

EUROPEAN TELECOMMUNICATION STANDARD

DRAFT pr **ETS 300 725**

November 1996

Source: ETSI TC-SMG Reference: DE/SMG-020654

ICS: 33.020

Key words: EFR, digital cellular telecommunications system, Global System for Mobile communications

(GSM), speech

Digital cellular telecommunications system; Test sequences for the GSM Enhanced Full Rate (EFR) speech codec; (GSM 06.54)

ETSI

European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE

Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE

X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 4 92 94 42 00 - Fax: +33 4 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

Praft prETS 300 725: November 1996 (GSM 06.54 version 5.0.0)				

Page 2

Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page.

Contents

Forev	word			5
1	Scope			7
2	Normativ	e reference	s	7
3	Definition 3.1 3.2	Definitions	eviations ons	7
4	General.			8
5	Test seq 5.1 5.2	File format	atning	8
6	Speech (6.1 6.2	Codec con	equences	10 10 10
7	DTX test 7.1 7.2	Codec con	figuration equences Predictor values computation Spectral comparison Threshold adaptation Periodicity detection Tone detection Safety and initialization Comfort noise test sequence Real speech and tones	131414141414
8	Sequence 8.1 8.2 8.3	Bit synchro Frame syn	ng the 20 ms framing of the GSM enhanced full rate speech encoder chronizationchronization	15 16
Histo	ry			18
9	Diskettes	s of test seq	uences and related files(attached to bac	k cover)

Page 4

Draft prETS 300 725: November 1996 (GSM 06.54 version 5.0.0)

Blank page

Foreword

This European Telecommunication Standard (ETS) has been produced by the Special Mobile Group (SMG) Technical Committee of the European Telecommunications Standards Institute (ETSI) and is now submitted for the Public Enquiry phase of the ETSI standards approval procedure..

Four 3,5 inch diskettes are attached to the back cover of this ETS, the diskettes contain test sequences for a bit exact implementation of the Enhanced Full Rate (EFR) speech transcoder.

The diskettes contain LHA compressed files and are labelled as follows:

Diskette 1/4 ETS 300 725 clause 9: Test sequences for the GSM Enhanced Full Rate (EFR)

speech codec; Speech test sequences TEST0.xxx to TEST8.xxx.

Diskette 2/4 ETS 300 725 clause 9: Test sequences for the GSM Enhanced Full Rate (EFR)

speech codec; Speech test sequences TEST09.xxx to TEST16.xxx.

NOTE 1: Diskette 2/4 contains as well the file LHA213.exe which is a self-extracting LHA

archiver.

Diskette 3/4 ETS 300 725 clause 9: Test sequences for the GSM Enhanced Full Rate (EFR)

speech codec; Speech test sequences TEST17.xxx to TEST20.xxx, Codec

homing and synchronization sequences.

Diskette 4/4 ETS 300 725 clause 9: Test sequences for the GSM Enhanced Full Rate (EFR)

speech codec; DTX test sequences.

This ETS specifies the digital test sequences for the GSM enhanced full rate speech codec for the digital cellular telecommunications system. This ETS corresponds to GSM technical specification, GSM 06.54, version 5.0.0.

NOTE 2: TC-SMG has produced documents which give the technical specifications for the implementation of the European digital cellular telecommunications system. Historically, these documents have been identified as GSM Technical Specifications (GSM-TS). These TSs may have subsequently become Interim European Telecommunication Standards (I-ETSs), (Phase 1), or European Telecommunication Standards (ETSs), (Phase 2), whilst others may become ETSI Technical Reports (ETRs).

Proposed transposition date	s
Date of latest announcement of this ETS (doa):	3 months after ETSI publication
Date of latest publication of new National Standard or endorsement of this ETS (dop/e):	6 months after doa
Date of withdrawal of any conflicting National Standard (dow):	6 months after doa

Page 6 Draft prETS 300 725: November 1996 (GSM 06.54 version 5.0.0)

Blank page

1 Scope

This European Telecommunication Standard (ETS) specifies the digital test sequences for the GSM enhanced full rate speech codec. These sequences test for a bit exact implementation of the enhanced full rate speech transcoder (GSM 06.60 (ETS 300 726) [2]), Voice Activity Detection (GSM 06.82 (ETS 300 730) [6]), comfort noise (GSM 06.62 (ETS 300 728) [4]) and the discontinuous transmission (GSM 06.81 (ETS 300 729) [5]).

