
*

DRAFT

EUROPEAN pr ETS 300 715

TELECOMMUNICATION May 1996

STANDARD First Edition

Source: ETSI TC-TE Reference: DE/TE-01047

ICS: 33.020

Key words: MHEG, multimedia, hypermedia, script

Terminal Equipment (TE);
Multimedia and Hypermedia Experts Group (MHEG);

Script Interchange Representation (SIR)

ETSI
European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1996. All rights reserved.

Page 2
Draft prETS 300 715: May 1996

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
Draft prETS 300 715: May 1996

Contents

Foreword ...9

Introduction..9

1 Scope ..11

2 Normative references..11

3 Definitions and abbreviations ..12
3.1 Definitions ..12
3.2 Abbreviations ...16

4 Conformance requirements...17
4.1 Information object conformance ..17

4.1.1 Profiles ..17
4.1.2 Encoding ...17
4.1.3 Syntax..17
4.1.4 Semantics..18

4.2 Implementation conformance ..18
4.2.1 Conformance requirements...18
4.2.2 Conformance documentation ..18

4.3 Application conformance ...19
4.3.1 Strictly Conforming Application ...19
4.3.2 Conforming Application ...19

4.4 Test Methods ...19

5 Overview ...19
5.1 Description methodology ...19
5.2 Data processing operations ...20
5.3 Access to external data and functions ...20

6 MHEG/MHEG-S relationship...21
6.1 Data entities ...21
6.2 Functional entities ..21
6.3 MHEG-SIR script interpreter..22

7 Main features of the MHEG-SIR ...22
7.1 Features of applications using MHEG-SIR ..22

7.1.1 Manipulation of MHEG multimedia presentation objects22
7.1.2 External device control ..22
7.1.3 External device control for data acquisition...22
7.1.4 Access to external data ...22
7.1.5 Access to external run-time services ..23
7.1.6 Computations, variable handling and control structures23

7.2 Functional features ..23
7.2.1 Data processing operations...23
7.2.2 Access to external data and functions ..23

7.3 Technical features ...24
7.3.1 Hardware independence ...24
7.3.2 Final form representation ..24
7.3.3 Compactness ..25
7.3.4 Ease of implementation...25
7.3.5 Interpretation efficiency ...25
7.3.6 Openness and extensibility..25
7.3.7 Resistance to reverse engineering..25

Page 4
Draft prETS 300 715: May 1996

7.3.8 Provisions for real-time interchange ... 25
7.3.9 Semantic validation for quality of service purposes...................................... 26
7.3.10 Syntax checkability (with regard to contamination hazards) 26
7.3.11 Secure script processing .. 26

8 Elements of the MHEG-SIR.. 26
8.1 Data types ... 26

8.1.1 Primitive types... 27
8.1.1.1 The "void" type .. 27
8.1.1.2 The "boolean" type.. 27
8.1.1.3 The "octet" type... 27
8.1.1.4 The "short" type... 27
8.1.1.5 The "long" type.. 27
8.1.1.6 The "unsigned short" type ... 27
8.1.1.7 The "unsigned long" type .. 28
8.1.1.8 The "float" type.. 28
8.1.1.9 The "double" type.. 28
8.1.1.10 The "character" type.. 28
8.1.1.11 The "string" type.. 28
8.1.1.12 The "data identifier" type ... 28
8.1.1.13 The "object reference" type... 28

8.1.2 Constructed types... 28
8.1.2.1 Sequence types .. 29
8.1.2.2 Array types .. 29
8.1.2.3 Structure types .. 29
8.1.2.4 Union types ... 30
8.1.2.5 Enumerated types ... 30

8.1.3 Predefined types... 30
8.2 Data... 30

8.2.1 Immediate values.. 30
8.2.2 Constants.. 31
8.2.3 Variables... 31

8.2.3.1 Global variables .. 31
8.2.3.2 Local variables .. 32

8.3 Functions... 32
8.3.1 Routines.. 32
8.3.2 Services .. 33
8.3.3 Predefined functions ... 33

8.4 Messages.. 33
8.4.1 Package exceptions.. 33
8.4.2 Predefined messages... 34

8.5 Instructions.. 34
8.6 Identifiers... 34

8.6.1 Type identifiers ... 34
8.6.2 Data identifiers.. 34
8.6.3 Function identifiers.. 35
8.6.4 Message identifiers... 35

8.7 Type matching... 35
8.8 Value matching.. 35

9 The MHEG-SIR virtual machine ... 36
9.1 Structures and notations ... 36
9.2 Memory areas ... 37

9.2.1 Global data area ... 37
9.2.1.1 The type definition table .. 38
9.2.1.2 The constant table .. 38
9.2.1.3 The global variable table ... 38

9.2.2 Code area ... 38
9.2.2.1 The routine definition table.. 39
9.2.2.2 The package definition table ... 39
9.2.2.3 The service definition table ... 39
9.2.2.4 The exception definition table ... 40

Page 5
Draft prETS 300 715: May 1996

9.2.2.5 The handler definition table ...40
9.2.2.6 The program code area ...40

9.2.3 The dynamic memory areas..41
9.2.3.1 The calling stack..41
9.2.3.2 The parameter stack ...41
9.2.3.3 The message queue..42
9.2.3.4 The heap area ...42

9.2.4 Registers ...42
9.2.4.1 The instruction pointer register ..42
9.2.4.2 The instruction register ..43
9.2.4.3 The error register...43
9.2.4.4 The stack pointer register ..43
9.2.4.5 The function pointer register..43
9.2.4.6 The queue pointer register ..43

9.3 Processing units...43
9.3.1 Mh-script initialisation ..43
9.3.2 Rt-script initialisation ...44
9.3.3 Message reception ..44

9.3.3.1 Elementary action ..44
9.3.3.2 Exception ...44

9.3.4 Script code execution unit ...45
9.3.5 MHEG-SIR instruction execution unit..45

10 Provisions for run-time environment access ...46
10.1 General model ...46
10.2 Declaration of IDL interfaces ...47
10.3 Invocation of IDL operations in an MHEG-SIR program..47
10.4 Handling of IDL exceptions in an MHEG-SIR program..48
10.5 Invocation of IDL operations by an MHEG-S engine ...48
10.6 Handling of IDL exceptions by an MHEG-S engine ...48
10.7 Platform mapping specifications..48

11 Provisions for MHEG object manipulation...49
11.1 Invoking MHEG actions ...49

11.1.1 Sending messages to other scripts ...49
11.1.2 Synchronisation with MHEG objects ...49

11.2 Receiving MHEG messages..49
11.2.1 Return actions ...50
11.2.2 MHEG actions targeted at an mh-script ..50
11.2.3 MHEG actions targeted at an rt-script ...50
11.2.4 MHEG-API exceptions ..50

11.3 Effect of MHEG actions ...50
11.3.1 Prepare..50
11.3.2 New ...50
11.3.3 Run..50
11.3.4 Set parameters..51
11.3.5 Stop ...51
11.3.6 Delete ..51
11.3.7 Destroy ..51

12 MHEG-SIR declarations ..51
12.1 Type declaration ..52

12.1.1 Type identifier ..52
12.1.2 Type description ..52

12.1.2.1 Enumerated description...52
12.1.2.2 Sequence description ..52
12.1.2.3 Array description..53
12.1.2.4 Structure description..53
12.1.2.5 Union description ...53

12.2 Constant declaration ..53
12.2.1 Data identifier ..53
12.2.2 Type identifier ..54

Page 6
Draft prETS 300 715: May 1996

12.2.3 Constant value.. 54
12.3 Global variable declaration.. 54

12.3.1 Data identifier.. 55
12.3.2 Type identifier ... 55
12.3.3 Constant reference ... 55

12.4 Package declaration.. 55
12.4.1 Package identifier ... 55
12.4.2 Package name.. 56
12.4.3 Service description ... 56

12.4.3.1 Function identifier.. 56
12.4.3.2 Operation name .. 56
12.4.3.3 Calling mode ... 56
12.4.3.4 Type identifier.. 56
12.4.3.5 Parameter description... 56

12.4.3.5.1 Passing mode 57
12.4.3.5.2 Type identifier....................................... 57

12.4.4 Exception description.. 57
12.4.4.1 Message identifier ... 57
12.4.4.2 Exception name .. 57
12.4.4.3 Parameter description... 57

12.5 Handler declaration ... 57
12.5.1 Message reference... 58

12.5.1.1 Message identifier ... 58
12.5.1.2 Exception reference .. 58

12.5.2 Function reference.. 58
12.5.2.1 Function identifier.. 58
12.5.2.2 Service reference.. 59

12.6 Routine declaration ... 59
12.6.1 Function identifier ... 59
12.6.2 Type identifier ... 59
12.6.3 Parameter description... 59

12.6.3.1 Passing mode ... 59
12.6.3.2 Type identifier.. 60

12.6.4 Local variable declaration ... 60
12.6.4.1 Data identifier .. 60

12.6.5 Type identifier ... 60
12.6.6 Constant reference ... 60
12.6.7 Program code ... 60

13 MHEG-SIR instructions... 61
13.1 Presentation methodology... 61
13.2 Notation ... 61

13.2.1 Variable table notation .. 62
13.2.2 Data table notation.. 62
13.2.3 Type matching notation .. 62
13.2.4 Type combination ... 62

13.3 Classification of MHEG-SIR instructions... 62
13.4 Description of instructions ... 64

13.4.1 No operation ... 64
13.4.2 Yield .. 65
13.4.3 Return ... 65
13.4.4 Add ... 66
13.4.5 Subtract .. 66
13.4.6 Multiply.. 66
13.4.7 Divide.. 67
13.4.8 Remainder .. 67
13.4.9 Negate .. 68
13.4.10 Not .. 68
13.4.11 And ... 68
13.4.12 Or.. 69
13.4.13 Exclusive or .. 69
13.4.14 Equal... 70

Page 7
Draft prETS 300 715: May 1996

13.4.15 Less or equal...70
13.4.16 Greater than ..71
13.4.17 Jump on true ...71
13.4.18 Jump on false..71
13.4.19 Jump..72
13.4.20 Long jump on true ...72
13.4.21 Long jump on false..73
13.4.22 Long jump..73
13.4.23 Call ..73
13.4.24 External call ...74
13.4.25 Drop...75
13.4.26 Shift ...75
13.4.27 Push immediate...76
13.4.28 Push ..76
13.4.29 Push reference ..77
13.4.30 Pop ..77
13.4.31 Pop reference..77
13.4.32 Pop contents ...78
13.4.33 Increment ..78
13.4.34 Decrement...78
13.4.35 Get...79
13.4.36 Set ...79
13.4.37 Set contents ..80
13.4.38 Alloc...81
13.4.39 Free ...81
13.4.40 Dup..81
13.4.41 CVT ...82

14 IDL mapping to MHEG-SIR...82
14.1 IDL specifications...82
14.2 IDL interfaces and modules ...82
14.3 IDL operations..83

14.3.1 Operation name...83
14.3.2 Operation parameters ...83
14.3.3 Implicit parameter..83
14.3.4 Return value ..83

14.4 IDL attributes..83
14.4.1 Accessor..83
14.4.2 Modifier..83
14.4.3 Readonly attribute ...83

14.5 IDL inherited operations...83
14.6 IDL exceptions ...84

14.6.1 Exception name...84
14.6.2 Exception members ..84

14.7 IDL types..84
14.8 IDL constants ...85

Annex A (normative): ASN.1 notation (level c)...86

Annex B (normative): Coded representation (level d) ...92

Annex C (normative): MHEG-SIR predefined elements..95

Annex D (normative): IDL Platform mapping specification form ...97

Annex E (informative): EBNF notation for MHEG-SIR syntax...99

Annex F (informative): Textual notation for MHEG-SIR programs ...101

Annex G (informative): MHEG entities ..105

Annex H (informative): MHEG Application Programming Interface (MHEG-API)107

Page 8
Draft prETS 300 715: May 1996

H.1 IDL specification of the MHEG-API .. 108
H.1.1 MHEGEngine object.. 108
H.1.2 NotificationManager object.. 108
H.1.3 EntityManager object... 109
H.1.4 Entity object... 111
H.1.5 MhObject object .. 112
H.1.6 MhAction object... 115
H.1.7 MhLink object .. 116
H.1.8 MhModel object ... 117
H.1.9 MhComponent object .. 117
H.1.10 MhGenericContent object ... 117
H.1.11 MhContent object .. 118
H.1.12 MhMultiplexedContent object .. 119
H.1.13 MhComposite object ... 121
H.1.14 MhScript object.. 121
H.1.15 MhContainer object ... 121
H.1.16 MhDescriptor object .. 121
H.1.17 RtObjectOrSocket object... 122
H.1.18 RtObject object.. 124
H.1.19 Socket object... 127
H.1.20 RtScript object ... 131
H.1.21 RtComponentOrSocket object .. 132
H.1.22 RtComponent object ... 169
H.1.23 RtCompositeOrStructuralSocket object .. 170
H.1.24 RtComposite object... 175
H.1.25 StructuralSocket object ... 175
H.1.26 RtGenericContentOrPresentableSocket object... 175
H.1.27 RtGenericContent object... 179
H.1.28 GenericPresentableSocket object... 179
H.1.29 RtContentOrPresentableSocket object ... 179
H.1.30 RtContent object.. 181
H.1.31 PresentableSocket object ... 182
H.1.32 RtMultiplexedContentOrPresentableSocket object ... 182
H.1.33 RtMultiplexedContent object ... 183
H.1.34 MultiplexedPresentableSocket object ... 183
H.1.35 Channel object .. 183
H.1.36 Parameter definition .. 188
H.1.37 Exceptions... 204

History ... 206

Page 9
Draft prETS 300 715: May 1996

Foreword

This draft European Telecommunication Standard (ETS) has been produced by the Terminal Equipment
(TE) Technical Committee of the European Telecommunications Standards Institute (ETSI), and is now
submitted for the Public Enquiry phase of the ETSI standards approval procedure.

This draft ETS was presented to ISO SC29 WG12 and is now under CD-Ballot procedure within ISO.

The title of this document in ISO is:

TITLE: Combined CD Registration and CD Consideration Ballot on ISO/IEC CD 13522-
3, Information technology — Coding of multimedia and hypermedia
information — Part 3: — MHEG extensions for scripting language support, —
Extensions for script object interchange

This draft ETS was developed by ETSI PT63 jointly with ISO SC29 WG12.

Proposed transposition dates

Date of latest announcement of this ETS (doa): 3 months after ETSI publication

Date of latest publication of new National Standard
or endorsement of this ETS (dop/e): 6 months after doa

Date of withdrawal of any conflicting National Standard (dow): 6 months after doa

Introduction

Multimedia and Hypermedia information coding Experts Group (MHEG) part 1 (ISO/IEC 13522-1 [1]) is a
generic International Standard/Recommendation, which specifies the coded representation of
multimedia/hypermedia information objects (MHEG objects) for interchange as final form units within or
across services and applications, by any means of interchange including local area networks, wide area
telecommunication or broadcast networks, storage media, etc.

MHEG objects will usually be produced by computer tools taking multimedia applications designed using
multimedia scripting languages as a source form. In this context, one of the MHEG object classes, the
script class, is intended to complement the other MHEG classes in expressing the functionality commonly
supported by scripting languages. Script objects allow the expression of more powerful control
mechanisms and the description of more complex relationships between MHEG objects than can be
expressed by MHEG action and link objects alone. Furthermore, script objects allow the expression of
access and interaction with external services provided by the run-time environment.

MHEG part 1 defines the coded representation for script objects in an open manner so as not to exclude
the transport of proprietary script code. Script objects encapsulate scripts that may be encoded in any
encoding format as registered according to MHEG part 4 (ISO/IEC 13522-4) [6].

Page 10
Draft prETS 300 715: May 1996

Blank page

Page 11
Draft prETS 300 715: May 1996

1 Scope

This draft European Telecommunication Standard (ETS) is intended to extend the coded representation of
the Multimedia and Hypermedia information coding Experts Group (MHEG) script object class.

The draft ETS specifies the MHEG Script Interchange Representation (MHEG-SIR) for the contents of
script objects.

The MHEG-SIR consists of the encoding of the script data component of the MHEG script class. It applies
to MHEG part 1 (ISO/IEC 13522-1 [1]) conforming script objects whose script classification component is
script and whose script encoding identification component is MHEG-SIR.

NOTE: These values will be registered according to MHEG part 4 (ISO/IEC 13522-4 [6])
provisions.

MHEG engines are system or application components which handle, interpret and present MHEG objects.
This ETS also specifies the semantics of MHEG-SIR interchanged scripts. The semantics are defined in
terms of minimum requirements on the behaviour of MHEG engines which support the interpretation of
MHEG-SIR scripts.

2 Normative references

This ETS incorporates by dated or undated reference, provisions from other publications. These
references are cited at the appropriate places in the text and the publications are listed hereafter. For
dated references, subsequent amendments to or revisions of any of these publications apply to this ETS
only when incorporated in it by amendment or revision. For undated references the latest edition of the
application referred to applies.

[1] ISO/IEC 13522-1/ITU-T Recommendation T.171: "Information technology -
Coding of Multimedia and Hypermedia Information: - Part 1: MHEG object
representation - Base Notation".

[2] ISO/IEC 8824-1 (1995)/ITU-T Recommendation X.680 (1995): "Information
technology - Abstract Syntax Notation One (ASN.1): Specification of basic
notation".

[3] ISO/IEC 8825-1 (1994)/ITU-T Recommendation X.690 (1995): "Information
technology - ASN.1 encoding rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER)".

[4] ITU-T Draft Recommendation T.177: "Terminal Equipment (TE); MHEG
Application Programming Interface (API)".

[5] ISO/IEC 9646 Parts 1 to 5 (1991): "Information Technology - Open Systems
Interconnection - Conformance testing methodology and framework".

[6] ISO/IEC 13522-4: "Information technology - Coding of Multimedia and
Hypermedia Information: - Part 4: Registration procedure for MHEG format
identifiers".

[7] ISO/IEC 10646-1 (1993): "Information technology - Universal Multiple-Octet
Coded Character Set (UCS) - Part1: Architecture and Basic Multilingual Plane".

[8] ISO/IEC 14750-1 Working Draft: "CORBA IDL as an Interface Definition
Language for ODP Systems".

[9] ETR 225 (1995): "Terminal Equipment (TE); Application Programmable
representation for MHEG; Requirements and framework".

Page 12
Draft prETS 300 715: May 1996

[10] Draft ETS 300 714: "Terminal Equipment (TE); Application Programming
manupulation of Multimedia and Hypermedia information objects".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this ETS, the following definitions apply:

NOTE: The definitions given in ISO/IEC 8824-1 [2], ISO/IEC 8825-1 [3] are also applicable to
this ETS.

attribute: a) An MHEG attribute;
b) An IDL attribute (q.v.).

Application Programming Interface (API): A boundary across which a software application uses
facilities of programming languages to invoke software services. These facilities may include procedures
or operations, shared data objects and resolution of identifiers.

calling stack: The MHEG-SIR calling stack (q.v.).

constant: An MHEG-SIR constant (q.v.).

constructed type: An MHEG-SIR constructed type (q.v.).

data identifier: An MHEG-SIR data identifier (q.v.).

exception: An MHEG-SIR exception (q.v.).

frame: A set of elements on the calling stack that define the current execution context. Multiple frames
may appear on the stack.

function: An MHEG-SIR function (q.v.).

function identifier: An MHEG-SIR function identifier (q.v.).

global variable : An MHEG-SIR global variable (q.v.).

handler : An MHEG-SIR handler (q.v.).

Hypermedia (ADJ.): Featuring access to monomedia and multimedia information by interaction with
explicit links.

instruction : An MHEG-SIR instruction (q.v.).

instruction execution unit : An MHEG-SIR instruction execution unit (q.v.).

interchanged script: The coded representation of the script data attribute of an MHEG script object.

Interface Definition Language (IDL) : A formal notation that is used to specify types and objects through
the definition of the interface that they provide. Defined by the OMG, IDL is under currently under an
international standardisation process (see ISO/IEC 14750-1 [8]).

IDL attribute : A named and typed association between an object and a value. An IDL attribute A is made
visible to clients as a pair of operations: An accessor (get) and a modifier (set). Read-only attributes only
provide an accessor.

Page 13
Draft prETS 300 715: May 1996

IDL exception: the definition, using IDL, of a client operation in an invoking script object that is called
when an error occurs during the performance of the request to an IDL operation. IDL exceptions are
defined in IDL modules and may have members (parameters).

IDL instance : An instance of an IDL interface is an object which provides the operations, signatures and
semantics specified by that interface. The creation and management of instances is implementation
specific.

IDL interface: The definition, using the IDL, of an object or non-object type as a set of operations and
attributes.

IDL object : A combination of state and a set of methods that explicitly embodies an abstraction
characterised by the behaviour of the relevant requests. An IDL object may be implemented as a
computational entity that encapsulates state and operations (internally implemented as data and
processing instructions) and responds to requester services.

IDL operation : A service that can be requested. An IDL operation is defined by a name, a signature,
which defines the type of its parameters and return value, and the list of exceptions that its invocation may
raise.

local variable : An MHEG-SIR local variable (q.v.).

message : An MHEG-SIR message (q.v.).

mh-script : An internal representation of an available MHEG script object within an MHEG engine.

MHEG action : An operation applying to MHEG objects.

MHEG action object : An MHEG object that describes MHEG actions.

MHEG application : An application which involves the interchange of MHEG objects within itself or with
another application.

MHEG conforming object : An information object whose coded representation conforms to the provisions
of ISO/IEC 13522-1 [1].

MHEG elementary action: One of the basic operations defined by ISO/IEC 13522-1 [1]; MHEG
elementary actions map MHEG-API primitives.

MHEG engine : A process or a set of processes able to interpret MHEG objects which conform to ISO/IEC
13522-1 [1].

MHEG entity : Any MHEG object, rt-object, content data, script data, socket, channel or other construction
identified or referred to in ISO/IEC 13522-1 [1].

MHEG link : An MHEG object which defines spatio-temporal relationships between MHEG objects
expressed in terms of trigger conditions and actions.

MHEG object : A coded representation of an instance of an MHEG object class, as defined by ISO/IEC
13522-1 [1].

MHEG script class : An MHEG class defining a structure to interchange script data in a specified encoded
form.

MHEG script object: The coded representation of an instance of an MHEG script class, as defined by
ISO/IEC 13522-1 [1].

MHEG-1: a) Part 1 of ISO/IEC 13522-1, i.e. ISO/IEC 13522-1 [1];
b) the coded representation defined by ISO/IEC 13522-1 [1].

Page 14
Draft prETS 300 715: May 1996

MHEG-4: a) Part 4 of ISO/IEC 13522-1, i.e. ISO/IEC 13522-4 [6];
b) the registration mechanisms defined by ISO/IEC 13522-4 [6].

MHEG-API: The API provided by an MHEG engine to MHEG applications for the manipulation of MHEG
objects, as defined by ITU-T Recommendation T.177 [4].

MHEG-S (ADJ.) : Applies to entities that conform to the provisions of this ETS.

MHEG-S application : An MHEG application which interchanges scripts within itself and/or with other
applications as the script data component of MHEG script objects according to the representation
specified by this ETS.

MHEG-S conforming object : An information object whose coded representation conforms to the
provisions of this ETS.

MHEG-S conforming implementation : An MHEG-S engine whose implementation conforms to the
provisions of this ETS.

MHEG-S conforming interchanged script : An interchanged script which conforms to the provisions of
this ETS.

MHEG-S engine : An MHEG engine which processes and interprets MHEG-S interchanged scripts.

MHEG-S profile : A profile of this ETS.

MHEG-SIR: a) The standard Script Interchange Representation defined by this ETS;
b) (adj.) applies to an entity defined as part of the MHEG-SIR.

MHEG-SIR calling stack : A stack which contains a call frame for each active function invocation.

MHEG-SIR code : An encoded sequence of MHEG-SIR instructions.

MHEG-SIR constant : A static, typed, and named value declared within an interchanged script, whose
value is globally accessible and unchanged throughout the execution of the script.

MHEG-SIR constructed type : A type whose description uses one of the following type constructors:
sequence, array, union, enumerated or structure.

MHEG-SIR data identifier : A value which unambiguously identifies the name of data element of an
interchanged script (constant, global variable or local variable).

MHEG-SIR exception : A message triggered during the invocation of a service.

MHEG-SIR function : A named code sequence whose execution can be invoked by an interchanged
script. MHEG-SIR functions are routines, predefined functions and services.

MHEG-SIR function identifier : An integer which uniquely identifies a function within an interchanged
script.

MHEG-SIR global variable : A variable with global scope.

MHEG-SIR instruction : An elementary unit of script code that consists of an op-code followed by zero or
more operands.

MHEG-SIR instruction execution unit : A virtual component of a script interpreter responsible for the
execution of MHEG-SIR code.

MHEG-SIR local variable : A variable with local scope.

Page 15
Draft prETS 300 715: May 1996

MHEG-SIR message : An event, either predefined or declared within an interchanged script, which may be
received by the script interpreter during the execution of the script. Messages include MHEG actions and
exceptions.

MHEG-SIR object reference : An opaque handle to an IDL object which is dereferenced in order to
manipulate the object.

MHEG-SIR operand : A parameter of an instruction, whose encoding follows the op-code of the
instruction.

MHEG-SIR package : A set of external functions, provided by a module of the run-time environment,
accessible to an rt-script and declared within an interchanged script. A package consists of services and
exceptions.

MHEG-SIR parameter : A piece of data exchanged with a function call, a message or an instruction.

MHEG-SIR parameter stack : A dynamic memory area of the MHEG-SIR virtual machine used to provide
parameters to and retrieve results of instructions.

MHEG-SIR predefined type : A type whose description and identifier are predefined by this ETS, and thus
need not be declared within interchanged scripts.

MHEG-SIR primitive type : A basic type, whose description and identifier are predefined by this ETS, and
thus need not be declared within interchanged scripts.

MHEG-SIR routine : A function which is declared within an interchanged script together with the pseudo-
code that defines its semantics.

MHEG-SIR script code execution unit : A virtual component of an MHEG-SIR script interpreter that
deals with the interpretation of MHEG-SIR code.

MHEG-SIR script interpreter : A part of an MHEG engine which deals with the handling and interpretation
of interchanged scripts.

MHEG-SIR service : An external function, declared within an interchanged script, whose implementation is
made accessible to an rt-script by the run-time environment on the execution platform.

MHEG-SIR variable : A named and typed memory unit whose value can be changed at any time when its
scope is active, and whose most recent value can be read.

MHEG-SIR virtual machine : An abstract description of the instruction execution engine of an MHEG-SIR
script interpreter in interpreting an MHEG-SIR interchanged script.

Multimedia (ADJ.): That which handles several types of representation media.

multimedia and hypermedia application : An application which involves the presentation of multimedia
information to the user and the interactive navigation across this information by the user.

multimedia application : An application which involves the presentation of multimedia information to the
user.

object reference : An MHEG-SIR object reference (q.v.).

operand : An MHEG-SIR operand (q.v.).

package : An MHEG-SIR package (q.v.).

parameter : An MHEG-SIR parameter (q.v.).

parameter stack: the MHEG-SIR parameter stack (q.v.).

Page 16
Draft prETS 300 715: May 1996

platform mapping specification : A specification of how MHEG-S engine implementations shall map IDL
specifications to run-time environment components on one type of platform.

predefined type : An MHEG-SIR predefined type (q.v.).

primitive type : An MHEG-SIR primitive type (q.v.).

pseudo-code: Interpreted code that resembles executable code.

queue : A collection of elements which are inserted and removed in First-In-First-Out (FIFO) order.

routine : An MHEG-SIR routine.

rt-script : A run-time instance (or copy) of a model mh-object, created and handled by an MHEG engine in
the purpose of presentation.

scope: The context of reference for an object or variable. An object with global scope can be referenced
by any script operation. An object with local scope can only be referenced in the local execution context or
its descendants.

scripting language : A programming language intended for easy and rapid design of applications by non-
professional programmers.

Script Interchange Representation (SIR) : A coded representation used by an application to interchange
scripts for the purpose of implementing dynamic behavior.

script code execution unit: MHEG-SIR script code execution unit (q.v.).

script interpreter: MHEG-SIR script interpreter (q.v.).

service : An MHEG-SIR service (q.v.).

stack : A collection of elements that are inserted and removed in Last-In-First-Out (LIFO) order.

variable : An MHEG-SIR variable (q.v.).

3.2 Abbreviations

For the purposes of this ETS, the following abbreviations apply:

API Application Programming Interface
ASN.1 Abstract Syntax Notation One
BER Basic Encoding Rules
CS Calling Stack
CT Constant Table
DER Distinguished Encoding Rules
DID Data IDentifier
DT Data Table
EBNF Extended Backus Naur Form
ER Error Register
FID Function IDentifier
FIFO First In First Out
FP Function Pointer
GT Global variable Table
HT Handler Definition Table
IDL Interface Definition Language
IEC International Electrotechnical Commission
IP Instruction Pointer
IR Instruction Register
LIFO Last In First Out
LT Local variable Table

Page 17
Draft prETS 300 715: May 1996

MHEG Multimedia and Hypermedia information coding Experts Group
MID Message IDentifier
MPEG/DSM-CC Moving Picture Experts Group - Digital Storage Media Command and Control
MQ Message Queue
msb Most Significant Bit
OMG Object Management Group
PID Package IDentifier
PS Parameter Stack
PT Package definition Table
QP Queue Pointer
RT Routine definition Table
rt Run-time
SIR Script Interchange Representation
SP Stack Pointer
ST Service definition Table
TE Terminal Equipment
TID Type IDentifier
TT Type definition Table
TTCN Tree And Tabular Combined Notation
TVL Type, Length and Value
VD Visible Duration
VM Virtual Machine
VS Visible Size
VT Variable Table
XT eXception definition Table

4 Conformance requirements

This ETS defines conformance requirements:

- on information objects;
- on MHEG engine implementations.

4.1 Information object conformance

An script object conforming to this ETS (called MHEG-S script object) shall meet the following criteria:

- its coded representation shall conform to the provisions of ISO/IEC 13522-1/ITU-T
Recommendation T.171 [1];

- its coded representation shall encapsulate an interchanged script that conforms to the provisions of
this ETS.

The information object conformance is evaluated on the information objects that are interchanged in the
purpose of their execution on a terminal.

4.1.1 Profiles

This ETS defines no profiles.

NOTE: Profiles of this ETS may however be defined by other standards. In accordance with
the profile definition framework, standardised profiles of this ETS should be at least as
constraining - information objects claiming conformance to such profiles should at
least conform to this ETS.

4.1.2 Encoding

Interchanged scripts shall be encoded according to the encoding rules defined by annex B.

4.1.3 Syntax

Interchanged scripts shall conform to the syntax defined by annex A.

Page 18
Draft prETS 300 715: May 1996

4.1.4 Semantics

This ETS defines the semantics of interchanged scripts. This implies conformance requirements not on
information objects, but on the behaviour of MHEG engines which will interpret interchanged scripts.

NOTE: This means that although a conforming script might not realise the semantics implied
by its designer, the way conforming engines will behave in interpreting this script is
predictable.

4.2 Implementation conformance

An implementation of this ETS (called MHEG-S implementation) is an MHEG engine implementation
which supports the interpretation of interchanged script objects which conform to the provisions of this
ETS.

There is no consideration of conformance for a system, an engine or a process as far as it is not related to
the interpretation of interchanged scripts.

4.2.1 Conformance requirements

An MHEG-S Conforming Implementation shall meet all of the following criteria:

- it shall support all required behaviour defined in this ETS;

- it shall support all required interfaces defined in the platform mapping specification. Those
interfaces shall support the behaviour described in this ETS and in the platform mapping
specification;

- it may provide additional functions or facilities not required by this ETS or by the platform mapping
specification. Each such non-standard extension shall be identified as such in the system
documentation. Non-standard extensions, when used, may change the behaviour of functions or
facilities defined by this ETS or by the platform mapping specification. The conformance document
shall define an environment in which an application can be run with the behaviour specified by this
ETS and the platform mapping specification. In no case shall such an environment require
modification of a Strictly Conforming Application.

4.2.2 Conformance documentation

A conformance document with the following information shall be available for an implementation claiming
conformance to this ETS. The conformance document shall meet all of the following criteria:

- it shall list all the mandatory features required by this ETS, with reference to the appropriate clauses
and subclauses;

- it shall either include the platform mapping specification to which the implementation conforms, or
reference a registered platform mapping specification in an unambiguous way;

- it shall contain a statement that indicates the full names, numbers, and dates of the standards that
apply;

- it shall state which of the optional features defined in this ETS and in the platform mapping
specification are supported by the implementation.

- it shall describe the behaviour of the implementation for all implementation-defined features defined
in this ETS and in the platform mapping specification. This requirement shall be met by listing these
features and by providing either a specific reference to the system documentation or full syntax and
semantics of these features. The conformance document may specify the behaviour of the
implementation for those features where this ETS or the platform mapping specification states that
implementations may vary or where features are identified as undefined or unspecified.

Page 19
Draft prETS 300 715: May 1996

No specifications other than those specified by this ETS and the platform mapping specification shall be
present in the conformance document.

4.3 Application conformance

An application of this ETS (called MHEG-S application) is an MHEG application which interchanges
scripts within itself and/or with other applications as the script data component of MHEG script objects
according to the encoded representation specified by this ETS.

All applications claiming conformance to this ETS shall fall within one of the categories defined in the
following subclauses.

4.3.1 Strictly Conforming Application

An MHEG-S Strictly Conforming Application is an application that requires only the mandatory facilities
described in this ETS.

4.3.2 Conforming Application

An MHEG-S Conforming Application is an application that differs from a Strictly Conforming Application in
that it may use optional facilities described in this ETS or in the platform mapping specification, as well as
non-standard facilities that are consistent with this ETS and with the platform mapping specification. Such
an application shall fully document its requirements for these optional and extended facilities in addition to
the documentation required of an MHEG-S Conforming Application.

4.4 Test Methods

Any measurement of conformance to this ETS shall be performed using test methods that conform to
ISO/IEC 9646 [5] and to any additional requirements that may be imposed by the platform mapping
specification.

5 Overview

This ETS extends the provisions of MHEG-1 so that MHEG objects and applications support the
functionality of multimedia scripting languages in a standard manner. Considering the functionality that is
already supported by MHEG-1, these extensions can be divided in two main topics, as described in
subclause 7.2:

- data processing operations;
- access to external data and functions.

For the support of both topics, this ETS specifies:

- complete and detailed provisions for the encoding of interchanged scripts;
- the required behaviour of a script interpreter.

5.1 Description methodology

For the description of these provisions, this ETS follows the methodology used by MHEG-1 in considering
four description levels:

- level a): informal text description;
- level b): precise description of semantics;
- level c): formal description of syntax;
- level d): formal description of encoding.

These levels are used in the following clauses as follows:

- level a): clauses 8 to 12;
- level b): clauses 13 to 15;

Page 20
Draft prETS 300 715: May 1996

- level c): annex A;

- level d): annexes B to D.

NOTE: Informative annexes E, F and H also use level c) description.

5.2 Data processing operations

To deal with data processing operations, the MHEG-Script Interchange Representation (SIR) defines the
structure of interchanged scripts that consist of data declarations and function declarations, the latter
encapsulating sequences of instructions.

Clause 9 defines the elements of the MHEG-SIR virtual machine code.

Clause 10 defines the MHEG-SIR virtual machine, i.e. a model of how a script interpreter should perform
interpretation of MHEG-SIR script code. This virtual machine is used afterwards to describe the semantics
of MHEG-SIR instructions. Clause 10 states requirements on the functionality that script interpreters shall
provide. However, there is no requirement on script interpreters on how they may implement this
functionality.

Clause 13 describes the general structure and semantics of declarations, i.e. the way they are intended to
be interpreted by script interpreters. These semantics are described using the virtual machine formalism
introduced in clause 10.

Clause 14 describes the semantics of the MHEG-SIR instructions, i.e. the way they are intended to be
interpreted by script interpreters. These semantics are described using the virtual machine formalism
introduced in clause 10.

Annex A describes the precise syntax of interchanged scripts using ASN.1 notation.

Annex B formally describes the encoding of interchanged scripts.

Annex C lists the predefined elements of the MHEG-SIR and describes their encoding.

5.3 Access to external data and functions

To deal with access to external data and functions, the MHEG-SIR unifies the way external data and
functions are viewed by script interpreters by use of the Interface Definition Language (IDL), which is used
to describe interfaces in an abstract, language-independent way.

IDL clearly separates the way use of external data or functions is expressed by interchanged scripts
(which is MHEG-SIR specific) from the way these data or functions are provided by the external
environment (which is at least platform-dependent, and may be application-dependent). The MHEG-SIR
thus defines how the interfaces are used, while the application is responsible for defining how they are
provided.

To allow the script interpreter to co-operate with them, MHEG engines are assumed to provide access to
the MHEG objects (data) and invocation of the MHEG actions (functions) through the MHEG-Application
Programming Interface (API) defined (using the IDL) in ITU-T Recommendation T.177 [4]. The MHEG
types and actions are predefined by the MHEG-SIR to allow compact coding and efficient interpretation of
MHEG object manipulation.

To allow the script interpreter to co-operate with it, the run-time environment is assumed to provide access
to its data and functions in a platform-dependent way which conforms to a platform mapping specification
of IDL. This specification describes how IDL operations shall be provided on a particular platform for
MHEG-S engines to use them as external services.

NOTE: Packages may be provided in the form of libraries, device drivers, operating system
components, processes, telecommunication services, etc.

Page 21
Draft prETS 300 715: May 1996

Clause 8 describes assumptions on the structure of MHEG-S engines and their relationships with their
environment.

Clause 11 describes the general mechanisms that allow for access to external data and functions
provided by the run-time environment.

Clause 12 describes the general mechanisms that allow for MHEG object manipulation.

Clause 15 describes the IDL mapping for MHEG-SIR, i.e. the mechanisms used by the MHEG-SIR
representation to describe IDL packages and invoke IDL operations.

Annex D describes the IDL platform mapping specification form, i.e. the template for the document that
needs to be filled in and registered to specify the platform-specific provisions that services provided by the
run-time environment on this platform shall fulfil, and to which MHEG-S engines should conform if they
wish to co-operate with services provided by the run-time environment on this platform.

6 MHEG/MHEG-S relationship

This clause introduces general assumptions about MHEG engines, which are used afterwards to describe
the performance of a script interpreter and its relationships with its external environment.

MHEG-S engines shall provide the functionality described thereafter, in order to behave as expected in so
far as interpretation of interchanged scripts is concerned.

However, there is no requirement on MHEG-S engines to implement this functionality as described.

NOTE: For instance, the MHEG engine functional components described thereafter need not
correspond to actual (e.g. software) components of MHEG engine implementations.

6.1 Data entities

MHEG engines are assumed to handle MHEG entities: MHEG objects, mh-objects, run time (rt)-objects,
interchanged MHEG objects, as described by ITU-T Recommendation T.177 [4].

NOTE: Descriptions of these entities are reproduced in annex G.

6.2 Functional entities

MHEG engines may be viewed as consisting of the following functional components:

- MHEG object parser: parses interchanged MHEG objects and transforms them into mh-objects
under control of the mh-object manager;

- mh-object manager: controls the life cycle and allows access to all mh-objects;
- rt-object manager: controls the life cycle and allows access to all rt-objects;
- reference resolver: transforms an MHEG reference into a usable identifier or handle;
- link handler: watches active links and triggers the corresponding actions when their conditions

become true;
- action interpreter: interprets MHEG elementary actions;
- script interpreter: parses MHEG-SIR interchanged scripts and interprets rt-scripts, provides access

to the run-time environment;
- presentation agent: interface with the presentation environment, orders presentation of rt-contents,

receives user selections and modifications;
- access agent: interface with the communication environment; provides access to interchanged

MHEG objects and to content data.

Page 22
Draft prETS 300 715: May 1996

6.3 MHEG-SIR script interpreter

Within an MHEG engine, the script interpreter is responsible for the following:

- parsing interchanged scripts (provided by the MHEG object parser);
- preparing the appropriate data structures for further execution of rt-scripts;
- executing script code;
- realising the default effect of MHEG actions targeted at mh- or rt-scripts;
- invoking the appropriate handler (in the script program) for these MHEG actions;
- forwarding MHEG elementary actions invoked by the script program to the action interpreter;
- managing interchanges with the run-time environment (locating and loading packages, invoking

services, receiving messages, passing data) using the appropriate platform-specific communication
mechanisms.

7 Main features of the MHEG-SIR

This ETS has been developed in order to respond to a number of requirements and constraints regarding

- the applications that may use it,
- the functionality it provides,
- its context of use by applications,
- its performance.

The MHEG-SIR specified by this ETS is endowed with the features described in the following subclauses.

