
DRAFT

EUROPEAN pr ETS 300 743

TELECOMMUNICATION November 1996

STANDARD

Source: EBU/CENELEC/ETSI JTC Reference: DE/JTC-DVB-17

ICS: 33.020

Key words: DVB, digital, video, broadcasting, TV

European Broadcasting Union Union Européenne de Radio-Télévision

Digital Video Broadcasting (DVB);
DVB Subtitling system

ETSI

European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 4 92 94 42 00 - Fax: +33 4 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1996.
© European Broadcasting Union 1996.
All rights reserved.

Page 2
Draft prETS 300 743: November 1996

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
Draft prETS 300 743: November 1996

Contents

Foreword ...5

1 Scope ..7

2 Normative references..7

3 Definitions and abbreviations ..7
3.1 Definitions ..7
3.2 Symbols and abbreviations..8

4 Introduction to DVB Subtitling system ...9
4.1 Overview ..9
4.2 Data hierarchy and terminology ...10
4.3 Temporal hierarchy and terminology ...10

5 Subtitle decoder model..11
5.1 Decoder temporal model ...11

5.1.1 Service acquisition ..11
5.1.2 Presentation Time Stamps..12
5.1.3 Page composition..12
5.1.4 Region composition...12
5.1.5 Points to note ..13

5.2 Buffer memory model ..13
5.2.1 Pixel Display Buffer Memory ...13
5.2.2 Region Memory ...14
5.2.3 Composition Buffer Memory..14

5.3 Cumulative display construction ..14
5.4 Decoder rendering bandwidth model ...14

5.4.1 Page erasure...14
5.4.2 Region move or change in visibility ...14
5.4.3 Region fill...15
5.4.4 CLUT modification...15
5.4.5 Graphic Object decoding...15
5.4.6 Character object decoding ..15

6 PES packet format ..15

7 The PES packet data for Subtitling ...16
7.1 Syntax and semantics of the PES data field for Subtitling...16
7.2 Syntax and semantics of the Subtitling Segment ..16

7.2.1 Page Composition Segment..17
7.2.2 Region Composition Segment...19
7.2.3 CLUT Definition Segment..21
7.2.4 Object Data Segment ..22

7.2.4.1 Pixel-data sub-block ..24
7.2.4.2 Syntax and semantics of the pixel code strings...................25

8 Requirements for the Subtitling data...27
8.1 Scope of Identifiers ..27
8.2 Scope of dependencies ...27

8.2.1 Composition page ...27
8.2.2 Ancillary page ..27

8.3 Order of delivery ..28
8.3.1 PTS field..28

8.4 Positioning of regions and objects ...28
8.4.1 Regions ...28

Page 4
Draft prETS 300 743: November 1996

8.4.2 Objects sharing a PTS.. 28
8.4.3 Objects added to a region... 28

8.5 Avoiding excess pixel-data capacity.. 28

9 Translation to colour components .. 29
9.1 4- to 2-bit reduction ... 29
9.2 8- to 2-bit reduction ... 29
9.3 8- to 4-bit reduction ... 30

10 Default CLUTs and map-tables contents.. 31
10.1 256-entry CLUT default contents .. 31
10.2 16-entry CLUT default contents .. 32
10.3 4-entry CLUT default contents .. 32
10.4 2_to_4-bit_map-table default contents.. 33
10.5 2_to_8-bit_map-table default contents.. 33
10.6 4_to_8-bit_map-table default contents.. 33

11 Structure of the pixel code strings (informative) ... 34

History ... 35

Page 5
Draft prETS 300 743: November 1996

Foreword

This draft European Telecommunication Standard (ETS) has been produced by the Joint Technical
Committee (JTC) of the European Broadcasting Union (EBU), Comité Européen de Normalisation
ELECtrotechnique (CENELEC) and the European Telecommunications Standards Institute (ETSI), and is
now submitted for the Public Enquiry phase of the ETSI standards approval procedure.

NOTE: The EBU/ETSI JTC was established in 1990 to co-ordinate the drafting of ETSs in the
specific field of broadcasting and related fields. Since 1995 the JTC became a tripartite
body by including in the Memorandum of Understanding also CENELEC, which is
responsible for the standardization of radio and television receivers. The EBU is a
professional association of broadcasting organizations whose work includes the
co-ordination of its Members' activities in the technical, legal, programme-making and
programme-exchange domains. The EBU has Active Members in about 60 countries
in the European Broadcasting Area; its headquarters is in Geneva*.

* European Broadcasting Union
Case Postale 67
CH-1218 GRAND SACONNEX (Geneva)
Switzerland

Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

Digital Video Broadcasting (DVB) Project

Founded in September 1993, the DVB Project is a market-led consortium of public and private sector
organizations in the television industry. Its aim is to establish the framework for the introduction of
MPEG-2 based digital television services. Now comprising over 200 organizations from more than 25
countries around the world, DVB fosters market-led systems, which meet the real needs, and economic
circumstances, of the consumer electronics and the broadcast industry.

Proposed transposition dates

Date of latest announcement of this ETS (doa): 3 months after ETSI publication

Date of latest publication of new National Standard
or endorsement of this ETS (dop/e): 6 months after doa

Date of withdrawal of any conflicting National Standard (dow): 6 months after doa

Page 6
Draft prETS 300 743: November 1996

Blank page

Page 7
Draft prETS 300 743: November 1996

1 Scope

This ETS specifies the method by which subtitles, logos and other graphical elements may be coded and
carried in DVB bitstreams. The system applies Colour Look Up Tables (CLUTs) to define the colours of
the graphical elements. The transport of the coded graphical elements is based on the MPEG-2 system
described in ISO/IEC 13818-1 [1].

2 Normative references

This ETS incorporates by dated and undated reference, provisions from other publications. These
normative references are cited at the appropriate places in the text and the publications are listed
hereafter. For dated references, subsequent amendments to or revisions of any of these publications
apply to this ETS only when incorporated in it by amendment or revision. For undated references the latest
edition of the publication referred to applies.

[1] ISO/IEC 13818-1: "Coding of moving pictures and associated audio".

[2] ETS 300 468: "Digital broadcasting systems for television, sound and data
services; Specification for Service Information (SI) in Digital Video Broadcasting
(DVB) systems".

[3] ISO/IEC 10646-1 (1993): "Information Technology - Universal Multiple Octet
Coded Character Set (UCS) - Part 1: Architecture and Basic Multilingual Plane".

[4] ITU-R Recommendation 601-3 (1992): "Encoding parameters of digital
television for studios".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this ETS, the following definitions apply:

ancillary page: An optional page that can be used to carry CLUT definition and object data segments that
can be shared by more than one subtitle stream. For example, the ancillary page can be used to carry
logos or character glyphs.

Colour Look-Up Table (CLUT): A look-up table applied in each region for translating the objects' pseudo-
colours into the correct colours on the screen. In most cases, one CLUT is sufficient to present correctly
the colours of all objects in a region, but if it is not enough, then the objects can be split horizontally into
smaller objects that, combined in separate regions, need not more than one CLUT per region.

CLUT-family: A family of CLUTs which consists of:

- one CLUT with four entries;
- one CLUT with sixteen entries;
- one CLUT with 256 entries.

NOTE : Three CLUTs are defined to allow flexibility in the decoder design. Not all decoders
may support a CLUT with 256 entries, some may provide sixteen or even only four
entries. A palette of four colours would be enough for graphics that are basically
monochrome, like subtitles, while a palette of sixteen colours allows for cartoon-like
coloured objects. Having a CLUT of only four entries does not imply that only a rigid
colour scheme can be used. The colours that correspond to the four entries can be
redefined, for instance from a black-grey-white scheme to a blue-grey-yellow scheme.
Furthermore, a graphical unit may be divided into several regions that are linked to
different CLUTs, i.e. a different colour scheme may be applied in each of the regions.

Page 8
Draft prETS 300 743: November 1996

composition page: The page which carries the page composition. This page may contain graphical
elements as well. Those elements that may be shared by different screen layouts are carried in an
"ancillary page".

