.7.26 DISCONNECT_CONF ..245
6.7.27 DISCONNECT_IND ..246
6.7.28 DISCONNECT_RESP...246
6.7.29 FACILITY_REQ...247
6.7.30 FACILITY_CONF ..247
6.7.31 FACILITY_IND ..247
6.7.32 FACILITY_RESP...248
6.7.33 INFO_REQ..248
6.7.34 INFO_CONF..249
6.7.35 INFO_IND..249
6.7.36 INFO_RESP ..250
6.7.37 LISTEN_REQ..250
6.7.38 LISTEN_CONF..251
6.7.39 MANUFACTURER_REQ ..251
6.7.40 MANUFACTURER_CONF..252
6.7.41 MANUFACTURER_IND..252
6.7.42 MANUFACTURER_RESP ..252
6.7.43 RESET_B3_REQ ..253
6.7.44 RESET_B3_CONF..253
6.7.45 RESET_B3_IND..254
6.7.46 RESET_B3_RESP ..254
6.7.47 SELECT_B_PROTOCOL_REQ..254
6.7.48 SELECT_B_PROTOCOL_CONF ...254

6.8 Parameter descriptions..255
6.8.1 Additional Info..255
6.8.2 B-channel Information ...256
6.8.3 B Protocol..256
6.8.4 B1 Protocol..257
6.8.5 B2 Protocol..257
6.8.6 B3 Protocol..257
6.8.7 B1 Configuration..259
6.8.8 B2 Configuration..260

Page 14
Final draft prETS 300 838: March 1998

6.8.9 B3 Configuration ... 260
6.8.10 BC... 261
6.8.11 Called Party Number .. 262
6.8.12 Called Party Subaddress .. 262
6.8.13 Calling Party Number.. 262
6.8.14 Calling Party Subaddress ... 263
6.8.15 CIP Value.. 264
6.8.16 CIP mask .. 268
6.8.17 Connected Number... 269
6.8.18 Connected Subaddress .. 270
6.8.19 Controller .. 270
6.8.20 Data .. 271
6.8.21 Data Length .. 271
6.8.22 Data Handle.. 271
6.8.23 Facility Selector... 272
6.8.24 Facility Request Parameter .. 272
6.8.25 Facility Confirmation Parameter ... 273
6.8.26 Facility Indication Parameter .. 273
6.8.27 Facility Response Parameter.. 274
6.8.28 Flags ... 274
6.8.29 HLC... 274
6.8.30 Info.. 275
6.8.31 Info Element.. 277
6.8.32 Info Mask .. 277
6.8.33 Info Number .. 278
6.8.34 LLC ... 279
6.8.35 Manu ID .. 279
6.8.36 Manufacturer Specific ... 280
6.8.37 NCCI ... 280
6.8.38 NCPI ... 281
6.8.39 PLCI.. 282
6.8.40 Reason ... 283
6.8.41 Reason_B3 ... 283
6.8.42 Reject.. 284

6.9 State diagram.. 284
6.9.1 User"s guide ... 284
6.9.2 Explanation ... 285

7 Operating system description ... 292
7.1 DOS... 292

7.1.1 DOS Operation System specific implementation for Profile A.................... 292
7.1.1.1 Introduction ... 292
7.1.1.2 Mapping of generic types and constants........................... 292
7.1.1.3 Description of functions... 293

7.1.1.3.1 PciGetHandles 293
7.1.1.3.2 PciGetProperty 294
7.1.1.3.3 PciRegister ... 295
7.1.1.3.4 PciDeregister...................................... 297
7.1.1.3.5 PciPutMessage 297
7.1.1.3.6 PciSetSignal 298

7.1.1.4 Availability of NAF"s PCI_HANDLE 299
7.1.1.4.1 Declaration action............................... 299
7.1.1.4.2 Extraction action................................. 300

7.1.2 MS-DOS for Profile B.. 300
7.1.2.1 Message operations.. 301

7.1.2.1.1 CAPI_REGISTER 301
7.1.2.1.2 CAPI_RELEASE 302
7.1.2.1.3 CAPI_PUT_MESSAGE...................... 303
7.1.2.1.4 CAPI_GET_MESSAGE...................... 303

7.1.2.2 Other functions.. 304
7.1.2.2.1 CAPI_SET_SIGNAL........................... 304
7.1.2.2.2 CAPI_GET_MANUFACTURER 305
7.1.2.2.3 CAPI_GET_VERSION 305

Page 15
Final draft prETS 300 838: March 1998

7.1.2.2.4 CAPI_GET_SERIAL_NUMBER..........305
7.1.2.2.5 CAPI_GET_PROFILE.........................306
7.1.2.2.6 CAPI_MANUFACTURER308

7.2 Windows version 3.x..308
7.2.1 Windows operating system specific implementation for Profile A...............308

7.2.1.1 Introduction ..308
7.2.1.2 Implementation of basic type...308
7.2.1.3 C structures and function prototypes.................................309
7.2.1.4 Description of functions ...309

7.2.1.4.1 PciGetHandles....................................310
7.2.1.4.2 PciGetProperty....................................310
7.2.1.4.3 PciRegister..310
7.2.1.4.4 PciDeregister311
7.2.1.4.5 PciPutMessage...................................311
7.2.1.4.6 PciGetMessage311
7.2.1.4.7 PciSetSignal..311
7.2.1.4.7.1 Signal mechanism procedure311
7.2.1.4.7.2 User message mechanism procedure312
7.2.1.4.7.3 Deactivation mechanism.....................312

7.2.1.5 Availability of NAF"s PCI_HANDLE312
7.2.1.5.1 Declaration action312
7.2.1.5.2 Extraction action313

7.2.2 Windows (application level) for Profile B...313
7.2.2.1 Message operations ..314

7.2.2.1.1 CAPI_REGISTER314
7.2.2.1.2 CAPI_RELEASE.................................315
7.2.2.1.3 CAPI_PUT_MESSAGE.......................315
7.2.2.1.4 CAPI_GET_MESSAGE316

7.2.2.2 Other functions ..316
7.2.2.2.1 CAPI_ SET_SIGNAL316
7.2.2.2.2 CAPI_GET_MANUFACTURER..........317
7.2.2.2.3 CAPI_GET_VERSION........................318
7.2.2.2.4 CAPI_GET_SERIAL_NUMBER..........318
7.2.2.2.5 CAPI_GET_PROFILE.........................319
7.2.2.2.6 CAPI_INSTALLED..............................320

7.3 UNIX ..321
7.3.1 UNIX Operating System specific implementation for Profile A....................321

7.3.1.1 Introduction ..321
7.3.1.2 Implementation of basic types ...321
7.3.1.3 Parameter passing conventions ..321
7.3.1.4 Definition of types, constants and function-prototypes321
7.3.1.5 Adaptation to the STREAMS kernel mechanism...............322

7.3.1.5.1 General ...322
7.3.1.5.2 Communication between PUF

exchange functions and NAF stream
driver ...323

7.3.1.5.3 Special considerations........................323
7.3.1.6 Description of functions ...324

7.3.1.6.1 PciGetHandles....................................324
7.3.1.6.2 PciGetProperty....................................325
7.3.1.6.3 PciRegister..326
7.3.1.6.4 PciDeregister327
7.3.1.6.5 PciPutMessage...................................327
7.3.1.6.6 PciGetMessage328
7.3.1.6.7 PciSetSignal..329

7.3.1.7 Availability of NAF"s PCI_HANDLE330
7.3.1.7.1 Declaration action330
7.3.1.7.2 Extraction action330

7.3.2 UNIX for Profile B ..330
7.3.2.1 Message operations ..331

7.3.2.1.1 CAPI_REGISTER331
7.3.2.1.2 CAPI_RELEASE.................................331
7.3.2.1.3 CAPI_PUT_MESSAGE.......................332

Page 16
Final draft prETS 300 838: March 1998

7.3.2.1.4 CAPI_GET_MESSAGE...................... 332
7.3.2.2 Other functions.. 332

7.3.2.2.1 CAPI_GET_MESSAGE...................... 332
7.3.2.2.2 CAPI_GET_VERSION 333
7.3.2.2.3 CAPI_GET_SERIAL_NUMBER 333
7.3.2.2.4 CAPI_GET_PROFILE 334

7.4 OS/2 .. 335
7.4.1 OS/2 Operation System specific implementation for Profile A 335

7.4.1.1 Introduction ... 335
7.4.1.2 OS/2 application level ... 336

7.4.1.2.1 Mechanism... 336
7.4.1.2.2 Implementation of basic type 336
7.4.1.2.3 C Function prototypes 336
7.4.1.2.4 Description of functions...................... 337
7.4.1.2.4.1 PciGetHandles 337
7.4.1.2.4.2 PciGetProperty 338
7.4.1.2.4.3 PciRegister ... 338
7.4.1.2.4.4 PciDeregister...................................... 338
7.4.1.2.4.5 PciPutMessage 339
7.4.1.2.4.6 PciGetMessage.................................. 339
7.4.1.2.4.7 PciSetSignal 339

7.4.1.3 OS/2 device driver level .. 339
7.4.1.3.1 Mechanism... 339
7.4.1.3.2 Implementation of basic types............ 340
7.4.1.3.3 Description of functions...................... 341
7.4.1.3.3.1 PciGetHandles 341
7.4.1.3.3.2 PciGetProperty 341
7.4.1.3.3.3 PciRegister7....................................... 342
7.4.1.3.3.4 PciDeregister...................................... 343
7.4.1.3.3.5 PciPutMessage 343
7.4.1.3.3.6 PciGetMessage.................................. 343
7.4.1.3.3.7 PciSetSignal 343

7.4.1.4 NAF availability.. 344
7.4.1.4.1 Declaration action............................... 344
7.4.1.4.2 Extraction action................................. 345

7.4.2 OS/2 for Profile B.. 346
7.4.2.1 OS/2 (application level) ... 346

7.4.2.1.1 Message operations........................... 347
7.4.2.1.1.1 CAPI_REGISTER 347
7.4.2.1.1.2 CAPI_RELEASE 347
7.4.2.1.1.3 CAPI_PUT_MESSAGE...................... 348
7.4.2.1.1.4 CAPI_GET_MESSAGE...................... 348
7.4.2.1.2 Other functions................................... 349
7.4.2.1.2.1 CAPI_SET_SIGNAL........................... 349
7.4.2.1.2.2 CAPI_GET_MANUFACTURER 350
7.4.2.1.2.3 CAPI_GET_MANUFACTURER 350
7.4.2.1.2.4 CAPI_GET_SERIAL_NUMBER 351
7.4.2.1.2.5 CAPI_GET_PROFILE 351
7.4.2.1.2.6 CAPI_INSTALLED 352

7.4.2.2 OS/2 (device driver level).. 353
7.4.2.2.1 Message operations........................... 353
7.4.2.2.1.1 CAPI_REGISTER 353
7.4.2.2.1.2 CAPI_RELEASE 354
7.4.2.2.1.3 CAPI_PUT_MESSAGE...................... 355
7.4.2.2.1.4 CAPI_GET_MESSAGE...................... 355
7.4.2.2.2 Other functions................................... 356
7.4.2.2.2.1 CAPI_SET_SIGNAL........................... 356
7.4.2.2.2.2 CAPI_GET_MANUFACTURER 357
7.4.2.2.2.3 CAPI_GET_VERSION 357
7.4.2.2.2.4 CAPI_GET_SERIAL_NUMBER 358
7.4.2.2.2.5 CAPI_GET_PROFILE 358

7.5 Novell NetWare ... 360
7.5.1 NetWare Operation System specific implementation for Profile A 360

Page 17
Final draft prETS 300 838: March 1998

7.5.1.1 Introduction ..360
7.5.1.2 Mapping of generic types and constants360
7.5.1.3 Description of functions ...361

7.5.1.3.1 PciGetHandles....................................361
7.5.1.3.2 PciGetProperty....................................362
7.5.1.3.3 PciRegister..362
7.5.1.3.4 PciDeregister362
7.5.1.3.5 PciPutMessage...................................363
7.5.1.3.6 PciGetMessage363
7.5.1.3.7 PciSetSignal..363
7.5.1.3.7.1 Local semaphore mechanism.............363
7.5.1.3.7.2 Callback function mechanism.............363
7.5.1.3.7.3 De-activation mechanism364

7.5.1.4 Availability of NAFs..364
7.5.1.4.1 Declaration action364
7.5.1.4.2 Extraction action364

7.5.2 NetWare for Profile B ..364
7.5.2.1 Message operations ..367

7.5.2.1.1 CAPI_Register367
7.5.2.1.2 CAPI_ReceiveNotify368
7.5.2.1.3 CAPI_Release369
7.5.2.1.4 CAPI_PutMessage..............................369

7.5.2.2 Other functions ..370
7.5.2.2.1 CAPI_GetManufacturer370
7.5.2.2.2 CAPI_GetVersion................................371
7.5.2.2.3 CAPI_GetSerialNumber......................372
7.5.2.2.4 CAPI_GetProfile..................................372

7.6 Windows/NT ..373
7.6.1 Windows NT operation system specific implementation for Profile A.........373

7.6.1.1 Introduction ..373
7.6.1.1.1 DLL version...374
7.6.1.1.2 Device driver version374
7.6.1.1.3 Driver access method from user mode374
7.6.1.1.4 Driver access method from kernel

mode...375
7.6.1.2 PCI device driver call specification377

7.6.1.2.1 DeviceIoControl parameters377
7.6.1.2.1.1 PCI parameters mapping....................377

7.6.1.3 Functions description...378
7.6.1.3.1 PciGetHandles....................................378
7.6.1.3.1.1 DLL version...378
7.6.1.3.1.2 Device driver version378
7.6.1.3.2 PciGetProperty....................................379
7.6.1.3.2.1 DLL version...379
7.6.1.3.2.2 Device driver version379
7.6.1.3.3 PciRegister..379
7.6.1.3.3.1 DLL version...379
7.6.1.3.3.2 Device driver version380
7.6.1.3.4 PciDeregister380
7.6.1.3.4.1 DLL version...380
7.6.1.3.4.2 Device driver version380
7.6.1.3.5 PciPutMessage...................................380
7.6.1.3.5.1 DLL version...380
7.6.1.3.5.2 Device driver version380
7.6.1.3.6 PciGetMessage381
7.6.1.3.6.1 DLL version...381
7.6.1.3.6.2 Device driver version381
7.6.1.3.7 PciSetSignal..381
7.6.1.3.7.1 DLL version...381
7.6.1.3.7.2 Device driver version381
7.6.1.3.7.3 Signal mechanism382
7.6.1.3.7.3.1 DLL version...382
7.6.1.3.7.3.2 Device driver version382

Page 18
Final draft prETS 300 838: March 1998

7.6.1.3.7.4 Callback function mechanism 382
7.6.1.3.7.4.1 DLL version .. 382
7.6.1.3.7.4.2 Device driver version.......................... 382
7.6.1.3.7.5 De-activation mechanism................... 382
7.6.1.3.7.5.1 DLL version .. 382
7.6.1.3.7.5.2 Device driver version.......................... 382

7.6.1.4 Availability of NAF"s PCI_HANDLE 382
7.6.2 Windows NT for Profile B ... 383

7.6.2.1 Windows NT (application level)... 383
7.6.2.1.1 Message operations........................... 383
7.6.2.1.1.1 CAPI_REGISTER 383
7.6.2.1.1.2 CAPI_RELEASE 384
7.6.2.1.1.3 CAPI_PUT_MESSAGE...................... 384
7.6.2.1.1.4 CAPI_GET_MESSAGE...................... 385
7.6.2.1.2 Other functions................................... 386
7.6.2.1.2.1 CAPI_WAIT_FOR_SIGNAL............... 386
7.6.2.1.2.2 CAPI_GET_MANUFACTURER 386
7.6.2.1.2.3 CAPI_GET_VERSION 386
7.6.2.1.2.4 CAPI_GET_SERIAL_NUMBER 387
7.6.2.1.2.5 CAPI_GET_PROFILE 387
7.6.2.1.2.6 CAPI_INSTALLED 389

7.6.2.2 Windows NT (device driver level) 389
7.6.2.2.1 Message operations........................... 392
7.6.2.2.1.1 CAPI_REGISTER 392
7.6.2.2.1.2 CAPI_RELEASE 393
7.6.2.2.1.3 CAPI_PUT_MESSAGE...................... 393
7.6.2.2.1.4 CAPI_GET_MESSAGE...................... 394
7.6.2.2.1.5 CAPI_SET_SIGNAL........................... 395
7.6.2.2.2 Other functions................................... 395
7.6.2.2.2.1 CAPI_GET_MANUFACTURER 395
7.6.2.2.2.2 CAPI_GET_VERSION 395
7.6.2.2.2.3 CAPI_GET_SERIAL_NUMBER 396
7.6.2.2.2.4 CAPI_GET_PROFILE 396

7.7 Windows 95... 396
7.7.1 Windows 95 specific implementation for Profile A...................................... 396

7.7.1.1 Windows 95 Operating System specific implementation
for Profile A ... 396
7.7.1.1.1 Introduction... 396
7.7.1.1.2 Description of the PCI DLL (16 bits)... 397
7.7.1.1.3 Description of the PCI DLL (32 bits)... 397
7.7.1.1.4 Description of the VxD 397
7.7.1.1.4.1 Virtual Device API 397
7.7.1.1.4.2 Device IOCTL interface...................... 398
7.7.1.1.4.3 Virtual Device Services 399
7.7.1.1.4.3.1 VPCID_GetVersion service................ 400
7.7.1.1.4.3.2 VPCID_MessageOperations service.. 400

7.7.1.2 Implementation of basic type .. 400
7.7.1.3 C Function prototypes ... 401
7.7.1.4 Description of functions... 401

7.7.1.4.1 PciGetHandles 401
7.7.1.4.1.1 16 bits PUF... 401
7.7.1.4.1.2 32 bits PUF... 401
7.7.1.4.1.3 VxD... 402
7.7.1.4.2 PciGetProperty 402
7.7.1.4.2.1 16 bits PUF... 402
7.7.1.4.2.2 32 bits PUF... 402
7.7.1.4.2.3 VxD... 402
7.7.1.4.3 PciRegister ... 403
7.7.1.4.3.1 16 bits PUF... 403
7.7.1.4.3.2 32 bits PUF... 403
7.7.1.4.3.3 VxD... 403
7.7.1.4.4 PciDeregister...................................... 403
7.7.1.4.4.1 16 bits PUF... 403

Page 19
Final draft prETS 300 838: March 1998

7.7.1.4.4.2 32 bits PUF ...404
7.7.1.4.4.3 VxD ...404
7.7.1.4.5 PciPutMessage...................................404
7.7.1.4.5.1 16 bits PUF ...404
7.7.1.4.5.2 32 bits PUF ...404
7.7.1.4.5.3 VxD ...404
7.7.1.4.6 PciGetMessage405
7.7.1.4.6.1 16 bits PUF ...405
7.7.1.4.6.2 32 bits PUF ...405
7.7.1.4.6.3 VxD ...405
7.7.1.4.7 PciSetSignal..405
7.7.1.4.7.1 Signal mechanism405
7.7.1.4.7.1.1 16 bits PUF ...405
7.7.1.4.7.1.2 32 bits PUF ...406
7.7.1.4.7.1.3 VxD PUF...406
7.7.1.4.7.2 De activation mechanism....................406

7.7.1.5 Availability of NAF"s PCI_HANDLE406
7.7.1.5.1 Declaration action406
7.7.1.5.2 Extraction action407

7.7.2 Windows 95 for Profile B...407
7.7.2.1 Windows 95 (application level) ..407
7.7.2.2 Windows 95 (ODL) ..407

7.7.2.2.1 Message operations408
7.7.2.2.1.1 CAPI_REGISTER408
7.7.2.2.1.2 CAPI_RELEASE.................................409
7.7.2.2.1.3 CAPI_PUT_MESSAGE.......................410
7.7.2.2.1.4 CAPI_GET_MESSAGE411
7.7.2.2.2 Other functions411
7.7.2.2.2.1 CAPI_SET_SIGNAL411
7.7.2.2.2.2 CAPI_GET_MANUFACTURER..........412
7.7.2.2.2.3 CAPI_GET_VERSION........................412
7.7.2.2.2.4 CAPI_GET_SERIAL_NUMBER..........413
7.7.2.2.2.5 CAPI_GET_PROFILE.........................414
7.7.2.2.2.6 CAPI_MANUFACTURER415

7.7.2.3 Windows 95 (DeviceIoControl) ..415
7.7.2.3.1 Message operations417
7.7.2.3.1.1 CAPI_REGISTER417
7.7.2.3.1.2 CAPI_RELEASE.................................418
7.7.2.3.1.3 CAPI_PUT_MESSAGE.......................418
7.7.2.3.1.4 CAPI_GET_MESSAGE419
7.7.2.3.1.5 CAPI_SET_SIGNAL420
7.7.2.3.2 Other functions420
7.7.2.3.2.1 CAPI_GET_MANUFACTURER..........420
7.7.2.3.2.2 CAPI_GET_VERSION........................420
7.7.2.3.2.3 CAPI_GET_SERIAL_NUMBER..........421
7.7.2.3.2.4 CAPI_GET_PROFILE.........................421

Annex A (normative): Mapping between Profile A messages and parameters and the ISDN423

A.1 Control Plane messages ...423

A.2 Control Plane parameters ...425

Annex B (normative): Telephony defined in the Profile A..426

B.1 Type 1 external equipment..426

B.2 Type 2 external equipment..426

B.3 Type 3 external equipment..426

B.4 Type 4 external equipment..427

Page 20
Final draft prETS 300 838: March 1998

B.5 Type 5 external equipment ... 427

Annex C (normative): X.25 usage in the Profile A .. 428

C.1 Parameter values for ITU-T Recommendation X.25 use ... 428

C.2 Disconnection of ISDN channel with established X.25 Connections.. 428

Annex D (informative): Profile A NAF development guidelines .. 429

D.1 NAF SDL diagrams... 429
D.1.1 NAF SDL diagrams: conventions .. 429
D.1.2 NAF SDL diagrams for Control Plane ... 429
D.1.3 Configuration and NAF SDL diagrams for layer one protocols 435

D.1.3.1 Configuration .. 435
D.1.3.1.1 Transparent B-channel access ... 435

D.1.4 Configuration and NAF SDL diagrams for layer two protocols.. 435
D.1.4.1 Configuration .. 435

D.1.4.1.1 ISO 7776 protocol ... 435
D.1.4.1.2 PPP protocol ... 436
D.1.4.1.3 SDLC protocol... 437
D.1.4.1.4 V.110 protocol ... 437

D.1.4.2 NAF flow diagrams ... 437
D.1.4.2.1 ISO 7776 protocol ... 437
D.1.4.2.2 HDLC protocol... 439
D.1.4.2.3 HDLC protocol with error... 439
D.1.4.2.4 PPP protocol ... 439
D.1.4.2.5 SDLC protocol... 441
D.1.4.2.6 V.110 protocol ... 445

D.1.5 Configuration and NAF SDL Diagrams for layer three protocols 449
D.1.5.1 Configuration .. 449

D.1.5.1.1 T.90 protocol ... 449
D.1.5.1.2 ISO 8208 protocol ... 450
D.1.5.1.3 T.70 protocol ... 451

D.1.5.2 NAF SDL diagrams... 451
D.1.5.2.1 T.90 protocol ... 452
D.1.5.2.2 ISO 8208 protocol ... 455

D.2 Information provided by the NAF.. 459

D.3 Suspending/resuming calls... 460

D.4 Error management.. 460
D.4.1 Function return codes ... 460
D.4.2 Administration Plane ... 460
D.4.3 Control Plane... 461

D.5 NAF configuration ... 464
D.5.1 Global configuration .. 464
D.5.2 System configuration parameters ... 465
D.5.3 Control Plane configuration ... 465

D.6 Buffer management .. 465

D.7 NAF development user consideration .. 466
D.7.1 User Plane error management.. 466
D.7.2 NAF configuration.. 466
D.7.3 Co-ordination function - outgoing User Plane call ... 467
D.7.4 Co-ordination function - incoming ISDN call ... 468

D.8 User protocols key information ... 469

Annex E (normative): Profile A implementation description proforma.. 470

Page 21
Final draft prETS 300 838: March 1998

E.1 Introduction..470

E.2 Profile A implementation description cover page ..470
E.2.1 Identification of the Profile A implementation description ..470
E.2.2 Identification of implementation ...470
E.2.3 Identification of the system supplier...470
E.2.4 Global statement of conformance..471

E.3 Instructions for completing the Profile A implementation description..471

E.4 Exchange mechanism...472

E.5 Administration Plane ...472

E.6 Control Plane...472

E.7 User Plane...473

E.8 User Plane protocols ...473

E.9 Miscellaneous features..473

Annex F (normative): Static attribute content for the Control Plane..474

F.1 Generic circuit bearer service ...474
F.1.1 Speech...474
F.1.2 Unrestricted digital information ..474
F.1.3 Restricted digital information ...474
F.1.4 3,1 kHz audio information transfer...474
F.1.5 Packet mode bearer service ..474
F.1.6 Teleservices...474

Annex G (informative): Operating System implementation coding samples for Profile A476

G.1 DOS Operating System implementation coding samples ...476

G.2 WINDOWS Operating System implementation coding samples ..480

G.3 UNIX Operating System implementation coding samples ..483

G.4 OS/2 Operating System implementation coding samples...486
G.4.1 Sample OS/2 application level implementation coding..486
G.4.2 Sample OS/2 device driver level implementation coding...490

G.5 Sample Windows NT implementation coding samples...495
G.5.1 User mode PUF/User mode NAF ..495
G.5.2 User mode PUF/Kernel mode NAF ...498

G.6 NetWare implementation coding samples ..500
G.6.1 Exchange mechanism functions..500
G.6.2 NAF declaration and extraction functions ..506

G.7 Windows 95 Operating System implementation coding samples ...509
G.7.1 16 bits PUF ..509
G.7.2 32 bits PUF ..509
G.7.3 VxD PUF..512

Annex H (informative): TLV coder/decoder sample ..515

Annex J (informative): Sample flow chart diagrams of Profile B ..517

J.1 Outgoing call ...517

Page 22
Final draft prETS 300 838: March 1998

J.2 Incoming call... 518

J.3 Transmitting data.. 519

J.4 Receiving data .. 520

J.5 Active disconnect.. 521

J.6 Passive disconnect ... 522

J.7 Disconnect collision .. 523

J.8 X.25 D-channel ... 524

Annex K (normative): SFF format (Profile B).. 525

K.1 Introduction ... 525

K.2 SFF coding rules... 525
K.2.1 Document header.. 525
K.2.2 Page header.. 526
K.2.3 Page data .. 526

Annex L (informative): Protocols supported by Profile B.. 527

Annex M (informative): Development guidelines for Profile B... 528

M.1 SDL diagrams... 528
M.1.1 SDL diagrams: conventions .. 528
M.1.2 SDL diagrams for Control Plane ... 528
M.1.3 SDL diagrams for User Plane ... 532

Annex N (informative): Profile B Implementation description proforma.. 536

N.1 Introduction ... 536

N.2 How to read the following tables... 536

N.3 Exchange mechanism .. 537

N.4 Administration Plane... 537

N.5 Control Plane .. 538

N.6 User Plane .. 539

N.7 User Plane protocols .. 540
N.7.1 User Plane B1 protocols.. 540
N.7.2 User Plane B2 protocols.. 540
N.7.3 User Plane B3 protocols.. 541

Annex P (informative): Index of Profile B related topics ... 542

Annex Q (informative): Bibliography ... 544

History ... 546

Page 23
Final draft prETS 300 838: March 1998

Foreword

This final draft European Telecommunication Standard (ETS) has been produced by the Multimedia
Terminals and Applications (MTA) Project of the European Telecommunications Standards Institute
(ETSI) and is now submitted for the Voting phase of the ETSI standards approval procedure.

Proposed transposition dates

Date of latest announcement of this ETS (doa): 3 months after ETSI publication

Date of latest publication of new National Standard
or endorsement of this ETS (dop/e): 6 months after doa

Date of withdrawal of any conflicting National Standard (dow): 6 months after doa

Introduction

The number of different Integrated Services Digital Network (ISDN) Programming Interfaces used by
Terminal Equipment (TE) has hindered the development of applications using ISDN which, in turn, has
proved a constraint to the usage of ISDN on modern Terminal Equipment.

This ETS defines the ETSI ISDN Application Programmable Interface (API), called Harmonized
Programmable Communication Interface (HPCI) for ISDN. The HPCI is an application interface for
accessing and administering ISDN services.

It has been defined in order to provide a standard that TE providers should implement instead of providing
their own programming interface. Thus allowing the portability of applications that use the HPCI across a
range of TE based on different operating systems.

The HPCI has been defined with the application developer in mind and, where possible, eliminates the
need for a detailed knowledge of ISDN. It has also been defined in such a manner that extensions
provided to take advantage of future ISDN developments do not effect the operation of existing
applications.

Although this ETS applies to the Euro-ISDN, other ISDNs and ISDN-like networks can easily be supported
by this interface description.

In order to enhance ETS 300 325 (1994), two profiles have been introduced, one of them maintaining bit
compatibility with ETS 300 325.

Future extensions of services should be offered for both profiles. Those extensions should ensure
backward compatibility with this ETS.

Page 24
Final draft prETS 300 838: March 1998

Blank page

Page 25
Final draft prETS 300 838: March 1998

1 Scope

This ETS specifies two profiles:

- Profile A covers the March 1994 version of ETS 300 325 including additional protocols and
operating system extensions.

- Profile B describes an alternative interface access that is bit compatible with COMMON-ISDN-API
(CAPI 2.0 - January 1994).

Conformity to this ETS can only be achieved if - and only if - both, Profile A and Profile B are implemented
in the realization of this HPCI for ISDN. The figure below depicts this.

ETS 300 325
Support

COMMON-ISDN-API v2.0
Support

Common
Support Code

Hardware / Network access

COMMON-ISDN-API v2.0ETS 300 325

Harmonized PCI for ISDN

The interface accesses are offered in a way which guarantees binary compatibility to applications
conforming to either specification. The code given in the present document, between the interface and the
hardware, may or may not be common to both interface accesses. The code for the interface accesses
shall comply with the definitions made for each interface, independently of whether the code is common or
only able to drive one of the interface specifications. Future enhancements can be performed in a way
which do not destroy this binary compatibility.

Consequently, this ETS maintains both descriptions (ETS 300 325 and COMMON-ISDN-API v2.0)
besides a part which contains common aspects and overall features.

With this development, future implementations will ensure cross-compatibility between both specifications.

The HPCI described in this ETS accesses and administers the following services:

- bearer services as defined in ETS 300 102-1 [2];
- supplementary services as defined in ETS 300 196-1 [7];
- Virtual Circuit (VC) or Permanent Virtual Circuit (PVC) Bearer Services on the B- and D-channels.

It:

- covers both basic and primary rate ISDN access;

- is independent of operating systems, hardware and programming languages. It provides language
and operating system binding for common operating system environments;

- supports concurrent applications;

- supports concurrent protocol stacks related to data exchange;

Page 26
Final draft prETS 300 838: March 1998

- supports application access to multiple channels on multiple ISDN accesses;

- provides the Open Systems Interconnection (OSI) connection-mode network service as defined by
ITU-T Recommendation X.213 [6] using the method defined in ISO 9574 [9];

- provides an interface for applications requiring direct control of ISDN services;

- shows the impact of security issues on the interface;

- has been defined to allow future extension of functionality;

- supports Dual Tone Multi Frequency (DTMF) access.

Further standards specify the method of testing and detailed application specific requirements to
determine conformance based on this ETS.

2 Normative references

This ETS incorporates by dated and undated references, provisions from other publications. These
normative references are cited at the appropriate places in the text and the publications are listed
hereafter. For dated references, subsequent amendments to or revisions of any of these publications
apply to these ETS only when incorporated in it by amendment or revision. For undated references the
latest edition of the publication referred to applies.

[1] ETS 300 080 (1992): "Integrated Services Digital Network (ISDN); ISDN lower
layer protocols for telematic terminals".

[2] ETS 300 102-1 (1990): "Integrated Services Digital Network (ISDN);
User-network interface layer 3, Specifications for basic call control".

[3] ISO 8208 (1990): "Information technology; Data communications; X.25 Packet
Layer Protocol for Data Terminal Equipment".

[4] ISO 7776 (1995): "Information technology - Telecommunications and
information exchange between systems - High-level data link control procedures
- Description of the X.25 LAPB-compatible DTE data link procedures".

[5] ITU-T Recommendation Z.100 (1993): " Specification and description language
(SDL)".

[6] ITU-T Recommendation X.213 (1995): "Information technology - Open Systems
Interconnection - Network service definition".

[7] ETS 300 196-1 (1993): "Integrated Services Digital Network (ISDN); Generic
functional protocol for the support of supplementary services; Digital Subscriber
Signalling System No. one (DSS1) protocol; Part 1: Protocol specification".

[8] ITU-T Recommendation Q.931 (1993): "Digital subscriber Signalling System
No.1 (DSS1) - ISDN user-network interface layer 3 specification for basic call
control".

[9] ISO 9574 (1992): "Information Technology - Provision of the OSI connection-
mode network service by packet mode terminal equipment to an integrated
services digital network (ISDN)".

[10] Request For Comment (RFC) 1661: "The Point-to-Point Protocol (PPP)".

[11] Request For Comment (RFC) 1618: "PPP over ISDN".

[12] IBM publication: "IBM Synchronous Data Link Control Concepts" (GA27-3093).

Page 27
Final draft prETS 300 838: March 1998

[13] ITU-T Recommendation Q.921 (1993): "ISDN user-network interface-Data link
layer specification".

[14] ITU-T Recommendation T.30 (1993): "Procedures for document facsimile
transmission in the general switched telephone network".

[15] ITU-T Recommendation T.70 (1993): "Network-independent basic transport
service for the telematic services".

[16] CCITT Recommendation T.90 (1992): "Characteristics and protocols for
terminals for telematic services in ISDN".

[17] CCITT Recommendation V.110 (1992): "Support by an ISDN of data terminal
equipments with V-Series type interfaces".

[18] ITU-T Recommendation X.30 (1993): "Support of X.21, X.21 bis and X.20 bis
based data terminal equipments (DTEs) by an integrated services digital
network (ISDN)".

[19] ETS 300 097-1 (1992): "Integrated Services Digital Network (ISDN); Connected
Line Identification Presentation (COLP) supplementary service; Digital
Subscriber Signalling System No. one (DSS1) protocol part 1; Protocol
specification".

[20] ITU-T Recommendation X.25: "Interface between Data Terminal Equipment
(DTE) and Data Circuit-terminating Equipment (DCE) for terminals operating in
the packet mode and connected to public data networks by dedicated circuit".

For further references to publications, which are of interest when reading this ETS, refer to the
bibliography.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this ETS, the following definitions apply:

address set: A set of parameters containing remote and local user layer or signalling addresses.

Administration Plane: A logical grouping of functionality for management of PUF-NAF dialogue as well
as for access to local or network related Network Access Facility (NAF) resources.

attribute set: Set of parameters driving user protocols and ISDN signalling.

B-channel: Logical ISDN channel for the use of data transfer.

Control Plane: Logical grouping of functionality for access of ISDN signalling.

controller: Hardware unit which gives access to an ISDN.

D-channel: Logical ISDN channel used for signalling and in some cases, for data transfer.

Euro-ISDN: ISDN offering services and interoperability in Europe as agreed upon in the "Memorandum of
Understanding on the Implementation of European ISDN Service by 1992".

exchange function: PUF functionality realizing the Exchange Mechanism.

exchange mechanism: Means provided for the PUF to interchange Messages with the NAF.

implementation: A version of a profile coded in hardware and/or software that provides the
programmable interface to an application for a given Operating System.

Page 28
Final draft prETS 300 838: March 1998

ISDN access: Set of ISDN channels provided by a single Network Access Facility (NAF) to access ISDN
services.

message: Unit of information transferred through the interface between the Network Access Facility
(NAF) and the PCI User Facility (PUF).

Network Access Facility (NAF): Functional unit located between the Profile A interface and the network
related layers.

Network Connection Object (NCO): Abstract object within the NAF that shall be created by the PUF to
gain access to network signalling or data.

Network Layer Message Access (NMA): Logical message access to ISDN network layer user protocols.

NULL layer: Describes an empty layer of the OSI reference model. Such a layer does not contain any
functionality and passes requests and responses transparently to adjourning layers.

Programmable Communication Interface (PCI): Network (ISDN) oriented software interface providing
access provisions for programming network signalling and user data exchange.

PCI User Facility (PUF): Functional unit using the Profile A interface to access a NAF. In fact, the local
application using the interface.

signalling message access: Logical message access to signalling part of ISDN.

transparent message access: Logical message access to ISDN physical layer.

Type-Length-Value Coding (TLV Coding): Coding scheme used for binary presentation of Messages.

user connection: Connection accessible through User Plane functionality.

User Plane: Logical grouping of functionality for access of user protocols and data.

user protocol: Protocol running and conforming to User Plane functionality.

3.2 Abbreviations

For the purposes of this ETS, the following abbreviations apply:

API Application Programming Interface
CAPI COMMON-ISDN-API
CIP Connection Identification Profile
CONS COnnection-mode Network Service
DTMF Dual Tone Multi-Frequency
HDLC High-Level Data Link Control
HLC High Layer Compatibility
ISDN Integrated Services Digital Network
LAPB Link Access Procedure Balanced
LAPD Link Access Procedure for D-channel
LLC Low Layer Compatibility
MOU Memorandum Of Understanding
N-SAP Network layer - Service Access Point
NAF Network Access Facility
NCCI Network Control Connection Identifier
NCO Network Connection Object
NCOID NCO IDentifier
NMA Network layer Message Access
OSI Open Systems Interconnection
PCI Programmable Communication Interface
PCIMPB PCI Message Parameter Block
PCO Point of Control and Observation
Ph-SAP Physical layer - Service Access Point

Page 29
Final draft prETS 300 838: March 1998

PLCI Physical Link Connection Identifier
PUF Programming communication interface User Facility
PVC Permanent VC
SAP Service Access Point
SFF Structured Fax File
T.70NL T.70 Network Layer
T.90NL T.90 Network Layer
TLV coding Type-Length-Value coding (used for presentation of Profile A messages)
VC Virtual Circuit
X.25 PLP X.25 Packet Layer Protocol

4 General

This clause provides an overview of the two profiles which are provided in this ETS and gives additional
requirements for the joint operation of the two profiles. This clause provides a reader's guide that shows
what is contained in the different clauses of this ETS.

4.1 Overview

With European countries Community committed by Memorandum of Understanding to implement one
standard for ISDN throughout Europe, it is a logical step forward to define an API that provides access to
this ISDN. The way to achieve the scope is listed below. This ETS:

- provides access to the ISDN, while not prohibiting access to existing ISDN implementations;

- allowsfor standalone and distributed operation;

- provides an interface that is capable of supporting multiple applications;

- provides an interface capable of providing support for multiple ISDN accesses;

- provides an interface that supports both basic and primary rate access;

- provides an interface that is, as far as possible, operating system independent;

- defines the interface in sufficient detail to ensure binary compatibility between different
implementations within the same operating system on the same platform;

- allows access to supplementary services provided via the ISDN;

- provides support for physical devices such as telephones;

- good performance.

Both profiles can be seen as satisfying these goals and providing an interface that is highly suitable to:

- ISDN adapter manufacturers;
- ISDN application writers;
- ISDN users as a procurement requirement for selecting ISDN products and applications.

Both profiles in this ETS cover the same field of application with different information coding. Because of
these differences, an application based on one of the profiles is not intended to interwork with the
implementation of the other profile.

Page 30
Final draft prETS 300 838: March 1998

The most distinguishing characteristics of the two profiles are listed below:

Profile A:

a) supports a co-ordination function that abstracts the ISDN signalling by offering the ISO connection-
mode network service (CONS) as defined in ITU-T Recommendation X.213 [6];

b) presents the information elements by converting network presentation to Type-Length-Value (TLV)
coding more suitable for the application;

c) provides transparent access to the network signalling information elements allowing usage with any
signalling protocol implementation.

Profile B:

1) is independent from the signalling protocol (e.g. also usable on non ITU-T Recommendation
Q.931 [8] based networks);

2) provides an interface which abstracts from protocol details not important for applications;

3) is bit-compatible with COMMON-ISDN-API Version 2.0 of May 1995.

4.2 Requirements

To ensure that applications can work with either profile, an implementation which provides the HPCI
interface shall implement both profiles.

The manufacturer shall offer the possibility to the user to activate both profiles. Both Profiles shall exist on
the HPCI "card", but in some Implementations only one may be active at any moment. The manufacturer
shall allow applications to switch from one profile to the other on demand without reconfiguration. The
implementation may provide access to both profiles concurrently or not concurrently. The preferred
method is to offer concurrrent access.

Mandatory protocols are:

- Profile A: ISO 8208 [3], ETS 300 080 [1], Transparent byte oriented B-channel access;
- Profile B: High-Level Data Link control (HDLC), X.75.

If an implementation provides a non-mandatory protocol, it shall provide that protocol for both profiles.

An implementation for a specific Operating System shall be always provided for both profiles.

Page 31
Final draft prETS 300 838: March 1998

4.3 Reader's guide

Table 1 gives a descriptive list showing the full contents of this ETS.

Table 1: List of ETS contents

Clause
Annex Contains

Clause 1 Scope of this ETS. This describes what this ETS covers.
Clause 2 Normative references.
Clause 3 Definitions of the terms and Abbreviations used throughout this ETS.
Clause 4 General information about this ETS.
Clause 5 Description of Profile A of this ETS.
Clause 6 Description of Profile B of this ETS.
Clause 7 The exchange mechanism description for both profiles.
Annex A The mapping between the Profile A messages and the underlying protocols.
Annex B Details for NAFs providing external equipment support (telephony) (Profile A).
Annex C Rules for use of the X.25 protocol (Profile A).
Annex D Guidelines for NAF developers and manufacturers giving guidance for

implementation and extension of the Profile A.
Annex E Profile A implementation description: a template for description of the

implementation for further conformance statements of PUF or NAF
developers.

Annex F Definition of standard profile. This annex provides the content of static
attributes (Profile A).

Annex G Sample coding in C language illustrating operating system specific
implementation of the exchange mechanism (Profile A).

Annex H C language illustrating TLV encoding/decoding example (Profile A).
Annex J Sample Flow Chart diagrams of the Profile B.
Annex K Description of the Structured Facsimile File Format used by the Profile B.
Annex L Protocols list supported by Profile B.
Annex M Development guidelines for Profile B.
Annex N Profile B Implementation description.
Annex P Index of related topics for the Profile B.
Bibliography Bibliography. Informative references useful for the understanding of this ETS

for both profiles.

5 Profile A

5.1 Reader's guidance and overview

5.1.1 Reader's guide

This ETS is intended for:

- software developers and implementors of applications by providing them with the definition of a
simple, standardized and portable interface giving access to ISDN;

- manufacturers and developers of ISDN adapters and system software with the aim of providing a
standardized programmable interface to ISDN communications;

- users of ISDN based software and management personnel by providing them with background
information and selection criteria for choosing ISDN products and applications.

Page 32
Final draft prETS 300 838: March 1998

5.1.2 How to use this profile

Readers who:

- need a quick overview of the Profile A features and capabilities should read the overview provided
in subclause 4.1. More detailed information about the architecture and functional description is
provided in subclause 5.2. General User Protocol management can be found in subclause 5.6.1.
Clause 3 provides useful information on definitions of terms and abbreviations used;

- intend to implement an application using this profile should first read subclauses 5.3, 5.4 and 5.5.
Clauses 3 and 4 provide useful information on the definitions of terms, abbreviations and the
implementation description used. For more detailed information on user protocols, subclause 5.6
and annex D should also be inspected. Detailed information on exchange method implementation
are provided in clause 7 and in annex H;

- intend to build an ISDN adapter card or equipment should also first inspect subclauses 5.3, 5.4 and
5.5. Clause 3 and 4 provides useful information on the definitions of terms, abbreviations and
implementation description used. For more detailed information on user protocols, subclause 5.6
should also be inspected. Annex D describes informative default configuration values and NAF
diagrams. Detailed information on exchange method implementation are provided in clause 7 and
in annex H.

The basic services subclauses provide:

- the definition of the functional model (subclause 5.2.1);
- encoding principles (subclause 5.2.2);
- the description of administrative and control messages and parameters (subclauses 5.4, 5.5

and 5.6);
- the exchange method definition (subclause 5.3);
- security aspects of Profile A (subclause 5.10).

The user protocol usage Management Architecture clause provides:

- the definition of message accesses (subclause 5.6.1.2);
- the list of supported protocols and the selection method (subclause 5.6.1.3);
- co-ordination function information (subclause 5.6.1.4);
- common Network Connection Object (NCO) selection criteria (subclause 5.6.1.5);
- error checking principles (subclause 5.6.1.6);
- AttributeSet contents (subclause 5.6.1.7).

For each supported protocol, this ETS provides, in order:

- a description of available user messages;
- a description of useful user parameters;
- the protocol state diagram;
- co-ordination function information;
- specific NCO selection criteria if it exists;
- specific error handling and codes;
- AttributeSet definition.

Annex E gives default protocol configuration values, if any, and shows NAF Specification and Description
Language (SDL) diagrams describing most of the cases.

For each supported operating system, this ETS provides:

- application level implementation of exchange functions;
- NAF level implementation of exchange functions;
- NAF availability.

Annex H gives coding examples.

Page 33
Final draft prETS 300 838: March 1998

5.1.3 Functional overview

The basic model of PROFILE A consists of two entities: a service user called the PCI User Facility (PUF)
and a service provider called the Network Access Facility (NAF). The PUF and the NAF interact by means
of messages. Using these messages, the PUF requests the NAF to perform actions and to return the
results to the PUF.

The interface to the NAF, depending on the underlying protocols supported, is divided into 3 planes:

- a Control Plane which provides access to the services offered by ISDN;

- a User Plane which provides access to the protocols used to transfer the data over connections
established through the ISDN;

- an Administration Plane which provides the mechanisms that support the objects and identifiers
required by the other two planes.

Each plane groups a distinctive set of functionality which is exchanged through the Profile A. The method
for exchanging the information is called an "exchange mechanism" and is defined separately. This
definition is generic in nature and may be applied to several operating systems. The adaptation of the
exchange mechanism to a choice of specific, popular operating systems is covered in separate clauses.

Apart from the use of non-connection related facilities, e.g. security features and support of external
equipment, the use of the Profile A is based upon the establishment of ISDN and user protocol
connections. Within the PCI the concept of a Network Connection Object (NCO) is used to control these
connections. NCOs are defined by the use of Administration Plane messages and used in both Control
and User Plane messages to establish, use and remove connections.

5.1.4 Connection management

Performing ISDN connections leads firstly to set up the protocol related information required for this
connection and then to unambiguously identify all messages attached to this connection. The specification
provides a mechanism to link the attributes - static or dynamic - to the connection based on NCO
management.

5.1.5 The planes

The Control Plane supports messages that allow the PUF to establish, control and remove connections,
and to access the services provided by the ISDN. Seven classes of message are defined. The first class
is associated with the basic call set-up and is mandatory for the NAF to provide while the other classes
associated with overlapping dialling method, telephony supplementary services, user-to-user signalling
and adjournment of calls, external equipment and DTMF are optional.

The Administration Plane is responsible for managing attribute sets, addresses and NCOs. It offers
messages that provide information concerning the state of any external equipment that the NAF controls,
such as a telephone. It also provides messages to manage the security features used on a particular
connection. Four classes of message are defined. The first, associated with the basic operation of the
NAF, is defined as mandatory for the NAF to provide while the other classes, associated with security,
manufacturer specific features and protocol modification for NCO are optional.

The User Plane provides messages that allow the use of underlying protocols. At present several sets of
messages are defined. Three sets of messages are defined in the User Plane. One set allows access to
User Plane protocols providing the OSI network-layer service interface. The second one provides access
to link-layer service interface. The last set provides a transparent interface where the PUF implements the
protocol to be run over the connection.

5.1.6 Properties

Profile A defines that each NAF provide the PUF with a list of its static properties. These properties define
the capabilities of the NAF generally and the resources to which it has access to in a particular
configuration. It is through these sets of properties that the PUF is informed of the variety of messages the
NAF supports within each plane. As an example, these properties may refer to the types of external
equipment available or the type and number of ISDN channel available.

Page 34
Final draft prETS 300 838: March 1998

5.1.7 External equipment (e.g. telephony)

Profile A provides support of external equipment controlled by the NAF. The types of external equipment
supported relate to various types of telephony equipment such as headsets and others. This support is
achieved by treating the external equipment as a special type of transparent access so that when an ISDN
connection is established (using the transparent protocol) the relevant ISDN channel for that external
equipment is attached - this method is preferred rather than providing the PUF with User Plane messages.
Administration Plane messages are provided to monitor the state of external equipment.

5.1.8 ISDN accesses and the multi-applications environment

The definition of Profile A supports various NAF - PUF configurations. It puts no constraints on the NAF
implementation and it allows:

- a NAF to provide either only one or more than one ISDN accesses;
- a NAF to allow access to only one or more than one PUF concurrently;
- any number of NAFs to coexist within the same TE.

5.1.9 Exchange mechanism

The realization of an interface across several distinct platforms (operating system) is often difficult to
reconcile. Each operating system has a particular way of doing this and very often the same interface
cannot be ported from one system to another. One way of going about solving this problem is by means of
defining an exchange mechanism. The exchange mechanism abstracts the functionality between the
interacting elements by means of functions. The Profile A interface defines seven functions that allow the
registration, de-registration, and conversation of exchanges. During the registration phase, a function is
usable to provide a list of the available NAFs within the system.

Messages passed to the NAF are copied before control is returned to the PUF. Once the PUF regains
control, it is free to re-use any memory associated with the message. The memory allocation for data
being transferred or received is performed by pointers inside the messages, this mechanism avoids
making unnecessary copies. It is the responsibility of the PUF to provide memory for the NAF to place any
messages. In order to assist the PUF in the provision of memory space, a signalling mechanism defined
within each operating system is described; this mechanism consists of notifying the PUF when a message
is available.

5.2 Message overview

5.2.1 Functional model

5.2.1.1 Introduction

Subclause 5.2.1 describes the functional model for Profile A. It introduces the architecture of Profile A and
also describes the functionality of Profile A and the interactions between the entities located around the
Profile A interface. Furthermore, it describes the sequencing of messages, to indicate in which way the
entities may exchange information.

There is also a description of the identifiers involved in Profile A and the error mechanism it provides.

5.2.1.2 Architecture

Profile A is the specification of the communication interface inside TE which wishes to access an ISDN.
Using this interface enables a higher layer entity to access the services of an ISDN network in a
standardized way.

Profile A is a software interface between a service user and a service provider. As a software interface,
Profile A consists of the specification of the interface and a description of the functionality which lies
directly below the interface.

Page 35
Final draft prETS 300 838: March 1998

Profile A is an interface specification which is implemented in an actual computer environment. This
environment imposes problems, e.g. associating the functional units and exchanging information between
the entities. As a result, Profile A contains some functionality to deal with the problems of implementing it
within a computer environment.

Two entities can be distinguished around Profile A. These are the service user and the service provider.
These entities, along with Profile A and their information interchange are described in subclause 5.2.1.2.1.

5.2.1.2.1 Profile A and its components

The functional components relevant for the definition of Profile A and their relationship are shown in
figure 1.

Service Provider (NAF)

Profile A interface

Service User (PUF)

Figure 1: Functional picture of the Profile A interface with surrounding components

The functional components relevant for Profile A are:

PUF

Throughout this ETS, the term PCI User Facility (PUF) is used to refer to the user of the service. PUF
refers to all the functional layers that use the interface to access the services of the ISDN.

NAF

The term Network Access Facility (NAF) is used to refer to the service provider. NAF refers to all elements
which are necessary to provide access to the services of ISDN. These elements can be both software and
hardware, no distinction is made. The NAF behaves as representing the services of one ISDN access.

Profile A

Profile A defines the interface located at the top of the NAF(s). Profile A defines a number of functions.
First, Profile A allows for the association between the PUF and the NAF. After the PUF and NAF are
associated, all the operations are performed by an information exchange mechanism. The exchange
mechanism is another part of the functionality of Profile A. Figure 1 describes how the Profile A interface
relates to the surrounding components. The arrow indicates the information flow.

Messages

Accessing the functionality described by Profile A is achieved by means of messages. The PUF and NAF
use the functionality of the information exchange mechanism to exchange messages. The messages
inform the entities of the operations to perform, or the results of performed operations.

Page 36
Final draft prETS 300 838: March 1998

5.2.1.2.2 Profile A architecture

Profile A has its own structure (described in figure 2). This structure consists of three planes, separating
the functionalities. Each plane has its own set of messages. Profile A distinguishes the following planes:

- Control Plane;
the Control Plane is related to the signalling part of a connection, which is via the NAF associated
with the signalling in the ISDN D-channel. It covers the functionality provided by the service in the
D-channel, such as connection control, control of service characteristics and supplementary
services. Furthermore, the Control Plane is responsible for managing special equipment accessible
through the Profile A interface.

- User Plane;
the User Plane is related to the user connection, which may either be associated with a connection
on the B-channel or a data connection on the D-channel. It is associated via the NAF with the
functionality provided by the data services in the D- and B-channels, which consists of services for
end-to-end data exchange.

- Administration Plane;
the Administration Plane does not relate to the ISDN. It covers the required functionality for control
and configuration of the Control and User Planes.

Figure 2 gives a representation of the three planes.

NAF

Profile A interface
User planeControl plane

Administration
plane

Signalling Data
exchange

Local
manage-

ment

PUF

D
 channel

B
channels

Figure 2: Relation between planes and ISDN

5.2.1.2.3 Co-ordination cases

Profile A provides for two mechanisms to co-ordinate the functionalities associated with the ISDN
signalling and the user connection.

In the PUF co-ordination case, the PUF shall handle the establishment of a user connection by using the
basic call control provided by the Control Plane. As a result of controlling the signalling connection, the
PUF can use the supplementary services.

Page 37
Final draft prETS 300 838: March 1998

In the NAF co-ordination case, an abstraction is provided by a co-ordination function, which maps the
primitives of CONS ITU-T Recommendation X.213 [6] in the User Plane according to the primitives of the
Control Plane and User Plane protocols. A detailed description of the condition and procedures for the use
of the co-ordination function is provided in subclause 5.6. Since the NAF manages the co-ordination
between signalling and user connection, the PUF shall not access the Control Plane.

5.2.1.3 Functionality

5.2.1.3.1 Introduction

As described in subclause 5.2.1.2, Profile A functionality is provided by the three planes, with associated
message sets to access the functionality. How the exchange of messages between PUF and NAF takes
place is described in subclause 5.2.1.5.

In order to access ISDN signalling or data, the PUF shall request the NAF for the creation of a NCO. The
creation and destruction of network connection is the main part of the functionality of the resource
management.

After having performed this successfully, the PUF is in an "idle" state and may subsequently access ISDN
signalling (except in case of NAF co-ordination) or transfer data. Subclauses 5.2.1.3.3.1 and 5.2.1.3.3.1
respectively, describe the functionality for connection management and data management.

5.2.1.3.2 Resource management

The resource management functionality is needed to be able to use Profile A for communication.
Resource management contains functionality for local management. The functionality covers the
management of:

- Network Connection Objects (NCOs);
- external equipment.

The Administration Plane of Profile A provides the functionality defined by the resource management.

The resource management evolves around the NCO, which is the object needed for subsequent
communication. An NCO refers to an abstract object containing all relevant configuration information for
one user connection. The configuration information for an NCO shall be assigned by the PUF using one of
the two following methods:

a) referencing a standardized attribute set;
b) specifying all configuration information during NCO creation.

Method a) provides a simple way for the PUF to select appropriate configuration information by
referencing a standardized attribute set identifier. However, this method is available at the cost of
flexibility, since attribute sets are standardized and may only be used in the provided manner. Annex H
gives the list of standardized attribute sets for the Control Plane.

Method b) gives the PUF the opportunity to specify configuration information for any special needs on its
own. However, this involves a lot of details concerning D-channel and B-channel parameters and shall,
therefore, be left for the sophisticated PUF-implementor.

5.2.1.3.2.1 Attribute sets

Attribute sets are used to keep together important parameters for configuring user protocols, for executing
the ISDN signalling protocol and for collecting some management information relevant to the NCOs
(statistics, cost). User protocols and ISDN signalling are accessed through the functionality of the User
Plane and the Control Plane. A collection of attribute sets exists for both planes. These sets are:

- signalling attribute set (related to the Control Plane);
- user protocol attribute set (related to the User Plane);
- administration attribute set (related to the Administration Plane).

The administration attribute set is not involved in the NCO creation but is only updated during the life of
the NCO and can be accessed at any time through the resource management.

Page 38
Final draft prETS 300 838: March 1998

The resource management offers functionality to reference specific attribute sets when creating an NCO.

5.2.1.3.2.2 Network Connection Objects

The resource management functionality covers:

- the creation of a NCO;
- the grouping of NCOs;
- the information retrieval on a NCO.

A NCO is an abstract object created by the NAF in response to requests by the PUF prior to the
establishment of a connection.

As a rule there is one NCO per connection, independent of which type of connection the NCO is related
to. This can be a signalling connection or a connection for data transfer.

After the successful creation of a NCO, a unique identifier, the NCO identifier (NCOID), becomes
available. This NCOID shall be supplied in subsequent operations regarding connection establishment
and data transfer.

At the creation time of a NCO, the PUF can indicate that the newly created NCO should be grouped to
another NCO already in existence.

The purpose of the grouping is to provide the ability to share a channel when using a network layer
protocol, which allows the sharing of several logical connections on one physical channel. The sharing is
reserved to one PUF.

The grouping functionality is User Plane protocol dependent. A detailed description of the condition and
procedures for the use of the grouping functionality is provided in subclause 5.6.

The grouping of the NCOs is done by using the Group-ID. A unique Group-ID shall be returned on the
successful creation of a NCO. This Group-ID can subsequently be supplied at the creation of an additional
NCO, which shall then be grouped to the first NCO. If no Group-ID is supplied, the NCO shall not be
grouped. The Group-ID is only guaranteed to be unique for the interaction between the PUF and the NAF.

As the GroupID is only unique for the PUF-NAF relation, multiple PUFs which access the same NAF
cannot share the same connection.

For an incoming call, the NAF selects the appropriate NCOs and is then helped by the PUF to choose the
unique one. This is done using the SelectorID, supplied at the creation of the NCO. This gives the PUF the
opportunity to handle a list of NCOs that the NAF will exclusively deal with.

In case of a non co-ordinated NCO (C/U), User and Control Plane may have different directions. For
example, the User Plane may be listening, while the Control Plane is calling.

5.2.1.3.2.3 Support of external equipment

Access to external equipment, such as telephones, is provided to the PUF through the functionality of the
three planes.

As long as a NCO that specifies an external equipment in its configuration information exists, the NAF
shall generate the appropriate Control Plane messages if the state of that external equipment changes.

The connection management (subclause 5.2.1.3.3) and data management (subclause 5.2.1.3.3) provide
functionality to manage connections with these NCO.

Page 39
Final draft prETS 300 838: March 1998

Five types of external equipments are defined:

1) external equipment without telephony hook control. This type of external equipment only contains
the transceivers. In this case, the PUF is in charge of managing the ISDN connection;

2) external equipment with telephony hook control. In this case, all telephony hook events are
available at the interface level and the PUF is in charge of managing the ISDN connection;

3) external equipment with telephony hook control and which is able to manage the ISDN connection.
In this case, all telephony hook control events are available at the Profile A;

4) external equipment with keypad and with or without telephony hook control. In this case all dialling
events, all telephony hook control events are available at the Profile A and the PUF is in charge of
managing the ISDN connection;

5) external equipment with keypad and with or without telephony hook control which is able to manage
the ISDN connection. In this case, all dialling events, all telephony hook control events and
information about the status of the communication are available at the Profile A.

All these types of external equipment are connected to the NAF by the means of a proprietary connection
which is outside the scope of this ETS and provides to the PUF the availability or not of the external
equipment.

In the case of type 4 and 5 external equipments, there can be two types of dialling:

- blocksending: one Control Plane message containing the complete Destination address is
provided to the PUF;

- overlap sending: one Control Plane message per key pressed is provided to the PUF. During
a communication, DTMF codes can be sent via the keypad.

Type 3 external equipment is able to deal with incoming calls alone when the computer is off.

Type 5 external equipment is able to deal with incoming and outgoing calls when the computer is off.

Each action to the handset generates a Control Plane message to the PUF. Depending on the type of
external equipment, different levels of messages are sent to the PUF:

- for type 1 external equipment:
- availability/unavailability;

- for type 2 and 3 external equipment:
- availability/unavailability;
- on-hook;
- off-hook.

- for type 4 and 5 external equipment:
- availability/unavailability;
- on hook;
- off hook;
- a code representing the key pressed on the keypad in the case of an overlap sending;
- a table of codes representing the complete destination address in the case of a block

sending.

In the case of a type 2 and 3 external equipments and if the PUF has created a NCO that specifies an
external equipment in its signalling attribute set, a connection which involves this external equipment may
be established and breakdowns in different ways:

- case of the outgoing calls:
- the user goes off-hook via the handset and the PUF issues the overlap or block dialling;
- the PUF issues the overlap or block dialling and the user goes off-hook via the handset;

Page 40
Final draft prETS 300 838: March 1998

- case of incoming calls:
- the user goes off-hook via the handset and the PUF receives a Control Plane message to

inform it;
- the PUF answers the incoming call and the user goes off-hook via the handset;

- case of local closedown:
- the user on-hooks the handset and the PUF receives a Control Plane message to inform it;
- the PUF releases the call and the user goes on-hook via the handset;

- case of remote closedown:
- the PUF receives a Control Plane message and the user goes on-hook via the handset.

In the case of a type 4 and 5 external equipments and if the PUF created a NCO that specifies an external
equipment in its signalling attribute set, a connection which involves this external equipment may be
established and closed down in different ways:

- case of the outgoing calls:
- the user goes off-hook via the handset and the PUF issues the overlap or block dialling;
- the user goes off-hook via the handset which generates a Control Plane message to the PUF

and uses the keypad of the external equipment to issue the overlap dialling. Each key
pressed generates a Control Plane message to the PUF;

- the user goes off-hook via the handset which generates a Control Plane message to the PUF
and uses the keypad of the external equipment to issue the block dialling. The end of the
destination address is detected by the means of a special key. A Control Plane message is
generated to the PUF;

- the PUF issues the overlap or block dialling and the user off-hooks the handset;

- case of the incoming calls:
- the user goes off-hook via the handset and the PUF receives a Control Plane message to

inform it of the off-hook state;
- the PUF answers to the incoming call and the user goes off-hook via the handset;

- case of local breakdown:
- the user goes on-hook via the handset and the PUF receives a Control Plane message to

inform it of the on-hook state;
- the PUF releases the call and the user goes on-hook via the handset;

- case of remote breakdown:
- the PUF receives a Control Plane message and the user goes on-hook via the handset.

5.2.1.3.2.4 Support of security features

Access to security features below the Profile A interface is provided to the PUF through the functionality of
the Administration Plane. The security features provided cover the use of security algorithms on
connections.

The PUF can activate and deactivate security features on a specific connection by supplying the NCO of
the connection in Administration Plane messages.

5.2.1.3.2.5 Support of manufacturer specific features

Access to manufacturer specific features is provided to the PUF through the functionality of the
Administration Plane.

The PUF can access manufacturer specific features by using this functionality. It is a way to handle extra
functionality not provided by Profile A.

The information exchanged between PUF and NAF is dependent of the implementation of the
manufacturer specific feature and is, therefore, not covered in this ETS.

Page 41
Final draft prETS 300 838: March 1998

5.2.1.3.3 Connection management

The connection management functionality covers two aspects:

- the set-up and breakdown of physical connections;
- the access and usage of supplementary services.

The connection set-up and breakdown covers the basic functionality of the physical connection
management. The supplementary services provide additional functionality related to the physical
connection management.

The Control Plane described in Profile A provides the functionality defined by the physical connection
management.

5.2.1.3.3.1 Connection set-up and removal

The only way for a PUF to achieve a connection is to enter the "idle" state by the creation of a NCO.
Subsequently, it can perform a connection request or wait for a connection indication. After the connection
is removed, the PUF returns to the "idle" state and can subsequently reuse the NCO for a new connection.
The NCO becomes invalid if it is destroyed or if the PUF deregisters from the NAF.

At the creation of a NCO the PUF shall decide which type of connection is to be achieved. Profile A
provides for access to:

- signalling connection, running the designated signalling protocol;
- connection for information transfer, optionally running communication protocols.

For signalling connections, Profile A provides functionality to set-up and breakdown connections. The
functionality is covered by one message access at the top of the layer 3 of the signalling protocol.

If the PUF has created a NCO associated with external equipment, Profile A provides functionality to
set-up and breakdown connections and all user actions with the external equipment (on-hook, off-hook,
dialling) are taken into account by the signalling part. Furthermore, some external equipments are able to
manage ISDN signalling when the host is off.

In case of telephony, additional functionality can be available, which allows the temporary breakdown
(suspend) and subsequent re-establishment of connections (resume).

As a NCO is coupled to a single PUF, connection passing between PUFs cannot be accommodated.

5.2.1.3.3.2 Support of supplementary services

Supplementary services, as provided by the connection management of ISDN, are available to the PUF
when PUF co-ordination case applies. The PUF is responsible for the handling of the connection
management and can, therefore, control the supplementary services provided via the signalling.

To facilitate the use of certain supplementary services described in the ISDN MOU of European
Community (1989), a special way of coding has been introduced in Profile A.

In general, supplementary services provided by ISDN may be provided by the use of transparent coding of
the supplementary services. The transparent coding shall be provided as an optional feature.

NOTE: The use of supplementary services, when the co-ordination function is in use by the
NAF is for further study.

5.2.1.3.4 Data management

The data management functionality covers two aspects:

- establish data connections on already established physical connections;
- exchange data.

Page 42
Final draft prETS 300 838: March 1998

The User Plane of Profile A provides the functionality defined by the data management.

For user data transfer, Profile A provides access to various User Plane protocols running in the ISDN
network layer. Depending on the selected User Plane protocol the User Plane provides access to a
network layer (Layer 3), link layer (Layer 2) or transparent (Layer 1) connection.

Selection of the User Plane protocol can be achieved using the resource management functionalities
(Creation or Modification of an NCO).

For every type of connection it is important that there exists a signalling connection before any data
access can be done. In general, unless a PUF makes use of the co-ordination function provided by the
NAF, the establishment of the signalling connection is achieved by using the Control Plane functionality,
whereas the establishment of data access is achieved by use of the User Plane functionality.

When using a connection with a transparent User Plane protocol and a NCO which is associated with
external equipment, the data generated on the connection shall be sent to the external equipment rather
than used to generate User Plane messages.

A detailed description of the available protocols and of the corresponding User Plane messages,
sequencing and parameters can be found in subclause 5.6.

5.2.1.4 Relating functionality to planes

When relating functionality to the planes, the following relations apply:

- the Administration Plane of this profile provides the functionality defined by the resource
management;

- the Control Plane of this profile provides the functionality defined by the connection management;

- the User Plane of this profile provides the functionality defined by the data management.

Inside the planes the functionality is described using operations or operational groups.

5.2.1.4.1 Optional features

When relating functionality to the planes, there shall be some operations or operational groups which are
not mandatory for a NAF to supply.

In the description of the planes there are indications of which operations or operation groups are
mandatory or optional.

The fact that the description allows optional features for the NAF does not mean that Profile A contains
any optional features. Profile A, as an interface specification, shall allow the exchange of any message.
Optional here refers to the availability of these features to the PUF, supplied by the NAF. If the PUF
requests a feature which is not provided by the NAF, the PUF shall be informed of this.

5.2.1.4.2 Administration Plane

The Administration Plane provides access to operations which facilitate management of connections like
definition and management of attribute and address sets as well as management of network connection
objects. Furthermore, the following miscellaneous operations are provided via this plane:

- error report operation;
- security operation;
- manufacturer specific operation;
- change of protocol during a connection.

Table 2 provides an overview of Administration Plane operations.

Page 43
Final draft prETS 300 838: March 1998

Table 2: Administration Plane operations

Operation name Purpose of operation
Create NCO Create a network connection object
Destroy NCO Destroy a network connection object
GetInfo NCO Obtain information about a network connection object
Error Report non-connection related error condition
Security (note) Manipulate security
Manufacturer Specific (see note) Request manufacturer specific functionality
Change of protocol (see note) Change the User Plane protocol on the established

B-channel
NOTE: These operational groups are optional for the NAF.

5.2.1.4.3 Control Plane

The Control Plane provides access to operations which handle the basic call control of the ISDN
signalling.

In the Control Plane, there exists no clear separation of operations as in the Administration Plane. It shall
be possible to distinguish between a number of operational groups in the Control Plane. Table 3 provides
an overview on Control Plane operational groups.

Table 3: Control Plane operations

Operational group name Purpose of operational group
Connection establishment Handling incoming and outgoing calls
Connection breakdown Handling the removal of connections or refusal of calls
User-to-user information transfer
(note)

Exchanging user-to-user information and providing
control for this exchange

Adjournment of calls (see note) Provision of suspending and resuming calls
Facility invocation (see note) Handling the invocation of facilities
External equipment (see note) Indicate status or change of state of external equipment
Additional information (see note) Provide a access to additional information during a call
DTMF (see note) Exchange of DTMF in band information during a call
NOTE: These operational groups are optional for the NAF.

5.2.1.4.4 User Plane

The User Plane provides operations which facilitate establishment, data exchange and release of logical
communication channels. It uses standardized services and procedures as defined for the selected user
message access. A detailed description of the operations available for the various possible access
(transparent, link layer, network layer) can be found in the subclause 5.6.

5.2.1.5 PUF NAF interactions

This subclause describes the type of functions which are available to the PUF in its interactions with a
NAF and in which order they can be used.

For all functions the following properties apply:

- initiated by the PUF, which means that only the PUF can initiate the association the PUF to the
NAF;

- requested by using function calls from the PUF to the NAF;

- performed in a synchronous manner. A PUF which requests a NAF to perform a function shall
regain control of the CPU from the NAF after completion of the function call.

In the interaction between PUF and NAF the following phases can be distinguished:

Page 44
Final draft prETS 300 838: March 1998

- Registration Phase

Before a PUF and a NAF can interchange information, the PUF associates with the NAF. As it is
possible within a system that more than one NAF may be available, and, additionally, these may be
from different NAF manufacturers, a method is defined which allows the PUF to discover which
NAFs are accessible within a system. This phase is called the Registration Phase. This phase
allows access to a list of accessible NAFs via the PCI-Handles. Then the PUF may discover
properties of the NAF that have been selected by the PCI-Handle and establish an association to
the NAF.

- Conversation Phase

At this point PUF and NAF can exchange messages. This phase is called the Conversation Phase.
The PUF controls the exchange of messages between the NAF and itself. This means that the PUF
fills the message with relevant parameters and sends it to the NAF for processing, or the PUF asks
the NAF to receive a message by providing resources to the NAF.
There are two methods for a PUF to discover that the NAF has a message for it. The simplest way
for the PUF to get available messages is to poll the NAF. The second method provides a
mechanism to give the NAF a fast way to notify a PUF that a message is available. With this
method the PUF explicitly allows the NAF to notify it on the availability of a message. This method
has the advantage of introducing an efficient way of operating, for PUFs which are concerned with
performance.

For example, this method shall help PUFs which have bound to multiple NAFs. However, PUFs
who use this method are more complex in design than those that do not.

- De-registration Phase

When a PUF does not need to exchange messages with a NAF, it disassociates from the NAF. This
phase is called the Deregistration Phase. This phase is important in terms of resource management
in the NAF, especially for memory resources. The PUF shall disassociate to guarantee an efficient
use of the resources of the global system.

Table 4 gives the list of functions grouped into their respective phases.

Table 4: Profile A functions grouped into phases

Phase Function Purpose of function
Registration PciGetHandles Provide a list of accessible NAFs and obtain

their PCI-Handles
PciGetProperty Provide detailed information on a NAF
PciRegister Associate the PUF to the NAF

Conversation PciPutMessage Transfer a message from the PUF to the NAF
PciGetMessage Ask the NAF to receive a message, by

providing resources
PciSetSignal Establish mechanism to allow the NAF to notify

the PUF when a message is available
Deregistration PciDeregister Disassociate the PUF from the NAF

Page 45
Final draft prETS 300 838: March 1998

The functions shall be used in a certain order. Figure 3 presents a state diagram for the Profile A function
calls.

NULL

REGISTERED

PciRegister PciDeregister

PciGetMessage PciPutMessage

PciSetSignal

PciGetProperty PciGetHandles

Figure 3: Profile A function calls order

The messages are transferred between the PUF and the NAF by use of the PciPutMessage and
PciGetMessage functions.

5.2.1.6 Total interaction overview

As an example of the sequencing of operations, figures 4 and 5 present a chronological interaction
overview of the actions the PUF shall perform to get a connection.

In these figures, the following conventions are used:

- for the complete figure, dashed lines mean optional;

- in the part of the figure on the Conversation Phase, arrows from the PUF to the NAF mean usage of
PciPutMessage and arrows from the NAF to the PUF mean usage of PciGetMessage;

- text written in small letters refers to messages as described in subclauses 5.4, 5.5 and 5.6 of this
ETS.

Page 46
Final draft prETS 300 838: March 1998

PUF NAF NETWORK

ACreateNCOCnf

A

D

M

I

N

I

S

T

R

A

T

I

O

N

U

S

E

R

CConnectReq

CALL PACKET

REQUEST

CALL PACKET

CONFIRMATION
U3ConnectCnf

PciGetProperty

(optional)

PciRegister

SETUP

CONNECT

E

X

C

H

A

N

G

E

M

E

C

H

A

N

I

S

M

ACreateNCOReq

CConnectCnf

U3ConnectReq

C

O

N

T

R

O

L

ALERTCAlertInd

Conversation phase

Registration phase

CreateNCO operation

Connection establishment operation

Connect operation

PciGetHandles

(optional)

Figure 4: Sample of sequencing operations - PUF co-ordination case

Page 47
Final draft prETS 300 838: March 1998

PUF NAF NETWORK

ACreateNCOCnf

A

D

M

I

N

I

S

T

R

A

T

I

O

N

CALL PACKET

REQUEST

CALL PACKET

CONFIRMATION

U3ConnectCnf

PciGetProperty

(optional)

PciRegister

SETUP

CONNECT

E

X

C

H

A

N

G

E

M

E

C

H

A

N

I

S

M

ACreateNCOReq

U3ConnectReq
C

O

N

T

R

O

L

&

U

S

E

R

Conversation phase

Registration phase

.

.

.

PciGetHandles

(optional)

Figure 5: Sample of sequencing operations - NAF co-ordination case

5.2.1.7 Identifiers

For its operations, Profile A defines identifiers. These identifiers shall be used by the PUF to identify
concrete objects or connections in an abstract manner.

This subclause summarizes the identifiers used in the Profile A specification. Only the functional
description of these identifiers are given. The details are introduced in later clauses.

For details of identifiers see subclause 6.5 related to the exchange mechanism.

PCI-Handle This identifier is an abstract reference to a NAF. The PCI-Handle shall be used
to optionally find out information on the NAF and to register to the NAF from the
exchange mechanism function PciRegister .

ExID This identifier is the representation of the association between a PUF and a
NAF. It is provided by the exchange mechanism function PciRegister . It is
needed in every Profile A function call in relation to this association.

Identifiers relate to the Conversation Phase of the communication between PUF and NAF. For details of
these identifiers refer to subclause 5.4.

Page 48
Final draft prETS 300 838: March 1998

CAttributeName This identifier relates to a static attribute set of Control Plane parameters. It is
represented as a name. This identifier shall subsequently be used in creating a
NCO. The complete list of static attribute sets is defined in annex G.

UAttributeName This identifier relates to an attribute set of User Plane parameters. It is
represented as a name. This identifier shall subsequently be used in creating a
NCO. The complete list of static attribute sets is defined in annex G.

ExtEquipName This identifier relates to external equipment. It is represented as a name. This
name may be obtained either implicitly or by use of the PciGetProperty function.

NCOID This identifier relates to the connection which is referred to by the PUF. It is the
way for the PUF to indicate to the NAF which connection is referred to since a
connection always corresponds with a NCO, this identifier is a reference to this
NCO. The NCOID is provided in response to the Create NCO message.

GroupID Abstract identifier for grouping NCOs. It is User Plane protocol dependent.

RequestID This reference identifies the message which is exchanged between the PUF and
the NAF in the Administration Plane. Subsequent responses to this message
shall contain the same RequestID to identify the original message. It is allowed
multiple asynchronous transmissions to this plane.

SelectorID This reference identifies the NCO related to the message in case of multiple
NCOs matching, on an incoming call. The NAF will select only one NCO in this
abstract PUF set, indicated by the same SelectorID value. This is a way for the
PUF to limit the amount of NCOs selected by a NAF and then to limit the
number of messages generated by the NAF in case of an incoming call.

ControllerID This identificator attaches a particular controller to an NCO or to a connection. A
ControllerID is a number based 0. The way a NAF assigns a ControllerID to an
adapter is NAF dependant. For incoming call, the NAF provides this ControllerID
value if multiple adapters are installed. In case of outgoing call, a PUF is able to
request an adapter during the NCO creation operation or at the call
establishment. Otherwise the NAF will apply its internal rules to make the
selection. If only one adapter is installed, the ControllerID is ignored. The
number of installed adapters is a Property parameter.

5.2.1.8 Error handling

5.2.1.8.1 Overview

Error information is returned to the PUF by the means of function return codes and information present
within messages. Generally, the function return codes provide error information generated by the passing
of parameters to the NAF from the PUF and the checking of the data in those parameters. Messages
contain error information reflecting the checking of the data referenced by the parameters, the processing
of earlier messages or events from the protocols in use.

5.2.1.8.2 Function error handling

For each function the supplied parameter values are checked, if any of them are found to be in error then
the fact shall be reported as a function return code and the action requested by the function shall not take
place.

The parameter examination that takes place (and order of checking) when a function is invoked by a PUF
depends on the function being invoked.

Page 49
Final draft prETS 300 838: March 1998

5.2.1.8.3 Message error handling

Error detection takes place at 2 stages during the processing of a Profile A message:

1) when the message is initially examined by the NAF, to ensure that it is suitable for further
processing. This checking is administrative in nature, so any errors encountered are returned in
Administration Plane messages;

2) when the message is processed by the NAF, the way in which error information is passed to the
PUF depends on the plane that the message belongs to and the protocol underlying that plane.

The initial examination that takes place (and order of checking) when the message is first received from a
PUF is as follows:

a) NAF availability is checked;
b) Message identifier is checked:

- unknown message, not defined by Profile A;
- unsupported message, defined by Profile A but not supported by NAF.

In the case of Administration Plane messages, any error information is returned on the corresponding
confirm message. In the case of Control and User Plane messages, error information is returned in the
Administration Plane AErrorInd message.

The error detection that takes place (and order of checking) when the message is processed by the NAF
is protocol dependent. Error information is returned by a mechanism particular to the protocol in use.
These mechanisms are described in subclause 5.9.

5.2.2 Information encoding

In subclauses 5.6 and 5.7, the types used shall be understood as:

- Octet referred to a byte (8 bits);
- Boolean referred to an octet with limited set of values

(0 = FALSE, else = TRUE);
- Octet-string referred to an array of octets with a variable or fixed size;
- IA5-string referred to an Octet-string composed with octets in

the IA5 alphabet.

Every parameter is encoded using Type Length Value (TLV) coding as following:

- type = 1 Octet;
- length= 1 Octet;
- value with octet boundary.

Fields included in the parameter are coded as structured information. The order of this structured
information is defined by the order of the parameter itself in subclause 5.7. Omitted fields reduce the size
of the parameter.

Values in parenthesis are decimal.

EXAMPLE: This example describes parameters of a CDisconnectInd message coming from
the NAF.

The CDisconnectInd message identifier is provided by the NAF in the MessageID field of the PCIMPB
structure as describe in the subclause 5.3. Parameters are placed into fill the Message parameter of the
PciGetMessage function (see subclause 5.3.3.6). The MessageActualUsedSize field of the PCIMPB
structure is filled with the 12 value.

The cause content is the "Normal call clearing" #16 cause, the diagnostic optional parameter is not
provided. The NCOID value is 3. Values are given using the decimal format.

Page 50
Final draft prETS 300 838: March 1998

Total parameter length 12

NCOID type 49
NCOID length 4
NCOID value 3 (03 00 00 00)
Cause type 15 (CauseToPUF)
Cause length 4
Cause value 16
Cause Standard 1 (ITU)
Cause location 1 (user)
Cause Recommendation 1 (Q.931)

In a byte oriented representation (in decimal), the content of the buffer results as follow:

49, 04, 03, 00, 00, 00, (NCOID)
15, 4, 16, 01, 01, 01 (CauseToPUF)

5.2.3 Conventions

As described in subclause 5.2.1.5 "PUF NAF Interactions", the exchange of messages is realized through
2 functions, PciPutMessage and PciGetMessage, which may be called as soon as the PUF is bound to
the NAF. Due to the nature of these functions, which may be used independently of each other, correlation
of "get messages" to "put messages" shall be performed by the PUF. For this reason, the messages of
each plane contain identifiers allowing correlation between messages.

The following subclauses describe the messages provided by each plane of Profile A, as well as the
parameters used in conjunction with each message. The actual information presentation and coding for
the operations and parameters is described in subclause 5.2.2, "Information encoding".

The description of the messages, their parameters and fields is independent of hardware and operating
systems.

5.2.3.1 Address conventions

When using any address in this ETS, the following conventions apply:

- The called address refers to the address the sender desires to be connected to.
- The calling address refers to the local address of the sender.

5.2.3.2 Provision of information

The provision of, or requirement for, items in the message can vary. The following conventions and
abbreviations are used:

M = (Mandatory): this item shall be supplied.
C = (Conditional): a condition determines if this item is supplied. The condition is explained as a comment

to the item.
O = (Optional): this item may or may not be supplied. For the exchange from PUF to NAF this implies that

the PUF is free to provide the item or not. For the exchange from NAF to PUF this implies that the
NAF shall only supply the item if it is available.

Information coming from the NAF reflects information provided by the network.

5.2.3.3 Message conventions

This subclause presents conventions used in the tables for describing the messages.

Each message belongs to a class. With each message the class is indicated. Not all classes are available
for a NAF to support. A NAF provider may choose to implement only certain classes. Each plane contains
its own classes.

Page 51
Final draft prETS 300 838: March 1998

For each plane, a PUF can only rely on the availability of messages from class 1 (basic class). The other
messages belong to additional classes. If a NAF implements an additional class, all messages of the
same plane in this class shall be provided.

The message indicates its direction of transfer in the suffix part of its name. Messages with the suffix Req
or Rsp are transferred from the PUF to the NAF. Messages with the suffix Ind and Cnf are transferred
from the NAF to the PUF. Message identifiers are provided in decimal.

5.2.3.4 Parameter conventions

With the description of parameters the following conventions are used:

- the name of the field shall be given;

- the type of the field shall be given in decimal;

- the entity in charge of providing the content of the field - the Direction column. The following
abbreviations are used:

P in charge of the PUF;
N in charge of the NAF;
B both PUF and NAF can provide the content;

- the length of the field may be given. This indicates the number of octets this field shall occupy. The
term octet does not refer to any hardware or operating system dependent implementation. It refers
to the basic information unit in all systems.

5.2.3.4.1 Parameter ordering

No ordering between parameters in messages is needed. The ordering of the parameters is not described
by the ordering in the tables.

The ordering of the fields within the parameters is defined in the subclause 5.2.2.

5.2.3.4.2 Parameter repetition

Parameters in a message can be repeated. The number of repetitions is fixed by the network or the user
protocol used. If the numbers of repetition exceeds the number of repetitions allowed, remaining
repetitions shall be ignored.

5.2.3.4.3 Parameter checking

No particular checking process should be performed by the NAF for parameters coming from the network.

5.2.3.5 Default philosophy

For the values of parameters and fields in parameters a default philosophy applies. This means that, if
appropriate, the value "default" is shown in the description. After this value the value implied by the default
is given.

The default value shall only be used in the message exchange from PUF to NAF. If a parameter is not
provided in a message, the value provided during the NCO creation operation takes place.

In the exchange from NAF to PUF only the real value shall be given.

5.2.4 User Plane particularities

The User Plane messages provide access to different User Plane protocol stacks. Depending on the
selected User Plane protocol the User Plane provides access to a network layer (Layer 3), link layer
(Layer 2) or transparent (Layer 1) connection. A detailed description of the available protocols and of the
corresponding User Plane messages, sequencing and parameters can be found in subclause 5.6.

Page 52
Final draft prETS 300 838: March 1998

The subclause 5.7 describes parameters for messages of the Administration and the Control Plane.
Parameters for messages of the User Plane are described in subclause 5.6, on a protocol basis.

5.3 Exchange method

This subclause describes the exchange method and the exchange functions, which are used to achieve
the local exchange of information between a PUF and a NAF. Since the implementation of the exchange
functions is operating system dependent, they are described in a generic way. The exchange method for a
real environment is contained in clause 7, for various operating systems. They include the binary
representation, some code samples in Programming Language C and all information attached to a
particular operating system.

Since the NAF side implementation of the exchange functions depends on the underlying operating
system, the PUF code calling this function is operating system dependent as well. To be source code
portable between different operating systems, the PUF should encapsulate the code calling the NAF by a
functional interface, which resembles the generic exchange functions described in this subclause.

The exchange functions pass and return parameter values. These values are based on the generic types
shown in table 5.

Table 5: Generic types of exchange method

Generic Type Explanation
PCI_INTEGER Binary represented signed integer value, covering in the minimum the range

of - 215 +1 .. + 215

PCI_BYTEARRAY Array of binary represented byte values, used to present characters. The sign
extension on the byte value is undefined. No arithmetic shall be performed on
it.

PCI_EXID Implementation dependent type for presenting the PCI Exchange-ID.
PCI_HANDLE Operating system dependent type for presenting the PCI-Handle information.
PCI_PROCEDURE Operating system dependent type for presentation of procedure addresses.

Dependent of the operating system, the parameters are passed either by value or by reference. The way
parameters are passed is defined in the relevant subclause of clause 7.

General conventions for this generic presentation:

- the function name is prefixed by the letters "Pci";
- each function returns a completion code. Any other value than Success (0) for the completion code

indicates an error.

5.3.1 Registration phase

5.3.1.1 Overview

Before a PUF and a NAF can interchange information the PUF shall associate with the NAF. For this
association the PUF shall specify the PCI-Handle of the NAF it wants to associate with.

To support many NAF implementations, possibly from different manufacturers, a method is defined which
allows the PUF to discover which NAFs are accessible from within a system. For this the optional function
PciGetHandles allows the PUF to get a list of accessible PCI-Handles. Subsequently, the PUF can
extract a PCI-Handle from the list. The presentation of PCI-Handle is described in the operating system
specific documentation.

If used the PciGetHandles function should be the very first function called by a PUF since it makes all
PCI-Handles available. The interworking with other exchange functions is shown in figure 3.

Another optional function available in the registration phase is the PciGetProperty function. It allows the
PUF to learn the properties of the NAF. On call the PUF has to give the PCI-Handle of the NAF of interest.
As a result the PUF obtains a list of the static properties of the NAF.

Page 53
Final draft prETS 300 838: March 1998

NOTE: The use of this function is optional for the PUF, but its implementation (provision) is
mandatory for the NAF.

Since the obtained properties contain information about special NAF features, the PUF can use this
information to select the NAF(s) it wants to register with. Examples of these special features are a
handset or security features.

The only non-optional function of the registration phase is the PciRegister function. It allows the PUF to
associate with the NAF. The PUF shall provide the PCI-Handle of the NAF it wants to associate with. As a
result, an identifier for the association between the PUF and the NAF will become available. This identifier
shall be given in subsequent exchange function calls of this association during the conversation and
deregistration phase.

The following terms are used in conjunction with the registration phase:

NAF-Property: Structured information describing the characteristics (properties) of a NAF. The
NAF-Property is implemented system independent using TLV coding
(see subclause 6.3). Hence it shall be encoded using the same algorithm as
used for encoding of messages. In a multiple NAF environment, a PUF can use
this information to select a specific NAF.

PCI-Handle: NAF access information. This information shall be supplied to the functions of
the registration phase in order to find and access a NAF. Implementation of the
PCI-Handle is operating system dependent. For example the PCI-Handle might
be a name, a file-path or a function address.

NOTE: In many NAF environments a PUF may use the optional functions PciGetHandles and
PciGetProperty as described in subclause 5.1.3 to select the NAF which best suits its
needs. For more details on the PciGetProperty function refer to subclause 5.3.1.3.

5.3.1.2 PciGetHandles

This function allows a PUF to ask how many NAFs are accessible and to obtain their PCI-Handles. Using
the PCI-Handle, the PUF can subsequently get the NAF-Property or register with this NAF.

Function Name: PciGetHandles

Function Return Value: Errorcode (PCI_INTEGER)

 Success
 QueryEntityNotAvailable
 InvalidHandlesBuffer
 HandlesBufferTooSmall

Parameters

Name Generic Type Call or Return Value Comment

MaxHandles PCI_INTEGER Call Value Maximum number of PCI-Handles that can be
received.

PCIHandles Array of PCI_HANDLE Call Value a buffer, big enough to receive the requested
maximum amount (MaxHandles) of PCI-Handles.

ActualHandles PCI_INTEGER Return Value Actual number of PCI-Handles returned in the
given buffer.

The PUF shall give a buffer and its size to get the list of available PCI-Handles.

The PUF receives the actual number of PCI-Handles copied into the buffer. If this number is greater than
the size of the buffer allows, the buffer is not filled and the HandlesBufferTooSmall error is returned. In this
case, the PUF shall provide another larger buffer to get the complete list of PCI-Handles.

Page 54
Final draft prETS 300 838: March 1998

5.3.1.3 PciGetProperty

This function allows a PUF to obtain the NAF-Property. The PUF shall supply a PCI-Handle as a call
value. A PUF can obtain a PCI-Handle either by the use of the optional PciGetHandles function or by use
of other means (e.g. local knowledge).

Function Name: PciGetProperty

Function Return Value: Errorcode (PCI_INTEGER)

 Success
 InvalidPCIHandle
 NAFnotAvailable
 NAFBusy
 PropertyBufferTooSmall

Parameters

Name Generic Type Call or Return Value Comment

PCIHandle PCI_HANDLE Call Value PCI-Handle presentation and values are operating
system dependent.

MaximumSize PCI_INTEGER Call Value Maximum size of property allowed on return.

NAFProperty PCI_BYTEARRAY Return Value Property returned. Property is TLV coded, hence
not system dependent (see table 6).

ActualSize PCI_INTEGER Return Value Actual size of property returned.

The parameters of NAF-Property are shown in table 6.

Table 6: TLV coded NAF-Property parameter

Parameter Provided TLV Coding (see note) Comment and values

TypeID Length Value

Product M 1 1..32 Octet Octet string indicating NAF Product.
Manufacturer M 2 1..32 Octet Octet string indicating NAF Manufacturer.
AccessClass M 3 1 Octet Basic Rate (1) or Primary Rate (2).
UserProtocolL3* M 4 1..5 Octet Give the supported layer 3 protocols. May be a

NAF selection criteria. For defined value
see subclause 5.7.48.

UserProtocolL2* M 5 1..8 Octet Give the supported layer 2 protocols. May be a
NAF selection criteria. For defined value
see subclause 5.7.48.

BChannels M 6 1 Octet Number of B-Channels.
BPermanent O 7 1 Octet Number of Permanent B-Channels.
DPermanent O 8 1 Octet Number of Permanent D-Channels.
AplaneClass* O 9 1 Octet Additional Administration Plane functions

supported. identified by class. Valid value: 2..4
CplaneClass* O 10 1 Octet Additional Control Plane functions supported

identified by class: Valid values are in range 2..7.
SuppService* O 11 1..16 Octet Specification of supplementary services. See

table 7 for precoded supplementary services.
ExtEquipName* O 12 2..17 Octet In order, type and name of external equipment.

See subclause 5.7.31.
AdditionalUserProtocol* O 13 1..16 Octet Additional User Plane protocols. For further

extension.
PCIVersion* O 15 1 Octet PCI version supported.
ControllerNumber O 20 1 Octet Number of controllers available. Default is 1.
MailBoxMan O 21 1 Octet Mail box management:

No (0);
Yes (1).

Password O 22 1 Octet Password management:
No (0);
Yes (1).

Timer O 23 1 Octet NAF has timer.
No (0).
Yes (1).

Page 55
Final draft prETS 300 838: March 1998

StripControl O 24 1 Octet bit 0: On transmission.
bit 1: On reception.
bit 2: Data/Time display.
bit 3: Page numbering.
bit 4: ID display.

MailBoxNum O 25 1..2 Octet Maximum number of mail boxes memorized.
PollingCap O 26 1 Octet Polling capacity:

bit 0: on transmission;
bit 1: on reception.

TransScanLine O 27 1 Octet Minimum transmission time for scan line:
(0) 0 ms;
(1) 5 ms;
(2) 10 ms;
(3) 20 ms;
(4) 40 ms.

DataRate O 28 1 Octet Maximum data signalling rate in message mode:
(1) 2 400 bits/s;
(2) 4 800 bits/s;
(3) 7 200 bits/s;
(4) 9 600 bits/s;
(5) 12 000 bits/s;
(6) 14 400 bits/s;
(7) 64 kbits/s.

ECMMan O 29 1 Octet ECM management:
No (0);
Yes (1).

CodingType O 30 1 Octet Coding format supported:

(0) T4;

(1) T4 bi-dimensional;

(2) T6;

(3) BTM (Basic Transfer Mode);

(4) DTM (Document Transfer Mode);

(5) BFT (Binary File Transfer);

(6) EDI (Edifact Transfer);

(7) Character mode;

(8) Mixed mode.
Measure O 31 1 Octet Measuring units supported:

(0) Metric based;
(1) Inch based.

PageHeight O 32 1 Octet Page height supported:
bit 0: A4;
bit 1: B4;
bit 2: Unlimited.

PageWidth O 33 1 Octet Page width supported:
bit 0: 1 728 pels;
bit 1: 2 048 pels;
bit 2: 2 432 pels.

Resolution O (*) 34 1 Octet Resolutions supported:

(0) R8 x 3,85 lines/mm (98 dpi);

(1) R8 x 7,7 lines/mm (196 dpi);

(2) 200 x 200 dpi;

(3) 300 x 300 dpi;

(4) 400 x 400 dpi;

(5) R8 x 15,4 lines/mm (392 dpi);

(6) R16 x 15,4 lines/mm (392 dpi).

NOTE: There may be other TypeID values defined in other clauses.

* Parameter may be repeated.

Table 7: Precoded supplementary services

Identifier Supplementary services

"AOC-D" Advise of charge during call.

"AOC-E" Advise of charge at the end of call.

Page 56
Final draft prETS 300 838: March 1998

5.3.1.4 PciRegister

This function allows a PUF to be associated to a NAF.

As a calling parameter, the PUF provides the PCI-Handle of the NAF it wants to register with. In addition
two structures are passed on the function stack:

- the PCIRegisterInfo structure and
- the PCIOpSysInfo structure.

The PCIRegisterInfo structure contains PUF and NAF specific parameters which shall be passed between
the two entities to ensure proper co-operation. The PCIRegisterInfo structure is shown in table 8.

The PCIOpSysInfo structure contains operating system dependent information to be exchanged between
PUF and NAF.

Table 8: Structure of the PCIRegisterInfo structure

Structure Field Generic Type Call or Return Value Explanation

PUFVersion PCI_INTEGER Call Value The version of the Profile A the PUF wants to use.
Can be set to 0 in any case (Default).

PUFType PCI_INTEGER Call Value The type of PUF. This parameter is for future
extensions (e.g. allow specific type of PUFs like
network management PUFs) Currently this value
shall be set to 0!

MaxMsgSize PCI_INTEGER Return Value Maximum size of a message the NAF guarantees
to deal with: NAF will neither deliver messages
bigger in size nor does it guarantee to accept
bigger ones from PUF!

NOTE: The PUFVersion number which equals the major revision number is defined as version 2. The PUFType value
is for further extensions and is currently assigned to 0.

As a return value the Exchange Identifier (ExID) becomes available, which identifies the exchange link
between PUF and NAF. The ExID shall be provided to other functions of the exchange method during the
conversation and the deregistration phase.

Function Name: PciRegister

Function Return Value: Errorcode (PCI_INTEGER)

 Success
 InvalidPCIHandle
 NAFnotAvailable
 NAFBusy
 MaxPUFsExceeded
 InvalidPUFType
 InvalidPUFVersion
 InvalidRegisterInfoStructure
 InvalidOpSysInfoStructure

NOTE: For more (operating system specific) error codes refer to the subclause 5.9.5

Parameters

Name Generic Type Call or Return Value Comment

PCIHandle PCI_HANDLE Call Value PCI-Handle presentation and values are operating
system dependent.

PCIRegisterInfo PCIRegisterInfo structure Call Value Contains PUF-NAF interaction specific information
like PUFVersion and PUFType (see table 8).

PCIOpSysInfo PCIOpSysInfo structure Call Value Contains Operating system dependent information.
For details refer to clause 7 and annex H.

ExID PCI_EXID Return Value Exchange-ID.

Page 57
Final draft prETS 300 838: March 1998

5.3.2 Deregistration phase

This phase is the last phase in the information exchange between PUF and NAF. When a PUF wants to
disassociate from the NAF it shall invoke the PciDeregister function. The use of the PciDeregister
function is mandatory prior to PUF termination.

When the PUF disassociates using this function the NAF frees any resources allocated for this PUF, such
as clearing already existing connections.

5.3.2.1 PciDeregister

This function disassociates a PUF from a NAF. The association between the PUF and NAF is identified by
the ExID.

Function Name: PciDeregister

Function Return Value: Errorcode (PCI_INTEGER)

 Success
 InvalidExID
 NAFnotAvalaible
 NAFBusy

Parameters

Name Generic Type Call or Return Value Comment

ExID PCI_EXID Call Value Exchange-ID as received as result of previous
PciRegister function.

On return the ExID used becomes invalid, even if the error code returned indicates an error during
deregistering. No further access to the NAFcan take place using this ExID.

5.3.3 Conversation phase

In the conversation phase the interaction between the PUF and the NAF consists of message and data
exchange. This exchange is carried out by the generic exchange functions PciPutMessage and
PciGetMessage respectively. Messages are provided, in both directions, one by one and entirely.
Message and data are associated. The PCI Message Parameter Block (PCIMPB) structure contains
information on message and data pointers.

Messages are processed by the NAF in an asynchronous way, but the execution of the exchange
functions is synchronous. As the PUF controls the exchange of messages, messages are transmitted or
received only when the PUF wishes.

5.3.3.1 Sending messages

The PciPutMessage function is provided for the PUF to send messages to the NAF. Before using this
function the PUF shall fill the PCIMPB with the appropriate values and shall provide the addresses of the
message and the data buffer. The latter only in case the PUF sends data associated with the message.
The PCIMPB contains the Message Identifier and details concerning the usage of the message and data
buffers.

5.3.3.2 Receiving messages

To get a message the PUF simply issues a PciGetMessage function call. The PUF can use this function
to poll for message availability. On function return it is indicated if there was a message transfer or not. To
avoid polling, the PUF may chose to be informed via a signal-like mechanism as soon as a message is
available. The NAF will inform the PUF for each event of message availability. This mode of operation
improves the global performance of the system. However, in any case the PUF shall obtain the message
itself via a PciGetMessage function call.

Page 58
Final draft prETS 300 838: March 1998

5.3.3.3 Receiving messages using the polling method

To receive a message using this method, the PUF shall poll the NAF repeatedly to check if a message is
available. If no message is available, this will be indicated in a special way.

To be able to receive a message the PUF provides the NAF with a correctly set-up PCIMPB, which shall
contain the addresses of a message and a data buffer respectively. The size of the message and data
buffers have to be big enough to receive the expected message. However, provision of a data buffer is
optional, as data is not provided with all messages. Local knowledge in the PUF is required to determine
the necessity for this buffer. The NAF indicates the total length used for each buffer. If no data is available
with the message, this will be indicated by the value zero for the length used. The absence of a message
is indicated by the NOMESSAGE (0) type in the MessageID field of the PCIMPB.

5.3.3.4 Receiving messages using signal method

To receive a message using this method, first, the PUF shall establish a mechanism for the NAF to notify
the PUF when a message is available. This is accomplished using the PciSetSignal function.

This method allows a NAF to indicate that a message is available for the PUF without waiting for the PUF
to use the PciGetMessage function. The indication does not involve transfer of the message from the
PUF to the NAF.

The NAF notifies the PUF each time a new message is available. It will do so until the PciSetSignal
function is used to remove the notification mechanism.

To receive the message from the NAF, the PUF shall use the PciGetMessage function as described in
the previous subclause.

The function calls the PUF is allowed to invoke while processing the notification may be restricted. These
restrictions are dependent on the operating system.

5.3.3.5 PCI Message Parameter Block (PCIMPB)

Table 9 shows the structure of the PCI Message Parameter Block (PCIMPB).

Table 9: Structure of the PCI Message Parameter Block (PCIMPB)

Structure Field Generic Type Explanation

MessageID PCI_INTEGER Message identifier. Shall be provided by PUF on invocation of
PciPutMessage, available for PUF on return of PciGetMessage.

MessageMaximumSize PCI_INTEGER Maximum size of message. To be provided on calls to
PciGetMessage.

MessageActualUsedSize PCI_INTEGER Actual used size of message. Shall be provided by PUF on calls to
PciPutMessage, will be available to PUF on return of
PciGetMessage.

DataMaximumSize PCI_INTEGER Maximum size of data buffer. To be provided on calls to
PciGetMessage.

DataActualUsedSize PCI_INTEGER Actual used size of data buffer. Shall be provided by PUF on calls
to PciPutMessage, will be available to PUF on return of
PciGetMessage.

Page 59
Final draft prETS 300 838: March 1998

Figure 6 presents how messages are sent or received.

PUF NAF Network

PciPutMessage()

Minimal parameter
check operation followed
by IMMEDIATE
return

P U F p r o c e s s c o n t i n u i n g

Network

exchanges

PciGetMessage()

No message

Network

exchanges

PciGetMessage()

Message

Complete message

process

Event
P U F p r o c e s s c o n t i n u i n g

Figure 6: Process to send or to receive messages

5.3.3.6 PciPutMessage

This function allows a PUF to transmit a message to a NAF.

Function Name: PciPutMessage

Function Return Value: Errorcode (PCI_INTEGER)

 Success
 InvalidExID
 NAFnotAvailable
 NAFBusy
 InvalidPCIMPB
 InvalidMessageBuffer
 PCIMPBTooSmall
 MessageBufferTooSmall
 DataBufferTooSmall
 MessageTooLarge
 DataBufferRequired

Parameters

Name Generic Type Call or Return Value Comment

ExID PCI_EXID Call Value Exchange-ID as received as result of previous
PciRegister function.

PCIMPB PCIMPB structure Call Value PCI Message Parameter Block.

Message PCI_BYTEARRAY Call Value Message to be sent to NAF.

Data PCI_BYTEARRAY Call Value Data associated with the message.

Page 60
Final draft prETS 300 838: March 1998

The PUF indicates the type of the message in the MessageID field of the PCIMPB.

The PUF indicates the size of the buffer(s) in the ActualUsedSize field of the PCIMPB for the respective
buffers, i.e. MessageActualUsedSize for the message buffer and DataActualUsedSize for the data buffer.

It is allowed to provide only a message buffer without a data buffer or a data buffer without message
buffer. However the PCIMPB structure is always required. To indicate absence of a buffer, the PUF may
specify no buffer address instead by supplying a NULL (0) value.

5.3.3.7 PciGetMessage

This function allows a PUF to get a message from a NAF.

Function Name: PciGetMessage

Function Return Value: Error code (PCI_INTEGER)

 Success
 InvalidExID
 NAFnotAvailable
 NAFBusy
 InvalidPCIMPB
 InvalidMessageBuffer
 PCIMPBTooSmall
 MessageBufferTooSmall
 DataBufferTooSmall
 MessageTooLarge

Parameters

Name Generic Type Call or Return Value Comment

ExID PCI_EXID Call Value Exchange-ID as received as result of previous
PciRegister function.

PCIMPB PCIMPB structure Call Value and Return
Value

PCI Message Parameter Block.

Message PCI_BYTEARRAY Return Value Message received from NAF.

Data PCI_BYTEARRAY Return Value Data associated with the message.

The PUF is in charge of providing buffers. If a buffer is to small to receive the message or data provided
by the NAF, the NAF will return an error.

The PUF indicates the maximum size of the buffer(s) in the MaximumSize fields of the PCIMPB for the
respective buffers, i.e. MessageMaximumSize for the message buffer and DataMaximumSize for the data
buffer

On return, the NAF will indicate the size of the buffer(s) in the ActualUsedSize field of the PCIMPB for the
respective buffers used.

To indicate no message, the NAF fills the MessageID field in the PCIMPB with NOMESSAGE (0).

5.3.3.8 PciSetSignal

This function allows a PUF to ask for notification when an event occurs. An event is any incoming
message from the network or from the NAF. The signal mechanism will stay in effect until the PUF
disassociates from the NAF or explicitly shuts-down the notification action (see below).

Page 61
Final draft prETS 300 838: March 1998

Function Name: PciSetSignal

Function Return Value: Errorcode (PCI_INTEGER)

 Success
 InvalidExID
 NAFnotAvailable
 NAFBusy
 InvalidSignalNumber

Parameters

Name Generic Type Call or Return Value Comment

ExID PCI_EXID Call Value Exchange-ID as received as result of previous
PciRegister function.

Signal PCI_INTEGER Call Value Value is operating system dependent.

SignalProcedure PCI_PROCEDURE Call Value Value and presentation is operating system
dependent.

The real signal mechanism used is operating system dependent.

Any new PciSetSignal call overwrites the previous one.

The signal mechanism can be stopped by supplying a NULL(0) value instead of Signal and
SignalProcedure values during call.

5.4 Administration Plane messages

The Administration Plane messages are divided into the following classes:

1) management of network connection objects and error report messages;
2) management of connection security;
3) NAF manufacturer messages;
4) protocol change messages.

For management of NCOs there are messages available for creating and destroying a connection object.
During creation of an NCO static or dynamic attribute and address sets are linked to the created NCO. On
conclusion of the creation of a NCO, a NCOID becomes available, which shall be used in subsequent user
or Control Plane operations related to the created NCO. A collection of predefined attribute sets is
presented in annex G. For reporting of error information a single message is provided by the NAF. This is
used to report general error conditions.

For security to be used on connections there are messages available to request security be used or
stopped on a connection. These messages are optional and may not be provided by all NAFs. Their
availability shall be indicated in the properties definition provided by the NAF.

To access manufacturer specific features there are messages available These messages are optional
and may not be provided by all NAFs. Their availability shall be indicated in the properties definition
provided by the NAF. The information exchanged between PUF and NAF is dependent on the
implementation of the feature and is, therefore, not covered in this ETS.

There are messages available to request a change of the User Plane protocol associated with a NCO.
These messages are optional and may not be provided by all NAFs. Their availability shall be indicated in
the properties definition provided by the NAF.

All request messages of the Administration Plane may contain a request identifier (RequestID). This
identifier, if assigned by a PUF on a request message, is returned by the NAF on the related confirm
message.

Table 10 gives an overview of Administration Plane messages. The messages themselves are described
in detail in the following subclauses.

Page 62
Final draft prETS 300 838: March 1998

Table 10: Administration Plane messages

Mess.
Identif

Class Message Name Purpose of Message

101 1 ACreateNCOReq Request to create a network connection object.

102 1 ACreateNCOCnf Confirmation of the "CreateNCO" operation.

103 1 ADestroyNCOReq Request to destroy a network connection object.

104 1 ADestroyNCOCnf Confirmation of "DestroyNCO" operation.

105 1 AGetNCOInfoReq Request information concerning a specific NCO.

106 1 AGetNCOInfoCnf Confirmation reporting information for the relevant NCO.

108 1 AErrorInd Indicate that a non-protocol related error has occurred.

109 2 ASecurityReq Request to engage/stop security algorithm.

110 2 ASecurityCnf Confirmation to engage/stop security algorithm.

111 3 AManufacturerReq Request for a specific manufacturer functionality.

112 3 AManufacturerInd Provide the PUF with information linked to the requested
functionality.

113 4 AChangeNCOReq Request for a change on an existing NCO.

114 4 AChangeNCOCnf Confirmation on changing the existing NCO.

5.4.1 ACreateNCOReq

Class: 1 (Basic Class).

Description: Request message for creating a NCO.
The PUF has to provide a NCOType which identifies the type of NCO which is to
be created. Depending on this type, there are more parameters needed
(conditional parameters). For details refer to tables 11 and 12.
The PUF can supply a unique request identifier (RequestID) which can be used
to identify the corresponding confirmation message of this operation.

Page 63
Final draft prETS 300 838: March 1998

Parameters:

Name Required Comment

RequestID O Request identifier, generated by the PUF.

NCOType M Specification of NCO type.

CDirection C Determines how NCO shall be used, for the Control Plane. It is absent
if the NCOType value is U3 else it optional.

UDirection C Determines how NCO shall be used, for the User Plane. This
parameter is User Plane Protocol dependent.

CAttributeName C Name of static Control Plane attribute.

CAttribute parameters C Control Plane attribute parameters.

Mutually exclusive with CAttributeName; see table 64 for more details.

UAttributeName C Name of static User Plane attribute.

UAttribute parameters C User Plane attribute parameters.

Mutually exclusive with UAttributeName; see the relevant User Plane
protocol clauses for more details.

CAddress parameters O Control Plane address; see table 67 for more details.

UAddress parameters O User Plane address; see the relevant User Plane protocol clauses for
more details.

GroupID C Required if NCO is to be grouped. This parameter is User Plane
protocol dependent.

SelectorID O Helps the NAF select the right NCO.

CPMessageMask O ISDN message filter. If not provided, the PUF will receive any Control
Plane message.

CPParameterMask O ISDN Control Plane parameter Filter. If not provided, the PUF will
receive any Control Plane parameter.

ControllerID O Identify a controller. If not provided, this NCO concerns all available
controllers.

V42BisCompression O Identicate the use of V42bis compression algorithm.

Remark: See also subclause 5.8 on usage of the NCO.

Related: ACreateNCOCnf.

5.4.2 NCOType and conditional parameter specification

This subclause defines the NCOTypes usable within a ACreateNCOReq.

Currently there are four types of NCOs defined. These types are shown in table 11.

For NCOTypes supporting a User Plane access, tables 11 and 12 only show the general forms of the
NCOType. A detailed description of the specific NCOType usable with a specific User Plane protocol can
be found in subclause 5.6.

Table 11: NCOTypes

NCOType NCO allows PUF ...

C ... signalling access only.

C/U ... signalling and User Plane access (PUF co-ordination functionality).

U3 ... U3 User Plane access with signalling in charge to the NAF (NAF co-ordination functionality).

U3G ... User Plane access to additional virtual circuits. This NCO shall be grouped to an already created
U3 or C/U type NCO.

Table 12 shows which conditional parameters shall be specified in the ACreateNCOReq message in
relation to the selected NCOType.

Page 64
Final draft prETS 300 838: March 1998

Table 12: Specification of conditional ACreateNCOReq message parameters

NCOType SigAttribute
Type

UsrAttribute
Type

SigAddress
Type

UsrAddress
Type

GroupID

C C Attribute C Address

C/U C Attribute U Attribute C Address U Address

U3 C Attribute U Attribute C Address U Address

U3G U Attribute U Address Reference to NCO
See note

NOTE: If an NCO is to be grouped - which can only be done in case of the U3G NCOType - a
reference by GroupID to an already created NCO of type U3 or C/U shall be provided.
Therefore, the creation of such an NCO type shall have been carried out successfully in order
to have the GroupID available.

The following table summarizes the use of the main information elements :

NCO
C C/U(not X.25) C/U (X.25) U3 U3G

switch packet
IN OUT IN OUT IN OUT IN OUT B

(in/out)
D

(in/out)
CDirection M M M M M M A (1) A(1) A(1) A A
UDirection A A O(2) O(2) O(2) O(2) M M M M O(3)
CAttribut. BC M C1 M C1 M C1 M M M A A
CAttribut.ChannelId (4) O O O O O O O O O M A
Cattribut other O O O O O O O O O A A
CAddress.Called O C1 O C1 C2 C3 O M C2 /C3 A A
Caddress other O O O O O O O O O A A

U3Attribute.TEI A A A A A A A A A M O
U3Attribute other A A A A O O O O O O O

UAddress.Called A A O O O C4 O C4 O /C4 O /C4 O /C4
Uaddress other A A O O O O O O O O O
GroupID A A A A A A A A A A M

Where :
IN: incoming
OUT: outgoing
M: Mandatory
O: Optionnal
A: Absent
C1: Conditional: Optional if the E.I. present in CConnectReq, otherwise mandatory.
C2: Conditional: Absent packet mode in B on permanent link, optional otherwise.
C3: Conditional: Absent packet mode in B on permanent link, otherwise mandatory (in the NCO or in CConnectReq).
C4: Conditional: If the protocol used needs a address: optional if the E.I. present in the UConnectReq; otherwise

mandatory.

(1) The direction value in Control plane takes the direction value of the User plane.
(2) If absent, The direction value in User plane takes the direction value of the Control plane.
(3) If absent, The direction value in User plane takes the direction of the basic NCO.
(4) If the TEI is not provided, the default channel ID is "Bchannel".

5.4.3 ACreateNCOCnf

Class: 1 (Basic Class).

Description: Confirmation message of the CreateNCO operation requested previously. The
confirmation message can be correlated to the correct ACreateNCOReq
message by use of the returned RequestID.
The confirmation message may contain the NCOID which shall be used on
further requests through the User or Control Plane related to the created NCO
as well as the GroupID which shall be used for subsequent ACreateNCOReq
messages, if grouping to the created NCO is intended.

Page 65
Final draft prETS 300 838: March 1998

Parameters:

Name Provided Comment

RequestID C Provided if supplied on request message.

CompletionStatus M Completion status of the CreateNCO operation of the NAF.

NCOID C NCO identifier if CompletionStatus Success else absent.

GroupID C Group identifier, provided if NCO created was of type C/U or U3 and if
CompletionStatus Success.

Related: ACreateNCOReq.

5.4.4 ADestroyNCOReq

Class : 1 (Basic Class).

Description: Destroys an existing NCO created by the same PUF. The PUF can supply a
request identifier (RequestID) which can be used to identify the corresponding
confirmation message of this operation.

Parameters:

Name Required Comment

RequestID O Request identifier, generated by the PUF.

NCOID M Identifier of NCO to be destroyed.

NOTE: NCO may not be destroyed if it is in use for an established connection or a connection
that is attempting to be established. When a non-grouped NCO is destroyed, any
NCOs grouped to it become unusable except when the grouped NCO relates to an
established connection or a connection that is attempting to be established. In this
case, the NCO remains usable until the related connection is removed. An unusable
NCO can only be destroyed using the ADestroyNCOReq message.

Related: ADestroyNCOCnf.

5.4.5 ADestroyNCOCnf

Class : 1 (Basic Class).

Description: Confirmation message of the DestroyNCO operation previously requested. The
confirmation message can be correlated to the correct ADestroyNCOReq
message by use of the RequestID.

Parameters:

Name Provided Comment

RequestID C Provided if supplied on request message.

NCOID M Identify the NCO on which the Destroy operation was requested.

CompletionStatus M Completion status of the DestroyNCO operation of the NAF.

Related: ADestroyNCOReq.

5.4.6 AGetNCOInfoReq

Class : 1 (Basic Class).

Page 66
Final draft prETS 300 838: March 1998

Description: Request message for getting information about an NCO. Each NCO is
characterized by some attributes (see Administration Attribute set parameters in
subclause 5.7.53) which are accessible from the PUF thanks to this request and
its confirmation.

Parameters:

Name Required Comment

NCOID M Identifier of NCO requested on.

Related: AGetNCOInfoCnf.

5.4.7 AGetNCOInfoCnf

Class : 1 (Basic Class).

Description: Confirmation message sent by the NAF to the PUF for answering an
AGetNCOInfoReq. It contains the information (see Administration Attribute set
parameters in subclause 5.7.53) relevant for the requested NCO.

Parameters:

Name Provided Comment

NCOID M Identifier of NCO requested on.

CompletionStatus M Completion status of the GetNCOInfo operation of the NAF.

AAttribute C Administration Plane attribute set parameters if CompletionStatus
Success else absent.

Related: AGetNCOInfoReq.

5.4.8 AErrorInd

Class: 1 (Basic Class).

Description: This message is related to administrative (i.e. non-protocol related) checking of
messages.

Parameters:

Name Provided Comment

RequestID C Provided if supplied on request message.

CompletionStatus M Value indicating the error that has occurred.

Related: None.

5.4.9 ASecurityReq

Class: 2 (Additional class).

Description: This message allows the PUF to engage a security algorithm provided by the
NAF. The PUF shall provide the NCOID of the connection it wants to have the
security algorithm applied to. The PUF can indicate any connection for security
to be applied to. The PUF shall be informed by the NAF with a ASecurityCnf
message if it is possible to use security on the indicated connection.

Page 67
Final draft prETS 300 838: March 1998

The ASecurityReq message does not state how the connection is secured, or
which type of information inside the connection shall be affected by the security
algorithm. It is up to the security algorithm to handle the securing of the
connection.
The Algorithm parameter indicates to the NAF which security algorithm shall be
used to secure the connection. The security algorithm is identified by its name.
The names of the available algorithms can be obtained using the Property
information provided by the NAF. By using the name "nosecurity" for this
parameter, the PUF can indicate that security is no longer needed for the
connection.
The optional Key parameter is used by the PUF to give relevant information for
the security algorithm to the NAF. The parameter is optional because the
security algorithm may or may not need specific information to be activated. The
kind of information to be used for the Key parameter is dependent of the security
algorithm activated.

Parameters:

Name Required Comment

RequestID O Request identifier, generated by the PUF.

NCOID M Identify the connection for which security has to be activated.

Algorithm M The name of the security algorithm to use.

Key O Key to use for the security Algorithm.

Related: ASecurityCnf.

5.4.10 ASecurityCnf

Class: 2 (Additional class).

Description: Confirmation message sent to the PUF by the NAF upon completion of the
ASecurityReq. The RequestID correlates this confirmation message to the
corresponding ASecurityReq.
The CompletionStatus Success indicates that the required security algorithm
has been activated or stopped for the requested connection, otherwise the
reason for non-activation of the security algorithm is returned. The reason is
algorithm specific.

Parameters:

Name Provided Comment

RequestID C Provided if supplied on request message.

CompletionStatus M Completion status of the ASecurity operation of the NAF.

Related: ASecurityReq.

5.4.11 AManufacturerReq

Class: 3 (Additional class).

Description: This message allows the PUF to request the NAF to provide a private
manufacturer functionality.
This is the way to handle private functionality not provided by Profile A.

Page 68
Final draft prETS 300 838: March 1998

Parameters:

Name Required Comment

RequestID M Request Identifier.

ManufacturerCode M Identifies the manufacturer code (provided by the manufacturer).

Remark: Information about the functionality is mandatory. It is not provided as a
parameter of the message but is contained in the data buffer.

Related: None.

5.4.12 AManufacturerInd

Class: 3 (Additional class).

Description: This message gives specific information to a PUF dealing with the requested
functionality. The NAF is only allowed to issue manufacturer indications, when
the PUF has earlier issued at least one manufacturer private request.

Parameters:

Name Provided Comment

RequestID M Request Identifier.

ManufacturerCode M Identifies the manufacturer code (provided by the manufacturer).

CompletionStatus O Identifies the result which is manufacturer specific.

Remark: If information is provided, it shall be done not as a parameter of the message
but in the data buffer.

Related: AManufacturerReq.

5.4.13 AChangeNCOReq

Class: 4 (Additional class).

Description: This message is used to change parameter(s) of an existing NCO.
Only NCO of C, C/U type may have the NCOType parameter changed. If the
NCO refers to an active connection, the NAF changes the protocol only in stable
conditions.

Parameters:

Name Required Comment

RequestID O Request identifier, generated by the PUF.
NCOID M NCO to change.
UDirection O Determines how the NCO shall be used, for the User Plane.
UAttributeName O Name of static User Plane attribute.
UAttribute Parameters O User Plane Attribute parameters.

Exclusive with UAttributeName; see the relevant User Plane protocol
subclauses for more details.

NCOType O Specification of the new NCO type.
UAddress parameters C User Plane address; see the Profile A relevant User Plane protocol

subclauses for more details.

Related: AChangeNCOCnf.

Page 69
Final draft prETS 300 838: March 1998

5.4.14 AChangeNCOCnf

Class: 4 (Additional class).

Description: Confirmation message sent by the NAF to the PUF for answering a
AChangeNCOReq. If successful, the changes requested are immediately
operational.

Parameters:

Name Required Comment

RequestID O Request identifier, generated by the PUF.
NCOID M NCO to change.
CompletionStatus M Completion status of the change NCO operation.

Related: AChangeNCOReq.

5.5 Control Plane messages

5.5.1 Introduction

5.5.1.1 Control Messages classes

The Control Plane messages are divided into eight classes:

1) connection establishment and connection breakdown;
2) overlap sending specific messages;
3) user-to-user information transfer;
4) adjournment of calls;
5) facility invocation;
6) external equipment;
7) addition information;
8) DTMF.

As described in subclause 5.2.1.4, not all these classes may be accessible through Profile A. A NAF may
choose to implement only some categories from the above list. The error mechanism to indicate to the
PUF that a message is not available is described in subclause 5.9.

A PUF can only rely on the availability of the class 1 messages. The availability of other classes of
message is NAF dependent.

Table 13 gives an overview of Control Plane messages, the class they belong to and their message
identifier.

Page 70
Final draft prETS 300 838: March 1998

Table 13: Control Plane messages

Mess.
Identif.