7.1 Features of applications using MHEG-SIR

The MHEG-SIR fits the requirements of applications which feature:

- manipulation of MHEG multimedia presentation objects;
- external device control;
- data acquisition;
- access to external data;
- access to run-time services;
- computations, variable handling and control structures.

7.1.1 Manipulation of MHEG multimedia presentation objects

This feature is achieved through provision of the mechanisms described in subclause 7.2.2.

7.1.2 External device control

This feature is achieved through provision of the mechanisms described in subclause 7.2.2.

NOTE: In this context, a device driver is one service package that may be provided by the run-
time environment.

7.1.3 External device control for data acquisition

This feature is achieved through provision of the mechanisms described in subclause 7.2.2.

NOTE: In this context, acquired data can be retrieved by an rt-script via asynchronous reaction
to notification messages sent by the device driver.

7.1.4 Access to external data

This feature is achieved through provision of the mechanisms described in subclause 7.2.2.

NOTE: In this context, external data can be retrieved through a system component which is
one service package provided by the run-time environment.

Page 23
Draft prETS 300 715: May 1996

7.1.5 Access to external run-time services

This feature is achieved through provision of the mechanisms described in subclause 7.2.2.

NOTE: In this context, external calculation capability is provided by a library or process which
is one service package provided by the run-time environment.

7.1.6 Computations, variable handling and control structures

This feature is achieved through provision of the mechanisms described in subclause 7.2.1.

7.2 Functional features

The MHEG-SIR is used to express:

- data processing operations;
- access to external data and functions.

7.2.1 Data processing operations

Data processing operations are provided by mechanisms that allow interchanged scripts to express:

- declaration of constructed and advanced numeric data types;
- variables and values of these types;
- instructions that perform data access or variable assignment;
- instructions that affect the script execution control flow;
- instructions that perform arithmetic, logical and comparison operators.

These mechanisms are described in clauses 9, 13 and 14.

7.2.2 Access to external data and functions

Access to external data and functions especially involve the capability to co-operate, i.e. to invoke
functions, receive messages and exchange data with:

- the MHEG engine;
- the run-time environment.

Co-operation with the MHEG engine is provided by mechanisms that allow interchanged scripts to:

- invoke MHEG elementary actions;
- respond to MHEG actions targeted at the rt-script;
- express variables and values of MHEG data types.

These mechanisms are described in clause 12. They are also used to express data interchange and
synchronisation either between the rt-script and the MHEG engine or between rt-scripts.

Co-operation with the run-time environment is provided by mechanisms that allow interchanged scripts to
express:

- declaration of the structure of packages provided by the run-time environment;
- invocation of services provided by the run-time environment;
- reaction to messages sent by the run-time environment;
- declaration of constructed and advanced numeric data types;
- variables and values of these types.

These mechanisms are described in clause 11. They also express interchange of complex data and
synchronisation between the MHEG-SIR script interpreter and processes that are part of the run-time
environment.

Page 24
Draft prETS 300 715: May 1996

In addition, this ETS defines the mapping of MHEG-SIR package declarations to actual run-time
environment components. This is done in two steps:

- expression and use of an abstract interface specification by the MHEG-SIR: this is the IDL mapping
mechanism described in clause 14. It consists of provisions for MHEG-S interchanged scripts;

- mapping between an abstract interface specification and its implementation within the run-time
environment of a type of platform: this is the platform mapping specification form described in
annex D. It consists of provisions for MHEG-S implementations.

7.3 Technical features

The MHEG-SIR meets the following technical requirements:

- hardware independence;
- final form representation;
- compactness;
- ease of implementation;
- interpretation efficiency;
- openness and extensibility;
- resistance to reverse engineering;
- provisions for real-time interchange;
- semantic validation for quality of service purposes;
- syntax checkability (with regard to contamination hazards);
- non-proprietary representation;
- secure script processing.

7.3.1 Hardware independence

Hardware independence of the MHEG-SIR, and therefore portability of interchanged scripts, is achieved
through the definition of a virtual machine code to express interchanged scripts and the definition of a
virtual machine to interpret this code. There is no requirement on the way data are represented or handled
internally by MHEG-S engines.

The coded representation is based on ASN.1 encoding rules, which are hardware-independent.

The interface declarations are based on a mapping to abstract interface specifications that can be
expressed using IDL, which is hardware-independent.

The capability for a component of the run-time environment of a given platform to interoperate with any
conforming MHEG-S engine on this platform is guaranteed through the use of the platform mapping
specification.

The capability for an MHEG-S engine implementation on a given platform to interoperate with any service
provider within the run-time environment is guaranteed through the use of the platform mapping
specification, provided such service providers conform to this specification.

7.3.2 Final form representation

Final form representation of interchanged scripts is achieved through:

- the use of ASN.1 for the encoding of interchanged scripts;
- a virtual machine encoding that is semantically close to a broad class of general purpose

computers;
- a stack machine architecture which has an efficient instruction encoding based on implied

addressing mode;
- an ordering of declarations which reduces overhead for processing of forward references;
- the appropriate sequencing of instructions within a routine.

Page 25
Draft prETS 300 715: May 1996

7.3.3 Compactness

Compactness of the coded representation of interchanged scripts is achieved through several
optimisations:

- the definition of a stack machine-based virtual machine code allows instructions to have few or no
operands, the longest instruction taking 4 bytes to encode;

- use of bytestream coding for the routines code is used to elude the overhead induced by Type,
Length and Value (TLV) coding;

- instructions are packed (i.e. do not have padding bytes) in the encoding of the routines code;
- the use of a typed stack allows dynamic polymorphism, which in turn is used to have a reduced

instruction set;
- constants are used for the declaration of immediate values;
- predefined codes are defined for MHEG types, operations and messages;
- the declaration of a handler definition table is used to optimise the expression of the mapping

between messages targeted at the script and routines intended to handle these messages.

7.3.4 Ease of implementation

Ease of implementation of MHEG-SIR script interpreters is achieved through:

- the definition of a reduced instruction set;
- the clear definition of a virtual machine;
- the limited number of concepts and identifiers that script interpreters need to handle;
- the formal definition of instruction semantics.

7.3.5 Interpretation efficiency

Efficiency of interpretation of interchanged scripts by MHEG-SIR script interpreters is achieved through:

- the use of a stack-based virtual machine code;
- the use of low-level instructions;
- the use of a final form representation.

7.3.6 Openness and extensibility

Openness and extensibility of the MHEG-SIR is achieved through:

- the generic definition of interfaces that can be accessed from MHEG-SIR script code;
- the capability to access MHEG objects and to invoke routines from another rt-script;
- the possibility to add new instructions to the representation without modifying the structure of

interchanged scripts.

7.3.7 Resistance to reverse engineering

Resistance to reverse engineering is achieved through the use of a final form, low-level representation.
This representation is for production via specialised computer tools and does not allow easy reversion to
the original source code as designed by humans using scripting languages and/or authoring
environments, and thus limits the risk for undue alteration of the program semantics.

7.3.8 Provisions for real-time interchange

The MHEG-SIR fits within the framework of MHEG whose general structure was designed to meet real-
time interchange requirements.

The syntax of interchanged scripts is defined so as to optimise the possibility to treat the declarations it
contains "on the fly".

Moreover, the use of ASN.1 encoding is used to detect errors (to some extent) while interchanging scripts
in noisy network environments.

Page 26
Draft prETS 300 715: May 1996

7.3.9 Semantic validation for quality of service purposes

Due to the requirements posed by this ETS on semantics, it is possible to test the behaviour of an
interchanged script in order to validate its performance before it is actually used in the context of a
commercial service. It is possible to build MHEG-SIR script interpreters that can serve as a reference with
regard to the way conforming MHEG-S engines will behave when interpreting the interchanged scripts
under test.

7.3.10 Syntax checkability (with regard to contamination hazards)

The formal definition of the MHEG-SIR syntax can be used to check its correctness and therefore prevent
the interchange of pieces of code such as viruses intended to damage the receiving system in some way.
It is an implementation choice as to whether syntactic and semantic checks are performed at run-time or
at load-time.

7.3.11 Secure script processing

A system designer may wish to insure that faulty script execution, intentional or accidental, will have
minimal impact on the delivery system, and that all access to external services can be carefully monitored.
The MHEG-SIR virtual machine includes a number of features which support this goal, including:

- explicit, strongly-typed interfaces to all external services;
- a strongly-typed instruction set, so that operations and operands can be verified either by pre-

processing or by run-time checking;
- no direct addressing of memory (i.e., no pointer arithmetic), preventing the possbility of spurious

side-effects;
- isolation of context for each rt-script object;
- isolation of contexts defined by each call frame;
- no direct manipulation of handles, type identifiers or data identifiers.

8 Elements of the MHEG-SIR

This clause describes the main elements of the MHEG-SIR.

The entities which are declared and manipulated by MHEG-SIR interchanged scripts are:

- data types;
- data;
- functions;
- messages.

The definition of these concepts is described in subclauses 9.1 to 9.4, and the detailed structure of these
declarations is described in clause 13.

8.1 Data types

Data types are used to describe the structure of:

- the script's own data (constants and variables);
- the parameters and return values of the script's routines;
- the parameters and return values of external functions;
- the parameters of messages handled by the script.

In order to allow scripts to adapt to the signature of functions that can be provided by the external
environment, the MHEG-SIR allows for the definition of a wide range of types, corresponding to the IDL
data types.

The encoding of data type definitions in an interchanged script is defined in annex A. This ETS imposes
no requirement on the way MHEG-S engines represent these data types.

Page 27
Draft prETS 300 715: May 1996

The MHEG-SIR uses three kinds of data types:

- primitive types;
- constructed types;
- predefined types.

8.1.1 Primitive types

The primitive types correspond to the IDL primitive types. This is the list of MHEG-SIR primitive types:

- void;
- boolean;
- octet;
- short;
- long;
- unsigned short;
- unsigned long;
- float;
- double;
- character;
- string;
- data identifier;
- object reference.

Primitive types have predefined type identifiers and therefore need not be declared by interchanged
scripts.

8.1.1.1 The "void" type

The "void" type shall only be used to express the type of return value of a function. Functions whose type
of return value is "void" do not return any data. There shall be no constants or variables of "void" type. The
"void" type shall not be used in the definition of constructed types.

8.1.1.2 The "boolean" type

Data whose type is "boolean" shall have either "true" or "false" as their value. Boolean variables without an
explicit initial value shall be initialised to "false".

8.1.1.3 The "octet" type

Data whose type is "octet" shall take a numeric value between 0 and 255. Octet variables without an
explicit initial value shall be initialised to 0.

8.1.1.4 The "short" type

Data whose type is "short" shall take a signed integer value between -32 768 and +32 767. Short variables
without an explicit initial value shall be initialised to 0.

8.1.1.5 The "long" type

Data whose type is "long" shall take a signed integer value between -2 147 483 648 and +2 147 483 647.
Long variables without an explicit initial value shall be initialised to 0.

NOTE: It is to be studied whether an extra-long 64-bit integer type is needed.

8.1.1.6 The "unsigned short" type

Data whose type is "unsigned short" shall take an unsigned integer value between 0 and +65 535.
Unsigned short variables without an explicit initial value shall be initialised to 0.

Page 28
Draft prETS 300 715: May 1996

8.1.1.7 The "unsigned long" type

Data whose type is "unsigned long" shall take an unsigned integer value between 0 and +4 294 967 295.
Unsigned long variables without an explicit initial value shall be initialised to 0.

8.1.1.8 The "float" type

Data whose type is "float" shall take a signed floating-point value whose mantissa ranges between
-8 388 608 and +8 388 607 and whose exponent ranges between -128 and +127. Float variables without
an explicit initial value shall be initialised to 0.

8.1.1.9 The "double" type

Data whose type is "double" shall take a signed floating-point value whose mantissa ranges between -
140 737 488 355 328 and +140 737 488 355 327 and whose exponent ranges between -32768 and
+32767. Double variables without an explicit initial value shall be initialised to 0.

8.1.1.10 The "character" type

Data whose type is "character" shall take a character value within the BMPString character set as defined
by the Basic Multilingual Plane of ISO/IEC 10646-1 [7]. Character variables without an explicit initial value
shall have no defined value.

Conforming MHEG-S engines may state that they only adopt a restricted set of characters, e.g. based on
the standard collections of ISO/IEC 10646-1 [7], annex A. In this case, they shall document these adopted
subsets and the level of implementation in the conformance document.

8.1.1.11 The "string" type

Data whose type is "string" shall take as their value a sequence of zero or more characters as defined by
the "character" type above. String variables without an explicit initial value shall be initialised to a null
string, i.e. a string of zero characters.

8.1.1.12 The "data identifier" type

Data whose type is "data identifier" shall take a signed integer value between -32 768 and +32 767 that
identifies a constant, global variable, local variable or routine parameter of the script, as defined by
subclause 8.7. Data identifier variables without an explicit initial value shall have no defined value.

8.1.1.13 The "object reference" type

Data whose type is "object reference" shall take as their value a handle that references an "object" on
which an external function applies. Encoding of object references is defined by the platform mapping
specification. Object reference values may only be provided by the external environment. There shall be
no constants of "object reference" type. The "void" type shall not be used in the definition of constructed
types. Object reference variables without explicit initial value shall have no defined value.

8.1.2 Constructed types

Constructed types are defined using type constructors and primitive types. This is the list of MHEG-SIR
type constructors:

- sequence;
- array;
- structure;
- union;
- enumerated.

Constructed types can use as an element:

- any primitive type, except "void" and "object reference";

Page 29
Draft prETS 300 715: May 1996

- any constructed type.

Unlike primitive types, an interchanged script needs to declare the definitions of the constructed types it
handles.

There shall not be more than 28 672 types declared in an interchanged script.

8.1.2.1 Sequence types

Sequence types shall be defined by:

- their size (optional);
- their element type.

The size is an unsigned short value. It represents the maximum number of elements of the sequence. If
the type definition specifies no size, the number of elements may be any size up to the maximum. The
maximum size of any sequence is 65 535 elements.

The element type may be any primitive, constructed or predefined type. A type identifier may be used to
reference the element type provided the type can be resolved, i.e. leads to no infinite recursion.

Data whose type is a defined sequence type shall take as their value an ordered list of zero or more
values of the element type.

Variables of a sequence type without explicit initial value shall be initialised to a null list (sequence of zero
elements).

8.1.2.2 Array types

Array types shall be defined by:

- their size;
- their element type.

The size is an unsigned short value. It represents the exact number of elements in the array.

The element type may be any primitive, constructed or predefined type. A type identifier may be used to
reference the element type provided the type can be resolved, i.e. leads to no infinite recursion.

Data whose type is a defined array type shall take as their value an ordered list of values of the element
type, the length of the list being specified by the size of the array.

Variables of an array type without explicit initial value shall be initialised to a list of elements whose initial
value is determined by the element type.

8.1.2.3 Structure types

Structure types shall be defined by an ordered list of 1 to 256 element types.

There shall not be more than 256 elements in a structure type.

The element types may be any primitive, constructed or predefined type. A type identifier may be used to
reference an element type provided the type can be resolved, i.e. leads to no infinite recursion.

Data whose type is a defined structure type shall take as their value an ordered list of values of the
element type that corresponds to their rank in the type definition.

Variables of a structure type without explicit initial value shall be initialised to a list of elements whose
initial value is determined by their element type.

Page 30
Draft prETS 300 715: May 1996

8.1.2.4 Union types

Union types shall be defined by an ordered list of element types.

There shall not be more than 256 choices (element types) in a union type.

The element types may be any primitive, constructed or predefined type. A type identifier may be used to
reference an element type provided the type can be resolved, i.e. leads to no infinite recursion.

Data whose type is a defined union type shall take as their value:

- an integer which represents the index (starting at 0) in the choice list;
- a value of the element type whose rank in the type definition is the above index.

Variables of a union type without explicit initial value shall not be initialised to any defined value.

8.1.2.5 Enumerated types

Enumerated types shall be defined by an ordered list of short integer values.

There shall not be more than 256 items (values) in an enumerated type.

Data whose type is a defined enumerated type shall take as their value an integer which represents the
index (starting at 0) of the value in the enumerated type definition.

Variables of an enumerated type without explicit initial value shall be initialised to the first element in the
definition.

8.1.3 Predefined types

In order to allow scripts to express manipulation of MHEG data more easily, the MHEG-API data types, as
described by ISO 13522-1 [1] and ITU-T Recommendation T.177 [4], are predefined.

This means that these types, like the primitive types, have predefined type identifiers and therefore need
not be declared within the script, although they are not themselves primitive types and may be expressed
using type constructors.

The list of predefined types and their identifiers is given in annex C.

All types may be referenced in a unique and unambiguous way by their type identifier.

8.2 Data

The MHEG-SIR defines three kinds of data:

- immediate values;
- constants;
- variables.

All data used by an interchanged script are always of a definite data type, either primitive, constructed or
predefined.

All variables and constants may be referenced in a unique and unambiguous way by their data identifier.

8.2.1 Immediate values

Immediate values are data which are not declared within the interchanged script, and can therefore only
be used "immediately", i.e. at the time where they are encountered. Immediate values may be
encountered in an interchanged script:

- as the value of constants;

Page 31
Draft prETS 300 715: May 1996

- as the initial value of variables;
- as the operand of a "push immediate" (PUSHI) instruction.

Apart from these cases, immediate values are used in the course of the script execution through the
parameter stack. This is employed to use them as parameters for either instructions or functions.

Unless the context restricts it, immediate values may be of any type except "void".

The encoding of data values in an interchanged script is defined by annex A. This ETS imposes no
requirement on the way MHEG-S engines represent data values of a particular type.

8.2.2 Constants

Constants shall be declared within the interchanged script and defined by:

- a data type;
- a value of this data type.

Constants may be of any type except the following:

- object reference;
- void.

Throughout the interchanged script, constants may be referenced by their data identifier. The semantics of
a reference to a constant is the same as if the value of this constant was provided instead.

There shall not be more than 4 096 constants declared in an interchanged script.

8.2.3 Variables

Variables shall be declared within the interchanged script and defined by:

- a data type;
- optionally, a value of this data type, to be taken as the initial value for this constant.

Variables may be of any type except "void".

Variables may be referenced by their data identifier. A reference to a variable may be used with two
different semantics:

- "right-hand" semantics: the same as if the value of this variable was provided instead;
- "left-hand": states that this variable has to be assigned a data value.

In the latter case, the value to be assigned to the variable may be an immediate value (including a
computed value), the value of a constant or the value of a variable (including the future value of a
function's output parameter).

The MHEG-SIR defines two kinds of variables:

- global variables;
- local variables.

8.2.3.1 Global variables

Global variables have a scope which covers the entire interchanged script. They may be referenced by
their data identifier in any part of the script. They may be assigned a new value at any time.

There shall not be more than 28 672 global variables declared in an interchanged script.

Page 32
Draft prETS 300 715: May 1996

8.2.3.2 Local variables

Local variables have a scope which is restricted to the execution of the routine to which they belong. They
may be referenced by their data identifier only within the code of this routine.

There are two kinds of local variables:

- local variables which are declared within the routine declaration as part of the local variable
declaration;

- actual parameters of the routine, whether passed by value or by reference, which are declared
within the routine declaration as part of the routine signature.

There shall not be more than 32 768 local variables declared in each routine of an interchanged script.

8.3 Functions

The MHEG-SIR defines three kinds of functions:

- routines;
- external services;
- predefined functions.

All functions have a signature (or prototype) which consists of:

- a type of return value;
- an ordered list of formal parameters defined by their type and passing mode.

All functions may be referenced in a unique and unambiguous way by their function identifier.

8.3.1 Routines

Routines are internal functions of interchanged scripts.

Routines shall be declared within the interchanged script. They consist of:

- a signature;
- local variables;
- program code.

There shall not be more than 4 096 routines declared in each routine of an interchanged script.

Execution of a routine may be triggered:

- by an explicit "call" (CALL) instruction, when the routine's function identifier is the operand of the
instruction;

- upon reception of an exception during an "external call" (XCALL) instruction, when the message
identifier of the received exception is mapped to the routine's function identifier by the handler
definition table;

- upon peeking into the queue of received messages, when the message identifier of the received
message is mapped to the routine's function identifier by the handler definition table.

Parameters may be passed to routines using two modes:

- by value: A value of the parameter type is passed to the routine;

- by reference: A data identifier referencing a variable or constant whose type is the same as the
parameter type is passed to the routine.

In both cases, the value of the passed parameter becomes the value of the local variable whose index
corresponds to the parameter's index.

Page 33
Draft prETS 300 715: May 1996

8.3.2 Services

Services are external functions provided by the run-time environment.

Services shall be declared within the interchanged script, as part of a package declaration, by:

- their signature;
- their IDL global operation name.

There shall not be more than 256 services declared in each package of an interchanged script.

There shall not be more than 224 packages declared in an interchanged script.

A service may be called by an "external call" (XCALL) instruction.

Parameters may be passed to services using three modes:

- in: A data identifier referencing a variable or constant whose type is the same as the parameter
type, is passed to the service;

- inout: A data identifier referencing a variable whose type is the same as the parameter type is
passed to the service. Upon returning, the variable is updated with its new value;

- out: same as inout, however the value of the variable or constant is not used by the service.

8.3.3 Predefined functions

Predefined functions are functions provided by the MHEG engine.

In order to allow scripts to express invocation of MHEG actions more easily, the MHEG-API operations, as
described by ITU-T Recommendation T.177 [4], are predefined.

This means that these functions have predefined function identifiers and therefore need not be declared
within the script.

The list of predefined functions and their identifiers is given in annex C.

These functions may be called and passed parameters, using the same mechanisms as with services.

8.4 Messages

The MHEG-SIR defines two kinds of messages:

- package exceptions;
- predefined messages.

All messages have a signature (or prototype) which consists of an ordered list of formal parameters
defined by their type.

All messages may be referenced in a unique and unambiguous way by their message identifier.

8.4.1 Package exceptions

Package exceptions are messages sent to the rt-script by the run-time environment, following the
invocation of a service.

Package exceptions shall be declared within the interchanged script, as part of a package declaration by:

- their signature;
- their IDL global exception name.

Page 34
Draft prETS 300 715: May 1996

There shall not be more than 256 exceptions declared in each package of an interchanged script.

8.4.2 Predefined messages

Predefined messages are messages which result from either:

- an exception raised as the consequence of the invocation of a predefined function;
- an MHEG action targeted at the rt-script.

In order to allow scripts to express handling of MHEG actions more easily, the messages corresponding to
these exceptions and actions, as described by ISO/IEC 13522-1 [1] and ITU-T Recommendation T.177
[4], are predefined. This means that they need not be declared within the interchanged script.

The list of predefined messages and their identifiers is given in annex C.

8.5 Instructions

The program code part of routines consists of a sequence of instructions. Unlike the rest of an
interchanged script, which is intended to be handled as soon as the script is prepared, instructions are
only intended for execution upon activation of the rt-script, more precisely upon invocation of the routine to
which they belong.

An instruction consists of one op-code (operation code) followed by zero or more operands. The number,
type and encoding of operands is completely determined by the op-code.

As a rule, operands complete the instruction, but the parameter values are taken from the parameter
stack.

The performance of the instruction execution unit is described in clause 10, while the precise semantics of
each instruction is described in clause 14.

8.6 Identifiers

Identifiers are used to reference data throughout interchanged scripts.

8.6.1 Type identifiers

Type IDentifiers (TID) shall be encoded on two bytes as follows:

- primitive types and predefined types shall have predefined TIDs as defined by annex C;
- declared types whose index (starting at 0) in the type declaration table is X shall have (X + 1000h)

as their TID.

This means that:

- TIDs between 0 and 0FFFh shall reference predefined types;
- TIDs between 1000h and 7FFFh shall reference declared types.

8.6.2 Data identifiers

Data IDentifiers (DIDs) shall be encoded on two bytes as follows:

- constants whose index (starting at 0) in the constant declaration table is X shall have X as their
DID;

- global variables whose index (starting at 0) in the global variable declaration table is X shall have
(X + 1000h) as their DID;

- local variables whose index (starting at 0) in the local variable declaration table is X shall have (X
OR 8000h) as their DID.

Page 35
Draft prETS 300 715: May 1996

This means that:

- DIDs between 0 and 0FFFh shall reference constants;
- DIDs between 1000h and 7FFFh shall reference global variables;
- DIDs between 8000h and FFFFh shall reference local variables.

8.6.3 Function identifiers

Function IDentifiers (FIDs) shall be encoded on two bytes as follows:

- routines whose index (starting at 0) in the routine declaration table is X shall have X as their FID;
- predefined functions whose index (starting at 0) in the predefined function table is X shall have (X +

1000h) as their FID;
- services whose index (starting at 0) in a package declaration is X and whose package index in the

package declaration table is Y (starting at 0) shall have (((Y+32) << 16) + X) as their FID.

This means that:

- FIDs between 0 and 0FFFh shall reference routines;
- FIDs between 1000h and 1FFFh shall reference predefined functions;
- FIDs between 2000h and FFFFh shall reference services.

8.6.4 Message identifiers

Message IDentifiers (MIDs) shall be encoded on two bytes as follows:

- predefined messages whose index (starting at 0) in the predefined message table is X shall have X
as their MID;

- exceptions whose index (starting at 0) in a package declaration table is X and whose package index
(starting at 0) in the package declaration table is Y shall have (((Y+32) << 16) + X) as their MID.

This means that:

- MIDs between 0 and 1FFFh shall reference predefined messages;
- MIDs between 2000h and FFFFh shall reference package exceptions.

8.7 Type matching

Two data (i.e. variables, constants, elements of the parameter stack) have formally matching types if and
only if they have the same type identifier.

The MHEG-SIR does not allow type redefinition, i.e. no two type identifiers shall have the same type
structure. Therefore, two types match only if they have the same identifier. No other rules for type
matching are defined.

N-level type definition is forbidden. Each structured type may be defined using already defined types at
each level of nesting.

8.8 Value matching

Values of matching types shall be equal only if:

- they are of a primitive or enumerated type, they are identical;
- they are of a structure, sequence or array type, every element of one list is equal to the element of

the same rank in the other list;
- they are of a union type, their tags are identical and their values are equal to each other.

Page 36
Draft prETS 300 715: May 1996

9 The MHEG-SIR virtual machine

This clause presents the MHEG-SIR virtual machine, i.e. the execution model for the MHEG-SIR pseudo-
code.

The MHEG-SIR virtual machine is a set of logical, abstract components. The description of the MHEG-
SIR virtual machine is intended for clarification of the operational semantics of the MHEG-SIR code.

An MHEG-S engine shall have the same interpretation behaviour for MHEG-SIR code as the described
virtual machine. It shall interpret MHEG-SIR declarations and instructions so as to produce similar
external effects in all respects.

However, this implies no requirements on the technology or organisation that may actually be used to
implement an MHEG-S engine. An actual script interpreter need not be designed as described by the
virtual machine, as long as it provides equivalent functionality.

The MHEG-SIR virtual machine consists of:

- memory areas;
- processing units.

MHEG-S engines may run several rt-scripts at the same time. In this case, the MHEG-S engine should
maintain a separate run-time context for each rt-script.

NOTE: The MHEG-SIR virtual machine is single threaded. Multi-threaded applications can be
achieved by associating each thread with a separate rt-script.

9.1 Structures and notations

A table T consists of an array of homogeneous entries T[i] that can be accessed via their index i.
Homogeneous means that they have the same structure, but not necessarily the same size. Entries
consist of one or several fields accessed as T[i].fld. Some entries may be void. Indices are MHEG-SIR
identifiers, i.e. consecutive numeric values taken in a given range. The underlying access mechanism
(sequential indexing, direct access, hashcoding) is not specified.

A stack S consists of an array of homogeneous entries. Only the top entry (last entered) can be accessed
at any time, through the stack pointer p, as S[p]. Only the entries below the stack pointer are maintained.
This means that when the pointer is decremented (p--), the top element of the stack is lost, and the next
element becomes the top of the stack.

The representation of the structures and data is implementation-dependent. Although it is possible for
script interpreters to represent each value of a data type with a minimum number of bytes, there is no
requirement to do so. Table 1 hereafter states this minimum number:

Page 37
Draft prETS 300 715: May 1996

Table 1: Minimum number of bytes to represent values

Type Minimum number of bytes to represent a value of the type
boolean 1
octet 1
short 2
long 4
unsigned short 2
unsigned long 4
float 4
double 8
character 2 (1 for restricted character sets)
string character size x string length +1
data identifier 2
object reference implementation-dependent
structure sum of the sizes of the element types
sequence size of element type x sequence length
union size of the largest element type
enumerated 2
array size of element type x array dimension
type identifier 2
function identifier 2
message identifier 2
package identifier 1

The notation does not distinguish between fixed-length values and values that are likely to be stored on
the heap. GT[i].val refers to the value even though it is actually stored as a handle to an area of the heap.

Execution semantics are expressed using a C-like syntax.

9.2 Memory areas

In the MHEG-SIR virtual machine, memory areas are used to hold all the necessary information used to
interpret a particular interchanged script.

Some of these memory areas are completely filled in upon preparation of the script, while others are
modified during execution of the script. Some are specific to one rt-script, while the others are common to
the different rt-script instances.

The MHEG-SIR virtual machine holds four memory areas:

- global data area;
- code area;
- dynamic memory area;
- registers.

9.2.1 Global data area

The global data area is used to store the definitions and values of the script's global data. The global data
area is filled upon preparation of the script. Once this is done, the size of the global data and structure
remains unmodified thereafter.

The global data area consists of:

- the Type definition Table (TT);
- the Constant Table (CT);
- the Global Variable table (GT).

Page 38
Draft prETS 300 715: May 1996

9.2.1.1 The type definition table

The Type definition Table is used to map all the defined types of the script, represented by Type
IDentifiers, to their description:

- TT[TID].val: description of the type.

The TT is filled in upon preparation of the script object, and should not be modified afterwards, until the
script object is destroyed. The TT may be shared between the different rt-script instances.

NOTE: The representation used for the type description is unspecified; however, it should
allow easy checking of whether a value belongs to a type.

Whenever intermediate constructed types are used in the description, an unassigned TID should be
created and inserted in the TT; this should facilitate type matching operations especially in comparison
operators and instructions performing variable element assignment and access.

9.2.1.2 The constant table

The Constant Table (CT) is used to map all the script's constants, represented by data identifiers, to their
type and value:

- CT[Data IDentifier (DID)].TID: type of the constant (expressed as a type identifier);
- CT[DID].val: value of the constant (depending on its type).

The CT is filled in upon preparation of the script object, and is static read-only until the script object is
destroyed. The CT may be shared between the different rt-script instances.

When CT[DID].TID represents a constructed type, CT[DID].val should have the following structure:

- CT[DID].val.nbe: number of elements at this level;
- CT[DID].val[i].TID: type of the element of index i (this TID may have been created by the script

interpreter as specified above);
- CT[DID].val[i].val: value of the element of index i (this field may recursively have a constructed

value structure).

9.2.1.3 The global variable table

The global variable table is used to map all the script's global variables, represented by data identifiers, to
their type and current value:

- GT[DID].TID: type of the global variable (expressed as a type identifier);
- GT[DID].val: current value of the global variable (depending on its type).

The global variable table is initialised upon preparation of the script. Its GT[DID].val fields should
afterwards be modified every time a global variable is assigned by the execution of a variable assignment
instruction.

When GT[DID].TID represents a constructed type, GT[DID].val should have the following structure:

- GT[DID].val.nbe: number of elements at this level;
- GT[DID].val[i].TID: type of the element of index i (this TID may have been created by the script

interpreter as specified above);
- GT[DID].val[i].val: value of the element of index i (this field may recursively have a constructed

value structure).

9.2.2 Code area

The code area is used to store the addresses and program code of the script's functions. The code area is
filled upon preparation of the script object. The code area's size and structure should remain static until
the script object is destroyed.

Page 39
Draft prETS 300 715: May 1996

The code area consists of:

- the Routine definition Table (RT);
- the Package definition Table (PT);
- the Service definition Table (ST);
- the Exception definition Table (XT);
- the Handler definition Table (HT);
- the program code area, consisting of the sequence of instructions of each routine.

9.2.2.1 The routine definition table

The Routine definition table is used to map all the script's routines, represented by function identifiers, to
their signature description, their local variable declaration and their program code. The RT contains:

- RT[FID].TID: type of return value (expressed as a type identifier);

- RT[FID].nbp: number of parameters;

- RT[FID].sig: signature description, where:

a) RT[FID].sig[i].TID: type (expressed as a type identifier) of the ith parameter;

b) RT[FID].sig[i].mod: passing mode (value or reference) of the ith parameter.

- RT[FID].Local variable Table (LT): declaration of the routine's local variables (whose nbp first
elements are the actual parameters of the routine);

- RT[FID].Instruction Pointer (IP): pointer to the first instruction in the routine code.

The RT is filled in upon preparation of the script, and need not be modified afterwards. The RT may be
shared between the different rt-script instances.

NOTE: Local variables used to hold parameters passed by reference should have "data
identifier" as their type, while local variables used to hold parameters passed by value
should have the same type as in the signature description for the corresponding
parameter.

9.2.2.2 The package definition table

The package definition table is used to map all the script's defined packages, represented by package
numbers (PIDs) as declared by the MHEG-SIR package declaration table, to package names and
additional information:

- PT[PID].name: name of the package;
- PT[PID].sts: current status of the package;
- PT[PID].nbf: number of services in the package;
- PT[PID].nbm: number of exceptions defined by the package;
- PT[PID].rte: may be used to store platform-specific information allowing addressing of the package

within the run-time environment.

The PT is filled in upon preparation of the script. Only its PT[PID].sts fields may be modified afterwards,
each time a package is loaded or unloaded from the run-time environment, open or closed. The PT may
be shared between the different rt-script instances.

9.2.2.3 The service definition table

The service definition table is used to map all the script's defined external services, represented by
MHEG-SIR function identifiers, to their signature description and to their IDL global operation name:

- ST[FID].TID: type of return value (expressed as a type identifier);

- ST[FID].syn: calling mode (synchronous, asynchronous);

Page 40
Draft prETS 300 715: May 1996

- ST[FID].nbpar: number of parameters;

- ST[FID].sig: signature description, where:

a) ST[FID].sig[i].TID: type (expressed as a type identifier) of the ith parameter;

b) ST[FID].sig[i].mod: passing mode (in, inout or out) of the ith parameter.

- ST[FID].name: the IDL global name of the operation which the service invokes;

- ST[FID].rte: may be used to store platform-specific information allowing addressing of the service
within the run-time environment.

The IDL platform-specific mapping specification is used to map XT[MID].name to a platform-specific
name.

The table is filled in upon preparation of the script, and need not be modified afterwards. It may be shared
between the different rt-script instances.

9.2.2.4 The exception definition table

The eXception definition table is used to map all the interchanged script's defined messages, represented
by message identifiers, to their signature description and their IDL global exception name:

- XT[MID].name: the IDL global name of the exception which causes the message;
- XT[MID].rte: may be used to store platform-specific information allowing addressing of the

exception within the run-time environment.

The IDL platform-specific mapping specification is used to map XT[MID].name to a platform-specific
name.

The XT is filled in upon preparation of the script, and need not be modified afterwards. It may be shared
between the different rt-script instances.

9.2.2.5 The handler definition table

The handler definition table is used to map messages, represented by message identifiers, to routines
represented by function identifiers:

- HT[MID].FID: identifier of routine to invoke for handling the message.

The handler definition table is filled in upon preparation of the script, and need not be modified afterwards.
It may be shared between the different rt-script instances.

The signature of the routine which maps to a message matches the signature of this message. Matching
between the signatures is checked at load time, where non-matching entries are rejected.

The handler definition table is used by the script execution unit. When the message queue contains a
message, the routine that corresponds to the message is invoked, with the message parameters as its
parameters.

9.2.2.6 The program code area

An instruction consists of one 1 byte op-code followed by 0 to 3 operand bytes. The op-code completely
determines the number and length of its operands, according to the instructions table. Both op-codes and
operands are coded in an optimised fashion so as to ease switching.

It is possible (especially for 32-bit machines) to align instructions, i.e. to insert padding bytes in order to
represent each instruction on 4 bytes; this makes it easy to increment the program counter. It is also

Page 41
Draft prETS 300 715: May 1996

possible to pack instructions instead of aligning them, and to determine the number of bytes to increment
at interpretation time.

The program code area is filled in upon preparation of the script, and is not modified during execution. It
may be shared between the different rt-script instances.

9.2.3 The dynamic memory areas

The dynamic memory area is used to represent the current execution context of the rt-script.

The dynamic memory area consists of:

- the Calling Stack (CS);
- the Parameter Stack (PS);
- the Message Queue (MQ);
- the heap area.

9.2.3.1 The calling stack

The Calling Stack contains the current invocation context.

The CS is an array of call frames. Every frame corresponds to an active function invocation (routine,
external function or MHEG action). Frames are stored on the CS in order of invocation. The top frame on
the CS is the current execution context.

Every frame contains:

- CS[i].FID: function identifier of the callee;
- CS[i].IP: pointer to the instruction to return to after the function has been executed;
- CS[i].LT: local variable table of the callee;
- CS[i].Stack Pointer (SP): pointer to the top of the parameter stack at the time of calling.

The LT has the structure of a variable table:

- CS[i].LT[DID].TID: type identifier of the variable whose identifier is DID;
- CS[i].LT[DID].val: value of the variable.

The first entries of the LT are the parameters passed to the function. For an external function, the LT
contains only these parameters.

The calling stack is modified by certain control flow instructions. Initially the call stack is empty and the
Function Pointer (FP) register is set to the first available position minus one. When a function is invoked, a
frame describing this call is pushed onto the calling stack. When a function is returned from, this frame is
popped from the calling stack. The address of the top frame of the calling stack is stored in the FP
register.

9.2.3.2 The parameter stack

The Parameter Stack stores the parameters and return values of instructions. The parameter stack is an
array of data values. The type of the data value is implied by the operation sequence that created the
value on the stack.

The PS is used by the MHEG-SIR instruction execution unit. Initially the PS is empty and the SP register
points to the first available position on the PS minus one. It is modified by most instructions (arithmetic
operators, logical operators, comparison operations, stack manipulation, variable assignment, conditional
jumps, calls). When an instruction is executed, it pops its parameters from the PS, and pushes its return
value back onto the PS. The address of the top frame of the PS is stored in the SP register.

Page 42
Draft prETS 300 715: May 1996

9.2.3.3 The message queue

The Message Queue is used for buffering the messages which are received by the script interpreter.
Every item in the queue contains:

- MQ[i].MID: message id;
- MQ[i].LT: list of message parameters.

The LT field of a message queue item has the structure of a variable table:

- MQ[i].LT[j].TID: type identifier of the jth parameter;
- MQ[i].LT[j].val: value of the jth parameter.

Messages are inserted into the message queue by the script interpreter asynchronously as they are
generated in the external environment. The message queue is processed by the script code execution unit
when:

- the execution of a routine finishes, without any routine to return to;
- the script explicitly yields control via a YIELD instruction.

NOTE: It is to be studied whether an interrupt-style message processing mechanism is
needed.

The start of the message queue (next message to pop) is stored in the Queue Pointer (QP) register.
Initially the message queue is empty and QP is set to the null value.

9.2.3.4 The heap area

The heap area is used to store dynamically created variables of any type. In this case, the GT and LT
store a heap handle instead of the data itself. The handle is an opaque type whose internal representation
is implementation dependent. The application is responsible for explicit allocation and deallocation of all
dynamically allocated storage.

9.2.4 Registers

Registers hold specific state of the virtual machine and may be frequently modified during the execution of
the script.

The registers maintained by the MHEG-SIR virtual machine are:

- the IP or program counter;
- the FP;
- the SP;
- the QP.
- the Instruction Register (IR);
- the Error Register (ER);

The representation of data held by pointer registers is implementation-dependent. The script interpreter
maintains one set of virtual machine registers for each available rt script.

9.2.4.1 The instruction pointer register

The IP register holds the address of the next instruction to be executed. This register is modified by the
script code execution unit and by the MHEG-SIR instruction execution unit as part of the execution of
instructions.

Page 43
Draft prETS 300 715: May 1996

9.2.4.2 The instruction register

The IR holds the code for the instruction which is currently executing. This register is updated by the script
code execution unit each time a new instruction is loaded, and accessed by the MHEG-SIR instruction
execution unit.

NOTE: The IR need not be more than 4 bytes long, but its actual size depends on the
implementation.

9.2.4.3 The error register

The ER contains the code of the last error encountered during execution of an instruction. This register is
updated by the MHEG-SIR instruction execution unit, every time it encounters an error. The NULL (0)
value means that no error has been encountered during the execution of the script.

Error codes are predefined. Which error codes can be raised by each instruction is defined in clause 14.