NOTE : Thus, alternative screen layouts, defined as different page compositions, may use the
same CLUTs and objects. There is no need to convey the common information for
each screen layout separately. This sharing is particularly useful when subtitles are
provided in several languages, all combined with the same logo. To retain flexibility,
the position at which a region is shown on the screen is not a property of that region
itself, but defined in the page composition, so that a shared region may be shown in
different locations on different screen layouts.

decoder state: Pixel and Composition buffer memory allocations and values.

display: A completed set of graphics.

display set: The set of segments that operate on the decoder state between page composition segments
to produce a new display.

display sequence: A sequence of one or more displays.

epoch: The period between resets to the decoder state caused by page composition segments with page
state = "mode change".

object: Anything that can be presented on a TV screen, e.g. a subtitle, a logo, a map, etc. An object can
be regarded as a graphical unit. Each has its own unique ID-number.

packet identifier: See ISO/IEC 13818-1 [1].

page composition: The top-level definition of a screen layout. Several regions may be shown
simultaneously on the screen; those regions are listed in the page composition. At any one time, only one
page composition can be active for displaying, but many may be carried simultaneously in the bitstream.

PES packet: See ISO/IEC 13818-1 [1].

pixel-data: A string of data bytes that contains, in coded form, the representation of a graphical object.

region: A rectangular area on the screen in which objects are shown. Objects that share one or more
horizontal scan lines on the screen are included in the same region.

NOTE : A region therefore monopolizes the scan lines of which it occupies any part; no two
regions can be presented horizontally next to each other.

transport packet: See ISO/IEC 13818-1 [1].

transport packet stream: A sub-set of the transport packets in a transport stream sharing a common
packet identifier (PID).

transport stream: See ISO/IEC 13818-1 [1]. A data stream carrying one or more MPEG programs.

subtitle stream: A stream of Subtitling segments that when decoded will provide a sequence of Subtitling
graphics meeting a single communication requirement (e.g. the graphics to provide subtitles in one
language for a one program). A Subtitling stream may contain data from a single page (the composition
page) or from two pages (the composition page and the ancillary page).

3.2 Symbols and abbreviations

For the purposes of this ETS, the following abbreviations apply:

Page 9
Draft prETS 300 743: November 1996

bslbf bit string, left bit first
Cb as defined in ITU-R Recommendation 601-3 [4] (see subclause 7.2.3)
CLUT Colour Look-Up Table
Cr as defined in ITU-R Recommendation 601-3 [4] (see subclause 7.2.3)
DVB Digital Video Broadcasting
IRD Integrated Receiver Decoder
MPEG Moving Pictures Experts Group
PCR Programme Clock Reference
PCS Page Composition Segments
PES Packetized Elementary Stream
PID Packet IDentifier
PMT Program Map Table
PTS Presentation Time Stamp
RCS Region Composition Segments
ROM Read-Only Memory
TS Transport Stream
uimsbf unsigned integer, most significant bit first
Y as defined in ITU-R Recommendation 601-3 [4] (see subclause 7.2.3)

4 Introduction to DVB Subtitling system

This ETS specifies the transport and coding of graphical elements in the DVB Subtitling system.

4.1 Overview

To provide efficient use of the display memory in the decoder this Subtitling system uses region based
graphics with indexed pixel colours. Each display is composed of a number of regions with specified
position. A region is a rectangular area with a horizontal and vertical size, pixel depth. A region can have a
defined background colour and graphical objects can be positioned within the region.

Pixel depths of 2, 4 and 8-bits are supported allowing up to 4, 16 or 256 different pixel codes to be used in
each region. Each region is associated with a CLUT which defines the colour and transparency for each of
the pixel codes.

At the discretion of the encoder, objects designed for displays supporting 16 or 256 colours can be
decoded into displays supporting fewer colours. A quantization algorithm is defined to ensure that this
process is predictable by the originator. This feature allows a single data stream to be decoded by a
population of decoders with mixed, and possibly evolving, capabilities.

This Subtitling system provides a number of techniques that allow efficient transmission of the graphic
data:

- pixel structures that occur more than once within a bitmap can be transmitted only once, and then
positioned multiple times within the bitmap;

- pixel structures used in more than one subtitle stream shall only be transmitted once;

- pixel data is compressed using run-length coding;

- where the gamut of colours required for part of a graphical object is suitably limited, that part can be
coded using a smaller number of bits per pixel and a map table. For example, an 8-bit per pixel
graphical object may contain areas coded as 4 or 2-bits per pixel each preceded by a map table to
map the 16 or 4 colours used onto the 256 colour set of the region. Similarly, a 4-bit per pixel object
may contain areas coded as 2-bits per pixel;

- colour definitions can be coded using either 16 or 32-bits per CLUT entry. This provides a trade off
between colour accuracy and transmission bandwidth.

The above features require only compliance with this ETS. Additional features are provided that allow
more efficient operation where there are additional agreements between the data provider and the
manufacturer of the decoder:

Page 10
Draft prETS 300 743: November 1996

- graphic objects resident in ROM in the decoder can be referenced;
- character codes, or strings of character codes, can be used in place of graphic object references.

This requires the decoder to be able to generates glyphs for these codes.

This ETS is not concerned with the private agreements required to make these features operate.

4.2 Data hierarchy and terminology

The "building block" of the Subtitling information is the subtitling_segment. These segments are carried in
PES packets which are in-turn carried by Transport Packets.

All the broadcast data required for a subtitle stream will be carried by a single transport packet stream (i.e.
on a single PID). A single transport packet stream can carry several different streams of subtitles. The
different subtitle streams can be subtitles in different languages for a common program. Alternatively, they
can be for different programs (provided that the programs share a common PCR).

Different subtitle streams can also be supplied to address different display characteristics or to address
special needs. For example:

- different subtitle streams can be provided for 4:3 and 16:9 aspect ratio displays;
- subtitle streams can be provided for viewers with impaired hearing. These may include graphical

representations of sounds.

Within a transport packet stream the segments for different Subtitling streams are identified by their page
identifiers. One or more subtitling_descriptors ETS 300 468 [2] in the PMT for a program describe the
available Subtitling streams and specify the PID and page ids that shall be decoded for each Subtitling
stream.

A Subtitling stream may contain data from a single page (the composition page) or from two pages (the
composition page and the ancillary page). The ancillary page can be used to carry objects that are
common to 2 or more subtitle streams. For example, the ancillary page can carry a logo that is common to
subtitle streams for several different languages.

The PTS in the PES packet provides presentation timing information for the Subtitling data. The number
of segments carried by each PES packet is only limited by the maximum length of a PES packet defined
by MPEG.

In summary the data hierarchy is:

- Transport Stream (TS);
- transport packet stream (common PID);
- PES (provides timing);
- subtitle stream (composition or composition and ancillary pages);
- page;
- segment.

4.3 Temporal hierarchy and terminology

At the segment level in the data hierarchy there is temporal hierarchy. The highest level is the epoch. This
is analogous to the MPEG video sequence. No decoder state is preserved from one epoch to the next.

An epoch is a sequence of one or more displays. Each display is a completed screen of graphics.
Consecutive displays may differ little (e.g. by a single word when stenographic Subtitling is being used) or
may be completely different. The set of segments that form each display is called a display set.

Within a display set the sequence of segments (when present) is:

- Page composition;
- Region composition;
- CLUT definition;
- Object data.

Page 11
Draft prETS 300 743: November 1996

All segments associated with composition page shall be delivered before any segments from the optional
ancillary page. The ancillary page may only carry CLUT definition or object data segments.

5 Subtitle decoder model

The subtitle decoder model is an abstraction of the processing required for the interpretation of Subtitling
streams. The main purpose of this model is to define a number of constraints which can be used to verify
the validity of Subtitling streams. The following figure shows a typical implementation of a Subtitling
decoding process in a receiver.

PID filter Coded data
buffer

Subtitle
processing

Pixel
buffer

Transport
buffer

Subtitle Decoder

512 bytes 80 KByte

MPEG-2
TS packets

192 kbit/s 512 kbit/s

24 KByte

Pre-
processor

Compositio
n buffer

4 KByte

Figure 1: Subtitle decoder model

The input to the Subtitling decoding process is an MPEG-2 Transport Stream (TS). After a selection
process based on PID value, complete MPEG-2 Transport Stream packets enter into a transport buffer
with a size of 512 bytes. When there is data in the transport buffer, data is removed from this buffer with a
rate of 192 kbit/s. When no data is present, the data rate equals zero.

