FINAL DRAFT

European
 ELECOMMUNICATION
 StandARD

Key words: DVB, digital, video, broadcasting, terrestrial, MPEG, TV, audio, data, service, radio

ETSI

European Telecommunications Standards Institute
ETSI Secretariat
Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE

Tel.: +33492944200-Fax: +33493654716

[^0]
Page 2

Final draft prETS 300 744: November 1996

Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page.

Contents

Foreword 5
1 Scope 7
2 Normative references 7
3 Symbols, abbreviations and definition 8
3.1 Symbols 8
3.2 Abbreviations 9
3.3 Definition 9
4 Baseline system 10
4.1 General considerations 10
$4.2 \quad$ Interfacing 11
4.3 Channel coding and modulation 11
4.3.1 Transport multiplex adaptation and randomization for energy dispersal 11
4.3.2 Outer coding and outer interleaving 12
4.3.3 Inner coding 14
4.3.4 Inner interleaving 15
4.3.4.1 Bit-wise interleaving 15
4.3.4.2 Symbol interleaver 19
4.3.5 Signal constellations and mapping 21
4.4 OFDM frame structure 25
4.5 Reference signals 27
4.5.1 Functions and derivation 27
4.5.2 Definition of reference sequence 27
4.5.3 Location of scattered pilot cells 28
4.5.4 Location of continual pilot carriers 28
4.5.5 Amplitudes of all reference information 29
4.6 Transmission Parameter Signalling (TPS) 29
4.6.1 Scope of the TPS 30
4.6.2 TPS transmission format 31
4.6.2.1 Initialisation 31
4.6.2.2 Synchronisation 31
4.6.2.3 TPS length indicator 32
4.6.2.4 Frame number 32
4.6.2.5 Constellation 32
4.6.2.6 Hierarchy information. 32
4.6.2.7 Code rates 33
4.6.2.8 Guard Intervals 33
4.6.2.9 Transmission mode 33
4.6.2.10 Error protection of TPS. 33
4.6.3 TPS modulation 34
4.7 Number of RS-packets per OFDM super-frame 34
4.8 Spectrum characteristics and spectrum mask. 35
4.8.1 Spectrum characteristics 35
4.8.2 Out-of-band spectrum mask 36
4.8.3 Centre frequency of RF signal. 39
Annex A (normative): Simulated system performance 40
Annex B (informative): Definition of P_{1} and F_{1} 43
Annex C (informative): Interleaving example 45
History 46

Final draft prETS 300 744: November 1996
Blank page

Foreword

This final draft European Telecommunication Standard (ETS) has been produced by the Joint Technical Committee (JTC) of the European Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European Telecommunications Standards Institute (ETSI), and is now submitted for the Voting phase of the ETSI standards approval procedure.

NOTE: The JTC was established in 1990 to co-ordinate the drafting of ETSs in the specific field of broadcasting and related fields. Since 1995 the JTC became a tripartite body by including in the Memorandum of Understanding also CENELEC, which is responsible for the standardization of radio and television receivers. The EBU is a professional association of broadcasting organisations whose work includes the co-ordination of its Members' activities in the technical, legal, programme-making and programme-exchange domains. The EBU has Active Members in about 60 countries in the European Broadcasting Area; its headquarters is in Geneva *.

European Broadcasting Union
Case Postale 67
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41227172111
Fax: +41 227172481

Proposed transposition dates	
Date of latest announcement of this ETS (doa):	3 months after ETSI publication
Date of latest publication of new National Standard or endorsement of this ETS (dop/e):	6 months after doa
Date of withdrawal of any conflicting National Standard (dow):	6 months after doa

Final draft prETS 300 744: November 1996
Blank page

1 Scope

This ETS describes a baseline transmission system for digital terrestrial television (TV) broadcasting. The ETS specifies the channel coding/modulation system intended for digital multi-programme LDTV / SDTV / EDTV / HDTV terrestrial services.

The scope of the specification is as follows:

- it gives a general description of the Baseline System for digital terrestrial TV;
- \quad it identifies the global performance requirements and features of the Baseline System, in order to meet the service quality targets;
- \quad it specifies the digitally modulated signal in order to allow compatibility between pieces of equipment developed by different manufacturers. This is achieved by describing in detail the signal processing at the modulator side, while the processing at the receiver side is left open to different implementation solutions. However, it is necessary in this text to refer to certain aspects of reception.

2 Normative references

This ETS incorporates by dated and undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this ETS only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies.

ISO/IEC 13818 Part 1, 2 , 3 (November 1994): "Coding of moving pictures and associated audio".
[2]
ETS 300 421: "Digital broadcasting systems for television, sound and data services; framing structure, channel coding and modulation for $11 / 12 \mathrm{GHz}$ satellite services".

Page 8

Final draft prETS 300 744: November 1996

3 Symbols, abbreviations and definition

3.1 Symbols

For the purposes of this ETS, the following symbols apply:

A(e)	Output vector from inner bit interleaver e
$\mathrm{a}_{\mathrm{e}, \mathrm{w}}$	Bit number w of inner bit interleaver output stream e
α	Constellation ratio which determines the QAM constellation for the modulation for hierarchical transmission
B(e)	Input vector to inner bit interleaver e
$\mathrm{b}_{\mathrm{e}, \mathrm{w}}$	Bit number w of inner bit interleaver input steam e
$\mathrm{b}_{\mathrm{e}, \mathrm{do}}$	output bit number do of demultiplexed bit stream number e of the inner interleaver demultiplexer
$\mathrm{c}_{\mathrm{m}, \mathrm{l}, \mathrm{k}}$	Complex cell for frame m in OFDM symbol l at carrier k
$\mathrm{C}^{\prime}{ }^{\prime}$	Complex modulation for a reference signal at carrier k
$\mathrm{C}^{\prime}, \mathrm{k}$	Complex modulation for a TPS signal at carrier k in symbol l
C/N	Carrier-to-noise ratio
Δ	Time duration of the guard interval
$\mathrm{d}_{\text {free }}$	Convolutional code free distance
f_{c}	Centre frequency of the emitted signal
$\mathrm{G}_{1}, \mathrm{G}_{2}$	Convolutional code generator polynomials
$\mathrm{g}(\mathrm{x})$	Reed-Solomon code generator polynomial
$\mathrm{h}(\mathrm{x})$	BCH code generator polynomial
$\mathrm{H}(\mathrm{q})$	Inner symbol interleaver permutation
$\mathrm{H}_{\mathrm{e}}(\mathbf{w})$	Inner bit interleaver permutation
i	Priority stream index
1	Interleaving depth of the outer convolutional interleaver
I0,11,I2,I3,14,15	Inner interleavers
j	Branch index of the outer interleaver
k	carrier number index in each OFDM symbol
K	Number of active carriers in the OFDM symbol
$\mathrm{K}_{\text {min }}, \mathrm{K}_{\text {max }}$	Carrier number of the lower and largest active carrier respectively in the OFDM signal
1	OFDM symbol number index in an OFDM frame
m	OFDM frame number index
m'	OFDM super-frame number index
M	Convolutional Interleaver branch depth for $\mathrm{j}=1, \mathrm{M}=\mathrm{N} / \mathrm{l}$
n	Transport stream sync byte number
N	Length of error protected packet in bytes
$\mathrm{N}_{\text {max }}$	Inner symbol interleaver block size
p	Scattered pilot insertion index
$\mathrm{p}(\mathrm{x})$	RS code field generator polynomial
$\mathrm{P}_{\mathrm{k}}(\mathrm{f})$	Power Spectral Density for carrier k
$\mathrm{P}(\mathrm{n})$	Interleaving pattern of the inner symbol interleaver
r_{i}	Code rate for priority level i
S_{i}	TPS bit index
t	Number of bytes which can be corrected by the Reed-Solomon decoder
T	Elementary time period
$\mathrm{T}_{\text {S }}$	Duration of an OFDM symbol
T_{F}	Time duration of a frame
T_{u}	Time duration of the useful (orthogonal) part of a symbol, without the guard interval
u	Bit numbering index
v	Number of bits per modulation symbol
w_{k}	Value of reference PRBS sequence applicable to carrier k
$\mathrm{X}_{\text {di }}$	Input bit number di to the inner interleaver demultiplexer
$\mathrm{X}^{\text {di }}$	High priority input bit number di to the inner interleaver demultiplexer
$\mathrm{x}_{\text {di }}$	Low priority input bit number di to the inner interleaver demultiplexer
Y	Output vector from inner symbol interleaver
Y^{\prime}	Intermediate vector of inner symbol interleaver
y_{q}	Bit number q of output from inner symbol interleaver
$\mathrm{y}^{\prime}{ }_{\text {a }}$	Bit number q of intermediate vector of inner symbol interleaver

3.2 Abbreviations

For the purposes of this ETS, the following abbreviations apply:

ACI	Adjacent Channel Interference
AFC	Automatic Frequency Control
BCH	Bose - Chaudhuri - Hocquenghem code
BER	Bit Error Ratio
D/A	Digital-to-Analogue converter
DBPSK	Differential Binary Phase Shift Keying
DVB	Digital Video Broadcasting
DVB-T	DVB-Terrestrial
EDTV	Enhanced Definition Television
ETS	European Telecommunication Standard
FEC	Forward Error Correction
FFT	Fast Fourier Transform
FIFO	First-ln, First-Out shift register
HDTV	High Definition Television
HEX	Hexadecimal notation
HP	High Priority bit stream
IF	Intermediate Frequency
LDTV	Limited Definition Television
LO	Local Oscillator
LP	Low Priority bit stream
LSB	Least Significant Bit
MPEG	Moving Picture Experts Group
MSB	Most Significant Bit
MUX	Multitlex
NICAM	Near-Instantaneous companded Audio Multiplex
OCT	Octal notation
OFDM	Orthogonal Frequency Division Multiplexing
PAL	Phase Alternating Line
PCR	Program Clock Reference
PID	Program Identifier
PRBS	Pseudo-Random Binary Sequence
QAM	Quadrature Amplitude Modulation
QEF	Quasi Error Free
QPSK	Quaternary Phase Shift Keying
RF	Radio Frequency
RS	Reed-Solomon
SDTV	Standard Definition Television
SECAM	Systeme Sequentiel Couleur A Mémoire
SFN	Single Frequency Network
TPS	Transmission Parameter Signalling
TV	Television
UHF	Ultra-High Frequency
VHF	Very-High Frequency

3.3 Definition

For the purposes of this ETS, the following definition applies:
constraint length: Number of delay elements +1 in the convolutional coder.