When the script interpreter realises that the ER is set to a non-null value, it makes this information
available to the MHEG engine by setting the "termination status" of the rt-script to "error".

9.2.4.4 The stack pointer register

The SP register points to the top of the PS. The value of this register is incremented by the MHEG-SIR
instruction execution unit every time it pushes data onto the PS, and decremented by the MHEG-SIR
instruction execution unit every time it pops data off the PS.

9.2.4.5 The function pointer register

The FP register points to the top frame of the calling stack. The value of this register is incremented by the
MHEG-SIR instruction execution unit every time a function is called, and decremented every time a
function is returned from.

9.2.4.6 The queue pointer register

The QP register points to the next message to be removed from the message queue. The value of this
register is decremented by the script interpreter each time a message is removed.

9.3 Processing units

This subclause describes the MHEG-SIR virtual machine's flow of control and the semantics of
instructions.

9.3.1 Mh-script initialisation

When the MHEG "prepare" action targeted at a script object is triggered, the action interpreter should
request the access agent to retrieve the interchanged script, then request the script interpreter to parse it.
The script interpreter should then:

- parse the declarations part and initialize the CT, GT, TT, RT, ST, PT, XT, HT;

- parse the structure of the instructions part to fill in the program code area;

- load packages, establishing static links with them according to the platform mapping specification
(e.g. checking their presence on the platform) and completing the rte fields within PT, ST and XT
entries;

- place the script object to "available" (prepared) status.

Page 44
Draft prETS 300 715: May 1996

NOTE: The semantics of package loading should be defined by the platform mapping
specification. The MHEG-S engine may take the responsibility to optimise its resource
management strategy, e.g. by unloading packages temporarily in order to release
memory.

9.3.2 Rt-script initialisation

When the MHEG engine "new" action targeted at an rt-script is triggered, the action interpreter should
consult the mh-object manager, then request the script interpreter to initialise the rt-script. The script
interpreter should then:

- build an environment for the rt-script that consists of the GT and a set of registers;
- open packages, establishing dynamic links with them according to the platform mapping

specification;
- initialise all registers to NULL values.

NOTE 1: The semantics of package opening should be defined by the platform mapping
specification. The MHEG-S engine may take the responsibility to optimise its resource
management strategy, e.g. by closing packages temporarily in order to release
memory.

NOTE 2: A detailed discussion of "script object life-cycle” will be added to this section as well as
subclause 12.3.

9.3.3 Message reception

Messages received by the script interpreter may be:

- messages corresponding to the triggering of MHEG elementary actions;

- messages corresponding to the occurrence of a exception raised by either an operation of the run-
time environment or by an MHEG-API operation.

9.3.3.1 Elementary action

When the action interpreter transmits an MHEG elementary action targeted at an rt-script to the script
interpreter, the script interpreter should:

- insert the message into the message queue of the rt-script's environment;
- give control to the script code execution unit for this rt-script.

9.3.3.2 Exception

When a message coming from either the action interpreter or the run-time environment is directed at the
MHEG-S engine, and if the MHEG-S engine determines that this message actually corresponds to an
exception raised by the MHEG-API or the run-time environment as a consequence of the invocation of an
operation resulting from an XCALL instruction, the script interpreter should:

- parse the exception's parameters and construct an internal structure consisting of the message
identifier of the exception followed by its actual parameters;

- if the invoked operation is synchronous, terminate the XCALL instruction (therefore popping its
frame from the calling stack) and immediately afterwards trigger the routine corresponding to the
exception's message identifier, with the exception's parameters as its actual parameters. The effect
shall be the same as if this routine had been invoked by a CALL instruction;

- otherwise, insert the received message into the message queue.

Page 45
Draft prETS 300 715: May 1996

9.3.4 Script code execution unit

When given control, the script code execution unit should perform as follows:

script-code-execution-unit ()
{
FID fid = NULL;
if (IP == NULL) // no next instruction
{
while (fid == NULL)
{
if (QP == NULL) then exit; // yield control
fid= HT[MQ[QP].MID].FID; // find handler for message
if (fid == NULL) // no handler found
then QP--; // pop message queue
else
{
IP = RT[fid].IP; // branch to start of routine
FP++; // stack routine call
CS[FP].FID = fid;
CS[FP].IP = NULL;
CS[FP].LT = MQ[QP].LT;
CS[FP].SP = SP;
QP--; // pop message queue
}
}
}
// endif

while (IP != NULL):
{
IR = *IP++; // load next instruction and increment program counter
instruction-execution-unit(); // give control to MHEG-SIR instruction execution unit
}
// endwhile
return; // yield control to script interpreter
}

9.3.5 MHEG-SIR instruction execution unit

When given control, the MHEG-SIR instruction execution unit should decode the op-code contained in the
first byte of the IR, perform as described by clause 14 in the interpretation of the instruction corresponding
to this op-code, then give control back to the script code execution unit.

The instruction execution unit pops from the parameter stack those parameters which are used for
performing the instruction (if any). It pushes on the parameter stack those parameters which are the result
of the instruction (if any).

Subclause 13.2 gives an instruction table that summarises the effects of the instructions on the various
elements of the MHEG-SIR virtual machine as defined by this subclause.

Page 46
Draft prETS 300 715: May 1996

10 Provisions for run-time environment access

This clause describes the mechanisms defined by this ETS to make it possible for rt-scripts to access and
interchange data with external functions provided by the run-time environment on the execution platform.

10.1 General model

To allow its use by an interchanged script, the interface that an external piece of software available in the
run-time environment is able to provide needs to be declared in the interchanged script as part of its
package declaration.

NOTE: Further study will determine the need, advantages, and drawbacks of introducing an
alternative way to describe packages by transmitting them in "utility" scripts (containing
only packages) that would then be referenced by scripts containing no packages. This
would allow the separation of package declarations from script object code. In this
case:

- utility scripts would need to be available (prepared) first, otherwise an error
condition is raised;

- scripts could not proceed to "available" status unless the appropriate
declarations are available;

- scripts without packages would consider "included" packages as if they were
their own;

- the utility script would be referenced through an MHEG object reference;
- a script would only reference one utility script;
- type matching between private types and IDL parameter types would be needed.

A package declaration describes a set of services, i.e. external functions, by their signature, i.e. the type
and passing modes of each service's parameters.

This ETS specifies how calling external functions, passing parameters, getting back return values and
handling exceptions shall be expressed within interchanged scripts.

This ETS also specifies how these expressions shall be interpreted by MHEG-S engines.

This ETS also deals with interchange (i.e. function call, parameters passing, return value retrieval and
exception handling) between an MHEG-S engine and the run-time environment. In this purpose, this ETS
contains provisions for specifying how access to these functions should be provided to MHEG-S engines
by external pieces of software. Such a convention, called a platform mapping specification, is dependent
on the run-time platform.

Platform mapping specifications conforming to the provisions of this ETS need to be registered to ensure
the interoperability of run-time environment services with any compliant MHEG-S engine on this platform.
In this case, MHEG-S engines need to conform to this platform mapping specification in order to access
run-time environment services.

Implementations of MHEG-S engines shall document in their conformance document the platform
mapping specification(s) to which they conform.

NOTE: If an existing piece of software does not comply with the platform mapping
specification, it will need to be embedded into a form of "glue" interface allowing
translation of its own interface conventions into those specified by the platform
mapping specification.

Page 47
Draft prETS 300 715: May 1996

10.2 Declaration of IDL interfaces

The interface of an external piece of software intended for use by an interchanged script may contain:

- operation declarations;
- exception declarations;
- type declarations.

Types shall be declared in the type declaration of this interchanged script.

Operations and exceptions shall be declared in the package declaration of this interchanged script. This
package declaration shall be assigned a package identifier and contain:

- the package name;
- a set of service descriptions;
- a set of exception descriptions.

Service descriptions shall be assigned an identifier and shall contain:

- the name of the operation;
- the function signature, i.e. the type and passing mode of each parameter.

Exception descriptions shall be assigned a message identifier and shall contain:

- the name of the exception;
- the exception signature, i.e. the type and passing mode of each parameter.

Identifiers (package identifiers, type identifiers, function identifiers) are used by MHEG-SIR scripts to refer
to types and functions. A function identifier for an external operation can be built from a package identifier
and the index of the service declaration in this package, while a message identifier for an external
exception can be built from a package identifier and the index of the exception declaration in this package.

Names (package names, operation names, exception names) shall be used by the script interpreter to link
with the actual implementation of the external piece of software.

An MHEG-SIR package declaration lies at the same abstraction level as an IDL specification. This ETS
defines the rules for mapping an IDL specification into a package declaration. Clause 15 shows how:

- an IDL data type description shall be mapped to an MHEG-SIR data type description;
- an IDL operation description shall be mapped to an MHEG-SIR service description;
- an IDL exception description shall be mapped to an MHEG-SIR exception description.

10.3 Invocation of IDL operations in an MHEG-SIR program

A service described in a package declaration shall be invoked from an MHEG-SIR program as follows:

- variables of expected types corresponding to the returned value (if any) and to each parameter shall
be declared within the interchanged script;

- the program shall assign those variables which correspond to input or input/output parameters;

- the program shall push onto the stack the data identifiers of all these variables in right-to-left order
(the identifier of the variable corresponding to the returned value is pushed first, the identifier of the
variable corresponding to the first parameter is pushed last);

- the program shall invoke the operation using an external call (XCALL) instruction whose operands
are the function identifier of the called operation;

- the program shall exploit the function results through the use of the variables corresponding to the
returned value, the input/output parameters and the output parameters.

Page 48
Draft prETS 300 715: May 1996

10.4 Handling of IDL exceptions in an MHEG-SIR program

An exception described in a package declaration shall be handled by an MHEG-SIR program as follows:

- variables of expected types corresponding to each parameter shall be declared within the
interchanged script;

- a routine whose parameters correspond to the exception shall be declared within the routine
declaration part of the interchanged script;

- the mapping between the identifiers of this handling routine and the exception shall be declared in
the handler declaration part of the interchanged script.

10.5 Invocation of IDL operations by an MHEG-S engine

When an interchanged script expresses invocation of an IDL operation as described in subclause 11.3,
the script interpreter shall behave as described by the semantics of the XCALL instruction in clause 14. As
part of this performance, it shall interpret the mechanisms described in subclause 11.3 in translating them
into the run-time environment access mechanisms as defined by the platform mapping specifications.

NOTE: For example, an MHEG-S engine may translate a variable identifier pushed onto the
stack as a service parameter into either a value or a real memory address to be
passed to the external piece of software that provides the service.

10.6 Handling of IDL exceptions by an MHEG-S engine

When an exception is raised by an external service, this will result in a message being transmitted to the
MHEG-S engine according to the run-time environment access mechanisms defined by the platform
mapping specifications.

The script interpreter shall then behave as described in subclause 10.3.3.2.

10.7 Platform mapping specifications

A platform mapping specification shall contain:

- the description of the platform to which the specification applies;

- the procedure that MHEG-S engines should use to check the availability of a given package within
the run-time environment;

- the procedure that MHEG-S engines should use to make the operations of a given package
accessible to an rt-script;

- the procedure that MHEG-S engines should use to unload a package;

- the procedure that MHEG-S engines should use to invoke a given operation;

- the way MHEG-S engines should encode the value of input or input/output parameters of an
operation;

- the way MHEG-S engines should decode the value of output or input/output parameters of an
operation;

- the procedure that MHEG-S engines should use to pass input, input/output and output parameters
to an operation;

- the procedure that MHEG-S engines should use to retrieve the return value of an operation;

- the procedure that MHEG-S engines should use to retrieve exceptions raised by an operation;

Page 49
Draft prETS 300 715: May 1996

- the way MHEG-S engines should decode the value of parameters of an exception raised by an
operation.

The contents of the platform mapping specification are described in annex D.

11 Provisions for MHEG object manipulation

This clause describes the mechanisms defined by this ETS to make it possible for rt-scripts to manipulate
MHEG objects.

11.1 Invoking MHEG actions

The MHEG-SIR is used to express invocation of MHEG actions as defined by ETR 225 [9] (MHEG API).

The MHEG-API is defined using IDL. The mapping from an IDL definition to an MHEG-SIR package
declaration and type declaration is defined in clause 14. The MHEG-API package is however considered
as a predefined one. Its declaration shall not be included explicitly in interchanged scripts. The mapping
mechanism is therefore similar to the external function declaration mechanism described in clause 11,
except for the fact that the IDL types and operations defined by the MHEG-API need not be declared as
part of the MHEG-SIR code, but are instead dealt with as predefined types and predefined external
functions.

The mechanism used to invoke an MHEG action is similar to invocation of a service provided by the
run-time environment. An XCALL instruction is used. Types defined in the MHEG-API package are
referred to using a predefined type identifier. Functions described in the MHEG-API package are referred
to using a predefined function identifier.

11.1.1 Sending messages to other scripts

Within an MHEG-SIR program, any kind of MHEG message may be sent to the MHEG engine using the
MHEG-API. This includes sending messages targeted at mh-scripts or rt-scripts.

NOTE: For example, an rt-script may monitor the execution of another script through the use
of MHEG-API operations corresponding to the "prepare", "new", "run", "get termination
status", "delete", "destroy" MHEG actions.

11.1.2 Synchronisation with MHEG objects

Within an MHEG-SIR program, synchronisation of the rt-script with other MHEG objects (including other
rt-scripts) may be done through the use of the MHEG-API operations corresponding to the "set data" and
"get data" MHEG action. MHEG content objects embedding generic values may be used to constitute a
shared memory area between MHEG objects.

Waiting for a signal from another script may be translated by a loop including a call to the MHEG-API
operation corresponding to the "get data" MHEG action until the expected value is retrieved.

Generating a signal may be translated by a call to the MHEG-API operation corresponding to the "set
data" MHEG action.

11.2 Receiving MHEG messages

The MHEG-SIR is used to express handling of messages coming from the MHEG engine. These
messages may be of the following types:

- "return" actions;
- MHEG actions whose target is the MHEG script object (mh-object);
- MHEG actions whose target is the MHEG rt-script;
- MHEG API exceptions.

Page 50
Draft prETS 300 715: May 1996

11.2.1 Return actions

Within an MHEG-SIR program, "return" actions are processed through the use of the MHEG-API. The
"getReturnability" operation gives the list of available notifications while the "getNotification" operation
retrieves a notification.

11.2.2 MHEG actions targeted at an mh-script

The MHEG actions that can be targeted to an mh-script are "prepare", "destroy" and "get preparation
status". These actions should be handled by the script interpreter as described in clause 10, with the
default effect specified in subclause 12.3; the MHEG-SIR does not provide mechanisms to express
specific handling for these actions.

11.2.3 MHEG actions targeted at an rt-script

The MHEG actions that can be targeted to an rt-script are "set parameters", "get termination status",
"new", "delete", "get availability status", "run", "stop", "set global behaviour", "get global behaviour", "set
alias" and "get alias".

These actions should be handled by the script interpreter as described in clause 10, with the default effect
specified in subclause 12.4 below.

In addition, the MHEG-SIR provides mechanisms allowing a script to express specific handling for some
of these actions ("set parameters", "new", "delete", "run", "stop"). These MHEG actions targeted at an rt-
script have predefined message identifiers. The handler declaration of the interchanged script is used to
map these actions to routines. When the action is triggered, the script interpreter shall push the message
into the message queue; when the message queue is afterwards looked up at, the script interpreter shall
invoke the routine to which the message identifier is mapped, with the corresponding parameters.

11.2.4 MHEG-API exceptions

The MHEG-API exceptions are considered as messages which are sent to the script interpreter as the
result of invoking an MHEG-API operation. These exceptions have predefined message identifiers. The
script interpreter shall process these messages in the same way as it would process an exception coming
from the run-time environment, as described in subclause 10.3.3.2.

11.3 Effect of MHEG actions

11.3.1 Prepare

When a "prepare" action is targeted at an mh-script, the script interpreter should perform the mh-script
initialisation operations as described in subclause 10.3.1.

11.3.2 New

When a "new" action is targeted at an rt-script, the script interpreter should perform the rt-script
initialisation operations as described in subclause 10.3.2. It should then invoke the routine mapped to the
"new" predefined message identifier in the handler table, if this mapping exists.

11.3.3 Run

When a "run" action is targeted at an rt-script, the script interpreter should invoke the routine mapped to
the "run" predefined message identifier in the handler table. If such a mapping does not exist, the first
routine (whose function identifier is 0) shall be invoked, provided this routine either has no parameters or
only has parameters passed by value whose type is such that they may be assigned a default value. If the
first routine cannot be invoked, an exception shall be raised.

Page 51
Draft prETS 300 715: May 1996

11.3.4 Set parameters

When a "set parameters" action is targeted at an rt-script, the script interpreter should invoke the routine
mapped to the "set parameters" predefined message identifier in the handler table, if such a mapping
exists.

NOTE: This action may be used to assign variables which will be used afterwards by the
routine handling the "run" action.

11.3.5 Stop

When a "stop" action is targeted at an rt-script, the script interpreter should invoke the routine mapped to
the "stop" predefined message identifier in the handler table, if such a mapping exists.

11.3.6 Delete

When a "delete" action is targeted at an rt-script, the script interpreter should invoke the routine mapped
to the "delete" predefined message identifier in the handler table, if such a mapping exists.

The script interpreter should then clean up the rt-script-specific memory areas in order to restore a state
that will enable the rt-script initialisation operations to be performed again as described in subclause
10.3.2.

NOTE: This should include closing the link between packages and this rt-script.

11.3.7 Destroy

When a "destroy" action is targeted at an mh-script, the script interpreter should clean up all memory
areas related to this script and restore a state that will enable the mh-script initialisation operations to be
performed again as described in subclause 10.3.1.

NOTE: This should include unloading packages, unless of course they are used by other
mh-scripts.

12 MHEG-SIR declarations

This clause describes the structure of interchanged scripts. This clause also describes the way the virtual
machine deals with parsing of an interchanged script.

An interchanged script shall consist of:

- a sequence of type declarations;
- a sequence of constant declarations;
- a sequence of global variable declarations;
- a sequence of package declarations;
- a sequence of message handler declarations;
- a sequence of routine declarations.

InterchangedScript ::= TypeDeclaration*
ConstantDeclaration*
GlobalVariableDeclaration*
PackageDeclaration*
HandlerDeclaration*
RoutineDeclaration*

Page 52
Draft prETS 300 715: May 1996

12.1 Type declaration

Type declarations shall be used to describe the types of the interchanged script.

A type declaration shall consist of:

- a type identifier (optional);
- a type description.

TypeDeclaration ::= TypeIdentifier?
TypeDescription

12.1.1 Type identifier

Type IDentifiers (TIDs) are used to reference the type description throughout the interchanged script.

The TID shall be a positive integer within the range allowed for declared types. It shall correspond to the
maximum number of predefined types incremented by the index (starting from 0) of the declaration in the
type declarations part.

If the TID is not provided, it shall be computed by the script parser.

TypeIdentifier ::= INTEGER

12.1.2 Type description

Type descriptions describe the structure of a declared type.

The type description shall be either:

- a TID;
- an enumerated description;
- a sequence description;
- an array description;
- a structure description;
- a union description.

TypeDescription ::= TypeIdentifier
/ EnumeratedDescription
/ SequenceDescription
/ ArrayDescription
/ StructureDescription
/ UnionDescription

If the type description is a TID, the type description of the identified type matches the type description for
the currently declared type.

12.1.2.1 Enumerated description

An enumerated description shall consist of a sequence of integer values which compose the enumeration.

EnumeratedDescription ::= INTEGER* // List of values

12.1.2.2 Sequence description

A sequence description shall consist of:

- an integer (optional);
- a type description.

SequenceDescription ::= INTEGER? // Sequence (max) size
TypeDescription

Page 53
Draft prETS 300 715: May 1996

The integer represents the maximum size of the sequence; if it is not provided, the sequence is not
bounded.

The type description represents the description of the type of element of the sequence.

12.1.2.3 Array description

An array description shall consist of:

- an integer;
- a type description.

ArrayDescription ::= INTEGER // Array dimension
TypeDescription

The integer represents the size of the array.

The type description represents the description of the type of element of the array.

12.1.2.4 Structure description

A structure description shall consist of a sequence of type descriptions.

StructureDescription ::= TypeDescription+

Each type description represents the description of one of the fields of the structure.

12.1.2.5 Union description

A union description shall consist of a sequence of one or more type descriptions.

UnionDescription ::= TypeDescription+

Each type description represents the description of one of the choices of the union.

12.2 Constant declaration

Constant declarations shall be used to describe the types and values of the constants of the interchanged
script.

A constant declaration shall consist of:

- a data identifier (optional);
- a type identifier;
- a constant value.

ConstantDeclaration ::= DataIdentifier?
TypeIdentifier
ConstantValue

12.2.1 Data identifier

Data IDentifiers (DID) are used to reference data throughout the interchanged script.

The DID shall be a positive integer within the range allowed for constants. It shall correspond to the index
(starting from 0) of the declaration in the constant declarations part.

If the DID is not provided, it shall be computed by the script parser.

DataIdentifier ::= INTEGER

Page 54
Draft prETS 300 715: May 1996

12.2.2 Type identifier

The TID represents the type to which the value of the constant belongs.

12.2.3 Constant value

The constant value represents the value that the constant will correspond to throughout the script.

If the type of the constant matches a primitive type, the constant value shall consist of an immediate value
expressed in this type.

If the type of the constant matches an enumerated type, the constant value shall consist of an immediate
octet value representing the index (starting from 0) of the value of the constant in the enumeration.

If the type of the constant matches a structure type, the constant value shall consist of a sequence of
constant values, whose length is the same as the number of elements in the structure; each of these
values shall be of a type matching the corresponding element type in the structure description.

If the type of the constant matches a sequence or array type, the constant value shall consist of a
sequence of constant values, whose length is less or equal to the size of the sequence type, or exactly
equal to the size of the array type, and whose type match the element type of the sequence or array
description.

If the type of the constant matches a union type, the constant value shall consist of an integer
representing the index (starting from 0) of the choice in the union, and a constant value whose type shall
match the type of element of the corresponding rank in the union type description.

ConstantValue ::= BOOLEAN
/ OCTET
/ INTEGER // all numeric types
/ REAL // float or double
/ STRING // character or string
/ DataIdentifier
/ ConstantValue* // sequence, array or structure
/ UnionValue

UnionValue ::= INTEGER // Tag index
ConstantValue

12.3 Global variable declaration

Global variable declarations shall be used to describe the types and initial values of the global variables of
the interchanged script.

A global variable declaration shall consist of:

- a data identifier (optional);
- a type identifier;
- a constant reference (optional).

GlobalVariableDeclaration ::= DataIdentifier?
TypeIdentifier
ConstantReference? // Initial value

Page 55
Draft prETS 300 715: May 1996

12.3.1 Data identifier

DIDs are used to reference data throughout the interchanged script.

The DID shall be a positive integer within the range allowed for global variables. It shall correspond to the
maximum number of constants incremented by the index (starting from 0) of the declaration in the global
variable declarations part.

If the DID is not provided, it shall be computed by the script parser.

12.3.2 Type identifier

The TID represents the type to which the value of the global variable belongs.

12.3.3 Constant reference

The constant reference represents the initial value of the global variable.

The constant reference shall be either:

- a DID referencing a constant;
- a positive integer representing the index of the constant in the constant table;
- a constant value as described in subclause 12.2.3.

In any case, the value to which this constant reference refers shall be of a type that matches the type of
the global variable.

If the constant reference is not provided, the global variable is assigned to a default value (if its type allows
for it) or simply undefined until assigned by an instruction.

ConstantReference ::= DataIdentifier
/ INTEGER // constant index
/ ConstantValue

12.4 Package declaration

Package declarations shall be used to describe the external services and exceptions used by the
interchanged script.

A package declaration shall consist of:

- a package identifier (optional);
- a string representing the package name;
- a sequence of service descriptions;
- a sequence of exception descriptions.

PackageDeclaration ::= PackageIdentifier?
VisibleString // Package name
ServiceDescription*
ExceptionDescription*

12.4.1 Package identifier

Package IDentifiers (PID) are used to reference packages throughout the interchanged script.

The PID shall be a positive integer within the range allowed for packages. It shall correspond to the index
(starting from 0) of the declaration in the package declarations part.

If the PID is not provided, it shall be computed by the script parser.

PackageIdentifier ::= INTEGER

Page 56
Draft prETS 300 715: May 1996

12.4.2 Package name

Package names allow the script interpreter to access the package within the run-time environment,
according to the package availability procedure described by the platform mapping specification.

12.4.3 Service description

Service descriptions describe external function prototypes.

A service description shall consist of:

- a function identifier (optional);
- a string representing the operation name;
- a calling mode (optional);
- a type identifier;
- a sequence of parameter descriptions.

ServiceDescription ::= FunctionIdentifier?
VisibleString? // IDL global name
CallingMode?
TypeIdentifier // return value
ServiceParameterDescription*

12.4.3.1 Function identifier

Function IDentifiers (FIDs) are used to reference functions throughout the interchanged script.

The FID shall be a positive integer within the range allowed for services. It shall correspond to the
maximum number of routines plus the maximum number of predefined functions plus the package
identifier multiplied by 256, incremented by the index (starting from 0) of the service in the package
declaration.

If the FID identifier is not provided, it shall be computed by the script parser.

FunctionIdentifier ::= INTEGER

12.4.3.2 Operation name

Operation names allow the script interpreter to access the operation within the run-time environment,
according to the operation invocation procedure described by the platform mapping specification.

12.4.3.3 Calling mode

The calling mode represents the way the operation shall be invoked.

The calling mode shall be either "synchronous" or "asynchronous".

CallingMode ::= "SYNCHRONOUS" / "ASYNCHRONOUS"

12.4.3.4 Type identifier

The TID represents the type of return value of the service.

12.4.3.5 Parameter description

Parameter descriptions are used to specify the type and passing mode of service parameters.

A parameter description shall consist of:

- a passing mode;
- a type identifier.

Page 57
Draft prETS 300 715: May 1996

ServiceParameterDescription ::= ServicePassingMode?
TypeIdentifier

12.4.3.5.1 Passing mode

The passing mode indicates whether the value of the parameter at the time of invocation of the service
shall be used by the service (input parameter) and whether this parameter shall be modified by the service
for use by its caller (output parameter).

The passing mode shall be either "in", "inout" or "out".

ServicePassingMode ::= "IN" / "OUT" / "INOUT"

12.4.3.5.2 Type identifier

The TID represents the type of the considered service parameter.

12.4.4 Exception description

Exception descriptions describe prototypes of exceptions that may be raised during the execution of
external functions.

An exception description shall consist of:

- a message identifier (optional);
- a string representing the exception name;
- a sequence of type identifiers representing the members of the exception.

ExceptionDescription ::= MessageIdentifier?
VisibleString? //IDL exception global name
TypeIdentifier* //Parameter types

12.4.4.1 Message identifier

Message IDentifiers (MIDs) are used to reference messages throughout the interchanged script.

The MID shall be a positive integer within the range allowed for exceptions. It shall correspond to the
maximum number of predefined messages plus the PID multiplied by 256, incremented by the index
(starting from 0) of the exception in the package declaration.

If the MID is not provided, it shall be computed by the script parser.

MessageIdentifier ::= INTEGER

12.4.4.2 Exception name

Exception names allow the script interpreter to retrieve the exception within the run-time environment,
according to the exception retrieval procedure described by the platform mapping specification.

12.4.4.3 Parameter description

Each parameter of the message corresponds to one member of the exception. It is described by its TID.

12.5 Handler declaration

Handler declarations shall be used to associate a message with the function that handles it.

A handler declaration shall consist of:

- a message reference;
- a function reference.

Page 58
Draft prETS 300 715: May 1996

HandlerDeclaration ::= MessageReference
FunctionReference

12.5.1 Message reference

The message reference indicates the message to be handled.

A message reference shall be either:

- a message identifier;
- a string representing an exception name;
- an exception reference;
- an integer corresponding to the index of the message in the predefined messages table.

MessageReference ::= MessageIdentifier
/ VisibleString // exception name
/ ExceptionReference
/ INTEGER // predefined message index

12.5.1.1 Message identifier

The MID shall be a positive integer within the whole range allowed to messages, representing either a
predefined message or an exception.

12.5.1.2 Exception reference

An exception reference shall consist of:

- a PID representing the package in which the exception is described;
- an integer representing the index of the exception description in the package.

ExceptionReference ::= PackageIdentifier
INTEGER // exception index

12.5.2 Function reference

The function reference indicates the function to be triggered when the message is removed from the
message queue.

The description of the formal parameter types for the function shall be the same as for the message, so
that the function may be called with the message actual parameters as its parameters. If parameters
descriptions do not match, the handler shall not be invoked by the script parser.

A function reference shall be either:

- a function identifier;
- a service reference;
- an integer corresponding to the index of the routine in the routine declarations part;
- an integer corresponding to the index of the function in the predefined functions table.

FunctionReference ::= FunctionIdentifier
/ ServiceReference
/ INTEGER // routine index,

// predefined message index

12.5.2.1 Function identifier

The FID shall be a positive integer within the whole range allowed to function, representing either a
routine, a predefined function or a service.

Page 59
Draft prETS 300 715: May 1996

12.5.2.2 Service reference

An service reference shall consist of:

- a PID representing the package in which the service is described;
- an integer representing the index of the service description in the package.

ServiceReference ::= PackageIdentifier
INTEGER // service index

12.6 Routine declaration

Routine declarations shall be used to describe the structure and program code of the internal functions of
the interchanged script.

A routine declaration shall consist of:

- a function identifier (optional);
- a type identifier;
- a sequence of parameter descriptions;
- a sequence of local variable declarations;
- MHEG-SIR program code.

RoutineDeclaration ::= FunctionIdentifier?
TypeIdentifier // for return value
RoutineParameterDescription*
LocalVariableDeclaration*
OCTET STRING // program code

12.6.1 Function identifier

The FID shall be a positive integer within the range allowed for routines. It shall correspond to the index
(starting from 0) of the routine in the routine declarations part.

If the FID is not provided, it shall be computed by the script parser.

12.6.2 Type identifier

The type identifier represents the type of return value of the routine.

12.6.3 Parameter description

Parameter descriptions are used to specify the type and passing mode of routine parameters.

A parameter description shall consist of:

- a passing mode (optional);
- a type identifier.

RoutineParameterDescription ::= RoutinePassingMode?
TypeIdentifier

12.6.3.1 Passing mode

The passing mode indicates whether the parameter shall be passed to the routine using its value (input
parameter) or a reference to the variable that holds its value (input/output parameter).

The passing mode shall be either "value" or "reference".

RoutinePassingMode ::= "VALUE" / "REFERENCE"

Page 60
Draft prETS 300 715: May 1996

12.6.3.2 Type identifier

The TID represents the type of the considered routine parameter.

12.6.4 Local variable declaration

Local variable declarations shall be used to describe the types and initial values of variables whose scope
is limited to one execution of a routine.

A local variable declaration shall consist of:

- a data identifier (optional);
- a type identifier;
- a constant reference (optional).

LocalVariableDeclaration ::= DataIdentifier?
TypeIdentifier
ConstantReference? // initial value (constant)

12.6.4.1 Data identifier

The DID shall be a positive integer within the range allowed for local variables. It shall correspond to the
maximum number of constants plus the maximum number of global variables incremented by the index
(starting from 0) of the declaration in the local variable declarations of the routine, incremented by the
number of formal parameters of the routine.

If the DID is not provided, it shall be computed by the script parser.

12.6.5 Type identifier

The type identifier represents the type to which the value of the local variable belongs.

12.6.6 Constant reference

The constant reference represents the initial value of the local variable.

The constant reference shall be either

- a data identifier referencing a constant;
- a positive integer representing the index of the constant in the constant table;
- a constant value as described in subclause 12.2.3.

In any case, the value to which this constant reference refers shall be of a type that matches the type of
the local variable.

If the constant reference is not provided, the local variable is assigned to a default value (if its type allows
for it) or simply undefined until assigned by an instruction.

12.6.7 Program code

The program code consists of the sequence of instructions of the routine, intended for execution by the
script interpreter when the routine is triggered. The syntax and semantics of the MHEG-SIR instructions
are described in clause 14.

The last instruction of a routine shall always be a RET instruction.

Page 61
Draft prETS 300 715: May 1996

13 MHEG-SIR instructions

This clause defines the semantics of the MHEG-SIR instructions.

13.1 Presentation methodology

Each instruction is described under the "instruction name" subclause by an entry of the following form:

Short description: A brief description of the instruction's semantics.

Synopsis: InstructionMnemonic Operand1 to OperandN.

Operands: A description of the types and semantics of each operand carried with the
instruction (if any).

Stack: A visual synopsis of the instruction's effect on the parameter stack, e.g.

..., Parameter1, Parameter2 ð to, Result.

Parameters: A description of the types and semantics of each element of the parameter stack
which is popped, pushed or otherwise effected by the instruction (if any). Type
abbreviations are: B (boolean), C (character), D (double), F (float), L (long), O
(octet), S (short), U (unsigned long), W (unsigned short).

Effect: A textual specification of the interpretation semantics of the instruction.

Formal specification: A formal specification of the interpretation semantics of the instruction using the
notation described in subclause 13.2.

Errors: A list of the (non-trivial) error cases that may occur during interpretation of the
instruction.

The semantics of the instruction, as described by the formal specification, shall apply only if the following
conditions are met:

- the operands are valid;
- the stack holds enough parameters;
- the types of the stack parameters are valid.

Otherwise an error shall be raised and the error register shall be set.

The formal specification part gives a concise formal notation of what effect that the instruction execution
unit shall produce upon interpreting the instruction. However, since this specification is expressed in terms
of a sequence of operations, there may be other methods to lead to the same result. This formal
specification does not therefore require the instruction execution unit to perform such functionality as
expressed, providing the effect is the same.

NOTE: The current description of the formal specification part does not describe all error
cases.

13.2 Notation

To specify the semantics of an instruction in a formal way, a syntax similar to C is used. It uses the
notations and concepts defined in clause 10, plus the following "macro" notations:

- variable table notation;
- data table notation;
- type matching notation.

Page 62
Draft prETS 300 715: May 1996

13.2.1 Variable table notation

The notation VT(i), where i stands for the data identifier of a variable, corresponds to:

- the entry whose key is i in the global variable table, if i is the data identifier of a global variable;

- the entry whose key is i in the local variable table of the currently executing routine, if i is the data
identifier of a local variable.

This macro may be expressed as follows:

#define VT(i) (i < 32768) ? GT[i] : CS[FP].LT[i]

13.2.2 Data table notation

The notation DT(i), where i stands for a data identifier, corresponds to:

- the entry whose key is i in the constant table, if i is the data identifier of a constant;

- the entry whose key is i in the global variable table, if i is the data identifier of a global variable;

- the entry whose key is i in the local variable table of the currently executing routine, if i is the data
identifier of a local variable.

This macro may be expressed as follows:

#define DT(i) (i < 32768) ? ((i < 4096) ? CT[i] : GT[i]) : CS[FP].LT[i]

13.2.3 Type matching notation

The notations :-: is used to check whether two types match.

If TID1 and TID2 are two type identifiers:

- (TID1 :-: TID2) is true if and only if there is a formal matching between the two types (as defined in
clause 9).

13.2.4 Type combination

All arithmetic and logical instructions operate on values of a given type and produce a result with the same
type. Operations on mixed types shall be handled by explicitly inserting type conversion instructions in the
instruction sequence.

13.3 Classification of MHEG-SIR instructions

The MHEG-SIR instructions may be clustered into categories according to their effect on the control flow,
on the variable tables or on the parameter stack, and according to the types of stack parameters that they
accept:

- instructions which affect the control flow:

a) unconditional jump instructions: JMP, LJMP;
b) conditional jump instructions: JT, JF, LJT, LJF;
c) function calls: CALL, XCALL;
d) miscellaneous control flow instructions: RET, YIELD.

- instructions which do not affect the control flow, but affect the value of variables:

a) complex variable modifiers: SET, SETC;
b) arithmetic operators on variables: INC, DEC;
c) stack pop instructions: POPR, POP, POPC.

Page 63
Draft prETS 300 715: May 1996

- instructions which do not affect the control flow or the global variables, but affect the parameter
stack:

a) arithmetic operators: ADD, SUB, MUL, DIV, REM, NEG;
b) logical operators: AND, OR, XOR, NOT;
c) logical shift operators: SHIFT;
d) comparison operators: EQ, NEQ, GT, GE, LT, LE;
e) complex data accessors: GET;
f) miscellaneous stack manipulation instructions: PUSHI, PUSHR, PUSH, DROP; DUP.

- memory management instructions: ALLOC, FREE;

- instructions which have no effect: NOP.

NOTE: The use of conditional flags such as arithmetic carry, overflow, zero is to be studied. If
used, flags would be set by the result of arithmetic and logical instructions, and would
be used in conditional flow of control instructions.

The effect of instructions is summarised in table 2. The operations are listed in canonical order, i.e. by
ascending op-code number. Some mnemonics have type suffixes. The suffix "x" can be one of: {O, S, W,
L, U, F, D}. The suffix "y" can be one of {O, W, U, F, D, B}. The suffix "z", "z1", and "z2" can be one of: {O,
C, S, W, L, U, F, D}. For instructions with type suffixes, opcodes are assigned in ascending order in the
range indicated.

Page 64
Draft prETS 300 715: May 1996

Table 2: Synopsis of MHEG-SIR instructions and their effect

Mnemonics Code(s) Op.
size

Op. type PS effect VT/LT effect Control flow
effect

NOP 00h 0
YIELD 01h 0 x
RET 02h 0 0/1 ð 0/1 x
ADDx 03h - 09h 0 2 ð 1
SUBx 0Ah - 10h 0 2 ð 1
MULx 11h - 17h 0 2 ð 1
DIVx 18h - 1Eh 0 2 ð 1
REMx 1Fh - 25h 0 2 ð 1
NEGx 26h - 2Ch 0 1 ð 1
NOTy 2Dh - 32h 0 1 ð 1
ANDy 33h - 38h 0 2 ð 1
ORy 39h - 3Eh 0 2 ð 1
XORy 3Fh -44h 0 2 ð 1
EQz 45h - 4Ch 0 2 ð 1
LEx 4Dh - 53h 0 2 ð 1
GTx 54h - 5Ah 0 2 ð 1
JT 5Bh 1 offset 1 ð 0 x
JF 5Ch 1 offset 1 ð 0 x
JMP 5Dh 1 offset x
DROP 5Eh 1 idx idx ð 0
SHIFTy 5Fh - 64h 1 offset 1 ð 0
LJT 65h 2 offset 1 ð 0 x
LJF 66h 2 offset 1 ð 0 x
LJMP 67h 2 offset x
CALL 68h 2 FID n ð 0/1 x
XCALL 69h 2 FID n ð 0/1 x
PUSHI 6Ah 2 value 0 ð 1
PUSH 6Bh 2 DID 0 ð 1
PUSHR 6Ch 2 DID 0 ð 1
POP 6Dh 2 DID 1 ð 0 x
POPR 6Eh 2 DID 1 ð 0 x
POPC 6Fh 2 DID 1 ð 0 x
INC 70h 2 DID 1 ð 0 x
DEC 71h 2 DID 1 ð 0 x
GET 72h 3 DID, idx idx ð 1
SET 73h 3 DID, idx idx+1 ð 0 x
SETC 74h 3 DID, idx idx+1 ð 0 x
ALLOC 75h 2 TID 0 ð 1 x
FREE 76h 0 1 ð 0 x
DUPz 77h - 7Dh 0 1 ð 2
CVTz1z2 80h - ACh 0 1 ð 1

13.4 Description of instructions

13.4.1 No operation

Short description: Does nothing.

Synopsis: NOP.

Operands: None.

Parameters: None.

Page 65
Draft prETS 300 715: May 1996

Stack: ... ð ...

Effect: None.

Formal specification: 0;

Errors:

13.4.2 Yield

Short description: Yield control.

Synopsis: YIELD.

Operands: None.

Stack: ... ð ...

Parameters: None.

Effect: Yield control to the MHEG engine.

NOTE 1: As control returns, the script interpreter will first look up at the
message queue and possibly stack one calling frame to handle its
messages. Once the CS is restored to the same state as before the
instruction, the next instruction will be executed.

NOTE 2: Relevance of introducing a synchronization mechanism similar to a
WAIT TID instruction needs further study.

NOTE 3: How concurrency between the script interpreter and the MHEG
engine is handled is a system design issue.

Formal specification: 0;

Errors: None.

13.4.3 Return

Short description: Return to caller.

Synopsis: RET.

Operands: None.

Stack: ..., (Val) ð ..., (Val).

Parameters: If the current routine signature has a return value, Val shall be of a type matching
the type of this return value.
Otherwise, there is no stack parameter.