The MPEG-2 transport stream packets from the transport buffer are processed by stripping off the packet
headers of TS packets and of Packetised Elementary Stream (PES) packets with the proper
data_identifier value. The Presentation Time Stamp (PTS) fields shall be passed on to the next stages of
the Subtitling processing. The output of the pre-processor is a stream of Subtitling segments which are
filtered based on their page_id values.

The selected segments enter into a coded data buffer which has a size of 24 kbytes. Only complete
segments are removed from this buffer by the subtitle decoder. The removal and decoding of the
segments is instantaneous (i.e. it takes zero time). If a segment produces pixel data, the subtitle decoder
stops removing segments from the coded data buffer until all pixels have been transmitted to the pixel
buffer. The rate for the transport of pixel data into the pixel buffer is 512 kbit/s.

5.1 Decoder temporal model

A complete description of the memory use of the decoder shall be delivered at the start of each epoch.
Hence, epoch boundaries provide a guaranteed service acquisition point. Epoch boundaries are signalled
by page composition segments with a page state of "mode change".

The pixel buffer and the composition buffer hold the state of the Subtitling decoder. The epoch for which
this state is defined is between Page Composition Segments (PCSs) with page state of "mode change".
When a PCS with state of "mode change" is received by a decoder all memory allocations implied by
previous segments are discarded i.e. the decoder state is reset.

All the regions to be used in an epoch shall be introduced by the Region Composition Segments (RCSs)
in the display set that accompanies the PCS with page state of "mode change" (i.e. the first display set of
the epoch). This requirement allows a decoder to plan all of its pixel buffer allocations before any object
data is written to the buffers. Similarly, all of the CLUT entries to be used during the epoch shall be
introduced in this first display set. Subsequent segments can modify the values held in the pixel buffer and
composition buffer but may not alter the quantity of memory required.

5.1.1 Service acquisition

The other allowed values of page state are "acquisition point" and "normal case". The "acquisition point"
state (like the "mode change" state) indicates that a complete description of the memory use of the
decoder is being broadcast. However, the memory use is guaranteed to be the same as that previously in
operation. Decoders that have already acquired the service shall only look for development of the existing

Page 12
Draft prETS 300 743: November 1996

display (e.g. new graphical objects to be decoded). Decoders trying to acquire the service can treat a page
state of "acquisition point" as if it is "mode change".

Use of the page state of "mode change" may require the decoder to remove the graphic display for a short
period while the decoder reallocates its memory use. The "acquisition point" state should not cause any
disruption of the display. Hence it is expected that the "mode change" state will be used infrequently (e.g.
at the start of a program, or when there are significant changes in the graphic display) while the
"acquisition point" state will be used every few seconds to enable rapid service acquisition by decoders.

A page state of "normal case" indicates that the set of RCS may not be complete (it shall only include the
regions into which objects are being drawn in this display set). There is no requirement on decoders to
attempt service acquisition at a "normal case" display set.

5.1.2 Presentation Time Stamps

Segments are encapsulated in PES packets. The PES packet structures is primarily used to carry a
Presentation Time Stamp (PTS) for the Subtitling data.

Unlike video data, Subtitling displays have no natural refresh rate. So, each display shall be associated
with a PTS to control when it is displayed. For any Subtitling stream there can be at most one display set
in each PES packet. However, the PES packet can contain concurrent display sets for a number of
different subtitle streams, all sharing the same presentation time. It is possible that segments for one
display time may have to be split over more than one PES packet (e.g. because of the 64 kbytes limit on
PES packet length). In this case more than one PES packet will have the same PTS value.

In summary, all of the segments of a single display set shall be carried in one (or more) PES packets that
have the same PTS value.

All of the data for a display shall be delivered to the decoder in sufficient time to allow a model decoder to
decode all of the data by the time indicated by the PTS.

5.1.3 Page composition

The Page Composition Segment (PCS) carries a list of zero or more regions. This list defines the set of
regions that will be visible in the display defined by this PCS.

This visibility list becomes valid at the time defined by the PTS of the enclosing PES packet. The display
of a model decoder will instantly switch from any previously existing set of visible regions to the newly
defined set.

The PCS may be followed by zero or more Region Composition Segments (RCS). The region list in the
PCS may be quite different from the set of RCS that follow.

5.1.4 Region composition

A complete set of Region Composition Segments (RCS) shall be present in the display set that follows a
PCS with page state of "mode change" or "acquisition point" as this is the process that introduces regions
and allocates memory for them. Display sets with a PCS with page state of "normal case" shall only
contain regions whose contents are to be modified.

Once introduced the memory "foot print" of a region shall remain fixed for the remainder of the epoch. The
following facets of the region specification cannot change once set:

- width;
- height;
- depth;
- region_level_of_compatability;
- CLUT_id.

Attributes of the region are the region_fill_flag and the region_n-bit_pixel_code. When the region_fill_flag
is set the first graphics operation performed on a region should be to colour all pixels in the region with the

Page 13
Draft prETS 300 743: November 1996

colour indicated by the region_n-bit_pixel_code. The value of the region_n-bit_pixel_code should only
change in RCS where the region_fill_flag is set. Decoders that have already acquired the Subtitling
service can ignore the region_n-bit_pixel_code when the region_fill_flag is not set. A decoder in the
process of acquiring the service can rely on the region_n-bit_pixel_code being the current region fill colour
regardless of the state of region_fill_flag.

There is no requirement for a region to be initialized by filling it when the region is introduced at the start of
the epoch. This allows the rendering load to be deferred until the region is required to be visible. In the
limiting case, the region need never be initialized. For example, if the region is completely filled with
graphical objects it need never be initialized.

5.1.5 Points to note

- At the start of the epoch the display set shall include a complete set of RCS for all the regions that
will be used during the epoch. The PCS shall only list the subset of these regions that are initially
visible. In the limiting case any PCS may list zero visible regions.

- An RCS shall be present in a display set if its contents are to be modified. However, the RCS shall
not be in the PCS region list. This allows regions to be modified while they are not visible.

- RCS may be present in a display set even if they are not being modified. For example, a
broadcaster may choose to broadcast a complete list of RCS in every display set.

- A decoder shall inspect every RCS in the display set to determine which (if any) require pixel buffer
modifications. It is sufficient for the decoder to inspect the RCS version number to determine if a
region requires modification. There are 3 possible causes of modification, any or all of which may
cause the modification:

- region fill flag set;
- CLUT contents modification;
- a non-zero length object list.

5.2 Buffer memory model

The pixel display and the composition buffer are finite memory resources. A page composition segment
with the page state of "mode change" destroys all previous display and composition buffer memory
allocations and leaves the contents of the memory undefined.

Various processes (as detailed below) allocate memory from these finite resources. These allocations
persist until the next page composition segment with page state of "mode change".

There is no mechanism to partially re-allocate memory. A region once introduced remains allocated until
the next page composition segment with page state of "mode change".

5.2.1 Pixel Display Buffer Memory

The display buffer has a capacity of 80 kbytes. Of the 80 kbytes up to 60 kbytes can be assigned for
active display. The remaining capacity can be assigned for future display. The subtitle decoder model
assumes that data is stored in the display buffer memory requirements assumed by the decoder model
are:

region_bits = region_width × region_height × region_depth

Where region_depth is the region's pixel depth in bits derived from table 4 and the RCS element
region_depth. A real implementation of a subtitle decoder may require more memory than this to
implement each region. This implementation dependent overhead is not comprehended by the subtitle
decoder model.

The occupancy of the display buffer is the sum of the region_bits of all the defined regions.

Page 14
Draft prETS 300 743: November 1996

5.2.2 Region Memory

The pixel buffer memory is allocated for a region when it is introduced for the first time. This memory
allocation is retained until a page composition segment with page state of "mode change" destroys all
memory allocations.

