
*

DRAFT

EUROPEAN prETS 300 714

TELECOMMUNICATION April 1996

STANDARD

Source: ETSI TC-TE Reference: DE/TE-01045

ICS: 35.060

Key words: M&HIRS, multimedia platform, MHEG, API

Terminal Equipment (TE);
Application Programming Interface (API) for the manipulation of

Multimedia and Hypermedia information objects

ETSI
European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1996. All rights reserved.

Page 2
Draft prETS 300 714: April 1996

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
Draft prETS 300 714: April 1996

Contents

Foreword ...9

Introduction..9

1 Scope ..11

2 References..11

3 Definitions and abbreviations ..12
3.1 Definitions ..12
3.2 Abbreviations ...15

4 Conformance...16
4.1 Implementation conformance ..16

4.1.1 Conformance requirements...16
4.1.2 Conformance documentation ..16

4.2 Application conformance ...17
4.2.1 Strictly conforming application...17
4.2.2 Conforming application..17

4.3 Test methods ...17

5 General description ...17
5.1 Functional reference model of applications using MHEG..17

5.1.1 Reference model for multimedia applications ...17
5.1.2 The MHEG API..22

5.2 Functional specification of the MHEG API...23
5.2.1 MHEG usage specifications ..23

5.2.1.1 Definitions ..23
5.2.1.2 MHEG objects ...23
5.2.1.3 Mh-objects ...24
5.2.1.4 Rt-objects ..24
5.2.1.5 Channels..24
5.2.1.6 Interchanged MHEG objects ...24

5.2.2 Description of MHEG-related services ..25

6 API definition principles ...26
6.1 Satisfaction of technical requirements on the MHEG API ...26
6.2 Use of Interface Definition Language ..26

6.2.1 Comprehensive introduction to IDL...26
6.2.2 The Interface Definition Language ..27

6.2.2.1 Objects ..27
6.2.2.2 Requests..27
6.2.2.3 Types ...28
6.2.2.4 Interfaces...28
6.2.2.5 Operations ...28
6.2.2.6 Attributes..29
6.2.2.7 Subtyping versus inheritance...29
6.2.2.8 Subtyping...29
6.2.2.9 Inheritance...29

6.2.3 Principles for mapping IDL interfaces to API primitives29
6.2.4 Fulfilment of technical requirements ...30

6.3 Overview of the API definition and general principles..30
6.3.1 The MHEG API object model ..30

7 Definition of the MHEG API...32

Page 4
Draft prETS 300 714: April 1996

7.1 Mandatory primitives ... 32
7.1.1 MHEGEngine object ... 32

7.1.1.1 initialiseEngine operation .. 32
7.1.1.2 shutdownEngine operation.. 32
7.1.1.3 IDL description .. 32

7.1.2 NotificationManager object ... 32
7.1.2.1 getReturnability operation ... 32
7.1.2.2 getNotification operation ... 33
7.1.2.3 IDL description .. 33

7.1.3 EntityManager object .. 33
7.1.3.1 getAvailableMhObjects operation 33
7.1.3.2 getAvailableRtObjects operation... 34
7.1.3.3 getAvailableChannels operation ... 34
7.1.3.4 releaseAlias operation... 34
7.1.3.5 IDL description .. 35

7.1.4 Entity object .. 35
7.1.4.1 setAlias operation.. 35
7.1.4.2 getAlias operation ... 35
7.1.4.3 IDL description .. 36

7.1.5 MhObject object.. 36
7.1.5.1 bind operation ... 36
7.1.5.2 unbind operation ... 36
7.1.5.3 prepare operation.. 37
7.1.5.4 destroy operation .. 37
7.1.5.5 getPreparationStatus operation .. 38
7.1.5.6 getIdentifier operation ... 38
7.1.5.7 kill operation .. 38
7.1.5.8 IDL description .. 39

7.1.6 MhAction object .. 39
7.1.6.1 delay operation.. 39
7.1.6.2 IDL description .. 40

7.1.7 MhLink object.. 40
7.1.7.1 abort operation .. 40
7.1.7.2 IDL description .. 40

7.1.8 MhModel object .. 40
7.1.8.1 IDL description .. 40

7.1.9 MhComponent object.. 41
7.1.9.1 IDL description .. 41

7.1.10 MhGenericContent object ... 41
7.1.10.1 copy operation... 41
7.1.10.2 IDL description .. 41

7.1.11 MhContent object.. 41
7.1.11.1 setData operation.. 42
7.1.11.2 getData operation.. 42
7.1.11.3 IDL description .. 43

7.1.12 MhMultiplexedContent object ... 43
7.1.12.1 setMultiplex operation ... 43
7.1.12.2 setDemultiplex operation .. 44
7.1.12.3 IDL description .. 44

7.1.13 MhComposite object ... 44
7.1.13.1 IDL description .. 44

7.1.14 MhScript object ... 44
7.1.14.1 IDL description .. 45

7.1.15 MhContainer object... 45
7.1.15.1 IDL description .. 45

7.1.16 MhDescriptor object.. 45
7.1.16.1 IDL description .. 45

7.1.17 RtObjectOrSocket object .. 45
7.1.17.1 setGlobalBehaviour operation... 45
7.1.17.2 getGlobalBehaviour operation... 46
7.1.17.3 run operation ... 46
7.1.17.4 stop operation ... 46

Page 5
Draft prETS 300 714: April 1996

7.1.17.5 IDL description...47
7.1.18 RtObject object..47

7.1.18.1 bind operation ..47
7.1.18.2 unbind operation ..48
7.1.18.3 new operation ..48
7.1.18.4 delete operation ...48
7.1.18.5 getAvailabilityStatus operation...49
7.1.18.6 getIdentifier operation ..49
7.1.18.7 kill operation...50
7.1.18.8 getRunningStatus operation ..50
7.1.18.9 IDL description...50

7.1.19 Socket object...51
7.1.19.1 bind operation ..51
7.1.19.2 unbind operation ..51
7.1.19.3 getIdentifier operation ..52
7.1.19.4 kill operation...52
7.1.19.5 plug operation ..52
7.1.19.6 setVisibleDurationPosition operation53
7.1.19.7 getVisibleDurationPosition operation...................................53
7.1.19.8 IDL description...54

7.1.20 RtScript object ...54
7.1.20.1 setParameters operation ...54
7.1.20.2 getTerminationStatus operation ..55
7.1.20.3 IDL description...55

7.1.21 RtComponentOrSocket object ..55
7.1.21.1 setRGS operation ..55
7.1.21.2 getRGS operation ..56
7.1.21.3 setOpacity operation..56
7.1.21.4 setPresentationPriority operation...57
7.1.21.5 getOpacity operation..57
7.1.21.6 getEffectiveOpacity operation..58
7.1.21.7 getPresentationPriority operation ..58
7.1.21.8 setVisibleDuration operation..58
7.1.21.9 setTemporalTermination operation59
7.1.21.10 setCurrentTemporalPosition operation................................59
7.1.21.11 setSpeed operation..60
7.1.21.12 setTimestones operation ...61
7.1.21.13 getInitialTemporalPosition operation61
7.1.21.14 getTerminalTemporalPosition operation..............................62
7.1.21.15 getVDLength operation..62
7.1.21.16 getTemporalTermination operation62
7.1.21.17 getCurrentTemporalPosition operation................................63
7.1.21.18 getSpeedRate operation..63
7.1.21.19 getOGTR operation ...64
7.1.21.20 getEffectiveSpeedRate operation..64
7.1.21.21 getEffectiveOGTR operation ...64
7.1.21.22 getTimestoneStatus operation...65
7.1.21.23 setPerceptibleSizeProjection operation65
7.1.21.24 setAspectRatio operation...66
7.1.21.25 setVisibleSize operation ..66
7.1.21.26 setVisibleSizesAdjustment operation...................................67
7.1.21.27 setBox operation..68
7.1.21.28 setDefaultBackground operation ...68
7.1.21.29 setAttachmentPoint operation ...69
7.1.21.30 setAttachmentPointPosition operation.................................69
7.1.21.31 setVisibleSizesAlignment operation.....................................70
7.1.21.32 setMovingAbility operation ...71
7.1.21.33 setResizingAbility operation...71
7.1.21.34 setScalingAbility operation...72
7.1.21.35 setScrollingAbility operation...72
7.1.21.36 getGSR operation ..72
7.1.21.37 getPS operation ...73

Page 6
Draft prETS 300 714: April 1996

7.1.21.38 getAspectRatio operation.. 73
7.1.21.39 getPSAP operation.. 74
7.1.21.40 getVSGS operation ... 74
7.1.21.41 getVS operation .. 74
7.1.21.42 getBox operation ... 75
7.1.21.43 getDefaultBackground operation .. 75
7.1.21.44 getVSIAP operation... 76
7.1.21.45 getVSIAPPosition operation.. 76
7.1.21.46 getVSEAP operation ... 76
7.1.21.47 getVSEAPPosition operation .. 77
7.1.21.48 getMovingAbility operation .. 77
7.1.21.49 getResizingAbility operation .. 78
7.1.21.50 getScalingAbility operation .. 78
7.1.21.51 getScrollingAbility operation .. 78
7.1.21.52 setSelectability operation .. 79
7.1.21.53 setSelectionStatus operation .. 80
7.1.21.54 setSelectionPresentationEffectResponsibility operation 80
7.1.21.55 getSelectability operation .. 81
7.1.21.56 getEffectiveSelectability operation 81
7.1.21.57 getSelectionStatus operation .. 82
7.1.21.58 getSelectionMode operation ... 82
7.1.21.59 getSelectionPresentationEffectResponsibility operation..... 82
7.1.21.60 setModifiability operation... 83
7.1.21.61 setModificationStatus operation.. 83
7.1.21.62 setModificationPresentationEffectResponsibility operation. 84
7.1.21.63 getModifiability operation... 84
7.1.21.64 getEffectiveModifiability operation....................................... 85
7.1.21.65 getModificationStatus operation.. 85
7.1.21.66 getModificationMode operation ... 86
7.1.21.67 getModificationPresentationEffectResponsibility operation 86
7.1.21.68 setNoInteractionStyle operation .. 86
7.1.21.69 IDL description .. 87