Page 10

Final draft prETS 300 744: November 1996

4 Baseline system

4.1 General considerations

The system is defined as the functional block of equipment performing the adaptation of the baseband TV signals from the output of the MPEG-2 transport multiplexer, to the terrestrial channel characteristics. The following processes shall be applied to the data stream (see figure 1):

- transport multiplex adaptation and randomization for energy dispersal;
- \quad outer coding (i.e. Reed-Solomon code);
- outer interleaving (i.e. convolutional interleaving);
- \quad inner coding (i.e. punctured convolutional code);
- inner interleaving;
- mapping and modulation;
- OFDM transmission.

The system is directly compatible with MPEG-2 coded TV signals ISO/IEC 13818 [1].
Since the system is being designed for digital terrestrial television services to operate within the existing UHF (see note) spectrum allocation for analogue transmissions, it is required that the System provides sufficient protection against high levels of Co-Channel Interference (CCI) and Adjacent-Channel Interference (ACI) emanating from existing PAL/SECAM services. It is also a requirement that the System allows the maximum spectrum efficiency when used within the UHF bands; this requirement can be achieved by utilising Single Frequency Network (SFN) operation.

NOTE: I.e. 8 MHz channel spacing. An adaptation of this specification for 7 MHz channels can be achieved by scaling down all system parameters according to a change of the system clock rate from $64 / 7 \mathrm{MHz}$ to exactly $8,0 \mathrm{MHz}$. The frame structure and the rules for coding, mapping and interleaving are kept, only the data capacity of the system is reduced by a factor $7 / 8$ due to the respective reduction of signal bandwidth.

To achieve these requirements an OFDM system with concatenated error correcting coding is being specified. To maximise commonality with the Satellite baseline specification (see ETS 300421 [2]) and Cable baseline specifications (see ETS 300429 [3]) the outer coding and outer interleaving are common, and the inner coding is common with the Satellite baseline specification. To allow optimal trade off between network topology and frequency efficiency, a flexible guard interval is specified. This will enable the system to support different network configurations, such as large area SFN and single transmitter, while keeping maximum frequency efficiency.

Two modes of operation are defined: a "2k mode" and an "8k mode". The "2k mode" is suitable for single transmitter operation and for small SFN networks with limited transmitter distances. The "8k mode" can be used both for single transmitter operation and for small and large SFN networks.

The system allows different levels of QAM modulation and different inner code rates to be used to trade bit rate versus ruggedness. The system also allows two level hierarchical channel coding and modulation, including uniform and multi-resolution constellation. In this case the functional block diagram of the system shall be expanded to include the modules shown dashed in figure 1. The splitter separates the incoming transport stream into two independent MPEG transport streams, referred to as the high-priority and the low-priority stream. These two bitstreams are mapped onto the signal constellation by the Mapper and Modulator which therefore has a corresponding number of inputs.

To guarantee that the signals emitted by such hierarchical systems may be received by a simple receiver the hierarchical nature is restricted to hierarchical channel coding and modulation without the use of hierarchical source coding. A programme service can thus be 'simulcast' as a low-bit-rate, rugged version and another version of higher bit rate and lesser ruggedness. Alternatively, entirely different programmes can be transmitted on the separate streams with different ruggedness. In either case, the receiver requires only one set of the inverse elements: inner de-interleaver, inner decoder, outer de-interleaver,
outer decoder and multiplex adaptation. The only additional requirement thus placed on the receiver is the ability for the demodulator/de-mapper to produce one stream selected from those mapped at the sending end.

The price for this receiver economy is that reception can not switch from one layer to another (e.g. to select the more rugged layer in the event of reception becoming degraded) while continuously decoding and presenting pictures and sound. A pause is necessary (e.g. video freeze frame for approximately 0,5 s, audio interruption for approximately $0,2 \mathrm{~s}$) while the inner decoder and the various source decoders are suitably reconfigured and reacquire lock.

Figure 1: Functional block diagram of the System

4.2 Interfacing

The Baseline System as defined in this specification is delimited by the following interfaces:
Table 1: Interfaces for the Baseline System

Location	Interface	Interface type	Connection
Transmit Station	Input	MPEG-2 transport stream(s) multiplex	from MPEG-2 multiplexer
	Output	RF signal	to aerial
Receive Installation	Input	RF	from aerial
	Output	MPEG-2 transport stream multiplex	to MPEG-2 demultiplexer

4.3 Channel coding and modulation

4.3.1 Transport multiplex adaptation and randomization for energy dispersal

The System input stream shall be organised in fixed length packets (see figure 3), following the MPEG-2 transport multiplexer. The total packet length of the MPEG-2 transport multiplex (MUX) packet is 188 bytes. This includes 1 sync-word byte (i.e. 47_{HEX}). The processing order at the transmitting side shall always start from the MSB (i.e. "0") of the sync-word byte (i.e. 01000 111). In order to ensure adequate binary transitions, the data of the input MPEG-2 multiplex shall be randomised in accordance with the configurations depicted in figure 2.

Page 12

Final draft prETS 300 744: November 1996

Figure 2: Scrambler/Descrambler schematic diagram
The polynomial for the pseudo random binary sequence (PRBS) generator shall be (see note):

$$
1+X^{14}+X^{15}
$$

NOTE: The polynomial description given here is in the form taken from the Satellite baseline specification ETS 300421 [2]. Elsewhere, in both the Satellite baseline specification and in this specification, a different polynomial notation is used which conforms with the standard textbook of Peterson and Weldon (Error correcting codes, second edition, MIT Press, 1972).

Loading of the sequence "100101010000000" into the PRBS registers, as indicated in figure 2, shall be initiated at the start of every eight transport packets. To provide an initialization signal for the descrambler, the MPEG-2 sync byte of the first transport packet in a group of eight packets is bit-wise inverted from $47^{4 H_{\text {HEX }}}$ (SYNC) to B8 HEX (SYNC). This process is referred to as "transport multiplex adaptation" (see figure $3 b)$.

The first bit at the output of the PRBS generator shall be applied to the first bit (i.e. MSB) of the first byte following the inverted MPEG-2 sync byte (i.e. B8 $_{\text {HEX }}$). To aid other synchronization functions, during the MPEG-2 sync bytes of the subsequent 7 transport packets, the PRBS generation shall continue, but its output shall be disabled, leaving these bytes unrandomized. Thus, the period of the PRBS sequence shall be 1503 bytes.

The randomization process shall be active also when the modulator input bit-stream is non-existent, or when it is non-compliant with the MPEG-2 transport stream format (i.e. 1 sync byte +187 packet bytes).

4.3.2 Outer coding and outer interleaving

The outer coding and interleaving shall be performed on the input packet structure (see figure 3a).
Reed-Solomon RS (204,188, $\mathrm{t}=8$) shortened code (see note), derived from the original systematic RS $(255,239, t=8)$ code, shall be applied to each randomised transport packet (188 byte) of figure 3b to generate an error protected packet (see figure 3c). Reed-Solomon coding shall also be applied to the packet sync byte, either non-inverted (i.e. $47_{\text {HEX }}$) or inverted (i.e. B8 ${ }_{\text {HEX }}$).

NOTE 1: The Reed-Solomon code has length 204 bytes, dimension 188 bytes and allows to correct up to 8 random erroneous bytes in a received word of 204 bytes.

Code Generator Polynomial: $g(x)=\left(x+\lambda^{0}\right)\left(x+\lambda^{1}\right)\left(x+\lambda^{2}\right) \ldots\left(x+\lambda^{15}\right)$, where $\lambda=02_{\text {HEX }}$
Field Generator Polynomial: $p(x)=x^{8}+x^{4}+x^{3}+x^{2}+1$
The shortened Reed-Solomon code may be implemented by adding 51 bytes, all set to zero, before the information bytes at the input of an RS $(255,239, t=8)$ encoder. After the RS coding procedure these null bytes shall be discarded, leading to a RS code word of $N=204$ bytes.

Following the conceptual scheme of figure 4, convolutional byte-wise interleaving with depth $\mathrm{I}=12$ shall be applied to the error protected packets (see figure 3c). This results in the interleaved data structure (see figure 3d).

The convolutional interleaving process shall be based on the Forney approach which is compatible with the Ramsey type III approach, with $I=12$. The interleaved data bytes shall be composed of error protected packets and shall be delimited by inverted or non-inverted MPEG-2 sync bytes (preserving the periodicity of 204 bytes).

The interleaver may be composed of $\mathrm{I}=12$ branches, cyclically connected to the input byte-stream by the input switch. Each branch j shall be a First-In, First-Out (FIFO) shift register, with depth $j \times M$ cells where $M=17=N / I, N=204$. The cells of the FIFO shall contain 1 byte, and the input and output switches shall be synchronised.

For synchronization purposes, the SYNC bytes and the SYNC bytes shall always be routed in the branch " 0 " of the interleaver (corresponding to a null delay).

NOTE 2: The deinterleaver is similar in principle, to the interleaver, but the branch indices are reversed (i.e. $\mathrm{j}=0$ corresponds to the largest delay). The deinterleaver synchronisation can be carried out by routing the first recognised sync (SYNC or $\overline{\mathrm{SYNC}}$) byte in the "0" branch.

SYNC 1 byte	MPEG-2
187 bytes	

a) MPEG-2 transport MUX packet

b) Randomized transport packets: Sync bytes and Randomized Data bytes

c) Reed-Solomon $\operatorname{RS}(204,188,8)$ error protected packets

d) Data structure after outer interleaving; interleaving depth $\mathrm{I}=12$ bytes

SYNC1: Non randomized complemented sync byte
SYNCn: Non randomized sync byte, $n=2,3, \ldots \ldots$
Figure 3: Steps in the process of adaptation, energy dispersal, outer coding and interleaving
SYNC1 is the non randomised complemented sync byte and SYNCn is the non randomised sync byte, $\mathrm{n}=2,3, ., 8$

Page 14

Final draft prETS 300 744: November 1996

Figure 4: Conceptual diagram of the outer interleaver and deinterleaver

4.3.3 Inner coding

The system shall allow for a range of punctured convolutional codes, based on a mother convolutional code of rate $1 / 2$ with 64 states. This will allow selection of the most appropriate level of error correction for a given service or data rate in either non-hierarchical or hierarchical transmission mode. The generator polynomials of the mother code are $\mathrm{G}_{1}=171_{\text {oct }}$ for X output and $\mathrm{G}_{2}=133_{\text {Oct }}$ for Y output (see figure 5).