2 Normative references

This ETS incorporates by dated and undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this ETS only when incorporated in it by amendment or revision. For undated references, the latest edition of the publication referred to applies.

[1]	GSM 01.04 (ETR 100): "Digital cellular telecommunication system (Phase 2); Abbreviations and acronyms".
[2]	GSM 06.60 (ETS 300 726): "Digital cellular telecommunications system; Enhanced Full Rate (EFR) speech transcoding".
[3]	GSM 06.61 (ETS 300 727): "Digital cellular telecommunications system; Substitution and muting of lost frames for Enhanced Full Rate (EFR) speech traffic channels".
[4]	GSM 06.62 (ETS 300 728): "Digital cellular telecommunications system; Comfort noise aspects for Enhanced Full Rate (EFR) speech traffic channels".
[5]	GSM 06.81 (ETS 300 729): "Digital cellular telecommunications system; Discontinuous Transmission (DTX) for Enhanced Full Rate (EFR) speech traffic channels".
[6]	GSM 06.82 (ETS 300 730): "Digital cellular telecommunications system; Voice Activity Detection (VAD) for Enhanced Full Rate (EFR) speech traffic channels".
[7]	GSM 06.53 (ETS 300 724): "Digital cellular telecommunications system; ANSI-C code for the GSM Enhanced Full Rate (EFR) speech codec".
[8]	GSM 06.51 (ETS 300 723): "Digital cellular telecommunications system; Enhanced Full Rate (EFR) speech coding functions; General description".

3 Definitions and abbreviations

3.1 Definitions

Definition of terms used in this ETS can be found in GSM 06.60 (ETS $300\,726$) [2], GSM 06.61 (ETS $300\,727$) [3], GSM 06.62 (ETS $300\,728$) [4], GSM 06.81 (ETS $300\,729$) [5] and GSM 06.82 (ETS $300\,730$) [6].

3.2 Abbreviations

For the purpose of this ETS the following abbreviations apply:

ETS European Telecommunication Standard
GSM Global System for Mobile communications

For abbreviations not given in this subclause see GSM 01.04 (ETR 100) [1].

4 General

Digital test sequences are necessary to test for a bit exact implementation of the enhanced full rate speech transcoder (GSM 06.60 (ETS 300 726) [2]), Voice Activity Detection (GSM 06.82 (ETS 300 730) [6]), comfort noise (GSM 06.62 (ETS 300 728) [4]) and the discontinuous transmission (GSM 06.81 (ETS 300 729) [5]).

The test sequences may also be used to verify installations of the ANSI C code in GSM 06.53 (ETS 300 725) [7].

Clause 5 describes the format of the files which contain the digital test sequences. Clause 6 describes the test sequences for the speech transcoder. Clause 7 describes the test sequences for the VAD, comfort noise and discontinuous transmission.

Clause 8 describes the method by which synchronization is obtained between the test sequences and the speech codec under test.

Electronic copies of the digital test sequences are provided as clause 9, these digital test sequences are contained in the 3,5 inch diskettes attached to the back cover of this ETS 300 725.

5 Test sequence format

This clause provides information on the format of the digital test sequences for the GSM enhanced full rate speech transcoder (GSM 06.60 (ETS 300 726) [2]), Voice Activity Detection (GSM 06.82 (ETS 300 730) [6]), comfort noise (GSM 06.62 (ETS 300 728) [4]) and the discontinuous transmission (GSM 06.81 (ETS 300 729) [5]).

5.1 File format

The test sequence files are provided on floppy disks (3.5 inch) which are formatted according to the high capacity (1,44 Mb) specifications for MS-DOS¹⁾ IBM²⁾ -PC/AT compatible computers.

Following decompression, four types of file are provided:

- Files for input to the GSM enhanced full rate speech encoder: *.INP
- Files for comparison with the encoder output: *.COD
- Files for input to the GSM enhanced full rate speech decoder: *.DEC
- Files for comparison with the decoder output: *.OUT

The *.DEC files are generated from the corresponding *.COD files.

Tables 1, 2, 3 and 4 define the formats of the four types of file.

Each speech parameter within the speech frame of 244 bits/20 ms is contained in a serial string of 16 bit words, where each word contains the value of one bit of the parameter. In each string of n 16 bit words containing the n bits of a parameter, the most significant bit of the parameter is written first, and the least significant bit is written last. The bit value contained in a single 16 bit word is either 0x0000 or 0x0001 (right justified) for the binary values of "0" and "1", respectively. See table 6 of GSM 06.60 (ETS 300 726) [2] for the order of occurrence and bit allocation of speech parameters within the speech frame of 244 bits/20 ms.