7.1.22 RtComponent object ... 91
7.1.22.1 IDL description .. 91

7.1.23 RtCompositeOrStructuralSocket object.. 91
7.1.23.1 setResizingStrategy operation .. 92
7.1.23.2 getResizingStrategy operation .. 92
7.1.23.3 setAudibleCompositionEffect operation 92
7.1.23.4 getAudibleCompositionEffect operation.............................. 93
7.1.23.5 getNumberOfSelectedSockets operation 93
7.1.23.6 getNumberOfModifiedSockets operation............................ 94
7.1.23.7 setMenuInteractionStyle operation...................................... 94
7.1.23.8 setScrollingListInteractionStyle operation 95
7.1.23.9 IDL description .. 96

7.1.24 RtComposite object .. 97
7.1.24.1 IDL description .. 97

7.1.25 StructuralSocket object... 97
7.1.25.1 IDL description .. 97

7.1.26 RtGenericContentOrPresentableSocket object .. 97
7.1.26.1 setAudibleVolume operation ... 97
7.1.26.2 getInitialOriginalAudibleVolume operation 98
7.1.26.3 getCurrentOriginalAudibleVolume operation....................... 98
7.1.26.4 getEffectiveOriginalAudibleVolume operation..................... 99
7.1.26.5 getPerceptibleAudibleVolume operation 99
7.1.26.6 setButtonInteractionStyle operation 100
7.1.26.7 IDL description .. 100

7.1.27 RtGenericContent object .. 101
7.1.27.1 IDL description .. 101

7.1.28 GenericPresentableSocket object .. 101
7.1.28.1 IDL description .. 101

7.1.29 RtContentOrPresentableSocket object... 101
7.1.29.1 setSliderInteractionStyle operation 101

Page 7
Draft prETS 300 714: April 1996

7.1.29.2 setEntryFieldInteractionStyle operation102
7.1.29.3 IDL description...103

7.1.30 RtContent object..103
7.1.30.1 IDL description...103

7.1.31 PresentableSocket object..103
7.1.31.1 IDL description...103

7.1.32 RtMultiplexedContentOrPresentableSocket object103
7.1.32.1 setStreamChoice operation ...103
7.1.32.2 getStreamChosen operation..104
7.1.32.3 IDL description...104

7.1.33 RtMultiplexedContent object ...104
7.1.33.1 IDL description...104

7.1.34 MultiplexedPresentableSocket object ...105
7.1.34.1 IDL description...105

7.1.35 Channel object ..105
7.1.35.1 bind operation ..105
7.1.35.2 unbind operation ..105
7.1.35.3 new operation ..106
7.1.35.4 delete operation ...106
7.1.35.5 getRtAvailabilityStatus operation107
7.1.35.6 getIdentifier operation ..107
7.1.35.7 kill operation...108
7.1.35.8 setPerceptability operation ..108
7.1.35.9 getPerceptability operation ..108
7.1.35.10 getAssignedPerceptibles operation109
7.1.35.11 IDL description...109

7.1.36 Parameter definition ..110
7.1.37 Exceptions...124

7.1.37.1 InvalidTarget exception..124
7.1.37.2 InvalidParameter exception ...124
7.1.37.3 NotBound exception ..124
7.1.37.4 AlreadyBound exception..124
7.1.37.5 IDL definition..124

7.2 Optional primitives ...125

Annex A (normative): Complete IDL definition of the MHEG API ..126

History..127

Page 8
Draft prETS 300 714: April 1996

Blank page

Page 9
Draft prETS 300 714: April 1996

Foreword

This draft European Telecommunication Standard (ETS) has been produced by the Terminal Equipment
(TE) Technical Committee of the European Telecommunications Standards Institute (ETSI), and is now
submitted for the Public Enquiry phase of the ETSI standards approval procedure.

Introduction

This ETS specifies the abstract Application Programming Interface (API) for the manipulation of
multimedia and hypermedia information objects, i.e. the API that shall be provided by Multimedia and
Hypermedia Experts Group (MHEG) engines for their control by MHEG applications.

This ETS is part of a broader standardisation framework that specifies the usage of MHEG so that
interoperable equipment can be effectively developed to support multimedia information services and
applications. This implies

- specifying additional constraints on the use of MHEG objects within distributed systems and
applications using telecommunication networks;

- defining APIs that building blocks of architectures using MHEG should provide;
- defining MHEG profiles complementing the MHEG-1 standard by specifying restrictions on the

coded representation and specifying the complete required behaviour of an MHEG engine that
should be supported for a given category of applications and/or terminal equipment;

- defining an MHEG script interchange representation;
- defining end-to-end protocols for multimedia/hypermedia information services using MHEG;
- specifying conformance testing procedures for these standards.

Functional and technical requirements of this ETS have been described in ETR 225 [4]

Proposed transposition dates

Date of latest announcement of this ETS (doa): 3 months after ETSI publication

Date of latest publication of new National Standard
or endorsement of this ETS (dop/e): 6 months after doa

Date of withdrawal of any conflicting National Standard (dow): 6 months after doa

Page 10
Draft prETS 300 714: April 1996

Blank page

Page 11
Draft prETS 300 714: April 1996

1 Scope

Multimedia and Hypermedia Experts Group (MHEG) part 1 (ISO/IEC 13522-1 [1]) is a generic standard,
which specifies the coded representation of interchanged multimedia/hypermedia information objects
(MHEG objects). These so-called MHEG objects are handled, interpreted and presented by MHEG
engines.

This European Telecommunication Standard (ETS) specifies the abstract Application Programming
Interface (API) for the manipulation of multimedia and hypermedia information objects, i.e. the API that
shall be provided by MHEG engines for their control by MHEG applications.

This API meets the following requirements:

- it is independent of the programming language used for the MHEG application;
- it is independent of the underlying operating system;
- it is independent of the mechanism used for interchanging information between the API user (i.e.

MHEG application) and the API provider (i.e. MHEG engine, the messages that are exchanged as
the result of triggering API primitives);

- it is independent of the actual encoding of these messages;
- it is generic and meant to cover all application requirements;
- it is conformance testable;
- it aims to be as easy as possible to implement.

2 References

This ETS incorporates by dated or undated reference, provisions from other publications. These
references are cited at the appropriate places in the text and the publications are listed hereafter. For
dated references, subsequent amendments to or revisions of any of these publications apply to this ETS
only when incorporated in it by amendment or revision. For undated references the latest edition of the
application referred to applies.

[1] ISO/IEC DIS 13522-1 (1994): "Information technology - Coding of Multimedia
and Hypermedia Information - Part 1: MHEG object representation - Base
Notation".

[2] ISO/IEC 9646 Parts 1 to 5 (1991): "Information Technology - Open Systems
Interconnection - Conformance testing methodology and framework".

[3] ETR 173 (1995): "Terminal Equipment (TE); Functional Model for Multimedia
Applications".

[4] ETR 225 (1995): "Terminal Equipment (TE); Application Programmable
Interface (API) and script representation for MHEG; Requirements and
framework".

[5] ISO/IEC 8824 (1990): "Information Technology - Open Systems Interconnection
- Specification of Abstract Syntax Notation One (ASN.1)".

[6] ISO/IEC 8825 (1990): "Information Technology - Open Systems Interconnection
- Specification of Basic Encoding Rules for Abstract Syntax Notation One
(ASN.1)".

[7] ITU-T Recommendation I.113 (1994): "Vocabulary of terms for broadband
aspects of ISDN".

[8] ITU-T Recommendation I.112 (1993): "Vocabulary of terms for ISDNs."

[9] CCITT Recommendation Q.9 (1990): "Vocabulary of switching and signalling
terms."

Page 12
Draft prETS 300 714: April 1996

[10] ISO/IEC 14750-1 Working Draft: "CORBA IDL as an Interface Definition
Language for ODP Systems".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this ETS, the following definitions apply:

NOTE: Due to the particular nature of this ETS, some of the words and expressions used in
this ETS come from the "telecommunication services" standards glossary, while others
come from the "software technology" standards glossary. This leads to words whose
meaning vary according to the context, i.e. the expression within which they are used.
For this reason, many of these expressions are defined in this subclause.

Should any ambiguity occur, definitions of the following standards would apply, in
decreasing order:

- ISO/IEC DIS 13522-1 [1];

- any other standard part of ISO/IEC 13522 [1];

- ITU-T Recommendation I.113 [7];

- ITU-T Recommendation I.112 [8];

- CCITT Recommendation Q.9 [9].

Application Programming Interface (API): A boundary across which a software application uses
facilities of programming languages to invoke software services. These facilities may include procedures
or operations, shared data objects and resolution of identifiers.

function family: A cluster of functional MHEG API requirements consisting of functions with related
semantics and applying to the same type of target.

hypermedia: The ability to access monomedia and multimedia information by interaction with explicit
links.

interactive service : A service which provides the means for bidirectional exchange of information
between users or between users and hosts. Interactive services are subdivided into three classes of
services: conversational services, messaging services and retrieval services (ITU-T Recommendation
I.113 [7]).

local application : A piece of software which is part of the (telecommunication) application and is running
on the considered equipment.

MHEG API: The API provided by an MHEG engine to MHEG applications for the manipulation of MHEG
objects, as defined in this ETS.

MHEG application : A piece of software which uses the MHEG API. A MHEG application is therefore a
client of an MHEG engine.

MHEG engine: A process or a set of processes that interpret MHEG objects encoded according to the
encoding specifications of ISO/IEC DIS 13522-1 [1]: Abstract Syntax Notation One (ASN.1) for part 1,
Standard Generalized Markup Language (SGML) for part 2.

MHEG using application : An application which involves the interchange of MHEG objects within itself or
with another application.

Page 13
Draft prETS 300 714: April 1996

multimedia and hypermedia application : An application which involves the presentation of multimedia
information to the user and the interactive navigation across this information by the user.

Multimedia and Hypermedia Information Retrieval Services (M&HIRS) : A generic set of services
which provide users with the capability to access and interchange multimedia and hypermedia
information.

multimedia application: An application which involves the presentation of multimedia information to the
user.

multimedia: The property of handling several types of representation media .

primitive: One of the basic entry points provided by a provider module to any user module to enable the
user module to access the software service(s) supplied by the provider module.

software application: A piece of software answering a set of user's requirements and for use by a
computer user.

software service: A set of functions provided by a (server) software or system to a client software or
system, usually accessible through an application programming interface.

telecommunication application: A set of a user's requirements (CCITT Recommendation Q.9 [9]).

telecommunication service: That which is offered by an administration to its customers in order to
satisfy a specific telecommunication requirement (ITU-T Recommendation I.112 [8]).

terminal application: A piece of software running on the terminal and performing that part of the
processing required to make the terminal appropriate for user access to the application. The terminal
application is usually the 'master' module in the terminal.

user: A person or machine delegated by a customer to use the services and/or facilities of a
telecommunication network (ITU-T Recommendation I.112 [8]).

action object: An object that provides operation on objects: e.g., to change their attributes or states.

channel: A logical space in which rt-components are positioned for final presentation. Channels are
mapped by the MHEG engine to physical devices such as screen windows or loudspeaker for making the
rt-objects within them perceivable by the user.

component object: An abstraction which represents objects of Content or Composite type.

composite object: A list of Composition Elements grouped for presentation. The presentation of a
Composite object consists of the presentation of its Composition Elements.

container object: A means to group objects without specifying specific relationships.

content object: Encoded generic value, media or non-media data.

descriptor object: A structure for the interchange of resource information about a single or a set of other
interchanged objects.