Class Message Name Purpose of Message

201 1 CAlertReq State the compatibility with the incoming call.
202 1 CAlertInd The called terminal states that it may handle a

call.
203 1 CConnectReq Initiate an outgoing call.
204 1 CConnectInd Present an incoming call.
205 1 CConnectRsp Accept an incoming call.
206 1 CConnectCnf Indicate acceptance of an outgoing call by the

called terminal.
207 1 CDisconnectReq Remove a connection or refuse an incoming

call.
208 1 CDisconnectInd Indicate the connection has been removed or

the outgoing call has been refused.
209 1 CDisconnectRsp Confirm the end of a connection.
210 1 CDisconnectCnf Indicate the other terminal has ended the

connection.
212 1 CProgressInd Indicate a B-channel is connected.
214 1 CStatusInd Indicate a protocol error.
216 2 CSetupAckInd Indicate more information is required to

proceed the outgoing call.
217 2 CConnectInfoReq Send more information to process the call.
218 2 CProceedingInd Indicate no more establishment information

shall be accepted for this call.
219 3 CUserInformationReq Send user-to-user information.
220 3 CUserInformationInd Present received user-to-user information.
221 3 CCongestionControlReq Apply flow control operations to user-to-user

information exchange.
222 3 CCongestionControlInd Indicate flow control operation to be applied to

user-to-user information exchange.
223 4 CSuspendReq Suspend a connection.
224 4 CSuspendCnf Response to the demand for suspending a

connection.
225 4 CResumeReq Resume a suspended connection.
226 4 CResumeCnf Response to the demand for resuming a

connection.
228 4 CNotifyInd Indicate a new state for a connection.
229 5 CFacilityReq Request a facility from the network.
230 5 CFacilityInd Indicate a facility coming from the network.
232 6 CExtEquipAvailabilityInd Indicate that the external equipment is or is not

connected to the NAF.
234 6 CExtEquipBlockDiallingInd Indicate that the call is completely initiated by

the external equipment (block dialling).
236 6 CExtEquipKeyPressedInd Provide to the PUF the code of a depressed

key.
238 6 CExtEquipOffHookInd Indicate that the handset is off-hook.
240 6 CExtEquipOnHookInd Indicate that the handset is on-hook.
241 7 CAddInfoReq Request to send additional information related

to a call.
242 7 CAddInfoInd Indicate that additional information related to a

call has been received.
243 8 CDtmfReq Initiate, request or stop sending DTMF digits.
244 8 CDtmfCnf Give the result of a CDtmfReq message.
245 8 CDtmfInd Indicate that DTMF digits are received.

Page 71
Final draft prETS 300 838: March 1998

5.5.1.2 Sequencing of Control Plane messages

Figures 7 to 10 present the state diagrams affecting the state of a PUF connection.

 0
Idle

 1
 Call
InitiatedCSetupAckInd

CAlertInd
CConnectInfoReq
CProceedingInd
CProgressInd CConnectCnf

 4
Active

CConnectInd

CConnectRsp

 3
Call

Received

CAlertReq

CConnectRsp

 11
Resume
Request

CResumeReq

CResumeCnf (fail)

CResumeCnf

CSuspendReq

CSuspendCnf (fail) 10
Suspend
Request

CSuspendCnf

CConnectReq

 2
 Call

 Present

CCongestionControlReq
CCongestionControlInd

CNotifyInd
CUserInformationReq
CUserInformationInd

CDtmfReq
CDtmfInd
CDtmfCnf

NOTE: CExtEquipavailabalityInd can be used in all states. It causes a transition to state 0 if the
external equipment is unavailable.

Figure 7: State diagram of a Control Plane no external equipment or external equipment type 1

Page 72
Final draft prETS 300 838: March 1998

 0
Idle

CExtEquipOffHookInd

CSetupAckInd
CAlertInd

CConnectInfoReq
CProceedingInd
CProgressInd CConnectCnf

CConnectInd

CConnectRsp CAlertReq

CConnectRsp

CResumeReq

CResumeCnf (fail)

CResumeCnf

CSuspendReq

CSuspendCnf (fail)

CSuspendCnf

CConnectReq

CExtEquipOffHookInd

CSetupAckIndCConnectReq

Suspend
Request

10

Active
4

 Call
Initiated

1

Call
Received

3

 Call
Delivered

2

Resume
Request

11

handset
off-hooked

13

CCongestionControlReq
CCongestionControlInd

CNotifyInd
CUserInformationReq
CUserInformationInd

CDtmfReq
CDtmfInd
CDtmfCnf

NOTE 1: CExtEquipOnHookInd can be used in all states except 0. It causes a transition to state 0.

NOTE 2: CExtEquipAvailabalityInd can be used in all states. It causes a transition to state 0 if the
external equipment is unavailable.

Figure 8: State diagram of a Control Plane external equipment type 2 or 3

Page 73
Final draft prETS 300 838: March 1998

 0
Idle

CExtEquipOffHookInd

CSetupAckInd
CAlertInd

CConnectInfoReq
CProceedingInd
CProgressInd

CExtEquipKeyPressedInd CConnectCnf

CConnectInd

CConnectRsp

CConnectReq
CExtEquipKeyPressedInd

CExtEquipBlockDiallingInd
CSetupAckInd

CAlertReq

CConnectRsp

CResumeReq

CResumeCnf (fail)

CResumeCnf

CSuspendReq

CSuspendCnf (fail)

CSuspendCnf

CConnectReq
CExtEquipBlockDiallingInd
CExtEquipKeyPressedInd

CExtEquipOffHookInd

 Call
Delivered

2

Call
Received

3

 Call
Initiated

1

Active
4

Suspend
Request

10

Resume
Request

11

handset
off-hooked

13

CCongestionControlReq
CCongestionControlInd

CNotifyInd
CUserInformationReq
CUserInformationInd

CDtmfReq
CDtmfInd
CDtmfCnf

CExtEquipKeyPressed

NOTE 1: CExtEquipOnHookInd can be used in all states except 0. It causes a transition to state 0.

NOTE 2: CExtEquipAvailabalityInd can be used in all states. It causes a transition to state 0 if the
external equipment is unavailable.

NOTE 3: In figures 7, 8 and 9 if the PUF reaches the Idle state (state 0) by receiving a CSuspendCnf the
connection is suspended and may be reused. The NCO however still describes the interaction
between PUF and NAF for this connection and cannot be reused. The PUF shall use the NCO
again when the connection is resumed or disconnected.

Figure 9: State diagram of a Control Plane external equipment type 4 or 5

Page 74
Final draft prETS 300 838: March 1998

6
D isc on n ec t
I n d ica t io n

5
D is co n n e ct

R e q u es t

0
Id le

0
Id le

C D isc on n e ctR s p C D is c on n ec tC n f

NOTE 1: Figures 7 to 10 do not provide any information on the user-to-user information transfer. These
messages, depending on the user-to-user service level, do not affect the state of a call from the
PUF point of view.

NOTE 2: In order to simplify the interface, a filtering functionality might be added; using this functionality,
the PUF may select the subset of messages handled. A detailed description of this functionality
is for further study.

Figure 10: State diagram of a Control Plane connection: disconnection

Remarks: CDisconnectInd can be used in all states except 0, 5 and 6. It causes a transition to
state 6. CDisconnectReq can be used in all states except 0, 5 and 6. It causes a
transition to state 5.
Related network messages and complementary intermediate states can be found in
annex A.
Any CStatusInd message may cause a transition to state 0, if provided by the network.
CAddInfoReq or CAddInfoInd message don't change the state of a NCO.

5.5.2 CAlertReq

Class : 1 (Basic class).

Description: This message allows a PUF to indicate its compatibility with an incoming call.

Parameters:

Name Required Comment

NCOID M Identifies the call.

Facility O Supplementary services operation or information.

ProgressIndicator O Details concerning call progress.

UserToUserInfo O Information to be exchanged between ISDN users.

Remarks: The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 5.5.38 for details on user-to-user information.

Related: CConnectReq, CConnectInd, CConnectRsp, CConnectCnf, CAlertInd.

Page 75
Final draft prETS 300 838: March 1998

5.5.3 CAlertInd

Class: 1 (Basic Class).

Description: The PUF receives this message when the called terminal has indicated its
compatibility.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

ChannelIdentification O Identification of the channel used.

Facility O Supplementary services operation or information.

ProgressIndicator O Details concerning call progress.

Display O Information provided by the Network to be displayed.

Signal O Information provided by the Network regarding tones.

UserToUserInfo O Information to be exchanged between ISDN users.

Remarks: The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 5.5.38 for details on user-to-user information.

Related: CConnectReq, CConnectInd, CConnectRsp, CConnectCnf, CAlertInd.

5.5.4 CConnectReq

Class: 1 (Basic Class).

Description: This message is sent by the PUF to initiate an outgoing call. The call shall be
initiated to the remote address. This address may be either specified in the
message, or have been specified in the address parameters used to create the
referenced NCO.
The PUF shall specify the BearerCap parameter to indicate which type of bearer
channel is needed. This parameter shall be specified in the message, or have
been specified in the attribute parameters used to create the referenced NCO.
The PUF may specify the LLC and HLC parameters, to indicate what type of
lower layer and higher layer protocols shall be used for this call.

Page 76
Final draft prETS 300 838: March 1998

Parameters:

Name Required Comment

NCOID M Identifies the call. This information is provided by the PUF.

CallingNumber O Local address (see note 1).

CallingSubaddress O Local subaddress (see note 1).

CalledNumber O Remote address (notes 1 and 2).

CalledSubaddress O Remote subaddress (notes 1 and 2).

ChannelIdentification O Used by PUF to indicate type of requested Channel. See
ChannelIdentification parameter in subclause 5.7.12 for details of
supported values. If not provided default is any channel (see note 1).

BearerCap O Transmission capability required from channel.(see note 1).

LLC O Lower Layer Compatibility information element (see note 1).

HLC O High Layer Compatibility information element (see note 1).

Keypad O Keypad facility information element.

Facility O Supplementary services operation or information.

UserToUserInfo O Information to be exchanged between ISDN users.

ProgressIndicator O Details concerning call progress.

ControllerID O Identify a controller. If not provided, the NAF will take the NCO one, if
any...

NumberComplete O Indicates this message contains the last part of the called number
from a PUF point of view (see note 3).

NOTE 1: Can be supplied during the creation of NCO. If specified on both message and within the NCO, then parameter
specified on message is used and NCO parameter is ignored.

NOTE 2: Either a CalledNumber or a CalledSubaddress parameter - in the message or in during the NCO creation -
shall be supplied except in case of overlap sending.

NOTE 3: If this parameter is included, no more CConnectInfoReq messages will be accepted by the NAF for this call.

Remarks: The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 5.5.38 for details on user-to-user information.

Related: CConnectCnf, CAlertReq, CAlertInd, CConnectInfoReq.

5.5.5 CConnectInd

Class: 1 (Basic Class).

Description: This message offers an incoming call to all appropriate PUFs
(see subclause 6.4.7.1). At this point the call is in the establishment phase, no
connection has been established yet.
The number of the calling user may be available to the PUF. If so, it shall be
represented in the parameters CallingNumber and CallingSubaddress.
The PUF may receive the parameters BearerCap, LLC, HLC which shall
indicate:

- what type of bearer channel shall be used;
- what type of lower layer protocols shall be used for this call;
- what type of higher layer protocols shall be used for this call.

Page 77
Final draft prETS 300 838: March 1998

Parameters:

Name Provided Comment
NCOID M Identifies the call. This information element is provided

by the NAF.
ChannelIdentification O Identification of the channel used.
CallingNumber O Remote address.
CallingSubaddress O Remote subaddress.
CalledNumber O Local address.
CalledSubaddress O Local subaddress.
BearerCap O Network physical resource provided.
LLC O Lower Layer Compatibility information element.
HLC O High Layer Compatibility information element.
DateTime O Date and Time.
Facility O Supplementary services operation or information.
Display O Information provided by the Network to be displayed.
Signal O Information provided by the Network regarding tones.
UserToUserInfo O Information to be exchanged between ISDN users.
ProgressIndicator O Details concerning call progress.
ControllerID C Identify the controller on which the call was presented.

Absent if only one controller installed. Mandatory
otherwise.

Remark: When a PUF receives the No Channel Available information, it can clear or
suspend a call to provide a free channel if it wishes to establish a connection.

The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 5.5.38 for details on user-to-user information.

Related: CConnectReq, CConnectRsp, CConnectCnf, CAlertReq, CAlertInd.

5.5.6 CConnectRsp

Class: 1 (Basic Class).

Description: This message allows a PUF to accept an incoming call. After sending this
message, the channel is considered to be established.
The PUF can supply a new value for the LLC, if it is negotiating LLC values.

Parameters:

Name Required Comment
NCOID M Identifies the call.
ChannelIdentification O Used by PUF to indicate type of requested Channel. See

ChannelIdentification parameter in subclause 5.7.12 for
details of supported values. A value can be provided if
the B-channel chosen by the PUF is not the same as
those the NAF presents.

LLC O Lower Layer Compatibility information element.
Facility O Supplementary services operation or information.
ProgressIndicator O Details concerning call progress.
UserToUserInfo O Information to be exchanged between ISDN users.
ConnectedNumber O Part of the remote address.
ConnectedSubaddress O Part of the remote address.

Remarks: The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 5.5.38 for details on user-to-user information.

Related: CConnectReq, CConnectInd, CConnectCnf, CAlertReq, CAlertInd.

Page 78
Final draft prETS 300 838: March 1998

5.5.7 CConnectCnf

Class : 1 (Basic Class).

Description : This message is the response from the called party, indicating it accepts the
call. When the PUF receives this message, a channel is considered to be
established.
If values for LLC are being negotiated, a new value for the LLC parameter may
be supplied in this message.

Parameters:

Name Provided Comment
NCOID M Identifies the call.
ChannelIdentification O Identification of the channel used.
LLC O Lower Layer Compatibility information element.
DateTime O Date and Time.
Facility O Supplementary services operation or information.
Display O Information provided by the Network to be displayed.
ProgressIndicator O Details concerning call progress.
Signal O Information provided by the Network regarding tones.
UserToUserInfo O Information to be exchanged between ISDN users.
ConnectedNumber O Part of the remote address.
ConnectedSubaddress O Part of the remote address.

Remarks: The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 5.5.38 for details on user-to-user information.

Related: CConnectReq, CConnectInd, CConnectRsp, CAlertReq, CAlertInd.

5.5.8 CDisconnectReq

Class: 1 (Basic Class).

Description: This message allows the PUF to initiate the disconnection of a connection or
refuse a call.
This message shall be acknowledged by a CDisconnectCnf.
The PUF may indicate the reason to disconnect a connection or refuse a call by
supplying the CauseToNAF parameter.

Parameters:

Name Required Comment
NCOID M Identifies the call.
CauseToNAF O PUF reason to disconnect the call. If not provided by the

PUF, the #16 "Normal Call Clearing" cause shall be
provided by the NAF.

Facility O Supplementary services operation or information.
UserToUserInfo O Information to be exchanged between ISDN users.

Remarks: The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 5.5.38 for details on user-to-user information.

Related: CDisconnectInd, CDisconnectRsp, CDisconnectCnf.

5.5.9 CDisconnectInd

Class: 1 (Basic Class).

Page 79
Final draft prETS 300 838: March 1998

Description: This message informs the PUF that the remote user has initiated the
disconnection of the connection or has refused the call.
The PUF shall acknowledge this message with a CDisconnectRsp.
The CauseToPUF parameter shall indicate the reason for disconnecting or
refusing.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

CauseToPUF M Reason why the call is being disconnected. If not provided by the
Network the NAF shall introduce the #16 "Normal Call Clearing" cause.
See also the remark.

Facility O Supplementary services operation or information.

Display O Information provided by the Network to be displayed.

ProgressIndicator O Details concerning call progress.

Signal O Information provided by the Network regarding tones

UserToUserInfo O Information to be exchanged between ISDN users.

Remarks: The network shall only transfer one cause to the NAF, so the PUF shall only
receive one cause.
The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 5.5.38 for details on user-to-user information.

Related: CDisconnectReq, CDisconnectRsp, CDisconnectCnf.

5.5.10 CDisconnectRsp

Class: 1 (Basic Class).

Description: With this message, the PUF acknowledges that a connection has ended or a
call has been refused. From the point of view of the PUF the channel is now
cleared, and the NCOID may be reused by the NAF.
This message is sent by the PUF to acknowledge the CDisconnectInd.

Parameters:

Name Required Comment

NCOID M Identifies the call.

Facility O Supplementary services operation or information.

Related: CDisconnectReq, CDisconnectInd, CDisconnectCnf.

5.5.11 CDisconnectCnf

Class: 1 (Basic Class).

Description: With this message, the PUF is informed that the connection has ended or a call
has been refused, and the channel has been cleared down. The NCOID may
now be reused by the NAF.
This message is the acknowledgement by the remote user or by the network of
the CDisconnectReq.

Page 80
Final draft prETS 300 838: March 1998

Parameters:

Name Provided Comment

NCOID M Identifies the call.

CauseToPUF O Reason why a supplementary service request has been rejected by
the network.

Facility O Supplementary services operation or information.

Display O Information provided by the network to be displayed.

Signal O Information provided by the network regarding tones

Related: CDisconnectReq, CDisconnectInd, CDisconnectRsp.

5.5.12 CProgressInd

Class: 1 (Basic Class).

Description: The PUF receives this message when information is available in the B-channel
or in case of internetworking. The channel shall be connected.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

ChannelIdentification O Identification of the channel used.

CauseToPUF O Reason for the message.

Display O Information provided by the network to be displayed.

ProgressIndicator M Details concerning call progress.

UserToUserInfo O Information to be exchanged between ISDN users.

Related: CConnectReq, CConnectInd, CConnectRsp, CConnectCnf, CAlertInd.

5.5.13 CStatusInd

Class: 1 (Basic Class).

Description: With this message, the PUF shall be informed that a signalling protocol error, as
defined in subclause 6.4.8.8, has occurred.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

CauseToPUF M Identifies the protocol error that has occurred.

Related: None.

5.5.14 CSetupAckInd

Class: 2 (Additional Class).

Description: The PUF receives this message when more establishment information is
needed to perform the call, in the overlap sending case.

Page 81
Final draft prETS 300 838: March 1998

Parameters:

Name Provided Comment

NCOID M Identifies the call.

ChannelIdentification O Identification of the channel used.

Display O Information provided by the network to be displayed.

ProgressIndicator O Details concerning call progress.

Related: CConnectInfoReq, CConnectReq.

5.5.15 CConnectInfoReq

Class: 2 (Additional Class).

Description: This message allows a PUF to use the overlap sending technique for connection
establishment. Overlap sending means that the PUF supplies the address
information in more than one step: a CConnectReq message with incomplete
address information may be followed by several CConnectInfoReq messages
until the address is complete. This mechanism is similar to dialling on a keypad.

Parameters:

Name Required Comment

NCOID M Identifies the call.

CalledNumber M Part of the remote address (see note 1).

NumberComplete O Indicates this message contains the last part of the called number
from a PUF point of view (see note 2).

NOTE 1: With each CConnectInfoReq message the NAF accumulates the address information. The PUF does not
indicate that the address information is complete; this can implicitly be concluded from the receipt of a
CProceedingInd message.
A Subaddress can only be specified in the CConnectReq message. This is due to the restrictions imposed by
the D-channel protocol (SETUP network message).

NOTE 2: If this parameter is included, no more CConnectInfoReq messages shall be accepted by the NAF for this call.

Remarks: The PUF shall have sent a CConnectReq message with the first part of the
called information prior to this message.

Related: CConnectReq, CProceedingInd, CSetupAckInd.

5.5.16 CProceedingInd

Class: 2 (Additional Class).

Description: The PUF receives this message when no more establishment information is
accepted, in the overlap sending case. As the network may not provide this
message, the PUF cannot rely on its reception.

Page 82
Final draft prETS 300 838: March 1998

Parameters:

Name Provided Comment

NCOID M Identifies the call.

ChannelIdentification O Identification of the channel used.

Display O Information provided by the network to be displayed.

ProgressIndicator O Details concerning call progress.

Related: CConnectReq, CConnectInfoReq, CSetupAckInd.

5.5.17 CUserInformationReq

Class: 3 (Additional Class).

Description: This message allows a PUF to request user-to-user information be sent on an
established connection.
The call state that allows the PUF to send user-to-user information is dependent
on the user-to-user service level provided by the network or the subscription.
See subclause 5.5.38 for details on user-to-user information.

Parameters:

Name Required Comment

NCOID M Identifies the call.

MoreData O Indicates to the peer entity that another user-to-user message follows.

UserToUserInfo M Information to be exchanged between ISDN users.

Remarks: This message is available only if a user-to-user service level 2 and above has
been subscribed to. See subclause 5.5.38 for details on user-to-user
information.

Related: CUserInformationInd, CCongestionControlReq, CCongestionControlInd.

5.5.18 CUserInformationInd

Class: 3 (Additional Class).

Description: This message allows a NAF to present to the PUF user-to-user information
received on an established connection.
The call state that allows the reception of user-to-user information is dependent
on the user-to-user service level provided by the network or the subscription.
See subclause 5.5.38 for details on user-to-user information.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

MoreData O If present, the peer entity indicates that another User to User message
follows.

UserToUserInfo M Information exchanged between ISDN users.

Remarks: This message is available only if a user-to-user service level 2 and above has
been subscribed to. See subclause 5.5.38 for details on user-to-user
information.

Page 83
Final draft prETS 300 838: March 1998

Related: CUserInformationReq, CCongestionControlReq, CCongestionControlInd.

5.5.19 CCongestionControlReq

Class: 3 (Additional Class).

Description : This message allows a PUF to apply flow control operations on the user-to-user
information provided via the CUserInformationInd message.
The flow control operation is only defined to operate on the local side of the
connection. The flow control operates using the ready/not ready mechanism.
The initial condition for user-to-user information exchange shall be ready. To set
the condition for flow control the PUF shall set the parameter CongestionLevel
to the appropriate value.

Parameters:

Name Required Comment

NCOID M Identifies the call.

CongestionLevel M Flow control value.

CauseToNAF O Include if information lost.

NOTE: This message in available only if a user-to-user service level 2 and above has been subscribed to.
See subclause 5.5.38 for details on user-to-user information.

Remarks : For the flow control provided by this message, ready is assumed as the initial
status. The flow control for each direction shall be operated independently. This
message has only a local meaning.

Related: CUserInformationReq, CUserInformationInd, CCongestionControlInd.

5.5.20 CCongestionControlInd

Class: 3 (Additional Class).

Description: This message allows a NAF to indicate to a PUF that a flow control operations
has been applied to the user-to-user information provided via the
CUserInformationReq message.
The flow control operation is only defined to operate on the local side of the
connection. The flow control operates using the ready/not ready mechanism.
The initial condition for user-to-user information exchange shall be ready. The
parameter CongestionLevel shall give the new value for the flow control on the
user-to-user information exchange to the PUF.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

CongestionLevel M Flow control value.

CauseToPUF O (note) Include if information is lost.

Display O Information provided by the network to be displayed.

NOTE: The network shall only transfer one cause to the NAF, so the PUF shall only receive one cause.

Remarks: This message is available only if a user-to-user service level 2 and above has
been subscribed to.
For the flow control provided by this message, ready is assumed as being the
initial status. This message has only a local meaning. The flow control for each
direction shall be operated independently.

Related: CUserInformationReq, CUserInformationInd, CCongestionControlReq.

Page 84
Final draft prETS 300 838: March 1998

5.5.21 CSuspendReq

Class: 4 (Additional Class).

Description: This message allows a PUF to suspend, but not to disconnect, a connection.
After sending this message, the PUF shall be informed if the connection is
suspended.

Parameters:

Name Required Comment

NCOID M Identifies the call.

SuspendID O Suspension reference identity.

Remarks : Using this message in conjunction with running a protocol on the connection is
the responsibility of the PUF.
When suspending a connection, it is not guaranteed that the connection can
subsequently be resumed.

Related: CSuspendCnf, CResumeReq, CResumeCnf, CNotifyInd.

5.5.22 CSuspendCnf

Class: 4 (Additional Class).

Description: This message is the answer to a CSuspendReq message. The NAF provides
the PUF with the result of its suspend request.
The parameter Response shall indicate if the connection is suspended.
If the PUF receives a CSuspendCnf the connection is suspended and may be
reused. The NCO, however, still describes the interaction between PUF and
NAF for this connection and cannot be reused. The PUF shall have to use the
NCO again when the connection is resumed or disconnected.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

CompletionStatus M Indicates the state of the suspension:
- success: if the suspension is accepted;
- operation failed: if the suspension is refused.

CauseToPUF C (note) Mandatory if case of suspension refused, it indicates the reason why
the suspension was refused.
Absent in case of success.

Display O Information provided by the network to be displayed.

NOTE: The network shall only transfer one cause to the NAF, so the PUF shall only receive one cause.

Related: CSuspendReq, CResumeReq, CResumeCnf, CNotifyInd.

5.5.23 CResumeReq

Class: 4 (Additional Class).

Description: This message allows a PUF to resume, i.e. a suspended connection is
reconnected.
After sending this message, the PUF shall be informed if the suspended
connection is reconnected.

Page 85
Final draft prETS 300 838: March 1998

Parameters:

Name Required Comment

NCOID M Identifies the call.

SuspendID O Suspension reference identity.

Related: CSuspendReq, CSuspendCnf, CResumeCnf, CNotifyInd.

5.5.24 CResumeCnf

Class: 4 (Additional Class).

Description: This message is the answer to an CResumeReq message. The NAF provides
the PUF with the result of its resume request.
The response parameter shall indicate if the connection is resumed.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

CompletionStatus M Indicates the state of the resume operation:
- Success: if the operation succeed;
- OperationFailed: if the operation failed.

CauseToPUF C (note) Mandatory if case of operation failure, it indicates the reason why the
operation was refused.
Absent in case of success.

Display O Information provided by the network to be displayed.

NOTE: The network shall only transfer one cause to the NAF, so the PUF shall only receive one cause.

Remarks : The result for resuming a connection might be negative (OperationFailed) if the
NAF or the network does not have resources available, i.e. channels, to
reconnect the connection.

Related: CSuspendReq, CSuspendCnf, CResumeReq, CNotifyInd.

5.5.25 CNotifyInd

Class: 4 (Additional Class).

Description: This message is provided by the NAF to indicate to the PUF a new state for the
connection.
As example, this message may be issued if the remote user suspends or
resumes a connection.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

NotificationIndicator M New state.

Display O Information provided by the Network to be displayed.

Related: CSuspendReq, CSuspendCnf, CResumeReq, CResumeCnf.

Page 86
Final draft prETS 300 838: March 1998

5.5.26 CFacilityReq

Class: 5 (Additional Class).

Description: This message allows the PUF to request a facility from the network. This facility
may or may not be related to an established connection.
For details on the use of facility messages and parameters and the coding of the
facility parameter refer to subclause 5.7.32.

Parameters:

Name Required Comment

NCOID O Provided by the PUF if the facility is related to an established
connection.

Facility M (note) Supplementary services operation or information.

NOTE: If the PUF supplies transparent coding of the facility information element, all information following this
transparent coding shall be handed back transparently.

Related: CFacilityInd.

5.5.27 CFacilityInd

Class: 5 (Additional Class).

Description: This message provides to the PUF the facility coming from to the network. This
facility may or may not be related to an established connection.
For details on the use of facility messages and parameters and the coding of the
facility parameter refer to subclause 5.7.32.

Parameters:

Name Provided Comment

NCOID O Provided by the NAF if the facility is related to an established
connection.

Facility M (note) Supplementary services operation or information.

Display O Information provided by the network to be displayed.

NOTE: NOTE: If the PUF has supplied transparent coding of the facility information element, all information following this
transparent coding shall be handed back transparently.

Related: CFacilityReq.

5.5.28 CExtEquipAvailabalityInd

Class: 6 (Additional Class).

Description: With this message, the PUF is informed about the availability of the external
equipment. When a connection is active, if the external equipment becomes
unavailable the NAF is in charge of breaking down the communication.

Parameters:

Name Provided Comment

NCOID M Identifies the call. This information element is provided by the NAF.

ExtEquipAvailability M Indicates the external equipment availability.

ControllerID C Identify the controller. Absent if only one controller installed else
mandatory.

Page 87
Final draft prETS 300 838: March 1998

Related: None.

5.5.29 CExtEquipBlockDiallingInd

Class: 6 (Additional Class).

Description: With this message, the PUF gets the dialling information input by the user with
the keypad of the external equipment in the case of a block sending. This
message contains the complete remote address and/or the remote subaddress.

Parameters:

Name Provided Comment

NCOID M Identifies the call. This information element is provided by the NAF.

ExtEquipBlockDialling M Provides to the PUF the remote address and/or subaddress in the
case where the external equipment allows the block sending.

ControllerID C Identify the controller. Absent if only one controller installed else
mandatory.

Related: None.

5.5.30 CExtEquipKeyPressedInd

Class: 6 (Additional Class).

Description: With this message, the PUF gets the dialling information input by the user with
the keypad of the external equipment in the case of an overlap sending. One
message is provided to the PUF for each key pressed.

Parameters:

Name Provided Comment

NCOID M Identifies the call. This information element is provided by the NAF.

ExtEquipKeyPressed M Provides to the PUF the code of the pressed key if the external
equipment dials in the overlap sending mode.

ControllerID C Identify the controller. Absent if only one controller installed else
mandatory.

Related: None.

5.5.31 CExtEquipOffHookInd

Class: 6 (Additional Class).

Description: With this message, the PUF is informed that the handset of the external
equipment is off-hook. Depending on the type of external equipment and on the
current state of the connection, this message can be interpreted in different
ways (see figures 7, 8 and 9).

Parameters:

Name Provided Comment

NCOID M Identifies the call. This information element is provided by the NAF.

ControllerID C Identify the controller. Absent if only one controller installed else
mandatory.

Page 88
Final draft prETS 300 838: March 1998

Related: CExtEquipOnHookInd.

5.5.32 CExtEquipOnHookInd

Class: 6 (Additional Class).

Description: With this message, the PUF is informed that the handset of the external
equipment is on-hook. Depending on the type of external equipment and on the
current state of the connection, this message can be interpreted according to
different ways (see figures 7, 8 and 9).

Parameters:

Name Provided Comment

NCOID M Identifies the call. This information element is provided by the NAF.

ControllerID C Identify the controller. Absent if only one controller installed else
mandatory.

Related: CExtEquipOffHookInd.

5.5.33 CAddInfoReq

Class: 7 (Additional Class).

Description: This message allows a PUF to send additional information related to a call. The
overlap sending information is handled via the class 2 CConnectInfoReq
message. This message may be used to convey network related information
(e.g. particular identification procedure).

Parameters:

Name Required Comment

NCOID M Identifies the call.

AdditionalInformation M Conveys network related information.

Related: CAddInfoInd.

5.5.34 CAddInfoInd

Class: 7 (Additional Class).

Description: This message allows a NAF to send additional information related to a call
provided by the network (e.g. particular identification procedure).

Parameters:

Name Required Comment

NCOID M Identifies the call.

Display O Information provided by the network to be displayed.

AdditionalInformation M Conveys network related information.

Related: CAddInfoReq.

Page 89
Final draft prETS 300 838: March 1998

5.5.35 CDtmfReq

Class: 8 (Additional Class).

Description: This message is intended to provide to the PUF the ability to start or stop DTMF
listen on B-channel data or send DTMF digits. The B-channel shall be
connected.

Parameters:

Name Required Comment

NCOID M Identifies the call.

RequestID O Identifies an ordered operation.

DtmfOperation M Indicates to start or stop DTMF listening or DTMF digits sending.

DtmfToneDuration O Time in ms for one digit, default is 40 ms.

DtmfGapDuration O Time in ms between the digits, default is 40 ms.

DtmfDigits O Characters to send.

NOTE: The PUF should start DTMF listening to receive DTMF digits.

Related: CDtmfInd.

5.5.36 CDtmfCnf

Class: 8 (Additional Class).

Description: This message is intended to provide to the NAF the ability to acknowledge or not
a CDtmfReq message.

Parameters:

Name Required Comment

NCOID M Identifies the call.

RequestID C Mandatory if present in the previous operation, else absent.

DtmfResult M Acknowledge of CDtmfReq message.

NOTE: Due to the asynchronism of the message exchanges between the PUF and the NAF, a PUF may identify a
previous CDtmfReq message via the RequestID parameter if included.

Related: CDtmfReq.

5.5.37 CDtmfInd

Class: 8 (Additional Class).

Description: This message is intended to provide to the PUF the ability to receive DTMF
digits on B-channel data. The channel shall be connected.

Parameters:

Name Required Comment

NCOID M Identifies the call.

DtmfDigits M Received characters.

NOTE: The PUF should start a DTMF listening operation via a CDtmfReq message before to receive DTMF digits.

Related: CDtmfReq.

Page 90
Final draft prETS 300 838: March 1998

5.5.38 User to User information exchange

The use of user-to-user information exchange is dependent on the user-to-user service level provided by
the network or the subscription.

In ETS 300 102-1 [2] three user-to-user service levels are defined:

- service 1:
user-to-user information exchanged during the set-up and clearing phase of a call;

- service 2:
user-to-user information exchanged during call establishment;

- service 3:
user-to-user information exchanged while a call is in the active state.

For the PUF, the use of UserToUserInfo parameter inside messages and the UserInformation messages
is dependent on the service level.

The following usage of UserToUserInfo parameter and UserInformation messages is defined, relating to
the service level:

- Service 1:
using the UserToUserInfo parameter in:
CAlertReq;
CAlertInd;
CConnectReq;
CConnectInd;
CConnectRsp;
CConnectCnf;
CDisconnectReq;
CDisconnectInd;

- Service 2:
using the CUserInformation messages between the sending/receiving of CAlertReq/Ind and
CConnectRsp/Cnf messages.

- Service 3:
using CUserInformation messages in the active state of a call.

All three services may be used separately or in any combination with a single call.

NOTE: Services 2 and 3 are currently provided using the method described in
ETS 300 102-1 [2].

5.5.39 Implementation of supplementary services

5.5.39.1 Advice of Charge during call (AOC-D)

Description: This supplementary service allows the PUF to obtain charging information
during a connection.

Operation: Either at the establishment of the connection the PUF can activate the AOC-D
supplementary service, or this service is available for every connection.

During the connection the PUF shall get the subtotal for this connection, either
as currency or as charging units. At the end of the connection, the PUF shall
obtain the total charging information for the connection.

Page 91
Final draft prETS 300 838: March 1998

Implementation: The PUF shall activate the AOC-D supplementary service, by including the
corresponding facility field in the connect message.

After activation, the charging information shall be presented by the PUF using
the facility field. For the coding of this field see subclause 5.7.32.

Errors shall be reported by using the facility field. The PUF shall not take any
protocol action upon receiving an error.

Relevant fields: Facility (subclause 5.7.32).

5.5.39.2 Advice of Charge at End of call (AOC-E)

Description: This supplementary service allows the PUF to obtain charging information at the
end of a connection.

Operation: Either at the establishment of the connection the PUF can activate the AOC-E
supplementary service, or this service is available for every connection.

At the end of the connection, the PUF shall obtain the total charging information
for the connection either as currency or as charging units.

Implementation: The PUF shall activate the AOC-E supplementary service, by including the
corresponding facility field in the connect message.

After activation, the charging information shall be presented by the PUF using
the facility field. For the coding of this field see subclause 5.7.32.

Errors shall be reported by using the facility field. The PUF shall not take any
protocol action upon receiving an error.

Relevant fields: Facility (subclause 5.7.32).

5.6 User Plane

5.6.1 User Plane Protocols Management Architecture

5.6.1.1 Introduction

This clause describes the protocol management provided by the User Plane of Profile A. The User Plane
provides operations which facilitate establishment, data exchange and/or release of logical communication
channels. It provides messages that allow the use of underlying protocols. It is related to the user
connection, which may either be associated with a connection on the B-channel or a data connection on
the D-channel.

Profile A is located between layers 3 and 4 of the OSI reference model. In the case of transparent access,
the NAF considers layers 2 and 3 as Null layers. In case of link access, the NAF considers layer 3 as Null
layer and for network access layers 2 and 3 are implemented as shown in figure 11.

Page 92
Final draft prETS 300 838: March 1998

ISDN Layer 1

Profile A

Layer3 protocol
D-channel B-channel

Signalling

LAP BLAP D

Network
Layer

Data Link
Layer

Physical
Layer

M
A
N
A
G
E
M
E
N
T

Application code

Terminal
ManagementOSI upper layer protocols and

other protocols

PUF

NAF

Adminis-
tration
Plane

Control Plane

protocol
Layer2

User Plane

Figure 11: OSI location

For the support of transparent access to the ISDN B-channel, the User Plane provides access to the
Physical Service Access Point (Ph-SAP). The User Plane also allows for access of another Service
Access Point (SAP). It provides the services defined in ITU-T Recommendation X.213 [6] and is,
therefore, located at the Network layer Service Access Point (N-SAP).

Profile A in this ETS specifies the usage of possible protocols for the data transfer service. The User
Plane provides the services for a variety of protocols. They all are optional and may be divided into the
following groups:

- layer 1 protocols;
- layer 2 protocols;
- layer 3 protocols.

5.6.1.2 Message access

The data management covers the functionality used to:

- establish data connections on already established physical connections, if needed;
- exchange data.

The User Plane of Profile A provides the functionality defined by the data management.

So far, three sets of messages are defined in the User Plane. One set allows access to User Plane
protocols providing the OSI network-layer service interface. The second one provides access to link-layer
service interface. The last set provides a transparent interface where the PUF implements the protocol to
be run over the connection.

For both types of access it is important that there exists a signalling connection before any data access
can be granted. In general, establishment of that signalling connection is achieved by use of Control Plane
functionality, described in subclause 5.5, whereas the establishment of the data access is achieved, if
necessary, using User Plane functionality.

In the following subclauses, the different methods for message access which are supported by Profile A
are explained.

Page 93
Final draft prETS 300 838: March 1998

5.6.1.2.1 The physical layer access (transparent access)

Profile A supports a transparent message access. It provides access to the transparent layers 2 and 3
(NULL Layers) and thus provides direct access to the physical layer of ISDN, providing a byte
synchronized control over a B-channel. The bearer services provided by the network (Bearer Capability) is
not limited to digital service. For example, Bearer Capability may be "speech".

As with any message access, this type of message access offers its own set of operations. Table 14
provides an overview on User Plane operations for this message access.

Due to the nature of the access, only operations allowing direct byte stream access are provided for this
message access; no user protocol is running. Thus, by establishment of a signalling connection the
transparent data access becomes available. Unlike the access via the network layer, only one data
connection is accessible per signalling connection.

Table 14: User Plane operations for transparent access

Operation name Purpose of operation

Data Data transfer

Error Indicates an error has occurred

When using a connection on the transparent access with an NCO (NCOType C) associated with an
external equipment, the data generated on the connection shall be sent to the external equipment rather
than used to generate transparent access messages. This case is outside the scope of this ETS.

5.6.1.2.2 The link layer access

Profile A supports a link layer message access. It provides access to the transparent layer 3 (NULL Layer)
and thus provides direct access to the link layer of ISDN.

This message access offers its own set of operations. Depending on the user protocol, these operations
are available or not. Table 15 provides with an overview of User Plane operations for this message
access.

Table 15: User Plane operations for link layer access

Operation name Purpose of operation
Connect Establish a peer-to-peer user connection.

Data Exchange data over an established user connection, hereby relying on
flow control provided by underlying protocol.

Disconnect Disconnect connection.

ReadyToReceive Control the normal data flow.

Error Indicates an error has occurred.

5.6.1.2.3 The network layer access

Profile A supports a network layer message access. It provides access to the User Plane protocols
running in the ISDN network layer. Thus, it provides access to a network layer connection.

This message access offers its own set of operations. Depending on the user protocol, these operations
are available or not. Table 16 provides an overview of User Plane operations for this message access.

The operational set is based on ITU-T Recommendation X. 213 [6].

Profile A provides, for some protocols, co-ordination functionality which removes the need for the PUF to
use Control Plane functionality. This co-ordination functionality, which is available to the PUF on demand,
implicitly builds a signalling connection when a user connection is requested.

Page 94
Final draft prETS 300 838: March 1998

Table 16: User Plane operations for network layer access

Operation name Purpose of operation
Connect Establish a peer-to-peer user connection.

Data Exchange data over an established user connection, hereby relying on
flow control provided by underlying protocol.

Expedited data Exchange data over an established user connection without relying on
flow control provided by underlying protocol.

Data acknowledge Acknowledgement of data reception over an established user
connection.

Reset Clearing of data transfer.

Disconnect Disconnect connection.

ReadyToReceive (note) Control the normal data flow.

NOTE: This operation is not based on ITU-T Recommendation X.213 [6].

5.6.1.3 Protocols

5.6.1.3.1 Supported User Plane protocols

There are different user layer protocols which can be accessed. One of these User Plane protocols is
selectable at the creation of the NCO.

Table 17 lists whether it is mandatory (M) or optional (O) for each protocol to be supported by a NAF.

Table 17: Supported User Plane protocols

Protocol NAF supported Layer
Network layer according to ETS 300 080 [1] M 3

ISO/IEC 8208 [3]. M 3

Network layer of Recommendation T.70 NL. O 3

T.30. O 3

V.120. O 3

Null layer 3 with access to ISO 7776 on layer 2 . O 2

Null layer 3 with transparent access to HDLC framing. O 2

Null layer 3 with transparent access to HDLC framing with error indication. O 2

PPP O 2

SDLC O 2

V.110 asynchronous (see note). O 2

V.110 synchronous (see note). O 2

Transparent B-Channel access with byte framing from the network. M 1

NOTE: A V.110 access is offered to a PUF at level 2 but other ways to use this protocol are possible.

5.6.1.3.2 Protocol selection

The protocol selection is made during the creation of the NCO, by the use of two parameters: NCOType
and UProtocol parameters (see description of the ACreateNCOReq function in subclause 5.4.1).

Page 95
Final draft prETS 300 838: March 1998

5.6.1.3.2.1 NCOType parameter

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment
Identifier Octet P M C (1) - signalling access only (note).

U3 (2) - network user access with NAF signalling
co-ordination (NAF co-ordination functionality).

C/U (3) - signalling and network, link or physical
user access.

U3G (4) - network user access to additional virtual
circuits. This NCO shall be grouped to an already
created U3 or C/U type NCO.

NOTE: NCO type C is outside the scope of the user protocol management.

5.6.1.3.2.2 UProtocol parameter

Description: This is used to select the User Plane protocol. If the length is 3, the first octet
contains the layer 3 protocol requested, the second octet contains the layer 2
protocol requested and the third octet contains the layer 1 protocol requested.

Type: 62.

Fields Field type Direction Required Comment
L3Protocol Octet P M Default (255) - T.90

T.90 (1)
ISO 8208 (2)
T.70 NL (3)
NULL (4)
T.30 (5)
V.120 (6)

L2Protocol Octet P C
(see note 1)

Default (255) - ISO 7776
ISO 7776 (0)
Frame oriented transparent (2)
Frame oriented transparent with error indication (3)
PPP (4)
SDLC (5)
V.110 asynchronous (6)
V.110 synchronous (7)
NULL (8)

L1Protocol Octet P C
(see note 2)

Default (255) - Transparent access with byte
framing from the network.
Transparent access with byte framing from the
network. (1)

NOTE 1: Mandatory if L3Protocol is NULL.
NOTE 2: Mandatory if L3Protocol and L2Protocol are NULL.

5.6.1.4 Co-ordination function

Profile A provides direct access to signalling and to the user connection, associated with the D- and
B-channels of the ISDN. A PUF which uses this method, shall handle the establishment of a user
connection by using the basic call control provided by the Control Plane. The co-ordination between
signalling and user connection is handled only by the PUF. Figure 12 shows the PUF provided
co-ordination function. As a result of controlling the signalling connection, the PUF can use the
supplementary services.

Page 96
Final draft prETS 300 838: March 1998

NAF

Profile A interface

Control
Plane

protocol

User
Plane

protocols

PUF
(including coordination function)

Administration
Plane

NOTE: The existence of a co-ordination function inside the PUF is outside the scope of this ETS.

Figure 12: PUF co-ordination

The PUF may be offered an ISO Connection-mode Network Service (CONS) as defined in
ITU-T Recommendation X.213 [6]. This abstraction is provided by a co-ordination function, which maps
the primitives of CONS in the User Plane according to the primitives of the Control Plane and User Plane
protocols. The co-ordination function can only be used with the User Plane protocols relating to
ITU-T Recommendation X.213 [6]. The co-ordination function is provided as part of the NAF. Since the
NAF manages the co-ordination between signalling and user connection, the PUF shall not access the
Control Plane. Figure 13 shows the NAF provided co-ordination function.

NAF

Profile A interface

User
Plane

protocols

Control
Plane

protocol

Administration
Plane

coordination function

PUF

NOTE: The co-ordination function is only defined for User Plane protocols related to
ITU-T Recommendation X.213 [6].

Figure 13: NAF co-ordination

Page 97
Final draft prETS 300 838: March 1998

The co-ordination function does not affect the Administration Plane.

Even if the co-ordination function is used by the PUF, the layer 2 and layer 3 protocols used are the
selected protocols for the Network and Link access.

To achieve a connection which is to be NAF co-ordinated, the PUF exchanges the following message:

ACreateNCOReq , with NCOType U3 and the relevant information.

A connection can then be requested using the UConnectReq. All other messages in the User Plane can
still be used by the PUF. No Control Plane messages can be used in combination with an NCO of
type U3. For the State diagrams, see the other relevant subclauses in subclause 5.6.

The co-ordination function may not be available for all the User Plane protocols. Therefore the co-
ordination function availability is noted in each relevant user protocol part.

5.6.1.5 Selection criteria

5.6.1.5.1 NCO Selection: User Plane information element

In order to apply the right NCO on an incoming call, the NAF uses various criteria. General mechanism
and Control Plane information elements are described in subclause 5.8.

Some User Plane information elements can also applied for the NCO selection. Useful elements are
particular to the protocol in use. For example, in case of ISO 8208 [3], User Plane information elements
are the following:

- packet size negotiation;
- window size negotiation.

See subclauses 5.6.2 to 5.6.6 for User Plane information elements to be used.

5.6.1.5.2 Action if no NCO available: User Plane incoming call

A disconnect containing the protocol specific reason is issued by the NAF. If applicable, the exact reason
is provided in the protocol relevant subclause.

5.6.1.6 User Plane error checking

Administrative message error information is returned in the Administration Plane error message. For
details on the message error handling refer to subclause 5.9.2.

The protocol error detection takes place after administrative checking and the mechanism used to return
error information depends of the protocol. These mechanisms are described in relevant subclause of each
protocol description.

Invalid length of user data is considered as protocol error.

5.6.1.7 User Plane attribute sets

Attribute sets are used to keep together important parameters for driving user protocols. A collection of
attribute sets exists for this plane. They are defined in each protocol relevant subclause.

5.6.2 Layer 1 Protocols

5.6.2.1 Transparent B-channel access with byte framing from the network

5.6.2.1.1 Introduction

This subclause describes the specific elements (messages, parameters, attribute sets,...) relating to the
layer 1 user protocols. It covers the Transparent B-channel access protocol with byte framing from the

Page 98
Final draft prETS 300 838: March 1998

network. The BearerCap parameter indicates if the B-channel is used at 64 kbit/s or 56 kbit/s. Other layer
1 user protocols are for further study.

For this access, the NAF considers layers 2 and 3 as a Null layers, as shown in figure 14.

The OSI location of the 64 kbit/s transparent protocol is shown in figure 14.

.

ISDN Layer 1

Profile A

D-channel B-channel
Signalling

LAP BLAP D

Network

Layer

Data Link

Layer

Physical
Layer

M

A

N
A

G

E

M

E

N

T

Application code

Terminal

Management
OSI upper layer protocols and

other protocols

PUF

NAF

Adminis-

tration

Plane

User PlaneControl Plane

protocol
Layer 2

Layer 3 protocol

64 kbit/s

interface

Figure 14: OSI location

General description of conventions is provided in subclause 5.2.3.

5.6.2.1.2 Messages

Table 18 gives an overview of user messages.

Table 18: Overview of user messages

Mess.
Identif.

Class Message Name Purpose of Message

307 1 UDataReq Request transfer of data.

308 1 UDataInd Indicate arrival of transferred data.

319 1 UErrorInd Indicate an error.

5.6.2.1.2.1 UDataReq

Class: 1 (Basic Class).

Description: This message allows a PUF to send transparent data on the B-channel. By
default, data are sent without any protocol as byte stream. The synchronization
used on the B-channel is character oriented. When no more data is available,
the NAF will send the IdleFlag octet provided in the Attribute Set used for this
connection.

Page 99
Final draft prETS 300 838: March 1998

Parameters:

Name Required Comment
NCOID M Identifies the Control Plane connection.

Remark: Data to send are mandatory. They are not provided as a parameter of the
message. Mandatory data shall be provided in the data buffer.

Related: None.

5.6.2.1.2.2 UDataInd

Class: 1 (Basic Class).

Description: This message indicates to a PUF the receiving of transparent data on the
B-channel. Data are received without any protocol or control as byte stream.
The IdleFlag parameter provided as the default padding character in the
Attribute Set is not extracted from the data received.

Parameters:

Name Provided Comment
NCOID M Identifies the Control Plane connection.

Remark: Received data are always provided, but not as a parameter of the message.

Data are provided in the data buffer. This buffer, in this case, shall be
mandatory.

Related: UErrorInd.

5.6.2.1.2.3 UErrorInd

Class: 1 (Basic Class).

Description: This message indicates to a PUF that an error has occurred.

Parameters:

Name Provided Comment
NCOID M Identifies the Control Plane connection.

Cause M Identifies type of error.

Related: None.

Page 100
Final draft prETS 300 838: March 1998

5.6.2.1.3 Messages parameters

This subclause describes parameters for the plane. Table 19 summarizes the used parameters.

Table 19: Overview of user parameters

Param.
Identif.

Parameter Name Used in user
messages

Used in
UAttributeSet

Other use

35 IdleFlag X

50 NCOType X

62 UProtocol X

63 UAttributeName X

64 UDirection X

68 Cause X

5.6.2.1.3.1 IdleFlag

Description: Flag byte to be sent by the NAF when the user access is idling.

Type: 35.

Fields Field type Direction Required Comment
IdleFlag Octet P M Flag byte.

5.6.2.1.3.2 NCOType

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment
Identifier Octet P M C/U (3) - signalling and transparent user access.

5.6.2.1.3.3 UProtocol

Description: This is used to select the User Plane protocol. The first byte contains the layer 3
protocol requested, the second contains the layer 2 protocol requested and the
third contains the layer 1 protocol requested.

Type: 62.

Fields Field type Direction Required Comment
L3Protocol Octet P M NULL (4).

L2Protocol Octet P M NULL (8).

L1Protocol Octet P M Transparent B-channel access (1).

Remark: Other values (for other protocols) are provided in subclause 5.6.

5.6.2.1.3.4 UAttributeName

Description : This parameter is used to pass the name of a static set of User Plane attributes
from the PUF.

Type: 63.

Page 101
Final draft prETS 300 838: March 1998

Fields Field type Direction Required Comment
AttributeName IA5-string P M 16 bytes is the maximum length.

5.6.2.1.3.5 UDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the User Plane.

Type: 64.

Fields Field type Direction Required Comment
Direction Octet P O both (3).

5.6.2.1.3.6 Cause

Description: This parameter is used to pass Cause information for disconnection to the PUF.

Type: 68.

Fields Field type Direction Required Comment
Value Octet N M 210 - Overflow.

5.6.2.1.4 State diagram

User messages do not change the state of the connection.

5.6.2.1.5 Co-ordination function

The co-ordination function cannot be used with the User Plane protocol relating to the transparent
B-channel access.

5.6.2.1.6 Selection criteria

No specific parameters are used. General NCO criteria are provided in subclause 5.8.

5.6.2.1.7 Specific error handling

Errors are dealt with in the following manner: in case of overflow of Incoming Data, PUF shall be sent
UErrorInd.

5.6.2.1.8 Static attributes

5.6.2.1.8.1 AttributeSet parameters

Table 20: User Plane Attribute Set (UAttributeSet) Parameters

Parameters Required Comment
IdleFlag C Flag byte to be sent while idle. See subclause 5.6.2.1.3.1.

UProtocol O See subclause 5.6.2.1.3.3.

Remark: These parameters can only be used during NCO creation containing Control
Plane information. Refer to subclause 5.4.1 (ACreateNCO operation) for details.

If parameters are omitted, defaults shall be used. The default values are
described in annex D.

Page 102
Final draft prETS 300 838: March 1998

5.6.2.1.8.2 Static attribute content

Name : U_TRANSPARENT
UProtocol : Layer3 Null, Layer2 Null, Transparent B-Channel Access
IdleFlag : 0xFF

5.6.3 Layer 2 Protocols

This subclause describes the specific elements (messages, parameters, attribute sets,...) relating to the
layer 2 user protocols. It covers ISO 7776 [4], HDLC with or without error indication, PPP, SDLC and
CCITT Recommendation V.110 [17] user protocols. Other layer user protocols are for further study.

5.6.3.1 ISO 7776 protocol

5.6.3.1.1 Introduction

This subclause deals with the ISO 7776 [4] protocol.

The User Plane provides the services for the ISO 7776 [4] protocol using the User Plane protocols on a
connection on B-channel. For this access, the NAF considers layer 3 as a Null, as shown in figure 15.

The OSI location of the ISO 7776 [4] protocol is shown in figure 15.

ISDN Layer 1

Profile A

Layer 3 protocol

D-channel B-channel
Signalling

LAP BLAP D

Network
Layer

Data Link
Layer

Physical
Layer

M
A
N
A
G
E
M
E
N
T

Application code

Terminal
ManagementOSI upper layer protocols and

other protocols

PUF

NAF

Adminis-
tration
Plane

User PlaneControl Plane

ISO 7776

interface

Figure 15: OSI location

The description of the general conventions is provided in subclause 5.3.2.

Page 103
Final draft prETS 300 838: March 1998

5.6.3.1.2 Messages

The User Plane messages provide an access to ISO 7776 [4] protocol stacks. The following gives a list
and short description of relevant User Plane messages. Table 21 gives an overview of these messages.

Table 21: Overview of user messages

Mess.
Identif.

Class Message Name Purpose of Message

301 1 UConnectReq Request establishment of a user connection.

302 1 UConnectInd Indicate establishment of a user connection has been requested.

303 1 UConnectRsp Indicate acceptance of user connection establishment.

304 1 UConnectCnf Confirm user connection has been established.

305 1 UDisconnectReq Request removal of user connection.

306 1 UDisconnectInd Indicate removal of user connection.

307 1 UDataReq Request data transfer on an established user connection.

308 1 UDataInd Indicate arrival of transferred data on an established user
connection.

317 1 UReadyToReceiveReq Used to perform flow control for a user connection.

318 1 UReadyToReceiveInd Used to indicate flow control status on a user connection.

5.6.3.1.2.1 UConnectReq

Class: 1 (Basic Class).

Description: This message allows a PUF to initiate the establishment of a user connection.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Related: UConnectCnf.

5.6.3.1.2.2 UConnectInd

Class: 1 (Basic Class).

Description: This message informs a PUF of an incoming demand to establish a user
connection.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Related: UConnectRsp.

5.6.3.1.2.3 UConnectRsp

Class: 1 (Basic Class).

Description: This message allows a PUF to accept the establishment of a user connection.

Page 104
Final draft prETS 300 838: March 1998

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Related: UConnectInd.

5.6.3.1.2.4 UConnectCnf

Class: 1 (Basic Class).

Description: This message informs the PUF upon the establishment of a user connection.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Related: UConnectReq.

5.6.3.1.2.5 UDisconnectReq

Class: 1 (Basic Class).

Description: This message allows a PUF to remove a user connection.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Related: None.

5.6.3.1.2.6 UDisconnectInd

Class: 1 (Basic Class).

Description: This message informs a PUF that a user connection has been removed.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Origin M Identifies the initiator of the user connection removal.

Cause M Identifies the reason of the user connection removal.

Related: None.

5.6.3.1.2.7 UDataReq

Class: 1 (Basic Class).

Description: This message allows a PUF to send a data packet. The size of a data packet is
restricted to the layer 2 data packet size defined at the NCO creation time.

Page 105
Final draft prETS 300 838: March 1998

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Remark: Data to send is mandatory. It is not provided as a parameter of the message.
Mandatory data shall be provided in the data buffer.

Related: None.

5.6.3.1.2.8 UDataInd

Class : 1 (Basic Class).

Description: This message indicates the presence of received data to a PUF. The size of a
data packet is restricted to the data packet size described at the NCO creation
time.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Remark: Data received is always provided, but not as a parameter of the message.
Data shall be provided in the data buffer. This buffer, in this case, is mandatory.

Related: None.

5.6.3.1.2.9 UReadyToReceiveReq

Class: 1 (Basic Class).

Description: This message allows the PUF to indicate to the NAF if it can accept incoming
data (UDataInd message). This message can only apply to an already
established user connection. Setting the ReadyFlag parameter to TRUE allows
the NAF to transfer incoming data to the PUF. Setting the ReadyFlag to FALSE
inhibits the transfer.

This flow control mechanism does not imply an end-to-end flow control.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

ReadyFlag M This flag indicates whether or not the PUF is ready to accept incoming
data.

Remarks: For a given connection, if more than one message with the same flag value is
sent, it shall be ignored by the NAF.

Related: UDataInd.

Page 106
Final draft prETS 300 838: March 1998

5.6.3.1.2.10 UReadyToReceiveInd

Class: 1 (Basic Class).

Description: This message allows the NAF to indicate to the PUF if the user connection
permits the sending of data (UDataReq messages). This message can only
apply to an already established user connection. If the ReadyFlag parameter
value is FALSE, the NAF can not send data. If the value is TRUE the NAF
indicates that data transfer is allowed.

This flow control mechanism does not imply an end-to-end flow control.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

ReadyFlag M This flag indicates whether or not the NAF is ready to receive data for
transmission on a user connection.

Related: UDataReq.

5.6.3.1.3 Messages parameters

This subclause describes parameters for the ISO 7776 [4] protocol. Table 22 summarizes the used
parameters. They are alphabetically ordered.

Table 22: Overview of user parameters

Param.
Identif.

Parameter Name Use in user
messages

Use in
UAttributeSet

Other use

38 L2ConnectionMode X

39 L2FrameSize X

40 L2WindowSize X

41 L2XID X

50 NCOType X

62 UProtocol X

63 UAttributeName X

64 UDirection X

68 Cause X

69 Origin X

5.6.3.1.3.1 L2ConnectionMode

Description : This parameter is used only if it is not defined in L2XID value field. It is used to
pass details of the layer connection mode to the NAF.

Type: 38.

Fields Field type Direction Required Comment
Value Octet P M dte (1) - Act as a secondary link station (non

negotiable).

dce (2) - Act as primary link station (non
negotiable).

auto (3) - Link station role is negotiable by XID
exchange.

Page 107
Final draft prETS 300 838: March 1998

5.6.3.1.3.2 L2FrameSize

Description: This parameter is used only if it is not defined in L2XID value field. It is used to
pass details of the layer 2 frame size to the NAF.

Type: 39.

Fields Field type Direction Required Comment

Value Octet string P M Frame size (in octets).

Length is fixed to 2 octets.

The first octet contents is the most significant byte.

5.6.3.1.3.3 L2WindowSize

Description: This parameter is used only if it is not defined in L2XID value field. It is used to
pass details of the layer 2 window size to the NAF.

Type: 40.

Fields Field type Direction Required Comment

Value Octet P M Window size

5.6.3.1.3.4 L2XID

Description: This is used to pass details of the layer 2 XID value and its use. XID information
field may include values that override some parameters defined elsewhere.

Type: 41.

Fields Field type Direction Required Comment

Use Octet P M send (1) - send XID.

match (2) - match XID with XID received. If XID
does not match, connection shall not be
established.

Value Octet-string P M XID value [Identifier and signature].

Maximum length is 64 octets.

5.6.3.1.3.5 NCOType

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment

Identifier Octet P M C/U (5) - signalling and link layer user access.

Page 108
Final draft prETS 300 838: March 1998

5.6.3.1.3.6 UProtocol

Description: This is used to select the User Plane protocol.

Type: 62.

Fields Field type Direction Required Comment

L3Protocol Octet P M NULL (4)

L2Protocol Octet P M ISO 7776 (0)

L1Protocol Octet P O Default (255) - Transparent B-channel access

Remark: Other possible values (for other protocols) are provided in subclause 5.6.

5.6.3.1.3.7 UAttributeName

Description : This parameter is used to pass the name of a static set of User Plane attributes
from the PUF.

Type: 63.

Fields Field type Direction Required Comment

AttributeName IA5-string P M 16 bytes is the maximum length.

5.6.3.1.3.8 UDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the User Plane.

Type: 64.

Fields Field type Direction Required Comment

Direction Octet P M Both (3).

5.6.3.1.3.9 Cause

Description: This parameter is used to pass Cause information for disconnection to the PUF.

Type: 68.

Fields Field type Direction Required Comment

Value Octet N M See values in table 23.

Page 109
Final draft prETS 300 838: March 1998

5.6.3.1.3.10 Origin

Description: This parameter is used to pass the origin information of the disconnection to the
PUF.

Type: 69.

Fields Field type Direction Required Comment

Value Octet N M Undefined (1)

NAF Provider (2)

Remote User (3)

5.6.3.1.4 State diagram

Figure 16 shows the different states of a user connection, using the U-messages, and in which order
these messages shall be used.

1 Idle

UConnectReq UConnectInd

2
Outgoing connection

pending

3
Incoming connection

pending

UConnectCnf UConnectRsp

4
Data transfer

ready

UDISCONNECTUDISCONNECT

UDISCONNECT

UDataReq
UDataInd

UReadyToReceiveReq
UReadyToReceiveInd

NOTE: Where UDISCONNECT appears it can be either UDisconnectReq or UDisconnectInd.

Figure 16: Overview of the User Plane messages

Page 110
Final draft prETS 300 838: March 1998

5.6.3.1.5 Co-ordination function

The co-ordination function cannot be used with the User Plane protocol relating to the ISO 7776 [4]
protocol.

5.6.3.1.6 Selection criteria

No ISO 7776 [4] protocol specific parameters are used. General NCO criteria are provided in
subclause 5.8.

5.6.3.1.7 Specific error handling and codes

In case of invalid length of UDataReq UserData parameter PUF is sent UDisconnectInd.

Table 23 gives possible values of the Cause parameter.

Table 23: Cause parameter value

Return Code Meaning ErrorSpecific
Information

Undefined 220 Undefined error situation. Not present
DiscNorm 241 Disconnection - normal condition. Not present
InvalidSequence 244 Connection rejected - Invalid sequencing in the frame

numbering (transient condition).
Not present

FrameTooBig 245 Connection rejected - Reception of a frame bigger than
defined in the NCO value (fixed condition).

Not present

5.6.3.1.8 Static attributes

5.6.3.1.8.1 AttributeSet parameters

Table 24: User Plane Attribute Set (UAttributeSet) Parameters

Parameters Required Comment
UProtocol O See remark. See also subclause 5.6.3.1.3.6

L2ConnectionMode O See remark. See also subclause 5.6.3.1.3.1

L2FrameSize O See remark. See also subclause 5.6.3.1.3.2

L2WindowSize O See remark. See also subclause 5.6.3.1.3.3

L2XID O See remark. See also subclause 5.6.3.1.3.4

Remark: These parameters can only be used during NCO creation containing Control
Plane information. Refer to subclause 5.4.1 (ACreateNCO operation) for details.

If parameters are omitted defaults shall be used by the NAF. Default values are
described in annex E.

5.6.3.1.8.2 Static attribute content

Name : U_ISO7776
L2FrameSize : 128
L2WindowSize : 7
L2ConnectionMode: Auto
L2XID : Send and match

Page 111
Final draft prETS 300 838: March 1998

5.6.3.2 HDLC protocol

5.6.3.2.1 Introduction

This clause deals with the HDLC protocol.

For this access, the NAF considers layer 3 as a Null, as shown in figure 17.

The OSI location of the HDLC protocol is shown in figure 17.

ISDN Layer 1

Profile A

Layer 3 protocol

D-channel B-channel
Signalling

LAP BLAP D

Network

Layer

Data Link

Layer

Physical
Layer

M

A

N
A

G

E

M

E

N

T

Application code

Terminal

Management
OSI upper layer protocols and

other protocols

PUF

NAF

Adminis-

tration

Plane

User PlaneControl Plane

HDLC

interface

Figure 17: OSI location

A general description of the conventions used is provided in subclause 5.2.3.

5.6.3.2.2 Messages

The User Plane messages provide an access to the protocol stacks. the following is a list and short
description of significant User Plane messages. Table 24 gives an overview of these messages.

Table 24 bis: Overview of user messages

Mess.
Identif.

Class Message Name Purpose of Message

307 1 UDataReq Request data transfer on an established user connection.

308 1 UDataInd Indicate arrival of transferred data on an established user
connection.

5.6.3.2.2.1 UDataReq

Class: 1 (Basic Class).

Description: This message allows a PUF to send a data packet. The size of a data packet is
limited by the maximum allowed at the Profile A interface i.e. 4 096 octets.

Page 112
Final draft prETS 300 838: March 1998

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Remark: Data to send is mandatory. It is not provided as a parameter of the message.
Mandatory data shall be provided in the data buffer.

Related: None.

5.6.3.2.2.2 UDataInd

Class : 1 (Basic Class).

Description: This message indicates the presence of received data to a PUF. The size of a
data packet is limited by the maximum allowed at the Profile A interface i.e.
4 096 octets.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Remark: Data received is always provided, but not as a parameter of the message.
Data is provided in the data buffer. This buffer, in this case, is mandatory.

Related: None.

5.6.3.2.3 Messages parameters

This subclause describes parameters for the HDLC plane. Table 25 summarizes the used parameters.
They are alphabetically ordered.

Table 25: Overview of user parameters

Param.
Identif.

Parameter Name Use in user
messages

Use in
UAttributeSet

Other use

50 NCOType X

62 UProtocol X

63 UAttributeName X

64 UDirection X

5.6.3.2.3.1 NCOType

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment

Identifier Octet P M C/U (5) - signalling and link layer user access.

5.6.3.2.3.2 UProtocol

Description: This is used to select the User Plane protocol.

Type: 62.

Page 113
Final draft prETS 300 838: March 1998

Fields Field type Direction Required Comment

L3Protocol Octet P M NULL (4)

L2Protocol Octet P M HDLC (1)

L1Protocol Octet P O Default (255) - Transparent B-channel access

Remark: Other possible values (for other protocols) are provided in subclause 5.6.

5.6.3.2.3.3 UAttributeName

Description : This parameter is used to pass the name of a static set of User Plane attributes
from the PUF.

Type: 63.

Fields Field type Direction Required Comment

AttributeName IA5-string P M 16 bytes is the maximum length.

5.6.3.2.3.4 UDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the User Plane.

Type: 64.

Fields Field type Direction Required Comment

Direction Octet P O both (3)

5.6.3.2.4 State diagram

User messages do not change the state of the connection.

5.6.3.2.5 Co-ordination function

The co-ordination function cannot be used with this User Plane protocol.

5.6.3.2.6 Selection criteria

No specific parameters are used. General NCO criteria are provided in subclause 5.8.

5.6.3.2.7 Specific error handling and codes

Protocol errors are not available at the interface.

Page 114
Final draft prETS 300 838: March 1998

5.6.3.2.8 Static attributes

5.6.3.2.8.1 AttributeSet parameters

Table 26: User Plane Attribute Set (UAttributeSet) parameters

Parameters Required Comment
UProtocol O See remark. See also subclause 5.6.3.2.3.2.

Remark: These parameters can only be used during NCO creation containing Control
Plane information. Refer to subclause 5.4.1.1 (ACreateNCO operation) for
details.

If parameters are omitted defaults shall be used by the NAF. Default values are
described in annex E.

5.6.3.2.8.2 Static attribute content

Name : U_HDLC
UProtocol : HDLC

5.6.3.3 HDLC protocol with error

5.6.3.3.1 Introduction

This subclause deals with HDLC protocol when errors occur.

For this access, the NAF considers layer 3 as a Null, as shown in figure 18.

The OSI location of the HDLC protocol is shown in figure 18.

ISDN Layer 1

Profile A

Layer 3 protocol

D-channel B-channel
Signalling

LAP BLAP D

Network

Layer

Data Link

Layer

Physical
Layer

M

A

N
A

G

E
M

E

N

T

Application code

Terminal

ManagementOSI upper layer protocols and
other protocols

PUF

NAF

Adminis-
tration
Plane

User PlaneControl Plane

HDLC

interface

Figure 18: OSI location

General description conventions are provided in subclause 5.2.3.

Page 115
Final draft prETS 300 838: March 1998

5.6.3.3.2 Messages

The User Plane messages provide an access to the protocol stacks. Following is a list and short
description of significant User Plane messages. Table 27 gives an overview of these messages.

Table 27: Overview of user messages

Mess.
Identif.

Class Message Name Purpose of Message

307 1 UDataReq Request data transfer on an established user connection.

308 1 UDataInd Indicate arrival of transferred data on an established user
connection.

5.6.3.3.2.1 UDataReq

Class: 1 (Basic Class).

Description: This message allows a PUF to send a data packet. The size of a data packet is
limited by the maximum allowed at the Profile A interface i.e. 4 096 octets.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Remark: Data to send is mandatory. It is not provided as a parameter of the message.
Mandatory data shall be provided in the data buffer.

Related: None.

5.6.3.3.2.2 UDataInd

Class : 1 (Basic Class).

Description: This message indicates the presence of received data to a PUF. The size of a
data packet is limited by the maximum allowed at the Profile A interface i.e.
4 096 octets.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Cause O Identifies the type of error.

Remark: Data received is always provided, but not as a parameter of the message.
Data is provided in the data buffer. This buffer, in this case, is mandatory.

Related: None.

5.6.3.3.3 Messages parameters

This subclause describes parameters for the HDLC plane. Table 28 summarizes used parameters. They
are alphabetically ordered.

Page 116
Final draft prETS 300 838: March 1998

Table 28: Overview of user parameters

Param.
Identif.

Parameter Name Use in user
messages

Use in
UAttributeSet

Other use

50 NCOType X

62 UProtocol X

63 UAttributeName X

64 UDirection X

68 Cause X

5.6.3.3.3.1 NCOType

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment

Identifier Octet P M C/U (3) - signalling and link layer user access.

5.6.3.3.3.2 UProtocol

Description: This is used to select the User Plane protocol.

Type: 62.

Fields Field type Direction Required Comment

L3Protocol Octet P M NULL (4).

L2Protocol Octet P M HDLC protocol with error (3).

L1Protocol Octet P O Default (255) - Transparent B-channel access.

Remark: Other possible values (for other protocols) are provided in subclause 5.6.

5.6.3.3.3.3 UAttributeName

Description : This parameter is used to pass the name of a static set of User Plane attributes
from the PUF.

Type: 63.

Fields Field type Direction Required Comment

AttributeName IA5-string P M 16 bytes is the maximum length.

5.6.3.3.3.4 UDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the User Plane.

Type: 64.

Fields Field type Direction Required Comment

Direction Octet P O both (3).

Page 117
Final draft prETS 300 838: March 1998

5.6.3.3.3.5 Cause

Description: This parameter is used to pass Cause information to/from the PUF.

Type: 68.

Fields Field type Direction Required Comment

Value Octet B M 210 - Overflow.

211 - Framing error.

5.6.3.3.3.6 State diagram

User messages do not change the state of the connection.

5.6.3.3.4 Co-ordination function

The co-ordination function cannot be used with this User Plane protocol.

5.6.3.3.5 Selection criteria

No specific parameters are used. General NCO criteria are provided in subclause 5.8.

5.6.3.3.6 Specific error handling

In the case of invalid length of UDataReq UserData parameter, PUF is sent UDataInd with
Cause parameter.

5.6.3.3.7 Static attributes

5.6.3.3.7.1 AttributeSet parameters

Table 29: User Plane Attribute Set (UAttributeSet) parameters

Parameters Required Comment
UProtocol O See remark. See also subclause 5.6.3.3.3.2.

Remark: These parameters can only be used during NCO creation containing Control
Plane information. Refer to subclause 5.4.1 (ACreateNCO operation) for details.

If parameters are omitted defaults shall be used by the NAF. Default values are
described in annex E.

5.6.3.3.7.2 Static attribute content

Name : U_HDLC_E
UProtocol : HDLC

5.6.3.4 PPP protocol

5.6.3.4.1 Introduction

This subclause deals with the point-to point protocol (PPP).

The User Plane provides the services for PPP using the User Plane protocols on a connection over the
B-channel. For this access, the NAF considers layer 3 as a Null, as shown in figure 19.

The OSI location of the PPP is shown in figure 19.

Page 118
Final draft prETS 300 838: March 1998

ISDN Layer 1

Profile A

Layer 3 protocol

D-channel B-channel
Signalling

LAP BLAP D

Network

Layer

Data Link

Layer

Physical
Layer

M

A

N
A

G

E
M

E

N

T

Application code

Terminal

ManagementOSI upper layer protocols and
other protocols

PUF

NAF

Adminis-
tration
Plane

User PlaneControl Plane

PPP

interface

Figure 19: OSI location

NOTE: PPP is defined as a set of protocols which can be divided into groups:

- Link Control Protocols (LCP) in charge of the establishment, configuration and
testing of the data link connection;

- a family of Network Control Protocol (NCP) in charge of the establishment and
configuration of the different network layers protocols.

The PPP implementation in Profile A applies only on the Link Control Protocol LCP
(RFC 1661 [10]), PPP Link Quality Monitoring (RFC 1333) and PPP Authentification
Protocols (RFC 1334).
The NCPs which handle problems concerning the configuration of network protocols
are defined in specific documents. These are not covered by the specifications.

General description of the conventions use is provided in subclause 5.2.3.

5.6.3.4.2 Messages

The User Plane messages provide an access to PPP stacks. The following is a list and short description
of relevant User Plane messages. Table 30 gives an overview of these messages.

Page 119
Final draft prETS 300 838: March 1998

Table 30: Overview of user messages

Mess.
Identif.

Class Message Name Purpose of Message

301 1 UConnectReq Request establishment of a user connection.

302 1 UConnectInd Indicate establishment of a user connection has been
requested.

303 1 UConnectRsp Indicate acceptance of user connection establishment.

304 1 UConnectCnf Confirm user connection has been established.

305 1 UDisconnectReq Request removal of user connection.

306 1 UDisconnectInd Indicate removal of user connection.

307 1 UDataReq Request data transfer on an established user connection.

308 1 UDataInd Indicate arrival of transferred data on an established user
connection.

319 1 UErrorInd Indicate an error.

5.6.3.4.2.1 UConnectReq

Class: 1 (Basic Class).

Description: This message allows a PUF to initiate the establishment of a user connection.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

PPPNegotiation C Indicates the requested value.

Related: UConnectCnf.

5.6.3.4.2.2 UConnectInd

Class: 1 (Basic Class).

Description: This message informs a PUF of an incoming demand to establish a user
connection.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

PPPNegotiation M Indicates the value proposed for this user connection.

Related: UConnectRsp.

5.6.3.4.2.3 UConnectRsp

Class: 1 (Basic Class).

Description: This message allows a PUF to accept the establishment of a user connection.

Page 120
Final draft prETS 300 838: March 1998

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Related: UConnectInd.

5.6.3.4.2.4 UConnectCnf

Class: 1 (Basic Class).

Description: This message informs the PUF on the establishment of a user connection.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Related: UConnectReq.

5.6.3.4.2.5 UDisconnectReq

Class: 1 (Basic Class).

Description: This message allows a PUF to remove a user connection.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

PPPCause O PPP reason to remove the user connection.

Related: None.

5.6.3.4.2.6 UDisconnectInd

Class: 1 (Basic Class).

Description: This message informs a PUF that a user connection has been removed.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

PPPOrigin M Identifies the initiator of the user connection removal.

PPPCause O PPP reason to remove the user connection.

PPPDiagnostic C Complementary information for PPPCause. Optional if PPPCause
parameter supplied.

Related: None.

5.6.3.4.2.7 UDataReq

Class: 1 (Basic Class).

Description: This message allows a PUF to send a data packet. The size of a data packet is
restricted to the data packet size negotiated during the user connection
establishment.

Page 121
Final draft prETS 300 838: March 1998

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Remark: Data to send is mandatory. It is not provided as a parameter of the message.
Mandatory data shall be provided in the data buffer.

Address field is set to "11111111" (All-Station address) and control field is set to
"00000011"(Unnumbered Information) with bit P/F set to zero. The FCS is
inserted at the end of each data block with the flag, transparently by the NAF.

Related: None.

5.6.3.4.2.8 UDataInd

Class : 1 (Basic Class).

Description: This message indicates the presence of received data to a PUF. The size of a
data packet is restricted to the data packet size negotiated during the user
connection establishment.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Remark: Data received is always provided, but not as a parameter of the message.
Data is provided in the data buffer. This buffer, in this case, is mandatory.

Address field is set to "11111111" (All-Station address) and control field is set to
"00000011"(Unnumbered Information) with bit P/F set to zero. The FCS is
inserted at the end of each data block with the flag, transparently by the NAF.

Related: None.

5.6.3.4.2.9 UErrorInd

Class: 1 (Basic Class).

Description: This message indicates to a PUF that an error has occurred.

Parameters:

Name Provided Comment
NCOID M Identifies the Control Plane connection.

PPPCause M Identifies type of error.

Related: None.

5.6.3.4.3 Messages parameters

This subclause describes parameters for the PPP plane. Table 31 summarizes user parameters.

Page 122
Final draft prETS 300 838: March 1998

Table 31: Overview of user parameters

Param.
Identif.

Parameter Name Use in user
messages

Use in
UAttributeSet

Other use

50 NCOType X

62 UProtocol X

63 UAttributeName X

64 UDirection X

69 PPPOrigin X

70 PPPCause X

71 PPPDiagnostic X

74 PPPNegotiation X X

5.6.3.4.3.1 NCOType

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment
Identifier Octet P M C/U (3) - signalling and link layer user access.

5.6.3.4.3.2 UProtocol

Description: This is used to select the User Plane protocol.

Type: 62.

Fields Field type Direction Required Comment
L3Protocol Octet P M NULL (4)

L2Protocol Octet P M PPP (4)

L1Protocol Octet P O Default (255) - Transparent B-channel access

Remark: Other possible values (for other protocols) are provided in subclause 5.6.

5.6.3.4.3.3 UAttributeName

Description : This parameter is used to pass the name of a static set of User Plane attributes
from the PUF.

Type: 63.

Fields Field type Direction Required Comment
AttributeName IA5-string P M 16 bytes is the maximum length.

5.6.3.4.3.4 UDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the User Plane.

Type: 64.

Page 123
Final draft prETS 300 838: March 1998

Fields Field type Direction Required Comment
Direction Octet P O both (3)

5.6.3.4.3.5 PPPCause

Description: This parameter is used to pass PPPCause information to/from the PUF.

Type: 70.

Fields Field type Direction Required Comment
Value Octet B M See values in table 32.

5.6.3.4.3.6 PPPDiagnostic

Description: This parameter is used to pass PPP Diagnostic information associated to a
PPP Cause.

Type: 71.

Fields Field type Direction Required Comment
DiagType Octet N M Indicate the type of diagnostic associated

with the PPPCause.

ConfNoConverging (0)

NoConvergingDiag Octet-string N M Diagnostic associated with
ConfNoConverging.

(see note)

NOTE: These elements are ordered in the same way that they have been defined in the PPPNegotiation message
(see PPPNegotiation). Furthermore, the bits corresponding to the non-acknowledged options are set and
those corresponding to the acknowledged options are reset.

Page 124
Final draft prETS 300 838: March 1998

5.6.3.4.3.7 PPPNegotiation

Description: This parameter is used to indicate the PPP negotiation to perform.

Type: 74.

Fields Field type Direction Required Comment

PPPNegociation Usage Octet-string B M Indicates if the following values are
included.

Length is fixed to 2 octets
(see note 1)

MRUlocal Octet-string B C Indicates the size of the Maximum
Receive Unit of the local peer.

Default (0)

Length is fixed to 2

(see note 2)

MRUremote Octet-string N C Indicates the size of the Maximum
Receive Unit of the remote peer

Length is fixed to 2 octets
(see note 2)

Authentproto Octet B C Indicate the type of the authentication to
perform. These values are exclusive.

Default (0)
PAP (1)
CHAP (2)
(see note 2)

Qualityproto Octet-string B C Indicate the value of the reporting
period for quality protocol
Default (0)
Length is fixed to 4 octets
(see note 2)

Magicnumber Octet-string B C Indicate the value of the magic number
to use
Default (0)
Length is fixed to 4
(see note 2)

(continued)

Page 125
Final draft prETS 300 838: March 1998

Fields Field type Direction Required Comment

Protocolcomp Octet B C Indicate if the protocol field
compression is to be set
(see note 2).

Addresscomp Octet B C Indicate if the address field
compression is to be set
(see note 2).

FCSAlternatives Octet-string B C Indicate the value of the FCS format to
use
Default (0)
Length is fixed to 4 octets
(see note 2)

SelfDescPadding Octet-string B C Indicate the value of the Self Describing
Padding to use
Default (0)
Length is fixed to 4 octets

CallBack Octet B C Indicate if the callback option is to be
set
(see note 2).

CompoundFrame Octet B C Indicate if the CompoundFrame option
is to be set
(see note 2).

UserName Octet-string B C Maximum lenghth is 16 octets, zero
terminated.

UserPassword Octet-string B C Maximum lenghth is 16 octets, zero
terminated.

NOTE 1: Each bit of the indicator corresponds to an option ordered as indicated in the array (that means the first bit refers to the
MRUlocal option, the second to the MRUremote option, the third to Authentproto option and so on).
When the indicator concerning an option is not set, it means that the PPP option has not to be negotiated. The length of
this field is fixed.

NOTE 2: Before defining a negotiation parameter, the PUF has to check if the functionality is served by the NAF by using the
PciGetProperty. See subclause 9.4.9.

5.6.3.4.3.8 PPPOrigin

Description: This parameter is used to pass PPP origin information to/from the PUF.

Type: 69.

Fields Field type Direction Required Comment

Value Octet B M undefined (1)

NAF Provider (2)

PUF User (3)

Page 126
Final draft prETS 300 838: March 1998

5.6.3.4.4 State diagram

Figure 20 shows the different states of a user connection, using the U-messages, and in which order
these messages shall be used.

1 Idle

UDisconnectInd UDisconnectReq

UConnectReq UConnectInd

2
Outgoing connection

pending

3
Incoming connection

pending

UConnectCnf UConnectRsp

4
Data transfer

ready

UDataReq
UDataInd
UErrorInd

UDisconnectReq

UDisconnectInd

Figure 20: Overview of the User Plane messages

5.6.3.4.5 Co-ordination function

The co-ordination function cannot be used with the User Plane protocol relating to PPP.

5.6.3.4.6 Selection criteria

No PPP specific parameters are used. General NCO criteria are provided in subclause 5.8.

5.6.3.4.7 Specific error handling and codes

Errors are dealt with in the following manner:

5.6.3.4.7.1 Errors

In case of protocol reject information from the remote part, the PUF is sent UErrorInd.
In case of invalid length of UDataReq UserData parameter, data is ignored.

Page 127
Final draft prETS 300 838: March 1998

5.6.3.4.7.2 Causes

These values can be specified and are returned in the PPPCause parameter.

Table 32: PPPCause parameter value

Return Code Meaning ErrorSpecific
Information

Undefined 220 Undefined error situation. Not present

DiscNorm 241 Disconnection - normal condition. Not present

ConfNoConverging 244 Connection rejected - host not responding (transient
condition).

Not present

Hostunreachable 245 Connection rejected - configurations cannot match (fixed
condition).

Not present

Protocol Error 212 Protocol Error. Not present

5.6.3.4.8 Static attributes

5.6.3.4.8.1 AttributeSet parameters

Table 33: User Plane Attribute Set (UAttributeSet) parameters

Parameters Required Comment

UProtocol O See remark. See also subclause 5.6.3.4.3.2.

MRUlocal O See remark. See also subclause 5.6.3.4.3.7
(PPPNegotiation).

MRUremote O See remark. See also subclause 5.6.3.4.3.7
(PPPNegotiation).

Authentproto O See remark. See also subclause 5.6.3.4.3.7
(PPPNegotiation).

Qualityproto O See remark. See also subclause 5.6.3.4.3.7
(PPPNegotiation).

MagicNumber O See remark. See also subclause 5.6.3.4.3.7
(PPPNegotiation).

Protocolcomp O See remark. See also subclause 5.6.3.4.3.7
(PPPNegotiation).

Addresscomp O See remark. See also subclause 5.6.3.4.3.7
(PPPNegotiation).

FCSAlternatives O See remark. See also subclause 5.6.3.4.3.7
(PPPNegotiation).

SelfDescPadding O See remark. See also subclause 5.6.3.4.3.7
(PPPNegotiation).

CallBack O See remark. See also subclause 5.6.3.4.3.7
(PPPNegotiation).

CompoundFrame O See remark. See also subclause 5.6.3.4.3.7
(PPPNegotiation).

UserName O See remark. See also subclause 5.6.3.4.3.7
(PPPNegotiation).

UserPassword O See remark. See also subclause 5.6.3.4.3.7
(PPPNegotiation).

Page 128
Final draft prETS 300 838: March 1998

Remark: These parameters can only be used during a NCO creation containing Control
Plane information. Refer to subclause 5.4.1 (ACreateNCO operation) for details.
To change a parameter the NCO should be detroyed and re-created.

If parameters are omitted defaults shall be used by the NAF. Default values are
described in annex D.

5.6.3.4.8.2 Static attribute content

Name : U_PPP
UProtocol : PPP
MRUlocal : 1500
MRUremote : 1500
Authentproto : none
Qualityproto : none
MagicNumber : none
Protocolcomp : none
AddressComp : none
FCSAlternatives : none
SelfDescPadding : none
CallBack : none
CompoundFrame : none

5.6.3.4.9 Protocol specific NAF property information

The PPP specific parameters of NAF-Property are shown in table 34.

Table 34: TLV coded NAF-Property parameter

Parameter Provided TLV Coding Comment and values

TypeID Length Value

PPPNegotiation M 14 2..27 Octet Indicates the PPP options provided by
the NAF

See also the PciGetProperty function in subclause 5.3.1.3.

5.6.3.5 SDLC protocol

5.6.3.5.1 Introduction

This clause deals with the SDLC protocol.

The User Plane provides the services for SDLC using the User Plane protocols on a connection over a
B-channel. For this access, the NAF considers layer 3 as a Null, as shown in figure 21.

SDLC protocol supported is an SDLC link in normal response mode having a point-to-point configuration.
Overview and protocol information is provided in IBM publication "IBM Synchronous Data Link Control
Concepts" (GA27-3093 [12]).

Page 129
Final draft prETS 300 838: March 1998

The OSI location of the SDLC protocol is shown in figure 21.

ISDN Layer 1

Profile A

Signalling

LAP BLAP D

Network
Layer

Data Link
Layer

Physical
Layer

M
A
N
A
G
E
M
E
N
T

Application code

Terminal
ManagementOSI upper layer protocols and

other protocols

PUF

NAF

Adminis-
tration
Plane

User PlaneControl Plane

SDLC

interface

Layer 3 protocol

B-channelD-channel

Figure 21: OSI location

General description of the conventions used are provided in subclause 5.2.3.

5.6.3.5.2 Messages

The User Plane messages provide an access to SDLC protocol stacks. Table 35 provides a list and short
description of relevant User Plane messages.

Page 130
Final draft prETS 300 838: March 1998

Table 35: Overview of user messages

Mess.
Identif.

Class Message Name Purpose of Message

301 1 UConnectReq Request establishment of a user connection.

302 1 UConnectInd Indicate establishment of a user connection has been
requested.

303 1 UConnectRsp Indicate acceptance of user connection establishment.

304 1 UConnectCnf Confirm user connection has been established.

305 1 UDisconnectReq Request removal of user connection.

306 1 UDisconnectInd Indicate removal of user connection.

307 1 UDataReq Request data transfer on an established user connection.

308 1 UDataInd Indicate arrival of transferred data on an established user
connection.

309 1 UExpeditedDataReq Request expedited data transfer on an established user
connection.

310 1 UExpeditedDataInd Indicate presence of transferred expedited data on an
established user connection.

317 1 UReadyToReceiveReq Used to perform flow control for a user connection.

318 1 UReadyToReceiveInd Used to indicate flow control status on a user connection.

5.6.3.5.2.1 UConnectReq

Class: 1 (Basic Class).

Description: This message allows a PUF to initiate the establishment of a user connection.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Related: UConnectCnf.

5.6.3.5.2.2 UConnectInd

Class: 1 (Basic Class).

Description: This message informs a PUF of an incoming demand to establish a user
connection. This message informs the PUF of the end of transient idle state of
the user connection caused by Data Link Layer resetting.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Related: UConnectRsp.

5.6.3.5.2.3 UConnectRsp

Class: 1 (Basic Class).

Description: This message allows a PUF to accept the establishment of a user connection.

Page 131
Final draft prETS 300 838: March 1998

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Related: UConnectInd.

5.6.3.5.2.4 UConnectCnf

Class: 1 (Basic Class).

Description: This message informs the PUF upon the establishment of a user connection.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Related: UConnectReq.

5.6.3.5.2.5 UDisconnectReq

Class: 1 (Basic Class).

Description: This message allows a PUF to remove a user connection.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Related: None.

5.6.3.5.2.6 UDisconnectInd

Class: 1 (Basic Class).

Description: This message informs a PUF that a user connection has been removed. This
message may inform the PUF of transient idle state of the user connection
caused by Data Link Layer reset. In this case, the SDLCCause parameter value
is DiscTrans (disconnection - transient condition). See subclause 5.6.3.5.3.11.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

SDLCOrigin M Identifies the initiator of the user connection removal.

SDLCCause O SDLC reason to remove the user connection.

Related: None.

5.6.3.5.2.7 UDataReq

Class: 1 (Basic Class).

Page 132
Final draft prETS 300 838: March 1998

Description: This message allows a PUF to send a data packet. The size of a data packet is
restricted to the data packet size negotiated during the user connection
establishment. No fragmentation mechanism is available at the SDLC link layer
level.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Remark: Data to send is mandatory. It is not provided as a parameter of the message.
Mandatory data shall be provided in the data buffer.

Related: None.

5.6.3.5.2.8 UDataInd

Class : 1 (Basic Class).

Description: This message indicates the presence of received data to a PUF. The size of a
data packet is restricted to the data packet size negotiated during the user
connection establishment. No fragmentation mechanism is available at the
SDLC link layer level.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

Remark: Data received is always provided, but not as a parameter of the message.
Data is provided in the data buffer. This buffer, in this case, is mandatory.

Related: None.

5.6.3.5.2.9 UExpeditedDataReq

Class: 1 (Basic Class).

Description: This message allows a PUF to send expedited data. This data is not constrained
by the flow control mechanism used to control UDataReq messages. SDLC
expedited data is transmitted in an Unnumbered Information frame.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

UserData M Expedited data to transfer.

Related: None.

5.6.3.5.2.10 UExpeditedDataInd

Class: 1 (Basic Class).

Description: This message indicates to a PUF the reception of expedited data. This data was
not constrained by the flow control mechanisms used to control UDataInd
messages. SDLC expedited data is received in an Unnumbered Information
frame.

Page 133
Final draft prETS 300 838: March 1998

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

UserData M Expedited data received.

Related: None.

5.6.3.5.2.11 UReadyToReceiveReq

Class: 1 (Basic Class).

Description: This message allows the PUF to indicate to the NAF if it can accept incoming
data (UDataInd message). This message can only apply to an already
established user connection. Setting the ReadyFlag parameter to TRUE allows
the NAF to transfer incoming data to the PUF. Setting the ReadyFlag to FALSE
inhibits the transfer.

This flow control mechanism does not imply an end-to-end flow control.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

ReadyFlag M This flag indicates whether or not the PUF is ready to accept incoming
data.

Remarks: For a given connection, if more than one message with the same flag value is
sent, it shall be ignored by the NAF.

Related: UDataInd.

5.6.3.5.2.12 UReadyToReceiveInd

Class: 1 (Basic Class).

Description: This message allows the NAF to indicate to the PUF if the user connection
permits the sending of data (UDataReq messages). This message can only
apply to an already established user connection. If the ReadyFlag parameter
value is FALSE, the NAF can not send data. If the value is TRUE the NAF
indicates that data transfer is allowed.

This flow control mechanism does not imply an end-to-end flow control.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

ReadyFlag M This flag indicates whether or not the NAF is ready to receive data for
transmission on a user connection.

Related: UDataReq.

5.6.3.5.3 Messages parameters

This subclause describes parameters for the SDLC plane. Table 36 summarizes used parameters.

Page 134
Final draft prETS 300 838: March 1998

Table 36: Overview of user parameters

Param.
Identif.

Parameter Name Use in user messages Use in UAttributeSet Other use

38 L2ConnectionMode X

39 L2FrameSize X

40 L2WindowSize X

41 L2XID X

50 NCOType X

55 ReadyFlag X

62 UProtocol X

63 UAttributeName X

64 UDirection X

65 UserData X

68 SDLCCause X

69 SDLCOrigin X

5.6.3.5.3.1 L2ConnectionMode

Description : This parameter is used only if it is not defined in L2XID value field. It is used to
pass details of the layer connection mode to the NAF.

Type: 38.

Fields Field type Direction Required Comment

Value Octet P M dte (1) - Act as a secondary link station (non
negotiable).

dce (2) - Act as primary link station (non
negotiable).

auto (3) - Link station role is negotiable by XID
exchange.

5.6.3.5.3.2 L2FrameSize

Description: This parameter is used only if it is not defined in L2XID value field. It is used to
pass details of the layer 2 frame size to the NAF.

Type: 39.

Fields Field type Direction Required Comment

Value Octet string P M Frame size (in octets).

Length is fixed to 2 octets.

The first octet contents is the most significant byte.

Page 135
Final draft prETS 300 838: March 1998

5.6.3.5.3.3 L2WindowSize

Description: This parameter is used only if it is not defined in L2XID value field. It is used to
pass details of the layer 2 window size to the NAF.

Type: 40.

Fields Field type Direction Required Comment

Value Octet P M Window size

5.6.3.5.3.4 L2XID

Description: This is used to pass details of the layer 2 XID value and its use. The XID
information field may include values that override some parameters defined
elsewhere. DLC XID information field formats are described in IBM publication
"Systems Network Architecture - Formats" (GA27-3136-11).

Type: 41.

Fields Field type Direction Required Comment

Use Octet P M Not relevant for SDLC protocol.

Value Octet-string P M XID value [Identifier and signature].

Formatted DLC XID information field for SDLC
protocol. Maximum length is 127.

5.6.3.5.3.5 NCOType

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment

Identifier Octet P M C/U (3) - signalling and link layer user access.

Remark: An SDLC connection can only be defined by a C/U type NCO. No U3G type
NCO can be grouped to an NCO defining an SDLC connection.

5.6.3.5.3.6 ReadyFlag

Description: This parameter is used to request and indicate flow control status on a user
connection.

Type: 55.

Fields Field type Direction Required Comment

Usage Boolean B M TRUE - Data transfer is allowed.

FALSE - Data transfer is not allowed.

Page 136
Final draft prETS 300 838: March 1998

5.6.3.5.3.7 UProtocol

Description: This is used to select the User Plane protocol.

Type: 62.

Fields Field type Direction Required Comment

L3Protocol Octet P M NULL (4)

L2Protocol Octet P M SDLC (5)

L1Protocol Octet P O Default (255) - Transparent B-channel access.

Remark: Other possible values (for other protocols) are provided in subclause 5.6.

5.6.3.5.3.8 UAttributeName

Description : This parameter is used to pass the name of a static set of User Plane attributes
from the PUF.

Type: 63.

Fields Field type Direction Required Comment

AttributeName IA5-string P M 16 bytes is the maximum length.

5.6.3.5.3.9 UDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the User Plane.

Type: 64.

Fields Field type Direction Required Comment

Direction Octet P O both (3)

5.6.3.5.3.10 UserData

Description: This parameter is used to pass data that is limited in size to/from the PUF.

Type: 65.

Fields Field type Direction Required Comment

Data Octet-string B M 128 octets is the maximum size.

5.6.3.5.3.11 SDLCCause

Description: This parameter is used to pass SDLC Cause information to/from the PUF.

Type: 68.

Fields Field type Direction Required Comment

Value Octet B M See values in table 36.

Page 137
Final draft prETS 300 838: March 1998

5.6.3.5.3.12 SDLCOrigin

Description: This parameter is used to pass SDLC origin information to the PUF.

Type: 69.Fields Field type Direction Required Comment

Value Octet B M undefined (1)

NAF Provider (2)

PUF User (3)

5.6.3.5.4 State diagram

Figure 22 shows the different states of a user connection, using the U-messages, and in which order
these messages shall be used.

1 Idle

UDISCONNECT UDISCONNECT

UConnectReq UConnectInd

2
Outgoing connection

pending

3
Incoming connection

pendingUDISCONNECT

UConnectCnf UConnectRsp

4
Data transfer

ready UDataReq
UDataInd
UExpeditedDataReq
UExpeditedDataInd
UReadyToReceiveReq
UReadyToReceiveInd

NOTE: Where UDISCONNECT appears it can be either UDisconnectReq or UDisconnectInd.

Figure 22: Overview of the User Plane messages

5.6.3.5.5 Co-ordination function

The co-ordination function cannot be used with the User Plane protocol relating to SDLC.

5.6.3.5.6 Selection criteria

No SDLC specific parameters are used. General NCO criteria are provided in subclause 5.8.

Page 138
Final draft prETS 300 838: March 1998

5.6.3.5.7 Specific error handling and codes

Errors are dealt with as stated in subclauses 5.6.3.5.7.1 and 5.6.3.5.7.2.

5.6.3.5.7.1 Invalid use of user messages

In case of:

- invalid length of UDataReq UserData parameter;
- invalid use of ExpeditedData;

action is:

- PUF is sent UDisconnectInd.

5.6.3.5.7.2 Causes

These values are specified in table 37 and are returned in the SDLCCause parameter.

Table 37: SDLCCause parameter value

Return Code Meaning ErrorSpecific
Information

Undefined 220 Undefined error situation. Not present

DiscTrans 225 Disconnection - transient condition.
Indicates that Data Link layer is resetting.

Not present

DiscPerm 226 Disconnection - permanent condition.
Indicates that the remote station is no longer reachable.

Not present

DiscNorm 241 Disconnection - normal condition.
Indicates that the disconnection has been requested by the
remote station.

Not present

ConRejectTrans 244 Connection rejection - transient condition.
Indicates that Data Link layer activation has been denied by
the remote station.

Not present

ConRejectPerm 245 Connection rejection - fixed condition.
Indicates that the remote station is unreachable.

Not present

5.6.3.5.8 Static attributes

5.6.3.5.8.1 AttributeSet parameters

Table 38: User Plane Attribute Set (UAttributeSet) parameters

Parameters Required Comment

UProtocol O See remark. See also subclause 5.6.3.5.3.7.

L2ConnectionMode O See remark. See also subclause 5.6.3.5.3.1

L2WindowSize O See remark. See also subclause 5.6.3.5.3.3.

L2FrameSize O See remark. See also subclause 5.6.3.5.3.2

L2XID O See remark. See also subclause 5.6.3.5.3.4

Remark: These parameters can only be used during an NCO creation containing Control
Plane information. Refer to subclause 5.4.1 (ACreateNCO operation) for more
details.

If parameters are omitted defaults shall be used by the NAF. Default values are
described in annex E.

Page 139
Final draft prETS 300 838: March 1998

L2ConnectionMode, L2WindowSize and L2FrameSize parameters may contain
user defined values or default configuration values when not provided by the
NAF, or may contain values resulting from XID exchange negotiation. L2XID
parameter contains the DLC XID information field.

5.6.3.5.8.2 Static attribute content

Name : U_SDLC
UProtocol : SDLC
L2ConnectionMode: dte
L2WindowSize : 7
L2FrameSize : 265
L2XID : Not used

5.6.3.6 V.110 protocol

5.6.3.6.1 Introduction

This subclause deals with the CCITT Recommendation V.110 [17] protocol. This protocol allows a PUF to
request a NAF provide a B-channel running the CCITT Recommendation V.110 [17] protocol. Both
synchronous and asynchronous options of CCITT Recommendation V.110 [17] are allowed.

This protocol uses NULL layer 3 protocol as shown in figure 23.

The OSI location of the CCITT Recommendation V.110 [17] protocol is shown in figure 23.

ISDN Layer 1

Profile A

D-channel B-channel
Signalling

LAP BLAP D

Network
Layer

Data Link
Layer

Physical
Layer

M
A
N
A
G
E
M
E
N
T

Application code

Terminal
ManagementOSI upper layer protocols and

other protocols

PUF

NAF

Adminis-
tration
Plane

User PlaneControl Plane

NULL
Layer

Layer 3 protocol NULL
Layer

NULL
LayerV110

interface

Figure 23: OSI location

A general description of the conventions used is provided in subclause 5.2.3.

A CCITT Recommendation V.110 [17] negotiation may occur via the parameter "BearerCap". In this case,
octets 5a, 5b, 5c and 5d of the parameter may be concerned (see subclause 5.5 and 5.7).

Page 140
Final draft prETS 300 838: March 1998

5.6.3.6.2 Messages

The User Plane messages provide an access to CCITT Recommendation V.110 [17] protocol stacks. the
following gives a list and short description of relevant User Plane messages. Table 39 gives an overview
of these messages.

Table 39: Overview of user messages

Mess.
Identif.

Class Message Name Purpose of Message

301 1 UConnectReq Request establishment of a user connection.

302 1 UConnectInd Indicate establishment of a user connection has been
requested.

303 1 UConnectRsp Indicate acceptance of user connection establishment.

304 1 UConnectCnf Confirm user connection has been established.

305 1 UDisconnectReq Request removal of user connection.

306 1 UDisconnectInd Indicate removal of user connection.

307 1 UDataReq Request data transfer on an established user connection.

308 1 UDataInd Indicate arrival of transferred data on an established user
connection.

317 1 UReadyToReceiveReq Used to perform flow control for a user connection.

318 1 UReadyToReceiveInd Used to indicate flow control status on a user connection.

5.6.3.6.2.1 UConnectReq

Class: 1 (Basic Class).

Description: This message allows a PUF to initiate the establishment of a user connection.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

Related: UConnectCnf.

5.6.3.6.2.2 UConnectInd

Class: 1 (Basic Class).

Description: This message informs a PUF of an incoming demand to establish a user
connection.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

Related: UConnectRsp.

5.6.3.6.2.3 UConnectRsp

Class: 1 (Basic Class).

Description: This message allows a PUF to accept the establishment of a user connection.

Page 141
Final draft prETS 300 838: March 1998

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

Related: UConnectInd.

5.6.3.6.2.4 UConnectCnf

Class: 1 (Basic Class).

Description: This message informs the PUF on the establishment of a user connection.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

Related: UConnectReq.

5.6.3.6.2.5 UDisconnectReq

Class: 1 (Basic Class).

Description: This message allows a PUF to remove a user connection.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

Related: None.

5.6.3.6.2.6 UDisconnectInd

Class: 1 (Basic Class).

Description: This message informs a PUF that a user connection has been removed.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

V.110Origin M Identifies the initiator of the user connection removal.

V.110Cause O V.110 reason to remove the user connection.

Related: None.

5.6.3.6.2.7 UDataReq

Class: 1 (Basic Class).

Description: This message allows a PUF to send a data packet. The size of a data packet is
limited by the maximum allowed in Profile A i.e. 4 096 octets.

Parameters:

Page 142
Final draft prETS 300 838: March 1998

Name Required Comment

NCOID M Identifies the user connection.

Remark: Data to send is mandatory. It is not provided as a parameter of the message.
Mandatory data shall be provided in the data buffer.

Related: None.

5.6.3.6.2.8 UDataInd

Class : 1 (Basic Class).

Description: This message indicates the presence of received data to a PUF. The size of a
data packet is limited by the maximum allowed in Profile A i.e. 4 096 octets.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

Remark: Data received is always provided, but not as a parameter of the message.
Data is provided in the data buffer. This buffer, in this case, is mandatory.

Related: None.

5.6.3.6.2.9 UReadyToReceiveReq

Class: 1 (Basic Class).

Description: This message allows the PUF to indicate to the NAF if it can accept incoming
data (UDataInd message). This message can only apply to an already
established user connection. Setting the ReadyFlag parameter to TRUE allows
the NAF to transfer incoming data to the PUF. Setting the ReadyFlag to FALSE
inhibits the transfer.

This flow control mechanism does not imply end-to-end flow control.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

ReadyFlag M This flag indicates whether or not the PUF is ready to accept incoming
data.

Remarks: For a given connection, if more than one message with the same flag value is
sent, it shall be ignored by the NAF.

Related: UDataInd.

5.6.3.6.2.10 UReadyToReceiveInd

Class: 1 (Basic Class).

Description: This message allows the NAF to indicate to the PUF if the user connection
permits the sending of data (UDataReq messages). This message can only
apply to an already established user connection. If the ReadyFlag parameter
value is FALSE, the NAF can not send data. If the value is TRUE the NAF
indicates that data transfer is allowed.
This flow control mechanism does not imply an end-to-end flow control.

Page 143
Final draft prETS 300 838: March 1998

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

ReadyFlag M This flag indicates whether or not the NAF is ready to receive data for
transmission on a user connection.

Related: UDataReq.

5.6.3.6.3 Messages parameters

This subclause describes parameters for the CCITT Recommendation V.110 [17] User Plane protocol.

Table 40: Overview of user parameters

Identif. Parameter Name Used in user messages Used in UAttributeSet Other use

50 NCOType X

55 ReadyFlag X

62 UProtocol X

63 UAttributeName X

64 UDirection X

68 V.110Cause X

69 V.110Origin X

75 FlowControlMechanism X

76 FlowControlCharacters X

77 MomentNumber X

78 V.110BChannelDisconnection X

5.6.3.6.3.1 NCOType

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment

Identifier Octet P M C/U (3) - signalling and transparent user access.

5.6.3.6.3.2 ReadyFlag

Description: This parameter is used to request and indicate flow control status on a user
connection.

Type: 55.

Fields Field type Direction Required Comment

Usage Boolean B M TRUE - Data transfer is allowed.

FALSE - Data transfer is not allowed.

Page 144
Final draft prETS 300 838: March 1998

5.6.3.6.3.3 UProtocol

Description: This is used to select the User Plane protocol. If the length is 3, the first octet
contains the layer 3 protocol requested, the second octet contains the layer 2
protocol requested and the third octet contains the layer 1 protocol requested.

Type: 62.

Fields Field type Direction Required Comment

L3Protocol Octet P M NULL (4)

L2Protocol Octet P M V.110 asynchronous (6)

V.110 synchronous (7)

L1Protocol Octet P O Default (255) - Transparent B-channel access

Remark: Other possible values (for other protocols) are provided in subclause 5.6.

5.6.3.6.3.4 UAttributeName

Description : This parameter is used to pass the name of a static set of User Plane attributes
from the PUF.

Type: 63.

Fields Field type Direction Required Comment

AttributeName IA5-string P M 16 bytes is the maximum length.

5.6.3.6.3.5 UDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the User Plane.

Type: 64.

Fields Field type Direction Required Comment

Direction Octet P O both (3)

5.6.3.6.3.6 V.110Cause

Description: This parameter is used to pass CCITT Recommendation V.110 [17] cause
information to/from PUF.

Type: 68.

Fields Field type Direction Required Comment

Value Octet B M See values in table 40.

5.6.3.6.3.7 V.110Origin

Description: This parameter is used to pass CCITT Recommendation V.110 [17] origin
information to PUF.

Type: 69.

Page 145
Final draft prETS 300 838: March 1998

Fields Field type Direction Required Comment

Value Octet B M undefined (1)

NAF Provider (2)

PUF User (3)

5.6.3.6.3.8 FlowControlMechanism

Description : This parameter is used to negotiate the flow control mechanism for a
CCITT Recommendation V.110 [17] connection. Two possibilities exist: first is
the XON/XOFF characters, second is via V.24 105/106 signals. This parameter
is used for end-to-end negotiation.

Type: 75.

Fields Field type Direction Required Comment

Value Octet P M Type of mechanism to use:

0 XON/XOFF characters

1 105/106 signal

Default value is 0 (XON/XOFF).

5.6.3.6.3.9 FlowControlCharacters

Description: This parameter is used to set the characters to define flow control characters for
a CCITT Recommendation V.110 [17] connection. The characters may be
different for each direction, so two characters are mandatory to be provided,
even if they have the same value. This parameter only has a local meaning.

Type: 76.

Fields Field type Direction Required Comment

Value Octet String P M Fixed length is 2.

The first character identifies the XON character.
Default value is 16.

The second character identifies the XOFF
character. Default value is 18.

5.6.3.6.3.10 MomentNumber

Description: This parameter is used to set the number of moments for a
CCITT Recommendation V.110 [17] connection. It only has a local meaning.

Type: 77.

Fields Field type Direction Required Comment

Value Octet P M Number of moments.

5.6.3.6.3.11 V.110BChannelDisconnection

Description: A CCITT Recommendation V.110 17] disconnection may imply the B-channel
disconnection. This parameter is used to set this information. It only has a local
meaning.

Type: 78.

Page 146
Final draft prETS 300 838: March 1998

Fields Field type Direction Required Comment

Value Octet P M V.110 implies B-channel disconnection:

0 No disconnection

1 Disconnection

5.6.3.6.4 State diagram

Figure 24 shows the different states of a user connection, using the U-messages, and in which order
these messages shall be used.

1 Idle

UDISCONNECT

UConnectReq UConnectInd

2
Outgoing connection

pending

3
Incoming connection

pending

UConnectCnf UConnectRsp

4
Data transfer

ready

UDataReq
UDataInd
UReadyToReceiveReq
UReadyToReceiveInd

UDISCONNECT

UDISCONNECT

NOTE: Where UDISCONNECT appears it can be either UDisconnectReq or UDisconnectInd.

Figure 24: Overview of the User Plane messages

5.6.3.6.5 Co-ordination function

The co-ordination function cannot be used with the User Plane protocol relating to
CCITT Recommendation V.110 [17] access.

5.6.3.6.6 Selection criteria

No specific parameters are to be used. General NCO criteria are provided in subclause 5.8.

5.6.3.6.7 Specific error handling and codes

Errors are dealt with as given in subclauses 5.6.3.6.7.1 and 5.6.3.6.7.2.

Page 147
Final draft prETS 300 838: March 1998

5.6.3.6.7.1 Invalid use of User Plane messages

In the case of invalid length of UDataReq UserData parameter, PUF is sent UDisconnectInd.

5.6.3.6.7.2 Causes

These values can be specified and are returned in the V.110Cause parameter.

Table 41: V.110Cause parameter value

Return Code Meaning ErrorSpecific
Information

Undefined 220 Undefined error situation. Not present

DiscNorm 241 Disconnection - normal condition. Not present

ConRejectTrans 244 Connection rejected (transient condition). Not present

ConRejectPerm 245 Connection rejected (permanent condition). Not present

5.6.3.6.8 Static attributes

5.6.3.6.8.1 AttributeSet parameters

Table 42: User Plane Attribute Set (UAttributeSet) parameters

Parameters Required Comment

UProtocol O See subclause 5.6.3.6.3.3.

FlowControlMechanism O See subclause 5.6.3.6.3.8.

FlowControlCharacters O See subclause 5.6.3.6.3.9.

MomentNumber O See subclause 5.6.3.6.3.10.

V110BChannelDisconnection O See subclause 5.6.3.6.3.11.

Remark: These parameters can only be used during a NCO creation containing Control
Plane information. Refer to subclause 5.4.1 (ACreateNCO operation) for details.

If parameters are omitted defaults shall be used. The default values described in
annex E.

5.6.3.6.8.2 Static attribute content

Name : U_V110
UProtocol : V.110 asynchronous
FlowControlMechanism : 0
FlowControlCharacters : 17 19
MomentNumber : not defined
V.110BChannelDisconnection : 0

5.6.4 Layer 3 protocols

This subclause describes the specific elements (messages, parameters, attribute sets,...) relating to the
layer 3 user protocols. It covers ETS 300 080 [1], ISO 8208 [3] and T.70NL user protocols. Other layer 3
user protocols are for further study.

Page 148
Final draft prETS 300 838: March 1998

5.6.4.1 ISO 8208 protocol and ETS 300 080 protocol

5.6.4.1.1 Introduction

This clause deals with the ISO 8208 [3] protocol and with the ETS 300 080 [1] protocol. Figure 25 shows
the localization of the user protocol access.

ISDN Layer 1

Profile A

ISO 8208 / T.90

D-channel B-channel
Signalling

LAP BLAP D

Network

Layer

Data Link

Layer

Physical
Layer

M

A

N
A

G

E
M

E

N

T

Application code

Terminal

ManagementOSI upper layer protocols and
other protocols

PUF

NAF

Adminis-
tration
Plane

User PlaneControl Plane

protocol
Layer2

interface

Figure 25: OSI location

General description of the conventions used are provided in subclause 5.2.3.

5.6.4.1.2 Description of messages

The User Plane messages provide an X.213-access to ISO 8208 [3] or ETS 300 080 [1] protocol stacks.
The following is a list and short description of significant User Plane messages. Table 43 gives an
overview of these messages.

Page 149
Final draft prETS 300 838: March 1998

Table 43: Overview of user messages

Mess.
Identif.

Class Message Name Purpose of Message used for
ISO 8208

used for
T.90

301 1 UConnectReq Requests establishment of a user connection. X X
302 1 UConnectInd Indicates establishment of a user connection has been

requested.
X X

303 1 UConnectRsp Indicates acceptance of user connection establishment. X X
304 1 UConnectCnf Confirms user connection has been established. X X
305 1 UDisconnectReq Requests removal of user connection. X X
306 1 UDisconnectInd Indicates removal of user connection. X X
307 1 UDataReq Requests data transfer on an established user connection. X X
308 1 UDataInd Indicates arrival of transferred data on an established user

connection.
X X

309 1 UExpeditedDataReq Requests expedited data transfer on an established user
connection.

X

310 1 UExpeditedDataInd Indicates presence of transferred expedited data on an
established user connection.

X

311 1 UResetReq Requests reset to initial state of an established user
connection.

X X

312 1 UResetInd Indicates reset to initial state of an established user
connection.

X X

313 1 UResetRsp Indicates acceptance of reset to initial state of an
established user connection.

X X

314 1 UResetCnf Confirms acceptance of reset to initial state of an
established user connection.

X X

315 1 UDataAcknowledgeReq Requests acknowledgement of data received on an
established user connection.

X

316 1 UDataAcknowledgeInd Indicates acknowledgement of data transferred on an
established user connection.

X

317 1 UReadyToReceiveReq Used to perform flow control for a user connection. X X
318 1 UReadyToReceiveInd Used to indicate flow control status on a user connection. X X

Page 150
Final draft prETS 300 838: March 1998

5.6.4.1.2.1 UConnectReq

Class: 1 (Basic Class).

Description: This message allows a PUF to initiate the establishment of a user connection.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

CalledDTEAddress O If provided, this value supersedes the NCO value.

CalledDTEAddressExt O If provided, this value supersedes the NCO value.

CallingDTEAddress O If provided, this value supersedes the NCO value.

CallingDTEAddressExt O If provided, this value supersedes the NCO value.

ReceiptConfirm O Used to request confirmation of data receipt for this user connection.

ExpeditedData O Used to request use of expedited data for the user connection.

QOSParameters O Quality of Service.

UserData O Maximum length is 16, or 128 if FastSelect parameter is used.

Bcug O Used to specify the Bilateral Closed User Group facility. If specified
then Called address parameters are not allowed.

FastSelect O If used this parameter invokes the use of the Fast Select facility.

PacketSize O Requested value, overrides any value specified as part of NCO
creation.

WindowSize O Requested value, overrides any value specified as part of NCO
creation.

FacilityData O Used to supply facilities.

If present, the following facilities shall be overridden by information
found elsewhere in this message:

- BCUG;

- FastSelect;

- Called Address Extension;

- Calling Address Extension.

Related: UConnectCnf.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

5.6.4.1.2.2 UConnectInd

Class: 1 (Basic Class).

Description: This message informs a PUF of an incoming demand to establish a user
connection.

Page 151
Final draft prETS 300 838: March 1998

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
CalledDTEAddress O Called address.
CalledDTEAddressExt O Called address extension.
CallingDTEAddress O Calling address.
CallingDTEAddressExt O Calling address extension.
ReceiptConfirm O Indicates if confirmation of data receipt is required on this user

connection.
ExpeditedData O Indicates if use of expedited data is allowed on this user connection.
QOSParameters O Quality of Service.
UserData O Maximum length is 16, or 128 if FastSelect parameter is present.
Bcug O Used to pass Bilateral Closed User Group facility information. If

present then addressing information shall not be present.
FastSelect O Authorization type to transmit UserData.
PacketSize M Value to be used for this user connection.
WindowSize M Value to be used for this user connection.
FacilityData O Used to supply facilities.

The following facilities, if present, are presented by the use of specific
parameters:
- BCUG;
- FastSelect;
- Called Address Extension;
- Calling Address Extension.

Related: UConnectRsp.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

5.6.4.1.2.3 UConnectRsp

Class: 1 (Basic Class).

Description: This message allows a PUF to accept the establishment of a user connection.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
CalledDTEAddress O Called address.
CalledDTEAddressExt O Called address extension.
CallingDTEAddress O Calling address.
CallingDTEAddressExt O Calling address extension.
RespondingDTEAddress O The address used to accept the user connection. This may be different

from the original called address.
RespondingDTEAddressExt O The address extension used to accept the user connection. This may

be different from the original called address extension.
ReceiptConfirm O Used to accept or not accept use of receipt confirmation for data on

this user connection.
ExpeditedData O Used to accept or not accept use of expedited data on this user

connection.
QOSParameters O Quality of Service.
UserData O Maximum length is 16, or 128 if FastSelect parameter was present on

UConnectInd.
PacketSize O Used to indicate agreed value.
WindowSize O Used to indicate agreed value.
FacilityData O Used to supply facilities.

Related: UConnectInd.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

Page 152
Final draft prETS 300 838: March 1998

5.6.4.1.2.4 UConnectCnf

Class: 1 (Basic Class).

Description: This message informs the PUF on the establishment of a user connection.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
CalledDTEAddress O Called address.
CalledDTEAddressExt O Called address extension.
CallingDTEAddress O Calling address.
CallingDTEAddressExt O Calling address extension.
RespondingDTEAddress O The address used to accept the user connection. This may be different

from the original called address.
RespondingDTEAddressExt O The address extension used to accept the user connection. This may

be different from the original called address.
ReceiptConfirm O Indicates if receipt confirmation of data can be used on this user

connection.
ExpeditedData O Indicates if expedited data can be used on this user connection.
QOSParameters O Quality of Service.
UserData O Maximum length is 16, or 128 if FastSelect parameter was present on

UConnectReq.
PacketSize M Value to be used for this user connection.
WindowSize M Value to be used for this user connection.
FacilityData O Used to supply facilities.

Related: UConnectReq.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

5.6.4.1.2.5 UDisconnectReq

Class: 1 (Basic Class).

Description: This message allows a PUF to remove a user connection.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
X213Cause O X.213 reason to remove the user connection.

Both X.213Cause and X25Cause cannot be used on the same
message. If neither X.213Cause and X.25Cause are supplied the
X.213Cause parameter with the value of disconnection-normal
condition shall be used.

RespondingDTEAddress O The address used to accept the user connection. This may be different
from the original called address.

RespondingDTEAddressExt O The address extension used to accept the user connection. This may
be different from the original called address.

UserData O Only allowed if FastSelect parameter was specified during the user
connection establishment.
Maximum size of 128 octets.

X25Cause O Reason to remove the user connection.
Both X.213Cause and X.25Cause cannot be used on the same
message.

X25Diagnostic C Complementary information for reason. Optional if X.25Cause
parameter supplied otherwise not allowed.

FacilityData O Used to supply facilities.
NOTE ITU-T Recommendation X.213 [6] cause is exclusive with ITU-T Recommendation X.25 [20] information. If

ITU-T Recommendation X.25 [20] cause, optionally associated with the X.25 diagnostic is used, the X.213
cause shall not appear.

Related: None.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

Page 153
Final draft prETS 300 838: March 1998

5.6.4.1.2.6 UDisconnectInd

Class: 1 (Basic Class).

Description: This message informs a PUF that a user connection has been removed.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
X213Origin M Identifies the initiator of the user connection removal.
X213Cause O X.213 Reason to remove the user connection.
UserData O Only allowed if FastSelect parameter was specified during the user

connection establishment.
Maximum size of 128 octets.

RespondingDTEAddress O The address used to accept the user connection. This may be different
from the original called address extension.

RespondingDTEAddressExt O The address extension used to accept the user connection. This may
be different from the original called address extension.

X25Cause O Reason to remove the user connection. Both X213Cause and
X25Cause cannot be used on the same message.

X25Diagnostic C Complementary information for Reason. Optional if X25Cause
parameter supplied otherwise not allowed.

FacilityData O Used to supply facilities.
NOTE: ITU-T Recommendation X.213 [6] cause is exclusive with ITU-T Recommendation X.25 information. If

ITU-T Recommendation X.25 cause, optionally associated with the ITU-T Recommendation X.25 diagnostic is
used, the ITU-T Recommendation X.213 [6] cause shall not appear.

Related: None.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

5.6.4.1.2.7 UDataReq

Class: 1 (Basic Class).

Description: This message allows a PUF to send a data packet. The size of a data packet is
restricted to the data packet size negotiated during the user connection
establishment.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
Bit_DQM O Used to set the Qualifier bit, the More Bit and to request confirmation

of receipt of data.

Remark: Data to send is mandatory. It is not provided as a parameter of the message.
Mandatory data shall be provided in the data buffer.

Related: UReadyToReceiveInd.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

5.6.4.1.2.8 UDataInd

Class : 1 (Basic Class).

Page 154
Final draft prETS 300 838: March 1998

Description: This message indicates the presence of received data to a PUF. The size of a
data packet is restricted to the data packet size negotiated during the user
connection establishment.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
Bit_DQM O Used to indicate the Qualifier bit value, the More Bit value and the

need of confirmation of data reception.

Remark: Data received is always provided, but not as a parameter of the message.
Data is provided in the data buffer. This buffer, in this case, is mandatory.

Related: UReadyToReceiveReq.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

5.6.4.1.2.9 UExpeditedDataReq

Class: 1 (Basic Class).

Description: This message allows a PUF to send expedited data. This data is not constrained
by the flow control mechanism used to control UDataReq messages.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
UserData M Expedited data to transfer.

Related: None.

Protocols: This message is used in the User Plane protocol ISO 8208 [3].

5.6.4.1.2.10 UExpeditedDataInd

Class: 1 (Basic Class).

Description: This message indicates to a PUF the reception of expedited data. This data was
not constrained by the flow control mechanisms used to control UDataInd
messages.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
UserData M Expedited data received.

Related: None.

Protocols: This message is used in the User Plane protocol ISO 8208 [3].

5.6.4.1.2.11 UResetReq

Class: 1 (Basic Class).

Description: This message allows the PUF to reset a user connection.

Page 155
Final draft prETS 300 838: March 1998

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
X213Cause O X.213 Reason to reset the user connection.

If neither X.213Cause and X.25Cause are supplied the X.213Cause
parameter with the value of disconnection-normal condition will be
used.