The samples in the encoder input signal and in the decoder output signal are left justified.

2) This is a trademark of International Business Machines

¹⁾ This is a trademark of Microsoft.

5.2 Codec homing

Each *.INP file includes two homing frames at the start of the test sequence. The function of these frames is to reset the speech encoder state variables to their initial value. In the case of a correct installation of the ANSI-C simulation (GSM 06.53 (ETS 300 725) [7]), all speech encoder output frames shall be identical to the corresponding frame in the *.COD file. In the case of a correct hardware implementation undergoing testing, the first speech encoder output frame is undefined and need not be identical to the first frame in the *.COD file, but all remaining speech encoder output frames shall be identical to the corresponding frames in the *.COD file.

Each *.DEC file includes two homing frames at the start of the test sequence. The function of these frames is to reset the speech decoder state variables to their initial value. In the case of a correct installation of the ANSI-C simulation (GSM 06.53 (ETS 300 725) [7]), all speech decoder output frames shall be identical to the corresponding frame in the *.OUT file. In the case of a correct hardware implementation undergoing testing, the first speech decoder output frame is undefined and need not be identical to first frame in the *.OUT file, but all remaining speech decoder output frames shall be identical to the corresponding frames in the *.OUT file.

Table 1: Encoder input sequence (*.INP) format

Name	Description	No. of bits	Justification
s(n)	Encoder input signal	13	Left

Table 2: Encoder output sequence (*.COD) format

Name	e Description		Justification
Speech parameters			
	Serial stream of speech parameter		
SPEECH	bits to the channel encoder	244	Right
Additional information			
VAD Voice activity detection flag		1	Right
SP	SP flag	1	Right

Table 3: Decoder input sequence (*.DEC) format

Name	Name Description		Justification
Additional information			
BFI	Bad Frame Indicator flag	1	Right
Speech parameters			
	Serial stream of speech parameter		
SPEECH	bits to the channel encoder	244	Right
Additional information			
SID	Silence Descriptor flag	1	Right
TAF	Time Alignment Flag	1	Right

Table 4: Decoder output sequence (*.OUT) format

Name	Description	No. of bits	Justification
s'(n)	Decoder output signal	13	Left

6 Speech codec test sequences

This clause describes the test sequences designed to exercise the GSM enhanced full rate speech transcoder (GSM 06.60 (ETS 300 726) [2]).

6.1 Codec configuration

The speech encoder shall be configured to operate in the non-DTX mode. The VAD and SP flags shall be set to 1 at the speech encoder output.

6.2 Speech codec test sequences

Table 5 lists the location and size of the speech codec test sequences.

6.2.1 Speech encoder test sequences

Twenty-one encoder input sequences are provided. Note that for the input sequences TEST0.INP to TEST3.INP, the amplitude figures are given in 13-bit precision. The active speech levels are given in dBov.

- TEST0.INP Synthetic harmonic signal. The pitch delay varies slowly from 18 to 143,5 samples. The minimum and maximum amplitudes are -997 and +971.
- TEST1.INP Synthetic harmonic signal. The pitch delay varies slowly from 144 down to 18,5 samples. Amplitudes at saturation point -4 096 and +4 095.
- TEST2.INP Sinusoidal sweep varying from 150 Hz to 3 400 Hz. Amplitudes \pm 1 250.
- TEST3.INP Sinusoidal sweep varying from 150 Hz to 3 400 Hz. Amplitudes ± 4 000.
- TEST4.INP Female speech, active speech level: -19,4 dBov, flat frequency response.
- TEST5.INP Male speech, active speech level: -18,7 dBov, flat frequency response.
- TEST6.INP Female speech, ambient noise, active speech level: -35,0 dBov, flat frequency response.
- TEST7.INP Female speech, ambient noise, active speech level: -25,0 dBov, flat frequency response.
- TEST8.INP Female speech, ambient noise, active speech level: -15,6 dBov, flat frequency response.
- TEST9.INP Female speech, car noise, active speech level: -35,5 dBoy, flat frequency response.
- TEST10.INP Female speech, car noise, active speech level: -26,1 dBov, flat frequency response.
- TEST11.INP Female speech, car noise, active speech level: -15,8 dBov, flat frequency response.
- TEST12.INP Male speech, ambient noise, active speech level: -34,9 dBov, flat frequency response.
- TEST13.INP Male speech, ambient noise, active speech level: -24,8 dBov, flat frequency response.
- TEST14.INP Male speech, ambient noise, active speech level: -15,0 dBov, flat frequency response.
- TEST15.INP Male speech, babble noise, active speech level: -34,1 dBov, flat frequency response.