IDL attribute: An identifiable association between an object and a value. An attribute A is made visible to
clients as a pair of operations: get_A and set_A . Read only attributes only generate a get operation.

IDL class: An implementation that can be instantiated to create multiple objects with the same behaviour.
An object is an instance of a class. Types classify objects according to a common implementation.

IDL data type: A categorisation of values operation arguments, typically covering both behaviour and
representation (i.e., the traditional non-Object Oriented (OO) programming language notion of type).

Page 14
Draft prETS 300 714: April 1996

IDL instance: A object is an instance of an interface if it provides the operations, signatures and
semantics specified by that interface. An object is an instance of an implementation if its behaviour is
provided by that implementation.

IDL object: A combination of state and a set of methods that explicitly embodies an abstraction
characterised by the behaviour of the relevant requests. An object is an instance of an implementation
and an interface. An object models a real-world-entity, and it is implemented as a computational entity
that encapsulates state and operations (internally implemented as data and methods) and responds to
requester services.

IDL operation: A service that can be requested. An operation has an associated signature, which may
restrict which actual parameters are valid.

Interface Definition Language (IDL): A language that specifies types and objects by specifying their
interface. It provides a conceptual framework for describing the objects.

link object: An object which defines spatio-temporal relationships between other objects.

macro object: An object that provides the facility to replace the parameters in frequently used action
objects.

Mh-object: MhObjects (and their subtypes) match form b) objects as defined in ISO/IEC DIS 13522-1 [1],
subclause 6.2.4, i.e. objects available to the MHEG engine.

MHEG elementary action: An attribute of the MHEG Action class which instructs an object to perform a
certain operation: e.g., to change one of its attributes or states.

MHEG entity: Any MHEG object, rt-object, content data, script data, socket, channel or other construction
identified or referred to in ISO/IEC 13522-1 [1].

MHEG interpretation service: The service takes interchanged MHEG objects and messages issued by
the presentation system as an input. It analyses this data in order to trigger the presentation of content
data according to its semantics.

MHEG object handling service: This facility physically creates, handles and maintains intermediate data
structures necessary to implement a client access to the MHEG objects and their contents.

MHEG object: A coded representation of an MHEG object class instance.

model object: Object instanciations from the MHEG classes.

notification: A primitive issued by the server on its own initiative to forward information to the client.

request: A primitive issued by the client on its own initiative to forward information to the server.

response: A primitive issued by the server as a reply to a request to forward information to the client.

rt-object: rtObjects (and their subtypes) match form c objects as defined in ISO/IEC DIS 13522-1 [1],
subclause 6.2.4, i.e. instances of MhObjects available to the presentation process.

script object: Object that provides the structure to interchange script data in a specified encoded form.

socket: An element of an rt-composite. Rt-components are plugged into sockets. Different types of
sockets are defined depending on the rt-component plugged into the socket:

- empty socket, i.e. a null rt-component is plugged;
- presentable socket, i.e. an rt-content or an rt-multiplexed content is plugged;
- structural socket, i.e. an rt-composite is plugged.

Page 15
Draft prETS 300 714: April 1996

3.2 Abbreviations

For the purposes of this ETS, the following abbreviations apply:

API Application Programming Interface
ASN.1 Abstract Syntax Notation One
C1 State period for a Channel: 'non available'
C2 State period for a Channel: 'processing'
C3 State period for a Channel: 'available'
C4 State period for a Channel: 'processing'
CGS Channel Generic Space
CGSU Channel Generic Space Unit
CORBA Common Object Request Broker Architecture
EBNF Extended Backus Naur Form
GSR Generic Spatial Ratio
GTU Generic Temporal Unit
IDL Interface Definition Language (as defined in ISO/IEC 14750-1 [10])
IOGTR Initial Original generic space Generic Temporal Ratio
IOV Initial Original audible Volume
MCU Multipoint Control Unit
mh multimedia/hypermedia
MHEG Multimedia and Hypermedia information coding Experts Group
MPEG Moving Picture Experts Group
O1 State period for an mh-object: 'not ready'
O2 State period for an mh-object: 'processing'
O3 State period for an mh-object: 'ready'
O4 State period for an mh-object: 'processing'
OGS Original Generic Space
OGSU Original generic space Generic Spatial Unit
OGTR Original generic space Generic Temporal Ratio
OGTU Original generic space Generic Temporal Unit
OO Object Oriented
OSI Open Systems Interconnection
OV Original Volume
PRGS Parent Relative Generic Space
PS Perceptible Size
PSAP Perceptible Size Attachment Point
R1 State period for an rt-object: 'not available'
R2 State period for an rt-object: 'processing'
R3 State period for an rt-object: 'available'
R4 State period for an rt-object: 'processing'
RGS Relative Generic Space
RGSU Relative generic space Generic Spatial Unit
RGTU Relative generic space Generic Temporal Unit
rt Run-time
SGML Standard Generalized Markup Language
SIR Script Interchange Representation
SSU Service Support Unit
VD Visible Duration
VS Visible Size
VSEAP Visible Size External Attachment Point
VSGS Visible Size Generic Space
VSGSU Visible Size Generic Spatial Unit
VSIAP Visible Size Internal Attachment Point

Page 16
Draft prETS 300 714: April 1996

4 Conformance

An implementation of this ETS is an MHEG engine implementation which provides client MHEG
applications with one or several language bindings of the abstract API defined in this ETS.

An application of this ETS is an MHEG application which uses a language binding of the abstract API
defined in this ETS to control the behaviour of an MHEG engine.

The following subclauses state requirements associated with the conformance of both implementations
and applications to this ETS.

4.1 Implementation conformance

4.1.1 Conformance requirements

A conforming implementation for a language binding specification for this ETS shall meet all of the
following criteria:

- the implementation shall support all required behaviour defined in this ETS;

- the implementation shall support all required interfaces defined in the language binding
specification. Those interfaces shall support the behaviour described in this ETS and in the
language binding specification;

- the implementation may provide additional functions or facilities not required by this ETS or by the
language binding specification. Each such non-ETS extension shall be identified as such in the
system documentation. Non-ETS extensions, when used, may change the behaviour of functions
or facilities defined by this ETS or by the language binding specification. The conformance
document shall define an environment in which an application can be run with the behaviour
specified by this ETS and the language binding specification. In no case shall such an environment
require modification of a Strictly Conforming Application.

4.1.2 Conformance documentation

A conformance document with the following information shall be available for an implementation claiming
conformance to a language binding specification for this ETS. The conformance document shall be in two
parts. The first part shall have the same structure as this ETS, with the information presented in the
appropriately numbered sections, clauses, and subclauses. The second part shall have the same
structure as the language binding specification, with the information presented in the appropriately
numbered sections, clauses, and subclauses. The conformance document shall not contain information
about extended features or capabilities outside the scope of this ETS and the language binding
specification.

The conformance document shall identify the language binding specification to which the implementation
conforms.

The conformance document shall contain a statement that indicates the full names, numbers, and dates
of the language-independent and language binding specification ETSs that apply.

The conformance document shall state which of the optional features defined in this ETS and in the
language binding specification are supported by the implementation.

The conformance document shall describe the behaviour of the implementation for all implementation-
defined features defined in this ETS and in the language binding specification. This requirement shall be
met by listing these features and by providing either a specific reference to the system documentation or
full syntax and semantics of these features. The conformance document may specify the behaviour of the
implementation for those features where this ETS or the language binding specification states that
implementations may vary or where features are identified as undefined or unspecified.

No specifications other than those specified by this ETS and the language binding specification shall be
present in the conformance document.

Page 17
Draft prETS 300 714: April 1996

The phrases "shall document" or "shall be documented" in this ETS or in a language binding specification
for this ETS mean that documentation of the feature shall appear in the conformance document, as
described previously, unless the system documentation is explicitly mentioned.

The system documentation should also contain the information found in the conformance document.

4.2 Application conformance

All applications claiming conformance to a language binding specification for this ETS shall fall within one
of the categories defined in the following subclauses.

4.2.1 Strictly conforming application

A Strictly Conforming Application is an application that requires only the mandatory facilities described in
this ETS, in the language binding specification and in the applicable language ETSs. Such an application
shall accept a behaviour described in this ETS or in the language binding specification as unspecified or
implementation defined and, for symbolic constants shall accept any value in the ranges permitted by this
ETS and the language binding specification.

4.2.2 Conforming application

A Conforming Application of a language binding specification for this ETS is an application that differs
from a Strictly Conforming Application in that it may use optional facilities described in this ETS, in the
language binding specification and in the applicable language ETSs, as well as non-ETS facilities that are
consistent with the ETS and with the language binding specification. Such an application shall fully
document its requirements for these optional and extended facilities in addition to the documentation
required of a Conforming Application.

4.3 Test methods

Any measurement of conformance to a language binding specification for this ETS shall be performed
using test methods that conform to ISO/IEC 9646 Parts 1 to 5 [2] and to any additional requirements that
may be imposed by the language binding specification.

5 General description

This clause situates the MHEG API within the architecture of an MHEG using application. It then specifies
and classifies the software services that the MHEG API shall provide to its client applications.

5.1 Functional reference model of applications using MHEG

5.1.1 Reference model for multimedia applications

ETR 173 [3] and ETR 225 [4] define a generic reference model describing a functional architecture
common to all multimedia applications making use of retrieval, conversational and/or distribution services.
The model is applicable to all applications using MHEG.

Figures 1, 2 and 3 show how this reference model applies to applications using MHEG for terminal-to-
host, terminal-to-terminal and terminal-to-database configurations in both point-to-point and multipoint
communication.