5.2.3 Composition Buffer Memory

The composition buffer holds all the display data structures other than the displayed graphical objects.
The composition buffer memory holds information of page composition, region composition and CLUT
definition.

The number of bytes assumed by the composition buffer memory allocation model for a model decoder is
tabulated below:

Page composition 4

per region 6

Region composition 12

per object 8

CLUT definition 4

per non full range entry 4

per full range entry 6

5.3 Cumulative display construction

Once introduced (in the display set of a page composition segment with page state of "mode change") the
contents of the pixel buffer associated with a region accumulate modifications made in each display set.

5.4 Decoder rendering bandwidth model

The rendering bandwidth into the display memory is specified as 512 kbit/s. The idealized model assumes
100 % efficient memory operations. So, when 10 pixel × 10 pixel object is rendered in a region with a 4-bit
pixel depth then 400-bit operations are consumed.

The 512 kbit/s budget comprehends all modifications to the pixel buffer. Certain decoder architectures
may require a different number of memory operations. For example, certain architectures may require
read, modify, write operation on several bytes to modify a single pixel. These implementation dependent
issues are not comprehended by the decoder model and thus is to be considered by the decoder
designer.

5.4.1 Page erasure

Page erasure does not directly imply any modifications to the pixel buffer memory. So, this does not
impact the decoder rendering budget.

5.4.2 Region move or change in visibility

Regions can be repositioned by altering the specification of their position in the region list in the PCS. The
computational load for doing this may vary greatly depending on the implementation of the graphics
system. However, the decoder model is region based. So, the model decoder assumes no rendering
burden associated with a region move.

Page 15
Draft prETS 300 743: November 1996

Similarly, the visibility of a region can be changed by including it in or excluding it from the PCS region list.
As above, the model decoder assumes no rendering burden associated with modifying the PCS region
list.

5.4.3 Region fill

Setting the region fill flag instructs that the region is completely re-drawn with the defined fill colour. For
example, filling a 100 pixel × 100 pixel 4-bit deep region will consume 40 000-bit operations from the
rendering budget. Where the region fill flag is set, the region fill is assumed to happen before any objects
are rendered into the region.

Regions are only filled when the region fill flag is set. There is no automatic fill operation when they are
first introduced. This allows the encoder to defer the fill operation, and hence its rendering burden until
later.

A decoder can optionally look at the intersection between the objects in the region's object list and the
area to be erased and then try to optimize the area erased. Objects can have a ragged right hand edge
and can contain transparent holes. This possible optimization is not comprehended by the decoder model.

5.4.4 CLUT modification

Once introduced a region is always bound to a particular CLUT. However, new definitions of the CLUT
may be broadcast (i.e. the mapping between pixel code and displayed colour can be redefined). No
rendering burden is assumed when CLUT definitions change.

5.4.5 Graphic Object decoding

Graphical objects shall be rendered into the pixel buffer as they are decoded. One object may be
referenced several times (for example, a character used several times in a piece of text). The rendering
burden for each object is derived from:

- the number of pixels enclosed within the smallest rectangle that can enclose the object;
- the pixel depth of the region where the object is instanced;
- the number of times the object is instanced.

The "smallest enclosing rectangle" rule is used to simplify calculations and also to give some
consideration for the read-modify-write nature of pixel rendering processes.

The object coding system allows a ragged right edge to objects. No coded information is provided for the
pixel positions between the "end of object line code" and the "smallest enclosing rectangle". These pixels
should be left unmodified by the rendering process.

The same burden is assumed regardless of whether an object has the non_modifying_colour_flag set to
implement holes in the object. Again this gives some consideration for the read-modify-write nature of
pixel rendering processes.

5.4.6 Character object decoding

The Subtitling system allows character references to be delivered as an alternative to graphical objects.
The information inside the Subtitling stream is not sufficient to make such a character coded system work
reliably.

A local agreement between broadcasters and equipment manufacturers may be an appropriate way to
ensure reliable operation of character coded subtitles. A local agreement would probably define the
characteristics of the font (character size and other metrics). It should also define a decoder rendering
budget model for each character.

6 PES packet format

The standard transport stream packet syntax and semantics are followed noting the constraints in table 1.

Page 16
Draft prETS 300 743: November 1996

Table 1

stream_id Set to '1011 1101' indicating "private_stream_1"
PES_packet_length Set to a value, such that each PES packet is aligned with a

Transport packet (implied by MPEG).
data_alignment_indicator Set to '1' indicating that the subtitle segments are aligned with the

PES packets.
Presentation_Time_Stamp of
subtitle

The PTS, indicates the beginning of the presentation time of the
display created by the segments carried by the PES packet(s) with
this PTS. The PTSs of subsequent displays shall differ more than
one Video Frame.

PES_packet_data_byte These bytes are coded in accordance with the PES_data_field
syntax and semantics specified in clause 70.

7 The PES packet data for Subtitling

7.1 Syntax and semantics of the PES data field for Subtitling

The syntax of the PES data field of the Subtitling PES packets is given in the table below.

Syntax size type
PES_data_field() {

data_identifier 8 bslbf
subtitle_stream_id 8 bslbf
while nextbits() == '0000 1111' {

Subtitling_segment()
}
end_of_PES_data_field_marker 8 bslbf

}

Semantics:

data_identifier: Data for Subtitling shall be identified by the value 0x20.

subtitle_stream_id: This identifies the subtitle stream from which data is stored in this PES packet. Data
for Subtitling shall be identified by the value 0x00.

end_of_PES_data_field_marker: An 8-bit field with fixed contents '1111 1111'.

7.2 Syntax and semantics of the Subtitling Segment

The basic syntactical element of the Subtitling streams is the "segment". It forms the common format
shared amongst all elements of this Subtitling specification.

Syntax size type
Subtitling_segment() {

sync_byte 8 bslbf
segment_type 8 bslbf
page_id 16 bslbf
segment_length 16 uimsbf
segment_data_field()

}

sync_byte: An 8-bit field with fixed contents '0000 1111', intended to allow the checking of the
synchronization of the decoding process.

segment_type: This indicates the type of data contained in the segment data field. The following
segment_type values are defined in this Subtitling specification.

Page 17
Draft prETS 300 743: November 1996

Table 2

0x10 Page Composition Segment paragraph 710
0x11 Region Composition Segment paragraph 711
0x12 CLUT Definition Segment paragraph 712
0x13 Object Data Segment paragraph 713
0x40 - 0x7F reserved for future use
0x80 - 0xEF private data
0xFF stuffing
All other values reserved for future use

page_id: This identifies the page in which this subtitling_segment is contained.

segment_length: This signals the number of bytes to the end of the subtitling_segment field.

segment_data_field: This is the payload of the segment. The syntax differs between different segment
types.

NOTE: A Subtitling display is composed of information from at most two pages; these are
identified in the subtitle_descriptor in the PMT by the composition_page_id and the
ancillary_page_id. See also ETS 300 468 [2] and sections 30 and 41.

The composition_page_id identifies the composition page; it contains at least the
definition of the top level data structure, i.e. the page_composition_segment. This
page may additionally contain other segments that carry data needed for the Subtitling
display. Segments in the composition page may reference other segments in that page
as well as segments in the ancillary page, but they may be referenced only from
segments in the same composition page.

The ancillary_page_id identifies an (optional) ancillary page; it contains segments that
may be used in different subtitle displays. It does not contain a
page_composition_segment. Segments in the ancillary page may reference only
segments in that page, but they may be referenced from any other (composition) page.
Consequently, an ancillary page may contain many segments that are not used for a
particular page composition.