If two level hierarchical transmission is used, each of the two parallel channel encoders can have its own code rate. In addition to the mother code of rate $1 / 2$ the system shall allow punctured rates of $2 / 3,3 / 4,5 / 6$ and 7/8.

The punctured convolutional code shall be used as given in table 3 below. See also figure 5 . In this table X and Y refer to the two outputs of the convolutional encoder.

Table 2: Puncturing pattern and transmitted sequence after parallel-to-serial conversion for the possible code rates

Code Rates \mathbf{r}	Puncturing pattern	Transmitted sequence (after parallel-to-serial conversion)
$1 / 2$	$\mathrm{X}: 1$	
$\mathrm{Y}: 1$	$\mathrm{X}_{1} \mathrm{Y}_{1}$	
$2 / 3$	$\mathrm{X}: 10$	
$\mathrm{Y}: 11$	$\mathrm{X}_{1} \mathrm{Y}_{1} \mathrm{Y}_{2}$	
$3 / 4$	$\mathrm{X}: 101$	
$\mathrm{Y}: 1110$	$\mathrm{X}_{1} \mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{X}_{3}$	
$5 / 6$	$\mathrm{X}: 10101$	
$\mathrm{Y}: 11010$	$\mathrm{X}_{1} \mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{X}_{3} \mathrm{Y}_{4} \mathrm{X}_{5}$	
$7 / 8$	$\mathrm{X}: 10000101$	
$\mathrm{Y}: 11111010$	$\mathrm{X}_{1} \mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{Y}_{3} \mathrm{Y}_{4} \mathrm{X}_{5} \mathrm{Y}_{6} \mathrm{X}_{7}$	

X_{1} is sent first. At the start of a super-frame the MSB of SYNC or SYNC shall lie at the point labelled "data input" in figure 5 . The super-frame is defined in subclause 4.4.

The first convolutionally encoded bit of a symbol always corresponds to X_{1}.

Figure 5: The mother convolutional code of rate $1 / 2$

Figure 6: Inner coding and interleaving

4.3.4 Inner interleaving

The inner interleaving consists of bit-wise interleaving followed by symbol interleaving. Both the bit-wise interleaving and the symbol interleaving processes are block-based.

4.3.4.1 Bit-wise interleaving

The input, which consists of up to two bit streams, is demultiplexed into v sub-streams, where $v=2$ for QPSK, $v=4$ for $16-Q A M$, and $v=6$ for 64-QAM. In non-hierarchical mode, the single input stream is demultiplexed into v sub-streams. In hierarchical mode the high priority stream is demultiplexed into two sub-streams and the low priority stream is demultiplexed into v-2 sub-streams. This applies in both uniform and non-uniform QAM modes. See figures 7a and 7b.

The demultiplexing is defined as a mapping of the input bits, x_{di} onto the output bits $\mathrm{b}_{\mathrm{e}, \mathrm{do}}$.
In non-hierarchical mode:

$$
\mathrm{x}_{\mathrm{di}}=\mathrm{b}_{[\mathrm{di}(\mathrm{mod}) \mathrm{v]}](\mathrm{div})(\mathrm{v} / 2)+2[\mathrm{di}(\mathrm{mod})(\mathrm{v} / 2)], \mathrm{di}(\mathrm{div}) \mathrm{v}}
$$

In hierarchical mode:

$$
\mathrm{X}_{\mathrm{di}}^{\prime}=\mathrm{b}_{\mathrm{di}(\mathrm{mod}) 2, \mathrm{di}(\mathrm{div}) 2}
$$

$$
\mathrm{X}^{\prime \prime} \mathrm{di}=\mathrm{b}_{[\mathrm{di}(\bmod)(\mathrm{v}-2)](\mathrm{div})((\mathrm{v}-2) / 2)+2[\mathrm{di}(\bmod)((\mathrm{v}-2) / 2)]+2, \mathrm{di}(\mathrm{div})(\mathrm{v}-2)}
$$

Page 16

Final draft prETS 300 744: November 1996
Where: $\quad x_{d i} \quad$ is the input to the demultiplexer in non-hierarchical mode,
x_{di} is the high priority input to the demultiplexer,
$x^{\prime \prime}{ }_{\mathrm{di}}$ is the low priority input, in hierarchical mode,
di is the input bit number,
$\mathrm{b}_{\mathrm{e}, \mathrm{do}}$ is the output from the demultiplexer,
e is the demultiplexed bit stream number $(0 \leq e<v)$,
do is the bit number of a given stream at the output of the demultiplexer,
mod is the integer modulo operator,
div is the integer division operator.

The demultiplexing results in the following mapping:
QPSK: $\quad x_{0}$ maps to $b_{0,0}$
x_{1} maps to $b_{1,0}$

16-QAM non-hierarchical transmission:
x_{0} maps to $b_{0,0}$
x_{1} maps to $b_{2,0}$
x_{2} maps to $b_{1,0}$
x_{3} maps to $b_{3,0}$

64-QAM non-hierarchical transmission:
x_{0} maps to $b_{0,0}$
x_{1} maps to $\mathrm{b}_{2,0}$
x_{2} maps to $b_{4,0}$
x_{3} maps to $b_{1,0}$
x_{4} maps to $b_{3,0}$
x_{5} maps to $b_{5,0}$

16-QAM hierarchical transmission:
$x^{\prime}{ }_{0}$ maps to $b_{0,0}$
$\mathrm{x}^{\prime}{ }_{1}$ maps to $\mathrm{b}_{1,0}$
$x^{\prime \prime}{ }_{0}$ maps to $b_{2,0}$
$\mathrm{x}^{\prime}{ }_{1}$ maps to $\mathrm{b}_{3,0}$

64-QAM hierarchical transmission:
$x^{\prime}{ }_{0}$ maps to $b_{0,0}$
$\mathrm{x}^{\prime}{ }_{1}$ maps to $\mathrm{b}_{1,0}$
$x^{\prime \prime}{ }_{0}$ maps to $b_{2,0}$
$x^{\prime \prime}{ }_{1}$ maps to $\mathrm{b}_{4,0}$
$x^{\prime \prime}{ }_{2}$ maps to $b_{3,0}$
$x^{\prime \prime}{ }_{3}$ maps to $b_{5,0}$

Figure 7a: Mapping of input bits onto output modulation symbols, for non-hierarchical transmission modes

Page 18

Final draft prETS 300 744: November 1996

Hierarchical 16-QAM

Figure 7b: Mapping of input bits onto output modulation symbols, for hierarchical transmission modes

Each sub-stream from the demultiplexer is processed by a separate bit interleaver. There are therefore up to six interleavers depending on v, labelled IO to I5. IO and I1 are used for QPSK, IO to I3 for 16-QAM and 10 to 15 for 64-QAM.

Bit interleaving is performed only on the useful data. The block size is the same for each interleaver, but the interleaving sequence is different in each case. The bit interleaving block size is 126 bits. The block interleaving process is therefore repeated exactly twelve times per OFDM symbol of useful data in the $2 k$ mode and forty-eight times per symbol in the 8 k mode.

For each bit interleaver, the input bit vector is defined by:

$$
B(e)=\left(b_{e, 0}, b_{e, 1}, b_{e, 2}, \ldots, b_{e, 125}\right) \quad \text { where e ranges from } 0 \text { to } v-1
$$

The interleaved output vector $A(e)=\left(a_{e, 0}, a_{e, 1}, a_{e, 2}, \ldots, a_{e, 125}\right)$ is defined by:

$$
a_{e, w}=b_{e, H_{e}(w)} \quad w=0,1,2, \ldots, 125
$$

where $\mathrm{H}_{\mathrm{e}}(\mathrm{w})$ is a permutation function which is different for each interleaver.
$H_{e}(w)$ is defined as follows for each interleaver:
10: $H_{0}(w)=w$
11: $H_{1}(w)=(w+63) \bmod 126$
I2: $\quad \mathrm{H}_{2}(w)=(w+105) \bmod 126$
I3: $\quad H_{3}(w)=(w+42) \bmod 126$
14: $\quad H_{4}(w)=(w+21) \bmod 126$
I5: $\quad H_{5}(w)=(w+84) \bmod 126$
The outputs of the v bit interleavers are grouped to form the digital data symbols, such that each symbol of v bits will consist of exactly one bit from each of the v interleavers. Hence, the output from the bit-wise interleaver is a v bit word y^{\prime} that has the output of $I 0$ as its most significant bit, i.e.:

$$
y_{w}^{\prime}=\left(a_{0, w}, a_{1, w}, \ldots, a_{v-1, w}\right)
$$

4.3.4.2 Symbol interleaver

The purpose of the symbol interleaver is to map v bit words onto the 1512 (2 k mode) or 6048 (8 k mode) active carriers per OFDM symbol. The symbol interleaver acts on blocks of 1512 (2k mode) or 6048 (8 k mode) data symbols.

Thus in the $2 k$ mode, 12 groups of 126 data words from the bit interleaver are read sequentially into a vector $\mathrm{Y}^{\prime}=\left(\mathrm{y}_{0}^{\prime}, \mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}^{\prime}, \ldots \mathrm{y}^{\prime}{ }_{1511}\right)$. Similarly in the 8 k mode, a vector $\mathrm{Y}^{\prime}=\left(\mathrm{y}^{\prime}{ }_{0}, \mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}^{\prime}, \ldots \mathrm{y}_{6047}^{\prime}\right)$ is assembled from 48 groups of 126 data words.