Page 18
Draft prETS 300 714: April 1996

Block Terminal

Presentat ionAgent
(1,1)

AccessAgent
(1,1)

Local InfoBase
(1,1)

MHEG_Eng ine
(1,1)

LocalAppl icat ion
(1,1)

AccessAgent
(1,1)

Local InfoBase
(1,1)

Block Host

Block Network

Serv iceSupportUni t
(1,)

LocalAppl icat ion
(1,1)

MHEG_Eng ine
(1,1)

System Terminal_to_Host

Figure 1: Application architecture reference model for terminal-to-host configurations

Page 19
Draft prETS 300 714: April 1996

Block Terminal

Presentat ionAgent
(1,1)

AccessAgent
(1,1)

Local InfoBase
(1,1)

MHEG_Eng ine
(1,1)

LocalAppl icat ion
(1,1)

AccessAgent
(1,1)

Local InfoBase
(1,1)

B lock Term ina l

Block Network

Serv iceSupportUni t
(1,)

LocalAppl icat ion
(1,1)

MHEG_Eng ine
(1,1)

System Term inal_to_Terminal

P resenta tionA gent
(1,1)

Figure 2: Application architecture reference model for terminal-to-terminal configurations

Page 20
Draft prETS 300 714: April 1996

Block Terminal

Presentat ionAgent
(1,1)

AccessAgent
(1,1)

Local InfoBase
(1,1)

AccessAgent
(1,1)

Local InfoBase
(1,1)

B lock D atabase

Block Network

Serv iceSupportUni t
(1,)

LocalAppl icat ion
(1,1)

MHEG_Eng ine
(1,1)

System Terminal_to_Database

Figure 3: Application architecture reference model for terminal-to-database configurations

In a Multimedia and Hypermedia architecture the following functional units can be identified:

- presentation agent;
- access agent;
- local application interpreter;
- MHEG engine;
- local information base.

Page 21
Draft prETS 300 714: April 1996

In a Multimedia and Hypermedia architecture the following Interfaces (APIs) can be identified:

- the services of the presentation agent are offered through the presentation API;
- the services of the MHEG engine are offered through the MHEG API;
- the services of the access agent are offered through the access API.

In a Multimedia and Hypermedia architecture the following end to end protocols can be identified:

- end-to-end protocol between an application - distant MHEG engine;
- end-to-end protocol between an application - service support function;
- end-to-end protocol between an access agent - access agent.

For a "terminal-to-host and database" configuration the host may use the end-to-end protocol between
access agents to reference objects or contents at the database. The database has the same structure as
shown in figure 3.

For a terminal-to-host architecture, the Service Support Unit (SSU) to which the terminal may be
connected may also enable the user to select between different applications. The host is connected to the
SSU via the host access network.

For a terminal-to-terminal architecture the SSU to which all terminals are connected may be a Multipoint
Control Unit (MCU) that controls and manages the application and the different terminals. The end-to-end
protocol between an application and a distant MHEG engine is applicable to all terminals. Each terminal
application can use the protocol to communicate with any other terminal engine.

For a "terminal-to-database" or "terminal-to-host and database" structure the database may mainly
consist of an access agent used to locate the referenced objects.

The presentation agent provides a multimedia content presentation service. It manages the presentation
of monomedia data, performs data format decoding and manages the user interaction. It also acts as
interface to external devices like smart card readers, VCRs, etc. The presentation agent is accessed by
its clients (here the MHEG engine) through the "presentation API" which isolates the software on a higher
level from the specific features of the various hardware sub-platforms. The presentation agent is only
present on a terminal.

The access agent provides MHEG object and multimedia content location, access and communication
services. It makes the location of the various objects (multimedia contents, MHEG objects, scripts,
application specific data) transparent to its clients, i.e. the processes trying to access these objects. When
an object is requested, the access agent is able first to locate it (possibly by issuing requests to directory
services), then to retrieve it from local or distant storage (possibly by issuing requests to repository
services and remote equipment), finally to provide access to it (possibly by using MHEG object and
content encoding/decoding services). In the reverse way, the access agent also handles the forwarding of
objects to remote equipment, their registration in directories and their storage in repositories.

The local application manages the logic of the application on a given platform. The application itself will
often be distributed between several platforms (terminals, hosts). The local application is a client of the
access agent via the access API, of the MHEG engine via the MHEG API and of the presentation agent
via the presentation API. The local application may make use of a script execution service provided by a
script processor. Scripts are parts of the application which are interchanged during the course of an
application. A script processor is a functional unit able to execute scripts, it may be the script itself (if
interchanged in executable form), a script language interpreter or an MHEG Script Interchange
Representation (SIR) interpreter.

The MHEG engine provides an MHEG interpretation service. It interprets MHEG objects, manages links
between them, triggers actions and orders objects presentation and access. It is controlled by the
application through the MHEG API.

The local information base may be used to store objects, contents, scripts, etc. permanently or
temporarily on the device. No assumption is made on how those objects are stored and which physical
storage device is used.

Page 22
Draft prETS 300 714: April 1996

The presentation API allows the terminal MHEG engine to access the multimedia content presentation
service provided by a presentation agent.

The MHEG API allows MHEG applications to access the MHEG interpretation service provided by a
MHEG engine. The MHEG API client application may be either the local application, or it may run on a
remote device. If the application is running on a remote device it may access the MHEG API using the
end-to-end protocol "application - distant MHEG engine" (CCITT Recommendation Q.9 [9]). The MHEG
API is specified in this document.

The access API allows processes (e.g. local application, script interpreter, MHEG engine, presentation
agent) to access the MHEG object and multimedia content location, access and communication services
provided by an access agent.

The service support unit is a functional unit that handles service specific control parameters and offers
functionality that depends on the particular service. An example for a service support unit is the MCU in
the case of Videoconferencing service. The functionality handled by the service support unit is
service specific.

The end-to-end protocol "application - distant MHEG engine" allows an application running on a distant
device to communicate with a local MHEG engine. This protocol enables the implementation of
terminal to host configurations.

The end-to-end protocol "application - service support unit" enables the use of the services provided by
the service provider, by the terminal application or the user respectively.

The end-to-end protocol "access agent - access agent" enables the handling, maintenance and exchange
of objects and data in an distributed environment.

5.1.2 The MHEG API

This subclause describes the terminology applicable to the MHEG API.

The MHEG API is the interface through which an MHEG application is allowed to control an MHEG
engine.

MHEG Application

MHEG engine

MHEG API

response

notification

request

Figure 4: The MHEG API

An API consists of primitives, i.e. basic entry points provided by a provider module to any user module to
enable the user to access software services supplied by the provider. These modules are pieces of
software, although they can use services provided by computer hardware or other electronic equipment.

The MHEG API gives access to MHEG interpretation and (optionally) MHEG object access services.
MHEG engines are the providers, whereas MHEG applications are the users. One MHEG engine may
provide its software services to several applications. An MHEG engine can therefore be viewed as a
server, whereas MHEG applications are the clients of the software services.

Page 23
Draft prETS 300 714: April 1996

An API primitive is used to transfer some information between its user and its provider. This information
consists of control and/or data. The information may be forwarded either from a client to its server or from
the server to one of its clients. The information may be generated by its sender either on its own initiative
or as a reply to a formerly issued primitive. The following terms are used:

- a request is a primitive issued by the client on its own initiative to forward information to the server;
- a response is a primitive issued by the server as a reply to a request to forward information to the

client;
- a notification is a primitive issued by the server on its own initiative to forward information to the

server.

Different kinds of requests may be considered:

- requests that require no response are called asynchronous requests;
- requests that do not require an immediate response are called deferred synchronous requests;
- requests that require an immediate response, until which the client process cannot proceed, are

called synchronous requests.

Whether synchronous or asynchronous, requests may result in processing that will in turn trigger
notifications.

5.2 Functional specification of the MHEG API

5.2.1 MHEG usage specifications

This subclause introduces MHEG usage rules. They consist of clarifications and interpretations of
ISO/IEC 13522-1 [1] regarding the definition of the main entities addressed by ISO/IEC 13522-1 [1] that
may be handled in applications using MHEG.

A clear understanding of the MHEG related entities implies a formal definition of the identity of the entities
that are handled and/or transformed by components of an MHEG using application, as well of how they
can be identified or referenced within different components.

5.2.1.1 Definitions

This subclauses introduces the concepts of identity, identification and referencing. The following
precisions bring additional semantics with regard to ISO/IEC 13522-1 [1] (which makes no clear
distinction between reference and identification), and are applicable as definitions throughout this ETS.

The identity of an object is itself. The identity function is defined by Identity(A)=A. Any object has an
identity. Object A and object B have the same identity if and only if A and B are the same object.

The identification of an object is an unambiguous way to determine its identity. If object A and object B
have the same identifier, then they have the same identity, i.e. they are the same object. The identifier is
often, but not necessarily, contained in the object. Objects may have several identification modes (with
different types of identifier), though this is neither a useful nor recommended policy. If an object has no
identifier, then it cannot be identified, although it has an identity.

Referencing an object is a convenient way to associate a name with an object. To determine the object
which is referenced, the object reference needs to be resolved by some process. One reference shall only
reference one object at a given time, but one object may be referenced in many ways. Unlike its identifier,
references to an object are therefore not guaranteed to be unique. Moreover, it is possible to reference
objects which otherwise are not identifiable.

5.2.1.2 MHEG objects

According to ISO/IEC 13522-1 [1], an MHEG object is defined as a coded representation. Therefore,
MHEG objects are bitstrings. The identity of an MHEG object is its bitstring. MHEG objects are 'form a'
objects as described in ISO/IEC 13522-1 [1], subclause 6.2.4. MHEG object A and MHEG object B are
identical if and only if they are the same sequence of bits.

Page 24
Draft prETS 300 714: April 1996

An MHEG object is not a physical object, but rather an abstraction (a specified sequence of bits) which
may have many representations (i.e. different objects) of different types: interchanged MHEG objects,
stored MHEG objects, mh-objects, etc. Such representations are handled by different software services.

An MHEG object may be identified by an MHEG identifier. MHEG identifiers are the only way to identify
MHEG objects. The structure and coded representation of MHEG identifiers is defined by ISO/IEC
13522-1 [1]. The MHEG identifier of an MHEG object shall, if used, be encoded inside the MHEG object.
Since the attribute is optional, some MHEG objects do not have an MHEG identifier. Such MHEG objects
cannot be identified. The MHEG standard imposes a constraint on the design of MHEG-using applications
which is that MHEG object A and MHEG object B shall not have the same MHEG identifier unless they
are identical.

The MHEG generic reference describes all possible ways to reference an MHEG object.