X25Cause O Reason to reset the user connection.
X25Diagnostic C Complementary information. Optional only if X25Cause supplied,

otherwise not allowed.
NOTE: X.213 cause is exclusive with X.25 information. If X.25 cause, optionally associated with the X.25 diagnostic, is

used the X.213 cause shall not appear.

Related: UResetCnf.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

5.6.4.1.2.12 UResetInd

Class: 1 (Basic Class).

Description: This message informs the PUF of the reset of a user connection.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
X213Origin M Identifies the initiator of the reset user connection.
X213Cause O X.213 Reason to reset the user connection.
X25Cause O Reason to reset the user connection.
X25Diagnostic C Complementary information. Optional only if X.25Cause supplied,

otherwise not allowed.
NOTE: X.213 cause is exclusive with X.25 information. If X.25 cause, optionally associated with the X.25 diagnostic is

used, the X.213 cause shall not appear.

Related: UResetRsp.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

5.6.4.1.2.13 UResetRsp

Class: 1 (Basic Class).

Description: This message allows the PUF to respond to a user connection reset, indicating
that it has dealt with the reset and is ready to proceed.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Related: UResetInd.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

5.6.4.1.2.14 UResetCnf

Class: 1 (Basic Class).

Description: This message completes the reset operation of a user connection. The PUF is
now able to transfer data once again.

Page 156
Final draft prETS 300 838: March 1998

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Related: UResetReq.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

5.6.4.1.2.15 UDataAcknowledgeReq

Class: 1 (Basic Class).

Description: This message allows the PUF to acknowledge received data. It should be used
when a UDataInd message is received with the Bit_DQM parameter set
indicating receipt of confirmation is required.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Related: UDataInd.

Protocols: This message is used in the User Plane protocol ISO 8208 [3]

5.6.4.1.2.16 UDataAcknowledgeInd

Class: 1 (Basic Class).

Description: This message informs the PUF of the reception of an acknowledgement for
transferred data. It acknowledges a UDataReq message that was sent with the
Bit_DQM parameter requesting confirmation of data reception.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Related: UDataReq.

Protocols: This message is used in the User Plane protocol ISO 8208 [3].

5.6.4.1.2.17 UReadyToReceiveReq

Class: 1 (Basic Class).

Description: This message allows the PUF to indicate to the NAF if it can accept incoming
data (UDataInd message). This message can only apply to an already
established user connection. Setting the ReadyFlag parameter to TRUE allows
the NAF to transfer incoming data to the PUF. Setting the ReadyFlag to FALSE
inhibits the transfer.

This flow control mechanism does not imply an end-to-end flow control.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
ReadyFlag M This flag indicates whether or not the PUF is ready to accept incoming

data.

Page 157
Final draft prETS 300 838: March 1998

Remarks: For a given connection, if more than one message with the same flag value is
sent, it shall be ignored by the NAF.

Related: UDataInd.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

5.6.4.1.2.18 UReadyToReceiveInd

Class: 1 (Basic Class).

Description: This message allows the NAF to indicate to the PUF if the user connection
permits the sending of data (UDataReq messages). This message can only
apply to an already established user connection. If the ReadyFlag parameter
value is FALSE, the NAF can not send data. If the value is TRUE the NAF
indicates that data transfer is allowed.

This flow control mechanism does not imply an end-to-end flow control.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
ReadyFlag M This flag indicates whether or not the NAF is ready to receive data for

transmission on a user connection.

Related: UDataReq.

Protocols: This message is used in the two User Plane protocols ETS 300 080 [1] and
ISO 8208 [3].

5.6.4.1.3 Messages parameters

This subclause describes parameters for the ISO 8208 [3] User Plane and the ETS 300 080 [1] User
Plane. They are alphabetically ordered.

Information encoding is provided in subclause 5.2.2.

Page 158
Final draft prETS 300 838: March 1998

Table 44: Overview of user parameters

Param.
Identif.

Parameter Name Use in ISO 8208
user messages

Use in
ETS 300 080
user messages

Use in
UAttributeSet

Other use

1 Algorithm X
2 Bilateral closed user group X X
4 Bit_DQM X X (see note)
5 CalledDTEAddress X X
6 CalledDTEAddressExt X X
9 CallingDTEAddress X X
10 CallingDTEAddressExt X X
29 ExpeditedData X
31 FacilityData X X (see note)
32 FastSelect X X (see note) X
33 GroupID X
38 L2ConnectionMode X (see note)
39 L2FrameSize X (see note)
40 L2WindowSize X (see note)
41 L2XID X (see note)
42 L3ConnectionMode X (see note)
43 L3IncomingCount X (see note)
44 L3OutgoingVCCount X (see note)
45 L3TwoWayCount X (see note)
50 NCOType X
52 PacketSize X X X
54 QOSParameters X X X
55 ReadyFlag X X
57 ReceiptConfirm X
58 RespondingDTEAddress X X
59 RespondingDTEAddressExt X X
61 TEI X
62 UProtocol X
63 UAttributeName X
64 UDirection X
65 UserData X
67 WindowSize X X X
68 X213Cause X X
69 X213Origin X X
70 X25Cause X X
71 X25Diagnostic X X
NOTE: This parameter shall be used in accordance with the rules of ETS 300 080 [1].

5.6.4.1.3.1 Algorithm

Description: This parameter is used to pass the name of the security algorithm to be used to
the NAF.

Type: 1.

Fields Field type Direction Required Comment
Algorithm IA5-string P M The security algorithm is identified by its name.

The names of the available algorithms can be
obtained using the Property information.
"nosecurity": this value for this parameter indicates
that security is no longer needed for the
connection.
16 bytes is the maximum length.

5.6.4.1.3.2 Bilateral closed user group (Bcug)

Description: This parameter is used to pass Bilateral closed user group information to/from
the PUF.

Page 159
Final draft prETS 300 838: March 1998

Type: 2.

Fields Field type Direction Required Comment
Bcug Octet-string B M Index to bilateral closed user group selected for

user connection.
4 octets is the fixed length.

5.6.4.1.3.3 Bit_DQM

Description: This parameter is used to pass to/from the PUF:

- need for receipt of data (bit 1). This bit is equivalent to the X.25 D bit;
- Qualifier bit value (bit 2);
- More Data bit value (bit 3).

Each information use a binary position. The Most Significant Bit (MSB) if the bit
8 and the Least Significant Bit is the bit 1. Bit 1 is for value 1, bit 2 for value 2
and bit 3 for value 4. The result value applying to this parameter is the sum of
the value for each bit (logical OR).

Type: 4.

Fields Field type Direction Required Comment
DQM Octet B M Bit 1:

1 - Confirmation of data reception is allowed or
required.
0 - Confirmation of data reception is not allowed or
not required.
Bit 2:
1 - Set Qualifier bit.
0 - Reset Qualifier bit.
Bit 3:
1 - Set More bit.
0 - Reset More bit.

Remarks: Invalid use of the More bit with the Qualifier bit shall result in the user connection
being reset.

For ETS 300 080 [1] protocol, this parameter shall be used in accordance with
the rules of ETS 300 080 [1].

5.6.4.1.3.4 CalledDTEAddress

Description: This parameter is used to pass remote DTE address information to/from the
PUF.

Type: 5.

Fields Field type Direction Required Comment
Address IA5-string B M 15 octets is the maximum length.

Remark: The BCD translation is provided by the NAF.
In the message exchange from PUF to NAF this parameter shall either be
supplied in the NCO or in the appropriate message.

5.6.4.1.3.5 CalledDTEAddressExt

Description: This parameter is used to pass remote DTE address extension information
to/from the PUF.

Type: 6.

Page 160
Final draft prETS 300 838: March 1998

Fields Field type Direction Required Comment
AddressExt IA5-string B M 40 octets is the maximum length.

Remark: The BCD translation is provided by the NAF.

5.6.4.1.3.6 CallingDTEAddress

Description: This parameter is used to pass local DTE address information to/from the PUF.

Type: 9.

Fields Field type Direction Required Comment
Address IA5-string B M 15 octets is the maximum length.

Remark: The BCD translation is provided by the NAF.

5.6.4.1.3.7 CallingDTEAddressExt

Description: This parameter is used to pass local DTE address extension information to/from
the PUF.

Type: 10.

Fields Field type Direction Required Comment
AddressExt IA5-string B M 40 octets is the maximum length

Remark: The BCD translation is provided by the NAF.

5.6.4.1.3.8 ExpeditedData

Description: This parameter is used to pass use of expedited data information to/from the
PUF.

Type: 29.

Fields Field type Direction Required Comment
Usage Boolean B M TRUE - Use of expedited data is required or

supported.
FALSE - Use of expedited data is not required or
not supported.

5.6.4.1.3.9 FacilityData

Description: This parameter is used to pass facility information to/from the PUF.

Type: 31.

Fields Field type Direction Required Comment
FacilityData Octet string B M Encoded as facility information defined in

ISO 8208 [3].
109 octets is the maximum length.

Page 161
Final draft prETS 300 838: March 1998

5.6.4.1.3.10 FastSelect

Description: This parameter is used to pass Fast Select Facility information to/from the PUF.

Type: 32.

Fields Field type Direction Required Comment
FastSelect Octet B M non-restricted (1) - Called DTE is not required to

remove the user connection before establishment
is complete.
restricted (2) - Called DTE is required to remove
the user connection before establishment is
complete.

Remarks: When specified on a UConnectReq message this parameter allows the
UserData parameter to have a maximum length of 128 octets. If the restricted
option is selected it indicates that the user connection cannot be established and
that a UDisconnectInd should be expected with a maximum UserData
parameter of 128 octets. If the nonrestricted option is specified then the user
connection can be established and the subsequent UConnectCnf can have a
maximum UserData parameter of 128 octets. Subsequent to this both the
UDisconnectInd and UDisconnectReq fields may also have maximum UserData
parameters of 128 octets.

When received on a UConnectInd message this parameter indicates that the
UserData parameter within the message can have a maximum length of
128 octets. If the restricted option is selected it indicates that the user
connection cannot be established and that the PUF shall respond with
UDisconnectReq. The UserData parameter with this message can have a
maximum length of 128 octets. If the non-restricted option is selected, the PUF
can respond with UConnectRsp with a maximum UserData parameter of
128 octets Subsequently, both the UDisconnectInd and UDisconnectReq fields
may also have maximum UserData parameters of 128 octets.

5.6.4.1.3.11 GroupID

Description: This parameter is used to pass the group identifier to/from the PUF.

Type: 33.

Fields Field type Direction Required Comment
GroupID Octet string B M The value is unique for a PUF/NAF relation.

4 octets is the fixed length.

5.6.4.1.3.12 L2ConnectionMode

Description : This parameter is used to pass details of the layer connection mode to the NAF.

Type: 38.

Fields Field type Direction Required Comment
Value Octet P M dte (1) - Act as DTE as defined in ISO 7776 [4]

dce (2) - Act as DCE as defined in ISO 7776 [4]
auto (3) - When calling act as DTE, when called
act as DCE.

Page 162
Final draft prETS 300 838: March 1998

5.6.4.1.3.13 L2FrameSize

Description: This parameter is used to pass details of the layer 2 frame size to the NAF.

Type: 39.

Fields Field type Direction Required Comment
Value Octet string P M Frame size in octets.

Length is fixed to 2 octets.
The first octet contains the most significant byte of
the 2 bytes containing the value.

5.6.4.1.3.14 L2WindowSize

Description: This is used to pass details of the layer 2 window size to the NAF.

Type: 40.

Fields Field type Direction Required Comment
Value Octet P M Window size

5.6.4.1.3.15 L2XID

Description: This is used to pass details of the layer 2 XID value and its use.

Type: 41.

Fields Field type Direction Required Comment
Use Octet P M send (1) - send XID.

match (2) - match XID with XID received. IF XID
does not match connection shall not be
established.

Value Octet-string P M XID value [Identifier and signature].
Maximum length is 64 octets.

5.6.4.1.3.16 L3ConnectionMode

Description: This parameter is used to pass details of the layer connection mode to the NAF.

Type: 42.

Fields Field type Direction Required Comment
Value Octet P M dte (1) - act as DTE.

dce (2)- act as DCE.
auto (3)- act as DTE when calling, act as DCE
when called.
dxe (4)- use Restart Packet to determine DTE or
DCE role as in ISO 8208 [3] auto.

5.6.4.1.3.17 L3IncomingVCCount

Description: This parameter is used to pass the number of connections that may be
established at any time by incoming call establishment requests.

Type: 43.

Fields Field type Direction Required Comment
Value Octet-string P M Number of connections. Maximum value is 4 095.

Length is fixed to 2 octets.

Page 163
Final draft prETS 300 838: March 1998

5.6.4.1.3.18 L3OutgoingVCCount

Description: This parameter is used to pass the number of connections that may be
established at any instant by outgoing call establishment requests.

Type: 44.

Fields Field type Direction Required Comment
Value Octet-string P M Number of connections. Maximum value is 4095.

Length is fixed to 2 octets.

5.6.4.1.3.19 L3TwoWayVCCount

Description: This parameter is used to pass the number of connections that may be
established at any instant by outgoing or incoming connection establishment
requests.

Type: 45.

Fields Field type Direction Required Comment
Value Octet-string P M Number of connections. Maximum value is 4095.

Length is fixed to 2 octets.

5.6.4.1.3.20 NCOType

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment
Identifier Octet P M U3 (2) - network user access with NAF signalling

co-ordination (NAF co-ordination functionality).
C/U (3) - signalling and network layer user access.
U3G (4) - network user access to additional virtual
circuits. This NCO shall be grouped to an existing
U3 or C/U type NCO.

5.6.4.1.3.21 PacketSize

Description: This parameter is used to pass packet size information to/from the PUF.

Type: 52.

Fields Field type Direction Required Comment
Negotiation Boolean B M Used to indicate if negotiation of packet size is

possible.
TRUE - negotiation possible.
FALSE - negotiation not possible.

Invalue Octet B M Inbound maximum user data length (see table 44).
Maximum size of data that can be received with
UDataInd.

Outvalue Octet B M Outbound maximum user data length
(see table 44).
Maximum size of data that can be passed with
UDataReq.

Page 164
Final draft prETS 300 838: March 1998

Remarks: This parameter is used to determine the maximum size of data buffers that can
be passed with the UDataReq and UDataInd messages. It is used as follows:
- on UConnectReq the PUF may specify the values it wishes to use;
- on UConnectCnf the NAF shall always specify the values to be used for

the user connection;
- on UConnectInd the NAF shall always indicate the values to be used for

the user connection. It also indicates if it is possible for the PUF to
negotiate these values;

- on UConnectRsp the PUF can specify values if the UConnectInd
indicated that negotiation was possible.

For ETS 300 080 [1] protocol, this parameter shall be used in accordance
with the rules of ETS 300 080 [1].

Table 45: Precoded packet size values

Precoded value Packet size (octet) Precoded value Packet size (octet)
4 16 9 512
5 32 10 1 024
6 64 11 2 048
7 128 12 4 096
8 256

5.6.4.1.3.22 QOSParameters

Description: This parameter is used to pass Quality of Service information to/from the PUF.

Type: 54.

Fields Field type Direction Required Comment
Throughput Usage Boolean B M Indicates if following values are included.

InTarget Octet B C Values provided in the table 45.
InLowest Octet B C Values provided in the table 45.
InAvailable Octet B C Values provided in the table 45.
InSelected Octet B C Values provided in the table 45.
OutTarget Octet B C Values provided in the table 45.
OutLowest Octet B C Values provided in the table 45.
OutAvailable Octet B C Values provided in the table 45.
OutSelected Octet B C Values provided in the table 45.

NCPriority Usage Boolean B M Indicates if following values are included.
Target Octet B C (see note 1)
Lowest Octet B C (see note 1)
Available Octet B C (see note 1)
Selected Octet B C (see note 1)

TransitDelay Usage Boolean B M Indicates if following values are included.
Selected Octet-string B C (see note 2)
Target Octet-string B C (see note 2)
Maximum Octet-string B C (see note 2). Conditional if Target -

previous one - used, otherwise absent.
End to End Transit
Delay

Usage Boolean B M Indicates if following values are included.

Selected Octet-string B C (see note 2)
Target Octet-string B C (see note 2)
Maximum Octet-string B C (see note 2). Conditional if Target -

previous one - used, otherwise absent.
NOTE 1: The NCPriority fields can take any value from 1 (highest priority) to 10 (lowest priority). If not used, the field shall be

filled with the value 0. If unspecified, the field shall be filled with the value 11.
NOTE 2: Length is fixed to 2. The lower octet contains least significant byte. 65535 means not used. Delay is expressed in

milliseconds.

Remarks: For ETS 300 080 [1] protocol, this parameter shall be used in accordance with
the rules of ETS 300 080 [1].

Page 165
Final draft prETS 300 838: March 1998

Table 46: Throughput precoding value

Precoding value Throughput class Precoding value Throughput class
3 75 9 4 800
4 150 10 9 600
5 300 11 19 200
6 600 12 48 000
7 1 200 13 64 000
8 2 400 0 unused

5.6.4.1.3.23 ReadyFlag

Description: This parameter is used to request and indicate flow control status on a user
connection.

Type: 55.

Fields Field type Direction Required Comment
Usage Boolean B M TRUE - Data transfer is allowed.

FALSE - Data transfer is not allowed.

5.6.4.1.3.24 ReceiptConfirm

Description

This parameter is used to request confirmation of data receipt for a User Plane connection.

Type: 57.

Fields Field type Direction Required Comment
Value Boolean B M TRUE - Confirmation requested

FALSE - Confirmation not requested

5.6.4.1.3.25 RespondingDTEAddress

Description: This parameter is used to pass responding DTE address information to/from the
PUF.

Type: 58.

Fields Field type Direction Required Comment

Address IA5-string B M 16 octets is the maximum length.

5.6.4.1.3.26 RespondingDTEAddressExt

Description: This parameter is used to pass responding DTE address extension information
from/to the PUF.

Type: 59.

Fields Field type Direction Required Comment
AddressExt IA5-string B M 40 octets is the maximum length

5.6.4.1.3.27 TEI

Description: This parameter is used to access a permanent link to a data packet switch
(packet connection in D-channel).

Page 166
Final draft prETS 300 838: March 1998

Type: 61.

Fields Field type Direction Required Comment
Value Octet B M

5.6.4.1.3.28 UProtocol

Description: This is used to select the User Plane protocol.

Type: 62.

Fields Field type Direction Required Comment
L3Protocol Octet P M Default (255) - ETS 300 080 [1]

ETS 300 080 (1) [1]
ISO 8208 (2) [3]

L2Protocol Octet P O Default (255) - ISO 7776 [4]
L1Protocol Octet P O Default (255) - Transparent B-channel access.

Remark: Other possible values (for other protocols) are provided in subclause 5.6.

5.6.4.1.3.29 UAttributeName

Description : This parameter is used to pass the name of a static set of User Plane attributes
from the PUF.

Type: 63.

Fields Field type Direction Required Comment
AttributeName IA5-string P M 16 bytes is the maximum length.

5.6.4.1.3.30 UDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the User Plane.

Type: 64.

Fields Field type Direction Required Comment
Direction Octet P M listen (1)

call (2)
both (3)

5.6.4.1.3.31 UserData

Description: This parameter is used to pass data that is limited in size to/from the PUF.

Type: 65.

Fields Field type Direction Required Comment
Data Octet-string B M 128 octets is the maximum length.

The maximum length allowed varies from
message to message and is also different
depending on the use of the FastSelect parameter.

Page 167
Final draft prETS 300 838: March 1998

5.6.4.1.3.32 WindowSize

Description: This parameter is used to pass window size information to/from the PUF.

Type: 67.

Fields Field type Direction Required Comment
Negotiation Boolean B M Used to indicate if negotiation of window size is

possible.
TRUE - negotiation possible.
FALSE - negotiation not possible.

Invalue Octet B M Inbound window size.
Outvalue Octet B M Outbound window size.

Remarks: This parameter is used to determine the window sizes to be used for a user
connection.
- On UConnectReq, the PUF may specify the values it wishes to use.
- On UConnectCnf, the NAF shall always specify the values to be used for

the user connection.
- On UConnectInd the NAF shall always indicate the values to be used for

the user connection. It also indicates if it is possible for the PUF to
negotiate these values.

- On UConnectRsp the PUF can specify values if the UConnectInd
indicated that negotiation was possible.

5.6.4.1.3.33 X213Cause

Description: This parameter is used to pass X.213 Cause information to/from the PUF.

Type: 68.

Fields Field type Direction Required Comment
Value Octet B M See User Plane return code values in

subclause 5.6.4.1.7.3.

5.6.4.1.3.34 X213Origin

Description: This parameter is used to pass X.213 origin information to/from the PUF.

Type: 69.

Fields Field type Direction Required Comment
Value Octet B M undefined (1)

NAF Provider (2)
PUF User (3)

5.6.4.1.3.35 X25Cause

Description: This parameter is used to pass X.25 Cause information to/from the PUF.

Type: 70.

Fields Field type Direction Required Comment

Value Octet B M See ISO 8208 [3] cause code values.

Page 168
Final draft prETS 300 838: March 1998

5.6.4.1.3.36 X25Diagnostic

Description: This parameter is used to pass X.25 Diagnostic information to/from the PUF.

Type: 71.

Fields Field type Direction Required Comment
Value Octet B M See ISO 8208 [3] diagnostic values.

5.6.4.1.4 State diagram

Figure 26 shows the different states of a user connection using the user received messages and in which
order these messages shall be used.

Page 169
Final draft prETS 300 838: March 1998

1 Idle

UConnectReq UConnectInd

2
Outgoing connection

pending

3
Incoming connection

pending

UConnectCnf UConnectRsp

UDISCONNECT UDISCONNECT4
Data transfer

ready

UResetReq UResetInd

UResetCnf UResetRsp

5
PUF invoked
reset pending

6
Network invoked

reset pending

UDataReq

UDataInd

UReadyToReceiveReq

UReadyToReceiveInd

UDISCONNECTUDISCONNECT

UDISCONNECT

UDataAcknowledgeInd

UDataAcknowledgeReq

UExpeditedDataInd

UExpeditedDataReq

(see note 2)

(see note 2)

(see note 2)

NOTE 1: Where UDISCONNECT appears it can be either UDisconnectReq or UDisconnectInd.

NOTE 2: This message is used for the ISO 8208n protocol only.

Figure 26: Overview of the User Plane messages

5.6.4.1.5 Co-ordination function

Page 170
Final draft prETS 300 838: March 1998

The co-ordination function may be used. See subclause 7.4 for details.

5.6.4.1.6 Selection criteria

This subclause deals with ISO 8208 [3] specific parameters. General NCO criteria are provided in
subclause 5.8.

5.6.4.1.6.1 NCO Selection

To select a NCO, the NAF uses the following parameters:

- packet size negotiation;
- window size negotiation.

5.6.4.1.6.1.1 Packet size negotiation

In the INCOMING CALL packet, if the packet size is not provided, the default value, i.e. 128 octets is
assumed.

The NCO packet size is correct if one of the following cases is relevant:

- the packet size - provided in the UAttributeSet - is equal to the packet size provided in the
INCOMING CALL packet or assumed;

- if there is no packet size provided in the UAttributeSet.

5.6.4.1.6.1.2 Window size negotiation

In the INCOMING CALL packet, if the Window size is not provided, the default value, i.e. 2, is assumed.

The NCO window size is correct if one of the following cases is relevant:

- the window size - provided in the UAttributeSet - is equal to the window size provided in the
INCOMING CALL packet or assumed;

- if there is no window size provided in the UAttributeSet.

5.6.4.1.6.1.3 Effective packet size and window size negotiation

In the UConnectRsp, if packet size is not provided, the packet size provided in the incoming call - i.e.
UConnectInd - is accepted by the PUF. The same rules apply to the window size.

In the UConnectCnf, if the packet size/window size is not provided, the packet size/window size provided
during the outgoing call - i.e. UConnectReq - is approved for use by the PUF.

5.6.4.1.6.2 Action if no NCO available

A disconnect with the X213Reason "Connection rejection - reason unspecified transient" is issued by the
NAF.

5.6.4.1.7 Specific error handling and codes

Errors are dealt as given in subclauses 5.6.4.1.7.1 to 5.6.4.1.7.3.

Page 171
Final draft prETS 300 838: March 1998

5.6.4.1.7.1 Invalid use of User Plane messages

In case of:

- invalid use of Receipt Confirmation Service;
- invalid use of Confirmation request on UDataReq;
- invalid length of UDataReq UserData parameter;
- invalid use of Expedited Data;
- invalid issuing of messages while in Reset state;

action is:

- PUF is sent UDisconnectInd.

In case of:

- invalid Use of Bit_DQM (association between More and Qualifier bits) parameters on
subsequent UDataReq messages.

action is:

- PUF is sent UResetInd.

5.6.4.1.7.2 Other errors

In the case of parameter content error, PUF is sent UDisconnectInd.

5.6.4.1.7.3 Causes

These values can be specified and are returned in the X213Cause parameter.

Table 47: X213Cause parameter value

Return Code Meaning ErrorSpecific

Information

Undefined 220 Undefined error situation. Not present

NSAPunreachablePerm 221 Connection Rejection - NSAP unreachable/fixed condition. Not present

DiscTrans 225 Disconnection - transient condition. Not present

DiscPerm 226 Disconnection - fixed condition. Not present

NoReasonTrans 227 Connection Rejection - reason unspecified/transient condition. Not present

NoReasonPerm 228 Connection Rejection - reason unspecified/fixed condition. Not present

QOSnotavailTrans 229 Connection Rejection - QOS not available/transient condition. Not present

QOSnotavailPerm 230 Connection Rejection - QOS not available/fixed condition. Not present

NSAPunreachableTrans 231 Connection Rejection - NSAP unreachable/transient condition. Not present

NSAPunknown 232 Connection Rejection - NSAP address unknown (fixed

condition).

Not present

DiscNorm 241 Disconnection - normal condition. Not present

DiscAbnorm 242 Disconnection - abnormal condition. Not present

ConRejectTrans 244 Connection rejection - transient condition. Not present

ConRejectPerm 245 Connection rejection - fixed condition. Not present

ConRejectUserData 248 Connection rejection - incompatible information in UserData

parameter.

Not present

Page 172
Final draft prETS 300 838: March 1998

5.6.4.1.8 AttributeSet

5.6.4.1.8.1 AttributeSet parameters

Table 48: User Plane Attribute Set (UAttributeSet) parameters

Parameters Required Comment
WindowSize O Layer 3 window size. See subclause 10.1.3.32.
PacketSize O Layer 3 packet size. See subclause 10.1.3.21.
FastSelect O Fast select facility. See subclause 10.1.3.10.
QOSParameters O Quality of service. See subclause 10.1.3.22.
UProtocol O See remark. See also subclause 10.1.3.28.
L3ConnectionMode O See remark. See also subclause 10.1.3.16.
L3TwoWayVCCount O See remark. See also subclause 10.1.3.19.
L3IncomingVCCount O See remark. See also subclause 10.1.3.17.
L3OutgoingVCCount O See remark. See also subclause 10.1.3.18.
TEI O See remark. See also subclause 10.1.3.27.
L2ConnectionMode O See remark. See also subclause 10.1.3.12.
L2WindowSize O See remark. See also subclause 10.1.3.14.
L2FrameSize O See remark. See also subclause 10.1.3.13.
L2XID O See remark. See also subclause 10.1.3.15.

Remark: These parameters can only be used during NCO creation which contains
Control Plane information. NCOs that are to be associated with the use of a
GroupID may not specify these parameters. Refer to subclause 5.4.1
(ACreateNCO operation) for details.

If parameters are omitted defaults shall be used. The default values are User
Plane protocol dependent. The NAF shall supply the correct value depending on
the protocol. Default values are described in annex D.

Table 49: User Plane Address Set (UAddressSet) parameters

Parameters Required Comment
CalledDTEAddress O See subclause 5.6.4.1.3.4 for parameter definition.
CalledDTEAddressExt O See subclause 5.6.4.1.3.5 for parameter definition.
CallingDTEAddress O See subclause 5.6.4.1.3.6 for parameter definition.
CallingDTEAddressExt O See subclause 5.6.4.1.3.7 for parameter definition.

5.6.4.1.8.2 Static attribute content

The attribute sets described below use following conventions:

- Name shall be used with the ACreateNCOReq message;
- all numerical values are decimal values.

Name : U_ISO8208
WindowSize : 2
PacketSize : 128 (byte)
UProtocol : ISO 8208
L3ConnectionMode : DXE
L3TwoWayVCCount : local arrangement
L3IncomingVCCount : 1
L3OutgoingVCCount : 1
L2ConnectionMode : Auto
L2WindowSize : 7
L2FrameSize : 128 (byte)
L2XID : none

Page 173
Final draft prETS 300 838: March 1998

Name : U_TELEMATIC_TERM
WindowSize : 2
PacketSize : 128 (byte)
UProtocol : ETS 300 080
L3ConnectionMode : DXE
L3TwoWayVCCount : local arrangement
L3IncomingVCCount : 0
L3OutgoingVCCount : 0
L2ConnectionMode : Auto
L2WindowSize : 7
L2FrameSize : 128 (byte)

5.6.4.2 T.70NL protocol

5.6.4.2.1 Introduction

This subclause deals with the T.70 protocol. In this ETS, whenever ITU-T Recommendation T.70 [15] is
referenced, T.70NL is implied (Network Layer).

The OSI location of the T.70 protocol is shown in figure 27.

ISDN Layer 1

Profile A

T70
D-channel B-channel

Signalling

LAP BLAP D

Network
Layer

Data Link
Layer

Physical
Layer

M
A
N
A
G
E

M
E
N
T

Application code

Terminal
ManagementOSI upper layer protocols and

other protocols

PUF

NAF

Adminis-
tration
Plane

User PlaneControl Plane

protocol
Layer2

interface

Figure 27: OSI location

General description conventions are provided in subclause 5.2.3.

5.6.4.2.2 Messages

The User Plane messages provide an access to T.70 protocol stacks. The following are a list and short
description of relevant User Plane messages. Table 50 gives an overview of these messages.

Table 50: Overview of user messages

Mess.
Identif.

Class Message Name Purpose of Message

307 1 UDataReq Request data transfer on an established user connection.
308 1 UDataInd Indicate arrival of transferred data on an established user

connection.

Page 174
Final draft prETS 300 838: March 1998

5.6.4.2.2.1 UDataReq

Class: 1 (Basic Class).

Description: This message allows a PUF to send a data packet. The size of a data packet is
restricted to the data packet size negotiated during the user connection
establishment.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
Bit_DQM O Used to set the ITU-T Recommendation T.70 [15] More Bit and

Qualifier bit.

Remark: Data to send are mandatory. They are not provided as a parameter of the
message.

Mandatory data shall be provided in the data buffer.

Related: UReadyToReceiveInd.

5.6.4.2.2.2 UDataInd

Class : 1 (Basic Class).

Description: This message indicates the presence of received data to a PUF. The size of a
data packet is restricted to the data packet size negotiated during the user
connection establishment.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
Bit_DQM O Used to indicate the ITU-T Recommendation T.70 [15] More Bit and

Qualifier bit reception.

Remark: Data received are always provided, but not as a parameter of the message.

Data are provided in the data buffer. This buffer, in this case, is
mandatory.

Related: UReadyToReceiveReq.

5.6.4.2.3 Messages parameters

This subclause describes parameters for the T.70 User Plane. They are ordered by parameter identifiers.
Information encoding is provided in subclause 5.2.2.

Table 51: Overview of user parameters

Param.
Identif.

Parameter Name Use in user messages Use in UAttributeSet Other use

4 Bit_DQM X
50 NCOType X
52 PacketSize X
62 UProtocol X
63 UAttributeName
64 UDirection X

Page 175
Final draft prETS 300 838: March 1998

5.6.4.2.3.1 Bit_DQM

Description: This parameter is used to pass to/from the PUF:

- More data bit value (bit 3).

Each information element uses a binary position. The MSB is bit 8 and the Least
Significant Bit (LSB) is bit 1. Bit 1 is for value 1, bit 2 for value 2 and bit 3 for
value 4. The resulting value applying to this parameter is the sum of the value
for each bit (logical OR).

Type : 4.

Fields Field type Direction Required Comment
DQM Octet B M Bit 1:

0 - Confirmation of data reception is not allowed or
not required.
Bit 2:
0 - Reset Qualifier bit.
Bit 3:
1 - Set More bit.
0 - Reset More bit.

5.6.4.2.3.2 NCOType

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment
Identifier Octet P M U3 (2) - network user access with NAF signalling

co-ordination (NAF co-ordination functionality).

5.6.4.2.3.3 PacketSize

Description: This parameter is used to pass packet size information to/from the PUF.

Type: 52.

Fields Field type Direction Required Comment
Negotiation Boolean B M Used to indicate if negotiation of packet size is

possible.
TRUE - negotiation possible.
FALSE - negotiation not possible.

Invalue Octet B M Inbound maximum user data length (see table 51).
Maximum size of data that can be received with
UDataInd.

Outvalue Octet B M Outbound maximum user data length
(see table 51).
Maximum size of data that can be passed with
UDataReq.

Remarks: This parameter is used to determine the maximum size of data buffers that can
be passed using the UDataReq and UDataInd messages.

Table 52: Precoded packet size values

Precoded value Packet size (octet) Precoded value Packet size (octet)
4 16 8 256
5 32 9 512
6 64 10 1 024
7 128 11 2 048

Page 176
Final draft prETS 300 838: March 1998

5.6.4.2.3.4 UProtocol

Description: This is used to select the User Plane protocol.

Type: 62.

Fields Field type Direction Required Comment
L3Protocol Octet P M T.70 (3)
L2Protocol Octet P O Default (255) - ISO 7776 [4]
L1Protocol Octet P O Default (255) - Transparent B-channel access

Remark: Other possible values (for other protocols) are provided in subclause 5.6.

5.6.4.2.3.5 UAttributeName

Description : This parameter is used to pass the name of a static set of User Plane attributes
from the PUF.

Type: 63.

Fields Field type Direction Required Comment
AttributeName IA5-string P M 16 bytes is the maximum length.

5.6.4.2.3.6 UDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the User Plane.

Type : 64.

Fields Field type Direction Required Comment
Direction Octet P O both (3)

5.6.4.2.4 State diagram

User messages do not change the state of the connection.

5.6.4.2.5 Co-ordination function

The co-ordination function can not be used.

5.6.4.2.6 Selection criteria

No T.70 specific parameters are used. General NCO criteria are provided in subclause 5.8.

5.6.4.2.7 Specific error handling and codes

Protocol errors are not available at the interface.

5.6.4.2.8 Static attributes

5.6.4.2.8.1 AttributeSet parameters

Table 53: User Plane Attribute Set (UAttributeSet) Parameters

Parameters Required Comment
UProtocol O See remark. See also subclause 5.6.4.2.3.4.
PacketSize O See remark. See also subclause 5.6.4.2.3.3.

Page 177
Final draft prETS 300 838: March 1998

Remark: These parameters can only be used during NCO creation which contains
Control Plane information. Refer to subclause 5.4.1(ACreateNCO operation) for
details.

If parameters are omitted defaults shall be used by the NAF. Default values are
described in annex D.

5.6.4.2.8.2 Static attribute content

Name : U_T70

UProtocol : T.70

PacketSize : 128

5.6.5 V.120 Protocol

5.6.5.1 Introduction

This clause deals with the V.120 protocol. Figure 28 shows the localization of the user protocol access.

ISDN Layer 1

Profile A

D-channel B-channel
Signalling

LAP BLAP D

Network
Layer

Data Link
Layer

Physical
Layer

M
A
N
A
G
E
M
E
N
T

Application code

Terminal
ManagementOSI upper layer protocols and

other protocols

PUF

NAF

Adminis-
tration
Plane

User PlaneControl Plane

NULL
Layer

Layer 3 protocol NULL
Layer

NULL
LayerV120

interface

Figure 28: OSI location

General description conventions are provided in subclause 5.2.3.

5.6.5.2 Messages

Table 54 gives an overview of user messages.

Page 178
Final draft prETS 300 838: March 1998

Table 54: Overview of user messages

Mess.
Identif.

Class Message Name Purpose of Message

307 1 UDataReq Request transfer of data.
308 1 UDataInd Indicate arrival of transferred data.

317 1 UReadyToReceiveReq Used to perform flow control for a user connection.

318 1 UReadyToReceiveInd Used to indicate flow control status on a user connection.

319 1 UErrorInd Indicate an error.

5.6.5.2.1 UDataReq

Class: 1 (Basic Class).

Description: This message allows a PUF to send either the beginning, the end, a part or a
complete frame. The Lower Layer Reference is related to the reference
negotiated during the channel establishment, if any.

Parameters :

Name Required Comment
NCOID M Identifies the user connection.
LLR O Lower Layer Reference. Only the first 13 bits will be used.
BlockType O Indicates if the block is a type of begin, end, part or complete block. By

default, the type is complete.

Remark: Data to send are mandatory. They are not provided as a parameter of the
message. Mandatory data shall be provided in the data buffer and the data size
is limited to the value which apply to the N201 ETS 300 102-1 [2] protocol
parameter which is generally equal to 260 octets.

Related: UReadyToReceiveInd.

5.6.5.2.2 UDataInd

Class: 1 (Basic Class).

Description: This message indicates to a PUF the reception of the beginning, the end, a part
or a complete frame. The Lower Layer Reference is related to the reference
negotiated during the channel establishment, if any.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
LLR O Lower Layer Reference. Only the first 13 bits will be used.
BlockType O Indicates if the block is a type of begin, end, part or complete block. By

default, the type is complete.

Remark: Data received are always provided, but not as a parameter of the message.
Data are provided in the data buffer. This buffer, in this case, is mandatory and
the data size is limited to the value which apply to the N201 ETS 300 102-1 [2]
protocol parameter which is generally equal to 260 octets.

Related: UReadyToReceiveReq.

5.6.5.2.3 UReadyToReceiveReq

Class: 1 (Basic Class).

Page 179
Final draft prETS 300 838: March 1998

Description: This message allows the PUF to indicate to the NAF if it can accept incoming
data (UDataInd message). This message can only apply to an already
established user connection. Setting the ReadyFlag parameter to TRUE allows
the NAF to transfer incoming data to the PUF. Setting the ReadyFlag to FALSE
inhibits the transfer.

This flow control mechanism does not imply an end to end flow control.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
ReadyFlag M This flag indicates whether or not the PUF is ready to accept incoming

data.

Remarks : For a given connection, if more than one message with the same flag value is
sent, it shall be ignored by the NAF.

Related : UDataInd.

5.6.5.2.4 UReadyToReceiveInd

Class: 1 (Basic class).

Description: This message allows the NAF to indicate to the PUF if the user connection
permits the sending of data (UDataReq messages). This message can only
apply to an already established user connection. If the ReadyFlag parameter
value is FALSE, the NAF can not send data. If the value is TRUE the NAF
indicates that data transfer is allowed.

This flow control mechanism does not imply an end-to-end flow control.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
ReadyFlag M This flag indicates whether or not the NAF is ready to receive data for

transmission on a user connection.

Related: UDataReq.

5.6.5.2.5 UErrorInd

Class: 1 (Basic Class).

Description: This message indicates to a PUF that an error has occurred. It may be a parity
and/or a stop bit error, a FCS error or sequence error.

Parameters:

Name Provided Comment
NCOID M Identifies the Control Plane connection.
Cause M Identifies type of error.

Related: None.

5.6.5.3 Messages parameters

This subclause describes parameters for the V.120 plane. Table 55 summarizes used parameters.

Page 180
Final draft prETS 300 838: March 1998

Table 55: Overview of user parameters

Param.
Identif.

Parameter Name Used in user messages Used in UAttributeSet Other use

50 NCOType X
55 ReadyFlag X
62 UProtocol X
63 UAttributeName X
64 UDirection X
68 Cause X
87 LowerLayerReference X X
88 BlockType X
89 V120FunctionMode X

5.6.5.3.1 NCOType

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment
Identifier Octet B M C/U (5) - signalling and link layer user access.

5.6.5.3.2 ReadyFlag

Description: Flag byte to be sent by the NAF when the user access is idle.

Type: 55.

Fields Field type Direction Required Comment
Usage Boolean B M TRUE - Data transfer is possible.

FALSE - Data transfer is not possible.

5.6.5.3.3 UProtocol

Description: This is used to select the User Plane protocol. The first octet contains the layer
3 protocol requested, the second octet contains the layer 2 protocol requested
and the third octet contains the layer 1 protocol requested.

Type: 62.

Fields Field type Direction Required Comment
L3Protocol Octet P M NULL (4).
L2Protocol Octet P M V.120 Recommendation (9).
L1Protocol Octet P M Default (255) - Transparent B-channel access.

Remark: Other possible values (for other protocols) are provided in subclause 5.6.

5.6.5.3.4 UAttributeName

Description : This parameter is used to pass the name of a static set of User Plane attributes
from the PUF.

Type: 63.

Fields Field type Direction Required Comment
AttributeName IA5-string P M 16 is maximum length.

Page 181
Final draft prETS 300 838: March 1998

5.6.5.3.5 UDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the User Plane.

Type: 64.

Fields Field type Direction Required Comment
Direction Octet P O both (3)

5.6.5.3.6 Cause

Description: This parameter is used to pass Cause information for disconnection to the PUF.

Type: 68.

Fields Field type Direction Required Comment
Value Octet N M 213

5.6.5.3.7 LowerLayerReference

Description: This parameter is used to pass V.120 address to/from the PUF. It refers to the
Lower Layer Identifier and may by 6 or 13 bits long.

Type: 87.

Fields Field type Direction Required Comment
Value Octet-string B M Lower Layer Reference parameter.

Length is fixed to 2.

5.6.5.3.8 BlockType

Description: This parameter is used to pass the type of a data block to/from the PUF, in case
of V.120 protocol.

Type: 88.

Fields Field type Direction Required Comment
Value Octet B M Type of the block.

default (255): complete
(1) beginning
(2) ending
(3) part of a sequence of data block
(4) complete data block

5.6.5.3.9 V120FunctionMode

Description: This parameter is used to pass the way the V.120 protocol will be used.

Type: 89.

Fields Field type Direction Required Comment

Value Octet B M Type of the block.
default (255): synchronous
(1) asynchronous
(2) synchronous (in HDLC)
(3) bits transparency

Page 182
Final draft prETS 300 838: March 1998

5.6.5.4 State diagram

User messages do not change the state of the connection.

5.6.5.5 Co-ordination function

The co-ordination function cannot be used with the User Plane protocol relating to V.120 access.

5.6.5.6 Selection criteria

No specific parameters are used. General NCO criteria are provided in subclause 5.8.

5.6.5.7 Specific error handling

Errors are dealt with in the following manner: in case of any error, PUF is sent UErrorInd.

5.6.5.8 Static attributes

5.6.5.8.1 AttributeSet parameters

Table 56: User Plane Attribute Set (UAttributeSet) parameters

Parameters Required Comment
V120FunctionMode O See subclause 5.6.5.3.9.
UProtocol O See subclause 5.6.5.3.3.

Remark: These parameters can only be used during NCO creation containing Control
Plane information. Refer to subclause 5.4.1 (ACreateNCO operation) for details.

5.6.5.8.2 Static attribute content

Name : U_V120

UProtocol : V120

V120FunctionMode : synchronous

5.6.5.9 Protocol specific NAF property information

The V.120 specific parameters of NAF-Property are shown in table 57.

Table 57: TLV coded NAF-Property parameter

Parameter Provided TLV Coding Comment and values
TypeID Length Value

V120FunctionMode O 16 1 Octet Indicates the way the V.120 protocol will be used.
See subclause 5.6.5.3.9.

See also the PciGetProperty function in subclause 5.3.1.3.

5.6.5.10 Impact on the Control Plane

The Logical Link identifier parameter may be added in the connection messages:

- CConnectReq;
- CConnectInd;
- CConnectCnf;
- CConnectRsp.

Page 183
Final draft prETS 300 838: March 1998

Supplementary parameter, in case of V.120:

Name Required Comment
Lower Layer Reference C Optional if the V120 protocol is used, else absent.

5.6.6 T.30 protocol

This subclause describes how to access the T.30 protocol via Profile A. The T.30 protocol is an User
Plane protocol with specific messages and parameters.

5.6.6.1 Overview of T 30 messages

The User Plane messages provide an X.213-access to different protocol stacks. The following is a list and
short description of all User Plane messages. Table 58 gives an overview of NMA messages.

Table 58: Overview of NMA messages

Mess.
Identif.

Class Message Name Purpose of Message

301 1 UConnectReq Request establishment of a user connection.
302 1 UConnectInd Indicate establishment of a user connection has been

requested.
303 1 UConnectRsp Indicate acceptance of user connection establishment.
304 1 UConnectCnf Confirm user connection has been established.
305 1 UDisconnectReq Request removal of user connection.
306 1 UDisconnectInd Indicate removal of user connection.
307 1 UDataReq Request data transfer on an established user connection.
308 1 UDataInd Indicate arrival of transferred data on an established user

connection.
309 1 UExpeditedDataReq Request expedited data transfer on an established user

connection.
310 1 UExpeditedDataInd Indicate presence of transferred expedited data on an

established user connection.
311 1 UResetReq Request reset to initial state of an established user

connection.
312 1 UResetInd Indicate reset to initial state of an established user

connection.
313 1 UResetRsp Indicate acceptance of reset to initial state of an

established user connection.
314 1 UResetCnf Confirm acceptance of reset to initial state of an

established user connection.
315 1 UDataAcknowledgeReq Request acknowledgement of data received on an

established user connection.
316 1 UDataAcknowledgeInd Indicate acknowledgement of data transferred on an

established user connection.
317 1 UReadyToReceiveReq Used to perform flow control for a user connection.
318 1 UReadyToReceiveInd Used to indicate flow control status on a user connection.
319 1 UErrorInd Indicate an error.
320 2 UInformationInd Used to inform the PUF about the state of the sending or

receiving facsimile.
321 2 URegisterMailBoxReq Used to declare a mail box to the NAF.
322 2 URegisterMailBoxCnf Confirm the registration of the mail box to the PUF.
323 2 UDestroyMailBoxReq Used to destroy a mail box previously registered.
324 2 UDestroyMailBoxCnf Confirm whether a mail box was destroyed.
326 2 ULocalPollingInd Used to inform the PUF the remote station has requested

to collect a document.
327 2 ULocalPollingRsp Informs the NAF whether the collection of the documents,

requested by the remote station, is authorized.
329 2 URemotePollingReq Used to inform the PUF whether the remote station has

documents to collect.
330 2 URemotePollingInd Used to request polling on the remote station.
331 2 USwitchToVoiceModeReq Used to inform the NAF that the user has requested a

voice contact.
332 2 USwitchToVoiceModeInd Used to inform the PUF that the remote station made a

voice contact request.
333 2 USwitchToVoiceModeRsp Used to inform the NAF that the user accepts switching to

speech.
334 2 USwitchToVoiceModeCnf Used to inform the PUF that the remote operator accepts

switching to speech.

Page 184
Final draft prETS 300 838: March 1998

Not all of the above messages are used in every cases. Table 59 identifies the messages used in the
specific User Plane protocols. A cross placed in the protocol column indicates application of the relevant
message to the protocol.

Table 59 gives an overview of NMA messages including the protocol dependencies.

Table 59: Overview of NMA messages (protocol dependencies)

Mess.Identif. Message Name ETS 300 080 ISO 8208 ITU-T Rec. T.30

301 UConnectReq X X X

302 UConnectInd X X X

303 UConnectRsp X X X

304 UConnectCnf X X X

305 UDisconnectReq X X X

306 UDisconnectInd X X X

307 UDataReq X X X

308 UDataInd X X X

309 UExpeditedDataReq X

310 UExpeditedDataInd X

311 UResetReq X X

312 UResetInd X X

313 UResetRsp X X

314 UResetCnf X X

315 UDataAcknowledgeReq X X

316 UDataAcknowledgeInd X X

317 UReadyToReceiveReq X X X

318 UReadyToReceiveInd X X X

319 UErrorInd X

320 UInformationInd X

321 URegisterMailBoxReq X

322 URegisterMailBoxCnf X

323 UDestroyMailBoxReq X

324 UDestroyMailBoxCnf X

326 ULocalPollingInd X

327 ULocalPollingRsp X

329 URemotePollingReq X

330 URemotePollingInd X

331 USwitchToVoiceModeReq X

332 USwitchToVoiceModeInd X

333 USwitchToVoiceModeRsp X

334 USwitchToVoiceModeCnf X

Page 185
Final draft prETS 300 838: March 1998

5.6.6.2 Sequencing of User Plane messages

Figure 29 shows the different states a user connection can get using the NMA messages and in which
order these messages shall be used.

 Idle

UDisconnectReq
UDisconnectInd

UDisconnectReq
UDisconnectInd

UConnectReq UConnectInd

2
Outgoing connection

pending

3
Incoming connection

pendingUDisconnect

UConnectCnf UConnectRsp

UDisconnectReq
UDisconnectInd

UDisconnectReq
UDisconnectInd

4
Data transfer

ready

UResetReq UResetInd

UResetCnf UResetRsp

5
PUF invoked
reset pending

6
Network invoked

reset pending

UExpeditedDataReq
UExpeditedDataInd
UDataReq
UDataInd
UDataAcknowledgeReq
UDataAcknowledgeInd
UReadyToReceiveReq
UReadyToReceiveInd

ULocalPollingInd
ULocalPollingRsp
URemotePollingReq

USwitchToVoiceModeReq
USwitchToVoiceModeInd
USwitchToVoiceModeCnf
USwitchToVoiceModeRspURemotePollingInd
UInformationInd

1

Figure 29: Overview of the User Plane messages

5.6.6.3 Detail of T.30 protocol messages

5.6.6.3.1 UConnectReq

Class : 1 (Basic Class).

Page 186
Final draft prETS 300 838: March 1998

Description : This message allows a PUF to initiate the establishment of a user connection. It
is used to request the establishment of the T.30 protocol over a channel already
established.

Parameters :

Name Required Comment
NCOID M Identifies the user connection.
CalledDTEAddress C This parameter is mandatory. If provided, this value supersedes the

NCO value. If absent, it should be included at the NCO creation time.

Related : UConnectCnf.

5.6.6.3.2 UConnectInd

Class : 1 (Basic Class).

Description: This message informs a PUF of an incoming demand to establish a T.30 user
connection. It does not ensure of a successful end-to-end negotiation between
terminals.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Related: UConnectRsp.

5.6.6.3.3 UConnectRsp

Class: 1 (Basic Class).

Description: This message allows a PUF to accept the establishment of a T.30 user
connection.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Related: UConnectInd.

5.6.6.3.4 UConnectCnf

Class: 1 (Basic Class).

Description: This message informs the PUF on the establishment of a user connection. It
does not ensure of a successful end-to-end negotiation between terminals.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.

Related: UConnectReq.

5.6.6.3.5 UDisconnectReq

Class: 1 (Basic Class).

Description: This message allows a PUF to remove a user connection.

Page 187
Final draft prETS 300 838: March 1998

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
T30Cause O T30 reason to remove the user connection.
NOTE: In case of the T.30 Protocol this message requests the immediate termination of the protocol.

Related: None.

5.6.6.3.6 UDisconnectInd

Class: 1 (Basic Class).

Description: This message informs a PUF that a user connection has been removed.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
X213Origin M Identifies the initiator of the user connection removal.
T30Cause O T30 reason to remove the user connection.

Related: None.

5.6.6.3.7 UDataReq

Class: 1 (Basic Class).

Description: This message allows a PUF to send a data packet. The size of a data packet is
restricted to the data packet size negotiated during the user connection
establishment. In case of the T.30 Protocol this message allows a PUF to send
either data block or data description.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
DataDescription O Indicates the characteristics of the page to be transmitted.
DataBlock O Used to pass the transmission data.

Remark: Data to send are mandatory, except in case of T.30 protocol and if the
DataDescription parameter is provided. They are not provided as a parameter of
the message.

Related: UReadyToReceiveInd.

5.6.6.3.8 UDataInd

Class : 1 (Basic Class).

Description: This message indicates the presence of received data to a PUF. The size of a
data packet is restricted to the data packet size negotiated during the user
connection establishment.
In case of T.30 Protocol this message allows a NAF to indicate to a PUF either
data block or data description.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
DataDescription O Indicates the characteristics of the received page.
DataBlock O Used to pass the received data.

Page 188
Final draft prETS 300 838: March 1998

Remark: Data received are always provided, but not as a parameter of the message.
Data are provided in the data buffer. This buffer, in this case, is mandatory
except in case of T.30 protocol and if the DataDescription parameter is
provided.

Related: UReadyToReceiveReq.

5.6.6.3.9 UDataAcknowledgeReq

Class: 1 (Basic Class).

Description: This message informs the PUF of the reception of an acknowledgement for
transferred data. It acknowledges a page locally received.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
PageAcknowledgement O Indicates to the NAF for the complete reception of the current page.

Related: UDataReq.

5.6.6.3.10 UDataAcknowledgeInd

Class: 1 (Basic Class).

Description: This message informs the PUF of the reception of an acknowledgement for
transferred data. It indicates the acknowledgement for a page received by the
remote part.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
PageAcknowledgement O Indicates the PUF whether the remote station has received the current

page.

Related: UDataReq.

5.6.6.3.11 UReadyToReceiveReq

Class: 1 (Basic Class).

Description: This message allows the PUF to indicate to the NAF if it can accept incoming
data (UDataInd message). This message can only apply to an already
established user connection. Setting the ReadyFlag parameter to TRUE allows
the NAF to transfer incoming data to the PUF. Setting the ReadyFlag to FALSE
inhibits the transfer.

This flow control mechanism does not imply an end to end flow control.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
ReadyFlag M This flag indicates whether or not the PUF is ready to accept incoming

data.

Remarks: For a given connection, if more than one message with the same flag value is
sent, it shall be ignored by the NAF.

Related: UDataInd.

Page 189
Final draft prETS 300 838: March 1998

5.6.6.3.12 UReadyToReceiveInd

Class: 1 (Basic Class).

Description: This message allows the NAF to indicate to the PUF if the user connection
permits the sending of data (UDataReq messages). This message can only
apply to an already established user connection. If the ReadyFlag parameter
value is FALSE, the NAF can not send data. If the value is TRUE the NAF
indicates that data transfer is allowed.

This flow control mechanism does not imply an end-to-end flow control.

Parameters:

Name Provided Comment
NCOID M Identifies the user connection.
ReadyFlag M This flag indicates whether or not the NAF is ready to receive data for

transmission on a user connection.

Related: UDataReq.

5.6.6.3.13 UInformationInd

Class: 2 (Additional Class).

Description: This message informs the PUF about the transmission for received or sent
facsimile.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
RemoteDesignation C (see note) Identifier of the remote station and contents of the non standard fields.
NegociatedCharacteristic C (see note) Specifies the characteristics of the transmission.
ReceivePageQuality C (see note) Indicates whether the current page was correctly received.
NOTE: Only one of these parameters should be provided at the same time.

Related: None.

5.6.6.3.14 URegisterMailBoxReq

Class: 2 (Additional Class).

Description: Request message for creating a mail box. Before using this message the PUF
should obtain the NAF-Property to ensure of mail box management.

This message is not related with a established connection and has only a local
significance.

Parameters:

Name Required Comment
NCOID M Identifies a T.30 NCO.
MailBoxType M Indicates the type of the mail box.
Password C Indicates a password for the polling mode or the use of a subaddress.

This parameter is used only if the mail box is used with polling.
PollingNumber C Indicates the number of pollings authorized or a coding subaddress.

This parameter is used either if mail box is used with polling or if a
subaddress is received.

MailBoxMnemonic O This parameter is mandatory if the mail box is used when receiving. It
can be omitted if the mail box is used when polling.

Related: URegisterMailBoxCnf.

Page 190
Final draft prETS 300 838: March 1998

5.6.6.3.15 URegisterMailBoxCnf

Class: 2 (Additional Class).

Description: Confirmation message of RegisterMailBox operation requested previously.

This message may contain the Mail Box identifier which shall be used on further
requests.

This message is not related with an established connection and has only a local
significance.

Parameters:

Name Required Comment
NCOID M Identifies a T30 NCO.
CompletionStatus M Completion status of the RegisterMailBox operation of the NAF.
MailBoxNumber C Mail box identifier if CompletionStatus is success else absent.

Related: URegisterMailBoxReq.

5.6.6.3.16 UDestroyMailBoxReq

Class: 2 (Additional Class).

Description: Destroys an existing mail box create by the same PUF.

This message is not related with an established connection and has only a local
significance.

Parameters:

Name Required Comment
NCOID M Identifies a T30 NCO.
MailBoxNumber M Identify the mail box on which the Destroy operation was requested.

Related: UDestroyMailBoxCnf.

5.6.6.3.17 UDestroyMailBoxCnf

Class: 2 (Additional Class).

Description: Confirmation message of the DestroyMailBox operation previously requested.

This message is not related with an established connection and has only a local
significance.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
CompletionStatus M Completion status of the DestroyMailBox operation of the NAF.

Related: UDestroyMailBoxReq.

5.6.6.3.18 ULocalPollingInd

Class: 2 (Additional Class).

Description: This message informs the PUF the remote station has requested to collect a
document.

Page 191
Final draft prETS 300 838: March 1998

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
MailBoxNumber O This parameter is used only if the polling indication concerned a

specific mail box.

Related: ULocalPollingRsp.

5.6.6.3.19 ULocalPollingRsp

Class: 2 (Additional Class).

Description: This message informs the NAF whether the PUF authorizes the collection of the
documents requested by the remote station.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
MailBoxNumber O Present if provide in LocalPolling indication message.
PollingFlag M This flag indicates whether collection is accepted or not.

Related: ULocalPollingInd.

5.6.6.3.20 URemotePollingReq

Class: 2 (Additional Class).

Description: Request message to poll remote station.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Related: URemotePollingInd.

5.6.6.3.21 URemotePollingInd

Class: 2 (Additional Class).

Description: This message informs the PUF whether the remote station has documents to
collect.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
PollingFlag M This flag indicates whether the remote station has or not documents to

collect (or it refuses to collect them).

Related: None.

5.6.6.3.22 USwitchToVoiceModeReq

Class: 2 (Additional Class).

Description: Request message to switch in voice mode.

Page 192
Final draft prETS 300 838: March 1998

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Related: USwitchToVoiceModeCnf.

5.6.6.3.23 USwitchToVoiceModeCnf

Class: 2 (Additional Class).

Description: This message informs the PUF whether the remote station accepts switching to
speech.

If accepted, the connection is put in voice mode. The only way to restart the
T.30 protocol is to send again an UConnectReq message associated to this
NCO.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
SwitchFlag M This flag indicates whether the remote accepts switching.

Related: USwitchToVoiceModeReq.

5.6.6.3.24 USwitchToVoiceModeInd

Class: 2 (Additional Class).

Description: This message informs the PUF the remote station has requested to switch in
voice mode.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.

Related: USwitchToVoiceModeRsp.

5.6.6.3.25 USwitchToVoiceModeRsp

Class: 2 (Additional Class).

Description: This message informs the NAF whether switching is authorized.

If accepted, the connection is put in voice mode. The only way to restart the
T.30 protocol is to send again an UConnectReq message associated to this
NCO.

Parameters:

Name Required Comment
NCOID M Identifies the user connection.
SwitchFlag M This flag indicates whether switching is accepted.

Related: USwitchToVoiceModeInd.

Page 193
Final draft prETS 300 838: March 1998

5.6.6.4 Message parameters

This subclause describes parameters for the T.30 [5] protocol. Table 60 summarizes the used
parameters. They are alphabetically ordered.

Table 60: Overview of user parameters

Param.
Identif.

Parameter Name Use in user messages Use in UAttributeSet Other use

5 CalledDTEAddress X

90 DataBlock X

91 DataDescription X

102 MailBoxMnemonic X

94 MailBoxNumber X

95 MailBoxType X

50 NCOType X

99 NegociatedCharacteristic X

106 OctetInverted X

104 PageAcknowledgement X

103 Password X

101 PollingNumber X

93 PollingFlag X

96 ReceivePageQuality X

98 RemoteDesignation X

92 SwitchFlag X

70 T30Cause X

63 UAttributeName X

64 UDirection X

62 UProtocol X

105 UseOfStrips X

110 T30Characteristics X

5.6.6.4.1 CalledDTEAddress

Description: This parameter is used to pass remote DTE address information to/from the
PUF.

Type: 5.

Fields Field type Direction Required Comment
Address IA5-string B M 15 octets is the maximum length

5.6.6.4.2 NCOType

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment
Identifier Octet B M C/U (5) - signalling and link layer user access.

Page 194
Final draft prETS 300 838: March 1998

5.6.6.4.3 DataBlock

Description: This parameter is used to pass the transmission data to/from the PUF.

Type: 90.

Fields Field type Direction Required Comment
CurrentPage Octet-string B M The pages are numbered from 1 to n; n is the total

of pages transmit.
Length is fixed to 2.

ChainingFlag Octet B M The chaining flag indicates the position of the
block in the page.
bit 0: Last block of the page
bit 1: First block of the page
A block can be the first block and the last block of
a page at the same time.

BlockNumber Octet-string B O For each page the blocks are numbered from 1 to
p; p is the number of blocks needed to form the
particular page.
Length is fixed to 2.

Remark: Mandatory data shall be provided in data buffer; the value shall not exceed the
maximum value indicated in NAF-Property.

Page 195
Final draft prETS 300 838: March 1998

5.6.6.4.4 DataDescription

Description: This parameter is used to pass the characteristics of the transmission data
to/from the PUF.

Type: 91.

Fields Field type Direction Required Comment
PageNumber Octet B M If this parameter is equal to 0xFF, it is the end of

the transmission of the document. In this case, the
other parameters are not used.

ResolutionUnit Octet B M Value for the resolution unit of measure:
Default (255)- Default is Metric based
(0) Metric based resolution
(1) Inch based resolution

Resolution Octet B M Value for the resolution:
Default (255)- Default is 200 x 200 dpi
(0) R8 x 3,85 lines/mm (98 dpi)
(1) R8 x 7,7 lines/mm (196 dpi)
(2) 200 x 200 dpi
(3) 300 x 300 dpi
(4) 400 x 400 dpi
(5) R8 x 15,4 lines/mm (392 dpi)
(6) R16 x 15,4 lines/mm (392 dpi)

PageHeight Octet B M Values for page height:
Default (255)- Default is A4
(0) A4
(1) B4
(2) Unlimited

PageWidth Octet B M Value for page width:
Default (255)- Default is 1 728 pels
(0) 1 728 pels/3 456 pels
(1) 2 048 pels/4 096 pels
(2) 2 432 pels/4 864 pels

CodingType Octet B M Values for the type of coding:
Default (255)- Default is T4
(0) T4
(1) T4 bi-dimensional
(2) T6
(3) BTM (Basic Transfer Mode)
(4) DTM (Document Transfer Mode)
(5) BFT (Binary File Transfer)
(6) EDI (Edifact Transfer)
(7) Character mode
(8) Mixed mode
(9) PM26

OctetPresentation Octet B M Value for the octet presentation:
Default (255)- Default is octet not inverted
(0) Octets not inverted in the page
(1) Octets inverted in the page

PresenceFlag Octet B M Indicates the presence of the following fields:
bit 0: MBoxMnemonic
bit 1: MBoxPassword
bit 2: DateTime

MBoxMnemonic Octet-string B O Used only if NAF can manage mail box.
Length is fixed to 20.

MBoxPassword Octet-string B O Used only if NAF can manage mail box.
Length is fixed to 20.

DateTime Octet-string B O This parameter is present:
- during reception if the NAF has a timer
- systematically during transmission if the PUF
uses the strip service and if the NAF does not
have a timer;
Length is fixed to 5.

NOTE: Resolutions of R8 and R16 are defined as follows:
R8 = 1 728 pels/(215 mm ± 1%) for ISO A4
R8 = 2 048 pels/(255 mm ± 1%) for ISO B4
R8 = 2 432 pels/(303 mm ± 1%) for ISO A3
R16 = 3 456 pels/ (215 mm ± 1%) for ISO A4
R16 = 4 096 pels/ (255 mm ± 1%) for ISO B4
R16 = 4 864 pels/ (303 mm ± 1%) for ISO A3

5.6.6.4.5 MailBoxMnemonic

Description: This parameter is used to pass the mnemonic of the mail box.

Page 196
Final draft prETS 300 838: March 1998

Type: 102.

Fields Field type Direction Required Comment
Mnemonic Octet-string P M Length is fixed to 20.

5.6.6.4.6 MailBoxNumber

Description: This parameter is used to pass the mail box identifier to/from the PUF.

Type: 94.

Fields Field type Direction Required Comment
Value Octet-string B M This value is unique for a PUF/NAF relation.

Length is fixed to 20.

5.6.6.4.7 MailBoxType

Description: This parameter is used to pass the mail box type to the NAF.

Type: 95.

Fields Field type Direction Required Comment
Identifier Octet P M (1) used when receiving.

(2) used when polling.

Page 197
Final draft prETS 300 838: March 1998

5.6.6.4.8 NegociatedCharacteristic

Description: This parameter is used to pass the characteristics of the transmission to the
PUF.

Type: 99.

Fields Field type Direction Required Comment
Speed Octet N M Default (255) - Default is 9 600 bits/s

(1) 2 400 bits/s
(2) 4 800 bits/s
(3) 7 200 bits/s
(4) 9 600 bits/s
(5) 12 000 bits/s
(6) 14 400 bits/s
(7) 64 kbits/s

ECM Boolean N M Default (255) - Default is ECM used
TRUE: ECM used
FALSE: No ECM

ScanTime Octet N M Minimum scan line time:
Default (255)- Default is 40 ms
(1) 0 ms
(2) 5 ms
(3) 10 ms
(4) 20 ms
(5) 40 ms

PageNumber Octet N M
ResolutionUnit Octet B M Value for the resolution unit of measure:

Default (255)- Default is Metric based
(0) Metric based resolution
(1) Inch based resolution

Resolution Octet B M Value for the resolution:
Default (255)- Default is 200 x 200 dpi
(0) R8 x 3,85 lines/mm (98 dpi)
(1) R8 x 7,7 lines/mm (196 dpi)
(2) 200 x 200 dpi
(3) 300 x 300 dpi
(4) 400 x 400 dpi
(5) R8 x 15,4 lines/mm (392 dpi)
(6) R16 x 15,4 lines/mm (392 dpi)

PageHeight Octet B M Values for page height:
Default (255)- Default is A4
(0) A4
(1) B4
(2) Unlimited

PageWidth Octet B M Default (255)- Default is 1 728 pels
(0) 1 728 pels/3 456 pels
(1) 2 048 pels/4 096 pels
(2) 2 432 pels/4 864 pels

CodingType Octet B M Values for the type of coding:
Default (255)- Default is T4
(0) T4
(1) T4 bi-dimensional
(2) T6
(3) BTM (Basic Transfer Mode)
(4) DTM (Document Transfer Mode)
(5) BFT (Binary File Transfer)
(6) EDI (Edifact Transfer)
(7) Character mode
(8) Mixed mode
(9) PM 26

MailBoxNumber Octet-String N C Only used on reception.
Lenght Fixed to 20

NOTE: Resolutions of R8 and R16 are defined as follows:
R8 = 1 728 pels/(215 mm ± 1%) for ISO A4
R8 = 2 048 pels/(255 mm ± 1%) for ISO B4
R8 = 2 432 pels/(303 mm ± 1%) for ISO A3
R16 = 3 456 pels/(215 mm ± 1%) for ISO A4
R16 = 4 096 pels/(255 mm ± 1%) for ISO B4
R16 = 4 864 pels/(303 mm ± 1%) for ISO A3

Page 198
Final draft prETS 300 838: March 1998

5.6.6.4.9 OctetInverted

Description: This parameter is used by the PUF to indicate if octets are inverted.

Type: 106.

Fields Field type Direction Required Comment
Value Octet B M (0) Octet not inverted

(1) Octet inverted

5.6.6.4.10 PageAcknowledgement

Description: This parameter is used to indicate the PUF whether the remote station has
received the current page.

Type: 104.

Fields Field type Direction Required Comment
PageNumber Octet N M
RetransIndicator Octet N M Indicates whether the page must be retransmitted:

(0) The page shall not be retransmitted
(1) The page shall be retransmitted

Acknowledgement Octet N M Value for the acknowledgement of the remote
station:
(1) Page well received
(2) Page badly received
(3) Page not received (ECM only)

5.6.6.4.11 Password

Description: This parameter is used to pass the password of the mail box.

Type: 103.

Fields Field type Direction Required Comment
Password Octet-string P M Length is fixed to 20.

5.6.6.4.12 PollingNumber

Description: This parameter is used to pass the number of polling authorized for a mail box
used with polling.

Type: 101.

Fields Field type Direction Required Comment
Value Octet P M

5.6.6.4.13 PollingFlag

Description: This parameter is used to pass the result of polling request to the PUF or to
indicate whether collection is accepted to the NAF.

Type: 93.

Fields Field type Direction Required Comment
Value Octet B M (0) Collection accepted

(1) Collection refused
(2) Remote station has documents to collect
(3) Remote station has no document to collect or it
refuses to collect them.

Page 199
Final draft prETS 300 838: March 1998

5.6.6.4.14 ReceivePageQuality

Description: This parameter is used to indicates whether the current page was correctly
received.

Type: 96.

Fields Field type Direction Required Comment
PageNumber Octet N M
QualityIndicator Octet N M (1) Page well received

(2) Page poorly received
(3) Page not received (ECM only)

ReceivedLine
(Note)

Octet-string N C Number of lines received.
Length is fixed to 2

CorruptedLine
(Note)

Octet-string N C Number of corrupted lines.
Length is fixed to 2

LastPageFlag
(Note)

Octet N C (0) Not the last page
(1) Last page

NOTE: These parameters are only used in standard reception (not used in ECM).

5.6.6.4.15 RemoteDesignation

Description: This parameter is used to pass the identifier of the remote station and the
contents of the non standard field to the PUF.

Type: 98.

Fields Field type Direction Required Comment
Identifier IA5-string N M Remote station identifier.

Length is fixed to 20
NSF_NSC IA5-string N M Specifies user requirements which are not covered

by the ITU-TRec T.30 [14] .
Maximum length is 40

5.6.6.4.16 SwitchFlag

Description: This parameter is used to pass the result of switching to voice request to the
PUF or to indicate whether switching to voice is accepted to the NAF.

Type: 92.

Fields Field type Direction Required Comment
Value Octet B M (0) Switch accepted

(1) Switch refused
(2) Remote station has accepted the switch
(3) Remote station has refused the switch

5.6.6.4.17 T30Cause

Description: This parameter is used to pass T.30 Cause to/from the PUF.

Type: 70.

Fields Field type Direction Required Comment
Value Octet B M Value provided in table 60

Page 200
Final draft prETS 300 838: March 1998

Table 61: T30Cause value

Return Code Meaning
DiscNorm 0 Disconnection normal
T1Exceeded 1 T1 exceeded
T2Exceeded 2 T2 exceeded
T5Exceeded 3 T5 exceeded
RemotePosInc 4 Remote possibility incompatible
FailTrain 5 Failure training
FailMessMode 6 Failure on entry in message mode
NonConform 7 Non conforming coding format in transmission
MaxScan 8 Maximum length of scan line exceeded
ReplyExceeded 9 Number of reply retransmission exceeded
ReplyNotExp 10 Reply not expected
RemoteDisc 11 Disconnection of remote
DataMiss 12 Absence of data transmission
RefusPolling 13 Polling refused
SubError 14 Sub address error (mail box does not exist)
PassError 15 Password error
CEDTimeOut 16 Time out on wait for CED

5.6.6.4.18 T30Characteristics

Description: This parameter is used to pass additionnal T.30 parameters.

Type: 110.

Fields Field type Direction Required Comment
Rate Octet-String P M Length fixed to 2 octets - Expressed in bits per

second, 0 means adaptative (default).
TransmitLevel Octet-String P M Length fixed to 2 octets - Expressed in dBs there is

no default for this level.

5.6.6.4.19 UseOfStrips

Description: This parameter is used by the PUF strip is use and when. Each information uses
a binary position. The MSB is the bit 8 and the LSB is the bit 1. Bit 1 is for value
1, Bit 2 for value 2, Bit 2 for value 4 etc. The result value applying to this
parameter is a sum of the value for each bit (logical OR).

Type: 105.

Fields Field type Direction Required Comment
Value Octet B M bit 0: On transmission

bit 1: On reception
bit 2: Data/Time display
bit 3: Page numbering
bit 4: ID display

5.7 Message parameters

This subclause describes parameters for messages of the Administration and the Control Plane.
Parameters for messages of the User Plane are described in the User Plane subclauses.

Parameters within this subclause are alphabetically ordered.

5.7.1 AdditionInformation

Description: This parameter is used to pass additional information from/to the PUF. The
information is transparently conveyed to/from the network. See related network
or NAF documentation for more details.

Type: 80.

Page 201
Final draft prETS 300 838: March 1998

Fields Field type Direction Required Comment
Value IA5-string B M 128 is the maximum length. It may be reduced due

to network constraints.

5.7.2 Algorithm

Description: This parameter passes the name of the security algorithm to be used to the
NAF.

Type: 1.

Fields Field type Direction Required Comment
Algorithm IA5-string P M The security algorithm is identified by its name.

The names of the available algorithms can be
obtained using the Property information provided
by the NAF.
"nosecurity": this value for this parameter indicates
that security is no longer needed for the
connection.
16 bytes is the maximum length.

NOTE: A detailed description of the possible use of this parameter can be found in
subclause 5.4.

5.7.3 BearerCap

Description: This parameter is used to pass bearer capability to/from the PUF and optionally
layer 1 information if the LLC parameter, described in the subclause 5.7.37, is
provided in the call.

Type: 3.

Fields Field type Direction Required Comment
BearerCap Octet-string B M Bearer capability information element.

Maximum length is 12 octets.
NOTE: Values for this field are defined in the ETS 300 102-1 [2].

5.7.4 CalledNumber

Description: This parameter is used to pass details concerning the called address to/from the
PUF.

Type: 7.

Fields Field type Direction Required Comment
NumberType Octet B M Default (255) - default is unknown

unknown (0)
international (1)
national specific (2)
network (3)
subscriber (4)
abbreviated (6)

NumberPlan Octet N M Default (255) - default is unknown
unknown (0)
isdn (1)
data (3)
telex (4)
national (8)
private (9)

Number IA5-string B C 20 bytes is the maximum length. May be absent in
the case of overlapping numbering or if associated
with the CConnectReq message. Otherwise
mandatory.

NOTE: In the message exchange from PUF to NAF this parameter shall either be supplied in the NCO or in the
appropriate message.

Page 202
Final draft prETS 300 838: March 1998

5.7.5 CalledSubaddress

Description: This parameter is used to pass the Called Subaddress to/from the PUF.

Type: 8.

Fields Field type Direction Required Comment
NumberType Octet B M Default (255) - default is nsap

nsap (0)
user (2)

Indicator Octet B M even(0)
odd (1)
This field is only meaningful if NumberType is set
to user. It indicates if the number contains an odd
or even number of BCD digits.

Number IA5-string B M 20 bytes is the maximum length.

5.7.6 CallingNumber

Description: This parameter is used to pass details concerning the calling address to/from
the PUF.

Type: 11.

Fields Field type Direction Required Comment
NumberType Octet B M Default (255) - default is unknown

unknown (0)
international (1)
national specific (2)
network (3)
subscriber (4)
abbreviated (6)

NumberPlan Octet B M Default (255) - default is unknown
unknown (0)
isdn (1)
data (3)
telex (4)
national (8)
private (9)

Presentation Octet B M Default (255) - default is allowed
allowed (0)
restricted (1)
not available (2)
Indicates whether the Number should be provided
to the called user

Screening Octet B M Default (255) - default is usernotscreened
usernotscreened (0)
userverified (1)
networkprovided (3)
Indicates any checking that has been applied to
the Number

Number IA5-string B M 20 is maximum length
NOTE: Only "ISDN/telephony numbering plan" and "unknown" shall be allowed for the PUF as number plan identifier

within the calling party number information element, when using Calling Line Identification Presentation
supplementary service.
Only "subscriber number", "national number" and "international number" shall be allowed for the PUF as type of
number within the calling party number information element, when using Calling Line Identification Presentation
supplementary service and specifying a complete number.
Only "unknown" shall be allowed for the PUF as type of number within the calling party number information
element, when using Calling Line Identification Presentation supplementary service and specifying an incomplete
number for Direct Dialling In.

Page 203
Final draft prETS 300 838: March 1998

5.7.7 CallingSubaddress

Description: This parameter is used to pass Calling Subaddress details to/from the PUF.

Type: 12.

Fields Field type Direction Required Comment
NumberType Octet B M Default (255) - default is nsap

nsap (0)
user (2)

Indicator Octet B M even(0)
odd (1)
This field is only meaningful if NumberType is set
to user. It indicates if the number contains an odd
or even number of BCD digits.

Number IA5-string B M 20 is maximum length

5.7.8 CAttributeName

Description : This parameter is used to pass the name of a static set of Control Plane
attributes from the PUF.

Type: 13.

Fields Field type Direction Required Comment
AttributeName IA5-string P M 16 bytes is the maximum length.

5.7.9 CauseToNAF

Description: This parameter is used to pass Cause Information from the PUF to the NAF.

Type: 14.

Fields Field type Direction Required Comment
Cause Octet P M Cause value.

5.7.10 CauseToPUF

Description: This parameter is used to pass Cause Information from the NAF to the PUF.

Type: 15.

Page 204
Final draft prETS 300 838: March 1998

Fields Field type Direction Required Comment
Cause Octet N M Cause value
Standard Octet N M Default (255) - default is ITU-T

ITU-T (0)
international (1)
national (2)
network (3)

Location Octet N M Default (255) - default is user
user (0)
privatelocal (1)
publiclocal (2)
transit (3)
publicremote (4)
privateremote (5)
international (7)
networkbeyond (10)

Recommendation Octet N M Default (255) - default is Q.931
Q.931 (0)
X.21 (3)
X.25 (4)

Diagnostics Octet-string N C Depends on the cause value.
Length is fixed to 2.
The lower octet contents least significant byte.

5.7.11 CDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the Control Plane part. If this parameter is absent at the
NCO creation time, the value retained for this NCO will be both (3).

Type: 16.

Fields Field type Direction Required Comment
Direction Octet P M listen (1)

call (2)
both (3)

5.7.12 ChannelIdentification

Description: This parameter is used to pass Channel Information from/to the PUF.

Type: 17.

Fields Field type Direction Required Comment
Selection Octet B M nochannel (0) - no channel is available

Bchannel (1) - preferred B-Channel
anychannel (3) - use any available channel
Dchannel (4)

Number Octet B O This optional parameter is used by the PUF to
select a particular B-channel. A value of 255
means select the first available B-channel.

Remarks: For CConnectReq message all values of Selection except nochannel and
D-Channel are supported.

The number field can be used on the CAttribute set parameter structure or with
CConnectReq message to select a particular permanent connected B-channel,
or D-channel in the case where multiple TEIs are supported.

5.7.13 ChargingInfo

Description: This parameter is used to Transmit the charging information, if any, relevant to
an NCO, in the Administration Attribute Set parameter.

Type: 18.

Page 205
Final draft prETS 300 838: March 1998

Fields Field type Direction Required Comment
Tag Octet N M charginginfo (3)

chargingerror (4)
(See subclause 5.7.32: coding of FacilityTag)

Value Octet-string N C Length and content depend on the Tag. Absent if
Tag is chargingerror.
(See subclause 5.7.32: coding of FacilityValue)

5.7.14 CompletionStatus

Description: This parameter is used to pass completion information to the PUF.

Type: 19.

Fields Field type Direction Required Comment
Status Octet N M Completion report value.
ErrorSpecific Octet-string N C Presence depends on value of Status field. Length

shall be in the range 0 to 16 octets.

5.7.15 CongestionLevel

Description: This parameter is used to pass congestion level details to/from the PUF.

Type: 20.

Fields Field type Direction Required Comment
Level Octet B M ready (1)

notready (15)

5.7.16 ConnectedNumber

Description: This parameter is used to pass details concerning the connected number to the
PUF.

Type: 21.

Fields Field type Direction Required Comment
NumberType Octet N M default (255) - default is unknown

unknown (0)
international (1)
national (2)
network (3)
subscriber (4)
abbreviated (6)

NumberPlan Octet N M default (255) - default is unknown
unknown (0)
isdn (1)
data (3)
telex (4)
national (8)
private (9)

Number IA5-string N M 20 bytes is the maximum length

5.7.17 ConnectedSubaddress

Description: This parameter is used to pass the Connected Subaddress to the PUF.

Type: 22.

Page 206
Final draft prETS 300 838: March 1998

Fields Field type Direction Required Comment
NumberType Octet N M nsap (0)

user (2)
Indicator Octet N M even(0)

odd (1)
This field is only meaningful if NumberType is set
to user. It indicates if the number contains an odd
or even number of BCD digits

Number IA5-string N M 20 bytes is the maximum length

5.7.18 ControllerID

Description: This parameter allows the PUF to specify a particular controller. A ControllerID
is based 0. In case of outgoing call, if a PUF does not specify a particular
controller, the NAF applies its internal rules to make the selection, if multiple
controller are available. In case of incoming calls, if no controller is indicated by
the PUF as NCO parameter, the NAF will consider all available controllers as
concern by the NCO.

Type: 107.

Fields Field Type Direction Required Comment

ControllerID Octet B M Controller number

5.7.19 CPMessageMask

Description: This parameter is set by the PUF to indicate which Control Plane messages are
not intended to be received from the NAF. Not all Control Plane messages can
be filtered.

This parameter is coded as a bit field. The default value is 0 for all bits, which
means that the PUF will receive any message coming from the network.

Type: 73.

Fields Field type Direction Required Comment
CPMessageMask Octet String P M Fixed length is 2.

Bit 1 CAlertInd
Bit 2 CProgressInd
Bit 3 CSetupAckInd
Bit 4 CProceedingInd
Bit 5 CUserInformationInd
Bit 6 CCongestionControlInd
Bit 7 CNotifyInd
Bit 8 CFacilityInd
Bits 9 to 16 are reserved

5.7.20 CPParameterMask

Description : This parameter is set by the PUF to indicate which Control Plane message
parameters are not intended to be received from the NAF. Not all Control Plane
message parameters can be filtered.

It is coded as a bit field. The default value is 0 for all bits, which means that the
PUF will receive any Control Plane message parameter coming from the
network.

Type : 72.

Page 207
Final draft prETS 300 838: March 1998

Fields Field type Direction Required Comment
CPParameterMask Octet String P M Fixed length is 4.

Bit 1 CauseToPUF
Bit 2 ChannelIdentification
Bit 3 DateTime
Bit 4 Display
Bit 5 Facility
Bit 6 High Layer Compatibility
Bit 7 Low Layer Compatibility
Bit 8 UserToUserInfo
Bit 9 Signal
Bit 10 ProgressIndicator
Bits 11 to 31 are reserved

5.7.21 DateTime

Description: This parameter is used to pass date and time information to the PUF. This
information is provided by the Network in the call establishment operation or by
the NAF at the NCO creation time.

Type: 23.

Fields Field type Direction Required Comment
Year Octet N M 0 to 99
Month Octet N M 1 to 12
Day Octet N M 1 to 31
Hour Octet N M 0 to 23
Minute Octet N M 0 to 59

5.7.22 Display

Description: This parameter is used to pass display information to the PUF.

Type: 24.

Fields Field type Direction Required Comment
Information IA5-string N M 32 is maximum length

5.7.23 DtmfDigits

Description: This parameter is used to pass the information related the DTMF digits to send
or received.

Type: 85.

Fields Field type Direction Required Comment
Digits IA5-string B M DTMF digits to send

("0" to "9") Numeric key.
("*") "*" key
("#") "#" key
("R") "R." key
32 is the maximum length.
Each character generates an unique DTMF-tone

5.7.24 DtmfGapDuration

Description: This parameter is used to pass the information related the gap duration between
2 DTMF digits.

Page 208
Final draft prETS 300 838: March 1998

Type: 84.

Fields Field type Direction Required Comment
Value Octet-string P M Time in ms (1 000 max.).

Length is fixed to 2.

5.7.25 DtmfOperation

Description: This parameter is used to pass the information related the DTMF digits to send
or to receive.

Type: 82.

Fields Field type Direction Required Comment
Value Octet P M start listening DTMF digits (1)

stop listening DTMF digits (2)
send DTMF digits (3)

5.7.26 DtmfResult

Description: This parameter is used as the result of the acknowledgement of the CDtmfReq
message sent by the PUF.

Type: 86.

Fields Field type Direction Required Comment
Dtmfconf Boolean N M True = Parameter OK

False = One or more parameters are not accepted

Parameter_list Octet N C If Dtmfconf = False
Type of parameter non accepted
Bit 1 = 1 (DtmfOperation)
Bit 2 = 1 (DtmfToneDuration)
Bit 3 = 1 (DtmfGapDuration)
Bit 4 = 1 (DtmfDigits)
(See note)

NOTE: Each information uses a binary position. The MSB is the bit 8 and the LSB is the bit 1. Bit 1 is for value 1, bit 2 for
value 2 and bit 3 for value 4. The result value applying to this parameter is the sum of the value for each bit (logical
OR).

5.7.27 DtmfToneDuration

Description: This parameter is used to pass the information related the tone duration for one
DTMF digit.

Type: 83.

Fields Field type Direction Required Comment
Value Octet-string P M Time in ms (1 000 max.).

Length is fixed to 2.

5.7.28 ExtEquipAvailability

Description: This parameter is used to pass the information related to the availability of the
external equipment.

Type: 25.

Page 209
Final draft prETS 300 838: March 1998

Fields Field type Direction Required Comment
Availability Boolean N M State of the external equipment

TRUE - equipment available
FALSE - equipment unavailable

5.7.29 ExtEquipBlockDialling

Description: This parameter is used to pass the information related to the block dialling made
with the keypad of the external equipment.

Type: 26.

Fields Field type Direction Required Comment
BlockDialling IA5-string N M Remote address and/or subaddress typed on the

keypad of the external equipment.
A star ("*") separates address and subaddress
fields.
41 bytes is the maximum length.

5.7.30 ExtEquipKeyPressed

Description: This parameter is used to pass the information related to the pressed keys on
the keypad of the external equipment.

Type: 27.

Fields Field type Direction Required Comment
Keypressed Octet N M Keypad information

(0 to 9) Numeric key.
(10) "*" key.
(11) "#" key
(12) "A" key
(13) "B" key
(14) "C" key
(15) "D" key

5.7.31 ExtEquipName

Description: This parameter is used to pass the name that identifies an item of external
equipment.

Type: 28.

Fields Field type Direction Required Comment
Type Octet B M type1 (1) - external equipment is of type 1.

type2 (2) - external equipment is of type 2.
type3 (3) - external equipment is of type 3.
type4 (4) - external equipment is of type 4.
type5 (5) - external equipment is of type 5.
External equipment types are described in annex
A.

Name IA5-string B M maximum length is 16
"DEFAULT" - use first defined external equipment
of specified type.

5.7.32 Facility

Description: This parameter is used to pass facility information to/from the PUF. If different
facility information than defined in the FacilityTag 1 to 4 values is expected, the
transparent (5) value should be used.

Page 210
Final draft prETS 300 838: March 1998

Type: 30.

Fields Field type Direction Required Comment
FacilityTag Octet B M chargingduring (1) - This value is used to request

charging information during the connection. This
tag is used in the direction from the PUF to the
NAF. During the connection the NAF shall send
subtotals of the charging information to the PUF.
At the end of the connection the NAF shall provide
the total charging information.
chargingend (2) - This value is used to request
charging information at the end of a connection.
This tag is used in the direction from the PUF to
the NAF. At the end of the connection the NAF
shall provide the total charging information to the
PUF.
charginginfo (3)- This value is used to indicate that
the Contents field contains charging related
information. This value is used in the direction
from NAF to PUF.
chargingerror (4) - This value is used to indicate
that the Contents field contains Error information
related to the charging supplementary service.
This value is used in the direction from NAF to
PUF.
transparent (5) - Allows the PUF or the NAF to
send/receive facility information coded in format
used by the network.

FacilityValue Octet-string B C Length and contents depend on value of
FacilityTag field. Contents field is not allowed
when FacilityTag field value is chargingduring or
chargingend.

The coding of the FacilityValue field in the case when the FacilityTag field value is charginginfo, is defined
in table 61.

NOTE: For transparent coding, the size of the contents is the size of the facility parameter
minus 1.

Table 62: Coding of the FacilityValue field in the case of ChargingInfo

Subfield Field type Value Comment
TypeOfTotal Octet subtotal (1) Indicates whether the charging information is a total or

a subtotal.
total (2)

TypeOfCharge Octet currencyinfo (2) The charging information is represented as currency
information.

unitInfo (3) The charging information is represented as charging
units.

freeofcharge (4) The connection is free of charge.
unknown (1) The type of the charging information cannot be

determined.
Value Octet value after decimal point. The

value represents n x 1/256.
Value of the charging information in fixed point
notation. If the octet 2 indicates freeofcharge, all three
octets shall contain zero (0) to indicate a value of 00,0.

Octet least significant octet before
decimal point

Octet most significant octet before
decimal point.

The coding of the Contents field in the case when the Tag field value is chargingerror, is defined in
table 63.

Page 211
Final draft prETS 300 838: March 1998

Table 63: Coding of the FacilityValue field in the case of ChargingError

Subfield Field type Value Comment
ChargingError-Cause Octet notsubscribed (50) The user has not subscribed to the Advice Of Charge

(AOC) supplementary service.
notavailable (63) The AOC supplementary service is not available.
notimplemented (69) The AOC supplementary service is not implemented.
InvalidCallState (101) TheAOC supplementary service is invoked in an

invalid call state. The supplementary service can be
only be invoked in the CConnectReq.

NoChargingInfoAvailable (128) There is no charging information available.

5.7.33 GroupID

Description: This parameter is used to pass the group identifier to/from the PUF.

Type: 33.

Fields Field type Direction Required Comment
GroupID Octet string B M The value is unique for a PUF/NAF relation.

4 octets is the fixed length.

NOTE: A detailed description of the possible use of this parameter can be found in the User
Plane clauses.

5.7.34 High Layer Compatibility (HLC)

Description: This parameter is used to pass HLC information to/from the PUF.

Type: 34.

Fields Field type Direction Required Comment
Standard Octet B M Default (255) - default is ITU-T

ITU-T(0)
international (1)
national (2)
network (3)

Identification Octet B M telephony (1)
faxG4C1 (33)
teletexF184 (36)
teletexF220 (40)
teletexF200 (49)
videotext (50)
telex (53)
mhsx400 (56)
osix200 (65)
maintenance (94)
management (95)

ExtIdentification Octet B O telephony (1)
faxG4C1 (33)
teletexF184 (36)
teletexF220 (40)
teletexF200 (49)
videotext (50)
telex (53)
mhsx400 (56)
osix200 (65)

5.7.35 Key

Description: Key to be used for the security algorithm.

Page 212
Final draft prETS 300 838: March 1998

Type: 36.

Fields Field type Direction Required Comment
Key Octet-string P M The Key parameter is used by the PUF to give

relevant information for the security algorithm to
the NAF.
Maximum length is 255.

5.7.36 Keypad

Description: This parameter is used to pass keypad facility information to the NAF.

Type: 37.

Fields Field type Direction Required Comment
Keypad Octet-string P M IA5 characters to convey.

Maximum length is 32.

5.7.37 Low Layer Compatibility

Description: This parameter is used to pass a subset of LLC information to/from the PUF.
Information concerning layer 1 details shall be taken from the BearerCap
parameter when an CConnectReq message is issued with an LLC parameter.

Type: 46.

Fields Field type Direction Required Comment
Negotiation Boolean B M TRUE - negotiation is allowed

FALSE - negotiation is not allowed
Layer2protocol Octet B M 0 - 31

255 = unspecified
It refers to the Octet 6 of the LLC information
element.

layer2optional Octet B M 0 - 127
255 = unspecified
It refers to the Octet 6a of the LLC information
element

Layer3protocol Octet B M 0 - 31
255 = unspecified
It refers to the Octet 7 of the LLC information
element

layer3optional Octet B M 0 - 127
255 = unspecified
It refers to the Octet 7a of the LLC information
element

5.7.38 ManufacturerCode

Description: This parameter identifies the manufacturer. It is provided by the manufacturer.

Type: 47.

Fields Field type Direction Required Comment
Value Octet-string B M Manufacturer identification.

Maximum length is 255 octets.

5.7.39 NCOID

Description: This parameter is used to pass the connection object identifier to/from the PUF.

Type: 49.

Fields Field type Direction Required Comment
Value Octet-string B M This value is unique for a PUF/NAF relation.

Length is fixed to 4 octets.

Page 213
Final draft prETS 300 838: March 1998

5.7.40 NCOType

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment
Identifier Octet B M cset (1) - signalling access only.

(see note)
NOTE: More values of the NCOType to be used in case of different types of User Plane Access can be found in the User

Plane clauses.

5.7.41 NotificationIndicator

Description: This parameter is used to pass notification of network event to the PUF. It may
be a suspended or resumed operation.

Type: 51.

Fields Field type Direction Required Comment
Value Octet N M suspended (1)

resumed (2)
callwaiting (3)

NOTE: Other values are network dependent.

5.7.42 NumberComplete

Description: This parameter is used by the PUF to indicate to the NAF that a called number
is complete.

Type: 79.

Fields Field type Direction Required Comment
Value Octet P M Number complete (1).

Number not complete (0)

5.7.43 ProgressIndicator

Description: This parameter is used to pass information concerning the progress of a
telephony call from/to the PUF.

Page 214
Final draft prETS 300 838: March 1998

Type: 53.

Fields Field type Direction Required Comment
Standard Octet B M ITU-T (ex-CCITT) (0)

international (1)
national (2)
network (3)

Location Octet B M user (0)
privatelocal (1)
publiclocal (2)
transit (3)
publicremote (4)
privateremote (5)
international (7)
networkbeyond (10)

Value Octet B M notISDN (1) - call is not end to end ISDN, further
information may be available in-band.
destinationnotISDN (2) - Destination address is not
ISDN.
originationnotISDN (3) - Origination address is not
ISDN.
returnedtoISDN (4) - Call has returned to ISDN.
inbandinformation (8) - In-band information or
appropriate pattern now available.

5.7.44 RequestID

Description: This parameter is used to pass an identifier to the NAF on a request message. It
is returned by the NAF on the associated confirm message.

Type: 56.

Fields Field type Direction Required Comment
Identifier Octet-string B M Internal ID provided by the PUF.

Length is fixed to 4 octets.

5.7.45 SelectorID

Description: This parameter is used by the PUF to select the right NCO on an incoming call
(second step of the selection). Also the PUF uses the SelectorID to give the
NAF a list of NCOs that should be exclusively dealt with.

Type: 60.

Fields Field type Direction Required Comment
Identifier Octet-string P M Internal ID provided by the PUF.

Length is fixed to 4 octets.

5.7.46 Signal

Description: This parameter is used to optionally convey information to the PUF regarding
tones and alerting signals.

Page 215
Final draft prETS 300 838: March 1998

Type: 81.

Fields Field type Direction Required Comment
Signal value Octet N M dial tone on (0)

ring back tone on (1)
intercept tone on (2)
network congestion tone on(3)
busy tone on (4)
confirm tone on (5)
answer tone on (6)
call waiting tone on (7)
off-hook warning tone on (8)
tones off (63)
alerting on - pattern 0 (64) note
alerting on - pattern 1 (65) note
alerting on - pattern 2 (66) note
alerting on - pattern 3 (67) note
alerting on - pattern 4 (68) note
alerting on - pattern 5 (69) note
alerting on - pattern 6 (70) note
alerting on - pattern 7 (71) note
alerting off (79)

NOTE: The use of these patterns is network dependent.

5.7.47 SuspendID

Description: This parameter is used by the PUF to identify a suspend connection. If not
profided by the PUF, the NAF will internally handle this reference.

Type: 109.

Fields Field type Direction Required Comment
Identifier Octet-string P M Length is limited to 10 octets.

5.7.48 TEI

Description: This parameter is used to access a permanent link to a data packet switch
(packet connection in D-channel).

Type: 61.

Fields Field type Direction Required Comment
Value Octet B M

5.7.49 UProtocol

Description: This parameter is used to select the User Plane protocol.

Type: 62.

Fields Field type Direction Required Comment
L3Protocol Octet P M Default (255).

(see note)

L2Protocol Octet P C Mandatory if L3Protocol is NULL(4).
Default (255) - ISO 7776
(see note)

L1Protocol Octet P C Mandatory if L2Protocol is NULL(8). Absent if
L2Protocol is absent.
(see note)

NOTE: A detailed description of the possible use and values for this parameter can be found in the User Plane clauses.

Page 216
Final draft prETS 300 838: March 1998

5.7.50 UAttributeName

Description : This parameter is used to pass the name of a static set of User Plane attributes
from the PUF.

Type: 63.

Fields Field type Direction Required Comment
AttributeName IA5-string P M 16 bytes is maximum length.

5.7.51 UDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the User Plane.

Type: 64.

Fields Field type Direction Required Comment
Direction Octet P M listen (1)

call (2)
both (3)

NOTE: If absent, the value assumed by the NAF is the value of the CDirection parameter.

5.7.52 UserToUserInfo

Description: This parameter is used to pass user to user information to/from the PUF.

Type: 65.

Fields Field type Direction Required Comment
Discriminator Octet B M userspecific (0) - contents of information field is in

user specific format.
ia5chars (4) - contents of information field is IA5
characters.

Information Octet-string B M 128 is maximum size.

Remarks: The Discriminator field is used to indicate the format of the data in the Information
field. Values from 0 to 256 are possible but may be restricted by the ISDN being
accessed. The values defined are supported by all NAFs.

5.7.53 V42BisCompression

Description: This parameter is used by the PUF to request a V42bis compression.

Type: 108.

Fields Field type Direction Required Comment
Compression Octet P M 1 Requests V42bis compression

5.7.54 AttributeSet Parameters

AttributeSet parameters depend on the type of parameters to provide with the ACreateNCO request.
Tables 64 and 65 show the content of such parameters.

Page 217
Final draft prETS 300 838: March 1998

Table 64: Signalling Attribute Set (CAttributeSet) parameters

Parameters Required Comment
ChannelIdentification O* See subclause 5.7.12.
HLC O See subclause 5.7.34.
LLC O See subclause 5.7.37.
BearerCap O See subclause 5.7.3.

Table 65: External Equipment related parameters (within the UAttributeSet)

Parameters Required Comment
ExtEquipName O Name of external equipment to be used. If provided connection shall

be established to identified external equipment and User Plane
messages shall not be provided. See subclause 5.7.31.

Tables providing further detailed description of the User Plane Attribute Set (UAttributeSet) parameters
available to be used with the ACreateNCO request for the various possible user protocols can be found in
the User Plane clauses.

5.7.55 Administration AttributeSet parameters

Administration AttributeSet parameters are used to collect some management information about each
NCO and are accessible at any time through the GetNCOInfo operation. Table 66 shows the contents of
this parameter.

Table 66: Administration Attribute Set parameters

Parameters Required Comment
NCOType O See subclause 5.7.40.
CDirection O See subclause 5.7.11.
CAttributeName O See subclause 5.7.8.
CAttribute parameter O See table 64.
UDirection O See subclause 5.7.51.
UAttributeName O See the relevant User Plane subclauses.
UAttribute parameter O See the relevant User Plane subclauses.
CAddress parameters O See table 67.
UAddress parameters O See the relevant User Plane subclauses.
GroupID O Providing at the NCO creation time. See subclause 5.4.3.
SelectorID O See subclause 5.7.45.
ControllerID O See subclause 5.7.18.
ChargingInfo O See subclause 5.7.13.
DateTime O Date and Time of the NCO creation. See

subclause 5.7.21.
CauseToPUF O See subclause 5.7.10.
V42BisCompression O See subclause 5.7.51.

5.7.56 AddressSet parameter

Tables 67 shows the structures of the Address.

Table 67: Signalling Address Set (CAddressSet) parameters

Parameters Required Comment
CalledNumber O See subclause 5.7.4 for parameter definition.
CalledSubaddress O See subclause 5.7.5 for parameter definition.
CallingNumber O See subclause 5.7.6 for parameter definition.
CallingSubaddress O See subclause 5.7.7 for parameter definition.

Page 218
Final draft prETS 300 838: March 1998

Tables providing further detailed description of the User Plane Address Set (UAddressSet) Parameters
available to the PUF for the various possible user protocols can be found in the User Plane clauses.

5.8 Selection criteria

5.8.1 NCO Selection

In order to apply the right NCO on an incoming call, the following considerations have to be taken into
account by the NAF.

Only the NCOs with UDirection or CDirection set to incoming or both directions are dealt with in this case.
The best NCO shall contain an explicit definition for each value used for the checking. The "match" level
shall be put on values checked rather than on values assumed. Table 68 summarizes the matching
operation.

Table 68: Matching operation for the NCO selection

Network NCO Operation Result
Provided Provided Equal Match
Provided Provided Not equal No match
Provided Not provided (no operation) Match
Not provided Provided (no operation) No match
Not provided Not provided (no operation) Match

The NAF shall broadcast an incoming call to all PUFs, which have indicated compatibility within a NCO.
The incoming call shall then be assigned to the PUF which first accepts the call with the appropriate
message. All other PUFs shall receive a disconnect indication. Using this procedure also implies that NAF
co-ordinated NCOs have a higher priority than PUF co-ordinated NCOs, since the NAF may respond
immediately to an incoming call without involving any PUF. In such a case, the call is not seen from
non-co-ordinated NCOs.

If CAlertReq message is sent by a PUF, only the first shall be sent to the network. All others are ignored.
When a CDisconnectReq message is sent by a PUF, it does not disconnect the call except if no other
NCO has been assigned to this call. This mechanism gives the opportunity to make connection with a
delayed NCO.

NOTE: A SelectorID identifier has been designed to reduce the broadcast effect for a PUF.
The SelectorID parameter impacts on the incoming call broadcasting operation when
more than one NCO per PUF is selected. See subclause 5.2.1.7 for more detailed.

5.8.1.1 Control Plane information elements

1) Called Address (correct or absent).
2) Called Subaddress (correct or absent).
3) Bearer capabilities (correct).
4) LLC (correct or absent).
5) HLC (correct or absent).

These five information elements shall match the NCO values to make an NCO eligible. At the end of the
selection process, if more than one NCO is eligible, the second step selection shall apply. First the check
function, associated with the order of the information elements, shall be used to select a NCO. The latest
selection criteria shall be the time. The latest NCO created by the PUF shall be selected first.

EXAMPLE: In the case presented in the table 69, only the NCO2 shall be chosen because
the NCO1 is waiting for a subaddress information element different than
provided in the incoming call and because all the expected information elements
included in the NCO2 matches with the incoming call information elements.

Page 219
Final draft prETS 300 838: March 1998

Table 69: Matching NCO on an incoming call

Field Incoming call NCO1 NCO2
Called addr 123456789 not provided 123456789
Called sub addr 1002 1001 Not provided
Bearer cap. /80/90/A3 not provided /80/90/A3
LLC no outband

negotiation
not provided not provided

HLC telephony telephony telephony

User Plane protocol specific information elements to be considered during the NCO selection process are
specified for the various possible user protocols in the User Plane clauses.

5.8.2 Action if no NCO available

5.8.2.1 Control Plane incoming call

A disconnection cause #88 "incompatible destination" is issued by the NAF.

5.8.2.2 User Plane incoming call

The disconnection procedure for the various possible user protocols are specified in the User Plane
clauses.

5.9 Error checking and codes

This subclause deals with the error checking provided by the Profile A. Initially the error checking methods
employed by each plane are described. Then the function return codes and error return codes for each
plane are defined and described.

5.9.1 Administration Plane

For Administration Plane messages, almost all messages operate in Request/Confirm pairs; there are no
Indicate/Response messages. Any error detected in a request message shall be notified in the related
confirm message.

For Administration Plane messages any error detected shall prevent an operation from being performed
and hence prevent a change of state.

Within the Administration Plane the AErrorInd message is used to indicate errors which are not covered
by the protocols which support the Control Plane and User Plane messages. For example, this message
is used to inform the PUF that an invalid NCOID has been specified on a message.

5.9.2 Control Plane

When mandatory parameters are missing, or a content error occurs in a mandatory parameter, or a
parameter is unrecognized, the NAF indicates the error to the PUF as given in subclause 5.9.2.1 to
5.9.2.3.

5.9.2.1 Invalid state for message

CStatusInd, no change of state for connection.

Page 220
Final draft prETS 300 838: March 1998

5.9.2.2 Mandatory parameters

In case of mandatory parameters missing, mandatory parameters content error or unrecognized
parameter, the NAF indicates this error to the PUF as follows:

- for CConnectReq the PUF is sent an CDisconnectInd;
- for CDisconnectReq the PUF is sent an CDisconnectCnf;
- for any other message the PUF is sent CStatusInd, no operation is performed, and no change of

state occurs.

5.9.2.3 Optional Parameter Content Error

The message shall be processed as if the parameter were not present, CStatusInd is sent to the PUF
indicating the parameter in error.

5.9.3 Errors in facility requests

Errors related to facility requests depend on the facility being requested. In the case of Advice of Charge
supplementary service, errors are indicated by the use of a CFacilityInd message. The message that
generated this error is processed as if there were no facility information present. Specific errors are
defined in table 72. When a PUF uses facilities in the transparent form it is up to the PUF to understand
how errors will be reported and what processing may have occurred within the network.

5.9.4 User Plane

Subclause 5.2.8 deals with the Error of Administration nature.

Errors are dealt with according to procedures defined in the User Plane clauses for the various possible
User Plane protocols.

5.9.5 Function return codes

Table 70 defines function return codes.

Page 221
Final draft prETS 300 838: March 1998

Table 70: Function return codes

Return Code Meaning
Success 0 Function completed successfully.
QueryEntityNotAvailable 128 The Query entity is not available or an error occurred during dialogue

between the PUF and the Query entity.
InvalidSignalNumber 129 The signal number specified is invalid.
InvalidPCIHandle 130 Handle does not identify a NAF.
NAFnotAvailable 255 NAF is no longer available. The NAF has terminated due to error. This

is a fixed condition.
NAFBusy 132 NAF is unable, currently, to process this request (lack of resource or

other reason). The function may work correctly if reused at a later time.
This is a temporary condition.

MaxPUFsExceeded 133 NAF can support no more PUFs.
InvalidPUFType 134 Invalid or unsupported type of PUF. NAF does not support this type of

PUF.
InvalidPCIVersion 135 Invalid or unsupported version of PCI. NAF does not support this

version of PCI.
InvalidExID 136 NAF does not recognize Exchange identifier.
InvalidPCIMPB 137 PCI Message Parameter Block address is incorrect.
InvalidMessageBuffer 138 Message Buffer address is invalid.
InvalidDataBuffer 139 Data Buffer address is invalid.
PCIMPBBufferTooSmall 140 PCIMPB Buffer is too small.

Provided for operating systems that can check length of available
memory.

MessageBufferTooSmall 141 Message Buffer is too small.
Message Buffer does not meet message identifier requirements or
actual buffer size in PCIMPB is greater than maximum size. On some
operating systems this may also indicate that maximum size of data
buffer exceeds memory limitations.

DataBufferRequired 142 Data Buffer is required for message.
DataBufferTooSmall 143 Data Buffer provided for message is too small.

Data Buffer does not meet message identifier requirements or actual
buffer size in PCIMPB is greater than maximum size. On some
operating systems this may also indicate that maximum size of data
buffer exceeds memory limitations.

PropertyBufferTooSmall 144 The buffer provided with the property information structure(s) is too
small.

MessageTooLarge 145 There is no upper bound to the message size because of repetitions of
parameters. If the message size exceeds the maximum size possible in
an implementation, this value is returned.

InvalidHandlesBuffer 146 The PCIHandles buffer address is invalid.
HandlesBufferTooSmall 147 The size of the buffer for PCIHandles is too small to contain all

available PCI_HANDLEs.
BufferTooSmall 148 The size of the buffer provided by the PUF is too small to answer the

NAF needs (Operating System specific return code).
InvalidRegisterInfoStructure 149 At least one parameter contained in the PCIRegisterInfo structure is

invalid (Operating System specific return code).
InvalidOpSysInfoStructure 150 At least one parameter contained in the PCIOpSysInfo structure is

invalid (Operating System specific return code).

5.9.6 Administration Plane return code

The following values (see table 71) are returned in the CompletionStatus parameter The ErrorSpecific
information column indicates what, if any, information shall be in the ErrorSpecific field:

Page 222
Final draft prETS 300 838: March 1998

Table 71: Administration Plane return code

Return Code Meaning ErrorSpecific
Information

Success 0 Operation completed successfully. Not present
NAFnotAvailable 255 NAF is no longer available. The NAF has

terminated due to error. This is a permanent
condition.

Not present

RessourceNotAvailable 47 Used with the NCO creation request message
to indicate the lack of a resource (e.g.
memory).

Not present

UndefinedMsgType 95 This message identifier is not defined by the
Profile A.

Message Identifier

UnsupportedMsgType 97 This message identifier is defined by the
Profile A but not supported by this NAF.

Message Identifier

InvalidParameter 99 A parameter is not recognized or is not
supported by a message.

Parameter Type

MissingParameter 96 A mandatory parameter is missing from a
message.

Parameter Type

InvalidParameterLength 182 A parameter's length is outside the allowed
range for the parameter.

Parameter Type

InvalidContents 100 A parameter's content is invalid. Used with
the NCO creation confirm message to report
errors within parameters used to define the
NCO.

Parameter Type

InvalidNCOID 81 A message has been passed to the NAF with
an invalid NCOID.

NCOID value

NCOIDinUse 183 An NCOID that is in use for an
established/establishing connection cannot be
used on this message.

NCOID value

InvalidNCOType 184 A message has been passed to the NAF with
an invalid NCOType value.

NCOType value

InvalidDirectionType 185 A message has been passed to the NAF with
an invalid Direction value.

Not present

AttributeNameError 186 Invalid use of Attribute name. Name is not
known, already defined or identifies an
attribute set of the wrong type.

Attribute name

ExtraSetError 189 Message contains attribute set name that is
not required.

Attribute name

SecurityNotActivated 190 Requested security algorithm has not been
activated.

Security algorithm
specific value.

InvalidCoordValue 191 Invalid value in NAF Co-ordination parameter. Not present
InvalidGroupID 192 GroupID value is not recognized by the NAF. GroupID value
GroupIDError 193 Message is either missing or requires a

GroupID.
Not present

InvalidExtEquipName 194 External Equipment name is not known to
NAF.

Not present

InvalidExtEquipType 195 Invalid value specified for External Equipment
type.

Not present

OperationFailed 196 Requested operation failed. Not present
ManufacturerCodeError 197 Error in the manufacturer code. Specific

manufacturer
complement

FunctionalityNotProvided 198 Functionality not Provided by the NAF. Not present.

Page 223
Final draft prETS 300 838: March 1998

5.9.7 Control Plane causes

These values are returned in the CauseToPUF parameter inside the "Cause" field when the parameter is
part of a message passed from NAF to PUF.

NOTE: N/A means Not Applicable.

Table 72: Control Plane causes

Value Q.931 Meaning Profile A Meaning Generated
by

NAF
provided

Diagnostics
1 Unallocated (unassigned)

number
ISDN N/A

2 No Route to Specified Transit
Network

ISDN N/A

3 No route to destination ISDN N/A
6 Channel Unacceptable ISDN N/A
7 Call placed on an already

established channel
ISDN N/A

16 Normal call clearing ISDN N/A
17 User busy ISDN N/A
18 No user responding ISDN N/A
19 No answer from user (user

alerted)
ISDN N/A

21 Call Rejected ISDN N/A
22 Address changed ISDN N/A
26 Non-selected user clearing ISDN N/A
27 Destination out of order ISDN N/A
28 Invalid address format Parameter has invalid address

format.
NAF, ISDN Not present

29 Facility rejected Facility is not provided by this
NAF.

NAF, ISDN Not present

30 Response to STATUS
ENQUIRY

ISDN N/A

31 Normal unspecified ISDN N/A
34 No circuit/channel available Temporarily no channel of

requested type is available
from this NAF.

NAF, ISDN Not present

41 Temporary Failure ISDN N/A
42 Switching equipment

congestion
ISDN N/A

43 Access information discarded Parameter(s) information
discarded.

NAF, ISDN Parameter
Types

44 Requested channel/circuit not
available

No channel of requested type
is available from this NAF.

NAF, ISDN Not present

47 Resource unavailable,
unspecified

Requested external equipment
is not available.

NAF, ISDN Not present

49 Quality of service unavailable ISDN N/A
50 Facility requested on Facility

parameter is not subscribed
ISDN N/A

57 Bearer Capability not
authorized

ISDN N/A

58 Bearer Capability not presently
available

ISDN N/A

63 Service or option not available,
unspecified

ISDN N/A

65 Service requested by Bearer
Capability is not implemented

ISDN N/A

(continued)

Page 224
Final draft prETS 300 838: March 1998

Table 72 (concluded): Control Plane causes

Value Q.931 Meaning Profile A Meaning Generated
by

NAF
provided

Diagnostics
66 Channel Type not implemented NAF does not support this type

of channel.
NAF, ISDN Not present

69 Facility requested is not
implemented

NAF does not support this
facility.

NAF, ISDN Not present

79 Service or option not
implemented, unspecified

ISDN N/A

81 Invalid call reference Invalid NCOID. NAF Not present
82 Identified channel does not

exist
Identified permanent channel is
not defined.

NAF Not present

85 No call suspended NCOID does not identify a
suspended connection.

NAF Not present

88 Incompatible destination ISDN N/A
96 Mandatory parameter is

missing
Mandatory parameter is
missing.

NAF Parameter
Type

97 Message Identifier non-existent
or not implemented on this
network

Message Identifier non-existent
or not implemented on this
NAF.

NAF Message
Identifier

98 Message not compatible with
call state or Message Identifier
non-existent or not
implemented

Message not compatible with
NCO state or Message
Identifier non-existent or not
implemented.

NAF Message
Identifier

99 Invalid parameter Invalid parameter. NAF Parameter
Type

100 Invalid parameter contents Invalid parameter contents. NAF Parameter
Type

101 Message not compatible with
current state

Message not compatible with
current state.

NAF Message
Identifier

127 Inter working, unspecified ISDN N/A

These values are valid in the CauseToNAF parameter "Cause" field when the parameter is part of a
message passed from PUF to NAF. If an invalid value is used it shall be ignored and a value of 16,
Normal call clearing, used in its place.

For some ISDN, other values may be provided in the NAF to PUF direction.

Table 73: Content of the CauseToNAF parameter

Value Meaning
16 Normal call clearing.
21 Call rejected.
31 Normal unspecified.
88 Incompatible destination.

5.9.8 User Plane causes

Values returned as completion causes for messages of the User Plane can be found in the User Plane
clauses.

5.10 Security

This subclause addresses communication security using Profile A.

Page 225
Final draft prETS 300 838: March 1998

5.10.1 General aspects of security in ISDN

The digital nature of ISDN facilitates adding security, but ISDN has been developed without support for
security features in the lower layers. The deployment of ISDN in the public network is well under way and
this constrains how security features may be added.

From the point of view of applications, the following needs for security can be seen:

- protecting information confidentiality;
- identifying the parties in communications (authentication);
- assuring the integrity of communicated information;
- controlling access to network services and customer equipment and data;
- being able to prove to a third party the fact that a communication occurred, the contents and the

identities of the parties involved (non-repudiation).

From a security perspective, ISDN is more than a lower-layer communication service. Within the ISDN
there has to be some concern for the applications, and especially the security requirements of these
applications.

A foundation of common security standards for ISDN, particularly for authentication, confidentiality and
integrity can provide the needed platform upon which the specific security needed by various ISDN
applications can be built. The needed technology exists; it remains only to adopt it to ISDN and
incorporate it in standards.

5.10.2 Security in Profile A

Although there are no lower layer ISDN security standards available, Profile A offers access to security
functionalities which may be available in the NAF. This access offers an initial approach to use security on
the ISDN.

The PUF can access the security functionality of the NAF in the following ways:

- using the supplementary service Calling Line Identification Presentation (CLIP);

The CLIP supplementary service provides the PUF with the calling user's ISDN number, possibly
with sub-address information. The ISDN number and sub-address information are provided by the
network, and therefore, may be used to identify the calling user. This supplementary service
provides the PUF with a method to identify the other party.

- Using the security messages in the Administration Plane:

- ASecurityReq;
- ASecurityCnf.

This security access provides the PUF access to encryption and security features which can be
provided by the NAF. These messages provide a way to exchange the information needed for using
the security features of the NAF. This security access provides a method for protecting information
confidentiality. See subclauses 5.4.9 and 5.4.10 for information on the use of these Administration
Plane messages.

5.10.3 Increasing security in Profile A

As no standards exist for security in ISDN, only limited features for security can be added in the Profile A.
These security features are described in subclause 5.10.2.

Although the standards do not exist, the impact of introducing security in Profile A can be estimated.
Three approaches to introducing security can be seen:

a) Security features as supplementary services

There should be little impact on Profile A interface or PUFs. These supplementary services should
be handled in the same way as the normal ones.

Page 226
Final draft prETS 300 838: March 1998

b) Security as one specific protocol in the NAF

If on one of the lower layers a secure protocol is operating, the PUF may only have to supply this
protocol with the necessary security information. This can be achieved by extending the
Administration Plane to allow the transfer of the information. There are several ways to implement
such extensions:

- adding a message;
- extending the attribute sets to contain the security information;
- NCOs contain the security information.

c) Definition of a new secure protocol stack for ISDN

If new secure ISDN protocols are established, Profile A shall be altered. New User Plane and
Control Plane protocols need to be established. The extension mechanism provided by Profile A
can be used to supply these new protocols.

Although the impact of introducing security can be estimated, the actual introduction of additional security
features in Profile A is for further study.

6 Profile B

6.1 Reader guidance

- Subclause 6.2 describes the basic mechanisms that ensure operating system independence such
as messages, message structures and the used message protocol.

- Subclause 6.3 describes the operations necessary to exchange messages between Profile B and
applications.

- Subclause 6.4 gives an overview of the messages in the Administration Plane, as does
subclause 6.5 for the Control Plane messages and subclause 6.6 for the User Plane messages.

- Subclauses 6.7 and 6.8 specify in detail the functionality and coding of each message and
parameter.

- Subclause 6.9 defines the allowed actions in different states of a connection by introducing a
presentation of state diagrams in the form of the original Profile B document. The annex provides
the state diagrams in standard SDL notation.

- Clause 7 includes all operating system dependent operations of Profile B to exchange messages. It
is divided into subclauses for each operating system supported by Profile B.

- Annex J gives an intuitive understanding of how to connect, exchange data and disconnect,
exemplified by arrow diagrams.

- Annex K provides a coding scheme used by an implementation of Profile B to exchange facsimile
Group 3 documents between implementations of this Profile and applications.

- Annex L gives a short list of the protocols supported by Profile B.
- Annex M provides the state diagrams for Profile B conforming to ITU-T Recommendation Z.100 [5].
- Annex P provides an index listing each message, parameter and operation of this Profile.
- Annex R acts as a guideline to the implementor of this Profile.

6.2 Message overview

The term message is a fundamental one to define Profile B. An asynchronous mechanism, used to
exchange information defined by Profile B (messages), achieves operating system independence.

6.2.1 General message protocol

Communication between application and Profile B always uses the following general protocol:

A message shall be followed by a corresponding response. Messages from an application going to
Profile B are called REQUESTs, the appropriate answer from Profile B is called CONFIRMATION. On the
other side, messages originating from Profile B are called INDICATIONs , the corresponding reactions of
an application are called RESPONSEs. This is also reflected in the naming convention of messages:
every message name ends with the appropriate suffix (_REQ, _CONF, _IND, _RESP).

Page 227
Final draft prETS 300 838: March 1998

Each message contains a message number. Profile B shall return the number used in the REQUEST
message in the corresponding CONFIRMATION. Applications may choose unique message numbers to
identify message correlations before interpreting incoming messages. INDICATIONS from Profile B shall
be numbered so that an application is guaranteed to get different message numbers for every incoming
INDICATION.

An application shall not be allowed to send RESPONSE messages without receiving an INDICATION.
Profile B shall ignore these illegal messages.

6.2.2 Type definitions

Parameters are associated with every message exchanged. To describe the message and its parameters,
only a few basic types are used:

- Byte: coded as one octet;

- Word: coded as two contiguous octets, least significant first;

- Dword: coded as two contiguous words, least significant first;

- Struct: coded as an array of octets, the first octet containing the length of following data. If the first
octet has the value 255 (0xFF), it indicates an escape character for interpreting the following word
as containing the length of the data. An empty struct is coded as one single octet with value 0.

Every message is described in terms of these basic types.

6.2.3 Message structure

All messages exchanged between application and Profile B consist of a fixed-length header and a
parameter area of variable length, parameter followed by parameter. No padding occurs in the message
or parameter area.

Message

header

Parameter

1

Parameter

2

..... Parameter

n

Figure 30: Message layout

In order to facilitate future extensions of this ETS, messages containing additional parameters shall be
treated as valid messages. Profile B implementations and applications shall ignore all additional
parameters.

The message header has the following layout:

Total

length

ApplID Command Sub-

command

Message

number

Figure 31: Message header layout

Page 228
Final draft prETS 300 838: March 1998

Explanation of message header:

Message Type Contents
Total length word Total length of the message including the complete

message header.
ApplID word Identification of the application. The application

number is assigned to the application by Profile B in
the CAPI_REGISTER operation.

Command byte Command.
Subcommand byte Command extension.
Message number word Message number as described above.

6.2.4 Manufacturer specific expansion

Manufacturer specific expansions of Profile B can be made without altering the basic structure. They are
identified by an appropriate command/subcommand field in the message.

6.2.5 Table of messages

Messages are logically grouped into three types:

- administrative and other messages, which are grouped within the administration plane
(see subclause 6.4);

- messages that are grouped within the control plane (see subclause 6.5) and concernthe signalling
protocol of the ISDN (D-channel);

- messages that are grouped within the user plane (see subclause 6.6) and concernlogical
connections (B- or D-channel).

Tables 74, 75 and 76 give an overview of the defined messages and their functionality. The complete
description of each message is given in subclause 6.7.