The interleaved vector $\mathrm{Y}=\left(\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \mathrm{y}_{\mathrm{Nmax}-1}\right)$ is defined by:
$y_{H(q)}=y_{q}^{\prime}$ for even symbols for $q=0, \ldots, N_{\max }-1$
$y_{q}=y_{H(q)}^{\prime}$ for odd symbols for $q=0, \ldots, N_{\text {max }}-1$
where $N_{\max }=1512$ in the $2 k$ mode and $N_{\max }=6048$ in the $8 k$ mode.
The symbol index, defining the position of the current OFDM symbol in the OFDM frame, is defined in subclause 4.4.
$H(q)$ is a permutation function defined by the following.
An ($N_{r}-1$) bit binary word R_{i}^{\prime} is defined, with $N_{r}=\log _{2} M_{\max }$, where $M_{\max }=2048$ in the $2 k$ mode and $\mathrm{M}_{\max }=8192$ in the 8 k mode, where R_{i} takes the following values:
$\begin{array}{ll}i=0,1: & R_{i}^{\prime}\left[N_{r}-2, N_{r}-3, \ldots, 1,0\right]=0,0, \ldots, 0,0 \\ i=2: & R_{i}^{\prime}\left[N_{r}-2, N_{r}-3, \ldots, 1,0\right]=0,0, \ldots, 0,1 \\ 2<i<N_{\text {max }}: & \left\{\quad R_{i}^{\prime}\left[N_{r}-3, N_{r}-4, \ldots, 1,0\right]=R_{i-1}^{\prime}\left[N_{r}-2, N_{r}-3, \ldots, 2,1\right] ;\right.\end{array}$
in the $2 k$ mode: $R_{i}^{\prime}[9]=R_{j-1}^{\prime}[0] \oplus R_{i-1}^{\prime}[3]$
in the 8 k mode: $\left.\mathrm{R}_{\mathrm{i}}^{\prime}[11]=\mathrm{R}_{\mathrm{i}-1}[0] \oplus \mathrm{R}_{\mathrm{i}-1}^{\prime}[1] \oplus \mathrm{R}_{\mathrm{i}-1}^{\prime}[4] \oplus \mathrm{R}_{\mathrm{i}-1}^{\prime}[6] \quad\right\}$

Page 20

Final draft prETS 300 744: November 1996

A vector R_{i} is derived from the vector R_{i}^{\prime} by the bit permutations given in tables $3 a$ and $3 b$.
Table 3a: Bit permutations for the 2k mode

R_{i} bit positions	9	8	7	6	5	4	3	2	1	0
R_{i} bit positions	0	7	5	1	8	2	6	9	3	4

Table 3b: Bit permutations for the 8k mode

R_{i} bit positions	11	10	9	8	7	6	5	4	3	2	1	0
R_{i} bit positions	5	11	3	0	10	8	6	9	2	4	1	7

The permutation function $\mathrm{H}(\mathrm{q})$ is defined by the following algorithm:
for $q=0$;
for $\left(i=0 ; i<M_{\max } ; i=i+1\right)$;
$\left\{H(q)=(i \bmod 2) \cdot 2^{N_{r}-1}+\sum_{j=0}^{N_{r}-2} R_{i}(j) \cdot 2^{j}\right.$

$$
\text { if }\left(\mathrm{H}(\mathrm{q})<\mathrm{N}_{\max }\right) \text { then } \mathrm{q}=\mathrm{q}+1
$$

A schematic block diagram of the algorithm used to generate the permutation function is represented in figure 8 a for the 2 k mode and in figure 8 b for the 8 k mode.

Figure 8a: Symbol interleaver address generation scheme for the 2k mode

Figure 8b: Symbol interleaver address generation scheme for the 8 K mode
In a similar way to y^{\prime}, y is made $u p$ of v bits:

$$
\mathrm{y}_{\mathrm{q}^{\prime}}=\left(\mathrm{y}_{0, \mathrm{q}^{\prime}}, \mathrm{y}_{1, \mathrm{q}^{\prime}}, \ldots, \mathrm{y}_{\mathrm{v}-1, \mathrm{q}^{\prime}}\right)
$$

where q ' is the symbol number at the output of the symbol interleaver.
These values of y are used to map the data into the signal constellation, as described in subclause 4.3.5.

4.3.5 Signal constellations and mapping

The system uses Orthogonal Frequency Division Multiplex (OFDM) transmission. All data carriers in one OFDM frame are either QPSK, 16-QAM, 64-QAM, non-uniform-16-QAM or non-uniform-64-QAM using Gray mapping.

Gray mapping is applied according to the following method for QPSK, 16-QAM and 64-QAM. The mapping shall be performed according to figure 9.

Page 22
Final draft prETS 300 744: November 1996

Figure 9a: The QPSK, 16-QAM and 64-QAM mappings and the corresponding bit patterns
(non-hierarchical, and hierarchical with $\alpha=1$)

The $y_{u, q^{\prime}}$ denote the bits representing a complex modulation symbol z.

Figure 9b: Non-uniform 16-QAM and 64-QAM mappings with $\alpha=2$
The $y_{u, q^{\prime}}$ denote the bits representing a complex modulation symbol z.

Page 24
Final draft prETS 300 744: November 1996

Figure 9c: Non-uniform 16-QAM and 64-QAM mappings with $\alpha=4$
The $y_{u, q^{\prime}}$ denote the bits representing a complex modulation symbol z.

Non-hierarchical transmission:
The data stream at the output of the inner interleaver consists of v bit words. These are mapped onto a complex number z , according to figure 9 a.

Hierarchical transmission:
In the case of hierarchical transmission, the data streams are formatted as shown in figure 7 b , and then the mappings as shown in figures $9 \mathrm{a}, 9 \mathrm{~b}$, or 9 c are applied, as appropriate.

For hierarchical 16 QAM:
The high priority bits are the $y_{0, q^{\prime}}$ and $y_{1, q^{\prime}}$ bits of the inner interleaver output words. The low priority bits are the $y_{2, q^{\prime}}$ and $y_{3, q^{\prime}}$ bits of the inner interleaver output words. The mappings of figures $9 \mathrm{a}, 9 \mathrm{~b}$ or 9 c are applied, as appropriate. For example, the top left constellation point, corresponding to 1000 represents $y_{0, q^{\prime}}=1, y_{1, q^{\prime}}=y_{2, q^{\prime}}=y_{3, q^{\prime}}=0$. If this constellation is decoded as if it were QPSK, the high priority bits, $y_{0, q^{\prime}}$, $\mathrm{y}_{1, \mathrm{q}^{\prime}}$ will be deduced. To decode the low priority bits, the full constellation shall be examined and the appropriate bits ($\mathrm{y}_{2, q^{\prime}}, \mathrm{y}_{3, q^{\prime}}$) extracted from $\mathrm{y}_{0, \mathrm{q}^{\prime}}, \mathrm{y}_{1, \mathrm{q}^{\prime}}, \mathrm{y}_{2, q^{\prime}}, \mathrm{y}_{3, \mathrm{q}^{\prime}}$.

For hierarchical 64 QAM:

The high priority bits are the $y_{0, q^{\prime}}$ and $y_{1, q^{\prime}}$ bits of the inner interleaver output words. The low priority bits are the $y_{2, q^{\prime}}, y_{3, q^{\prime}}, y_{4, q^{\prime}}$ and $y_{5, q^{\prime}}$ bits of the inner interleaver output words. The mappings of figures $9 a, 9 b$ or $9 c$ are applied, as appropriate. If this constellation is decoded as if it were QPSK, the high priority bits, $\mathrm{y}_{0, \mathrm{q}}$, $\mathrm{y}_{1, \mathrm{q}^{\prime}}$ will be deduced. To decode the low priority bits, the full constellation shall be examined and the appropriate bits ($\mathrm{y}_{2, q^{\prime}}, \mathrm{y}_{3, q^{\prime}}, \mathrm{y}_{4, \mathrm{q}^{\prime}}, \mathrm{y}_{5, q^{\prime}}$) extracted from $\mathrm{y}_{0, \mathrm{q}^{\prime}}, \mathrm{y}_{1, q^{\prime}}, \mathrm{y}_{2, \mathrm{q}^{\prime}}, \mathrm{y}_{3, q^{\prime}}, \mathrm{y}_{4, q^{\prime}}, \mathrm{y}_{5, \mathrm{q}^{\prime}}$.

4.4 OFDM frame structure

The transmitted signal is organised in frames. Each frame has a duration of T_{F}, and consists of 68 OFDM symbols. Four frames constitute one super-frame. Each symbol is constituted by a set of $\mathrm{K}=6817$ carriers in the 8 k mode and $\mathrm{K}=1705$ carriers in the 2 k mode and transmitted with a duration T_{s}. It is composed by parts: a useful part with duration T_{u} and a guard interval with a duration Δ. The guard interval consists in a cyclic continuation of the useful part, T_{U}, and is inserted before it. Four values of guard intervals may be used according to table 5 where the different values are given both in multiples of the elementary period $\mathrm{T}=7 / 64 \mu \mathrm{~s}$ and in microseconds.

The symbols in an OFDM frame are numbered from 0 to 67 . All symbols contain data and reference information.

Since the OFDM signal comprises many separately-modulated carriers, each symbol can in turn be considered to be divided into cells, each corresponding to the modulation carried on one carrier during one symbol.

In addition to the transmitted data an OFDM frame contains:

- Scattered pilot cells;
- Continual pilot carriers;
- TPS carriers.

The pilots can be used for frame synchronisation, frequency synchronisation, time synchronisation, channel estimation, transmission mode identification and can also be used to follow the phase noise.

The carriers are indexed by $\mathrm{k} \in\left[\mathrm{K}_{\text {min }} ; \mathrm{K}_{\max }\right]$ and determined by $\mathrm{K}_{\text {min }}=0$ and $\mathrm{K}_{\text {max }}=1704$ in 2 k mode and 6816 in 8 k mode respectively. The spacing between adjacent carriers is $1 / T_{u}$ while the spacing between carriers $\mathrm{K}_{\text {min }}$ and $\mathrm{K}_{\text {max }}$ are determined by $(\mathrm{K}-1) / \mathrm{T}_{\mathrm{u}}$. The numerical values for the OFDM parameters for the 8 k and 2 k modes are given in table 4 .

Page 26

Final draft prETS 300 744: November 1996
Table 4: Numerical values for the OFDM parameters for the 8 k and 2 k mode

Parameter	8k mode	2k mode
Number of carriers K	6817	1705
Value of carrier number $\mathrm{K}_{\text {min }}$	0	0
Value of carrier number $\mathrm{K}_{\max }$	6816	1704
Duration T_{U}	$896 \mathrm{\mu s}$	$224 \mu \mathrm{~s}$
Carrier spacing 1/Tu (note 1)	1116 Hz	4464 Hz
Spacing between carriers $\mathrm{K}_{\text {min }}$ and $\mathrm{K}_{\text {max }}(\mathrm{K}-1) / \mathrm{T}_{\mathrm{U}}$	$7,61 \mathrm{MHz}$	$7,61 \mathrm{MHz}$
(note 2)		
NOTE 1: \quad Values in italics are approximate values.		
NOTE 2: $6,66 \mathrm{MHz}$ in the case of 7 MHz wide channels.		