Effect: Return to the calling routine. Pop the calling stack and restore the context of the
previous frame. If the current routine has a return value, there shall be a value of
a type matching this type on the top of the parameter stack.
If there is no calling function to return to, yield control to the MHEG engine.

Formal specification: if ((RT[CS[FP].FID].TID :-: "void") // (RT[CS[FP].FID].TID :-: PS[SP].TID))
IP = CS[FP--].IP;

else ER = "invalid return value";

Page 66
Draft prETS 300 715: May 1996

Errors: Invalid return value.

13.4.4 Add

Short description: Arithmetic addition.

Synopsis: ADD<type>.

Operands: None.

Stack: ..., Num1, Num2 ð ..., Sum.

Parameters: Num1 and Num2 shall be of the same numeric type, where type is one of
{O, S, W, L, U, F, D}.
Sum shall have the corresponding type.

Effect: Replace the top two elements of the parameter stack by their sum:
Sum = Num1 + Num2.

Formal specification: PS[SP-1].val += PS[SP].val;
SP -= sizeof(<type>);

Errors: Void stack;
Invalid parameter type;
Result out of range.

13.4.5 Subtract

Short description: Arithmetic subtraction.

Synopsis: SUB<type>.

Operands: None.

Stack: ..., Num1, Num2 ð ..., Diff.

Parameters: Num1 and Num2 shall be of the same numeric type, where type is one of
{O, S, W, L, U, F, D}.
Difference shall have the corresponding type.

Effect: Replace the top two elements of the parameter stack by their difference:
Diff = Num1 - Num2.

Formal specification: PS[SP-1].val -= PS[SP].val;
SP -= sizeof(<type>);

Errors: Void stack;
Invalid parameter type;
Result out of range.

13.4.6 Multiply

Short description: Arithmetic multiplication.

Synopsis: MUL<type>.

Operands: None.

Stack: ..., Num1, Num2 ð ..., Prod.

Page 67
Draft prETS 300 715: May 1996

Parameters: Num1 and Num2 shall be of the same numeric type, where type is one of
{O, S, W, L, U, F, D}
Product shall have the corresponding type.

Effect: Replace the top two elements of the parameter stack by their product:
Prod = Num1 * Num2.

Formal specification: PS[SP-1].val *= PS[SP].val;
SP -= sizeof(<type>);

Errors: Void stack;
Invalid parameter type;
Result out of range.

13.4.7 Divide

Short description: Arithmetic division.

Synopsis: DIV<type>.

Operands: None.

Stack: ..., Num1, Num2 ð ..., Quot.

Parameters: Num1 and Num2 shall be of the same numeric type, where type is one of
{O, S, W, L, U, F, D}.
Quotient shall have the corresponding type.

Effect: Replace the top two elements of the parameter stack by their quotient:
Prod = Num1 / Num2.

Formal specification: PS[SP-1].val /= PS[SP].val;
SP -= sizeof(<type>).

Errors: Void stack;
Invalid parameter type;
Division by 0.

13.4.8 Remainder

Short description: Arithmetic remainder.

Synopsis: REM<type>.

Operands: None.

Stack: ..., Num1, Num2 ð ..., Rem.

Parameters: Num1 and Num2 shall be of the same numeric type, where type is one of
{O, S, W, L, U, F, D}.
Remainder shall have the corresponding type.

Effect: Replace the top two elements of the parameter stack by their remainder:
Prod = Num1 % Num2.

Formal specification: PS[SP-1].val %= PS[SP].val;
SP -= sizeof(<type>);

Page 68
Draft prETS 300 715: May 1996

Errors: Void stack;
Invalid parameter type;
Division by 0.

13.4.9 Negate

Short description: Sign change.

Synopsis: NEG<type>.

Operands: None.

Stack: ..., Num ð ..., Opp.

Parameters: Num shall be one of { O, S, W, L, U, F, D}.
Result shall have the corresponding type.

Effect: Replace the top element of the parameter stack by its opposite (for a signed
type) or its complement-to-two (for an unsigned type):
Opp = -Num1.

Formal specification: PS[SP].val = -PS[SP].val;

Errors: Void stack;
Invalid parameter type.

13.4.10 Not

Short description: Logical negation.

Synopsis: NOT<type>.

Operands: None.

Stack: ..., Val ð ..., Neg.

Parameters: Val shall be of type: { O, W, U, F, D, B }.
Neg shall be of the same type as Val.

Effect: Replace the top element of the parameter stack by its logical negation (for a
boolean) or its bitwise negation (i.e. complement-to-one, for an octet or integer
type):
Neg = ~Val.

Formal specification: if (PS[SP].TID :-: "boolean")
 PS[SP].val = ! PS[SP].val;
else
 PS[SP].val = ~ PS[SP].val;

Errors: Void stack;
Invalid parameter type.

13.4.11 And

Short description: Logical conjunction.

Synopsis: AND<type>.

Operands: None.

Page 69
Draft prETS 300 715: May 1996

Stack: ..., Val1, Val2 ð ..., Conj.

Parameters: Val1 and Val2 shall be of the same type, which is one of: {O, W, U, F, D, B }.
The result is of the same type.

Effect: Replace the top two elements of the parameter stack by their logical conjunction
(for a boolean) or their bitwise conjunction (for an octet or integer type):
Conj = Val1 & Val2.

Formal specification: if (PS[SP].TID :-: "boolean")
 PS[SP-1].val = PS[SP].val && PS[SP-1].val;
else
 PS[SP-1].val &= PS[SP].val;
SP -= sizeof(<type>);

Errors: Void stack;
Invalid parameter type;
Parameter type mismatch.

13.4.12 Or

Short description: Logical disjunction.

Synopsis: OR.

Operands: None.

Stack: ..., Val1, Val2 ð ..., Disj.

Parameters: Val1 and Val2 shall be of the same type, which is one of:
{O, W, U, F, D, B }. The result is of the same type.

Effect: Replace the top two elements of the parameter stack by their logical disjunction
(for a boolean) or their bitwise disjunction (for an octet or integer type):
Disj = Val1 / Val2.

Formal specification: if (PS[SP].TID :-: "boolean")
 PS[SP-1].val = PS[SP].val // PS[SP].val;
else
 PS[SP-1].val /= PS[SP].val;
SP -= sizeof(<type>);

Errors: Void stack;
Invalid parameter type;
Parameter type mismatch.

13.4.13 Exclusive or

Short description: Logical exclusion.

Synopsis: XOR<type>.

Operands: None.

Stack: ..., Val1, Val2 ð ..., Excl.

Parameters: Val1 and Val2 shall be of the same type, which is one of:
{O, W, U, F, D, B }. The result is of the same type.

Page 70
Draft prETS 300 715: May 1996

Effect: Replace the top two elements of the parameter stack by their logical exclusion
(for a boolean) or their bitwise exclusion (for an octet or integer type):
Excl = Val1 ^ Val2.

Formal specification: if (PS[SP].TID :-: "boolean")
 PS[SP-1].val = (PS[SP-1].val != PS[SP].val);
else
 PS[SP-1].val ^= PS[SP].val;
SP -= sizeof(<type>);

Errors: Void stack;
Invalid parameter type;
Parameter type mismatch.

13.4.14 Equal

Short description: Equality.

Synopsis: EQ<type>.

Operands: None.

Stack: ..., Val1, Val2 ð ..., Comp.

Parameters: Val1 and Val2 shall be of the same type, which is one of:
{O, C, S, W, L, U, F, D }. The result is of type boolean.

Effect: Replace the top two elements of the parameter stack by "true" if they are equal
and "false" otherwise:
Comp = (Val1 == Val2).

Formal specification: PS[SP-1].val = (PS[SP-1].val == PS[SP].val);
SP = SP - 2*sizeof(<type>) + sizeof(boolean);

Errors: Void stack;
Invalid parameter type;
Parameter type mismatch.

13.4.15 Less or equal

Short description: Inferiority.

Synopsis: LE<type>.

Operands: None.

Stack: ..., Val1, Val2 ð ..., Comp.

Parameters: Val1 and Val2 shall be of the same type, which is one of { O, S, W, L., U, F, D }.
Comp shall be of boolean type.

Effect: Replace the top two elements of the parameter stack by "true" if the top element is
greater than the next or if they are equal, and "false" otherwise:
Comp = (Val1 <= Val2).
If parameters are characters, the canonical order is used.

Formal specification: PS[SP-1].val = (PS[SP-1].val <= PS[SP].val);
SP = SP - 2*sizeof(<type>) + sizeof(boolean);

Page 71
Draft prETS 300 715: May 1996

Errors: Void stack;
Invalid parameter type;
Parameter type mismatch.

13.4.16 Greater than

Short description: Strict superiority.

Synopsis: GT<type>.

Operands: None.

Stack: ..., Val1, Val2 ð ..., Comp.

Parameters: Val1 and Val2 shall be of the same type, which is one of { O, S, W, L., U, F, D }.
Comp shall be of boolean type.

Effect: Replace the top two elements of the parameter stack by "true" if the top element
is less than the next, and "false" otherwise:
Comp = (Val1 > Val2).
If parameters are characters, the canonical order is used.

Formal specification: PS[SP-1].val = (PS[SP-1].val > PS[SP].val);
SP = SP - 2*sizeof(<type>) + sizeof(boolean);

Errors: Void stack;
Invalid parameter type;
Parameter type mismatch.

13.4.17 Jump on true

Short description: "If" conditional short jump.

Synopsis: JT Off.

Operands: Off shall be a one-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

Stack: ..., Test ð ...

Parameters: Test shall be of a boolean, octet or integer type.

Effect: If the top element of the stack is "true" or different from 0:
if Off is positive, jump Off instructions forwards;
if Off is negative, jump -Off instructions backwards.

Formal specification: if (PS[SP--].val) then IP += Off;

Errors: Void stack;
Invalid parameter type;
Jump out of range.

13.4.18 Jump on false

Short description: "Else" conditional short jump.

Synopsis: JF Off.

Page 72
Draft prETS 300 715: May 1996

Operands: Off shall be a one-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

Stack: ..., Test ð ...

Parameters: Test shall be of a boolean, octet or integer type.

Effect: If the top element of the stack is "false" or 0:
if Off is positive, jump Off instructions forwards;
if Off is negative, jump -Off instructions backwards.

Formal specification: if !(PS[SP--].val) then IP += Off;

Errors: Void stack;
Invalid parameter type;
Jump out of range.

13.4.19 Jump

Short description: Unconditional short jump.

Synopsis: JMP Off.

Operands: Off shall be a one-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

Stack: ... ð ...

Parameters: None.

Effect: If Off is positive, jump Off instructions forwards;
if Off is negative, jump -Off instructions backwards.

Formal specification: IP += Off;

Errors: Jump out of range.

13.4.20 Long jump on true

Short description: "If" conditional long jump.

Synopsis: LJT Off.

Operands: Off shall be a two-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

Stack: ..., Test ð ...

Parameters: Test shall be of a boolean, octet or integer type.

Effect: If the top element of the stack is "true" or different from 0:
if Off is positive, jump Off instructions forwards;
if Off is negative, jump -Off instructions backwards.

Formal specification: if (PS[SP--].val) then IP += Off;

Page 73
Draft prETS 300 715: May 1996

Errors: Void stack;
Invalid parameter type;
Jump out of range.

13.4.21 Long jump on false

Short description: "Else" conditional long jump.

Synopsis: LJF Off.

Operands: Off shall be a two-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

Stack: ..., Test ð ...

Parameters: Test shall be of a boolean, octet or integer type.

Effect: If the top element of the stack is "false" or 0:
if Off is positive, jump Off instructions forwards;
if Off is negative, jump -Off instructions backwards.

Formal specification: if !(PS[SP--].val) then IP += Off;

Errors: Void stack;
Invalid parameter type;
Jump out of range.

13.4.22 Long jump

Short description: Unconditional long jump.

Synopsis: LJMP Off.

Operands: Off shall be a two-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

Stack: ... ð ...

Parameters: None.

Effect: If Off is positive, jump Off instructions forwards;
if Off is negative, jump -Off instructions backwards.

Formal specification: IP += Off;

Errors: Jump out of range.

13.4.23 Call

Short description: Call routine.

Synopsis: CALL Fid.

Operands: Fid specifies the function identifier of the routine to invoke.

Stack: ..., ParN, ... , Par1 ð ...

Page 74
Draft prETS 300 715: May 1996

Parameters: Par1, ..., ParN are the actual parameters of the routine. They shall be of the
same type as the formal parameters of the function when those are passed by
value, and they shall be of "data identifier" type and reference a variable of the
same type of the formal parameters of the routine while those are passed by
reference.

Effect: Pop the top elements of the parameter stack and invoke the routine specified by
Fid with these elements as actual parameters. Push one frame onto the calling
stack with the current context. Initialises the local variable table for the routine.
Set the instruction pointer to the first instruction of the routine.

Formal specification: CS[++FP].IP = IP;
CS[FP].SP = SP;
CS[FP].FID = Fid;
CS[FP].LT = RT[Fid].LT;
for (short i = 0; i<RT[Fid].nbp; i--;) {

switch (RT[Fid].sig[i].mod) {
case "value":

if !(RT[Fid].sig[i].TID :-: PS[SP].TID)
then exit (ER = "type mismatch");

case "reference":
if !((PS[SP].TID == "data identifier") &&

(RT[Fid].sig[i].TID :-: VT(PS[SP].val).TID))
then exit (ER = "type mismatch");

};
CS[FP].LT[i+0x8000].val = PS[SP--].val;

};
IP = RT[Fid].IP;

Errors: Invalid function identifier;
Void stack;
Invalid parameter type;
Type mismatch;
Invalid return value.

13.4.24 External call

Short description: Call external function.

Synopsis: XCALL Fid.

Operands: Fid specifies the function identifier of the service or MHEG operation to invoke.

Stack: ..., ParN, ... , Par1 ð ..., (Ret).

Parameters: Par1, ..., ParN are the actual parameters of the function. Whatever the passing
mode, they shall be of "data identifier" type and reference a variable of the same
type of the formal parameters of the function.
If the function has a return value type other than void, Ret shall be of this type.

Effect: Pop the top elements of the parameter stack and invoke the external function
specified by Fid with these elements as actual parameters. Push one frame onto
the calling stack with the current context. Pass parameters to and invoke the
external function. If the invocation is synchronous, handle any exceptions that
may be raised by it. Otherwise retrieve its return value and push it onto the
parameter stack. Pop the calling stack.

Page 75
Draft prETS 300 715: May 1996

Formal specification: CS[++FP].IP = IP;
CS[FP].SP = SP;
CS[FP].FID = Fid;
CS[FP].LT = NULL;
DID buf[ST[Fid].nbp];
for (short i=0; i<ST[Fid].nbp; i++;) {

if !((PS[SP].TID == "data identifier") &&
(ST[Fid].sig[i].TID :-: VT(PS[SP].val).TID))

then exit (ER = "type mismatch");
buf[i]=PS[SP--].val;

};
short Pid = (Fid>>8)-32;
if (PT[Pid].sts == "available") _package_load_procedure(PT[Pid].name);
for (short i=0; i<ST[Fid].nbp; i++;)

switch(ST[Fid].sig[i].mod) {
case "in": _in_parameter_passing _procedure(buf[i]);
case "out": _inout_parameter_passing _procedure(buf[i]);
case "inout": _out_parameter_passing _procedure(buf[i]);
};

_operation_invocation_procedure(PT[Pid].name, ST[Fid].name);
// this involves yielding control;
// stacks and registers may be modified in the meanwhile;
// the current description does not deal with exceptions raised by the call;
_output_parameter_retrieval_procedure();
SP = CS[FP].SP - ST[Fid].nbp;
if (ST[Fid].TID != "void") PS[++SP] = _return_value _retrieval_procedure();
IP = CS[FP--].IP;

Errors: Invalid function identifier;
Void stack;
Invalid parameter type;
Type mismatch;
Package not accessible;
Operation not available.

13.4.25 Drop

Short description: Multiple pop.

Synopsis: DROP Idx.

Operands: Idx shall be a one-byte unsigned quantity specifying the number of places to
move downwards in the parameter stack.

Stack: ..., Val(1),...,Val(Idx) ð ...

Parameters: Val(1), ... Val(Idx) may be of any type.

Effect: Drop Idx elements from the parameter stack.

Formal specification: SP -= Idx.

Errors: Void stack.

13.4.26 Shift

Short description: Logical shift.

Synopsis: SHIFT<type> Off.

Page 76
Draft prETS 300 715: May 1996

Operands: Off shall be a one-byte signed offset (in complement-to-two notation) specifying
the number of bit places to shift the parameter leftwards or rightwards.

Stack: ..., Val ð ..., Pwr.

Parameters: Val shall be of type { O, W, U }.
Pwr shall be of the same type as Val.

Effect: Replace the top element of the stack by its value shifted right Off bits if Off is
positive, or left -Off bits if Off is negative. In the latter case, if Val1 is a signed
integer, preserve the sign (i.e. do not affect the msb):

Formal specification: if (Off >=0) then PS[SP].val >>= Off;
else if (PS[SP].val < 0)

PS[SP].val = -((-PS[SP].val) << -Off);
else PS[SP].val <<= -Off;

Errors: Void stack;
Invalid parameter type;
Shift out of range.

13.4.27 Push immediate

Short description: Push short integer.

Synopsis: PUSHI Int.

Operands: Int shall be the two-byte representation of a signed short integer value (in
complement-to-two notation) specifying the value to push onto the stack.

Stack: ... ð ..., Val.

Parameters: Val shall be of "short" type.

Effect: Push Int onto the parameter stack.

Formal specification: PS[SP].val = Int;
SP += sizeof(short);

Errors: None.

13.4.28 Push

Short description: Push data value.

Synopsis: PUSH Did.

Operands: Did shall be the two-byte representation of a data identifier holding the value to
push onto the stack.

Stack: ... ð ..., Val.

Parameters: Val shall be of the same type as the constant or variable identified by Did.

Effect: Push the value of the constant or variable whose data identifier is Did onto the
parameter stack.

Formal specification: PS[SP].val = DT(Did).val;
SP += sizeof(DT(Did).TID);

Errors: Invalid data identifier.

Page 77
Draft prETS 300 715: May 1996

13.4.29 Push reference

Short description: Push data identifier.

Synopsis: PUSHR Did.

Operands: Did shall be the two-byte representation of a data identifier to push onto the
stack.

Stack: ... ð ..., Val.

Parameters: Val shall be of "data identifier" type.

Effect: Push Did onto the parameter stack.

Formal specification: SP += sizeof(VT(Did).TID);
PS[SP].val = Did;

Errors: None.

13.4.30 Pop

Short description: Pop value and assign it to a variable.

Synopsis: POP Did.

Operands: Did shall be the two-byte representation of the data identifier of the variable to
which to assign the top element of the stack.

Stack: ..., Val ð ...

Parameters: Val shall be of a type which can be converted to the type of the variable identified
by Did.

Effect: Pop Val from the parameter stack into the variable identified by Did.

Formal specification: VT(Did).val = PS[SP].val;
SP -= sizeof(VT(Did).TID);

Errors: Invalid data identifier;
Void stack;
Type mismatch.

13.4.31 Pop reference

Short description: Pop value and assign it to the variable referenced by a variable.

Synopsis: POPR Did.

Operands: Did shall be the two-byte representation of the data identifier of a variable of
"data identifier" type, whose value identifies the variable to which to assign the
value of the top element of the stack. The variable identified by Did shall be of
"data identifier" type.

Stack: ..., Val ð ...

Parameters: Val shall be of a type that can be converted to the type of VT(Did).val.

Effect: Pop Val from the parameter stack and assigns it to the variable identified by Did.

Formal specification: VT(VT(Did).val).val = PS[SP].val;
SP -= sizeof(VT(Did).TID);

Page 78
Draft prETS 300 715: May 1996

Errors: Invalid data identifier;
Void stack;
Type mismatch.

13.4.32 Pop contents

Short description: Pop variable and assign its value to a variable.

Synopsis: POPC Did1.

Operands: Did1 shall be the two-byte representation of the data identifier of the variable to
which to assign value of the data identified by the top element of the stack.

Stack: ..., Did2 ð ...

Parameters: Did2 shall be of "data identifier" type, it shall identify a data whose type can be
converted to the type of Did1.

Effect: Pop Did2 from the parameter stack and assigns the value of Did2 to the variable
identified by Did1.

Formal specification: VT(Did1).val = DT(PS[SP].val).val;
SP -= sizeof(VT(Did).TID);

Errors: Invalid data identifier;
Void stack;
Type mismatch.

13.4.33 Increment

Short description: Increment variable.

Synopsis: INC Did.

Operands: Did shall be the two-byte representation of the data identifier of the variable
which to increment. The variable identified by Did shall be of a numeric type.

Stack: ..., Val ð ...,

Parameters: Val shall be of a numeric type that can be converted to the type of the variable
identified by Did.

Effect: Pop the parameter stack and increment the value of the variable identified by
Did by the popped value.

Formal specification: VT(Did).val += PS[SP].val;
SP -= sizeof(VT(Did).TID);

Errors: Invalid data identifier;
Void stack;
Type mismatch.

13.4.34 Decrement

Short description: Decrement variable.

Synopsis: DEC Did.

Operands: Did shall be the two-byte representation of the data identifier of the variable
which to decrement. The variable identified by Did shall be of a numeric type.

Stack: ..., Val ð ...,

Page 79
Draft prETS 300 715: May 1996

Parameters: Val shall be of a numeric type that can be converted to the type of the variable
identified by Did.

Effect: Pop the parameter stack and decrement the value of the variable identified by
Did by the popped value.

Formal specification: VT(Did).val -= PS[SP].val;
SP -= sizeof(VT(Did).TID);

Errors: Invalid data identifier;
Void stack;
Type mismatch.

13.4.35 Get

Short description: Get value of element of variable of constructed type.

Synopsis: GET Did Lvl.

Operands: Did shall be the two-byte representation of the data identifier of the variable to
access.
Lvl shall be a one-byte unsigned quantity representing the number of nested
levels to go to access the sought value.

Stack: ..., Idx(Lvl), ..., Idx(1) ð ..., Val.

Parameters: Idx(1), ... Idx(Lvl) shall be of an "octet" or integer type; they shall represent
unsigned positive values.
Val shall be of the same type as the accessed element.

Effect: Replace a list of indices on the parameter stack by the value of the element
addressed by the popped indices within the structured variable identified by Did:

Val = DT(Did)[Idx(1),...,Idx(Lvl)].
If Lvl equals 0, perform as a PUSH instruction.

Formal specification: void *buf = DT(Did);
int n = sizeof(VT(Did).TID);
for (;Lvl>0; Lvl--;) {
 buf = buf.val[PS[SP= n].val];
 SP -= n
}
PS[SP].val = buf.val;

Errors: Invalid data identifier;
Level out of range;
Void stack;
Invalid parameter type;
Invalid index.

13.4.36 Set

Short description: Set element of variable of constructed type to value.

Synopsis: SET Did Lvl.

Operands: Did shall be the two-byte representation of the data identifier of the variable to
modify.
Lvl shall be a one-byte unsigned quantity representing the number of nested
levels to go to access the element to modify.

Stack: ..., Val, Idx(Lvl), ..., Idx(1) ð ...,

Page 80
Draft prETS 300 715: May 1996

Parameters: Idx(1), ... Idx(Lvl) shall be of an "octet" or integer type; they shall represent
unsigned positive values.
Val shall be of a type that matches the type of the element to modify.

Effect: Pop a list of indices and a value from the parameter stack; within the structured
variable identified by Did, assign the element addressed by the popped list of
indices to the popped value:
VT(Did)[Idx(1),...,Idx(Lvl)] = Val.
If Lvl equals 0, perform as a POP instruction.

Formal specification: void *buf = VT(Did);
int n = sizeof(VT(Did).TID);
for (;Lvl>0; Lvl--;) {

if (buf.TID :--: PS[SP].TID) then {
 buf = buf.val[PS[SP].val];
 SP -= n;
 }

else exit (ER = "type mismatch");

};
Errors: Invalid data identifier;

Level out of range;
Void stack;
Invalid parameter type;
Index out of range;
Type mismatch.

13.4.37 Set contents

Short description: Set element of variable of constructed type to data contents.

Synopsis: SETC Did1 Lvl.

Operands: Did1 shall be the two-byte representation of the data identifier of the variable to
modify.
Lvl shall be a one-byte unsigned quantity representing the number of nested
levels to go to access the element to modify.

Stack: ..., Did2, Idx(Lvl), ..., Idx(1) ð ...,

Parameters: Idx(1), ... Idx(Lvl) shall be of an "octet" or integer type; they shall represent
unsigned positive values.
Did2 shall be of "data identifier" type and the type of the identified data shall
match the type of the element to modify.

Effect: Pop a list of indices and a data identifier from the parameter stack; within the
structured variable identified by Did1, assign the element addressed by the
popped list of indices to the value identified by the popped data:
VT(Did1)[Idx(1),...,Idx(Lvl)] = DT(Did2).
If Lvl equals 0, perform as a POPC instruction.

Formal specification: void *buf = VT(Did1);
for (;Lvl>0; Lvl--;) {

if (buf.TID :--: PS[SP].TID) then buf = buf.val[PS[SP--].val];
else exit (ER = "type mismatch");

 SP -= sizeof(VT(Did).TID);
};

Page 81
Draft prETS 300 715: May 1996

Errors: Invalid data identifier;
Level out of range;
Void stack;
Invalid parameter type;
Index out of range;
Type mismatch.

13.4.38 Alloc

Short description: Allocate data from dynamic memory and return a DID on the stack.

Synopsis: ALLOC TID.

Operands: TID is a legal type identifier appearing in the TID table.

Stack: ..., ð DID, ...

Parameters: None.

Effect: Generates a new DID and associates a memory element of size sizeof(TID) with
the DID. The two-byte DID is returned on the stack.

Formal specification:

Errors: Out of memory;
Invalid operand;
Invalid stack parameter.

13.4.39 Free

Short description: Release data previously allocated from dynamic memory.

Synopsis: FREE.

Operands: None.

Stack: ..., DID ð ...

Parameters: DID shall be the two-byte representation of a data identifier which has been
previously allocated using ALLOC.

Effect: The dynamic memory associated with the DID is released. The DID is now
invalid in further operations.

Formal specification:

Errors: Invalid operand;
Invalid stack parameter.

13.4.40 Dup

Short description: Duplicate the top of stack element.

Synopsis: DUP<type>.

Operands: None.

Stack: ..., Val ð Val, Val, ...

Parameters: None.

Page 82
Draft prETS 300 715: May 1996

Effect: The value on the top of stack is duplicated according to the type of DUP, which
is one of: {O, C, S, W, L, U, F, D}.

Formal specification: SP += sizeof(<type>)
PS[SP] = PS[SP-sizeof(<type>)"

Errors: Invalid operand;
Invalid stack parameter.

13.4.41 CVT

Short description: Convert the top of stack element from one primitive type to another.

Synopsis: CVT<src-type><dst-type>.

Operands: None.

Stack: ..., Val ð ..., Val.

Parameters: None.

Effect: The value on the top of stack is replaced by an equivalent value in the
destination type. Source and destination types are one of: {O, C, S, W, L, U, F,
D}. When conversion leads to loss of precision, the source value is truncated to
fit in the precision of the destination type.

Formal specification: SP = SP - sizeof(<src-type>) + sizeof(<dst-type>);

Errors: Invalid operand;
Invalid stack parameter.

14 IDL mapping to MHEG-SIR

This clause shows how an IDL specification shall be mapped to the declarations of an interchanged script,
when this IDL specification is intended for use by the script as an external service provider.

This clause defines the mapping to MHEG-SIR declarations for:

- IDL interfaces and modules;
- IDL types;
- IDL constants;
- references to IDL objects;
- IDL operations;
- IDL attributes;
- IDL exceptions.

14.1 IDL specifications

An IDL specification shall be mapped to an MHEG-SIR PackageDeclaration . The name of the IDL
specification shall be mapped to the PackageName field of this package declaration.

NOTE: Examples of IDL specifications are MHEG-API, MPEG/DSM-CC.

If the number of operations or exceptions of an IDL specification exceed the size of a package, it shall be
divided between several packages sharing the same name, but having different MHEG-SIR identifiers.

14.2 IDL interfaces and modules

As the package declaration is a "flat" organisation, there is neither a mapping for an IDL module nor for an
IDL interface. However, a reference to the embedding interface (i.e. a parameter of type Object) shall be
provided as an implicit parameter to each invocation of function describing an IDL operation.

Page 83
Draft prETS 300 715: May 1996

14.3 IDL operations

An IDL operation shall be mapped to an MHEG-SIR ServiceDescription within a package
declaration that corresponds to the IDL specification it belongs to.

14.3.1 Operation name

The global name for an IDL operation shall be mapped to the MHEG-SIR OperationName field of this
service description.

14.3.2 Operation parameters

The parameters of an IDL operation shall be mapped to the ServiceParametersDescription field of
the service description. In this parameters description, each IDL parameter type shall be mapped to the
ParameterType field which identifies a type declared according to the type mapping rules defined in this
clause. The IDL passing mode for a parameter shall be mapped to the PassingMode field of the
corresponding MHEG-SIR parameter description.

14.3.3 Implicit parameter

When an IDL operation is mapped to an MHEG-SIR service description, the signature of the service shall
accept one additional leading parameter whose ParameterType shall be "object reference" and whose
PassingMode shall be "in". This parameter represents a handle to the object instance to which the
operation applies.

14.3.4 Return value

The return value type of an IDL operation shall be mapped to the ReturnValueType field of the service
description.

14.4 IDL attributes

An IDL attribute shall be mapped to two service descriptions within a package declaration: one accessor
service, whose function is to get the value of the attribute, and one modifier service, whose function is to
set the value of the attribute.

14.4.1 Accessor

Concerning the accessor service, the global IDL attribute name postfixed with "_get” shall be mapped to
the MHEG-SIR OperationName . An accessor service shall have no explicit parameter. The IDL attribute
type shall be mapped to the ReturnValueType field of the service description.

14.4.2 Modifier

Concerning the modifier service, the global IDL attribute name postfixed with "_set” shall be mapped to
the MHEG-SIR OperationName . A modifier service shall have one parameter with "in" passing mode
and such that the IDL attribute type shall be mapped to the ParameterType field of the parameters
description for this service. A modifier service shall have no return value.

14.4.3 Readonly attribute

If an IDL attribute is defined as "readonly", only the accessor service shall be provided as part of the
package declaration.

14.5 IDL inherited operations

Inherited IDL operations shall be mapped as if they were defined in the specific interface.

Page 84
Draft prETS 300 715: May 1996

14.6 IDL exceptions

An IDL exception shall be mapped to an MHEG-SIR ExceptionDescription within a package
declaration.

14.6.1 Exception name

The IDL global name of the exception shall be mapped to the MHEG-SIR ExceptionName field of this
exception description.

14.6.2 Exception members

Members of an IDL exception shall be mapped to the ExceptionParametersDescription of this
exception description. In this parameters description, each IDL member type shall be mapped to the
ParameterType field which identifies a type declared according to the type mapping rules defined in this
clause.

14.7 IDL types

An IDL type shall be mapped to an MHEG-SIR TypeDeclaration . A type declaration shall have a global
scope in the interchanged script.

IDL basic types and constructors shall be mapped to MHEG-SIR primitive types and constructors as
summarised in table 3:

Table 3: Type mapping

IDL MHEG-SIR
void void
boolean boolean
octet octet
short short
unsigned short unsigned short
long long
unsigned long unsigned long
float float
double double
char character
string string
enum enumerated
any sequence of octet (see note)
struct structure
union union
sequence sequence
array array

The type definition shall be mapped to an MHEG-SIR TypeDescription. If the IDL type is a basic type
or if it has already been the subject of another type declaration, this type description shall consist of a type
identifier. Otherwise, it shall be constructed according to the following mapping rules:

- a structure field shall be mapped to its rank in the structure description; its name shall not be
preserved;

- a union tag value shall be mapped to its rank in the union description; its name and value shall not
be otherwise preserved;

- a multidimensional array shall be mapped to an array of arrays;

- an enumerated field shall be mapped to its rank in the enumerated description; its name shall not
be preserved;

Page 85
Draft prETS 300 715: May 1996

- a string type shall be mapped to the MHEG-SIR primitive string type; its maximum length (if
present) shall not be preserved.

NOTE: If the type "any" is used by an IDL specification, the MHEG-SIR does not guarantee the
preservation of type information.

14.8 IDL constants

IDL constants shall be mapped to an MHEG-SIR ConstantDeclaration . A constant declaration shall
have a global scope in the interchanged script.

Page 86
Draft prETS 300 715: May 1996

Annex A (normative): ASN.1 notation (level c)

This annex describes the ASN.1 notation (ISO/IEC 8824-1 [2]) for the syntax of the script-data component
of the MHEG script class for MHEG conforming script objects whose script-classification component is
"script" and whose script-encoding-identification component within the script-hook component is "MHEG-
SIR", according to the values maintained by the MHEG data type registration authority.

Profile of ISOMHEG-sc module

The script-data attribute shall be encoded according to the following restrictions of the ISOMHEG-sc
module described in MHEG-1:

- the script-inclusion choice shall always be selected for the script-data component;
- the octetstring choice shall always be selected for the script-inclusion component.

As a consequence, MHEG-S conforming script objects shall have the syntax defined by the SIR-Script-
Class subtype thereafter.

ISOMHEG-sir-sc {...}
DEFINITIONS AUTOMATIC TAGS ::= BEGIN

IMPORTS
MHEG-Identifier

FROM ISOMHEG-ud {joint-iso-itu(2) mheg(19) version(1) useful-mheg-types}
MHEG-Script-Classification, MHEG-Encoding-Description, MHEG-Script-Catalogue

FROM ISOMHEG-dtra {joint-iso-itu(2) mheg-datatype-registration-authority(13522)}
Script-Class

FROM ISOMHEG-sc {joint-iso-itu(2) mheg(19) version(1) script-class(3)}
;

SIR-Script-Class ::= Script-Class (WITH COMPONENTS
{

script-classification ("script"),
-- as provided by ISOMHEG-dtra

script-hook-information (WITH COMPONENTS
{script-encoding-identification (WITH COMPONENT

{mheg-script-catalogue ("MHEG-SIR") }),
-- as provided by ISOMHEG-dtra

 script-encoding-description
-- as provided by ISOMHEG-dtra

}),
script-data (WITH COMPONENT

{script-inclusion (WITH COMPONENT
{octetstring})

})
}
END

NOTE: There is an intrinsic MHEG-1 compatibility problem linked to the fact that the
"octetstring" component in the ISOMHEG-sc module should be of InterchangedScript
type (imported from ISOMHEG-sir) instead of OCTET STRING, which does not allow
any redefinition. If a generic nature is to be maintained, use of EXTERNAL type
instead of OCTETSTRING may be considered.

Definition of ISOMHEG-sir module

Interchanged scripts shall have the syntax described by the ISOMHEG-sir module.

-- Module: MHEG-SIR (sir)--
--
-- Revision history:

Page 87
Draft prETS 300 715: May 1996

-- -----------------
-- 0.1, 15 Jul 95, Initial Version, based on ISO 13522-3 CD --
-- ------------
--

ISOMHEG-sir {...}
DEFINITIONS AUTOMATIC TAGS ::= BEGIN

EXPORTS InterchangedScript;

InterchangedScript ::= SEQUENCE
{

type-declarations SEQUENCE (SIZE (1.. max-nb-declared-types)) OF
TypeDeclaration OPTIONAL,

 constant-declarations SEQUENCE (SIZE (1 .. max-nb-constants)) OF
ConstantDeclaration OPTIONAL,

 global-variable-declarations SEQUENCE (SIZE (1 .. max-nb-global-variables)) OF
GlobalVariableDeclaration OPTIONAL,

 external-package-declarations SEQUENCE (SIZE (1 .. max-nb-packages)) OF
PackageDeclaration OPTIONAL,

 handler-declarations SEQUENCE (SIZE (1 .. max-nb-messages)) OF
HandlerDeclaration OPTIONAL,

 routine-declarations SEQUENCE (SIZE (1 .. max-nb-routines)) OF
RoutineDeclaration OPTIONAL

}

TypeDeclaration ::= SEQUENCE
{

identifier TypeIdentifier OPTIONAL,
description TypeDescription

}

TypeDescription ::= CHOICE
{

type-identifier TypeIdentifier,
enumerated-description EnumeratedDescription,
sequence-description SequenceDescription,
array-description ArrayDescription,
structure-description StructureDescription,
union-description UnionDescription

}

EnumeratedDescription ::= SEQUENCE (SIZE (0 .. max-size-enumerated)) OF ShortValue;

SequenceDescription ::= SEQUENCE
{

length INTEGER (0 .. max-size-sequence),
item-type-description TypeDescription

}

ArrayDescription ::= SEQUENCE
{

dimension INTEGER (1 .. max-size-array),
item-type-description TypeDescription

}

UnionDescription ::= SEQUENCE (SIZE (1 .. max-size-union)) OF TypeDescription

StructureDescription ::= SEQUENCE (SIZE (1 .. max-size-structure)) OF TypeDescription

ConstantDeclaration ::= SEQUENCE
{

Page 88
Draft prETS 300 715: May 1996

identifier DataIdentifier OPTIONAL,
type TypeIdentifier ALL EXCEPT 0,
value ConstantValue

}
ConstantValue ::= CHOICE
{

boolean BooleanValue,
octet OctetValue,
short ShortValue,
long LongValue,
unsigned-short UnsignedShortValue,
unsigned-long UnsignedLongValue,
float FloatValue,
double DoubleValue,
character CharacterValue,
string StringValue,
data-identifier DataIdentifierValue (WITH COMPONENT

{local-variable-identifier ABSENT})
enumerated EnumeratedValue,
sequence SequenceValue,
array ArrayValue,
union UnionValue,
structure StructureValue

}

SequenceValue ::= SEQUENCE (SIZE (0 to max-size-sequence)) OF ConstantValue;

ArrayValue ::= SEQUENCE (SIZE (1 to max-size-array)) OF ConstantValue;

UnionValue ::= SEQUENCE
{

tag INTEGER (0 to < max-size-union),
value ConstantValue

}

StructureValue ::= SEQUENCE (SIZE (1 to x-size-structure)) OF ConstantValue;

Global-VariableDeclaration ::= SEQUENCE
{

identifier DataIdentifier OPTIONAL,
type TypeIdentifier,
initial-value ConstantReference OPTIONAL

}

PackageDeclaration ::= SEQUENCE
{

identifier PackageIdentifier OPTIONAL,
name VisibleString OPTIONAL,
services SEQUENCE (SIZE (0 to x-nb-services)) OF ServiceDescription,
exceptions SEQUENCE (SIZE (0 to ax-nb-exceptions)) OF ExceptionDescription

}

ServiceDescription ::= SEQUENCE
{

identifier unctionIdentifier OPTIONAL,
operation-name VisibleString OPTIONAL,
calling-mode ENUMERATED {synchronous (0), asynchronous (1)}

DEFAULT (synchronous),
return-value-type TypeIdentifier,
parameters-description SEQUENCE OF ServiceParameterDescription

}

Page 89
Draft prETS 300 715: May 1996

ServiceParameterDescription ::= SEQUENCE
{

passing-mode ENUMERATED {in (1), out (2), inout (3)} DEFAULT (in),
type TypeIdentifier ALL EXCEPT O

}

ExceptionDescription ::= SEQUENCE
{

identifier MessageIdentifier OPTIONAL,
name VisibleString OPTIONAL,
parameters-description SEQUENCE OF TypeIdentifier OPTIONAL

}

Handler-Declaration ::= SEQUENCE
{

message-reference MessageReference
function-reference FunctionReference

RoutineDeclaration::= SEQUENCE
{

routine-description RoutineDescription,
program-code OCTET STRING

}

RoutineDescription::= SEQUENCE
{

identifier FunctionIdentifier OPTIONAL,
return-value-type TypeIdentifier,
parameters-description SEQUENCE OF RoutineParameterDescription
local-variable-table SEQUENCE (SIZE (0 to max-nb-local-variables)) OF

LocalVariableDeclaration
}

RoutineParameterDescription ::= SEQUENCE
{

passing-mode ENUMERATED {value (1), reference (3)} DEFAULT (value),
type TypeIdentifier ALL EXCEPT O

}

LocalVariableDeclaration ::= SEQUENCE
{

identifier DataIdentifier OPTIONAL,
type TypeIdentifier,
initial-value ConstantReference OPTIONAL

}

MessageReference ::= CHOICE
{

identifier MessageIdentifier
exception-name VisibleString,
exception-reference ExceptionReference,
predefined-message PredefinedMessageIndex

}

ExceptionReference ::= SEQUENCE
{

package-identifier PackageIdentifier,
exception-index ExceptionIndex

}

ConstantReference ::= CHOICE

Page 90
Draft prETS 300 715: May 1996

{
identifier DataIdentifier,
constant-index ConstantIndex,
value ConstantValue

}

FunctionReference::= CHOICE
{

identifier FunctionIdentifier,
service-reference ServiceReference,
predefined-function PredefinedFunctionIndex,
routine-reference RoutineIndex

}

ServiceReference ::= SEQUENCE
{

package-identifier PackageIdentifier,
service-index ServiceIndex

}

max-size-array ::= 65 536
max-size-sequence ::= 65 535
max-size-union ::= 256
max-size-structure ::= 256
max-size-enumerated ::= 256
max-nb-global-variables ::= 28 672
max-nb-constants ::= 4 096
max-nb-local-variables ::= 32 768
max-nb-data ::= 65 536

-- max-nb-constants+max-nb-global-variables+max-nb-local-variables
max-nb-packages ::= 224
max-nb-services ::= 256
max-nb-routines ::= 4 096
max-nb-predef-functions ::= 4 096
max-nb-functions ::= 65 536

-- max-nb-packagesxmax-nb-services+max-nb-predef-functions+max-nb-routines
max-nb-exceptions ::= 256
max-nb-predef-messages ::= 8 192
max-nb-messages ::= 65 536

-- max-nb-packagesxmax-nb-exceptions+max-nb-predef-messages
max-nb-declared-types ::= 28 672
max-nb-predef-types ::= 4 096
max-nb-types ::= 32 768

-- max-nb-predef-types + max-nb-declared-types

BooleanValue ::= BOOLEAN
OctetValue ::= OCTET STRING (SIZE 1)
EnumeratedValue ::= INTEGER (0 to < max-size-enumerated)
ShortValue ::= INTEGER (-32 768 to 32 767)
LongValue ::= INTEGER (-2 147 483 648 to 2 147 483 647)
UnsignedShortValue ::= INTEGER (0 to 65535)
UnsignedLongValue ::= INTEGER (0 to 4 294 967 295)
FloatValue ::= REAL
DoubleValue ::= REAL
CharacterValue ::= BMPString (SIZE 1)
StringValue ::= BMPString

TypeIdentifier ::= INTEGER (0 to < max-nb-types)
DataIdentifier ::= INTEGER (0 to < max-nb-data)
FunctionIdentifier ::= INTEGER (0 to < max-nb-functions)
MessageIdentifier ::= INTEGER (0 to < max-nb-messages)
PackageIdentifier ::= INTEGER (0 to < max-nb-packages)

Page 91
Draft prETS 300 715: May 1996

ConstantIndex ::= INTEGER (0 to < max-nb-constants)
GlobalVariableIndex ::= INTEGER (0 to < max-nb-global-variables)
LocalVariableIndex ::= INTEGER (0 to < max-nb-local-variables)
ServiceIndex ::= INTEGER (0 to < max-size-services)
RoutineIndex ::= INTEGER (0 to < max-nb-routines)
PredefinedFunctionIndex ::= INTEGER (0 to < max-nb-predef-functions)
ExceptionIndex ::= INTEGER (0 to < max-nb-exceptions)
PredefinedMessageIndex::= INTEGER (0 to < max-nb-predef-messages)

END

Page 92
Draft prETS 300 715: May 1996

Annex B (normative): Coded representation (level d)

Coding for interchanged scripts

Interchanged scripts shall be encoded according to ASN.1 Distinguished Encoding Rules (DER)
(ISO/IEC 8825-1 [3].