Page 229
Final draft prETS 300 838: March 1998

Table 74: Administrative and other messages

Message Description
LISTEN_REQ activates call indications
LISTEN_CONF local confirmation of request
FACILITY_REQ requests additional facilities (e.g. ext. equipment)
FACILITY_CONF local confirmation of request
FACILITY_IND indicates additional facilities (e.g. ext. equipment)
FACILITY_RESP response to indication
SELECT_B_PROTOCOL_REQ selects current protocol stack of a logical

connection
SELECT_B_PROTOCOL_CONF local confirmation of request
MANUFACTURER_REQ manufacturer specific operation
MANUFACTURER_CONF manufacturer specific operation
MANUFACTURER_IND manufacturer specific operation
MANUFACTURER_RESP manufacturer specific operation

Table 75: Messages concerning signalling protocol

Message Description
CONNECT_REQ initiates an outgoing physical connection
CONNECT_CONF local confirmation of request
CONNECT_IND indicates an incoming physical connection
CONNECT_RESP response to indication
CONNECT_ACTIVE_IND indicates the activation of a physical connection
CONNECT_ACTIVE_RESP response to indication
DISCONNECT_REQ initiates clearing of a physical connection
DISCONNECT_CONF local confirmation of request
DISCONNECT_IND indicates the clearing of a physical connection
DISCONNECT_RESP response to indication
ALERT_REQ initiates sending of ALERT, i.e. compatibility to call
ALERT_CONF local confirmation of request
INFO_REQ initiates sending of signalling information
INFO_CONF local confirmation of request
INFO_IND indicates selected signalling information
INFO_RESP response to indication

Page 230
Final draft prETS 300 838: March 1998

Table 76: Messages concerning logical connections

Message Description
CONNECT_B3_REQ initiates an outgoing logical connection
CONNECT_B3_CONF local confirmation of request
CONNECT_B3_IND indicates an incoming logical connection
CONNECT_B3_RESP response to indication
CONNECT_B3_ACTIVE_IND indicates the activation of a logical connection
CONNECT_B3_ACTIVE_RESP response to indication
CONNECT_B3_T90_ACTIVE_IND indicates switching from T.70NL to T.90NL
CONNECT_B3_T90_ACTIVE_RESP response to indication
DISCONNECT_B3_REQ initiates clearing of a logical connection
DISCONNECT_B3_CONF local confirmation of request
DISCONNECT_B3_IND indicates the clearing of a logical connection
DISCONNECT_B3_RESP response to indication
DATA_B3_REQ initiates sending of data on a logical connection
DATA_B3_CONF local confirmation of request
DATA_B3_IND indicates incoming data on a logical connection
DATA_B3_RESP response to indication
RESET_B3_REQ initiates the reset of a logical connection
RESET_B3_CONF local confirmation of request
RESET_B3_IND indicates the reset of a logical connection
RESET_B3_RESP response to indication

6.3 Exchange mechanism

6.3.1 Message queues

Communication between an application program and Profile B takes place via message queues. As
shown in figure 32, there is exactly one message queue for Profile B and for each registered application
program. Messages are exchanged between the applications programs and Profile B via these message
queues. For data transfer the messages are used for control purposes only, and the data itself is
transferred via a data area common to the application and Profile B. The queues are organized first in -
first out, so Profile B shall process messages in the order of their arrival.

An application issues commands to an ISDN driver or controller by placing an appropriate message in the
Profile B message queue. In the reverse direction, a message from an ISDN driver or controller is
transferred to the message queue of the addressed application.

This method, used in higher-level protocols and modern operating systems, allows flexible access by
several applications to different ISDN drivers and controllers. It also provides a powerful mechanism for
processing events that arrive asynchronously, which is a paramount requirement for high speed data
transfer.

The message queue structure is not specified. It is manufacturer-dependent and shall be transparent to
the application program. The necessary access operations are defined by Profile B.

Page 231
Final draft prETS 300 838: March 1998

Controller 1 Controller 2 ... Controller n

Message Queue
Application 1

Message Queue
of the Profile B

Message Queue
Application 2

ISDN PCI Profile B

Application 1 Application 2

Figure 32: Message queues in Profile B

6.3.2 Operations on message queues

The message queues described represent the link between an application and Profile B with its connected
ISDN drivers and controllers. Only four operations are required to use the message queues. The
operations on the message queues are not restricted to a particular system specification. Their respective
characteristics and implementation are operating system specific. At the same time, these operations
form the complete interface which shall be matched to the particular operating system. The four
operations are described in the following subclauses.

6.3.2.1 Registering an application

Before an application can issue commands to Profile B it shall register at Profile B. The CAPI_REGISTER
function is used to do this. Profile B uses this function to assign a unique application number (ApplID) to
the application. The message queue for the application is set up at the same time.

6.3.2.2 Messages from application to Profile B

All messages from an application to Profile B are put in the message queue of Profile B. The operation
CAPI_PUT_MESSAGE is provided for this purpose. When this operation is used, the application transfers
the message. If Profile B message queue cannot accept any more messages, the operation
CAPI_PUT_MESSAGE returns an error.

6.3.2.3 Messages from Profile B to application

Profile B manages a message queue for each application; Profile B puts all messages to the application in
this queue. The operation CAPI_GET_MESSAGE is provided for reading new messages from this queue.
When this operation is used, it returns the received message. If the application message queue is empty,
the operation CAPI_GET_MESSAGE returns an error. If an application does not retrieve these messages
and message queue size configuration was too small, this queue may overflow. In this case, one or more
messages from Profile B are lost. The application is informed of this error on the next
CAPI_GET_MESSAGE operation.

6.3.2.4 Releasing an application

If a registered application wants to terminate Profile B usage, the connection to Profile B shall be released.
This can be done with the CAPI_RELEASE operation. Releasing the application releases the previously
used message queue. An application shall disconnect all existing connections before issuing a
CAPI_RELEASE, otherwise the behaviour of Profile B is undefined. This is valid only for non-external
equipment, external devices controlled by Profile B (e.g. phone) may allow releasing from Profile B without
terminating existing calls.

Page 232
Final draft prETS 300 838: March 1998

6.3.2.5 Other operations

Additional operations are available to get information about manufacturer, software releases, configuration
and serial numbers. Depending on the operating system there is also a possibility to register a call-back
function which shall be activated if a new message is put in the application's message queue.

6.3.2.6 Manufacturer specific expansion

A manufacturer specific operation also exists, e.g. to configure ISDN controller.

6.3.3 Table of operations

Table 77: Operations defined in Profile B

Operation Description
CAPI_REGISTER Register an application
CAPI_RELEASE Release an application
CAPI_PUT_MESSAGE Transfer message to Profile B
CAPI_GET_MESSAGE Get message from Profile B
CAPI_SET_SIGNAL Register call-back function
CAPI_GET_MANUFACTURER Get manufacturer identification
CAPI_GET_VERSION Get Profile B version numbers
CAPI_GET_SERIAL_NUMBER Get serial number
CAPI_GET_PROFILE Get capabilities of Profile B

implementation
CAPI_MANUFACTURER Manufacturer specific function

6.4 Administration Plane

The following list gives an overview of the defined messages for the Administration Plane and their
functionality. The complete description of each message is given in subclause 6.7.

Table 78: Administrative messages

Message Description
LISTEN_REQ activates call indications
LISTEN_CONF local confirmation of request
FACILITY_REQ requests additional facilities (e.g. ext. equipment)
FACILITY_CONF local confirmation of request
FACILITY_IND indicates additional facilities (e.g. ext. equipment)
FACILITY_RESP response to indication
SELECT_B_PROTOCOL_REQ selects current protocol stack of a logical

connection
SELECT_B_PROTOCOL_CONF local confirmation of request
MANUFACTURER_REQ manufacturer specific operation
MANUFACTURER_CONF manufacturer specific operation
MANUFACTURER_IND manufacturer specific operation
MANUFACTURER_RESP manufacturer specific operation

6.5 Control Plane

Table 79 gives an overview of the defined messages for the Control Plane and their functionality. The
complete description of each message is given in subclause 6.7.

Page 233
Final draft prETS 300 838: March 1998

Table 79: Messages concerning Control Plane

Message Description
CONNECT_REQ initiates an outgoing physical connection
CONNECT_CONF local confirmation of request
CONNECT_IND indicates an incoming physical connection
CONNECT_RESP response to indication
CONNECT_ACTIVE_IND indicates the activation of a physical connection
CONNECT_ACTIVE_RESP response to indication
DISCONNECT_REQ initiates clearing of a physical connection
DISCONNECT_CONF local confirmation of request
DISCONNECT_IND indicates the clearing of a physical connection
DISCONNECT_RESP response to indication
ALERT_REQ initiates sending of ALERT, i.e. compatibility to call
ALERT_CONF local confirmation of request
INFO_REQ initiates sending of signalling information
INFO_CONF local confirmation of request
INFO_IND indicates selected signalling information
INFO_RESP response to indication

6.6 User Plane

Table 80 gives an overview of the defined messages for the User Plane and their functionality. The
complete description of each message is given in subclause 6.7.

Table 80: Messages concerning logical connections

Message Description
CONNECT_B3_REQ initiates an outgoing logical connection
CONNECT_B3_CONF local confirmation of request
CONNECT_B3_IND indicates an incoming logical connection
CONNECT_B3_RESP response to indication
CONNECT_B3_ACTIVE_IND indicates the activation of a logical connection
CONNECT_B3_ACTIVE_RESP response to indication
CONNECT_B3_T90_ACTIVE_IND indicates switching from T.70NL to T.90NL
CONNECT_B3_T90_ACTIVE_RESP response to indication
DISCONNECT_B3_REQ initiates clearing of a logical connection
DISCONNECT_B3_CONF local confirmation of request
DISCONNECT_B3_IND indicates the clearing of a logical connection
DISCONNECT_B3_RESP response to indication
DATA_B3_REQ initiates sending of data on a logical connection
DATA_B3_CONF local confirmation of request
DATA_B3_IND indicates incoming data on a logical connection
DATA_B3_RESP response to indication
RESET_B3_REQ initiates the reset of a logical connection
RESET_B3_CONF local confirmation of request
RESET_B3_IND indicates the reset of a logical connection
RESET_B3_RESP response to indication

6.7 Message descriptions

The following subclause defines all Profile B messages with their respective parameters. Parameters are
explained in more detail in this subclause.

Messages are sorted alphabetically irrespective of the extension, which defines the originator and
direction of the message. The following order is used for basic names: REQUEST, CONFIRMATION,
INDICATION, RESPONSE.

Page 234
Final draft prETS 300 838: March 1998

6.7.1 ALERT_REQ

Description

This message should be used by applications to indicate compatibility to an incoming call. It shall send an
ALERT to the network to prevent the call from expiring (no user responding). If an application is able to
accept the call immediately it shall not be necessary to use this message; the application can issue
immediately a CONNECT_RESP to Profile B.

ALERT_REQ Command 0x01
Subcommand 0x80

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
Additional info struct Additional info elements
NOTE: The parameter Additional info shall be coded as an empty structure if no

additional information (e.g. user data) has to be transmitted.

6.7.2 ALERT_CONF

Description

This message confirms the reception of an ALERT_REQ.

ALERT_CONF Command 0x01
Subcommand 0x81

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
Info word 0: alert initiated

0x0003: alert already sent by another application
0x2001: message not supported in current state
0x2002: illegal PLCI
0x2007: illegal message parameter coding

NOTE: Info 0x0003 shall be returned if another application already initiated the sending of
an ALERT message to the network. In this case the parameter Additional info of
the corresponding REQUEST has been ignored.

See also: Description of broadcast mechanism in LISTEN_REQ

6.7.3 CONNECT_REQ

Description

This message initiates the set-up of a physical connection. An application may only offer the relevant parts
of the parameters, i.e. Controller, CIP Value, B protocol and normally called party number. Every other
structure can be empty (length of 0). In this case the default values as described in clause 6 shall be used.

CONNECT_REQ Command 0x02
Subcommand 0x80

Page 235
Final draft prETS 300 838: March 1998

Parameter Type Comment
Controller dword
CIP Value word Compatibility Information Profile
Called party number struct Called party number
Calling party number struct Calling party number
Called party subaddress struct Called party subaddress
Calling party
subaddress

struct Calling party subaddress

B protocol struct B protocol to be used
BC struct Bearer Capability
LLC struct Low Layer Compatibility
HLC struct High Layer Compatibility
Additional Info struct Additional information elements
NOTE: If an application offers BC, LLC and/or HLC, the parameter shall be used without

checking the resulting combination.
The absence (i.e. coding as an empty structure) of B protocol shall result in the
default protocol behaviour: ISO 7776 [4] (X.75) and window size 7. This is a
recommended selection to get overall connectivity with the benefits of HDLC error
recovery. Note that ISO 7776 [4] deals with a default maximum data length of 128
octets, whereas Profile B is able to handle up to at least 2 048 octets, depending
on CAPI_REGISTER values of an application.

6.7.4 CONNECT_CONF

Description

This message confirms the initiation of a call set-up. This connection is assigned a PLCI which serves as
an identifier in further processing. Errors are returned in the parameter info.

CONNECT_CONF Command 0x02
Subcommand 0x81

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
Info word 0: connect initiated

0x2002: illegal controller
0x2003: out of PLCI
0x2007: illegal message parameter coding
0x3001: B1 protocol not supported
0x3002: B2 protocol not supported
0x3003: B3 protocol not supported
0x3004: B1 protocol parameter not supported
0x3005: B2 protocol parameter not supported
0x3006: B3 protocol parameter not supported
0x3007: B protocol combination not supported
0x300A: CIP Value unknown

NOTE: The connection is in the set-up phase at this point in time. Subsequent successful
switching is indicated by the message CONNECT_ACTIVE_IND.
If an application wants to identify the corresponding REQUEST to this message, it
may use the message number mechanism described in subclause 6.2.

6.7.5 CONNECT_IND

Description

This message indicates an incoming call for a physical connection. For the incoming call a PLCI is
assigned which is used to identify this connection in subsequent messages.

Page 236
Final draft prETS 300 838: March 1998

CONNECT_IND Command 0x02
Subcommand 0x82

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
CIP Value word Compatibility Information Profile
Called party number struct Called party number
Calling party number struct Calling party number
Called party subaddress struct Called party subaddress
Calling party
subaddress

struct Calling party subaddress

BC struct Bearer compatibility
LLC struct Low Layer Compatibility
HLC struct High Layer Compatibility
Additional Info struct Additional information elements
NOTE: To activate the signalling of incoming calls, the message LISTEN_REQ shall be

send to the controller.
Every information available from the network at this point shall be signalled to the
application. Empty structs show the absence of this information.

6.7.6 CONNECT_RESP

Description

This message is used to accept or reject an incoming call on behalf of the application. The incoming call is
identified via parameter PLCI. The parameter reject is used to accept, reject or ignore the call. In case of
ignoring the call, other ISDN equipment connected on the same bus (basic access) shall have the chance
to accept this call, whereas the rejection of this incoming call should terminate the call on the entire bus.
For primary access, these parameter values of parameter Reject shall behave identically.

Page 237
Final draft prETS 300 838: March 1998

CONNECT_RESP Command 0x02
Subcommand 0x83

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
Reject word 0: accept call

1: ignore call
2: reject call, normal call clearing
3: reject call, user busy
4: reject call, requestet circuit/channel not available
5: reject call, facility rejected
6: reject call, channel unacceptable
7: reject call, incompatible destination
8: reject call, destination out of order

B protocol struct B protocol to be used
Connected number struct Connected number
Connected subaddress struct Connected subaddress
LLC struct Low Layer Compatibility
Additional Info struct Additional information elements
NOTE: The parameter LLC can optionally be used for LLC negotiation if supported by the

network.
Any unknown reject value shall be mapped to normal call clearing.
Any reject value other than accept call shall sent a DISCONNECT_IND to the
application.
The absence (i.e. coding as an empty structure) of B protocol shall result in the
default protocol behaviour: ISO 7776 [4] (X.75) and window size 7. This is a
recommended selection to get overall connectivity with the benefits of HDLC error
recovery. Note that ISO 7776 [4] deals with a default maximum data length of
128 octets, whereas Profile B is able to handle up to at least 2 048 octets,
depending on CAPI_REGISTER values of an application.

6.7.7 CONNECT_ACTIVE_IND

Description

This message indicates the physical connection of a B-channel. The connection is identified by the
parameter PLCI.

CONNECT_ACTIVE_IND Command 0x03
Subcommand 0x82

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
Connected number struct Connected number
Connected subaddress struct Connected subaddress
LLC struct Low Layer Compatibility
NOTE: The parameter connected number/subaddress and LLC shall be filled in

completely if this information is provided by the network. The absence of network
information shall be indicated by empty structures.

Page 238
Final draft prETS 300 838: March 1998

6.7.8 CONNECT_ACTIVE_RESP

Description

With this message the application confirms the receipt of a CONNECT_ACTIVE_IND.

CONNECT_ACTIVE_RESP Command 0x03
Subcommand 0x83

Parameter Type Comment
PLCI dword Physical Link Connection Identifier

6.7.9 CONNECT_B3_ACTIVE_IND

Description

This message indicates the logical connection of a B-channel. The connection is identified by the
parameter NCCI. The parameter NCPI is used to transfer additional protocol dependent information.

CONNECT_B3_ACTIVE_IND Command 0x83
Subcommand 0x82

Parameter Type Comment
NCCI dword Network Control Connection Identifier
NCPI struct Network Control Protocol Information
NOTE: The meaning of the parameter NCPI depends on the protocol used.

After this message incoming data can be indicated to the application.
In case of protocol T.30 [14] and outgoing calls, this message does not imply the
successful training between both facsimile stations. This is to enable an
application to send data to Profile B without waiting for termination of training
phase. If this training phase is not successful, corresponding indications shall be
given by Profile B in the message DISCONNECT_B3_IND.

6.7.10 CONNECT_B3_ACTIVE_RESP

Description

With this message the application confirms the receipt of a CONNECT_B3_ACTIVE_IND .

CONNECT_B3_ACTIVE_RESP Command 0x83
Subcommand 0x83

Parameter Type Comment
NCCI dword Network Control Connection Identifier

6.7.11 CONNECT_B3_REQ

Description

This message initiates the set-up of a logical connection. The physical connection is identified by the
parameter PLCI. Additional protocol dependent information can be transferred with the parameter NCPI.

Page 239
Final draft prETS 300 838: March 1998

CONNECT_B3_REQ Command 0x82
Subcommand 0x80

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
NCPI struct Network Control Protocol Information
NOTE: The meaning of the parameter NCPI depends on the protocol used.

6.7.12 CONNECT_B3_CONF

Description

With this message the initiation of a logical connection set-up is confirmed. This connection is assigned a
NCCI, which subsequently identifies this logical connection. Errors are supplied in the parameter info.

CONNECT_B3_CONF Command 0x82
Subcommand 0x81

Parameter Type Comment
NCCI dword Network Control Connection Identifier
Info word 0: connect initiated

0x0001: NCPI not supported by current protocol, NCPI
ignored
0x2001: message not supported in current state
0x2002: illegal PLCI
0x2004: out of NCCI
0x3008: NCPI not supported

NOTE: The connection is in the set-up phase at this stage. The successful set-up shall be
indicated by the message CONNECT_B3_ACTIVE_IND .
If parameter info returns 0x0001, the set-up of a logical connection is initiated, but
parameter NCPI has been ignored. In that case the used layer 3 protocol does not
support the usage of NCPI (e.g. the transparent mode of layer 3).

6.7.13 CONNECT_B3_IND

Description

Page 240
Final draft prETS 300 838: March 1998

This message indicates an incoming call for a logical connection. For this incoming call a NCCI is
assigned, which subsequently identifies the call. Additional protocol dependent information shall be
transferred with parameter NCPI if available.

CONNECT_B3_IND Command 0x82
Subcommand 0x82

Parameter Type Comment
NCCI dword Network Control Connection Identifier
NCPI struct Network Control Protocol Information
NOTE: The meaning of the parameter NCPI depends on the protocol used.

The connection is in the set-up phase at this stage. The successful set-up shall be
indicated by the message CONNECT_B3_ACTIVE_IND .

6.7.14 CONNECT_B3_RESP

Description

With this message the application accepts or rejects an incoming logical call. The incoming call is
identified via the parameter NCCI. The call can be accepted or rejected via the parameter reject. The
parameter NCPI can be used to transfer additional protocol dependent information.

CONNECT_B3_RESP Command 0x82
Subcommand 0x83

Parameter Type Comment
NCCI dword Network Control Connection Identifier
Reject word 0: accept call

2: reject call, normal call clearing
NCPI struct Network Control Protocol Information
NOTE: The meaning of the parameter NCPI depends on the protocol used.

Any other value of reject shall result in rejecting the call.

6.7.15 CONNECT_B3_T90_ACTIVE_IND

Description

This message indicates the switching from ITU-T Recommendation T.70 [15] to CCITT Recommendation
T.90 [16] within a logical connection of a B-channel. The connection is identified by the parameter NCCI.
The parameter NCPI is used to transfer additional T.90 [16] information.

CONNECT_B3_T90_ACTIVE_IND Command 0x88
Subcommand 0x82

Parameter Type Comment
NCCI dword Network Control Connection Identifier
NCPI struct Network Control Protocol Information
NOTE: This message shall only be generated if the selected protocol is T.90NL with

compatibility to T.70NL according to T.90 [16] Appendix II. In this case the initially
used protool is ITU-T Recommendation T.70 [15]. This message indicates the
negotiation and switching to CCITT Recommendation T.90 [16].

Page 241
Final draft prETS 300 838: March 1998

6.7.16 CONNECT_B3_T90_ACTIVE_RESP

Description

With this message the application confirms the receipt of a CONNECT_B3_T90_ACTIVE_IND .

CONNECT_B3_T90_ACTIVE_RESP Command 0x88
Subcommand 0x83

Parameter Type Comment
NCCI dword Network Control Connection Identifier

6.7.17 DATA_B3_REQ

Description

This message sends data within the logical connection identified by the NCCI. Data to be sent is
referenced via the parameter data/data length. The data is not part of the message, a 32-bit pointer is
used to transfer the address of the data area. The application issues a unique identifier for this data in the
parameter data handle. On subsequent confirmation by a DATA_B3_CONF this handle is used. It is
possible to set additional information, such as more data, delivery confirmation etc. via parameter flags.
The flags are not supported by all protocols.

DATA_B3_REQ Command 0x86
Subcommand 0x80

Parameter Type Comment
NCCI dword Network Control Connection Identifier
Data dword Pointer to the data to be sent
Data length word Size of data area to be sent
Data handle word Referenced in DATA_B3_CONF
Flags word [0]: qualifier bit

[1]: more data bit
[2]: delivery confirmation bit
[3]: expedited data
[4] toITU-T Recommendation T.70 [15]: reserved

NOTE: The data transfer does not support assembly or re-assembly of data.
An application shall not change or free the data area until the corresponding
DATA_B3_CONF is received.
Flags are protocol dependent. If an application set reserved bits in parameter
Flags, Profile B shall reject the DATA_B3_REQ . This is to allow future expansion
of this parameter. If an application set bits in parameter Flags, which are not
supported by the current protocol, Profile B shall accept the DATA_B3_REQ but
shall return this information in the corresponding DATA_B3_CONF .
B2 protocol 9 (V.120 asynchronous mode): The application shall limit Data length
to 259 bytes to be in agreement with V.120.

6.7.18 DATA_B3_CONF

Description

This message confirms the acceptance of a data package to be sent. The logical connection is identified
by the parameter NCCI. The parameter data handle supplies the identifier used by the application in the
associated DATA_B3_REQ as reference to the transferred data area. After receiving this message, the
application can reuse the referenced data area.

Page 242
Final draft prETS 300 838: March 1998

DATA_B3_CONF Command 0x86
Subcommand 0x81

Parameter Type Comment
NCCI dword Network Control Connection Identifier
Data handle word Identifies the data area of corresponding DATA_B3_REQ
Info word 0: data transmission initiated

0x0002: flags not supported by current protocol, flags
ignored
0x2001: message not supported in current state
0x2002: illegal NCCI
0x2007: illegal message parameter coding
0x300A: flags not supported (reserved bits)
0x300C: data length not supported by current protocol

NOTE: Every DATA_B3_REQ shall result in a corresponding DATA_B3_CONF except in
the following case: after transmitting the message DISCONNECT_B3_IND to an
application, Profile B is not allowed to send any other message concerning this
logical connection identified by the parameter NCCI. So in this case the
application shall assure that resources or buffer management will be reset
correctly.
If an application sets the delivery confirmation bit in the corresponding
DATA_B3_REQ and the selected protocol supports this mechanism the
confirmation shall be given to the application after the delivery of the sent packet
is confirmed by the used protocol.
Seven unconfirmed DATA_B3_REQ messages shall be supported.

6.7.19 DATA_B3_IND

Description

This message indicates incoming data within a logical connection. The logical connection is identified via
the NCCI. The length of the incoming data area is indicated via the parameter data length. The incoming
data area can be referenced by the parameter data. The data is not part of the message, a 32-bit pointer
is used to transfer the address of the data area. Profile B issues a handle to this data area via the
parameter data handle. On subsequent confirmation by a DATA_B3_RESP , this handle shall also be
supplied by the application. Additional information, such as more data, delivery confirmation etc. is
supplied by parameter flags, if available.

Page 243
Final draft prETS 300 838: March 1998

DATA_B3_IND Command 0x86
Subcommand 0x82

Parameter Type Comment
NCCI dword Network Control Connection Identifier
Data dword Pointer to data received
Data length word Size of data area received
Data handle word handle to data area, referenced in DATA_B3_RESP
Flags word [0]: qualifier bit

[1]: more-data bit
[2]: delivery confirmation bit
[3]: expedited data
[4]: break (B2 protocol 9)
[5 to 14]: reserved
[15]: framing error bit, data may be invalid (B2 protocols
6 and 9)

NOTE: The data transfer does not support re-assembly functions.
The data area which contains the data remains allocated until the corresponding
DATA_B3_RESP is received. However, expedited data is only valid until the next
CAPI_GET_MESSAGE is performed by the application.
In case of receiving DATA_B3_IND messages with reserved bits switched on in
the flags parameter an application shall ignore the data area but process the
message, i.e. send a DATA_B3_RESP to Profile B. This is to allow future
expansion of the flags parameter.

6.7.20 DATA_B3_RESP

Description

With this message the application confirms acceptance of an incoming data package. The logical
connection is identified by the parameter NCCI. The parameter data handle identifies the data handle
used by Profile B in the corresponding DATA_B3_IND as the reference to the transferred data area.

DATA_B3_RESP Command 0x86
Subcommand 0x83

Parameter Type Comment
NCCI dword Network Control Connection Identifier
Data handle word Data area reference in corresponding DATA_B3_IND
NOTE: This message frees the data buffer referenced by Data handle for reuse by Profile

B.
Data throughput depends on an application's rapid response to DATA_B3_IND
messages. Failure to do so shall trigger flow control on the line (for protocols
supporting flow control such as ISO 7776 [4](X.75) or ISO 8208 [3](X.25)) and may
cause loss of incoming data for protocols without flow control mechanism.

Page 244
Final draft prETS 300 838: March 1998

6.7.21 DISCONNECT_B3_REQ

Description

This message initiates the clearing of a logical connection identified via the parameter NCCI. The
parameter NCPI can be used to transfer additional protocol dependent information.

DISCONNECT_B3_REQ Command 0x84
Subcommand 0x80

Parameter Type Comment
NCCI dword Network Control Connection Identifier
NCPI struct Network Control Protocol Information
NOTE: The meaning of the parameter NCPI depends on the protocol used.

In case of facsimile group 3 (B protocol T.30 [14]) and speech (B1 protocol bit
transparent, B2/B3 protocol transparent) data already given to transmission via
DATA_B3_REQ shall be sent before disconnecting the logical connection.

6.7.22 DISCONNECT_B3_CONF

Description

With this message the initiation of clearing a logical connection is confirmed. Any errors are coded in the
parameter info.

DISCONNECT_B3_CONF Command 0x84
Subcommand 0x81

Parameter Type Comment
NCCI dword Network Control Connection Identifier
Info word 0: disconnect initiated

0x0001: NCPI not supported by current protocol, NCPI
ignored
0x2001: message not supported in current state
0x2002: illegal NCCI
0x2007: illegal message parameter coding
0x3008: NCPI not supported

6.7.23 DISCONNECT_B3_IND

Description

This message indicates the clearing of a logical connection identified via the parameter NCCI. The
parameter Reason_B3 indicates if this clearing is caused by wrong protocol behaviour. The parameter
NCPI is used to indicate additional protocol dependent information if available.

Page 245
Final draft prETS 300 838: March 1998

DISCONNECT_B3_IND Command 0x84
Subcommand 0x82

Parameter Type Comment
NCCI dword Network Control Connection Identifier
Reason_B3 word 0: clearing according to protocol

0x3301: protocol error layer 1
0x3302: protocol error layer 2
0x3303: protocol error layer 3
protocol dependent values are described in
subclause 6.8

NCPI struct Network Control Protocol Information
NOTE: The meaning of the NCPI parameter depends on the protocol used.

After this message no other message concerning this NCCI shall be sent to the
application. The application shall answer this message with
DISCONNECT_B3_RESP to free the resources allocated to the NCCI.

6.7.24 DISCONNECT_B3_RESP

Description

With this message the application confirms the clearing of a logical connection.

DISCONNECT_B3_RESP Command 0x84
Subcommand 0x83

Parameter Type Comment
NCCI dword Network Control Connection Identifier
NOTE: With this message resources allocated to the NCCI are released.

If an application fails to send this message after receiving
DISCONNECT_B3_IND, Profile B may reject subsequent CONNECT_B3_REQ
with the info value out of NCCI (0x2004).

6.7.25 DISCONNECT_REQ

Description

This message initiates the clearing of a physical connection, identified by the parameter PLCI.

DISCONNECT_REQ Command 0x04
Subcommand 0x80

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
Additional Info struct Additional information elements
NOTE: Existing logical connections shall be cleared by Profile B using the message

DISCONNECT_B3_IND containing the cause protocol error layer 1 (0x3301)
before clearing the physical connection.

6.7.26 DISCONNECT_CONF

Description

Page 246
Final draft prETS 300 838: March 1998

This message confirms the initiation of clearing a physical connection. Any errors are coded in the
parameter info.

DISCONNECT_CONF Command 0x04
Subcommand 0x81

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
Info word 0: disconnect initiated

0x2001: message not supported in current state
0x2002: illegal PLCI
0x2007: illegal message parameter coding

6.7.27 DISCONNECT_IND

Description

This message indicates the clearing of the physical channel identified via the parameter PLCI. The
parameter reason indicates the network delivered cause or if this clearing is caused by wrong protocol
behaviour

DISCONNECT_IND Command 0x04
Subcommand 0x82

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
Reason word 0: no cause available

0x3301: protocol error layer 1
0x3302: protocol error layer 2
0x3303: protocol error layer 3
0x3304: another application got that call
0x34xx: disconnect cause from the network according to
Q.931 [8]/ETS 300 102-1 [2]. In the field "xx" the cause
value received within a cause information element (octet
4) from the network is indicated.

NOTE: After this message no other message concerning this PLCI shall be sent to the
application. The application shall answer this message with DISCONNECT_RESP
to free the resources allocated to the PLCI.

6.7.28 DISCONNECT_RESP

Description

With this message the application confirms the clearing of the physical channel.

DISCONNECT_RESP Command 0x04
Subcommand 0x83

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
NOTE: With this message the PLCI is released.

If an application fails to send this message after receiving DISCONNECT_IND
resources bound to this PLCI shall not be freed. This may lead to Profile B
resource problems (indicated by info value out of PLCI), affecting other
applications too.

Page 247
Final draft prETS 300 838: March 1998

6.7.29 FACILITY_REQ

Description

This message is used to handle optional facilities on the controller or facilities related on connections
identified by PLCI or NCCI. The struct facility request parameters is defined for each facility. At the
moment facilities Handset Support and DTMF are defined. Handset Support is used to support external
ISDN equipment, DTMF is used in the Public Switched Telephone Network (PSTN) to select and control
several provided services (e.g. automatic answering service).

Handset Support as well as DTMF support are optional Profile B features. In case Profile B does not
support these facilities, an appropriate information value is returned in the FACILITY_CONF .

DTMF cannot be used with all B protocols. For example, it is used with 64 kbit/s bit speech and ITU-T
Recommendation T.30 [14] audio.

FACILITY_REQ Command 0x80
Subcommand 0x80

Parameter Type Comment
Controller/PLCI/NCCI dword Depending on the facility selector
Facility selector word 0: Handset Support

1: DTMF
2 to n: reserved

Facility request
parameter

struct Facility depending parameters

6.7.30 FACILITY_CONF

Description

This message confirms the acceptance of the FACILITY_REQ . The event is identified by
Controller/PLCI/NCCI, depending on the facility. The struct facility confirmation parameters is defined for
every facility. Any error is coded in the parameter info.

FACILITY_CONF Command 0x80
Subcommand 0x81

Parameter Type Comment
Controller/PLCI/NCCI dword Depending on the facility selector
Info word 0: request accepted

0x2001: message not supported in current state
0x2002: incorrect Controller/PLCI/NCCI
0x2007: illegal message parameter coding
0x300B: facility not supported

Facility selector word 0: Handset Support
1: DTMF
2 to n: reserved

Facility confirmation
parameter

struct Facility-depending parameters

6.7.31 FACILITY_IND

Description

Page 248
Final draft prETS 300 838: March 1998

This message is used to indicate a facility dependent event originating from a controller or connections
identified via controller/PLCI/NCCI, depending on the facility. The struct facility indication parameter is
defined for every facility.

FACILITY_IND Command 0x80
Subcommand 0x82

Parameter Type Comment
Controller/PLCI/NCCI dword Depending on the facility selector
Facility selector (NOTE) word 0: Handset Support

1: DTMF
2 to n: reserved

Facility indication
parameter

struct Facility-depending parameters

NOTE: In case of facility selector 0 (Handset Support) this message may allocate a new
PLCI (in case of off-hooking the handset) which shall be released afterwards by
means of DISCONNECT_IND/DISCONNECT_RESP.

6.7.32 FACILITY_RESP

Description

With this message the application confirms receipt of a facility indication message. The struct facility
response parameters is defined for each facility.

FACILITY_RESP Command 0x80
Subcommand 0x83

Parameter Type Comment
Controller/PLCI/NCCI dword Depending on the facility selector
Facility selector word 0: Handset Support

1: DTMF
2 to n: reserved

Facility response
parameters

struct Facility-depending parameters

6.7.33 INFO_REQ

Description

This message permits sending of protocol information for a the physical connection, e.g. overlap sending.

INFO_REQ Command 0x08
Subcommand 0x80

Parameter Type Comment
Controller/PLCI dword See note
Called party number struct Called party number
Additional Info struct Additional information elements
NOTE: The first parameter identifies a physical connection (if a PLCI is given) or the

addressed controller (if the PLCI field of parameter Controller/PLCI is zero).
Depending on the parameter different messages shall be sent to the network.

Page 249
Final draft prETS 300 838: March 1998

6.7.34 INFO_CONF

Description

This message confirms acceptance of INFO_REQ. If in the corresponding INFO_REQ a controller is
given as an addressing parameter, this connection is assigned a PLCI which serves as an identifier in
further processing. Any error is coded in the parameter info.

INFO_CONF Command 0x08
Subcommand 0x81

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
Info word 0: transmission of information initiated

0x2001: message not supported in current state
0x2002: illegal Controller/PLCI
0x2003: out of PLCI
0x2007: illegal message parameter coding

6.7.35 INFO_IND

Description

This message indicates an event for a physical connection as expressed by an information element (info
element) whose coding is described by the parameter info number. The connection is identified via the
parameter controller/PLCI.

INFO_IND Command 0x08
Subcommand 0x82

Parameter Type Comment
Controller/PLCI dword Physical Link Connection Identifier
Info number word Information element identifier
Info element struct Information element dependent structure
NOTE: An individual INFO_IND is displayed for each information element. To enable

indication of events, the info mask parameter of the message LISTEN_REQ shall
be used.
If the PLCI field in the address parameter is 0, the network has sent information
not associated with a physical connection.
In case of getting information from the network which lead to other Profile B
messages (e.g. receiving a RELEASE from the network which includes charging
information) it is guaranteed that an application gets the INFO_IND first, followed
by the corresponding Profile B message.

Page 250
Final draft prETS 300 838: March 1998

6.7.36 INFO_RESP

Description

With this message the application confirms the receipt of an INFO_IND.

INFO_RESP Command 0x08
Subcommand 0x83

Parameter Type Comment
Controller/PLCI dword As in INFO_IND

6.7.37 LISTEN_REQ

Description

This message is used to activate signalling of incoming events from Profile B to the application. Info mask
is used to define which signalling protocol events are indicated to the application. These events are
normally associated with physical connections. CIP mask defines selection criteria based upon Bearer
Capability and High Layer Compatibility, thus indicating which incoming calls are signalled to an
application.

More than one application may listen to the same CIP Values. Every application listening to a matching
value shall be informed about incoming calls. In case more than one application wants to accept the call,
the first CONNECT_RESP received by Profile B as a reaction to the CONNECT_IND shall be accepted.
Every other application shall get the message DISCONNECT_IND with a Parameter reason which
indicates this situation.

This scenario is similar to the situation where more than one set of compatible ISDN equipment on an
ISDN line attempts to accept an incoming call.

LISTEN_REQ Command 0x05
Subcommand 0x80

Parameter Type Comment
Controller dword
Info mask dword Bit field, coding as follows:

0: cause
1: date/Time
2: display
3: user-user information
4: call progression
5: facility
6: charging
7 to 31: reserved

CIP Mask dword explained below
CIP Mask 2 dword reserved for additional services
Calling party number struct Calling party number
Calling party
subaddress

struct Calling party subaddress

Page 251
Final draft prETS 300 838: March 1998

Explanation of CIP Mask:

Parameter Type Comment
CIP Mask dword Bit field, coding as follows:

0: any match
1: speech
2: unrestricted digital information
3: restricted digital information
4: 3.1 kHz audio
5: 7.0 kHz audio
6: video
7: packet mode
8: 56 kBit/s rate adaptation
9: unrestricted digital information with
tones/announcements
10..15: reserved
16: telephony
17: fax group 2/3
18: fax group 4 class 1
19: Teletex service (basic and mixed), fax group 4 class
2
20: Teletex service (basic and processable)
21: Teletex service (basic)
22: Videotex
23: Telex
24: message handling systems according X.400
25: OSI applications according X.200
26: 7 kHz Telephony
27: Video Telephony F.721, first connection
28: Video Telephony F.721, second connection
29 to 31: reserved

NOTE: Clearing all bits in the CIP mask disables the signalling of incoming calls to the
application.
Calling party number/subaddress are only used for external ISDN equipment
(handsets), which might need the own (local) address to handle outgoing calls.

6.7.38 LISTEN_CONF

Description

This message confirms the acceptance of the LISTEN_REQ. Any errors are coded in the parameter info.

LISTEN_CONF Command 0x05
Subcommand 0x81

Parameter Type Comment
Controller dword
Info word 0: listen is active

0x2002: illegal controller
0x2005: out of LISTEN-Resources
0x2007: illegal message parameter coding

6.7.39 MANUFACTURER_REQ

Description

This message is used to transfer manufacturer specific information.

Page 252
Final draft prETS 300 838: March 1998

MANUFACTURER_REQ Command 0xFF
Subcommand 0x80

Parameter Type Comment
Controller dword
Manu ID dword Manufacturer specific ID (should be unique)
Manufacturer specific Manufacturer specific data
NOTE: This message should not be used, for it is a non compatible message.

Applications which use this message may work only with one manufacturer of
ISDN equipment.
A manufacturer shall choose one manufacturer specific ID for all of that Profile B
implementations. This manufacturer specific ID shall be unique. A shortcut or
nickname based on the manufacturer's initials might be a good choice.
The behaviour of Profile B is not defined after receiving any
MANUFACTURER_REQ.

6.7.40 MANUFACTURER_CONF

Description

This message confirms the reception of a MANUFACTURER_REQ .

MANUFACTURER_CONF Command 0xFF
Subcommand 0x81

Parameter Type Comment
Controller dword
Manu ID dword Manufacturer specific ID (should be unique)
Manufacturer specific Manufacturer specific data

6.7.41 MANUFACTURER_IND

Description

This message is used to indicate manufacturer specific information to an application. Profile B shall not
generate this message except it is requested by a MANUFACTURER_REQ .

MANUFACTURER_IND Command 0xFF
Subcommand 0x82

Parameter Type Comment
Controller dword
Manu ID dword Manufacturer specific ID (should be unique)
Manufacturer specific Manufacturer specific data
NOTE: This message shall not be sent from Profile B without initial application request

from an application by means of MANUFACTURER_REQ .

6.7.42 MANUFACTURER_RESP

Description

With this message an application confirms receipt of a MANUFACTURER_IND .

Page 253
Final draft prETS 300 838: March 1998

MANUFACTURER_RESP Command 0xFF
Subcommand 0x83

Parameter Type Comment
Controller dword
Manu ID dword Manufacturer specific ID (should be unique)
Manufacturer specific Manufacturer specific data

6.7.43 RESET_B3_REQ

Description

With this message the specified logical connection is reset. The logical connection is identified by the
parameter NCCI.

RESET_B3_REQ Command 0x87
Subcommand 0x80

Parameter Type Comment
NCCI dword Network Control Connection Identifier
NCPI struct Network Control Protocol Information
NOTE: The meaning of the parameter NCPI depends on the protocol used.

The reaction to a RESET_B3_REQ depends on the selected layer 3 protocol. If
ISO 8208 [3], T.90 [16], X.25 DCE or X.25 PLP in the D-channel was selected, the
reset procedure is performed in accordance with the protocol recommendations.
In case of a transparent layer 3, a reset procedure in layer 2 is initiated.
If a reset procedure is not defined for the protocol a RESET_B3_REQ causes the
controller to generate a RESET_B3_CONF with info value reset procedure not
supported by current protocol (0x300D). No further action is taken.
After successfully initiating a reset on a logical connection, an application is not
allowed to transmit data until the resulting RESET_B3_IND (or
DISCONNECT_B3_IND) message is received.
Loss of data may occur during reset procedure.

6.7.44 RESET_B3_CONF

Description

With this message the controller confirms the initiation of resetting a logical connection.

RESET_B3_CONF Command 0x87
Subcommand 0x81

Parameter Type Comment
NCCI dword Network Control Connection Identifier
Info word 0: reset initiated

0x0001: NCPI not supported by current protocol, NCPI
ignored
0x2001: message not supported in current state
0x2002: illegal NCCI
0x2007: illegal message parameter coding
0x3008: NCPI not supported
0x300D: reset procedure not supported by current
protocol

Page 254
Final draft prETS 300 838: March 1998

6.7.45 RESET_B3_IND

Description

With this message the resetting of a logical connection is indicated. The logical connection is identified by
a NCCI.

RESET_B3_IND Command 0x87
Subcommand 0x82

Parameter Type Comment
NCCI dword Network Control Connection Identifier
NCPI struct Network Control Protocol Information
NOTE: The meaning of the parameter NCPI depends on the protocol used.

In case of transparent layer 3 the re-establishment of layer 2 is indicated.
This message may indicate a loss of data!

6.7.46 RESET_B3_RESP

Description

With this message the application confirms the resetting of a logical connection.

RESET_B3_RESP Command 0x87
Subcommand 0x83

Parameter Type Comment
NCCI dword Network Control Connection Identifier

6.7.47 SELECT_B_PROTOCOL_REQ

Description

This message allows an application to change the current protocol during the lifetime of a physical
connection after receiving the message CONNECT_ACTIVE_IND. The support of this message is
optional. If a particular Profile B implementation does not support this switching the info parameter of the
corresponding SELECT_B_PROTOCOL_CONF shall be set to message not supported in current
state (0x2001).

SELECT_B_PROTOCOL_REQ Command 0x41
Subcommand 0x80

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
B protocol struct Protocol definition

6.7.48 SELECT_B_PROTOCOL_CONF

Description

This message confirms the execution of switching the protocol stack for a physical connection. Any error
shall be shown in info.

Page 255
Final draft prETS 300 838: March 1998

SELECT_B_PROTOCOL_CONF Command 0x41
Subcommand 0x81

Parameter Type Comment
PLCI dword Physical Link Connection Identifier
Info word 0: protocol switch successful

0x2001: message not supported in current state
0x2002: illegal PLCI
0x2007: illegal message parameter coding
0x3001: B1 protocol not supported
0x3002: B2 protocol not supported
0x3003: B3 protocol not supported
0x3004: B1 protocol parameter not supported
0x3005: B2 protocol parameter not supported
0x3006: B3 protocol parameter not supported
0x3007: B protocol combination not supported

6.8 Parameter descriptions

This subclause describes the parameters used in Profile B messages. Each parameter is listed with its
type, possible values and reference to the messages in which the parameter appears.

Some parameter values are defined according to ETS 300 102-1 [2] or ITU-T Recommendation Q.931 [8].
In that case there is no private Profile B coding for these parameters. These parameters are coded as
Profile B structures starting with a length octet and the remainder of the parameter being coded as defined
in ETS 300 102-1 [2]/ITU-T Recommendation Q.931 [8] from octet three onwards. References to the
contents of a structure in this clause always use index 0 to identify the first octet of information, i.e. the
octet following the length octet.

Parameters may not be omitted, instead an empty structure shall be used. An empty structure shall be
coded as a single octet containing a value of 0.

Default values as described in the following section shall be implemented in Profile B. They need not be
valid for external ISDN equipment; in that case the external equipment defines the default values for its
usage.

Parameters may again contain parameters which are referred to as "sub parameters".

6.8.1 Additional Info

Additional Info (struct)

The purpose of the parameter additional info is to exchange signalling protocol specific information of the
network. Depending on the signalling protocol only relevant elements of this structure shall be used (e.g.
the B-channel information has to be ignored in the message DISCONNECT_REQ).

The parameter has the following structure:

struct B-channel information
struct Keypad facility (coded according to

ETS 300 102-1 [2]/ITU-T Recommendation Q.931 [8])
struct User data (coded according to

ETS 300 102-1 [2]/ITU-T Recommendation Q.931 [8])
struct Facility data array, which is used to transfer additional parameters coded

according to ETS 300 102-1 [2]/ITU-T Recommendation Q.931 [8] starting
from octet 1. This field is used to transport one or more complete facility
data information elements.

This information element appears in:

Page 256
Final draft prETS 300 838: March 1998

ALERT_REQ

CONNECT_REQ

CONNECT_IND

CONNECT_RESP

DISCONNECT_REQ

INFO_REQ

6.8.2 B-channel Information

B-channel Information (struct)

The purpose of the sub parameter B-channel information is to choose between B-channel data exchange,
D-channel data exchange or pure user-user data exchange. If this struct is empty the default value is
assumed.

This sub parameter is coded as a structure, to give an easy way of extending its contents in future
changes. At the moment, it is coded as a structure of two bytes length and has one element:

word Channel:
0: use B-channel (default value)
1: use D-channel
2: use neither B-channel nor D-channel

This sub parameter appears in parameter:

Additional information

6.8.3 B Protocol

B Protocol (struct)

The purpose of the parameter B protocol is to select and configure the B-channel protocols. There is a
protocol identifier and configuration information for each layer. If this struct is empty the default value is
assumed.

The parameter has the following structure:

word B1 protocol: Physical layer and framing
word B2 protocol: Data link layer
word B3 protocol: Network layer
struct B1 configuration: Physical layer and framing parameter
struct B2 configuration: Data link layer parameter
struct B3 configuration: Network layer parameter

This information element appears in:

CONNECT_REQ

CONNECT_RESP

SELECT_B_PROTOCOL_REQ

Page 257
Final draft prETS 300 838: March 1998

6.8.4 B1 Protocol

B1 Protocol (word)

The purpose of the sub parameter B1 protocol is to specify the physical layer and framing used for this
connection.

The following values are defined:

0: 64 kBit/s with HDLC framing. This is the default B1 protocol.
1: 64 kBit/s bit transparent operation with byte framing from the network
2: CCITT Recommendation V.110 [17] asynchronous operation with

start/stop byte framing
3: CCITT Recommendation V.110 [17] synchronous operation with HDLC

framing
4: ITU-T Recommendation T.30 [14] modem for fax group 3
5: 64 kBit/s inverted with HDLC framing.
6: 56 kBit/s bit transparent operation with byte framing from the network

This sub parameter appears in parameter:

B protocol

6.8.5 B2 Protocol

B2 Protocol (word)
The purpose of the sub parameter B2 protocol is to specify the data link layer used for this connection.

The following values are defined:

0: ISO 7776 [4] (X.75 SLP) This is the default B2 protocol.
1: Transparent
2: SDLC [12]
3: LAPD according to ITU-T Recommendation Q.921 [13] for D-channel X.25
4: ITU-T Recommendation T.30 [14] for facsimile group 3
5: Point-to-Point Protocol (PPP [10] [11])
6: Transparent (ignoring framing errors of B1 protocol)
9: V.120 asynchronous mode

NOTE: The implementation of B2 protocol 9 (V.120 asynchronous mode) shall:

- support V.120 multiframe mode (data transmission will be done using
I-frames, not UI-frames)

- support V.120 flow control by ITU-T Recommendation Q.921 mechanism
(RR/RNR, usage of V.120 CS-header byte is implementation dependent);

- indicate V.120 Break signal /error handling.

The implementation of B2 protocol 9 is not required to support:
- V.120 Multi-Link operation;
- V.120 inband negotiation.

This sub parameter appears in parameter:

B protocol

6.8.6 B3 Protocol

B3 Protocol (word)

Page 258
Final draft prETS 300 838: March 1998

The purpose of the sub parameter B3 protocol is to specify the network layer used for this connection.

The following values are defined:

0: Transparent. This is the default B3 protocol
1: T.90NL with compatibility to T.70NL according to

CCITT Recommendation T.90 [16] Appendix II.
2: ISO 8208 [3] (X.25 DTE-DTE)
3: ITU-T Recommendation X.25 [20] DCE
4: ITU-T Recommendation T.30 [14] for facsimile group 3

Page 259
Final draft prETS 300 838: March 1998

This sub parameter appears in parameter:

B protocol

6.8.7 B1 Configuration

B1 Configuration (struct)

The purpose of the sub parameter B1 configuration is to offer additional configuration information for the
B1 protocol. The parameter has the following structure:

word Rate This parameter has different meaning and default values
depending on the selected B1 protocol:
• B1 protocol 0: not applicable
• B1 protocol 1: not applicable
• B1 protocol 2: the maximum bit rate, coded as unsigned

integer value. Default: adaptive
• B1 protocol 3: the maximum bit rate, coded as unsigned

integer value. Default: 56 kBit
• B1 protocol 4: the maximum bit rate, coded as unsigned

integer value. Default: adaptive
• B1 protocol 5: not applicable
• B1 protocol 6: not applicable

word Bits per character/
Transmit Level

This parameter has different meaning and default values
depending on the selected B1 protocol:
• B1 protocol 0: not applicable
• B1 protocol 1: not applicable
• B1 protocol 2: bits per character, coded as unsigned

integer value. Default: 8
• B1 protocol 3: not applicable
• B1 protocol 4: the level is coded as signed integer

specifying dB's. If this parameter or its value is not
supported by the ISDN controller, it is ignored.

• B1 protocol 5: not applicable
• B1 protocol 6: not applicable

word parity This parameter has different meaning and default values
depending on the selected B1 protocol:
• B1 protocol 0: not applicable
• B1 protocol 1: not applicable
• B1 protocol 2: Parity: 0: none, 1: odd, 2: even.

Default: no parity
• B1 protocol 3: not applicable
• B1 protocol 4: not applicable
• B1 protocol 5: not applicable
• B1 protocol 6: not applicable

word stop bits This parameter has different meaning and default values
depending on the selected B1 protocol:
• B1 protocol 0: not applicable
• B1 protocol 1: not applicable
• B1 protocol 2: stop bits: 0: 1 stop bit, 1: 2 stop bit.

Default: 1 stop bit
• B1 protocol 3: not applicable
• B1 protocol 4: not applicable
• B1 protocol 5: not applicable
• B1 protocol 6: not applicable

Page 260
Final draft prETS 300 838: March 1998

This sub parameter appears in parameter:

B protocol

6.8.8 B2 Configuration

B2 Configuration (struct)

The purpose of the sub parameter B2 configuration is to offer additional configuration information for B2
protocol. For B2 protocols 0, 2, 3 and 9 the parameter has the following structure:

byte Address A This parameter has different meaning and default values
depending on the selected B2 protocol:
• B2 protocol 0: link Address A, default is 0x03
• B2 protocol 2: link Address, default is 0xC1
• B2 protocol 3: bit 0: "0" - automatic TEI assignment

procedure shall be used. "1" - the TEI value shall be used
as fixed TEI. In this case Bit 7 - Bit 1: TEI value

• B2 protocol 9: low byte of LLI, default is 0x00
byte Address B This parameter has different meaning and default values

depending on the selected B2 protocol:
• B2 protocol 0: link Address B, default is 0x01
• B2 protocol 2: not applicable
• B2 protocol 3: not applicable
• B2 protocol 9: high byte of LLI, default is 0x01

byte Modulo Mode Mode of operation:
• B2 protocol 0:
• B2 protocol 2:
• B2 protocol 3

• 8 - normal operation (Default)
• 128 - extended operation

• B2 protocol 9:
• B2 protocol 11:

• 128 - extended operation (Default

byte Window Size Window size, default is 7.
struct XID This parameter has different meaning and default values

depending on the selected B2 protocol:
• B2 protocol 0: not applicable
• B2 protocol 2: this is the content of the XID response

which is sent when a XID command is received.
• B2 protocol 3: not applicable
• B2 protocol 9: not applicable

This sub parameter appears in parameter:

B protocol

6.8.9 B3 Configuration

B3 Configuration (struct)

The purpose of the sub parameter B3 configuration is to offer additional configuration information for B3
protocol. Different structures of this parameter are defined, depending on the B3 protocol:

For B3 protocols 0 (transparent) this parameter does not apply (coded as an empty structure).

Page 261
Final draft prETS 300 838: March 1998

For B3 protocols 1, 2 and 3 (T.90NL, ISO 8208 [3], X.25 DCE) the following structure is defined:

word LIC Lowest incoming channel, default is 0
word HIC Highest incoming channel, default is 0
word LTC Lowest two-way channel, default is 1
word HTC Highest two-way channel, default is 1
word LOC Lowest outgoing channel, default is 0
word HOC Highest outgoing channel, default is 0
word Modulo Mode Mode of operation:

8 - normal operation (default)
128 - extended operation

word Window Size Used to configure non-standard defaults for the transmit and
receive window size, default is 2

For B3 protocol 4 (Facsimile G3) the following structure is used:

word resolution 0: standard
1: high

word format 0: SFF (Default, description in annex A)
1: Plain FAX Format (modified Huffman coding)
2: PCX
3: DCX
4: TIFF
5: ASCII
6: Extended ANSI
7: Binary-File transfer

struct station id ID of the calling station. Coded in ASCII
struct head line Headline sent on each fax page. Coded in ASCII

This sub parameter appears in parameter:

B protocol

6.8.10 BC

BC (struct)

The purpose of the parameter Bearer Capability (BC) information element is to indicate a requested
CCITT Recommendation I.231 bearer service to be provided by the network. It contains only information
which may be used by the network. The information element is coded according to
ETS 300 102-1 [2]/ITU-T Recommendation Q.931 [8].

This information element appears in:

CONNECT_IND

CONNECT_REQ

Page 262
Final draft prETS 300 838: March 1998

6.8.11 Called Party Number

Called Party Number (struct)

The purpose of the parameter called party number information element is to identify the called party of a
call. The information element is coded according to ETS 300 102-1 [2]/ITU-T Recommendation Q.931 [8].

Byte 0 Type of number and numbering plan identification (byte 3 of the called
party number information element, see ETS 300 102 [2]).
At the calling side the value supplied by the application shall be
transmitted over the network, 0x80 is the suggested default value.
At the called side the value received from the network shall be passed
to the application.

Bytes 1..n Number digits of the called party number information element.

This information element appears in:

CONNECT_IND

CONNECT_REQ

6.8.12 Called Party Subaddress

Called Party Subaddress (struct)

The purpose of the parameter called party subaddress is to identify the subaddress of the called party of a
call. The information element is coded according to ETS 300 102-1 [2]/Q.931 [8].

Byte 0 Type of subaddress
At the calling side the value supplied by application shall be
transmitted over the network, 0x80 is the suggested default value
(NSAP according X.213 [6]). In this case, the first subaddress
information octet should have the value 0x50.
At the called side, the value received from the network shall be
passed to the application.

Bytes 1..n Contents of the called party subaddress information element.

This information element appears in:

CONNECT_REQ

CONNECT_IND

6.8.13 Calling Party Number

Calling Party Number (struct)

Page 263
Final draft prETS 300 838: March 1998

The purpose of the parameter calling party number information element is to identify the origin of a call.
The information element is coded according to ETS 300 102-1 [2]/ITU-T Recommendation Q.931 [8].

Byte 0 Type of number and numbering plan identification (byte 3 of the
calling party number information element, see ETS 300 102 [2]).
At the calling side the value supplied by the application shall be
transmitted over the network, 0x00 is the suggested default value.
At the called interface the value received from the network shall be
passed to the application. The extension bit shall always be cleared.

Byte 1 Presentation and screening indicator (byte 3a of the calling party
number information element). This byte may be used to allow or
suppress the presentation of the caller's number in an incoming call.
At the originating interface the value supplied by the application shall
be transmitted over the network, 0x80 is the suggested default value.
With this default value the presentation of the callers number is
allowed. 0xA0 shall suppress the presentation of the calling number, if
the network supports this mechanism.
At the called interface the value received from the network shall be
passed to the application. If this byte was not transmitted from the
network, the controller inserts the valid default value 0x80 (user
provided, not screened).

Bytes 2..n Number digits of the calling party number information element.

This information element appears in:

CONNECT_REQ

CONNECT_IND

LISTEN_REQ

6.8.14 Calling Party Subaddress

Calling Party Subaddress (struct)

The purpose of the parameter calling party subaddress information element is to identify a subaddress
associated with the origin of a call. The information element is coded according to
ETS 300 102-1 [2]/ITU-T Recommendation Q.931 [8].

Byte 0 Type of subaddress
At the calling side the value supplied by application shall be
transmitted over the network, 0x80 is the suggested default value
(NSAP according ITU-T Recommendation X.213 [6]). In this case, the
first subaddress information octet should have the value 0x50.
At the called side, the value received from the network shall be
passed to the application.

Bytes 1..n Contents of the calling party subaddress information element.

This information element appears in:

CONNECT_IND

CONNECT_REQ

LISTEN_REQ

Page 264
Final draft prETS 300 838: March 1998

6.8.15 CIP Value

CIP Value (word)

The purpose of parameter CIP Value is to identify a complete profile of compatibility information (Bearer
Capability, Low Layer Compatibility and High Layer Compatibility). With this parameter standard
applications are not required to do complex coding and decoding of the these information elements.

Some of the CIP values only define a Bearer Capability (CIP 1 to 9) and some values define a
combination of Bearer Capability and High Layer Compatibility (CIP 16 to 28). A Low Layer Compatibility
information element is not defined with the CIP. The Low Layer Compatibility information element may be
provided by the application if necessary.

The following CIP values are defined:

CIP value Service Relation to BC/HLC
0 no predefined profile
1 Speech Bearer capability:

coding standard: CCITT
information transfer capability: speech
transfer mode: circuit mode
information transfer rate: 64 kBit/s
user information layer 1 protocol: G.711
Coding of BC:
<0x04, 0x03, 0x80, 0x90, 0xA3> or
<0x04, 0x03, 0x80, 0x90, 0xA2>(see note)

2 unrestricted digital
information

Bearer capability:
coding standard: CCITT
information transfer capability: unrestricted digital
information
transfer mode: circuit mode
information transfer rate: 64 kBit/s
Coding of BC:
<0x04, 0x02, 0x88, 0x90>

3 restricted digital
information

Bearer capability:
coding standard: CCITT
information transfer capability: restricted digital
information
transfer mode: circuit mode
information transfer rate: 64 kBit/s
Coding of BC:
<0x04, 0x02, 0x89, 0x90>

4 3.1 kHz audio Bearer capability:
coding standard: CCITT
information transfer capability: 3,1 kHz audio
transfer mode: circuit mode
information transfer rate: 64 kBit/s
user information layer 1 protocol: G.711
Coding of BC:
<0x04, 0x03, 0x90, 0x90, 0xA3> or
<0x04, 0x03, 0x80, 0x90, 0xA2>(see note)

(continued)

Page 265
Final draft prETS 300 838: March 1998

CIP value Service Relation to BC/HLC
5 7 kHz audio Bearer capability:

coding standard: CCITT
information transfer capability: unrestricted digital
information with tones/announcements (this
codepoint was formally labelled "7 kHz audio")
transfer mode: circuit mode
information transfer rate: 64 kBit/s
Coding of BC:
<0x04, 0x02, 0x91, 0x90>

6 video Bearer capability:
coding standard: CCITT
information transfer capability: video
transfer mode: circuit mode
information transfer rate: 64 kBit/s
Coding of BC:
<0x04, 0x02, 0x98, 0x90>

7 packet mode Bearer capability:
coding standard: CCITT
information transfer capability: unrestricted digital
information
transfer mode: packet mode
information transfer rate: packet mode
layer 2 protocol: X.25 layer 2
layer 3 protocol: X.25 layer 3
Coding of BC:
<0x04, 0x04, 0x88, 0xC0, 0xC6, 0xE6>

8 56 kBit/s rate
adaptation

Bearer capability:
coding standard: CCITT
information transfer capability: unrestricted digital
information
transfer mode: circuit mode
layer 1 protocol: CCITT standardized rate
adaptation V.110 [17]/X.30 [18]
information transfer rate: packet mode
rate: 56 kBit/s
Coding of BC:
<0x04, 0x04, 0x88, 0x90, 0x21, 0x8F>

9 unrestricted digital
information with
tones/announcem
ents

Bearer capability:
coding standard: CCITT
information transfer capability: unrestricted digital
information with tones/announcements (this
codepoint was formally labelled "7 kHz audio")
transfer mode: circuit mode
information transfer rate: 64 kBit/s
layer 1 protocol: H.221, H.242
Coding of BC:
<0x05, 0x02, 0x91, 0x90, 0xA5>

10..15 reserved
16 Telephony Bearer Capability according to CIP 1.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics identification is
to be used
Presentation: High layer protocol profile
High layer characteristics identification: Telephony
Coding of HLC:
<0x7D, 0x02, 0x91, 0x81>

(continued)

Page 266
Final draft prETS 300 838: March 1998

CIP value Service Relation to BC/HLC
17 Facsimile Group

2/3
Bearer Capability according to CIP 4.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics identification is
to be used
Presentation: High layer protocol profile
High layer characteristics identification: Facsimile
Group 2/3
Coding of HLC:
<0x7D, 0x02, 0x91, 0x84>

18 Facsimile Group 4
Class 1

Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics identification is
to be used
Presentation: High layer protocol profile
High layer characteristics identification: Facsimile
Group 4 Class 1
Coding of HLC:
<0x7D, 0x02, 0x91, 0xA1>

19 Teletex service
basic and mixed
mode and
facsimile service
Group 4 Classes
II and III

Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics identification is
to be used
Presentation: High layer protocol profile
High layer characteristics identification. Teletex
service and facsimile service Group 4
Coding of HLC:
<0x7D, 0x02, 0x91, 0xA4>

20 Teletex service
basic and
processable mode

Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics identification is
to be used
Presentation: High layer protocol profile
High layer characteristics identification. Teletex
service basic and processable mode
Coding of HLC:
<0x7D, 0x02, 0x91, 0xA8>

21 Teletex service
basic mode

Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics identification is
to be used
Presentation: High layer protocol profile
High layer characteristics identification. Teletex
service basic mode
Coding of HLC:
<0x7D, 0x02, 0x91, 0xB1>

(continued)

Page 267
Final draft prETS 300 838: March 1998

CIP value Service Relation to BC/HLC
22 International inter

working for
Videotex

Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics identification is
to be used
Presentation: High layer protocol profile
High layer characteristics identification.
International inter working for Videotex
Coding of HLC:
<0x7D, 0x02, 0x91, 0xB2>

23 Telex Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics identification is
to be used
Presentation: High layer protocol profile
High layer characteristics identification: Telex
Coding of HLC:
<0x7D, 0x02, 0x91, 0xB5>

24 Message
Handling Systems
according to
X.400 [20]

Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics identification is
to be used
Presentation: High layer protocol profile
High layer characteristics identification: Message
Handling Systems according X.400 [20]
Coding of HLC:
<0x7D, 0x02, 0x91, 0xB8>

25 OSI application
according to
X.200 [19]

Bearer Capability according to CIP 2.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics identification is
to be used
Presentation: High layer protocol profile
High layer characteristics identification: OSI
application according X.200 [19]
Coding of HLC:
<0x7D, 0x02, 0x91, 0xC1>

26 7 kHz Telephony Bearer Capability according to CIP 9.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics identification is
to be used
Presentation: High layer protocol profile
High layer characteristics identification: Telephony
Coding of HLC:
<0x7D, 0x02, 0x91, 0x81>

(continued)

Page 268
Final draft prETS 300 838: March 1998

CIP value Service Relation to BC/HLC
27 Video Telephony,

first connection
Bearer Capability according to CIP 9.

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics identification is
to be used
Presentation: High layer protocol profile
High layer characteristics identification: Video
telephony (Recommendation F 721)
Extended high layer characteristics identification:
Capability set of initial channel of H.221
Coding of HLC:
<0x7D, 0x03, 0x91, 0xE0, 0x01>

28 Video Telephony,
second
connection

Bearer Capability according to CIP 2

High Layer Compatibility:
coding standard: CCITT
interpretation: First characteristics identification is
to be used
Presentation: High layer protocol profile
High layer characteristics identification: Video
telephony (Recommendastion F.721)
Extended high layer characteristics identification:
Capability set of subsequent channel of H.221
Coding of HLC:
<0x7D, 0x03, 0x91, 0xE0, 0x02>

NOTE: This coding applies to ISDN with a default of A-Law coding for
speech/audio. For ISDN with a default of µ-Law coding the
corresponding values shall be used.

This information element appears in:

CONNECT_REQ
CONNECT_IND

6.8.16 CIP mask

CIP mask (dword)

The purpose of the parameter CIP mask is to select basic classes of incoming calls. The bit position within
this mask identifies the related CIP value. When an incoming call is received, Profile B tries to match this
incoming call to the defined CIP values (more than one value may match). A CONNECT_IND message is
sent to the application when the bit position within the CIP mask of any matching CIP value is set to "1".
The CIP value in the CONNECT_IND message is set to the highest matching CIP value.

The following rules are defined to find matching CIPs:

1) CIP values which define a Bearer Capability only (CIP 1 to CIP 9) shall generate a match with any
incoming call which includes a Bearer Capability with the same information. Additional information
included in the Bearer Capability information element shall be ignored. The match shall be
generated regardless of any Low Layer Compatibility or High Layer Compatibility received.

2) CIP values which define a Bearer Capability and a High Layer Compatibility (CIP 16 to CIP 28) shall
generate a match with any incoming call which includes a Bearer Capability and a High Layer
Compatibility with the same identical information. The match shall be generated regardless of any
Low Layer Compatibility received.

Page 269
Final draft prETS 300 838: March 1998

Bit 0 in the CIP mask has a special meaning. When no other matching bit is set in the CIP mask but the
Bit 0, a CONNECT_IND is sent to the application with a CIP value of 0. In this case the application may
evaluate the parameters Bearer Capability, Low Layer Compatibility and High Layer Compatibility to
decide whether it is compatible to the call or not.

Examples:

Service Bits to be set in the CIP mask
Telephony
Application

1 For calls within ISDN from equipment which does not send High Layer
Compatibility info.
4 For calls from the analogue network.
16 For call within ISDN equipment which sends High Layer Compatibility
info.

Fax Group 2/3
Application

4 For calls from the analogue network.
17 For calls within ISDN.

Non-standard 64
kBit/s data
applications

2 No checking of High Layer Compatibility information is provided. The
application should verify that no High Layer Compatibility information is
received.

Non standard 56
kBit/s data
applications

8 No checking of High Layer Compatibility information is provided. The
application should verify that no High Layer Compatibility information is
received.

Facsimile Group 4
application

2 For calls from equipment which does not send High Layer Compatibility
information. The application should verify that no High Layer Compatibility
information is received.
18 For call from equipment which sends High Layer Compatibility
information.

This information element appears in:

LISTEN_REQ

6.8.17 Connected Number

Connected Number (struct)

The purpose of the parameter connected number information element is to indicate which number is
connected to a call. The information element shall be coded according to ETS 300 097-1 [19].

Byte 0 Type of number and numbering plan identification (byte 3 of the
connected number information element, see ETS 300 097-1 [19]).
In the direction application to Profile B, the value supplied by the
application shall be transmitted over the network, 0x00 is the
suggested default value.
In the direction Profile B to application, the value received from the
network shall be passed to the application. The extension bit shall
always be cleared.

Byte 1 Presentation and screening indicator (byte 3a of the connected
number information element).
In the direction application to Profile B, the value supplied by the
application shall be transmitted over the network, 0x80 is the
suggested default value.
In the direction Profile B to application, the value received from the
network shall be passed to the application. If this byte was not
transmitted over the network, the controller provides the value 0x80
(user provided, not screened).

Bytes 2..n Number digits of the connected number information element.

Page 270
Final draft prETS 300 838: March 1998

This information element appears in:

CONNECT_ACTIVE_IND

CONNECT_RESP

6.8.18 Connected Subaddress

Connected Subaddress (struct)

The purpose of the parameter connected subaddress information element is to identify the subaddress of
the connected user of a call. The information element is coded according to ETS 300 097-1 [19].

Byte 0 Type of subaddress
At the calling side the value supplied by application shall be
transmitted over the network, 0x80 is the suggested default value
(NSAP according X.213 [6]). In this case, the first subaddress
information octet should have the value 0x50.
At the called side, the value received from the network shall be
passed to the application.

Bytes 1..n Contents of the connected subaddress information element.

This information element appears in:

CONNECT_ACTIVE_IND

CONNECT_RESP

6.8.19 Controller

Controller (dword)

The purpose of the parameter controller is to address a hardware unit, that gives access to an ISDN at the
application's disposal. A controller supports none, one or several physical and logical connections. The
parameter controller is a dword (to be compatible in size with PLCI and NCCI) with the range from 1 to
127 (0 reserved). Bit 7 additionally contains the information, if the message is used for internal (0) or
external (1) equipment. Controllers are numbered sequentially and can be designed to handle external
equipment additional to internal functionality or exclusively provide access to external equipment. External
equipment e.g. is a handset.

Definition of external equipment behaviour, e.g. B-channel handling, is not covered by Profile B.

Format for controller: 0 0 0 Ext./Int. Controller
31 16 8 7 6

0

This information element appears in:

CONNECT_REQ

FACILITY_REQ

FACILITY_CONF

FACILITY_IND

Page 271
Final draft prETS 300 838: March 1998

FACILITY_RESP

LISTEN_REQ

LISTEN_CONF

MANUFACTURER_REQ

MANUFACTURER_CONF

MANUFACTURER_IND

MANUFACTURER_RESP

6.8.20 Data

Data (dword)

The purpose of the parameter data is to exchange a 32 bit pointer to the data area containing the
information.

This information element appears in:

DATA_B3_REQ

DATA_B3_IND

6.8.21 Data Length

Data Length (word)

The purpose of the parameter data length is to specify the length of the data.

This information element appears in:

DATA_B3_REQ

DATA_B3_IND

6.8.22 Data Handle

Data Handle (word)

The purpose of the parameter data handle is to identify the data area in data exchange messages.

This information element appears in:

DATA_B3_REQ

DATA_B3_CONF

DATA_B3_IND

DATA_B3_RESP

Page 272
Final draft prETS 300 838: March 1998

6.8.23 Facility Selector

Facility Selector (word)

The purpose of the parameter facility selector is to identify the requested Profile B facility.

The defined values are:

0 Handset (external ISDN equipment) support
1 DTMF (Dual Tone Multi Frequency)

This information element appears in:

FACILITY_REQ

FACILITY_CONF

FACILITY_IND

FACILITY_RESP

6.8.24 Facility Request Parameter

Facility Request Parameter (struct)

The purpose of the parameter facility request parameter is to offer additional information concerning the
message FACILITY_REQ.

This parameter is coded depending on facility selector as a structure with following elements:

Facility selector:

0 Parameter does not apply (coded as empty structure)
1 DTMF (Dual Tone Multi Frequency):

Function word 1: Start DTMF listen on B-channel data
2. Stop DTMF listen
3: Send DTMF digits
4 to n: Reserved

Tone-Duration word Time in ms for one digit, default is 40 ms
Gap-Duration word Time in ms between the digits, default is 40 ms
DTMF-Digits struct Characters to be sent, coded as IA5-char. "0" to

"9", "*", "#", "A", "B", "C" or "D", each character
generates a unique DTMF- Tone.

Sending of DTMF characters shall interrupt the transmission of DATA_B3_REQ . After DTMF generation,
the data transmission shall be resumed

This information element appears in:

FACILITY_REQ

Page 273
Final draft prETS 300 838: March 1998

6.8.25 Facility Confirmation Parameter

Facility Confirmation Parameter (struct)

The purpose of the parameter facility confirmation parameter is to offer additional information concerning
the message FACILITY_CONF.

This parameter is coded depending on facility selector as a structure with following elements:

Facility selector:

0 Parameter does not apply (coded as structure with a length of 0)
1 DTMF (Dual Tone Multi Frequency):

DTMF information word 0: sending of DTMF info successfully initiated
1: incorrect DTMF digit
2: unknown DTMF request

This information element appears in:

FACILITY_CONF

6.8.26 Facility Indication Parameter

Facility Indication Parameter (struct)

The purpose of the parameter facility indication parameter is to offer additional information concerning the
message FACILITY_IND.

This parameter is coded depending on facility selector as a structure with following elements:

Facility selector:

0 Handset Support:

handset digits byte array Received characters, coded as IA5-char. "0" to
"9", '*", "#", "A", "B", "C" or "D"; or
"+": Handset off-hook
"-": Handset on-hook

Facility selector:

1 DTMF (Dual Tone Multi Frequency):

DTMF digits byte array Received characters, coded as IA5-char. "0" to
"9", "*", "#", "A", "B", "C" or "D"

This information element appears in:

FACILITY_IND

Page 274
Final draft prETS 300 838: March 1998

6.8.27 Facility Response Parameter

Facility Response Parameter (struct)

The purpose of the parameter facility respond parameter is to offer additional information concerning the
message FACILITY_RESP.

This parameter is coded depending on facility selector as a structure with following elements:

Facility selector:

0 Parameter does not apply (coded as structure with a length of 0)
1 Parameter does not apply (coded as structure with a length of 0)

This information element appears in:

FACILITY_RESP

6.8.28 Flags

Flags (word)

The purpose of the parameter flags is to exchange additional protocol dependent information about the
data.

Bit 0 qualifier bit
Bit 1 more data bit
Bit 2 delivery confirmation bit
Bit 3 expedited data bit
Bit 15 framing error bit, data may be invalid (only with corresponding B2

protocol)

This information element appears in:

DATA_B3_REQ

DATA_B3_IND

6.8.29 HLC

HLC (struct)

The purpose of the parameter High Layer Compatibility (HLC) information element is to provide a means
which should be used by the remote user for compatibility checking. The information element is coded
according to ETS 300 102-1 [2]/ITU-T Recommendation Q.931 [8].

This information element appears in:

CONNECT_IND

CONNECT_REQ

Page 275
Final draft prETS 300 838: March 1998

6.8.30 Info

Info (word)

The purpose of the parameter info is to provide error information to the application. For each error which
can be detected by the controller a unique code is defined, independing from the context of the error.

Profile B shall not generate other information values as defined below. In case of future extension of
possible information values however an application should interpret any information value except class
0x00xx as an indication that the corresponding request was rejected from Profile B. Class 0x00xx
indicates the successful handling of the corresponding request and returns additional information.

class 0x00xx: informative values (corresponding message was processed)

Value Reason
0 request accepted
0x0001 NCPI not supported by current protocol, NCPI ignored
0x0002 flags not supported by current protocol, flags ignored
0x0003 alert already sent by another application

class 0x10xx: error information concerning CAPI_REGISTER

Value Reason
0x1001 too many applications
0x1002 logical block size too small, shall be at least 128 bytes
0x1003 buffer exceeds 64 kByte
0x1004 message buffer size too small, shall be at least 1 024 bytes
0x1005 max. number of logical connections not supported
0x1006 reserved
0x1007 the message could not be accepted because of an internal busy

condition
0x1008 OS Resource error (e.g. no memory)
0x1009 Profile B not installed
0x100A Controller does not support external equipment
0x100B Controller does only support external equipment

Page 276
Final draft prETS 300 838: March 1998

class 0x11xx: error information concerning message exchange functions

Value Reason
0x1101 illegal application number
0x1102 illegal command or subcommand or message length less than

12 octets
0x1103 the message could not be accepted because of a queue full condition.

The error code does not imply that Profile B cannot receive messages
directed to another controller, PLCI or NCCI.

0x1104 queue is empty
0x1105 queue overflow, a message was lost. This indicates a configuration

error. The only recovery from this error is to perform a
CAPI_RELEASE.

0x1106 unknown notification parameter
0x1107 the message could not be accepted because of an internal busy

condition
0x1108 OS Resource error (e.g. no memory)
0x1109 Profile B not installed
0x110A Controller does not support external equipment
0x110B Controller does only support external equipment

class 0x20xx: error information concerning resource/coding problems

Value Reason
0x2001 message not supported in current state
0x2002 illegal Controller/PLCI/NCCI
0x2003 out of PLCI
0x2004 out of NCCI
0x2005 out of LISTEN
0x2006 out of FAX resources (protocol T.30 [14])
0x2007 illegal message parameter coding

class 0x30xx: error information concerning requested services

Value Reason
0x3001 B1 protocol not supported
0x3002 B2 protocol not supported
0x3003 B3 protocol not supported
0x3004 B1 protocol parameter not supported
0x3005 B2 protocol parameter not supported
0x3006 B3 protocol parameter not supported
0x3007 B protocol combination not supported
0x3008 NCPI not supported
0x3009 CIP Value unknown
0x300A flags not supported (reserved bits)
0x300B facility not supported
0x300C data length not supported by current protocol
0x300D reset procedure not supported by current protocol

This information element appears in:

CONNECT_B3_CONF

CONNECT_CONF

Page 277
Final draft prETS 300 838: March 1998

INFO_CONF

DATA_B3_CONF

DISCONNECT_B3_CONF

DISCONNECT_CONF

LISTEN_CONF

RESET_B3_CONF

SELECT_B_PROTOCOL_CONF

6.8.31 Info Element

Info Element (struct)

The purpose of the parameter info element depends on the value of the parameter info number.

If the info number specifies an information element, the info element contains that information element
with the coding as defined in ETS 300 102-1 [2]/ITU-T Recommendation Q.931 [8].

If the info number specifies a charging information info element contains a dword indicating the sum of
charges accumulated by the network up to this moment.

If the info number specifies a message type the info element is an empty Profile B struct.

This information element appears in:

INFO_IND

6.8.32 Info Mask

Info Mask (dword)

The parameter info mask specifies which type of information for a physical connection or controller shall
be provided by Profile B. The selected information shall be indicated within the message INFO_IND to the
application. A given info mask (set in LISTEN_REQ) is valid until it is superseded by another
LISTEN_REQ and applies to all information concerning the corresponding application. The info mask is
coded as a bit field. A bit set to 1 means that corresponding INFO_IND messages shall be generated, a
bit set to 0 means the specified information shall be suppressed. In the default info mask all bits are set to
0. If an application wants to change this value it shall send a LISTEN_REQ message even if it does not
want to be informed about incoming calls.

Page 278
Final draft prETS 300 838: March 1998

Bit 0 Cause; cause information given by the net during disconnection. The
parameter info element of the corresponding INFO_IND message is a
Profile B struct which contains the cause information element defined
in ETS 300 102-1 [2] and ITU-T Recommendation Q.931 [8] (both
4.5.12).

Bit 1 Date/time; date/time information indicated by the net. The parameter
info element of the corresponding INFO_IND message contains the
date/time information element defined in ETS 300 102-1 [2] and ITU-T
Recommendation Q.931 [8] (both 4.6.1).

Bit 2 Display; display information to be displayed to the user. The parameter
info element of the corresponding INFO_IND message contains the
display information element defined in ETS 300 102-1 [2] and ITU-T
Recommendation Q.931 [8] (both 4.5.15).

Bit 3 User-user; user-user information that is transparently carried by the
net. The parameter info element of the corresponding INFO_IND
message contains the user-user information element defined in
ETS 300 102-1 [2] and ITU-T Recommendation Q.931 [8] (both
4.5.29).

Bit 4 Call progression; information referring to the progress of the call. There
are five different INFO_IND messages that correspond to this
information type, each with a unique info number.
The first indication contains the information element progress indicator
as defined in ETS 300 102-1 [2] and ITU-T Recommendation
Q.931 [8]. The other four messages indicate the occurrence of the
network events SETUP ACKNOWLEDGE, CALL PROCEEDING,
ALERTING and PROGRESS. In these cases the parameter info
number indicates the corresponding message type and the information
element is an empty Profile B struct.

Bit 5 Facility; facility information to indicate the invocation and operation of
supplementary services. The parameter info element of the
corresponding INFO_IND message contains the facility information
element defined in ETS 300 102-1 [2] and ITU-T Recommendation
Q.931 [8] (both 4.6.2).

Bit 6 Charging information; connection oriented charging information
provided by the net. There are two different INFO_IND messages with
unique info number values that correspond to this information type. The
first one shows the sum of charging units indicated by the net up to this
moment, the second the sum of charges in the national currency
indicated by the net up to this moment. In both cases the parameter
info element is coded as a Profile B struct containing a dword. It is
highly recommended to provide only one of this two types of charging
information to the user and to transform one type to the other.
However, in some networks this might be impossible due to the
information provided from the net. In these cases it is not defined, if the
current charges are represented by only one or both or the sum of this
indicated charges.

Bit 7 Called Party number; identifies the called party of a call. The parameter
info element of the corresponding INFO_IND message contains the
called party number information element defined in ETS 300 102-1 [2]
and ITU-T Recommendation Q.931 [8] (both 4.5.8).

Bits 7-31 Reserved, shall be set to 0.

This information element appears in:

LISTEN_REQ

6.8.33 Info Number

Info Number (word)

Page 279
Final draft prETS 300 838: March 1998

The purpose of the parameter info number specifies the coding of the parameter info element and the type
of information which is carried by this INFO_IND message. The high byte is structured as a bit field and
indicates which type of information is held in the low byte.

Bit 15 If this bit set to 1 the low byte contains a message type, if it is set to 0
the low byte represents an information element type.

Bits 14 If this bit is set to 1 the low byte indicates supplementary information
not covered by network events or information elements. In this case
bit 15 shall be set to 0.

Bits 13-8 Reserved, set to 0.

If bit 15 is set, the low byte containing the message type is coded according to ETS 300 102-1 [2]/ITU-T
Recommendation Q.931 [8]. In this case the INFO_IND message indicates the occurrence of a network
event according to the specified message and the parameter info element is an empty Profile B struct.

If bits 14 and 15 are cleared, the low byte represents an information element type coding according to
ETS 300 102-1 [2]/ITU-T Recommendation Q.931 [8]. The parameter info element contains the content of
the information element.

If bit 14 is set, the low byte represents supplementary information. The defined values are

0 sum of charges in charging units. In this case the parameter info element
contains the content of the information element.

1 sum of charges in national currency. In this case the parameter info element
contains the content of the information element.

This information element appears in:

INFO_IND

6.8.34 LLC

LLC (struct)

The purpose of the parameter Low Layer Compatibility (LLC) information element is to provide a means
which should be used for compatibility checking by an addressed entity (e.g. a remote user or an inter
working unit or a high layer function network node addressed by the calling user). The Low Layer
Compatibility information element is transferred transparently by ISDN between the call originating entity
(e.g. the calling user) and the addressed entity. If Low Layer Compatibility negotiation is allowed by the
network, the Low Layer Compatibility information element is also passed transparently from the addressed
entity to the originating entity. The information element is coded according to ETS 300 102-1 [2]/ITU-T
Recommendation Q.931 [8].

This information element appears in:

CONNECT_ACTIVE_IND

CONNECT_IND

CONNECT_REQ

CONNECT_RESP

6.8.35 Manu ID

Manu ID (dword)

Page 280
Final draft prETS 300 838: March 1998

The purpose of the parameter Manu ID is to exchange a dword inside MANUFACTURER-Messages
which identifies the manufacturer. Every manufacturer offering MANUFACTURER-Messages should
choose a unique value (e.g. shortcut of company name).

This information element appears in:

MANUFACTURER_REQ

MANUFACTURER_RESP

MANUFACTURER_CONF

MANUFACTURER_IND

6.8.36 Manufacturer Specific

Manufacturer Specific

The purpose of the parameter manufacturer Specific is to exchange manufacturer specific information.

This information element appears in:

MANUFACTURER_REQ

MANUFACTURER_RESP

MANUFACTURER_CONF

MANUFACTURER_IND

6.8.37 NCCI

NCCI (dword)

The purpose of the parameter NCCI is to identify a logical connection. The NCCI is given by Profile B
during creation of the logical connection. Depending on the layer 3 protocol selection (e.g. ISO 8208 [3]), it
is possible to have multiple NCCIs based on one PLCI. The NCCI is a dword with a range from 1 to
65 535 (0 reserved), coded as described below, and includes additionally the corresponding PLCI and
controller.

Format for NCCI: NCCI PLCI Ext./Int. Controller
31 16 8 7 6

0

This information element appears in:

CONNECT_B3_ACTIVE_IND

CONNECT_B3_ACTIVE_RESP

CONNECT_B3_CONF

CONNECT_B3_IND

CONNECT_B3_RESP

DATA_B3_CONF

Page 281
Final draft prETS 300 838: March 1998

DATA_B3_IND

DATA_B3_REQ

DATA_B3_RESP

DISCONNECT_B3_CONF

DISCONNECT_B3_IND

DISCONNECT_B3_REQ

DISCONNECT_B3_RESP

FACILITY_REQ

FACILITY_CONF

FACILITY_IND

FACILITY_RESP

RESET_B3_CONF

RESET_B3_IND

RESET_B3_REQ

RESET_B3_RESP

6.8.38 NCPI

 NCPI (struct)

The purpose of the parameter NCPI is to provide additional protocol specific information.

For the layer 3 protocols ISO 8208 [3] and ITU-T Recommendation X.25 [20] the parameter data of
structure NCPI are coded as follows:

Byte 0 Bit field
[0]: Enable the usage of the delivery confirmation procedure in call
set-up and data packets (D-Bit).
[1..7]: Reserved.

Byte 1 Logical channel group number of the permanent virtual circuit (PVC)
to be used. In the case of virtual calls (VC) this number shall be set to
zero.

Byte 2 Logical channel number of the permanent virtual circuit (PVC) to be
used. In the case of virtual calls (VC) this number shall be set to zero.

Bytes 3..n Bytes following the packet type identifier field in the ITU-T
Recommendation X.25 PLP packets.

For layer 3 protocol ITU-T Recommendation T.30 [14] (fax group 3) the parameter data of structure NCPI
are valid only for DISCONNECT_B3_IND and coded as follows (in every other message the structure is
empty):

Page 282
Final draft prETS 300 838: March 1998

word Rate actual used bit rate, coded as unsigned integer value
word resolution 0: standard

1: high
word format 0: SFF (Default, description in annex A)

1: Plain FAX Format (modified Huffman coding)
2: PCX
3: DCX
4: TIFF
5: ASCII
6: Extended ANSI
7: Binary-File transfer

word pages number of pages, coded as unsigned integer value
struct receive id id of remote side

This information element appears in:

CONNECT_B3_ACTIVE_IND

CONNECT_B3_T90_ACTIVE_IND

CONNECT_B3_IND

CONNECT_B3_REQ

CONNECT_B3_RESP

DISCONNECT_B3_IND

DISCONNECT_B3_REQ

RESET_B3_REQ

RESET_B3_RESP

6.8.39 PLCI

PLCI (dword)

The purpose of the parameter PLCI is to describe a physical connection between two endpoints. The PLCI
is given by Profile B during creation of the physical connection. The PLCI is a dword with the range from 1
to 255 (0 reserved), coded as described below, and additionally includes the controller.

Format for PLCI: 0 0 PLCI Ext./Int. Controller
31 16 8 7 6

0

This information element appears in:

CONNECT_ACTIVE_IND

CONNECT_ACTIVE_RESP

CONNECT_B3_REQ

CONNECT_CONF

CONNECT_IND

Page 283
Final draft prETS 300 838: March 1998

CONNECT_RESP

DISCONNECT_REQ

DISCONNECT_CONF

DISCONNECT_IND

DISCONNECT_RESP

FACILITY_REQ

FACILITY_CONF

FACILITY_IND

FACILITY_RESP

INFO_REQ

INFO_CONF

INFO_IND

INFO_RESP

SELECT_B_PROTOCOL_REQ

SELECT_B_PROTOCOL_CONF

6.8.40 Reason

Reason (word)

The purpose of the parameter reason is to provide error information to the application regarding the
clearing of a physical connection. The defined values are:

0 normal clearing, no cause available
0x3301 protocol error layer 1
0x3302 protocol error layer 2
0x3303 protocol error layer 3
0x3304 another application got that call (see LISTEN_REQ)
0x34xx disconnect cause from the network according to ETS 300 102-1 [2]/ITU-T

Recommendation Q.931 [8]. In the field "xx" the cause value received within a
cause information element (octet 4) from the network is indicated.

This information element appears in:

DISCONNECT_IND

6.8.41 Reason_B3

Reason_B3 (word)

Page 284
Final draft prETS 300 838: March 1998

The purpose of the parameter reason is to provide error information to the application regarding the
clearing of a logical connection. The defined values are:

protocol independent:

0 normal clearing, no cause available
0x3301 protocol error layer 1 (broken line or B-channel removed by signalling protocol)
0x3302 protocol error layer 2
0x3303 protocol error layer 3

ITU-T Recommendation T.30 [14] specific reasons:

0x3311 connecting not successful (remote station is no fax G3 machine)
0x3312 connecting not successful (training error)
0x3313 disconnected before transfer (remote station does not support transfer mode,

e.g. resolution)
0x3314 disconnected during transfer (remote abort)
0x3315 disconnected during transfer (remote procedure error (e.g. unsuccessful

repetition of ITU-T Recommendation T.30 [14] commands)
0x3316 disconnected during transfer (local tx data underrun)
0x3317 disconnected during transfer (local rx data overflow)
0x3318 disconnected during transfer (local abort)
0x3319 illegal parameter coding (e.g. SFF coding error)

6.8.42 Reject

Reject (word)

The purpose of the parameter reject is to define the action of Profile B for incoming calls.

The defined values are:

0 Accept the call
1 Ignore the call
2 reject call, normal call clearing
3 reject call, user busy
4 reject call, requested circuit/channel not available
5 reject call, facility rejected
6 reject call, channel unacceptable
7 reject call, incompatible destination
8 reject call, destination out of order

This information element appears in:

CONNECT_B3_RESP

CONNECT_RESP

6.9 State diagram

6.9.1 User"s guide

To explain the message exchange between Profile B and application, a graphic description is mandated.
In the absence of an international standard for the description of a message exchange between two local
entities, a new way of presentation was created. The state machines on the following pages are described
in the form of a state diagram covering application and controller. This state diagram is a monitor view of
an idealized interface. In reality the Profile B is not only an interface definition, it is also a concrete
instantiation.

Page 285
Final draft prETS 300 838: March 1998

The state diagram on the following pages is split into three separate state machines:

1) LISTEN state machine;

2) PLCI state machine (physical connections);

3) NCCI state machine (logical connections).

On every physical connection, identified by a PLCI, several logical layer 3 links could exist, identified by a
NCCI. Therefore a splitting into PLCI and NCCI state machine is necessary. A description of "n" physical
links with "m" logical links at one time in one state machine is impossible. Therefore only one PLCI or one
NCCI at a time is considered in the state machine.

Profile B messages LISTEN_REQ and LISTEN_CONF are described in a separate state machine,
because the availability of a successful LISTEN setting exceeds the lifetime of logical and/or physical
connections.

Figure 33: Position of Point of Control and Observation (PCO)

6.9.2 Explanation

The state diagrams define a faultless exchange of messages. The PCO for the message exchange
description is on the level of the Profile B operations. For real implementations it is not allowed that an
asynchronous exchange of messages results in an error condition.

The state diagrams define the flow of the messages on the PCO without consideration of their possible
asynchronicity in real implementations.

Confirmations and responses, which do not evoke a state transition, are not shown in this state diagrams.

In "ANY-State" it is allowed that an expected confirmation on a request or an expected response appears.

The messages MANUFACTURER_REQ, MANUFACTURER_CONF, MANUFACTURER_IND and
MANUFACTURER_RESP could result in incompatibility. They are not described in the state diagrams.

Requests with an invalid PLCI or an invalid NCCI are wrong messages and therefore are not described in
the state diagrams.

Page 286
Final draft prETS 300 838: March 1998

INFO_REQ and INFO_IND are network specific elements which can appear at any time. The use of
INFO_REQ especially for "overlap sending" is described in the PLCI-state machine 1/2.

FACILITY_REQ, FACILITY_CONF, FACILITY_IND and FACILITY_RESP are facility specific messages
which can appear at any time. Therefore they can occur in every state of the LISTEN-, PLCI- and NCCI-
state machine. Especially the FACILITY_IND concerning "Handset Support" is described in the PLCI-state
machine 1/2. The flow of the messages for the Handset Support depends on the real handset interface
(e.g. Additional Equipment Interface (AEI)) or manufacturer specific codecs. So it is possible, that only a
part of the described flow of the messages for the Handset Support is used. But it is not allowed to use the
FACILITY messages for the Handset Support in another way, as described in the message definition and
the state machines.

Page 287
Final draft prETS 300 838: March 1998

Figure 34: LISTEN - state machine

Page 288
Final draft prETS 300 838: March 1998

Figure 35 (sheet 1of 2): PLCI - state machine

Page 289
Final draft prETS 300 838: March 1998

Figure 35 (sheet 2 of 2): PLCI -state machine

Page 290
Final draft prETS 300 838: March 1998

Figure 36 (sheet 1 of 2): NCCI -state machine

Page 291
Final draft prETS 300 838: March 1998

Figure 36 (sheet 2 of 2): NCCI - state machine

Page 292
Final draft prETS 300 838: March 1998

7 Operating system description

This clause describes the operating system specific implementation for both profiles.

7.1 DOS

7.1.1 DOS Operation System specific implementation for Profile A

This subclause describes the operating system specific implementation for the DOS operating system.
For the following description, the base MS-DOS version is the version number 3.1.

A NAF implementation under DOS shall offer the functionality of the exchange functions described in a
generic way in subclause 5.3.

In this subclause, the mapping and implementation of these functions are described on a function per
function basis. For each function, a coding example in C language is given.

7.1.1.1 Introduction

Except for the function PciGetHandles , the implementation of the exchange method for DOS is based on
a direct access mechanism. The access point is a far function address provided by the NAF. This function
address is mapped to the generic type PCI_HANDLE.

To make sure that the function address provided by the NAF is correct, the PUF may cfheck a signature
located in front of the function address before calling the NAF.

To perform this check, the PUF shall examine the memory area located just in front of the function
address. There the signature is located, which shall contain the eight character constant "ISDN PCI". If
this signature is available, the PUF assumes the NAF function address is correct.

Only one access point shall be provided by the NAF. A supplied parameter shall indicate the function to be
invoked. This parameter is named function code .

Parameters are passed from the PUF to the NAF using the stack. The PUF shall ensure a minimum stack
space of 128 bytes on call. When the NAF receives the control of the CPU, the first parameter on the
stack is the function code, followed by parameters based on the particular function.

The function code is passed as a 2 byte integer value.

The NAF has to place the return code in the AX register. The NAF procedure is not in charge of cleaning
the stack on return. The C call convention is used: the calling PUF pushes parameters right to left and
restores the stack on return.

The alignment of the PCIMPB generic structure is byte .

7.1.1.2 Mapping of generic types and constants

Under DOS, the following mapping shall be used for the generic types described in the subclause 5.3:

Generic Type DOS Mapping
PCI_INTEGER 2 byte integer (a word)
PCI_BYTEARRAY far pointer (segment:offset address)
PCI_EXID Unique identifier provided by NAF (2 byte integer)
PCI_HANDLE far function address (segment: offset address)
PCI_PROCEDURE far function address (segment: offset address)

As usual for DOS, all values are in little endian (low byte - high byte) order.

Page 293
Final draft prETS 300 838: March 1998

The function code , used to invoke the exchange functions, shall be assigned as follows:

Function Function code value
PciGetProperty 1
PciRegister 2
PciDeregister 3
PciPutMessage 4
PciGetMessage 5
PciSetSignal 6

C presentation of these definitions looks as follows:

/*
 * Generic type mappings
 */
typedef short int PCI_INTEGER;
typedef char far * PCI_BYTEARRAY;
typedef short int PCI_EXID;
typedef short int (far * PCI_HANDLE) ();
typedef void (far * PCI_PROCEDURE) ();

/*
 * Function code constants
 */
#define PCIGETPROPERTY 1
#define PCIREGISTER 2
#define PCIDEREGISTER 3
#define PCIPUTMESSAGE 4
#define PCIGETMESSAGE 5
#define PCISETSIGNAL 6

/*
 * Signature
 */
#define PCISIGNATURE "ISDN PCI" /* multi characters constant */

7.1.1.3 Description of functions

The PUF is in charge to provide a minimal stack during a function call. The minimal stack size is
128 bytes.

In the description the access to one is described for simplicity in the coding examples. However the
access of a PUF to multiple NAFs is not excluded.

7.1.1.3.1 PciGetHandles

Under DOS, the implementation of the PciGetHandles function shall use a character device driver named
"PCIDD$" to retrieve the available PCI-Handles. This function call is the exception on the basic principle -
direct access - under DOS.

The maximum theoretical amount of PCI-Handles which can be retrieved is 4 096. However, the
implemented device driver will probably have a practical limit which lies far below and depends on the
implementation of the device driver itself.

The following operation shall be performed by the PUF, in order:

- Open the "PCIDD$" character device driver.

- Prepare a buffer in memory, big enough to hold the maximum amount of PCI-Handles to be
retrieved.

- Issue a IOCTL system read call: Receive control Data from Character Device:
- BX shall contain the dos handle of the device driver;
- CX shall contain the length of the memory buffer prepared above;
- DS:DX shall point to the memory buffer.

- Check the success of the operation (check carry flag).

Page 294
Final draft prETS 300 838: March 1998

- In case of error, optionally issue a DOS Get Extended Error function call to receive a more
comprehensive error code.

- On successful return, AX contains the number of bytes provided by the device driver, the buffer
contains the available PCI-Handles in a row. The number of available PCI-Handles is calculated by
dividing the AX value by 4, the size of a far address function pointer.

- Close the device driver.

C coding example:

...
#include <dos.h> /* declarations for IOCTL call */
#include <fcntl.h> /* declarations for open mode */
...
#define SUCCESS 0 /* No error */
#define MAXHANDLES 64 /* max amount of handles to be read */
...
PCI_HANDLE PCIHandlesArray[MAXHANDLES] /* buffer for receiving PCI-Handles */
...
PCI_INTEGER MaxHandles; /* max amount of handles to be read */
PCI_HANDLE far * PCIHandles; /* far pointer to buffer of PCI-Handles */
PCI_INTEGER far * ActualHandles; /* far ptr to amount of PCI-Handles received */
{
int fildes; /* file descriptor */
int error;
union _REGS regs;
struct _SREGS segregs;
struct _DOSERROR errorinfo;

/* open the driver */
if (_dos_open ("PCIDD$", _O_RDWR, &fildes) != SUCCESS)

{
/* device driver not accessible; perform error processing */
error = ...
}

else
{
/* prepare IOCTL read from device driver */
_segread (&segregs);
segregs.ds = FP_SEG (PCIHandles); /* set-up segment address */
regs.x.dx = FP_OFF (PCIHandles); /* and offset */
regs.x.cx = MaxHandles * sizeof(PCI_HANDLE);
regs.x.bx = fildes; /* set dos file handle */
regs.x.ax = 0x4402; /* IOCTL read from character device */

/* issue IOCTL read from device driver */
_intdosx (®s, ®s, &segregs);

/* close the driver */
_dos_close (fildes);

/* check for error */
if (regs.x.cflag & 1) /* check processors carry flag */

{
/* error has occured; perform error processing */
_dosexterr (&errorinfo);
error = doserror.exterror;
...
}

else
{
/* Successfull operation. Set count of handles received */
*ActualHandles = regs.x.ax / sizeof(PCI_HANDLE);
error = SUCCESS;
}

...

7.1.1.3.2 PciGetProperty

This function is in charge of retrieving the NAF-Property from the NAF. To issue the function call, the PUF
shall possess the PCI-Handle of the NAF it wants to access. Before accessing the NAF, the PUF may
check, if the PCI-Handle it uses is valid by checking the signature of the access point the PCI-Handle is
pointing to.

Page 295
Final draft prETS 300 838: March 1998

The following operation shall be carried out by the PUF, in order:

- may examine memory area pointed to by the PCIHandle to find out if NAF is loaded and. check the
signature for the character constant "ISDN PCI" in that case;

- call the address with the PciGetProperty function code and the parameters provided by the PUF;

- check return code.

C coding example:

...
#include <memory.h> /* memory compare func declarations */
...
#define SUCCESS 0 /* No error */
#define PCIGETPROPERTY 1
#define PCISIGNATURE "ISDN PCI"
#define SIGNATURESIZE 8
...
PCI_HANDLE PCIHandle;
PCI_INTEGER MaximumSize;
PCI_BYTEARRAY Property;
PCI_INTEGER far * ActualSize;
{
PCI_INTEGER error;
char far * signature;

signature = (char far *) PCIHandle - SIGNATURESIZE;
if (_fmemcmp (signature,PCISIGNATURE,SIGNATURESIZE) == SUCCESS)

{
/* signature is correct. call the entry point */
error = (*PCIHandle) (PCIGETPROPERTY, MaximumSize, Property, ActualSize);
...
}

else
{
/* signature wrong. process error */
error = ...

...

7.1.1.3.3 PciRegister

This function is in charge of providing an association between a PUF and a NAF. To issue the function
call, the PUF shall possess the PCI-Handle of the NAF it wants to access Before accessing the NAF, the
PUF may check, if the PCI-Handle it uses is valid by checking the signature of the access point the PCI-
Handle is pointing to.

For this function call, 2 structures shall be prepared by the PUF and shall be passed on the function stack.
The first structure is the PCIRegisterInfo structure as declared in subclause 5.3. The second is the
operating system dependent PCIOpSysInfo structure, which for DOS has the following layout:

Element Name Type Validity Explanation
MaxNCOCount 2 byte integer on call Shall be set to the maximum amount of NCOs the PUF

intends to create during the association.
MaxPacketSize 2 byte integer on call Shall be set to the maximum size of a data packet the

NAF willl accept on a user connection.
MaxPacketCount 2 byte integer on call Shall be set to the maximum amount of packets of the

above size the NAF will buffer per user connection.
AddBufferSize 4 byte integer on call If the PUF wants to provide buffer space to the NAF, it

shall set this value to the size of the buffer space it
donates. Otherwise the value shall be set to zero (0).

AddBufferSpace far address
(segment: offset
)

on call If the structure element AddBufferSize is non-zero, this
element shall point (far) to the donated, additional buffer
space.

BufferNeeded 4 byte integer on return In case the NAF has not enough buffer space available
to guarantee the requested connection characteristics,
the amount of additional buffer needed is returned in
this element by the NAF.

Page 296
Final draft prETS 300 838: March 1998

The information provided with this structure helps the NAF to optimize its internal resources. Therefore,
the information given by the PUF shall be carefully weighted. This is especially true in an environment,
where a NAF serves several PUFs at the same time.

In the case a NAF has not available enough memory resources to fulfil the requested characteristics, the
PciRegister function will fail and return a BuffersTooSmall error code. In this case the amount of buffer
missing can be taken from the BufferNeeded element of the above structure.

On successful return of the PciRegister function, the Exchange-ID becomes available, which shall be used
as a parameter on subsequent exchange mechanism function calls.

The following operation shall be carried out by the PUF, in order to:

- examine memory area pointed to by the PCIHandle to find out if NAF is loaded. Check the
signature for characters "ISDN PCI";

- allocate and set-up the two structures PCIRegisterInfo and PCIOpSysInfo. The PCIOpSysInfo
structure may optionally contain a pointer to additional buffer space which shall be donated to the
NAF;

- call the exchange function with the PciRegister function code and the parameters provided by the
PUF;

- check return code. If the return code indicates OutOfBuffers then the call may be repeated with
correct adjusted buffer space to be donated to the NAF;

- KEEP the returned Exchange-ID for later calling.

C coding example:

...
#include <memory.h> /* memory compare func declarations */
#include <malloc.h> /* memory allocation functions */
...
#define SUCCESS 0 /* No error */
#define PCIREGISTER 2
#define PCISIGNATURE "ISDN PCI"
#define SIGNATURESIZE 8
#define E_OUT_OF_BUFFERS 148 /* BuffersTooSmall error code */
...
struct pci_register { /* structure containing registering info */

PCI_INTEGER PUFVersion; /* optional: give PUF version */
PCI_INTEGER PUFType; /* optional: give PUF type */
PCI_INTEGER MaxMsgSize; /* return: max size of a message */

};

struct pci_opsys { /* structure containing registering info */
short int MaxNCOCount; /* optional: give max count of NCOs */
short int MaxPacketSize; /* optional: give expected max size and */
short int MaxPacketCount; /* max count of packets to buffer */
long int AddBufferSize; /* optional: give to NAF size and */
void far * AddBufferSpace; /* pointer to additional buffer */
long int BufferNeeded; /* return: amount of add buffer needed */

};
...

/*
 * before calling the PCIRegister function further down, allocate and prepare the structures
 * requested by this function call
 */
struct pci_register PCIRegisterInfo {

2, /* Set PUF version to 2, equaling current ETS Version*/
0, /* Set PUF type to 0 as indicated in [2]*/
0 /* Initialize (expected) return value of MaxMsgSize */

};

struct pci_opsys PCIOpSysInfo {
2, /* Set max amount NCOs PUF intends to create */
1024, /* Set max size of data packets NAF shall accept */
8, /* Set max count of packets NAF shall buffer per NCO */
0, /* Set size of memory PUF wants to donate to NAF */
(void far *) NULL, /* Set pointer to (donated) buffer space */
0 /* Initialize (expected) return value of BufferNeeded */

};

Page 297
Final draft prETS 300 838: March 1998

...
PCI_HANDLE PCIHandle;
struct pci_register far * RegisterStruct;;
PCI_EXID far * ExchangeID
{
PCI_INTEGER error;
char far * signature;
void far * buffer;

signature = (char far *) PCIHandle - SIGNATURESIZE;
if (_fmemcmp (signature,PCISIGNATURE,SIGNATURESIZE) != SUCCESS)

{
/* signature wrong. process error */
error = ...
}

else
{
/* signature is correct. call the entry point */
error = (*PCIHandle) (PCIREGISTER, &PCIRegisterInfo, &PCIOpSysInfo, ExchangeID);
if (error == E_OUT_OF_BUFFERS)

{
/* NAF needs more buffer space; try to allocate */
buffer = _fmalloc ((size_t) PCIOpSysInfo.BufferNeeded);
if (buffer)

{
/* there is buffer, so it"s worth another try; adjust PCIOpSysInfo structure */
PCIOpSysInfo.AddBufferSize = PCIOpSysInfo.BufferNeeded;
PCIOpSysInfo.AddBufferSpace = buffer;
PCIOpSysInfo.BufferNeeded = 0;
/* call PciRegister again ... */
}

}
error=(*PCIHandle)(PCIREGISTER,&PCIRegisterInfo,&PCIOpSysInfo,ExchangeID);
if (error)

{
/* Process error */
...

...

7.1.1.3.4 PciDeregister

This function is in charge to disassociate a PUF and a NAF.

The following operation shall be carried out by the PUF, in order:

- call the address with the PciDeregister function code and the Exchange-ID related to the current
association;

- check return code.

C coding example:

...
#define PCIDEREGISTER 3
...
PCI_HANDLE PCIHandle;
PCI_EXID ExchangeID;
{
PCI_INTEGER error;

/* call the entry point */
error = (*PCIHandle) (PCIDEREGISTER, ExchangeID);
...

7.1.1.3.5 PciPutMessage

This function is in charge to provide a message from a PUF to a NAF. Parameters shall be provided in the
same order as indicated in the generic description of the PciPutMessage function.

The following operation shall be carried out by the PUF, in order:

- call the address with the PciPutMessage function code and the Exchange-ID related to the current
association as well as the correct set-up PCI Message Parameter Block and the associated buffers;

- check return code.

Page 298
Final draft prETS 300 838: March 1998

C coding example:

...
#define PCIPUTMESSAGE 4
...
struct pci_mpb {

PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};
...
PCI_HANDLE PCIHandle;
PCI_EXID ExchangeID;
struct pci_mpb far * PCIMbp;
PCI_BYTEARRAY Message;
PCI_BYTEARRAY Data;
{
PCI_INTEGER error;

/* call the entry point */
error = (*PCIHandle) (PCIPUTMESSAGE, ExchangeID, PCIMbp, Message, Data);
...
}
7.1.1.3.6 PciGetMessage
This function is in charge to provide the PUF with a message coming from the NAF. Parameters
shall be provided in the same order as indicated in the generic description of the PciGetMessage
function.
The following operation shall be carried out by the PUF, in order:
- call the address with the PciGetMessage function code and the Exchange-ID related to the
current association as well as the correct set-up PCI Message Parameter Block and the associated
buffers;

- check return code.

C coding example:
...
#define PCIGETMESSAGE 5
...
struct pci_mpb {

PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};
...
PCI_HANDLE PCIHandle;
PCI_EXID ExchangeID;
struct pci_mpb far * PCIMbp;
PCI_BYTEARRAY Message;
PCI_BYTEARRAY Data;
{
PCI_INTEGER error;

/* call the entry point */
error = (*PCIHandle) (PCIGETMESSAGE, ExchangeID, PCIMbp, Message, Data);
...
}

7.1.1.3.6 PciSetSignal

This function is in charge to provide the NAF with the address of a function located inside the PUF, which
shall be called-back if a message becomes available for the PUF.

The following operation shall be carried out by the PUF, in order:

- call the address with the PciSetSignal function code and the Exchange-ID related to the current
association as well as the correct set-up function address of the call-back routine;

- check return code.

C coding example:

#define PCISETSIGNAL 6
/* CallBack function called in interrrupt context */
void far CallBackFunc ()

Page 299
Final draft prETS 300 838: March 1998

{
...
return;
}

/*
 * Code to set up the notification process
 */
...
PCI_HANDLE PCIHandle;
PCI_EXID ExchangeID;
{
PCI_INTEGER error;

/* call the entry point */
error = (*PCIHandle) (PCISETSIGNAL, ExchangeID, &CallBackFunc);
...
}

The NAF calls back the PUF with the following conventions applying:

- the NAF provides a minimal stack size of 128 bytes;
- the values of the DS and ES segments are undefined;
- interrupts are disabled.

Gained control, the PUF:

- may or may not enable interrupts;

- is allowed call the NAF via the PciGetMessage or the PciPutMessage function;

- shall not invoke other exchange function calls besides the PciGetMessage and the PciPutMessage
functions;

- shall not issue DOS system calls;

- shall not let interrupts be disabled over an extended period of time and shall return from the call-
back function as quick as possible.

The NAF called via the PciGetMessage or the PciPutMessage function may enable interrupts. However,
the NAF shall not call the call-back routine again, until the call back routine has returned normally.

At the end of the call back routine the PUF shall return to the NAF. Only the SS:SP register pair shall be
preserved by the PUF.

7.1.1.4 Availability of NAF"s PCI_HANDLE

To be accessible via the PciGetHandles function call, a NAF shall issue a declaration action. The inverse
action, extraction from the list of available NAFs, is described too. These actions are operating system
specific.

7.1.1.4.1 Declaration action

Under DOS, the NAF uses the PCIDD$ Device Driver to declare itself, issuing an IOCTL write command,
passing a structure containing the action code (Declare) and the handle of the NAF.

The maximum number of NAF than the "PCIDD$" Device Driver can register is 32.

The following operation will take place in order:

- open the "PCIDD$" driver;

- prepare the following structure:
- one word: command code, 0 x 4544 (characters "DE", DEclaration);
- one double-word: address of the NAF entry point.

- issue a IOCTL system call write command:
- CX contains the size of the declaration structure (6);

Page 300
Final draft prETS 300 838: March 1998

- DS:DX point to the structure.

- check the success of the operation (check CARRY FLAG);

- in case of error, issue a Get Extended Error function call to get a more comprehensive error code;

- close the driver.

The command will end successfully even if the NAF is already declared. In this case, no action takes
place.

The command gives an error on the following cases. In these cases, no action takes place.

- standard DOS errors (Invalid handle, Invalid function number, etc.);

- the length of the buffer passed (register CX) is not correct (extended error 24, Bad request structure
length);

- the command code is invalid (extended error 31, General failure);

- already 32 NAF are declared and the NAF to be declared is not already declared (extended error
29, Write fault).

7.1.1.4.2 Extraction action

The NAF uses the PCIDD$ Device Driver to extract itself, issuing an IOCTL write command, passing a
structure containing the action code (Extract) and the handle of the NAF.

The following operation will take place in order:

- open the "PCIDD$" driver;

- prepare the following structure:
- one word: command code, 0 x 5845 (characters "EX", EXtraction);
- one double-word: address of the NAF entry point.

- issue a IOCTL system call write command:
- CX contains the size of the extraction structure (6);
- DS:DX point to the structure.

- check the success of the operation (check CARRY FLAG);

- in case of error, issue a Get Extended Error function call to get a more comprehensive error code;

- close the driver.

The command will be successful even if the NAF has not already been declared. In this case, no action
takes place.

The command gives an error on the following cases. In these cases, no action takes place.

- standard DOS errors (Invalid handle, Invalid function number, etc.);
- the length of the buffer passed (register CX) is not correct (extended error 24, Bad request structure

length);
- the command code is invalid (extended error 31, General failure).

7.1.2 MS-DOS for Profile B

As MS-DOS does not provide any multitasking facilities, Profile B is incorporated into the system as a
background driver (terminate and stay resident). The interface between the application and Profile B is
implemented by way of a software interrupt. The vector used for this shall be configurable both in Profile B
and in the application. The default value for the software interrupt is 241 (0xF1). If another value is to be
used, it can be specified as a parameter when Profile B is installed.

Page 301
Final draft prETS 300 838: March 1998

The functions described below are defined by appropriate register assignments in this software interrupt
interface. The return values and parameter are normally supplied in register AX and ES:BX. Registers AX,
BX, CX, DX and ES can be modified, other registers are retained. Profile B is allowed to enable interrupts
during processing of these functions.

Profile B requires a maximum stack area of 512 bytes for the execution of all the functions incorporated.
This stack area shall be made available by the application program. During processing the software
interrupt Profile B may enable and/or disable interrupts.

The software interrupt for Profile B is defined according to the BIOS interrupt chaining structure.

API PROC FAR ; ISDN-API interrupt service
JMP SHORT doit ; jump to start of routine
DD ? ; chained interrupt
DW 424BH ; interrupt chaining signature
DB 80H ; first in chain flag
DW ? ; reserved, should be 0
DB "CAPI" ; Profile B signature
DB "20" ; Version number

doit:

The characters "CAPI20" can be requested by the application to check the presence of Profile B.

The pointer stipulated in messages DATA_B3_REQ and DATA_B3_IND is implemented as a FAR pointer
under MS-DOS.

Memory layout is according to MS-DOS.

7.1.2.1 Message operations

7.1.2.1.1 CAPI_REGISTER

Description

This is the function the application uses to report its presence to Profile B. In doing so, the application
provides Profile B with a memory area. A FAR pointer to this memory area is transferred in registers
ES:BX. The size of the memory area is calculated according to the following formula:

CX + (DX * SI * DI)

The size of the message buffer used to store messages is transferred to the CX register. Choosing too
small a value will result in messages being lost. A "normal" application should calculate the necessary
amount of memory according to following formula:

CX = 1 024 + (1 024 * DX)

In the DX register the application indicates the maximum number of logical connections opened
simultaneously. An attempt to open more logical connections than stipulated here can be acknowledged
with an error message from Profile B.

In the SI register the application sets the maximum number of received B3 data blocks that can be
reported to the application simultaneously. The number of simultaneously available B3 data blocks has a
decisive effect on the throughput of B3 data in the system and should be between 2 and 7. There shall be
room for two B3 data blocks at least.

In the DI register the application sets the maximum size of the application data to be transmitted and
received, that is the maximum data length parameter in messages DATA_B3_REQ and DATA_B3_IND .
The default value for the protocol ISO 7776 [4] (X.75) is 128 octets. Profile B shall be able to support at
least up to 2 048 octets, if an application sets register DI with corresponding values.

Page 302
Final draft prETS 300 838: March 1998

The application number is supplied in the AX register. In the event of an error, the AX register is returned
with the value 0. The cause of the error is held in the BX register in this case.

CAPI_REGISTER 0x01

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x01
ES:BX FAR pointer to a memory block provided by the

application. This memory area can (but need not) be
used by Profile B to manage the message queue of the
application. In addition, Profile B can (but also need not)
provide the received data in this memory area.

CX Size of message buffer
DX Maximum number of level 3 connections
SI Number of B3 data blocks available simultaneously
DI Maximum size of a B3 data block

Return Value

Return Value Comment
AX <> 0 Application number (ApplID)

0x0000 Registration error, cause of error in BX register
BX if AX == 0, coded as described in parameter Info class

0x10xx

NOTE: If the application intends to open a maximum of one layer 3 connection simultaneously
and the standard protocols are used, the following register assignment is
recommended:

CX = 2048, DX = 1, SI = 7, DI = 128

The resulting memory requirement is 2 944 bytes.

7.1.2.1.2 CAPI_RELEASE

Description

The application uses this function to log off from Profile B. The memory area indicated in the
CAPI_REGISTER is released. The application is identified by the application number in the DX register.
Any errors that occur are returned in register AX.

CAPI_RELEASE 0x02

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0x02
DX Application number

Page 303
Final draft prETS 300 838: March 1998

Return Value

Return Value Comment
AX 0x0000 no error

<> 0 Registration error, coded as described in parameter Info
class 0x11xx

7.1.2.1.3 CAPI_PUT_MESSAGE

Description

With this function the application transfers a message to Profile B. A FAR pointer is transferred to the
message in the ES:BX registers. The application is identified via application number in the DX register.
Any errors that occur are returned in register AX.

CAPI_PUT_MESSAGE 0x03

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0x03
ES:BX FAR pointer to the message
DX Application number

Return Value

Return Value Comment
AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx
NOTE: After CAPI_PUT_MESSAGE the application can use the memory area of the

message again. The message shall not be modified by Profile B.

7.1.2.1.4 CAPI_GET_MESSAGE

Description

With this function the application retrieves a message from Profile B. The application can only retrieve
those messages intended for the stipulated application number. A FAR pointer is set to the message in
the ES:BX registers. If there is no message for the application, the function returns immediately. Register
AX contains the corresponding error value. The application is identified via the application number in the
DX register. Any errors that occur are returned in register AX.

CAPI_GET_MESSAGE 0x04

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0x04
DX Application number

Page 304
Final draft prETS 300 838: March 1998

Return Value

Return Value Comment
AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx
ES:BX FAR pointer to message, if available
NOTE: The message may be invalidated the next time CAPI_GET_MESSAGE is called.

7.1.2.2 Other functions

7.1.2.2.1 CAPI_SET_SIGNAL

Description

The application can use this function to activate usage of the interrupt call-back function. A FAR pointer to
an interrupt call-back function is specified in the ES:BX registers. The signalling function can be
deactivated by a CAPI_SET_SIGNAL with register assignment ES:BX = 0000:0000. The application is
identified via the application number in the DX register. Any errors that occurred are returned in the AX
register.

CAPI_SET_SIGNAL 0x05

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0x05
DX Application number
SI:DI Parameter passed to call-back function
ES:BX FAR pointer to call-back function

Return Value

Return Value Comment
AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx
NOTE: The call-back function is called as an interrupt by Profile B, after;

- any message is queued in application"s message queue;
- a notified busy condition is cleared;
- a notified queue full condition is cleared.
Interrupts are disabled. The call-back function shall be terminated via IRET. All
registers shall be preserved. At the time of calling, at least 32 bytes are available on
the stack.
The call-back function shall be called with interrupts disabled. Profile B shall not call
this function recursively, even if the call-back function enables interrupts. Instead,
the call-back function shall be called again after returning to Profile B.
The call-back function is allowed to use Profile B operations
CAPI_PUT_MESSAGE , CAPI_GET_MESSAGE , and CAPI_SET_SIGNAL . In that
case the application shall be aware that interrupts may be enabled by Profile B.
In case of local confirmations (e.g. LISTEN_CONF) the call-back function may be
activated before the operation CAPI_PUT_MESSAGE returns to the application.
Parameter DX, SI and DI shall be passed to the call-back function with the same
values of the corresponding parameters to CAPI_SET_SIGNAL .

Page 305
Final draft prETS 300 838: March 1998

7.1.2.2.2 CAPI_GET_MANUFACTURER

Description

With this function the application determines the manufacturer identification of Profile B. In registers
ES:BX a FAR pointer is transferred to a data area of 64 bytes. The manufacturer identification, coded as a
zero terminated ASCII string, is present in this data area after the function has been executed.

CAPI_GET_MANUFACTURER 0xF0

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0xF0
ES:BX FAR pointer to buffer

Return Value

Return Comment
ES:BX buffer contains manufacturer identification with ASCII

coding. The end of the identification is indicated with a 0
byte.

7.1.2.2.3 CAPI_GET_VERSION

Description

With this function the application determines the version of Profile B as well as an internal revision
number.

CAPI_GET_VERSION 0xF1

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0xF1

Return Value

Return Comment
AH Profile B major version: 2
AL Profile B minor version: 0
DH Manufacturer specific major number
DL Manufacturer specific minor number

7.1.2.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this function the application determines the (optional) serial number of Profile B. In registers ES:BX a
FAR pointer to a data area of 8 bytes is transferred. The serial number, coded as a zero terminated ASCII
string, is present in this data area in the form of a seven-digit number after the function has been
executed. If no serial number is supplied, the serial number is an empty string.

Page 306
Final draft prETS 300 838: March 1998

CAPI_GET_SERIAL_NUMBER 0xF2

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0xF2
ES:BX FAR pointer to buffer

Return Value

Return Comment
ES:BX The (optional) serial number is read in plain text in the

form of a 7-digit number. If no serial number is to be
used, a 0 byte shall be written at the first position in the
buffer. The end of the serial number is indicated with a 0
byte.

7.1.2.2.5 CAPI_GET_PROFILE

Description

The application uses this function to get the capabilities from Profile B. Registers ES:BX contain a FAR
pointer to a data area of 64 bytes. In this buffer Profile B copies information about implemented features,
number of controllers and supported protocols. Register CX contains the controller number (bit 0..6) for
which this information is requested.