The emitted signal is described by the following expression:
where

$$
s(t)=\operatorname{Re}\left\{e^{j \cdot 2 \pi \cdot f_{c} \cdot t} \cdot \sum_{m=0}^{\infty} \sum_{i=0}^{67} \sum_{k=K_{\min }}^{K_{\text {max }}} c_{m, l, k} \cdot \psi_{m, l \mathrm{k}}(\mathrm{t})\right\}
$$

$$
\psi_{m, l, k}(t)= \begin{cases}e^{j 22 \pi \cdot \frac{\mathrm{~K}}{T_{U}} \cdot\left(\mathrm{t}-\Delta-\mid \cdot T_{\mathrm{s}}-68 \cdot \mathrm{~m} \cdot \mathrm{~T}_{\mathrm{s}}\right)} & (\mathrm{l}+68 \cdot \mathrm{~m}) \cdot \mathrm{T}_{\mathrm{s}} \leq \mathrm{t} \leq(I+68 \cdot m+1) \cdot T_{\mathrm{s}} \\ 0 & \text { else }\end{cases}
$$

where:
k denotes the carrier number;
I denotes the OFDM symbol number;
m denotes the transmission frame number;
$\mathrm{K} \quad$ is the number of transmitted carriers;
T_{s} is the symbol duration;
T_{U} is the inverse of the carrier spacing;
$\Delta \quad$ is the duration of the guard interval;
$\mathrm{f}_{\mathrm{c}} \quad$ is the central frequency of the RF signal;
$\mathrm{k}^{\prime} \quad$ is the carrier index relative to the centre frequency, $\mathrm{k}^{\prime}=\mathrm{k}-\left(\mathrm{K}_{\max }+\mathrm{K}_{\text {min }}\right) / 2$;
$c_{m, 0, k} \quad$ complex symbol for carrier k of the Data symbol no. 1 in frame number m;
$\mathrm{c}_{\mathrm{m}, 1, \mathrm{k}} \quad$ complex symbol for carrier k of the Data symbol no. 2 in frame number m ;
$\mathrm{c}_{\mathrm{m}, 67, \mathrm{k}} \quad$ complex symbol for carrier k of the Data symbol no. 68 in frame number m .

Table 5: Duration of symbol part for the allowed guard intervals

Mode	8k mode				2k mode			
Guard interval Δ / T_{u}	1/4	1/8	1/16	1/32	1/4	1/8	1/16	1/32
Duration of symbol part T_{u}	$\begin{gathered} 8192 \times \mathrm{T} \\ 896 \mu \mathrm{~s} \\ \hline \end{gathered}$				$\begin{gathered} 2048 \times \mathrm{T} \\ 224 \mu \mathrm{~s} \\ \hline \end{gathered}$			
Duration of guard interval Δ	$\begin{gathered} 2048 \times \mathrm{T} \\ 224 \mu \mathrm{~s} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1024 \times \mathrm{T} \\ 112 \mu \mathrm{~s} \\ \hline \end{array}$	$\begin{gathered} 512 \times \mathrm{T} \\ 56 \mu \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} 256 \times \mathrm{T} \\ 28 \mu \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} \hline 512 \times \mathrm{T} \\ 56 \mu \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} 256 \times \mathrm{T} \\ 28 \mu \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} 128 \times \mathrm{T} \\ 14 \mu \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} \hline 64 \times \mathrm{T} \\ 7 \mathrm{\mu s} \\ \hline \end{gathered}$
Symbol duration $T_{s}=\Delta+T_{u}$	$\begin{gathered} 10240 \times \mathrm{T} \\ 1120 \mu \mathrm{~s} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 9216 \times \mathrm{T} \\ 1008 \mu \mathrm{~s} \\ \hline \end{array}$	$\begin{gathered} 8704 \times \mathrm{T} \\ 952 \mu \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} 8448 \times \mathrm{T} \\ 924 \mu \mathrm{~s} \\ \hline \end{gathered}$	$2560 \times \mathrm{T}$ $280 \mu \mathrm{~s}$	$\begin{gathered} 2304 \times \mathrm{T} \\ 252 \mu \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} 2176 \times \mathrm{T} \\ 238 \mu \mathrm{~s} \end{gathered}$	$\begin{array}{\|c\|} \hline 2112 \times \mathrm{T} \\ 231 \mu \mathrm{~s} \\ \hline \end{array}$

The $\mathrm{c}_{\mathrm{m}, \mathrm{l}, \mathrm{k}}$ values are normalised modulation values of the constellation point z (see figure 9) according to the modulation alphabet used for the data. The normalisation factors yield $\mathrm{E}\left[\mathrm{c} \cdot \mathrm{c}^{*}\right]=1$ and are shown in table 6.

Table 6: Normalisation factors for data symbols

Modulation scheme		Normalisation factor
QPSK		$c=z / \sqrt{ } 2$
16-QAM	$\alpha=1$	$c=z / \sqrt{ } 10$
	$\alpha=2$	$c=z / \sqrt{ } 20$
	$\alpha=4$	$c=z / \sqrt{ } 52$
	$\alpha=1$	$c=z / \sqrt{ } 42$
	$\alpha=2$	$c=z / \sqrt{ } 60$
	$\alpha=4$	$c=z / \sqrt{ } 108$

4.5 Reference signals

4.5.1 Functions and derivation

Various cells within the OFDM frame are modulated with reference information whose transmitted value is known to the receiver. Cells containing reference information are transmitted at "boosted" power level (see subclause 4.5.5). The information transmitted in these cells are scattered or continual pilot cells.

Each continual pilot coincides with a scattered pilot every fourth symbol; the number of useful data carriers is constant from symbol to symbol: 1512 useful carriers in 2 k mode and 6048 useful carriers in 8 k mode.

The value of the scattered or continual pilot information is derived from a PRBS (Pseudo Random Binary Sequence) which is a series of values, one for each of the transmitted carriers (see subclause 4.5.2).

4.5.2 Definition of reference sequence

The continual and scattered pilots are modulated according to a PRBS sequence, w_{k}, corresponding to their respective carrier index k. This sequence also governs the starting phase of the TPS information (described in subclause 4.6).

The PRBS sequence is generated according to figure 10.
The PRBS is initialised so that the first output bit from the PRBS coincides with the first active carrier. A new value is generated by the PRBS on every used carrier (whether or not it is a pilot).

Figure 10: Generation of PRBS sequence

Page 28

Final draft prETS 300 744: November 1996
TheThe polynomial for the pseudo random binary sequence (PRBS) generator shall be:

$$
\left.X^{11}+X^{2}+1 \text { (see figure } 10\right)
$$

4.5.3 Location of scattered pilot cells

Reference information, taken from the reference sequence, is transmitted in scattered pilot cells in every symbol. Scattered pilot cells are always transmitted at the "boosted" power level (see subclause 4.5.5). Thus the corresponding modulation is given by:

$$
\begin{aligned}
& \operatorname{Re}\left\{c_{m, l, k}\right\}=4 / 3 \times 2\left(1 / 2-w_{k}\right) \\
& \operatorname{Im}\left\{c_{m, l, k}\right\}=0
\end{aligned}
$$

Where m is the frame index, k is the frequency index of the carriers and I is the time index of the symbols.
For the symbol of index I (ranging from 0 to 67), carriers for which index k belongs to the subset $\left\{k=K_{\min }+3 \times(1 \bmod 4)+12 p \mid p\right.$ integer, $\left.p \geq 0, k \in\left[K_{\min } ; K_{\max }\right]\right\}$ are scattered pilots. Where p is an integer that takes all possible values greater than or equal to zero, provided that the resulting value for k does not exceed the valid range $\left[\mathrm{K}_{\text {min }} ; \mathrm{K}_{\text {max }}\right]$.

The pilot insertion pattern is shown in figure 11.

TPS pilots and continual pilots between $\mathrm{K}_{\min }$ and $\mathrm{K}_{\max }$ are not indicated

- boosted pilot

O data
Figure 11: Frame structure

4.5.4 Location of continual pilot carriers

In addition to the scattered pilots described above, 177 continual (see note) pilots in the 8 k mode and 45 in the 2 k mode, are inserted according to table 9.

NOTE: Where "continual" means that they occur on all symbols.