NOTE: This is meant to make the MHEG-S engine's decoding task as efficient as possible by
removing all ASN.1 encoding options that might delay or complicate it.

Coding for the program code

The value of the program-code component of the RoutineDeclaration type defined by ISOMHEG-sir (see
annex A) shall be encoded according to the following rules.

The sequence of instructions that make up the program code of a routine shall be encoded as a sequence
of octets. The order of encoding will be the same as the order in which the instructions are intended to be
executed.

Each instruction shall be encoded using one octet for the op-code, followed by zero to three octets for the
operands, depending on the op-code.

The op-codes shall be encoded using the bitstring defined by table B.1:

- the two most significant bits (i.e. bits 8 and 7) represent the number of following octets to be taken
as operands for the instruction:

a) 00: 0 octet;
b) 01: 1 octet;
c) 10: 2 octets;
d) 11: 3 octets.

- the two next most significant bits (i.e. bits 6 and 5) represent the category:

a) 0000: control flow;
b) 0100: control flow (jumps);
c) 1000: control flow (long jumps, calls);
d) 0001: Arithmetic operators;
e) 0010: logical operators;
f) 0110: logical operators (shift);
g) 0011: comparison operators;
h) 0101: stack manipulation (drop);
i) 1001: stack manipulation (pushi);
j) 1010: variable use (push);
k) 1110: variable use (get);
l) 1011: variable assignment (pop, inc/dec);
m) 1111: variable assignment (set).

According to the op-code of the instruction, the operands shall have the length and encoding specified by
table XX.

"Data identifier" operands shall be encoded using two octets as follows:

- if bit 16 is "1", the data identifier is meant to reference a local variable, where bits 15 to 1 represent
the local variable index (from 0 to 32 767);

- if bits 16 to 13 are "0000", the data identifier is meant to reference a constant, where bits 12 to 1
represent the constant index (from 0 to 4 095);

- otherwise, the data identifier is meant to reference a global variable, where bits 15 to 1 represent
the global variable index (from 0 to 28 671) incremented by 4 096.

Page 93
Draft prETS 300 715: May 1996

"Function identifier" operands shall be encoded on two octets as follows:

- if bits 16 to 13 are "000", the function identifier is meant to reference a routine, where bits 12 to 1
represent the routine index (from 0 to 4 095);

- if bits 16 to 13 are "111", the function identifier is meant to reference a predefined function (MHEG-
API operation), where bits 12 to 1 represent the predefined function index (from 0 to 4 095);

- otherwise, the function identifier is meant to reference a service, where bits 16 to 9 represent the
package identifier (from 0 to 223) incremented by 16, and where bits 8 to 1 represent the service
index (from 0 to 255) within this package.

1-octet "offset" operands shall be encoded in complement-to-one notation on 1 octet: bit 8 represents the
direction of movement, bits 7 to 1 represent the number of units to shift in that direction.

2-octet "offset" operands shall be encoded in complement-to-one notation on 2 octets: bit 16 represents
the direction of movement, bits 15 to 1 represent the number of units to shift in that direction.

"Value" operands shall be encoded in complement-to-two notation on two octets, for interpretation as
signed integer values.

"Index" operands shall be encoded on one octet, for interpretation as unsigned integer values.

Page 94
Draft prETS 300 715: May 1996

Table B.1: Encoding of MHEG-SIR instructions

Instruction
mnemonics

Op-code Op1
length

Op1 encoding Op2
length

Op2 encoding

NOP 0000 0000 0
YIELD 0000 0010 0
RET 0000 0011 0
ADD 0001 0000 0
SUB 0001 0001 0
MUL 0001 0010 0
DIV 0001 0011 0
REM 0001 0100 0
NEG 0001 0101 0
NOT 0010 0000 0
AND 0010 0001 0
OR 0010 0010 0
XOR 0010 0011 0
EQ 0011 0000 0
NEQ 0011 0001 0
LE 0011 0100 0
LT 0011 0101 0
GE 0011 0110 0
GT 0011 0111 0
JT 0100 0000 1 (signed) offset
JF 0100 0001 1 (signed) offset
JMP 0100 0010 1 (signed) offset
DROP 0101 0000 1 (unsigned) index
SHIFT 0110 0000 1 (signed) offset
LJT 1000 0000 2 (signed) offset
LJF 1000 0001 2 (signed) offset
LJMP 1000 0010 2 (signed) offset
CALL 1000 1000 2 function identifier
XCALL 1000 1001 2 function identifier
PUSHI 1001 0000 2 (signed) value
PUSH 1010 0000 2 data identifier
PUSHR 1010 0001 2 data identifier
POP 1011 0000 2 data identifier
POPR 1011 0001 2 data identifier
POPC 1011 0010 2 data identifier
INC 1011 0100 2 data identifier
DEC 1011 0101 2 data identifier
GET 1110 0000 3 data identifier 1 (unsigned) index
SET 1111 0000 3 data identifier 1 (unsigned) index
SETC 1111 0010 3 data identifier 1 (unsigned) index

Page 95
Draft prETS 300 715: May 1996

Annex C (normative): MHEG-SIR predefined elements

This annex lists the predefined types, functions and messages of the MHEG-SIR, together with their
corresponding indices.

Predefined types, functions and messages may be referenced by their identifier and used within
interchanged scripts, the same way types, functions and messages declared within the global declarations
part of interchanged scripts would.

Predefined types

MHEG-SIR predefined types consist of:

- primitive types;
- MHEG-API types.

Primitive types

The primitive types defined by this ETS shall be encoded using predefined type identifiers as listed in table
C.1.

Table C.1: Predefined type identifiers for primitive types

Type name Type identifier
void 0
boolean 1
octet 2
short 3
long 4
unsigned short 5
unsigned long 6
float 7
double 8
char 9
string 10
data identifier 11
object reference 12

All types that can be expressed in MHEG-SIR (including predefined MHEG types) can be built using the
MHEG-SIR primitive types and the following constructors:

- array
- sequence
- structure
- union
- enumerated

MHEG-API types

The MHEG-API types defined by the MHEG-API (ITU-T Recommendation T.177 [4]) shall be encoded
using predefined type identifiers which shall be listed using the structure in table C.2.

NOTE: MHEG-API types are intended for use by interchanged scripts to express information
which is exchanged between the script interpreter and the MHEG engine.

Page 96
Draft prETS 300 715: May 1996

Table C.2: Predefined type identifiers for MHEG-API types

Type name Type identifier

The IDL definition of these types, as provided by the MHEG-API (ITU-T Recommendation T.177 [4]), shall
be mapped to MHEG-SIR type descriptions using the IDL mapping rules described in clause 13.

Predefined functions

MHEG-SIR predefined functions consist of:

- MHEG-API operations.

The MHEG-API operations defined by the MHEG-API (ITU-T Recommendation T.177 [4]) shall be
encoded using predefined function identifiers which shall be listed using the structure in table C.3.

Table C.3: Predefined function identifiers for MHEG-API operations

Operation name Predefined function index Function identifier

The IDL definition of these operations, as provided by the MHEG-API (ITU-T Recommendation T.177 [4]),
shall be mapped to MHEG-SIR function descriptions using the IDL mapping rules described in clause 13.

Predefined messages

MHEG-SIR predefined messages consist of:

- MHEG actions targeted at an rt-script;
- MHEG-API exceptions.

MHEG actions targeted at rt-scripts

The MHEG actions targeted at rt-scripts shall be encoded using predefined message identifiers which
shall be listed using the structure in table C.4.

Table C.4: Predefined message identifiers for MHEG-API actions

Action name Predefined message index Message identifier

MHEG-API exceptions

The MHEG-API exceptions defined by the MHEG-API (ITU-T Recommendation T.177 [4]) shall be
encoded using predefined message identifiers which shall be listed using the structure in table C.5.

Table C.5: Predefined message identifiers for MHEG-API exceptions

Operation name Predefined message index Message identifier

The IDL definition of these exceptions, as provided by the MHEG-API (ITU-T Recommendation T.177 [4]),
shall be mapped to MHEG-SIR message descriptions using the IDL mapping rules described in clause 13.

Page 97
Draft prETS 300 715: May 1996

Annex D (normative): IDL Platform mapping specification form

MHEG-S engines shall allow access to the services provided by the run-time environment of a given
platform, provided this run-time environment complies with the registered platform mapping specification
for this platform.

The registered platform mapping specifications shall be provided according to the template described in
this annex, with all fields being completed.

Platform-mapping specification form

This MHEG-SIR platform-mapping specification defines the mechanisms that shall be used by MHEG-S
engines to access the services provided by the run-time environment on the platform.

Platform description

The platform to which this specification applies is <platform_description>.

Package availability procedure

To know whether an IDL specification is available within the run-time environment and to locate it, an
MHEG-S engine shall proceed as follows: <package_availability_procedure>

Package load procedure

To make the operations of an available IDL specification accessible, an MHEG-S engine shall proceed as
follows: <package_load_procedure>

Package unload procedure

To stop the operations of an available IDL specification from being accessible, an MHEG-S engine shall
proceed as follows: <package_unload_procedure>

Operation invocation procedure

To invoke an operation of an accessible IDL specification, an MHEG-S engine shall proceed as follows:
<operation_invocation_procedure>

Parameter passing procedure

When invoking an IDL operation, an MHEG-S engine shall pass "in" parameters as follows:
<in_parameter_passing _procedure>

When invoking an IDL operation, an MHEG-S engine shall pass "out" parameters as follows:
<out_parameter_passing _procedure>

When invoking an IDL operation, an MHEG-S engine shall pass "inout" parameters as follows:
<inout_parameter_passing _procedure>

Output parameter retrieval procedure

To retrieve the values of "out" or "inout" parameters after invoking an IDL operation, an MHEG-S engine
shall proceed as follows: <output_parameter_retrieval_procedure>

Return value retrieval procedure

To retrieve the return value of a previously invoked IDL operation, an MHEG-S engine shall proceed as
follows: <return_value _retrieval_procedure>

Page 98
Draft prETS 300 715: May 1996

Data encoding rules

The values of data that are interchanged between the MHEG-S engine and the run-time environment shall
be encoded as follows: <data_encoding_rules>

Exception retrieval procedure

To retrieve exceptions that are raised by the run-time environment, an MHEG-S engine shall proceed as
follows: <exception_retrieval_procedure>

System exceptions

The system exceptions that may be raised by the run-time environment and retrieved by an MHEG-S
engine shall be defined as follows: <system_exception_definitions>

Resource limitations

When using the run-time environment on the platform, the following resource limitations apply:
<resource_limitations_statement>

Page 99
Draft prETS 300 715: May 1996

Annex E (informative): EBNF notation for MHEG-SIR syntax

This is the description of the syntax of MHEG-SIR interchanged scripts; it is used as a level b) variant
which maps to the ASN.1 description provided in annex A.

Conventions:

- non-terminals are written as normal text;
- terminal types are written in uppercase;
- literal terminals are enclosed in single quotes.

// Structure

InterchangedScript ::= TypeDeclaration*
ConstantDeclaration*
GlobalVariableDeclaration*
PackageDeclaration*
HandlerDeclaration*
RoutineDeclaration*

// Type declarations

TypeDeclaration ::= TypeIdentifier?
TypeDescription

TypeDescription ::= TypeIdentifier
/ EnumeratedDescription
/ SequenceDescription
/ ArrayDescription
/ StructureDescription
/ UnionDescription

EnumeratedDescription ::= INTEGER* // List of values

SequenceDescription ::= INTEGER? // Sequence (max) size
TypeDescription

ArrayDescription ::= INTEGER // Array dimension
TypeDescription

UnionDescription ::= TypeDescription+

StructureDescription ::= TypeDescription+

// Data declarations

ConstantDeclaration ::= DataIdentifier?
TypeIdentifier
ConstantValue

ConstantValue ::= BOOLEAN
/ OCTET
/ INTEGER // all numeric types
/ REAL // float or double
/ STRING // character or string
/ DataIdentifier
/ ConstantValue* // sequence, array or structure
/ UnionValue

UnionValue ::= INTEGER // Tag index
ConstantValue

GlobalVariableDeclaration ::= DataIdentifier?
TypeIdentifier
ConstantReference? // Initial value

ConstantReference ::= DataIdentifier
/ INTEGER // constant index
/ ConstantValue

Page 100
Draft prETS 300 715: May 1996

// Package declarations

PackageDeclaration ::= PackageIdentifier?
VisibleString // Package name
ServiceDescription*
ExceptionDescription*

ServiceDescription ::= FunctionIdentifier?
VisibleString? // IDL global name
CallingMode?
TypeIdentifier // return value
ParameterDescription*

ServiceParameterDescription ::= ServicePassingMode?
TypeIdentifier

CallingMode ::= "SYNCHRONOUS" / "ASYNCHRONOUS"
ServicePassingMode ::= "IN" / "OUT" / "INOUT"

ExceptionDescription ::= MessageIdentifier?
VisibleString? //IDL exception global name
TypeIdentifier* //Parameter types

// Handler declarations

HandlerDeclaration ::= MessageReference
FunctionReference

MessageReference ::= MessageIdentifier
/ VisibleString // exception name
/ ExceptionReference
/ INTEGER // predefined message index

ExceptionReference ::= PackageIdentifier
INTEGER // exception index

FunctionReference ::= FunctionIdentifier
/ ServiceReference
/ INTEGER // routine index,

// predefined message index

ServiceReference ::= PackageIdentifier
INTEGER // service index

// Routine declarations

RoutineDeclaration ::= FunctionIdentifier?
TypeIdentifier // for return value
RoutineParameterDescription*
LocalVariableDeclaration*
OCTET STRING // program code

RoutineParameterDescription ::= RoutinePassingMode?
TypeIdentifier

RoutinePassingMode ::= "VALUE" / "REFERENCE"

LocalVariableDeclaration ::= DataIdentifier?
TypeIdentifier
ConstantReference? // initial value (constant)

// Useful definitions

TypeIdentifier ::= INTEGER
DataIdentifier ::= INTEGER
FunctionIdentifier ::= INTEGER
MessageIdentifier ::= INTEGER
PackageIdentifier ::= INTEGER

Page 101
Draft prETS 300 715: May 1996

Annex F (informative): Textual notation for MHEG-SIR programs

This notation can also be used as a textual form for the human-readable notation of MHEG-SIR scripts. It
may be used for expressing MHEG-SIR examples in human-readable form. It is given using EBNF
notation.

Conventions:

- non-terminals are written as normal text;
- terminal types are written in uppercase;
- literal terminals are enclosed in single quotes;
- integers should be expressed in decimal (as -XXX) or hexadecimal form (as XXXXh);
- reals should be expressed as -XXXe-XX;
- all elements should be separated by at least one blank or line feed character.

InterchangedScript ::= "SCRIPT"
TypeDeclaration*
ConstantDeclaration*
GlobalVariableDeclaration*
PackageDeclaration*
HandlerDeclaration*
RoutineDeclaration*
"ENDSCRIPT"

// Type declarations

TypeDeclaration ::= "TYPE"
{"ID" TypeIdentifier}?
TypeDescription
"ENDTYPE"

TypeDescription ::= TypeIdentifier
/ "ENUM" EnumeratedDescription "ENDENUM"
/ "SEQUENCE" SequenceDescription "ENDSEQUENCE"
/ "ARRAY" ArrayDescription "ENDARRAY"
/ "STRUCT" StructureDescription "ENDSTRUCT"
/ "UNION"UnionDescription "ENDUNION"

EnumeratedDescription ::= INTEGER* // List of values

SequenceDescription ::= INTEGER // Sequence (max) size
TypeDescription

ArrayDescription ::= INTEGER // Array dimension
TypeDescription

UnionDescription ::= TypeDescription+

StructureDescription ::= TypeDescription+

// Data declarations

ConstantDeclaration ::= "CONSTANT"
{"ID" DataIdentifier}?
TypeIdentifier
ConstantValue
"ENDCONSTANT"

ConstantValue ::= "BOOLEAN" BOOLEAN
/ "OCTET" OCTET
/ "SHORT" INTEGER
/ "LONG" INTEGER
/ "UNSIGNED SHORT" INTEGER
/ "UNSIGNED LONG" INTEGER
/ "FLOAT" REAL
/ "DOUBLE" REAL / "CHAR" STRING
/ "STRING" STRING
/ "ID" DataIdentifier
/ "SEQUENCE" ConstantValue*

Page 102
Draft prETS 300 715: May 1996

/ "STRUCT" ConstantValue*
/ "ARRAY" ConstantValue*
/ "UNION" UnionValue

UnionValue ::= INTEGER // Tag index
ConstantValue

GlobalVariableDeclaration ::= "VARIABLE"
{"ID" DataIdentifier}?
TypeIdentifier
ConstantReference? // Initial value
"ENDVARIABLE"

ConstantReference ::= DataIdentifier
/ "INDEX" INTEGER // constant index
/ ConstantValue

// Package declarations

PackageDeclaration ::= "PACKAGE"
{"ID" PackageIdentifier}?
VisibleString // Package name
ServiceDescription*
ExceptionDescription*
"ENDPACKAGE"

ServiceDescription ::= "SERVICE"
{"ID" FunctionIdentifier}?
VisibleString? // IDL global name
CallingMode?
TypeIdentifier // return value
ParameterDescription*
"ENDSERVICE"

ServiceParameterDescription ::= "PARAM"
ServicePassingMode
TypeIdentifier

CallingMode ::= "SYNC" / "ASYNC"
ServicePassingMode ::= "IN" / "OUT" / "INOUT"

ExceptionDescription ::= "EXCEPTION"
{"ID" MessageIdentifier}?
VisibleString? //IDL exception global name
TypeIdentifier* //Parameter types
"ENDEXCEPTION"

// Handler declarations

HandlerDeclaration ::= "HANDLER"
MessageReference
FunctionReference

MessageReference ::= MessageIdentifier
/ "NAME" VisibleString // exception name
/ "REF" ExceptionReference
/ "PREDEF" INTEGER // predefined message index

ExceptionReference ::= PackageIdentifier
INTEGER // exception index

FunctionReference ::= FunctionIdentifier
/ " REF" ServiceReference
/ " ROUTINE" INTEGER // routine index,
/ "PREDEF" INTEGER // predefined message index

ServiceReference ::= PackageIdentifier
INTEGER // service index

// Routine declarations

RoutineDeclaration ::= "ROUTINE"

Page 103
Draft prETS 300 715: May 1996

{"ID" FunctionIdentifier}?
TypeIdentifier // for return value
RoutineParameterDescription*

LocalVariableDeclaration*
Instruction+

RoutineParameterDescription ::= "PARAM"
RoutinePassingMode?
TypeIdentifier

RoutinePassingMode ::= "VAL" / "VAR"

LocalVariableDeclaration ::= "VARIABLE"
{"ID" DataIdentifier}?
TypeIdentifier
ConstantReference? // initial value (constant)

// Useful definitions

TypeIdentifier ::= INTEGER
DataIdentifier ::= INTEGER
FunctionIdentifier ::= INTEGER
MessageIdentifier ::= INTEGER
PackageIdentifier ::= INTEGER

// Program code

Instruction ::= StackOperator
/ ShortUnaryInstruction ShortOffset
/ LongUnaryInstruction LongOffset
/ "DROP" Index
/ AssignmentInstruction DataIdentifier
/ BinaryInstruction DataIdentifier Index
/ CallInstruction FunctionIdentifier

StackOperator ::= "ADD" // arithmetic
/ "SUB"
/ "MUL"
/ "DIV"
/ "REM"
/ "NEG"
/ "AND" // logical
/ "OR"
/ "XOR"
/ "NOT"
/ "EQ" // comparison
/ "NEQ"
/ "GT"
/ "GE"
/ "LT"
/ "LE"
/ "YIELD"// control flow
/ "RET"
/ "NOP"

AssignmentInstruction ::= "INC"
/ "DEC"
/ "PUSHR"
/ "PUSH"
/ "POPR"
/ "POP"
/ "POPC"

ShortUnaryInstruction ::= "SHIFT"
/ "JT"
/ "JF"

LongUnaryInstruction ::= "LJT"
/ "LJF"
/ "PUSHI"

BinaryInstruction ::= "SET"
/ "SETC"

Page 104
Draft prETS 300 715: May 1996

/ "GET"

CallInstruction ::= "CALL"
/ "XCALL"

ShortOffset ::= INTEGER
LongOffset ::= INTEGER
Index ::= INTEGER

Page 105
Draft prETS 300 715: May 1996

Annex G (informative): MHEG entities

(reproduced from ETS 300 714 [10]).

MHEG objects

According to ISO/IEC 13522-1 [1], an MHEG object is defined as a coded representation. Therefore,
MHEG objects are bitstrings. The identity of an MHEG object is its bitstring. MHEG objects are "form a"
objects as described in ISO/IEC 13522-1 [1], subclause 5.2.4. MHEG object A and MHEG object B are
identical if and only if they are the same sequence of bits.

An MHEG object is not a physical object, but rather an abstraction (a specified sequence of bits) which
may have many representations (i.e. different objects) of different types: interchanged MHEG objects,
stored MHEG objects, mh-objects, etc. Such representations are handled by different software services.

An MHEG object may be identified by an MHEG identifier. MHEG identifiers are the only way to identify
MHEG objects. The structure and coded representation of MHEG identifiers is defined by ISO/IEC 13522-
1 [1]. The MHEG identifier of an MHEG object shall be encoded inside the MHEG object. Since the
attribute is optional, some MHEG objects do not have an MHEG identifier. Such MHEG objects cannot be
identified. ISO/IEC 13522-1 [1] imposes a constraint on the design of applications using MHEG which is
that MHEG object A and MHEG object B shall not have the same MHEG identifier unless they are
identical.

The MHEG generic reference describes all possible ways to reference an MHEG object.

Mh-objects

An mh-object is an internal representation of an MHEG object within a process or system. An mh-object is
not an MHEG object. Within an MHEG engine, mh-objects represent "available" MHEG objects.
Mh-objects are "form b" objects as described in ISO/IEC 13522-1 [1], subclause 5.2.4. An mh-object
represents one MHEG object, i.e. there is always a bitstring that corresponds to an mh-object. An MHEG
engine shall not handle more than one mh-object to represent one MHEG object.

As a consequence, mh-objects handled by MHEG engines may be identified using MHEG identifiers. In
addition, other mechanisms for identifying mh-objects (e.g. symbolic identification) may be defined by the
application, provided their internal representation allows for it. This is especially useful when some of the
MHEG objects represented by an MHEG engine's mh-objects are non-identifiable, i.e. have no MHEG
identifier. This allows the guarantee that all mh-objects shall be identifiable.

Mh-objects are referenced the same way MHEG objects are. References to MHEG objects for which the
MHEG engine handles an mh-object will usually be resolved by addressing this mh-object.

Rt-objects

An rt-object is a run-time "instance" (or copy) of a "model" mh-object, which is created and handled by an
MHEG engine for the purpose of presentation. An rt-object is not an MHEG object. Within an MHEG
engine, rt-objects represent "rt-available" MHEG objects. Rt-objects are "form c" objects as described in
ISO/IEC 13522-1 [1], subclause 5.2.4. There may be none or several rt-objects which are "presentable"
copies of one mh-object. An rt-object always has exactly one mh-object as its model.

Rt-objects may be identified using rt-object identifiers whose "model object identification" part is an MHEG
identifier. The structure and coded representation of rt-object identifiers is defined by ISO/IEC 13522-1 [1].
In addition, other mechanisms for identifying mh-objects (e.g. symbolic identification) may be defined by
the application, provided their internal representation allows for it. This is especially useful when some of
the MHEG objects represented by an MHEG engine"s mh-objects used as models for rt-objects are non-
identifiable, i.e. have no MHEG identifier. This allows the guarantee that all rt-objects shall be identifiable.

Rt-objects may be referenced using MHEG generic references.

Page 106
Draft prETS 300 715: May 1996

Interchanged MHEG objects

Interchanged MHEG objects are representations of MHEG objects which are being communicated at a
given point in time using a network or storage medium. One given MHEG object (i.e. bitstring) may be
interchanged many times between many places, i.e. represented by many interchanged MHEG objects.
An MHEG external identifier may identify an interchanged MHEG object, and therefore reference an
MHEG object through its location and time of interchange. However, it should be noted that an MHEG
external identifier may not actually identify an MHEG object.

Stored MHEG objects are representations of MHEG objects which are usually located in files or database
records. For instance, one given MHEG object (i.e. bitstring) may be stored in many places, i.e.
represented by many stored MHEG objects. Such locations are usually identified using file names or
database identifiers. An MHEG external identifier may identify a storage location for an MHEG object, and
therefore reference an MHEG object through its storage location.

Page 107
Draft prETS 300 715: May 1996

Annex H (informative): MHEG Application Programming Interface (MHEG-API)

Object model

This clause presents the object model, i.e. the object types (interfaces) provided by the MHEG API and
their subtyping relationships.

It may be noted that the objects described hereafter are introduced as useful concepts for specifying the
interface, but are not required to be implemented as separate objects. The MHEG API is specified as an
abstract API in terms of operations provided by objects, but implementations of the MHEG API will be
provided by MHEG engine implementations.

MHEGEngine Entity

MhObject

RtObject

Channel

RtScript

RtComponent

MhScriptMhComponent

RtGenericContent

MhComposite

RtMultiplexedContent

MhGenericContent

MhMultiplexedContent

EntityManager

MhContainer MhDescriptorMhModelMhAction MhLink

RtComposite

RtGenericContentOr-

StructuralSocket

Sub-Class 1

Super-ClassNotation:

Sub-Class 2 Sub-Class 3

Socket

RtObjectOrSocket

RtComponentOrSocket

StructuralSocket

RtContent

GenericPresentableSocket

PresentableSocket

RtContentOr- PresentableSocket

PresentableSocket

RtMultiplexedContentOr-
MultiplexedPresentable-

PresentableSocket
Socket

RtCompositeOr-

MhContent

NOTE 1: MhObjects (and their subtypes) match form b) objects as defined in ISO/IEC 13522-1 [1],
subclause 5.2.4, i.e. objects available to the MHEG engine.

NOTE 2: RtObjects (and their subtypes) match form c) objects as defined in ISO/IEC 13522-1 [1],
subclause 5.2.4, i.e. instances of MhObjects available to the presentation process.

Figure H.1: Object model

Page 108
Draft prETS 300 715: May 1996

H.1 IDL specification of the MHEG-API

H.1.1 MHEGEngine object

This subclause defines the operations of the MHEGEngine object.

InitialiseEngine operation

Synopsis:

Interface: MHEGEngine

Operation: initialiseEngine

Result: void

Description:

This operation performs any necessary initialisation of the interface. It shall be invoked before any other
interface operations defined in this ETS are invoked. It can be invoked multiple times, in which case each
invokation shall reinitialise the MHEG Engine.

ShutdownEngine operation

Synopsis:

Interface: MHEGEngine

Operation: shutdownEngine

Result: void

Description:

This operation deletes all service-generated interface objects associated with the current session. The
next operation that shall be accepted by an MHEG engine is an initialiseEngine operation.

IDL description:

interface MHEGEngine {

void initialiseEngine();
void shutdownEngine();

};

H.1.2 NotificationManager object

This subclause defines the operations of the NotificationManager object.

getReturnability operation

Synopsis:

Interface: NotificationManager

Operation: getReturnability

Result: sequence<unsigned short>

Description:

This operation retrieves the returnability behaviour of the MHEG engine.

The operation returns a list of numbers identifying available notifications.

Page 109
Draft prETS 300 715: May 1996

getNotification operation

Synopsis:

Interface: NotificationManager

Operation: getNotification

Result: void

In: unsigned short notification_number

Out: sequence<GenericValue> values

Out: sequence<MhObjectReference> objects

Exception: InvalidParameter

Description:

This operation retrieves a notification from the MHEG engine.

The notification_number parameter identifies the notification. This identification may be the result of
a getReturnability operation.

The values parameter specifies the returned values.

The objects parameter specifies the returned object references.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

IDL description:

interface NotificationManager {

sequence<unsigned short>
getReturnability();

void
getNotification(

in unsigned short
notification_number,

out sequence<GenericValue>
values,

out sequence<MhObjectReference>
objects)

raises(InvalidParameter);

};

H.1.3 EntityManager object

This subclause defines the operations of the EntityManager object.

getAvailableMhObjects operation

Synopsis:

Interface: EntityManager

Operation: getAvailableMhObjects

Result: sequence<MHEGIdentifier>

Description:

This operation retrieves the mh-objects available to the MHEG engine.

Page 110
Draft prETS 300 715: May 1996

A mh-object is either "not ready" (in period O1), "processing" (in period O2 or O4) or "ready" (in period
O3). The operation retrieves those mh-objects which are in period O3.

The operation returns the identifiers of the available mh-objects.

getAvailableRtObjects operation

Synopsis:

Interface: EntityManager

Operation: getAvailableRtObjects

Result: sequence<RtObjectIdentifier>

Description:

This operation retrieves the rt-objects available to the MHEG engine.

A rt-object is either "not available" (in period R1), "processing" (in period R2 or R4) or "available" (in period
R3 and its subperiods). The operation retrieves those rt-objects which are in period R3.

The operation returns the identifiers of the available rt-objects.

getAvailableChannels operation

Synopsis:

Interface: EntityManager

Operation: getAvailableChannels

Result: sequence<ChannelIdentifier>

Description:

This operation retrieves the channels available to the MHEG engine.

A channel is either "non available" (in period C1), "processing" (in period C2 or C4) or "available" (in
period C3). The operation retrieves those channels which are in period C3.

The operation returns the identifiers of the available channels.

releaseAlias operation

Synopsis:

Interface: EntityManager

Operation: releaseAlias

Result: void

In: string alias

Exception: InvalidParameter

Description:

This operation enables the release of an alias. It cancels the assignments of this alias to entities.

The alias parameter specifies the value of the released alias.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

Page 111
Draft prETS 300 715: May 1996

IDL description:

interface EntityManager {

sequence<MHEGIdentifier>
getAvailableMhObjects();

sequence<RtObjectIdentifier>
getAvailableRtObjects();

sequence<ChannelIdentifier>
getAvailableChannels();

void
releaseAlias(

in string
alias)

raises(InvalidParameter);

};

H.1.4 Entity object

This subclause defines the operations of the Entity object.

setAlias operation

Synopsis:

Interface: Entity

Operation: setAlias

Result: void

In: string alias

Exception: InvalidTarget

Description:

This operation enables the assignment of an alias to any entity.

The setAlias operation triggers the execution of the "set alias" elementary action with the bound entity
as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 34.2.1.

The alias parameter specifies the value of the "alias" parameter of the "set alias" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getAlias operation

Synopsis:

Interface: Entity

Operation: getAlias

Result: string

Exception: InvalidTarget

Description:

This operation retrieves the alias assigned to an entity.

Page 112
Draft prETS 300 715: May 1996

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

IDL description:

interface Entity {

void
setAlias(

in string
alias)

raises(InvalidTarget);

string
getAlias()

raises(InvalidTarget);
};

H.1.5 MhObject object

This subclause defines the operations of the MhObject object. The object inherits from the Entity
object.

Bind operation

Synopsis:

Interface: MhObject

Operation: bind

Result: MHEGIdentifier

In: MhObjectReference mh_object_reference

Exception: AlreadyBound

Exception: InvalidTarget

Description:

This operation binds the MhObject instance (an interface object instance) with an MHEG object (an
MHEG entity).

The mh_object_reference parameter specifies the reference of the MHEG object.

The operation returns the identifier of the bound MHEG object.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

Unbind operation

Synopsis:

Interface: MhObject

Operation: unbind

Result: void

Exception: NotBound

Description:

This operation cancels the binding between the MhObject instance (an interface object instance) and an
MHEG object (an MHEG entity).

Page 113
Draft prETS 300 715: May 1996

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

Prepare operation

Synopsis:

Interface: MhObject

Operation: prepare

Result: MHEGIdentifier

In: MhObjectReference mh_object_reference

Exception: AlreadyBound

Exception: InvalidTarget

Description:

This operation enables the creation of a MHEG object from a model object by the MHEG engine.

The prepare operation triggers the execution of the "prepare" elementary action targeted at a single
MHEG object.

The effect of the action on its target and the error conditions that cause exceptions to be raised are
defined by ISO/IEC 13522-1 [1], subclause 36.2.1.

The mh_object_reference parameter specifies a reference to an MHEG object.

This operation implicitly binds the MhObject instance (an interface object instance) with the new prepared
MHEG object (an MHEG entity).

The operation returns the identifier of the new prepared MHEG object bound with the MhObject instance.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

Destroy operation

Synopsis:

Interface: MhObject

Operation: destroy

Result: void

Exception: NotBound

Exception: InvalidTarget

Description:

This operation enables the removing of a MHEG object by the MHEG engine.

The destroy operation triggers the execution of the "destroy" elementary action targeted at a single
MHEG object.

The effect of the action on its target and the error conditions that cause exceptions to be raised are
defined by ISO/IEC 13522-1 [1], subclause 36.2.2.

This operation implicitly cancels the binding between the MhObject instance (an interface object instance)
and the new destroyed MHEG object (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

Page 114
Draft prETS 300 715: May 1996

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

getPreparationStatus operation

Synopsis:

Interface: MhObject

Operation: getPreparationStatus

Result: PreparationStatusValue

Exception: NotBound

Exception: InvalidTarget

Description:

This operation retrieves the availability of an MHEG object to the MHEG engine.

The getPreparationStatus operation triggers the execution of the "get preparation status" elementary
action with the bound MHEG object as its single target.

The effect of the action on its target, the computation of its result and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 36.3.1.

The operation returns the availability of the MHEG object bound with the MhObject instance. The returned
value is either NOT_READY, PROCESSING or READY.

When the returned value is NOT_READY, the operation implicitly cancels the binding between the
MhObject instance (an interface object instance) and the MHEG object (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getIdentifier operation

Synopsis:

Interface: MhObject

Operation: getIdentifier

Result: MHEGIdentifier

Exception: NotBound

Description:

This operation retrieves the identifier of the MHEG object (an MHEG entity) bound with the MhObject
instance (an interface object instance).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

Kill operation

Synopsis:

Interface: MhObject

Operation: kill

Result: void

Page 115
Draft prETS 300 715: May 1996

Description:

This operation deletes the MhObject instance (an interface object instance).

IDL description:

interface MhObject: Entity {

MHEGIdentifier
bind(

in MhObjectReference
mh_object_reference)

raises(AlreadyBound, InvalidTarget);

void
unbind();

raises(NotBound);

MHEGIdentifier
prepare(

in MhObjectReference
mh_object_reference)

raises(AlreadyBound, InvalidTarget);

void
destroy()

raises(NotBound, InvalidTarget);

PreparationStatusValue
getPreparationStatus()

raises(NotBound, InvalidTarget);

MHEGIdentifier
getIdentifier()

raises(NotBound);

void
kill();

};

H.1.6 MhAction object

This subclause defines the operations of the MhAction object. The object inherits from the MhObject
object.

Delay operation

Synopsis:

Interface: MhAction

Operation: delay

Result: void

In: unsigned short nested_action_number

In: unsigned long delay

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation enables to delay the process of nested actions within the mh-action.

The nested_action_number parameter specifies the nested action after which the delay is to be
processed.

The delay parameter specifies the duration of the delay expressed in GTU.

Page 116
Draft prETS 300 715: May 1996

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

IDL description:

interface MhAction: MhObject {

void
delay(

in unsigned short
nested_action_number,

in unsigned long
delay)

raises(InvalidTarget, InvalidParameter);

};

H.1.7 MhLink object

This subclause defines the operations of the MhLink object. The object inherits from the MhObject
object.

Abort operation

Synopsis:

Interface: MhLink

Operation: abort

Result: void

Exception: InvalidTarget

Description:

This operation aborts the processing of all the actions that have been activated by a link object. Each time
the link condition is satisfied, the actions defining the link effect are activated and processed.

The abort operation triggers the execution of the "abort" elementary action with the bound link object as
its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 38.2.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

IDL description:

interface MhLink: MhObject {

void
abort()

raises(InvalidTarget);
};

Page 117
Draft prETS 300 715: May 1996

H.1.8 MhModel object

For the MhModel object no specific operations are defined. The object inherits from the MhObject
object.

IDL description:

interface MhModel: MhObject {};

H.1.9 MhComponent object

For the MhComponent object no specific operations are defined. The object inherits from the MhModel
object.

IDL description:

interface MhComponent: MhModel {};

H.1.10 MhGenericContent object

This subclause defines the operations of the MhGenericContent object. The object inherits from the
MhComponent object.

copy operation

Synopsis:

Interface: MhContent

Operation: copy

Result: void

In: sequence<MhObjectReference> copies

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation specifies the copy of a content object "source" in a set of content objects "copies" or the
copy of a multiplexed content object "source" in a set of multiplexed content objects "copies".

The copy operation triggers the execution of the "copy" elementary action with the bound content object
or multiplexed content object as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 40.2.1.

The copies parameter specifies the value of the "copies" parameter of the "copy" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

Page 118
Draft prETS 300 715: May 1996

IDL description:

interface MhGenericContent: MhComponent {

void
copy(

in sequence<MhObjectReference>
copies)

raises(InvalidTarget, InvalidParameter);
};

H.1.11 MhContent object

This subclause defines the operations of the MhContent object. The object inherits from the
MhGenericContent object.

setData operation

Synopsis:

Interface: MhContent

Operation: setData

Result: void

In: boolean substitution_indicator

In: sequence<DataElement> data_elements

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation allows the storing or modification of the generic value in the data of a content object.

The setData operation triggers the execution of the "set data" elementary action with the bound content
object as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 39.2.1.