7.2.1 Page Composition Segment

Syntax size type
page_composition_segment() {

sync_byte 8 bslbf
segment_type 8 bslbf
page_id 16 bslbf
segment_length 16 uimsbf
page_time_out 8 uimsbf
page_version_number 4 uimsbf
page_state 2 bslbf
reserved 2 bslbf
while (processed_length < segment_length) {

region_id 8 bslbf
reserved 8 bslbf
region_horizontal_address 16 uimsbf
region_vertical_address 16 uimsbf

}
}

Semantics

page_time_out: The period, expressed in seconds, after which the page is no longer valid and
consequently shall be erased from the screen, should it not have been redefined before that. The time-out
period starts at the first reception of the page_composition_segment. If the same segment with the same
version number is received again the time-out counter shall not be reloaded. The purpose of the time-out

Page 18
Draft prETS 300 743: November 1996

period is to avoid that a page remains on the screen "for ever" if the IRD happens to have missed the
page's redefinition or deletion. The time-out period does not need to be counted very accurately by the
IRD: a reaction inaccuracy of -0/+5 seconds is good enough.

page_version_number: The version of this segment data. When any of the contents of this segment
change, this version number is incremented (modulo 16).

page_state: This field signals the status of the memory plan associated with the Subtitling page described
in this page composition segment. The values of the page_state are defined in the following table:

Table 3

'00' normal case The page composition segment is followed by an
incomplete region set

'01' acquisition point The page composition segment is followed by a
complete region set describing the current memory
plan

'10' mode change The page composition segment is followed by
regions describing a new memory plan

'11' reserved reserved for future use

The Subtitling decoder memory model is described in clause 5.

processed_length: The number of bytes from the field(s) within the while-loop that have been processed
by the decoder.

region_id: This uniquely identifies a region as an element of the page. Regions shall be listed in the
page_composition_segment in the order of incrementing values in the region_vertical_address field. Each
region in one page has a unique id.

region_horizontal_address: This specifies the horizontal address of the top left pixel of this region. The
left-most pixel of the 720 active pixels has index zero, and the pixel index increases from left to right. The
horizontal address value shall be lower than 720.

region_vertical_address: This specifies the vertical address of the top line of this region. The top line of
the 720 × 576 frame is line zero, and the line index increases by one within the frame from top to bottom.
The vertical address value shall be lower than 576.

NOTE: All addressing of pixels is based on a frame of 720 pixels horizontally by 576 scan lines
vertically. These numbers are independent of the aspect ratio of the picture; on a 16:9
display a pixel looks a bit wider than on a 4:3 display. In some cases, for instance a
logo, this may lead to unacceptable distortion. Separate data may be provided for
presentation on each of the different aspect ratios. The subtitle_descriptor signals
whether a subtitle data stream can be presented on any display or on displays of
specific aspect ratio only.

Page 19
Draft prETS 300 743: November 1996

7.2.2 Region Composition Segment

Syntax size type
region_composition_segment() {

sync_byte 8 bslbf
segment_type 8 bslbf
page_id 16 bslbf
segment_length 16 uimsbf
region_id 8 uimsbf
region_version_number 4 uimsbf
region_fill_flag 1 bslbf
reserved 3 bslbf
region_width 16 uimsbf
region_height 16 uimsbf
region_level_of_compatibility 3 bsblf
region_depth 3 bsblf
reserved 2 bsblf
CLUT_id 8 bslbf
region_8-bit_pixel_code 8 bslbf
region_4-bit_pixel-code 4 bsblf
region_2-bit_pixel-code 2 bslbf
reserved 2 bslbf
while (processed_length < segment_length) {

object_id 16 bslbf
object_type 2 bslbf
object_provider_flag 2 bslbf
object_horizontal_position 12 uimsbf
reserved 4 bslbf
object_vertical_position 12 uimsbf
if (object_type ==0x01 or object_type == 0x02){

foreground_pixel_code 8 bslbf
background_pixel_code 8 bslbf

}
}

}

Semantics

region_id: This 8-bit field uniquely identifies the region for which information is contained in this
region_composition_segment.

region_version_number: This indicates the version of this segment data. When any of the contents of
this segment, other than the lower_level_change_flag, change this version number is incremented
(modulo 16).

region_fill_flag: If set to '1', signals that all objects in the region are set to the fixed value

signalled in the region_n-bit_pixel_code which is defined below. See also the Subtitling decoder model in
clause 5.

region_width: specifies the width of this region, expressed in number of horizontal pixels. The value in
this field shall be within the range 1 to 720, and the sum of the region_width and the
region_horizontal_address (see subclause 7.2.1) shall not exceed 720.

region_height: specifies the height of the region, expressed in number of vertical scan-lines. The value in
this field shall be within the range 1 to 576, and the sum of the region_height and the
region_vertical_address (see subclause 7.2.1) shall not exceed 576.

region_level_of_compatibility: This indicates the minimum type of CLUT that is necessary in the
decoder to decode this region:

Page 20
Draft prETS 300 743: November 1996

Table 4

0x01 2-bit/entry CLUT required
0x02 4-bit/entry CLUT required
0x03 8-bit/entry CLUT required
NOTE: All other values are reserved

If the decoder does not support at least the indicated type of CLUT, then the pixel-data in this individual
region shall not be made visible, even though some other regions, requiring a lower type of CLUT, may be
presented.

region_depth: identifies the maximum pixel depth which shall be used for this region.

CLUT_id: identifies the family of CLUTs that applies to this region.

region_8-bit_pixel-code: identifies the pixel-code for 256-colour Subtitling decoders that applies to the
region when the region_fill_flag is set.

region_4-bit_pixel-code: identifies the pixel-code for 16-colour Subtitling decoders that applies to the
region when the region_fill_flag is set.

region_2-bit_pixel-code: identifies the pixel-code for 4-colour Subtitling decoders that applies to the
region when the region_fill_flag is set.

processed_length: the number of bytes from the field(s) within the while-loop that have been processed
by the decoder.

object_id: identifies an object that is shown in the region.

object_type: identifies the type of object:

Table 5

0x00 basic_object, bitmap
0x01 basic_object, character
0x02 composite_object, string of characters
0x03 reserved

object_provider_flag: A 2_bit flag indicating where the object comes from:

Table 6

0x00 provided in the Subtitling stream,
0x01 provided by a ROM in the IRD,
0x02 reserved,
0x03 reserved.

object_horizontal_position: Specifies the horizontal position of this object, expressed in number of
horizontal pixels, relative to the left-hand edge of the associated region.

object_vertical_position: Specifies the vertical position of this object, expressed in number of scan lines,
relative to the top of the associated region.

foreground_pixel_code: Identifies the 8_bit_pixel_code (CLUT entry) that defines the foreground colour
of the character(s).

Page 21
Draft prETS 300 743: November 1996

background_pixel_code: Identifies the 8_bit_pixel_code (CLUT entry) that defines the background
colour of the character(s).

NOTE: IRDs with CLUT of four or sixteen entries find the foreground and background colours
through the reduction schemes described in clause 9.

7.2.3 CLUT Definition Segment

Syntax size type
CLUT_definition_segment() {

sync_byte 8 bslbf
segment_type 8 bslbf
page_id 16 bslbf
segment_length 16 uimsbf
CLUT-id 8 bslbf
CLUT_version_number 4 uimsbf
reserved 4 bslbf
while (processed_length < segment_length) {

CLUT_entry_id 8 bslbf
2-bit/entry_CLUT_flag 1 bslbf
4-bit/entry_CLUT_flag 1 bslbf
8-bit/entry_CLUT_flag 1 bslbf
reserved 4 bslbf
full_range_flag 1 bslbf
if full_range_flag =='1' {

Y-value 8 bslbf
Cr-value 8 bslbf
Cb-value 8 bslbf
T-value 8 bslbf

} else {
Y-value 6 bslbf
Cr-value 4 bslbf
Cb-value 4 bslbf
T-value 2 bslbf

}
}

}

Semantics

CLUT-id: Uniquely identifies the family of CLUTs for which data is contained in this
CLUT_definition_segment field.

CLUT_version_number: Indicates the version of this segment data. When any of the contents of this
segment change this version number is incremented (modulo 16).

processed_length: The number of bytes from the field(s) within the while-loop that have been processed
by the decoder.

CLUT_entry_id: Specifies the entry number of the CLUT. The first entry of the CLUT has the entry
number zero.

2-bit/entry_CLUT_flag: If set to '1', this indicates that this CLUT value is to be loaded into the identified
entry of the 2-bit/entry CLUT.

4-bit/entry_CLUT_flag: If set to '1', this indicates that this CLUT value is to be loaded into the identified
entry of the 4-bit/entry CLUT.