Table 9: Carrier indices for continual pilot carriers

Continual pilot carrier positions (index number k)	
2k mode	8k mode
```04854 87 141 156192 201 255 279 282 333 432450483525531618636714759765780 804873 888918939 942969 9841050 1101 1107 1110 1137 1140 1146 1206 1269 1323 1377149116831704```	0485487141156192201255279282333 432450483525531618636714759765780 80487388891893994296998410501101 11071110113711401146120612691323 13771491168317041752175817911845 18601896190519591983198620372136 21542187222922352322234024182463 24692484250825772592262226432646 26732688275428052811281428412844 28502910297330273081319533873408 34563462349535493564360036093663 36873690374138403858389139333939 40264044412241674173418842124281 42964326434743504377439244584509 45154518454545484554461446774731 47854899509151125160516651995253 52685304531353675391539454455544 55625595563756435730574858265871 58775892591659856000603060516054 60816096616262136219622262496252 62586318638164356489660367956816

All continual pilots are modulated according to the reference sequence, see subclause 4.5.2
The continual pilots are transmitted at "boosted" power level.
Thus the corresponding modulation is given by:

$$
\begin{aligned}
& \operatorname{Re}\left\{c_{m, l, k}\right\}=4 / 3 \times 2\left(1 / 2-w_{k}\right) \\
& \operatorname{Im}\left\{c_{m, l, k}\right\}=0
\end{aligned}
$$

### 4.5.5 Amplitudes of all reference information

As explained in subclause 4.4 the modulation of all data cells is normalised so that $\mathrm{E}[\mathrm{c} \bullet \mathrm{c} *]=1$.
All cells which are continual or scattered pilots, i.e. they are members of the sets defined in subclauses 4.5 .3 or 4.5 .4 , are transmitted at boosted power so that for these $E[c \bullet c *]=16 / 9$.

### 4.6 Transmission Parameter Signalling (TPS)

The TPS carriers are used for the purpose of signalling parameters related to the transmission scheme, i.e. to channel coding and modulation. The TPS is transmitted in parallel on 17 TPS carriers for the $2 k$ mode and on 68 carriers for the 8 k mode. Every TPS carrier in the same symbol conveys the same differentially encoded information bit. The following carrier indices contain TPS carriers:

## Page 30

Final draft prETS 300 744: November 1996
Table 10: Carrier indices for TPS carriers

2k mode	8k mode
$\begin{aligned} & 3450209346413569595688790 \\ & 901 \\ & l \\ & 1687 \end{aligned}$	3450209346413569595688790901107312191262 12861469159416871738175419132050211722732299 23922494260527772923296629903173329833913442 34583617375438213977400340964198430944814627 46704694487750025095514651625321545855255681 57075800590260136185633163746398658167066799

The TPS carriers convey information on:
a) modulation including the $\alpha$ value of the QAM constellation pattern (see note);
b) hierarchy information;
c) guard interval (not for initial acquisition but for supporting initial response of the receiver in case of reconfiguration);
d) inner code rates;
e) transmission mode ( 2 k or 8 k , not for the initial acquisition but for supporting initial response of the receiver in case of reconfiguration);
f) frame number in a super-frame.

NOTE: The $\alpha$ value defines the modulation based on the cloud spacing of a generalised QAM constellation. It allows specification of uniform and non-uniform modulation schemes, covering QPSK, 16-QAM, and 64-QAM.

### 4.6.1 Scope of the TPS

The TPS is defined over 68 consecutive OFDM symbols, referred to as one OFDM frame. Four consecutive frames correspond to one OFDM super-frame.

The reference sequence corresponding to the TPS carriers of the first symbol of each OFDM frame are used to initialise the TPS modulation on each TPS carrier (see subclause 4.6.3).

Each OFDM symbol conveys one TPS bit. Each TPS block (corresponding to one OFDM frame) contains 68 bits, defined as follows:

- 1 initialisation bit;
- $\quad 16$ synchronisation bits;
- $\quad 37$ information bits;
- $\quad 14$ redundancy bits for error protection.

Of the 37 information bits, 23 are used at present. The remaining 14 bits are reserved for future use, and should be set to zero.

### 4.6.2 TPS transmission format

The transmission parameter information shall be transmitted as shown in table 11.
The mapping of each of the transmission parameters: constellation characteristics, $\alpha$ value, code rate(s), super-frame indicator and guard interval onto the bit combinations is performed according to subclauses 4.6.2.1 to 4.6.2.8. The leftmost bit is sent first.

Table 11: TPS signalling information and format

Bit number	Format	Purpose/Content
$\mathrm{S}_{0}$	see subclause 4.6.2.1	Initialisation
$\mathrm{S}_{1}-\mathrm{S}_{16}$	0011010111101110 or   1100101000010001	Synchronization word
$\mathrm{S}_{17}-\mathrm{S}_{22}$	010111	Length indicator
$\mathrm{S}_{23}, \mathrm{~S}_{24}$	see table 12	Frame number
$\mathrm{S}_{25}, \mathrm{~S}_{26}$	see table 13	Constellation
$\mathrm{S}_{27}, \mathrm{~S}_{28}, \mathrm{~S}_{29}$	see table 14	Hierarchy information
$\mathrm{S}_{30}, \mathrm{~S}_{31}, \mathrm{~S}_{32}$	see table 15	Code rate, HP stream
$\mathrm{S}_{33}, \mathrm{~S}_{34}, \mathrm{~S}_{35}$	see table 15	Code rate, LP stream
$\mathrm{S}_{36}, \mathrm{~S}_{37}$	see table 16	Guard interval
$\mathrm{S}_{38}, \mathrm{~S}_{39}$	see table 17	Transmission mode
$\mathrm{S}_{40}-\mathrm{S}_{53}$	all set to "0"	Reserved for future use
$\mathrm{S}_{54}-\mathrm{S}_{67}$	BCH code	Error protection

The TPS information transmitted in super-frame $\mathrm{m}^{\prime}$ bits $\mathrm{s}_{25}-\mathrm{s}_{39}$ always apply to super-frame $\mathrm{m}^{\prime}+1$, whereas all other bits refer to super-frame $\mathrm{m}^{\prime}$.

### 4.6.2.1 Initialisation

The first bit, $s_{0}$, is an initialisation bit for the differential 2-PSK modulation. The modulation of the TPS initialisation bit is derived from the PRBS sequence defined in subclause 4.5.2. This process is described in subclause 4.6.3.

### 4.6.2.2 Synchronisation

Bits 1 to 16 of the TPS is a synchronisation word.
The first and third TPS block in each super-frame have the following synchronisation word:
$s_{1}-s_{16}=0011010111101110$.
The second and fourth TPS block have the following synchronisation word:
$s_{1}-s_{16}=1100101000010001$.

## Page 32

Final draft prETS 300 744: November 1996

### 4.6.2.3 TPS length indicator

The first 6 bits of the TPS information is used as a TPS length indicator (binary count) to signal the number of used bits of the TPS. This length indicator has the value $\mathrm{s}_{17}-\mathrm{s}_{22}=010111$ at present.

### 4.6.2.4 Frame number

Four frames constitute one super-frame. The frames inside the super-frame are numbered from 0 to 3 according to table 12:

Table 12: Signalling format for frame number

Bits $\mathbf{s}_{\mathbf{2 3}}, \mathbf{s}_{\mathbf{2 4}}$	Frame number
00	Frame number 1 in the super-frame
01	Frame number 2 in the super-frame
10	Frame number 3 in the super-frame
11	Frame number 4 in the super-frame

### 4.6.2.5 Constellation

The constellation shall be signalled by 2 bits according to table 13. In order to determine the modulation scheme, the receiver shall also decode the hierarchy information given in table 14.

Table 13: Signalling format for the possible constellation patterns

Bits $\mathbf{S}_{\mathbf{2 5}}, \mathbf{s}_{\mathbf{2 6}}$	Constellation characteristics
00	QPSK
01	16-QAM
10	64-QAM
11	reserved

### 4.6.2.6 Hierarchy information

The hierarchy information specifies whether the transmission is hierarchical and, if so, what the $\alpha$ value is. The QAM constellation diagrams which correspond to various $\alpha$ values are shown in figures $9 \mathrm{a} / \mathrm{b} / \mathrm{c}$. Where $\alpha$ is signalled by three bits according to table 14.

Table 14: Signalling format for the $\alpha$ values

Bits $\mathbf{s}_{\mathbf{2 7}}, \mathbf{s}_{\mathbf{2 8}}, \mathbf{s}_{\mathbf{2 9}}$	
000	Non hierarchical
001	$\alpha=1$
010	$\alpha=2$