- TEST16.INP Male speech, babble noise, active speech level: -24,3 dBov, flat frequency response.
- TEST17.INP Male speech, babble noise, active speech level: -14,4 dBov, flat frequency response.
- TEST18.INP Female speech, ambient noise, active speech level: -26,0 dBov, modified IRS frequency response, with many zero frames.
- TEST19.INP Male speech, ambient noise, active speech level: -36,0 dBov, modified IRS frequency response, with many zero frames.
- TEST20.INP Sequence for exercising the LPC vector quantization codebooks and ROM tables of the codec.

The TEST0.INP and TEST1.INP sequences were designed to test the pitch lag of the GSM enhanced full rate speech encoder. In a correct implementation, the resulting speech encoder output parameters shall be identical to those specified in the TEST0.COD and TEST1.COD sequences, respectively.

The TEST2.INP and TEST3.INP sequences are particularly suited for testing the LPC analysis, as well as for finding saturation problems. In a correct implementation, the resulting speech encoder output parameters shall be identical to those specified in the TEST2.COD and TEST3.COD sequences, respectively.

The TEST4.INP and TEST5.INP sequences contain a lot of low-frequency components. In a correct implementation, the resulting speech encoder output parameters shall be identical to those specified in the TEST4.COD and TEST5.COD sequences, respectively.

The TEST18.INP and TEST19.INP sequences contain some "all zeros" frames (silence) in between segments of speech. In a correct implementation, the resulting speech encoder output parameters shall be identical to those specified in the TEST18.COD and TEST19.COD sequences, respectively.

The TEST20.INP sequence was designed to force the encoder to select each of the LPC code indices and each but one of the ROM table indices of the codec.

The remaining sequences (TEST6.INP to TEST17.INP) were selected on the basis of bringing various input characteristics (background noise) and levels to the test sequence set. In a correct implementation, the resulting speech encoder output parameters shall be identical to those specified in the TEST6.COD to TEST17.COD sequences, respectively.

6.2.2 Speech decoder test sequences

Twenty-one speech decoder input sequences TESTXX.DEC (XX = 0..20) are provided. These are derived from the corresponding TESTXX.INP sequences. In a correct implementation, the resulting speech decoder output shall be identical to the corresponding TESTXX.OUT sequences.

6.2.3 Codec homing sequence

In addition to the test sequences described above, two homing sequences are provided to assist in codec testing. TEST21.INP contains one encoder-homing-frame. TEST21.DEC contains one decoder-homing-frame. The use of these sequences is described in GSM 06.51 (ETS 300 723) [8].

Table 5: Location and size of speech codec test sequences

Disk No.	File Name	No. of frames	Size (bytes)
1/4	TEST0.INP		91 200
1/4	TEST0.COD	285	140 220
1/4	TEST0.DEC		140 790
1/4	TEST0.OUT		91 200
1/4	TEST1.INP		91 200
1/4	TEST1.COD	285	140 220
1/4	TEST1.DEC		140 790
1/4	TEST1.OUT		91 200
1/4	TEST2.INP		128 640
1/4	TEST2.COD	402	197 784
1/4	TEST2.DEC		198 588
1/4	TEST2.OUT		128 640
1/4	TEST3.INP		128 640
1/4	TEST3.COD	402	197 784
1/4	TEST3.DEC		198 588
1/4	TEST3.OUT		128 640
1/4	TEST4.INP		96 320
1/4	TEST4.COD	301	148 092
1/4	TEST4.DEC	001	148 694
1/4	TEST4.OUT		96 320
1/4	TEST5.INP		71 680
1/4	TEST5.INF	224	110 208
1/4	TEST5.DEC	224	110 200
1/4	TEST5.DEC		71 680
	TEST6.INP		
1/4 1/4		225	107 200
1/4	TEST6.COD	335	164 820 165 490
	TEST6.DEC		
1/4	TEST6.OUT		107 200
1/4	TEST7.INP	200	116 160
1/4	TEST7.COD	363	178 596
1/4	TEST7.DEC		179 322
1/4	TEST7.OUT		116 160
1/4	TEST8.INP	0.40	108 800
1/4 1/4	TEST8.COD	340	167 280
-	TEST8.DEC		167 960
1/4	TEST8.OUT		108 800
2/4	TEST9.INP	40-	130 240
2/4	TEST9.COD	407	200 244
2/4	TEST9.DEC		201 058
2/4	TEST9.OUT		130 240
2/4	TEST10.INP	000	122 560
2/4	TEST10.COD	383	188 436
2/4	TEST10.DEC		189 202
2/4	TEST10.OUT		122 560
2/4	TEST11.INP		117 440
2/4	TEST11.COD	367	180 564
2/4	TEST11.DEC		181 298
2/4	TEST11.OUT		117 440
2/4	TEST12.INP		95 360
2/4	TEST12.COD	298	146 616
2/4	TEST12.DEC		147 212
2/4	TEST12.OUT		95 360
2/4	TEST13.INP		108 160
2/4	TEST13.COD	338	166 296
2/4	TEST13.DEC		166 972
2/4	TEST13.OUT		108 160
	(cont	 inued)	