CAPI_GET_PROFILE 0xF3

Parameter Comment
AH Version number 20 (0x14)
AL Functional Code 0xF3
CX controller number (if 0, only number of controllers is

returned)
ES:BX FAR pointer to buffer

Return Value

Return Value Comment
AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx

Page 307
Final draft prETS 300 838: March 1998

Retrieved structure format:

Type Description
2 octets number of installed controllers, least significant octet first
2 octets number of supported B-channels, least significant octet

first.
4 octets Global Options (bit field):

0: internal controller supported
1: external equipment supported
2: Handset supported (external equipment shall be set
also)
3: DTMF supported
4..31: reserved

4 octets B1 protocols support (bit field):
0: 64 kBit/s with HDLC framing, always set.
1: 64 kBit/s bit transparent operation with byte framing
from the network
2: CCITT Recommendation V.110 [17] asynchronous
operation with start/stop byte framing
3:CCITT Recommendation V.110 [17] synchronous
operation with HDLC framing
4: ITU-T Recommendation T.30 [14] modem for fax
group 3
5: 64 kBit/s inverted with HDLC framing.
6: 56 kBit/s bit transparent operation with byte framing
from the network
7..31: reserved

4 octets B2 protocol support (bit field):
0: ISO 7776 [4] (X.75 SLP), always set
1: Transparent
2: SDLC [12]
3: LAPD according ITU-T Recommendation Q.921 [13]
for D-channel X.25
4: ITU-T Recommendation T.30 [14] for facsimile group
3
5: Point to Point Protocol (PPP [10] [11])
6: Transparent (ignoring framing errors of B1 protocol)
7: reserved
8: reserved
9: V.120 asynchronous mode
10..31: reserved

4 octets B3 protocol support (bit field):
0: Transparent, always set
1: T.90NL with compatibility to T.70NL according to
CCITT Recommendation T.90 [16] Appendix II.
2: ISO 8208 [3] (X.25 DTE-DTE)
3: X.25 DCE
4: ITU-T Recommendation T.30 [14] for facsimile group
3
5..31: reserved

24 octets reserved for Profile B usage
20 octets manufacturer specific information
NOTE: This function can be extended, so an application has to ignore unknown bits. Profile

B shall set every reserved field to 0.

Page 308
Final draft prETS 300 838: March 1998

7.1.2.2.6 CAPI_MANUFACTURER

Description

This function is manufacturer specific.

CAPI_MANUFACTURER 0xFF

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0xFF
Manufacturer specific

Return Value
Return Comment
Manufacturer specific

7.2 Windows version 3.x

7.2.1 Windows operating system specific implementation for Profile A

7.2.1.1 Introduction

Except for the PciGetHandles function call, the DLL mechanism is the basic mechanism used to support
the Profile A exchange method under Windows. Every NAF have to be DLL and have to export an entry
point per Profile A function using the same name (PciGetProperty, PciRegister, PciGetMessage,
PciPutMessage, PciSetSignal, PciDeregister).

NOTE: Function names exported by the NAF are the same as the description made in the
subclause 5.3 but the parameters are different.

PciGetHandles needs an access to the PCI.INI file.

PciRegister and PciGetProperty check if the DLL, accessible by its name, is available.

To access a NAF the only need for a PUF is to know the name of the DLL. The address access to the
DLL may be provide transparently to the PUF inside the Pci"s exchange mechanism functions as shown in
the annex J.

The PciRegister function dynamically loads the NAF. It needs to keep trace of the handle of the NAF as a
DLL, so this handle is part of the Exchange Identifier. The NAF need also to keep trace of the PUF, so it
assigns an Identifier to the PUF at registration time. This NAF-provided Identifier is the other part of the
Exchange Identifier.

Under Windows, the common calling conventions to provide parameter to a DLL is the PASCAL calling
convention. This convention is also used by the Profile A exchange method in that case.

Pointer parameters are far. The PCIMPB structure is always passed via a pointer. The Exchange Identifier
structure is also always passed via a pointer.

The structure alignment is byte .

7.2.1.2 Implementation of basic type

Under Windows, the following values shall be used:

PCI_HANDLE name of the DLL
PCI_EXID Structure contents handle provided by Windows when the DLL is loaded

(hInstance)

Page 309
Final draft prETS 300 838: March 1998

Unique Identifier provided by NAF to identify the PUF
PCI_PROCEDURE exported function address (FARPROC) provided by the PUF
PCI_INTEGER 2 bytes
PCI_BYTEARRAY far pointer

7.2.1.3 C structures and function prototypes

/* Basic types */
typedef SHORT PCI_INTEGER;
typedef LPSTR PCI_BYTEARRAY;
typedef LPSTR PCI_HANDLE;
typedef struct {

HINSTANCE DLLInstance;
PCI_INTEGER Exchange_Id;
} PCI_EXID;

typedef void (far pascal *PCI_PROCEDURE)(void);

/*
 * Structures
 */
struct pci_mpb {

PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};

struct pci_register { /* structure containing registering info */
PCI_INTEGER PUFVersion; /* optional: give PUF version */
PCI_INTEGER PUFType; /* optional: give PUF type */
PCI_INTEGER MaxMsgSize; /* return: max size of a message */

};

struct pci_opsys { /* structure containing specific operating system info */
int DummyParameter; /* No specific requirement for WINDOWS */

};

/* Exchange functions prototypes */

PCI_INTEGER far PASCAL PciGetHandles (PCI_INTEGER MaxHandles,
PCI_BYTEARRAY PCIHandles,
PCI_INTEGER far * ActualHandles);

PCI_INTEGER far PASCAL PciGetProperty (PCI_HANDLE PCIHandle,
PCI_INTEGER MaximumSize,
PCI_BYTEARRAY Property,
PCI_INTEGER far * ActualSize);

PCI_INTEGER far PASCAL PciRegister (PCI_HANDLE PCIHandle,
struct pci_register * PCIRegisterInfo,
struct pci_opsys * PCIOpSysInfo,
PCI_EXID far *ExID);

PCI_INTEGER far PASCAL PciDeregister (PCI_EXID far *ExID);

PCI_INTEGER far PASCAL PciPutMessage (PCI_EXID far *ExID,
struct pci_mpb far *PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data);

PCI_INTEGER far PASCAL PciGetMessage (PCI_EXID far *ExID,
struct pci_mpb far *PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data);

PCI_INTEGER far PASCAL PciSetSignal (PCI_EXID far *ExID,
PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure);

7.2.1.4 Description of functions

This subclause describes the implementation, under Windows, of the Profile A exchange method
functions. During a PUF to NAF call, the size of the stack shall be at least 1 024 bytes deep.

Page 310
Final draft prETS 300 838: March 1998

7.2.1.4.1 PciGetHandles

Under WINDOWS, the PciGetHandles uses a PCI.INI file in the WINDOWS directory to get available
PCI_HANDLEs.

The section [Drivers] in the PCI.INI file contains all entries of installed NAFs. Each entry has the format:

pciDriver<number>=DLLName (number=1..32)

The following operations shall get all names of installed NAF drivers:

- loops from 1 to 32
- constructs of the keyName "pciDriver" associated to the current loop value;
- issue a GetPrivateProfileString using:

sectionKey = "DRIVERS";
the keyName constructs before;
no default value;
a maximum size equal to 128;
FileName = "PCI.INI".

7.2.1.4.2 PciGetProperty

This function is in charge of providing the PUF with the PROPERTY of the NAF. Implicitly it checks if the
NAF is available, when loading the library via the LoadLibrary function.

The following operations shall take place, in order:

- load the DLL;
- get the address of the PciGetProperty function exported by the NAF;
- call to this address with the parameters provided by the PUF;
- free the loaded library.

7.2.1.4.3 PciRegister

This function is in charge to provide an association between a PUF and a NAF. The NAF is loaded and
the DLLInstance part of the Exchange Identifier is provided. The availability of the chosen NAF is checked
during the load of the library. The library is identified by its name. Parameters for the registration operation
are brought together a structure:

- PUFType (PCI_INTEGER);
- PUFVersion (PCI_INTERGER);
- MaxMsgSize (PCI_INTEGER) where the NAF will give the maximum size for a message.

The following operations shall take place, in order:

- load the DLL;

- provide the DLLInstance part of the Exchange Identifier with the DLL Instance;

- get the address of the PciRegister function exported by the NAF;

- call to this address to inform the NAF of a new PUF. The address of the registration parameters
structure and the address of the Exchange Identifier structure are passed to the NAF as
parameters;

- on return from the NAF, the Exchange_Id part of the Exchange Identifier and the maximum
message size parameter of the registration parameter structure have been provided by the NAF;

- return to the PUF with the return code from the NAF.

Page 311
Final draft prETS 300 838: March 1998

7.2.1.4.4 PciDeregister

This function is in charge to disassociate a PUF and a NAF. The DLL usage number shall be
decremented by Windows but the DLL is not freed from the memory each time a PUF deregisters a NAF.

The following operations shall take place, in order:

- get the address of the PciDeregister function exported by the NAF;

- call to this address to inform the NAF of the end of the association. The PCI_EXID is passed to the
NAF by address;

- free the DLL.

7.2.1.4.5 PciPutMessage

This function is in charge to provide a message, and associated data if any, from a PUF to a NAF.
Parameters are provided in the same order as in the description of the PciGetMessage in subclause 5.3.

The following operations shall take place, in order:

- get the address of the PciPutMessage function exported by the NAF;
- call this address to pass parameter to the NAF (including the address of the PCI_EXID).

7.2.1.4.6 PciGetMessage

This function is in charge to provide a message, and associated data if any, from a PUF to a NAF.
Parameters are provided in the same order as in the description of the PciGetMessage in subclause 5.3.
Buffers provided by the PUF are directly used by the NAF.

The following operations shall take place, in order:

- get the address of the PciGetMessage function exported by the NAF;
- call this address to pass parameter to the NAF (including the address of the PCI_EXID).

7.2.1.4.7 PciSetSignal

This function allows a PUF to provide a direct information mechanism to be used by the NAF in case of
incoming event. Two mutually exclusive mechanisms are offered under Windows:

- A signal procedure mechanism;
- A user message mechanism.

Once a mechanism is chosen by the PUF, the other is deactivated by the NAF for that particular PUF.
Both mechanisms have to be supported by a NAF.

The first mechanism does not used the Signal parameter. This parameter shall be set to 0.

The second mechanism used the Signal parameter to identify the value associated with the WM_USER
WINDOWS message. In that case, the Signal parameter shall not be equal to 0.

7.2.1.4.7.1 Signal mechanism procedure

The routine address, provided by the PUF in the SignalProcedure parameter, is used directly by the NAF.
It shall be made accessible to the NAF before it is provided by the PUF. The routine is called without any
parameters.

In that case, the Signal parameter is not used but the parameter shall be passed to the NAF with the 0
value.

The stack used during the call to the SignalProcedure is not the PUF"s one. The SignalProcedure shall be
compiled without assuming SS equal to DS, i.e. as a DLL.

Page 312
Final draft prETS 300 838: March 1998

The NAF is allowed to call the PUF to reissue a signal call. To avoid big stack requirement, the NAF shall
wait the return from the PUF signal procedure before re-issuing the next signal call.

The PUF call back to the NAF during the signal procedure treatment is not allowed. The stack size is not
guaranty when the NAF calls the PUF. Consequently, the stack requirements for the PUF treatment shall
be as small as possible.

7.2.1.4.7.2 User message mechanism procedure

The Signal parameter contains a PUF value to be added to the WM_USER WINDOWS message
constant. This message is sent to a PUF Window. The HANDLE for this Window is provided by the PUF
in the low word of the SignalProcedure parameter of the PciSetSignal function. It shall be a valid HANDLE
WINDOW (HWND).

When the NAF issues the WM_USER + Signal message to the PUF, it uses a WINDOWS API
PostMessage call. The PUF will find as third parameter (known as wParam) the type of the message
received. In the fourth parameter (lParam), the PUF will find, as high word, the size of the Message
associated to this message and as low word, the size of the Data associated. The call will look like:

PostMessage: (LOWORD(SignalProcedure);
WM_USER+Signal;
MessageID;
(DWORD) (MessageSize << 16) | (DataSize)).

As the PostMessage WINDOWS API is used, the PUF is allowed to call back the NAF during the
message treatment.

This mechanism is simple to be implemented but an important constraint shall be pointed out:

- under WINDOWS, a PostMessage call can fail due to a lack of room available in the message
queue. The PUF is in charge to treat fast enough messages to insure that no NAF message will be
lost. The PUF cannot rely on a failed message to be reissued by the NAF.

7.2.1.4.7.3 Deactivation mechanism

To deactivate any signal mechanism the PciSetSignal function Signal and SignalProcedure parameters
shall be set to NULL. Once deactivated, the previous mechanism shall no longer be used by the NAF to
call the PUF.

7.2.1.5 Availability of NAF"s PCI_HANDLE

To be accessible via the PciGetHandles function call, a NAF shall issue a declaration action. The inverse
action - extraction from the list of available NAFs - is described too. These actions are operating system
specific.

7.2.1.5.1 Declaration action

First, the NAF may get the list of available PCI_HANDLEs to check if not already declared. The
mechanism the NAF uses is the same as any PUF to get available NAF: PciGetHandles
(see subclause 7.2.1.4.1).

If not yet declared, the NAF includes its own PCI_HANDLE into the list.

PCI_BYTEARRAY ownDLLName = "xxx";
PCI_BYTE driverName[128];
WORD index;
char keyName[20];

/* Check if NAF not already installed */
for (index = 1; index <= 32; index++)

{
sprintf(keyName, "pciDriver%d", index);
if (GetPrivateProfileString("DRIVERS", /* Section name */

keyName, /* "pciDriver"+1..n */
NULL, /* No default needed */
driverName,

Page 313
Final draft prETS 300 838: March 1998

sizeof(driverName),
"PCI.INI") > 0)

{
if (strcmpi(driverName, ownDLLName) == 0) return; /* NAFinstalled, OK return */
}

}
/* Search a free pciDriver position */
for (index = 1, index <= 32; index++)

{
sprintf(keyName, "pciDriver%d", index);
if (GetPrivateProfileString("DRIVERS", /* Section name */

keyName, /* "pciDriver"+1..n */
NULL, /* No default needed */
driverName,
sizeof(driverName),
"PCI.INI") == 0)

{
/* Entry does not exist, add own NAF Driver name */
WritePrivateProfileString("DRIVERS", keyName, ownDLLName, "PCI.INI");
return;
}

}

The maximum number of NAF than can be registered is 32.

7.2.1.5.2 Extraction action

First, the NAF gets the list of available PCI_HANDLEs to check if it is declared. If so, the NAF removes its
own PCI_HANDLE from the driver list in "PCI.INI".

PCI_BYTEARRAY ownDLLName = "xxx";
PCI_BYTE driverName[128];
WORD index;
char keyName[20];

for (index = 1, index <= 32; index++)
{
sprintf(keyName, "pciDriver%d", index);
if (GetPrivateProfileString("DRIVERS", /* Section name */

keyName, /* "pciDriver"+1..n
NULL, /* No default needed */
driverName,
sizeof(driverName),
"PCI.INI") > 0)

{
/* Check for own name */
if (strcmpi(driverName, ownDLLName) == 0)

{
/* Remove the name of the Driver */
WritePrivateProfileString("DRIVERS", keyName, "", "PCI.INI");
}

}
}

7.2.2 Windows (application level) for Profile B

In a PC environment with the MS-DOS extension Windows an application can access Profile B services
via a DLL (Dynamic Link Library). The interface between applications and Profile B is realized as a
function interface. An application can issue Profile B function calls to perform Profile B operations.

The DLL providing the function interface shall be named "CAPI20.DLL". All functions exported by this
library shall be called with a FAR call according to the PASCAL calling convention. This means all
parameters are pushed on the stack (first parameter is pushed first), the called function shall clear up the
stack before it returns to the caller.

The functions are exported under following names and ordinal numbers:

CAPI_MANUFACTURER (reserved) CAPI20.99

CAPI_REGISTER CAPI20.1

CAPI_RELEASE CAPI20.2

CAPI_PUT_MESSAGE CAPI20.3

Page 314
Final draft prETS 300 838: March 1998

CAPI_GET_MESSAGE CAPI20.4

CAPI_SET_SIGNAL CAPI20.5

CAPI_GET_MANUFACTURER CAPI20.6

CAPI_GET_VERSION CAPI20.7

CAPI_GET_SERIAL_NUMBER CAPI20.8

CAPI_GET_PROFILE CAPI20.9

CAPI_INSTALLED CAPI20.10

These functions can be called by an application according to the DLL conventions as imported functions.
If an application calls any function of the DLL with whatever function it shall ensure that there are at least
512 bytes left on the stack.

All pointers that are passed from the application program to Profile B, or vice versa, in function calls or in
messages are 16:16 segmented protected mode pointers. This especially applies to the data pointer in
DATA_B3_REQ and DATA_B3_IND messages.

In the Windows 3.x environment following types are used to define the functional interface:

WORD 16 bit unsigned integerDWORD 32 bit unsigned integer
LPVOID 16:16 (segmented) protected mode pointer to any memory location
LPVOID * 16:16 (segmented) protected mode pointer to a LPVOID
LPBYTE 16:16 (segmented) protected mode pointer to a character string
LPWORD 16:16 (segmented) protected mode pointer to a 16 bit unsigned integer value
CAPIENTRY WORD FAR PASCAL (according to Windows DLL calling convention)

7.2.2.1 Message operations

7.2.2.1.1 CAPI_REGISTER

Description

This is the operation the application uses to report its presence to Profile B. By passing the four
parameters MessageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDataLen the
application describes its needs.

For a "normal" application the size of the message buffer should be calculated using following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

Function call

CAPIENTRY CAPI_REGISTER (WORD MessageBufferSize,
WORD maxLogicalConnection,
WORD maxBDataBlocks,
WORD maxBDataLen,
LPWORD pApplID);

Page 315
Final draft prETS 300 838: March 1998

Parameter Comment
MessageBufferSize Size of Message Buffer
maxLogicalConnection Maximum number of logical connections
maxBDataBlocks Number of data blocks available simultaneously
maxBDataLen Maximum size of a data block
pApplID Pointer to the location where Profile B should place the assigned

application identification number

Return Value

Return Value Comment
0x0000 Registration successful - application identification number has been

assigned
All other values Coded as described in parameter info class 0x10xx

7.2.2.1.2 CAPI_RELEASE

Description

The application uses this operation to log off from Profile B. Profile B shall release all resources that have
been allocated for the application.

The application is identified by the application identification number that had been assigned in the previous
CAPI_REGISTER operation.

Function call

CAPIENTRY CAPI_RELEASE (WORD ApplID);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_REGISTER

Return Value

Return Value Comment
0x0000 Release of the application successful
All other values Coded as described in parameter info class 0x11xx

7.2.2.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to Profile B. The application identifies itself with an
application identification number.

Function call

CAPIENTRY CAPI_PUT_MESSAGE(WORD ApplID,
LPVOID pCAPIMessage);

Page 316
Final draft prETS 300 838: March 1998

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_REGISTER
pCAPIMessage 16:16 (segmented) protected mode pointer to the message that is

passed to Profile B

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter info class 0x11xx
NOTE: When the process returns from the function call the message memory area can be

reused by the application.

7.2.2.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from Profile B. The application can only retrieve
those messages intended for the stipulated application identification number. If there is no message
waiting for retrieval, the function returns immediately with an error code.

Function call

CAPIENTRY CAPI_GET_MESSAGE (WORD ApplID,
LPVOID *ppCAPIMessage);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_REGISTER
ppCAPIMessage 16:16 (segmented) protected mode pointer to the memory location

where Profile B should place the 16:16 (segmented) protected mode
pointer to the retrieved message

Return Value

Return Value Comment
0x0000 Successful - Message was retrieved from Profile B
All other values Coded as described in parameter info class 0x11xx
NOTE: The received message may become invalid the next time the application issues a

CAPI_GET_MESSAGE operation for the same application identification number.
This especially matters in multi threaded applications where more than one thread
may execute CAPI_GET_MESSAGE operations. The synchronization between
threads shall be done by the application.

7.2.2.2 Other functions

7.2.2.2.1 CAPI_ SET_SIGNAL

Description

This operation is used by the application to install a mechanism which signals the application the
availability of a message or the clearing of an internal busy/queue full condition. All restrictions of interrupt
context will apply to the call-back function.

Page 317
Final draft prETS 300 838: March 1998

Function call

CAPIENTRY CAPI_SET_SIGNAL (WORD ApplID,
VOID (FAR PASCAL *CAPI_Callback)
(WORD ApplID, DWORD Param),
DWORD Param
);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_REGISTER
CAPI_Callback Address of the call-back function. The function can called in an

interrupt context (see note). Value 0x00000000 disables the call-back
notification.

Param Additional parameter of call-back function

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter info class 0x11xx
NOTE: The notification takes place, after:

- any message is queued in application"s message queue;
- a notified busy condition is cleared;
- a notified queue full condition is cleared.
In case of local confirmations (e.g. LISTEN_CONF) the notification may be
activated before the operation CAPI_PUT_MESSAGE returns to the application.
The call-back function shall be called using following conventions:
VOID FAR PASCAL CAPI_Callback (

WORD ApplID,
DWORD Param

);

Data segment register DS is undefined (use MakeProcInstance() or _setds). A
stack of at least 512 bytes is set up by Profile B.
The call-back function may be called at interrupt context (i.e., every data and code
accessed by the call-back function has to be prevented from being paged out by
Windows" VMM, e.g. by using fixed segments in its own DLL and/or by applying
GlobalPageLock() to used selectors).
PostMessage() and PostAppMessage() are the only windows API functions which
can be called.
CAPI_PUT_MESSAGE, CAPI_GET_MESSAGE and CAPI_SET_SIGNAL are the
only Profile B functions which can be called.
The call-back function shall not be re-entered by Profile B. Instead it shall be called
again after returning, if a new event has occurred during processing.

7.2.2.2.2 CAPI_GET_MANUFACTURER

Description

With this operation the application determines the manufacturer identification of Profile B (DLL). SzBuffer
on call is a 16:16 (segmented) protected mode pointer to a buffer of 64 bytes. Profile B copies the
identification string, coded as a zero terminated ASCII string, to this buffer.

Page 318
Final draft prETS 300 838: March 1998

Function call

CAPIENTRY CAPI_GET_MANUFACTURER (LPBYTE SzBuffer);

Parameter Comment
SzBuffer 16:16 (segmented) protected mode pointer to a buffer of 64 bytes

Return Value

Return Value Comment
0x0000 No error

7.2.2.2.3 CAPI_GET_VERSION

Description

With this function the application determines the version of Profile B as well as an internal revision
number.

Function call

CAPIENTRY CAPI_GET_VERSION (LPWORD pCAPIMajor,
LPWORD pCAPIMinor,
LPWORD pManufacturerMajor,
LPWORD pManufacturerMinor);

Parameter Comment
pCAPIMajor 16:16 (segmented) protected mode pointer to a WORD receiving

Profile B major version number: 2
pCAPIMinor 16:16 (segmented) protected mode pointer to a WORD receiving

Profile B minor version number: 0
pManufacturerMajor 16:16 (segmented) protected mode pointer to a WORD receiving

manufacturer specific major number
pManufacturerMinor 16:16 (segmented) protected mode pointer to a WORD receiving

manufacturer specific minor number

Return Value

Return Comment
0x0000 No error, version numbers are copied

7.2.2.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application determines the (optional) serial number of Profile B. SzBuffer on call is
a 16:16 (segmented) protected mode pointer to a string buffer of 8 bytes. Profile B copies the serial
number string to this buffer. The serial number, coded as a zero terminated ASCII string, represents
seven digit number after the function has returned.

Page 319
Final draft prETS 300 838: March 1998

Function call

CAPIENTRY CAPI_GET_SERIAL_NUMBER (LPBYTE SzBuffer);

Parameter Comment
SzBuffer 16:16 (segmented) protected mode pointer to a buffer of 8 bytes

Return Value

Return Comment
0x0000 No error

SzBuffer contains the serial number in plain text in the form of a 7-
digit number. If no serial number is provided by the manufacturer, an
empty string is returned.

7.2.2.2.5 CAPI_GET_PROFILE

Description

The application uses this function to get the capabilities from Profile B. SzBuffer on call is a 16:16
(segmented) protected mode pointer to a buffer of 64 bytes. In this buffer Profile B copies information
about implemented features, number of controllers and supported protocols. CtrlNr contains the controller
number (bit 0..6), for which this information is requested.

CAPIENTRY CAPI_GET_PROFILE (LPBYTE SzBuffer,
WORD CtrlNr
);

Parameter Comment
SzBuffer 16:16 (segmented) protected mode pointer to a buffer of 64 bytes
CtrlNr Number of Controller. If 0, only number of installed controllers is given

to the application.

Return Value

Return Value Comment
AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx

Page 320
Final draft prETS 300 838: March 1998

Retrieved structure format:

Type Description
WORD number of installed controllers, least significant octet first
WORD number of supported B-channels, least significant octet first
DWORD Global Options (bit field):

0: internal controller supported
1: external equipment supported
2: Handset supported (external equipment shall be set also)
3: DTMF supported
4..31: reserved

DWORD B1 protocols support (bit field):
0: 64 kBit/s with HDLC framing, always set.
1: 64 kBit/s bit transparent operation with byte framing from the
network
2:.CCITT Recommendation V.110 [17] asynchronous operation with
start/stop byte framing
3: CCITT Recommendation V.110 [17] synchronous operation with
HDLC framing
4: ITU-T Recommendation T.30 [14] modem for facsimile group 3
5: 64 kBit/s inverted with HDLC framing.
6: 56 kBit/s bit transparent operation with byte framing from the
network
7..31: reserved

DWORD B2 protocol support (bit field):
0: ISO 7776 [4] (X.75 SLP), always set
1: Transparent
2: SDLC [12]
3: LAPD according Q.921 [13] for D-channel X.25
4: ITU-T Recommendation T.30 [14] for facsimile group 3
5: Point to Point Protocol (PPP [10] [11])
6: Transparent (ignoring framing errors of B1 protocol)
7: reserved
8: reserved
9: V.120 asynchronous mode
10..31: reserved

DWORD B3 protocol support (bit field):
0: Transparent, always set
1: T.90NL with compatibility to T.70NL according to T.90 Appendix
II [16].
2: ISO 8208 [3] (X.25 DTE-DTE)
3: X.25 DCE
4: T.30 [14] for facsimile group 3
5..31: reserved

6 DWORDs reserved for Profile B usage
5 DWORDs manufacturer specific information
NOTE: This function can be extended, so an application shall ignore unknown bits. Profile

B shall set every reserved field to 0.

7.2.2.2.6 CAPI_INSTALLED

Description

This function can be used by an application to determine if the ISDN hardware and necessary drivers are
installed.

Function call

CAPIENTRY CAPI_INSTALLED (void)

Page 321
Final draft prETS 300 838: March 1998

Return Value

Return Comment
0x0000 Profile B is installed
any other value Coded as described in parameter info class 0x10xx

7.3 UNIX

7.3.1 UNIX Operating System specific implementation for Profile A

7.3.1.1 Introduction

The PCI exchange functions described in the subclause 5.3 have to be mapped to appropriate functions
supplied by the UNIX STREAMS kernel mechanism.

The binary compatible interface to a NAF running under the UNIX operating system shall be implemented
using the STREAMS kernel mechanism.

Descriptions was made using "C" language because it is the natural language in the UNIX environment.

7.3.1.2 Implementation of basic types

The mapping of the basic types of the exchange method to "C" language types are defined as the
following:

Basis type Mapping and usage
PCI_INTEGER Can be implemented as 2 or 4 bytes signed integer, whatever is defined

within the underlying UNIX system as system constant for the "int" type.
PCI_BYTEARRAY Implemented as pointer to "char" type.
PCI_EXID Implemented as "int" type. Since the exchange method is implemented

using STREAMS, the Exchange-ID has the same value and type as the
UNIX file descriptor provided by the STREAMS kernel mechanism.

PCI_HANDLE Implemented as pointer to "char" type, e.g. a UNIX character-string.
The string shall to contain the name of the STREAMS device the NAF
is implemented in.

PCI_PROCEDURE Implemented as address of a function returning "void" type, as defined
by UNIX signal() system call.

7.3.1.3 Parameter passing conventions

For parameter passing the usual "C" conventions are applying:

- call values are either passed by value (e.g. PCI_INTEGER, PCI_EXID), or by the use of a pointer
(e.g. PCI_BYTEARRAY, PCI_HANDLE);

- return values are passed by giving a pointer for filling in the value (passing by reference).

Errors will occur inside the NAF driver are returned as positive integers (PCI_INTEGER). Their values are
defined in the clause 5. As defined there, a value of 0 stands for "no error" (Success).

Errors occurred inside of the PCI exchange functions should be returned as negative integers
(PCI_INTEGER). Their values are not defined. They are NAF implementation dependent.

7.3.1.4 Definition of types, constants and function-prototypes

If alignment is necessary on the UNIX target system, the size of the int type is employed.

/*
 * Basic types
 */

Page 322
Final draft prETS 300 838: March 1998

typedef int PCI_INTEGER;
typedef char * PCI_BYTEARRAY;
typedef int PCI_EXID;
typedef char * PCI_HANDLE;
typedef void (* PCI_PROCEDURE) ();

/*
 * Structures
 */

struct pci_mpb {
PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};

struct pci_register {
PCI_INTEGER PUFVersion;
PCI_INTEGER PUFType;
PCI_INTEGER MaxMsgSize;

};

/*
 * Exchange functions prototypes
 */
PCI_INTEGER PciGetHandles (PCI_INTEGER MaxHandles,

PCI_BYTEARRAY PCIHandles,
PCI_INTEGER * ActualHandles);

PCI_INTEGER PciGetProperty (PCI_HANDLE PCIHandle,
PCI_INTEGER MaximumSize,
PCI_BYTEARRAY Property,
PCI_INTEGER * ActualSize);

PCI_INTEGER PciRegister (PCI_HANDLE PCIHandle,
struct pci_register * PCIRegister,
PCI_EXID * ExID);

PCI_INTEGER PciDeregister (PCI_EXID ExID);

PCI_INTEGER PciPutMessage (PCI_EXID ExID,
struct pci_mpb * PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data);

PCI_INTEGER PciGetMessage (PCI_EXID ExID,
struct pci_mpb * PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data);

PCI_INTEGER PciSetSignal (PCI_EXID ExID,
PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure);

7.3.1.5 Adaptation to the STREAMS kernel mechanism

7.3.1.5.1 General

A NAF implemented into the UNIX kernel shall oppose its Profile A interface via the STREAMS kernel
mechanism. For each implemented NAF one STREAMS access shall be provided, independent of the
amount of ISDN accesses the NAF provides. Such a STREAMS access can in principle, if implemented
by the NAF, be used by several PUFs. Furthermore, as a consequence of the UNIX architecture, one PUF
can access several STREAMS and thus several NAFs simultaneously. NAFs shall be defined as CLONE
Streams.

The UNIX STREAMS kernel mechanism provides two queues, a write queue and a read queue.
Information sent by the exchange functions to the stream driver (downstream information) are placed into
the write queue by a STREAMS component called the stream head. Stimulating the stream head to do so
is achieved by issuing the STREAMS putmsg() system call.

The stream driver can access the information of the write queue, processes it and places resulting
information into the read queue. The content of the read queue (upstream information) is available to the
exchange functions by use of the STREAMS getmsg() system call.

Page 323
Final draft prETS 300 838: March 1998

7.3.1.5.2 Communication between PUF exchange functions and NAF stream driver

The communication between an exchange function and the NAF stream driver is carried out by the
exchange function by means of getmsg() or putmsg() in the case of PciGetMessage() and
PciPutMessage(), and ioctl() in the case of all other functions.

The information transported through this stream is called a STREAMS message. STREAMS messages
should not be confused with the messages defined in the Profile A.

The STREAMS mechanism divides the PCI message into two parts: a control part and a data part. For
messages exchanged via PciGetMessage() and PciPutMessage(), the control part of the STREAMS
message contains the PCI message and the data part will contain the data part of the PCI message. The
NAF driver receives the lengths of the individual parts of the PCI message by means of the standard UNIX
getmsg() and putmsg() mechanism.

For all other messages, the individual command is passed to the NAF driver in the ioc_cmd field of the
struct iocblk structure. The data part associated with this command is passed to the NAF driver in the data
blocks of the M_IOCTL message.

Definitions of terms:

mp is of type mblkt_t * (see /usr/include/sys/stream.h);
struct iocblk type defined in /usr/include/sys/stream.h.

The NAF STREAMS driver can obtain the information necessary for its operation by using the following
mechanisms:

1. PCI Messages exchanged via PciPutMessage()

Information Availability
Length of control part mp->b_wptr - mp->b_rptr
Contents of control part mp->b_rptr
Presence of a data part mp->b_cont != NULL
Length of data part msdgsize(mp)
Contents of data part mp->b_cont->b_rptr

2. PCI Messages exchanged via the ioctl() mechanism

Information Availability
Requested function ((struct iocblk *)mp->b_rptr)->ioc_cmd
Length of control part ((struct iocblk *)mp->b_rptr)->ioc_count
Contents of control part mp->b_cont->b_rptr
Room for returned data mp->b_cont->b_rptr

((struct iocblk *)mp->b_rptr)->ioc_rval

The requested function shall be defined as follows:

#define PCI_PROPERTY (("Z" << 8) | 1)
#define PCI_REGISTER (("Z" << 8) | 2)
#define PCI_DEREGISTER (("Z" << 8) | 3)
#define PCI_SETSIGNAL (("Z" << 8) | 4)

7.3.1.5.3 Special considerations

Several NAF implementation aspects have to be considered by the PUF implementing the exchange
functions:

- the PUF grants the NAF the permission to put incoming PCI messages on the read-side queue,
thereby using this queue for buffering. Flow control is achieved by the standard UNIX highwater-
lowwater mark mechanism which allows the NAF STREAMS driver to handle flow control
transparently on the driver level;

Page 324
Final draft prETS 300 838: March 1998

- the size of a stream queue element is limited. A NAF stream driver shall be able to provide
4 096 bytes as data part of the stream message on the PUF"s request, but it shall also guarantee
this amount as the maximum delivered value. However, data block sizes of more than 4 096 bytes
can be supported if the stream is put into "message non-discard mode" (see streamio(7)). Should a
message with a data block size of more than 4 096 bytes arrive at the stream head, a call to
PciGetMessage will return the first 4 096 bytes of the data block and successive calls to
PciGetMessage will return the additional data blocks. Each of the additional calls to PciGetMessage
will return a message whose control part length will be zero;

- only the UNIX SIGPOLL signal shall be issued by the NAF implementation.

7.3.1.6 Description of functions

This subclause describes the implementation of the PCI exchange functions using the UNIX STREAMS
mechanism. The description of each function is divided into 3 parts:

1) Function body: function body description, including general description of the function
behaviour;

2) STREAMS putmsg(): Structure set-up for call to putmsg();
3) STREAMS getmsg(): Structure contents after return from getmsg().

The prototypes of putmsg () and getmsg () functions are:

int putmsg (fd, ctlptr, dataptr, flags)
int fd; /* File descriptor */
struct strbuf *ctlptr; /* Control part of the message */
struct strbuf *dataptr; /* Data part of the message */
int flags; /* Message priority. */

int getmsg (fd, ctlptr, dataptr, flags)
int fd; /* File descriptor */
struct strbuf *ctlptr; /* Control part of the message */
struct strbuf *dataptr; /* Data part of the message */
int *flags; /* Message priority. */

with
struct strbuf {

int maxlen /*Maximum buffer length */
int len /* Length of data */
char *buf /* Pointer to buffer */
}

Alternatively, for PCI exchange functions which use the ioctl() mechanism the description of each function
is divided into two parts:

1) Function body: function body description, including general description of the function behaviour;
2) ioctl():Structure set-up for call to ioctl().

The prototype of ioctl () is:

int ioctl (fd, command, arg)
int fd; /* File descriptor */
int command; /* ioctl command as defined in streamio(7) */
char *arg; /* command specific argument */

Whenever command is I_STR arg should point to a structure of type strioctl, where strioctl is defined as:

struct strioctl {
int ic_cmd; /* User-defined command */
int ic_timeout; /* Timeout for command */
int ic_len; /* Length of data part to follow */
char *ic_dp; /* Command-specific arguments */
}

7.3.1.6.1 PciGetHandles

Function body:

PCI_INTEGER PciGetHandles (PCI_INTEGER MaxHandles,
PCI_BYTEARRAY PCIHandles,
PCI_INTEGER *ActualHandles)

Page 325
Final draft prETS 300 838: March 1998

{
...
}

MaxHandle contains the maximum number of PCI_HANDLE the PCIHandles parameter can receive. On
return, ActualHandles, which is a pointer to an integer value, will contain the number of PCI_HANDLE
copied into the PCIHandles parameter.

This function shall:

- examine the directory /etc/pcidd to get the number and the PCI_HANDLEs available;
- update the PCIHandles and the ActualHandles parameters;
- return appropriate error code.

7.3.1.6.2 PciGetProperty

Function body:

PCI_INTEGER PciGetProperty (PCI_HANDLE PCIHandle,
PCI_INTEGER MaximumSize,
PCI_BYTEARRAY NAFProperty,
PCI_INTEGER *ActualSize)

{
struct strioctl strioctl;
extern int errno;
int filedes;

}

PCIHandle points to the path name of the STREAMS device, MaximumSize is the size of the buffer to
hold the properties. NAFProperty is the pointer to this buffer and ActualSize is a pointer to a integer value
receiving the actual size of the property information in the NAF on return.

This function shall:

- open the STREAMS device using PCIHandle;
- issue the ioctl() call;
- retrieve the value of ActualSize and the error code;
- close the STREAMS device;
- return appropriate error code.

STREAMS ioctl():

The ic_cmd component shall be set to PCI_PROPERTY, the ic_len component shall be set to
MaximumSize and the ic_dp component shall be set to point to the NAFProperty buffer.

Upon return from the ioctl() call the return value shall be checked against 0 which will indicate success.
Any other return value indicates an error condition, which indicates that the errno variable contains the
error condition. The ic_len component of the strioctl structure contains the number of bytes returned by
the ioctl call. The ic_dp component points to the property returned.

NOTE: The size returned is always the size of the property inside the NAF.

strioctl.ic_cmd = PCI_PROPERTY;
strioctl.ic_timout = 0;
strioctl.ic_len = MaximumSize;
strioctl.ic_dp = (char *) NAFProperty;

if (ioctl (filedes, I_STR, &strioctl) == 0) {
*ActualSize = strioctl.ic_len;
return 0;

} else {
*ActualSize = 0;
return errno;

}

Page 326
Final draft prETS 300 838: March 1998

7.3.1.6.3 PciRegister

Function body:

PCI_INTEGER PciRegister (PCI_HANDLE PCIHandle,
struct pci_register * pci_register,
PCI_EXID *ExID,)

{
struct strioctl strioctl;
extern int errno;

}

PCIHandle points to the path name of the STREAMS device. PUFVersion and PUFType are integers and
set as indicated in the clause 6. ExID is a pointer to an integer receiving the returned Exchange-ID, which
shall be equal to the UNIX file descriptor returned by the open() system call. MaxMsgSize is an integer
receiving the message size of the NAF as described in the subclause 5.3.

This function shall:

- open the STREAMS device using PCIHandle;
- issue the ioctl() call;
- retrieve the return values from the pci_control structure;
- leave the STREAMS device open and assign file descriptor of open() call to ExID;
- return appropriate error code.

STREAMS ioctl():

The ic_cmd component shall be set to PCI_REGISTER, the ic_len component shall be set to the size of
the pci_register structure and the ic_dp component shall be set to point to the pci_register structure which
is set up with the values of PUFVersion and PUFType. Upon return from the ioctl() call the return value
shall be checked against -1 which will indicate an error condition. The external variable errno will be set to
indicate the specific error condition. Any other return value indicates success, and the return value of the
ioctl call shall indicate the maximum PCI message size the NAF supports.

struct {
int puf_version;
int puf_type;

} lregister;

lregister.puf_version = pci_register->PUFVersion;
lregister.puf_type = pci_register->PUFType;

strioctl.ic_cmd = PCI_REGISTER;
strioctl.ic_timout = 0;
strioctl.ic_len = sizeof (lregister);
strioctl.ic_dp = (char *) &lregister;

if ((*ExID = open (PCI_HANDLE, O_RDWR)) == -1) {
*ExID = 0;
return <cant_open_device: errno provides more information>;

}

if ((pci_register->MaxMsgSize = ioctl (*ExID, I_STR, &strioctl)) < 0) {
pci_register->MaxMsgSize = 0;
return errno;

}
else {

return 0;
}

Page 327
Final draft prETS 300 838: March 1998

7.3.1.6.4 PciDeregister

Function body:

PCI_INTEGER PciDeregister (PCI_EXID *ExID)
{

struct strioctl strioctl;
extern int errno;

}

ExID identifies the open STREAMS device. It is identical to the file descriptor returned by the open()
system call. This function shall:

- issue the ioctl() call;
- retrieve the error return code;
- close the STREAMS device;
- return appropriate error code.

STREAMS ioctl():

The ic_cmd component shall be set to PCI_DEREGISTER, the ic_len component shall be set to zero; the
ic_dp component shall be set to NULL. Upon return from the ioctl() call the return value shall be checked
against -1 which will indicate an error condition. The external variable errno will be set to indicate the
specific error condition. Any other return value indicates success.

strioctl.ic_cmd = PCI_DEREGISTER;
strioctl.ic_timout = 0;
strioctl.ic_len = 0;
strioctl.ic_dp = (char *) NULL;

if (ioctl (*ExID, I_STR, &strioctl) == -1) {
return errno;

}
else {

close (*ExID);
return 0;

}

7.3.1.6.5 PciPutMessage

Function body:

PCI_INTEGER PciPutMessage (PCI_EXID ExID,
struct pci_mpb *PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data)

struct strbuf ctlbuf; /* stream message control part pointer */
struct strbuf databuf; /* stream message data part pointer */

ExID identifies the STREAMS device. PCIMPB is a pointer to the PCI Message Parameter Block.
Message and Data are the part of the PCI message to be sent to the NAF driver. Either Message or Data
might be optional. In this case they are specified as NULL. In order to be more efficient (see STREAMS
putmsg hereafter), it is recommended that the PCIMPB should be stored contiguously before the
Message, this allows to avoid a copy in memory.

This function shall:

- prepare the ctlbuf and databuf structures;
- issue the putmsg() call;
- retrieve the error return;
- return appropriate error code.

STREAMS putmsg():

/* The general idea is to pass in ctlbuf a buffer containing the PCIMPB followed by the content
of Message, and in databuf the content of Data */
if (Message && ((char *)Message != (char *)PCIMPB + sizeof(pci_mpb))) {

/*There is a Message not NULL, and PCIMPB and Message are not contiguous in memory, Have to
build a buffer where PCIMPB is followed by the Message content */

char *buffer; /* pointer to a buffer, large enough to receive PCIMPB and the Message content
*/

Page 328
Final draft prETS 300 838: March 1998

...
/* Here a memory allocation process may take place */
...
memcpy (buffer, PCIMPB, sizeof(pci_mpb));
memcpy ((buffer + sizeof(pci_mpb), Message, PCIMPB->MessageActualUsedSize);
ctlbuf->buf = buffer;
ctlbuf->len = PCIMPB->MessageActualUsedSize + sizeof(pci_mpb);

}
else {

/* either there is no Message, or the PCIMPB and the Message are contiguous in memory */
ctlbuf->buf = PCIMPB;
ctlbuf->len = Message ? PCIMPB->MessageActualUsedSize + sizeof(pci_mpb): sizeof(pci_mpb);

}

databuf->buf = Data;
databuf->len = Data ? PCIMB->DataActualUsedSize: 0;
flags = 0;
if (putmsg (ExID, &ctlbuf, &databuf, flags) != 0) {

/* Error condition, errno will be set */
....

}
else {

/* Operation OK */
....

}

7.3.1.6.6 PciGetMessage

Function body:

PCI_INTEGER PciGetMessage (PCI_EXID ExID,
struct pci_mpb *PCIMPB,
PCI_BYTEARRA Y *Message,
PCI_BYTEARRAY *Data)

struct strbuf ctlbuf; /* stream message control part pointer */
struct strbuf databuf; /* stream message data part pointer */

ExID identifies the STREAMS device. PCIMPB is a pointer to the PCI Message Parameter Block.
Message and Data are the part of the PCI message to be received from the NAF driver. Either Message
or Data might be optional. In this case they are specified as NULL. In order to be more efficient (see
STREAMS getmsg hereafter), it is recommended that the PCIMPB be stored contiguously before the
Message, this allows to avoid a copy in memory.

This function shall:

- prepare the ctlbuf and databuf structures;
- issue the getmsg () call;
- retrieve the return values from the ctlbuf and databuf structures;
- return appropriate error code.

STREAMS getmsg():

/* The general idea is to pass in ctlbuf a buffer large enough for containing the PCIMPB followed
by the content of Message, and in databuf the content of Data. The error code of the NAF is
available in the errno variable. */

if (Message && ((char *)Message != (char *)PCIMPB + sizeof(pci_mpb))) {
/* there is a Message not NULL and, PCIMPB and Message are not contiguous in memory, have to

reserve a buffer where PCIMPB can be followed by the Message content */
char *buffer; /* pointer to a buffer,large enough to receive PCIMPB and the Message content

*/
/* Here a memory allocation process may take place */
ctlbuf->buf = buffer;

}
else {

/* either there is no Message, or the PCIMPB and the Message are contiguous in memory */
ctlbuf->buf = PCIMPB;

}
ctlbuf->maxlen = Message ? PCIMPB->MessageMaximumSize + sizeof(pci_mpb):sizeof(pci_mpb);
databuf->buf = Data;
databuf->maxlen = Data ? PCIMPB->DataMaximumSize: 0;

flags = 0;
if (getmsg (ExID, &ctlbuf, &databuf, &flags) != 0) {

/* Error condition, errno will be set */
PCIMPB->c_error = errno;
....

}

Page 329
Final draft prETS 300 838: March 1998

else { /* Operation OK */
if (ctlbuf->len != -1 && ctlbuf->len >= sizeof(pci_mpb)) {

/* Message, possibly of size 0 is present */
PCIMPB->MessageActualUsedSize = ctlbuf->len - sizeof(pci_mpb);
if (Message && ((char *)Message != (char *)PCIMPB + sizeof(pci_mpb)))

{
/* there is a Message not NULL and, PCIMPB and Message are not contiguous in memory,

a buffer where PCIMPB is followed by the Message content, has been used */
memcpy (PCIMPB, buffer, sizeof(pci_mpb));
memcpy (Message,(buffer + sizeof(pci_mpb)), (ctlbuf->len - sizeof(pci_mpb)));

}
else {

/* the PCIMPB and the Message are contiguous in memory, no additional buffer used */
Message = PCIMPB + sizeof(pci_mpb);

}
}
else {
/* No Message present or too small message: error at least PCIMPB should be there */
..............
}

if (databuf->len != -1) {
/* Data block, possibly of size 0 is present */
PCIMPB->DataActualUsedSize = databuf->len;

}
else {

/* No Data present */
PCIMPB->DataActualUsedSize = 0;

}
}

7.3.1.6.7 PciSetSignal

Function body:

PCI_INTEGER PciSetSignal(PCI_EXID *ExID,
PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure)

{
extern int errno;

}

ExID identifies the STREAMS device, Signal the UNIX signal number. SignalProcedure is the address of
the signal handler ("C" function) inside of the PUF. Only the UNIX SIGPOLL signal shall be issued by the
NAF implementation. Consequently, any non-zero value in Signal shall turn on emission of UNIX
SIGPOLL signals, a zero value shall turn emission off.

The SignalProcedure defined by the PUF shall reissue the signal via the signal() system call - see below.
This mechanism is mandatory otherwise the next signal provided by the NAF shall kill the PUF.

More than one signal can be sent by a NAF to a PUF before the PUF accesses the NAF. An access to the
NAF by the PUF during signal procedure treatment is not recommended.

This function shall:

- issue the ioctl() call;
- retrieve the error code;
- register UNIX SIGPOLL signalling with the stream head using: ioctl (..., I_SETSIG, S_MSG)

system call;
- register UNIX SIGPOLL signalling with the operating system using: signal (SIGPOLL,

SignalProcedure) system call;
- return appropriate error code.

STREAMS ioctl():

The function shall check the Signal parameter and shall, if Signal equals zero, set up the Signal_options
variable to zero to turn off signalling. Furthermore, the signal function shall be de-registered by issuing the
appropriate signal() call.

If Signal is non-zero, Signal_options shall be set to enable SIGPOLL signalling and any other options
mandated by the implementation (see sigaction()). Furthermore, the signal function shall be registered
using the signal() system call.

Page 330
Final draft prETS 300 838: March 1998

if (Signal == 0) {
Signal_options = 0;
if (ioctl (ExID, I_SETSIG, Signal_options) == -1)

return errno;
signal (SIGPOLL, SIG_DFL);
return 0;

}
else {

Signal_options = <SETSIG options>
if (ioctl (ExID, I_SETSIG, Signal_options) == -1)

return errno;
signal (SIGPOLL, SignalProcedure);
return 0;

}

7.3.1.7 Availability of NAF"s PCI_HANDLE

To be accessible via the PciGetHandles function call, a NAF shall issue a declaration action. The inverse
action - extraction from the list of available NAFs - is described too. These actions are operating system
specific.

7.3.1.7.1 Declaration action

During the installation script of the STREAM driver, the directory /etc/pcidd is updated by a dummy file
which is the name of the new NAF. The installation script may check availability of the NAF before the
creation of the new dummy file.

7.3.1.7.2 Extraction action

During the de6sinstallation script of the STREAM driver, the directory /etc/pcidd is updated by removing
the dummy file name of the NAF.

7.3.2 UNIX for Profile B

Profile B is incorporated in the UNIX environment as a kernel driver using streams facilities.
Communication between such kernel drivers and applications are typically based on system calls open ,
ioctl , putmsg , getmsg , and close . To register at a device driver, an application opens a stream (open()),
to deregister the system call close() is used. Data transfer from and to the driver is achieved by the calls
putmsg() and getmsg(). Additional information exchange is done with the ioctl() system call.

Profile B uses this standardized driver access. Therefore the following specification does not define a
complete functional interface (which will not be accepted by UNIX applications, which always are - and
shall be - file I/O oriented). Instead Profile B"s system call level interface will be introduced, which every
UNIX like application can use to exchange Profile B messages and associated data. Of course, a
functional interface can be offered (e.g. according to subclause 7.2), but that would not be the appropriate
solution for an application interface for communication applications running under UNIX. Nevertheless, the
following specification will offer the complete functionality of Profile B access operations used in other
operating systems.

Profile B"s device name is /dev/capi20 . To allow multiple access of different UNIX processes, the device
is realized as a clone streams device.

An application (in terms of Profile B) can register at Profile B (CAPI_REGISTER) by opening the device
/dev/capi20 and issuing the relevant parameters via the system call ioctl() to the opened device. Note that
the result of this operation is a file handle, not an application ID. So in the UNIX environment the
application ID included in Profile B messages shall not be used to identify CAPI applications. The only
valid handle between the Profile B kernel driver and the application based on a system call level interface
is a UNIX file handle. To release from Profile B (CAPI_RELEASE), an application just closes the opened
device. Profile B operations CAPI_PUT_MESSAGE and CAPI_GET_MESSAGE are achieved by system
calls putmsg() and getmsg(). The functionality of CAPI_SET_SIGNAL need not be offered by Profile B;
instead the UNIX signalling and/or waiting mechanism based on file descriptors can be used by
applications. This includes the multiple wait on different file descriptors (poll()); a functionality which is not
offered by Profile B based on other operating systems. Every other Profile B operation is realized by the
system call ioctl() with appropriate parameters.

All messages are passed transparently through the UNIX driver interface.

Page 331
Final draft prETS 300 838: March 1998

To define the system call level interface in the UNIX environment, following data types imply following
size:

ushort 16 bit unsigned integer;

unsigned 32 bit unsigned integer.

7.3.2.1 Message operations

7.3.2.1.1 CAPI_REGISTER

Description

This is the operation the application uses to report its presence to Profile B. By passing the three
parameters maxLogicalConnection, maxBDataBlocks and maxBDataLen the application describes its
needs for the connections it is going to accept or it will try to establish itself.

CAPI_REGISTER ioctl(): 0x01

Implementation

The following code fragment depicts the UNIX implementation of Profile B register functionality:

#include <sys/fcntl.h> /* open() parameters */
#include <sys/stropts.h> /* streams ioctl() constants */
#include <sys/socket.h> /* streams ioctl() macros */
...
struct capi_register_params {

unsigned level3cnt;
unsigned datablkcnt;
unsigned datablklen;

} rp;
int fd;
struct strioctl strioctl;

/* open device */
fd = open("/dev/capi20", O_RDWR, 0);

 /* set register parameters */
rp.level3cnt = No. of simultaneous user data connections
rp.datablkcnt = No. of buffered data messages
rp.datablklen = Size of buffered data messages

 /* perform CAPI_REGISTER */
strioctl.ic_cmd = ("C" << 8) | 0x01; /* CAPI_REGISTER */
strioctl.ic_timout = 0;
strioctl.ic_dp = (void *)(&rp);
strioctl.ic_len = sizeof(struct capi_register_params);
ioctl(fd, I_STR, &strioctl);

For simplicity, no error checking is shown in the example.

7.3.2.1.2 CAPI_RELEASE

Description

The application uses this operation to log off from Profile B. This way the application signals Profile B that
all resources that have been allocated by Profile B for the application can be released again.

The application is identified by the application identification number that had been assigned in the previous
CAPI_REGISTER operation.

CAPI_RELEASE close()

Page 332
Final draft prETS 300 838: March 1998

Implementation

To release a connection between an application and Profile B driver, the system call close() is used. All
related resources are released.

7.3.2.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to Profile B. The application identifies itself with an
application identification number.

CAPI_PUT_MESSAGE putmsg()

Implementation

To transfer a message from an application to Profile B driver and the controller behind, the system call
putmsg() is used.

The application puts Profile B message into the ctl part of the putmsg() call. Parameter data and data
length of message DATA_B3_REQ shall be stored in the data part of putmsg().

NOTE: Profile B message is stored in the ctl part of putmsg(). In case of DATA_B3_REQ
parameters data and data length in this ctl part of putmsg() are not interpreted from
Profile B implementations.

7.3.2.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from Profile B. The application retrieves all
messages associated with the corresponding file descriptor from operation CAPI_REGISTER.

CAPI_GET_MESSAGE getmsg()

Implementation

To receive a message from Profile B the application uses the system call getmsg().

The application shall supply sufficient buffers for receiving the ctl and data parts of the message. In case
of receiving Profile B message DATA_B3_IND , parameter data and data length of this message are not
supported. Instead the data part of getmsg() is used to offer the transferred data.

NOTE: To receive a message from Profile B the application uses the system call getmsg().

7.3.2.2 Other functions

7.3.2.2.1 CAPI_GET_MESSAGE

Description

With this operation the application determines the manufacturer identification of Profile B. The offered
buffer shall have a size of at least 64 bytes. Profile B copies the identification string, coded as a zero
terminated ASCII string, to this buffer.

CAPI_GET_MANUFACTURER ioctl(): 0x06

Page 333
Final draft prETS 300 838: March 1998

Implementation
This operation is realized using ioctl(0x06). The caller shall supply a buffer in struct strioctl ic_dp and
ic_len.

int fd; /* a valid Profile B handle */
struct strioctl strioctl;
char buffer[64];

strioctl.ic_cmd = ("C" << 8) | 0x06; /* CAPI_GET_MANUFACTURER */
strioctl.ic_timout = 0;
strioctl.ic_dp = buffer;
strioctl.ic_len = sizeof(buffer);
ioctl(fd, I_STR, &strioctl);

The manufacturer identification is transferred to the given buffer. The string shall always be
zero-terminated.

7.3.2.2.2 CAPI_GET_VERSION

Description

With this function the application determines the version of Profile B as well as an internal revision
number. The offered buffer shall have a size of 4 * sizeof(unsigned).

CAPI_GET_VERSION ioctl(): 0x07

Implementation

This operation is realized using ioctl(0x07). The caller shall supply a buffer in struct strioctl ic_dp and
ic_len.

int fd; /* a valid Profile B handle */
struct strioctl strioctl;
unsigned unsigned buffer[4];

strioctl.ic_cmd = ("C" << 8) | 0x07; /* CAPI_GET_VERSION */
strioctl.ic_timout = 0;
strioctl.ic_dp = buffer;
strioctl.ic_len = sizeof(buffer);
ioctl(fd, I_STR, &strioctl);

The buffer consists of four elements:

first Profile B major version: 0x02
second Profile B minor version: 0x00
third manufacturer-specific major number
fourth manufacturer-specific minor number

7.3.2.2.3 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application determines the (optional) serial number of Profile B. The offered buffer
shall have a size of 8 bytes. Profile B copies the serial number string to this buffer. The serial number,
coded as a zero terminated ASCII string, represents seven digit number after the function has returned.

CAPI_GET_SERIAL_NUMBER ioctl(): 0x08

Page 334
Final draft prETS 300 838: March 1998

Implementation

This operation is realized using ioctl(0x08). The caller shall supply a buffer in struct strioctl ic_dp and
ic_len.

int fd; /* a valid Profile B handle */
struct strioctl strioctl;
char buffer[8];

strioctl.ic_cmd = ("C" << 8) | 0x08; /* CAPI_GET_SERIAL_NUMBER */
strioctl.ic_timout = 0;
strioctl.ic_dp = buffer;
strioctl.ic_len = sizeof(buffer);
ioctl(fd, I_STR, &strioctl);

The serial number consists of up to seven decimal-digit ASCII characters. It shall always be
zero-terminated.

7.3.2.2.4 CAPI_GET_PROFILE

Description

The application uses this function to get the capabilities from Profile B. In the allocated buffer of 64 byte
Profile B copies information about implemented features, number of controllers and supported protocols.
CtrlNr, which is an input parameter for Profile B, is coded in the first bytes of the buffer and contains the
controller number (bit 0..6), for which this information is requested.

CAPI_GET_PROFILE 0x09

Implementation

This operation is realized using ioctl(0x09). The caller shall supply a buffer in struct strioctl ic_dp and
ic_len.

int fd; /* a valid Profile B handle */
struct strioctl strioctl;
char buffer[64];

/* Set Controller number */
* ((unsigned*)(&buffer[0])) = CtrlNr;

strioctl.ic_cmd = ("C" << 8) | 0x09; /* CAPI_GET_PROFILE */
strioctl.ic_timout = 0;
strioctl.ic_dp = buffer;
strioctl.ic_len = sizeof(buffer);
ioctl(fd, I_STR, &strioctl);

Structure of command specific parameters:

Parameter Comment
CtrlNr Number of Controller. If 0, only number of installed

controllers is given to the application.

Page 335
Final draft prETS 300 838: March 1998

Retrieved structure format:

Type Description
ushort number of installed controllers, least significant octet first
ushort number of supported B-channels, least significant octet first
unsigned Global Options (bit field):

0: internal controller supported
1: external equipment supported
2: Handset supported (external equipment shall be set also)
3: DTMF supported
4.[31]: reserved

unsigned B1 protocols support (bit field):
0: 64 kBit/s with HDLC framing, always set.
1: 64 kBit/s bit transparent operation with byte framing from the
network
2: CCITT Recommendation V.110 [17] asynchronous operation with
start/stop byte framing
3: CCITT Recommendation V.110 [17] synchronous operation with
HDLC framing
4: ITU-T Recommendation T.30 [14] modem for facsimile group 3
5: 64 kBit/s inverted with HDLC framing.
6: 56 kBit/s bit transparent operation with byte framing from the
network
7..31: reserved

unsigned B2 protocol support (bit field):
0: ISO 7776 [4] (X.75 SLP), always set
1: Transparent
2: SDLC [12]
3: LAPD according Q.921 [13] for D-channel X.25
4: ITU-T Recommendation T.30 [14] for facsimile group 3
5: Point to Point Protocol (PPP [10] [11])
6: Transparent (ignoring framing errors of B1 protocol)
7: reserved
8: reserved
9: V.120 asynchronous mode
10..31: reserved

unsigned B3 protocol support (bit field):
0: Transparent, always set
1: T.90NL with compatibility to T.70NL according to T.90 Appendix
II [16].
2: ISO 8208 [3] (X.25 DTE-DTE)
3: X.25 DCE
4: ITU-T Recommendation T.30 [14] for facsimile group 3
5..31: reserved

6 unsigned reserved for Profile B usage
5 unsigned manufacturer specific information
NOTE: This function can be extended, so an application shall ignore unknown bits. Profile

B shall set every reserved field to 0.

7.4 OS/2

7.4.1 OS/2 Operation System specific implementation for Profile A

7.4.1.1 Introduction

This subclause describes the operating system specific implementation for the DOS operating system.

For the following description, the OS/2 version starts with the version 2.0.

A NAF implementation under 0S/2 shall offer the functionality of the exchange functions described in a
generic way in subclause 5.3.

Page 336
Final draft prETS 300 838: March 1998

In this subclause, the mapping and implementation of these functions is described on a function per
function basis using the "C" language.

7.4.1.2 OS/2 application level

For operating system OS/2 Version 2.x an application program can access Profile A services via a DLL
(Dynamic Link Library). In this case the NAF shall be a DLL.

7.4.1.2.1 Mechanism

Except for the PciGetHandles function call, the DLL mechanism is the basic mechanism used to support
the Profile A exchange method under OS/2. At OS/2 application level every NAF shall be a 32 bit DLL and
shall export an entry point per Profile A function using the same name: PciGetProperty (ordinal number =
1), PciRegister (ordinal number = 2), PciDeregister (ordinal number = 3), PciGetMessage (ordinal number
= 4), PciPutMessage (ordinal number = 5), PciSetSignal (ordinal number = 6).

NOTE: Function name exported by the NAF are the same than the description made in
subclause 5.3 but parameters are different.

PciGetHandles needs an access to the PCI.INI file.

PciRegister and PciGetProperty check if the DLL, accessible by its name, is available.

To access a NAF the only need for a PUF is to know the name of the DLL. The address access to the
DLL may be provided transparently to the PUF inside the Pci"s exchange mechanism functions as
described in annex J.

The PciRegister function dynamically loads the NAF. It needs to keep trace of the handle of the NAF as a
DLL, so this handle is part of the Exchange Identifier. The NAF need also to keep trace of the PUF, so it
assigns an Identifier to the PUF at registration time, this NAF-provided Identifier is the other part of the
Exchange Identifier.

The common calling conventions to provide parameter to a DLL is the PASCAL calling convention. This
convention is also used by the Profile A exchange method under OS/2.

Pointer parameters are far. The PCIMPB structure is always passed via a pointer. The Exchange Identifier
structure is always passed via a pointer.

The structure alignment is byte .

7.4.1.2.2 Implementation of basic type

Under OS/2, the following values shall be used:

PCI_HANDLE name of the DLL
PCI_EXID Structure contents handle provided by OS/2 the DLL is loaded

Unique Identifier provided by NAF to identify the PUF
PCI_PROCEDURE exported function address provided by the PUF
PCI_INTEGER 2 bytes
PCI_BYTEARRAY far pointer

7.4.1.2.3 C Function prototypes

/*
 * Basic types
 */
typedef SHORT PCI_INTEGER;
typedef PSZ PCI_BYTEARRAY;
typedef PSZ PCI_HANDLE;
typedef struct {

HMODULE hDLLInstance;
PCI_INTEGER Exchange_Id;
} PCI_EXID;

typedef PSZ PCI_PROCEDURE;

/*

Page 337
Final draft prETS 300 838: March 1998

 * Structures
 */
struct pci_mpb {

PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};

struct pci_register { /* structure containing registering info */
PCI_INTEGER PUFVersion; /* optional: give PUF version */
PCI_INTEGER PUFType; /* optional: give PUF type */
PCI_INTEGER MaxMsgSize; /* return: max size of a message */

};

struct pci_opsys { /* structure containing specific operating system info */
int DummyParameter; /* No specific requirement for OS2 */

};

/*
 * Exchange functions prototypes
 */
PCI_INTEGER far PASCAL PciGetHandles (PCI_INTEGER MaxHandles,

PCI_BYTEARRAY PCIHandles,
PCI_INTEGER far * ActualHandles);

PCI_INTEGER far PASCAL PciGetProperty (PCI_HANDLE PCIHandle,
PCI_INTEGER MaximumSize,
PCI_BYTEARRAY Property,
PCI_INTEGER far * ActualSize);

PCI_INTEGER far PASCAL PciRegister (PCI_HANDLE PCIHandle,
struct pci_register * PCIRegisterInfo,
struct pci_opsys * PCIOpSysInfo,
PCI_EXID far *ExID);

PCI_INTEGER far PASCAL PciDeregister (PCI_EXID far *ExID);

PCI_INTEGER far PASCAL PciPutMessage (PCI_EXID far *ExID,
struct pci_mpb far *PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data);

PCI_INTEGER far PASCAL PciGetMessage (PCI_EXID far *ExID,
struct pci_mpb far *PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data);

PCI_INTEGER far PASCAL PciSetSignal (PCI_EXID far *ExID,
PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure);

7.4.1.2.4 Description of functions

This subclause describes the implementation, under OS/2, of the Profile A exchange method functions.
During a PUF to NAF call, the size of the stack shall be at least 1 024 bytes deep.

7.4.1.2.4.1 PciGetHandles

Under OS/2, the PciGetHandles uses a PCI.INI file in the OS/2 directory to get available PCI_HANDLEs.

The section [PCI_DLL] in the PCI.INI file contains all entries of installed NAFs. Each entry has the format:

pciDLL<number>=DLLName (number=1..32)

Page 338
Final draft prETS 300 838: March 1998

The following operations shall get all names of installed NAF drivers:

- loops from 1 to 32
- constructs of the keyName "pciDLL" associated to the current loop value;
- issue a PrfQueryProfileString using:
sectionKey = "PCI_DLL";
the keyName constructs before;
no default value;
a maximum size equal to 254;
FileName = "PCI.INI".

7.4.1.2.4.2 PciGetProperty

This function is in charge to provide to the PUF the PROPERTY of the NAF. Implicitly it checks if the NAF
is available - loading the library via the DosLoadModule function.

The following operations shall take place, in order:

- load the DLL;
- get the address of the PciGetProperty function exported by the NAF (DosQueryProcAddr);
- call to this address with the parameters provided by the PUF;
- free the loaded library.

7.4.1.2.4.3 PciRegister

This function is in charge to provide an association between a PUF and a NAF. The NAF is loaded and
the Exchange Identifier is provided. The availability of the chosen NAF is checked during the load of the
library. The library is identified by its name. Parameters for the registration operation are brought together
in a structure:

- PUFType (PCI_INTEGER);
- PUFVersion (PCI_INTERGER);
- MaxMsgSize (PCI_INTEGER) where the NAF will give the maximum size for a message.

The following operations shall take place, in order:

- load the DLL;
- provide the DLLInstance part of the Exchange Identifier with the DLL Instance;
- get the address of the PciRegister function exported by the NAF (DosQueryProcAddr);
- call to this address to inform the NAF of a new PUF. The address of the registration parameters

structure and the address of the Exchange Identifier structure are passed to the NAF as
parameters;

- on return from the NAF, the Exchange_Id part of the Exchange Identifier and the maximum
message size parameter of the registration parameter structure have been provided by the NAF;

- return to the PUF with the return code from the NAF.

7.4.1.2.4.4 PciDeregister

This function is in charge of disassociating a PUF and a NAF. The DLL is not freed from the memory each
time a PUF deregisters a NAF but only when the last PUF deregisters the NAF.

The following operations shall take place, in order:

a) get the address of the PciDeregister function exported by the NAF (DosQueryProcAddr);
b) call to this address to inform the NAF of the end of the association. The PCI_EXID is passed to the

NAF by address;
c) free the DLL.

Page 339
Final draft prETS 300 838: March 1998

7.4.1.2.4.5 PciPutMessage

This function is in charge to provide a message, and associated data if any, from a PUF to a NAF.
Parameters are provided in the same order as in the description of the PciPutMessage.

The following operations shall take place, in order:

- get the address of the PciPutMessage function exported by the NAF (DosQueryProcAddr);
- call this address to pass parameter to the NAF (including the address of the PCI_EXID).

7.4.1.2.4.6 PciGetMessage

This function is in charge to provide a message, and associated data if any, from a PUF to a NAF.
Parameters are provided in the same order as in the description of the PciGetMessage. Buffers provided
by the PUF are directly used by the NAF.

The following operations shall take place, in order:

- get the address of the PciGetMessage function exported by the NAF (DosQueryProcAddr);
- call this address to pass parameter to the NAF (including the address of the PCI_EXID).

7.4.1.2.4.7 PciSetSignal

This function allows a PUF to provide a direct information mechanism to be used by the NAF in case of
incoming event.

Under OS/2, the mechanism is based on a 32 bit system semaphore.

The following operations shall take place, in order:

- create a system semaphore by calling the DosCreateEventSem() function; this function provides a
semaphore handle on return;

- get the address of the PciSetSignal function exported by the NAF (DosQueryProcAddr);

- call this address to pass parameters to the NAF (including the address of the PCI_EXID); the
SignalProcedure parameter contains the system semaphore handle; the Signal parameter is not
used but the parameter shall be passed to the NAF with the 0 value.

To signal an incoming event, the NAF post the system semaphore (DosPostEventSem) increasing a post-
count value that is associated to the semaphore.

The PUF application thread may wait (DosWaitEventSem) until the post-count of the system semaphore
is larger than 0. The PUF application can determine the current post count and simultaneously reset the
post count by calling the DosResetEventSem() function.

To deactivate the mechanism the PciSetSignal function Signal and SignalProcedure parameters shall be
NULL. Once deactivated, the previous mechanism shall no longer be used by the NAF to call the PUF.

On return from the NAF, the PUF application thread closes the system semaphore (DosCloseEventSem).

7.4.1.3 OS/2 device driver level

For operating system OS/2 Version 2.x application in form of OS/2 physical device driver (PDD) can
access Profile A services via the Inter Device Driver Interface. In this case the NAF have to be a physical
character or block device driver.

7.4.1.3.1 Mechanism

Except for the function PciGetHandles , the implementation of the exchange method for OS/2 physical
device driver is based on a direct access mechanism. The access point is a far function address provided
by the NAF. This function address is mapped to the generic type PCI_HANDLE.

Page 340
Final draft prETS 300 838: March 1998

A NAF offers its services to a PUF in form of an OS/2 physical device driver via the Inter Device Driver
Interface. An application PDD issues an Inter Device Driver call (IDC) to execute operations.

Only one access point shall be provided by the NAF. A supplied parameter shall indicate the function to be
invoked. This parameter is named function code .

Parameters are passed from the PUF to the NAF using the stack. The PUF shall ensure a minimum stack
space of 128 bytes on call. When the NAF receives the control of the CPU, the first parameter on the
stack is the function code, followed by parameters based on the particular function.

The function code is passed as a 2 byte integer value.

The NAF has to place the return code in the AX register. The NAF procedure is not in charge of cleaning
the stack on return. The C call convention is used: the calling PUF pushes parameters right to left and
restores the stack on return.

The alignment of the PCIMPB generic structure is byte .

Under OS/2 2.x every Physical Device Driver are 16:16 segment modules, thus all functions described in
this clause are 16 bit functions and all pointers are 16:16 segmented.

The NAF PDD name shall be eight characters in length (blank extended to 8 characters) and is contained
in its device driver header. The NAF PDD header shall contain the offset to its Inter Device Driver call
entry point. The IDC bit of the Device Attribute Field in the device header shall be set to 1. The passed
memory in parameters shall be either fixed or locked.

7.4.1.3.2 Implementation of basic types

Under OS/2, the following values shall be used:

PCI_HANDLE name of the device driver (segment: offset address);
PCI_EXID Structure contents handle provided by OS/2 when the DLL is loaded;

Unique Identifier provided by NAF to identify the PUF;
DS value of the NAF provided by the AttachDD device help call;

PCI_PROCEDURE exported function address provided by the PUF;
PCI_INTEGER 2 bytes;
PCI_BYTEARRAY far pointer.

All values are in little endian (low byte - high byte) order.

The function code , used to invoke the exchange functions, shall be assigned as follows:

Function Function code value

PciGetProperty 1

PciRegister 2

PciDeregister 3

PciPutMessage 4

PciGetMessage 5

PciSetSignal 6

Page 341
Final draft prETS 300 838: March 1998

A C-language presentation of these definitions looks as follows:

/*
 * Generic type mappings
 */
typedef short int PCI_INTEGER;
typedef char far * PCI_BYTEARRAY;
typedef struct {

short int (far *hNaf)();
PCI_INTEGER Exchange_Id;
unsigned short Naf_Ds;
} PCI_EXID;

typedef short int PCI_EXID;
typedef char far * PCI_HANDLE;
typedef void (far * PCI_PROCEDURE) ();

/*
 * Function code constants
 */
#define PCIGETPROPERTY 1
#define PCIREGISTER 2
#define PCIDEREGISTER 3
#define PCIPUTMESSAGE 4
#define PCIGETMESSAGE 5
#define PCISETSIGNAL 6

7.4.1.3.3 Description of functions

The PUF is in charge to provide a minimal stack during a function call. The minimal stack size is
128 bytes.

7.4.1.3.3.1 PciGetHandles

Under OS/2, the implementation of the PciGetHandles function shall use a PCI.INI file in the OS/2
directory to get available PCI_HANDLEs. This function call is the exception on the basic principle - direct
access - under OS/2.

This implementation is the same as the application level implementation of the PciGetHandles function
described in subclause 7.4.1.2.4.1.

The section [PCI_PDD] in the PCI.INI file contains all entries of installed NAFs. Each entry has the format:

pciDriver<number>=DriverName (number=1..32)

The following operations shall get all names of installed NAF drivers:

- loops from 1 to 32
- constructs of the keyName "pciDriver" associated to the current loop value;
- issue a PrfQueryProfileString using:

sectionKey = "PCI_PDD",
the keyName constructs before,
no default value,
a maximum size equal to 8,
FileName = "PCI.INI".

7.4.1.3.3.2 PciGetProperty

This function is in charge of retrieving the NAF-Property from the NAF. To issue the function call, the PUF
shall have knowledge of the PCI-Handle of the NAF it wants to access to.

The following operation shall be carried out by the PUF, in order:

- gain access to the NAF PDD by issuing an AttachDD device help call. This call returns the
protected mode IDC entry point as a 16:16 segmented pointer and the data segment of the NAF
PDD;

Page 342
Final draft prETS 300 838: March 1998

- call the address with the PciGetProperty function code and the parameters provided by the PUF.
Before calling the IDC entry point of the NAF PDD, the application PUF PDD shall set-up the data
segment register DS appropriately;

- check return code.

7.4.1.3.3.3 PciRegister7

This function is in charge of providing an association between a PUF and a NAF. To issue the function
call, the PUF shall have the knowledge of the PCI-Handle of the NAF it wants to access Before accessing
the NAF, the PUF shall check, if the PCI-Handle it uses is valid by checking the signature of the access
point the PCI-Handle is pointing to.

For this function call, two structures shall be prepared by the PUF and shall be passed on the function
stack. The first structure is the PCIRegisterInfo structure as declared in subclause 5.3. The second is the
operating system dependent PCIOpSysInfo structure, which for OS/2 has the following layout:

Structure Element
Name

Type Valid on Call
or Return

Explanation

MaxNCOCount 2 byte integer call Shall be set to the maximum amount of
NCOs the PUF intends to create during the
association.

MaxPacketSize 2 byte integer call Shall be set to the maximum size of a data
packet the NAF shall accept on a user
connection.

MaxPacketCount 2 byte integer call Shall be set to the maximum amount of
packets of the above size the NAF shall
buffer per user connection.

AddBufferSize 4 byte integer call If the PUF wants to provide buffer space to
the NAF, it shall set this value to the size of
the buffer space it donates. Otherwise the
value shall be set to zero (0).

AddBufferSpace far address
(segment: offset)

call If the structure element AddBufferSize is
non-zero, this element shall point (far) to the
donated, additional buffer space.

BufferNeeded 4 byte integer return In case the NAF has not enough buffer
space available to guarantee the requested
connection characteristics, the amount of
additional buffer needed is returned into this
element by the NAF.

The information provided with this structure helps the NAF to optimize its internal resources. Therefore the
information given by the PUF shall be carefully weighted. This is especially true in an environment, where
a NAF is linked to several PUFs at the same time.

If a NAF does not have available enough memory resources to fulfil the requested characteristics, the
PciRegister function will fail and return a BufferTooSmall error code. In this case the amount of buffer
missing can be taken from the BufferNeeded element of the above structure.

On successful return of the PciRegister function, the Exchange-ID becomes available, which shall be used
as a parameter on subsequent exchange mechanism function calls.

Page 343
Final draft prETS 300 838: March 1998

The following operation shall be carried out by the PUF, in order:

- gain access to the NAF PDD by issuing an AttachDD device help call. This call returns the
protected mode IDC entry point as a 16:16 segmented pointer and the data segment of the NAF
PDD;

- allocate and set-up the two structures PCIRegisterInfo and PCIOpSysInfo. The PCIOpSysInfo
structure may optionally contain a pointer to additional buffer space which shall be donated to the
NAF;

- call the address with the PciGetProperty function code and the parameters provided by the PUF.
Before calling the IDC entry point of the NAF PDD, the application PUF PDD shall set-up the data
segment register DS appropriately;

- check return code. If the return code indicates OutOfBuffers then the call may be repeated with
correct adjusted buffer space to be donated to the NAF;

- keep the returned Exchange-ID for later calling.

7.4.1.3.3.4 PciDeregister

This function is in charge to disassociate a PUF and a NAF.

The following operation shall be carried out by the PUF, in order:

- call the address with the PciDeregister function code and the parameters provided by the PUF.
Before calling the IDC entry point of the NAF PDD, the application PUF PDD shall set-up the data
segment register DS appropriately;

- check the return code.

7.4.1.3.3.5 PciPutMessage

This function is in charge of providing a message from a PUF to a NAF. Parameters shall be provided in
the same order as indicated in the generic description of the PciPutMessage function.

The following operation shall be carried out by the PUF, in order:

- call the address with the PciPutMessage function code and the parameters provided by the PUF.
Before calling the IDC entry point of the NAF PDD, the application PUF PDD shall set-up the data
segment register DS appropriately. The passed memory in parameters shall be either fixed or
locked;

- check the return code.

7.4.1.3.3.6 PciGetMessage

This function is in charge of providing the PUF with a message coming from the NAF. Parameters shall be
provided in the same order as indicated in the generic description of the PciGetMessage function.

The following operation shall be carried out by the PUF, in order:

- call the address with the PciGetMessage function code and the parameters provided by the PUF.
Before calling the IDC entry point of the NAF PDD, the application PUF PDD shall set-up the data
segment register DS appropriately;

- check the return code.

7.4.1.3.3.7 PciSetSignal

This function is in charge of providing the NAF with the address of a function located inside the PUF,
which shall be called-back if a message becomes available for the PUF.

Page 344
Final draft prETS 300 838: March 1998

The following operation shall be carried out by the PUF, in order:

- call the address with the PciSetSignal function code and the parameters provided by the PUF.
Before calling the IDC entry point of the NAF PDD, the application PUF PDD shall set-up the data
segment register DS appropriately;

- check the return code

The NAF calls-back the PUF with the following conventions applying:

a) the NAF provides a minimal stack size of 128 bytes;
b) the values of the DS and ES segments are undefined;
c) interrupts are disabled.

Gaining control, the PUF:

1) may or may not enable interrupts;

2) is allowed call the NAF via the PciGetMessage or the PciPutMessage function;

3) shall not invoke other exchange function calls besides the PciGetMessage and the PciPutMessage
functions;

4) shall not issue OS/2 system calls;

5) shall not let interrupts disabled over an extended period of time and shall return from the call-back
function as quick as possible.

The NAF called via the PciGetMessage or the PciPutMessage function may enable interrupts. However,
the NAF shall not call the call-back routine again, until the call-back routine has returned normally.

At the end of the call-back routine the PUF shall return to the NAF. Only the SS:SP register pair shall be
preserved by the PUF.

To deactivate the mechanism the PciSetSignal function Signal and SignalProcedure parameters shall be
NULL. Once deactivated, the previous mechanism shall no longer be used by the NAF to call the PUF.

7.4.1.4 NAF availability

7.4.1.4.1 Declaration action

First, the NAF may get the list of available PCI_HANDLEs to check if not already declared. The
mechanism the NAF uses is the same as any PUF to get available NAF: PciGetHandles
(see subclauses 7.4.1.2.4.1 and 7.4.1.3.3.1).

If not yet declared, the NAF includes its own PCI_HANDLE into the list.

PCI_BYTEARRAY ownDLLName = "xxx";
#ifdef PCI_DLL /* For OS/2 application level */
PCI_BYTE driverName[254];
#endif
#ifdef PCI_PDD /* For OS/2 device driver level */
PCI_BYTE driverName[8];
#endif
WORD index;
char keyName[20];
HINI hini;

hini = PrfOpenProfile(hini, "PCI.INI);

/* Check if NAF not already installed */
for (index = 1; index <= 32; index++)

{
#ifdef PCI_DLL /* For OS/2 application level */

sprintf(keyName, "pciDLL%d", index);
if (PrfQueryProfileString(hini,

"PCI_DLL", /* Section name */
#endif

Page 345
Final draft prETS 300 838: March 1998

#ifdef PCI_PDD /* For OS/2 device driver level */
sprintf(keyName, "pciDriver%d", index);
if (PrfQueryProfileString(hini,

"PCI_PDD", /* Section name */
#endif

keyName, /* "pciDriver"+1..n */
NULL, /* No default needed */
driverName,
sizeof(driverName)) > 0)

{
if (strcmpi(driverName, ownDLLName) == 0) return; /* NAFinstalled, OK return */
}

}

/* Search a free pciDriver position */
for (index = 1, index <= 32; index++)

{
#ifdef PCI_DLL /* For OS/2 application level */

sprintf(keyName, "pciDLL%d", index);
if (PrfQueryProfileString(hini,

"PCI_DLL", /* Section name */
#endif
#ifdef PCI_PDD /* For OS/2 device driver level */

sprintf(keyName, "pciDriver%d", index);
if (PrfQueryProfileString(hini,

"PCI_PDD", /* Section name */
#endif

keyName, /* "pciDriver"+1..n */
NULL, /* No default needed */
driverName,
sizeof(driverName),
"PCI.INI") == 0)

{
/* Entry does not exist, add own NAF Driver name */

#ifdef PCI_DLL /* For OS/2 application level */
PrfWriteProfileString(hini, "PCI_DLL", keyName, ownDLLName);

#endif
#ifdef PCI_PDD /* For OS/2 device driver level */

PrfWriteProfileString(hini, "PCI_PDD", keyName, ownDLLName);
#endif

return;
}

}

PrfCloseProfile(hini);

Maximum number of NAF than can register is 32.

7.4.1.4.2 Extraction action

First, the NAF gets the list of available PCI_HANDLEs to check if it is declared. If so, the NAF removes its
own PCI_HANDLE from the driver list in "PCI.INI".

PCI_BYTEARRAY ownDLLName = "xxx";
#ifdef PCI_DLL /* For OS/2 application level */
PCI_BYTE driverName[254];
#endif
#ifdef PCI_PDD /* For OS/2 device driver level */
PCI_BYTE driverName[8];
#endif
WORD index;
char keyName[20];
HINI hini;

hini = PrfOpenProfile(hini, "PCI.INI);

for (index = 1, index <= 32; index++)
{

#ifdef PCI_DLL /* For OS/2 application level */
sprintf(keyName, "pciDLL%d", index);
if (PrfQueryProfileString(hini,

"PCI_DLL", /* Section name */
#endif
#ifdef PCI_PDD /* For OS/2 device driver level */

sprintf(keyName, "pciDriver%d", index);
if (PrfQueryProfileString(hini,

"PCI_PDD", /* Section name */
#endif

keyName, /* "pciDriver"+1..n
NULL, /* No default needed */
driverName,
sizeof(driverName),

Page 346
Final draft prETS 300 838: March 1998

"PCI.INI") > 0)
{
/* Check for own name */
if (strcmpi(driverName, ownDLLName) == 0)

{
/* Remove the name of the Driver */

#ifdef PCI_DLL /* For OS/2 application level */
PrfWriteProfileString(hini, "PCI_DLL", keyName, "");

#endif
#ifdef PCI_PDD /* For OS/2 device driver level */

PrfWriteProfileString(hini, "PCI_PDD", keyName, "");
#endif

}
}

}

PrfCloseProfile(hini);

7.4.2 OS/2 for Profile B

7.4.2.1 OS/2 (application level)

In a PC environment with operating system OS/2 Version 2.x an application program can access Profile B
services via a DLL (Dynamic Link Library). The interface between applications and Profile B is realized as
a function interface. An application can issue Profile B function calls to perform Profile B operations.

The DLL providing the function interface shall be named "CAPI20.DLL". It is a 32 bit DLL exporting 32 bit
functions with System-Call-Convention. This means all parameters are pushed on the stack, the calling
process shall clear up the stack after it returns from the function call.

The functions are exported under following names and ordinal numbers:

CAPI_MANUFACTURER (reserved) CAPI20.99

CAPI_REGISTER CAPI20.1

CAPI_RELEASE CAPI20.2

CAPI_PUT_MESSAGE CAPI20.3

CAPI_GET_MESSAGE CAPI20.4

CAPI_SET_SIGNAL CAPI20.5

CAPI_GET_MANUFACTURER CAPI20.6

CAPI_GET_VERSION CAPI20.7

CAPI_GET_SERIAL_NUMBER CAPI20.8

CAPI_GET_PROFILE CAPI20.9

CAPI_INSTALLED CAPI20.10

These functions can be called by an application according to the DLL conventions as imported functions.
If an application calls the DLL it shall ensure that there are at least 512 bytes left on the stack.

All pointers that are passed from the application program to Profile B, or vice versa, in function calls or in
messages are 0:32 flat pointers. This especially applies to the data pointer in DATA_B3_REQ and
DATA_B3_IND messages. The referenced data shall not cross a 64 kByte boundary in the flat address
space because the DLL may convert the passed flat pointer to a 16:16 bit segmented pointer.

Page 347
Final draft prETS 300 838: March 1998

In the OS/2 environment following types are used to define the functional interface:

word 16 bit unsigned integer
dword 32 bit unsigned integer
void* 0:32 flat pointer to any memory location
void** 0:32 flat pointer to a void *
char* 0:32 flat pointer to a character string
dword* 0:32 flat pointer to a 32 bit unsigned integer value

7.4.2.1.1 Message operations

7.4.2.1.1.1 CAPI_REGISTER

Description

This is the operation the application uses to report its presence to Profile B. By passing the four
parameters messageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDataLen the
application describes its needs.

For a "normal" application the size of the message buffer should be calculated using the following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

Function call

dword FAR PASCAL CAPI_REGISTER (dword messageBufferSize,
dword maxLogicalConnection,
dword maxBDataBlocks,
dword maxBDataLen,
dword* pApplID);

Parameter Comment
messageBufferSize Size of Message Buffer
maxLogicalConnection Maximum number of logical connections
maxBDataBlocks Number of data blocks available simultaneously
maxBDataLen Maximum size of a data block
pApplID Pointer to the location where Profile B should place the assigned

application identification number

Return Value

Return Value Comment
0x0000 Registration successful - application identification number has been

assigned
All other values Coded as described in parameter info class 0x10xx

7.4.2.1.1.2 CAPI_RELEASE

Description

The application uses this operation to log off from Profile B. Profile B shall release all resources that have
been allocated.

The application is identified by the application identification number that had been assigned in the previous
CAPI_REGISTER operation.

Page 348
Final draft prETS 300 838: March 1998

Function call

dword FAR PASCAL CAPI_RELEASE (dword ApplID);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_REGISTER

Return Value

Return Value Comment
0x0000 Release of the application successful
All other values Coded as described in parameter info class 0x11xx

7.4.2.1.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to Profile B. The application identifies itself with an
application identification number. The message memory area shall not cross a 64 kByte boundary (e.g.
use tiled memory) in the flat address space because the DLL may convert the passed flat pointer to a
16:16 bit segmented pointer. The same applies to B3 data blocks that are passed within DATA_B3_REQ
messages.

Function call

dword FAR PASCAL CAPI_PUT_MESSAGE (dword ApplID,
void* pCAPIMessage);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_REGISTER
pCAPIMessage 0:32 (flat) pointer to the message that is passed to Profile B

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter info class 0x11xx
NOTE: When the process returns from the function call the message memory area can be

reused by the application.

7.4.2.1.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from Profile B. The application can only retrieve
those messages intended for the stipulated application identification number. If there is no message
waiting for retrieval, the function returns immediately with an error code.

Page 349
Final draft prETS 300 838: March 1998

Function call

dword FAR PASCAL CAPI_GET_MESSAGE (dword ApplID,
void** ppCAPIMessage);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_REGISTER
ppCAPIMessage 0:32 (flat) pointer to the memory location where Profile B should place

the 0:32 (flat) pointer to the retrieved message

Return Value

Return Value Comment
0x0000 Successful - Message was retrieved from Profile B
All other values Coded as described in parameter info class 0x11xx
NOTE: The received message may become invalid the next time the application issues a

CAPI_GET_MESSAGE operation for the same application identification number.
This especially matters in multi threaded applications where more than one thread
may execute CAPI_GET_MESSAGE operations. The synchronization between
threads shall be done by the application.

7.4.2.1.2 Other functions

7.4.2.1.2.1 CAPI_SET_SIGNAL

Description

This operation is used by the application to install a mechanism which signals the application the
availability of a message.

In OS/2 2.x this is done best by using a fast 32 bit system event semaphore. The application shall create
the used semaphore by calling the DosCreateEventSem() function which is part of the OS/2 system
application program interface. This routine provides a semaphore handle which is passed as a parameter
in the CAPI_SET_SIGNAL call.

In that case each time Profile B places a message in the application"s message queue the specified
semaphore is "posted" increasing a post-count value that is associated to the semaphore. To do so Profile
B executes the DosPostEventSem() function of the OS/2 system API.

The application thread may wait until the post-count of the semaphore is larger than 0 using the
DosWaitEventSem() OS/2 system call. It can determine the current post count and simultaneously reset
the post count executing the DosResetEventSem() OS/2 system API call.

By issuing this function call with a semaphore handle of 0 the signalling mechanism is deactivated.

Function call

dword FAR PASCAL CAPI_SET_SIGNAL (dword ApplID,
dword hEventSem);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_REGISTER
hEventSem Event Semaphore handle assigned by operating system

Page 350
Final draft prETS 300 838: March 1998

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter info class 0x11xx

7.4.2.1.2.2 CAPI_GET_MANUFACTURER

Description

With this operation the application determines the manufacturer identification of Profile B (DLL). SzBuffer
on call is a 0:32 (flat) pointer to a buffer of 64 bytes. Profile B copies the identification string, coded as a
zero terminated ASCII string, to this buffer.

Function call

void FAR PASCAL CAPI_GET_MANUFACTURER (char* SzBuffer);

Parameter Comment
SzBuffer 0:32 (flat) pointer to a buffer of 64 bytes

7.4.2.1.2.3 CAPI_GET_MANUFACTURER

Description

With this function the application determines the version of Profile B as well as an internal revision
number.

Function call

dword FAR PASCAL CAPI_GET_VERSION (dword* pCAPIMajor,
dword* pCAPIMinor,
dword* pManufacturerMajor,
dword* pManufacturerMinor);

Parameter Comment
pCAPIMajor 0:32 (flat) protected mode pointer to a dword receiving Profile B major

version number: 2
pCAPIMinor 0:32 (flat) protected mode pointer to a dword receiving Profile B minor

version number: 0
pManufacturerMajor 0:32 (flat) protected mode pointer to a dword receiving manufacturer

specific major number
pManufacturerMinor 0:32 (flat) protected mode pointer to a dword receiving manufacturer

specific minor number

Page 351
Final draft prETS 300 838: March 1998

Return Value

Return Comment
0x0000 No error, version numbers are copied.

7.4.2.1.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application determines the (optional) serial number of Profile B. SzBuffer on call is
a 0:32 (segmented) protected mode pointer to a buffer of 8 bytes. Profile B copies the serial number string
to this buffer. The serial number, coded as a zero terminated ASCII string, represents seven digit number
after the function has returned.

Function call

dword FAR PASCAL CAPI_GET_SERIAL_NUMBER (char* SzBuffer);

Parameter Comment
SzBuffer 0:32 (flat) pointer to a buffer of 8 bytes

Return Value

Return Comment
0x0000 No error

SzBuffer contains the serial number in plain text in the form of a 7-
digit number. If no serial number is provided by the manufacturer, an
empty string is returned.

7.4.2.1.2.5 CAPI_GET_PROFILE

Description

The application uses this function to get the capabilities from Profile B. SzBuffer on call is a 0:32 (flat)
protected mode pointer to a buffer of 64 bytes. In this buffer Profile B copies information about
implemented features, number of controllers and supported protocols. CtrlNr contains the controller
number (bit 0..6), for which this information is requested.

dword FAR PASCAL CAPI_GET_PROFILE (LPBYTE SzBuffer,
WORD CtrlNr
);

Parameter Comment
SzBuffer 0:32 (flat) protected mode pointer to a buffer of 64 bytes
CtrlNr Number of Controller. If 0, only number of installed controllers is given

to the application.

Return Value

Return Value Comment
AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx

Page 352
Final draft prETS 300 838: March 1998

Retrieved structure format:

Type Description
WORD number of installed controllers, least significant octet first
WORD number of supported B-channels, least significant octet first
DWORD Global Options (bit field):

0: internal controller supported
1: external equipment supported
2: Handset supported (external equipment shall be set also)
3: DTMF supported
4.[31]: reserved

DWORD B1 protocols support (bit field):
0: 64 kBit/s with HDLC framing, always set.
1: 64 kBit/s bit transparent operation with byte framing from the
network
2: V.110 [17] asynchronous operation with start/stop byte framing
3: V.110 [17] synchronous operation with HDLC framing
4: T.30 [14] modem for facsimile group 3
5: 64 kBit/s inverted with HDLC framing.
6: 56 kBit/s bit transparent operation with byte framing from the
network
7..31: reserved

DWORD B2 protocol support (bit field):
0: ISO 7776 [4] (X.75 SLP), always set
1: Transparent
2: SDLC [12]
3: LAPD according Q.921 [13] for D-channel X.25
4: T.30 [14] for facsimile group 3
5: Point to Point Protocol (PPP [10] [11])
6: Transparent (ignoring framing errors of B1 protocol)
7: reserved
8: reserved
9: V.120 asynchronous mode
10..31: reserved

DWORD B3 protocol support (bit field):
0: Transparent, always set
1: T.90NL with compatibility to T.70NL according to T.90 Appendix
II [16].
2: ISO 8208 [3] (X.25 DTE-DTE)
3: X.25 DCE
4: T.30 [14] for fax group 3
5..31: reserved

6 DWORDs reserved for Profile B usage
5 DWORDs manufacturer specific information
NOTE: This function can be extended, so an application has to ignore unknown bits. Profile

B shall set every reserved field to 0.

7.4.2.1.2.6 CAPI_INSTALLED

Description

This function can be ued by an application to determine if the ISDN hardware and necessary drivers are
installed.

Function call

dword FAR PASCAL CAPI_INSTALLED (void)

Page 353
Final draft prETS 300 838: March 1998

Return Value

Return Comment
0x0000 Profile B is installed
Any other value Coded as described in parameter info class 0x11xx

7.4.2.2 OS/2 (device driver level)

In a PC environment with operating system OS/2 Version 2.x there may exist Profile B applications in form
of OS/2 Physical Device Drivers (PDD). Those applications are referred as "application PDDs" in the
following sections. This specification describes the interface of an OS/2 2.x physical device driver offering
Profile B services to other device drivers. Profile B PDD is called "CAPI PDD" in the following sections.

PDDs under OS/2 2.x are 16:16 segment modules, thus all functions in this specification are 16 bit
functions, all pointers are 16:16 segmented.

In this subclause following data types are used to define the interface:

word 16 bit unsigned integer
dword 32 bit unsigned integer
void* 16:16 (segmented) pointer to any memory location
void** 16:16 (segmented) pointer to a void*
char* 16:16 (segmented) pointer to a character string
word* 16:16 (segmented) pointer to a word

The CAPI PDD offers its services to application PDDs via the Inter Device Driver Interface. An application
PDD issues an Inter Device Driver Call (IDC) to execute CAPI operations.

The CAPI PDD name which is contained in its device driver header shall be "CAPI20 " (blank extended to
8 characters). The CAPI PDD header shall contain the offset to its inter device driver call entry point. The
IDC bit of the Device Attribute Field in the device driver header shall be set to 1.

An application PDD gains access to the CAPI PDD by issuing an AttachDD device help call. This call
returns the protected mode IDC entry point as a 16:16 segmented pointer and the data segment of the
CAPI PDD. Before calling the IDC entry point of the CAPI PDD the application PDD shall set-up the data
segment register DS appropriately.

This is the prototype of the CAPI PDD IDC function:

word CAPI20_IDC (word funcCode, void *funcPara);

The function is called with "C" calling convention, thus the calling application PDD shall clear up the stack.
When the application PDD calls the IDC function there shall be at least a space of 512 bytes left on the
stack. The parameter funcCode selects the CAPI operation to take place, the parameter funcPara
contains a 16:16 segmented pointer to the CAPI operation specific parameters. The structure of these
parameters is defined in the following subclauses. The function returns an error code which is 0 if no error
occurred. Which CAPI operations may cause which error codes is also defined in the following
subclauses.

7.4.2.2.1 Message operations

7.4.2.2.1.1 CAPI_REGISTER

Description

This is the operation the application PDD uses to report its presence to Profile B. By passing the four
parameters messageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDataLen the
application PDD describes its needs. By use of the parameter Buffer the application PDD passes a
memory area to Profile B. Profile B uses this memory area to store messages and data blocks destined to
the application PDD. The passed memory shall be either fixed or locked. Profile B does not need to verify
if this storage really exists.

Page 354
Final draft prETS 300 838: March 1998

The size of the memory area shall be calculated according to the following formula:

MessageBufferSize + (maxLogicalConnection * maxBDataBlocks * maxBDataLen)

Choosing too small a value can result in messages being lost. The size of the message buffer should be
calculated for a "normal" application PDD according to following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

CAPI_REGISTER 0x01

Structure of command specific parameters:

Parameter Type Comment
Buffer void* 16:16 (segmented) pointer to a memory region provided

by the application PDD. Profile B uses this memory area
to store messages and data blocks destined for the
application PDD.

messageBufferSize word Size of Message Buffer
maxLogicalConnection word Maximum number of logical connections
maxBDataBlocks word Number of data blocks available simultaneously
maxBDataLen word Maximum size of a data block
pApplID word* 16:16 (segmented) pointer to the location where Profile B

should place the assigned application identification
number

Return Value

Return Value Comment
0x0000 Registration successful - application identification number has been

assigned
All other values Coded as described in parameter info class 0x10xx

7.4.2.2.1.2 CAPI_RELEASE

Description

The application PDD uses this operation to log off from Profile B.. Profile B shall release all resources that
have been allocated for the application.

The application PDD is identified by the application identification number that had been assigned in the
previous CAPI_REGISTER operation.

CAPI_RELEASE 0x02

Structure of command specific parameters:

Parameter Type Comment
ApplID word Application identification number that had been assigned

by call of the function CAPI_REGISTER

Page 355
Final draft prETS 300 838: March 1998

Return Value

Return Value Comment
0x0000 Release of the application successful
All other values Coded as described in parameter 0x11xx

7.4.2.2.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application PDD transfers a message to Profile B. The application identifies itself
with an application identification number. The pointer passed to Profile B is a 16:16 segmented pointer.
The pointer in a DATA_B3_REQ message also is 16:16 segmented. The memory area of the message
and the data block shall be either fixed or locked.

CAPI_PUT_MESSAGE 0x03

Structure of command specific parameters:

Parameter Type Comment
ApplID word Application identification number that had been assigned

by call of the function CAPI_REGISTER
pCAPIMessage void* 16:16 segmented pointer to the message that is passed

to Profile B

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter 0x11xx

NOTE: When the process returns from the function call the message memory area can be
reused by the application.

7.4.2.2.1.4 CAPI_GET_MESSAGE

Description

With this operation the application PDD retrieves a message from Profile B. The application PDD can only
retrieve those messages intended for the stipulated application identification number. If there is no
message waiting for retrieval, the function returns immediately with an error.

CAPI_GET_MESSAGE 0x04

Structure of command specific parameters:

Parameter Type Comment
ApplID word Application identification number that had been

assigned by call of the function CAPI_REGISTER
ppCAPIMessage void** 16:16 segmented pointer to the memory location where

Profile B should place the 16:16 segmented pointer to
the retrieved message

Page 356
Final draft prETS 300 838: March 1998

Return Value

Return Value Comment
0x0000 Successful - Message was retrieved from Profile B
All other values Coded as described in parameter info class 0x11xx

NOTE: The received message may become invalid the next time the application issues a
CAPI_GET_MESSAGE operation for the same application identification number.

7.4.2.2.2 Other functions

7.4.2.2.2.1 CAPI_SET_SIGNAL

Description

This operation is used by the application PDD to install a mechanism which signals the application PDD
the availability of a message.

A call back mechanism is used between Profile B and an application PDD. By calling the IDC function with
CAPI_SET_SIGNAL function code the application PDD passes a 16:16 (segmented) pointer to a call back
function to Profile B.

CAPI_SET_SIGNAL 0x05

Structure of command specific parameters:

Parameter Type Comment
ApplID word Application identification number that had been

assigned by call of the function CAPI_REGISTER
signFunc void* 16:16 segmented pointer to the call-back function

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter info class 0x11xx
NOTE: The call-back function is called by Profile B, after

any message is queued in application"s message queue
a notified busy condition changed
a notified queue full condition changed
Interrupts are disabled. The call-back function shall be terminated via RETF. All
registers shall be preserved. At the time of calling, at least 32 bytes are available on
the stack.
The call-back function shall be called with interrupts disabled. Profile B shall not call
this function recursively, even if the call-back function enables interrupts. Instead
the call-back function shall be called again after returning to Profile B.
The call-back function is allowed to use Profile B operations
CAPI_PUT_MESSAGE , CAPI_GET_MESSAGE , and CAPI_SET_SIGNAL . In that
case the call-back function shall be aware that interrupts may be enabled by Profile
B.
In case of local confirmations (e.g. LISTEN_CONF) the call-back function may be
activated before the operation CAPI_PUT_MESSAGE returns to the application.

Page 357
Final draft prETS 300 838: March 1998

7.4.2.2.2.2 CAPI_GET_MANUFACTURER

Description

With this operation the application determines the manufacturer identification of Profile B (DLL). SzBuffer
on call is a 16:16 (segmented) pointer to a buffer of 64 bytes. Profile B copies the identification string,
coded as a zero terminated ASCII string, to this buffer.

Function call

CAPI_GET_MANUFACTURER 0x06

Structure of command specific parameters:

Parameter Type Comment
SzBuffer char* 16:16 (segmented) pointer to a buffer of 64 bytes

Return Value

Return Comment
0x0000 No error
All other values Coded as described in parameter info class 0x11xx

7.4.2.2.2.3 CAPI_GET_VERSION

Description

With this function the application determines the version of Profile B as well as an internal revision
number.

Function call

CAPI_GET_VERSION 0x07

Structure of command specific parameters:

Parameter Type Comment
pCAPIMajor word* 16:16 (segmented) protected mode pointer to a word

receiving Profile B major version number: 2
pCAPIMinor word* 16:16 (segmented) protected mode pointer to a word

receiving Profile B minor version number: 0
pManufacturerMajor word* 16:16 (segmented) protected mode pointer to a word

receiving manufacturer specific major number
pManufacturerMinor word* 16:16 (segmented) protected mode pointer to a word

receiving manufacturer specific minor number

Page 358
Final draft prETS 300 838: March 1998

Return Value

Return Comment
0x0000 No error, version numbers are copied
All other values Coded as described in parameter info class 0x11xx

7.4.2.2.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application determines the (optional) serial number of Profile B. SzBuffer on call is
a 16:16 (segmented) protected mode pointer to a buffer of 8 bytes. Profile B copies the serial number
string to this buffer. The serial number, coded as a zero terminated ASCII string, represents seven digit
number after the function has returned.

Function call

CAPI_GET_SERIAL_NUMBER 0x08

Structure of command specific parameters:

Parameter Type Comment
SzBuffer char* 16:16 (segmented) pointer to a buffer of 8 bytes

Return Value

Return Comment
0x0000 No error

SzBuffer contains the serial number in plain text in the form of a 7-
digit number. If no serial number is provided by the manufacturer, an
empty string is returned.

All other values Coded as described in parameter info class 0x11xx

7.4.2.2.2.5 CAPI_GET_PROFILE

Description

The application uses this function to get the capabilities from Profile B. SzBuffer on call is a 16:16
(segmented) protected mode pointer to a buffer of 64 bytes. In this buffer Profile B copies information
about implemented features, number of controllers and supported protocols. CtrlNr contains the controller
number (bit 0..6), for which this information is requested.

CAPI_GET_PROFILE 0x09

Structure of command specific parameters:

Parameter Type Comment
SzBuffer void* 16:16 (segmented) protected mode pointer to a buffer of

64 bytes
CtrlNr word Number of Controller. If 0, only number of installed

controllers is given to the application.

Page 359
Final draft prETS 300 838: March 1998

Return Value

Return Comment
0x0000 No error
All other values Coded as described in parameter info class 0x11xx

Retrieved structure format:

Type Description
word number of installed controllers, least significant octet first
word number of supported B-channels, least significant octet first
dword Global Options (bit field):

0: internal controller supported
1: external equipment supported
2: Handset supported (external equipment shall be set also)
3: DTMF supported
4.[31]: reserved

dword B1 protocols support (bit field):
0: 64 kBit/s with HDLC framing, always set.
1: 64 kBit/s bit transparent operation with byte framing from the
network
2: CCITT Recommendation V.110 [17] asynchronous operation with
start/stop byte framing
3: CCITT Recommendation V.110 [17] synchronous operation with
HDLC framing
4: T.30 [14] modem for facsimile group 3
5: 64 kBit/s inverted with HDLC framing.
6: 56 kBit/s bit transparent operation with byte framing from the
network
7..31: reserved

dword B2 protocol support (bit field):
0: ISO 7776 [4] (X.75 SLP), always set
1: Transparent
2: SDLC [12]
3: LAPD according Q.921 [13] for D-channel X.25
4: ITU-T Recommendation T.30 [14] for facsimile group 3
5: Point to Point Protocol (PPP [10] [11])
6: Transparent (ignoring framing errors of B1 protocol)
7: reserved
8: reserved
9: V.120 asynchronous mode
10..31: reserved

dword B3 protocol support (bit field):
0: Transparent, always set
1: T.90NL with compatibility to T.70NL according to T.90
Appendix II [16].
2: ISO 8208 [3] (X.25 DTE-DTE)
3: X.25 DCE
4: ITU-T Recommendation T.30 [14] for fax group 3
5..31: reserved

6 dwords reserved for Profile B usage
5 dwords manufacturer specific information
NOTE: This function can be extended, so an application has to ignore unknown bits. Profile

B shall set every reserved field to 0.

Page 360
Final draft prETS 300 838: March 1998

7.5 Novell NetWare

7.5.1 NetWare Operation System specific implementation for Profile A

7.5.1.1 Introduction

This implementation is supported by system NetWare V3.12 or higher.

There are two mechanisms to support the Profile A exchange method under the NetWare system. The
functions PciGetProperty and PciRegister are dynamically linked to the NAF when called. The functions
PciDeregister, PciPutMessage, PciGetMessage and PciSetSignal are directly provided by the NAF when
the PUF registers.

Every NAF shall be NLM and shall export an entry point per Profile A function which are dynamically
linked. Names of those functions are different for each NAF and should be unique in a system. They are
built by concatenating the NAF name (the NLM file name) with the PCI functions names. For example, for
a NAF called NAF.NLM, the exported functions are called NAF_PciGetProperty and NAF_PciRegister.
The other functions (PciDeregister, PciPutMessage, PciGetMessage and PciSetSignal) should not be
exported. PciGetHandles is only an interface function and is not provided at all by a NAF. This function
needs to access to a Btrieve database called PCI.BTV and is located in the directory SYS:\PCI\.

PciRegister and PciGetProperty check if the functions, whose names are in the database, are actually
loaded in the system. To access to a NAF, a PUF shall know the NAF"s name, as entry key in the
database. The NAF"s name is a logical name attributed by the user at load time (on the load command
line for example). The addresses access to the NLM may be provided transparently to the PUF inside the
Pci"s exchange mechanism functions as described in the annex J.

The NAF is loaded at initialization time (or later, but always before the PUF). Its name is unique, and is
used as a key index in the database.

When a PUF registers, the NAF provides pointers to the non-exported PCI functions. The PUF needs to
keep trace of these pointers. So they are parts of the Exchange Identifier. The NAF also needs to keep
trace of the PUF, so it assigns an Identifier to the PUF at registration time, this NAF-provided Identifier is
another part of the Exchange Identifier.

The "C" calling convention is used by the Profile A exchange method under NetWare.

In NetWare, the memory model used is the flat model. So every pointers are 32 bits flat pointers.

The structures alignment is byte .

7.5.1.2 Mapping of generic types and constants

In NetWare, the following data types are used:

BYTE unsigned 8 bits integer value
WORD unsigned 16 bits integer value
LONG unsigned 32 bits integer value

The following constants are defined:

PCI_HANDLE_SIZE 19
PCI_DATABASE_NAME "SYS:\PCI\PCI.BTV"
PCI_DATABASE_PATH "SYS:\PCI\"

/*
 * Basic types
 */
typedef LONG PCI_INTEGER
typedef BYTE * PCI_BYTEARRAY
typedef BYTE PCI_HANDLE[PCI_HANDLE_SIZE];
typedef void (* PCI_PROCEDURE)();
typedef struct {

PCI_INTEGER ExchangeId; /* Unique Identifier provided by NAF to identify the PUF */
PCI_INTEGER (* PciDeregisterPtr)(); /* Address of the PciDeregister function */
PCI_INTEGER (* PciPutMessagePtr)(); /* Address of the PciPutMessage function */
PCI_INTEGER (* PciGetMessagePtr)(); /* Address of the PciGetMessage function */
PCI_INTEGER (* PciSetSignalPtr)(); /* Address of the PciSetSignal function */

Page 361
Final draft prETS 300 838: March 1998

} PCI_EXID;

/*
 * Structures
 */
struct pci_mpb {

PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};
typedef struct pci_mpb PCI_MPB;

struct pci_register {
PCI_INTEGER PUFVersion;
PCI_INTEGER PUFType;
PCI_INTEGER MaxMsgSize;

};

/*
 * Exchange functions prototypes
 */
PCI_INTEGER PciGetHandles(PCI_INTEGER MaxHandles,

PCI_BYTEARRAY PCIHandles,
PCI_INTEGER * ActualHandles);

PCI_INTEGER PciGetProperty(PCI_HANDLE PCIHandle,
PCI_INTEGER MaximumSize,
PCI_BYTEARRAY Property,
PCI_INTEGER * ActualSize);

PCI_INTEGER PciRegister(PCI_HANDLE PCIHandle,
struct pci_register * PCIRegisterInfo,
PCI_EXID * ExID);

PCI_INTEGER PciDeregister(PCI_EXID * ExID);

PCI_INTEGER PciPutMessage(PCI_EXID * ExID,
PCI_MPB * PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data);

PCI_INTEGER PciGetMessage(PCI_EXID * ExID,
PCI_MPB * PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data);

PCI_INTEGER PciSetSignal(PCI_EXID * ExID,
PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure);

7.5.1.3 Description of functions

This subclause describes the implementation, under NetWare, of the Profile A exchange method
functions. During a PUF to NAF call, the size of the stack should be at least 1 024 bytes deep.

7.5.1.3.1 PciGetHandles

The PciGetHandles uses a Btrieve database called PCI.BTV, located in the directory SYS:\PCI\. Each
record of the database corresponds to an installed NAF. Each record has the format:

Field Format Size Position Key index
NAF"s name zero terminated string 19 1 yes
NAF"s driver name zero terminated string 9 20 no

The size of a record is 28 bytes.

The NAF"s driver name is used to build the name of the NAF"s exported functions, as it is explained in
subclause 7.5.1.1.

Page 362
Final draft prETS 300 838: March 1998

The following operations shall get all names of installed NAF drivers:

− open the Database;

− get the first record;

− while the end of the database is not reached;

− get next record;

− close the database.

7.5.1.3.2 PciGetProperty

This function is in charge of providing to the PUF the PROPERTY of the NAF. Implicitly, it checks if the
NAF is available, by linking to NAF"s PciGetProperty function via the ImportSymbol function.

The following operations shall take place in order:

− Open the database.

− Get the record corresponding to the NAF"s name.

− Close the database.

− Get the NAF"s PciGetProperty function"s name.

− Link to this function (get its address).

− Call to this address with the parameters provided by the PUF.

7.5.1.3.3 PciRegister

This function is in charge of providing an association between a PUF and a NAF. The NAF is loaded and
the PUF is linked with the NAF"s exported functions. The availability of the chosen NAF is checked during
the link to its functions.

While at least one PUF is registered to a NAF, this NAF should not be unloaded. So, the NAF must
provide to the system a NLM NetWare CHECK function to inform the operator when it is in service and
cannot be unloaded. As soon as the last registered PUF deregisters, the NAF can be unloaded again. On
NetWare V4.0 or higher, the use of functions SetNLMDontUnloadFlag and ClearNLMDontUnloadFlag to
prevent NAF to be unloaded while PUF are registered is highly recommended.

The following operations shall take place in order:

− open database;

− get the record corresponding to the NAF"s name;

− close the database.

− Get the NAF"s PciRegister function"s name;

− link to this function (get its address);

− call to this address with the parameters provided by the PUF;

− on return from the NAF, the Exchange Identifier"s fields and the maximum message size parameter
of the registration structure have been provided by the NAF;

− return to the PUF with the return code from the NAF.

7.5.1.3.4 PciDeregister

This function is charged of disassociating a PUF and a NAF. When all the PUF registered have
deregister, the NAF could allow to be unloaded.

The following operations should take place, in order:

− get the address of the NAF"s PciDeregister function in the Exchange Identifier;

− call the address of the PciDeregister function stored in the Exchange Identifier to inform the NAF of
the end of the association.

Page 363
Final draft prETS 300 838: March 1998

7.5.1.3.5 PciPutMessage

This function is in charge of providing a message, and associated data if any, from a PUF to a NAF.
Parameters are provided in the same order as indicated in the generic description of the PciPutMessage
function. Either Message or Data may be optional. In this case they are specified as NULL.

The following operations shall take place, in order:

− get the address of the NAF"s PciPutMessage function in the Exchange Identifier;
− call this address to pass parameter to the NAF (including the address of the PCI_EXID).

7.5.1.3.6 PciGetMessage

This function is in charge of providing a PUF with a message, and associated data if any, from a NAF.
Parameters are provided in the same order as indicated in the generic description of the PciGetMessage
function. The NAF write the return data directly in the buffers provided by the PUF. Either Message or
Data may be optional. In this case they are specified as NULL.

The following operations shall take place, in order:

− get the address of the NAF"s PciPutMessage function in the Exchange Identifier;
− call this address to pass parameter to the NAF (including the address of the PCI_EXID).

7.5.1.3.7 PciSetSignal

This function allows a PUF of providing a direct information mechanism to be used by the NAF in case of
incoming event. Two mutually exclusive mechanisms are offered under NetWare:

− a local semaphore mechanism;
− a callback function mechanism.

Once a mechanism is chosen by the PUF, the other is de-activated by the NAF for that particular PUF.
Both method shall be supported by the NAF.

The first mechanism does not use the SignalProcedure parameter. This parameter shall be set to 0.

The second mechanism used the SignalProcedure to identify the function to be called by the NAF. In that
case, the SignalProcedure parameter shall not be equal to 0.

The following operations shall take place, in order:

− Get the address of the NAF"s PciSetSignal function in the Exchange Identifier.
− Call this address to pass parameter to the NAF (including the address of the PCI_EXID).

7.5.1.3.7.1 Local semaphore mechanism

The local semaphore mechanism uses a CLIB local semaphore of the NetWare system. PUF which
maintain a CLIB process context should select this mechanism. The PUF process can then wait on the
local semaphore. When an inbound message is available, the NAF will signal the local semaphore
causing the PUF to make up and retrieve a message, by calling the PciGetMessage function.

The PUF is responsible for giving an initialized local semaphore to the NAF in the Signal parameter when
calling the function PciSetSignal. After deregistering or deactivating the signal mechanism, the PUF shall
also close the local semaphore.

7.5.1.3.7.2 Callback function mechanism

PUF which do not maintain a CLIB process context should use the call-back function mechanism. The
PUF supply a pointer to a PUF resident notification function in the SignalProcedure parameter and a PUF
defined context value in the Signal parameter. Each time an inbound message is available, the NAF call

Page 364
Final draft prETS 300 838: March 1998

the PUF"s notification function with the PUF context value in parameter. The PUF shall then call the
PciGetMessage function to retrieve the available message.

The call-back function can be called from either the process or interrupt context. So blocking operations,
such as disk input output should not be performed by the signal procedure. If blocking operations are
required, they should be executed from a separate application supplied process. For the same reasons, a
call-back function should not call the NAF directly.

7.5.1.3.7.3 De-activation mechanism

To deactivate any signal mechanism the PciSetSignal function Signal and SignalProcedure parameters
shall be NULL. Once deactivated, the previous mechanism shall no longer be used by the NAF to call the
PUF.

7.5.1.4 Availability of NAFs

In order to ensure consistence of the database and to export in an unambiguous way its functions, NAF
should be re-entrant if it can be loaded multiple times.

7.5.1.4.1 Declaration action

In case of a NAF that can be loaded multiple times, it should check that it is the first time that it is loaded
with that name. If not, it should not load.

When loading, the NAF shall declare itself in the database. It may first get the list of available
PCI_HANDLES to check if not already declared. The mechanism the NAF uses is the same as any PUF
to get available NAF: PciGetHandles. If it is already declare, it shall check that the configuration is correct.
Otherwise, it should call the PciGetProperty function of the NAF described in the database to determine if
this NAF is actually active. If so, the NAF should not load. If not, the record is deleted.

In the case the database does not exist, the NAF should create it (as it should create the directory
SYS:\PCI if it does not exist).

If not yet declare, or if the declaration was incorrect, the NAF declares itself by inserting a new record in
the database.

There is no theoretical limit to the number of NAF that can register in the database.

7.5.1.4.2 Extraction action

When the NAF is unloaded, it should extract its declaration from the database. For doing so, it should
delete the record in the database during the unloading procedure.

7.5.2 NetWare for Profile B

The NetWare server operating system provides an open, non-preemptive, multitasking platform including
file, print, communications and other services. A typical NetWare server can support tens to hundreds of
simultaneous users. Extensibility of communication services in particular is accommodated through open
service interfaces allowing integration of third party hardware and software. Therefore when considering
the addition of a new communications subsystem to the NetWare operating system, scalability and
flexibility are considered primary design goals.

This implementation of Profile B in the NetWare server operating system addresses both scalability and
flexibility by allowing concurrent operation of multiple Profile B compliant applications and multiple ISDN
controllers provided by different manufacturers. Profile B service provider in the NetWare operating
system environment is a subset of the overall NetWare CAPI Manager subsystem. The NetWare CAPI
Manager includes all standard functions defined by Profile B as well as auxiliary functions providing
enhanced ISDN resource management for NetWare systems running multiple concurrent Profile B
applications. The NetWare CAPI Manager subsystem also includes a secondary service interface which
integrates each manufacturer specific ISDN controller driver below Profile B. Although the driver interface
maintains the general structure and syntax of Profile B functions and messages, it is not part of Profile B
definition. The driver interface is unique to the NetWare CAPI Manager implementation.

Page 365
Final draft prETS 300 838: March 1998

The following description of Profile B within the NetWare server operating system provides a detailed
description of each standard Profile B function which makes up the application programming interface,
containing sufficient information to implement Profile B compliant applications within the NetWare
environment. A general overview of the NetWare CAPI Manager is also provided to identify which services
are standard Profile B and which are unique to the NetWare CAPI Manager subsystem. Detailed
description of the NetWare CAPI Manager unique functions for enhanced resource management and
ISDN controller software integration is beyond the scope of this ETS. The complete definition is contained
in the Novell specification NetWare CAPI Manager and CAPI Driver specification (Version 2.0).

Architectural overview

The NetWare CAPI Manager, which is implemented as a NetWare Loadable Module (NLM) acts as a
service multiplexer and common interface point between Profile B compliant applications and each
manufacturer specific ISDN controller driver residing below Profile B. Each Profile B application and each
controller driver is implemented as a separate NLM which independently registers with the NetWare CAPI
Manager at initialization time. Profile B exists between the Profile B applications and the NetWare CAPI
Manager. NetWare CAPI Manager auxiliary management functions also exits at this point. A Novell
defined service interface exists between the NetWare CAPI Manager and the ISDN controller drivers
however applications have no knowledge of this lower level interface. From the application perspective,
the lower level driver interface is an internal detail of the NetWare CAPI Manager implementation of
Profile B.

Figure 37 illustrates the relationship between Profile B applications, the NetWare CAPI Manager, and
manufacturer specific controller drivers and controller hardware.

Controller Controller Controller

NetWare 3.x/4.x Server

Profile B-Application Profile B-Application Profile B-Application

NetWare CAPI-Manager

Controller Driver Controller Driver Controller Driver

Figure 37: Architectural overview

Services provided by the NetWare CAPI Manager are presented as a set of exported public symbols. To
avoid public symbol conflicts within the server environment, services provided by each controller driver are
presented as a set of entry point addresses supplied to the NetWare CAPI Manager at driver registration
time. NetWare CAPI Manager services include the standard Profile B function set, auxiliary functions
supporting driver registration and deregistration of controller services and auxiliary management functions
referenced by Profile B applications.

Page 366
Final draft prETS 300 838: March 1998

The additional management functions implement a powerful search mechanism for locating specific
controller resources and a locking mechanism to reserve controller resources for exclusive use by an
application. The CAPI_GetFirstCntlrInfo searches for the first occurrence of a controller whose capabilities
match the search criteria specified by the application. The search criteria can include a symbolic controller
name, specific protocols, required bandwidth, etc. The CAPI_GetNextCntlrInfo function searches for
additional controllers which meet the previously specified search criteria. The CAPI_LockResource
function is provided for applications which shall have guaranteed access to a previously identified
controller channel or protocol resources. The specified resource remains reserved until the application
calls the CAPI_FreeResource function. These additional management functions are intended to provide
enhanced management capabilities in server systems configured with a variety of controllers or a large
number of concurrently executing applications.