The substitution_indicator parameter specifies the value of the "substitution indicator" parameter
of the "set data" action.

The data_elements parameter specifies the value of the "data elements" parameter of the "set data"
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

getData operation

Synopsis:

Interface: MhContent

Operation: getData

Result: GenericValue

In: sequence<long> element_list_index

Exception: InvalidTarget

Exception: InvalidParameter

Page 119
Draft prETS 300 715: May 1996

Description:

This operation retrieves a generic value or an element of a generic list stored in the data of a content
object.

The getData operation triggers the execution of the "get data" elementary action with the bound content
object as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 39.3.1.

The element_list_index parameter specifies the value of the "element list index parameter"
parameter of the "get data" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

IDL description:

interface MhContent: MhGenericContent {

void
setData(

in boolean
substitution_indicator,

in sequence<DataElement>
data_elements)

raises(InvalidTarget, InvalidParameter);

GenericValue
getData(

in sequence<long>
element_list_index)

raises(InvalidTarget, InvalidParameter);

};

H.1.12 MhMultiplexedContent object

This subclause defines the operations of the MhMultiplexedContent object. The object inherits from
the MhGenericContent object.

setMultiplex operation

Synopsis:

Interface: MhMultiplexedContent

Operation: setMultiplex

Result: void

In: sequence<StreamIdentifier> stream_list

Exception: InvalidTarget

Exception: InvalidParameter

Page 120
Draft prETS 300 715: May 1996

Description:

This operation specifies the multiplexing of a list of content objects, the result is set in one multiplexed
content object containing the multiplexed data.

The setMultiplex operation triggers the execution of the "set multiplex" elementary action with the
bound multiplexed content object as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 41.2.1.

The stream_list parameter specifies the value of the "stream list" parameter of the "set multiplex"
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

setDemultiplex operation

Synopsis:

Interface: MhMultiplexedContent

Operation: setDemultiplex

Result: void

In: sequence<StreamIdentifier> stream_list

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation specifies the demultiplexing of a multiple stream data of a multiplexed content object, e.g.
an MPEG stream, the result is set in a list of content objects which are generated if they do not exist yet.
Each content object contains one demultiplexed stream.

The setDemultiplex operation triggers the execution of the "set demultiplex" elementary action with
the bound multiplexed content object as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 41.2.2.

The stream_list parameter specifies the value of the "stream list" parameter of the "set demultiplex"
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

Page 121
Draft prETS 300 715: May 1996

IDL description:

interface MhMultiplexedContent: MhGenericContent {

void
setMultiplex(

in sequence<StreamIdentifier>
stream_list)

raises(InvalidTarget, InvalidParameter);

void
setDemultiplex(

in sequence<StreamIdentifier>
stream_list)

raises(InvalidTarget, InvalidParameter);

};

H.1.13 MhComposite object

For the MhComposite object no specific operations are defined. The object inherits from the
MhComponent object.

IDL description:

interface MhComposite: MhComponent {};

H.1.14 MhScript object

For the MhScript object no specific operations are defined. The object inherits from the MhModel
object.

IDL description:

interface MhScript: MhModel {};

H.1.15 MhContainer object

For the MhContainer object no specific operations are defined. The object inherits from the MhObject
object.

IDL description:

interface MhContainer: MhObject {};

H.1.16 MhDescriptor object

For the MhDescriptor object no specific operations are defined. The object inherits from the
MhObject object.

IDL description:

interface MhDescriptor: MhObject {};

Page 122
Draft prETS 300 715: May 1996

H.1.17 RtObjectOrSocket object

This subclause defines the operations of the RtObjectOrSocket object.

setGlobalBehaviour operation

Synopsis:

Interface: RtObject

Operation: setGlobalBehaviour

Result: void

In: GlobalBehaviour global_behaviour

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation enables the modification of the global behaviour of an rt-object or a socket.

The setGlobalBehaviour operation triggers the execution of the "set global behaviour" elementary
action with the bound rt-object or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 44.2.1.

The global_behaviour parameter specifies the value of the "global behaviour" parameter of the "set
global behaviour" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

getGlobalBehaviour operation

Synopsis:

Interface: RtObject

Operation: getGlobalBehaviour

Result: GenericValue

Exception: InvalidTarget

Description:

This operation retrieves all the value attributes composing the global behaviour of each rt-object or socket
to the MHEG engine.

The getGlobalBehaviour operation triggers the execution of the "get global behaviour" elementary
action with the bound rt-object or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 44.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 123
Draft prETS 300 715: May 1996

run operation

Synopsis:

Interface: RtObject

Operation: run

Result: void

Exception: InvalidTarget

Description:

This operation enables the activation of the rt-object or the socket by the running process.

The run operation triggers the execution of the "run" elementary action with the bound rt-object or socket
as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 45.2.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

stop operation

Synopsis:

Interface: RtObject

Operation: stop

Result: void

Exception: InvalidTarget

Description:

This operation removes the rt-object from the running process.

The stop operation triggers the execution of the "stop" elementary action with the bound rt-object as its
single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 45.2.2.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

IDL description:

interface RtObjectOrSocket {

void
setGlobalBehaviour(

in GlobalBehaviour
global_behaviour)

raises(InvalidTarget, InvalidParameter);

GenericValue
getGlobalBehaviour()

raises(InvalidTarget);

void
run()

raises(InvalidTarget);

void
stop()

Page 124
Draft prETS 300 715: May 1996

raises(InvalidTarget);

};

H.1.18 RtObject object

This subclause defines the operations of the RtObject object. The object inherits from the
RtObjectOrSocket and from the Entity object.

bind operation

Synopsis:

Interface: RtObject

Operation: bind

Result: RtObjectIdentifier

In: RtObjectReference rt_object_reference

Exception: AlreadyBound

Exception: InvalidTarget

Description:

This operation binds the RtObject instance (an interface object instance) with an rt-object (an MHEG
entity).

The rt_object_reference parameter specifies the reference of the rt-object.

The operation returns the identifier of the bound rt-object.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

unbind operation

Synopsis:

Interface: RtObject

Operation: unbind

Result: void

Exception: NotBound

Description:

This operation cancels the binding between the RtObject instance (an interface object instance) and an rt-
object (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

new operation

Synopsis:

Interface: RtObject

Operation: new

Result: RtObjectIdentifier

In: RtObjectReference rt_object_reference

Exception: AlreadyBound

Exception: InvalidTarget

Page 125
Draft prETS 300 715: May 1996

Description:

This operation enables the creation of a rt-object from a model object by the MHEG engine.

The new operation triggers the execution of the "new" elementary action targeted at a single rt-object.

The effect of the action on its target and the error conditions that cause exceptions to be raised are
defined by ISO/IEC 13522-1 [1], subclause 43.2.1.

The rt_object_reference parameter specifies a reference to an rt-object.

This operation implicitly binds the RtObject instance (an interface object instance) with the new created rt-
object (an MHEG entity).

The operation returns the identifier of the new created rt-object bound with the RtObject instance.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

delete operation

Synopsis:

Interface: RtObject

Operation: delete

Result: void

Exception: NotBound

Exception: InvalidTarget

Description:

This operation enables the removal of a rt-object by the MHEG engine.

The delete operation triggers the execution of the "delete" elementary action targeted at a single
rt-object.

The effect of the action on its target and the error conditions that cause exceptions to be raised are
defined by ISO/IEC 13522-1 [1], subclause 43.2.2.

This operation implicitly cancels the binding between the RtObject instance (an interface object instance)
and the new deleted rt-object (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

Page 126
Draft prETS 300 715: May 1996

getAvailabilityStatus operation

Synopsis:

Interface: RtObject

Operation: getAvailabilityStatus

Result: RtAvailabilityStatusValue

Exception: NotBound

Exception: InvalidTarget

Description:

This operation retrieves the availability of an rt-object to the MHEG engine.

The getAvailabilityStatus operation triggers the execution of the "get rt-availability status"
elementary action with the bound rt-object as its single target.

The effect of the action on its target, the computation of its result and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 43.3.1.

The operation returns the availability of the rt-object bound with the RtObject instance. The returned value
is either NOT_AVAILABLE, PROCESSING or AVAILABLE .

When the returned value is NOT_AVAILABLE, the operation implicitly cancels the binding between the
RtObject instance (an interface object instance) and the rt-object (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getIdentifier operation

Synopsis:

Interface: RtObject

Operation: getIdentifier

Result: RtObjectIdentifier

Exception: NotBound

Description:

This operation retrieves the identifier of the rt-object (an MHEG entity) bound with the RtObject instance
(an interface object instance).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

kill operation

Synopsis:

Interface: RtObject

Operation: kill

Result: void

Description:

This operation deletes the RtObject instance (an interface object instance).

Page 127
Draft prETS 300 715: May 1996

getRunningStatus operation

Synopsis:

Interface: RtObject

Operation: getRunningStatus

Result: RunningStatusValue

Exception: InvalidTarget

Description:

This operation get the activation of each rt-object and each socket by the MHEG engine.

The getRunningStatus operation triggers the execution of the "get running status" elementary action
with the bound rt-object or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 45.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

IDL description:

interface RtObject: Entity {

RtObjectIdentifier
bind(

in RtObjectReference
rt_object_reference)

raises(AlreadyBound, InvalidTarget);

void
unbind()

raises(NotBound);

RtObjectIdentifier
new(

in RtObjectReference
rt_object_reference)

raises(AlreadyBound, InvalidTarget);

void
delete()

raises(NotBound, InvalidTarget);

RtAvailabilityStatusValue
getAvailabilityStatus()

raises(NotBound, InvalidTarget);

RtObjectIdentifier
getIdentifier()

raises(NotBound);

void
kill();

RunningStatusValue
getRunningStatus()

raises(InvalidTarget);

};

H.1.19 Socket object

This subclause defines the operations of the Socket object. The object inherits from the
RtObjectOrSocket and from the Entity object.

Page 128
Draft prETS 300 715: May 1996

bind operation

Synopsis:

Interface: Socket

Operation: bind

Result: SocketIdentification

In: SocketReference socket_reference

Exception: AlreadyBound

Exception: InvalidTarget

Description:

This operation binds the Socket instance (an interface object instance) with a socket (an MHEG entity).

The socket_reference parameter specifies the reference of the socket.

The operation returns the identifier of the bound socket.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

unbind operation

Synopsis:

Interface: Socket

Operation: unbind

Result: void

Exception: NotBound

Description:

This operation cancels the bindind between the Socket instance (an interface object instance) and a
socket (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

getIdentifier operation

Synopsis:

Interface: Socket

Operation: getIdentifier

Result: SocketIdentification

Description:

This operation retrieves the identifier of the socket (an MHEG entity) bound with the Socket instance (an
interface object instance).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

Page 129
Draft prETS 300 715: May 1996

kill operation

Synopsis:

Interface: Socket

Operation: kill

Result: void

Description:

This operation deletes the Socket instance (an interface object instance).

plug operation

Synopsis:

Interface: Socket

Operation: plug

Result: void

In: PlugIn plug_in

Exception: InvalidTarget

Description:

This operation enables a dynamism in the presentation and structure. This operation specifies the
information to be plugged into a socket. This is used to obtain a different presentation or structure from
the same composite object model.

The plug operation triggers the execution of the "plug" elementary action with the bound socket as its
single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 48.2.1.

The plug_in parameter specifies the value of the "plug in" parameter of the "plug" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setVisibleDurationPosition operation

Synopsis:

Interface: Socket

Operation: setVisibleDurationPosition

Result: void

In: VisibleDurationPosition visible_duration_position

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation specifies within the perceptible duration of the parent the position where to attach the
visible duration of a socket.

The setVisibleDurationPosition operation triggers the execution of the "set visible duration
position" elementary action with the bound socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.2.4.

Page 130
Draft prETS 300 715: May 1996

The visible_duration_position parameter specifies the value of the "parent relative generic space
temporal position" parameter of the "set visible duration position" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

getVisibleDurationPosition operation

Synopsis:

Interface: Socket

Operation: getVisibleDurationPosition

Result: unsigned long

Exception: InvalidTarget

Description:

This operation retrieves the visible duration position value of the socket within its parent relative generic
space. This value is retrieved in relative generic temporal unit.

The getVisibleDurationPosition operation triggers the execution of the "get visible duration
position" elementary action with the bound socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.7.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

IDL description:

interface Socket: Entity, RtObjectOrSocket {

SocketIdentification
bind(

in SocketReference
socket_reference)

raises(AlreadyBound, InvalidTarget);

void unbind()
raises(NotBound);

SocketIdentification
getIdentifier();

void
kill();

void
plug(

in PlugIn
plug_in)

raises(InvalidTarget);

void
setVisibleDurationPosition(

in VisibleDurationPosition
visible_duration_position)

raises(InvalidTarget, InvalidParameter);

unsigned long
getVisibleDurationPosition()

Page 131
Draft prETS 300 715: May 1996

raises(InvalidTarget);

};

H.1.20 RtScript object

This subclause defines the operations of the RtScript object. The object inherits from the RtObject
object.

setParameters operation

Synopsis:

Interface: RtScript

Operation: setParameters

Result: void

In: sequence<Parameter> parameters

Exception: InvalidTarget

Description:

This operation enables to pass parameters between rt-scripts and other MHEG entities.

The setParameters operation triggers the execution of the "set parameters" elementary action with the
bound rt-script as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 46.2.1.

The parameters parameter specifies the value of the "parameters" parameter of the "set parameters"
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getTerminationStatus operation

Synopsis:

Interface: RtScript

Operation: getTerminationStatus

Result: TerminationStatusValue

Exception: InvalidTarget

Description:

This operation get the process termination of each rt-script and by the script process.

The getTerminationStatus operation triggers the execution of the "get termination status" elementary
action with the bound rt-script as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 47.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 132
Draft prETS 300 715: May 1996

IDL description:

interface RtScript: RtObject {

void
setParameters(

in sequence<Parameter>
parameters)

raises(InvalidTarget);

TerminationStatusValue
getTerminationStatus()

raises(InvalidTarget);

};

H.1.21 RtComponentOrSocket object

This subclause defines the operations of the RtComponentOrSocket object.

setRGS operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setRGS

Result: void

In: ChannelIdentifier channel_identifier

Exception: InvalidTarget

Description:

This operation assigns an rt-component or a socket to an RGS.

The setRGS operation triggers the execution of the "set RGS" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 50.2.1.

The channel_identifier parameter specifies the value of the "channel identifier" parameter of the
"set RGS" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getRGS operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getRGS

Result: RGSValue

Exception: InvalidTarget

Description:

This operation retrieves the RGS assigned to an rt-component or to a socket.

The getRGS operation triggers the execution of the "get RGS" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 50.3.1.

Page 133
Draft prETS 300 715: May 1996

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setOpacity operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setOpacity

Result: void

In: unsigned short opacity_rate

In: unsigned long transition_duration

Exception: InvalidTarget

Description:

This operation assigns an opacity rate value to an rt-component or a socket.

The setOpacity operation triggers the execution of the "set opacity" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 51.2.1.

The opacity_rate parameter specifies the value of the "opacity rate" parameter of the "set opacity"
action.

The transition_duration parameter specifies the value of the "transition duration" parameter of the
"set opacity" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setPresentationPriority operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setPresentationPriority

Result: void

In: PresentationPriority presentation_priority

In: unsigned long transition_duration

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation specifies the presentation priority between the rt-components or sockets assigned to the
same RGS. The operation defines the priority of the rt-component or socket with respect to the other
rt-components or sockets assigned to the same RGS.

The setPresentationPriority operation triggers the execution of the "set Presentation priority"
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 51.2.2.

The presentation_priority parameter specifies the value of the "presentation priority" parameter of
the "set Presentation priority" action.

Page 134
Draft prETS 300 715: May 1996

The transition_duration parameter specifies the value of the "transition duration" parameter of the
"set Presentation priority" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

getOpacity operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getOpacity

Result: unsigned short

Exception: InvalidTarget

Description:

This operation retrieves the opacity value of an rt-component or a socket.

The getOpacity operation triggers the execution of the "get opacity" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 51.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getEffectiveOpacity operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getEffectiveOpacity

Result: unsigned short

Exception: InvalidTarget

Description:

This operation retrieves the effective opacity value of an rt-component or a socket.

The getEffectiveOpacity operation triggers the execution of the "get effective opacity" elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 51.3.2.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 135
Draft prETS 300 715: May 1996

getPresentationPriority operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getPresentationPriority

Result: unsigned short

Exception: InvalidTarget

Description:

This operation retrieves the presentation priority of an rt-component or a socket.

The getPresentationPriority operation triggers the execution of the "get presentation priority"
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 51.3.3.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setVisibleDuration operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setVisibleDuration

Result: void

In: TemporalPosition initial_temporal_position

In: TemporalPosition terminal_temporal_position

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation retrieves the presentation priority of an rt-component or a socket.

The setVisibleDuration operation triggers the execution of the "set visible duration" elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 51.3.3.

The initial_temporal_position parameter specifies the value of the "initial temporal position"
parameter of the "set visible duration" action.

The terminal_temporal_position parameter specifies the value of the "terminal temporal position"
parameter of the "set visible duration" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

Page 136
Draft prETS 300 715: May 1996

setTemporalTermination operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setTemporalTermination

Result: void

In: TemporalTermination temporal_termination

Exception: InvalidTarget

Description:

This operation specifies the type of temporal termination when the current temporal position passes the
terminal temporal position.

The setTemporalTermination operation triggers the execution of the "set temporal termination"
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.2.2.

The temporal_termination parameter specifies the value of the "temporal termination" parameter of
the "set temporal termination" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setCurrentTemporalPosition operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setCurrentTemporalPosition

Result: void

In: TemporalPosition temporal_position

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation specifies a current temporal position within the visible duration.

The setCurrentTemporalPosition operation triggers the execution of the "set current temporal
position" elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.2.3.

The temporal_position parameter specifies the value of the "temporal position" parameter of the "set
current temporal position" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

Page 137
Draft prETS 300 715: May 1996

setSpeed operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setSpeed

Result: void

In: Speed the_speed

In: unsigned long transition_duration

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation defines the speed of the presentation of an rt-component or socket. The effective
presentation speed is calculated from this value by the MHEG engine.

The setSpeed operation triggers the execution of the "set speed" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.2.5.

The the_speed parameter specifies the value of the "speed" parameter of the "set speed" action.

The transition_duration parameter specifies the value of the "transition duration" parameter of the
"set speed" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

setTimestones operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setTimestones

Result: void

In: sequence<Timestone> timestones

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation specifies a complete set of temporal markers within the perceptible duration of the
presentable.

The setTimestones operation triggers the execution of the "set timestones" elementary action with the
bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.2.6.

The timestones parameter specifies the value of the "timestones" parameter of the "set timestones"
action.

Page 138
Draft prETS 300 715: May 1996

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

getInitialTemporalPosition operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getInitialTemporalPosition

Result: unsigned long

Exception: InvalidTarget

Description:

This operation retrieves the initial temporal position value of the rt-component or socket. This value is
retrieved in OGTU.

The getInitialTemporalPosition operation triggers the execution of the "get initial temporal
position" elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.2.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getTerminalTemporalPosition operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getTerminalTemporalPosition

Result: unsigned long

Exception: InvalidTarget

Description:

This operation retrieves the terminal temporal position value of the rt-component or socket. This value is
retrieved in OGTU.

The getTerminalTemporalPosition operation triggers the execution of the "get terminal temporal
position" elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.3.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 139
Draft prETS 300 715: May 1996

getVDLength operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getVDLength

Result: unsigned long

In: GTIndicator gt_indicator

Exception: InvalidTarget

Description:

This operation retrieves the Visible Duration (VD) length value of the rt-component or socket either in
OGTU or in RGTU.

The getVDLength operation triggers the execution of the "get VD length" elementary action with the
bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.4.

The gt_indicator parameter specifies the value of the "GT indicator" parameter of the "get VD length"
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getTemporalTermination operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getTemporalTermination

Result: TemporalTermination

Exception: InvalidTarget

Description:

This operation retrieves the "temporal termination" value of the rt-component or socket.

The getTemporalTermination operation triggers the execution of the "get temporal termination"
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.5.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getCurrentTemporalPosition operation

Synopsis:

Interface: x

Operation: getCurrentTemporalPosition

Result: unsigned long

Exception: InvalidTarget

Page 140
Draft prETS 300 715: May 1996

Description:

This operation retrieves the current temporal position value of the rt-component or socket. This value is
retrieved in OGTU.

The getCurrentTemporalPosition operation triggers the execution of the "get current temporal
position" elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.6.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getSpeedRate operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getSpeedRate

Result: short

Exception: InvalidTarget

Description:

This operation retrieves the speed rate value of the rt-component or socket. This value is a percentage
negative or positive. This speed rate, is used to indicate the required change of speed since the IOGTR
and also the required direction of the presentation.

The getSpeedRate operation triggers the execution of the "get speed rate" elementary action with the
bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.8.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getOGTR operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getOGTR

Result: unsigned long

Exception: InvalidTarget

Description:

This operation retrieves the OGTR value of the rt-component or socket. This value is a positive or null
numeric which corresponds to the number of OGTU to be mapped in one second.

The getOGTR operation triggers the execution of the "get OGTR" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.9.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 141
Draft prETS 300 715: May 1996

getEffectiveSpeedRate operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getEffectiveSpeedRate

Result: short

Exception: InvalidTarget

Description:

This operation retrieves the effective speed rate value of the rt-component or socket. This value is a
percentage negative or positive. This effective speed rate, is used to caculate the effective change of
speed since the IOGTR and also the effective direction of the presentation.

The getEffectiveSpeedRate operation triggers the execution of the "get effective speed rate"
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
52.3.10.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getEffectiveOGTR operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getEffectiveOGTR

Result: unsigned long

Exception: InvalidTarget

Description:

This operation retrieves the effective OGTR value of the rt-component or socket. This value is a positive
or null numeric which corresponds to the effective number of OGTU to be mapped in one second.

The getEffectiveOGTR operation triggers the execution of the "get effective OGTR elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
52.3.11.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getTimestoneStatus operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getTimestoneStatus

Result: unsigned short

Exception: InvalidTarget

Description:

This operation retrieves the timestone status value of the rt-component or socket.

Page 142
Draft prETS 300 715: May 1996

The getTimestoneStatus operation triggers the execution of the "get timestone status" elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
52.3.12.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setPerceptibleSizeProjection operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setPerceptibleSizeProjection

Result: void

In: PerceptibleSizeProjection perceptible_size_projection

In: unsigned long transition_duration

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation defines the projection of the perceptible size in its RGS.

The setPerceptibleSizeProjection operation triggers the execution of the "set perceptible size
projection" elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.1.

The perceptible_size_projection parameter specifies the value of the "perceptible size projection"
parameter of the "set perceptible size projection" action.

The transition_duration parameter specifies the value of the "transition duration" parameter of the
"set perceptible size projection" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

setAspectRatio operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setAspectRatio

Result: void

In: AspectRatio preserved

Exception: InvalidTarget

Page 143
Draft prETS 300 715: May 1996

Description:

This operation specifies whether in performing the projection of an rt-component or socket in the CGS
(through the chain of mappings OGS-RGS), the ratio between the PS in OGSU, i.e. the OGS lengths, and
the projection in CGSU of the "size of the content information" is to be the same for each axis. In such
case the aspect ratio is preserved.

The setAspectRatio operation triggers the execution of the "set aspect ratio preserved" elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.3.

The preserved parameter specifies the value of the "preserved" parameter of the "set aspect ratio
preserved" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setVisibleSize operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setVisibleSize

Result: void

In: VSGS the_vsgs

In: VS the_vs

In: unsigned long transition_duration

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation specifies the Visible Size (VS), which defines which portion of the PS is perceived by the
user.

The setVisibleSize operation triggers the execution of the "set visible size" elementary action with the
bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.4.

The the_vsgs parameter specifies the value of the "vsgs" parameter of the "set visible size" action.

The the_vs parameter specifies the value of the "vs" parameter of the "set visible size" action.

The transition_duration parameter specifies the value of the "transition duration" parameter of the
"set visible size" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

Page 144
Draft prETS 300 715: May 1996

setVisibleSizesAdjustment operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setVisibleSizesAdjustment

Result: void

In: sequence<AdjustmentAxis> set_of_axes

In: AdjustmentPolicy adjustment_policy

In: unsigned long transition_duration

Exception: InvalidTarget

Description:

This operation specifies the adjustment of a set of VSs on a same axis or on a set of axes. All the VSs to
be adjusted need to be assigned to the same CGS.

The setVisibleSizesAdjustment operation triggers the execution of the "set visible sizes
adjustment" elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.5.

The set_of_axes parameter specifies the value of the "set of axes" parameter of the "set visible sizes
adjustment" action.

The adjustment_policy parameter specifies the value of the "adjustment policy" parameter of the "set
visible sizes adjustment" action.

The transition_duration parameter specifies the value of the "transition duration" parameter of the
"set visible sizes adjustment" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setBox operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setBox

Result: void

In: BoxConstants box

Exception: InvalidTarget

Description:

This operation specifies whether the rt-component or the socket is presented with a box to show the
perimeter of the VS.

The setBox operation triggers the execution of the "set box" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.6.

The box parameter specifies the value of the "box" parameter of the "set box" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 145
Draft prETS 300 715: May 1996

setDefaultBackground operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setDefaultBackground

Result: void

In: unsigned short background

In: unsigned long transition_duration

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation specifies whether the areas within the VS of an rt-component or a socket which are not
filled by the presentation process need to be considered as opaque or transparent.

The setDefaultBackground operation triggers the execution of the "set default background"
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.7.

The background parameter specifies the value of the "background" parameter of the "set default
background" action.

The transition_duration parameter specifies the value of the "transition duration" parameter of the
"set default background" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

setAttachmentPoint operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setAttachmentPoint

Result: void

In: AttachmentPointType type

In: AttachmentPoint positions

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation specifies one of the following AP: PSAP, VSIAP or VSEAP.

The setAttachmentPoint operation triggers the execution of the "set attachment point" elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.8.

The type parameter specifies the value of the "type" parameter of the "set attachment point" action.

Page 146
Draft prETS 300 715: May 1996

The positions parameter specifies the value of the "positions" parameter of the "set attachment point"
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

setAttachmentPointPosition operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setAttachmentPointPosition

Result: void

In: AttachmentPointType type

In: ReferenceType vseap_reference_point

In: Lengths the_lengths

In: unsigned long transition_duration

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation specifies the position of the VSIAP relatively to the PSAP, or the position of the VSEAP in
its RGS relatively to the origin or to another VSEAP.

The setAttachmentPointPosition operation triggers the execution of the "set attachment point
position" elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.9.

The type parameter specifies the value of the "type" parameter of the "set attachment point position"
action.

The vseap_reference_point parameter specifies the value of the "vseap reference point" parameter
of the "set attachment point position" action.

The the_lengths parameter specifies the value of the "lengths" parameter of the "set attachment point
position" action.

The transition_duration parameter specifies the value of the "transition duration" parameter of the
"set attachment point position" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

Page 147
Draft prETS 300 715: May 1996

setVisibleSizesAlignment operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setVisibleSizesAlignment

Result: void

In: SizeBorder size_border

In: long interval

In: unsigned long transition_duration

Exception: InvalidTarget

Description:

This operation specifies the alignment of a set of VSs. The VSs are aligned on a border and an interval
between two VSs may be provided. All the VSs to be aligned needs to be assigned to the same CGS.

The setVisibleSizesAlignment operation triggers the execution of the "set visible szes alignment"
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.10.

The size_border parameter specifies the value of the "size border" parameter of the "set visible szes
alignment" action.

The interval parameter specifies the value of the "interval" parameter of the "set visible szes
alignment" action.

The transition_duration parameter specifies the value of the "transition duration" parameter of the
"set visible szes alignment" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setMovingAbility operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setMovingAbility

Result: void

In: UserControls moving_ability

Exception: InvalidTarget

Description:

This operation specifies whether the user is able to move or not to move the VS of the targets in their
CGS.

The setMovingAbility operation triggers the execution of the "set moving ability" elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.11.

The moving_ability parameter specifies the value of the "moving ability" parameter of the "set moving
ability" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 148
Draft prETS 300 715: May 1996

setResizingAbility operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setResizingAbility

Result: void

In: UserControls resizing_ability

Exception: InvalidTarget

Description:

This operation specifies whether the user is able or not to resize the VS of the targets in their CGS.

The setResizingAbility operation triggers the execution of the "set resizing ability" elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.12.

The resizing_ability parameter specifies the value of the "resizing ability" parameter of the "set
resizing ability" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setScalingAbility operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setScalingAbility

Result: void

In: UserControls scaling_ability

Exception: InvalidTarget

Description:

This operation specifies whether the user is able or not to scale the PS of the targets in their CGS.

The setScalingAbility operation triggers the execution of the "set scaling ability" elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.13.

The scaling_ability parameter specifies the value of the "scaling ability" parameter of the "set
scaling ability" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 149
Draft prETS 300 715: May 1996

setScrollingAbility operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setScrollingAbility

Result: void

In: UserControls scrolling_ability

Exception: InvalidTarget

Description:

This operation specifies whether the user is able to scroll or not the PS through the VS of the targets in
their CGS.

The setScrollingAbility operation triggers the execution of the "set scrolling ability" elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.14.

The scrolling_ability parameter specifies the value of the "scrolling ability" parameter of the "set
scrolling ability" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getGSR operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getGSR

Result: unsigned short

Exception: InvalidTarget

Description:

This operation retrieves the GSR value of the OGS of the rt-component or socket. This ratio defined the
number of OGSU which are to be mapped in one RGSU.

The getGSR operation triggers the execution of the "get GSR" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getPS operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getPS

Result: SpecifiedPosition

In: GSIndicator gs

Exception: InvalidTarget

Description:

Page 150
Draft prETS 300 715: May 1996

This operation retrieves the PS value of the rt-component or socket either in OGSU or in RGSU.

The getPS operation triggers the execution of the "get PS" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.2.

The gs parameter specifies the value of the "gs" parameter of the "get PS" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getAspectRatio operation

Synopsis:

Interface: x
Operation: getAspectRatio
Result: AspectRatio
Exception: InvalidTarget

Description:

This operation retrieves the aspect ratio value of the PS of the rt-component or socket.

The getAspectRatio operation triggers the execution of the "get aspect ratio" elementary action with
the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.4.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getPSAP operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getPSAP

Result: SpecifiedPosition

In: PointType point_type

Exception: InvalidTarget

Description:

This operation retrieves the PSAP value of the rt-component or socket.

The getPSAP operation triggers the execution of the "get PSAP" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.5.

The point_type parameter specifies the value of the "point type" parameter of the "get PSAP" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 151
Draft prETS 300 715: May 1996

getVSGS operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getVSGS

Result: VSGS

Exception: InvalidTarget

Description:

This operation retrieves the VSGS value of the rt-component or socket.

The getVSGS operation triggers the execution of the "get VSGS" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.6.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getVS operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getVS

Result: SpecifiedPosition

Exception: InvalidTarget

Description:

This operation retrieves the VS value of the rt-component or socket in VSGSU.

The getVS operation triggers the execution of the "get VS" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.7.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getBox operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getBox

Result: BoxConstants

Exception: InvalidTarget

Description:

This operation retrieves the visible size box value of the rt-component or socket.

The getBox operation triggers the execution of the "get box" elementary action with the bound
rt-component or socket as its single target.

Page 152
Draft prETS 300 715: May 1996

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.8.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getDefaultBackground operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getDefaultBackground

Result: unsigned short

Exception: InvalidTarget

Description:

This operation retrieves the default background value of the VS of the rt-component or socket.

The getDefaultBackground operation triggers the execution of the "get default background"
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.9.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getVSIAP operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getVSIAP

Result: SpecifiedPosition

In: PointType point_type

Exception: InvalidTarget

Description:

This operation retrieves the VSIAP value of the rt-component or socket.

The getVSIAP operation triggers the execution of the "get VSIAP" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.10.

The point_type parameter specifies the value of the "point type" parameter of the "get VSIAP" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 153
Draft prETS 300 715: May 1996

getVSIAPPosition operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getVSIAPPosition

Result: SpecifiedPosition

Exception: InvalidTarget

Description:

This operation retrieves the VSIAP position value of the rt-component or socket. This is used to
positionned the VSIAP relatively to the PSAP.

The getVSIAPPosition operation triggers the execution of the "get VSIAP position" elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.11.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getVSEAP operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getVSEAP

Result: SpecifiedPosition

In: PointType point_type

Exception: InvalidTarget

Description:

This operation retrieves the VSEAP value of the rt-component or socket.

The getVSEAP operation triggers the execution of the "get VSEAP" elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.12.

The point_type parameter specifies the value of the "point type" parameter of the "get VSEAP" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getVSEAPPosition operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getVSEAPPosition

Result: SpecifiedPosition

In: ReferencePoint reference_point

Exception: InvalidTarget

Page 154
Draft prETS 300 715: May 1996

Description:

This operation retrieves the VSEAP position value of the rt-component or socket relatively to a refernce
point. This is used to positionned the VSEAP relatively to the PSAP.

The getVSEAPPosition operation triggers the execution of the "get VSEAP position" elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.13.

The reference_point parameter specifies the value of the "reference point" parameter of the "get
VSEAP position" action

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getMovingAbility operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getMovingAbility

Result: UserControls

Exception: InvalidTarget

Description:

This operation retrieves the moving ability value of the rt-component or socket

The getMovingAbility operation triggers the execution of the "get moving ability" elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.14.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getResizingAbility operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getResizingAbility

Result: UserControls

Exception: InvalidTarget

Description:

This operation retrieves the resizing ability value of the rt-component or socket.

The getResizingAbility operation triggers the execution of the "get resizing ability" elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.15.

Page 155
Draft prETS 300 715: May 1996

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getScalingAbility operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getScalingAbility

Result: UserControls

Exception: InvalidTarget

Description:

This operation retrieves the scaling ability value of the rt-component or socket.

The getScalingAbility operation triggers the execution of the "get scaling ability" elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.16.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getScrollingAbility operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getScrollingAbility

Result: UserControls

Exception: InvalidTarget

Description:

This operation retrieves the scrolling ability value of the rt-component or socket

The getScrollingAbility operation triggers the execution of the "get scrolling ability" elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.17.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 156
Draft prETS 300 715: May 1996

setSelectability operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setSelectability

Result: void

In: unsigned short min_number_of_selections

In: unsigned short max_number_of_selections

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation assigns a "minimum number of selections required" value and a "maximum number of
selections required" value to an rt-component or a socket. The MHEG engine calculates the "selectability"
value of the rt-component or socket from these two values. The "effective selectability" value of the
rt-component or socket is also calculated by the MHEG engine from this "selectability" value and the
"effective selectability" value of the parent of the rt-component or socket.

The setSelectability operation triggers the execution of the "set selectability" elementary action with
the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.2.1.

The min_number_of_selections parameter specifies the value of the "min number of selections"
parameter of the "set selectability" action.

The max_number_of_selections parameter specifies the value of the "max number of selections"
parameter of the "set selectability" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

setSelectionStatus operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setSelectionStatus

Result: void

In: SelectionStatusValue selection_state

Exception: InvalidTarget

Description:

This operation assigns a value to the "selection status" of an rt-component or a socket.

The setSelectionStatus operation triggers the execution of the "set selection status" elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.2.2.

Page 157
Draft prETS 300 715: May 1996

The selection_state parameter specifies the value of the "selection state" parameter of the "set
selection status" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setSelectionPresentationEffectResponsibility operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setSelectionPresentationEffectResponsibility

Result: void

In: Responsibility the_responsibility

Exception: InvalidTarget

Description:

This operation assigns a value to the "selection presentation effect responsibility" of an rt-component or a
socket. This attribute indicates if it is the MHEG engine or the author who is responsible of reflecting a
new state of the rt-component or socket as its single target.

The setSelectionPresentationEffectResponsibility operation triggers the execution of the
"set selection presentation effect responsibility" elementary action with the bound rt-component or socket
as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.2.3.

The the_responsibility parameter specifies the value of the " responsibility" parameter of the "set
selection presentation effect responsibility" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 158
Draft prETS 300 715: May 1996

getSelectability operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getSelectability

Result: void

Out: unsigned short min_mumber_of_selections

Out: unsigned short max_mumber_of_selections

Exception: InvalidTarget

Description:

This operation retrieves the "minimum number of selections required" and the "maximum number of
selections required". If the "maximum number of selections required" is equal to 0 the "selectability" of the
rt-component or socket is "not selectable".

The getSelectability operation triggers the execution of the "get selectability" elementary action with
the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.3.1.

The min_mumber_of_selections parameter specifies the value of the "min mumber of selections"
parameter of the "get selectability" action.

The max_mumber_of_selections parameter specifies the value of the "max mumber of selections"
parameter of the "get selectability" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target

getEffectiveSelectability operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getEffectiveSelectability

Result: EffectiveSelectability

Exception: InvalidTarget

Description:

This operation retrieves the "effective selectability" attribute value of the rt-component or socket.

The getEffectiveSelectability operation triggers the execution of the "get effective selectability"
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.3.2.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 159
Draft prETS 300 715: May 1996

getSelectionStatus operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getSelectionStatus

Result: SelectionStatusValue

Exception: InvalidTarget

Description:

This operation retrieves the "selection status" value of the rt-component or socket.

The getSelectionStatus operation triggers the execution of the "get selection status" elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.3.3.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getSelectionMode operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getSelectionMode

Result: SelectionModeValue

Exception: InvalidTarget

Description:

This operation retrieves the "selection mode" attribute value of the rt-component or socket.

The getSelectionMode operation triggers the execution of the "get selection mode" elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.3.4.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getSelectionPresentationEffectResponsibility operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getSelectionPresentationEffectResponsibility

Result: Responsibility

Exception: InvalidTarget

Page 160
Draft prETS 300 715: May 1996

Description:

This operation retrieves the "selection presentation effect responsibility" attribute value of the
rt-component or socket.

The getSelectionPresentationEffectResponsibility operation triggers the execution of the
"get selection presentation effect responsibility" elementary action with the bound rt-component or socket
as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.3.6.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setModifiability operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setModifiability

Result: void

In: unsigned short min_number_of_modifications

In: unsigned short max_number_of_modifications

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation assigns a "minimum number of modifications required" value and a "maximum number of
modifications required" value to an rt-component or a socket. The MHEG engine calculates the
"modifiability" value of the rt-component or socket from these two values. The "effective modifiability"
value of the rt-component or socket is also calculated by the MHEG engine from this "modifiability" value
and the "effective modifiability" value of the parent of the rt-component or socket.

The setModifiability operation triggers the execution of the "set modifiability" elementary action with
the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.2.1.

The min_number_of_modifications parameter specifies the value of the "min number of
modifications" parameter of the "set modifiability" action.

The max_number_of_modifications parameter specifies the value of the "max number of
modifications" parameter of the "set modifiability" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter

Page 161
Draft prETS 300 715: May 1996

setModificationStatus operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setModificationStatus

Result: void

In: ModificationStatusValue modification_state

Exception: InvalidTarget

Description:

This operation assigns a value to the "modification status" of an rt-component or a socket.

The setModificationStatus operation triggers the execution of the "set modification status"
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.2.2.

The modification_state parameter specifies the value of the "modification state" parameter of the
"set modification status" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setModificationPresentationEffectResponsibility operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setModificationPresentationEffectResponsibility

Result: void

In: Responsibility the_responsibility

Exception: InvalidTarget

Description:

This operation assigns a value to the "modification presentation effect responsibility" of an rt-component
or a socket. This attribute indicates if it is the MHEG engine or the author who is responsible of reflecting a
new state of the component or socket.

The setModificationPresentationEffectResponsibility operation triggers the execution of
the "set modification presentation effect responsibility" elementary action with the bound rt-component or
socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.2.3.

The the_responsibility parameter specifies the value of the "responsibility" parameter of the "set
modification presentation effect responsibility" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 162
Draft prETS 300 715: May 1996

getModifiability operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getModifiability

Result: void

Out: unsigned short min_numbers_of_modifications

Out: unsigned short max_numbers_of_modifications

Exception: InvalidTarget

Description:

This operation retrieves the "minimum number of modifications required" and the "maximum number of
modifications required". If the "maximum number of modifications required" is equal to 0 the "modifiability"
of the rt-component or socket is "not modifiable".

The getModifiability operation triggers the execution of the "get modifiability" elementary action with
the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.3.1.

The min_numbers_of_modifications parameter specifies the value of the "min numbers of
modifications" parameter of the "get modifiability" action.