5.2.1.3 Mh-objects

An mh-object is an internal representation of an MHEG object within a process or system. An mh-object is
not an MHEG object. Within an MHEG engine, mh-objects represent 'available' MHEG objects.
Mh-objects are 'form b' objects as described in ISO/IEC 13522-1 [1], subclause 6.2.4. An mh-object
represents one MHEG object, i.e. there is always a bitstring that corresponds to an mh-object. An MHEG
engine shall not handle more than one mh-object to represent one MHEG object.

As a consequence, mh-objects handled by MHEG engines may be identified using MHEG identifiers. In
addition, other mechanisms for identifying mh-objects (e.g. symbolic identification) may be defined by the
application, provided their internal representation allows for it. This is especially useful when some of the
MHEG objects represented by an MHEG engine's mh-objects are non-identifiable, i.e. have no MHEG
identifier. This guarantees that all mh-objects shall be identifiable.

Mh-objects are referenced the same way as MHEG objects. References to MHEG objects for which the
MHEG engine handles an mh-object will usually be resolved by addressing that mh-object.

5.2.1.4 Rt-objects

An rt-object is a run-time 'instance' (or copy) of a 'model' mh-object, which is created and handled by an
MHEG engine for the purpose of presentation. An rt-object is not an MHEG object. Within an MHEG
engine, rt-objects represent 'rt-available' MHEG objects. Rt-objects are 'form c' objects as described in
ISO/IEC 13522-1 [1], subclause 6.2.4. There may be none or several rt-objects which are 'presentable'
copies of one mh-object. An rt-object always has exactly one mh-object as its model.

Rt-objects may be identified using rt-object identifiers whose 'model object identification' part is an MHEG
identifier. The structure and coded representation of rt-object identifiers is defined by ISO/IEC 13522-1 [1].
In addition, other mechanisms for identifying mh-objects (e.g. symbolic identification) may be defined by
the application, provided their internal representation allows for it. This is especially useful when some of
the MHEG objects represented by an MHEG engine's mh-objects used as models for rt-objects are non-
identifiable, i.e. have no MHEG identifier. This guarantees that all rt-objects shall be identifiable.

Rt-objects may be referenced using MHEG generic references.

5.2.1.5 Channels

Channels are objects defined by ISO/IEC 13522-1 [1] and handled by the MHEG engines. They may be
identified using channel identifiers.

5.2.1.6 Interchanged MHEG objects

Interchanged MHEG objects are representations of MHEG objects which are being communicated at a
given point in time using a network or storage medium. One given MHEG object (i.e. bitstring) may be
interchanged many times between many places, i.e. represented by many interchanged MHEG objects.
An MHEG external identifier may identify an interchanged MHEG object, and therefore reference an
MHEG object through its location and time of interchange. However, it should be noted that an MHEG
external identifier may not actually identify an MHEG object.

Page 25
Draft prETS 300 714: April 1996

Stored MHEG objects are representations of MHEG objects which are usually located in files or database
records. For example, one given MHEG object (i.e. bitstring) may be stored in many places, i.e.
represented by many stored MHEG objects. Such locations are usually identified using file names or
database identifiers. An MHEG external identifier may identify a storage location for an MHEG object, and
therefore reference an MHEG object through its storage location.

5.2.2 Description of MHEG-related services

This subclause introduces the concept of MHEG-related services, i.e. common use software services
handling MHEG-related entities. These services are provided by the building blocks (components) of the
MHEG using application architecture upon which the MHEG application is built. Clients and services do
not necessarily know each other and may be related through a mediating entity. In this building blocks
approach, implementations of the services make use of each other.

An MHEG application may make use of some or all of these following MHEG-related services:

- the MHEG interpretation service allows the control of MHEG engine behaviour, i.e. the
interpretation and presentation of MHEG objects;

- the MHEG object access service allows the access and modification of 'logical' MHEG object's
attributes;

- the MHEG object communication service allows the transfer of MHEG objects between locations;
- the MHEG object location service allows the management and resolution of references to MHEG

objects;
- the MHEG object handling service allows the access management and interchange of physical

MHEG objects;
- the MHEG object storage service allows the storage of MHEG object bitstrings and access to them;
- the MHEG object encoding/decoding service allows the encoding or decoding of MHEG objects;
- additional services for real-time distribution, presentation and production of MHEG objects and

contents may be considered.

Different kinds of MHEG related entities, bearing strong relationships with each other but being
nevertheless of different types (therefore not comparable), are being handled by these software services:

- the MHEG interpretation service handles rt-objects, sockets, channels and mh-objects;
- the MHEG object access service handles mh-objects;
- the MHEG object handling service handles MHEG objects. Since MHEG objects are virtual rather

than physical objects, this service relies on services that handle physical 'representations' of MHEG
objects, such as storage or transport services;

- the MHEG object location service handles MHEG generic references. Through the use of maps, it
is able to resolve such references, i.e. translate them into identifiers understandable by the
requesting application;

- the MHEG object communication service handles interchanged MHEG objects;
- the MHEG object storage service handles stored MHEG objects and manages MHEG object

storage locations, whose type depend on the underlying storage mechanism, e.g. files, database
records;

- the MHEG object encoding/decoding service provides functions for transforming mh-objects into
MHEG objects and vice versa.

The MHEG API consists of the interface provided by the following services, that shall be provided by
conforming MHEG engines:

- the MHEG interpretation service (mandatory);
- the MHEG object access service (optional).

Page 26
Draft prETS 300 714: April 1996

6 API definition principles

6.1 Satisfaction of technical requirements on the MHEG API

The MHEG API is defined as an abstract API specification, i.e. a language-independent description of the
semantics of a set of functionality in an abstract syntax using abstract data types.

Following the recommendations of ETR 225 [4], the MHEG API ETS should meet the following
requirements:

- be portable;
- be generic;
- be conformance testable;
- be implementable.

The portability requirement states that the MHEG API ETS shall enable MHEG applications to use the
MHEG object manipulation and interchange service provided by MHEG engines independently of:

- the programming language used for the MHEG application;
- the underlying operating system.

This ETS meets the portability requirement by the definition of an abstract API specification.

The being generic requirement states that the MHEG API ETS shall provide appropriate support to cover
all the common requirements of MHEG applications.

This ETS meets the being generic requirement through defining the MHEG API at the most basic level,
e.g. by defining primitives that match MHEG elementary actions and data types that match MHEG data
types. This guarantees maximisation of the range of MHEG object manipulations made available to
applications.

The conformance testability requirement states that the MHEG API ETS should make it as easy as
possible to ensure the conformance of MHEG engines to the MHEG API ETS, i.e. the correct provision of
this API by an MHEG engine under test as well as the conformance of MHEG applications to the MHEG
API ETS, i.e. the correct use of this API by an MHEG application under test.

This ETS meets the conformance testability requirement by formal expression of the requirements on
conforming implementations and conforming applications, as well as by the use of a formal description
technique for the definition of the MHEG API.

The implementability requirement states that the MHEG API ETS should take into account simplicity and
clarity both in the definition and the formulation to make implementation of conforming MHEG engines as
easy as possible.

This ETS meets the implementability requirement by the provision of informative guidelines to deduce
language binding specifications and message encoding rules from the abstract API specification.

6.2 Use of Interface Definition Language

The MHEG API is defined using Interface Definition Language (IDL) ISO/IEC 14750-1 [10].

6.2.1 Comprehensive introduction to IDL

IDL is a formal description technique for specifying the services provided by objects for use by
applications or other objects. Although object-oriented communication in distributed environments is
actually a technology of some relevance with regard to the definition of a multimedia core toolbox, this
ETS only considers the use of IDL and its underlying object model as a context-independent formal
description technique for the specification of APIs.

Application of IDL should be based on an underlying object model. Such an object model is defined in
terms of object types which support operations characterising the behaviour of objects. Objects are

Page 27
Draft prETS 300 714: April 1996

instances of object types. Objects may be identified using object references . Non-object types can be
instantiated but do not support operations. Operations are defined by a signature consisting of a name, a
list of input or output parameter types and a list of result types. The set of operation signatures defined
for a type is the interface of that type. Subtyping allows the definition of type hierarchies, with subtypes
providing their supertype's interface as a part of their own interface. Operation requests may have
different operational semantics such as synchronous, asynchronous, etc. Consequences of an operation
request include side effects, results and exceptions .

IDL is the language used to describe the interfaces (i.e. the set of operations) provided by objects. It
consists of lexical conventions, preprocessing directives and an Extended Backus Naur Form (EBNF)
grammar. An IDL specification of an API consists of data type definitions, constant definitions, exception
definitions, interface definitions and module definitions.

6.2.2 The Interface Definition Language

This subclause describes the main concepts that are necessary to understand the MHEG API definition.

The object model provides an organised representation of objects concepts and terminology. It defines a
partial model for computation that embodies the key characteristics of objects as realised by the
presented technologies.

The object model presented in this ETS is abstract in that is not directly realised by any particular
technology.

An objects system provides services to its clients. A client of a service is any entity capable of requesting
the service.

6.2.2.1 Objects

An object system includes entities known as objects. An object is an identifiable, encapsulated entity that
provides one or more services that can be requested by a client.

6.2.2.2 Requests

Clients request services by issuing requests. A request is an event, i.e. something that occurs at a
particular time. The information associated with a request consists of an operation, a target object, zero or
more (actual) parameters, and an optional request context.

A request form is a description or pattern that can be evaluated or performed multiple times to cause the
issuing of requests.

A value is anything that may be a legitimate (actual) parameter in a request. A value may identify an
object, for the purpose of performing the request. A value that identifies an object is called object name.

An object reference that reliably denotes a particular object. Specifically, an object reference will identify
the same object each time the reference is used in a request (subject to certain pragmatic limit in space
and time). An object may be denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may also have a request
context which provides additional information about the request.

A request causes a service to be performed on behalf of the client. One outcome of performing a service
is returning to the client the results, if any, defined for the request.

If an abnormal condition occurs during the performance of a request, an exception is returned. The
exception may carry additional return parameters particular to the exception.

The request parameters are identified by position. A parameter may be an input parameter, an output
parameter, or an input-output parameter. A request may also return a single result value, as well as any
output parameters.

Page 28
Draft prETS 300 714: April 1996

The following semantics apply for all requests:

- any aliasing of parameter values is neither guaranteed removed nor guaranteed preserved;
- the order in which aliased output parameters are written is not guaranteed;
- any output parameters are undefined if an exception is returned;
- the values which may be returned in an input-output parameter may be constrained by the value

which was input.