Table 5 (concluded): Location and size of speech codec test sequences

2/4 TEST14.INP 101 760 2/4 TEST14.COD 318 156 456 2/4 TEST14.DEC 157 092 2/4 TEST15.INP 101 760 2/4 TEST15.INP 104 960 2/4 TEST15.DEC 162 032 2/4 TEST15.OUT 104 960 2/4 TEST16.INP 113 280 2/4 TEST16.COD 354 174 168 2/4 TEST16.DEC 174 876 2/4 TEST16.OUT 113 280 3/4 TEST17.INP 101 120 3/4 TEST17.OUT 101 120 3/4 TEST17.OUT 101 120 3/4 TEST18.INP 128 640 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 198 588 3/4 TEST19.OUT 128 640				
2/4 TEST14.DEC 157 092 2/4 TEST14.OUT 101 760 2/4 TEST15.INP 104 960 2/4 TEST15.COD 328 161 376 2/4 TEST15.DEC 162 032 2/4 TEST16.INP 104 960 2/4 TEST16.INP 113 280 2/4 TEST16.COD 354 174 168 2/4 TEST16.DEC 174 876 14 876 2/4 TEST16.OUT 113 280 3/4 TEST17.INP 101 120 3/4 TEST17.ODD 316 155 472 3/4 TEST17.OUT 101 120 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	2/4	TEST14.INP		101 760
2/4 TEST14.OUT 101 760 2/4 TEST15.INP 104 960 2/4 TEST15.COD 328 161 376 2/4 TEST15.DEC 162 032 2/4 TEST15.OUT 104 960 2/4 TEST16.INP 113 280 2/4 TEST16.COD 354 174 168 2/4 TEST16.DEC 174 876 2/4 TEST16.OUT 113 280 3/4 TEST17.INP 101 120 3/4 TEST17.DEC 156 104 3/4 TEST17.OUT 101 120 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640		TEST14.COD	318	
2/4 TEST15.INP 104 960 2/4 TEST15.COD 328 161 376 2/4 TEST15.DEC 162 032 2/4 TEST15.OUT 104 960 2/4 TEST16.INP 113 280 2/4 TEST16.COD 354 174 168 2/4 TEST16.DEC 174 876 2/4 TEST16.OUT 113 280 3/4 TEST17.INP 101 120 3/4 TEST17.DEC 156 104 3/4 TEST17.OUT 101 120 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.DEC 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	2/4	TEST14.DEC		157 092
2/4 TEST15.COD 328 161 376 2/4 TEST15.DEC 162 032 2/4 TEST15.OUT 104 960 2/4 TEST16.INP 113 280 2/4 TEST16.COD 354 174 168 2/4 TEST16.DEC 174 876 2/4 TEST16.OUT 113 280 3/4 TEST17.INP 101 120 3/4 TEST17.COD 316 155 472 3/4 TEST17.DEC 156 104 3/4 TEST17.OUT 101 120 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	2/4	TEST14.OUT		101 760
2/4 TEST15.DEC 162 032 2/4 TEST15.OUT 104 960 2/4 TEST16.INP 113 280 2/4 TEST16.COD 354 174 168 2/4 TEST16.DEC 174 876 2/4 TEST16.OUT 113 280 3/4 TEST17.INP 101 120 3/4 TEST17.DEC 156 104 3/4 TEST17.OUT 101 120 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.OUT 402 197 784 3/4 TEST19.OUT 128 640	2/4			104 960
2/4 TEST15.OUT 104 960 2/4 TEST16.INP 113 280 2/4 TEST16.COD 354 174 168 2/4 TEST16.DEC 174 876 2/4 TEST16.OUT 113 280 3/4 TEST17.INP 101 120 3/4 TEST17.DEC 156 104 3/4 TEST17.OUT 101 120 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.OUT 402 197 784 3/4 TEST19.OUT 128 640	-	TEST15.COD	328	161 376
2/4 TEST16.INP 113 280 2/4 TEST16.COD 354 174 168 2/4 TEST16.DEC 174 876 2/4 TEST16.OUT 113 280 3/4 TEST17.INP 101 120 3/4 TEST17.COD 316 155 472 3/4 TEST17.DEC 156 104 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640		TEST15.DEC		162 032