The max_numbers_of_modifications parameter specifies the value of the "max numbers of
modifications" parameter of the "get modifiability" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getEffectiveModifiability operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getEffectiveModifiability

Result: EffectiveModifiability

Exception: InvalidTarget

Description:

This operation retrieves the "effective modifiability" attribute value of the rt-component or socket.

The getEffectiveModifiability operation triggers the execution of the "get effective modifiability"
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.3.2.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 163
Draft prETS 300 715: May 1996

getModificationStatus operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getModificationStatus

Result: ModificationStatusValue

Exception: InvalidTarget

Description:

This operation retrieves the "modification status" value of the rt-component or socket.

The getModificationStatus operation triggers the execution of the "get modification status"
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.3.3.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getModificationMode operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getModificationMode

Result: ModificationModeValue

Exception: InvalidTarget

Description:

This operation retrieves the "modification mode" attribute value of the rt-component or socket.

The getModificationMode operation triggers the execution of the "get modification mode" elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.3.4.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getModificationPresentationEffectResponsibility operation

Synopsis:

Interface: RtComponentOrSocket

Operation: getModificationPresentationEffectResponsibility

Result: Responsibility

Exception: InvalidTarget

Page 164
Draft prETS 300 715: May 1996

Description:

This operation retrieves the "modification presentation effect responsibility" attribute value of the
rt-component or socket.

The getModificationPresentationEffectResponsibility operation triggers the execution of
the "get modification presentation effect responsibility" elementary action with the bound rt-component or
socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.3.6.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setNoInteractionStyle operation

Synopsis:

Interface: RtComponentOrSocket

Operation: setNoInteractionStyle

Result: void

Exception: InvalidTarget

Description:

This operation deassigns the currently assigned interaction style to an rt-component or a socket.

The setNoInteractionStyle operation triggers the execution of the "set no style" elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 59.2.6.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

IDL description:

interface RtComponentOrSocket {

void
setRGS(

in ChannelIdentifier
channel_identifier)

raises(InvalidTarget);

RGSValue
getRGS()

raises(InvalidTarget);

void
setOpacity(

in unsigned short
opacity_rate,

in unsigned long
transition_duration)

raises(InvalidTarget);

void
setPresentationPriority(

in PresentationPriority
presentation_priority,

in unsigned long
transition_duration)

raises(InvalidTarget, InvalidParameter);

Page 165
Draft prETS 300 715: May 1996

unsigned short
getOpacity()

raises(InvalidTarget);

unsigned short
getEffectiveOpacity()

raises(InvalidTarget);

unsigned short
getPresentationPriority()

raises(InvalidTarget);

void
setVisibleDuration(

in TemporalPosition
initial_temporal_position,

in TemporalPosition
terminal_temporal_position)

raises(InvalidTarget, InvalidParameter);

void
setTemporalTermination(

in TemporalTermination
temporal_termination)

raises(InvalidTarget);

void
setCurrentTemporalPosition(

in TemporalPosition
temporal_position)

raises(InvalidTarget, InvalidParameter);

void
setSpeed(

in Speed
the_speed,

in unsigned long
transition_duration)

raises(InvalidTarget, InvalidParameter);

void
setTimestones(

in sequence<Timestone>
timestones)

raises(InvalidTarget, InvalidParameter);

unsigned long
getInitialTemporalPosition()

raises(InvalidTarget);

unsigned long
getTerminalTemporalPosition()

raises(InvalidTarget);

unsigned long
getVDLength(

in GTIndicator
gt_indicator)

raises(InvalidTarget);

TemporalTermination
getTemporalTermination()

raises(InvalidTarget);

unsigned long
getCurrentTemporalPosition()

raises(InvalidTarget);

short
getSpeedRate()

raises(InvalidTarget);

unsigned long

Page 166
Draft prETS 300 715: May 1996

getOGTR()
raises(InvalidTarget);

short
getEffectiveSpeedRate()

raises(InvalidTarget);

unsigned long
getEffectiveOGTR()

raises(InvalidTarget);

unsigned short
getTimestoneStatus()

raises(InvalidTarget);

void
setPerceptibleSizeProjection(

in PerceptibleSizeProjection
perceptible_size_projection,

in unsigned long
transition_duration)

raises(InvalidTarget, InvalidParameter);

void
setAspectRatio(

in AspectRatio
preserved)

raises(InvalidTarget);

void
setVisibleSize(

in VSGS
the_vsgs,

in VS
the_vs,

in unsigned long
transition_duration)

raises(InvalidTarget, InvalidParameter);

void
setVisibleSizesAdjustment(

in sequence<AdjustmentAxis>
set_of_axes,

in AdjustmentPolicy
adjustment_policy,

in unsigned long
transition_duration)

raises(InvalidTarget);

void
setBox(

in BoxConstants
box)

raises(InvalidTarget);

void
setDefaultBackground(

in unsigned short
background,

in unsigned long
transition_duration)

raises(InvalidTarget, InvalidParameter);

void
setAttachmentPoint(

in AttachmentPointType
type,

in AttachmentPoint
positions)

raises(InvalidTarget, InvalidParameter);

void
setAttachmentPointPosition(

in AttachmentPointType

Page 167
Draft prETS 300 715: May 1996

type,
in ReferenceType

vseap_reference_point,
in Lengths

the_lengths,
in unsigned long

transition_duration)
raises(InvalidTarget, InvalidParameter);

void
setVisibleSizesAlignment(

in SizeBorder
size_border,

in long
interval,

in unsigned long
transition_duration)

raises(InvalidTarget);

void
setMovingAbility(

in UserControls
moving_ability)

raises(InvalidTarget);

void
setResizingAbility(

in UserControls
resizing_ability)

raises(InvalidTarget);

void
setScalingAbility(

in UserControls
scaling_ability)

raises(InvalidTarget);

void
setScrollingAbility(

in UserControls
scrolling_ability)

raises(InvalidTarget);

unsigned short
getGSR()

raises(InvalidTarget);

SpecifiedPosition
getPS(

in GSIndicator
gs)

raises(InvalidTarget);

AspectRatio
getAspectRatio()

raises(InvalidTarget);

SpecifiedPosition
getPSAP(

in PointType
point_type)

raises(InvalidTarget);

VSGS
getVSGS()

raises(InvalidTarget);

SpecifiedPosition
getVS()

raises(InvalidTarget);

BoxConstants
getBox()

raises(InvalidTarget);

Page 168
Draft prETS 300 715: May 1996

unsigned short
getDefaultBackground()

raises(InvalidTarget);

SpecifiedPosition
getVSIAP(

in PointType
point_type)

raises(InvalidTarget);

SpecifiedPosition
getVSIAPPosition()

raises(InvalidTarget);

SpecifiedPosition
getVSEAP(

in PointType
point_type)

raises(InvalidTarget);

SpecifiedPosition
getVSEAPPosition(

in ReferencePoint
reference_point)

raises(InvalidTarget);

UserControls
getMovingAbility()

raises(InvalidTarget);

UserControls
getResizingAbility()

raises(InvalidTarget);

UserControls
getScalingAbility()

raises(InvalidTarget);

UserControls
getScrollingAbility()

raises(InvalidTarget);

void
setSelectability(

in unsigned short
min_number_of_selections,

in unsigned short
max_number_of_selections)

raises(InvalidTarget, InvalidParameter);

void
setSelectionStatus(

in SelectionStatusValue
selection_state)

raises(InvalidTarget);

void
setSelectionPresentationEffectResponsibility(

in Responsibility
the_responsibility)

raises(InvalidTarget);

void
getSelectability(

out unsigned short
min_mumber_of_selections,

out unsigned short
max_mumber_of_selections)

raises(InvalidTarget);

EffectiveSelectability
getEffectiveSelectability()

raises(InvalidTarget);

Page 169
Draft prETS 300 715: May 1996

SelectionStatusValue
getSelectionStatus()

raises(InvalidTarget);

SelectionModeValue
getSelectionMode()

raises(InvalidTarget);

Responsibility
getSelectionPresentationEffectResponsibility()

raises(InvalidTarget);

void
setModifiability(

in unsigned short
min_number_of_modifications,

in unsigned short
max_number_of_modifications)

raises(InvalidTarget, InvalidParameter);

void
setModificationStatus(

in ModificationStatusValue
modification_state)

raises(InvalidTarget);

void
setModificationPresentationEffectResponsibility(

in Responsibility
the_responsibility)

raises(InvalidTarget);

void
getModifiability(

out unsigned short
min_numbers_of_modifications,

out unsigned short
max_numbers_of_modifications)

raises(InvalidTarget);

EffectiveModifiability
getEffectiveModifiability()

raises(InvalidTarget);

ModificationStatusValue
getModificationStatus()

raises(InvalidTarget);

ModificationModeValue
getModificationMode()

raises(InvalidTarget);

Responsibility
getModificationPresentationEffectResponsibility()

raises(InvalidTarget);

void
setNoInteractionStyle()

raises(InvalidTarget);

};

H.1.22 RtComponent object

For the RtComponent object no specific operations are defined The object inherits from the
RtComponentOrSocket object and from the RtObject object.

Page 170
Draft prETS 300 715: May 1996

IDL description:

interface RtComponent: RtComponentOrSocket, RtObject {};

H.1.23 RtCompositeOrStructuralSocket object

This subclause defines the operations of the RtCompositeOrStructuralSocket object.

setResizingStrategy operation

Synopsis:

Interface: RtCompositeOrStructuralSocket

Operation: setResizingStrategy

Result: void

In: ResizingStrategy resizing_strategy

Exception: InvalidTarget

Description:

This operation specifies the PS resizing strategy that an rt-composite or structural socket is to have
regarding the modification of the VSs of the child sockets having a PRGS.

The setResizingStrategy operation triggers the execution of the "set resizing strategy" elementary
action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.2.

The resizing_strategy parameter specifies the value of the "resizing strategy" parameter of the "set
resizing strategy" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getResizingStrategy operation

Synopsis:

Interface: RtCompositeOrStructuralSocket

Operation: getResizingStrategy

Result: ResizingStrategy

Exception: InvalidTarget

Description:

This operation retrieves the resizing strategy value of the rt-composite or structural socket.

The getResizingStrategy operation triggers the execution of the "get resizing strategy" elementary
action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.3.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action The period member returns the current period of the target.

Page 171
Draft prETS 300 715: May 1996

setAudibleCompositionEffect operation

Synopsis:

Interface: RtCompositeOrStructuralSocket

Operation: setAudibleCompositionEffect

Result: void

In: unsigned short audible_effect

In: unsigned long transition_duration

Exception: InvalidTarget

Description:

This operation specifies the audible composition effect of an rt-composite or a structural socket. This
effect is to be propagated to their descendant sockets having a PRGS. It is used to calculate the effective
OV of the descendant sockets having a PRGS.

The setAudibleCompositionEffect operation triggers the execution of the "set audible composition
effect" elementary action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.2.2.

The audible_effect parameter specifies the value of the "audible effect" parameter of the "set audible
composition effect" action.

The transition_duration parameter specifies the value of the "transition duration" parameter of the
"set audible composition effect" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getAudibleCompositionEffect operation

Synopsis:

Interface: RtCompositeOrStructuralSocket

Operation: getAudibleCompositionEffect

Result: unsigned short

Exception: InvalidTarget

Description:

This operation retrieves the audible composition effect value of the rt-composite or structural socket. This
effect is expressed as a percentage and used to determine the effective OV of the child sockets of the rt-
composite or structural socket having as PRGS the rt-composite or structural socket. This effect is
recursive for the child sockets of the structural sockets having as PRGS the rt-composite or structural
socket, and so-on.

The getAudibleCompositionEffect operation triggers the execution of the "get audible composition
effect" elementary action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.3.3.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 172
Draft prETS 300 715: May 1996

getNumberOfSelectedSockets operation

Synopsis:

. RtCompositeOrStructuralSocket

Operation: getNumberOfSelectedSockets

Result: unsigned short

Exception: InvalidTarget

Description:

This operation retrieves the "number of selected sockets" attribute value of the rt-composite or structural
socket.

The getNumberOfSelectedSockets operation triggers the execution of the "get number of selected
sockets" elementary action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.3.5.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getNumberOfModifiedSockets operation

Synopsis:

Interface: RtCompositeOrStructuralSocket

Operation: getNumberOfModifiedSockets

Result: unsigned short

Exception: InvalidTarget

Description:

This operation retrieves the "number of modified sockets" attribute value of the rt-composite or structural
socket.

The getNumberOfModifiedSockets operation triggers the execution of the "get number of modified
sockets" elementary action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.3.5.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action The period member returns the current period of the target.

setMenuInteractionStyle operation

Synopsis:

Interface: RtCompositeOrStructuralSocket

Operation: setMenuInteractionStyle

Result: void

In: Orientation upper_menu_orientation

In: sequence <Association> list_of_associations

Exception: InvalidTarget

Exception: InvalidParameter

Page 173
Draft prETS 300 715: May 1996

Description:

This operation assigns the menu interaction style to an rt-composite or a structural socket. This operation
defines a style which affects the complete rt-composite or structural socket, i.e., all generations.

The setMenuInteractionStyle operation triggers the execution of the "set menu style" elementary
action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 59.2.4.

The upper_menu_orientation parameter specifies the value of the "upper menu orientation"
parameter of the "set menu style" action.

The list_of_associations parameter specifies the value of the "list of associations" parameter of the
"set menu style" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

setScrollingListInteractionStyle operation

Synopsis:

Interface: RtCompositeOrStructuralSocket

Operation: setScrollingListInteractionStyle

Result: void

In: PerceptibleReference background

In: unsigned short visible_items_number

In: SocketTail first_item

In: Separator the_separator

In: Orientation the_orientation

In: SliderSide slider_side

In: PerceptibleReference slider

In: PerceptibleReference slider_cursor

In: PerceptibleReference slider_background

In: long slider_min_value

In: long slider_max_value

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation assigns the scrolling list interaction style to an rt-composite or a structural socket. This
operation defines a style which affects the first generation and only the child presentable sockets of the rt-
composite or structural socket.

The setScrollingListInteractionStyle operation triggers the execution of the "set scrolling list
style" elementary action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 59.2.5.

The background parameter specifies the value of the "background" parameter of the "set scrolling list
style" action.

Page 174
Draft prETS 300 715: May 1996

The visible_items_number parameter specifies the value of the "number of visible items" parameter
of the "set scrolling list style" action.

The first_item parameter specifies the value of the "first item" parameter of the "set scrolling list style"
action.

The the_separator parameter specifies the value of the "separator" parameter of the "set scrolling list
style" action.

The the_orientation parameter specifies the value of the "scrolling list orientation" parameter of the
"set scrolling list style" action.

The slider_side parameter specifies the value of the "slider side" parameter of the "set scrolling list
style" action.

The slider, slider_cursor, slider_background, slider_min_value,
slider_max_value parameters specify the values of the parameters of the "set slider style" action
embedded by the "set scrolling list style" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

IDL description:

interface RtCompositeOrStructuralSocket {

void
setResizingStrategy(

in ResizingStrategy
resizing_strategy)

raises(InvalidTarget);

ResizingStrategy
getResizingStrategy()

raises(InvalidTarget);

void
setAudibleCompositionEffect(

in unsigned short
audible_effect,

in unsigned long
transition_duration)

raises(InvalidTarget);

unsigned short
getAudibleCompositionEffect()

raises(InvalidTarget);

unsigned short
getNumberOfSelectedSockets()

raises(InvalidTarget);

unsigned short
getNumberOfModifiedSockets()

raises(InvalidTarget);

void
setMenuInteractionStyle(

in Orientation
upper_menu_orientation,

in sequence <Association>
list_of_associations)

raises(InvalidTarget, InvalidParameter);

Page 175
Draft prETS 300 715: May 1996

void
setScrollingListInteractionStyle(

in PerceptibleReference
background,

in unsigned short
visible_items_number,

in SocketTail
first_item,

in Separator
the_separator,

in Orientation
the_orientation,

in SliderSide
slider_side,

in PerceptibleReference
slider,

in PerceptibleReference
slider_cursor,

in PerceptibleReference
slider_background,

in long
slider_min_value,

in long
slider_max_value)

raises(InvalidTarget, InvalidParameter);

};

H.1.24 RtComposite object

For the RtComposite object no specific operations are defined. The object inherits from the
RtCompositeOrStructuralSocket object and from the RtComponent object.

IDL description:

interface RtComposite: RtCompositeOrStructuralSocket, RtComponent {};

H.1.25 StructuralSocket object

For the StructuralSocket object no specific operations are defined. The object inherits from the
RtCompositeOrStructuralSocket object and from the Socket object.

IDL description:

interface StructuralSocket: RtCompositeOrStructuralSocket, Socket {};

H.1.26 RtGenericContentOrPresentableSocket object

This subclause defines the operations of the RtGenericContentOrPresentableSocket object.

setAudibleVolume operation

Synopsis:

Interface: RtGenericContentOrPresentableSocket

Operation: setAudibleVolume

Result: void

In: AudibleVolume audible_volume

In: unsigned long transition_duration

Exception: InvalidTarget

Exception: InvalidParameter

Page 176
Draft prETS 300 715: May 1996

Description:

This action specifies the audible volume of an rt-content, an rt-multiplexed content a presentable socket or
a multiplexed presentable socket.

The setAudibleVolume operation triggers the execution of the "set audible volume" elementary action
with the bound rt-content, rt-multiplexed content, presentable socket or multiplexed presentable socket as
its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.2.1.

The audible_volume parameter specifies the value of the "audible volume" parameter of the "set
audible volume" action.

The transition_duration parameter specifies the value of the "transition duration" parameter of the
"set audible volume" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

getInitialOriginalAudibleVolume operation

Synopsis:

Interface: RtGenericContentOrPresentableSocket

Operation: getInitialOriginalAudibleVolume

Result: unsigned long

Exception: InvalidTarget

Description:

This operation retrieves the initial original audible volume value of the rt-content, rt-multiplexed content,
presentable socket or multiplexed presentable socket. This initial volume is expressed in original generic
audible volume unit within the interval defined by the original audible volume range.

The getInitialOriginalAudibleVolume operation triggers the execution of the "get IOV"
elementary action with the bound rt-content, rt-multiplexed content, presentable socket or multiplexed
presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getCurrentOriginalAudibleVolume operation

Synopsis:

Interface: RtGenericContentOrPresentableSocket

Operation: getCurrentOriginalAudibleVolume

Result: unsigned long

Exception: InvalidTarget

Page 177
Draft prETS 300 715: May 1996

Description:

This operation retrieves the current original audible volume value of the rt-content, rt-multiplexed content,
presentable socket or multiplexed presentable socket. This current volume is expressed in original generic
audible volume unit within the interval defined by the original audible volume range.

The getCurrentOriginalAudibleVolume operation triggers the execution of the "get current OV"
elementary action with the bound rt-content, rt-multiplexed content, presentable socket or multiplexed
presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.3.2.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getEffectiveOriginalAudibleVolume operation

Synopsis:

Interface: RtGenericContentOrPresentableSocket

Operation: getEffectiveOriginalAudibleVolume

Result: unsigned long

Exception: InvalidTarget

Description:

This operation retrieves the effective original audible volume value of the rt-content, rt-multiplexed content,
presentable socket or multiplexed presentable socket. This effective volume is expressed in original
generic audible volume unit within the interval defined by the original audible volume range. It is calculated
by the MHEG engine using the current original audible volume and the audible composition effect.

The getEffectiveOriginalAudibleVolume operation triggers the execution of the "get effective
OV" elementary action with the bound rt-content, rt-multiplexed content, presentable socket or multiplexed
presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.3.4.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getPerceptibleAudibleVolume operation

Synopsis:

Interface: RtGenericContentOrPresentableSocket

Operation: getPerceptibleAudibleVolume

Result: unsigned long

Exception: InvalidTarget

Description:

This operation retrieves the perceptible original audible volume value of the rt-content, rt-multiplexed
content, presentable socket or multiplexed presentable socket in the assigned channel. This perceptible
volume is expressed in channel generic audible volume unit within the interval defined by the channel
audible volume range. It is calculated by the MHEG engine and corresponds to a projection of the
effective original audible volume in the channel generic space.

Page 178
Draft prETS 300 715: May 1996

The getPerceptibleAudibleVolume operation triggers the execution of the "get perceptible OV"
elementary action with the bound rt-content, rt-multiplexed content, presentable socket or multiplexed
presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.3.5.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

setButtonInteractionStyle operation

Synopsis:

Interface: RtGenericContentOrPresentableSocket

Operation: setButtonInteractionStyle

Result: void

In: PresentationState initial_state

In: AlternatePresentation alternate_presentation_1

In: AlternatePresentation alternate_presentation_2

In: AlternatePresentation alternate_presentation_3

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation assigns the button interaction style to an rt-content, rt-multiplexed content, a presentable
socket or a multiplexed presentable socket.

The setButtonInteractionStyle operation triggers the execution of the "set button style"
elementary action with the bound rt-content, rt-multiplexed content, presentable socket or multiplexed
presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 59.2.1.

The initial_state parameter specifies the value of the "initial state" parameter of the "set button style"
action.

The alternate_presentation_1 parameter specifies the value of the "alternate presentation 1"
parameter of the "set button style" action.

The alternate_presentation_2 parameter specifies the value of the "alternate presentation 2"
parameter of the "set button style" action.

The alternate_presentation_3 parameter specifies the value of the "alternate presentation 3"
parameter of the "set button interaction style" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

Page 179
Draft prETS 300 715: May 1996

IDL description:

interface RtGenericContentOrPresentableSocket {

void
setAudibleVolume(

in AudibleVolume
audible_volume,

in unsigned long
transition_duration)

raises(InvalidTarget, InvalidParameter);

unsigned long
getInitialOriginalAudibleVolume()

raises(InvalidTarget);

unsigned long
getCurrentOriginalAudibleVolume()

raises(InvalidTarget);

unsigned long
getEffectiveOriginalAudibleVolume()

raises(InvalidTarget);

unsigned long
getPerceptibleAudibleVolume()

raises(InvalidTarget);

void
setButtonInteractionStyle(

in PresentationState
initial_state,

in AlternatePresentation
alternate_presentation_1,

in AlternatePresentation
alternate_presentation_2,

in AlternatePresentation
alternate_presentation_3)

raises(InvalidTarget, InvalidParameter);

};

H.1.27 RtGenericContent object

For the RtGenericContent object no specific operations are defined The object inherits from the
RtGenericContentOrPresentableSocket object and from the RtComponent object.

IDL description:

interface RtGenericContent: RtGenericContentOrPresentableSocket, RtComponent {};

H.1.28 GenericPresentableSocket object

For the GenericPresentableSocket object no specific operations are defined The object inherits
from the RtGenericContentOrPresentableSocket object and from the Socket object.

IDL description:

interface GenericPresentableSocket: RtGenericContentOrPresentableSocket, Socket {};

H.1.29 RtContentOrPresentableSocket object

This subclause defines the operations of the RtContentOrPresentableSocket object.

Page 180
Draft prETS 300 715: May 1996

setSliderInteractionStyle operation

Synopsis:

Interface: RtContentOrPresentableSocket

Operation: setSliderInteractionStyle

Result: void

In: PerceptibleReference cursor

In: PerceptibleReference background

In: Orientation the_orientation

In: short min_value

In: short max_value

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation assigns the slider interaction style to an rt-content or a presentable socket created from a
content object model which contains a generic numeric as "content data".

The setSliderStyle operation triggers the execution of the "set slider style" elementary action with the
bound rt-content or presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 59.2.2.

The cursor parameter specifies the value of the "cursor" parameter of the "set slider style" action.

The background parameter specifies the value of the "background" parameter of the "set slider style"
action.

The the_orientation parameter specifies the value of the "orientation" parameter of the "set slider
style" action.

The min_value parameter specifies the value of the "minimum value" parameter of the "set slider style"
action.

The max_value parameter specifies the value of the "maximum value" parameter of the "set slider style"
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

setEntryFieldInteractionStyle operation

Synopsis:

Interface: RtContentOrPresentableSocket

Operation: setEntryFieldInteractionStyle

Result: void

In: EchoStyle echo_style

In: PerceptibleReference background

Exception: InvalidTarget

Exception: InvalidParameter

Page 181
Draft prETS 300 715: May 1996

Description:

This operation assigns the entry field interaction style to an rt-content or a presentable socket created
from a content object model which contains a generic numeric or a generic string as "content data".

The setEntryFieldInteractionStyle operation triggers the execution of the "set entry field style"
elementary action with the bound rt-content or presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 59.2.3.

The echo_style parameter specifies the value of the "echo style" parameter of the "set entry field style"
action.

The background parameter specifies the value of the "background" parameter of the "set entry field
style" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

IDL description:

interface RtContentOrPresentableSocket {

void
setSliderInteractionStyle(

in PerceptibleReference
cursor,

in PerceptibleReference
background,

in Orientation
the_orientation,

in short
min_value,

in short
max_value)

raises(InvalidTarget, InvalidParameter);

void
setEntryFieldInteractionStyle(

in EchoStyle
echo_style,

in PerceptibleReference
background)

raises(InvalidTarget, InvalidParameter);

};

H.1.30 RtContent object

For the RtContent object no specific operations are defined. The object inherits from the
RtContentOrPresentableSocket object and from the RtGenericContent object.

IDL description:

interface RtContent: RtContentOrPresentableSocket, RtGenericContent {};

Page 182
Draft prETS 300 715: May 1996

H.1.31 PresentableSocket object

For the PresentableSocket object no specific operations are defined. The object inherits from the
RtContentOrPresentableSocket object and from the GenericPresentableSocket object.

IDL description:

interface PresentableSocket: RtContentOrPresentableSocket, GenericPresentableSocket
{};

H.1.32 RtMultiplexedContentOrPresentableSocket object

This subclause defines the operations of the RtMultiplexedContentOrPresentableSocket object.

setStreamChoice operation

Synopsis:

Interface: RtMultiplexedContentOrPresentableSocket

Operation: setStreamChoice

Result: void

In: StreamIdentifier stream_identifier

Exception: InvalidTarget

Exception: InvalidParameter

Description:

This operation specifies a stream to be chosen in the multiplexed data and assigned to the rt-multiplexed
content or multiplexed presentable socket. Once a stream is chosen for an rt-multiplexed content or a
multiplexed presentable socket, when it becomes running, the rt-multiplexed content or the multiplexed
presentable socket is responsible for the presentation of this chosen stream.

The setStreamChoice operation triggers the execution of the "set stream choice" elementary action
with the bound rt-multiplexed content or multiplexed presentable socket as its single target.

The stream_identifier parameter specifies the value of the "stream choice" parameter of the "set
stream choice" action.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 55.2.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether or not the action
was completed (with a default value assigned to the inadequate parameter). The parameter_number
member identifies the rank of the invalid parameter.

getStreamChosen operation

Synopsis:

Interface: RtMultiplexedContentOrPresentableSocket

Operation: getStreamChosen

Result: StreamValue

Exception: InvalidTarget

Page 183
Draft prETS 300 715: May 1996

Description:

This operation retrieves the stream chosen for the rt-multiplexed content or multiplexed presentable
socket.

The getStreamChosen operation triggers the execution of the "get stream chosen" elementary action
with the bound rt-multiplexed content or multiplexed presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 55.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

IDL description:

interface RtMultiplexedContentOrPresentableSocket{

void
setStreamChoice(

in StreamIdentifier
stream_identifier)

raises(InvalidTarget, InvalidParameter);

StreamValue
getStreamChosen()

raises(InvalidTarget);
};

H.1.33 RtMultiplexedContent object

For the RtMultiplexedContent object no specific operations are defined The object inherits from the
RtMultiplexedContentOrPresentableSocket object and from the RtGenericContent object.

IDL description:

interface RtMultiplexedContent: RtMultiplexedContentOrPresentableSocket,
RtGenericContent {};

H.1.34 MultiplexedPresentableSocket object

For the MultiplexedPresentableSocket object no specific operations are defined. The object
inherits from the RtMultiplexedContentOrPresentableSocket object and from the
GenericPresentableSocket object.

IDL description:

interface MultiplexedPresentableSocket: RtMultiplexedContentOrPresentableSocket,
GenericPresentableSocket {};

H.1.35 Channel object

This subclause defines the operations of the Channel object. The object inherits from the Entity
object.

Page 184
Draft prETS 300 715: May 1996

bind operation

Synopsis:

Interface: Channel

Operation: bind

Result: ChannelIdentifier

In: ChannelReference channel_reference

Exception: AlreadyBound

Exception: InvalidTarget

Description:

This operation binds the Channel instance (an interface object instance) with a channel (an MHEG entity).

The channel_reference parameter specifies the reference of the channel.

The operation returns the identifier of the bound channel.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

unbind operation

Synopsis:

Interface: Channel

Operation: unbind

Result: void

Exception: NotBound

Description:

This operation cancels the binding between the Channel instance (an interface object instance) and a
channel (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

new operation

Synopsis:

Interface: Channel

Operation: new

Result: ChannelIdentifier

In: ChannelReference channel_reference

In: OriginalDefDeclaration original_definition_declaration

Exception: AlreadyBound

Exception: InvalidTarget

Description:

This operation enables the creation of a channel by the MHEG engine.

The new operation triggers the execution of the "new channel" elementary action targeted at a single
channel.

Page 185
Draft prETS 300 715: May 1996

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 61.2.1.

The channel_reference parameter specifies a reference to a channel.

The original_definition_declaration parameter specifies the value of the "original definition
declaration" parameter of the "new channel" action.

This operation implicitly binds the Channel instance (an interface object instance) with the new created
channel (an MHEG entity).

The operation returns the identifier of the new created channel bound with the Channel instance.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

delete operation

Synopsis:

Interface: Channel

Operation: delete

Result: void

Exception: NotBound

Exception: InvalidTarget

Description:

This operation enables the removing of a channel by the MHEG engine.

The delete operation triggers the execution of the "delete channel" elementary action targeted at a
single channel.

The effect of the action on its target and the error conditions that cause exceptions to be raised are
defined by ISO/IEC 13522-1 [1], subclause 61.2.2.

This operation implicitly cancels the binding between the Channel instance (an interface object instance)
and the new deleted channel (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

getRtAvailabilityStatus operation

Synopsis:

Interface: Channel

Operation: getAvailability

Result: ChannelStatusValue

Exception: NotBound

Exception: InvalidTarget

Page 186
Draft prETS 300 715: May 1996

Description:

This operation retrieves the availability of a channel to the MHEG engine.

The getAvailability operation triggers the execution of the "get channel availability status"
elementary action with the bound channel as its single target.

The effect of the action on its target, the computation of its result and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 61.3.1.

The operation returns the availability of the channel bound with the Channel instance The returned value
is either NOT_AVAILABLE, PROCESSING or AVAILABLE.

When the returned value is NOT_AVAILABLE, the operation implicitly cancels the binding between the
Channel instance (an interface object instance) and the channel (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getIdentifier operation

Synopsis:

Interface: Channel

Operation: getIdentifier

Result: ChannelIdentifier

Exception: NotBound

Description:

This operation retrieves the identifier of the channel (an MHEG entity) bound with the Channel instance
(an interface object instance).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

kill operation

Synopsis:

Interface: Channel

Operation: kill

Result: void

Description:

This operation deletes the Channel instance (an interface object instance).

setPerceptability operation

Synopsis:

Interface: Channel

Operation: setPerceptability

Result: void

In: ChannelPerceptabilityValue channel_perceptability

Exception: InvalidTarget

Page 187
Draft prETS 300 715: May 1996

Description:

This operation enables to turn on or off a channel This is used to enable or disable the perception of a
channel by a user.

The setPerceptability operation triggers the execution of the "set channel perceptability" elementary
action with the bound channel as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 62.2.1.

The channel_perceptability parameter specifies the value of the "perceptability" parameter of the
"set channel perceptability" action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getPerceptability operation

Synopsis:

Interface: Channel

Operation: getPerceptability

Result: ChannelPerceptabilityValue

Exception: InvalidTarget

Description:

This operation retrieves the perceptability of a channel.

The getPerceptability operation triggers the execution of the "get channel perceptability" elementary
action with the bound channel as its single target.

The effect of the action on its target, the computation of its result and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 62.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

getAssignedPerceptibles operation

Synopsis:

Interface: Channel

Operation: getAssignedPerceptibles

Result: sequence<PerceptibleReference>

Exception: InvalidTarget

Description:

This operation retrieves the perceptibles assigned to the channel.

The getAssignedPerceptibles operation has no corresponding MHEG elementary action It is
symmetrical to the "get RGS" elementary action which retrieves the channel assigned to a perceptible.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 188
Draft prETS 300 715: May 1996

IDL description:

interface Channel: Entity {

ChannelIdentifier
bind(

in ChannelReference
channel_reference)

raises(AlreadyBound, InvalidTarget);

void
unbind()

raises(NotBound);

ChannelIdentifier
new(

in ChannelReference
channel_reference,

in OriginalDefDeclaration
original_definition_declaration)

raises(AlreadyBound, InvalidTarget);

void
delete()

raises(NotBound, InvalidTarget);

ChannelStatusValue
getAvailability()

raises(NotBound, InvalidTarget);

ChannelIdentifier
getIdentifier()

raises(NotBound);

void
kill();

void
setPerceptability(

in ChannelPerceptabilityValue
channel_perceptability)

raises(InvalidTarget);

ChannelPerceptabilityValue
getPerceptability()

raises(InvalidTarget);

sequence<PerceptibleReference>
getAssignedPerceptibles()

raises(InvalidTarget);

};

H.1.36 Parameter definition

This subclause defines the parameters that are used by the mandatory primitives

//==
typedef sequence<long> ApplicationIdentifier;

// Corresponding MHEG datatype: Object_Number
//==
typedef long ObjectNumber;

// Interface: MhObject Operation: bind
// Interface: MhObject Operation: prepare
// Interface: MhObject Operation: getIdentifier
// Corresponding MHEG datatype: MHEG_Identifier
//==
struct MHEGIdentifier {

sequence<ApplicationIdentifier,1>

Page 189
Draft prETS 300 715: May 1996

application_identifier;
ObjectNumber

object_number;
};

// Corresponding MHEG datatype: Public_Identifier
//==
typedef string PublicIdentifier;

// Corresponding MHEG datatype: System_Identifier
//==
typedef string SystemIdentifier;

// Corresponding MHEG datatype: External_Long_Identifier
//==
struct ExternalLongIdentifier {

PublicIdentifier
public_identifier;

SystemIdentifier
system_identifier;

};

// Corresponding MHEG datatype: Alias
//==
typedef string Alias;

// Corresponding MHEG datatype: Container_Child_Reference
//==
enum ContainerChildReference {

CHILD,
DESCENDANT

};

// Interface: MhObject Operation: getPreparationStatus
// Corresponding MHEG datatype: Preparation_Status_Value
//==
enum PreparationStatusValue {

READY,
NOT_READY,
PROCESSING

};

// Interface: MhMultiplexedContent Operation: setMultiplex
// Interface: MhMultiplexedContent Operation: setDemultiplex
// Interface: RtMultiplexedContentOrPresentableSocket Operation: setStreamChoice
// Corresponding MHEG datatype: Stream_Identifier
//==
typedef sequence<long> StreamIdentifier;

// Corresponding MHEG datatype: Rt_Dynamic_Reference
//==
enum RtDynamicReference {

QUESTION_MARK,
STAR

};

// Interface: RtObject Operation: getAvailabilityStatus
// Corresponding MHEG datatype: Rt_Availibility_Status_Value
//==
enum RtAvailabilityStatusValue {

RT_AVAILIBILITY_STATUS_VALUE_AVAILABLE,
RT_AVAILIBILITY_STATUS_VALUE_NOT_AVAILABLE,
RT_AVAILIBILITY_STATUS_VALUE_PROCESSING

};

Page 190
Draft prETS 300 715: May 1996

// Interface: RtObject Operation: getRunningStatus
// Corresponding MHEG datatype: Running_Status_Value
//==
enum RunningStatusValue {

RUNNING_STATUS_VALUE_RUNNING,
RUNNING_STATUS_VALUE_NOT_RUNNING,
RUNNING_STATUS_VALUE_PROCESSING

};

// Interface: RtScript Operation: getTerminationStatus
// Corresponding MHEG datatype: Termination_Status_Value
//==
enum TerminationStatusValue {

TERMINATED,
NOT_TERMINATED

};

// Interface: RtComponentOrSocket Operation: setRGS
// Interface: Channel Operation: getIdentifier
// Corresponding MHEG datatype: Channel_Identifier
//==
typedef long ChannelIdentifier;

// Corresponding MHEG datatype: Priority_Level
//==
enum PriorityLevel {

INCREMENT_PRIORITY,
DECREMENT_PRIORITY

};

// Interface: RtComponentOrSocket Operation: setVisibleDuration
// Interface: RtComponentOrSocket Operation: setCurrentTemporalPosition
// Corresponding MHEG datatype: Temporal_Position
//==
enum TemporalPositionTag { SPECIFIED_TEMPORAL_POINT_TAG, LOGICAL_TEMPORAL_PD_POINT_TAG
};
union TemporalPosition
switch (TemporalPositionTag){

case SPECIFIED_TEMPORAL_POINT_TAG:
long

specified_temporal_point;
case LOGICAL_TEMPORAL_PD_POINT_TAG:

long
logical_temporal_PD_point;

};

// Interface: RtComponentOrSocket Operation: setTemporalTermination
// Interface: RtComponentOrSocket Operation: getTemporalTermination
// Corresponding MHEG datatype: Temporal_Termination
//==
enum TemporalTermination {

TEMPORAL_TERMINATION_FREEZE,
TEMPORAL_TERMINATION_STOP

};

// Interface: RtComponentOrSocket Operation: setSpeed
// Corresponding MHEG datatype: Speed
//==
enum SpeedTag { SPECIFIED_OGTR_TAG, SPEED_RATE_TAG, SCALING_FACTOR_TAG };
union Speed
switch (SpeedTag){

case SPECIFIED_OGTR_TAG:
long

specified_OGTR;
case SPEED_RATE_TAG:

long
speed_rate;

Page 191
Draft prETS 300 715: May 1996

case SCALING_FACTOR_TAG:
long

scaling_factor;
};

// Corresponding MHEG datatype: Timestone_Position
//==
enum TimestonePositionTag { TIMESTONE_POSITION_SPECIFIED_TEMPORAL_POINT_TAG,
TIMESTONE_POSITION_LOGICAL_TEMPORAL_PD_POINT_TAG,
TIMESTONE_POSITION_LOGICAL_TEMPORAL_VD_POINT_TAG };
union TimestonePosition
switch (TimestonePositionTag){

case TIMESTONE_POSITION_SPECIFIED_TEMPORAL_POINT_TAG:
long

specified_temporal_point;
case TIMESTONE_POSITION_LOGICAL_TEMPORAL_PD_POINT_TAG:

long
logical_temporal_PD_point;

case TIMESTONE_POSITION_LOGICAL_TEMPORAL_VD_POINT_TAG:
long

logical_temporal_VD_point;
};

// Interface: RtComponentOrSocket Operation: getVDLength
// Corresponding MHEG datatype: GT_Indicator
//==
enum GTIndicator {

OGTU,
RGTU

};

// Corresponding MHEG datatype: Perceptible_Projection
//==
enum PerceptibleProjectionTag { SPECIFIED_SIZE_TAG, IOGSR_SCALING_FACTOR_TAG,
COGSR_SCALING_FACTOR_TAG };
union PerceptibleProjection
switch (PerceptibleProjectionTag){

case SPECIFIED_SIZE_TAG:
long

specified_size;
case IOGSR_SCALING_FACTOR_TAG:

long
iogsr_scaling_factor;

case COGSR_SCALING_FACTOR_TAG:
long

cogsr_scaling_factor;
};

// Interface: RtComponentOrSocket Operation: setAspectRatioPreserved
// Interface: RtComponentOrSocket Operation: getAspectRatio
// Corresponding MHEG datatype: Aspect_Ratio
//==
enum AspectRatio {

PRESERVED,
NOT_PRESERVED

};

// Interface: RtComponentOrSocket Operation: setVisibleSize
// Interface: RtComponentOrSocket Operation: getVSGS
// Corresponding MHEG datatype: VSGS
//==
enum VSGS {

THIS,
RELATIVE

};

// Corresponding MHEG datatype: Size_Attribute
//==

Page 192
Draft prETS 300 715: May 1996

enum SizeAttributeTag { SIZE_ATTRIBUTE_SPECIFIED_SIZE_TAG,
SIZE_ATTRIBUTE_IVS_RELATIVE_TAG, SIZE_ATTRIBUTE_CVS_RELATIVE_TAG };
union SizeAttribute
switch (SizeAttributeTag){

case SIZE_ATTRIBUTE_SPECIFIED_SIZE_TAG:
long

specified_size;
case SIZE_ATTRIBUTE_IVS_RELATIVE_TAG:

long
ivs_relative;

case SIZE_ATTRIBUTE_CVS_RELATIVE_TAG:
long

cvs_relative;
};