To insure efficient operation of multiple applications and drivers in the server environment, inbound
message signalling is required by the NetWare CAPI Manager. The CAPI_Register function defines
additional signal parameters which shall be provided by the application to successfully register.
Applications are not permitted to poll for inbound messages. Because signalling is required and signal
parameters are specified at registration time, the CAPI_SetSignal function is not included in this
implementation of Profile B.

Refer to the NetWare CAPI Manager & CAPI Driver Specification for a complete definition of the
auxiliary and driver functions. The function descriptions provided in this section reflect only the standard
Profile B function set provided by the NetWare CAPI Manager. Note that in some cases the parameter
lists required by the NetWare CAPI Manager version of Profile B functions are different from other
operating system implementations.

Function Call Conventions in NetWare environment:

- all interface functions conform to standard "C" language calling conventions;

- all functions can be called from either a process or interrupt context;

- profile B defines a standard 16 bit error code format where bits 8 - 15 identify the error class and
bits 0 - 7 identify the specific error. With one exception, this approach is used throughout this
specification. The exception is that all functions return either a DWORD (unsigned long) or a void
type rather than a 16 bit WORD type. Bits 31 - 16 of the return value shall always be zero.

Data Type Conventions in NetWare environment:

- structures were used with byte alignment;
- the following additional simple data types were used:

BYTE unsigned 8 bit integer value
WORD unsigned 16 bit integer value
DWORD unsigned 32 bit integer value
BYTE * 32 bit pointer to an unsigned char
WORD * 32 bit pointer to an unsigned 16 bit integer
VOID * 32 bit pointer
VOID ** 32 bit pointer to a 32 bit pointer

Page 367
Final draft prETS 300 838: March 1998

7.5.2.1 Message operations

7.5.2.1.1 CAPI_Register

Description

Applications use CAPI_Register to register their presence with Profile B. Registration parameters specify
the maximum number of ISDN logical connections, message buffer size, number of data buffers and data
buffer size required by the application. Message buffer size is normally calculated according to following
formula:

Message buffer size = 1 024 + (1 024 * number of ISDN logical connections)

Inbound message signalling parameters are also supplied. Successful registration causes Profile B to
assign a system unique application identifier to the caller. The application identifier is used in subsequent
Profile B function calls as well as in Profile B defined messages. Two inbound message availability
signalling options are supported. The signalType and signalHandle parameters allow an application to
select either CLIB Local Semaphore or direct function call-back notification. Application polling of the
inbound message queue shall not be permitted. Successful application registration requires selection of
an inbound message signalling mechanism.

Applications which maintain a CLIB process context should select Local Semaphore signalling via the
signalType parameter and supply a previously allocated Local Semaphore handle as the signalHandle
parameter. The application receive process can then wait on the local semaphore. When an inbound
message is available, the Profile B driver shall signal the local semaphore causing the application process
to wakeup and retrieve a message, by calling the CAPI_GetMessage function.

Applications which do not maintain a CLIB process context should select direct call-back signalling via the
signalType parameter, supply a pointer to an application resident notification function as the signalHandle
parameter and an application defined context value as the signalContext parameter. When an inbound
message is available, Profile B shall call the specified application notification function, supplying the
application context value. The application shall call the CAPI_GetMessage function to retrieve any
available messages.

Function call

DWORD CAPI_Register(WORD messageBufSize,
WORD connectionCnt,
WORD dataBlockCnt,
WORD dataBlockLen,
WORD *applicationID
WORD signalType,
DWORD signalHandle,
DWORD signalContext,
);

Page 368
Final draft prETS 300 838: March 1998

Parameter Comment
messageBufSize Specifies the message buffer size.
connectionCnt Specifies the maximum number of logical connections this application

can concurrently maintain. Any application attempt to exceed the
logical connection count by accepting or initiating additional
connections shall result in a connection establishment failure and an
error indication from the Profile B driver.

dataBlockCnt Specifies the maximum number of received data blocks that can be
reported to the application simultaneously for each B-channel
connection. The number B-channel data blocks has a decisive effect
on the throughput of B-channel data in the system and should be
between 2 and 7. At least two B-channel data block shall be specified.

dataBlockLen Specifies maximum size of a B-channel data unit which can be
transmitted and received. Selection of a protocol that requires larger
data units and attempts to transmit or receive larger data units shall
result in an error from Profile B.

applicationID This parameter specifies a pointer to a location where the Netware
CAPI Manager shall place the assigned application identifier during
registration. This value is valid only if the registration operation was
successful, as indicated by a return code of 0x0000.

signalType Specifies the inbound message signalling mechanism selected by the
application. The signalling mechanism is used by the driver to notify
the application when inbound control or data messages are available
or when queue full / busy conditions change. The signalType
parameter also defines the meaning of the signalHandle parameter.
Two signalType constants are defined as follows:
0x0001 SIGNAL_TYPE_LOCAL_SEMAPHORE
0x0002 SIGNAL_TYPE_CALLBACK.

signalHandle Depending on the value of the signalType parameter, signalHandle
specifies either the local semaphore handle previously allocated by
the application or the address of an application resident receive
notification function with the following format:
void CAPI_ReceiveNotify(DWORD signalContext); (see below).

signalContext If the signalType parameter contains SIGNAL_TYPE_CALLBACK, the
signalContext specifies an application defined context value. This
value shall be passed to the application notification function. The
signalContext value has no meaning to the Profile B. It may be used
by an application to reference internal data structures etc during
receive notification callback process. If the signalType parameter
specifies SIGNAL_TYPE_LOCAL_SEMAPHORE this value is
ignored.

Return Value

Return Value Comment
0x0000 Registration successful - application identification number has been

assigned
All other values Coded as described in parameter info class 0x10xx

7.5.2.1.2 CAPI_ReceiveNotify

CAPI_ReceiveNotifyDescription

This optional application resident receive notification function is called by the NetWare CAPI Manager
implementation of the Profile B whenever an inbound message addressed to the application is available.
This function is intended for exclusive use by NetWare system applications which do not maintain a CLIB
context. Use of this function is enabled at application registration time by specifying the CAPI_Register
signalType parameter as SIGNAL_TYPE_CALLBACK. Note that non-system level applications should
always use local semaphores for receive message notification by specifying the CAPI_Register
signalType parameter as SIGNAL_TYPE_LOCAL_SEMAPHORE.

Page 369
Final draft prETS 300 838: March 1998

Each time the CAPI_ReceiveNotify function is called, it should in turn call the CAPI_GetMessage to
retrieve the next available message addressed to the application. The signalContext parameter passed to
the CAPI_ReceiveNotify function contains an application defined context value previously supplied to the
CAPI_Register function. This value is meaningful only to the application, for example as an internal data
structure pointer

NOTE: The CAPI_ReceiveNotify function can be called from either the process or interrupt
context. To avoid adverse system impact, blocking operations such as disk input
output should not performed by the receive notify function. If blocking operations are
required they should be executed from a separate application supplied process.

7.5.2.1.3 CAPI_Release

Description

Applications uses CAPI_Release to deregister from Profile B. All memory allocated on behalf of the
application by Profile B shall be released.

Function call

DWORD CAPI_Release (WORD ApplID);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_Register

Return Value

Return Value Comment
0x0000 Release of the application successful
All other values Coded as described in parameter info class 0x11xx

7.5.2.1.4 CAPI_PutMessage

Description

Applications call CAPI_PutMessage to transfer a single message to Profile B.

Function call

DWORD CAPI_PutMessage(WORD ApplID,
VOID *pCAPIMessage
);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_Register
pCAPIMessage Points to a memory block which contains a message for the Profile B

Driver

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter info class 0x11xx

Page 370
Final draft prETS 300 838: March 1998

NOTE: When the process returns from the function call the message memory area can be
reused by the application.

Description

Applications call CAPI_GetMessage to retrieve a single message from Profile B. If a message is available,
it address is returned to the application in location specified by the ppCAPIMessage parameter. If there
are no messages available from any of the registered drivers, CAPI_GetMessage returns with an error
indication.

The contents of the message blocks returned by this function is valid until the same application calls
CAPI_GetMessage again. In cases where the application will process the message asynchronously or
needs to maintain the message beyond the next call to CAPI_GetMessage, a local copy of the message
shall be made by the application.

Function call

DWORD CAPI_GetMessage(WORD ApplID,
VOID** ppCAPIMessage);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_Register.
ppCAPIMessage Pointer to the memory location where the Netware CAPI Manager

should place the retrieved message address. The contents of the
output variable specified by msgPtr is valid only if the return code
indicates no error.

Return Value

Return Value Comment
0x0000 Successful - Message was retrieved from Profile B.
All other values Coded as described in parameter info class 0x11xx.

7.5.2.2 Other functions

7.5.2.2.1 CAPI_GetManufacturer

Description

Applications call CAPI_GetManufacturer to retrieve manufacturer specific identification information from
the specified ISDN controller.

Function call

DWORD CAPI_GetManufacturer(DWORD Controller,
BYTE *szBuffer
);

Page 371
Final draft prETS 300 838: March 1998

Parameter Comment
Controller Specifies the system unique controller number for which the

manufacturer information is to be retrieved. Coding is described in
clause 6.

szBuffer Specifies a pointer to an application data area 64 bytes long which will
contain the manufacturer identification information upon successful
return. The identification information is represented as a zero
terminated ASCII text string.

Return Value

Return Value Comment
0x0000 Successful - information was retrieved from Profile B
All other values Coded as described in parameter info class 0x11xx

7.5.2.2.2 CAPI_GetVersion

Description

Applications call CAPI_GetVersion to retrieve version information from the specified ISDN controller.
Major and minor version numbers are returned for both Profile B and the manufacturer specific
implementation.

Function call

DWORD CAPI_GetVersion(DWORD Controller,
WORD* pCAPIMajor,
WORD* pCAPIMinor,
WORD* pManufacturerMajor,
WORD* pManufacturerMinor
WORD *pManagerMajor
WORD *pManagerMinor
);

Parameter Comment
Controller Specifies the system unique controller number for which the

manufacturer information is to be retrieved. Coding is described in
clause 6.

pCAPIMajor Pointer to a WORD receiving Profile B major version number: 0x0002.
pCAPIMinor Pointer to a WORD receiving Profile B minor version number: 0x0000.
pManufacturerMajor Pointer to a WORD receiving manufacturer specific major number.
pManufacturerMinor Pointer to a WORD receiving manufacturer specific minor number.
pManagerMajor Pointer to a WORD receiving Netware CAPI Manager major version

number.
pManagerMinor Pointer to a WORD receiving Netware CAPI Manager minor version

number.

Return Value

Return Comment
0x0000 No error, version numbers are copied.
All other values Coded as described in parameter info class 0x11xx.

Page 372
Final draft prETS 300 838: March 1998

7.5.2.2.3 CAPI_GetSerialNumber

Description

Applications call CAPI_GetSerialNumber to retrieve the optional serial number of the specified ISDN
controller.

Function call

DWORD CAPI_GetSerialNumber(DWORD Controller,
BYTE *szBuffer
);

Parameter Comment
Controller Specifies the system unique controller number for which the serial

number information is to be retrieved. Coding is described in
clause 6.

szBuffer Pointer to a buffer of 8 bytes.

Return Value

Return Comment
0x0000 No error

szBuffer contains the serial number in plain text in the form of a 7-digit
number. If no serial number is provided by the manufacturer, an
empty string is returned.

All other values Coded as described in parameter info class 0x11xx

7.5.2.2.4 CAPI_GetProfile

Description

The application uses this function to get the capabilities from Profile B. Buffer on call is a pointer to a
buffer of 64 bytes. In this buffer Profile B copies information about implemented features, number of
controllers and supported protocols. Controller contains the controller number (bit 0..6), for which this
information is requested.

DWORD CAPI_GetProfile (VOID *Buffer,
DWORD Controller
);

Parameter Comment
Buffer Pointer to a buffer of 64 bytes.
Controller Number of Controller. If 0, only number of installed controllers is given

to the application.

Return Value

Return Comment
0x0000 No error

Buffer contains the requested information.
All other values Coded as described in parameter info class 0x11xx

Page 373
Final draft prETS 300 838: March 1998

Retrieved structure format:

Type Description
WORD Number of installed controllers, least significant octet first.
WORD Number of supported B-channels, least significant octet first.
DWORD Global Options (bit field):

0: internal controller supported
1: external equipment supported
2: Handset supported (external equipment shall be set also)
3: DTMF supported
4..31: reserved

DWORD B1 protocols support (bit field):
0: 64 kbit/s with HDLC framing, always set.
1: 64 kbit/s bit transparent operation with byte framing from the
network
2: V.110 [17] asynchronous operation with start/stop byte framing
3: V.110 [17] synchronous operation with HDLC framing
4: T.30 [14] modem for facsimile group 3
5: 64 kbit/s inverted with HDLC framing.
6: 56 kbit/s bit transparent operation with byte framing from the
network
7..31: reserved

DWORD B2 protocol support (bit field):
0: ISO 7776 [4] (X.75 SLP), always set
1: Transparent
2: SDLC [12]
3: LAPD according Q.921 [13] for D-channel X.25
4: T.30 [14] for facsimile group 3
5: Point to Point Protocol (PPP [10] [11])
6: Transparent (ignoring framing errors of B1 protocol)
7: reserved
8: reserved
9: V.120 asynchronous mode
10..31: reserved

DWORD B3 protocol support (bit field):
0: Transparent, always set
1: T.90 NL with compatibility to T.70 NL according to T.90 [16]
Appendix II.
2: ISO 8208 [3] (X.25 DTE-DTE)
3: X.25 DCE
4: T.30 [14] for facsimile group 3
5..31: reserved

6 DWORDs reserved for Profile B usage
5 DWORDs manufacturer specific information
NOTE: This function can be extended, so an application shall ignore unknown bits. Profile

B shall set every reserved field to 0.

7.6 Windows/NT

7.6.1 Windows NT operation system specific implementation for Profile A

7.6.1.1 Introduction

This implementation is supported starting from release 3.1 of Windows NT.

This specification describes two separate interfaces between NAF and PUF. The first one describes a
DLL mechanism (where NAF is a Dynamic Link Library). In the other one, the NAF is a Device Driver
running in Kernel under Windows NT.

The PUF part can run under Windows NT User mode or Kernel mode.

Page 374
Final draft prETS 300 838: March 1998

7.6.1.1.1 DLL version

Except for the PciGetHandles function call, calls of functions dynamically linked is the basic mechanism
used to support the Profile A exchange method under Windows NT.

Every NAF shall be a DLL (Dynamic Linked Library) and shall export an entry point per Profile A function.

Exported functions provided by a NAF are PciGetProperty , PciRegister , PciGetMessage ,
PciPutMessage , PciSetSignal , PciDeregister .

To access a NAF the only requirement for the PUF is to know the name of the corresponding DLL.

The PciRegister function dynamically loads the NAF. It needs to keep trace of the handle of the NAF as a
DLL, so this handle is part of the Exchange Identifier. The NAF also needs to keep trace of the PUF, so it
assigns an identifier to the PUF at registration time. This NAF-provided identifier is the other part of the
Exchange Identifier.

The functioning model under Windows NT is 32 bits using a flat-addressing scheme. So all pointers are
32 bits flat pointers.

7.6.1.1.2 Device driver version

Under Windows NT a device driver can be called from user mode with the DeviceIoControl function or
from kernel mode with IDC mechanism. Io control code and input buffer are described for user and kernel
modes. Figure 38 presents the Windows/NT general architecture.

PUF application

User mode

Kernel mode

Windows NT

KERNEL

PUF

Device Driver

NAF

Device Driver

DeviceIoControl(...)

IoCallDriver(...)

NAF

(DLL)

Figure 38: Windows/NT general architecture

7.6.1.1.3 Driver access method from user mode

The CreateFile function is used to get a driver handle. At the end of the communication session the
handle is released by CloseHandle function.

User applications call PCI NAF device driver via the DeviceIoControl function.

The Windows NT registry supplies a list of NAF device drivers.

An event can be used to synchronize PciGetMessage on event, PUF pass an existing event by means of
lpOverlapped parameter of the DeviceIoControl function.

Page 375
Final draft prETS 300 838: March 1998

The caller (PUF) creates an event and passes it to the PCI device driver through the OVERLAPPED
structure. This method is used to map the PciSetSignal event service.

The callback mechanism is not available from a kernel device driver to a user process.

7.6.1.1.4 Driver access method from kernel mode

The mechanism to call a device driver from another one is to get an object on the device driver with the
IoGetDeviceObjectPointer Windows NT kernel function; build an IRP (I/O Request Packet) with
IoBuildDeviceIoControlRequest and then, call the device driver with IoCallDriver function.

The IRP input buffer format is the same as the User/Kernel specification.

The NAF device driver receives the PUF request in the IRP_MJ_DEVICE_CONTROL MajorFunction
registered in the DeviceEntry function, and get the NAF requested service with the IoControlCode.

An event can be passed to the NAF through the IRP. PUF device driver can wait on event after calling the
PUF with IoCallDriver function. PUF can create a kernel thread and use the PciSetSignal service.

NAF device driver sample code

 pIrpStack = IoGetCurrentIrpStackLocation(pIrp);
 // Dispatch based on major fcn code.
 switch (pIrpStack->MajorFunction)
 {

 case IRP_MJ_DEVICE_CONTROL: // Dispatch on IOCTL PUF requests
switch (pIrpStack->Parameters.DeviceIoControl.IoControlCode)
{

case IOCTL_PCIGETPROPERTY: break;
case IOCTL_PCIREGISTER: break;
case IOCTL_PCIDEREGISTER: break;
case IOCTL_PCIPUTMESSAGE: break;
case IOCTL_PCIGETMESSAGE: break;
case IOCTL_PCISETSIGNAL: break;

}
break;

 }

As we use METHOD_BUFFERED, NT copies input buffer in pIrp->AssociatedIrp.SystemBuffer before
entry and copies it to output buffer after return.
7.6.1.2 Mapping of generic types and constants
Under Windows NT, the PCI_HANDLE is the name of the NAF"s DLL.
The structure alignment is byte .
/*
 * Basic data types
 */
typedef SHORT PCI_INTEGER;
typedef LPSTR PCI_BYTEARRAY;
typedef LPSTR PCI_HANDLE;
typedef void (*PCI_PROCEDURE)();

typedef struct {
HANDLE DLLHandle; // NAF"s DLL Handle
PCI_INTEGER Exchange_Id; // PUF"s identifier

} PCI_EXID;

/*
 * Structures definition
 */
struct pci_mpb {

PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};
typedef struct pci_mpb PCIMPB;

struct pci_register {
PCI_INTEGER PUFVersion;
PCI_INTEGER PUFType;
PCI_INTEGER MaxMsgSize;

};

/*
 * Exchange functions prototypes
 */

Page 376
Final draft prETS 300 838: March 1998

PCI_INTEGER PciGetHandles(PCI_INTEGER MaxHandles,
PCI_BYTEARRAY PCIHandles,
PCI_INTEGER *ActualHandles);

PCI_INTEGER PciGetProperty(PCI_HANDLE PCIHandle,
PCI_INTEGER MaximumSize,
PCI_BYTEARRAY Property,
PCI_INTEGER *ActualSize);

PCI_INTEGER PciRegister(PCI_HANDLE PCIHandle,
struct pci_register * PCIRegisterInfo,
PCI_EXID *ExID);

PCI_INTEGER PciDeregister(PCI_EXID *ExID);

PCI_INTEGER PciPutMessage(PCI_EXID *ExID,
PCI_MPB *PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data);

PCI_INTEGER PciGetMessage(PCI_EXID *ExID,
PCI_MPB *PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data);

PCI_INTEGER PciSetSignal(PCI_EXID *ExID,
PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure);

Device driver structures:

#define COMMON_MAX_SIZE 4096

struct IoPciGetHandles{
PCI_INTEGER iReturnCode;
PCI_INTEGER MaxHandles;
BYTE PCIHandles[COMMON_MAX_SIZE]; //Deep enough to get MaxHandles.
PCI_INTEGER ActualHandles;

};

struct IoPciGetProperty {
PCI_INTEGER iReturnCode;
PCI_HANDLE PCIHandle;
PCI_INTEGER MaximumSize;
BYTE Property[COMMON_MAX_SIZE]; // Deep enough to get MaxProperty.
PCI_INTEGER ActualSize;

};

struct IoPciRegister {
PCI_INTEGER iReturnCode;
struct pci_register PciRegisterInfo;
PCI_EXID ExID;

};

struct IoPciDeregister{
PCI_INTEGER iReturnCode;
PCI_EXID ExID;

};

struct IoPciPutMessage{
PCI_INTEGER iReturnCode;
PCI_EXID ExID;
PCI_MPB PCIMPB;
BYTE Message[COMMON_MAX_SIZE];
BYTE Data[COMMON_MAX_SIZE];

};

struct IoPciGetMessage{
PCI_INTEGER iReturnCode;
PCI_EXID ExID;
PCI_MPB PCIMPB;
BYTE Message[COMMON_MAX_SIZE];
BYTE Data[COMMON_MAX_SIZE];

};

struct IoPciSetSignal{
PCI_INTEGER iReturnCode;
PCI_EXID ExID;
PCI_INTEGER Signal;
PCI_PROCEDURE SignalProcedure;

};

Page 377
Final draft prETS 300 838: March 1998

7.6.1.2 PCI device driver call specification

This paragraph describes IoControl code and buffer format send by user or kernel PUF and received by
kernel NAF.

7.6.1.2.1 DeviceIoControl parameters

The dwIoControlCode is generated with CTL_CODE macro.

CTL_CODE parameters:

DeviceType 40000.

Method METHOD_BUFFERED (Intermediate kernel system buffer is used).

Access FILE_ANY_ACCESS

Function

PciGetHandles 0x800 (PUF only). IOCTL_PCIGETHANDLES
PciGetProperty 0x801 IOCTL_PCIGETPROPERTY
PciRegister 0x802 IOCTL_PCIREGISTER
PciDeregister 0x803 IOCTL_PCIDEREGISTER
PciPutMessage 0x804 IOCTL_PCIPUTMESSAGE
PciGetMessage 0x805 IOCTL_PCIGETMESSAGE
PciSetSignal 0x806 IOCTL_PCISETSIGNAL

#define IOCTL_PCIREGISTER CTL_CODE(40000, 0x802, METHOD_BUFFERED, FILE_ANY_ACCESS)

7.6.1.2.1.1 PCI parameters mapping

As multiple parameters are not available with the DeviceIoControl function, we use the Input buffer to pass
PCI USER calls parameters to the NAF device driver part. PCI Parameter shall be copied in the input
buffer. In order to simplify calls and buffer mapping, a private Iocal structure is used (see in
subclause 7.6.1.2 the device driver structures).

The following sample illustrates this mechanism for the PciRegister function.

User mode parameters : struct pci_register *PCIRegisterInfo, PCI_EXID *ExID

The PCI PUFs functions shall copy all parameters content in the DeviceIoControl Input buffer in the
function definition order. After the NAF return, the DeviceIoControl Output buffer contains the call result,
and the PUF copies Output buffer content in parameters.

DeviceIoControl Input buffer:

SHORT PCI_INTEGERNAF return value
SHORT PCI_INTEGER PUFVersion pci_register
SHORT PCI_INTEGER PUFType
SHORT PCI_INTEGER MaxMsgSize
HINSTANCE HINSTANCE DLLInstance, ExID
SHORT PCI_INTEGER exchange_Id

// Sample code
PCI_INTEGER PASCAL PciRegister(struct pci_register *PCIRegisterInfo, PCI_EXID *ExID)
{
PCI_INTEGER ReturnCode;
HANDLE hDD;
struct IoPciRegister Pr;

// Open device driver session.
hDD = CreateFile("", GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING,0,NULL);

if(hDD != INVALID_HANDLE_VALUE)
{
ExID->DLLInstance = (HINSTANCE)hDD;
// Copy parameters to the input buffer.

Page 378
Final draft prETS 300 838: March 1998

Pr.PciRegisterInfo = *PciRegisterInfo;
Pr.ExID = *ExID;

// Call device driver
DeviceIoControl(hDD,

IOCTL_PCIREGISTER;
&Pr,
sizeof(struct IoPciRegister),
&Pr,
sizeof(struct IoPciRegister),
&ByteReturned,
NULL);

// Copy Ouput buffer to return values and ReturnCode.
*PciRegister = Pr.PciRegister;
*ExID = Pr.ExID;
ReturnCode = Pr.iReturnCode;
}

return ReturnCode;
}

7.6.1.3 Functions description

This subclause describes the implementation, under Windows NT, of the Profile A exchange method
functions. During a PUF to NAF call, the stack should have 4 K free.

7.6.1.3.1 PciGetHandles

Under Windows NT, The PciGetHandles function uses the Registry to locate all information about
installed NAFs.

7.6.1.3.1.1 DLL version

Information about available NAFs shall be stored in the following area of the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\PCI\Drivers\pciDriver<number>=DLLName (with number=1..32)

As an example, and following Microsoft"s convention:

\HKEY_LOCAL_MACHINE
\Software

\PCI
 \Drivers

pciDriver1 = "DLL1.DLL"
pciDriver2 = "DLL2.DLL"

The following operations shall get all names of installed NAF drivers:

− open the PCI\Drivers Key of the registry;
− read each subkey of the previously opened key in the form pciDriver<Number>;
− close the PCI key of the registry.

7.6.1.3.1.2 Device driver version

Information about available NAFs shall be stored in the following area of the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\PCI\DeviceDrivers\pciDeviceDriver<number>=DLLName (with number=1..32)

As an example, and following Microsoft"s convention:

\HKEY_LOCAL_MACHINE
\Software

\PCI
 \DeviceDrivers

pciDeviceDriver1 = "NafName1"
pciDeviceDriver2 = "NafName2"

Page 379
Final draft prETS 300 838: March 1998

The following operations shall get all names of installed NAF drivers:

− open the PCI\DeviceDrivers key of the registry;
− read each subkey of the previously opened key in the form pciDeviceDriver<Number>;
− close the PCI key of the registry;
− test device driver activity by open/close mechanism.

7.6.1.3.2 PciGetProperty

This function is in charge of providing to the PUF the PROPERTY of the NAF. Implicitly, it checks if the
NAF is available and loads the library via the LoadLibrary function.

7.6.1.3.2.1 DLL version

The following operations shall take place in order:

− load the DLL;
− get the address of the PciGetProperty function exported by the NAF;
− call this address with parameters supplied by the PUF;
− finally, free the loaded DLL.

7.6.1.3.2.2 Device driver version

The following operations shall take place in order:

− open a device driver session;
− use IoPciGetProperty structure as input and output buffer;
− call the PciGetProperty NAF service;
− finally, close the session.

7.6.1.3.3 PciRegister

This function is in charge of providing an association between a PUF and a NAF.

7.6.1.3.3.1 DLL version

The availability of the chosen NAF is checked before loading the library. The NAF is loaded (i.e. the DLL is
loaded), and the Handle of the DLL is initialized into the Exchange Identifier structure provided by the
caller.

The following operations shall take place in order:

− load the DLL;
− provide the Handle part of the Exchange Identifier with the DLL Handle;
− get the address of the PciRegister function exported by the NAF;
− call this address to inform the NAF or a new PUF, supplied parameters are also passed;
− upon return from the NAF, Exchange_Id part of the Exchange Identifier have been provided by the

NAF;
− return to the PUF with the returned code from the NAF.

Page 380
Final draft prETS 300 838: March 1998

7.6.1.3.3.2 Device driver version

Function open a device driver session, and the Handle of the NAF device driver is initialized into the
Exchange Identifier structure provided by the caller.

The following operations shall take place in order:

− open a device driver session;
− use IoPciRegister structure as input and output buffer;
− call the PciRegister NAF service;
− upon return from the NAF, Exchange_Id part of the Exchange Identifier have been provided by the

NAF;
− return to the PUF with the returned code from the NAF.

7.6.1.3.4 PciDeregister

This function is in charge of disassociating a PUF and a NAF. When all the PUF registered have
deregistered, the NAF could allow to be unloaded.

7.6.1.3.4.1 DLL version

The following operations should take place, in order:

− get the address of the NAF"s PciDeregister;
− call this address to inform the NAF of the end of the association. The address of the PCI_EXID

structure is passed to the NAF;
− finally free the DLL if no more PUF is using the DLL.

7.6.1.3.4.2 Device driver version

The following operations should take place, in order:

− get the NAF"s device driver handle from ExID structure;
− use IoPciDeregister structure as input and output buffer;
− call the PciDeregister NAF service;
− NAF service Deregister Exchange_Id part of the Exchange Identifier;
− finally free the device driver session if no more PUF is using the NAF.

7.6.1.3.5 PciPutMessage

This function is in charge of providing a message, and associated data if any, from a PUF to a NAF.
Parameters are provided in the same order as indicated in the generic description of the PciPutMessage
function.

7.6.1.3.5.1 DLL version

The following operations shall take place, in order:

− get the address of the NAF"s PciPutMessage function exported by the NAF;
− call this address to pass parameter to the NAF (including the address of the PCI_EXID).

7.6.1.3.5.2 Device driver version

The following operations shall take place, in order:

− get the NAF"s device driver handle from ExID structure;
− use IoPciPutMessge structure as input and output buffer;
− call the PciPutMessage NAF service.

Page 381
Final draft prETS 300 838: March 1998

7.6.1.3.6 PciGetMessage

This function is in charge of providing a message, and associated data if any, from a PUF to a NAF.
Parameters are provided in the same order as indicated in the generic description of the PciGetMessage
function. Buffers provided by the PUF are directly used by the NAF.

7.6.1.3.6.1 DLL version

The following operations shall take place, in order:

− get the address of the NAF"s PciGetMessage function exported by the NAF;
− call this address to pass parameter to the NAF (including the address of the PCI_EXID).

7.6.1.3.6.2 Device driver version

The following operations shall take place, in order:

− get the NAF"s device driver handle from ExID structure;
− use IoPciGetMessge structure as input and output buffer;
− call the PciGetMessage NAF service.

7.6.1.3.7 PciSetSignal

This function allows a PUF to provide a direct information mechanism to be used by the NAF in case of
incoming event.

7.6.1.3.7.1 DLL version

Two mutually exclusive mechanisms are offered under Windows NT:

− a local semaphore mechanism;
− a callback function mechanism.

Once a mechanism is chosen by the PUF, the other is de-activated by the NAF for that particular PUF.
Both methods shall be supported by the NAF.

The first mechanism does not use the SignalProcedure parameter. This parameter shall be set to 0. The
second mechanism used the SignalProcedure to identify the function to be called by the NAF. In that
case, the SignalProcedure parameter shall not be equal to 0.

The following operations shall take place, in order:

− get the address of the NAF"s PciSetSignal function exported by the NAF;
− call this address to pass parameter to the NAF (including the address of the PCI_EXID).

7.6.1.3.7.2 Device driver version

A unique event mechanism is specified here.

The following operations shall take place, in order:

− get the NAF"s device driver handle from ExID structure;
− use IoPciSetSignal structure as input and output buffer;
− call the PciGetMessage NAF service.

Page 382
Final draft prETS 300 838: March 1998

7.6.1.3.7.3 Signal mechanism

7.6.1.3.7.3.1 DLL version

The semaphore mechanism uses a Handle created by the CreateSemaphore function of the Windows
NT API. The PUF process can then wait on the semaphore. When an inbound message is available, the
NAF will signal the semaphore causing the PUF to wake up and retrieve the message, by calling the
PciGetMessage function.

The PUF is responsible for giving an initialized semaphore to the NAF in the Signal parameter when
calling the function PciSetSignal. After de-registering or de-activating the signal mechanism, the PUF shall
also close the local semaphore.

7.6.1.3.7.3.2 Device driver version

The event mechanism uses an event created by the CreateEvent function of the Windows NT API. The
PUF process can then wait on the event by using the WaitForSingleObject function. On signal the PUF
wake up and retrieve a message, by calling the PciGetMessage function.

The PUF is responsible for giving an initialized event to the NAF in the Signal parameter when calling the
function PciSetSignal. After de-registering or de-activating the signal mechanism, the PUF shall also close
the local event.

7.6.1.3.7.4 Callback function mechanism

7.6.1.3.7.4.1 DLL version

The PUF supplies a pointer to a PUF resident notification function in the SignalProcedure parameter and
a PUF defined context value in the Signal parameter. Each time an inbound message is available, the
NAF calls the PUF"s notification function with the PUF context value in parameter. The PUF shall then call
the PciGetMessage function to retrieve the available message.

The call-back function may be called from either the process or interrupt context.

7.6.1.3.7.4.2 Device driver version

No call-back mechanism is available from Kernel to User mode.

7.6.1.3.7.5 De-activation mechanism

7.6.1.3.7.5.1 DLL version

To de-activate any signal mechanism the PciSetSignal function Signal and SignalProcedure parameters
shall be NULL. Once deactivated, the previous mechanism shall no longer be used by the NAF to call the
PUF.

7.6.1.3.7.5.2 Device driver version

The mechanism is the same as the one used in the DLL version.

7.6.1.4 Availability of NAF"s PCI_HANDLE

Under Windows NT, a NAF is loaded only once and the code of the DLL shall be declared as SHARED.
The DATA part of the DLL may be declared either as SHARED or not depending on the design of the
implementation.

No particular action is required for the NAF when loading or unloading with respect to registry information
concerning the NAF. When installing the NAF into the Windows NT system, the registry PCI variables
should be initialized as described in this ETS. If the NAF needs to be removed from system,
corresponding variables of the registry should be deleted at the same time.

Page 383
Final draft prETS 300 838: March 1998

7.6.2 Windows NT for Profile B

7.6.2.1 Windows NT (application level)

Under the operating system Windows NT Version 3.x the Profile B services are provided via a DLL. The
interface between applications and Profile B is realized as a function interface. An application can issue
Profile B function calls to perform Profile B operations.

The DLL providing the function interface shall be named "CAPI2032.DLL". It is a 32 bit DLL exporting
32 bit APIENTRY type functions.

The DLL functions are exported under following names and ordinal numbers:

CAPI_MANUFACTURER (reserved) CAPI2032.99
CAPI_REGISTER CAPI2032.1
CAPI_RELEASE CAPI2032.2
CAPI_PUT_MESSAGE CAPI2032.3
CAPI_GET_MESSAGE CAPI2032.4
CAPI_WAIT_FOR_SIGNAL CAPI2032.5
CAPI_GET_MANUFACTURER CAPI2032.6
CAPI_GET_VERSION CAPI2032.7
CAPI_GET_SERIAL_NUMBER CAPI2032.8
CAPI_GET_PROFILE CAPI2032.9
CAPI_INSTALLED CAPI2032.10

These functions can be called by an application according to the DLL conventions as imported functions.

In the Windows NT environment following types are used to define the functional interface:

WORD 16 bit unsigned integer;

DWORD 32 bit unsigned integer;

PVOID pointer to any memory location;

PVOID * pointer to a PVOID;

char* pointer to a character string;

DWORD * pointer to a 32 bit unsigned integer value.

7.6.2.1.1 Message operations

7.6.2.1.1.1 CAPI_REGISTER

Description

This is the operation the application uses to report its presence to Profile B. By passing the four
parameters messageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDataLen the
application describes its needs.

For a "normal" application, the size of the message buffer should be calculated using the following
formula:

MessageBufferSize = 1 024 + (1 024 * maxLogicalConnection)

Page 384
Final draft prETS 300 838: March 1998

Function call

DWORD APIENTRY CAPI_REGISTER (DWORD messageBufferSize,
DWORD maxLogicalConnection,
DWORD maxBDataBlocks,
DWORD maxBDataLen,
DWORD * pApplID);

Parameter Comment
messageBufferSize Size of Message Buffer
maxLogicalConnection Maximum number of logical connections
maxBDataBlocks Number of data blocks available simultaneously
maxBDataLen Maximum size of a data block
pApplID Pointer to the location where Profile B should place the assigned

application identification number

Return Value

Return Value Comment
0x0000 Registration successful - application identification number has been

assigned
All other values Coded as described in parameter info class 0x10xx

7.6.2.1.1.2 CAPI_RELEASE

Description

The application uses this operation to log off from Profile B. Profile B shall release all resources that have
been allocated.

The application is identified by the application identification number that had been assigned in the previous
CAPI_REGISTER operation.

Function call

DWORD APIENTRY CAPI_RELEASE (DWORD ApplID);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_REGISTER

Return Value

Return Value Comment
0x0000 Release of the application successful
All other values Coded as described in parameter info class 0x11xx

7.6.2.1.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to Profile B. The application identifies itself with an
application identification number.

Page 385
Final draft prETS 300 838: March 1998

Function call

DWORD APIENTRY CAPI_PUT_MESSAGE (DWORD ApplID,
PVOID pCAPIMessage);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_REGISTER
pCAPIMessage pointer to the message that is passed to Profile B

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter info class 0x11xx

NOTE: When the process returns from the function call the message memory area can be
reused by the application.

7.6.2.1.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from Profile B. The application can only retrieve
those messages intended for the stipulated application identification number. If there is no message
waiting for retrieval, the function returns immediately with an error code.

Function call

DWORD APIENTRY CAPI_GET_MESSAGE (DWORD ApplID,
PVOID * ppCAPIMessage);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_REGISTER
ppCAPIMessage Pointer to the memory location where Profile B should place the

pointer to the retrieved message

Return Value

Return Value Comment
0x0000 Successful - Message was retrieved from Profile B
All other values Coded as described in parameter info class 0x11xx
NOTE: The received message may become invalid the next time the application issues a

CAPI_GET_MESSAGE operation for the same application identification number.
This especially matters in multi threaded applications where more than one thread
may execute CAPI_GET_MESSAGE operations. The synchronization between
threads shall be done by the application.

Page 386
Final draft prETS 300 838: March 1998

7.6.2.1.2 Other functions

7.6.2.1.2.1 CAPI_WAIT_FOR_SIGNAL

Description

This operation is used by the application to wait for an asynchronous event from the CAPI.

Function call

This function returns as soon as a message from the CAPI is available.

DWORD APIENTRY CAPI_WAIT_FOR_SIGNAL (DWORD ApplID);

Parameter Comment
ApplID Application identification number that had been assigned by call of the

function CAPI_REGISTER

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter info class 0x11xx

7.6.2.1.2.2 CAPI_GET_MANUFACTURER

Description

With this operation the application determines the manufacturer identification of Profile B (DLL). SzBuffer
on call is a pointer to a buffer of 64 bytes. Profile B copies the identification string, coded as a zero
terminated ASCII string, to this buffer.

Function call

VOID APIENTRY CAPI_GET_MANUFACTURER (char* SzBuffer);

Parameter Comment
SzBuffer Pointer to a buffer of 64 bytes

7.6.2.1.2.3 CAPI_GET_VERSION

Description

With this function the application determines the version of Profile B as well as an internal revision
number.

Function call

DWORD APIENTRY CAPI_GET_VERSION (DWORD * pCAPIMajor,
DWORD * pCAPIMinor,
DWORD * pManufacturerMajor,
DWORD * pManufacturerMinor);

Page 387
Final draft prETS 300 838: March 1998

Parameter Comment
pCAPIMajor Pointer to a dword receiving Profile B major version number: 2
pCAPIMinor Pointer to a dword receiving Profile B minor version number: 0
pManufacturerMajor Pointer to a dword receiving manufacturer specific major number
pManufacturerMinor Pointer to a dword receiving manufacturer specific minor number

Return Value

Return Comment
0x0000 No error, version numbers are copied.

7.6.2.1.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application determines the (optional) serial number of Profile B. SzBuffer on call is
a pointer to a buffer of 8 bytes. Profile B copies the serial number string to this buffer. The serial number,
coded as a zero terminated ASCII string, represents seven digit number after the function has returned.

Function call

DWORD APIENTRY CAPI_GET_SERIAL_NUMBER (char * SzBuffer);

Parameter Comment
SzBuffer Pointer to a buffer of 8 bytes

Return Value

Return Comment
0x0000 No error

SzBuffer contains the serial number in plain text in the form of a 7-
digit number. If no serial number is provided by the manufacturer, an
empty string is returned.

7.6.2.1.2.5 CAPI_GET_PROFILE

Description

The application uses this function to get the capabilities from Profile B. SzBuffer on call is a pointer to a
buffer of 64 bytes. In this buffer Profile B copies information about implemented features, number of
controllers and supported protocols. CtrlNr contains the controller number (bit 0..6), for which this
information is requested.

DWORD APIENTRY CAPI_GET_PROFILE (PVOID SzBuffer,
DWORD CtrlNr);

Parameter Comment
SzBuffer Pointer to a buffer of 64 bytes
CtrlNr Number of Controller. If 0, only number of installed controllers is given

to the application.

Page 388
Final draft prETS 300 838: March 1998

Return Value

Return Comment
0x0000 No error
<> 0 Coded as described in parameter info class 0x11xx

Retrieved structure format:

Type Description
WORD number of installed controllers, least significant octet first
WORD number of supported B-channels, least significant octet first
DWORD Global Options (bit field):

0: internal controller supported
1: external equipment supported
2: Handset supported (external equipment shall be set also)
3: DTMF supported
4..31: reserved

DWORD B1 protocols support (bit field):
0: 64 kBit/s with HDLC framing, always set.
1: 64 kBit/s bit transparent operation with byte framing from the
network
2: CCITT Recommendation V.110 [17] asynchronous operation with
start/stop byte framing
3: CCITT Recommendation V.110 [17] synchronous operation with
HDLC framing
4: ITU-T Recommendation T.30 [14] modem for facsimile group 3
5: 64 kBit/s inverted with HDLC framing.
6: 56 kBit/s bit transparent operation with byte framing from the
network
7..31: reserved

DWORD B2 protocol support (bit field):
0: ISO 7776 [4] (X.75 SLP), always set
1: Transparent
2: SDLC [12]
3: LAPD according Q.921 [13] for D-channel X.25
4: ITU-T Recommendation T.30 [14] for facsimile group 3
5: Point to Point Protocol (PPP [10] [11])
6: Transparent (ignoring framing errors of B1 protocol)
7: reserved
8: reserved
9: V.120 asynchronous mode
10..31: reserved

DWORD B3 protocol support (bit field):
0: Transparent, always set
1: T.90NL with compatibility to T.70NL according to T.90
Appendix II [16].
2: ISO 8208 [3] (X.25 DTE-DTE)
3: X.25 DCE
4: ITU-T Recommendation T.30 [14] for facsimile group 3
5..31: reserved

6 DWORDs reserved for Profile B usage
5 DWORDs manufacturer specific information
NOTE: This function can be extended, so an application has to ignore unknown bits. Profile

B shall set every reserved field to 0.

Page 389
Final draft prETS 300 838: March 1998

7.6.2.1.2.6 CAPI_INSTALLED

Description

This function can be ued by an application to determine if the ISDN hardware and necessary drivers are
installed.

Function call

DWORD APIENTRY CAPI_INSTALLED (VOID)

Return Value

Return Comment
0x0000 Profile B is installed
Any other value Coded as described in parameter info class 0x11xx

7.6.2.2 Windows NT (device driver level)

For kernel-mode applications, the Profile B for Windows NT shall be implemented as kernel mode device
driver. The interface to such a kernel-mode device driver under Windows NT is based on I/O Request
Packets (IRPs) which can be sent to the driver, by either kernel-mode or user mode applications.

A CAPI20 device driver creates at least one CAPI20 device object which can be addressed by an
application. The Flags field of each device object shall be ORed with DO_DIRECT_IO after creation. For
identification each device object is given a name. The name of a CAPI20 device object is
\Device\CAPI20x, where x is a configured decimal ordinal number. The CAPI20 device object name can
be used by kernel-mode applications to send IRPs to the corresponding CAPI20 device driver.

A CAPI20 device driver can support multiple controllers. The implementation is free to create a single
device object for all supported controllers or a separate device object for each supported controller. The
controller numbers are assigned per CAPI20 device object starting with 1.

In order to be accessible by user-mode applications, a CAPI20 device driver creates a symbolic link object
for each CAPI20 device object. The name of the symbolic link object is \DosDevices\CAPI20x where x is
the same ordinal number as used for the device object name. This allows user-mode applications to get
access to the driver provided Profile B services using the name \\.\CAPI20x in a Win32 CreateFile()
operation.

To ensure the correct loading order of a CAPI20 driver, the driver shall be assigned to the group
"CAPI20". This is achieved by adding the REG_SZ value entry "Group" to the drivers service subkey in the
register.

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\<CAPI-Driver-Service>\

DisplayName:REG_SZ: CAPI20 Driver ...
ErrorControl:REG_DWORD: ...
Group: REG_SZ: CAPI20
ImagePath:REG_SZ: ...
Start:REG_DWORD: ...
Type:REG_DWORD: ...

The driver installation shall ensure that the group CAPI20 is listed in ServiceGroupOrder immediately
before the Group NDIS.

Page 390
Final draft prETS 300 838: March 1998

To permit the unambigous configuration of all CAPI20 device drivers a new comon subkey is created in
the Windows NT registry. This subkey is named CAPI20 and contains a subkey x for each CAPI20x
device object created by CAPI20 device drivers. During installation of a new CAPI20 device driver the
CAPI20 subkey shall be queried. If the CAPI20 subkey not exists already it shall be created by the
installation procedure. For each device object created by the new driver a new subkey x is created with
the lowest possible ordinal number: The ordinal number for the first CAPI20 device object is 1.Thus the
first installed CAPI20 device driver shall use the name \Device\CAPI201 for its first device object and the
name\Device\CAPI202 for its the second device object (if any) etc. The ordinal numbers claimed by the
new driver shall be remembered in the drivers private configuration data. When the driver is removed from
the system the deinstallation procedure shall remove the corresponding subkeys under the CAPI20
subkey too.

HKEY_LOCAL_MACHINE\SOFTWARE\CAPI20\

Contents:
1\

NumberOfControllers: REG_DWORD: <Number of supported Controllers>
Manufacturer: REG_SZ: <Manufacturer Name>
DeviceName: REG_SZ: CAPI201

/* For each supported controller a controller subkey is creadted: */
1\

Channels: REG_DWORD: <Number of B-channels supported by this controller>
2\
etc.

2\ ...

Every CAPI20 conformant driver shall be prepared to work in a chain of layered drivers. Thus the driver
shall not use any operation which is legal only for a highest level driver.

Every CAPI20 conformant driver shall be prepared to be unloaded, i.e. the driver shall set the entry point
of his Unload routine in the DriverObject passed to his DriverEntry routine. The Unload routine shall
release all previously claimed kernel and hardware resources to permit an new initialization of the driver at
a later time.

Every CAPI20 conformant driver shall handle the cancellation of Irp"s.

Every CAPI20 conformant driver shall handle the following major function codes:

IRP_MJ_CREATE
IRP_MJ_CLEANUP
IRP_MJ_CLOSE
IRP_MJ_READ
IRP_MJ_WRITE
IRP_MJ_SHUTDOWN
IRP_MJ_DEVICE_CONTROL
IRP_MJ_INTERNAL_DEVICE_CONTROL

To receive shutdown notifications from the system shutdown processing in a highest level driver, the
driver shall call IoShutdownNotification() in its DriverEntry routine but shall ignore any error returned by
this call.

Three types of IRP_MJ_xxx functions are used by an user mode application to communicate with the
Profile B device: IRP_MJ_DEVICE_CONTROL, IRP_MJ_READ and IRP_MJ_WRITE.

The IRP_MJ_INTERNAL_DEVICE_CONTROL function is reserved for the exclusive use by kernel mode
applications, i.e for inter device driver communication.

IRP_MJ_DEVICE_CONTROL is used for all CAPI20 functions except CAPI_GET_MESSAGE and
CAPI_PUT_MESSAGE.

Page 391
Final draft prETS 300 838: March 1998

The CAPI_GET_MESSAGE and CAPI_PUT_MESSAGE functions use IRP_MJ_READ/WRITE (user-
mode and kernel-mode applications) or IRP_MJ_INTERNAL_DEVICE_CONTROL (kernel mode
applications only).

The following DEVICE_CONTROL and INTERNAL_DEVICE_CONTROL codes are defined for the Profile
B functions:

/*
* the common device type code for CAPI20 conformant drivers
*/
#define FILE_DEVICE_CAPI20 0x8001

/*
* DEVICE_CONTROL codes for user AND kernel mode applications
*/
#define CAPI20_CTL_BASE 0x800
#define CAPI20_CTL_REGISTER (CAPI20_CTL_BASE+0x0001)
#define CAPI20_CTL_RELEASE (CAPI20_CTL_BASE+0x0002)
#define CAPI20_CTL_GET_MANUFACTURER (CAPI20_CTL_BASE+0x0005)
#define CAPI20_CTL_GET_VERSION (CAPI20_CTL_BASE+0x0006)
#define CAPI20_CTL_GET_SERIAL (CAPI20_CTL_BASE+0x0007)
#define CAPI20_CTL_GET_PROFILE (CAPI20_CTL_BASE+0x0008)

/*
* INTERNAL_DEVICE_CONTROL codes for kernel mode applications only
*/
#define CAPI20_CTL_PUT_MESSAGE (CAPI20_CTL_BASE+0x0003)
#define CAPI20_CTL_GET_MESSAGE (CAPI20_CTL_BASE+0x0004)

/*
* The wrapped control codes as required by the system
*/
#define CAPI20_CTL_CODE(function,method) \

CTL_CODE(FILE_DEVICE_CAPI20,function,method,FILE_ANY_ACCESS)

#define IOCTL_CAPI_REGISTER \
CAPI20_CTL_CODE(CAPI20_CTL_REGISTER, METHOD_BUFFERED)

#define IOCTL_CAPI_RELEASE \
CAPI20_CTL_CODE(CAPI20_CTL_RELEASE, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_MANUFACTURER\
CAPI20_CTL_CODE(CAPI20_CTL_GET_MANUFACTURER, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_VERSION \
CAPI20_CTL_CODE(CAPI20_CTL_GET_VERSION, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_SERIAL \
CAPI20_CTL_CODE(CAPI20_CTL_GET_SERIAL, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_PROFILE \
CAPI20_CTL_CODE(CAPI20_CTL_GET_PROFILE, METHOD_BUFFERED)

#define IOCTL_CAPI_MANUFACTURER \
CAPI20_CTL_CODE(CAPI20_CTL_MANUFACTURER, METHOD_BUFFERED)

#define IOCTL_CAPI_PUT_MESSAGE \
CAPI20_CTL_CODE(CAPI20_CTL_PUT_MESSAGE, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_MESSAGE \
CAPI20_CTL_CODE(CAPI20_CTL_GET_MESSAGE, METHOD_BUFFERED)

To transfer CAPI20 specific return values from the driver to kernel- or user-mode applications the status
code of the IRP is set accordingly. Cause only some IRP status codes are mapped directly to Win32 error
codes (return codes of DeviceIoControl(), ReadFile(), WriteFile()) the following status code representation
for CAPI20 errors (Info values) shall be used:

Page 392
Final draft prETS 300 838: March 1998

Info Windows NT Status code Win32 Error Code
0x1001 STATUS_TOO_MANY_SESSIONS ERROR_TOO_MANY_SESSIONS
0x1002 STATUS_INVALID_PARAMETER ERROR_INVALID_PARAMETER
0x1003 N.A.
0x1004 STATUS_BUFFER_TOO_SMALL ERROR_INSUFFICIENT_BUFFER
0x1005 STATUS_NOT_SUPPORTED ERROR_NOT_SUPPORTED
0x1006 N.A.
0x1007 STATUS_NETWORK_BUSY ERROR_NETWORK_BUSY
0x1008 STATUS_INSUFFICIENT_RESOURCES ERROR_NOT_ENOUGH_MEMORY
0x1009 N.A.
0x100a STATUS_SERVER_DISABLED ERROR_SERVER_DISABLED
0x100b STATUS_SERVER_NOT_DISABLED ERROR_SERVER_NOT_DISABLED
0x1101 STATUS_INVALID_HANDLE ERROR_INVALID_HANDLE
0x1102 STAUS_ILLEGAL_FUNCTION ERROR_INVALID_FUNCTION
0x1103 STATUS_TOO_MANY_COMMANDS ERROR_TOO_MANY_CMDS
0x1104 N.A.
0x1105 STATUS_DATA_OVERRUN ERROR_IO_DEVICE
0x1106 STATUS_INVALID_PARAMETER STATUS_INVALID_PARAMETER
0x1107 STATUS_DEVICE_BUSY ERROR_BUSY
0x1108 STATUS_INSUFFICIENT_RESOURCES ERROR_NOT_ENOUGH_MEMORY
0x1109 N.A
0x110a STATUS_SERVER_DISABLED ERROR_SERVER_DISABLED
0x100b STATUS_SERVER_NOT_DISABLED ERROR_SERVER_NOT_DISABLED

In Windows NT all the communication between a device object and an application is related to a file
object. For that reason a file object pointer (or a file handle) is used to identify a link between a CAPI20
device object and an user-mode or kernel-mode application instead of the application id. Any application
ids within Profile B messages are therefore ignored.

In the following the interface between the application and the Profile B device driver is described with
Win32 functions. These functions are available for user-mode applications only. The equivalent kernel
mode functions can be found in the Windows NT documentation.

7.6.2.2.1 Message operations

7.6.2.2.1.1 CAPI_REGISTER

Description

This is the operation the application uses to report its presence to Profile B. By passing the four
parameters MessageBufferSize,maxLogicalConnection, maxBDataBlocks and maxBDataLen the
application describes its needs for the connections it is going to accept or it will try to establish itself.

CAPI_REGISTER CAPI_CTL_REGISTER

Implementation

For the CAPI_REGISTER function the application shall get a handle to the Profile B device using the
Win32 CreateFile function and then send a CAPI_CTL_REGISTER to the Profile B device. With
CAPI_REGISTER the following data structure is passed on to the driver:

struct capi_register_params {
WORD MessageBufferSize,
WORD maxLogicalConnection,
WORD maxBDataBlocks,
WORD maxBDataLen

};

Page 393
Final draft prETS 300 838: March 1998

Only one CAPI_CTL_REGISTER may be sent with one handle if no CAPI_CTL_RELEASE is sent in
between. If an application program wants to register as more than one Profile B application, it shall obtain
several handles with CreateFile and send one CAPI_CTL_REGISTER with each handle.

EXAMPLE:
capi_handle = CreateFile("\\\\.\\CAPI201",
 GENERIC_READ | GENERIC_WRITE,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
 NULL);
r.MessageBufferSize = MessageBufferSize;
r.maxLogicalConnections = maxLogicalConnections;
r.maxBDataBlock = maxBDataBlocks;
r.maxBDataLen = maxBDataLen;
ret = DeviceIoControl(capi_handle,
 CAPI_CTL_REGISTER,
 &r,
 sizeof(struct capi_register_params),
 NULL,
 0,
 &ret_bytes,
 NULL);

7.6.2.2.1.2 CAPI_RELEASE

Description

The application uses this operation to log off from Profile B. This way the application signals Profile B that
all resources that have been allocated by Profile B for the application can be released again.

CAPI_RELEASE CAPI_CTL_RELEASE

Implementation

A CAPI_RELEASE can be performed in two ways. If the same handle is to be used again, an
CAPI_CTL_RELEASE shall be sent. If the handle is not used any more the handle may just be closed
using CloseHandle.

EXAMPLE:

ret = DeviceIoControl(capi_handle,
 CAPI_CTL_RELEASE,
 NULL,
 0,
 NULL,
 0,
 &ret_bytes,
 NULL);

or

CloseHandle(capi_handle);

7.6.2.2.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to Profile B. The application identifies itself with an
file handle.

CAPI_PUT_MESSAGE WriteFile()/CAPI_CTL_PUT_MESSAGE

Page 394
Final draft prETS 300 838: March 1998

Implementation

The CAPI_PUT_MESSAGE function can be performed by using either a WriteFile() operation or a
INTERNAL_DEVICE_CONTROL IRP. The INTERNAL_DEVICE_CONTROL method is available to kernel
mode applications only.

1) WriteFile() operation

With the WriteFile() operation one data buffer is sent to the CAPI20 device driver. This buffer shall contain
the message AND data associated with a DATA_B3_REQ message. The data (if available) shall be
placed into the buffer immediately following the message.

ret = WriteFile(capi_handle,
 (PVOID)msg, /* buffer for message + data */
 msg_length, /* length of message + data */
 &ret_bytes,

 &o_write);

The WriteFile() operation completes immediately, it does not wait for any network event. (normal
CAPI_PUT operation).

The buffer can be re-used by the application, as soon as the WriteFile() operation completes.

2) INTERNAL_DEVICE_CONTROL

Kernel mode applications may use an INTERNAL_DEVICE_CONTROL IRP with an IO_CONTROL code
CAPI_CTL_PUT_MESSAGE for the CAPI_PUT_MESSAGE Operation. With this IRP a pointer to the
following structure is passed in Parameters.DeviceControl.Type3InputBuffer to the CAPI20 device driver:

struct {
PVOID message;
PVOID data;

};

The buffer passed in the "message" field can be re-used by the application, as soon as the
INTERNAL_DEVICE_CONTROL completes. The buffer passed in the "data" field can be re-used by the
application as soon as the corresponding DATA_B3_CONF message is received.

7.6.2.2.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from Profile B. The application retrieves all
messages associated with the corresponding file handle from operation CAPI_REGISTER.

CAPI_GET_MESSAGE ReadFile()/CAPI_CTL_GET_MESSAGE

Implementation

The CAPI_GET_MESSAGE function can be performed by using either a ReadFile() operation or a
INTERNAL_DEVICE_CONTROL IRP. The INTERNAL_DEVICE_CONTROL method is available to kernel
mode applications only.

1) ReadFile() operation

With the ReadFile() operation one data buffer is received from the CAPI20 device driver. This buffer
contains the message AND data associated with a DATA_B3_IND message. The data (if available) is
placed into the buffer immediately following the message.

ret = ReadFile(capi_handle,
 buffer,
 buffer_size,
 &ret_bytes,
 &o_read);

Page 395
Final draft prETS 300 838: March 1998

The ReadFile() operation completes as soon as a CAPI message is available.

The size of the buffer provided by the application should be at least MessageBufferSize+512. If the buffer
provided by the application is too small to hold the message and the data, an error shall be returned and
the excess data is lost.

2) INTERNAL_DEVICE_CONTROL

Kernel mode applications may use an INTERNAL_DEVICE_CONTROL IRP with an IO_CONTROL code
CAPI_CTL_GET_MESSAGE for the CAPI_GET_MESSAGE Operation. With this IRP a pointer to the
following structure is passed in Parameters.DeviceControl.Type3InputBuffer to the CAPI20 device:

struct {
PVOID message;
PVOID data;

};

The CAPI20 device driver fills in the fields of this structure. When the INTERNAL_DEVICE_CONTROL
completes the field message contains a pointer to the CAPI message and the field data contains a pointer
to a data buffer associated with a DATA_B3_IND.

The message buffer can be re-used by the CAPI20 driver as soon as the application sends the next
CAPI_CTL_GET_MESSAGE.

The data buffer can be re-used byte the CAPI20 driver as soon as the applications sends a corresponding
DATA_B3_RES message.

7.6.2.2.1.5 CAPI_SET_SIGNAL

There is no CAPI_SET_SIGNAL function. The asynchronous signalling of a received message is done
implicitly by completing the corresponding operation (ReadFile() or INTERNAL_DEVICE_CONTROL).

7.6.2.2.2 Other functions

7.6.2.2.2.1 CAPI_GET_MANUFACTURER

Description

With this operation the application determines the manufacturer identification of Profile B. The offered
buffer shall have a size of at least 64 bytes. Profile B copies the identification string, coded as a zero
terminated ASCII string, to this buffer.

CAPI_GET_MANUFACTURER CAPI_CTL_GET_MANUFACTURER

Implementation

With this IO_CONTROL the manufacturer identification is read from the Profile B driver. A buffer of 64
bytes shall be provided by the application. The manufacturer identification is returned as zero terminated
ASCII string.

7.6.2.2.2.2 CAPI_GET_VERSION

Description

With this function the application determines the version of Profile B as well as an internal revision
number.

CAPI_GET_VERSION CAPI_CTL_GET_VERSION

Page 396
Final draft prETS 300 838: March 1998

Implementation

With this IO_CONTROL the version of the Profile B can be read. A buffer with the following structure shall
be provided by the application:

struct capi_version_params {
word CAPIMajor;
word CAPIMinor;
word ManufacturerMajor;
word ManufacturerMinor;

};

7.6.2.2.2.3 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application determines the (optional) serial number of Profile B. The offered buffer
shall have a size of 8 bytes. Profile B copies the serial number string to this buffer. The serial number,
coded as a zero terminated ASCII string, represents seven digit number after the function has returned.

CAPI_GET_SERIAL_NUMBER CAPI_CTL_GET_SERIAL_NUMBER

Implementation

With this IO_CONTROL the Profile B serial number can be read from the driver. A buffer of 8 bytes shall
be provided by the application. The serial number is returned as a zero terminated ASCII string.

7.6.2.2.2.4 CAPI_GET_PROFILE

Description

With this IO_CONTROL the Profile B capabilities can be read from the driver. A buffer of 64 bytes shall be
provided by the application. The same profile structure as for the Windows NT application level interface is
returned by the driver.

CAPI_GET_PROFILE CAPI_CTL_GET_PROFILE

Implementation

With this IO_CONTROL the Profile B capabilities can be read from the driver.

7.7 Windows 95

7.7.1 Windows 95 specific implementation for Profile A

7.7.1.1 Windows 95 Operating System specific implementation for Profile A

7.7.1.1.1 Introduction

Under Windows 95, every NAF should provide three basic mechanisms to support the ISDN PCI
exchange method:

- a PCI DLL (16 bits) to allow user applications (16 bits) access to the ISDN PCI features;
- a PCI DLL (32 bits) to allow user applications (32 bits) access to the ISDN PCI features;
- a PCI VxD to provide ISDN PCI features to other virtual devices and the PCI DLL described below.

This VxD offers virtual device services to other virtual device, a virtual device API to the 16 bits PCI DLL
and I/O Control to the 32 bits PCI DLL.

User mode applications (16 bits or 32 bits) shall use the DLL mechanism (resp 16 or 32 bits) to access
ISDN PCI features.

Page 397
Final draft prETS 300 838: March 1998

PUF VxD VxD PCI
(naf)

DLL16 bits
(naf)

DLL32 bits
(naf)

PUF 32 bitsPUF 16 bits

API

IOCTL

Services

Figure 38 bis

7.7.1.1.2 Description of the PCI DLL (16 bits)

The PCI DLL (16 bits) is designed to offer the DLL mechanism of Profile A, as described in
subclause 7.2.1, without modification for the user application. The application interface is identical as
under Windows 3.x but the PCI DLL should map every ISDN PCI function using the virtual device API
exported by the VxD. The Windows 95 DLL naming convention is the same as under Windows 3.x.

7.7.1.1.3 Description of the PCI DLL (32 bits)

The PCI DLL 32 bits is designed to offer the DLL mechanism of Profile for 32 bits PUFs. The PCI DLL
should map every ISDN PCI function using the device IOCTL interface.

7.7.1.1.4 Description of the VxD

The VxD offers three different accesses to its features. Each access is designed to provide the most
efficient interface depending on the calling PUF processor mode. The three accesses are the following:

- the VxD should export an API for the 16 bits PCI DLL;
- the VxD should implement the device IOCTL interface for the 32 bits PCI DLL;
- the VxD shall offer virtual device services for other VxDs.

Each kind of access will be described in a further subclause.

7.7.1.1.4.1 Virtual Device API

The 16 bits PCI DLL should use protected mode API procedures of the VxD. To make these procedures
available, the PCI VxD should declare them as parameters in the Declare_Virtual_Device macro as
follows:

Declare_Virtual_Device VPCID,\ // Name of the VxD
 VERS_MAJ, \ // Major number version

VERS_MIN, \ // Minor number version
VPCID_Control, \ // Event handler
VPCID_DEVICE_ID,\ // Device Identifier
Undefined_Init_Order, \ // Intialization order
VPCID_handler, \ // Real mode handler
VPCID_handler // Protected mode handler

The PCI DLL retrieves an entry point address for an API procedure for a given virtual machine by calling
the Get Device Entry Point Address function (Interrupt 2Fh Function 1684h). The BX register is set to the
identifier for the virtual device. The Virtual Machine Manager (VMM) returns an address to the DLL to
indirectly enter the API procedure.

Page 398
Final draft prETS 300 838: March 1998

This can easily be wrapped into a GetPCIEntryPoint function in C as follows:

typedef unsigned long (far *PCI_ENTRY_POINT)(void);
PCI_ENTRY_POINT GetPCIEntryPoint(WORD wDeviceID)

{
struct SREGS sRegister;
union REGS uRegister;
memset(&sRegister,0,sizeof(sRegister));
uRegister.x.ax = 0x1684; // Get device entry point
uRegister.x.bx = wDeviceID; // VxD ID number
int86x(0x2F,&uRegister,&uRegister,&sRegister); // Generate INT 2F
return((PCI_ENTRY_POINT)MK_FP(sRegister.es,uRegister.di)); // returned in ES:DI
}

When the DLL calls the entry point address, the AX register contains one of the following PCI function
number:

#define PCI_GETHANDLES 0x800
#define PCI_GETPROPERTY 0x801
#define PCI_REGISTER 0x802
#define PCI_DEREGISTER 0x803
#define PCI_PUTMESSAGE 0x804
#define PCI_GETMESSAGE 0x805
#define PCI_SETSIGNAL 0x806

The DLL should use the Parameter Input structures defined in subclause 7.7.1.1.3.2 Device IOCTL
interface and place the address of this structure in ES:BX as follows:

BOOL VxDAPICall(void far * fp)
{
_asm les bx, dword ptr fp
_asm mov ax, VPCID_DEVICE_ID
_asm call dword ptr [API] // API = GetPCIEntryPoint
_asm jc Error
return TRUE;
Error:
return FALSE;
}

The VMM saves the registers and calls the PCI VxD corresponding API procedure, placing the handle of
the current virtual machine in the EBX register and the address of a Client_Reg_Struc structure in the
EBP register. This structure is defined in vmm.h. The PCI VxD shall set its return values in the
Client_Reg_Struc structure.

7.7.1.1.4.2 Device IOCTL interface

The virtual device API access is not available for the 32 bits PCI DLL, VMM assumes it was called by a 16
bits application and crashes in this case. The 32 bits PCI DLL should use device I/O control to access the
PCI VxD. Windows 95 implements the interface through the DeviceIoControl function which sends
commands and data directly to the VxD. When the DeviceIoControl function fails, the GetLastError
function retrieves the error value. The CreateFile function is the way to obtain a handle on the PCI VxD.
Once the device handle is available, it can be used in a call to DeviceIoControl:

BOOL DeviceIoControl (HANDLE hDevice,
DWORD PciCode,
LPVOID InputParameter, // Structure which depends on the called exchange method function

and contains
// the input parameters

DWORD InputParameterSize, // Size of the InputParameter structure
LPVOID OutputParameter, // Structure which depends on the called exchange method function

and contains
// the output parameters

DWORD OutputParameterSize, // Size of the OutputParameter structure
 LPDWORD pnOut, // Number of bytes actually placed into the OutputParameter structure

LPOVERLAPPED lpovlap // set only if asynchronous mode (see 7.7.1.4.7.1.2)
);

In this call, the parameter PciCode is a code the PCI VxD uses to identify the exchange method function
to process.

The 32 bits PCI DLL"s call to DeviceIoControl turns into a W32-DeviceIoControl event message to the PCI
VxD. The VxD receives a DIOC structure in ESI with all the parameters described before.

Page 399
Final draft prETS 300 838: March 1998

The PciCode are the following:

#define PCI_CTL_GETHANDLES 0x800
#define PCI_CTL_GETPROPERTY 0x801
#define PCI_CTL_REGISTER 0x802
#define PCI_CTL_DEREGISTER 0x803
#define PCI_CTL_PUTMESSAGE 0x804
#define PCI_CTL_GETMESSAGE 0x805
#define PCI_CTL_SETSIGNAL 0x806

The Parameter Input or Output structures are the following:

#define COMMON_MAX_SIZE 4096
struct IoPciRegister
{

PCI_INTEGER iReturnCode;
struct pci_register PCIRegisterInfo;
PCI_EXID ExID;

}

struct IoPciDeregister
{

PCI_INTEGER iReturnCode;
PCI_EXID ExID;

}

struct IoPciGetProperty
{

PCI_INTEGER iReturnCode;
PCI_HANDLE PCIHandle;
PCI_INTEGER MaximumSize;
BYTE Property[COMMON_MAX_SIZE];
PCI_INTEGER ActualSize;

}

struct IoPciPutMessage
{

PCI_INTEGER iReturnCode;
 PCI_EXID ExID;

PCI_MPB PCIMPB;
BYTE Message[COMMON_MAX_SIZE];
BYTE Data[COMMON_MAX_SIZE];

}

struct IoPciGetMessage
{

PCI_INTEGER iReturnCode;
 PCI_EXID ExID;

PCI_MPB PCIMPB;
BYTE Message[COMMON_MAX_SIZE];
BYTE Data[COMMON_MAX_SIZE];

}

PciGetHandles and PciSetSignal are only used by the PUF. See subclause 7.7.1.4.7.1.2 for details on
how the DLL deals with the signal mechanism.

7.7.1.1.4.3 Virtual Device Services

Other virtual devices should directly access the PCI VxD by calling the VxDcall macro. The PCI VxD shall
use the Begin_Service_Table and End_Service_Table macro to declare its services. The declaration shall
be made as follows:

VPCID_DEVICE_ID EQU ??h //// Every PCI VxD shall provide a unique device identifier. If two
different NAF provide the

//// same device identifier, they will not be able to be used simultanously.
Begin_Service_Table VPCID

VPCID_Service VPCID_GetVersion,LOCAL
VPCID_Service VPCID_MessageOperations,LOCAL

End_Service_Table VPCID

This service table declaration should be placed in an include file so that other virtual devices are able to
import PCI services by including the file rather than recreating the declaration. If a virtual device
includes many services table declarations, it shall change VPCID in VxxxD where xxx represents every
NAF provider. There is another method for a virtual device which wants to dynamically choose its NAF
VxD. First it shall include the following service table declaration:

#define VPCID_DEVICE_ID UNDEFINED_DEVICE_ID

Page 400
Final draft prETS 300 838: March 1998

Begin_Service_Table (VPCID, VxD)
Declare_Service (VPCID_GetVersion, LOCAL)
Declare_Service (VPCID_MessageOperations, LOCAL)

End_Service_Table (VPCID, VXD)

The VxDCall generates the following code, namely an INT 20H instruction that"s followed in memory by
a 32-bit service identifier. The high-order 16 bits of this identifier uniquely identify the VxD being called.
The low-order 16 bits index a transfer vector defined by the called VxD. A PUF VxD shall defines a
VxDPCICall macro in order to call a NAF VxD with a device identifier retrieved by a pciGetHandles call.
The VxDPCICall macro shall be as follows:

#define VxDPCICall(pci_device_id,service) \
_asm mov ebx, pci_device_id \
_asm mov [label], ebx \
_asm _emit 0xcd \
_asm _emit 0x20 \
_asm _emit (GetVxDServiceOrdinal(service)& 0xff) \
_asm _emit (GetVxDServiceOrdinal(service) >> 8) & 0xff \
_asm label: \
_asm _emit 0x90 \
_asm _emit 0x90

7.7.1.1.4.3.1 VPCID_GetVersion service

Depending on a computer"s configuration, a VxD may fail to be loaded when Windows 95 starts. This
means a virtual device that uses services provided by the PCI VxD shall verify that those PCI services are
available before calling them. To verify the PCI services, the calling virtual device shall attempt to call the
Get_Version Service of the PCI VxD. If the PCI VxD has not been loaded, the VMM (Virtual Machine
Manager) sets the carry flag and returns zero in the AX register. If the PCI VxD has been loaded, it clears
the carry flag and returns its version number in the AX register.

7.7.1.1.4.3.2 VPCID_MessageOperations service

This service is a register based service. All the parameters are passed in registers and results are
returned in registers as described in VxD subclauses of 7.7.1.4. The service shall preserve all registers it
does not explicitly use to return values in. The AL register contains the PCI function number and other
client registers are used for additional parameters. PCI function return code shall set in the AX register.

7.7.1.2 Implementation of basic type

typedef short PCI_INTEGER
typedef char far * PCI_BYTEARRAY

#ifdef VxD
typedef DWORD PCI_HANDLE // Device Identifier

#else
typedef char far * PCI_HANDLE // name of the NAF dll. Maximum length of the complete DLL

name is
 // fixed to 256

#endif

typedef struct {
HANDLE DLLInstance;
PCI_INTEGER Exchange_Id;
} PCI_EXID;

typedef void (__stdcall * PCI_PROCEDURE)();

// ----- PCI Structures

struct pci_mpb
{
PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;
};

typedef struct pci_mpb PCI_MPB;

struct pci_register // Structure containing registering info.
{
PCI_INTEGER PUFVersion; // Give PUF version.
PCI_INTEGER PUFType; // Give PUF type.
PCI_INTEGER MaxMsgSize; // return: max. size of a message.
};

Page 401
Final draft prETS 300 838: March 1998

typedef struct pci_register PCI_REGISTER;

struct pci_opsys // Structure containing registering info.
{
int DummyParameter; // No specific requirement for Windows 95.
};

typedef struct pci_opsys PCI_OPSYS;

7.7.1.3 C Function prototypes

PCI_INTEGER PciGetHandles (
PCI_INTEGER MaxHandles,
PCI_BYTEARRAY PCIHandles,
PCI_INTEGER far * ActualHandles);

PCI_INTEGER PciGetProperty (
PCI_HANDLE PCIHandle,
PCI_INTEGER MaximumSize,
PCI_BYTEARRAY Property,
PCI_INTEGER *ActualSize);

PCI_INTEGER PciRegister (
PCI_HANDLE PCIHandle,
struct pci_register *PCIRegisterInfo,
struct pci_opsys * PCIOpSysInfo,
PCI_EXID *ExID);

PCI_INTEGER PciDeregister (
PCI_EXID *ExID);

PCI_INTEGER PciPutMessage (
PCI_EXID *ExID,
PCI_MPB *PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data);

PCI_INTEGER PciGetMessage (
PCI_EXID *ExID,
PCI_MPB *PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data);

PCI_INTEGER PciSetSignal (
PCI_EXID *ExID,
PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure);

7.7.1.4 Description of functions

This subclause describes the implementation under Windows 95 of ISDN PCI exchange method
functions. For 16 bits PUFs, functions are the same as described in subclause 7.2.1.4. For 32 bits PUFs
and VxD PUFs, functions are described in the following subclauses.

7.7.1.4.1 PciGetHandles

This function provides a way to get all available NAFs.

7.7.1.4.1.1 16 bits PUF

The description is identical as in subclause 7.2.1.4.1.

7.7.1.4.1.2 32 bits PUF

Under Win95, the PciGetHandles uses a PCI.INI file in the WINDOWS directory to get available
PCI_HANDLEs. The section [Drivers32] in the PCI.INI file contains all entries of installed NAFs. Each
entry has the following format:

pciDriver<number> = DLLName(number=1..32)

Page 402
Final draft prETS 300 838: March 1998

The following operations shall get all names of installed NAF drivers:

loops from 1 to 32
- constructs the keyName « pciDriver » associated with the current loop value;
- issues a GetPrivateProfileString using:

sectionKey = « DRIVERS 32»;
the keyName constructed before;
no default value;
a maximum size equal to 256;
FileName="PCI.INI".

7.7.1.4.1.3 VxD

Under Win95, the PciGetHandles checks the registry to see the value under the
PciDriverIdentifier<number> key in:

HKLM\System\CurrentControlSet\Control\SessionManager\KnownVxDs.

The following operations shall get all identifiers of installed NAF VxD:

- open the KnownVxDs Key of the registry;
- read each subkey of the previously opened key in the form pciDriver<number>;
- close the PCI key of the registry.

7.7.1.4.2 PciGetProperty

This function provides the PUF with the property of the NAF.

7.7.1.4.2.1 16 bits PUF

The description is identical as in subclause 7.2.1.4.2.

7.7.1.4.2.2 32 bits PUF

The following operations shall take place in order:

a) load the 32 bits PCI DLL;
b) call the pciGetProperty exported by this DLL;
c) free the 32 bits PCI DLL.

7.7.1.4.2.3 VxD

The following operations shall take place in order:

a) call the GetVersion Service with VxDcall macro;
b) verify that the VxD has been loaded;
c) call the MessageOperations service with VxDCall macro and the following registers:

Name Parameter Value Comment
PUF Version AH See table 8 in subclause 5.3.1.4
Function number AL 0x01
MaximumSize ECX Call value
NAFProperty EDX Return value
ActualSize ESI Return value

Page 403
Final draft prETS 300 838: March 1998

The function return value (listed below) is set in the AX register

Success
InvalidPCIHandle
NAFnotavailable
NAFBusy
PropertyBufferTooSmall

7.7.1.4.3 PciRegister

This function provides an association between a PUF and a NAF.

7.7.1.4.3.1 16 bits PUF

The description is identical as in subclause 7.2.1.4.3.

7.7.1.4.3.2 32 bits PUF

The following operations shall take place in order:

- load the DLL;
- provide the DLL instance part of the exchange Identifier with the DLL instance;
- call the pciRegister function exported by the 32 bits PCI DLL.

7.7.1.4.3.3 VxD

The PUF calls the MessageOperations service with VxDCall macro and the following registers:

Name Parameter Value Comment
PUF Version AH See table 8 in subclause 5.3.1.4
Function number AL 0x02

PCIRegisterInfo ECX Call and
return value

ExID EDX Return value

The function return value (listed below) is set in the AX register.

Success
NAFnotavailable
NAFBusy
MaxPUFsExceeded
InvalidPUFType
InvalidPUFVersion
InvalidRegisterInfoStructure

7.7.1.4.4 PciDeregister

This function breaks an existing association between a PUF and a NAF.

7.7.1.4.4.1 16 bits PUF

The description is identical to that in subclause 7.2.1.4.4.

Page 404
Final draft prETS 300 838: March 1998

7.7.1.4.4.2 32 bits PUF

The following operations shall take place in order:

a) call the PciDeregister function exported by the 32 bits PCI DLL;
b) free the 32 bits PCI DLL.

7.7.1.4.4.3 VxD

The PUF calls the MessageOperations service with VxDCall macro and the following registers:

Name Parameter Value Comment
PUF Version AH See table 8 in subclause 5.3.1.4
Function number AL 0x03
ExID EDI Call value

The function return value (listed below) is set in the AX register.

Success
InvalidExID
NAFnotavailable
NAFBusy

7.7.1.4.5 PciPutMessage

This function provides a message and associated data from a PUF to a NAF.

7.7.1.4.5.1 16 bits PUF

The description is identical as in subclause 7.2.1.4.5.

7.7.1.4.5.2 32 bits PUF

The PUF calls the PciPutMessage function exported by the 32 bits PCI DLL.

7.7.1.4.5.3 VxD

The PUF calls the MessageOperations service with VxDCall macro and the following registers:

Name Parameter Value Comment
PUF Version AH See table 8 in subclause 5.3.1.4
Function number AL 0x04
PCIMBP ECX Call value
Message EDX Call value
Data ESI Call value
ExID EDI Call value

The function return value (listed below)is set in the AX register.

Success
InvalidExID
NAFnotavailable
NAFBusy
InvalidPCIMPB
InvalidMessageBuffer
PCIMBPTooSmall
MessageBufferTooSmall
MessageTooLarge
DataBufferRequired

Page 405
Final draft prETS 300 838: March 1998

7.7.1.4.6 PciGetMessage

This function provides a message and associated data from a NAF to a PUF.

7.7.1.4.6.1 16 bits PUF

The description is identical as in subclause 7.2.1.4.6.

7.7.1.4.6.2 32 bits PUF

The PUF calls the PciGetMessage function exported by the 32 bits PCI DLL.

7.7.1.4.6.3 VxD

The PUF calls the MessageOperations service with VxDCall macro and the following registers:

Name Parameter Value Comment
PUF Version AH See table 8 in subclause 5.3.1.4
Function number AL 0x05
PCIMBP ECX Call and return value
Message EDX Return value
Data ESI Return value
ExID EDI Call value

The function return value (listed below) is set in the AX register.

Success
InvalidExID
NAFnotavailable
NAFBusy
InvalidPCIMPB
InvalidMessageBuffer
PCIMBPTooSmall
MessageBufferTooSmall
MessageTooLarge
DataBufferTooSmall

7.7.1.4.7 PciSetSignal

This function provides a direct information mechanism to be used by the NAF in case of incoming events.

7.7.1.4.7.1 Signal mechanism

7.7.1.4.7.1.1 16 bits PUF

The two mutually exclusive mechanisms described in subclause 7.2.1.4.7 shall be provided by the NAF.

Page 406
Final draft prETS 300 838: March 1998

7.7.1.4.7.1.2 32 bits PUF

The two mutually exclusive mechanisms described in subclause 7.2.1.4.7 shall be provided by the 32 bits
PCI DLL under Windows 95. The 32 bits PCI DLLs is in charge of the asynchronous signalling when the
PCI_CTL_ GETMESSAGE is completed.

To activate signal mechanism, the PUF calls the PciSetSignal function exported by the 32 bits PCI DLL.
When the PUF activates this mechanism, the 32 bits PCI DLL shall use the PciGetMessage with the
lpOverlapped parameter set in the DeviceIoControl call. Message and data buffers shall be provided by
the DLL. The hEvent member of the OVERLAPPED structure specifies the handle of an event that the
system sets to the signaled state when the VxD has completed the operation. If DeviceIoControl
completes the operation before returning, it returns TRUE otherwise it returns FALSE and sets the
extended error information to ERROR_IO_PENDING. When a new message is available, the
PciGetMessage is completed and the DLL can access its buffers. Then the 32 bits PCI DLL shall notify
the PUF of the new incoming message with the signal mechanism desired.

The PUF calls the PciSetSignal function exported by the 32 bits PCI DLL.

7.7.1.4.7.1.3 VxD PUF

A VxD PUF shall only activate the procedure callback mechanism. The NAF VxD calls the callback
function as a near 32 bits function.

The PUF calls the MessageOperations service with VxDCall macro and the following registers:

Name Parameter Value Comment
PUF Version AH See table 8 in subclause 5.3.1.4
Function number AL 0x06
Signal ECX Call value Always NULL
Signal Procedure EDX Call value
ExID EDI Call value

The function return value (listed below) is set in the AX register.

Success
InvalidExID
NAFnotavailable
NAFBusy
InvalidSignalNumber

7.7.1.4.7.2 De activation mechanism

To de-activate any signal mechanism, the PciSetSignal function signal and SignalProcedure parameters
shall be NULL. Once de-activated, the previous mechanism shall no longer be used by the NAF to call the
PUF.

7.7.1.5 Availability of NAF"s PCI_HANDLE

To be accessible via the PciGetHandles function call, a NAF shall issue a declaration action. The inverse
action - extraction from the list of available NAFs - is also described. These actions are operating system
specific.

7.7.1.5.1 Declaration action

First, the NAF should get the list of available PCI_HANDLES to check if not already declared. If not yet
declared, the NAF:

- includes its own PCI_HANDLES into the list of the [Drivers] section of PCI.INI file;
- includes its own PCI_HANDLES into the list of the [Drivers32] section of PCI.INI file;
- includes its unique VxD identifier in the registry.

Page 407
Final draft prETS 300 838: March 1998

7.7.1.5.2 Extraction action

First, the NAF may get the list of available PCI_HANDLES to check if already declared. If so, the NAF:

- removes its own PCI_HANDLES from the [Drivers] list in "PCI.INI";
- removes its own PCI_HANDLES from the [Drivers32] list in "PCI.INI";
- removes its VxD identifier from the registry.

7.7.2 Windows 95 for Profile B

7.7.2.1 Windows 95 (application level)

Under the operating system Windows 95, three types of user-mode applications can access Profile B:

- DOS based applications;

- Windows 3.x based applications (16-bit);

- Windows 95 based applications (16 bit/32-bit);

Every type of application is able to use Profile B.

Interface Design:

a) DOS-based applications continue to use the software interrupt mechanism of Profile B as
described in subclause 7.1: MS-DOS . Additionally a FAR CALL (after pushing flags) to the address
of the Profile B shall be supported by an implementation.

b) Windows based applications (16-bit) use the DLL mechanism of Profile B as described in
subclause 7.2: Windows (application level) without modifications. The CAPI20.DLL provided
under Windows 95 has an identical interface to applications.

c) Windows based applications (32-bit) can use the DLL mechanism as described in
subclause 7.6.2.1: Windows NT (application level) without modifications. The CAPI2032.DLL
provided under Windows 95 has the identical interface to applications as in Windows NT.

NOTE: Under Windows 95 the provided DLLs have the same naming convention as in
Windows 3.x resp. Windows NT. That implies that a Profile B application written for
Windows 3.x also runs under Windows 95.

7.7.2.2 Windows 95 (ODL)

The Profile B for Windows 95 shall be implemented as a Virtual Device Driver (VxD). The interface to
such a kernel-mode driver is defined by exported Virtual Device Services for other virtual devices and a
Virtual Device API for protected mode applications (16-bit or 32-bit) accessing the features of the virtual
device (i.e. CAPI20.DLL / CAPI2032.DLL). Both interfaces exchange information by register values. For
that, the exchange mechanism in subclause 7.1.2: MS-DOS is taken and adopted to the 32-bit
environment where necessary. The CAPI VxD shall also hook the software interrupt F1 to offer Profile B to
DOS based applications.

User-mode applications shall not use the DDL interface directly. Instead they shall use the defined access
methods (i.e. software interrupt or DLL mechanism) to access Profile B.

Page 408
Final draft prETS 300 838: March 1998

Architectural Overview:

Figure 39: Architectural overview

Virtual Device Services can be used by other virtual devices by including an appropriate include file
which contains the service table declaration. A virtual device calls CAPI VxD services using the VxDcall
macro. To verify the CAPI-VxD services the calling virtual device shall attempt to call the Get_Version
service of CAPI-VxD. If the CAPI-VxD has not been loaded, the VMM sets the carry flag and returns zero
in register AX. The virtual device providing Profile B exports one Profile B specific service: an access to
the message exchange functions described in this subclause. Information is exchanged directly by
registers.

The Virtual Device API is used by CAPI20.DLL and CAPI2032.DLL . These DLLs shall retrieve an
entrypoint address for this Virtual Device API procedure for their virtual machine. The CAPI VxD can
obtain the register information of the calling application via the Client_Reg_Struc structure.

The CAPI-VxD offers synchrony services. If any Profile B service is entered while an asynchrony interrupt
is processed, the return value 0x1107 (internal busy condition) is returned in register AX.

Any VxD has a unique device ID. The CAPI-VxD has the device ID 0x3215.

Service table declaration from CAPI-VxD:

VCAPID_DEVICE_ID EQU 3215h
Begin_Service_Table VCAPID

VCAPID_Service VCAPID_Get_Version, LOCAL
VCAPID_Service VCAPID_MessageOperations, LOCAL

End_Service_Table VCAPID

In this subclause the term pointer refers to the case of the 16 Bit Virtual Device API to a 16:16
(segmented) pointer to a memory location and in case of the 32 Bit Virtual Device API to a 0:32 near flat
pointer to a memory location.

7.7.2.2.1 Message operations

7.7.2.2.1.1 CAPI_REGISTER

Description

This is the function the application uses to report its presence to Profile B. By passing the four parameters
ECX, EDX, ESI and EDI the application describes its needs.

Page 409
Final draft prETS 300 838: March 1998

For a "normal" application the size of the message buffer should be calculated using the following formula:

ECX = 1 024 + (1 024 * EDX)

In the EDX register the application indicates the maximum number of logical connections opened
simultaneously. An attempt to open more logical connections than stipulated here can be acknowledged
with an error message from Profile B.

In the ESI register the application sets the maximum number of received B3 data blocks that can be
reported to the application simultaneously. The number of simultaneously available B3 data blocks has a
decisive effect on the throughput of B3 data in the system and should be between 2 and 7. There shall be
room for at least two B3 data blocks.

In the EDI register the application sets the maximum size of the application data to be transmitted and
received, that is the maximum data length parameter in messages DATA_B3_REQ and DATA_B3_IND .
The default value for the protocol ISO 7776 [4] (X.75) is 128 octets. Profile B shall support at least up to
2 048 octets, if an application sets register EDI with corresponding values.

The application number is supplied in the AX register. In the event of an error, the AX register is returned
with the value 0. The cause of the error is held in the BX register in this case.

CAPI_REGISTER 0x01

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x01
ECX Size of message buffer
EDX Maximum number of level 3 connections
ESI Number of B3 data blocks available simultaneously
EDI Maximum size of a B3 data block

Return Value

Return Value Comment
AX <> 0 Application number (ApplID)

0x0000 Registration error, cause of error in BX register
BX if AX == 0, coded as described in parameter Info class

0x10xx

NOTE: If the application intends to open a maximum of one layer 3 connection simultaneously
and the standard protocols are used, the following register assignment is
recommended:
ECX = 2 048, EDX = 1, ESI = 7, EDI = 128
The resulting memory requirement is 2 944 bytes.

7.7.2.2.1.2 CAPI_RELEASE

Description

The application uses this function to log off from Profile B. The memory area indicated in the
CAPI_REGISTER is released. The application is identified by the application number in the EDX register.
Any errors that occur are returned in register AX.

Page 410
Final draft prETS 300 838: March 1998

CAPI_RELEASE 0x02

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0x02
EDX Application number

Return Value

Return Value Comment
AX 0x0000 No error

<> 0 Registration error, coded as described in parameter Info
class 0x11xx

7.7.2.2.1.3 CAPI_PUT_MESSAGE

Description

With this function the application transfers a message to Profile B. A pointer is transferred to the message
in the EBX register. The application is identified via application number in the EDX register. Any errors that
occur are returned in register AX.

CAPI_PUT_MESSAGE 0x03

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0x03
EBX pointer to the message
EDX Application number

Return Value

Return Value Comment
AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx
NOTE: After CAPI_PUT_MESSAGE the application can use the memory area of the

message again. The message shall not be modified by Profile B.

Page 411
Final draft prETS 300 838: March 1998

7.7.2.2.1.4 CAPI_GET_MESSAGE

Description

With this function, the application retrieves a message from Profile B. The application can only retrieve
those messages intended for the stipulated application number. A pointer is set to the message in the
EBX register. If there is no message for the application, the function returns immediately. Register AX
contains the corresponding error value. The application is identified via the application number in the EDX
register. Any errors that occur are returned in register AX.

CAPI_GET_MESSAGE 0x04

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0x04
EDX Application number

Return Value

Return Value Comment
AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx
EBX Pointer to message, if available

NOTE: The message may be invalidated the next time CAPI_GET_MESSAGE is called.

7.7.2.2.2 Other functions

7.7.2.2.2.1 CAPI_SET_SIGNAL

Description

The application can use this function to activate usage of the synchron (non-interrupt) call-back function. A
pointer to an interrupt call-back function is specified in the EBX register. The signalling function can be
deactivated by a CAPI_SET_SIGNAL with register assignment EBX = 0. The application is identified via
the application number in the EDX register. Any errors that occurred are returned in the AX register.

CAPI_SET_SIGNAL 0x05

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0x05
EDX Application number
EDI Parameter passed to call-back function
EBX Pointer to call-back function

Page 412
Final draft prETS 300 838: March 1998

Return Value

Return Value Comment
AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx
NOTE: The call-back function is always called in a synchron environment, i.e. outside any

hardware interrupt condition. It is called as a NEAR function in 32-bit environment,
so it shall return by a RET. In case of a usage via the Virtual Device API (i.e. not
from another Virtual Device Driver), the context of the calling VM is available.
The call-back function is called by Profile B, after
- any message is queued in application"s message queue
- a notified busy condition is cleared
- a notified queue full condition is cleared
Interrupts are enabled. The call-back function shall be terminated via RET. All
registers shall be preserved.
Profile B shall not call this function recursively. If necessary, the call-back function
shall be called again after returning to Profile B.
The call-back function is allowed to use Profile B operations
CAPI_PUT_MESSAGE , CAPI_GET_MESSAGE , and CAPI_SET_SIGNAL .
In case of local confirmations (e.g. LISTEN_CONF) the call-back function may be
activated before the operation CAPI_PUT_MESSAGE returns to the application.
Parameter EDX and EDI shall be passed to the call-back function with the same
values of the corresponding parameters to CAPI_SET_SIGNAL .

7.7.2.2.2.2 CAPI_GET_MANUFACTURER

Description

With this function the application determines the manufacturer identification of Profile B. In register EBX a
pointer is transferred to a data area of 64 bytes. The manufacturer identification, coded as a zero
terminated ASCII string, is present in this data area after the function has been executed.

CAPI_GET_MANUFACTURER 0xF0

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0xF0
EBX Pointer to buffer
ECX Number of Controller, if 0 determines the manufacturer

identification of the software components

Return Value

Return Value Comment
AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx
EBX Buffer contains manufacturer identification with ASCII

coding. The end of the identification is indicated with a 0
byte.

7.7.2.2.2.3 CAPI_GET_VERSION

Description

With this function the application determines the version of Profile B as well as an internal revision
number.

Page 413
Final draft prETS 300 838: March 1998

CAPI_GET_VERSION 0xF1

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0xF1
ECX Number of Controller, if 0 determines the version of the

software components

Return Value

Return Comment
AH Profile B major version: 2
AL Profile B minor version: 0
DH Manufacturer specific major number
DL Manufacturer specific minor number

7.7.2.2.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this function the application determines the (optional) serial number of Profile B. In register EBX a
pointer to a data area of 8 bytes is transferred. The serial number, coded as a zero terminated ASCII
string, is present in this data area in the form of a seven-digit number after the function has been
executed. If no serial number is supplied, the serial number is an empty string.

CAPI_GET_SERIAL_NUMBER 0xF2

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0xF2
EBX Pointer to buffer
ECX Number of Controller, if 0 determines the serial number

of the software components

Return Value

Return Value Comment
AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx
EBX The (optional) serial number is read in plain text in the

form of a 7-digit number. If no serial number is to be
used, a 0 byte shall be written at the first position in the
buffer. The end of the serial number is indicated with a 0
byte.

Page 414
Final draft prETS 300 838: March 1998

7.7.2.2.2.5 CAPI_GET_PROFILE

Description

The application uses this function to get the capabilities from Profile B. Register EBX contain a pointer to a
data area of 64 bytes. In this buffer Profile B copies information about implemented features, number of
controllers and supported protocols. Register ECX contains the controller number (bit 0..6) for which this
information is requested.

CAPI_GET_PROFILE 0xF3

Parameter Comment
AH Version number 20 (0x14)
AL Functional Code 0xF3
ECX controller number (if 0, only number of controllers is

returned)
EBX pointer to buffer

Return Value

Return Value Comment
AX 0x0000 No error

<> 0 Coded as described in parameter info class 0x11xx

Retrieved structure format:

Type Description
2 octets number of installed controllers, least significant octet first
2 octets number of supported B-channels, least significant octet

first
4 octets Global Options (bit field):

0: internal controller supported
1: external equipment supported
2: Handset supported (external equipment shall be set
also)
3: DTMF supported
4..31: reserved

4 octets B1 protocols support (bit field):
0: 64 kBit/s with HDLC framing, always set.
1: 64 kBit/s bit transparent operation with byte framing
from the network
2: CCITT Recommendation V.110 [17] asynchronous
operation with start/stop byte framing
3: CCITT Recommendation V.110 [17] synchronous
operation with HDLC framing
4: ITU-T Recommendation T.30 [14] modem for
facsimile group 3
5: 64 kBit/s inverted with HDLC framing.
6: 56 kBit/s bit transparent operation with byte framing
from the network
7..31: reserved

Page 415
Final draft prETS 300 838: March 1998

4 octets B2 protocol support (bit field):
0: ISO 7776 [4] (X.75 SLP), always set
1: Transparent
2: SDLC [12]
3: LAPD according ITU-T Recommendation Q.921 [13]
for D-channel X.25
4: T.30 [14] for facsimile group 3
5: Point to Point Protocol (PPP [10] [11])
6: Transparent (ignoring framing errors of B1 protocol)
7: reserved
8: reserved
9: V.120 asynchronous mode
10..31: reserved

4 octets B3 protocol support (bit field):
0: Transparent, always set
1: T.90NL with compatibility to T.70NL according to T.90
Appendix II [16].
2: ISO 8208 [3] (X.25 DTE-DTE)
3: X.25 DCE
4: ITU-T Recommendation T.30 [14] for facsimile group
3
5..31: reserved

24 octets reserved for Profile B usage
20 octets manufacturer specific information
NOTE: This function can be extended, so an application has to ignore unknown bits. Profile

B shall set every reserved field to 0.

7.7.2.2.2.6 CAPI_MANUFACTURER

Description

This function is manufacturer specific.

CAPI_MANUFACTURER 0xFF

Parameter Comment
AH Version number 20 (0x14)
AL Function Code 0xFF
Manufacturer specific

Return Value

Return Comment
Manufacturer specific

7.7.2.3 Windows 95 (DeviceIoControl)

Profile B can also be accessed by using DeviceIoControl operations. The definition of this interface is as
close as possible to the definition of the Windows NT DeviceIoControl interface. Since not all Windows NT
device operations are available under Windows 95 this interface cannot be defined as being compatible to
the Windows NT definition.

The following DEVICE_CONTROL codes are defined for the Profile B functions:

/*
* the common device type code for CAPI20 conforming drivers
*/
#define FILE_DEVICE_CAPI20 0x8001

Page 416
Final draft prETS 300 838: March 1998

/*
* DEVICE_CONTROL codes
*/
#define CAPI_CTL_BASE 0x800
#define CAPI_CTL_REGISTER (CAPI_CTL_BASE+0x0001)
#define CAPI_CTL_RELEASE (CAPI_CTL_BASE+0x0002)
#define CAPI_CTL_PUT_MESSAGE (CAPI_CTL_BASE+0x0003)
#define CAPI_CTL_GET_MESSAGE (CAPI_CTL_BASE+0x0004)
#define CAPI_CTL_GET_MANUFACTURER (CAPI_CTL_BASE+0x0005)
#define CAPI_CTL_GET_VERSION (CAPI_CTL_BASE+0x0006)
#define CAPI_CTL_GET_SERIAL (CAPI_CTL_BASE+0x0007)
#define CAPI_CTL_GET_PROFILE (CAPI_CTL_BASE+0x0008)
#define CAPI_CTL_WAIT_MESSAGE (CAPI_CTL_BASE+0x0009)
#define CAPI_CTL_MANUFACTURER (CAPI_CTL_BASE+0x00ff)

/*
* The wrapped control codes as required by the system. Note: while use of these macros is not
required,
* no other control parameters are allowed for the DeviceIoControl control codes.
*/
#define CAPI_CTL_CODE(function,method) \

CTL_CODE(FILE_DEVICE_CAPI20,function,method,FILE_ANY_ACCESS)

#define IOCTL_CAPI_REGISTER \
CAPI_CTL_CODE(CAPI_CTL_REGISTER, METHOD_BUFFERED)

#define IOCTL_CAPI_RELEASE \
CAPI_CTL_CODE(CAPI_CTL_RELEASE, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_MANUFACTURER\
CAPI_CTL_CODE(CAPI_CTL_GET_MANUFACTURER, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_VERSION \
CAPI_CTL_CODE(CAPI_CTL_GET_VERSION, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_SERIAL \
CAPI_CTL_CODE(CAPI_CTL_GET_SERIAL, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_PROFILE \
CAPI_CTL_CODE(CAPI_CTL_GET_PROFILE, METHOD_BUFFERED)

#define IOCTL_CAPI_MANUFACTURER \
CAPI_CTL_CODE(CAPI_CTL_MANUFACTURER, METHOD_BUFFERED)

#define IOCTL_CAPI_PUT_MESSAGE \
CAPI_CTL_CODE(CAPI_CTL_PUT_MESSAGE, METHOD_IN_DIRECT)

#define IOCTL_CAPI_GET_MESSAGE \
CAPI_CTL_CODE(CAPI_CTL_GET_MESSAGE, METHOD_OUT_DIRECT)

#define IOCTL_CAPI_WAIT_MESSAGE \
CAPI_CTL_CODE(CAPI_CTL_WAIT_MESSAGE, METHOD_BUFFERED)

CAPI20 specific return values are mapped to Win32 error codes according to the following table. The
error code is returned by GetLastError() after failure of DeviceIoControl().

Page 417
Final draft prETS 300 838: March 1998

Info Win32 Error Code
0x1001 ERROR_TOO_MANY_SESSIONS
0x1002 ERROR_INVALID_PARAMETER
0x1003
0x1004 ERROR_INSUFFICIENT_BUFFER
0x1005 ERROR_NOT_SUPPORTED
0x1006
0x1007 ERROR_NETWORK_BUSY
0x1008 ERROR_NOT_ENOUGH_MEMORY
0x1009
0x100a ERROR_SERVER_DISABLED
0x100b ERROR_SERVER_NOT_DISABLED
0x1101 ERROR_INVALID_HANDLE
0x1102 ERROR_INVALID_FUNCTION
0x1103 ERROR_TOO_MANY_CMDS
0x1104 ERROR_IO_PENDING
0x1105 ERROR_IO_DEVICE
0x1106 STATUS_INVALID_PARAMETER
0x1107 ERROR_BUSY
0x1108 ERROR_NOT_ENOUGH_MEMORY
0x1109
0x110a ERROR_SERVER_DISABLED
0x110b ERROR_SERVER_NOT_DISABLED

In Windows 95 all communications between a CAPI20 device and an application is related to a file handle.
For that reason a file handle is used to identify a link between a CAPI20 device and the application instead
of the application id. Any application ids within Profile B messages are therefore ignored.

In the following the interface between the application and the Profile B device driver is described with
Win32 functions.

7.7.2.3.1 Message operations

7.7.2.3.1.1 CAPI_REGISTER

Description

This is the operation the application uses to report its presence to Profile B. By passing the four
parameters MessageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDataLen the
application describes its needs.

For a "normal" application the size of the message buffer should be calculated using following formula:

MessageBufferSize = 1 024 + (1 024 êê maxLogicalConnection)

CAPI_REGISTER CAPI_CTL_REGISTER

Implementation

For the CAPI_REGISTER function the application shall get a handle to the Profile B device using the
Win32 CreateFile() function and then send a CAPI_CTL_REGISTER to the Profile B device. With
CAPI_REGISTER the following data structure is passed on to the driver:

struct capi_register_params {
WORD MessageBufferSize,
WORD maxLogicalConnection,
WORD maxBDataBlocks,
WORD maxBDataLen

};

Page 418
Final draft prETS 300 838: March 1998

Only one CAPI_CTL_REGISTER may be sent with one handle if no CAPI_CTL_RELEASE is sent in
between. If an application program wants to register as more than one Profile B application, it shall obtain
several handles with CreateFile() and send one CAPI_CTL_REGISTER with each handle. The
FILE_FLAG_OVERLAPPED option for fdwAttrsAndFlags shall be set for proper operation.

EXAMPLE:

capi_handle = CreateFile("\\\\.\\CAPI20",
 GENERIC_READ | GENERIC_WRITE,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
 NULL);

r.MessageBufferSize = MessageBufferSize;
r.maxLogicalConnections = maxLogicalConnections;
r.maxBDataBlock = maxBDataBlocks;
r.maxBDataLen = maxBDataLen;

ret = DeviceIoControl(capi_handle,
 CAPI_CTL_REGISTER,
 (PVOID) &r,
 sizeof(r),
 NULL,
 0,
 &ret_bytes,
 NULL);

7.7.2.3.1.2 CAPI_RELEASE

Description

The application uses this operation to log off from Profile B. This way the application signals Profile B that
all resources that have been allocated by Profile B for the application can be released again.

CAPI_RELEASE CAPI_CTL_RELEASE

Implementation

A CAPI_RELEASE can be performed in two ways. If the same handle is to be used again, an
CAPI_CTL_RELEASE shall be sent. If the handle is not used any more the handle may just be closed
using CloseHandle.

EXAMPLE:

ret = DeviceIoControl(capi_handle,
 CAPI_CTL_RELEASE,
 NULL,
 0,
 NULL,
 0,
 &ret_bytes,
 NULL);
CloseHandle(capi_handle);

7.7.2.3.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to Profile B. The application identifies itself with an
file handle.

CAPI_PUT_MESSAGE CAPI_CTL_PUT_MESSAGE

Page 419
Final draft prETS 300 838: March 1998

Implementation

The CAPI_PUT_MESSAGE function is performed using a CAPI_CTL_PUT_MESSAGE DeviceIoControl.

With this DeviceIoControl operation one data buffer is sent to the CAPI20 device driver. This buffer shall
contain the message AND data associated with a DATA_B3_REQ message. The data (if available) shall
be placed into the buffer immediately following the message.

ret = DeviceIoControl(capi_handle,
 CAPI_CTL_PUT_MESSAGE
 (PVOID)msg, /* buffer for message + data */
 msg_length, /* length of message + data */
 NULL,
 0,
 &ret_bytes,
 NULL);

The operation completes immediately, it does not wait for any network event (normal
CAPI_PUT_MESSAGE operation).

The buffer can be re-used by the application, as soon as the operation completes.

7.7.2.3.1.4 CAPI_GET_MESSAGE

Description

With this operations the application retrieves a message from Profile B. The application retrieves all
messages associated with the corresponding file handle from operation CAPI_REGISTER.

CAPI_GET_MESSAGE CAPI_CTL_GET_MESSAGE

Implementation

The CAPI_GET_MESSAGE function is performed using the CAPI_CTL_GET_MESSAGE DeviceIoControl
operation.

With the CAPI_CTL_GET_MESSAGE DeviceIoControl operation one data buffer is received from the
CAPI20 device driver. This buffer contains the message AND data associated with a DATA_B3_IND
message. The data (if available) is placed into the buffer immediately following the message.

The CAPI_CTL_GET_MESSAGE supports overlapped operation. If it returns TRUE, the number of bytes
of the message retrieved is available.

If the buffer provided by the application is to small to hold the message and the data, an error
ERROR_UNSUFFICIENT_BUFFER shall be returned and no message is retrieved.

EXAMPLE:

ret = DeviceIoControl(capi_handle,
 CAPI_CTL_GET_MESSAGE,
 NULL,
 0,
 (PVOID)buffer, /* buffer for message + data */
 buffer_size, /* length of message + data */
 &ret_bytes,
 &0_read);

if (ret == TRUE) {
/* operation immediately succeeded */
/* ret_bytes contains the number of bytes accepted */

;
} else if (GetLastError() == ERROR_IO_PENDING) {

/* operation pending, must wait for completion */
WaitForSingleObject(result.hEvent, INFINITE);
ret = GetOverlappedResult(capi_handle, &result, &ret_bytes, TRUE);
if (ret == TRUE) {

/* operation successful completed now */
/* ret_bytes contains the number of bytes accepted */

;

Page 420
Final draft prETS 300 838: March 1998

} else {
/* sorry, failure */
...

}
} else {

/* operation immediately failed */
...

}

7.7.2.3.1.5 CAPI_SET_SIGNAL

Description

There is no CAPI_SET_SIGNAL function. The asynchronous signalling of a received message is done
implicitly by completing the CAPI_CTL_GET_MESSAGE operation.

7.7.2.3.2 Other functions

7.7.2.3.2.1 CAPI_GET_MANUFACTURER

Description

With this operation the application determines the manufacturer identification of Profile B. The offered
buffer shall have a size of at least 64 bytes. Profile B copies the identification string, coded as a zero
terminated ASCII string, to this buffer.

CAPI_GET_MANUFACTURER CAPI_CTL_GET_MANUFACTURER

Implementation

With this CAPI_CTL_GET_MANUFACTURER the manufacturer identification is read from the Profile B
driver. A buffer of 64 bytes shall be provided by the application. The manufacturer identification is returned
as zero terminated ASCII string. Controller number 0 retrieves the manufacturer name of the CAPI20
device driver, other controller numbers retrieve the manufacturer of the corresponding controller.

DWORD controller; /* 32 bit */
char manufacturer[64];

controller = 0; /* to retrieve the manufacturer of the device driver */
ret = DeviceIoControl(capi_handle,

CAPI_CTL_GET_MANUFACTURER,
(PVOID) &controller,
sizeof (controller),
(PVOID) manufacturer,
sizeof (manufacturer),
&ret_bytes,
(POVERLAPPED) NULL);

7.7.2.3.2.2 CAPI_GET_VERSION

Description

With this function the application determines the version of Profile B as well as an internal revision
number.

CAPI_GET_VERSION CAPI_CTL_GET_VERSION

Implementation

With this CAPI_CTL_GET_VERSION the version of the Profile B can be read. A buffer with the following
structure shall be provided by the application: Controller number 0 retrieves the version info of the CAPI20
device driver, other controller numbers retrieve the version of the corresponding controller.

struct capi_version_params {
WORD CAPIMajor; /* 16 bit */
WORD CAPIMinor;

Page 421
Final draft prETS 300 838: March 1998

WORD ManufacturerMajor;
WORD ManufacturerMinor;

} buf;
DWORD controller; /* 32 bit */

controller = 0; /* to retrieve the version of the device driver */
ret = DeviceIoControl(capi_handle,

CAPI_CTL_GET_VERSION,
(PVOID) &controller,
sizeof (controller),
(PVOID) &buf,
sizeof (buf),
&ret_bytes,
(POVERLAPPED) NULL);

7.7.2.3.2.3 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application determines the (optional) serial number of Profile B. The offered buffer
shall have a size of 8 bytes. Profile B copies the serial number string to this buffer. The serial number,
coded as a zero terminated ASCII string, represents seven digit number after the function has returned.

CAPI_GET_SERIAL_NUMBER CAPI_CTL_GET_SERIAL_NUMBER

Implementation

With this CAPI_CTL_GET_SERIAL_NUMBER the Profile B serial number can be read from the driver. A
buffer of 8 bytes shall be provided by the application. The serial number is returned as zero terminated
ASCII string. Controller number 0 retrieves the serial number of the CAPI20 device driver, other controller
numbers retrieve the serial number of the corresponding controller.

char serial[8];
DWORD controller; /* 32 bit */

controller = 0; /* to retrieve the serial number of the device driver */
ret = DeviceIoControl(capi_handle,

CAPI_CTL_GET_SERIAL_NUMBER,
(PVOID) &controller,
sizeof (controller),
(PVOID) serial,
sizeof (serial),
&ret_bytes,
(POVERLAPPED) NULL);

7.7.2.3.2.4 CAPI_GET_PROFILE

Description

With this DeviceIoControl the Profile B capabilities can be read from the driver. A buffer of 64 bytes shall
be provided by the application. The same profile structure as for the Windows 95 application level 32 bit
DLL interface is returned by the driver.

CAPI_GET_PROFILE CAPI_CTL_GET_PROFILE

Implementation

With this DeviceIoControl the Profile B capabilities can be read from the driver. A buffer formatted
according to the CAPI profile structure shall be provided by the application in the buffer parameter. It shall
be filled with the appropriate values by the DeviceIoControl call.

char profile[64];
DWORD controller; /* 32 bit */

controller = 1; /* to retrieve the profile of controller number one*/
ret = DeviceIoControl(capi_handle,

CAPI_CTL_GET_PROFILE,

Page 422
Final draft prETS 300 838: March 1998

(PVOID) &controller,
sizeof (controller),
(PVOID)profile,
sizeof (profile),
&ret_bytes,
(POVERLAPPED) NULL);

Page 423
Final draft prETS 300 838: March 1998

Annex A (normative): Mapping between Profile A messages and parameters
and the ISDN

This annex provides the mapping between protocols used and the Profile A messages.

A.1 Control Plane messages

Table A.1: Control Plane message to ETS 300 102-1 [2] mapping

PCI Message ETS 300 102 [2] Message Direction NOTES
CAlertReq Alerting user to

network
CAlertInd Alerting network to

user
CConnectReq Setup user to

network
CConnectInd Setup network to

user
CConnectRsp Connect user to

network
CConnectCnf Connect network to

user
CDisconnectReq Disconnect, Release, Release Complete user to

network
see note 1

CDisconnectInd Disconnect, Release, Release Complete network to
user

see note 1

CDisconnectRsp Release user to
network

see note 1

CDisconnectCnf Release, Release Complete network to
user

see note 1

CProgressInd Progress network to
user

CStatusInd Status network to
user

see note 2

CProceedingInd Call proceeding network to
user

CSetupAckInd Setup acknowledge network to
user

CConnectInfoReq Information user to
network

CUserInformationReq User Information user to
network

CUserInformationInd User Information network to
user

CCongestionControlReq Congestion Control user to
network

CCongestionControlInd Congestion control network to
user

CSuspendReq Suspend user to
network

CSuspendCnf Suspend acknowledge, Suspend reject network to
user

CResumeReq Resume user to
network

(continued)

Page 424
Final draft prETS 300 838: March 1998

Table A.1 (concluded): Control Plane message to ETS 300 102-1 [2] mapping

PCI Message ETS 300 102 [2] Message Direction NOTES
CResumeCnf Resume acknowledge, Resume reject network to

user
CNotifyInd Notify network to

user
CFacilityReq Facility user to

network
CFacilityInd Facility network to

user
CAddInfoReq Information user to

network
CAddInfoInd Information network to

user
CDtmfReq In band message without relationship with

signalling
user to
network

CDtmfCnf In band message without relationship with
signalling

network to
user

CDtmfInd In band message without relationship with
signalling

network to
user

NOTE 1: In the case of the PCI CDisconnect* messages the specific message received or
sent to the ISDN depends upon the state of the call when the CDisconnect*
message is received from or sent to the PUF. Depending on the ISDN message
that caused the CDisconnectInd, CDisconnectRsp may or may not cause a
message to be sent to the ISDN. CDisconnectCnf shall not be mapped from a
message from the ISDN when CDisconnectReq is used to respond to
CConnectInd.

NOTE 2: This PCI message may be generated by a protocol error detected by the NAF or
by a protocol error indicated by a status message received from the ISDN.

NOTE 3: External equipment messages are not included in this table.

Page 425
Final draft prETS 300 838: March 1998

A.2 Control Plane parameters

The mapping of Control Plane parameters to the ETS 300 102 [2] information elements is defined in
table A.2.

Table A.2: Control Plane parameters

Control Plane parameter Q.931 [2] Information
Element

BearerCap Bearer Capability
CalledNumber Called party number
CalledSubaddress Called party subaddress
CallingNumber Calling party number
CallingSubaddress Calling party subaddress
CauseToPUF Cause
CauseToNAF Cause
ChannelIdentification Channel Identification
CongestionLevel Congestion level
ConnectedNumber Called party number
ConnectedSubaddress Called party subaddress
ControllerID No relationship
DateTime Date/time
Display Display
DtmfOperation No relationship
DtmfToneDuration No relationship
DtmfGapDuration No relationship
DtmfDigits No relationship
DtmfResult No relationship
Facility Facility
HLC High layer compatibility
Keypad Keypad facility
LLC Low layer compatibility
NotificationIndicator Notification Indicator
NumberComplete Sending complete
ProgressIndicator Progress Indicator
Signal Signal
UserToUserInfo User-user

Page 426
Final draft prETS 300 838: March 1998

Annex B (normative): Telephony defined in the Profile A

This annex presents different types of external equipment handled in this ETS.

B.1 Type 1 external equipment

This external equipment is the simplest form of telephony equipment. It does not contain hook control or a
dialling mechanism. It only contains the transceivers and does not manage the ISDN signalling. It is totally
under the control of the NAF. A Control Plane message is defined to indicate to the PUF the availability of
the external equipment (external equipment connected or not to the NAF).

It is the responsibility of the NAF to connect a channel to this type of external equipment when the channel
becomes active.

If the external equipment is in use, a CConnectReq that attempts to use the external equipment should be
rejected with a CDisconnectInd with Cause value 47 (Resource unavailable).

If the external equipment is in use, and an incoming call arrives that attempts to use the external
equipment, the NAF should pass a CConnectInd to the relevant PUF. The PUF is then in control to make
the external equipment available for use. If it does not, an attempt to connect shall be denied with
CDisconnectInd with Cause value 47 (resource unavailable).

B.2 Type 2 external equipment

This external equipment contains hook control but not a dialling mechanism. This external equipment
does not manage ISDN signalling. It can provide some information to the PUF about the state of the
handset by the means of two Control Plane messages. Therefore, this external equipment can cause
state transitions in the PUF for incoming and outgoing calls.

A Control Plane message is defined to indicate to the PUF the availability of the external equipment
(external equipment connected or not to the NAF).

It is the responsibility of the NAF to connect a channel to this type of external equipment when the channel
becomes active. It is the responsibility of the PUF to ensure that the hook control is in the desired state
when the channel becomes active.

If the equipment is in use, and an incoming call arrives that attempts to use the equipment, the NAF
should pass a CConnectInd to the relevant PUF. The PUF is then in control to make the external
equipment available for use. If it does not, an attempt to connect shall be denied with CDisconnectInd with
cause 47 (Resource unavailable).

B.3 Type 3 external equipment

This contains hook control but not a dialling mechanism. This external equipment is connected to the
ISDN network; therefore, it is able to manage ISDN signalling when an incoming call arrives in the case
where the host is off.

It can provide some information to the PUF about the state of the handset by the means of two Control
Plane messages. Therefore, this external equipment can cause state transitions in the PUF for incoming
and outgoing calls.

A Control Plane message is defined to indicate to the PUF the availability of the external equipment
(external equipment connected or not to the NAF).

If the external equipment is in use, and an incoming call arrives that attempts to use the equipment, the
NAF should pass a CConnectInd to the relevant PUF. The PUF then determines whether or not to make
the external equipment available for use. If it does not, an attempt to connect shall be denied with
CDisconnectInd with cause 47 (Resource unavailable).

Page 427
Final draft prETS 300 838: March 1998

B.4 Type 4 external equipment

This external equipment contains a dialling mechanism with or without a hook control. This external
equipment does not manage ISDN signalling. This kind of external equipment supports dialling with block
sending or overlap sending. In the case of an overlap sending, a Control Plane message containing the
code of the key pressed on the keypad, per key pressed, is provided to the PUF. In the case of a block
sending, a single Control Plane message containing the complete remote address and/or subaddress is
provided to the PUF.

If this external equipment contains a hook control, it can provide some information to the PUF about the
state of the handset by the means of two Control Plane messages.

A Control Plane message is defined to indicate to the PUF the availability of the external equipment
(external equipment connected or not to the NAF).

All dialling actions and handset actions (if available) realized on this external equipment can cause state
transition in the PUF for incoming and outgoing calls.

It is the responsibility of the NAF to connect a channel to this type of external equipment when the channel
becomes active.

If the equipment is in use, and an incoming call arrives that attempts to use the equipment, the NAF
should pass a CConnectInd to the relevant PUF. The PUF is then determines whether or not to make the
external equipment available for use. If it does not, an attempt to connect shall be denied with
CDisconnectInd with cause 47 (Resource unavailable).

B.5 Type 5 external equipment

This external equipment contains a dialling mechanism with or without a hook control. This external
equipment is connected to the ISDN network; therefore, it is able to manage ISDN signalling in the case
where the host (e.g. personal computer) is off. Type 5 external equipment allows placing outgoing calls
from its and answering incoming calls.

This kind of external equipment can allow dialling with block sending or overlap sending. In the case of an
overlap sending, a Control Plane message containing the code of the key pressed on the keypad, per key
pressed, is provided to the PUF. In the case of a block sending, a single Control Plane message
containing the complete remote address and/or subaddress is provided to the PUF.

If this external equipment contains hook control, it can provide some information to the PUF about the
state of the handset by the means of two Control Plane messages.

A Control Plane message is defined to indicate to the PUF the availability of the external equipment
(external equipment connected or not to the NAF).

All Type 5 dialling actions and handset operations (if available) can cause state transitions in the PUF for
incoming and outgoing calls.

It is the responsibility of the NAF to connect a channel to this type of external equipment when the channel
becomes active.

If the equipment is in use, and an incoming call arrives that attempts to use the equipment, the NAF
should pass a CConnectInd to the relevant PUF. The PUF then determines whether or not to make the
external equipment available for use. If it does not, an attempt to connect shall be denied with
CDisconnectInd with cause 47 (Resource unavailable).

Page 428
Final draft prETS 300 838: March 1998

Annex C (normative): X.25 usage in the Profile A

C.1 Parameter values for ITU-T Recommendation X.25 use

Table C.1 shows the required setting of parameters to achieve different types of ITU-T Recommendation
X.31 operation.

Table C.1: Types of ITU-T Recommendation X.31 operation

Type of X.31 Operation BearerCap Channel
Selection

Channel Number Called Number

X.31 Case A, Switched 64 kHz Not Required Not Required Required
X.31 Case A, Permanent 64 kHz B-channel Required Not Required
X.31 Case B, B-channel
switched

X.25 Not Required Not Required Not Required

X.31 Case B, B-channel
permanent

X.25 B-channel Required Not Required

X.31 Case B, D-channel X.25 D-channel Required Not Required

C.2 Disconnection of ISDN channel with established X.25 Connections

In the co-ordination case, this is covered by ISO 9574 [9].

In the non-co-ordination case, the following should be provided to the PUF:

- CDisconnectInd message with cause for channel disconnection;

- for each established ITU-T Recommendation X.25 Connection:
- UDisconnectInd message with X213Cause and X213Origin as defined by ISO 9574 [9] and

X25Cause.

- for each ITU-T Recommendation X.25 Connection in the process of being established:
- UDisconnectInd message with X213Cause and X213Origin as defined by ISO 9574 [9] and

X25Cause.

Page 429
Final draft prETS 300 838: March 1998

Annex D (informative): Profile A NAF development guidelines

The main body of this ETS which deals with the Profile A contains the description of the Profile A from the
PUF point of view. Following this approach, certain points, not directly related to the PUF, which have an
impact on the development of the NAF are not described. These points may be of interest for the NAF
development and are, therefore, described in this annex. It gives guidelines for the development of the
NAF in accordance with the main body of this ETS.

An example of a point which is not covered in the main body is the mapping between the coding for the
AOC supplementary service and the special coding used in Profile A.

Consider this annex from the following viewpoints:

- this annex gives additional points. The NAF is implemented using this ETS. It should implement the
Profile A in such a way that the functionality described is provided;

- the main body of this ETS should be given priority if there is anything not clear in this annex or the
interpretation between the main body of this ETS and this annex is different;

- this annex does not try to impose any constraints on the implementation of the NAF. The objective
is to give guidelines as to how the NAF can be developed to be in line with this ETS.

D.1 NAF SDL diagrams

D.1.1 NAF SDL diagrams: conventions

The mapping of Control or User Plane messages to protocol messages is provided in the following tables.
Some SDL diagrams, or other kind of schemes, are given to explain more clearly the relation between
user messages and network primitives. These diagrams do not cover every case. They only present some
of the possible cases.

The following symbols are used within this description. A full description of the symbols and their meaning
is given in ITU-T Recommendation Z.100 [5].

x

State Symbol Input (from Network) Input (from PUF)

Output (to Network) Output (to PUF) Decision Symbol

D.1.2 NAF SDL diagrams for Control Plane

The following SDL diagrams show, as an example, the internal states of the call control section of the
NAF. They are provided for clarification only. Not all the possible cases are shown in these diagrams, for
simplification.