011	$\alpha=4$
100	reserved
101	reserved
110	reserved
111	reserved

### 4.6.2.7 Code rates

Non-hierarchical channel coding and modulation requires signalling of one code rate r. In this case, three bits specifying the code rate according to table 15 are followed by another three bits of value 000 . Two different code rates may be applied to two different levels of the modulation with the aim of achieving hierarchy. Transmission then starts with the code rate for the HP level $\left(r_{1}\right)$ of the modulation and ends with the one for the LP level $\left(r_{2}\right)$. Each code rate shall be signalled according to table 15.

Table 15: Signalling format for each of the code rates

Bits   $\mathbf{s}_{30}, \mathbf{s}_{31}, \mathbf{s}_{32}(\mathrm{HP}$ stream)   $\mathbf{s}_{33}, \mathbf{s}_{34}, \mathbf{s}_{35}(\mathrm{LP}$ stream)	
000	$1 / 2$
001	$2 / 3$
010	$3 / 4$
011	$5 / 6$
100	$7 / 8$
101	reserved
110	reserved
111	reserved

### 4.6.2.8 Guard Intervals

The value of the guard interval is signalled according to table 16:
Table 16: Signalling format for each of the guard interval values

Bits $\mathbf{S}_{\mathbf{3 6}}, \mathbf{S}_{\mathbf{3 7}}$	Guard interval values $\left(\Delta / \mathbf{T}_{\mathbf{U}}\right)$
00	$1 / 32$
01	$1 / 16$
10	$1 / 8$
11	$1 / 4$

### 4.6.2.9 Transmission mode

Two bits are used to signal the transmission mode ( 2 k mode or 8 k mode).
Table 17: Signalling format for transmission mode

Bits $\mathbf{s}_{38}, \mathbf{s}_{39}$	Transmission mode
00	2 k mode
01	8 k mode
10	reserved
11	reserved

### 4.6.2.10 Error protection of TPS

The 53 bits containing the TPS synchronisation and information are extended with 14 parity bits of the $B C H(67,53, t=2)$ shortened code, derived from the original systematic $B C H(127,113, t=2)$ code .

Code generator polynomial:
$h(x)=x^{14}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{2}+x+1$.

## Page 34

Final draft prETS 300 744: November 1996

### 4.6.3 TPS modulation

TPS cells are transmitted at the "normal" power level, i.e. they are transmitted with energy equal to that of the mean of all data cells, i.e. $\mathrm{E}[\mathrm{c} \bullet \mathrm{c} *]=1$.

Every TPS carrier is DBPSK modulated and conveys the same message. The DBPSK is initialised at the beginning of each TPS block.

The following rule applies for the differential modulation of TPS pilot on carrier $k$ of symbol $\mathrm{I}(\mathrm{I}>0)$ in frame m:

$$
\begin{aligned}
& \text { if } s_{I}=0, \text { then } \operatorname{Re}\left\{c_{m, l, k}\right\}=\operatorname{Re}\left\{c_{m, l-1, k}\right\} ; \operatorname{Im}\left\{c_{m, l, k}\right\}=0 \\
& \text { if } s_{I}=1 \text {, then } \operatorname{Re}\left\{c_{m, l, k}\right\}=-\operatorname{Re}\left\{c_{m, l-1, k}\right\} ; \operatorname{Im}\left\{c_{m, l, k}\right\}=0 .
\end{aligned}
$$

The absolute modulation of the TPS carriers in the first symbol in a frame is derived from the reference sequence $w_{k}$ as follows:

$$
\begin{aligned}
& \operatorname{Re}\left\{\mathrm{c}_{\mathrm{m}, \mathrm{l}, \mathrm{k}}\right\}=2\left(1 / 2-\mathrm{w}_{\mathrm{k}}\right) \\
& \operatorname{Im}\left\{\mathrm{c}_{\mathrm{m}, \mathrm{l}, \mathrm{k}}\right\}=0
\end{aligned}
$$

### 4.7 Number of RS-packets per OFDM super-frame

The OFDM frame structure allows for an integer number of Reed-Solomon 204 byte packets to be transmitted in an OFDM super-frame, and therefore avoids the need for any stuffing, whatever the constellation, the guard interval length, the coding rate or the channel bandwidth may be. See table 18.

The first data byte transmitted in an OFDM super-frame shall be one of the SYNC/ $\overline{\text { SYNC }}$ bytes.
Table 18: Number of Reed-Solomon packets per OFDM super-frame for all combinations of guard interval, code rates and modulation forms

Code   rate	QPSK		16-QAM		64-QAM	
	2k mode	8k mode	2k mode	8k mode	2k mode	8k mode
$1 / 2$	252	1008	504	2016	756	3024
$2 / 3$	336	1344	672	2688	1008	4032
$3 / 4$	378	1512	756	3024	1134	4536
$5 / 6$	420	1680	840	3360	1260	5040
$7 / 8$	441	1764	882	3528	1323	5292

Table 19: Useful bitrate (Mbit/s) for all combinations of guard interval, constellation and code rate for non-hierarchical systems

Modulation	Code rate	Guard interval			
		1/4	1/8	1/16	1/32
QPSK	1/2	4,98	5,53	5,85	6,03
	2/3	6,64	7,37	7,81	8,04
	3/4	7,46	8,29	8,78	9,05
	5/6	8,29	9,22	9,76	10,05
	7/8	8,71	9,68	10,25	10,56
16-QAM	1/2	9,95	11,06	11,71	12,06
	2/3	13,27	14,75	15,61	16,09
	3/4	14,93	16,59	17,56	18,10
	5/6	16,59	18,43	19,52	20,11
	7/8	17,42	19,35	20,49	21,11
64-QAM	1/2	14,93	16,59	17,56	18,10
	2/3	19,91	22,12	23,42	24,13
	3/4	22,39	24,88	26,35	27,14
	5/6	24,88	27,65	29,27	30,16
	7/8	26,13	29,03	30,74	31,67
NOTE: Figu	in italics are	ximate			
For the hierarchical schemes the useful bit rates can be obtained from table 19 as follows:   HP stream: figures from QPSK columns;   LP stream, 16 QAM: figures from QPSK columns;   LP stream, 64 QAM: figures from 16 QAM columns.					

### 4.8 Spectrum characteristics and spectrum mask

### 4.8.1 Spectrum characteristics

The OFDM symbols constitute a juxtaposition of equally-spaced orthogonal carriers. The amplitudes and phases of the data cell carriers are varying symbol by symbol according to the mapping process described in subclause 4.3.5.

The power spectral density $P_{k}(f)$ of each carrier at frequency

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{k}}=\mathrm{f}_{\mathrm{c}}+\frac{\mathrm{k}^{\prime}}{\mathrm{T}_{\mathrm{U}}} \\
& \mathrm{k}^{\prime}=\mathrm{k}-\left(\mathrm{K}_{\max }+\mathrm{K}_{\min }\right) / 2 ;\left(\mathrm{K}_{\min } \leq \mathrm{k} \leq \mathrm{K}_{\max }\right)
\end{aligned}
$$

is defined by the following expression:

$$
P_{k}(f)=\left[\frac{\sin \pi \cdot\left(f-f_{k}\right) \cdot T_{s}}{\pi \cdot\left(f-f_{k}\right) \cdot T_{s}}\right]^{2}
$$

## Page 36

## Final draft prETS 300 744: November 1996

The overall power spectral density of the modulated data cell carriers is the sum of the power spectral densities of all these carriers. A theoretical DVB transmission signal spectrum is illustrated in figure 12. Because the OFDM symbol duration is larger than the inverse of the carrier spacing, the main lobe of the power spectral density of each carrier is narrower than twice the carrier spacing. Therefore the spectral density is not constant within the nominal bandwidth of $7,608258 \mathrm{MHz}$ for the 8 k mode or $7,611607 \mathrm{MHz}$ for the 2 k mode (see note).

NOTE: Values in italics are approximate values.


Figure 12: Theoretical DVB transmission signal spectrum for guard interval $\Delta=T_{u} / 4$

### 4.8.2 Out-of-band spectrum mask

The level of the spectrum at frequencies outside the nominal bandwidth can be reduced by applying appropriate filtering.

Spectrum masks for cases where a transmitter for digital terrestrial television is co-sited with, and operating on a channel adjacent to, a transmitter for analogue television are given in figure 13 and table 20 for the following analogue television systems:

G / PAL / A2 and G / PAL / NICAM
I/ PAL / NICAM
K / SECAM and K / PAL
L / SECAM / NICAM.
The masks shown in figure 13 cover the minimum protection needed for analogue television where the analogue and the digital television transmitters are co-sited and are applicable for cases where:

- no polarisation discrimination between digital and analogue television is used; and
- the radiated power from both transmitters is the same (analogue sync-peak power equal to total power from the digital television transmitter).

If the radiated powers from the two transmitters are not identical, proportional correction can be applied as follows:
correction $=$ minimum analogue erp - maximum digital erp.

Corrected breakpoints equal reference breakpoints plus correction (dB).

Power level measured in a 4 kHz bandwidth,
where 0 dB corresponds to the total output power


Frequency relative to centre of DVB-T channel (MHz)