2/4 TEST16.COD 354 174 168 2/4 TEST16.DEC 174 876 2/4 TEST16.OUT 113 280 3/4 TEST17.INP 101 120 3/4 TEST17.COD 316 155 472 3/4 TEST17.DEC 156 104 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	2/4	TEST15.OUT		104 960
2/4 TEST16.DEC 174 876 2/4 TEST16.OUT 113 280 3/4 TEST17.INP 101 120 3/4 TEST17.COD 316 155 472 3/4 TEST17.DEC 156 104 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.DEC 198 588 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	2/4	TEST16.INP		113 280
2/4 TEST16.OUT 113 280 3/4 TEST17.INP 101 120 3/4 TEST17.COD 316 155 472 3/4 TEST17.DEC 156 104 3/4 TEST18.INP 101 120 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	2/4	TEST16.COD	354	174 168
3/4 TEST17.INP 101 120 3/4 TEST17.COD 316 155 472 3/4 TEST17.DEC 156 104 3/4 TEST17.OUT 101 120 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.DEC 198 588 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	2/4	TEST16.DEC		174 876
3/4 TEST17.COD 316 155 472 3/4 TEST17.DEC 156 104 3/4 TEST17.OUT 101 120 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.DEC 198 588 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	2/4	TEST16.OUT		113 280
3/4 TEST17.DEC 156 104 3/4 TEST17.OUT 101 120 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.DEC 198 588 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	3/4	TEST17.INP		101 120
3/4 TEST17.OUT 101 120 3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.DEC 198 588 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	3/4	TEST17.COD	316	155 472
3/4 TEST18.INP 128 640 3/4 TEST18.COD 402 197 784 3/4 TEST18.DEC 198 588 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	3/4	TEST17.DEC		156 104
3/4 TEST18.COD 402 197 784 3/4 TEST18.DEC 198 588 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	3/4	TEST17.OUT		101 120
3/4 TEST18.DEC 198 588 3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	3/4	TEST18.INP		128 640
3/4 TEST18.OUT 128 640 3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	3/4	TEST18.COD	402	197 784
3/4 TEST19.INP 128 640 3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	3/4	TEST18.DEC		198 588
3/4 TEST19.COD 402 197 784 3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	3/4	TEST18.OUT		128 640
3/4 TEST19.DEC 198 588 3/4 TEST19.OUT 128 640	3/4	TEST19.INP		128 640
3/4 TEST19.OUT 128 640	3/4	TEST19.COD	402	197 784
	3/4	TEST19.DEC		198 588
0/4 TEOTOO IND	3/4	TEST19.OUT		128 640
3/4 TEST20.INP 201 920	3/4	TEST20.INP		201 920
3/4 TEST20.COD 631 310 452	3/4	TEST20.COD	631	310 452
3/4 TEST20.DEC 311 714	3/4	TEST20.DEC		311 714
3/4 TEST20.OUT 201 920	3/4	TEST20.OUT		201 920
3/4 TEST21.INP 1 320	3/4	TEST21.INP	1	320
3/4 TEST21.DEC 494	3/4	TEST21.DEC		494

7 DTX test sequences

This subclause describes the test sequences designed to exercise the VAD algorithm (GSM 06.82 (ETS 300 730) [6]), comfort noise (GSM 06.62 (ETS 300 728) [4]) and discontinuous transmission (GSM 06.81 (ETS 300 729) [5]).