8-bit/entry_CLUT_flag: If set to '1', this indicates that this CLUT value is to be loaded into the identified
entry of the 8-bit/entry CLUT.

full_range_flag: If set to '1', this indicates that the Y_value, Cr_value, Cb_value and T_value fields have
the full 8-bit resolution. If set to '0', then these fields contain only the most significant bits.

Page 22
Draft prETS 300 743: November 1996

Y_value: The Y output value of the CLUT for this entry. A value of zero in the Y_value field signals full
transparency. In that case the values in the Cr_value, Cb_value and T_value fields are irrelevant and shall
be set to zero.

Cr_value: The Cr output value of the CLUT for this entry.

Cb_value: The Cb output value of the CLUT for this entry.

NOTE 1: Y, Cr and Cb have meanings as defined in ITU-R Recommendation 601-3 [4].

T_value: The Transparency output value of the CLUT for this entry. A value of zero identifies no
transparency. The maximum value plus one would correspond to full transparency. For all other values
the level of transparency is defined by linear interpolation.

Full transparency is acquired through a value of zero in the Y_value field.

NOTE 2: Decoder models for the translation of pixel-codes into Y, Cr, Cb and T values are
depicted in clause 9. Default contents of the CLUT are specified in clause 10.

NOTE 3: All CLUTs can be redefined. There is no need for CLUTs with fixed contents as every
CLUT has (the same) default contents, see clause 10.

7.2.4 Object Data Segment

Syntax size type
object_data_segment() {

sync_byte 8 bslbf
segment_type 8 bslbf
page_id 16 bslbf
segment_length 16 uimsbf
object_id 16 bslbf
object_version_number 4 uimsbf
object_coding_method 2 bslbf
non_modifying_colour_flag 1 bslbf
reserved 1 bslbf
if (object_coding_method == '00'){

top_field_data_block_length 16 uimsbf
bottom_field_data_block_length 16 uimsbf
while(processed_length<top_field_data_block_length)

pixel-data_sub-block()
while(processed_length<bottom_field_data_block_length)

pixel-data_sub-block()
if (!wordaligned())

8_stuff_bits 8 bslbf
}
if (object_coding_method == '01') {

number of codes 8 uimsbf
for (i == 1, i <= number of codes, i ++)

character_code 16 bslbf
}

}

Semantics

object_id: Identifies the object for which data is contained in this object_data_segment field.

object_version_number: Indicates the version of this segment data. When any of the contents of this
segment change, this version number is incremented (modulo 16).

Page 23
Draft prETS 300 743: November 1996

object_coding_method: Specifies the method used to code the object:

Table 7

0x00 coding of pixels;
0x01 coded as a string of characters;
0x02 reserved;
0x03 reserved.

non_modifying_colour_flag : If set to '1' this indicates that the CLUT entry value '1' is a non modifying
colour. Meaning that it shall not overwrite any underlying object.

top_field_data_block_length: Specifies the number of bytes immediately following that contain the
data_sub-blocks for the top field.

bottom_field_data_block_length: Specifies the number of bytes immediately following that contain the
data_sub-blocks for the bottom field.

processed_length: the number of bytes from the field(s) within the while-loop that have been processed
by the decoder.

8_stuff_bits: eight stuffing bits that shall be coded as '0000 0000'.

Pixel-data sub-blocks for both the top field and the bottom field of an object shall be carried in the same
object_data_segment. If this segment carries no data for the bottom field, i.e. the
bottom_field_data_block_length contains the value '0x0000', then the data for the top field shall be valid
for the bottom field also.

number_of_codes: Specifies the number of character codes in the string.

character_code: Specifies a character through its index number in the character table identified in the
subtitle_descriptor. Each reference to the character table is counted as a separate character code, even if
the resulting character is non spacing. (Example: floating accents are counted as separate character
codes).

Page 24
Draft prETS 300 743: November 1996

7.2.4.1 Pixel-data sub-block

Syntax size type
pixel-data_sub-block() {

sync_byte 8 bslbf
segment_type 8 bslbf
page_id 16 bslbf
segment_length 16 uimsbf
data_type 8 bslbf
if data_type =='0x10' {

repeat {
2-bit/pixel_code_string()

} until (end of 2-bit/pixel_code_string)
while (!bytealigned())

2_stuff_bits 2 bslbf
if data_type =='0x11' {

repeat {
4-bit/pixel_code_string()

} until (end of 4-bit/pixel_code_string)
if (!bytealigned())

4_stuff_bits 4 bslbf
}

}
if data_type =='0x12' {

repeat {
8-bit/pixel_code_string()

} until (end of 8-bit/pixel_code_string)
}
if data_type =='0x20'

2_to_4-bit_map-table 16 bslbf
if data_type =='0x21'

2_to_8-bit_map-table 32 bslbf
if data_type =='0x22'

4_to_8-bit_map-table 128 bslbf
}

Semantics

data_type: Identifies the type of information contained in the data_sub-block according to the following
table:

Table 8

0x10 2-bit/pixel code string
0x11 4-bit/pixel code string
0x12 8-bit/pixel code string
0x20 2_to_4-bit_map-table data
0x21 2_to_8-bit_map-table data
0x22 4_to_8-bit_map-table data
0xF0 end of object line code
NOTE: All other values are reserved

A code '0xF0' = "end of object line code" shall be included after every series of code strings that together
represent one scan line of an object.

2_to_4-bit_map-table: Specifies how to map the 2-bit/pixel codes on a 4-bit/entry CLUT by listing the
4 entry numbers of 4-bits each; entry number 0 first, entry number 3 last.

2_to_8-bit_map-table: Specifies how to map the 2-bit/pixel codes on a 8-bit/entry CLUT by listing the
4 entry numbers of 8-bits each; entry number 0 first, entry number 3 last.

4_to_8-bit_map-table: Specifies how to map the 4-bit/pixel codes on a 8-bit/entry CLUT by listing the
16 entry numbers of 8-bits each; entry number 0 first, entry number 15 last.

Page 25
Draft prETS 300 743: November 1996

2_stuff_bits: Two stuffing bits that shall be coded as '00'.

4_stuff_bits: Four stuffing bits that shall be coded as '0000'.

7.2.4.2 Syntax and semantics of the pixel code strings

Syntax size type
2-bit/pixel_code_string() {

if (nextbits() != '00') {
2-bit_pixel-code 2 bslbf

} else {
2-bit_zero 2 bslbf
switch_1 1 bslbf
if (switch_1 == '1') {

run_length_3-10 3 uimsbf
2-bit_pixel-code 2 bslbf

} else {
switch_2 1 bslbf
if (switch_2 == '0') {

switch_3 2 bslbf
if (switch_3 == '10') {

run_length_12-27 4 uimsbf
2-bit_pixel-code 2 bslbf

}
if (switch_3 == '11') {

run_length_29-284 8 uimsbf
2-bit_pixel-code 2 bslbf

}
}

}
}

}

Semantics

2-bit_pixel-code: A two-bit code, specifying the pseudo-colour of a pixel as either an entry number of a
CLUT with four entries or an entry number of a map-table.

2-bit_zero: A two-bit field filled with '00'.

switch_1: A one-bit switch that identifies the meaning of the following fields.

run_length_3-10: Number of pixels minus 3 that shall be set to the pseudo-colour defined next.

switch_2: A one-bit switch. If set to '1', it signals that one pixel shall be set to pseudo-colour (entry) '00',
else it indicates the presence of the following fields.

switch_3: A two-bit switch that may signal the following:

Table 9

00 end of 2-bit/pixel_code_string
01 two pixels shall be set to pseudo colour (entry) '00'
10 the following 6 bits contain run length coded pixel data
11 the following 10 bits contain run length coded pixel data

run_length_12-27: Number of pixels minus 12 that shall be set to the pseudo-colour defined next.

run_length_29-284: Number of pixels minus 29 that shall be set to the pseudo-colour defined next.