```
~-System G / PAL / NICAM -—System G / PAL / A2 - - System I / PAL / NICAM
ـ System K / SECAM and K / PAL ->* System L / SECAM / NICAM
```

Figure 13: Spectrum masks for a digital terrestrial television transmitter operating on a lower or higher adjacent channel to a co-sited analogue television transmitter

Page 38
Final draft prETS 300 744: November 1996
Table 20: Breakpoints for spectrum mask

Breakpoints										
	G / PAL / NICAM		G / PAL / A2		I / PAL / NICAM		K SECAM $/ \mathrm{PAL}$		$\begin{gathered} \hline \text { L S SECAM / } \\ \text { NICAM } \\ \hline \end{gathered}$	
See Note below	rel. freq.   MHz	rel. level dB	rel. freq.   MHz	rel. level dB	rel. freq.   MHz	rel. level dB	rel. freq.   MHz	rel.   level   dB	rel. freq.   MHz	rel. level dB
1	-12	-100	-12	-100	-12	-100	-12	-100	-12	-100
2	-10,75	-76,9	-10,75	-76,9	-10,75	-76,9	-10,75	-78,7	-10,75	-72,4
3	-9,75	-76,9	-9,75	-76,9	-9,75	-76,9	-9,75	-78,7	-9,75	-72,4
4	-5,75	-74,2	-5,75	-74,2	-5,75	-70,9	-4,75	-73,6	-4,75	-60,9
5	-5,185	-60,9	-5,185	n.a.	-4,685	-59,9	-4,185	-59,9	-4,185	-79,9
6	n.a.	n.a.	-4,94	-69,9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	-4,65	-56,9	n.a.	n.a.	-3,925	-56,9	n.a.	n.a.	-4,65	n.a.
8	-3,9	-32,8	-3,9	-32,8	-3,9	-32,8	-3,9	-32,8	-3,9	-32,8
9	+3,9	-32,8	+3,9	-32,8	+3,9	-32,8	+3,9	-32,8	+3,9	-32,8
10	+4,25	-64,9	+4,25	-64,9	+4,25	-66,9	+4,25	-66,1	+4,25	-59,9
11	+5,25	-76,9	+5,25	-76,9	+5,25	-76,2	+5,25	-78,7	+5,25	-69,9
12	+6,25	-76,9	+6,25	-76,9	+6,25	-76,9	+6,25	-78,7	+6,25	-72,4
13	+10,25	-76,9	+10,25	-76,9	+10,25	-76,9	+11,25	-78,7	+11,25	-72,4
14	+12	-100	+12	-100	+12	-100	+12	-100	+12	-100
NOTE 1:	Lower end of lower adjacent chan									
NOTE 2:	Vision carrier in lower adjacent channel									
NOTE 3:	Vision carrier +1 MHz in lower adjacent channel									
NOTE 4:	Upper end of video sideband in lower adjacent channel									
NOTE 5:	Upper end of the RF bandwidth of the first soundcarrier in lower adjacent channel									
NOTE 6:	Upper end of the RF bandwidth of the A2 second soundcarrier in lower adjacent channel									
NOTE 7:	Upper end of the RF bandwidth of the NICAM signal in the lower adjacent channel									
NOTE 8:	Lower end of the RF bandwidth of the DVB-T signal									
NOTE 9:	Upper end of the RF bandwidth of the DVB-T signal									
NOTE 10:	Lower video sideband (vision carrier - 1 MHz ) in upper adjacent channel									
NOTE 11:	Vision carrier in upper adjacent channel									
NOTE 12:	Vision carrier +1 MHz in upper adjacent channel									
NOTE 13:	Upper end of video sideband in upper adjacent channel									
NOTE 14	Upper end of upper adjacent channel									

Cells marked "n.a" in table 20 indicates that this part of the analogue television signal does not exist or has no influence on the shape of the spectrum mask.

For critical cases such as television channels adjacent to other services (low power or receive only) a spectrum mask with higher of out-of-channel attenuation may be needed. A spectrum mask for critical cases is shown in figure 14. Breakpoints for the critical mask are given in table 21.

Power level measured in a 4 kHz bandwidth,
where 0 dB corresponds to the total output power


Frequency relative to centre of DVB-T channel (MHz)
Figure 14: Spectrum mask for critical cases

Table 21: Breakpoints for spectrum mask for critical cases

Breakpoints	
relative frequency [MHz]	relative level [dB]
-12	-120
-6	-95
$-4,2$	-83
$-3,8$	$-32,8$
$+3,8$	$-32,8$
$+4,2$	-83
+6	-95
+12	-120

### 4.8.3 Centre frequency of RF signal

The nominal centre frequency $f_{c}$ of the RF signal is given by:

$$
470 \mathrm{MHz}+4 \mathrm{MHz}+\mathrm{i}_{1} \times 8 \mathrm{MHz}, \mathrm{i}_{1}=0,1,2,3, \ldots .
$$

This is exactly the centre frequency of the UHF channel in use. This centre frequency may be offset to improve spectrum sharing.

## Page 40

Final draft prETS 300 744: November 1996

## Annex A (normative): Simulated system performance

Tables A.1, A. 2 and A. 3 give simulated performance anticipating 'perfect channel estimation and without phase noise' of channel coding and modulation combinations, and are subject to confirmation by testing. These results are given for the Gaussian channel, Ricean channel ( $F_{1}$ ) and Rayleigh channel ( $P_{1}$ ). $F_{1}$ and $P_{1}$ are described in annex $B$. Associated useful bit rates available are also indicated as a function of the guard interval to active symbol duration for the four different values of guard interval.

Table A.1: Required C/N for non-hierarchical transmission to achieve a BER = $2 \times 10^{-4}$ after the Viterbi decoder for all combinations of coding rates and modulation types. The net bit rates after the Reed-Solomon decoder are also listed

		Req   BER = 2   QEF after	$\begin{aligned} & \text { uired C/N } \\ & \times 10^{-4} \text { afte } \\ & \text { er Reed-S } \end{aligned}$	for   Viterbi olomon		Bitra	(Mbit/s)	
Modulation	Code rate	Gaussian channel	Ricean channel ( $\mathrm{F}_{1}$ )	Rayleigh channel ( $\mathrm{P}_{1}$ )	$\Delta / T_{U}=1 / 4$	$\Delta / T_{U=} 1 / 8$	$\Delta / T_{U}=1 / 16$	$\Delta / T_{U}=1 / 32$
QPSK	1/2	3,1	3,6	5,4	4,98	5,53	5,85	6,03
QPSK	2/3	4,9	5,7	8,4	6,64	7,37	7,81	8,04
QPSK	3/4	5,9	6,8	10,7	7,46	8,29	8,78	9,05
QPSK	5/6	6,9	8,0	13,1	8,29	9,22	9,76	10,05
QPSK	7/8	7,7	8,7	16,3	8,71	9,68	10,25	10,56
16-QAM	1/2	8,8	9,6	11,2	9,95	11,06	11,71	12,06
16-QAM	2/3	11,1	11,6	14,2	13,27	14,75	15,61	16,09
16-QAM	3/4	12,5	13,0	16,7	14,93	16,59	17,56	18,10
16-QAM	5/6	13,5	14,4	19,3	16,59	18,43	19,52	20,11
16-QAM	7/8	13,9	15,0	22,8	17,42	19,35	20,49	21,11
64-QAM	1/2	14,4	14,7	16,0	14,93	16,59	17,56	18,10
64-QAM	2/3	16,5	17,1	19,3	19,91	22,12	23,42	24,13
64-QAM	3/4	18,0	18,6	21,7	22,39	24,88	26,35	27,14
64-QAM	5/6	19,3	20,0	25,3	24,88	27,65	29,27	30,16
64-QAM	7/8	20,1	21,0	27,9	26,13	29,03	30,74	31,67
NOTE:	Quasi Error Free (QEF) means less than one uncorrected error event per hour, corresponding to $\mathrm{BER}=10^{-11}$ at the input of the MPEG-2 demultiplexer.							

Table A.2: Required C/N for hierarchical transmission to achieve a BER = $2 \times 10^{-4}$ after Viterbi decoder

			Required C/N for BER $=2 \times 10^{-4}$ after Viterbi QEF after Reed-Solomon			Bitrate (Mbit/s)			
Modulation	Code Rate	$\alpha$	Gaussian Channel	Ricean Channel ( $\mathrm{F}_{1}$ )	Rayleigh Channel ( $\mathrm{P}_{1}$ )	$\Delta / T_{U}=1 / 4$	$\Delta / T_{U}=1 / 8$	$\Delta / \mathrm{T}_{\mathrm{U}}=.1 / 32$	$\Delta / T_{U}=1 / 16$
QPSKin	1/2	2	4,8	5,4	6,9	4,98	5,53	5,85	6,03
	2/3		7,1	7,7	9,8	6,64	7,37	7,81	8,04
	3/4		8,4	9,0	11,8	7,46	8,29	8,78	9,05
						+			
nonuniform 16-QAM	1/2		13,0	13,3	14,9	4,98	5,53	5,85	6,03
	2/3		15,1	15,3	17,9	6,64	7,37	7,81	8,04
	3/4		16,3	16,9	20,0	7,46	8,29	8,78	9,05
	5/6		16,9	17,8	22,4	8,29	9,22	9,76	10,05
	7/8		17,9	18,7	24,1	8,71	9,68	10,25	10,56
QPSKin	1/2	4	3,8	4,4	6,0	4,98	5,53	5,85	6,03
	2/3		5,9	6,6	8,6	6,64	7,37	7,81	8,04
	3/4		7,1	7,9	10,7	7,46	8,29	8,78	9,05
						+			
nonuniform 16-QAM	1/2		17,3	17,8	19,6	4,98	5,53	5,85	6,03
	2/3		19,1	19,6	22,3	6,64	7,37	7,81	8,04
	3/4		20,1	20,8	24,2	7,46	8,29	8,78	9,05
	5/6		21,1	22,0	26,0	8,29	9,22	9,76	10,05
	7/8		21,9	22,8	28,5	8,71	9,68	10,25	10,56

NOTE: Figures in italics are approximate values.
Results for QPSK in non-uniform 64-QAM with $\alpha=4$ are not included due to the poor performance of the 64-QAM signal.

## Page 42

Final draft prETS 300 744: November 1996
Table A.3: Required C/N for hierarchical transmission to achieve a $B E R=\mathbf{2} \times 10^{-4}$ after Viterbi decoder


NOTE: Figures in italics are approximate values.
Results for QPSK in non-uniform 64-QAM with $\alpha=4$ are not included due to the poor performance of the 64-QAM signal.

## Annex B (informative): Definition of $P_{1}$ and $F_{1}$

The performance of the system has been simulated with two channel models for fixed reception $-F_{1}$ and portable reception - $\mathrm{P}_{1}$, respectively.

The channel models have been generated from the following equations where $x(t)$ and $y(t)$ are input and output signals respectively:
a) Fixed reception $F_{1}$ :

$$
y(t)=\frac{\rho_{0} \cdot x(t)+\sum_{i=1}^{N} \rho_{i} \cdot e^{-\mathrm{j} \cdot 2 \pi \theta_{i}} \cdot x\left(t-\tau_{i}\right)}{\sqrt{\sum_{i=0}^{N} \rho_{i}^{2}}}
$$

where:

- the first term before the sum represents the line of sight ray;
- $\quad N$ is the number of echoes equals to 20 ;
- $\quad \theta_{\mathrm{i}}$ is the phase shift from scattering of the i 'th path - listed in table B.1;
- $\quad \rho_{i}$ is the attenuation of the $i$ 'th path - listed in table B.1;
- $\quad \tau_{\mathrm{i}}$ is the relative delay of the i'th path - listed in table B.1.

The Ricean factor K (the ratio of the power of the direct path (the line of sight ray) to the reflected paths) is given as:

$$
K=\frac{r_{0}^{2}}{\sum_{i=1}^{N} r_{i}^{2}}
$$

In the simulations a Ricean factor $\mathrm{K}=10 \mathrm{~dB}$ has been used. In this case:

$$
\rho_{o}=\sqrt{10 \cdot \sum_{i=1}^{N} \rho_{i}^{2}}
$$

b) Portable reception, Rayleigh fading $\left(P_{1}\right)$ :

$$
y(t)=k \cdot \sum_{i=1}^{N} \rho_{i} \cdot e^{-j \cdot 2 \pi \cdot \theta_{i}} \cdot x\left(t-\tau_{i}\right) \text { where } k=\frac{1}{\sqrt{\sum_{i=1}^{N} \rho_{i}{ }^{2}}}
$$

$\theta_{\mathrm{i}}, \rho_{\mathrm{i}}$ and $\tau_{\mathrm{i}}$ are given in table B.1.

## Page 44

Final draft prETS 300 744: November 1996
Table B.1: Attenuation, phase and delay values for $F_{1}$ and $P_{1}$

$\mathbf{i}$	$\rho_{\mathbf{i}}$	$\tau_{\mathbf{i}}[\mu \mathbf{s}]$	$\theta_{\mathbf{i}}[\mathrm{rad}]$
1	0,057662	1,003019	4,855121
2	0,176809	5,422091	3,419109
3	0,407163	0,518650	5,864470
4	0,303585	2,751772	2,215894
5	0,258782	0,602895	3,758058
6	0,061831	1,016585	5,430202
7	0,150340	0,143556	3,952093
8	0,051534	0,153832	1,093586
9	0,185074	3,324866	5,775198
10	0,400967	1,935570	0,154459
11	0,295723	0,429948	5,928383
12	0,350825	3,228872	3,053023
13	0,262909	0,848831	0,628578
14	0,225894	0,073883	2,128544
15	0,170996	0,203952	1,099463
16	0,149723	0,194207	3,462951
17	0,240140	0,924450	3,664773
18	0,116587	1,381320	2,833799
19	0,221155	0,640512	3,334290
20	0,259730	1,368671	0,393889

NOTE:
Figures in italics are approximate values.

## Annex C (informative): Interleaving example

The bit interleaving and symbol interleaving rules and the corresponding mapping onto carriers are illustrated in table C. 1 for the first symbol in a superframe (i.e. even symbol), 2 k mode, 64 QAM, nonhierarchical transmission.

Table C. 1 shows the input bit indeces to the mapping block, shown in figure 7a, when the input bits to the bit interleaver are numbered 0 to 9071 , and the corresponding carrier number. The indeces corresponds to the interleaver input bit numbers.

Table C.1: Mapping of input bits.

Input to mapping block $y_{q^{\prime}}=y_{0 q^{\prime}}, y_{1 q^{\prime}}, y_{2 q^{\prime}}, \mathbf{y}_{3 q^{\prime}}, \mathbf{y}_{4 q^{\prime}}, \mathbf{y}_{5 q^{\prime}}$	Carrier number $k$
pilot	0
0, 381, 631, 256, 128, 509	1
4602, 4983, 5233, 4858, 4730, 5111	2
36, 417, 667, 292, 164, 545	3
4656, 5037, 5287, 4912, 4784, 5165	4
48, 429, 679, 304, 176, 557	5
2376, 2757, 3007, 2632, 2504, 2885	6
780, 1161, 1411, 1036, 908, 1289	7
6906, 7287, 7537, 7162, 7034, 7415	8
4590, 4971, 5221, 4846, 4718, 5099	9
5286, 4911, 5161, 4786, 4658, 5039	10
2364, 2745, 2995, 2620, 2492, 2873	11
pilot	12
4788, 5169, 4663, 5044, 4916, 4541	13
......	
4194, 3819, 4069, 4450, 4322, 3947	1691
pilot	1692
7782, 8163, 7657, 8038, 7910, 8291	1693
6624, 6249, 6499, 6124, 6752, 6377	1694
3402, 3027, 3277, 3658, 3530, 3155	1695
546, 171, 421, 46, 674, 299	1696
8574, 8955, 8449, 8830, 8702, 8327	1697
8376, 8757, 9007, 8632, 8504, 8885	1698
1680, 2061, 1555, 1936, 1808, 2189	1699
7620, 8001, 8251, 7876, 7748, 8129	1700
5700, 5325, 5575, 5956, 5828, 5453	1701
8826, 8451, 8701, 8326, 8954, 8579	1702
8724, 8349, 8599, 8980, 8852, 8477	1703
pilot	1704

Page 46
Final draft prETS 300 744: November 1996

## History

Document history			
May 1996	Public Enquiry	PE 106:	1996-05-20 to 1996-09-13
November 1996	Vote	V 115:	1996-11-25 to 1997-01-17


[^0]:    Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