6.2.2.3 Types

A type is an identifiable with an associated predicate (a single-argument mathematical function with a
boolean result) defined over values. A value satisfies a type if the predicate is true for that value. A value
that satisfies a type is called member of the type .

Types are used in signatures to restrict a possible parameter or to characterise a possible result.

The extension of the type is the set of values that satisfy the type at any particular time.

An object type is a type whose members are objects (literally, values that identify objects). In other words,
an object type is satisfied only by (values that identify) objects.

6.2.2.4 Interfaces

An interface is a description of a set of possible operations that a client may request of an object. An
object satisfies an interface if it can be specified as target object in each potential request described by
the interface.

An interface type is a type that is satisfied by any object (literally, any value that identifies an object) that
satisfies a particular interface.

6.2.2.5 Operations

An operation is an identifiable entity that denotes a service that can be requested.

An operation is identified by an operation identifier . An operation is not a value.

An operation has a signature that describes the legitimate values of request parameters and returned
results. In particular a signature consists of:

- a specification of parameters required in requests for that operation;
- a specification of the results of the operations;
- a specification of the exceptions that may be raised by a request for the operation and the types of

parameters accompanying them;
- a specification of additional contextual information that may affect the request;
- an indication of the execution semantics the client should expect from a request for the operation.

A parameter is characterised by its mode and its type. The mode indicates whether the value should be
passed from the client to the server (in), from the server to the client (out), or both (inout). The
parameter's type constrains the possible value which may be passed in the direction[s] dictated by the
mode.

The return result is a distinguished out parameter.

An exception is an indication that an operation request was not performed successfully. An exception
may be accompanied by additional exception-specific information.

A request context provides additional, operation-specific information that may effect the performance of
a request.

Page 29
Draft prETS 300 714: April 1996

Two styles of execution semantics are defined by the object model:

- at-most-once: if an operation request returns successfully, it was performed exactly once; if it
returns an exception indication, it was performed at most once;

- best-effort: a best-effort operation is a request-only operation, i.e. it cannot return any results and
the requester never synchronises with the completion, if any, of the request.

The execution semantics to be expected are associated with an operation. This prevents a client and
object implementation from assuming different execution semantics.

Note that the client is able to invoke an at-most-once operation in a synchronous or deferred-synchronous
manner.

6.2.2.6 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair of accessor
functions: one to retrieve the value of the attribute and one to set the value of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is defined.

6.2.2.7 Subtyping versus inheritance

Subtyping is a relationship between types based on their interfaces. It defines the rules by which objects
of one type are determined to be acceptable in contexts expecting another type. Inheritance is a
mechanism for reuse. Many object systems do not distinguish between subtyping and inheritance. The
following subclause defines the two concepts separately, but then explicitly states how they are related.

6.2.2.8 Subtyping

The object model supports subtyping for object types. Intuitively, a type is a subtype of another if the first
is a specialisation or refinement of the second. Operationally it means that any object of the first type can
be used in any context that expects an object of the second type; that is, if S is a subtype of T, an object
of type S may be used wherever an object of type T may be used. In other words, objects of type S are
also of type T. Subtypes can have multiple parent types, with the implication that an object that is an
instance of type S is also an instance of all supertypes of type S. The relationships between types define a
type hierarchy, which can be drawn as a directed acyclic graph.

6.2.2.9 Inheritance

Inheritance is a notational mechanism for defining a type S in terms of another type T. The definition of S
inherits all the operations of T and may provide other operations. Intuitively, inherits means that the
operations defined for T are also defined for or can be used by S. Subtyping is a relationship between
interfaces (types). Inheritance can apply to both interfaces and implementations; that is both interfaces
and implementations can be inherited. The object model is concerned with inheritance of interfaces. It
does not specify what can happen with implementations of inherited operations (for example, whether
they may be changed or overridden by a subtype).

6.2.3 Principles for mapping IDL interfaces to API primitives

The MHEG engine interface consists of a set of API primitives that can be organised into clusters
according to the target entity of a primitive. Definition of this interface can therefore logically be structured
according to the operation provider. In the MHEG API context, objects that provide interfaces need not be
implemented as separate object implementations. More likely, they would be internal entities handled by
the MHEG engine. As for ISO/IEC 13522-1 [1], the MHEG API definition follows an object-oriented
methodology without requiring the implementations to use object-oriented design or programming
techniques.

Services are defined not as the interface that a module should provide but as a set of operations
conspiring to offer a service, to which clients should have access.

Page 30
Draft prETS 300 714: April 1996

The MHEG API therefore consists of IDL interface objects which provide operations that map API
primitives. The object instance on which an operation is requested corresponds to the main (target)
parameter of the API primitive.

6.2.4 Fulfilment of technical requirements

The use of IDL contributes to the fulfilment of the portability and implementability technical requirements:

- IDL is independent from a programming language. Moreover publicly available specifications for
IDL language binding to C and C++ exist, and others are under study;

- IDL provides a complete formal description language which allows a very concise, readable and
efficient specification of the MHEG API. Moreover, this formal description language is also
appropriate for automatic compilation, which means that MHEG API implementations could be
automatically generated for a given language and operating system using appropriate IDL
compilers. This of course could be a major element in facilitating implementability and general use
of the ETS API rather than any specific interface.

6.3 Overview of the API definition and general principles

6.3.1 The MHEG API object model

This subclause presents the object model, i.e. the object types (interfaces) provided by the MHEG API
and their subtyping relationships.

It may be noted that the objects described hereafter are introduced as useful concepts for specifying the
interface, but are not required to be implemented as separate objects. The MHEG API is specified as an
abstract API in terms of operations provided by objects, but implementations of the MHEG API will be
provided by MHEG engine implementations.

Page 31
Draft prETS 300 714: April 1996

MHEGEngine Entity

MhObject

RtObject

Channel

RtScript

RtComponent

MhScriptMhComponent

RtGenericContent

MhComposite

RtMultiplexedContent

MhGenericContent

MhMultiplexedContent

EntityManager

MhContainer MhDescriptorMhModelMhAction MhLink

RtComposite

RtGenericContentOr-

StructuralSocket

Sub-Class 1

Super-ClassNotation:

Sub-Class 2 Sub-Class 3

Socket

RtObjectOrSocket

RtComponentOrSocket

StructuralSocket

RtContent

GenericPresentableSocket

PresentableSocket

RtContentOr- PresentableSocket

PresentableSocket

RtMultiplexedContentOr-
MultiplexedPresentable-

PresentableSocket
Socket

RtCompositeOr-

MhContent

NOTE 1: MhObjects (and their subtypes) match form b) objects as defined in ISO/IEC DIS 13522-1 [1],
subclause 6.2.4, i.e. objects available to the MHEG engine.

NOTE 2: RtObjects (and their subtypes) match form c) objects as defined in ISO/IEC DIS 13522-1 [1],
subclause 6.2.4, i.e. instances of MhObjects available to the presentation process.

Figure 5: Object model

Page 32
Draft prETS 300 714: April 1996

7 Definition of the MHEG API

7.1 Mandatory primitives

7.1.1 MHEGEngine object

The following subclause defines the operations of the MHEGEngine object.

7.1.1.1 initialiseEngine operation

Synopsis:

Interface: MHEGEngine
Operation: initialiseEngine
Result: void

Description:

This operation performs any necessary initialisation of the interface. It shall be invoked before any other
interface operations defined in this ETS are invoked. It can be invoked multiple times, in which case each
invocation shall reinitialise the MHEG Engine.

7.1.1.2 shutdownEngine operation

Synopsis:

Interface: MHEGEngine
Operation: shutdownEngine
Result: void

Description:

This operation deletes all service-generated interface objects associated with the current session. The
next operation that shall be accepted by an MHEG engine is an initialiseEngine operation.

7.1.1.3 IDL description

interface MHEGEngine {

void initialiseEngine();
void shutdownEngine();

};

7.1.2 NotificationManager object

The following subclause defines the operations of the NotificationManager object.

7.1.2.1 getReturnability operation

Synopsis:

Interface: NotificationManager
Operation: getReturnability
Result: sequence<unsigned short>

Description:

This operation retrieves the returnability behaviour of the MHEG engine.

The operation returns a list of numbers identifying available notifications.

Page 33
Draft prETS 300 714: April 1996

7.1.2.2 getNotification operation

Synopsis:

Interface: NotificationManager
Operation: getNotification
Result: void
In: unsigned short notification_number
Out: sequence<GenericValue> values
Out: sequence<MhObjectReference> objects
Exception: InvalidParameter

Description:

This operation retrieves a notification from the MHEG engine.

The notification_number parameter identifies the notification. This identification may be the result of
a getReturnability operation.

The values parameter specifies the returned values.

The objects parameter specifies the returned object references.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.2.3 IDL description

interface NotificationManager {

sequence<unsigned short>
getReturnability();

void
getNotification(

in unsigned short
notification_number,

out sequence<GenericValue>
values,

out sequence<MhObjectReference>
objects)

raises(InvalidParameter);

};

7.1.3 EntityManager object

The following subclause defines the operations of the EntityManager object.

7.1.3.1 getAvailableMhObjects operation

Synopsis:

Interface: EntityManager
Operation: getAvailableMhObjects
Result: sequence<MHEGIdentifier>

Description:

This operation retrieves the mh-objects available to the MHEG engine.

A mh-object is either 'not ready' (in period O1), 'processing' (in period O2 or O4) or 'ready' (in period O3).
The operation retrieves those mh-objects which are in period O3.

Page 34
Draft prETS 300 714: April 1996

The operation returns the identifiers of the available mh-objects.

7.1.3.2 getAvailableRtObjects operation

Synopsis:

Interface: EntityManager
Operation: getAvailableRtObjects
Result: sequence<RtObjectIdentifier>

Description:

This operation retrieves the rt-objects available to the MHEG engine.

A rt-object is either 'not available' (in period R1), 'processing' (in period R2 or R4) or 'available' (in period
R3 and its subperiods). The operation retrieves those rt-objects which are in period R3.

The operation returns the identifiers of the available rt-objects.

7.1.3.3 getAvailableChannels operation

Synopsis:

Interface: EntityManager
Operation: getAvailableChannels
Result: sequence<ChannelIdentifier>

Description:

This operation retrieves the channels available to the MHEG engine.

A channel is either 'non available' (in period C1), 'processing' (in period C2 or C4) or 'available' (in period
C3). The operation retrieves those channels which are in period C3.

The operation returns the identifiers of the available channels.