The primitives shown in upper case are those defined in ETS 300 102 [2].

The following symbols are used within this description. A full description of the symbols and their meaning
is given in ITU-T Recommendation Z.100 [5].

Page 430
Final draft prETS 300 838: March 1998

0

FACILITY

CFacilityInd

0

SETUP

NCO matching
operation

RELEASE
COMPLETE

0

CConnectInd

2

CResumeReq

RESUME

11

CConnectReq

SETUP

1

CFacilityReq

FACILITY

0

NOYES

Figure D.1: IDLE

1bis

DISCONNECT

CDisconnect
Ind

9

RELEASE

CDisconnect
Ind

6

RELEASE
COMPLETE

CDisconnect
Ind

8

PROGRESS

CProgressInd

1bis

CALL
PROCEEDING

CProceeding
Ind

1bis

SETUP ACK

CSetupAck
Ind

1bis

CONNECT

CConnectCnf

4

CConnectInfo
Req

INFO

1bis

CDisconnect
Req

DISCONNECT

5

1bis

USER
INFORMATION

CUserInfor
mationInd

1bis

CUserInfor
mationReq

USER
INFORMATION

1

ALERTING

CAlertInd

1bis

Figure D.2: CALL INITIATED

Page 431
Final draft prETS 300 838: March 1998

2

RELEASE
COMPLETE

CDisconnect
Ind

8

RELEASE

CDisconnect
Ind

6

DISCONNECT

CDisconnect
Ind

9

CConnectRsp

CONNECT

4

CDisconnect
Req

RELEASE
COMPLETE

CDisconnect
Cnf

0

CAlertReq

ALERT

3

Figure D.3: CALL PRESENT

3

RELEASE
COMPLETE

CDisconnect
Ind

8

RELEASE

CDisconnect
Ind

9

DISCONNECT

CDisconnect
Ind

6

USER
INFORMATION

CUserInfor
mationInd

3

CConnectRsp

CONNECT

4

CUserInfor
mationReq

INFO

3

CDisconnect
Req

DISCONNECT

5

Figure D.4: CALL RECEIVED

Page 432
Final draft prETS 300 838: March 1998

4

INFO

CInformationInd

4

FACILITY

CFacilityInd

NOTIFY

CNotifyInd

DISCONNECT

CDisconnect
Ind

6

RELEASE
COMPLETE

CDisconnect
Ind

8

RELEASE

CDisconnect
Ind

9

CONNECT
ACK

4

CFacility
Req

FACILITY

4

CDisconnect
Req

DISCONNECT

5

CSuspendReq

SUSPEND

10

Figure D.5: ACTIVE connection

5

STATUS

CStatusInd

5

DISCONNECT

CDisconnect
Cnf

RELEASE

0

RELEASE
COMPLETE

CDisconnect
Cnf

0

RELEASE

CDisconnect
Cnf

RELEASE
COMPLETE

0

Figure D.6: DISCONNECT request

Page 433
Final draft prETS 300 838: March 1998

6

CFacilityReq

FACILITY

12

RELEASE
COMPLETE

8

RELEASE

9

CDisconnect
Rsp

RELEASE

7

Figure D.7: DISCONNECT indication

7

STATUS

7

RELEASE
COMPLETE

0

Figure D.8: DISCONNECT pending

8

CDisconect
Rsp

0

Figure D.9: DISCONNECT response

Page 434
Final draft prETS 300 838: March 1998

9

CDisconnect
Rsp

RELEASE
COMPLETE

0

Figure D.10: RELEASE response

10

SUSPEND
REJECT

CSuspendCnf

4

SUSPEND
ACKNOWLEDGE

CSuspendCnf

0

RELEASE
COMPLETE

CDisconnect
Ind

8

RELEASE

CDisconnect
Ind

9

DISCONNECT

CDisconnect
Ind

6

Figure D.11: SUSPEND request

11

RESUME
REJECTED

CResumeCnf

4

RESUME
ACKNOWLEDGE

CResumeCnf

0

RELEASE
COMPLETE

CDisconnect
Ind

8

RELEASE

CDisconnect
Ind

9

DISCONNECT

CDisconnect
Ind

6

Figure D.12: RESUME request

Page 435
Final draft prETS 300 838: March 1998

12

FACILITY
REJECT

CFacilityInd

6

FACILITY
ACKNOWLEDGE

CFacilityInd

Figure D.13: FACILITY request

D.1.3 Configuration and NAF SDL diagrams for layer one protocols

D.1.3.1 Configuration

D.1.3.1.1 Transparent B-channel access

Table D.1: User Plane configuration for the transparent B-channel access

Parameter Suggested Default Comment
Idle flag default value 0xFF

D.1.4 Configuration and NAF SDL diagrams for layer two protocols

D.1.4.1 Configuration

D.1.4.1.1 ISO 7776 protocol

The following subclauses give the default values parameters to use if they are absent from the parameter
list during the NCO creation operation.

Table D.2: User Plane ISO 7776 configuration

Parameter Suggested Default Comment
L2FrameSize 128
L2WindowSize 7
L2ConnectionMode Auto
L2XID Not used

Page 436
Final draft prETS 300 838: March 1998

D.1.4.1.2 PPP protocol

Table D.3: User Plane PPP configuration

Parameter Suggested Default Comment
Link Control Protocol Parameters

- Maximum-Receive-Unit

- Restart timeout

- Max terminate

- Max configure

- Max failure

- Magic number

- Protocol compression

- Address and Control field
Compression

1 500 (bytes)

3 (second)

2

10

10

None

None

None

Enables a peer to inform the maximum packet
size accepted in reception

Waiting time for a response to a request
packet

Counter for number of terminate requests
sent without response

Counter for number of configure requests
sent without response

Counter for number of Configure-Nak
received sent before sending a Configure-
Reject assuming that the configuration is not
converging

Authentification Protocol

- Type of authentification protocol
to be set

- Local-ID

- Local password

- List of the remote of couple
peers "ID/Password"

- Algorithm

None Enable use of the PPP Authentification
Protocols

Length and name of the local Peer ID

Length and name of the local Password

List of length and name of the remote couple
of "ID/Password"

Type of CHAP algorithm used
Line Quality Monitoring
- Reporting period None Value of maximum time of sending

information
FCSAlternatives Indicate the value of the FCS format to use
SelfDescPadding None Indicate the value of the Self Describing

Padding to use
CallBack

- Use of the callback
- Number to callback

None Indicate if the callback option is to be set

CompoundFrame None Indicate if the CompoundFrame option is to
be set

Page 437
Final draft prETS 300 838: March 1998

D.1.4.1.3 SDLC protocol

Table D.4: User Plane SDLC configuration

Parameter Suggested Default Comment
SDLC connection mode

Case 1

SDLC default link station role

Case 1 - secondary link station

Case 2 - primary link station
SDLC initialization mode

Case 1

SDLC default initialization mode

Case 1 - send / answer to SNRM

Case 2 - send RIM / SIM
SDLC address 0xC1 SDLC default station address
SDLC modulus 8 SDLC default frame numbering modulus
SDLC window size 7 SDLC default window size
SDLC frame size 265 SDLC default maximum frame size excluding

the link header and the link trailer.
SDLC timers
- T1
- T2
- N2

2
1
10

SDLC protocol timers
Expressed in seconds
Expressed in seconds
Maximum number of unsuccessful
retransmission

D.1.4.1.4 V.110 protocol

Table D.5: User Plane V.110 configuration

Parameter Suggested Default Comment
Out of synchronization timer 3s Maximum time for resynchronization
Synchronization timer 10s Maximum time for Synchronization

D.1.4.2 NAF flow diagrams

D.1.4.2.1 ISO 7776 protocol

Table D.6 shows the mapping of User Plane messages to service primitives.

Table D.6: Mapping between User Plane message and protocol messages

Profile A ISO 7776
UConnectReq Send SABM(E)
UConnectInd Received SABM(E)
UConnectRsp Send UA
UConnectCnf Received UA
UDisconnectReq Send DISC
UDisconnectInd Received DISC or FRMR
UDataReq Send I frame
UDataInd Received I frame
UReadyToReceiveReq (busy) Send RNR
UReadyToReceiveReq (free) Send RR
UReadyToReceiveInd (busy) Received RNR
UReadyToReceiveInd (free) Received RR
NOTE: REJ frames and frames numbering are handled transparently by the

NAF.

Page 438
Final draft prETS 300 838: March 1998

UConnectReq

UConnectCnf

UConnectInd

UConnectRsp

SABM(E)

UA

NetworkProfile A Profile A

Figure D.14: CONNECTION PHASE

UDisconnectReq

UConnectInd

DISC

UA

NetworkProfile A Profile A

Figure D.15: DISCONNECTION PHASE

UDisconnectInd

FRMR

DISC UDisconnectInd

UA

NetworkProfile A Profile A

Figure D.16: ERROR SITUATION

Page 439
Final draft prETS 300 838: March 1998

RNR

RR

UReadyToReceiveReq (busy)

UReadyToReceiveInd (busy)

UReadyToReceiveReq (free)

UReadyToReceiveInd (free)

NetworkProfile A Profile A

Figure D.17: FLOW CONTROL SITUATION

D.1.4.2.2 HDLC protocol

Table D.7 shows the mapping of User Plane messages to service primitives.

Table D.7: Mapping between User Plane message and protocol messages

PCI Message Primitive
UDataReq I
UDataInd I

D.1.4.2.3 HDLC protocol with error

Table D.8 shows the mapping of User Plane messages to service primitives.

Table D.8: Mapping between User Plane message and protocol messages

PCI Message Primitive
UDataReq I
UDataInd I

D.1.4.2.4 PPP protocol

Table D.9 shows the mapping of User Plane messages to service primitives.

Table D.9: Mapping between User Plane message and protocol messages

PCI Message Primitive
UConnectReq UI - CONFIGURE REQUEST
UConnectInd UI - CONFIGURE REQUEST
UConnectRsp UI - CONFIGURE ACK / NACK
UConnectCnf UI - CONFIGURE ACK / NACK
UDisconnectReq UI - TERMINATE REQUEST
UDisconnectInd UI - CONFIGURE REJECT /

 TERMINATE REQUEST
UDataReq UI - INFO (NCP)
UDataInd UI - INFO (NCP)
UErrorInd UI - PROTOCOL REJECT

 CODE REJECT

Page 440
Final draft prETS 300 838: March 1998

1

CONFIGURE
REQUEST

UConnectInd

3

UConnectReq

CONFIGURE
REQUEST

2

Figure D.18: IDLE

2

CONFIGURE
ACK

UConnectCnf

4

CONFIGURE
NACK

UConnectCnf

1 or 4
(application choice)

CONFIGURE
REJECT

UDisconnectInd

1

Figure D.19: OUTGOING CONNECTION PENDING

3

UConnectRsp
(negotiation
not possible)

CONFIGURE
REJECT

1

UConnectRsp
(negotiation
OK)

CONFIGURE
NACK

4

UDisconnect
Req

CONFIGURE
REJECT

5

UConnectRsp
(negotiation
OK)

CONFIGURE
ACK

4

Figure D.20: INCOMING CONNECTION PENDING

Page 441
Final draft prETS 300 838: March 1998

4

TERMINATE
REQUEST

UDisconnect
Ind

TERMINATE
ACK

1

UDisconnect
Req

TERMINATE
REQUEST

5

CODE
REJECT

UErrorInd

4

PROTOCOL
REJECTUDataReq

INFO

INFO

UdataInd

Figure D.21: DATA TRANSFER READY

D.1.4.2.5 SDLC protocol

Table D.10 shows the mapping of User Plane messages to service primitives.

Table D.10: Mapping between User Plane message and protocol messages

PCI Message Primitive
UConnectReq XID P
UConnectInd XID P
UConnectRsp XID F
UConnectCnf XID F
UDisconnectReq DISC P
UDisconnectInd RD F ou DM F
UDataReq I
UDataInd I
UExpeditedDataReq UI
UExpeditedDataInd UI
UReadyToReceiveReq Local meaning
UReadyToReceiveInd Local meaning

UConnectInd

3

1

XID PUConnectReq

XID P

2

Figure D.22: IDLE

Page 442
Final draft prETS 300 838: March 1998

2

DM P

UDiconnect
Ind

DISC P

1

UDisconnect
Req

DISC P

2qua

UA F

XID F
UP F
RIM F

SIM P

2bis

UA F

SNRM P or
SNRME P

2ter

UA F

UConnectCnf

4

XID F

SNRM P or
SNRME P

Figure D.23: OUTGOING CONNECTION PENDING (primary)

Page 443
Final draft prETS 300 838: March 1998

3

DISC P

UDisconnect
Ind

UA F

1

UDisconnect
Req

DM F

UConnectRsp

XID F

3bis

UP F

RIMF

3ter

SIMP

UA F

SNRM P or
SNRME P

UA F

4

Figure D.24: INCOMING CONNECTION PENDING (secondary)

Page 444
Final draft prETS 300 838: March 1998

4

UDisconnect
Req

DISC P

4bis

UA F

1

RD F
if primary

UDisconnect
Ind

DISC P

UDisconnect
Req

RD F

4ter

DISC P

UA

DISC P

UDisconnect
Ind

UA F

UExpedited
DataReq

UI

4

UI

UExpedited
DataInd

4

RESET
if secondary

UDisconnect
Ind

6

RESET
if primary

UDisconnect
Ind

SNRM P or
SNRME P

5

UDataReq

I

4

I

UDataInd

4

Figure D.25: DATA TRANSFER READY

Page 445
Final draft prETS 300 838: March 1998

5

UA F

UConnect
Ind

5bis

UConnect
Rsp

4

6

SNRM P or
SNRME P

UConnect
Ind

6bis

UConnect
Rsp

UA F

4

Figure D.26: RESET

D.1.4.2.6 V.110 protocol

Table D.11 shows the mapping of User Plane messages to service elements. For the V.110 protocol there
is no direct link between user connection messages and protocol frames. The connection phase consists
of synchronization and negotiation. It begin without application demand, when the ISDN channel is
established.

To make the PCI messages meaning easier to understand, table D.11 shows a theoretical mapping
between User Plane messages and V.110 frames.

Table D.11: Mapping between User Plane message and V.110 frame

PCI Message Frame
UConnectReq Frame "Synchronization" (bit S = bit X = OFF)

Local meaning.
UConnectInd Frame "Ready" (bit S = bit X = ON) -

Local meaning: Remote synchronization has been
received.

UConnectRsp Frame "Synchronization" (bit S = bit X = OFF) -
Local meaning. (note)

UConnectCnf Frame "Ready" (bit S = bit X = ON)
(a negotiation delay may be necessary before data
transfer is ready)

UDisconnectReq Frame with bit S = OFF, bit X = ON, D=0
UDisconnectInd Frame with bit S = OFF, bit X = ON, D=0
UDataReq Data frame
UDataInd Data frame
UReadyToReceiveReq Local meaning
UReadyToReceiveInd Local meaning
NOTE: Sending a UConnectRsp does not mean negotiation is finished. Data

transfer can be unavailable for a time. In this case the PUF is sent a
NAFBusy error (see figure D.28).

Page 446
Final draft prETS 300 838: March 1998

The following figures (D.26 bis to D.31) show more general cases, but not every possible situation.

UConnectReq

Frame "Synchro"
(S=X=OFF - D=1)

UConnectCnf

UConnectReq

UConnectCnf

Frame "Synchro"
(S=X=OFF - D=1)

Frame "Ready"
(S=X=ON - D=1)

Frame "Ready"
(S=X=ON - D=1)

(Note1)

(Note1)

(Note2) (Note2)

NetworkISDN PCI ISDN PCI

NOTE 1: UConnectReq is not really linked with the frame "synchronization". It can be sent before or
after.

NOTE 2: UConnectCnf means the two side are synchronized.

Figure D.26 bis: CONNECTION PHASE

UConnectReq

Frame "Synchro"
(S=X=OFF - D=1)

UConnectCnf
UConnectInd

UConnectRsp

Frame "Synchro"
(S=X=OFF - D=1)

Frame "Ready"
(S=X=ON - D=1)

Frame "Ready"
(S=X=ON - D=1)

(Note1)

(Note2)
(Note3)

NetworkISDN PCI ISDN PCI

NOTE 1: UConnectRec is not really linked with the frame "synchronization". It can be sent before or
after.

NOTE 2: UConnectcnf means the two side are synchronized.

NOTE 3: UConnectind means the two side are synchronized.

Figure D.27: CONNECTION PHASE

Page 447
Final draft prETS 300 838: March 1998

The following figure shows another possible situation. It is a theoretical situation: the low layer V.110
module generally begins synchronization phase just when the B-channel is established.

UConnectReq

Frame "Synchro"
(S=X=OFF - D=1)

UConnectCnf

UConnectInd

UConnectRsp

Frame "Synchro"
(S=X=OFF - D=1)

Frame "Ready"
(S=X=ON - D=1)

Frame "Ready"
(S=X=ON - D=1)

(Note)

NetworkISDN PCI ISDN PCI

NOTE: UConnectind means "the other side is going ready".

Figure D.28: CONNECTION PHASE

UConnectReq

Frame "Synchro"
(S=X=OFF - D=1)

UConnectCnf UConnectInd

UDisonnectReq

Frame "Synchro"
(S=X=OFF - D=1)

Frame "Ready"
(S=X=ON - D=1)

Frame "Ready"
(S=X=ON - D=1)

Frame (S=OFF - X=ON - D=0)
(desynchronisation)UDisconnectInd

NetworkISDN PCI ISDN PCI

NOTE: Depending on the V.110BChannelDisconnecion parameter, a user disconnection may imply the
B-channel disconnection

Figure D.29: REMOTE DISCONNECTION DURING CONNECTION PHASE

Page 448
Final draft prETS 300 838: March 1998

UConnectReq

Frame "Synchro"
(S=X=OFF - D=1)

UConnectInd

Frame "Synchro"
(S=X=OFF - D=1)

Frame "Ready"
(S=X=ON - D=1)

Frame "Ready"
(S=X=ON - D=1)

UDisconnectReq

UDisconnectInd

UConnectRsp

Frame

(desynchronisation)
(S=OFF - X=ON - D=0)

NetworkISDN PCI ISDN PCI

Figure D.30: DISCONNECTION DURING CONNECTION PHASE

(if negociation is not finished)

(if negociation is finished)

UDataReq

UDataReq

NAFBusy

(and timer not expired)

(if negociation is not finished)

(and timer expired)

UDisconnectIndUDisconnectInd

UReadyToReceiveIndData frame

NetworkISDN PCI ISDN PCI

Figure D.31: DATA TRANSFER

Page 449
Final draft prETS 300 838: March 1998

D.1.5 Configuration and NAF SDL Diagrams for layer three protocols

D.1.5.1 Configuration

D.1.5.1.1 T.90 protocol

Table D.12: User Plane T.90 configuration

Parameter Suggested Default Comment
ITU-T Recommendation X.25
Network Type

0 Allows NAF to adapt for different country
implementations of ITU-T Recommendation
X.25.

ITU-T RecommendationX.25 CCITT88 Level of ITU-T Recommendation X.25
supported.

Layer 3 sequence numbering 8
Layer 3 Maximum Window
Size

7

Layer 3 Default Window Size 2
Layer 3 Maximum Packet Size 4096
Layer 3 Default Packet Size 128
Layer 3 Default Connection
Mode

Auto Auto - Act as DTE when calling, act as DCE
when called.
DXE - use Restart Packet to determine DTE
or DCE role as in ISO 8208 [3].
DTE - Act as DTE.
DCE - Act as DCE.

Lowest number of Incoming
SVC (LIC)

1

Highest number of incoming
SVC (HIC)

1

Lowest number of Two way
SVC (LTC)

0

Highest number of Two way
SVC (HTC)

0

Lowest number of outgoing
SVC (LOC)

0

Highest number of outgoing
SVC (HOC)

0

Layer 3 Timers NAF may wish to provide PUF user the ability
to configure timers.

Layer 2 Default Connection
Mode

Auto Auto - When calling act as DTE, when called
act as DCE.
DTE as defined in ISO 7776 [4].
DCE as defined in ISO 7776 [4].

Layer 2 B-channel modulus 8 Shall be 128 for ITU-T Recommendation
X.25 on D-channel.

Layer 2 Window Size 7
Layer 2 Frame Size 128
Layer 2 activation type Case 1 Case1 - send SABM/SABME when calling,

do not send when called.
Case2 - send SABM/SABME when called, do
not send when calling.
Passive - do not send SABM/SABME when
initiated.
Active - send SABM/SABME when initiated.

Layer 2 Timers
- T1
- T1
- N2

5
1
5

Expressed in seconds.
Expressed in seconds.
Maximum number of unsuccessful
retransmission.

Page 450
Final draft prETS 300 838: March 1998

D.1.5.1.2 ISO 8208 protocol

Table D.13: User Plane ISO 8208 configuration

Parameter Suggested Default Comment
ITU-T Recommendation X.25
Network Type

0 Allows NAF to adapt for different country
implementations of ITU-T Recommendation
X.25.

ITU-T Recommendation X.25 CCITT 1988 Level of ITU-T recommendation X.25
Recommendation supported.

Layer 3 sequence numbering 8
Layer 3 Maximum Window
Size

7

Layer 3 Default Window Size 2
Layer 3 Maximum Packet Size 4096
Layer 3 Default Packet Size 128
Layer 3 Default Connection
Mode

Auto Auto - Act as DTE when calling, act as DCE
when called.
DXE - use Restart Packet to determine DTE
or DCE role as in ISO 8208 [3].
DTE - Act as DTE.
DCE - Act as DCE.

Lowest number of Incoming
SVC (LIC)

1

Highest number of incoming
SVC (HIC)

1

Lowest number of Two way
SVC (LTC)

0

Highest number of Two way
SVC (HTC)

0

Lowest number of outgoing
SVC (LOC)

0

Highest number of outgoing
SVC (HOC)

0

Layer 3 Timers NAF may wish to provide PUF user the ability
to configure timers.

Layer 2 Default Connection
Mode

Auto Auto - When calling act as DTE, when called
act as DCE.
DTE as defined in ISO 7776.
DCE as defined in ISO 7776.

Layer 2 B-channel modulus 8 note shall be 128 for ITU-T Recommendation
X.25 on D-channel.

Layer 2 Window Size 7
Layer 2 Frame Size 128
Layer 2 activation type Case 1 Case1 - send SABM/SABME when calling,

do not send when called.
Case2 - send SABM/SABME when called, do
not send when calling.
Passive - do not send SABM/SABME when
initiated.
Active - send SABM/SABME when initiated.

Layer 2 Timers
- T1 5 Expressed in seconds.
- T2 1 Expressed in seconds.
- N2 5 Maximum number of unsuccessful

retransmission.

Page 451
Final draft prETS 300 838: March 1998

D.1.5.1.3 T.70 protocol

Table D.14: User Plane T.70 configuration

Parameter Suggested Default Comment
Layer 3 Maximum Packet Size 2 048
Layer 3 Default Packet Size 128
Layer 2 Timers
- T1
- T1
- N2

5
1
5

Expressed in seconds.
Expressed in seconds.
Maximum number of unsuccessful
retransmission.

D.1.5.2 NAF SDL diagrams

The mapping of User Plane messages to protocol messages depends on whether the NAF is providing
the co-ordination function for a particular Control Plane connection.

When the NAF is providing the co-ordination function the mapping of ITU-T Recommendation X.213
service primitives [6] to ETS 300 102 [2] messages and ITU-T Recommendation X.25 packets is
explained in ISO/IEC 9574 [9] and ISO/IEC 8878 (see bibliography).

When the NAF is not providing the co-ordination function the mapping of ITU-T Recommendation
X.213 [6] service primitives to ITU-T Recommendation X.25 [20] packets is explained in ISO/IEC 8878
(see bibliography).

Some SDL diagrams are given to explain the relation between user messages and network primitives.
T00hese diagrams do not cover every case. They only present some of the possible cases.

The following symbols are used within this description. A full description of the symbols and their meaning
is given in ITU-T Recommendation Z.100 [5].

x

State Symbol Input (from Network) Input (from PUF)

Output (to Network) Output (to PUF) Decision Symbol

Page 452
Final draft prETS 300 838: March 1998

D.1.5.2.1 T.90 protocol

Table D.15 shows the mapping of User Plane messages to ITU-T Recommendation X.213 [6] service
primitives.

Table D.15 : Mapping between User Plane message and protocol messages

PCI Message X.213 Primitive
UConnectReq N-CONNECT request
UConnectInd N-CONNECT indication
UConnectRsp N-CONNECT response
UConnectCnf N-CONNECT confirm
UDisconnectReq N-DISCONNECT request
UDisconnectInd N-DISCONNECT indication
UDataReq N-DATA request
UDataInd N-DATA indication
UResetReq N-RESET request
UResetInd N-RESET indication
UResetRsp N-RESET response
UResetCnf N-RESET confirm
UReadyToReceiveReq Not equivalent to an ITU-T

Recommendation X.213 primitive
UReadyToReceiveInd Not equivalent to an ITU-T

Recommendation X.213 primitive

1bis

CLEAR
CONFIRMATION

1

1

INCOMING
CALL

UConnectInd

3

UConnectReq

CALL REQUEST

2

Figure D.32: IDLE

Page 453
Final draft prETS 300 838: March 1998

2

CLEAR
INDICATION

UDisconnect
Ind

CLEAR
CONFIRMATION

1

UDisconnect
Req

CLEAR
REQUEST

1bis

CALL
CONNECTED

UConnectCnf

4

Figure D.33: OUTGOING CONNECTION PENDING

3

CLEAR
INDICATION

UDisconnect
Ind

CLEAR
CONFIRMATION

1

UDisconnect
Req

CLEAR
REQUEST

1bis

UConnect
Req

CALL
ACCEPTED

4

Figure D.34: INCOMING CONNECTION PENDING

Page 454
Final draft prETS 300 838: March 1998

4

UResetReq

RESET
REQUEST

5

RESET
INDICATION

UResetInd

6

UDisconnect
Req

CLEAR
REQUEST

1bis

CLEAR
INDICATION

UDisconnect
Ind

CLEAR
CONFIRMATION

1

UDataReq

DATA

4

DATA

UDataInd

4

Figure D.35: DATA TRANSFER READY

5

UDisconnect
Req

CLEAR
REQUEST

1bis

CLEAR
INDICATION

UDisconnect
ind

CLEAR
CONFIRMATION

1

RESET
CONFIRMATION

UResetCnf

4

Figure D.36: PUF INVOKED RESET PENDING

Page 455
Final draft prETS 300 838: March 1998

6

CLEAR
INDICATION

UDisconnect
Ind

CLEAR
CONFIRMATION

1

UDisconnect
Req

CLEAR
REQUEST

1bis

UResetRsp

RESET
CONFIRMATION

4

Figure D.37: NETWORK INVOKED RESET PENDING

D.1.5.2.2 ISO 8208 protocol

Table D.16 shows the mapping of User Plane messages to ITU-T Recommendation X.213 [6] service
primitives.

Page 456
Final draft prETS 300 838: March 1998

Table D.16: Mapping between User Plane message and protocol messages

PCI Message X.213 Primitive
UConnectReq N-CONNECT request
UConnectInd N-CONNECT indication
UConnectRsp N-CONNECT response
UConnectCnf N-CONNECT confirm
UDisconnectReq N-DISCONNECT request
UDisconnectInd N-DISCONNECT indication
UDataReq N-DATA request
UDataInd N-DATA indication
UExpeditedDataReq N-EXPEDITED-DATA request
UExpeditedDataInd N-EXPEDITED-DATA indication
UResetReq N-RESET request
UResetInd N-RESET indication
UResetRsp N-RESET response
UResetCnf N-RESET confirm
UDataAcknowledgeReq N-DATA-ACKNOWLEDGE request
UDataAcknowledgeInd N-DATA-ACKNOWLEDGE indication
UReadyToReceiveReq Not equivalent to an ITU-T

Recommendation X.213 primitive
UReadyToReceiveInd Not equivalent to an ITU-T

Recommendation X.213 primitive

1bis

CLEAR
CONFIRM

1

1

UConnectReq

CALL
REQUEST

2

INCOMING
CALL

UConnectInd

3

Figure D.38: IDLE

Page 457
Final draft prETS 300 838: March 1998

2

CDisconnect
Req

CLEAR
REQUEST

1bis

CLEAR
INDICATION

UDisconnect
Ind

CLEAR
CONFIRM

1

CALL
CONNECTED

UConnectCnf

4

Figure D.39: OUTGOING CONNECTION PENDING

3

CLEAR
INDICATION

UDisconnect
Ind

CLEAR
CONFIRM

1

UDisconnect
Req

CLEAR
REQUEST

1bis

UConnect
Rsp

CALL
ACCEPTED

4

Figure D.40: INCOMING CONNECTION PENDING

Page 458
Final draft prETS 300 838: March 1998

4

INTERRUPT

UExpeditedInd

INTERRUPT
CONFIRM

4

UExpedited
DataReq

INTERRUPT

4qua

CLEAR
INDICATION

UDisconnect
Ind

CLEAR
CONFIRM

1

UDisconnect
Req

CLEAR
REQUEST

1bis

UResetReq

RESET
REQUEST

5

RESET
INDICATION

UResetInd

6

DATA

UDataInd

Confirmation
required

4ter

4

UDataReq

DATA

Confirmation
required

4bis

4

4qua

UDisconnect
Req

CLEAR
REQUEST

1bis

CLEAR
INDICATION

UDisconnect
Ind

CLEAR
CONFIRM

1

INTERRUPT
CONFIRM

4

4ter

UDataAcknow
ledgeReq

DATA

4

UDisconnect
Req

CLEAR
REQUEST

1bis

CLEAR
INDICATION

UDisconnect
Ind

CLEAR
CONFIRM

1

4bis

DATA

UDataAcknow
ledgeInd

4

UDisconnect
Req

CLEAR
REQUEST

1bis

CLEAR
INDICATION

UDisconnect
Ind

CLEAR
CONFIRM

1

YES

NO

YES

NO

Figure D.41: DATA TRANSFER READY

Page 459
Final draft prETS 300 838: March 1998

5

CLEAR
INDICATION

UDisconnect
Ind

CLEAR
CONFIRM

1

UDisconnect
Req

CLEAR
REQUEST

1bis

RESET
CONFIRM

UResetCnf

4

Figure D.42: PUF INVOKED RESET PENDING

6

CLEAR
INDICATION

UDisconnect
Ind

CLEAR
CONFIRM

1

UDisconnect
Req

CLEAR
REQUEST

1bis

UResetRsp

RESET
CONFIRM

4

Figure D.43: NETWORK INVOKED RESET PENDING

D.2 Information provided by the NAF

The provision of items in messages can vary. The following conventions apply to the provision of elements
by the NAF to the PUF:

- Mandatory parameters.
These items shall be provided.

- Conditional parameters.
The condition determines if they shall be provided.

- Optional parameters.
These items may or may not be provided depending on their availability to the NAF.

Page 460
Final draft prETS 300 838: March 1998

D.3 Suspending/resuming calls

The NAF is required to manage the mapping of NCOID to the call identity which is required by the network
when resuming a call. Once the connection is resumed the NAF should ensure the mapping of the NCOID
to the Call reference, which may have changed, on the network side.

D.4 Error management

The error indication provided to the PUF only contains sufficient information for the PUF to judge if it is
worth continuing with a particular action or not. It is envisaged that more detailed information concerning a
particular error will be reported by the NAF, in a NAF specific manner. For example, a NAF may choose to
implement an error log in the form of a file. This file is where it records detailed information concerning a
particular error. This provides the information required to debug a PUF which is under development.

The following subclauses provide guidance as to the conditions under which the NAF should return a
particular error to the PUF.

For messages, in the case of parameters that are repeated where repetition is not allowed, only the first
valid number of repetitions of the parameter are processed, further repetitions are ignored.

If an optional parameter is given by the network, the NAF is in charge of providing it to the PUF in the
relevant message.

D.4.1 Function return codes

The description of the conditions under which these should be issued is described in subclause 5.9.5.

D.4.2 Administration Plane

The description of the conditions under which these should be issued is described in subclause 5.9.6. For
the ACreateNCOReq the number of possible parameter combinations makes checking complex. It should
be approached in the order shown in table D.17.

Page 461
Final draft prETS 300 838: March 1998

Table D.17: Checking of ACreateNCOReq message

Parameter Test Action
All parameters Not allowed InvalidParameter error

All valid Continue
NCOType Missing MissingParameter error

Invalid length InvalidParameterLength error
Invalid value InvalidNCOType error
Valid value Continue

Direction Missing MissingParameter error
Invalid length InvalidParameterLength error
Invalid value InvalidDirectionType error
Valid value Continue

AttributeName Missing AttributeNameMissing error
Invalid length InvalidParameterLength error
Invalid AttributeNameError error
Correct Continue

Attribute or address content Missing MissingParameter error
Invalid length InvalidParameterLength error
Invalid InvalidContent error
Correct Continue

GroupID Present but not required GroupIDError error
Missing GroupIDError error
Invalid length InvalidParameterLength error
Invalid value InvalidGroupID error
Correct Continue

RequestID (if present) Invalid length InvalidParameterLength error
Present Process message

D.4.3 Control Plane

The errors returned in the Cause parameter match those in the ETS 300 102 [2] cause information
element. This allows the NAF to pass information from the cause information element into the cause
parameter. If this is done the NAF should map any information element values to parameter values as
defined in annex A.

The following errors should be generated by the NAF as a result of checking parameters on messages
passed from PUF to NAF.

Page 462
Final draft prETS 300 838: March 1998

Table D.18: Control Plane Cause parameter matching

Value ETS 300 201 [1] Meaning PCI Meaning Generated by When received
from ISDN

Processed by
1 Unallocated (unassigned)

number
ISDN PUF

2 No route to specified transit
network

ISDN NAF (see note 1)

3 No route to destination ISDN PUF
6 Channel not acceptable ISDN NAF (see note 1)
7 Call placed on an already

establisheD-channel
ISDN PUF

16 Normal call clearing ISDN PUF
17 User busy ISDN PUF
18 No user responding ISDN PUF
19 No answer from user (user

alerted)
ISDN PUF

21 Call Rejected ISDN PUF
22 Address changed ISDN PUF
26 Non selected user clearing ISDN PUF
27 Destination out of order ISDN PUF
28 Invalid address format Parameter has invalid address

format
NAF, ISDN PUF

29 Facility rejected Facility is not provided by this
NAF

NAF, ISDN PUF

30 Response to STATUS
ENQUIRY

ISDN NAF

31 Normal unspecified ISDN PUF
34 No circuit/channel available Temporarily no channel of

requested type is available
from this NAF

NAF, ISDN PUF

38 Network out of order ISDN NAF (see note 1)
41 Temporary failure ISDN NAF (see note 1)
42 Switching equipment

congestion
ISDN PUF

43 Access information discarded NAF, ISDN PUF (see note 3)
44 RequesteD-channel/circuit not

available
No channel of requested type
is available from this NAF

NAF, ISDN PUF

47 Resource unavailable,
unspecified

Requested external equipment
is not available

NAF, ISDN PUF

49 Quality of service unavailable ISDN PUF
50 Facility requested on Facility

parameter is not subscribed
ISDN PUF

57 Bearer Capability not
authorized

ISDN PUF

58 Bearer Capability not presently
available

Service requested by
BearerCap is not available. In
use by another PUF

NAF, ISDN PUF

63 Service or option not available,
unspecified

ISDN PUF

65 Service requested by Bearer
Capability is not implemented

Service requested by
BearerCap Parameter is not
provided by NAF

NAF, ISDN PUF

66 Channel Type not implemented NAF does not support this type
of channel

NAF, ISDN PUF

69 Facility requested is not
implemented

NAF does not support this
facility

NAF, ISDN PUF

70 Only restricted digital
information bearer capability is
available

ISDN NAF (see note 1)

Page 463
Final draft prETS 300 838: March 1998

79 Service or option not
implemented, unspecified

ISDN PUF

81 Invalid call reference Invalid NCOID NAF, ISDN NAF (see note 1)
82 IdentifieD-channel does not

exist
Identified permanent channel is
not defined

NAF, ISDN NAF (see note 1)

83 A suspended call exists but this
call identity does not

ISDN NAF (see note 1)

85 No call suspended NCOID does not identify a
suspended connection

NAF, ISDN NAF (see note 1)

86 Call having requested call
identity has been cleared

ISDN NAF (see note 1)

88 Incompatible destination ISDN PUF
91 Invalid transit network selection ISDN NAF (see note 1)
95 Invalid message, unspecified ISDN NAF (see note 1)
96 Mandatory parameter is

missing
Mandatory parameter is
missing

NAF, ISDN NAF (see note 1)

97 Message Identifier non-existent
or not implemented on this
network

Message Identifier non-existent
or not implemented on this
NAF

NAF, ISDN NAF (see note 1)

98 Message not compatible with
call state or message identifier
non-existent or not
implemented.

Message not compatible with
NCO state or message
identifier non-existent or not
implemented.

NAF, ISDN NAF (see note 1)

99 Invalid parameter Invalid parameter NAF, ISDN NAF (see note 1)
100 Invalid parameter contents Invalid parameter contents NAF, ISDN NAF (see note 1)
101 Message not compatible with

current state
Message not compatible with
current state

NAF, ISDN NAF (see note 1)

102 Recovery on timer expiry ISDN NAF (see note 2)
111 Protocol Error, unspecified ISDN NAF (see note 1)
127 Interworking, unspecified ISDN PUF
NOTE 1: Where cause values are processed by the NAF. The NAF should attempt error recovery. If it

fails to recover it should indicate to registered PUFs that it is no longer available by the use of
the NAFNotAvailable error code.

NOTE 2: NAF should take appropriate action.
NOTE 3: In the case of ISDN generating this cause, it is the responsibility of the NAF to map information

elements to parameter types in any diagnostic information supplied to PUF.

Page 464
Final draft prETS 300 838: March 1998

Table D.19 shows the order of checking for CConnectReq. Information is taken from the CConnectReq
message plus the attribute and address sets associated with the mandatory network connection identifier.
The table assumes that the initial checking of the message has taken place.

Table D.19: Checking of CConnectReq message

Parameter Test Action
Message state Invalid CStatusInd

Cause parameter value = 101
Diagnostics = MessageID

Valid Combine parameters from attribute
set, address set and CConnectReq
message, continue

Mandatory Parameters BearerCap missing CDisconnectInd
Cause parameter value = 96
Diagnostics = BearerCap

BearerCap Service is not
X.25 and CalledNumber
missing

CDisconnectInd
Cause parameter value = 96
Diagnostics = CalledNumber

All present Continue
BearerCap Parameter Content Invalid contents CDisconnectInd

Cause parameter value = 100
Diagnostics = BearerCap

Service not available
from NAF

CDisconnectInd
Cause parameter value = 65

Correct Continue
CalledNumber Parameter
Content (if present)

Invalid contents CDisconnectInd
Cause parameter value = 100
Diagnostics = CalledNumber

Correct Continue
Unrecognized Parameters Present CDisconnectInd

Cause parameter value = 99
Diagnostics = Parameter Type of
unrecognized parameter

Not present Continue
Optional Parameter Content
Error

Present CStatusInd
Cause parameter value = 100
Diagnostics = Parameter Type of
parameter in error
Continue (ignore parameter)

Not present Process Message

D.5 NAF configuration

The following subclause contains information concerning NAF configuration. This subclause is provided to
assist NAF developers and is not intended to be a comprehensive list of configurable items.

D.5.1 Global configuration

Table D.20: Global Configuration

Parameter Suggested
Default

Comment

Number of PUFs supported 8

Page 465
Final draft prETS 300 838: March 1998

D.5.2 System configuration parameters

Table D.21: System configuration parameters

Parameter Suggested default Comment
DMA DMA number used by the adapter
I/O address I/O address used by the adapter
IRQ IRQ used by the adapter
DRAM Double RAM access address shared

between the adapter and the host
environment.
This parameter may also contain the size of
the frame to be used by the adapter

D.5.3 Control Plane configuration

Table D.22: Control Plane configuration

Parameter Suggested Default Comment
Number of D-channels 1
D-channel definitions
 - type of network
 - automatic
 - fixed + number
 - frame window size (K)
 - N200
 - N201
 - N 202
Timers,
 - T200
 - T201
 - T202
 - T203

1

Number of B-channels 2
Number of Permanent
B-channels

0

List of permanent B-channel
identifiers

1..256

Number of permanent (SAPI
16) D-channels
For each D-channel
 - automatic
- fixed + number
- same as signalling

0

D.6 Buffer management

Buffers passed by the PUF to the NAF are copied by the NAF into internal space as soon as provided. So,
the buffers may be reused by the PUF immediately after the function returns.

The exact instant when the message is processed is dependent on the NAF and is outside the scope of
this ETS.

In the PUF to NAF direction, the message and the associated data, if any, are provided together, in one
step. If one of the messages or the data buffers is too small to contain, respectively, a complete message
or the data information, the NAF shall return an error and the message shall not be provided to the PUF.
To help the PUF, the size of the biggest message is established during the registration phase. The size of
a data buffer is closely dependent of the type of connection and its protocol. The PUF has to refer to the
User Plane protocol initialization to get the correct value of the longest data packet.

Page 466
Final draft prETS 300 838: March 1998

If a NAF needs new internal buffer is - it is in charge of this action. This can be achieved via a
configuration operation, provided by the NAF manufacturer, which is outside the scope of this ETS. The
NAF manufacturer may describe how the operation can be realized and which consequences are
expected.

D.7 NAF development user consideration

The main body of this ETS contains the description of Profile A from the PUF point of view. Following this
approach, some points, not directly related to the PUF, which have an impact on the development of the
NAF are not described. These points may be of interest for the NAF development and are, therefore,
described in this annex. It gives guidelines for the development of the NAF in accordance with the main
body of this ETS.

Consider this subclause from the following viewpoints:

- this annex gives additional points. The NAF has to be implemented using this ETS. It should
implement Profile A in such a way that the functionality described is provided;

- the main body of this ETS should be given priority if there is anything not clear in this subclause or
the interpretation between the main body of this ETS and this subclause is different;

- this subclause does not try to impose any constraints on the implementation of the NAF. The
objective is to give guidelines as to how the NAF can be developed to be in line with this ETS.

D.7.1 User Plane error management

The error processing for this plane is defined for each protocol in the relevant subclause.

D.7.2 NAF configuration

Global configuration, system configuration and Control Plane configuration are provided in clause D.5 of
this annex.

User Plane configuration can be found in subclauses of this annex, depending on the protocol.

Page 467
Final draft prETS 300 838: March 1998

D.7.3 Co-ordination function - outgoing User Plane call

The following state diagram shows the establishment of the Control Plane connection. The states
indicated are internal to the NAF.

Null

Connect

Requested
Call

terminated

Call

Initiated

Disconnect

Requested

Active

ALERTING

INDICATION

PROCEEDING

INDICATION

UDisconnectReq

DISCONNECT

INDICATION

RELEASE

INDICATION

SETUP

CONFIRM.

UDisconnectReq
or Time out (NOTE)

RELEASE

INDICATE

REJECT

INDICATE
(B channel
already
established)

SETUP

REQUEST

UConnectReq

UDisconnectReq

DISCONNECT

REQUEST
UDisconnectInd

Remarks:
- events in upper case are primitives described in ETS 300 102 [2];
- events in mixed case are PCI User Plane messages;
- the states shown are internal to the NAF.

NOTE: Whether the NAF disconnects the ISDN connection following the disconnection of the last User
Plane connection on the ISDN connection or sets a time-out is a NAF design consideration.

Figure D.44: Co-ordination function - outgoing call and channel establishment

Page 468
Final draft prETS 300 838: March 1998

D.7.4 Co-ordination function - incoming ISDN call

The following state diagram (figure D.45) shows the establishment of the Control Plane connection. The
states indicated are internal to the NAF.

Null

Call
Present

Connect
Request

Disconnect
Requested

Active

SETUP
INDICATION

REJECT
REQUEST
(NOTE 2)

SETUP
 COMPLETE
INDICATION

DISCONNECT
INDICATION
RELEASE
INDICATION

SETUP
RESPONSE

DISCONNECT
INDICATION
RELEASE
INDICATION

Timeout (NOTE 1)

DISCONNECT
INDICATION
RELEASE
INDICATION

DISCONNECT
REQUEST

Remarks:
- events in upper case are primitives described in ETS 300 102 [2];
- the states shown are internal to the NAF.

NOTE 1: Whether the NAF disconnects the ISDN connection following the disconnection of the last User
Plane connection on the ISDN connection or sets a time-out is a NAF design consideration.

NOTE 2: The NAF may reject the ISDN connection request.

Figure D.45: ISDN incoming call and co-ordination function

Page 469
Final draft prETS 300 838: March 1998

D.8 User protocols key information

The following table summarizes key information to make use of User Plane protocols. Values in
parenthesis are decimal coded.

PROTOCOL NCOType UProtocol UDirection Co-ordination
Function

Transparent access . C/U . NULL (4)
. NULL (8)
. Transparent access (1)

"both"
or

absent

NO

V.110 . C/U . NULL (4)
. V.110 (6 or 7)
. (...)

"both"
or

absent

NO

PPP . C/U . NULL (4)
. PPP (4)
. (...)

"both"
or

absent

NO

SDLC . C/U . NULL (4)
. SDLC (5)
. (...)

"both"
or

absent

NO

HDLC . C/U . NULL (4)
. HDLC (2 or 3)
. (...)

"both"
or

absent

NO

ISO 7776 . C/U . NULL (4)
. ISO 7776 (1)
. (...)

"both"
or

absent

NO

T.70 . C/U . T.70 (3)
. (...)
. (...)

"both"
or

absent

NO

ISO 8208 . C/U
. U3
. U3G

. ISO 8208 (2)

. (...)

. (...)

used YES

ETS 300 080 . C/U
. U3
. U3G

. T.90 (1)

. ISO 7776 (1)

. (...)

used YES

NOTE: When (...) is used, it means that there is no fixed value.

Page 470
Final draft prETS 300 838: March 1998

Annex E (normative): Profile A implementation description proforma

Notwithstanding the provisions of the copyright clause related to the text of this ETS, ETSI grants that
users of this ETS may freely reproduce the proforma in this annex so that it can be used for its intended
purposes and may further publish the completed implementation description.

E.1 Introduction

This annex contains the Profile A implementation description. The Profile A implementation description
lists all mandatory, conditional and optional items of Profile A of this specification relating to the exchange
mechanism and the supported messages. It shall be used in the process of evaluating a particular
implementation when claiming conformance to or support of Profile A of this specification. The
implementation which claims conformance can either be a PUF or a NAF. For the PUF, the Profile A
implementation description indicates if it uses the item. For the NAF this indicates if the item is supported.

To evaluate conformance of a particular implementation, a statement of which capabilities and options
have been implemented should be given. This annex contains such a statement.

The supplier of an implementation which is conforming to Profile A of this ETS shall complete a copy of
the Profile A implementation description and shall provide information necessary to identify both the
supplier and the implementation.

E.2 Profile A implementation description cover page

E.2.1 Identification of the Profile A implementation description

Profile A implementation description serial no:

Date:

E.2.2 Identification of implementation

Name :

Version :

Special configuration :

Other information :

E.2.3 Identification of the system supplier

Name : Contact :

Street : Phone no :

City : Telex no :

Country : Fax no :

Page 471
Final draft prETS 300 838: March 1998

E.2.4 Global statement of conformance

Are all mandatory features implemented? (Yes or No) :

Answering "No" to this question indicates non-conformance to the Profile A interface specification. Non-
supported mandatory capabilities shall be indicated in the Profile A implementation description, with an
explanation of why the implementation is non-conformant.

E.3 Instructions for completing the Profile A implementation description

Each line within the Profile A implementation description which requires implementation details to be
entered is numbered at the left hand edge of the line. This numbering is included as a means of uniquely
identifying all possible implementation details within the Profile A implementation description.

The N/P column in this annex separates the capabilities for the Network Access Facility (NAF) and the
PCI User Facility (PUF).

N Network Access Facility (NAF);

P PCI User Facility (PUF).

The D column in this annex reflects the Definition of the items in this ETS. Each entry in this column is
chosen from the following list:

M Mandatory support is required;

O Optional support is permitted. If implemented, it shall conform to this ETS;

C Conditional support. The support of this element is subject to a condition which
is described in the note column.

The I column in this annex describes the actual capabilities of the Implementation and shall be completed
by the supplier using a symbol chosen from the following list:

Y item is implemented (subject to stated constraints);

N item is not implemented;

- item is not applicable.

The reference/note column in this annex contains the references to the location in the main body of this
ETS where the items are described or a note explaining why the item is conditional.

The following abbreviations are used in the headings of this Profile A implementation description:

P/N PCI User Facility (PUF)/Network Access Facility (NAF);

D Defined;

I Implemented;

ref. reference.

Page 472
Final draft prETS 300 838: March 1998

E.4 Exchange mechanism

Item of Profile A N/P D I ref./note
1 PciGetHandles N O [] 5.3.1.2

P O [] 5.3.1.2
2 PciGetProperty N M [] 5.3.1.3

P O [] 5.3.1.3
3 PciRegister N M [] 5.3.1.4

P M [] 5.3.1.4
4 PciPutMessage N M [] 5.3.3.6

P M [] 5.3.3.6
5 PciGetMessage N M [] 5.3.3.7

P M [] 5.3.3.7
6 PciSetSignal N M [] 5.3.3.8

P O [] 5.3.3.8
7 PciDeRegister N M [] 5.3.2.1

P M [] 5.3.2.1

E.5 Administration Plane

Item of Profile A N/P D I ref./note
8 Administration Plane message class 1 N M [] 5.4

Basic class P M [] 5.4
9 Administration Plane message class 2 N O [] 5.4

Security features P O [] 5.4
10 Administration Plane message class 3 N O [] 5.4

Manufacturer specific features P O [] 5.4
11 Administration Plane message class 4 N O [] 5.4

Change NCO parameter P O [] 5.4

E.6 Control Plane

Item of Profile A N/P D I ref./note
12 Control Plane message class 1 N M [] 5.5

Basic class P C [] 5.5 Use of co-ordination
function

13 Control Plane message class 2 N O [] 5.5
Overlap sending P O [] 5.5

14 Control Plane message class 3 N O [] 5.5
User-to-user information transfer P O [] 5.5

15 Control Plane message class 4 N O [] 5.5
Call adjournment for telephony P O [] 5.5

16 Control Plane message class 5 N O [] 5.5
Facility invocation P O [] 5.5

17 Control Plane message class 6 N O [] 5.5
External Equipment handling P O [] 5.5

18 Control Plane message class 7 N O [] 5.5
Additional information P O [] 5.5

19 Control Plane message class 8 N O [] 5.5
DTMF P O [] 5.5

Page 473
Final draft prETS 300 838: March 1998

E.7 User Plane

Item of Profile A N/P D I ref./note
20 User Plane message class 1 N M [] 5.6

Basic class P M [] 5.6

E.8 User Plane protocols

Item of Profile A N/P D I ref./note
21 Network layer protocol according to

ETS 300 080 [2]
N M [] 5.6.4.1

P O [] 5.6.4.1
22 Network layer protocol according to

ISO/IEC 8208
N M [] 5.6.4.1

P O [] 5.6.4.1
23 Transparent User Plane protocol N M [] 5.6.2.1

P O [] 5.6.2.1
24 Network layer protocol according to

network layer of T.70
N O [] 5.6.4.2

P O [] 5.6.4.2
25 Network layer protocol using Null layer 3

with access to ISO 7776 on layer 2
N O [] 5.6.3.1

P O [] 5.6.3.1
26 Network layer protocol using Null layer 3

with transparent access to HDLC framing
N O []

P O []
27 Network layer protocol using Null layer 3

with transparent access to HDLC framing
reporting error

N O [] 5.6.3.3

P O [] 5.6.3.3
28 Network layer protocol using Null layer 3

with transparent access to PPP
N O [] 5.6.3.4

P O [] 5.6.3.4
29 Network layer protocol using Null layer 3

with transparent access to SDLC
N O [] 5.6.3.5

P O [] 5.6.3.5
30 Network layer protocol using Null layer 3

with transparent access to V.110
N O [] 5.6.3.6

P O [] 5.6.3.6
31 Network layer protocol using Null layer 3

with transparent access to V.120
N O [] 5.6.5

P O [] 5.6.5
32 Network layer protocol using Null layer 3

with transparent access to T.30
N O [] 5.6.6

P O [] 5.6.6

E.9 Miscellaneous features

Item of Profile A N/P D I ref./note
33 Transparent coding of facility

information element.
N O [] 5.2.1.3.3.2, 5.7.32

P O [] 5.2.1.3.3.2, 5.7.32

Page 474
Final draft prETS 300 838: March 1998

Annex F (normative): Static attribute content for the Control Plane

This annex contains a complete description of the static attributes that a NAF shall provide for the Control
Plane. Rules to establish these attributes are related to the protocol requirement. User Plane related static
attributes should be found in the subclause 5.6 of this ETS.

F.1 Generic circuit bearer service

F.1.1 Speech

Name : "SPEECH_A-LAW"
BearerCap : 80 90 A3
LLC : Not used
HLC : Not used

Name : "SPEECH_µ-LAW"
BearerCap : 80 90 A2
LLC : Not used
HLC : Not used

F.1.2 Unrestricted digital information

Name : "UNRESTRICTED"
BearerCap : 88 90
LLC : Not used
HLC : Not used

F.1.3 Restricted digital information

Name : "UNRESTRICTED/56"
BearerCap : 88 90 01 8F
LLC : Not used
HLC : Not used

F.1.4 3,1 kHz audio information transfer

Name : "AUDIO_A-LAW"
BearerCap : 90 90 A3
LLC : Not used
HLC : Not used

Name : "AUDIO_µ-LAW"
BearerCap : 90 90 A2
LLC : Not used
HLC : Not used

F.1.5 Packet mode bearer service

Name : "D_CHANNEL_HDL"
BearerCap : 88 C0 C6 E6
LLC : Not used
HLC : Not used

F.1.6 Teleservices

Name : "TELEPHONYA_LAW"
BearerCap : 80 90 A3
LLC : Not used
HLC : Standard = 0

 Identification = 1

Name : "TELEPHONYµ_LAW"

Page 475
Final draft prETS 300 838: March 1998

BearerCap : 80 90 A2
LLC : Not used
HLC : Standard = 0

 Identification = 1

Name : "TELEFAX_G4"
BearerCap : 88 90
LLC : Depending on Terminal Equipment: octet 3a. Not used: octet 4 and 5.

Octet 6 (layer 2) = 0D (13)
Octet 7 (layer 3) = 07

HLC : Standard = 0
 Identification = 21 (33)

Page 476
Final draft prETS 300 838: March 1998

Annex G (informative): Operating System implementation coding samples for
Profile A

G.1 DOS Operating System implementation coding samples

These samples present a way to implement the exchange mechanism function call from the PUF point of
view.

/***
This library code may be linked to a PUF to allow uniform access to multiple NAFs. The access to
the different NAFs by use of an unique ExID is achieved by the use of a local table, which allows
MAX_EXID entries.
**/
/*
 * Include files
 */
#include <dos.h>
#include <fcntl.h>
#include <memory.h>
#include <malloc.h>
#include <stdio.h>

/*
 * General typedefs
 */
typedef void (* PFRV) (); /* Pointer to Function Returning Void */
typedef short int (far * FPFRS) (); /* Far Pointer to Function Returning Short */
typedef void (far * FPFRV) (); /* Far Pointer to Function Returning Void */
typedef int (far * FPFRI) (); /* Far Pointer to Function Returning Int */

/*
 * Mapping of generic type definitions
 */

typedef short int PCI_INTEGER;
typedef char far * PCI_BYTEARRAY;
typedef short int PCI_EXID;
typedef FPFRI PCI_HANDLE;
typedef FPFRV PCI_PROCEDURE;

/*
* Definition of function codes
*/

#define PCIGETPROPERTY (short) (1)
#define PCIREGISTER (short) (2)
#define PCIDEREGISTER (short) (3)
#define PCIPUTMESSAGE (short) (4)
#define PCIGETMESSAGE (short) (5)
#define PCISETSIGNAL (short) (6)

/*
 * Error definitions
 */
#define E_DEVICE_DRIVER_NOT_FOUND 128
#define E_DEVICE_DRIVER_CONTROL 128
#define E_NAF_NOT_FOUND 130
#define E_NAF_INVALID_ADDRESS 130
#define E_TOO_MANY_ASSOCIATIONS 133
#define E_INVALID_EXCHANGE_ID 136

/*
 * Other definitions
 */

#define SUCCESS 0
#define MAX_EXID 32 /* allow 32 PUF_NAF associations */

/*
 * Structures
 */

struct pci_mpb {
PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};

struct pci_register { /* structure containing registering info */

Page 477
Final draft prETS 300 838: March 1998

PCI_INTEGER PUFVersion; /* optional: give PUF version */
PCI_INTEGER PUFType; /* optional: give PUF type */
PCI_INTEGER MaxMsgSize; /* return: max size of a message */

};

struct pci_opsys { /* structure containing registering info */
short int MaxNCOCount; /* optional: give max count of NCOs */
short int MaxPacketSize; /* optional: give expected max size and */
short int MaxPacketCount; /* max count of packets to buffer */
long int AddBufferSize; /* optional: give to NAF size and */
void far * AddBufferSpace; /* pointer to additional buffer */
long int BufferNeeded; /* return: amount of add buffer needed */

};

struct loc_exid_map { /* locally used structure for ExIDs */
PCI_HANDLE pci_handle;
PCI_EXID exchange_id;

};

/*
* Functional constants
*/
const char PCIsign[8]="ISDN PCI";

/*
 * Local variables
 */
static struct loc_exid_map _exid_map[MAX_EXID]; /* table holding MAX_EXID ExID entries */
static short int _exid_cnt = MAX_EXID; /* count of free places inside ExID table */

/**
PciGetHandles: Asks the "PCIDD$" device driver for a list of available

PCI-Handles (NAF entry points).
Returns available PCI-Handles into the given PCIHandles buffer.
The maximum amount of PCI-Handles requested is given in MaxHandles.
Function will fail, if MaxHandles is less than the Handles available in the driver.

***/
short int PciGetHandles (short int MaxHandles,

FPFRI * PCIHandles,
short int * ActualHandles)

{
short int fildes; /* file descripror */
union _REGS regs;
struct _SREGS segregs;

/* open the driver */
if (_dos_open ("PCIDD$", _O_RDWR, &fildes) != SUCCESS)

return E_DEVICE_DRIVER_NOT_FOUND; /* device driver not accessible; return error */

/* prepare IOCTL read from device driver */
_segread (&segregs);
segregs.ds = FP_SEG (PCIHandles); /* set-up segment address */
regs.x.dx = FP_OFF (PCIHandles); /* and offset */
regs.x.cx = MaxHandles * sizeof(PCI_HANDLE);
regs.x.bx = fildes; /* set dos file handle */
regs.x.ax = 0x4402; /* IOCTL read from character device */

/* issue IOCTL read from device driver */
_intdosx (®s, ®s, &segregs);

/* close the driver */
_dos_close (fildes);

/* check for error */
if (regs.x.cflag & 1) /* check processors carry flag */

return E_DEVICE_DRIVER_CONTROL; /* error has occured; return error */

/* Successful operation. Compute count of PCI-Handles received */
*ActualHandles = regs.x.ax / sizeof(PCI_HANDLE);

return SUCCESS;
} /* End of PciGetHandles() */

/**
PciGetProperty: Asks the NAF for it"s properties, which is a list of TLV coded topics.

Returns the properties into the given Property buffer.
The maximum size of the Property buffer is given in MaximumSize.
Function will fail, if MaximumSize is less than the size of the Property the
NAF can deliver.

***/

short int PciGetProperty (FPFRI PCIHandle,
short int MaximumSize,
char * Property,
short int * ActualSize)

Page 478
Final draft prETS 300 838: March 1998

{
register short int error;
unsigned char far * signature;

/* Check if NAF is available */
if (PCIHandle == NULL)

return E_NAF_INVALID_ADDRESS; /* NAF inaccessible, invalid address */

/* compute address of signature and check it */
signature = (unsigned char far *) PCIHandle - sizeof(PCIsign);
if (_fmemcmp (PCIsign, signature, sizeof(PCIsign) != SUCCESS))

return E_NAF_NOT_FOUND; /* NAF inaccessible invalid signature */

/* Call the NAF to obtain the property information */
error = (*PCIHandle) (PCIGETPROPERTY,

MaximumSize,
(char far *) Property,
(short int far *) ActualSize);

return error;
} /* End of PciGetProperty() */

/**
PciRegister: Tries to associate calling PUF with selected NAF.

Delivers the ExID, which has to be used in subsequent calls.
Two structures have to be provided by the calling PUF:
- The PCIRegisterInfo and
- the PCIOpSysInfo structure.

***/

short int PciRegister (FPFRI PCIHandle,
struct pci_register * PCIRegisterInfo,
struct pci_opsys * PCIOpSysInfo,
short int * ExID)

{
register short int error;
register short int exchange_id;
unsigned char far * signature;
struct loc_exid_map *exid_map; /* dynamic pointer to local _exid_map tab */

/* Check if NAF is available */
if (PCIHandle == NULL)

return E_NAF_INVALID_ADDRESS; /* NAF inaccessible, invalid address */

/* compute address of signature and check it */
signature = (unsigned char far *) PCIHandle - sizeof(PCIsign);
if (_fmemcmp (PCIsign, signature, sizeof(PCIsign) != SUCCESS))

return E_NAF_NOT_FOUND; /* NAF inaccessible invalid signature */

/* check if there is still room in our local _exid_map table */
if (! _exid_cnt)

return E_TOO_MANY_ASSOCIATIONS; /* Indicate table exhausted */

/* Call the NAF to inform it of a new association PUF */
error = (*PCIHandle) (PCIREGISTER,

(struct pci_register far *) PCIRegisterInfo,
(struct pci_opsys far *) PCIOpSysInfo,
(short int far *) ExID);

if (! error)
{
/* Association was successful; record it in local table */
exchange_id = 0;
exid_map = &_exid_map[0]; /* setup pointer into local _exid_map table */
while (exid_map->pci_handle)

{
exid_map++;
exchange_id += 1;
}

exid_map->exchange_id = *ExID;
exid_map->pci_handle = PCIHandle;
ExID = exchange_id; / compute and set Exchange-ID */
_exid_cnt -= 1;
}

return error;
} /* End of PciRegister() */

/**
PciDeregister: Terminates an existing association wit a NAF.

The ExID of an existing association has to be provided.
***/

short int PciDeregister (PCI_EXID ExID)
{
register short int error;
struct loc_exid_map *exid_map; /* dynamic pointer to local _exid_map tab */

Page 479
Final draft prETS 300 838: March 1998

/* Check if ExID is valid and setup pointer into local _exid_map table */
exid_map = &_exid_map[ExID];
if (ExID < 0 || ExID >= MAX_EXID || ! exid_map->pci_handle)

return E_INVALID_EXCHANGE_ID;

/* Call the NAF to inform it of the end of the association */
error = (*exid_map->pci_handle) (PCIDEREGISTER,

exid_map->exchange_id);

/* delete association from local table */
exid_map->pci_handle = NULL;
_exid_cnt += 1;

return error;
} /* End of PciDeregister() */

/**
PciPutMessage: Transfers a Message and associated Data to the NAF.
***/

short int PciPutMessage (short int ExID,
struct pci_mpb * PCIMPB,
char * Message,
char * Data)

{
register short int error;
struct loc_exid_map *exid_map; /* dynamic pointer to local _exid_map tab */

/* Check if ExID is valid and setup pointer into local _exid_map table */
exid_map = &_exid_map[ExID];
if (ExID < 0 || ExID >= MAX_EXID || ! exid_map->pci_handle)

return E_INVALID_EXCHANGE_ID;
/* Call the NAF and provide the message */
error = (*exid_map->pci_handle) (PCIPUTMESSAGE,

exid_map->exchange_id,
(struct pci_mpb far *) PCIMPB ,
(char far *) Message,
(char far *) Data);

return error;
} /* End of PciPutMessage() */

/**
PciGetMessage: Receives a Message and associated Data from the NAF.
***/
short int PciGetMessage (short int ExID,

struct pci_mpb * PCIMPB ,
char * Message,
char * Data)

{
register short int error;
struct loc_exid_map *exid_map; /* dynamic pointer to local _exid_map tab */

/* Check if ExID is valid and setup pointer into local _exid_map table */
exid_map = &_exid_map[ExID];
if (ExID < 0 || ExID >= MAX_EXID || ! exid_map->pci_handle)

return E_INVALID_EXCHANGE_ID;

/* Call the NAF and receive the message */
error = (*exid_map->pci_handle) (PCIGETMESSAGE,

exid_map->exchange_id,
(struct pci_mpb far *) PCIMPB ,
(char far *) Message,
(char far *) Data);

return error;
} /* End of PciGetMessage() */

/**
PciSetSignal: Hands the address of a SignalProcedure to the NAF.

The SignalProcedure then will receive notification on communication
events (i.e. Message available for retrieval)

***/

short int PciSetSignal (short int ExID,
short int Signal,
PFRV SignalProcedure)

{
register short int error;
struct loc_exid_map *exid_map; /* dynamic pointer to local _exid_map tab */

/* Check if ExID is valid and setup pointer into local _exid_map table */
exid_map = &_exid_map[ExID];
if (ExID < 0 || ExID >= MAX_EXID || ! exid_map->pci_handle)

Page 480
Final draft prETS 300 838: March 1998

return E_INVALID_EXCHANGE_ID;

/* Call the NAF to set the signal function */
error = (*exid_map->pci_handle) (PCISETSIGNAL,

exid_map->exchange_id,
(FPFRV) SignalProcedure);

return error;
} /* End of PciSetSignal() */

G.2 WINDOWS Operating System implementation coding samples

These samples present a way to implement the exchange mechanism function call from the PUF point of
view.

The following code shows a sample implementation of PUF exchange functions for the Windows
environment. The sample is illustrated using "C" language:

/* standard includes */
#include <windows.h>

/* Basic types */
typedef short PCI_INTEGER;
typedef LPSTR PCI_BYTEARRAY;
typedef LPSTR PCI_HANDLE;
typedef struct {

HINSTANCE hDLLInstance;
PCI_INTEGER Exchange_Id;
} PCI_EXID;

typedef void (far pascal *PCI_PROCEDURE)();

/* PCI Structures */
struct pci_mpb {

PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;
};

typedef struct pci_mpb PCI_MPB;

struct pci_register { /* structure containing registering info */
PCI_INTEGER PUFVersion; /* optional: give PUF version */
PCI_INTEGER PUFType; /* optional: give PUF type */
PCI_INTEGER MaxMsgSize; /* return: max size of a message */

};

struct pci_opsys { /* structure containing registering info */
int DummyParameter; /* No specific requirement for WINDOWS */

};

/*
 * PCI defines
 */
#define PCI_HANDLE_LENGTH 128 /* size of each handle in the buffer from PciGetHandles
*/
#define PCI_E_SUCCESS 0
#define PCI_E_QUERY_ENTITY_NOT_AVAILABLE 128
#define PCI_E_INVALID_PCI_HANDLE 130
#define PCI_E_NAF_NOT_AVAILABLE 255

/*
//
/// PciGetHandles()
*/
PCI_INTEGER far PASCAL PciGetHandles (PCI_INTEGER MaxHandles,

PCI_HANDLE PCIHandles,
PCI_INTEGER far * ActualHandles)

{
int nafNumber;
int nafFound;
int size;
char keyName[20];
PCI_BYTEARRAY buffer;

buffer = PCIHandles;
for (nafNumber = 1, nafFound = 0; nafNumber <= MaxHandles; nafNumber++)

{
wsprintf(keyName, "pciDriver%d", nafNumber);
size = GetPrivateProfileString(

Page 481
Final draft prETS 300 838: March 1998

"DRIVERS", /* Section name*/
keyName, /* "pciDriver"+1..n */
NULL, /* No default string needed */
buffer, /* Address where to put the result */
128, /* Maxi. size for the result */
"PCI.INI"); /* INI FileName */

if (size > 0)
{
nafFound++; /* One more NAF found */
buffer += 128;/* Next location for a PCIHandle (128 octets fixed size)*/
}

}
*ActualHandles = nafFound;
}

/*
///
/// PciGetProperty()
*/
PCI_INTEGER far PASCAL PciGetProperty (PCI_HANDLE PCIHandle,

PCI_INTEGER MaximumSize,
PCI_BYTEARRAY Property,
PCI_INTEGER far * ActualSize)

{
PCI_INTEGER iReturnCode;
HINSTANCE hDLLInstance;
FARPROC lpfnGetProperty;

/* load the NAF"s DLL */
hDLLInstance = LoadLibrary(PCIHandle);
if (hDLLInstance < HINSTANCE_ERROR)

return PCI_E_INVALID_PCI_HANDLE; /* error in LoadLibrary */

/* get the "PciGetProperty" entry point of the dll */
lpfnGetProperty = GetProcAddress(hDLLInstance, "PciGetProperty");
if (lpfnGetProperty == NULL)

{
FreeLibrary(hDLLInstance);
return PCI_E_NAF_NOT_AVAILABLE; /* error in GetProcAddress */
}

/* call the "PciGetProperty" entry point of the dll */
iReturnCode = lpfnGetProperty(PCIHandle, MaximumSize, Property, ActualSize);

/* free the DLL in any case */
FreeLibrary(hDLLInstance);

/* return with the DLL"s return code */
return iReturnCode;
}

/*
///
/// PciRegister()
/// The PCIOpSysInfo is kept for compatibility only
*/
PCI_INTEGER far PASCAL PciRegister (PCI_HANDLE PCIHandle,

struct pci_register * PCIRegisterInfo,
struct pci_opsys * PCIOpSysInfo,
PCI_EXID far *ExID)

{
PCI_INTEGER iReturnCode;
FARPROC lpfnRegister;
HINSTANCE hDLLInstance;

/* load the NAF"s DLL */
hDLLInstance = LoadLibrary(PCIHandle);
if (hDLLInstance < HINSTANCE_ERROR)

return PCI_E_INVALID_PCI_HANDLE; /* error in LoadLibrary */

/* put the DLL instance in ExID */
ExID->hDLLInstance = hDLLInstance;

/* get the "PciRegister" entry point of the dll */
lpfnRegister = GetProcAddress(hDLLInstance, "PciRegister");
if (lpfnRegister == NULL)

{ /* error in GetProcAddress */
FreeLibrary(hDLLInstance);
return PCI_E_NAF_NOT_AVAILABLE;
}

/* call the "PciRegister" entry point of the dll */
iReturnCode = lpfnRegister(PCIRegisterInfo, ExID);

if (iReturnCode != 0)

Page 482
Final draft prETS 300 838: March 1998

{ /* error in PciRegister: free the DLL */
FreeLibrary(hDLLInstance);
}

/* return with the DLL"s return code */
return iReturnCode;
}

/*
///
/// PciDeRegister()
*/
PCI_INTEGER far PASCAL PciDeregister(PCI_EXID far *ExID)

{
PCI_INTEGER iReturnCode;
FARPROC lpfnDeregister;

/* get the "PciDeregister" entry point of the dll */
lpfnDeregister = GetProcAddress(ExID->hDLLInstance, "PciDeregister");
if (lpfnDeregister == NULL) /* error in GetProcAddress */

return PCI_E_NAF_NOT_AVAILABLE;

/* call the "PciDeRegister" entry point of the dll */

iReturnCode = lpfnDeregister(ExID);

/* free the DLL in any case */
FreeLibrary(ExID->hDLLInstance);

/* return with the DLL"s return code */
return iReturnCode;
}

/*
///
/// PciPutMessage()
*/
PCI_INTEGER far PASCAL PciPutMessage(PCI_EXID far *ExID,

PCI_MPB far *PCIMPB ,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data)

{
FARPROC lpfnPutMessage;

/* get the "PciPutMessage" entry point of the dll */
lpfnPutMessage = GetProcAddress(ExID->hDLLInstance, "PciPutMessage");
if (lpfnPutMessage == NULL) /* error in GetProcAddress */

return PCI_E_NAF_NOT_AVAILABLE;

/* call the "PciPutMessage" entry point of the dll */
/* and return with the DLL"s return code */
return lpfnPutMessage(ExID, PCIMPB , Message, Data);
}

/*
///
/// PciGetMessage()
*/
PCI_INTEGER far PASCAL PciGetMessage(PCI_EXID far *ExID,

PCI_MPB far *PCIMPB ,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data)

{
FARPROC lpfnGetMessage;
/* get the "PciGetMessage" entry point of the dll */

lpfnGetMessage = GetProcAddress(ExID->hDLLInstance, "PciGetMessage");
if (lpfnGetMessage == NULL) /* error in GetProcAddress */

return PCI_E_NAF_NOT_AVAILABLE;

/* call the "PciGetMessage" entry point of the dll */
/* and return with the DLL"s return code */
return lpfnGetMessage(ExID, PCIMPB , Message, Data);
}

/*
///
/// PciSetSignal()
*/
PCI_INTEGER far PASCAL PciSetSignal(PCI_EXID far *ExID,

PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure)

{
FARPROC lpfnSetSignal;

Page 483
Final draft prETS 300 838: March 1998

/* get the "PciSetSignal" entry point of the dll */
lpfnSetSignal = GetProcAddress(ExID->hDLLInstance, "PciSetSignal");
if (lpfnSetSignal == NULL) /* error in GetProcAddress */

return PCI_E_NAF_NOT_AVAILABLE;

/* call the "PciSetSignal" entry point of the dll */
/* and return with the DLL"s return code */
return lpfnSetSignal(ExID, Signal, SignalProcedure);
}

G.3 UNIX Operating System implementation coding samples

These samples present a way to implement the exchange mechanism function call from the PUF point of
view.

The PciGetHandles function call is not presented.

/* Include files and basic definitions */
#include <stddef.h>
#include <fcntl.h>
#include <signal.h>
#include <stropts.h>
#include <errno.h>
#include <stdlib.h>

#define ERROR (-1) /* Error value */
#define Success (0) /* Success value */

/* Basic types */
typedef int PCI_INTEGER;
typedef char * PCI_BYTEARRAY;
typedef int PCI_EXID;
typedef char * PCI_HANDLE;
typedef void (* PCI_PROCEDURE)();

/* Structures */
struct pci_mpb {

PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};

struct pci_register { /* structure containing registering info */
PCI_INTEGER PUFVersion; /* optional: give PUF version */
PCI_INTEGER PUFType; /* optional: give PUF type */
PCI_INTEGER MaxMsgSize; /* return: max size of a message */

};

struct pci_opsys { /* structure containing registering info */
int DummyParameter; /* No specific requirement for WINDOWS */

};

/* Function definitions */
#define PCI_PROPERTY (("Z" << 8) | 1)
#define PCI_REGISTER (("Z" << 8) | 2)
#define PCI_DEREGISTER (("Z" << 8) | 3)
#define PCI_SETSIGNAL (("Z" << 8) | 4)

/***
 * PciGetProperty function
 */
PCI_INTEGER PciGetProperty (PCIHandle, MaximumSize, NAFProperty, ActualSize)

PCI_HANDLE PCIHandle; /* char * */
PCI_INTEGER MaximumSize; /* int */
PCI_BYTEARRAY NAFProperty /* char * */
PCI_INTEGER * ActualSize; /* int * */

{
register int filedes; /* filedescriptor */
struct strioctl strioct; /* stream message control part pointer */

ActualSize = ERROR; / preset with error value */

if ((filedes = open (PCIHandle, O_RDWR)) < Success)
return ERROR;

strioct.ic_cmd = PCI_PROPERTY;
strioct.ic_timout = 0;

Page 484
Final draft prETS 300 838: March 1998

strioct.ic_len = MaximumSize;
strioct.ic_dp = (char *) NAFProperty;

if (ioctl (filedes, I_STR, &strioct) == 0) {
*ActualSize = strioct.ic_len;
close (filedes);
return 0;
}

else
{
*ActualSize = 0;
close (filedes);
return errno;
}

}

/***
 * PciRegister function
 */
PCI_INTEGER PciRegister (PCIHandle, pciregister, pcidummy, ExID)

PCI_HANDLE PCIHandle; /* char * */
struct pci_register *pciregister;
struct pci_opsys *pcidummy;
PCI_EXID * ExID; /* int * */

{
struct strioctl strioctl;

struct pci_register_t {
int puf_version;
int puf_type;

} pci_reg;

pci_reg.puf_version = pciregister->PUFVersion;
pci_reg.puf_type = pciregister->PUFType;

strioctl.ic_cmd = PCI_REGISTER;
strioctl.ic_timout = 0;
strioctl.ic_len = sizeof (pci_reg);
strioctl.ic_dp = (char *) &pci_reg;

if ((*ExID = open (PCIHandle, O_RDWR)) == -1)
{
*ExID = 0;
return errno;
}

if ((pciregister->MaxMsgSize = ioctl (*ExID, I_STR, &strioctl)) < 0)
{
pciregister->MaxMsgSize = 0;
close(*ExID);
*ExID = 0;
return errno;
}

else
{
return 0;
}

}

/***
 * PciDeregister function
 */
PCI_INTEGER PciDeregister (ExID)

PCI_EXID ExID; /* int */
{
struct strioctl strioctl;

strioctl.ic_cmd = PCI_DEREGISTER;
strioctl.ic_timout = 0;
strioctl.ic_len = 0;
strioctl.ic_dp = (char *) NULL;

if (ioctl (ExID, I_STR, &strioctl) == -1)
{
return errno;
}

else
{
close (ExID);
return 0;
}

}

/***

Page 485
Final draft prETS 300 838: March 1998

 * PciPutMessage function
 */
PCI_INTEGER PciPutMessage (ExID, PCIMPB, Message, Data)

PCI_EXID ExID; /* int */
struct pci_mpb * PCIMPB;
PCI_BYTEARRAY Message; /* char * */
PCI_BYTEARRAY Data /* char * */

{
struct strbuf ctlbuf;
struct strbuf databuf;
char *buffer = NULL; /* pointer to a buffer, large enough to receive PCIMPB and Message contents
*/
int nErr;

if (Message && ((char *)Message != (char *)PCIMPB + sizeof(struct pci_mpb)))
{
/* there is a Message not NULL, and PCIMPB Band Message are not contiguous
 in memory,Have to build a buffer where PCIMPB is followed by the Message content */
/* Here a memory allocation process may take place */
buffer = (char *) (malloc(sizeof(struct pci_mpb) + PCIMPB->MessageActualUsedSize));

memcpy (buffer, PCIMPB, sizeof(struct pci_mpb));
memcpy (buffer + sizeof(struct pci_mpb), Message, PCIMPB->MessageActualUsedSize);
ctlbuf.buf = buffer;
ctlbuf.len = PCIMPB->MessageActualUsedSize + sizeof(struct pci_mpb);

}
else

{
/* either there is no Message, or the PCIMPB and the Message are contiguous in memory */
ctlbuf.buf = (char *)PCIMPB;
ctlbuf.len = Message ? PCIMPB->MessageActualUsedSize + sizeof(struct pci_mpb): sizeof(struct

pci_mpb);
}

databuf.buf = Data;
databuf.len = Data ? PCIMPB->DataActualUsedSize: 0;

if (putmsg (ExID, &ctlbuf, &databuf, 0) != 0)
nErr = errno; /* errno contents the error code */
}

else
{

 nErr = 0;
}

if (buffer != NULL) free(buffer);
return nErr;
}

/***
 * PciGetMessage function
 */
PCI_INTEGER PciGetMessage (ExID, PCIMPB, Message, Data)

PCI_EXID ExID; /* int */
struct pci_mpb * PCIMPB;
PCI_BYTEARRAY Message; /* char * */
PCI_BYTEARRAY Data; /* char * */

{
struct strbuf ctlbuf;
int flags;
struct strbuf databuf;
char *buffer = NULL; /* pointer to a buffer,large enough to receive PCIMPB and the Message
content */
int nErr = 0;

if (Message && ((char *)Message != (char *)PCIMPB + sizeof(struct pci_mpb)))
{
/* there is a Message not NULL and, PCIMPB and Message are not contiguous in memory,
have to reserve a buffer where PCIMPB can be followed by the Message content */
/* Here a memory allocation process may take place */
buffer = (char *) (malloc(sizeof(struct pci_mpb) + PCIMPB->MessageMaximumSize));
ctlbuf.buf = buffer;
}

else {
/* either there is no Message, or the PCIMPB and the Message are contiguous in memory */
ctlbuf.buf = (char *)PCIMPB;
}

ctlbuf.maxlen = Message ? PCIMPB->MessageMaximumSize + sizeof(struct pci_mpb):sizeof(struct
pci_mpb);
databuf.buf = Data;
databuf.maxlen = Data ? PCIMPB->DataMaximumSize: 0;

flags = 0;
if (getmsg (ExID, &ctlbuf, &databuf, &flags) != 0)

{

Page 486
Final draft prETS 300 838: March 1998

/* Error condition, errno will be set */
nErr = errno;

}else {
/* Operation OK */
if (ctlbuf.len != -1 && ctlbuf.len >= sizeof(struct pci_mpb)) {

/* Message, possibly of size 0 is present */
PCIMPB->MessageActualUsedSize = ctlbuf.len - sizeof(struct pci_mpb);
if (Message && ((char *)Message != (char *)PCIMPB +

sizeof(struct pci_mpb)))
{
/* there is a Message not NULL and, PCIMPB and Message are not
 contiguous in memory, a buffer where PCIMPB can be followed
 by the Message content, has been used */
memcpy (PCIMPB, buffer, sizeof(struct pci_mpb));
memcpy (Message,(buffer + sizeof(struct pci_mpb)), (ctlbuf.len - sizeof(struct

pci_mpb)));
}

else
{
/* PCIMPB and Message are contiguous in memory, no more buffer used */
Message = (char *) (PCIMPB + sizeof(struct pci_mpb));
}

}else {
/* No Message present or too small message: error at least PCIMPB
 should be there */
PCIMPB->MessageID = 0;
PCIMPB->MessageActualUsedSize = 0;
}

if (databuf.len != -1)
{
/* Data block, possibly of size 0 is present */
PCIMPB->DataActualUsedSize = databuf.len;
}

else
{
/* No Data present */
PCIMPB->DataActualUsedSize = 0;
}

}
if (buffer != NULL) free(buffer);

return nErr;
}

/***
 * PciSetSignal function
 */
PCI_INTEGER PciSetSignal (ExID, Signal, SignalProcedure)

PCI_EXID ExID; /* int */
PCI_INTEGER Signal; /* int */
PCI_PROCEDURE SignalProcedure; /* void (*) () */
{
if (Signal == 0)

{
if (ioctl (ExID, I_SETSIG, 0) == -1)

return errno;
signal (SIGPOLL, SIG_DFL);
return 0;
}

else
{
if (ioctl (ExID, I_SETSIG, S_MSG) == -1)

return errno;
signal (SIGPOLL, SignalProcedure);
return 0;
}

}

G.4 OS/2 Operating System implementation coding samples

G.4.1 Sample OS/2 application level implementation coding

The following code shows a sample implementation of PUF exchange functions for the OS/2 application
level environment. The sample is illustrated using "C" language:

/*

Page 487
Final draft prETS 300 838: March 1998

 * standard includes
 */
#define INCL_DOSSEMAPHORES
#define INCL_DOSMEMMGR
#define INCL_DOS
#define INCL_SUB
#include <os2.h>
#include <string.h>
#include <dos.h>
#include <stdlib.h>

/*
 * Basic types
 */
typedef SHORT PCI_INTEGER;
typedef PSZ PCI_BYTEARRAY;
typedef PSZ PCI_HANDLE;
typedef struct {

HMODULE hDLLInstance;
PCI_INTEGER Exchange_Id;
} PCI_EXID;

typedef ULONG * PCI_PROCEDURE;

/*
 * PCI Structures
 */
struct pci_mpb {

PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};
typedef struct pci_mpb PCI_MPB;

struct pci_register { /* structure containing registering info */
PCI_INTEGER PUFVersion; /* optional: give PUF version */
PCI_INTEGER PUFType; /* optional: give PUF type */
PCI_INTEGER MaxMsgSize; /* return: max size of a message */

};

struct pci_opsys { /* structure containing specific operating system info */
int DummyParameter; /* No specific requirement for OS2 */

};

/*
 * PCI defines
 */
#define PCI_HANDLE_LENGTH 254 /*size of each handle in the buffer from PciGetHandles */
#define PCI_E_SUCCESS 0
#define PCI_E_QUERY_ENTITY_NOT_AVAILABLE 128
#define PCI_E_INVALID_PCI_HANDLE 130
#define PCI_E_NAF_NOT_AVAILABLE 255

/*
///
/// PciGetHandles()
*/
PCI_INTEGER far PASCAL PciGetHandles (PCI_INTEGER MaxHandles,

PCI_HANDLE PCIHandles,
PCI_INTEGER far * ActualHandles)

 {
 int nafNumber;
 int nafFound;
 int size;
 char keyName[20];
 PCI_BYTEARRAY buffer;
 HINI hini;
 hini = PrfOpenProfile(hini, "PCI.INI);
 buffer = PCIHandles;
 for (nafNumber = 1, nafFound = 0; nafNumber <= MaxHandles;nafNumber++)
 {
#ifdef PCI_DLL /* For OS/2 application level */
sprintf(keyName, "pciDLL%d", index);
size = PrfQueryProfileString(hini,

"PCI_DLL", /* Section name */
#endif
#ifdef PCI_PDD /* For OS/2 device driver level */
sprintf(keyName, "pciDriver%d", index);
size = PrfQueryProfileString(hini,

"PCI_PDD", /* Section name */
#endif

keyName, /* "pciDriver"+1..n */

Page 488
Final draft prETS 300 838: March 1998

NULL, /* No default string needed */
buffer, /* Address where to put the result */
PCI_HANDLE_LENGTH); /* Maxi. size for the result */

if (size > 0)
 {
 nafFound++; /* One more NAF found */
 buffer += PCI_HANDLE_LENGTH;/* Next location for a PCIHandle */
 }
}

 *ActualHandles = nafFound;

 PrfCloseProfile(hini);
 /* return with the DLL"s return code */
 return PCI_E_SUCCESS;
 }
/*
///
/// PciGetProperty()
*/
PCI_INTEGER far PASCAL PciGetProperty (PCI_HANDLE PCIHandle,

PCI_INTEGER MaximumSize,
PCI_BYTEARRAY Property,
PCI_INTEGER far * ActualSize)

 {
 PCI_INTEGER iReturnCode;
 HMODULE hDLLInstance;
 BYTE Failname[256];
 PCI_INTEGER Failsize;
 PFN lpfnGetProperty;

 /* load the NAF"s DLL and get the instance DLL */
 if (DosLoadModule(Failname, Failsize, PCIHandle, &hDLLInstance) !=0)

 return PCI_E_INVALID_PCI_HANDLE; /* error in Load DLL */

 /* get the "PciGetProperty" entry point of the dll */
 DosQueryProcAddr(hDLLInstance, 1,"PciGetProperty", &lpfnGetProperty);
 if (lpfnGetProperty == NULL)

{
 DosFreeModule(hDLLInstance);
 return PCI_E_NAF_NOT_AVAILABLE; /* error in GetProcAddress */
}

 /* call the "PciGetProperty" entry point of the dll */
 iReturnCode = lpfnGetProperty(PCIHandle, MaximumSize, Property, ActualSize);

 /* free the DLL in any case */
 DosFreeModule(hDLLInstance);

 /* return with the DLL"s return code */
 return iReturnCode;
 }

/*
///
/// PciRegister()
/// The PCIOpSysInfo is kept for compatibility only
*/
PCI_INTEGER far PASCAL PciRegister (PCI_HANDLE PCIHandle,

struct pci_register *PCIRegisterInfo,
struct pci_opsys * PCIOpSysInfo,
PCI_EXID far *ExID)

 {
 PCI_INTEGER iReturnCode;
 PFN lpfnRegister;
 HMODULE hDLLInstance;
 BYTE Failname[256];
 PCI_INTEGER Failsize;

 /* load the NAF"s DLL and get the instance DLL */
 if (DosLoadModule(Failname, Failsize, PCIHandle, &hDLLInstance) !=0)

 return PCI_E_INVALID_PCI_HANDLE; /* error in Load DLL */

 /* put the DLL instance in ExID */
 ExID->hDLLInstance = hDLLInstance;

 /* get the "PciRegister" entry point of the dll */
 DosQueryProcAddr(hDLLInstance, 2,"PciRegister", &lpfnRegister);
 if (lpfnRegister == NULL)

{
 DosFreeModule(hDLLInstance);
 return PCI_E_NAF_NOT_AVAILABLE; /* error in GetProcAddress */
}

 /* call the "PciRegister" entry point of the dll */

Page 489
Final draft prETS 300 838: March 1998

 iReturnCode = lpfnRegister(PCIRegisterInfo, ExID);

 if (iReturnCode != 0)
{ /* error in PciRegister: free the DLL */
 DosFreeModule(hDLLInstance);
}

 /* return with the DLL"s return code */
 return iReturnCode;
 }

/*
///
/// PciDeRegister()
*/
PCI_INTEGER far PASCAL PciDeregister(PCI_EXID far *ExID)
 {
 PCI_INTEGER iReturnCode;
 PFN lpfnDeregister;

 /* get the "PciDeregister" entry point of the dll */
 DosQueryProcAddr(ExID->hDLLInstance, 3,"PciDeregister", &lpfnDeregister);
 if (lpfnDeregister == NULL)

 return PCI_E_NAF_NOT_AVAILABLE; /* error in GetProcAddress */

 /* call the "PciDeRegister" entry point of the dll */
 iReturnCode = lpfnDeregister(ExID);

 /* free the DLL in any case */
 DosFreeModule(ExID->hDLLInstance);

 /* return with the DLL"s return code */
 return iReturnCode;
 }

/*
///
/// PciPutMessage()
*/
PCI_INTEGER far PASCAL PciPutMessage(PCI_EXID far *ExID,

PCI_MPB far *PCIMPB ,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data)

 {
 PFN lpfnPutMessage;

 /* get the "PciPutMessage" entry point of the dll */
 DosQueryProcAddr(ExID->hDLLInstance, 4,"PciPutMessage", &lpfnPutMessage);
 if (lpfnPutMessage == NULL)

 return PCI_E_NAF_NOT_AVAILABLE; /* error in GetProcAddress */

 /* call the "PciPutMessage" entry point of the dll */
 /* and return with the DLL"s return code */

 return lpfnPutMessage(ExID, PCIMPB , Message, Data);
 }

/*
///
/// PciGetMessage()
*/
PCI_INTEGER far PASCAL PciGetMessage(PCI_EXID far *ExID,

PCI_MPB far *PCIMPB ,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data)

 {
 PFN lpfnGetMessage;

 /* get the "PciGetMessage" entry point of the dll */
 DosQueryProcAddr(ExID->hDLLInstance, 5,"PciGetMessage", &lpfnGetMessage);
 if (lpfnGetMessage == NULL)

 return PCI_E_NAF_NOT_AVAILABLE; /* error in GetProcAddress */

 /* call the "PciGetMessage" entry point of the dll */
 /* and return with the DLL"s return code */

 return lpfnGetMessage(ExID, PCIMPB , Message, Data);
 }

/*
///
/// PciSetSignal()
*/

Page 490
Final draft prETS 300 838: March 1998

PCI_INTEGER far PASCAL PciSetSignal(PCI_EXID far *ExID,
PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure)

 {
 PFN lpfnSetSignal;

 /* get the "PciSetSignal" entry point of the dll */
 DosQueryProcAddr(ExID->hDLLInstance, 6, "PciSetSignal", &lpfnSetSignal);
 if (lpfnSetSignal == NULL)

 return PCI_E_NAF_NOT_AVAILABLE; /* error in GetProcAddress */

 /* call the "PciSetSignal" entry point of the dll */
 /* and return with the DLL"s return code */
 return lpfnSetSignal(ExID, Signal, SignalProcedure);
 }

G.4.2 Sample OS/2 device driver level implementation coding

The following code shows a sample implementation of PUF exchange functions for the OS/2 device driver
level environment. The sample is illustrated using "C" language:

/*
 * Include files
 */
#include <os2.h>
#include <dos.h>
#include <fcntl.h>
#include <memory.h>
#include <malloc.h>
#include <stdio.h>

/*
 * General typedefs
 */
typedef void (* PFRV) (); /* Pointer to Function Returning Void */
typedef short int (far * FPFRS) (); /* Far Pointer to Function Returning Short */
typedef void (far * FPFRV) (); /* Far Pointer to Function Returning Void */
typedef int (far * FPFRI) (); /* Far Pointer to Function Returning Int */

/*
 * Mapping of generic type definitions
 */

typedef short int PCI_INTEGER;
typedef char far * PCI_BYTEARRAY;
typedef struct {

short int (far *hNaf)();
PCI_INTEGER Exchange_Id;
unsigned short Naf_Ds;
} PCI_EXID;

typedef char far * PCI_HANDLE;
typedef FPFRV PCI_PROCEDURE;

/*
* Definition of function codes
*/

#define PCIGETPROPERTY (short) (1)
#define PCIREGISTER (short) (2)
#define PCIDEREGISTER (short) (3)
#define PCIPUTMESSAGE (short) (4)
#define PCIGETMESSAGE (short) (5)
#define PCISETSIGNAL (short) (6)

/*
 * Error definitions
 */

#define E_DEVICE_DRIVER_NOT_FOUND 128
#define E_DEVICE_DRIVER_CONTROL 128
#define E_NAF_NOT_FOUND 130
#define E_NAF_INVALID_ADDRESS 130
#define E_TOO_MANY_ASSOCIATIONS 133
#define E_INVALID_EXCHANGE_ID 136

/*
 * Other definitions
 */

#define SUCCESS 0
#define MAX_EXID 32 /* allow 32 PUF_NAF associations */

Page 491
Final draft prETS 300 838: March 1998

/*
 * Structures
 */

struct pci_mpb {
PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};

struct pci_register { /* structure containing registering info */
PCI_INTEGER PUFVersion; /* optional: give PUF version */
PCI_INTEGER PUFType; /* optional: give PUF type */
PCI_INTEGER MaxMsgSize; /* return: max size of a message */

};

struct pci_opsys { /* structure containing registering info */
short int MaxNCOCount; /* optional: give max count of NCOs */
short int MaxPacketSize; /* optional: give expected max size and */
short int MaxPacketCount; /* max count of packets to buffer */
long int AddBufferSize; /* optional: give to NAF size and */
void far * AddBufferSpace; /* pointer to additional buffer */
long int BufferNeeded; /* return: amount of add buffer needed */

};

typedef struct { /* structure containing IDC entry point info */
unsigned short RealOffset; /* real mode offset of IDC entry point */
unsigned short RealSegment; /* real mode segment of IDC entry point */
unsigned short RealDs; /* real mode DS of IDC entry point */
unsigned short ProtOffset; /* protect mode offset of IDC entry point */
unsigned short ProtSegment; /* protect mode segment of IDC entry point */
unsigned short ProtDs; /* protect mode DS of IDC entry point */

}PCI_ATTACHAREA;

/*
* Functional constants
*/
const char PCIsign[8]="ISDN PCI";

/*
///
/// PciGetHandles()
*/
PCI_INTEGER PciGetHandles (PCI_INTEGER MaxHandles,

PCI_HANDLE PCIHandles,
PCI_INTEGER far * ActualHandles)

 {
 int nafNumber;
 int nafFound;
 int size;
 char keyName[20];
 PCI_BYTEARRAY buffer;
 HINI hini;
 hini = PrfOpenProfile(hini, "PCI.INI);
 buffer = PCIHandles;
 for (nafNumber = 1, nafFound = 0; nafNumber <= MaxHandles;nafNumber++)
 {
#ifdef PCI_DLL /* For OS/2 application level */
sprintf(keyName, "pciDLL%d", index);
size = PrfQueryProfileString(hini,

"PCI_DLL", /* Section name */
#endif
#ifdef PCI_PDD /* For OS/2 device driver level */
sprintf(keyName, "pciDriver%d", index);
size = PrfQueryProfileString(hini,

"PCI_PDD", /* Section name */
#endif

 keyName, /* "pciDriver"+1..n */
NULL, /* No default string needed */
buffer, /* Address where to put the result */
PCI_HANDLE_LENGTH); /* Maxi. size for the result */

if (size > 0)
 {
 nafFound++; /* One more NAF found */
 buffer += PCI_HANDLE_LENGTH;/* Next location for a PCIHandle */
 }
}

 *ActualHandles = nafFound;
 PrfCloseProfile(hini);
 /* return with the DLL"s return code */
 return SUCCESS;
 }

Page 492
Final draft prETS 300 838: March 1998

/*
///
PciGetProperty: Asks the NAF for it"s properties, which is a list of TLV coded topics.

Returns the properties into the given Property buffer.
The maximum size of the Property buffer is given in MaximumSize.
Function will fail, if MaximumSize is less than the size of the Property the
NAF can deliver.

*/
short int PciGetProperty (PCI_HANDLE PCIHandle,

short int MaximumSize,
char * Property,
short int * ActualSize)

{
register short int error;
PCI_ATTACHAREA AttachArea;
short int (far *hNAF)();

/* Gain NAF PDD access */
if (AttachDD("DEVICE ",&AttachArea))

return E_NAF_INVALID_ADDRESS; /* NAF inaccessible, invalid address */
else
 (void far *) hNAF = MAKEP(AttachArea.ProtSegment, AttachArea.ProtOffset);

/* Check if NAF is available */
if (hNAF == NULL)

return E_NAF_INVALID_ADDRESS; /* NAF inaccessible, invalid address */

/* Call the NAF IDC entry point with an assembly routine to set-up DS */
error = CallIDCPciGetProperty(AttachArea.ProtDs,

 hNAF,
 PCIGETPROPERTY,
 MaximumSize,
 (char far *) Property,
 (short int far *) ActualSize);

return error;
} /* End of PciGetProperty() */

/*
///
PciRegister: Tries to associate calling PUF with selected NAF.

Delivers the ExID, which has to be used in subsequent calls.
Two structures have to be provided by the calling PUF:
- The PCIRegisterInfo and
- the PCIOpSysInfo structure.

*/
short int PciRegister (PCI_HANDLE PCIHandle,

struct pci_register * PCIRegisterInfo,
struct pci_opsys * PCIOpSysInfo,
PCI_EXID * ExID)

{
register short int error;
PCI_ATTACHAREA AttachArea;
short int (far *hNAF)();

/* Gain NAF PDD access */
if (AttachDD("DEVICE ",&AttachArea))

return E_NAF_INVALID_ADDRESS; /* NAF inaccessible, invalid address */
else
 (void far *) hNAF = MAKEP(AttachArea.ProtSegment, AttachArea.ProtOffset);

/* Check if NAF is available */
if (hNAF == NULL)

return E_NAF_INVALID_ADDRESS; /* NAF inaccessible, invalid address */

/* Call the NAF IDC entry point with an assembly routine to set-up DS */
error = CallIDCPciRegister(AttachArea.ProtDs,

hNAF,
PCIREGISTER,
(struct pci_register far *) PCIRegisterInfo,
(struct pci_opsys far *) PCIOpSysInfo,
(short int far *) ExID);

if (! error)
{
/* Association was successful */
ExID->hNaf = hNAF;
ExID->Naf_Ds = AttachArea.ProtDs;
/* Save our Ds with an assembly routine */
SaveOurDs();
}

return error;
} /* End of PciRegister() */

Page 493
Final draft prETS 300 838: March 1998

/*
///
PciDeregister: Terminates an existing association wit a NAF.

The ExID of an existing association has to be provided.
*/

short int PciDeregister (PCI_EXID *ExID)
{
register short int error;

/* Call the NAF IDC entry point with an assembly routine to set-up DS */
error = CallIDCPciDeregister(ExID->Naf_Ds,

ExID->hNaf,
PCIDEREGISTER,
ExID->Exchange_Id);

return error;
} /* End of PciDeregister() */

/*
///
PciPutMessage: Transfers a Message and associated Data to the NAF.
*/

short int PciPutMessage (PCI_EXID * ExID,
struct pci_mpb * PCIMPB ,
char * Message,
char * Data)

{
register short int error;

/* Call the NAF IDC entry point with an assembly routine to set-up DS */
error = CallIDCPciPutMessage(ExID->Naf_Ds,

ExID->hNaf,
PCIPUTMESSAGE,
ExID->Exchange_Id,
(struct pci_mpb far *) PCIMPB ,
(char far *) Message,
(char far *) Data);

return error;
} /* End of PciPutMessage() */

/*
///
PciGetMessage: Receives a Message and associated Data from the NAF.
*/

short int PciGetMessage (PCI_EXID * ExID,
struct pci_mpb * PCIMPB ,
char far * Message,
char far * Data)

{
register short int error;

/* Call the NAF IDC entry point with an assembly routine to set-up DS */
error = CallIDCPciGetMessage(ExID->Naf_Ds,

ExID->hNaf,
PCIGETMESSAGE,
ExID->Exchange_Id,
(struct pci_mpb far *) PCIMPB ,
(char far *) Message,
(char far *) Data);

return error;
} /* End of PciGetMessage() */

/*
///
PciSetSignal: Hands the address of a SignalProcedure to the NAF.

The SignalProcedure then will receive notification on communication
events (i.e. Message available for retrieval)

*/

short int PciSetSignal (PCI_EXID * ExID,
short int Signal,
FPFRV SignalProcedure)

{
register short int error;

/* Call the NAF IDC entry point with an assembly routine to set-up DS */
error = CallIDCPciSetSignal(ExID->Naf_Ds,

ExID->hNaf,
PCISETSIGNAL,
ExID->Exchange_Id,

Page 494
Final draft prETS 300 838: March 1998

(FPFRV) SignalProcedure);

return error;
} /* End of PciSetSignal() */

/*
;
; Assembly routines
;

_TEXT SEGMENT
ASSUME CS: _TEXT

our_ds dw ?

PUBLIC _SaveOurDs
_SaveOurDs PROC NEAR

push ax
mov ax,ds
mov cs:our_ds,ax
pop ax
ret

_SaveOurDs ENDP
;
;
;

PUBLIC _CallIDCGetProperty
_CallIDCGetProperty PROC NEAR

push bp
mov bp,sp

;
; In the stack
;
; AttachArea.ProtDs 20
; hNAF, 16
; PCIGETPROPERTY 14
; MaximumSize 12
; (char far *) Property 8
; (short int far *) ActualSize) 4
;
; Push parameters
;

push WORD PTR [bp+4]
push WORD PTR [bp+6]
push WORD PTR [bp+8]
push WORD PTR [bp+10]
push WORD PTR [bp+12]
push WORD PTR [bp+14]

;
; Set-up NAF"s DS
;

mov ax , WORD PTR [bp+20]
mov ds,ax

;
; call IDC entry point
;

call DWORD PTR [bp+16] ;hNAF
add sp, 12

;
; Restore our DS
;

push ax ;save return code
mov ax,cs:our_ds
mov ds,ax
pop ax ;restore return code

;
; Return to C calling function
;

pop bp
ret

_CallIDCGetProperty ENDP

PUBLIC _CallIDCPciRegister
_CallIDCPciRegister PROC NEAR

;
; same mechanism ...
;

_CallIDCPciRegister ENDP

;

Page 495
Final draft prETS 300 838: March 1998

; etc...
;

_TEXT ENDS
END
*/

G.5 Sample Windows NT implementation coding samples

G.5.1 User mode PUF/User mode NAF

The following code shows a sample DLL implementation of PUF exchange functions for the Windows NT
environment. The sample is illustrated using "C" language:

// Standard includes
#include <windows.h>
#include "puf.h"

//
// PciGetHandles()
//
PCI_INTEGER PASCAL PciGetHandles (PCI_INTEGER MaxHandles,

 PCI_HANDLE PCIHandles,
 PCI_INTEGER * ActualHandles)

{
int nafNumber;
int nafFound;
char keyName[20];
PCI_BYTEARRAY buffer;
INT i;

HKEY hKey;
CHAR ValueName[100];
DWORD cbValueName;
DWORD dwType;
DWORD retCode;

CHAR ClassName[200];
DWORD dwcClassLen = 200;
DWORD dwcSubKeys;
DWORD dwcMaxSubKey;
DWORD dwcMaxClass;
DWORD dwcValues;
DWORD dwcMaxValueName;
DWORD dwcMaxValueData;
DWORD dwcSecDesc;
FILETIME ftLastWriteTime;
DWORD cbData;

buffer = PCIHandles;

// Open the PCI\Drivers Key of the registry
retCode = RegOpenKeyEx (HKEY_LOCAL_MACHINE,
 "SOFTWARE\\PCI\\DRIVERS",
 0,
 KEY_EXECUTE,
 &hKey);

if (retCode) return 0;
// ADD A QUERY AND ALLOCATE A BUFFER FOR BDATA.
retCode = RegQueryInfoKey(hKey, // Key handle.
 ClassName, // Buffer for class name.
 &dwcClassLen, // Length of class string.
 NULL, // Reserved.
 &dwcSubKeys, // Number of sub keys.
 &dwcMaxSubKey, // Longest sub key size.
 &dwcMaxClass, // Longest class string.
 &dwcValues, // Number of values for this key.
 &dwcMaxValueName, // Longest Value name.
 &dwcMaxValueData, // Longest Value data.
 &dwcSecDesc, // Security descriptor.
 &ftLastWriteTime); // Last write time.
if (retCode) return 0;
cbData = 128;

// ENUMERATE THE KEY.
for (nafNumber=1, nafFound=0, i=0;
 (nafNumber <= MaxHandles) && (retCode != ERROR_NO_MORE_ITEMS) ;
 nafNumber++ , i++) {
 cbValueName = 100;

Page 496
Final draft prETS 300 838: March 1998

 retCode = RegEnumValue (hKey, // Key handle returned from RegOpenKeyEx.
 i, // Index, taken from listbox
 ValueName, // Name of value.
 &cbValueName, // Size of value name.
 NULL, // Reserved, dword = NULL.
 &dwType, // Type of data.
 buffer, // Data buffer.
 &cbData); // Size of data buffer.
 wsprintf(keyName , "pciDriver%d" , nafNumber);
 if((cbData > 0) && (stricmp(ValueName , keyName) == 0)) {
 nafFound++;
 buffer += 128; // Next location for a PCIHandle (128 octets fixed size).
 }
}

// Close the PCI\Drivers Key of the registry
RegCloseKey(hKey);

*ActualHandles = nafFound;
return PCI_E_SUCCESS;
}

//
// PciGetProperty()
//
PCI_INTEGER PASCAL PciGetProperty (PCI_HANDLE PCIHandle,

 PCI_INTEGER MaximumSize,
 PCI_BYTEARRAY Property,
 PCI_INTEGER *ActualSize)

{
PCI_INTEGER iReturnCode;
HINSTANCE hDLLInstance;
FARPROC lpfnGetProperty;

// Load the NAF"s DLL and return error if failed
hDLLInstance = LoadLibrary(PCIHandle);
if(hDLLInstance < HINSTANCE_ERROR) return PCI_E_INVALID_PCI_HANDLE;

// Get the "PciGetProperty" entry point of the dll.
lpfnGetProperty = GetProcAddress(hDLLInstance , "PciGetProperty");
if(lpfnGetProperty == NULL) {
 FreeLibrary(hDLLInstance);
 return PCI_E_NAF_NOT_AVAILABLE; // Error in GetProcAddress.
}

// Call the "PciGetProperty" entry point of the dll.
iReturnCode = lpfnGetProperty(PCIHandle,MaximumSize,Property,ActualSize);
// Freelibrary in any case.
FreeLibrary(hDLLInstance);
return iReturnCode;
}

//
// PciRegister()
//
PCI_INTEGER PASCAL PciRegister (PCI_HANDLE PCIHandle,
 struct pci_register *PCIRegisterInfo,
 struct pci_opsys * PCIOpSysInfo,
 PCI_EXID *ExID)
{
PCI_INTEGER iReturnCode;
HINSTANCE hDLLInstance;
FARPROC lpfnRegister;

// Load the NAF"s DLL and return error if failed
hDLLInstance = LoadLibrary(PCIHandle);
if(hDLLInstance < HINSTANCE_ERROR) return PCI_E_INVALID_PCI_HANDLE;
ExID->hDLLInstance = hDLLInstance;

// Get the "PciRegister" entry point of the dll.
lpfnRegister = GetProcAddress(hDLLInstance , "PciRegister");
if(lpfnRegister == NULL) {
 FreeLibrary(hDLLInstance);
 return PCI_E_NAF_NOT_AVAILABLE; // Error in GetProcAddress.
}
// Call the "PciRegister" entry point of the dll.
iReturnCode = lpfnRegister(PCIRegisterInfo, ExID);
if(iReturnCode != 0) FreeLibrary(hDLLInstance);
return iReturnCode;
}
//
// PciDeRegister()
//
PCI_INTEGER PASCAL PciDeregister (PCI_EXID *ExID)
{

Page 497
Final draft prETS 300 838: March 1998

PCI_INTEGER iReturnCode;
FARPROC lpfnDeRegister;

// Get the "PciDeRegister" entry point of the dll, return error if failed
lpfnDeRegister = GetProcAddress(ExID->hDLLInstance , "PciDeRegister");
if(lpfnDeRegister == NULL) return PCI_E_NAF_NOT_AVAILABLE;
ExID->hDLLInstance = 0;

// Call the "Pci" entry point of the dll.
iReturnCode = lpfnDeRegister(ExID);

// FreeLibrary in any case.
FreeLibrary(ExID->hDLLInstance);
return iReturnCode;
}

//
// PciPutMessage()
//
PCI_INTEGER PASCAL PciPutMessage (PCI_EXID *ExID,
 PCI_MPB *PCIMPB,
 PCI_BYTEARRAY Message,
 PCI_BYTEARRAY Data)
{
FARPROC lpfnPutMessage;

// Get the "PciPutMessage" entry point of the dll.
lpfnPutMessage = GetProcAddress(ExID->hDLLInstance , "PciPutMessage");
if(lpfnPutMessage == NULL) return PCI_E_NAF_NOT_AVAILABLE;
return lpfnPutMessage(ExID,PCIMPB,Message,Data);
}

//
// PciGetMessage()
//
PCI_INTEGER PASCAL PciGetMessage (PCI_EXID *ExID,
 PCI_MPB *PCIMPB,
 PCI_BYTEARRAY Message,
 PCI_BYTEARRAY Data)
{
FARPROC lpfnGetMessage;

// Get the "PciGetMessage" entry point of the dll.
lpfnGetMessage = GetProcAddress(ExID->hDLLInstance , "PciGetMessage");
if(lpfnGetMessage == NULL) return PCI_E_NAF_NOT_AVAILABLE;
return lpfnGetMessage(ExID,PCIMPB,Message,Data);
}

//
// PciSetSignal()
//
PCI_INTEGER PASCAL PciSetSignal (PCI_EXID *ExID,
 PCI_INTEGER Signal,
 PCI_PROCEDURE SignalProcedure)
{
FARPROC lpfnSetSignal;

// Get the "PciSetSignal" entry point of the dll.
lpfnSetSignal = GetProcAddress(ExID->hDLLInstance , "PciSetSignal");
if(lpfnSetSignal == NULL) return PCI_E_NAF_NOT_AVAILABLE;
return lpfnSetSignal(ExID,Signal,SignalProcedure);
}

Page 498
Final draft prETS 300 838: March 1998

G.5.2 User mode PUF/Kernel mode NAF

In this subclause, the software architecture is illustrated in figure G.1. Only a subset of functions preseted
which are: PciGetHandles, PciRegister, PciDeregister, PciGetMessage.

Windows Application

PUF (DLL)

NAF (Device Driver)

User mode

Kernel mode

Figure G.1: User mode PUF sample

//
// PciGetHandles()
//
PCI_INTEGER PASCAL PciGetHandles(PCI_INTEGER MaxHandles,

PCI_HANDLE PCIHandles,
PCI_INTEGER * ActualHandles)

{
int nafNumber;
int nafFound;
char keyName[20];
PCI_BYTEARRAY buffer;
INT i;

HKEY hKey;
CHAR ValueName[100];
DWORD cbValueName;
DWORD dwType;
DWORD retCode;

CHAR ClassName[200];
DWORD dwcClassLen = 200;
DWORD dwcSubKeys;
DWORD dwcMaxSubKey;
DWORD dwcMaxClass;
DWORD dwcValues;
DWORD dwcMaxValueName;
DWORD dwcMaxValueData;
DWORD dwcSecDesc;
FILETIME ftLastWriteTime;

DWORD cbData;

buffer = PCIHandles;

// Open the PCI\Drivers Key of the registry
retCode = RegOpenKeyEx (HKEY_LOCAL_MACHINE,
 "SOFTWARE\\PCI\\DEVICEDRIVERS",
 0,
 KEY_EXECUTE,
 &hKey);
if (retCode)
 return 0;
// ADD A QUERY AND ALLOCATE A BUFFER FOR BDATA.
retCode =RegQueryInfoKey (hKey, // Key handle.