7.1 Codec configuration

The VAD, comfort noise and discontinuous transmission shall be tested in conjunction with the speech encoder (GSM 06.60 (ETS 300 726) [2]). The speech encoder shall be configured to operate in the DTX mode defined in GSM 06.62 (ETS 300 728) [4].

7.2 DTX test sequences

Each DTX test sequence consists of four files:

- Files for input to the GSM enhanced full rate speech encoder: *.INP
- Files for comparison with the encoder output: *.COD
- Files for input to the GSM enhanced full rate speech decoder: *.DEC
- Files for comparison with the decoder output: *.OUT

The *.DEC files are generated from the corresponding *.COD files.

In a correct implementation, the speech encoder parameters generated by the *.INP file shall be identical to those specified in the *.COD file; and the speech decoder output generated by the *.DEC file shall be identical to that specified in the *.OUT file.

Page 14

Draft prETS 300 725: November 1996 (GSM 06.54 version 5.0.0)

Table 6 lists the DTX test sequences and their size in frames.

7.2.1 Predictor values computation

The computation of the predictor values described in GSM 06.82 (ETS 300 730) [6] is not tested explicitly, since the results from the computation are tested many times via the spectral comparison and threshold adaptation tests.

7.2.2 Spectral comparison

The spectral comparison algorithm described in GSM 06.82 (ETS 300 730) [6] is tested by the following test sequence:

DTX01. *

7.2.3 Threshold adaptation

The threshold adaptation algorithm described in GSM 06.82 (ETS 300 730) [6] is tested by the following test sequence:

DTX02. *

7.2.4 Periodicity detection

The periodicity detection algorithm described in GSM 06.82 (ETS 300 730) [6] is tested by the following test sequence:

DTX03. *

7.2.5 Tone detection

The tone detection algorithm described in GSM 06.82 (ETS 300 730) [6] is tested by the following test sequence:

DTX04. *

7.2.6 Safety and initialization

This sequence checks the safety paths used to prevent zero values being passed to the norm function. It checks the functions described in the adaptive filtering and energy computation, and the prediction values computation given in GSM 06.82 (ETS 300 730) [6]. This sequence also checks the initialization of thvad and the rvad array:

DTX05. *

7.2.7 Comfort noise test sequence

The test sequences described in sub-subclauses 7.2.2 to 7.2.6 are designed to exercise the VAD described in GSM 06.82 (ETS 300 730) [6] and the discontinuous transmission described in GSM 06.81 (ETS 300 730) [5]. The following test sequence is defined to exercise the comfort noise algorithm described in GSM 06.62 (ETS 300 728) [4]:

DTX06.*

7.2.8 Real speech and tones

The test sequences cannot be guaranteed to find every possible error. There is therefore a small possibility that an incorrect implementation produces the correct output for the test sequences, but fails with real signals. Consequently, an extra sequence is included, which consists of very clean speech, barely detectable speech and a swept frequency tone:

- DTX07. *

NOTE:

Some of the DTX test sequences contain homing frames. The DTX test sequences are therefore only suitable for testing a single transcoding.

Table 6: Location and size of DTX test sequences

				size	(bytes)	
Disk No.	File Name	No. of	*.INP	*.COD	*.DEC	*.OUT
		Frames				
4/4	DTX01	710	227 200	349 320	350 740	227 200
4/4	DTX02	933	298 560	459 036	460 902	298 560
4/4	DTX03	156	49 920	76 752	77 064	49 920
4/4	DTX04	245	78 400	120 540	121 030	78 400
4/4	DTX05	56	17 920	27 552	27 664	17 920
4/4	DTX06	771	246 720	379 332	380 874	246 720
4/4	DTX07	1188	380 160	584 496	586 872	380 160

8 Sequences for finding the 20 ms framing of the GSM enhanced full rate speech encoder

When testing the decoder, alignment of the test sequences used to the decoder framing is achieved by the air interface (testing of MS) or can be reached easily on the A_{bis}-interface (testing on network side).

When testing the encoder, usually there is no information available about where the encoder starts its 20 ms segments of speech input to the encoder.

In the following, a procedure is described to find the 20 ms framing of the encoder using special synchronization sequences. This procedure can be used for MS as well as for network side.