Page 26
Draft prETS 300 743: November 1996

Syntax size type
4-bit/pixel_code_string() {

if (nextbits() != '0000') {
4-bit_pixel-code 4 bslbf

} else {
4-bit_zero 4 bslbf
switch_1 1 bslbf
if (switch_1 == '0') {

if (nextbits() != '000')
run_length_3-9 3 uimsbf

else
end_of_string_signal 3 bslbf

} else {
switch_2 1 bslbf
if (switch_2 == '0') {

run_length_4-7 2 bslbf
4-bit_pixel-code 4 bslbf

} else {
switch_3 2 bslbf
if (switch_3 == '10') {

run_length_9-24 4 uimsbf
4-bit_pixel-code 4 bslbf

}
if (switch_3 == '11') {

run_length_25-280 8 uimsbf
4-bit_pixel-code 4 bslbf

}
}

}
}

}

Semantics

4-bit_pixel-code: A four-bit code, specifying the pseudo-colour of a pixel as either an entry number of a
CLUT with sixteen entries or an entry number of a map-table.

4-bit_zero: A four-bit field filled with '0000'.

switch_1: A one-bit switch that identifies the meaning of the following fields.

run_length_3-9: Number of pixels minus 2 that shall be set to pseudo-colour (entry) '0000'.

end_of_string_signal: A three-bit field filled with '000'. The presence of this field, i.e. nextbits() == '000',
signals the end of the 4-bit/pixel_code_string.

switch_2: A one-bit switch. If set to '0', it signals that that the following 6-bits contain run-length coded
pixel-data, else it indicates the presence of the following fields.

switch_3: A two-bit switch that may signal the following:

Table 10

00 one pixel shall be set to pseudo-colour (entry) '0000'
01 two pixels shall be set to pseudo-colour (entry) '0000'
10 the following 8 bits contain run-length coded pixel-data
11 the following 12 bits contain run-length coded pixel-data

run_length_9-24: Number of pixels minus 9 that shall be set to the pseudo-colour defined next.

run_length_25-280: Number of pixels minus 25 that shall be set to the pseudo-colour defined next.

Page 27
Draft prETS 300 743: November 1996

Syntax size type
8-bit/pixel_code_string() {

if (nextbits() != '0000 0000') {
8-bit_pixel-code 8 bslbf

} else {
8-bit_zero 8 bslbf
switch_1 1 bslbf
if switch_1 == '0' {

if nextbits() != '000 0000'
run_length_1-127 7 uimsbf

else
end_of_string_signal 7 bslbf

} else {
run_length_3-127 7 uimsbf
8-bit_pixel-code 8 bslbf

}
}

}

Semantics

8-bit_pixel-code: An eight-bit code, specifying the pseudo-colour of a pixel as an entry number of a
CLUT with 256 entries.

8-bit_zero: An eight-bit field filled with '0000 0000'.

switch_1: A one-bit switch that identifies the meaning of the following fields.

run_length_1-127: Number of pixels that shall be set to pseudo-colour (entry) '0x00'.

end_of_string_signal: A seven-bit field filled with '000 0000'. The presence of this field, i.e. nextbits() ==
'000 0000', signals the end of the 8-bit/pixel_code_string.

run_length_3-127: Number of pixels that shall be set to the pseudo-colour defined next. This field shall
not have a value of less than three.

8 Requirements for the Subtitling data

Unless stated otherwise, all requirements apply at any particular point in time but they do not relate to
situations at different points in time.

8.1 Scope of Identifiers

All identifiers (region_id, CLUT_id, object_id) are unique within a display built from a composition page
and an ancillary page.

8.2 Scope of dependencies

8.2.1 Composition page

A segment in the composition page may reference segments in that composition page as well as
segments in the ancillary page.

8.2.2 Ancillary page

The ancillary page shall be contain only CLUT definition segments and object data segments. No
composition segments shall be carried in the ancillary page. Segments in an ancillary page can be
referenced by segments in any (composition) page.

NOTE: From subclause 8.2.1 and 8.2.2 it follows that segments in a composition page can be
referenced only by segments in the same composition page.

Page 28
Draft prETS 300 743: November 1996

8.3 Order of delivery

8.3.1 PTS field

The PTS field in successive PES packets shall either remain the same or proceed monatonically. Thus,
PES packets are delivered in their correct time-order.

Discontinuities in the PTS sequence may occur if there are discontinuities in the PCR time base. PCR
time base discontinuities shall not occur within a display set even if the display set is partitioned across
multiple PES packets.

8.4 Positioning of regions and objects

8.4.1 Regions

A region monopolizes the scan lines on which it is shown; no two regions can be presented horizontally
next to each other.

8.4.2 Objects sharing a PTS

Objects that are referenced at the same PTS (i.e. they are part of the same display set) shall not overlap
on the screen.

8.4.3 Objects added to a region

If an object is added to a region, the new pixel data will overwrite the information on the screen starting at
the indicated position. Thus it may (partly) cover old objects. The programme provider shall take care that
the new pixel data overwrites only information that needs to be replaced, but also that it overwrites all
information on the screen that is not to be preserved.

NOTE: A pixel is either defined by the "old" object or by the "new" object; if a pixel is
overwritten none of its previous definition is retained.

8.5 Avoiding excess pixel-data capacity

The run length coding that is applied to the pixel data shall result in a reduction of data. If the coding
results in an expansion of data, it shall not be applied.

Page 29
Draft prETS 300 743: November 1996

9 Translation to colour components

An IRD can present only a limited number of different colours simultaneously within a single region. The
colours themselves may be chosen from a larger palette, but the number of choices from the palette that
can be used per region is limited. The Subtitling system supports IRDs that can present four colours,
sixteen colours and 256 colours, respectively.

The IRD shall translate a pixel's pseudo-colours into Y, Cr, Cb and T components according to the
following model:

Figure 10.1

9.1 4- to 2-bit reduction

Let the input value be represented by a four-bit field, the individual bits of which are called bi1, bi2, bi3 and
bi4 where bi1 is received first and bi4 is received last. Let the output value be represented by a two-bit field
bo1, bo2.

The relation between output and input bits is:

bo1 = bi1
bo2 = bi2 | bi3 | bi4

9.2 8- to 2-bit reduction

Let the input value be represented by an eight-bit field, the individual bits of which are called bi1, bi2, bi3,
bi4, bi5, bi6, bi7 and bi8 where bi1 is received first and bi8 is received last. Let the output value be
represented by a two-bit field bo1, bo2.

The relation between output and input bits is:

bo1 = bi1
bo2 = bi2 | bi3 | bi4

Page 30
Draft prETS 300 743: November 1996

9.3 8- to 4-bit reduction

Let the input value be represented by a eight-bit field, the individual bits of which are called bi1, bi2, bi3, bi4,
bi5, bi6, bi7 and bi8 where bi1 is received first and bi8 is received last. Let the output value be represented
by a four-bit field bo1 to bo4.

The relation between output and input bits is:

bo1 = bi1 bo2 = bi2
bo3 = bi3 bo4 = bi4

Page 31
Draft prETS 300 743: November 1996

10 Default CLUTs and map-tables contents

This clause specifies the default contents of the CLUTs and map-tables for every CLUT family. Every
entry for every CLUT can be redefined in a CLUT_definition_segment and every map-table can be
redefined in an object_data_segment, but before such redefinitions the contents of CLUTs and map-
tables shall correspond to the values specified here.

NOTE: CLUTs may be redefined partially. Entries that have not been redefined retain their
default contents.

10.1 256-entry CLUT default contents

NOTE: The CLUT is divided in six sections: 64 colours of reduced intensity 0-50 %, 56 colours
of higher intensity 0-100 %, 7 colours with 75 % transparency, 1 "colour" with 100 %
transparency, 64 colours with 50 % transparency and 64 light colours (50 % white +
colour 0-50 %).

Let the CLUT-entry number be represented by an eight-bit field, the individual bits of which are called b1,
b2, b3, b4, b5, b6, b7 and b8 where b1 is received first and b8 is received last. The value in a bit is regarded
as unsigned integer that can take the values zero and one.