ClassName, // Buffer for class name.
&dwcClassLen, // Length of class string.
NULL, // Reserved.
&dwcSubKeys, // Number of sub keys.
&dwcMaxSubKey, // Longest sub key size.
&dwcMaxClass, // Longest class string.
&dwcValues, // Number of values for this key.
&dwcMaxValueName, // Longest Value name.
&dwcMaxValueData, // Longest Value data.
&dwcSecDesc, // Security descriptor.
&ftLastWriteTime); // Last write time.

if (retCode)
return 0;

cbData = 128;

Page 499
Final draft prETS 300 838: March 1998

// ENUMERATE THE KEY.
for(nafNumber = 1 , nafFound = 0 , i = 0;

 (nafNumber <= MaxHandles) && (retCode != ERROR_NO_MORE_ITEMS) ;
 nafNumber++ , i++)
{
cbValueName = 100;
retCode = RegEnumValue (hKey, // Key handle returned from RegOpenKeyEx

i, // Value index, taken from listbox.
ValueName, // Name of value.
&cbValueName, // Size of value name.
NULL, // Reserved, dword = NULL.
&dwType, // Type of data.
buffer, // Data buffer.
&cbData); // Size of data buffer.

wsprintf(keyName , "pciDeviceDriver%d" , nafNumber);
if((cbData > 0) && (stricmp(ValueName , keyName) == 0))

{
nafFound++;
buffer += 128; // Next location for a PCIHandle (128 octets fixed size)
}

}

// Close the PCI\Drivers Key of the registry
RegCloseKey(hKey);

*ActualHandles = nafFound;

return PCI_E_SUCCESS;
}

//
// PciRegister()
//
PCI_INTEGER PASCAL PciRegister (PCI_HANDLE PCIHandle,

 struct pci_register *PCIRegisterInfo,
 struct pci_opsys * PCIOpSysInfo,
 PCI_EXID *ExID)

{
PCI_INTEGER iReturnCode;
struct IoPciRegister pR;
BOOL RetDevIo;
DWORD BR;

// Open device driver.
ExID->hDLLInstance = CreateFile(PCIHandle,

GENERIC_READ,
FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
0,
NULL);

if(ExID->hDLLInstance != INVALID_HANDLE_VALUE)
{
// Copy parameters to the input buffer.
pR.ExID = *ExID;
pR.PciRegisterInfo = *PCIRegisterInfo;

// Call device driver.
RetDevIo = DeviceIoControl(ExID->hDLLInstance,

IOCTL_PCIREGISTER,
&pR,
sizeof(sizeof(struct IoPciRegister)),
&pR,
sizeof(sizeof(struct IoPciRegister)),
&BR,
NULL);

if(RetDevIo == FALSE)
{
DWORD dwErr;
dwErr = GetLastError();
return PCI_E_NAF_NOT_AVAILABLE; // Error in GetProcAddress.
}

*PCIRegisterInfo = pR.PciRegisterInfo;
*ExID = pR.ExID;

iReturnCode = pR.iReturnCode;
}

return iReturnCode;
}

Page 500
Final draft prETS 300 838: March 1998

//
// PciDeRegister()
//
PCI_INTEGER PASCAL PciDeregister (PCI_EXID *ExID)
{
PCI_INTEGER iReturnCode;

CloseHandle(ExID->hDLLInstance);
ExID->hDLLInstance = 0;

return iReturnCode;
}

//
// PciGetMessage()
//
PCI_INTEGER PASCAL PciGetMessage (PCI_EXID *ExID,

 PCI_MPB *PCIMPB,
 PCI_BYTEARRAY Message,
 PCI_BYTEARRAY Data)

{
PCI_INTEGER iReturnCode;
DWORD BR;
BOOL RetDevIo;
struct IoPciGetMessage pGM;

if(ExID->hDLLInstance != INVALID_HANDLE_VALUE)
{
pGM.ExID = *ExID;
pGM.PCIMPB = *PCIMPB;
memcpy(pGM.Message , Message , COMMON_MAX_SIZE);
memcpy(pGM.Data , Data , COMMON_MAX_SIZE);

// Copy parameters to the input buffer.
RetDevIo = DeviceIoControl(ExID->hDLLInstance,

IOCTL_PCIGETMESSAGE,
&pGM,
sizeof(struct IoPciGetMessage),
&pGM,
sizeof(struct IoPciGetMessage),
&BR,
NULL);

if(RetDevIo == FALSE)
{
DWORD dwErr;
dwErr = GetLastError();
return PCI_E_NAF_NOT_AVAILABLE; // Error in GetProcAddress.
}

*ExID = pGM.ExID;
*PCIMPB = pGM.PCIMPB;
memcpy(Message , pGM.Message , pGM.PCIMPB.MessageActualUsedSize);
memcpy(Data , pGM.Data , pGM.PCIMPB.DataActualUsedSize);

iReturnCode = pGM.iReturnCode;
}

return iReturnCode;
}

G.6 NetWare implementation coding samples

G.6.1 Exchange mechanism functions

The following code shows a sample implementation of PUF exchange mechanism functions for the
NetWare environment. The sample is illustrated using "C" language:

/*
 * Standard includes
 */
#include <process.h>
#include <advanced.h>
#include <string.h>

/*
 * Basic constants
 */
#define PCI_HANDLE_LENGTH 19
#define PCI_NAF_DRIVER_NAME_LENGTH 9

Page 501
Final draft prETS 300 838: March 1998

#define PCI_DATABASE_NAME "SYS:\\PCI\\PCI.BTV"
#define PCI_DATABASE_PATH "SYS:\\PCI\\"

#define PCI_GETPROPERTY_EXT_NAME "_PciGetProperty"
#define PCI_REGISTER_EXT_NAME "_PciRegister"
#define PCI_DEREGISTER_EXT_NAME "_PciDeregister"
#define PCI_PUTMESSAGE_EXT_NAME "_PciPutMessage"
#define PCI_GETMESSAGE_EXT_NAME "_PciGetMessage"
#define PCI_GETSETSIGNAL_EXT_NAME "_PciSetSignal"

#define PCI_E_SUCCESS 0
#define PCI_E_INVALID_PARAMETER 99
#define PCI_E_INVALID_PCI_HANDLE 130
#define PCI_E_MAX_PUF_EXCEEDED 133
#define PCI_E_INVALID_PCI_EXID 136
#define PCI_E_DATA_BUFFER_TOO_SMALL 143
#define PCI_E_PROPERTY_BUFFER_TOO_SMALL 144
#define PCI_E_MORE_HANDLES 147
#define PCI_E_NAF_NOT_AVAILABLE 255

/* some PCI"s Messages definitions */
#define AManufacturerReq 111
#define AManufacturerInd 112

#define UDataReq 307
#define UDataInd 308

/*
 * Basic types
 */
typedef LONG PCI_INTEGER;
typedef BYTE * PCI_BYTEARRAY;
typedef BYTE PCI_HANDLE[PCI_HANDLE_LENGTH];
typedef LONG (*PCI_PROCEDURE)();
typedef struct {
 PCI_INTEGER ExchangeId;
 PCI_PROCEDURE PciDeregisterPtr;
 PCI_PROCEDURE PciPutMessagePtr;
 PCI_PROCEDURE PciGetMessagePtr;
 PCI_PROCEDURE PciSetSignalPtr;
} PCI_EXID;

/*
 * PCI structures
 */
struct pci_mpb {
 PCI_INTEGER MessageID;
 PCI_INTEGER MessageMaximumSize;
 PCI_INTEGER MessageActualUsedSize;
 PCI_INTEGER DataMaximumSize;
 PCI_INTEGER DataActualUsedSize;
};
typedef struct pci_mpb PCI_MPB;

struct pci_register {
 PCI_INTEGER PUFVersion;
 PCI_INTEGER PUFType;
 PCI_INTEGER MaxMsgSize;
};

/*
 * PCI"s functions prototypes
 */
extern PCI_INTEGER PciGetHandles(PCI_INTEGER MaxHandles,
 PCI_BYTEARRAY PciHandles,
 PCI_INTEGER * ActualHandles);

extern PCI_INTEGER PciGetProperty(PCI_HANDLE PciHandle,
 PCI_INTEGER MaximumSize,
 PCI_BYTEARRAY Property,
 PCI_INTEGER * ActualSize);

extern PCI_INTEGER PciRegister(PCI_HANDLE PciHandle,
 struct pci_register * PciRegisterInfo,
 PCI_EXID * ExId);

extern PCI_INTEGER PciDeregister(PCI_EXID * ExId);

extern PCI_INTEGER PciPutMessage(PCI_EXID * ExId,
 PCI_MPB * PciMPB,
 PCI_BYTEARRAY Message,
 PCI_BYTEARRAY Data);

extern PCI_INTEGER PciGetMessage(PCI_EXID * ExId,

Page 502
Final draft prETS 300 838: March 1998

 PCI_MPB * PciMPB,
 PCI_BYTEARRAY Message,
 PCI_BYTEARRAY Data);

extern PCI_INTEGER PciSetSignal(PCI_EXID * ExId,
 PCI_INTEGER Signal,
 PCI_PROCEDURE SignalProcedure);
/*
 * Btrieve declarations
 */
#define B_CREATE 14
#define B_OPEN 0
#define B_CLOSE 1
#define B_INSERT 2
#define B_DELETE 4
#define B_GET_EQUAL 5
#define B_GET_FIRST 12
#define B_GET_NEXT 6

#define DUP 1
#define MOD 2
#define BIN 4
#define SEG 16
#define EXT 256
#define NOCASE 1024

#define ZSTRING_KEY_TYPE 11

#define B_HANDLE_KEY_NUM 0

typedef struct {
 short int KeyPos;
 short int KeyLen;
 short int KeyFlag;
 char NotUse1[4];
 char ExtKeyType;
 char NullValue;
 char Reserved1[2];
 char ManualKeyNum;
 char ACSNum;
} B_KEY_SPEC;

typedef struct {
 short int RecLen;
 short int PageSize;
 short int NdxCnt;
 char NotUse2[4];
 short int FileFlag;
 char Reserved2[2];
 short int PreAlloc;
 B_KEY_SPEC KeyBuf;
} B_FILE_SPEC;

typedef struct {
 char NetAddress[12];
 char NLMId[2];
 char NLMClient[2];
} B_USER;

typedef struct {
 PCI_HANDLE PciHandle;
 BYTE PciNafDriverName[PCI_NAF_DRIVER_NAME_LENGTH];
} B_HANDLE_RECORD;

#define B_HANDLE_RECORD_LEN sizeof(B_HANDLE_RECORD)

extern WORD btrvID (WORD Operation,
 void * PositionBlock,
 void * DataBuf,
 WORD * DataLen,
 void * KeyBuf,
 short int KeyNum,
 B_USER * ClientID);

/*
 * ---------------------------- PciGetHandles ------------------------------------
 */
PCI_INTEGER PciGetHandles(PCI_INTEGER MaxHandles,
 PCI_BYTEARRAY PciHandles,
 PCI_INTEGER * ActualHandles)
{
 PCI_BYTEARRAY Buffer;
 B_USER User = {{0,0,0,0,0,0,0,0,0,0,0,0 }, "P", "C", 0, 0};
 B_HANDLE_RECORD ClientBuf;

Page 503
Final draft prETS 300 838: March 1998

 WORD Status;
 WORD BufLen;
 PCI_HANDLE RecordKey;
 char ClientBlock[128];
 PCI_INTEGER Ret;

 /* Check MaxHandles */
 if (MaxHandles < 1) {
 return(PCI_E_INVALID_PARAMETER);
 }

 /* Open the database */
 BufLen = 0;
 Status = btrvID(B_OPEN,
 ClientBlock,
 "",
 &BufLen,
 PCI_DATABASE_NAME,
 0,
 &User);

 /* if the database can"t be opened, there is no NAF */
 *ActualHandles = 0;
 if (Status != 0) {
 return(PCI_E_SUCCESS);
 }

 /* Read the first record of the database */
 BufLen = B_HANDLE_RECORD_LEN;
 Buffer = PciHandles;
 Status = btrvID(B_GET_FIRST,
 ClientBlock,
 &ClientBuf,
 &BufLen,
 RecordKey,
 B_HANDLE_KEY_NUM,
 &User);

 /* Read all records if possible and store the handle */
 while((Status == 0) && (*ActualHandles < MaxHandles)) {
 memcpy(Buffer, RecordKey, PCI_HANDLE_LENGTH);
 Buffer += PCI_HANDLE_LENGTH;
 (*ActualHandles)++;

 /* Read the next record */
 BufLen = B_HANDLE_RECORD_LEN;
 Status = btrvID(B_GET_NEXT,
 ClientBlock,
 &ClientBuf,
 &BufLen,
 RecordKey,
 B_HANDLE_KEY_NUM,
 &User);
 }

 /* Compute the return code */
 if (Status == 0) {
 Ret = PCI_E_MORE_HANDLES;
 } else {
 Ret = PCI_E_SUCCESS;
 }

 /* Close the database */
 btrvID(B_CLOSE, ClientBlock, 0, 0, 0, 0, &User);

 /* End of function */
 return(Ret);
}

/*
 * ---------------------------- PciGetProperty -----------------------------------
 */
PCI_INTEGER PciGetProperty(PCI_HANDLE PciHandle,
 PCI_INTEGER MaximumSize,
 PCI_BYTEARRAY Property,
 PCI_INTEGER * ActualSize)
{
 B_USER User = {{0,0,0,0,0,0,0,0,0,0,0,0 }, "P", "C", 0, 0};
 B_HANDLE_RECORD ClientBuf;
 WORD Status;
 WORD BufLen;
 char ClientBlock[128];
 PCI_INTEGER Ret;
 PCI_PROCEDURE GetPropertyPtr;
 char GetPropertyName[sizeof(PCI_GETPROPERTY_EXT_NAME) +

Page 504
Final draft prETS 300 838: March 1998

 PCI_NAF_DRIVER_NAME_LENGTH];

 /* Open the database */
 BufLen = 0;
 Status = btrvID(B_OPEN,
 ClientBlock,
 "",
 &BufLen,
 PCI_DATABASE_NAME,
 0,
 &User);

 /* if the database can"t be opened, there is no NAF */
 if (Status != 0) {
 return(PCI_E_NAF_NOT_AVAILABLE);
 }

 /* Read the record of the requested NAF */
 BufLen = B_HANDLE_RECORD_LEN;
 Status = btrvID(B_GET_EQUAL,
 ClientBlock,
 &ClientBuf,
 &BufLen,
 PciHandle,
 B_HANDLE_KEY_NUM,
 &User);

 /* Close the database */
 btrvID(B_CLOSE, ClientBlock, 0, 0, 0, 0, &User);

 /* If the record is not found */
 if (Status != 0) {
 return(PCI_E_NAF_NOT_AVAILABLE);
 }

 /* Build PciGetProperty function"s name */
 strcpy(GetPropertyName, ClientBuf.PciNafDriverName);
 strcat(GetPropertyName, PCI_GETPROPERTY_EXT_NAME);

 /* Link to the function */
 GetPropertyPtr = ImportSymbol(GetNLMHandle(), GetPropertyName);

 /* If link not possible, the NAF is not there */
 if (GetPropertyPtr == NULL) {
 return(PCI_E_NAF_NOT_AVAILABLE);
 }

 /* Call the NAF"s PciGetProperty function */
 Ret = (*GetPropertyPtr)(PciHandle,
 MaximumSize,
 Property,
 ActualSize);

 /* Unlink function */
 UnimportSymbol(GetNLMHandle(), GetPropertyName);

 /* End of function */
 return(Ret);
}

/*
 * ---------------------------- PciRegister --------------------------------------
 */
PCI_INTEGER PciRegister(PCI_HANDLE PciHandle,
 struct pci_register * PciRegisterInfo,
 PCI_EXID * ExId)
{
 B_USER User = {{0,0,0,0,0,0,0,0,0,0,0,0 }, "P", "C", 0, 0};
 B_HANDLE_RECORD ClientBuf;
 WORD Status;
 WORD BufLen;
 char ClientBlock[128];
 PCI_INTEGER Ret;
 PCI_PROCEDURE RegisterPtr;
 char RegisterName[sizeof(PCI_REGISTER_EXT_NAME) +
 PCI_NAF_DRIVER_NAME_LENGTH];

 /* Open the database */
 BufLen = 0;
 Status = btrvID(B_OPEN,
 &ClientBlock[0],
 "",
 &BufLen,
 PCI_DATABASE_NAME,
 0,

Page 505
Final draft prETS 300 838: March 1998

 &User);

 /* if the database can"t be opened, there is no NAF */
 if (Status != 0) {
 return(PCI_E_NAF_NOT_AVAILABLE);
 }

 /* Read the record of the requested NAF */
 BufLen = B_HANDLE_RECORD_LEN;
 Status = btrvID(B_GET_EQUAL,
 ClientBlock,
 &ClientBuf,
 &BufLen,
 PciHandle,
 B_HANDLE_KEY_NUM,
 &User);

 /* Close the database */
 btrvID(B_CLOSE, ClientBlock, 0, 0, 0, 0, &User);

 /* If the record is not found */
 if (Status != 0) {
 return(PCI_E_NAF_NOT_AVAILABLE);
 }

 /* Build PciRegister function"s name */
 strcpy(RegisterName, ClientBuf.PciNafDriverName);
 strcat(RegisterName, PCI_REGISTER_EXT_NAME);

 /* Link to the function */
 RegisterPtr = ImportSymbol(GetNLMHandle(), RegisterName);

 /* If link not possible, the NAF is not there */
 if (RegisterPtr == NULL) {
 return(PCI_E_NAF_NOT_AVAILABLE);
 }

 /* Call the NAF"s PciRegister function */
 Ret = (*RegisterPtr)(PciHandle,
 PciRegisterInfo,
 ExId);

 /* Unlink function */
 UnimportSymbol(GetNLMHandle(), RegisterName);

 /* End of function */
 return(Ret);
}

/*
 * ---------------------------- PciDeregister ------------------------------------
 */
PCI_INTEGER PciDeregister(PCI_EXID * ExId)
{
 PCI_INTEGER Ret;

 /* Check if the PUF is registered */
 if (ExId->PciDeregisterPtr == 0) {
 return(PCI_E_INVALID_PCI_EXID);
 }

 /* Call the NAF"s PciDeregister function */
 Ret = (*ExId->PciDeregisterPtr)(ExId);

 /* If deregister is successfull, unlink the functions" pointers */
 if (Ret == PCI_E_SUCCESS) {
 ExId->PciDeregisterPtr = NULL;
 ExId->PciPutMessagePtr = NULL;
 ExId->PciGetMessagePtr = NULL;
 ExId->PciSetSignalPtr = NULL;
 }

 /* Function"s end */
 return(Ret);
}

/*
 * ---------------------------- PciPutMessage ------------------------------------
 */
PCI_INTEGER PciPutMessage(PCI_EXID * ExId,
 PCI_MPB * PciMPB,
 PCI_BYTEARRAY Message,
 PCI_BYTEARRAY Data)
{

Page 506
Final draft prETS 300 838: March 1998

 PCI_INTEGER Ret;

 /* Check if the PUF is registered */
 if (ExId->PciPutMessagePtr == 0) {
 return(PCI_E_INVALID_PCI_EXID);
 }
 /* Call the NAF"s PciPutMessage function */
 Ret = (*ExId->PciPutMessagePtr)(ExId, PciMPB, Message, Data);
 /* Function"s end */
 return(Ret);
}

/*
 * ---------------------------- PciGetMessage ------------------------------------
 */
PCI_INTEGER PciGetMessage(PCI_EXID * ExId,
 PCI_MPB * PciMPB,
 PCI_BYTEARRAY Message,
 PCI_BYTEARRAY Data)
{
 PCI_INTEGER Ret;

 /* Check if the PUF is registered */
 if (ExId->PciGetMessagePtr == 0) {
 return(PCI_E_INVALID_PCI_EXID);
 }
 /* Call the NAF"s PciGetMessage function */
 Ret = (*ExId->PciGetMessagePtr)(ExId, PciMPB, Message, Data);
 /* Function"s end */
 return(Ret);
}

/*
 * ---------------------------- PciSetSignal -------------------------------------
 */
PCI_INTEGER PciSetSignal(PCI_EXID * ExId,
 PCI_INTEGER Signal,
 PCI_PROCEDURE SignalProcedure)
{
 PCI_INTEGER Ret;

 /* Check if the PUF is registered */
 if (ExId->PciSetSignalPtr == NULL) {
 return(PCI_E_INVALID_PCI_EXID);
 }
 /* Call the NAF"s PciSetSignal function */
 Ret = (*ExId->PciSetSignalPtr)(ExId, Signal, SignalProcedure);
 /* Function"s end */
 return(Ret);
}

G.6.2 NAF declaration and extraction functions

The following code shows a sample implementation of NAF"s declaration and extraction functions for the
NetWare environment. The sample is illustrated using "C" language:

/*
 * This function suppose that a multiple load NAF has ALREADY check that the
 * handle is not used in a previous load of this driver
 */
PCI_INTEGER NAFDeclare(PCI_HANDLE PciHandle, char * DriverName)
{
 B_USER User = {{0,0,0,0,0,0,0,0,0,0,0,0 }, "P", "C", 0, 0};
 B_FILE_SPEC FileBuf;
 B_HANDLE_RECORD ClientBuf;
 WORD Status;
 WORD BufLen;
 PCI_HANDLE RecordKey;
 char ClientBlock[128];
 PCI_INTEGER Ret;
 DIR * Dir;
 PCI_INTEGER GetPropertyStatus;
 BYTE NafProperty[128];
 PCI_INTEGER ActualPropertySize;

 /* Try to open the Database */
 BufLen = 0;
 Status = btrvID(B_OPEN,
 ClientBlock,
 "",
 &BufLen,

Page 507
Final draft prETS 300 838: March 1998

 PCI_DATABASE_NAME,
 0,
 &User);

 /* if open fails */
 if (Status != 0) {

 /* Check if directory PCI exist */
 if ((Dir = opendir(PCI_DATABASE_PATH)) == 0) {
 /* if not, create it */
 if (mkdir(PCI_DATABASE_PATH) != 0) {
 return(-1);
 }
 } else {
 closedir(Dir);
 }

 /* Create the database */
 FileBuf.RecLen = B_HANDLE_RECORD_LEN;
 FileBuf.PageSize = 512;
 FileBuf.FileFlag = 0;
 FileBuf.NdxCnt = 1;
 FileBuf.Reserved2[0] = 0;
 FileBuf.Reserved2[1] = 0;

 FileBuf.KeyBuf.KeyPos = 1;
 FileBuf.KeyBuf.KeyLen = PCI_HANDLE_LENGTH;
 FileBuf.KeyBuf.KeyFlag = EXT + NOCASE;
 FileBuf.KeyBuf.ExtKeyType = ZSTRING_KEY_TYPE;
 FileBuf.KeyBuf.NullValue = 0;
 FileBuf.KeyBuf.Reserved1[0] = 0;
 FileBuf.KeyBuf.Reserved1[1] = 0;
 FileBuf.KeyBuf.ManualKeyNum = 0;
 FileBuf.KeyBuf.ACSNum = 0;

 BufLen = sizeof(FileBuf);
 Status = btrvID (B_CREATE,
 ClientBlock,
 &FileBuf,
 &BufLen,
 PCI_DATABASE_NAME,
 0,
 &User);

 /* if creation fails, return error */
 if (Status != 0) {
 return(-1);
 }

 /* Now, try to open the Database again */
 BufLen = 0;
 Status = btrvID(B_OPEN,
 ClientBlock,
 "",
 &BufLen,
 PCI_DATABASE_NAME,
 0,
 &User);

 /* if open fails, return error */
 if (Status != 0) {
 return(-1);
 }
 }

 /* Look for this handle in the database */
 BufLen = B_HANDLE_RECORD_LEN;
 Status = btrvID(B_GET_EQUAL,
 ClientBlock,
 &ClientBuf,
 &BufLen,
 PciHandle,
 B_HANDLE_KEY_NUM,
 &User);

 /* if found, check the driver name */
 if (Status == 0) {
 /* if the driver name is the same, the NAF is already declared */
 if (strncmp(ClientBuf.PciNafDriverName,
 DriverName,
 PCI_NAF_DRIVER_NAME_LENGTH) == 0) {
 /* Close the database */
 btrvID(B_CLOSE, ClientBlock, 0, 0, 0, 0, &User);

 /* return OK */

Page 508
Final draft prETS 300 838: March 1998

 return(PCI_E_SUCCESS);
 }

 /* The driver name is not the same, check if somebody else is declared */
 /* Call the GetProperty function of the other driver */
 GetPropertyStatus = PciGetProperty (PciHandle,
 sizeof(NafProperty),
 NafProperty,
 &ActualPropertySize);

 /* if successfull */
 if (GetPropertyStatus == PCI_E_SUCCESS) {
 /* Somebody else use this name, close the database */
 btrvID(B_CLOSE, ClientBlock, 0, 0, 0, 0, &User);

 /* return FAIL */
 return(-1);
 /* if not sucessfull */
 } else {
 /* Delete the record */
 BufLen = 0;
 Status = btrvID(B_DELETE,
 ClientBlock,
 &ClientBuf,
 &BufLen,
 RecordKey,
 B_HANDLE_KEY_NUM,
 &User);
 }
 }

 /* record the driver in the database */
 BufLen = B_HANDLE_RECORD_LEN;
 strncpy(ClientBuf.PciHandle, PciHandle, PCI_HANDLE_LENGTH);
 strncpy(ClientBuf.PciNafDriverName, DriverName, PCI_NAF_DRIVER_NAME_LENGTH);
 Status = btrvID(B_INSERT,
 ClientBlock,
 &ClientBuf,
 &BufLen,
 RecordKey,
 B_HANDLE_KEY_NUM,
 &User);

 /* Check if write is successfull */
 if (Status == 0) {
 Ret = PCI_E_SUCCESS;
 } else {
 Ret = -1;
 }

 /* close the database */
 btrvID(B_CLOSE, ClientBlock, 0, 0, 0, 0, &User);

 return(Ret);
}

PCI_INTEGER NAFExtract(PCI_HANDLE PciHandle)
{
 B_USER User = {{0,0,0,0,0,0,0,0,0,0,0,0 }, "P", "C", 0, 0};
 B_HANDLE_RECORD ClientBuf;
 WORD Status;
 WORD BufLen;
 PCI_HANDLE RecordKey;
 char ClientBlock[128];
 PCI_INTEGER Ret;

 /* Open database */
 BufLen = 0;
 Status = btrvID(B_OPEN,
 ClientBlock,
 "",
 &BufLen,
 PCI_DATABASE_NAME,
 0,
 &User);

 if (Status != 0) {
 return(-1);
 }

 /* Look for the record in the database */
 BufLen = B_HANDLE_RECORD_LEN;
 Status = btrvID(B_GET_EQUAL,
 ClientBlock,
 &ClientBuf,

Page 509
Final draft prETS 300 838: March 1998

 &BufLen,
 PciHandle,
 B_HANDLE_KEY_NUM,
 &User);

 /* if record found */
 if (Status == 0) {
 /* Delete it */
 BufLen = 0;
 Status = btrvID(B_DELETE,
 ClientBlock,
 &ClientBuf,
 &BufLen,
 RecordKey,
 B_HANDLE_KEY_NUM,
 &User);

 if (Status == 0) {
 Ret = PCI_E_SUCCESS;
 } else {
 Ret = -1;
 }
 } else {
 Ret = -1;
 }
 /* Close the database */
 btrvID(B_CLOSE, ClientBlock, 0, 0, 0, 0, &User);
 return(Ret);
}

G.7 Windows 95 Operating System implementation coding samples

G.7.1 16 bits PUF

The coding samples for 16 bits PUF are descibed in clause G.2.

G.7.2 32 bits PUF

The following code shows a sample DLL implementation of PUF exchange functions for the Windows 95
environment. The sample is illustrated using "C" language:

// Standard includes
#include <windows.h>
#include "puf.h"

//
// PciGetHandles()
//
PCI_INTEGER PASCAL PciGetHandles (PCI_INTEGER MaxHandles,

 PCI_HANDLE PCIHandles,
 PCI_INTEGER * ActualHandles)

{
int nafNumber;
int nafFound;
char keyName[20];
PCI_BYTEARRAY buffer;
INT i;

HKEY hKey;
CHAR ValueName[100];
DWORD cbValueName;
DWORD dwType;
DWORD retCode;

CHAR ClassName[200];
DWORD dwcClassLen = 200;
DWORD dwcSubKeys;
DWORD dwcMaxSubKey;
DWORD dwcMaxClass;
DWORD dwcValues;
DWORD dwcMaxValueName;
DWORD dwcMaxValueData;
DWORD dwcSecDesc;
FILETIME ftLastWriteTime;
DWORD cbData;

buffer = PCIHandles;

// Open the PCI\Drivers Key of the registry

Page 510
Final draft prETS 300 838: March 1998

retCode = RegOpenKeyEx (HKEY_LOCAL_MACHINE,
 "SOFTWARE\\PCI\\DRIVERS",
 0,
 KEY_EXECUTE,
 &hKey);

if (retCode) return 0;
// ADD A QUERY AND ALLOCATE A BUFFER FOR BDATA.
retCode = RegQueryInfoKey(hKey, // Key handle.
 ClassName, // Buffer for class name.
 &dwcClassLen, // Length of class string.
 NULL, // Reserved.
 &dwcSubKeys, // Number of sub keys.
 &dwcMaxSubKey, // Longest sub key size.
 &dwcMaxClass, // Longest class string.
 &dwcValues, // Number of values for this key.
 &dwcMaxValueName, // Longest Value name.
 &dwcMaxValueData, // Longest Value data.
 &dwcSecDesc, // Security descriptor.
 &ftLastWriteTime); // Last write time.
if (retCode) return 0;
cbData = 128;

// ENUMERATE THE KEY.
for (nafNumber=1, nafFound=0, i=0;
 (nafNumber <= MaxHandles) && (retCode != ERROR_NO_MORE_ITEMS) ;
 nafNumber++ , i++) {
 cbValueName = 100;
 retCode = RegEnumValue (hKey, // Key handle returned from RegOpenKeyEx.
 i, // Index, taken from listbox
 ValueName, // Name of value.
 &cbValueName, // Size of value name.
 NULL, // Reserved, dword = NULL.
 &dwType, // Type of data.
 buffer, // Data buffer.
 &cbData); // Size of data buffer.
 wsprintf(keyName , "pciDriver%d" , nafNumber);
 if((cbData > 0) && (stricmp(ValueName , keyName) == 0)) {
 nafFound++;
 buffer += 128; // Next location for a PCIHandle (128 octets fixed size).
 }
}

// Close the PCI\Drivers Key of the registry
RegCloseKey(hKey);

*ActualHandles = nafFound;
return PCI_E_SUCCESS;
}

//
// PciGetProperty()
//

PCI_INTEGER PASCAL PciGetProperty (PCI_HANDLE PCIHandle,
PCI_INTEGER MaximumSize,
PCI_INTEGER *ActualSize,
PCI_BYTEARRAY Property)

{
 PCI_INTEGER iReturnCode;
 HINSTANCE hDLLInstance;
 FARPROC lpfnGetProperty;

 // Load the NAF"s DLL and return error if failed
 hDLLInstance = LoadLibrary(PCIHandle);
 if(hDLLInstance == NULL) return PCI_E_INVALID_PCI_HANDLE;

 // Get the "PciGetProperty" entry point of the dll.
 lpfnGetProperty = GetProcAddress(hDLLInstance , "PciGetProperty");
 if(lpfnGetProperty == NULL) {
 FreeLibrary(hDLLInstance);
 return PCI_E_NAF_NOT_AVAILABLE; // Error in GetProcAddress.
 }

 // Call the "PciGetProperty" entry point of the dll.
 iReturnCode = lpfnGetProperty(PCIHandle,MaximumSize,Property,ActualSize);

 // Freelibrary in any case.
 FreeLibrary(hDLLInstance);
 return iReturnCode;
}

//
// PciRegister()

Page 511
Final draft prETS 300 838: March 1998

//

PCI_INTEGER PASCAL PciRegister (PCI_HANDLE PCIHandle,
struct pci_register *PCIRegisterInfo,
struct pci_opsys *PCIOpSysInfo,
PCI_EXID *ExID)

{
 PCI_INTEGER iReturnCode;
 HINSTANCE hDLLInstance;
 FARPROC lpfnRegister;

 // Load the NAF"s DLL and return error if failed
 hDLLInstance = LoadLibrary(PCIHandle);
 if(hDLLInstance == NULL) return PCI_E_INVALID_PCI_HANDLE;
 ExID->hDLLInstance = hDLLInstance;

 // Get the "PciRegister" entry point of the dll.
 lpfnRegister = GetProcAddress(hDLLInstance , "PciRegister");
 if(lpfnRegister == NULL) {
 FreeLibrary(hDLLInstance);
 return PCI_E_NAF_NOT_AVAILABLE; // Error in GetProcAddress.
 }

 // Call the "PciRegister" entry point of the dll.
 iReturnCode = lpfnRegister(PCIRegisterInfo, ExID);
 if(iReturnCode != 0) FreeLibrary(hDLLInstance);
 return iReturnCode;
}

//
// PciDeRegister()
//

PCI_INTEGER PASCAL PciDeregister (PCI_EXID *ExID)
{
 PCI_INTEGER iReturnCode;
 FARPROC lpfnDeRegister;

 // Get the "PciDeRegister" entry point of the dll, return error if failed
 lpfnDeRegister = GetProcAddress(ExID->hDLLInstance , "PciDeRegister");
 if(lpfnDeRegister == NULL) return PCI_E_NAF_NOT_AVAILABLE;
 ExID->hDLLInstance = 0;

 // Call the "Pci" entry point of the dll.
 iReturnCode = lpfnDeRegister(ExID);

 // FreeLibrary in any case.
 FreeLibrary(ExID->hDLLInstance);
 return iReturnCode;
}

//
// PciPutMessage()
//

PCI_INTEGER PASCAL PciPutMessage (PCI_EXID *ExID,
PCI_MPB *PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data)

{
 FARPROC lpfnPutMessage;

 // Get the "PciPutMessage" entry point of the dll.
 lpfnPutMessage = GetProcAddress(ExID->hDLLInstance , "PciPutMessage");
 if(lpfnPutMessage == NULL) return PCI_E_NAF_NOT_AVAILABLE;
 return lpfnPutMessage(ExID,PCIMPB,Message,Data);
}

//
// PciGetMessage()
//
PCI_INTEGER PASCAL PciGetMessage (PCI_EXID *ExID,

PCI_MPB *PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data)

{
 FARPROC lpfnGetMessage;

 // Get the "PciGetMessage" entry point of the dll.
 lpfnGetMessage = GetProcAddress(ExID->hDLLInstance , "PciGetMessage");
 if(lpfnGetMessage == NULL) return PCI_E_NAF_NOT_AVAILABLE;
 return lpfnGetMessage(ExID,PCIMPB,Message,Data);

Page 512
Final draft prETS 300 838: March 1998

}

//
// PciSetSignal()
//

PCI_INTEGER PASCAL PciSetSignal (PCI_EXID *ExID,
PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure)

{
 FARPROC lpfnSetSignal;

 // Get the "PciSetSignal" entry point of the dll.
 lpfnSetSignal = GetProcAddress(ExID->hDLLInstance , "PciSetSignal");
 if(lpfnSetSignal == NULL) return PCI_E_NAF_NOT_AVAILABLE;
 return lpfnSetSignal(ExID,Signal,SignalProcedure);
}

G.7.3 VxD PUF

The following code shows a sample VxD services implementation of PUF exchange functions for the
Windows95 environnement. The sample is illustrated using " C " language and inline assembler.

#include <puf.h>

#define WANTVXDWRAPS

#include <c:\ddk\inc32\basedef.h>
#include <c:\ddk\inc32\vmm.h>
#include <c:\ddk\inc32\vmmreg.h>
#include <c:\ddk\inc32\debug.h>
#include <c:\ddk\inc32\vxdwraps.h>
#include <c:\ddk\inc32\vwin32.h>
#include <winerror.h>

// Declaration of the VxD services provided by PCI VxDs

#define VPCID_DEVICE_ID 0x18AC // device id (example): should be taken from Microsoft

Begin_Service_Table (VPCID, VxD)
Declare_Service (VPCID_GetVersion, LOCAL)
Declare_Service (VPCID_MessageOperations, LOCAL)

End_Service_Table (VPCID, VXD)

PCI_INTEGER VxDCallMessageOperation(BYTE iFunction)
{
 _asm mov ah, 0x02
 _asm mov al, iFunction

 VxDCall(VPCID_MessageOperations);
}

// The IsInfosPCI function checks if the registry value is a PCI value
// without used the standard C library

BOOL IsInfosPCI(char * Value)
{
 WORD i;
 char KeyName[10]="pciDriver";

 for (i=0;i<9;i++)
 if (KeyName[i]!=Value[i]) return FALSE;
 return TRUE;
}

PCI_INTEGER PciGetHandles(PCI_INTEGER MaxHandles,
PCI_BYTEARRAY PCIHandles,
PCI_INTEGER *ActualHandles)

{
 DWORD ReturnCode=ERROR_SUCCESS, i=0;
 VMMHKEY hkResult;
 WORD NafFound=0,NafNumber;
 char ClassName[200];
 char ValueName[200];
 DWORD szClassName=200, MaxszClass;
 DWORD nbSubKeys, szSubKey;
 DWORD nbValues, szValueName=200;
 WORD szValueData, szData=sizeof(WORD);

Page 513
Final draft prETS 300 838: March 1998

 PCI_BYTEARRAY Data;

 Data = PCIHandles;
 Data[0]=0;

 if (_RegOpenKey(HKEY_LOCAL_MACHINE,
"System\\CurrentControlSet\\Control\\Session Manager\\KnownVxDs",
&hkResult) != ERROR_SUCCESS)

 return PCI_E_NAF_NOT_AVAILABLE;

 if (_RegQueryInfoKey(hkResult,
ClassName,
&szClassName,
NULL,
&nbSubKeys,
&szSubKey,
&MaxszClass,
&nbValues,
&szValueName,
&szValueData,

 NULL,
NULL) != ERROR_SUCCESS)

 return PCI_E_NAF_NOT_AVAILABLE;

 ValueName[0]=0;
 for (NafNumber = 1; ((NafNumber <= MaxHandles) && (ReturnCode != ERROR_NO_MORE_ITEMS));

 NafNumber++) {
 ReturnCode = _RegEnumValue(hkResult,

i,
(char *)ValueName,
&szValueName,
NULL,
NULL,
(unsigned char *)Data,
&szData);

 if (IsInfosPCI(ValueName)) {
 NafFound++;
 Data+=128;
 }
 i++;
 szValueName=200;
 ValueName[0]=0;
 }
 _RegCloseKey(hkResult);
 *ActualHandles = NafFound;
 return PCI_E_SUCCESS;
}

PCI_INTEGER PciGetProperty (PCI_HANDLE PCIHandle,
PCI_INTEGER MaximumSize,
PCI_BYTEARRAY Property,
PCI_INTEGER *ActualSize)

{
 PCI_INTEGER ReturnCode;

 // Call GetVersion to verify the NAF VxD has been loaded
 VxDCall(VPCID_GetVersion);
 _asm jc END // If driver has not been loaded

 _asm mov ecx, dword ptr MaximumSize
 _asm mov edx,Property
 _asm mov esi,ActualSize
 VxDCallMessageOperation(PCI_SERVICE_GETPROPERTY);
 _asm mov ReturnCode,ax
 return ReturnCode;

END:
 return PCI_E_NAF_NOT_AVAILABLE;
}

PCI_INTEGER PciRegister (PCI_HANDLE PCIHandle,
struct pci_register *PCIRegisterInfo,
struct pci_opsys *PCIOpSysInfo,
PCI_EXID *ExID)

{
 PCI_INTEGER ReturnCode;

 _asm mov ecx, PCIRegisterInfo

 _asm mov edx, ExID
 VxDCallMessageOperation(PCI_SERVICE_REGISTER);
 _asm mov ReturnCode,ax

Page 514
Final draft prETS 300 838: March 1998

 return ReturnCode;
}

PCI_INTEGER PciDeregister (PCI_EXID *ExID)
{
 PCI_INTEGER ReturnCode;

 _asm mov edi, ExID
 VxDCallMessageOperation(PCI_SERVICE_DEREGISTER);
 _asm mov ReturnCode,ax
 return ReturnCode;
}

PCI_INTEGER PciPutMessage (PCI_EXID *ExID,
PCI_MPB *PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data)

{
 PCI_INTEGER ReturnCode;

 _asm mov ecx, PCIMPB
 _asm mov edx, Message
 _asm mov esi, Data
 _asm mov edi, ExID
 VxDCallMessageOperation(PCI_SERVICE_PUTMESSAGE);
 _asm mov ReturnCode,ax
 return ReturnCode;
}

PCI_INTEGER PciGetMessage (PCI_EXID *ExID,
PCI_MPB *PCIMPB,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data)

{
 PCI_INTEGER ReturnCode;

 _asm mov ecx, PCIMPB
 _asm mov edx, Message
 _asm mov esi, Data
 _asm mov edi, ExID
 VxDCallMessageOperation(PCI_SERVICE_GETMESSAGE);
 _asm mov ReturnCode,ax
 return ReturnCode;
}

PCI_INTEGER PciSetSignal (PCI_EXID *ExID,
PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure)

{
 PCI_INTEGER ReturnCode;

 _asm xor ecx, ecx // Always NULL for a VxD
 _asm mov edx, SignalProcedure
 _asm mov edi, ExID
 VxDCallMessageOperation(PCI_SERVICE_SETSIGNAL);
 _asm mov ReturnCode,ax
 return ReturnCode;
}

Page 515
Final draft prETS 300 838: March 1998

Annex H (informative): TLV coder/decoder sample

/*
///
///
/// SAMPLES
///
/// TLV coder and decoder
///
///
*/

#include <memory.h>
#include <stdarg.h>

/*
 * Definition of Types
 */
typedef int BOOL;
#define FALSE 0
#define TRUE 1

#define LG_MAX_MESSAGE 128

/* Definition of structures */
struct sParameter /* Intermediate structure which receive the parameter to be added */

{
int iMessageLength;
char scMessage[LG_MAX_MESSAGE];
};

/*
//
///
/// Function : AddOctetParameter
///
/// Rule : Add an octet parameter in a message
///
/// Parameters :
/// structure sParameter pointer
/// parameter type
/// parameter value
///
/// Return :
/// TRUE : Success
/// FALSE : Error during processing
///
//
*/
BOOL AddOctetParameter(struct sParameter *pMessage, unsigned char cType, unsigned char cValue)

{
if (pMessage->iMessageLength + 3 > LG_MAX_MESSAGE) /* Buffer is too small */

{
/* Process message size error */
return FALSE;
}/* if */

/* TLV coding */
pMessage->scMessage[pMessage->iMessageLength++] = cType;
pMessage->scMessage[pMessage->iMessageLength++] = 1; /* length = 1 for octet */
pMessage->scMessage[pMessage->iMessageLength++] = cValue; /* content */

/* Success */
return TRUE;
}/* AddOctetParameter */

/*
//
///
/// Function : AddStringParameter
///
/// Rule : Add a string (octet-string) parameter in a message
///
/// Parameters :
/// structure sParameter pointer
/// parameter type
/// parameter length
/// parameter value (pointer)
///
/// Return :
/// TRUE : Success
/// FALSE : Error during processing
///
//

Page 516
Final draft prETS 300 838: March 1998

*/
BOOL AddStringParameter(struct sParameter *pMessage,

unsigned char cType,
int iLg,
unsigned char *lpValue)

{
if (iLg == 0) return FALSE;

if (pMessage->iMessageLength + iLg + 2 > LG_MAX_MESSAGE) /* Buffer is too small */
{
/* Process message size error */
return FALSE;
}/* if */

/* TLV coding */
pMessage->scMessage[pMessage->iMessageLength++] = cType; /* Add the type */
pMessage->scMessage[pMessage->iMessageLength++] = iLg; /* Length */
memcpy(pMessage->scMessage+pMessage->iMessageLength, lpValue, iLg); /* Value */
pMessage->iMessageLength += iLg;

/* Success */
return TRUE;
}/* AddStringParameter */

/*
//
///
/// Function : ExtractParameter
///
/// Rule : Find a specific parameter and provide its location
///
/// Parameters :
/// address to the message
/// current message length
/// parameter type we are looking for
/// pointer of pointer where to find value
/// pointer of an integer where to find the length of the parameter
///
/// Return :
/// TRUE : Success
/// FALSE : Error during processing
///
//
*/
BOOL ExtractParameter(unsigned char *lpMessage,

unsigned int iLgMessage, unsigned char cType,
unsigned char * *lplpValue, unsigned int *lpiLgValue)

{
while (iLgMessage > 0) /* for all message parameters */

{
if (*lpMessage != cType)

{
/* process the next parameter */
iLgMessage -= lpMessage[1] + 2;
lpMessage += lpMessage[1] + 2;
continue;
}/* if */

/* the parameter type is found update information for the caller */
*lplpValue = lpMessage + 2;
*lpiLgValue = lpMessage[1];

/* Success */
return TRUE;
}/* while */

return FALSE;
}/* ExtractParameter */

Page 517
Final draft prETS 300 838: March 1998

Annex J (informative): Sample flow chart diagrams of Profile B

J.1 Outgoing call

CONNECT_REQ

CONNECT_ACTIVE_RESP

CONNECT_B3_REQ

CONNECT_B3_ACTIVE_RESP

CONNECT_CONF

CONNECT_ACTIVE_IND

Application Profile B API

CONNECT_B3_CONF

CONNECT_B3_ACTIVE_IND

Page 518
Final draft prETS 300 838: March 1998

J.2 Incoming call

LISTEN_REQ

CONNECT_ACTIVE_RESP

LISTEN_CONF

CONNECT_IND

Application Profile B API

CONNECT_RESP

CONNECT_ACTIVE_IND

CONNECT_B3_IND

CONNECT_B3_ACTIVE_IND

CONNECT_B3_RESP

CONNECT_B3_ACTIVE_RESP

Page 519
Final draft prETS 300 838: March 1998

J.3 Transmitting data

DATA_B3_REQ (1)

DATA_B3_REQ (2)

DATA_B3_CONF (3)

DATA_B3_CONF (1)

Application Profile B API

DATA_B3_CONF (2)

DATA_B3_REQ (4)

DATA_B3_REQ (3)

DATA_B3_REQ (5)

DATA_B3_CONF (5)

DATA_B3_CONF (4)

Page 520
Final draft prETS 300 838: March 1998

J.4 Receiving data

DATA_B3_IND (1)

DATA_B3_IND (2)

DATA_B3_RESP (3)

DATA_B3_RESP (1)

Application Profile B API

DATA_B3_IND (4)

DATA_B3_RESP (2)

DATA_B3_IND (3)

DATA_B3_RESP (4)

Page 521
Final draft prETS 300 838: March 1998

J.5 Active disconnect

DISCONNECT_B3_REQ

DISCONNECT_B3_RESP

DISCONNECT_RESP

DISCONNECT_B3_CONF

DISCONNECT_B3_IND

Application Profile B API

DISCONNECT_CONF

DISCONNECT_IND

DISCONNECT_REQ

Page 522
Final draft prETS 300 838: March 1998

J.6 Passive disconnect

DISCONNECT_B3_IND

DISCONNECT_B3_RESP

Application Profile B API

DISCONNECT_RESP

DISCONNECT_IND

Page 523
Final draft prETS 300 838: March 1998

J.7 Disconnect collision

Simultaneous release of a physical connection by application and Profile B.

DISCONNECT_REQ

DISCONNECT_RESP

DISCONNECT_IND

Application Profile B API

also possible:

DISCONNECT_REQ

DISCONNECT_RESP

DISCONNECT_IND

Application Profile B API

illegal:

DISCONNECT_REQ

DISCONNECT_CONF

DISCONNECT_IND

DISCONNECT_RESP

Application Profile B API

illegal message !

after DISCONNECT_IND no more messages
are sent to applications, so
DISCONNECT_REQ is not be confirmed

after DISCONNECT_IND no more messages
are sent to applications, so
DISCONNECT_REQ is not be confirmed

invalid, after DISCONNECT_IND no more
message concerning this PLCI are sent to
application

Page 524
Final draft prETS 300 838: March 1998

J.8 X.25 D-channel

For X.25 in the D-channel the configuration and establishment of layer 2 is accomplished by a
CONNECT_REQ message with the parameter

B-Protocol.B2-Protocol=LAPD
B-Protocol.B2-Configuration.AddressA=TEI
B-Protocol.B3-Protocol=ISO8208

Parameters that are not relevant for X.25 in D-channel are ignored by Profile B. The address of the called
party shall be passed in the X.25 call packet which is part of the NCPI parameter of the
CONNECT_B3_REQ message.

The passive connection is initiated by a CONNECT_REQ message, no LISTEN_REQ and consequently
no CONNECT_IND message is sent.

EXAMPLE:

Active connection setup: no difference compared to other protocols, see figure A.1.

Passive connection setup:

CONNECT_REQ

CONECT_CONF

CONNECT_ACTIVE_IND

Application Profile B API

CONNECT_ACTIVE_RESP

CONNECT_B3_IND

CONNECT_B3_ACTIVE_IND

CONNECT_B3_RESP

CONNECT_B3_ACTIVE_RESP

Page 525
Final draft prETS 300 838: March 1998

Annex K (normative): SFF format (Profile B)

K.1 Introduction

SFF (Structured Fax File) is a representation specially for facsimile group 3 documents. It consists of
information concerning the page structure and compressed line data of the facsimile document. A SFF
formatted document always starts with a header, valid for the complete document. Every page starts with
a page header. After this the pixel information follows line by line. As the SFF format is a file format
specification, some entries in header structures (e.g. double chaining of pages) may not used or
supported by Profile B.

document

header

page 1

header

page 1

data

page 2

header

page 2

data

..... page n

data

Figure K.1: SFF format

K.2 SFF coding rules

Following type conventions are used:

byte 8 bit unsigned
word 16 bit unsigned integer, least significant octet first
dword 32 bit unsigned integer, least significant word first

K.2.1 Document header

Parameter Type Comment
SFF_Id dword magic value (identification) of SFF Format: coded as

0x66666653 ("SFFF")
Version byte version number of SFF document: coded 0x01
reserved byte reserved for future extensions, coded 0x00
User Information word manufacturer specific user information (not used by

Profile B, coded as 0x0000)
Page Count word number of document"s pages. If not known (in case of

receiving a document) it shall be coded 0x0000.
OffsetFirstPageHeader word byte offset of first page header from start of document

header. This value is normally equal to the size of the
document header (0x14), but there might be additional
user specific data between document header and first
page header. Profile B shall ignore and not offer such
additional data.

OffsetLastPageHeader dword byte offset of last page header from start of document
header. If not known (in case of receiving a document) it
shall be coded 0x00000000.

OffsetDocumentEnd dword byte offset to document end from start of document
header. If not known (in case of receiving a document) it
shall be coded 0x00000000.

Page 526
Final draft prETS 300 838: March 1998

K.2.2 Page header

Parameter Type Comment
PageHeaderID byte 254 (Record Type of Page Data)
PageHeaderLen byte 0: Document end

1..255: byte offset of first page data from entry
Resolution Vertical of page header. This value is
normally equal to the size of the following part of the
header (0x10), but there might be additional user specific
data between page header and page data. Profile B shall
ignore and not offer such additional data.

Resolution Vertical byte definition of vertical resolution; different resolutions in
one document may be ignored by Profile B.
0: 98 lpi (standard)
1: 196 lpi (high resolution)
2..254: reserved
255: end of document (should not be used, instead
PageHeaderLen should be coded 0)

Resolution Horizontal byte definition of horizontal resolution
0: 203 dpi (standard)
1..255: reserved

Coding byte definition of pixel line coding
0: modified Huffman coding
1..255: reserved

Reserved byte coded as 0
Line Length word number of pixels per line

1 728: standard fax g3
2 048: B4 (optional)
2 432: A3 (optional)
Support of other values also is optional for Profile B.

Page Length word number of pixel lines per page. If not known, coded as
0x0000.

OffsetPreviousPage dword byte offset to previous page header or 0x00000000.
Coded as 0x00000001 if first page.

OffsetNextPage dword byte offset to next page header or 0x00000000. Coded
as 0x00000001 if last page.

K.2.3 Page data

Page data is coded line by line, i.e. for each pixel row exists a data definition. Lines are coded as records
with variable length, each line is coded according to element coding in page header. For the moment only
modified Huffman coding is supported. MH-coding is byte oriented, the first bit or a code word is stored
least significant first. There are no EOL code words or fill bits included. If data include EOL code words,
Profile B shall ignore these coding.

Each record is identified by the first byte:

- 1..216: pixel row with 1..216 MH-coded bytes are following immediately;

- 0: escape for pixel row with more than 216 bytes MH-coding. In this case, a following word in the
range 217..32 767 defines the number of MH-coded bytes, which are following;

- 217..253: white skip, 1..37 empty lines;

- 254: start or page header (see there);

- 255: if followed by a byte with value 0, illegal line coding. An application can decide if this line
should be interpreted empty or as a copy of the previous line. If this byte is followed by a byte with a
value 1..255, 1..255 bytes additional user information are following (reserved for future extensions).

Page 527
Final draft prETS 300 838: March 1998

Annex L (informative): Protocols supported by Profile B

Profile B provides a standardized interface for any number of application programs (applications) to any
number of ISDN drivers and ISDN controllers. Applications can be freely assigned to drivers and
controllers:

- One application can use one controller.

- One application can use more than one controller.

- Several applications can share a single controller.

- Several applications can share more than one controller.

Applications can use different protocols at different protocol levels, Profile B provides a selection
mechanism in support of this. Profile B also performs an abstraction from different protocol variants,
creating a standardized network access. All connection related data such as connection state, display
messages, etc., is available to applications at any time.

COMMON-ISDN-API

ISDN-

Controller

 1

ISDN-

Controller
2

ISDN-

Controller
n

Application 1

e.g.

filetransfer

Application 2

e.g.

facsimile

Application 3

e.g.

Network

Application n

e.g.

...

Communications

Interface view

instantiation

Figure L.1: Position of Profile B

Profile B covers the whole signalling protocol as well as protocol layers 1 to 3 (physical and framing layer,
data link layer and network layer) for data channels. The interface of Profile B is located between layer 3
and layer 4 and provides the point of reference for applications and higher level protocols.

Profile B offers many currently used protocols to applications without deep protocol knowledge. The
default protocol is ISO 7776 [4] (X.75 SLP), i.e. framing protocol HDLC, data link protocol ISO 7776 [4]
(X.75 SLP), and a transparent network layer.

Other supported variants of framing layer are: HDLC inverted, PCM (bit transparent with byte framing)
64/56 kBit, CCITT Recommendation V.110 [17] sync / async. Profile B integrates the following data link
and network layers: LAPD according to ITU-T Recommendation Q.921 [13] for ITU-T Recommendation
X.25 [20] D-channel implementation, PPP [10] [11] (Point to Point protocol), ISO 8208 [3] (X.25 DTE-
DTE), X.25 DCE, T.90NL (with compatibility to T.70NL) and ITU-T Recommendation T.30 [14] (facsimile
group 3).

Even if not all protocols can fit completely within the OSI scheme, Profile B always supports three layers.
Each layer can be configured by applications. In case of illegal or meaningless combinations of protocol
stack combinations (e.g. bit transparency 56 kBits and X.25 DCE) Profile B shall report this error.

Page 528
Final draft prETS 300 838: March 1998

Annex M (informative): Development guidelines for Profile B

The main body of this ETS contains the description of Profile B from the application point of view.
Following this approach, certain points, not directly related to the application, which have an impact on the
development of the implementation of Profile B are not described. These points may be of interest for the
implementation development and are, therefore, described in Profile B, subclause 6.9 in the state
diagrams. This annex gives these guidelines for the development of the implementation in accordance
with ITU-T Recommendation Z.100 [5].

M.1 SDL diagrams

M.1.1 SDL diagrams: conventions

The SDL diagrams are given to explain more clearly the relation between Profile B messages and
Profile B actions. Note that Profile B does not define a direct mapping between Profile B messages and
network primitives. Instead Profile B offers functionalities, which are independent of the used network
protocol.

The following symbols are used within this description. A full description of the symbols and their meaning
is given in ITU-T Recommendation Z.100 [5].

State Symbol Input (from NAF implementation) Input (from PUF)

Decision Symbol Output (to NAF implementation) Output (to PUF)

M.1.2 SDL diagrams for Control Plane

The following SDL diagrams show the internal states of the signalling protocol section of Profile B. The
primitives shown in upper case are messages defined by Profile B.

NOTE: Invalid input from an application shall not result in a state transition. In case of
Requests from the PUF a Confirmation shall be send to the PUF to indicate the invalid
request. Invalid Responses shall be ignored.

Page 529
Final draft prETS 300 838: March 1998

02

CONNECT_
IND

CIP mask
match

Incoming
call

1

CONNECT_
CONF

Initiate
connect

CONNECT_
REQ

0

NOYES

Figure M.1

1

rx info

INFO_IND

1

handset '-'

FACILITY_
IND

5

handset '+'

FACILITY_
IND

3

INFO_REQ

handle
info

INFO_CONF

1

DISCON-
NECT_REQ

initiate
disconnect

DISCON-
NECT_CONF

5

disconnected

DISCON-
NECT_IND

6

established

CONNECT_
ACTIVE_
IND

10

Figure M.2

Page 530
Final draft prETS 300 838: March 1998

2

rx info

INFO_IND

2

handset '-'

FACILITY_
IND

5

handset'+'

FACILITY_
IND

3

INFO_REQ

handle info

INFO_CONF

2

ALERT_REQ

handle alert

ALERT_CONF

2

DISCON
NECT_REQ

initiate
disconnect

DISCON
NECT_CONF

5

disconnected

DISCON
NECT_IND

6

CONNECT_
RESP

reject/ignore call

5

accept call

4

NOYES

Figure M.3

3

rx info

INFO_IND

3

handset '-'

FACILITY_
IND

5

INFO_REQ

handle info

INFO_CONF

3

DISCON
NECT_REQ

initiate
disconnect

DISCON
NECT_CONF

5

disconnected

DISCONNECT
_IND

6

CONNECT_
RESP

reject/ignore call

5

accepyt call

4

NOYES

Figure M.4

Page 531
Final draft prETS 300 838: March 1998

4

rx info

INFO_IND

4

handset '-'

FACILITY_
IND

5

INFO_REQ

handle info

INFO_CONF

4

DISCON
NECT_REQ

initiate
disconnect

DISCON
NECT_CONF

5

disconnected

DISCON
NECT_IND

6

connected

CONNECT_
ACTIVE_
IND

10

Figure M.5

5

handset '-'

FACILITY_
IND

5

disconnected

DISCON
NECT_IND

6

Figure M.6

6

DISCON
NECT_RESP

0

Figure M.7

Page 532
Final draft prETS 300 838: March 1998

10

rx info

INFO_IND

10

handset '-'

FACILITY_
IND

5

INFO_REQ

handle info

INFO_CONF

10

DISCON
NECT_REQ

initiate disconnect

DISCON
NECT_CONF

5

disconnected

DISCON
NECT_IND

6

Figure M.8

M.1.3 SDL diagrams for User Plane

The following SDL diagrams show the internal states of the logical connection section of Profile B. The
primitives shown in upper case are messages defined by Profile B.

NOTE: Invalid input from PUF shall not result in a state transition. In case of Requests from
the PUF a Confirmation shall be send to the PUF to indicate the invalid request. Invalid
Responses shall be ignored.

0

incoming cal

CONNECT_
B3_IND

1

CONNECT_
B3_REQ

initiate connect

CONNECT_
B3_CONF

2

Figure M.9

Page 533
Final draft prETS 300 838: March 1998

1

DISCON
NECT_B3_
REQ

initiate disconnect

DISCON
NECT_B3_
CONF

4

Disconnect

DISCON
NECT_B3_
IND

5

CONNECT_
B3_RESP

accept call

reject call

4

accept call

2

NOYES

Figure M.10

2

DISCON
NECT_B3_
REQ

initiate disconnect

DISCON
NECT_B3_
CONF

4

disconnected

DISCON
NECT_B3_
IND

5

connected

CONNECT_
B3_ACTIVE_
IND

10

Figure M.11

Page 534
Final draft prETS 300 838: March 1998

3

DISCON
NECT_B3_
REQ

initiate disconnect

DISCON
NECT_B3_
CONF

4

disconnected

DISCON
NECT_B3_
IND

5

reset

RESET_B3_
IND

10

Figure M.12

4

disconnected

DISCON
NECT_B3_
IND

5

Figure M.13

5

DISCON
NECT_B3_
RESP

0

Figure M.14

Page 535
Final draft prETS 300 838: March 1998

10

reset

RESET_B3_
IND

10

switch T70 to T90

CONNECT_
B3_T90_
ACTIVE_IND

10

data received

DATA_B3_
IND

10

DISCON
NECT_B3_
REQ

initiate disconnect

DISCON
NECT_B3_
CONF

4

disconnected

DISCON
NECT_B3_
IND

5

DATA_B3_
REQ

initiate transmission

DATA_B3_
CONF

10

RESET_B3_
REQ

initiate reset

RESET_B3_
CONF

3

Figure M.15

Page 536
Final draft prETS 300 838: March 1998

Annex N (informative): Profile B Implementation description proforma

Notwithstanding the provisions of the copyright clause related to the text of this ETS, ETSI grants that
users of this ETS may freely reproduce the proforma in this annex so that it can be used for its intended
purposes and may further publish the completed implementation description.

N.1 Introduction

This annex contains the implementation description of Profile B. It lists all mandatory, conditional and
optional items of the specification for Profile B relating to the exchange mechanism and the supported
messages. It shall be used in the process of evaluating a particular implementation when claiming
conformance to or support of the specification of Profile B. The implementation which claims conformance
can either be an implementation of Profile B or an application

To evaluate conformance of a particular implementation, it is necessary to have a statement of which
capabilities and options have been implemented. This annex contains such a statement.

N.2 How to read the following tables

Each line within the following tables is numbered at the left hand edge of the line. This numbering is
included as a means of uniquely identifying all possible implementation details within Profile B.

The I/A column in this annex separates the capabilities for the implementation of Profile B and the
application using this Profile.

I Implementation of Profile B;

A Application using this profile.

The I/A-column can be omitted from the Administration Plane, Control Plane and User Plane items as all
those items are optional on the application level.

The D column in this annex reflects the definition of the items in this ETS. Each entry in this column is
chosen from the following list:

M Mandatory support is required;

O Optional support is permitted. If implemented, it shall conform to this ETS.

The I column in this annex describes the actual capabilities of the implementation and shall be completed
by the supplier using a symbol chosen from the following list:

Y item is implemented (subject to stated constraints);

N item is not implemented;

- item is not applicable.

The reference/note column in this annex contains the references to the location in the main body of this
ETS where the items are described or a note explaining why the item is conditional.

The following abbreviations are used in the headings of this annex:

I/A Implementation / Application;

D Defined;

I Implemented;

ref. reference.

Page 537
Final draft prETS 300 838: March 1998

N.3 Exchange mechanism

Item of Profile B I/A D I reference/note

1 CAPI_REGISTER I M [] 6.3.2.1

A M [] 6.3.2.1

2 CAPI_RELEASE I M [] 6.3.2.4

A M [] 6.3.2.4

3 CAPI_PUT_MESSAGE I M [] 6.3.2

A M [] 6.3.2

4 CAPI_GET_MESSAGE I M [] 6.3.2

A M [] 6.3.2

5 CAPI_SET_SIGNAL I M [] 6.3.2

A O [] 6.3.2

6 CAPI_GET_MANUFACTURER I M [] 6.3.2

A O [] 6.3.2

7 CAPI_GET_VERSION I M [] 6.3.2

A O [] 6.3.2

8 CAPI_GET_SERIAL_NUMBER I M [] 6.3.2

A O [] 6.3.2

9 CAPI_GET_PROFILE I M [] 6.3.2

A O [] 6.3.2

10 CAPI_MANUFACTURER I M [] 6.3.2

A O [] 6.3.2

N.4 Administration Plane

Item of Profile B D I reference/note

11 LISTEN_REQ M [] 6.7.37

12 LISTEN_CONF M [] 6.7.38

13 FACILITY_REQ M [] 6.7.29

14 FACILITY_CONF M [] 6.7.30

15 FACILITY_IND M [] 6.7.31

16 FACILITY_RESP M [] 6.7.32

17 SELECT_B_PROTOCOL_REQ M [] 6.7.47

18 SELECT_B_PROTOCOL_CONF M [] 6.7.48

Page 538
Final draft prETS 300 838: March 1998

N.5 Control Plane

Item of Profile B D I reference/note

19 CONNECT_REQ M [] 6.7.3

20 CONNECT_CONF M [] 6.7.4

21 CONNECT_IND M [] 6.7.5

22 CONNECT_RESP M [] 6.7.6

23 CONNECT_ACTIVE_IND M [] 6.7.7

24 CONNECT_ACTIVE_RESP M [] 6.7.8

25 DISCONNECT_REQ M [] 6.7.25

26 DISCONNECT_CONF M [] 6.7.26

27 DISCONNECT_IND M [] 6.7.27

28 DISCONNECT_RESP M [] 6.7.28

29 ALERT_REQ M [] 6.7.1

30 ALERT_CONF M [] 6.7.2

31 INFO_REQ M [] 6.7.33

32 INFO_CONF M [] 6.7.34

33 INFO_IND M [] 6.7.35

34 INFO_RESP M [] 6.7.36

Page 539
Final draft prETS 300 838: March 1998

N.6 User Plane

Item of Profile B D I reference/note

35 CONNECT_B3_REQ M [] 6.7.11

36 CONNECT_B3_CONF M [] 6.7.12

37 CONNECT_B3_IND M [] 6.7.13

38 CONNECT_B3_RESP M [] 6.7.14

39 CONNECT_B3_ACTIVE_IND M [] 6.7.9

40 CONNECT_B3_ACTIVE_RESP M [] 6.7.10

41 CONNECT_B3_T90_ACTIVE_IND M [] 6.7.15

42 CONNECT_B3_T90_ACTIVE_
RESP

M [] 6.7.16

43 DISCONNECT_B3_REQ M [] 6.7.21

44 DISCONNECT_B3_CONF M [] 6.7.22

45 DISCONNECT_B3_IND M [] 6.7.23

46 DISCONNECT_B3_RESP M [] 6.7.24

Item of Profile B D I reference/note

47 DATA_B3_REQ M [] 6.7.17

48 DATA_B3_CONF M [] 6.7.18

49 DATA_B3_IND M [] 6.7.19

50 DATA_B3_RESP M [] 6.7.20

51 RESET_B3_REQ M [] 6.7.43

52 RESET_B3_CONF M [] 6.7.44

53 RESET_B3_IND M [] 6.7.45

54 RESET_B3_RESP M [] 6.7.46

55 MANUFACTURER _REQ M [] 6.7.39

56 MANUFACTURER _CONF M [] 6.7.40

57 MANUFACTURER _IND M [] 6.7.41

58 MANUFACTURER _RESP M [] 6.7.42

Page 540
Final draft prETS 300 838: March 1998

N.7 User Plane protocols

N.7.1 User Plane B1 protocols

The B1 protocols specify the physical layer and framing used for the connection.

Item of Profile B D I reference/note

59 64 kBit/s with HDLC framing Default
B1 protocol

M [] 6.8

60 64 kBit/s bit transparent operation
with byte framing from the network

O [] 6.8

61 V.110 [17] asynchronous operation
with start/stop byte framing

O [] 6.8

62 V.110 [17] synchronous operation
with HDLC framing

O [] 6.8

63 T.30 [14] modem for fax group 3 O [] 6.8

64 64 kBit/s inverted with HDLC framing O [] 6.8

65 56 kBit/s bit transparent operation
with byte framing from the network

O [] 6.8

N.7.2 User Plane B2 protocols

The B2 protocols specify the data link layer used for the connection.

Item of Profile B D I reference/note

66 ISO 7776 [4] (X.75 SLP) This is the
default B2 protocol

M [] 6.8

67 Transparent O [] 6.8

68 SDLC [12] O [] 6.8

69 LAPD according Q.921 [13] for D
channel X.25

O [] 6.8

70 T.30 [14] for fax group 3 O [] 6.8

71 Point to Point Protocol (PPP [10] [11]) O [] 6.8

72 Transparent (ignoring framing errors
of B1 protocol)

O [] 6.8

73 V.120 asynchronous mode O [] 6.8

Page 541
Final draft prETS 300 838: March 1998

N.7.3 User Plane B3 protocols

The B3 protocols specify the network layer used for the connection.

Item of Profile B D I reference/note

74 Transparent.
This is the default B3 protocol

M [] 6.8

75 T.90NL with compatibility to T.70NL
according to T.90
Appendix II [15] [16].

O [] 6.8

76 ISO 8208 [3] (X.25 DTE-DTE) O [] 6.8

77 X.25 DCE. O [] 6.8

78 T.30 [14] for fax group 3 O [] 6.8

Page 542
Final draft prETS 300 838: March 1998

Annex P (informative): Index of Profile B related topics

A
Additional Info 255
ALERT_CONF 235
ALERT_REQ 235

B
B Protocol 256
B1 Configuration 259
B1 Protocol 257
B2 Configuration 260
B2 Protocol 257
B3 Configuration 260
B3 Protocol 258
BC 261
B-channel Information 256

C
Called Party Number 261
Called Party Subaddress 262
Calling Party Number 262
Calling Party Subaddress 263
CAPI_GET_MANUFACTURER

MS-DOS 303
NetWare (CAPI_GetManufacturer) 371
OS/2 349
OS/2 PDD 357
UNIX 332
Windows 317
Windows 95 IOCtl 420
Windows 95 VXD 412
Windows NT 387
Windows NT DD 396

CAPI_GET_MESSAGE
MS-DOS 302
NetWare (CAPI_GetMessage) 370
OS/2 348
OS/2 PDD 355
UNIX 332
Windows 315
Windows 95 IOCtl 419
Windows 95 VXD 411
Windows NT 386
Windows NT DD 395

CAPI_GET_PROFILE
MS-DOS 305
NetWare (CAPI_GetProfile) 372
OS/2 351
OS/2 PDD 359
UNIX 334
Windows 318
Windows 95 IOCtl 421
Windows 95 VXD 413
Windows NT 388
Windows NT DD 397

CAPI_GET_SERIAL_NUMBER
MS-DOS 304
NetWare (CAPI_GetSerialNumber)372
OS/2 350
OS/2 PDD 358

UNIX 333
Windows 318
Windows 95 IOCtl 421
Windows 95 VXD 413
Windows NT 387
Windows NT DD 397

CAPI_GET_VERSION
MS-DOS 304
NetWare (CAPI_GetVersion) 371
OS/2 350
OS/2 PDD 357
UNIX 333
Windows 317
Windows 95 IOCtl 420
Windows 95 VXD 412
Windows NT 387
Windows NT DD 396

CAPI_INSTALLED
OS/2 352
Windows 320
Windows NT 389

CAPI_MANUFACTURER
MS-DOS 307
Windows 95 VXD 415

CAPI_PUT_MESSAGE
MS-DOS 302
NetWare (CAPI_PutMessage) 369
OS/2 347
OS/2 PDD 355
UNIX 332
Windows 315
Windows 95 IOCtl 418
Windows 95 VXD 410
Windows NT 385
Windows NT DD 394

CAPI_ReceiveNotify
NetWare 369

CAPI_REGISTER
MS-DOS 300
NetWare (CAPI_Register) 367
OS/2 346
OS/2 PDD 353
UNIX 331
Windows 314
Windows 95 IOCtl 417
Windows 95 VxD 409
Windows NT 384
Windows NT DD 393

CAPI_RELEASE
MS-DOS 301
NetWare (CAPI_Release) 369
OS/2 347
OS/2 PDD 354
UNIX 331
Windows 314
Windows 95 IOCtl 418
WINDOWS 95 VXD 410
Windows NT 385
Windows NT DD 394

CAPI_SET_SIGNAL
MS-DOS 303

Page 543
Final draft prETS 300 838: March 1998

OS/2 349
OS/2 PDD 356
Windows 316
Windows 95 IOCtl 420
Windows 95 VXD 411
Windows NT DD 396

CAPI_WAIT_FOR_SIGNAL
Windows NT 386

CIP mask 268
CIP Value 264
CONNECT_ACTIVE_IND 238
CONNECT_B3_ACTIVE_IND 239
CONNECT_B3_ACTIVE_RESP239
CONNECT_B3_CONF 240
CONNECT_B3_IND 240
CONNECT_B3_REQ 239
CONNECT_B3_RESP 241
CONNECT_B3_T90_ACTIVE_IND 241
CONNECT_B3_T90_ACTIVE_RESP 241
CONNECT_CONF 236
CONNECT_IND 237
CONNECT_REQ 235
CONNECT_RESP 237
Connected Number 269
Connected Subaddress 270
Controller 270

D
Data 271
Data Handle 271
Data Length 271
DATA_B3_CONF 242
DATA_B3_IND 243
DATA_B3_REQ 242
DATA_B3_RESP 244
DISCONNECT_B3_CONF 244
DISCONNECT_B3_IND 245
DISCONNECT_B3_REQ 244
DISCONNECT_B3_RESP 245
DISCONNECT_CONF 246
DISCONNECT_IND 246
DISCONNECT_REQ 245
DISCONNECT_RESP 247

F
Facility Confirmation Parameter 273
Facility Indication Parameter 273
Facility Request Parameter 272
Facility Respond Parameter 274
Facility Selector 272
FACILITY_CONF 247
FACILITY_IND 248
FACILITY_REQ 247
FACILITY_RESP 248
Flags 274

H
HLC 274

I
Implementation description of Profile B 531
Index of COMMON ISDN API related topics 537

Info 274
Info Element276
Info Mask 277
Info Number 278
INFO_CONF 249
INFO_IND 249
INFO_REQ 248
INFO_RESP250

L
LISTEN_CONF 251
LISTEN_REQ 250
LLC 279

M
Manu ID 279
Manufacturer Specific 280
MANUFACTURER_CONF 252
MANUFACTURER_IND 252
MANUFACTURER_REQ 252
MANUFACTURER_RESP 253

N
NAF development guidelines 523
NCCI 280
NCPI 281

P
PLCI 282
Protocols supported by COMMON ISDN API 522

R
Reason 283
Reason_B3 283
Reject 284
RESET_B3_CONF253
RESET_B3_IND 254
RESET_B3_REQ 253
RESET_B3_RESP 254

S
SELECT_B_PROTOCOL_CONF 255
SELECT_B_PROTOCOL_REQ 254
SFF Format 520

Page 544
Final draft prETS 300 838: March 1998

Annex Q (informative): Bibliography

This bibliography contains references to documents which are of importance to the PUF and NAF
developers. The documents can be useful when reading or implementing this ETS.

- Directive 86/659/EEC: "Council recommendation of 22 December 1986 on the coordinated
introduction of the integrated services digital network (ISDN) in the European Community".

- ETR 018: "Integrated Services Digital Network (ISDN); Application of the BC-,HLC-, LLC-
information elements by terminals supporting ISDN services".

- ETR 204: "Public Switched Telephone Network (PSTN); Automatic sender for push-button
multifrequency signalling".

- ETR 205: "Public Switched Telephone Network (PSTN); Mulitfrequency push-button receiver at
subsriber"s premises".

- ETR 206: "Public Switched Telephone Network (PSTN); Multifrequency signalling system to be
used for push-button telephones".

- ETR 207: "Public Switched Telephone Network (PSTN); Alternative sender for multifrequency
signalling system to be used for push-button telephones".

- ETS 300 050: "Integrated Services Digital Network (ISDN); Multiple Subscriber Number (MSN)
supplementary service; Service description".

- ETS 300 051: "Integrated Services Digital Network (ISDN); Multiple Subscriber Number (MSN)
supplementary service; Functional capabilities and information flows".

- ETS 300 052-1: "Integrated Services Digital Network (ISDN); Multiple Subscriber Number (MSN)
supplementary service; Digital Subscriber Signalling System No. one (DSS1) protocol".

- ETS 300 053: "Integrated Services Digital Network (ISDN); Terminal Portability (TP) supplementary
service; Service description".

- ETS 300 054: "Integrated Services Digital Network (ISDN); Terminal Portability (TP) supplementary
service; Functional capabilities and information flows".

- ETS 300 055-1: "Integrated Services Digital Network (ISDN); Terminal Portability (TP)
supplementary service; Digital Subscriber Signalling System No. one (DSS1) protocol".

- ETS 300 056: "Integrated Services Digital Network (ISDN); Call Waiting (CW) supplementary
service; Service description".

- ETS 300 057: "Integrated Services Digital Network (ISDN); Call Waiting (CW) supplementary
service; Functional capabilities and information flows".

- ETS 300 058-1: "Integrated Services Digital Network (ISDN); Call Waiting (CW) supplementary
service; Digital Subscriber Signalling System No. one (DSS1) protocol".

- ETS 300 059: "Integrated Services Digital Network (ISDN); Subaddressing (SUB) supplementary
service; Service description".

- ETS 300 060: "Integrated Services Digital Network (ISDN); Subaddressing (SUB) supplementary;
service; Functional capabilities and information flows".

- ETS 300 061-1: "Integrated Services Digital Network (ISDN); Subaddressing (SUB) supplementary
service; Digital Subscriber Signalling System No. one (DSS1) protocol".

- ETS 300 062: "Integrated Services Digital Network (ISDN); Direct Dial In (DDI) supplementary
service; Service description".

Page 545
Final draft prETS 300 838: March 1998

- ETS 300 063: "Integrated Services Digital Network (ISDN); Direct Dial In (DDI) supplementary
service; Functional capabilities and information flows".

- ETS 300 064-1: "Integrated Services Digital Network (ISDN); Direct Dial In (DDI) supplementary
service; Digital Subscriber Signalling System No. one (DSS1) protocol".

- ETS 300 089: "Integrated Services Digital Network (ISDN); Calling Line Identification Presentation
(CLIP) supplementary service; Service description".

- ETS 300 090: "Integrated Services Digital Network (ISDN); Calling Line Identification Restriction
(CLIR) supplementary service; Service description".

- ETS 300 091: "Integrated Services Digital Network (ISDN); Calling Line Identification Presentation
(CLIP) and Calling Line Identification Restriction (CLIR) supplementary services; Functional
capabilities and information flows".

- ETS 300 092-1: "Integrated Services Digital Network (ISDN); Calling Line Identification Presentation
(CLIP) supplementary service; Digital Subscriber Signalling System No. one (DSS1) protocol".

- ETS 300 093-1: "Integrated Services Digital Network (ISDN); Calling Line Identification Restriction
(CLIR) supplementary service; Digital Subscriber Signalling System No. one (DSS1) protocol".

- ETS 300 102-2: "Integrated Services Digital Network (ISDN); User-network interface layer 3
specification for basic call control; Specification Description Language (SDL) diagrams".

- ETS 300 179: "Integrated Services Digital Network (ISDN); Advice of Charge: charging information
during the call (AOC-D) supplementary service; Service description".

- ETS 300 180: "Integrated Services Digital Network (ISDN); Advice of Charge: charging information
at the end of the call (AOC-E) supplementary service; Service description".

- ETS 300 181: "Integrated Services Digital Network (ISDN); Advice of Charge (AOC) supplementary
service; Functional capabilities and information flows".

- ETS 300 182-1: "Integrated Services Digital Network (ISDN); Advice of Charge (AOC)
supplementary service; Digital Subscriber Signalling System No. one (DSS1) protocol".

- ISO 8878 (1990): "Information processing systems - Data communications - Use of X.25 to provide
the OSI connection-mode network service".

- ISO/IEC 9574: "Information technology - Telecommunications and information exchange between
systems - Provision of the OSI connection-mode network service by packet mode terminal
equipment connected to an integrated services digital network (ISDN)".

- ITU-T Recommendation F.721: "Videotelephony teleservice for ISDN".

- ITU-T Recommendation H.221: "Frame structure for a 64 to 1920 kbit/s channel in audiovisual
teleservices".

- CCITT Recommendation X.21: "Interface between data terminal equipment and data circuit-
terminating equipment for synchronous operation on public data networks".

- CCITT Recommendation X.211: "Physical Service Definition for Open Systems Interconnection for
CCITT Applications".

- ITU-T Recommendation X.200: "Information technology - Open Systems Interconnection - Basic
reference model: The basic model".

- ITU-T Recommendation X.400: "Message handling services: Message handling system and service
overview".

Page 546
Final draft prETS 300 838: March 1998

History

Document history

January 1996 Public Enquiry as ETS 300 325 Ed 2 PE 100: 1996-01-22 to 1996-05-17

April 1997 Document number changed to ETS 300 838 as results of PE comments

March 1998 Vote V 9820: 1998-03-17 to 1998-05-15

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 General
	4.1 Overview
	4.2 Requirements
	4.3 Reader's guide

	5 Profile A
	5.1 Reader's guidance and overview
	5.1.1 Reader's guide
	5.1.2 How to use this profile
	5.1.3 Functional overview
	5.1.4 Connection management
	5.1.5 The planes
	5.1.6 Properties
	5.1.7 External equipment (e.g. telephony)
	5.1.8 ISDN accesses and the multi-applications environment
	5.1.9 Exchange mechanism

	5.2 Message overview
	5.2.1 Functional model
	5.2.1.1 Introduction
	5.2.1.2 Architecture
	5.2.1.2.1 Profile A and its components
	5.2.1.2.2 Profile A architecture
	5.2.1.2.3 Co-ordination cases

	5.2.1.3 Functionality
	5.2.1.3.1 Introduction
	5.2.1.3.2 Resource management
	5.2.1.3.2.1 Attribute sets
	5.2.1.3.2.2 Network Connection Objects
	5.2.1.3.2.3 Support of external equipment
	5.2.1.3.2.4 Support of security features
	5.2.1.3.2.5 Support of manufacturer specific features
	5.2.1.3.3 Connection management
	5.2.1.3.3.1 Connection set-up and removal
	5.2.1.3.3.2 Support of supplementary services
	5.2.1.3.4 Data management

	5.2.1.4 Relating functionality to planes
	5.2.1.4.1 Optional features
	5.2.1.4.2 Administration Plane
	5.2.1.4.3 Control Plane
	5.2.1.4.4 User Plane

	5.2.1.5 PUF NAF interactions
	5.2.1.6 Total interaction overview
	5.2.1.7 Identifiers
	5.2.1.8 Error handling
	5.2.1.8.1 Overview
	5.2.1.8.2 Function error handling
	5.2.1.8.3 Message error handling

	5.2.2 Information encoding
	5.2.3 Conventions
	5.2.3.1 Address conventions
	5.2.3.2 Provision of information
	5.2.3.3 Message conventions
	5.2.3.4 Parameter conventions
	5.2.3.4.1 Parameter ordering
	5.2.3.4.2 Parameter repetition
	5.2.3.4.3 Parameter checking

	5.2.3.5 Default philosophy

	5.2.4 User Plane particularities

	5.3 Exchange method
	5.3.1 Registration phase
	5.3.1.1 Overview
	5.3.1.2 PciGetHandles
	5.3.1.3 PciGetProperty
	5.3.1.4 PciRegister

	5.3.2 Deregistration phase
	5.3.2.1 PciDeregister

	5.3.3 Conversation phase
	5.3.3.1 Sending messages
	5.3.3.2 Receiving messages
	5.3.3.3 Receiving messages using the polling method
	5.3.3.4 Receiving messages using signal method
	5.3.3.5 PCI Message Parameter Block (PCIMPB)
	5.3.3.6 PciPutMessage
	5.3.3.7 PciGetMessage
	5.3.3.8 PciSetSignal

	5.4 Administration Plane messages
	5.4.1 ACreateNCOReq
	5.4.2 NCOType and conditional parameter specification
	5.4.3 ACreateNCOCnf
	5.4.4 ADestroyNCOReq
	5.4.5 ADestroyNCOCnf
	5.4.6 AGetNCOInfoReq
	5.4.7 AGetNCOInfoCnf
	5.4.8 AErrorInd
	5.4.9 ASecurityReq
	5.4.10 ASecurityCnf
	5.4.11 AManufacturerReq
	5.4.12 AManufacturerInd
	5.4.13 AChangeNCOReq
	5.4.14 AChangeNCOCnf

	5.5 Control Plane messages
	5.5.1 Introduction
	5.5.1.1 Control Messages classes
	5.5.1.2 Sequencing of Control Plane messages

	5.5.2 CAlertReq
	5.5.3 CAlertInd
	5.5.4 CConnectReq
	5.5.5 CConnectInd
	5.5.6 CConnectRsp
	5.5.7 CConnectCnf
	5.5.8 CDisconnectReq
	5.5.9 CDisconnectInd
	5.5.10 CDisconnectRsp
	5.5.11 CDisconnectCnf
	5.5.12 CProgressInd
	5.5.13 CStatusInd
	5.5.14 CSetupAckInd
	5.5.15 CConnectInfoReq
	5.5.16 CProceedingInd
	5.5.17 CUserInformationReq
	5.5.18 CUserInformationInd
	5.5.19 CCongestionControlReq
	5.5.20 CCongestionControlInd
	5.5.21 CSuspendReq
	5.5.22 CSuspendCnf
	5.5.23 CResumeReq
	5.5.24 CResumeCnf
	5.5.25 CNotifyInd
	5.5.26 CFacilityReq
	5.5.27 CFacilityInd
	5.5.28 CExtEquipAvailabalityInd
	5.5.29 CExtEquipBlockDiallingInd
	5.5.30 CExtEquipKeyPressedInd
	5.5.31 CExtEquipOffHookInd
	5.5.32 CExtEquipOnHookInd
	5.5.33 CAddInfoReq
	5.5.34 CAddInfoInd
	5.5.35 CDtmfReq
	5.5.36 CDtmfCnf
	5.5.37 CDtmfInd
	5.5.38 User to User information exchange
	5.5.39 Implementation of supplementary services
	5.5.39.1 Advice of Charge during call (AOC-D)
	5.5.39.2 Advice of Charge at End of call (AOC-E)

	5.6 User Plane
	5.6.1 User Plane Protocols Management Architecture
	5.6.1.1 Introduction
	5.6.1.2 Message access
	5.6.1.2.1 The physical layer access (transparent access)
	5.6.1.2.2 The link layer access
	5.6.1.2.3 The network layer access

	5.6.1.3 Protocols
	5.6.1.3.1 Supported User Plane protocols
	5.6.1.3.2 Protocol selection
	5.6.1.3.2.1 NCOType parameter
	5.6.1.3.2.2 UProtocol parameter

	5.6.1.4 Co-ordination function
	5.6.1.5 Selection criteria
	5.6.1.5.1 NCO Selection: User Plane information element
	5.6.1.5.2 Action if no NCO available: User Plane incoming call

	5.6.1.6 User Plane error checking
	5.6.1.7 User Plane attribute sets

	5.6.2 Layer 1 Protocols
	5.6.2.1 Transparent B-channel access with byte framing from the network
	5.6.2.1.1 Introduction
	5.6.2.1.2 Messages
	5.6.2.1.2.1 UDataReq
	5.6.2.1.2.2 UDataInd
	5.6.2.1.2.3 UErrorInd
	5.6.2.1.3 Messages parameters
	5.6.2.1.3.1 IdleFlag
	5.6.2.1.3.2 NCOType
	5.6.2.1.3.3 UProtocol
	5.6.2.1.3.4 UAttributeName
	5.6.2.1.3.5 UDirection
	5.6.2.1.3.6 Cause
	5.6.2.1.4 State diagram
	5.6.2.1.5 Co-ordination function
	5.6.2.1.6 Selection criteria
	5.6.2.1.7 Specific error handling
	5.6.2.1.8 Static attributes
	5.6.2.1.8.1 AttributeSet parameters
	5.6.2.1.8.2 Static attribute content

	5.6.3 Layer 2 Protocols
	5.6.3.1 ISO 7776 protocol
	5.6.3.1.1 Introduction
	5.6.3.1.2 Messages
	5.6.3.1.2.1 UConnectReq
	5.6.3.1.2.2 UConnectInd
	5.6.3.1.2.3 UConnectRsp
	5.6.3.1.2.4 UConnectCnf
	5.6.3.1.2.5 UDisconnectReq
	5.6.3.1.2.6 UDisconnectInd
	5.6.3.1.2.7 UDataReq
	5.6.3.1.2.8 UDataInd
	5.6.3.1.2.9 UReadyToReceiveReq
	5.6.3.1.2.10 UReadyToReceiveInd
	5.6.3.1.3 Messages parameters
	5.6.3.1.3.1 L2ConnectionMode
	5.6.3.1.3.2 L2FrameSize
	5.6.3.1.3.3 L2WindowSize
	5.6.3.1.3.4 L2XID
	5.6.3.1.3.5 NCOType
	5.6.3.1.3.6 UProtocol
	5.6.3.1.3.7 UAttributeName
	5.6.3.1.3.8 UDirection
	5.6.3.1.3.9 Cause
	5.6.3.1.3.10 Origin
	5.6.3.1.4 State diagram
	5.6.3.1.5 Co-ordination function
	5.6.3.1.6 Selection criteria
	5.6.3.1.7 Specific error handling and codes
	5.6.3.1.8 Static attributes
	5.6.3.1.8.1 AttributeSet parameters
	5.6.3.1.8.2 Static attribute content

	5.6.3.2 HDLC protocol
	5.6.3.2.1 Introduction
	5.6.3.2.2 Messages
	5.6.3.2.2.1 UDataReq
	5.6.3.2.2.2 UDataInd
	5.6.3.2.3 Messages parameters
	5.6.3.2.3.1 NCOType
	5.6.3.2.3.2 UProtocol
	5.6.3.2.3.3 UAttributeName
	5.6.3.2.3.4 UDirection
	5.6.3.2.4 State diagram
	5.6.3.2.5 Co-ordination function
	5.6.3.2.6 Selection criteria
	5.6.3.2.7 Specific error handling and codes
	5.6.3.2.8 Static attributes
	5.6.3.2.8.1 AttributeSet parameters
	5.6.3.2.8.2 Static attribute content

	5.6.3.3 HDLC protocol with error
	5.6.3.3.1 Introduction
	5.6.3.3.2 Messages
	5.6.3.3.2.1 UDataReq
	5.6.3.3.2.2 UDataInd
	5.6.3.3.3 Messages parameters
	5.6.3.3.3.1 NCOType
	5.6.3.3.3.2 UProtocol
	5.6.3.3.3.3 UAttributeName
	5.6.3.3.3.4 UDirection
	5.6.3.3.3.5 Cause
	5.6.3.3.3.6 State diagram
	5.6.3.3.4 Co-ordination function
	5.6.3.3.5 Selection criteria
	5.6.3.3.6 Specific error handling
	5.6.3.3.7 Static attributes
	5.6.3.3.7.1 AttributeSet parameters
	5.6.3.3.7.2 Static attribute content

	5.6.3.4 PPP protocol
	5.6.3.4.1 Introduction
	5.6.3.4.2 Messages
	5.6.3.4.2.1 UConnectReq
	5.6.3.4.2.2 UConnectInd
	5.6.3.4.2.3 UConnectRsp
	5.6.3.4.2.4 UConnectCnf
	5.6.3.4.2.5 UDisconnectReq
	5.6.3.4.2.6 UDisconnectInd
	5.6.3.4.2.7 UDataReq
	5.6.3.4.2.8 UDataInd
	5.6.3.4.2.9 UErrorInd
	5.6.3.4.3 Messages parameters
	5.6.3.4.3.1 NCOType
	5.6.3.4.3.2 UProtocol
	5.6.3.4.3.3 UAttributeName
	5.6.3.4.3.4 UDirection
	5.6.3.4.3.5 PPPCause
	5.6.3.4.3.6 PPPDiagnostic
	5.6.3.4.3.7 PPPNegotiation
	5.6.3.4.3.8 PPPOrigin
	5.6.3.4.4 State diagram
	5.6.3.4.5 Co-ordination function
	5.6.3.4.6 Selection criteria
	5.6.3.4.7 Specific error handling and codes
	5.6.3.4.7.1 Errors
	5.6.3.4.7.2 Causes
	5.6.3.4.8 Static attributes
	5.6.3.4.8.1 AttributeSet parameters
	5.6.3.4.8.2 Static attribute content
	5.6.3.4.9 Protocol specific NAF property information

	5.6.3.5 SDLC protocol
	5.6.3.5.1 Introduction
	5.6.3.5.2 Messages
	5.6.3.5.2.1 UConnectReq
	5.6.3.5.2.2 UConnectInd
	5.6.3.5.2.3 UConnectRsp
	5.6.3.5.2.4 UConnectCnf
	5.6.3.5.2.5 UDisconnectReq
	5.6.3.5.2.6 UDisconnectInd
	5.6.3.5.2.7 UDataReq
	5.6.3.5.2.8 UDataInd
	5.6.3.5.2.9 UExpeditedDataReq
	5.6.3.5.2.10 UExpeditedDataInd
	5.6.3.5.2.11 UReadyToReceiveReq
	5.6.3.5.2.12 UReadyToReceiveInd
	5.6.3.5.3 Messages parameters
	5.6.3.5.3.1 L2ConnectionMode
	5.6.3.5.3.2 L2FrameSize
	5.6.3.5.3.3 L2WindowSize
	5.6.3.5.3.4 L2XID
	5.6.3.5.3.5 NCOType
	5.6.3.5.3.6 ReadyFlag
	5.6.3.5.3.7 UProtocol
	5.6.3.5.3.8 UAttributeName
	5.6.3.5.3.9 UDirection
	5.6.3.5.3.10 UserData
	5.6.3.5.3.11 SDLCCause
	5.6.3.5.3.12 SDLCOrigin
	5.6.3.5.4 State diagram
	5.6.3.5.5 Co-ordination function
	5.6.3.5.6 Selection criteria
	5.6.3.5.7 Specific error handling and codes
	5.6.3.5.7.1 Invalid use of user messages
	5.6.3.5.7.2 Causes
	5.6.3.5.8 Static attributes
	5.6.3.5.8.1 AttributeSet parameters
	5.6.3.5.8.2 Static attribute content

	5.6.3.6 V.110 protocol
	5.6.3.6.1 Introduction
	5.6.3.6.2 Messages
	5.6.3.6.2.1 UConnectReq
	5.6.3.6.2.2 UConnectInd
	5.6.3.6.2.3 UConnectRsp
	5.6.3.6.2.4 UConnectCnf
	5.6.3.6.2.5 UDisconnectReq
	5.6.3.6.2.6 UDisconnectInd
	5.6.3.6.2.7 UDataReq
	5.6.3.6.2.8 UDataInd
	5.6.3.6.2.9 UReadyToReceiveReq
	5.6.3.6.2.10 UReadyToReceiveInd
	5.6.3.6.3 Messages parameters
	5.6.3.6.3.1 NCOType
	5.6.3.6.3.2 ReadyFlag
	5.6.3.6.3.3 UProtocol
	5.6.3.6.3.4 UAttributeName
	5.6.3.6.3.5 UDirection
	5.6.3.6.3.6 V.110Cause
	5.6.3.6.3.7 V.110Origin
	5.6.3.6.3.8 FlowControlMechanism
	5.6.3.6.3.9 FlowControlCharacters
	5.6.3.6.3.10 MomentNumber
	5.6.3.6.3.11 V.110BChannelDisconnection
	5.6.3.6.4 State diagram
	5.6.3.6.5 Co-ordination function
	5.6.3.6.6 Selection criteria
	5.6.3.6.7 Specific error handling and codes
	5.6.3.6.7.1 Invalid use of User Plane messages
	5.6.3.6.7.2 Causes
	5.6.3.6.8 Static attributes
	5.6.3.6.8.1 AttributeSet parameters
	5.6.3.6.8.2 Static attribute content

	5.6.4 Layer 3 protocols
	5.6.4.1 ISO 8208 protocol and ETS 300 080 protocol
	5.6.4.1.1 Introduction
	5.6.4.1.2 Description of messages
	5.6.4.1.2.1 UConnectReq
	5.6.4.1.2.2 UConnectInd
	5.6.4.1.2.3 UConnectRsp
	5.6.4.1.2.4 UConnectCnf
	5.6.4.1.2.5 UDisconnectReq
	5.6.4.1.2.6 UDisconnectInd
	5.6.4.1.2.7 UDataReq
	5.6.4.1.2.8 UDataInd
	5.6.4.1.2.9 UExpeditedDataReq
	5.6.4.1.2.10 UExpeditedDataInd
	5.6.4.1.2.11 UResetReq
	5.6.4.1.2.12 UResetInd
	5.6.4.1.2.13 UResetRsp
	5.6.4.1.2.14 UResetCnf
	5.6.4.1.2.15 UDataAcknowledgeReq
	5.6.4.1.2.16 UDataAcknowledgeInd
	5.6.4.1.2.17 UReadyToReceiveReq
	5.6.4.1.2.18 UReadyToReceiveInd
	5.6.4.1.3 Messages parameters
	5.6.4.1.3.1 Algorithm
	5.6.4.1.3.2 Bilateral closed user group (Bcug)
	5.6.4.1.3.3 Bit_DQM
	5.6.4.1.3.4 CalledDTEAddress
	5.6.4.1.3.5 CalledDTEAddressExt
	5.6.4.1.3.6 CallingDTEAddress
	5.6.4.1.3.7 CallingDTEAddressExt
	5.6.4.1.3.8 ExpeditedData
	5.6.4.1.3.9 FacilityData
	5.6.4.1.3.10 FastSelect
	5.6.4.1.3.11 GroupID
	5.6.4.1.3.12 L2ConnectionMode
	5.6.4.1.3.13 L2FrameSize
	5.6.4.1.3.14 L2WindowSize
	5.6.4.1.3.15 L2XID
	5.6.4.1.3.16 L3ConnectionMode
	5.6.4.1.3.17 L3IncomingVCCount
	5.6.4.1.3.18 L3OutgoingVCCount
	5.6.4.1.3.19 L3TwoWayVCCount
	5.6.4.1.3.20 NCOType
	5.6.4.1.3.21 PacketSize
	5.6.4.1.3.22 QOSParameters
	5.6.4.1.3.23 ReadyFlag
	5.6.4.1.3.24 ReceiptConfirm
	5.6.4.1.3.25 RespondingDTEAddress
	5.6.4.1.3.26 RespondingDTEAddressExt
	5.6.4.1.3.27 TEI
	5.6.4.1.3.28 UProtocol
	5.6.4.1.3.29 UAttributeName
	5.6.4.1.3.30 UDirection
	5.6.4.1.3.31 UserData
	5.6.4.1.3.32 WindowSize
	5.6.4.1.3.33 X213Cause
	5.6.4.1.3.34 X213Origin
	5.6.4.1.3.35 X25Cause
	5.6.4.1.3.36 X25Diagnostic
	5.6.4.1.4 State diagram
	5.6.4.1.5 Co-ordination function
	5.6.4.1.6 Selection criteria
	5.6.4.1.6.1 NCO Selection
	5.6.4.1.6.1.1 Packet size negotiation
	5.6.4.1.6.1.2 Window size negotiation
	5.6.4.1.6.1.3 Effective packet size and window size negotiation
	5.6.4.1.6.2 Action if no NCO available
	5.6.4.1.7 Specific error handling and codes
	5.6.4.1.7.1 Invalid use of User Plane messages
	5.6.4.1.7.2 Other errors
	5.6.4.1.7.3 Causes
	5.6.4.1.8 AttributeSet
	5.6.4.1.8.1 AttributeSet parameters
	5.6.4.1.8.2 Static attribute content

	5.6.4.2 T.70NL protocol
	5.6.4.2.1 Introduction
	5.6.4.2.2 Messages
	5.6.4.2.2.1 UDataReq
	5.6.4.2.2.2 UDataInd
	5.6.4.2.3 Messages parameters
	5.6.4.2.3.1 Bit_DQM
	5.6.4.2.3.2 NCOType
	5.6.4.2.3.3 PacketSize
	5.6.4.2.3.4 UProtocol
	5.6.4.2.3.5 UAttributeName
	5.6.4.2.3.6 UDirection
	5.6.4.2.4 State diagram
	5.6.4.2.5 Co-ordination function
	5.6.4.2.6 Selection criteria
	5.6.4.2.7 Specific error handling and codes
	5.6.4.2.8 Static attributes
	5.6.4.2.8.1 AttributeSet parameters
	5.6.4.2.8.2 Static attribute content

	5.6.5 V.120 Protocol
	5.6.5.1 Introduction
	5.6.5.2 Messages
	5.6.5.2.1 UDataReq
	5.6.5.2.2 UDataInd
	5.6.5.2.3 UReadyToReceiveReq
	5.6.5.2.4 UReadyToReceiveInd
	5.6.5.2.5 UErrorInd

	5.6.5.3 Messages parameters
	5.6.5.3.1 NCOType
	5.6.5.3.2 ReadyFlag
	5.6.5.3.3 UProtocol
	5.6.5.3.4 UAttributeName
	5.6.5.3.5 UDirection
	5.6.5.3.6 Cause
	5.6.5.3.7 LowerLayerReference
	5.6.5.3.8 BlockType
	5.6.5.3.9 V120FunctionMode

	5.6.5.4 State diagram
	5.6.5.5 Co-ordination function
	5.6.5.6 Selection criteria
	5.6.5.7 Specific error handling
	5.6.5.8 Static attributes
	5.6.5.8.1 AttributeSet parameters
	5.6.5.8.2 Static attribute content

	5.6.5.9 Protocol specific NAF property information
	5.6.5.10 Impact on the Control Plane

	5.6.6 T.30 protocol
	5.6.6.1 Overview of T 30 messages
	5.6.6.2 Sequencing of User Plane messages
	5.6.6.3 Detail of T.30 protocol messages
	5.6.6.3.1 UConnectReq
	5.6.6.3.2 UConnectInd
	5.6.6.3.3 UConnectRsp
	5.6.6.3.4 UConnectCnf
	5.6.6.3.5 UDisconnectReq
	5.6.6.3.6 UDisconnectInd
	5.6.6.3.7 UDataReq
	5.6.6.3.8 UDataInd
	5.6.6.3.9 UDataAcknowledgeReq
	5.6.6.3.10 UDataAcknowledgeInd
	5.6.6.3.11 UReadyToReceiveReq
	5.6.6.3.12 UReadyToReceiveInd
	5.6.6.3.13 UInformationInd
	5.6.6.3.14 URegisterMailBoxReq
	5.6.6.3.15 URegisterMailBoxCnf
	5.6.6.3.16 UDestroyMailBoxReq
	5.6.6.3.17 UDestroyMailBoxCnf
	5.6.6.3.18 ULocalPollingInd
	5.6.6.3.19 ULocalPollingRsp
	5.6.6.3.20 URemotePollingReq
	5.6.6.3.21 URemotePollingInd
	5.6.6.3.22 USwitchToVoiceModeReq
	5.6.6.3.23 USwitchToVoiceModeCnf
	5.6.6.3.24 USwitchToVoiceModeInd
	5.6.6.3.25 USwitchToVoiceModeRsp

	5.6.6.4 Message parameters
	5.6.6.4.1 CalledDTEAddress
	5.6.6.4.2 NCOType
	5.6.6.4.3 DataBlock
	5.6.6.4.4 DataDescription
	5.6.6.4.5 MailBoxMnemonic
	5.6.6.4.6 MailBoxNumber
	5.6.6.4.7 MailBoxType
	5.6.6.4.8 NegociatedCharacteristic
	5.6.6.4.9 OctetInverted
	5.6.6.4.10 PageAcknowledgement
	5.6.6.4.11 Password
	5.6.6.4.12 PollingNumber
	5.6.6.4.13 PollingFlag
	5.6.6.4.14 ReceivePageQuality
	5.6.6.4.15 RemoteDesignation
	5.6.6.4.16 SwitchFlag
	5.6.6.4.17 T30Cause
	5.6.6.4.18 T30Characteristics
	5.6.6.4.19 UseOfStrips

	5.7 Message parameters
	5.7.1 AdditionInformation
	5.7.2 Algorithm
	5.7.3 BearerCap
	5.7.4 CalledNumber
	5.7.5 CalledSubaddress
	5.7.6 CallingNumber
	5.7.7 CallingSubaddress
	5.7.8 CAttributeName
	5.7.9 CauseToNAF
	5.7.10 CauseToPUF
	5.7.11 CDirection
	5.7.12 ChannelIdentification
	5.7.13 ChargingInfo
	5.7.14 CompletionStatus
	5.7.15 CongestionLevel
	5.7.16 ConnectedNumber
	5.7.17 ConnectedSubaddress
	5.7.18 ControllerID
	5.7.19 CPMessageMask
	5.7.20 CPParameterMask
	5.7.21 DateTime
	5.7.22 Display
	5.7.23 DtmfDigits
	5.7.24 DtmfGapDuration
	5.7.25 DtmfOperation
	5.7.26 DtmfResult
	5.7.27 DtmfToneDuration
	5.7.28 ExtEquipAvailability
	5.7.29 ExtEquipBlockDialling
	5.7.30 ExtEquipKeyPressed
	5.7.31 ExtEquipName
	5.7.32 Facility
	5.7.33 GroupID
	5.7.34 High Layer Compatibility (HLC)
	5.7.35 Key
	5.7.36 Keypad
	5.7.37 Low Layer Compatibility
	5.7.38 ManufacturerCode
	5.7.39 NCOID
	5.7.40 NCOType
	5.7.41 NotificationIndicator
	5.7.42 NumberComplete
	5.7.43 ProgressIndicator
	5.7.44 RequestID
	5.7.45 SelectorID
	5.7.46 Signal
	5.7.47 SuspendID
	5.7.48 TEI
	5.7.49 UProtocol
	5.7.50 UAttributeName
	5.7.51 UDirection
	5.7.52 UserToUserInfo
	5.7.53 V42BisCompression
	5.7.54 AttributeSet Parameters
	5.7.55 Administration AttributeSet parameters
	5.7.56 AddressSet parameter

	5.8 Selection criteria
	5.8.1 NCO Selection
	5.8.1.1 Control Plane information elements

	5.8.2 Action if no NCO available
	5.8.2.1 Control Plane incoming call
	5.8.2.2 User Plane incoming call

	5.9 Error checking and codes
	5.9.1 Administration Plane
	5.9.2 Control Plane
	5.9.2.1 Invalid state for message
	5.9.2.2 Mandatory parameters
	5.9.2.3 Optional Parameter Content Error

	5.9.3 Errors in facility requests
	5.9.4 User Plane
	5.9.5 Function return codes
	5.9.6 Administration Plane return code
	5.9.7 Control Plane causes
	5.9.8 User Plane causes

	5.10 Security
	5.10.1 General aspects of security in ISDN
	5.10.2 Security in Profile A
	5.10.3 Increasing security in Profile A

	6 Profile B
	6.1 Reader guidance
	6.2 Message overview
	6.2.1 General message protocol
	6.2.2 Type definitions
	6.2.3 Message structure
	6.2.4 Manufacturer specific expansion
	6.2.5 Table of messages

	6.3 Exchange mechanism
	6.3.1 Message queues
	6.3.2 Operations on message queues
	6.3.2.1 Registering an application
	6.3.2.2 Messages from application to Profile B
	6.3.2.3 Messages from Profile B to application
	6.3.2.4 Releasing an application
	6.3.2.5 Other operations
	6.3.2.6 Manufacturer specific expansion

	6.3.3 Table of operations

	6.4 Administration Plane
	6.5 Control Plane
	6.6 User Plane
	6.7 Message descriptions
	6.7.1 ALERT_REQ
	6.7.2 ALERT_CONF
	6.7.3 CONNECT_REQ
	6.7.4 CONNECT_CONF
	6.7.5 CONNECT_IND
	6.7.6 CONNECT_RESP
	6.7.7 CONNECT_ACTIVE_IND
	6.7.8 CONNECT_ACTIVE_RESP
	6.7.9 CONNECT_B3_ACTIVE_IND
	6.7.10 CONNECT_B3_ACTIVE_RESP
	6.7.11 CONNECT_B3_REQ
	6.7.12 CONNECT_B3_CONF
	6.7.13 CONNECT_B3_IND
	6.7.14 CONNECT_B3_RESP
	6.7.15 CONNECT_B3_T90_ACTIVE_IND
	6.7.16 CONNECT_B3_T90_ACTIVE_RESP
	6.7.17 DATA_B3_REQ
	6.7.18 DATA_B3_CONF
	6.7.19 DATA_B3_IND
	6.7.20 DATA_B3_RESP
	6.7.21 DISCONNECT_B3_REQ
	6.7.22 DISCONNECT_B3_CONF
	6.7.23 DISCONNECT_B3_IND
	6.7.24 DISCONNECT_B3_RESP
	6.7.25 DISCONNECT_REQ
	6.7.26 DISCONNECT_CONF
	6.7.27 DISCONNECT_IND
	6.7.28 DISCONNECT_RESP
	6.7.29 FACILITY_REQ
	6.7.30 FACILITY_CONF
	6.7.31 FACILITY_IND
	6.7.32 FACILITY_RESP
	6.7.33 INFO_REQ
	6.7.34 INFO_CONF
	6.7.35 INFO_IND
	6.7.36 INFO_RESP
	6.7.37 LISTEN_REQ
	6.7.38 LISTEN_CONF
	6.7.39 MANUFACTURER_REQ
	6.7.40 MANUFACTURER_CONF
	6.7.41 MANUFACTURER_IND
	6.7.42 MANUFACTURER_RESP
	6.7.43 RESET_B3_REQ
	6.7.44 RESET_B3_CONF
	6.7.45 RESET_B3_IND
	6.7.46 RESET_B3_RESP
	6.7.47 SELECT_B_PROTOCOL_REQ
	6.7.48 SELECT_B_PROTOCOL_CONF

	6.8 Parameter descriptions
	6.8.1 Additional Info
	6.8.2 B-channel Information
	6.8.3 B Protocol
	6.8.4 B1 Protocol
	6.8.5 B2 Protocol
	6.8.6 B3 Protocol
	6.8.7 B1 Configuration
	6.8.8 B2 Configuration
	6.8.9 B3 Configuration
	6.8.10 BC
	6.8.11 Called Party Number
	6.8.12 Called Party Subaddress
	6.8.13 Calling Party Number
	6.8.14 Calling Party Subaddress
	6.8.15 CIP Value
	6.8.16 CIP mask
	6.8.17 Connected Number
	6.8.18 Connected Subaddress
	6.8.19 Controller
	6.8.20 Data
	6.8.21 Data Length
	6.8.22 Data Handle
	6.8.23 Facility Selector
	6.8.24 Facility Request Parameter
	6.8.25 Facility Confirmation Parameter
	6.8.26 Facility Indication Parameter
	6.8.27 Facility Response Parameter
	6.8.28 Flags
	6.8.29 HLC
	6.8.30 Info
	6.8.31 Info Element
	6.8.32 Info Mask
	6.8.33 Info Number
	6.8.34 LLC
	6.8.35 Manu ID
	6.8.36 Manufacturer Specific
	6.8.37 NCCI
	6.8.38 NCPI
	6.8.39 PLCI
	6.8.40 Reason
	6.8.41 Reason_B3
	6.8.42 Reject

	6.9 State diagram
	6.9.1 User"s guide
	6.9.2 Explanation

	7 Operating system description
	7.1 DOS
	7.1.1 DOS Operation System specific implementation for Profile A
	7.1.1.1 Introduction
	7.1.1.2 Mapping of generic types and constants
	7.1.1.3 Description of functions
	7.1.1.3.1 PciGetHandles
	7.1.1.3.2 PciGetProperty
	7.1.1.3.3 PciRegister
	7.1.1.3.4 PciDeregister
	7.1.1.3.5 PciPutMessage
	7.1.1.3.6 PciSetSignal

	7.1.1.4 Availability of NAF"s PCI_HANDLE
	7.1.1.4.1 Declaration action
	7.1.1.4.2 Extraction action

	7.1.2 MS-DOS for Profile B
	7.1.2.1 Message operations
	7.1.2.1.1 CAPI_REGISTER
	7.1.2.1.2 CAPI_RELEASE
	7.1.2.1.3 CAPI_PUT_MESSAGE
	7.1.2.1.4 CAPI_GET_MESSAGE

	7.1.2.2 Other functions
	7.1.2.2.1 CAPI_SET_SIGNAL
	7.1.2.2.2 CAPI_GET_MANUFACTURER
	7.1.2.2.3 CAPI_GET_VERSION
	7.1.2.2.4 CAPI_GET_SERIAL_NUMBER
	7.1.2.2.5 CAPI_GET_PROFILE
	7.1.2.2.6 CAPI_MANUFACTURER

	7.2 Windows version 3.x
	7.2.1 Windows operating system specific implementation for Profile A
	7.2.1.1 Introduction
	7.2.1.2 Implementation of basic type
	7.2.1.3 C structures and function prototypes
	7.2.1.4 Description of functions
	7.2.1.4.1 PciGetHandles
	7.2.1.4.2 PciGetProperty
	7.2.1.4.3 PciRegister
	7.2.1.4.4 PciDeregister
	7.2.1.4.5 PciPutMessage
	7.2.1.4.6 PciGetMessage
	7.2.1.4.7 PciSetSignal
	7.2.1.4.7.1 Signal mechanism procedure
	7.2.1.4.7.2 User message mechanism procedure
	7.2.1.4.7.3 Deactivation mechanism

	7.2.1.5 Availability of NAF"s PCI_HANDLE
	7.2.1.5.1 Declaration action
	7.2.1.5.2 Extraction action

	7.2.2 Windows (application level) for Profile B
	7.2.2.1 Message operations
	7.2.2.1.1 CAPI_REGISTER
	7.2.2.1.2 CAPI_RELEASE
	7.2.2.1.3 CAPI_PUT_MESSAGE
	7.2.2.1.4 CAPI_GET_MESSAGE

	7.2.2.2 Other functions
	7.2.2.2.1 CAPI_ SET_SIGNAL
	7.2.2.2.2 CAPI_GET_MANUFACTURER
	7.2.2.2.3 CAPI_GET_VERSION
	7.2.2.2.4 CAPI_GET_SERIAL_NUMBER
	7.2.2.2.5 CAPI_GET_PROFILE
	7.2.2.2.6 CAPI_INSTALLED

	7.3 UNIX
	7.3.1 UNIX Operating System specific implementation for Profile A
	7.3.1.1 Introduction
	7.3.1.2 Implementation of basic types
	7.3.1.3 Parameter passing conventions
	7.3.1.4 Definition of types, constants and function-prototypes
	7.3.1.5 Adaptation to the STREAMS kernel mechanism
	7.3.1.5.1 General
	7.3.1.5.2 Communication between PUF exchange functions and NAF stream driver
	7.3.1.5.3 Special considerations

	7.3.1.6 Description of functions
	7.3.1.6.1 PciGetHandles
	7.3.1.6.2 PciGetProperty
	7.3.1.6.3 PciRegister
	7.3.1.6.4 PciDeregister
	7.3.1.6.5 PciPutMessage
	7.3.1.6.6 PciGetMessage
	7.3.1.6.7 PciSetSignal

	7.3.1.7 Availability of NAF"s PCI_HANDLE
	7.3.1.7.1 Declaration action
	7.3.1.7.2 Extraction action

	7.3.2 UNIX for Profile B
	7.3.2.1 Message operations
	7.3.2.1.1 CAPI_REGISTER
	7.3.2.1.2 CAPI_RELEASE
	7.3.2.1.3 CAPI_PUT_MESSAGE
	7.3.2.1.4 CAPI_GET_MESSAGE

	7.3.2.2 Other functions
	7.3.2.2.1 CAPI_GET_MESSAGE
	7.3.2.2.2 CAPI_GET_VERSION
	7.3.2.2.3 CAPI_GET_SERIAL_NUMBER
	7.3.2.2.4 CAPI_GET_PROFILE

	7.4 OS/2
	7.4.1 OS/2 Operation System specific implementation for Profile A
	7.4.1.1 Introduction
	7.4.1.2 OS/2 application level
	7.4.1.2.1 Mechanism
	7.4.1.2.2 Implementation of basic type
	7.4.1.2.3 C Function prototypes
	7.4.1.2.4 Description of functions
	7.4.1.2.4.1 PciGetHandles
	7.4.1.2.4.2 PciGetProperty
	7.4.1.2.4.3 PciRegister
	7.4.1.2.4.4 PciDeregister
	7.4.1.2.4.5 PciPutMessage
	7.4.1.2.4.6 PciGetMessage
	7.4.1.2.4.7 PciSetSignal

	7.4.1.3 OS/2 device driver level
	7.4.1.3.1 Mechanism
	7.4.1.3.2 Implementation of basic types
	7.4.1.3.3 Description of functions
	7.4.1.3.3.1 PciGetHandles
	7.4.1.3.3.2 PciGetProperty
	7.4.1.3.3.3 PciRegister7
	7.4.1.3.3.4 PciDeregister
	7.4.1.3.3.5 PciPutMessage
	7.4.1.3.3.6 PciGetMessage
	7.4.1.3.3.7 PciSetSignal

	7.4.1.4 NAF availability
	7.4.1.4.1 Declaration action
	7.4.1.4.2 Extraction action

	7.4.2 OS/2 for Profile B
	7.4.2.1 OS/2 (application level)
	7.4.2.1.1 Message operations
	7.4.2.1.1.1 CAPI_REGISTER
	7.4.2.1.1.2 CAPI_RELEASE
	7.4.2.1.1.3 CAPI_PUT_MESSAGE
	7.4.2.1.1.4 CAPI_GET_MESSAGE
	7.4.2.1.2 Other functions
	7.4.2.1.2.1 CAPI_SET_SIGNAL
	7.4.2.1.2.2 CAPI_GET_MANUFACTURER
	7.4.2.1.2.3 CAPI_GET_MANUFACTURER
	7.4.2.1.2.4 CAPI_GET_SERIAL_NUMBER
	7.4.2.1.2.5 CAPI_GET_PROFILE
	7.4.2.1.2.6 CAPI_INSTALLED

	7.4.2.2 OS/2 (device driver level)
	7.4.2.2.1 Message operations
	7.4.2.2.1.1 CAPI_REGISTER
	7.4.2.2.1.2 CAPI_RELEASE
	7.4.2.2.1.3 CAPI_PUT_MESSAGE
	7.4.2.2.1.4 CAPI_GET_MESSAGE
	7.4.2.2.2 Other functions
	7.4.2.2.2.1 CAPI_SET_SIGNAL
	7.4.2.2.2.2 CAPI_GET_MANUFACTURER
	7.4.2.2.2.3 CAPI_GET_VERSION
	7.4.2.2.2.4 CAPI_GET_SERIAL_NUMBER
	7.4.2.2.2.5 CAPI_GET_PROFILE

	7.5 Novell NetWare
	7.5.1 NetWare Operation System specific implementation for Profile A
	7.5.1.1 Introduction
	7.5.1.2 Mapping of generic types and constants
	7.5.1.3 Description of functions
	7.5.1.3.1 PciGetHandles
	7.5.1.3.2 PciGetProperty
	7.5.1.3.3 PciRegister
	7.5.1.3.4 PciDeregister
	7.5.1.3.5 PciPutMessage
	7.5.1.3.6 PciGetMessage
	7.5.1.3.7 PciSetSignal
	7.5.1.3.7.1 Local semaphore mechanism
	7.5.1.3.7.2 Callback function mechanism
	7.5.1.3.7.3 De-activation mechanism

	7.5.1.4 Availability of NAFs
	7.5.1.4.1 Declaration action
	7.5.1.4.2 Extraction action

	7.5.2 NetWare for Profile B
	7.5.2.1 Message operations
	7.5.2.1.1 CAPI_Register
	7.5.2.1.2 CAPI_ReceiveNotify
	7.5.2.1.3 CAPI_Release
	7.5.2.1.4 CAPI_PutMessage

	7.5.2.2 Other functions
	7.5.2.2.1 CAPI_GetManufacturer
	7.5.2.2.2 CAPI_GetVersion
	7.5.2.2.3 CAPI_GetSerialNumber
	7.5.2.2.4 CAPI_GetProfile

	7.6 Windows/NT
	7.6.1 Windows NT operation system specific implementation for Profile A
	7.6.1.1 Introduction
	7.6.1.1.1 DLL version
	7.6.1.1.2 Device driver version
	7.6.1.1.3 Driver access method from user mode
	7.6.1.1.4 Driver access method from kernel mode

	7.6.1.2 PCI device driver call specification
	7.6.1.2.1 DeviceIoControl parameters
	7.6.1.2.1.1 PCI parameters mapping

	7.6.1.3 Functions description
	7.6.1.3.1 PciGetHandles
	7.6.1.3.1.1 DLL version
	7.6.1.3.1.2 Device driver version
	7.6.1.3.2 PciGetProperty
	7.6.1.3.2.1 DLL version
	7.6.1.3.2.2 Device driver version
	7.6.1.3.3 PciRegister
	7.6.1.3.3.1 DLL version
	7.6.1.3.3.2 Device driver version
	7.6.1.3.4 PciDeregister
	7.6.1.3.4.1 DLL version
	7.6.1.3.4.2 Device driver version
	7.6.1.3.5 PciPutMessage
	7.6.1.3.5.1 DLL version
	7.6.1.3.5.2 Device driver version
	7.6.1.3.6 PciGetMessage
	7.6.1.3.6.1 DLL version
	7.6.1.3.6.2 Device driver version
	7.6.1.3.7 PciSetSignal
	7.6.1.3.7.1 DLL version
	7.6.1.3.7.2 Device driver version
	7.6.1.3.7.3 Signal mechanism
	7.6.1.3.7.3.1 DLL version
	7.6.1.3.7.3.2 Device driver version
	7.6.1.3.7.4 Callback function mechanism
	7.6.1.3.7.4.1 DLL version
	7.6.1.3.7.4.2 Device driver version
	7.6.1.3.7.5 De-activation mechanism
	7.6.1.3.7.5.1 DLL version
	7.6.1.3.7.5.2 Device driver version

	7.6.1.4 Availability of NAF"s PCI_HANDLE

	7.6.2 Windows NT for Profile B
	7.6.2.1 Windows NT (application level)
	7.6.2.1.1 Message operations
	7.6.2.1.1.1 CAPI_REGISTER
	7.6.2.1.1.2 CAPI_RELEASE
	7.6.2.1.1.3 CAPI_PUT_MESSAGE
	7.6.2.1.1.4 CAPI_GET_MESSAGE
	7.6.2.1.2 Other functions
	7.6.2.1.2.1 CAPI_WAIT_FOR_SIGNAL
	7.6.2.1.2.2 CAPI_GET_MANUFACTURER
	7.6.2.1.2.3 CAPI_GET_VERSION
	7.6.2.1.2.4 CAPI_GET_SERIAL_NUMBER
	7.6.2.1.2.5 CAPI_GET_PROFILE
	7.6.2.1.2.6 CAPI_INSTALLED

	7.6.2.2 Windows NT (device driver level)
	7.6.2.2.1 Message operations
	7.6.2.2.1.1 CAPI_REGISTER
	7.6.2.2.1.2 CAPI_RELEASE
	7.6.2.2.1.3 CAPI_PUT_MESSAGE
	7.6.2.2.1.4 CAPI_GET_MESSAGE
	7.6.2.2.1.5 CAPI_SET_SIGNAL
	7.6.2.2.2 Other functions
	7.6.2.2.2.1 CAPI_GET_MANUFACTURER
	7.6.2.2.2.2 CAPI_GET_VERSION
	7.6.2.2.2.3 CAPI_GET_SERIAL_NUMBER
	7.6.2.2.2.4 CAPI_GET_PROFILE

	7.7 Windows 95
	7.7.1 Windows 95 specific implementation for Profile A
	7.7.1.1 Windows 95 Operating System specific implementation for Profile A
	7.7.1.1.1 Introduction
	7.7.1.1.2 Description of the PCI DLL (16 bits)
	7.7.1.1.3 Description of the PCI DLL (32 bits)
	7.7.1.1.4 Description of the VxD
	7.7.1.1.4.1 Virtual Device API
	7.7.1.1.4.2 Device IOCTL interface
	7.7.1.1.4.3 Virtual Device Services
	7.7.1.1.4.3.1 VPCID_GetVersion service
	7.7.1.1.4.3.2 VPCID_MessageOperations service

	7.7.1.2 Implementation of basic type
	7.7.1.3 C Function prototypes
	7.7.1.4 Description of functions
	7.7.1.4.1 PciGetHandles
	7.7.1.4.1.1 16 bits PUF
	7.7.1.4.1.2 32 bits PUF
	7.7.1.4.1.3 VxD
	7.7.1.4.2 PciGetProperty
	7.7.1.4.2.1 16 bits PUF
	7.7.1.4.2.2 32 bits PUF
	7.7.1.4.2.3 VxD
	7.7.1.4.3 PciRegister
	7.7.1.4.3.1 16 bits PUF
	7.7.1.4.3.2 32 bits PUF
	7.7.1.4.3.3 VxD
	7.7.1.4.4 PciDeregister
	7.7.1.4.4.1 16 bits PUF
	7.7.1.4.4.2 32 bits PUF
	7.7.1.4.4.3 VxD
	7.7.1.4.5 PciPutMessage
	7.7.1.4.5.1 16 bits PUF
	7.7.1.4.5.2 32 bits PUF
	7.7.1.4.5.3 VxD
	7.7.1.4.6 PciGetMessage
	7.7.1.4.6.1 16 bits PUF
	7.7.1.4.6.2 32 bits PUF
	7.7.1.4.6.3 VxD
	7.7.1.4.7 PciSetSignal
	7.7.1.4.7.1 Signal mechanism
	7.7.1.4.7.1.1 16 bits PUF
	7.7.1.4.7.1.2 32 bits PUF
	7.7.1.4.7.1.3 VxD PUF
	7.7.1.4.7.2 De activation mechanism

	7.7.1.5 Availability of NAF"s PCI_HANDLE
	7.7.1.5.1 Declaration action
	7.7.1.5.2 Extraction action

	7.7.2 Windows 95 for Profile B
	7.7.2.1 Windows 95 (application level)
	7.7.2.2 Windows 95 (ODL)
	7.7.2.2.1 Message operations
	7.7.2.2.1.1 CAPI_REGISTER
	7.7.2.2.1.2 CAPI_RELEASE
	7.7.2.2.1.3 CAPI_PUT_MESSAGE
	7.7.2.2.1.4 CAPI_GET_MESSAGE
	7.7.2.2.2 Other functions
	7.7.2.2.2.1 CAPI_SET_SIGNAL
	7.7.2.2.2.2 CAPI_GET_MANUFACTURER
	7.7.2.2.2.3 CAPI_GET_VERSION
	7.7.2.2.2.4 CAPI_GET_SERIAL_NUMBER
	7.7.2.2.2.5 CAPI_GET_PROFILE
	7.7.2.2.2.6 CAPI_MANUFACTURER

	7.7.2.3 Windows 95 (DeviceIoControl)
	7.7.2.3.1 Message operations
	7.7.2.3.1.1 CAPI_REGISTER
	7.7.2.3.1.2 CAPI_RELEASE
	7.7.2.3.1.3 CAPI_PUT_MESSAGE
	7.7.2.3.1.4 CAPI_GET_MESSAGE
	7.7.2.3.1.5 CAPI_SET_SIGNAL
	7.7.2.3.2 Other functions
	7.7.2.3.2.1 CAPI_GET_MANUFACTURER
	7.7.2.3.2.2 CAPI_GET_VERSION
	7.7.2.3.2.3 CAPI_GET_SERIAL_NUMBER
	7.7.2.3.2.4 CAPI_GET_PROFILE

	Annex A (normative): Mapping between Profile A messages and parameters and the ISDN
	A.1 Control Plane messages
	A.2 Control Plane parameters

	Annex B (normative): Telephony defined in the Profile A
	B.1 Type 1 external equipment
	B.2 Type 2 external equipment
	B.3 Type 3 external equipment
	B.4 Type 4 external equipment
	B.5 Type 5 external equipment

	Annex C (normative): X.25 usage in the Profile A
	C.1 Parameter values for ITU-T Recommendation X.25 use
	C.2 Disconnection of ISDN channel with established X.25 Connections

	Annex D (informative): Profile A NAF development guidelines
	D.1 NAF SDL diagrams
	D.1.1 NAF SDL diagrams: conventions
	D.1.2 NAF SDL diagrams for Control Plane
	D.1.3 Configuration and NAF SDL diagrams for layer one protocols
	D.1.3.1 Configuration
	D.1.3.1.1 Transparent B-channel access

	D.1.4 Configuration and NAF SDL diagrams for layer two protocols
	D.1.4.1 Configuration
	D.1.4.1.1 ISO 7776 protocol
	D.1.4.1.2 PPP protocol
	D.1.4.1.3 SDLC protocol
	D.1.4.1.4 V.110 protocol

	D.1.4.2 NAF flow diagrams
	D.1.4.2.1 ISO 7776 protocol
	D.1.4.2.2 HDLC protocol
	D.1.4.2.3 HDLC protocol with error
	D.1.4.2.4 PPP protocol
	D.1.4.2.5 SDLC protocol
	D.1.4.2.6 V.110 protocol

	D.1.5 Configuration and NAF SDL Diagrams for layer three protocols
	D.1.5.1 Configuration
	D.1.5.1.1 T.90 protocol
	D.1.5.1.2 ISO 8208 protocol
	D.1.5.1.3 T.70 protocol

	D.1.5.2 NAF SDL diagrams
	D.1.5.2.1 T.90 protocol
	D.1.5.2.2 ISO 8208 protocol

	D.2 Information provided by the NAF
	D.3 Suspending/resuming calls
	D.4 Error management
	D.4.1 Function return codes
	D.4.2 Administration Plane
	D.4.3 Control Plane

	D.5 NAF configuration
	D.5.1 Global configuration
	D.5.2 System configuration parameters
	D.5.3 Control Plane configuration

	D.6 Buffer management
	D.7 NAF development user consideration
	D.7.1 User Plane error management
	D.7.2 NAF configuration
	D.7.3 Co-ordination function - outgoing User Plane call
	D.7.4 Co-ordination function - incoming ISDN call

	D.8 User protocols key information

	Annex E (normative): Profile A implementation description proforma
	E.1 Introduction
	E.2 Profile A implementation description cover page
	E.2.1 Identification of the Profile A implementation description
	E.2.2 Identification of implementation
	E.2.3 Identification of the system supplier
	E.2.4 Global statement of conformance

	E.3 Instructions for completing the Profile A implementation description
	E.4 Exchange mechanism
	E.5 Administration Plane
	E.6 Control Plane
	E.7 User Plane
	E.8 User Plane protocols
	E.9 Miscellaneous features

	Annex F (normative): Static attribute content for the Control Plane
	F.1 Generic circuit bearer service
	F.1.1 Speech
	F.1.2 Unrestricted digital information
	F.1.3 Restricted digital information
	F.1.4 3,1 kHz audio information transfer
	F.1.5 Packet mode bearer service
	F.1.6 Teleservices

	Annex G (informative): Operating System implementation coding samples for Profile A
	G.1 DOS Operating System implementation coding samples
	G.2 WINDOWS Operating System implementation coding samples
	G.3 UNIX Operating System implementation coding samples
	G.4 OS/2 Operating System implementation coding samples
	G.4.1 Sample OS/2 application level implementation coding
	G.4.2 Sample OS/2 device driver level implementation coding

	G.5 Sample Windows NT implementation coding samples
	G.5.1 User mode PUF/User mode NAF
	G.5.2 User mode PUF/Kernel mode NAF

	G.6 NetWare implementation coding samples
	G.6.1 Exchange mechanism functions
	G.6.2 NAF declaration and extraction functions

	G.7 Windows 95 Operating System implementation coding samples
	G.7.1 16 bits PUF
	G.7.2 32 bits PUF
	G.7.3 VxD PUF

	Annex H (informative): TLV coder/decoder sample
	Annex J (informative): Sample flow chart diagrams of Profile B
	J.1 Outgoing call
	J.2 Incoming call
	J.3 Transmitting data
	J.4 Receiving data
	J.5 Active disconnect
	J.6 Passive disconnect
	J.7 Disconnect collision
	J.8 X.25 D-channel

	Annex K (normative): SFF format (Profile B)
	K.1 Introduction
	K.2 SFF coding rules
	K.2.1 Document header
	K.2.2 Page header
	K.2.3 Page data

	Annex L (informative): Protocols supported by Profile B
	Annex M (informative): Development guidelines for Profile B
	M.1 SDL diagrams
	M.1.1 SDL diagrams: conventions
	M.1.2 SDL diagrams for Control Plane
	M.1.3 SDL diagrams for User Plane

	Annex N (informative): Profile B Implementation description proforma
	N.1 Introduction
	N.2 How to read the following tables
	N.3 Exchange mechanism
	N.4 Administration Plane
	N.5 Control Plane
	N.6 User Plane
	N.7 User Plane protocols
	N.7.1 User Plane B1 protocols
	N.7.2 User Plane B2 protocols
	N.7.3 User Plane B3 protocols

	Annex P (informative): Index of Profile B related topics
	Annex Q (informative): Bibliography
	History