7.1.3.4 releaseAlias operation

Synopsis:

Interface: EntityManager
Operation: releaseAlias
Result: void
In: string alias
Exception: InvalidParameter

Description:

This operation enables to release an alias. It cancels the assignments of this alias to entities.

The alias parameter specifies the value of the released alias.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

Page 35
Draft prETS 300 714: April 1996

7.1.3.5 IDL description

interface EntityManager {

sequence<MHEGIdentifier>
getAvailableMhObjects();

sequence<RtObjectIdentifier>
getAvailableRtObjects();

sequence<ChannelIdentifier>
getAvailableChannels();

void
releaseAlias(

in string
alias)

raises(InvalidParameter);
};

7.1.4 Entity object

The following subclause defines the operations of the Entity object.

7.1.4.1 setAlias operation

Synopsis:

Interface: Entity
Operation: setAlias
Result: void
In: string alias
Exception: InvalidTarget

Description:

This operation enables the assignment of an alias to any entity.

The setAlias operation triggers the execution of the 'set alias' elementary action with the bound entity
as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 34.2.1.

The alias parameter specifies the value of the 'alias' parameter of the 'set alias' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.4.2 getAlias operation

Synopsis:

Interface: Entity
Operation: getAlias
Result: string
Exception: InvalidTarget

Description:

This operation retrieves the alias assigned to an entity.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 36
Draft prETS 300 714: April 1996

7.1.4.3 IDL description

interface Entity {

void
setAlias(

in string
alias)

raises(InvalidTarget);

string
getAlias()

raises(InvalidTarget);
};

7.1.5 MhObject object

The following subclause defines the operations of the MhObject object. The object inherits from the
Entity object.

7.1.5.1 bind operation

Synopsis:

Interface: MhObject
Operation: bind
Result: MHEGIdentifier
In: MhObjectReference mh_object_reference
Exception: AlreadyBound
Exception: InvalidTarget

Description:

This operation binds the MhObject instance (an interface object instance) with an MHEG object (an
MHEG entity).

The mh_object_reference parameter specifies the reference of the MHEG object.

The operation returns the identifier of the bound MHEG object.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

7.1.5.2 unbind operation

Synopsis:

Interface: MhObject
Operation: unbind
Result: void
Exception: NotBound

Description:

This operation cancels the binding between the MhObject instance (an interface object instance) and an
MHEG object (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

Page 37
Draft prETS 300 714: April 1996

7.1.5.3 prepare operation

Synopsis:

Interface: MhObject
Operation: prepare
Result: MHEGIdentifier
In: MhObjectReference mh_object_reference
Exception: AlreadyBound
Exception: InvalidTarget

Description:

This operation enables the creation of a MHEG object from a model object by the MHEG engine.

The prepare operation triggers the execution of the 'prepare' elementary action targeted at a single
MHEG object.

The effect of the action on its target and the error conditions that cause exceptions to be raised are
defined by ISO/IEC 13522-1 [1], subclause 36.2.1.

The mh_object_reference parameter specifies a reference to an MHEG object.

This operation implicitly binds the MhObject instance (an interface object instance) with the new prepared
MHEG object (an MHEG entity).

The operation returns the identifier of the new prepared MHEG object bound with the MhObject instance.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

7.1.5.4 destroy operation

Synopsis:

Interface: MhObject
Operation: destroy
Result: void
Exception: NotBound
Exception: InvalidTarget

Description:

This operation enables the removing of a MHEG object by the MHEG engine.

The destroy operation triggers the execution of the 'destroy' elementary action targeted at a single
MHEG object.

The effect of the action on its target and the error conditions that cause exceptions to be raised are
defined by ISO/IEC 13522-1 [1], subclause 36.2.2.

This operation implicitly cancels the binding between the MhObject instance (an interface object instance)
and the new destroyed MHEG object (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

Page 38
Draft prETS 300 714: April 1996

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

7.1.5.5 getPreparationStatus operation

Synopsis:

Interface: MhObject
Operation: getPreparationStatus
Result: PreparationStatusValue
Exception: NotBound
Exception: InvalidTarget

Description:

This operation retrieves the availability of an MHEG object to the MHEG engine.

The getPreparationStatus operation triggers the execution of the 'get preparation status' elementary
action with the bound MHEG object as its single target.

The effect of the action on its target, the computation of its result and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 36.3.1.

The operation returns the availability of the MHEG object bound with the MhObject instance. The returned
value is either NOT_READY, PROCESSING or READY.

When the returned value is NOT_READY, the operation implicitly cancels the binding between the
MhObject instance (an interface object instance) and the MHEG object (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.5.6 getIdentifier operation

Synopsis:

Interface: MhObject
Operation: getIdentifier
Result: MHEGIdentifier
Exception: NotBound

Description:

This operation retrieves the identifier of the MHEG object (an MHEG entity) bound with the MhObject
instance (an interface object instance).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

7.1.5.7 kill operation

Synopsis:

Interface: MhObject
Operation: kill
Result: void

Page 39
Draft prETS 300 714: April 1996

Description:

This operation deletes the MhObject instance (an interface object instance).

7.1.5.8 IDL description

interface MhObject: Entity {

MHEGIdentifier
bind(

in MhObjectReference
mh_object_reference)

raises(AlreadyBound, InvalidTarget);

void
unbind()

raises(NotBound);

MHEGIdentifier
prepare(

in MhObjectReference
mh_object_reference)

raises(AlreadyBound, InvalidTarget);

void
destroy()

raises(NotBound, InvalidTarget);

PreparationStatusValue
getPreparationStatus()

raises(NotBound, InvalidTarget);

MHEGIdentifier
getIdentifier()

raises(NotBound);

void
kill();

};

7.1.6 MhAction object

The following subclause defines the operations of the MhAction object. The object inherits from the
MhObject object.

7.1.6.1 delay operation

Synopsis:

Interface: MhAction
Operation: delay
Result: void
In: unsigned short nested_action_number
In: unsigned long delay
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation enables to delay the process of nested actions within the mh-action.

The nested_action_number parameter specifies the nested action after which the delay is to be
processed.

The delay parameter specifies the duration of the delay expressed in Generic Temporal Unit (GTU).

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 40
Draft prETS 300 714: April 1996

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.6.2 IDL description

interface MhAction: MhObject {

void
delay(

in unsigned short
nested_action_number,

in unsigned long
delay)

raises(InvalidTarget, InvalidParameter);

};

7.1.7 MhLink object

The following subclause defines the operations of the MhLink object. The object inherits from the
MhObject object.

7.1.7.1 abort operation

Synopsis:

Interface: MhLink
Operation: abort
Result: void
Exception: InvalidTarget

Description:

This operation aborts the processing of all the actions that have been activated by a link object. Each time
the link condition is satisfied, the actions defining the link effect are activated and processed.

The abort operation triggers the execution of the 'abort' elementary action with the bound link object as
its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 38.2.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.7.2 IDL description

interface MhLink: MhObject {

void
abort()

raises(InvalidTarget);
};

7.1.8 MhModel object

For the MhModel object no specific operations are defined. The object inherits from the MhObject
object.

7.1.8.1 IDL description

interface MhModel: MhObject {};

Page 41
Draft prETS 300 714: April 1996

7.1.9 MhComponent object

For the MhComponent object no specific operations are defined. The object inherits from the MhModel
object.

7.1.9.1 IDL description

interface MhComponent: MhModel {};

7.1.10 MhGenericContent object

The following subclause defines the operations of the MhGenericContent object. The object inherits
from the MhComponent object.

7.1.10.1 copy operation

Synopsis:

Interface: MhContent
Operation: copy
Result: void
In: sequence<MhObjectReference> copies
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation specifies the copy of a content object "source" in a set of content objects "copies" or the
copy of a multiplexed content object "source" in a set of multiplexed content objects "copies".

The copy operation triggers the execution of the 'copy' elementary action with the bound content object or
multiplexed content object as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 40.2.1.

The copies parameter specifies the value of the 'copies' parameter of the 'copy' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.10.2 IDL description

interface MhGenericContent: MhComponent {

void
copy(

in sequence<MhObjectReference>
copies)

raises(InvalidTarget, InvalidParameter);
};

7.1.11 MhContent object

The following subclause defines the operations of the MhContent object. The object inherits from the
MhGenericContent object.

Page 42
Draft prETS 300 714: April 1996

7.1.11.1 setData operation

Synopsis:

Interface: MhContent
Operation: setData
Result: void
In: boolean substitution_indicator
In: sequence<DataElement> data_elements
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation allows to store or to modify the generic value in the data of a content object.

The setData operation triggers the execution of the 'set data' elementary action with the bound content
object as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 39.2.1.

The substitution_indicator parameter specifies the value of the 'substitution indicator' parameter
of the 'set data' action.

The data_elements parameter specifies the value of the 'data elements' parameter of the 'set data'
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.11.2 getData operation

Synopsis:

Interface: MhContent
Operation: getData
Result: GenericValue
In: sequence<long> element_list_index
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation retrieves a generic value or an element of a generic list stored in the data of a content
object.

The getData operation triggers the execution of the 'get data' elementary action with the bound content
object as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 39.3.1.

The element_list_index parameter specifies the value of the 'element list index parameter'
parameter of the 'get data' action.

Page 43
Draft prETS 300 714: April 1996

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.11.3 IDL description

interface MhContent: MhGenericContent {

void
setData(

in boolean
substitution_indicator,

in sequence<DataElement>
data_elements)

raises(InvalidTarget, InvalidParameter);

GenericValue
getData(

in sequence<long>
element_list_index)

raises(InvalidTarget, InvalidParameter);

};

7.1.12 MhMultiplexedContent object

The following subclause defines the operations of the MhMultiplexedContent object. The object
inherits from the MhGenericContent object.

7.1.12.1 setMultiplex operation

Synopsis:

Interface: MhMultiplexedContent
Operation: setMultiplex
Result: void
In: sequence<StreamIdentifier> stream_list
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation specifies the multiplexing of a list of content objects, the result is set in one multiplexed
content object containing the multiplexed data.

The setMultiplex operation triggers the execution of the 'set multiplex' elementary action with the
bound multiplexed content object as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 41.2.1.

The stream_list parameter specifies the value of the 'stream list' parameter of the 'set multiplex'
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

Page 44
Draft prETS 300 714: April 1996

7.1.12.2 setDemultiplex operation

Synopsis:

Interface: MhMultiplexedContent
Operation: setDemultiplex
Result: void
In: sequence<StreamIdentifier> stream_list
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation specifies the demultiplexing of a multiple stream data of a multiplexed content object, e.g.
an Moving Picture Experts Group (MPEG) stream, the result is set in a list of content objects which are
generated if they do not exist yet. Each content object contains one demultiplexed stream.