The resulting colours are described here in terms of Red, Green and Blue contributions. To find the CLUT
contents in terms of Y, Cr and Cb components, see ITU-R Recommendation 601-3 [4].

if b 1 == '0' && b 5 == '0' {

if b 2 == '0' && b 3 == '0' && b 4 == '0' {

if b 6 == '0' && b 7 == '0' && b 8 == '0'

T = 100 %
else {

R = 100 % × b 8

G = 100 % × b 7

B = 100 % × b 6
T = 75 %

}
}
else {

R = 33,3 % × b 8 + 66,7 % × b 4

G = 33,3 % × b 7 + 66,7 % × b 3

B = 33,3 % × b 6 + 66,7 % × b 2
T = 0 %

}
}
if b 1 == '0' && b 5 == '1' {

R = 33,3 % × b 8 + 66,7 % × b 4

G = 33,3 % × b 7 + 66,7 % × b 3

B = 33,3 % × b 6 + 66,7 % × b 2
T = 50 %

}
if b 1 == '1' && b 5 == '0' {

R = 16,7 % × b 8 + 33,3 % × b 4 + 50 %

G = 16,7 % × b 7 + 33,3 % × b 3 + 50 %

B = 16,7 % × b 6 + 33,3 % × b 2 + 50 %

T = 0 %
}
if b 1 == '1' && b 5 == '1' {

R = 16,7 % × b 8 + 33,3 % × b 4

G = 16,7 % × b 7 + 33,3 % × b 3

B = 16,7 % × b 6 + 33,3 % × b 2
T = 0 %

}

Page 32
Draft prETS 300 743: November 1996

10.2 16-entry CLUT default contents

Let the CLUT-entry number be represented by a four-bit field, the individual bits of which are called b1, b2,
b3 and b4 where b1 is received first and b4 is received last. The value in a bit is regarded as unsigned
integer that can take the values zero and one.

The resulting colours are described here in terms of Red, Green and Blue contributions. To find the CLUT
contents in terms of Y, Cr and Cb components, please see ITU-R Recommendation 601-3 [4].

if b 1 == '0' {

if b 2 == '0' && b 3 == '0' && b 4 == '0' {

T = 100 %
}
else {

R = 100 % × b 4

G = 100 % × b 3

B = 100 % × b 2
T = 0 %

}
}
if b 1 == '1' {

R = 50 % × b 4

G = 50 % × b 3

B = 50 % × b 2
T = 0 %

}

10.3 4-entry CLUT default contents

Let the CLUT-entry number be represented by a two-bit field, the individual bits of which are called b1 and
b2 where b1 is received first and b2 is received last.

The resulting colours are described here in terms of Red, Green and Blue contributions. To find the CLUT
contents in terms of Y, Cr and Cb components, please see ITU-R Recommendation 601-3 [4].

if b 1 == '0' && b 2 == '0' {

T = 100 %
}
if b 1 == '0' && b 2 == '1' {

R = G = B = 100 %
T = 0 %

}
if b 1 == '1' && b 2 == '0' {

R = G = B = 0 %
T = 0 %

}
if b 1 == '1' && b 2 == '1' {

R = G = B = 50 %
T = 0 %

}

Page 33
Draft prETS 300 743: November 1996

10.4 2_to_4-bit_map-table default contents

Table 11

input value output value
00 0000
01 0111
10 1000
11 1111

Input and output values are listed with their first bit left.

10.5 2_to_8-bit_map-table default contents

Table 12

input value output value
00 0000 0000
01 0111 0111
10 1000 1000
11 1111 1111

Input and output values are listed with their first bit left.

10.6 4_to_8-bit_map-table default contents

Table 13

input value output value
0000 0000 0000
0001 0001 0001
0010 0010 0010
0011 0011 0011
0100 0100 0100
0101 0101 0101
0110 0110 0110
0111 0111 0111
1000 1000 1000
1001 1001 1001
1010 1010 1010
1011 1011 1011
1100 1100 1100
1101 1101 1101
1110 1110 1110
1111 1111 1111

Input and output values are listed with their first bit left.

Page 34
Draft prETS 300 743: November 1996

11 Structure of the pixel code strings (informative)

Table 14: 2-bit/pixel_code_string()

01 one pixel in colour 1
10 one pixel in colour 2
11 one pixel in colour 3
00 01 one pixel in colour 0
00 00 01 two pixels in colour 0
00 1L LL CC L pixels (3-10) in colour C
00 00 10 LL LL CC L pixels (12-27) in colour C
00 00 11 LL LL LL LL CC L pixels (29-284) in colour C
00 00 00 end of 2-bit/pixel_code_string
NOTE: Runs of 11 pixels and 28 pixels can be coded as one pixel plus a

run of 10 pixels and 27 pixels, respectively.

Table 15: 4-bit/pixel_code_string()

0001 one pixel in colour 1
to to
1111 one pixel in colour 15
0000 1100 one pixel in colour 0
0000 1101 two pixels in colour 0
0000 0LLL L pixels (3-9) in colour 0
0000 10LL CCCC L pixels (4-7) in colour C
0000 1110 LLLL CCCC L pixels (9-24) in colour C
0000 1111 LLLL LLLL CCCC L pixels (25-280) in colour C
0000 0000 end of 4-bit/pixel_code_string
NOTE 1: Runs of 8 pixels in a colour not equal to '0' can be coded as one

pixel plus a run of 7 pixels.
NOTE 2: L>0

Table 16: 8-bit/pixel_code_string()

00000001 one pixel in colour 1
to to
11111111 one pixel in colour 255
00000000 0LLLLLLL L pixels (1-127) in colour 0 (L>0)
00000000 1LLLLLLL CCCCCCCC L pixels (3-127) in colour C (L>2)
00000000 00000000 end of 8-bit/pixel_code_string

Page 35
Draft prETS 300 743: November 1996

History

Document history

November 1996 Public Enquiry PE 118: 1996-11-18 to 1997-03-14

	Foreword
	1	Scope
	2	Normative references
	3	Definitions and abbreviations
	3.1	Definitions
	3.2	Symbols and abbreviations

	4	Introduction to DVB Subtitling system
	4.1	Overview
	4.2	Data hierarchy and terminology
	4.3	Temporal hierarchy and terminology

	5	Subtitle decoder model
	5.1	Decoder temporal model
	5.1.1	Service acquisition
	5.1.2	Presentation Time Stamps
	5.1.3	Page composition
	5.1.4	Region composition
	5.1.5	Points to note

	5.2	Buffer memory model
	5.2.1	Pixel Display Buffer Memory
	5.2.2	Region Memory
	5.2.3	Composition Buffer Memory

	5.3	Cumulative display construction
	5.4	Decoder rendering bandwidth model
	5.4.1	Page erasure
	5.4.2	Region move or change in visibility
	5.4.3	Region fill
	5.4.4	CLUT modification
	5.4.5	Graphic Object decoding
	5.4.6	Character object decoding

	6	PES packet format
	7	The PES packet data for Subtitling
	7.1	Syntax and semantics of the PES data field for Subtitling
	7.2	Syntax and semantics of the Subtitling Segment
	7.2.1	Page Composition Segment
	7.2.2	Region Composition Segment
	7.2.3	CLUT Definition Segment
	7.2.4	Object Data Segment
	7.2.4.1	Pixel-data sub-block
	7.2.4.2	Syntax and semantics of the pixel code strings

	8	Requirements for the Subtitling data
	8.1	Scope of Identifiers
	8.2	Scope of dependencies
	8.2.1	Composition page
	8.2.2	Ancillary page	

	8.3	Order of delivery
	8.3.1	PTS field

	8.4	Positioning of regions and objects
	8.4.1	Regions
	8.4.2	Objects sharing a PTS
	8.4.3	Objects added to a region

	8.5	Avoiding excess pixel-data capacity

	9	Translation to colour components
	9.1	4- to 2-bit reduction
	9.2	8- to 2-bit reduction
	9.3	8- to 4-bit reduction

	10	Default CLUTs and map-tables contents
	10.1	256-entry CLUT default contents
	10.2	16-entry CLUT default contents
	
	10.3	4-entry CLUT default contents
	10.4	2_to_4-bit_map-table default contents
	10.5	2_to_8-bit_map-table default contents
	10.6	4_to_8-bit_map-table default contents

	11	Structure of the pixel code strings (informative)
	History