Synchronization can be achieved in two steps. First, bit synchronization has to be found. In a second step, frame synchronization can be determined. This procedure takes advantage of the codec homing feature of the enhanced full rate codec, which puts the codec in a defined home state after the reception of the first homing frame. On the reception of further homing frames, the output of the codec is predefined and can be triggered to.

8.1 Bit synchronization

The input to the speech encoder is a series of 13 bit long words (104 kbits/s, 13 bit linear PCM). When starting to test the speech encoder, no knowledge is available on bit synchronization, i.e., where the encoder expects its least significant bits, and where it expects the most significant bits.

The encoder homing frame consists of 160 samples, all set to zero with the exception of the least significant bit, which is set to one (0 0000 0000 0001 binary, or 0x0008 hex if written into 16 bit words left justified). If two such encoder homing frames are input to the encoder consecutively, the decoder homing frame is expected at the output as a reaction of the second encoder homing frame.

Since there are only 13 possibilities for bit synchronization, after a maximum of 13 trials bit synchronization can be reached. In each trial three consecutive encoder homing frames are input to the encoder. If the decoder homing frame is not detected at the output, the relative bit position of the three input frames is shifted by one and another trial is performed. As soon as the decoder homing frame is detected at the output, bit synchronization is found, and the first step can be terminated.

The reason why three consecutive encoder homing frames are needed is that frame synchronization is not known at this stage. To be sure that the encoder reads two complete homing frames, three frames have to be input. Wherever the encoder has its 20 ms segmentation, it will always read at least two complete encoder homing frames.

An example of the 13 different frame triplets is given in sequence BITSYNC.INP (see table 7)

8.2 Frame synchronization

Once bit synchronization is found, frame synchronization can be found by inputting one special frame that delivers 160 different output frames, depending on the 160 different positions that this frame can possibly have with respect to the encoder framing.

This special synchronization frame was found by taking one input frame and shifting it through the positions 0 to 159. The corresponding 160 encoded speech frames were calculated and it was verified that all 160 output frames were different. When shifting the input synchronization frame, the samples at the beginning were set to 0x0008 hex, which corresponds to the samples of the encoder homing frame.

Before inputting this special synchronization frame to the encoder, again the encoder has to be reset by one encoder homing frame. A second encoder homing frame is needed to provoke a decoder homing frame at the output that can be triggered to. And since the framing of the encoder is not known at that stage, three encoder homing frames have to precede the special synchronization frame to ensure that the encoder reads at least two homing frames, and at least one decoder homing frame is produced at the output, serving as a trigger for recording.

The special synchronization frame preceded by the three encoder homing frames are given in SEQSYNC.INP. The corresponding 160 different output frames are given in SYNC000.COD through SYNC159.COD. The three digit number in the filename indicates the number of samples by which the input was retarded with respect to the encoder framing. By a corresponding shift in the opposite direction, alignment with the encoder framing can be reached.

8.3 Formats and sizes of the synchronization sequences

BIT SYNC.INP:

This sequence consists of 13 frame triplets. It has the format of the speech encoder input test sequences (13 bit left justified with the three least significant bits set to zero).

The size of it is therefore:

SEQSYNC.INP:

This sequence consists of 3 encoder reset frames and the special synchronization frame. It has the format of the speech encoder input test sequences (13 bit left justified with the three least significant bits set to zero).

The size of it is therefore:

SYNCXXX.COD:

These sequences consists of 1 encoder output frame each. They have the format of the speech encoder output test sequences (16 bit words right justified). The values of the VAD and SP flags are set to one in these files.

The size of them is therefore:

Table 7 summarizes this information.

Table 7: Location, size and justification of synchronization sequences

Disk No.	Purpose of Sequence	Name of Sequence	No. of Frames	Size in Bytes	Justification
3/4	Bit Synchronization	BITSYNC.INP	39	1 2480	Left
3/4	Frame Synchronization (input)	SEQSYNC.INP	4	1 280	Left
3/4	Frame Synchronization (output)	SYNC000.COD	1	492	Right
3/4		SYNC001.COD	1	492	Right
3/4		SYNC002.COD	1	492	Right
"		"	"	"	ıı ı
"		"	"	"	"
"		II	"	"	"
3/4		SYNC159.COD	1	492	Right

Page 18 Draft prETS 300 725: November 1996 (GSM 06.54 version 5.0.0)

History

Document history			
November 1996	Public Enquiry	PE 118:	1996-11-18 to 1997-03-14