// Interface: RtComponentOrSocket Operation: setVisibleSizesAdjustment
// Corresponding MHEG datatype: Adjustment_Axis
//==
enum AdjustmentAxis {

X_AXIS,
Y_AXIS,
Z_AXIS

};

// Corresponding MHEG datatype: Sub_Socket_Reference
//==
enum SubSocketReference {

SUB_SOCKET_REFERENCE_CHILD,
SUB_SOCKET_REFERENCE_DESCENDANT,
SUB_SOCKET_REFERENCE_QUESTION_MARK_CHILD,
SUB_SOCKET_REFERENCE_QUESTION_MARK_DESCENDANT

};

// Interface: RtComponentOrSocket Operation: setBox
// Interface: RtComponentOrSocket Operation: getBox
// Corresponding MHEG datatype: Box_Constants
//==
enum BoxConstants {

PRESENTED,
NOT_PRESENTED

};

// Interface: RtComponentOrSocket Operation: setAttachmentPointPosition
// Corresponding MHEG datatype: Reference_Type
//==
enum ReferenceType {

VSIAP,
VSEAP

};

// Interface: RtComponentOrSocket Operation: setAttachmentPoint
// Interface: RtComponentOrSocket Operation: setAttachmentPointPosition
// Corresponding MHEG datatype: Attachment_Point_Type
//==
enum AttachmentPointType {

ATTACHMENT_POINT_TYPE_PSAP,
ATTACHMENT_POINT_TYPE_VSIAP,
ATTACHMENT_POINT_TYPE_VSEAP

};

// Interface: RtComponentOrSocket Operation: setVisibleSizesAlignment
// Corresponding MHEG datatype: Size_Border
//==
enum SizeBorder {

TOP,
BOTTOM,
RIGHT,
LEFT,
UPPER_Z,

Page 193
Draft prETS 300 715: May 1996

LOWER_Z,
CENTER_X,
CENTER_Y,
CENTER_Z

};

// Interface: RtComponentOrSocket Operation: setMovingAbility
// Interface: RtComponentOrSocket Operation: setResizingAbility
// Interface: RtComponentOrSocket Operation: setScalingAbility
// Interface: RtComponentOrSocket Operation: setScrollingAbility
// Interface: RtComponentOrSocket Operation: getMovingAbility
// Interface: RtComponentOrSocket Operation: getResizingAbility
// Interface: RtComponentOrSocket Operation: getScalingAbility
// Interface: RtComponentOrSocket Operation: getScrollingAbility
// Corresponding MHEG datatype: User_Controls
//==
enum UserControls {

ALLOWED,
NOT_ALLOWED

};

// Interface: RtComponentOrSocket Operation: getPS
// Corresponding MHEG datatype: GS_Indicator
//==
enum GSIndicator {

OGSU,
RGSU

};

// Interface: RtComponentOrSocket Operation: getPSAP
// Interface: RtComponentOrSocket Operation: getVSIAP
// Corresponding MHEG datatype: Point_Type
//==
enum PointType {

RELATIVE_POINT,
ABSOLUTE_POINT

};

// Interface: RtComponentOrSocket Operation: setSelectionStatus
// Interface: RtComponentOrSocket Operation: getSelectionStatus
// Corresponding MHEG datatype: Selection_Status_Value
//==
enum SelectionStatusValue {

SELECTED,
NOT_SELECTED

};

// Interface: RtComponentOrSocket Operation: setSelectionPresentationEffectResponsibility
// Interface: RtComponentOrSocket Operation: getSelectionPresentationEffectResponsibility
// Interface: RtComponentOrSocket Operation: setModificationPresentationEffectResponsibility
// Interface: RtComponentOrSocket Operation: getModificationPresentationEffectResponsibility
// Corresponding MHEG datatype: Responsibility
//==
enum Responsibility {

MHEG_ENGINE,
AUTHOR

};

// Interface: RtComponentOrSocket Operation: getEffectiveSelectability
// Corresponding MHEG datatype: Effective_Selectability
//==
enum EffectiveSelectability {

EFFECTIVELY_SELECTABLE,
EFFECTIVELY_NOT_SELECTABLE

};

// Interface: RtComponentOrSocket Operation: setModificationStatus

Page 194
Draft prETS 300 715: May 1996

// Interface: RtComponentOrSocket Operation: getModificationStatus
// Corresponding MHEG datatype: Modification_Status_Value
//==
enum ModificationStatusValue {

MODIFIED,
MODIFYING,
NOT_MODIFIED

};

// Interface: RtComponentOrSocket Operation: getEffectiveModifiability
// Corresponding MHEG datatype: Effective_Modifiability
//==
enum EffectiveModifiability {

EFFECTIVELY_MODIFIABLE,
EFFECTIVELY_NOT_MODIFIABLE

};

// Interface: RtCompositeOrStructuralSocket Operation: setResizingStrategy
// Interface: RtCompositeOrStructuralSocket Operation: getResizingStrategy
// Corresponding MHEG datatype: Resizing_Strategy
//==
enum ResizingStrategy {

FIXED,
MINIMUM,
GROWS_ONLY

};

// Interface: RtCompositeOrStructuralSocket Operation: setMenuInteractionStyle
// Interface: RtCompositeOrStructuralSocket Operation: setScrollingListInteractionStyle
// Interface: RtContentOrPresentableSocket Operation: setSliderInteractionStyle
// Corresponding MHEG datatype: Orientation
//==
enum Orientation {

HORIZONTAL,
VERTICAL

};

// Corresponding MHEG datatype: Presentation_Persistence
//==
enum PresentationPersistence {

PERSISTENT,
NOT_PERSISTENT

};

// Interface: RtCompositeOrStructuralSocket Operation: setScrollingListInteractionStyle
// Corresponding MHEG datatype: Slider_Side
//==
enum SliderSide {

SIDE1,
SIDE2

};

// Interface: RtGenericContentOrPresentableSocket Operation: setAudibleVolume
// Corresponding MHEG datatype: Audible_Volume
//==
enum AudibleVolumeTag { SPECIFIED_VOLUME_TAG, LOGICAL_VOLUME_TAG,
IOV_SCALING_FACTOR_TAG,
OV_SCALING_FACTOR_TAG };
union AudibleVolume
switch (AudibleVolumeTag){

case SPECIFIED_VOLUME_TAG:
long

specified_volume;
case LOGICAL_VOLUME_TAG:

long
logical_volume;

case IOV_SCALING_FACTOR_TAG:
long

Page 195
Draft prETS 300 715: May 1996

iov_scaling_factor;
case OV_SCALING_FACTOR_TAG:

long
ov_scaling_factor;

};

// Interface: RtGenericContentOrPresentableSocket Operation: setButtonInteractionStyle
// Corresponding MHEG datatype: Presentation_State
//==
enum PresentationState {

SELECTABLE_NOT_SELECTED,
SELECTABLE_SELECTED,
NOT_SELECTABLE_SELECTED,
NOT_SELECTABLE_NOT_SELECTED

};

// Corresponding MHEG datatype: Echo_Mode
//==
enum EchoMode {

ITSELF,
HIDDEN

};

// Interface: RtContentOrPresentableSocket Operation: setEntryFieldInteractionStyle
// Corresponding MHEG datatype: Echo_Style
//==
enum EchoStyleTag { MODE_TAG, SPECIFIED_TAG };
union EchoStyle
switch (EchoStyleTag){

case MODE_TAG:
EchoMode

mode;
case SPECIFIED_TAG:

string
specified;

};

// Corresponding MHEG datatype: Channel_Reference
//==
enum ChannelReferenceTag { CHANNEL_IDENTIFIER_TAG, ALIAS_TAG,
NULL_CHANNEL_REFERENCE_TAG };
union ChannelReference
switch (ChannelReferenceTag){

case CHANNEL_IDENTIFIER_TAG:
ChannelIdentifier

channel_identifier;
case ALIAS_TAG:

Alias
alias;

};

// Corresponding MHEG datatype: Interval
//==
struct Interval {

sequence<long,1>
start_point;

sequence<long,1>
end_point;

};

// Corresponding MHEG datatype: Generic_Volume_Range
//==
struct GenericVolumeRange {

sequence<long,1>
maximum_volume;

sequence<long,1>
minimum_volume;

};

Page 196
Draft prETS 300 715: May 1996

// Interface: Channel Operation: new
// Corresponding MHEG datatype: Original_Def_Declaration
//==
struct OriginalDefDeclaration {

sequence<long,1>
generic_temporal_ratio;

sequence<Interval,1>
x_axis_interval;

sequence<Interval,1>
y_axis_interval;

sequence<Interval,1>
z_axis_interval;

sequence<GenericVolumeRange,1>
audible_volume_range_declaration;

};

// Interface: Channel Operation: getAvailability
// Corresponding MHEG datatype: Channel_Status_ValueCHANNEL_STATUS_VALUE_
//==
enum ChannelStatusValue {

CHANNEL_STATUS_VALUE_AVAILABLE,
CHANNEL_STATUS_VALUE_NOT_AVAILABLE,
CHANNEL_STATUS_VALUE_PROCESSING

};

// Interface: Channel Operation: setPerceptability
// Interface: Channel Operation: getPerceptability
// Corresponding MHEG datatype: Channel_Perceptability_Values
//==
enum ChannelPerceptabilityValue {

ON,
OFF

};

// Interface: NotificationManager Operation: getNotification
// Interface: MhContent Operation: getData
// Corresponding MHEG datatype: Generic_Value
//==
enum GenericValueTag { BOOLEAN_FIELD_TAG, NUMERIC_TAG, STRING_FIELD_TAG,
GENERIC_LIST_TAG, UNSPECIFIED_TAG };
union GenericValue
switch (GenericValueTag){

case BOOLEAN_FIELD_TAG:
boolean

boolean_field;
case NUMERIC_TAG:

long
numeric;

case STRING_FIELD_TAG:
string

string_field;
case GENERIC_LIST_TAG:

sequence<GenericValue>
generic_list;

};

// Corresponding MHEG datatype: Generic_String
//==
enum GenericStringTag { GENERIC_STRING_CONSTANT_TAG, GENERIC_STRING_UNSPECIFIED_TAG };
union GenericString
switch (GenericStringTag){

case GENERIC_STRING_CONSTANT_TAG:
string

constant;
};

// Interface: Socket Operation: setVisibleDurationPosition

Page 197
Draft prETS 300 715: May 1996

// Corresponding MHEG datatype: Visible_Duration
//==
enum VisibleDurationPositionTag {
VISIBLE_DURATION_POSITION_SPECIFIED_TEMPORAL_POINT_TAG,
VISIBLE_DURATION_POSITION_LOGICAL_TEMPORAL_PD_POINT_TAG,
VISIBLE_DURATION_POSITION_LOGICAL_TEMPORAL_VD_POINT_TAG };
union VisibleDurationPosition
switch (VisibleDurationPositionTag){

case VISIBLE_DURATION_POSITION_SPECIFIED_TEMPORAL_POINT_TAG:
long

specified_temporal_point;
case VISIBLE_DURATION_POSITION_LOGICAL_TEMPORAL_PD_POINT_TAG:

long
logical_temporal_PD_point;

case VISIBLE_DURATION_POSITION_LOGICAL_TEMPORAL_VD_POINT_TAG:
long

logical_temporal_VD_point;
};

// Interface: RtComponentOrSocket Operation: getRGS
// Corresponding MHEG datatype: none
//==
enum RGSValueTag { RGS_VALUE_CHANNEL_IDENTIFIER_TAG, RGS_VALUE_NULL_CHANNEL_TAG,
RGS_VALUE_PRGS_TAG };
union RGSValue
switch (RGSValueTag){

case RGS_VALUE_CHANNEL_IDENTIFIER_TAG:
ChannelIdentifier

channel_identifier;
};

// Corresponding MHEG datatype: Generic_Numeric
//==
enum GenericNumericTag { GENERIC_NUMERIC_CONSTANT_TAG, GENERIC_NUMERIC_UNSPECIFIED_TAG
};
union GenericNumeric
switch (GenericNumericTag){

case GENERIC_NUMERIC_CONSTANT_TAG:
long

constant;
};

// Interface: RtComponentOrSocket Operation: getSelectionMode
// Corresponding MHEG datatype: none
//==
enum SelectionModeValueTag { USER_INTERACTION_TAG, NO_SELECTION_TAG, MHEG_ACTION_TAG,
USING_APPLICATION_ACTION_TAG };
union SelectionModeValue
switch (SelectionModeValueTag){

case USER_INTERACTION_TAG:
unsigned long

user_interaction;
};

// Interface: RtComponentOrSocket Operation: getModificationMode
// Corresponding MHEG datatype: none
//==
enum ModificationModeValueTag { MODIFICATION_MODE_VALUE_USER_INTERACTION_TAG,
MODIFICATION_MODE_VALUE_NO_MODIFICATION_TAG, MODIFICATION_MODE_VALUE_MHEG_ACTION_TAG,
MODIFICATION_MODE_VALUE_USING_APPLICATION_ACTION_TAG,
MODIFICATION_MODE_VALUE_CHILD_TAG };
union ModificationModeValue
switch (ModificationModeValueTag){

case MODIFICATION_MODE_VALUE_USER_INTERACTION_TAG:
unsigned long

user_interaction;
};

// Corresponding MHEG datatype: External_Identifier

Page 198
Draft prETS 300 715: May 1996

//==
enum ExternalIdentifierTag { EXTERNAL_LONG_ID_TAG, PUBLIC_ID_TAG, SYSTEM_ID_TAG };
union ExternalIdentifier
switch (ExternalIdentifierTag){

case EXTERNAL_LONG_ID_TAG:
ExternalLongIdentifier

external_long_id;
case PUBLIC_ID_TAG:

PublicIdentifier
public_id;

case SYSTEM_ID_TAG:
SystemIdentifier

system_id;
};

// Corresponding MHEG datatype: Container_Tail
//==
struct ContainerTail {

sequence<long>
indexes;

enum ContainerTailTag { INDEX_TAG, CONTAINER_CHILD_REF_TAG } tag;
union ContainerTail
switch (ContainerTailTag){

case INDEX_TAG:
long

index;
case CONTAINER_CHILD_REF_TAG:

ContainerChildReference
container_child_ref;

} end;
};

// Corresponding MHEG datatype: Specified_Sizes
//==
struct SpecifiedSizes {

sequence<GenericNumeric,1>
x_axis_length;

sequence<GenericNumeric,1>
y_axis_length;

sequence<GenericNumeric,1>
z_axis_length;

};

// Corresponding MHEG datatype: Attachment_Attribute
//==
enum AttachmentAttributeTag { SPECIFIED_POSITION_TAG, LOGICAL_POSITION_TAG };
union AttachmentAttribute
switch (AttachmentAttributeTag){

case SPECIFIED_POSITION_TAG:
GenericNumeric

specified_position;
case LOGICAL_POSITION_TAG:

GenericNumeric
logical_position;

};

// Corresponding MHEG datatype: Length_Attribute
//==
enum LengthAttributeTag { SPECIFIED_LENGTH_TAG, RELATIVE_LENGTH_TAG };
union LengthAttribute
switch (LengthAttributeTag){

case SPECIFIED_LENGTH_TAG:
GenericNumeric

specified_length;
case RELATIVE_LENGTH_TAG:

GenericNumeric
relative_length;

};

// Interface: RtComponentOrSocket Operation: getPS

Page 199
Draft prETS 300 715: May 1996

// Interface: RtComponentOrSocket Operation: getPSAP
// Interface: RtComponentOrSocket Operation: getVS
// Interface: RtComponentOrSocket Operation: getVSIAP
// Interface: RtComponentOrSocket Operation: getVSIAPPosition
// Interface: RtComponentOrSocket Operation: getVSEAP
// Interface: RtComponentOrSocket Operation: getVSEAPPosition
// Corresponding MHEG datatype: Specified_Position
//==
struct SpecifiedPosition {

GenericNumeric
x_point;

GenericNumeric
y_point;

GenericNumeric
z_point;

};

// Interface: RtComponentOrSocket Operation: setPresentationPriority
// Corresponding MHEG datatype: Presentation_Priority
//==
enum PresentationPriorityTag { GENERIC_NUMERIC_TAG, PRIORITY_LEVEL_TAG };
union PresentationPriority
switch (PresentationPriorityTag){

case GENERIC_NUMERIC_TAG:
GenericNumeric

generic_numeric;
case PRIORITY_LEVEL_TAG:

PriorityLevel
priority_level;

};

// Interface: RtComponentOrSocket Operation: setTimestones
// Corresponding MHEG datatype: Timestone
//==
struct Timestone {

long
timestone_identifier;

TimestonePosition
timestone_position;

};

// Interface: RtComponentOrSocket Operation: setVisibleSize
// Corresponding MHEG datatype: none
//==
enum VSTag { X_SIZE_ATTRIBUTE_TAG, Y_SIZE_ATTRIBUTE_TAG, Z_SIZE_ATTRIBUTE_TAG };
union VS
switch (VSTag){

case X_SIZE_ATTRIBUTE_TAG:
SizeAttribute

x_size_attribute;
case Y_SIZE_ATTRIBUTE_TAG:

SizeAttribute
y_size_attribute;

case Z_SIZE_ATTRIBUTE_TAG:
SizeAttribute

z_size_attribute;
};

// Interface: RtComponentOrSocket Operation: setAttachmentPoint
// Corresponding MHEG datatype: none
//==
struct AttachmentPoint {

sequence<AttachmentAttribute,1>
x_attachment;

sequence<AttachmentAttribute,1>
y_attachment;

sequence<AttachmentAttribute,1>
z_attachment;

};

Page 200
Draft prETS 300 715: May 1996

// Interface: RtComponentOrSocket Operation: setAttachmentPointPosition
// Corresponding MHEG datatype: Lengths
//==
struct Lengths {

sequence<LengthAttribute,1>
x_length;

sequence<LengthAttribute,1>
y_length;

sequence<LengthAttribute,1>
z_length;

};

// Interface: RtMultiplexedContentOrPresentableSocket Operation: getStreamChosen
// Corresponding MHEG datatype: none
//==
enum StreamValueTag { STREAM_IDENTIFIER_TAG, NO_STREAM_CHOSEN_TAG };
union StreamValue
switch (StreamValueTag){

case STREAM_IDENTIFIER_TAG:
StreamIdentifier

stream_identifier;
};

// Interface: MhContent Operation: setData
// Corresponding MHEG datatype: Data_Element
//==
struct DataElement {

sequence<long>
element_list_index;

GenericValue
generic_value;

};

// Interface: NotificationManager Operation: getNotification
// Interface: MhObject Operation: bind
// Interface: MhObject Operation: prepare
// Interface: MhGenericContent Operation: copy
// Corresponding MHEG datatype: Mh_Object_Reference
//==
struct MhObjectReference {
enum MhObjectReferenceHeadTag { MHEG_IDENTIFIER_TAG, EXTERNAL_IDENTIFIER_TAG,
ALIAS_TAG, NULL_OBJECT_REF_TAG } head_tag;
union MhObjectReferenceHead
switch (MhObjectReferenceHeadTag){

case MHEG_IDENTIFIER_TAG:
MHEGIdentifier

mheg_identifier;
case EXTERNAL_IDENTIFIER_TAG:

ExternalIdentifier
external_identifier;

case ALIAS_TAG:
Alias

alias;
} head;
enum MhObjectReferenceTailTag { CONTAINER_ELEMENT_REFERENCE_TAG, OTHER_REFERENCE_TAG
} tail_tag;
union MhObjectReferenceTail
switch (MhObjectReferenceTailTag){

case CONTAINER_ELEMENT_REFERENCE_TAG:
ContainerTail

container_tail;
} tail;
};

// Interface: RtComponentOrSocket Operation: setPerceptibleSizeProjection
// Corresponding MHEG datatype: Perceptible_Size_Projection
//==
struct PerceptibleSizeProjection {

sequence<PerceptibleProjection,1>
x_perceptible_size_projection;

sequence<PerceptibleProjection,1>

Page 201
Draft prETS 300 715: May 1996

y_perceptible_size_projection;
sequence<PerceptibleProjection,1>

z_perceptible_size_projection;
};

// Corresponding MHEG datatype: Rt_Object_Number_Reference
//==
enum RtObjectNumberReferenceTag { RT_OBJECT_NUMBER_TAG, RT_DYNAMIC_REFERENCE_TAG };
union RtObjectNumberReference
switch (RtObjectNumberReferenceTag){

case RT_OBJECT_NUMBER_TAG:
long

rt_object_number;
case RT_DYNAMIC_REFERENCE_TAG:

RtDynamicReference
rt_dynamic_reference;

};

// Interface: RtObject Operation: bind
// Interface: RtObject Operation: new
// Corresponding MHEG datatype: Rt_Object_Reference
//==
struct RtObjectReference {

MhObjectReference
model_object_reference;

RtObjectNumberReference
rt_object_number_reference;

};

// Corresponding MHEG datatype: Rt_Reference
//==
enum RtReferenceTag { RT_REFERENCE_RT_OBJECT_REFERENCE_TAG, RT_REFERENCE_ALIAS_TAG,
RT_REFERENCE_NULL_RT_OBJECT_TAG };
union RtReference
switch (RtReferenceTag){

case RT_REFERENCE_RT_OBJECT_REFERENCE_TAG:
RtObjectReference

rt_object_reference;
case RT_REFERENCE_ALIAS_TAG:

Alias
alias;

};

// Corresponding MHEG datatype: Socket_Tail
//==
struct SocketTail {

sequence<long>
indexes;

enum SocketTailTag { INDEX_TAG, SUB_SOCKET_REF_TAG } tag;
union SocketTail
switch (SocketTailTag){

case INDEX_TAG:
long

index;
case SUB_SOCKET_REF_TAG:

SubSocketReference
sub_socket_ref;

} end;
};

// Corresponding MHEG datatype: Indexed_Child_Socket
//==
struct IndexedChildSocket {

long
index;

SocketTail
tail;

};

Page 202
Draft prETS 300 715: May 1996

// Interface: Socket Operation: bind
// Interface: Socket Operation: getIdentification
// Corresponding MHEG datatype: Socket_Identification
//==
struct SocketIdentification {

RtReference
rt_composite_reference;

SocketTail
socket_tail;

};

// Interface: Socket Operation: bind
// Corresponding MHEG datatype: Socket_Reference
//==
enum SocketReferenceTag { SOCKET_REFERENCE_SOCKET_IDENT_TAG,
SOCKET_REFERENCE_ALIAS_TAG };
union SocketReference
switch (SocketReferenceTag){

case SOCKET_REFERENCE_SOCKET_IDENT_TAG:
SocketIdentification

socket_ident;
case SOCKET_REFERENCE_ALIAS_TAG:

Alias
alias;

};

// Corresponding MHEG datatype: Rt_Object_Socket_Reference
//==
enum RtObjectSocketReferenceTag { RT_REFERENCE_TAG, SOCKET_REFERENCE_TAG };
union RtObjectSocketReference
switch (RtObjectSocketReferenceTag){

case RT_REFERENCE_TAG:
RtReference

rt_reference;
case SOCKET_REFERENCE_TAG:

SocketReference
socket_reference;

};

// Interface: RtCompositeOrStructuralSocket Operation: setScrollingListInteractionStyle
// Interface: RtContentOrPresentableSocket Operation: setSliderInteractionStyle
// Interface: RtContentOrPresentableSocket Operation: setEntryFieldInteractionStyle
// Interface: Channel Operation: getAssignedPerceptibles
// Corresponding MHEG datatype: Perceptible_Reference
//==
enum PerceptibleReferenceTag { RT_COMPONENT_REFERENCE_TAG, RT_SOCKET_REFERENCE_TAG };
union PerceptibleReference
switch (PerceptibleReferenceTag){

case RT_COMPONENT_REFERENCE_TAG:
RtReference

rt_component_reference;
case RT_SOCKET_REFERENCE_TAG:

SocketReference
rt_socket_reference;

};

// Interface: RtCompositeOrStructuralSocket Operation: setScrollingListInteractionStyle
// Corresponding MHEG datatype: Separator
//==
enum SeparatorTag { NO_TAG, YES_DEFAULT_TAG, SEPARATOR_PIECE_TAG };
union Separator
switch (SeparatorTag){

case SEPARATOR_PIECE_TAG:
PerceptibleReference

separator_piece;
};

// Interface: RtCompositeOrStructuralSocket Operation: setMenuInteractionStyle

Page 203
Draft prETS 300 715: May 1996

// Corresponding MHEG datatype: Association
//==
struct Association {

sequence<SocketReference,1>
title;

sequence<Separator,1>
separator;

sequence<SocketReference,1>
submenu;

sequence<PresentationPersistence,1>
submenu_presentation_persistence;

sequence<Orientation,1> submenu_orientation;
};

// Interface: RtSocket Operation: plug
// Corresponding MHEG datatype: Plug_In
//==
enum PlugInTag { PLUG_IN_RT_COMPONENT_REFERENCE_TAG, PLUG_IN_COMPONENT_REFERENCE_TAG,
PLUG_IN_LABEL_TAG };
union PlugIn
switch (PlugInTag){

case PLUG_IN_RT_COMPONENT_REFERENCE_TAG:
RtObjectReference

rt_component_reference;
case PLUG_IN_COMPONENT_REFERENCE_TAG:

MhObjectReference
component_reference;

case PLUG_IN_LABEL_TAG:
GenericString

label;
};

// Interface: RtComponentOrSocket Operation: getVSEAPPosition
// Corresponding MHEG datatype: none
//==
enum ReferencePointTag { VSEAP_POSITION_ORIGIN_RGS_TAG, VSEAP_POSITION_ORIGIN_CGS_TAG,
VSEAP_POSITION_SAME_RGS_COMPONENT_TAG, VSEAP_POSITION_SAME_CGS_COMPONENT_TAG,
VSEAP_POSITION_SPECIFIED_POSITION_TAG };
union ReferencePoint
switch (ReferencePointTag){

case VSEAP_POSITION_SAME_RGS_COMPONENT_TAG:
RtObjectSocketReference

same_RGS_component;
case VSEAP_POSITION_SAME_CGS_COMPONENT_TAG:

RtObjectSocketReference
same_CGS_component;

case VSEAP_POSITION_SPECIFIED_POSITION_TAG:
SpecifiedPosition

specified_position;
};

// Interface: RtScript Operation: setParameters
// Corresponding MHEG datatype: Parameter
//==
enum ParameterTag { GENERIC_VALUE_TAG, MH_OBJECT_REFERENCE_TAG };
union Parameter
switch (ParameterTag){

case GENERIC_VALUE_TAG:
GenericValue

generic_value;
case MH_OBJECT_REFERENCE_TAG:

MhObjectReference
mh_object_reference;

};

// Interface: RtObjectOrSocket Operation: setGlobalBehaviour
// Corresponding MHEG datatype: Global_Behaviour
//==
enum GlobalBehaviourTag { GLOBAL_BEHAVIOUR_RT_REFERENCE_TAG,
GLOBAL_BEHAVIOUR_GENERIC_LIST_TAG, GLOBAL_BEHAVIOUR_UNSPECIFIED_TAG };

Page 204
Draft prETS 300 715: May 1996

union GlobalBehaviour
switch (GlobalBehaviourTag){

case GLOBAL_BEHAVIOUR_RT_REFERENCE_TAG:
RtReference

rt_reference;
case GLOBAL_BEHAVIOUR_GENERIC_LIST_TAG:

GenericValue
generic_list;

};

// Interface: RtComponentOrSocket Operation: setVisibleSizesAdjustment
// Corresponding MHEG datatype: Adjustment_PolicyADJUSTMENT_POLICY_
//==
enum AdjustmentPolicyTag { ADJUSTMENT_POLICY_COMPONENT_REFERENCE_TAG,
ADJUSTMENT_POLICY_SPECIFIED_TAG, ADJUSTMENT_POLICY_GREATEST_TAG,
ADJUSTMENT_POLICY_SMALLEST_TAG };
union AdjustmentPolicy
switch (AdjustmentPolicyTag){

case ADJUSTMENT_POLICY_COMPONENT_REFERENCE_TAG:
RtObjectSocketReference

component_reference;
case ADJUSTMENT_POLICY_SPECIFIED_TAG:

SpecifiedSizes
specified;

};

// Interface: RtObject Operation: bind
// Interface: RtObject Operation: new
// Interface: RtObject Operation: getIdentifier
// Corresponding MHEG datatype: none
//==
struct RtObjectIdentifier {

MHEGIdentifier
model_object_id;

long
rt_object_number;

};

// Interface: RtGenericContentOrPresentableSocket Operation: setButtonInteractionStyle
// Corresponding MHEG datatype: Alternate_Presentation_State
//==
struct AlternatePresentation {

PresentationState
presentation_state;

PerceptibleReference
perceptible_target;

};

H.1.37 Exceptions

InvalidTarget exception

Description:

The InvalidTarget exception is raised when the targeted MHEG entity is not available The period
member returns the current period of the target.

Page 205
Draft prETS 300 715: May 1996

InvalidParameter exception

Description:

The InvalidParameter exception is raised when the value of one of the parameters prohibits the normal
execution of the action. The completion_status member indicates whether or not the action was
completed (with a default value assigned to the inadequate parameter). The parameter_number member
identifies the rank of the invalid parameter.

NotBound exception

Description:

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

AlreadyBound exception

Description:

The AlreadyBound exception is raised when the interface object instance is already bound with an MHEG
entity The entity_identifier member identifies the bound entity.

IDL definition:

exception InvalidTarget {
unsigned short period;

};

exception InvalidParameter {
enum CompletionStatus { YES, NO};
ConpletionStatus completion_status;
unsigned short period;

};

exception AlreadyBound {
EntityIdentifier entity_identifier;

};

exception NotBound {};

Page 206
Draft prETS 300 715: May 1996

History

Document history

May 1996 Public Enquiry PE 106: 1996-05-20 to 1996-09-13

	Foreword
	Introduction
	1	Scope
	2	Normative references
	3	Definitions and abbreviations
	3.1	Definitions
	3.2	Abbreviations

	4	Conformance requirements
	4.1	Information object conformance
	4.1.1	Profiles
	4.1.2	Encoding
	4.1.3	Syntax
	4.1.4	Semantics

	4.2	Implementation conformance
	4.2.1	Conformance requirements
	4.2.2	Conformance documentation

	4.3	Application conformance
	4.3.1	Strictly Conforming Application
	4.3.2	Conforming Application

	4.4	Test Methods

	5	Overview
	5.1	Description methodology
	5.2	Data processing operations
	5.3	Access to external data and functions

	6	MHEG/MHEG-S relationship
	6.1	Data entities
	6.2	Functional entities
	6.3	MHEG-SIR script interpreter

	7	Main features of the MHEG-SIR
	7.1	Features of applications using MHEG-SIR
	7.1.1	Manipulation of MHEG multimedia presentation objects
	7.1.2	External device control
	7.1.3	External device control for data acquisition
	7.1.4	Access to external data
	7.1.5	Access to external run-time services
	7.1.6	Computations, variable handling and control structures

	7.2	Functional features
	7.2.1	Data processing operations
	7.2.2	Access to external data and functions

	7.3	Technical features
	7.3.1	Hardware independence
	7.3.2	Final form representation
	7.3.3	Compactness
	7.3.4	Ease of implementation
	7.3.5	Interpretation efficiency
	7.3.6	Openness and extensibility
	7.3.7	Resistance to reverse engineering
	7.3.8	Provisions for real-time interchange
	7.3.9	Semantic validation for quality of service purposes
	7.3.10	Syntax checkability (with regard to contamination hazards)
	7.3.11	Secure script processing

	8	Elements of the MHEG-SIR
	8.1	Data types
	8.1.1	Primitive types
	8.1.1.1	The "void" type
	8.1.1.2	The "boolean" type
	8.1.1.3	The "octet" type
	8.1.1.4	The "short" type
	8.1.1.5	The "long" type
	8.1.1.6	The "unsigned short" type
	8.1.1.7	The "unsigned long" type
	8.1.1.8	The "float" type
	8.1.1.9	The "double" type
	8.1.1.10	The "character" type
	8.1.1.11	The "string" type
	8.1.1.12	The "data identifier" type
	8.1.1.13	The "object reference" type

	8.1.2	Constructed types
	8.1.2.1	Sequence types
	8.1.2.2	Array types
	8.1.2.3	Structure types
	8.1.2.4	Union types
	8.1.2.5	Enumerated types

	8.1.3	Predefined types

	8.2	Data
	8.2.1	Immediate values
	8.2.2	Constants
	8.2.3	Variables
	8.2.3.1	Global variables
	8.2.3.2	Local variables

	8.3	Functions
	8.3.1	Routines
	8.3.2	Services
	8.3.3	Predefined functions

	8.4	Messages
	8.4.1	Package exceptions
	8.4.2	Predefined messages

	8.5	Instructions
	8.6	Identifiers
	8.6.1	Type identifiers
	8.6.2	Data identifiers
	8.6.3	Function identifiers
	8.6.4	Message identifiers

	8.7	Type matching
	8.8	Value matching

	9	The MHEG-SIR virtual machine
	9.1	Structures and notations
	9.2	Memory areas
	9.2.1	Global data area
	9.2.1.1	The type definition table
	9.2.1.2	The constant table
	9.2.1.3	The global variable table

	9.2.2	Code area
	9.2.2.1	The routine definition table
	9.2.2.2	The package definition table
	9.2.2.3	The service definition table
	9.2.2.4	The exception definition table
	9.2.2.5	The handler definition table
	9.2.2.6	The program code area

	9.2.3	The dynamic memory areas
	9.2.3.1	The calling stack
	9.2.3.2	The parameter stack
	9.2.3.3	The message queue
	9.2.3.4	The heap area

	9.2.4	Registers
	9.2.4.1	The instruction pointer register
	9.2.4.2	The instruction register
	9.2.4.3	The error register
	9.2.4.4	The stack pointer register
	9.2.4.5	The function pointer register
	9.2.4.6	The queue pointer register

	9.3	Processing units
	9.3.1	Mh-script initialisation
	9.3.2	Rt-script initialisation
	9.3.3	Message reception
	9.3.3.1	Elementary action
	9.3.3.2	Exception

	9.3.4	Script code execution unit
	9.3.5	MHEG-SIR instruction execution unit

	10	Provisions for run-time environment access
	10.1	General model
	10.2	Declaration of IDL interfaces
	10.3	Invocation of IDL operations in an MHEG-SIR program
	10.4	Handling of IDL exceptions in an MHEG-SIR program
	10.5	Invocation of IDL operations by an MHEG-S engine
	10.6	Handling of IDL exceptions by an MHEG-S engine
	10.7	Platform mapping specifications

	11	Provisions for MHEG object manipulation
	11.1	Invoking MHEG actions
	11.1.1	Sending messages to other scripts
	11.1.2	Synchronisation with MHEG objects

	11.2	Receiving MHEG messages
	11.2.1	Return actions
	11.2.2	MHEG actions targeted at an mh-script
	11.2.3	MHEG actions targeted at an rt-script
	11.2.4	MHEG-API exceptions

	11.3	Effect of MHEG actions
	11.3.1	Prepare
	11.3.2	New
	11.3.3	Run
	11.3.4	Set parameters
	11.3.5	Stop
	11.3.6	Delete
	11.3.7	Destroy

	12	MHEG-SIR declarations
	12.1	Type declaration
	12.1.1	Type identifier
	12.1.2	Type description
	12.1.2.1	Enumerated description
	12.1.2.2	Sequence description
	12.1.2.3	Array description
	12.1.2.4	Structure description
	12.1.2.5	Union description

	12.2	Constant declaration
	12.2.1	Data identifier
	12.2.2	Type identifier
	12.2.3	Constant value

	
	12.3	Global variable declaration
	12.3.1	Data identifier
	12.3.2	Type identifier
	12.3.3	Constant reference

	12.4	Package declaration
	12.4.1	Package identifier
	12.4.2	Package name
	12.4.3	Service description
	12.4.3.1	Function identifier
	12.4.3.2	Operation name
	12.4.3.3	Calling mode
	12.4.3.4	Type identifier
	12.4.3.5	Parameter description
	12.4.3.5.1	Passing mode
	12.4.3.5.2	Type identifier

	12.4.4	Exception description
	12.4.4.1	Message identifier
	12.4.4.2	Exception name
	12.4.4.3	Parameter description

	12.5	Handler declaration
	12.5.1	Message reference
	12.5.1.1	Message identifier
	12.5.1.2	Exception reference

	12.5.2	Function reference
	12.5.2.1	Function identifier
	12.5.2.2	Service reference

	12.6	Routine declaration
	12.6.1	Function identifier
	12.6.2	Type identifier
	12.6.3	Parameter description
	12.6.3.1	Passing mode
	12.6.3.2	Type identifier

	12.6.4	Local variable declaration
	12.6.4.1	Data identifier

	12.6.5	Type identifier
	12.6.6	Constant reference
	12.6.7	Program code

	13	MHEG-SIR instructions
	13.1	Presentation methodology
	13.2	Notation
	13.2.1	Variable table notation
	13.2.2	Data table notation
	13.2.3	Type matching notation
	13.2.4	Type combination

	13.3	Classification of MHEG-SIR instructions
	13.4	Description of instructions
	13.4.1	No operation
	13.4.2	Yield
	13.4.3	Return
	13.4.4	Add
	13.4.5	Subtract
	13.4.6	Multiply
	13.4.7	Divide
	13.4.8	Remainder
	13.4.9	Negate
	13.4.10	Not
	13.4.11	And
	13.4.12	Or
	13.4.13	Exclusive or
	13.4.14	Equal
	13.4.15	Less or equal
	13.4.16	Greater than
	13.4.17	Jump on true
	13.4.18	Jump on false
	13.4.19	Jump
	13.4.20	Long jump on true
	13.4.21	Long jump on false
	13.4.22	Long jump
	13.4.23	Call
	13.4.24	External call
	13.4.25	Drop
	13.4.26	Shift
	13.4.27	Push immediate
	13.4.28	Push
	13.4.29	Push reference
	13.4.30	Pop
	13.4.31	Pop reference
	13.4.32	Pop contents
	13.4.33	Increment
	13.4.34	Decrement
	13.4.35	Get
	13.4.36	Set
	13.4.37	Set contents
	13.4.38	Alloc
	13.4.39	Free
	13.4.40	Dup
	13.4.41	CVT

	14	IDL mapping to MHEG-SIR
	14.1	IDL specifications
	14.2	IDL interfaces and modules
	14.3	IDL operations
	14.3.1	Operation name
	14.3.2	Operation parameters
	14.3.3	Implicit parameter
	14.3.4	Return value

	14.4	IDL attributes
	14.4.1	Accessor
	14.4.2	Modifier
	14.4.3	Readonly attribute

	14.5	IDL inherited operations
	14.6	IDL exceptions
	14.6.1	Exception name
	14.6.2	Exception members

	14.7	IDL types
	14.8	IDL constants

	Annex A (normative): 	ASN.1 notation (level c)
	Annex B (normative):	Coded representation (level d)
	Annex C (normative):	MHEG-SIR predefined elements
	Annex D (normative):	IDL Platform mapping specification form
	Annex E (informative):	EBNF notation for MHEG-SIR syntax
	Annex F (informative):	Textual notation for MHEG-SIR programs
	Annex G (informative):	MHEG entities
	Annex H (informative): 	MHEG Application Programming Interface (MHEG-API)
	H.1	IDL specification of the MHEG-API
	H.1.1	MHEGEngine object
	H.1.2	NotificationManager object
	H.1.3	EntityManager object
	H.1.4	Entity object
	H.1.5	MhObject object
	H.1.6	MhAction object
	H.1.7	MhLink object
	H.1.8	MhModel object
	H.1.9	MhComponent object
	H.1.10	MhGenericContent object
	H.1.11	MhContent object
	H.1.12	MhMultiplexedContent object
	H.1.13	MhComposite object
	H.1.14	MhScript object
	H.1.15	MhContainer object
	H.1.16	MhDescriptor object
	H.1.17	RtObjectOrSocket object
	H.1.18	RtObject object
	H.1.19	Socket object
	H.1.20	RtScript object
	H.1.21	RtComponentOrSocket object
	};
	H.1.22	RtComponent object
	H.1.23	RtCompositeOrStructuralSocket object
	H.1.24	RtComposite object
	H.1.25	StructuralSocket object
	H.1.26	RtGenericContentOrPresentableSocket object
	H.1.27	RtGenericContent object
	H.1.28	GenericPresentableSocket object
	H.1.29	RtContentOrPresentableSocket object
	H.1.30	RtContent object
	H.1.31	PresentableSocket object
	H.1.32	RtMultiplexedContentOrPresentableSocket object
	H.1.33	RtMultiplexedContent object
	H.1.34	MultiplexedPresentableSocket object
	H.1.35	Channel object
	H.1.36	Parameter definition
	H.1.37	Exceptions

	History