The setDemultiplex operation triggers the execution of the 'set demultiplex' elementary action with the
bound multiplexed content object as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 41.2.2.

The stream_list parameter specifies the value of the 'stream list' parameter of the 'set demultiplex'
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.12.3 IDL description

interface MhMultiplexedContent: MhGenericContent {

void
setMultiplex(

in sequence<StreamIdentifier>
stream_list)

raises(InvalidTarget, InvalidParameter);

void
setDemultiplex(

in sequence<StreamIdentifier>
stream_list)

raises(InvalidTarget, InvalidParameter);

};

7.1.13 MhComposite object

For the MhComposite object no specific operations are defined. The object inherits from the
MhComponent object.

7.1.13.1 IDL description

interface MhComposite: MhComponent {};

7.1.14 MhScript object

For the MhScript object no specific operations are defined. The object inherits from the MhModel
object.

Page 45
Draft prETS 300 714: April 1996

7.1.14.1 IDL description

interface MhScript: MhModel {};

7.1.15 MhContainer object

For the MhContainer object no specific operations are defined. The object inherits from the MhObject
object.

7.1.15.1 IDL description

interface MhContainer: MhObject {};

7.1.16 MhDescriptor object

For the MhDescriptor object no specific operations are defined. The object inherits from the
MhObject object.

7.1.16.1 IDL description

interface MhDescriptor: MhObject {};

7.1.17 RtObjectOrSocket object

The following subclause defines the operations of the RtObjectOrSocket object.

7.1.17.1 setGlobalBehaviour operation

Synopsis:

Interface: RtObject
Operation: setGlobalBehaviour
Result: void
In: GlobalBehaviour global_behaviour
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation enables the modification of the global behaviour of an rt-object or a socket.

The setGlobalBehaviour operation triggers the execution of the 'set global behaviour' elementary
action with the bound rt-object or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 44.2.1.

The global_behaviour parameter specifies the value of the 'global behaviour' parameter of the 'set
global behaviour' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

Page 46
Draft prETS 300 714: April 1996

7.1.17.2 getGlobalBehaviour operation

Synopsis:

Interface: RtObject
Operation: getGlobalBehaviour
Result: GenericValue
Exception: InvalidTarget

Description:

This operation retrieves all the attributes value composing the global behaviour of each rt-object or socket
to the MHEG engine.

The getGlobalBehaviour operation triggers the execution of the 'get global behaviour' elementary
action with the bound rt-object or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 44.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.17.3 run operation

Synopsis:

Interface: RtObject
Operation: run
Result: void
Exception: InvalidTarget

Description:

This operation enables the activation of the rt-object or the socket by the running process.

The run operation triggers the execution of the 'run' elementary action with the bound rt-object or socket
as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 45.2.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.17.4 stop operation

Synopsis:

Interface: RtObject
Operation: stop
Result: void
Exception: InvalidTarget

Description:

This operation removes the rt-object from the running process.

The stop operation triggers the execution of the 'stop' elementary action with the bound rt-object as its
single target.

Page 47
Draft prETS 300 714: April 1996

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 45.2.2.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.17.5 IDL description

interface RtObjectOrSocket {

void
setGlobalBehaviour(

in GlobalBehaviour
global_behaviour)

raises(InvalidTarget, InvalidParameter);

GenericValue
getGlobalBehaviour()

raises(InvalidTarget);

void
run()

raises(InvalidTarget);

void
stop()

raises(InvalidTarget);

};

7.1.18 RtObject object

The following subclause defines the operations of the RtObject object. The object inherits from the
RtObjectOrSocket and from the Entity object.

7.1.18.1 bind operation

Synopsis:

Interface: RtObject
Operation: bind
Result: RtObjectIdentifier
In: RtObjectReference rt_object_reference
Exception: AlreadyBound
Exception: InvalidTarget

Description:

This operation binds the RtObject instance (an interface object instance) with an rt-object (an MHEG
entity).

The rt_object_reference parameter specifies the reference of the rt-object.

The operation returns the identifier of the bound rt-object.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

Page 48
Draft prETS 300 714: April 1996

7.1.18.2 unbind operation

Synopsis:

Interface: RtObject
Operation: unbind
Result: void
Exception: NotBound

Description:

This operation cancels the binding between the RtObject instance (an interface object instance) and an
rt-object (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

7.1.18.3 new operation

Synopsis:

Interface: RtObject
Operation: new
Result: RtObjectIdentifier
In: RtObjectReference rt_object_reference
Exception: AlreadyBound
Exception: InvalidTarget

Description:

This operation enables the creation of a rt-object from a model object by the MHEG engine.

The new operation triggers the execution of the 'new' elementary action targeted at a single rt-object.

The effect of the action on its target and the error conditions that cause exceptions to be raised are
defined by ISO/IEC 13522-1 [1], subclause 43.2.1.

The rt_object_reference parameter specifies a reference to an rt-object.

This operation implicitly binds the RtObject instance (an interface object instance) with the new created
rt-object (an MHEG entity).

The operation returns the identifier of the new created rt-object bound with the Rtobject instance.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

7.1.18.4 delete operation

Synopsis:

Interface: RtObject
Operation: delete
Result: void
Exception: NotBound
Exception: InvalidTarget

Page 49
Draft prETS 300 714: April 1996

Description:

This operation enables the removing of a rt-object by the MHEG engine.

The delete operation triggers the execution of the 'delete' elementary action targeted at a single
rt-object.

The effect of the action on its target and the error conditions that cause exceptions to be raised are
defined by ISO/IEC 13522-1 [1], subclause 43.2.2.

This operation implicitly cancels the binding between the RtObject instance (an interface object instance)
and the new deleted rt-object (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

7.1.18.5 getAvailabilityStatus operation

Synopsis:

Interface: RtObject
Operation: getAvailabilityStatus
Result: RtAvailabilityStatusValue
Exception: NotBound
Exception: InvalidTarget

Description:

This operation retrieves the availability of an rt-object to the MHEG engine.

The getAvailabilityStatus operation triggers the execution of the 'get rt-availability status'
elementary action with the bound rt-object as its single target.

The effect of the action on its target, the computation of its result and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 43.3.1.

The operation returns the availability of the rt-object bound with the RtObject instance. The returned value
is either NOT_AVAILABLE, PROCESSING or AVAILABLE .

When the returned value is NOT_AVAILABLE, the operation implicitly cancels the binding between the
RtObject instance (an interface object instance) and the rt-object (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.18.6 getIdentifier operation

Synopsis:

Interface: RtObject
Operation: getIdentifier
Result: RtObjectIdentifier
Exception: NotBound

Page 50
Draft prETS 300 714: April 1996

Description:

This operation retrieves the identifier of the rt-object (an MHEG entity) bound with the RtObject instance
(an interface object instance).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

7.1.18.7 kill operation

Synopsis:

Interface: RtObject
Operation: kill
Result: void

Description:

This operation deletes the RtObject instance (an interface object instance).

7.1.18.8 getRunningStatus operation

Synopsis:

Interface: RtObject
Operation: getRunningStatus
Result: RunningStatusValue
Exception: InvalidTarget

Description:

This operation get the activation of each rt-object and each socket by the MHEG engine.

The getRunningStatus operation triggers the execution of the 'get running status' elementary action
with the bound rt-object or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 45.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.18.9 IDL description

interface RtObject: Entity {

RtObjectIdentifier
bind(

in RtObjectReference
rt_object_reference)

raises(AlreadyBound, InvalidTarget);

void
unbind()

raises(NotBound);

RtObjectIdentifier
new(

in RtObjectReference
rt_object_reference)

raises(AlreadyBound, InvalidTarget);

void
delete()

raises(NotBound, InvalidTarget);

RtAvailabilityStatusValue
getAvailabilityStatus()

Page 51
Draft prETS 300 714: April 1996

raises(NotBound, InvalidTarget);

RtObjectIdentifier
getIdentifier()

raises(NotBound);

void
kill();

RunningStatusValue
getRunningStatus()

raises(InvalidTarget);

};

7.1.19 Socket object

The following subclause defines the operations of the Socket object. The object inherits from the
RtObjectOrSocket and from the Entity object.

7.1.19.1 bind operation

Synopsis:

Interface: Socket
Operation: bind
Result: SocketIdentification
In: SocketReference socket_reference
Exception: AlreadyBound
Exception: InvalidTarget

Description:

This operation binds the Socket instance (an interface object instance) with a socket (an MHEG entity).

The socket_reference parameter specifies the reference of the socket.

The operation returns the identifier of the bound socket.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

7.1.19.2 unbind operation

Synopsis:

Interface: Socket
Operation: unbind
Result: void
Exception: NotBound

Description:

This operation cancels the binding between the Socket instance (an interface object instance) and a
socket (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

Page 52
Draft prETS 300 714: April 1996

7.1.19.3 getIdentifier operation

Synopsis:

Interface: Socket
Operation: getIdentifier
Result: SocketIdentification

Description:

This operation retrieves the identifier of the socket (an MHEG entity) bound with the Socket instance (an
interface object instance).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

7.1.19.4 kill operation

Synopsis:

Interface: Socket
Operation: kill
Result: void

Description:

This operation deletes the Socket instance (an interface object instance).

7.1.19.5 plug operation

Synopsis:

Interface: Socket
Operation: plug
Result: void
In: PlugIn plug_in
Exception: InvalidTarget

Description:

This operation enables a dynamism in the presentation and structure. This operation specifies the
information to be plugged into a socket. This is used to obtain a different presentation or structure from
the same composite object model.

The plug operation triggers the execution of the 'plug' elementary action with the bound socket as its
single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 48.2.1.

The plug_in parameter specifies the value of the 'plug in' parameter of the 'plug' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 53
Draft prETS 300 714: April 1996

7.1.19.6 setVisibleDurationPosition operation

Synopsis:

Interface: Socket
Operation: setVisibleDurationPosition
Result: void
In: VisibleDurationPosition visible_duration_position
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation specifies within the perceptible duration of the parent the position where to attach the
visible duration of a socket.

The setVisibleDurationPosition operation triggers the execution of the 'set visible duration
position' elementary action with the bound socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.2.4.

The visible_duration_position parameter specifies the value of the 'parent relative generic space
temporal position' parameter of the 'set visible duration position' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.19.7 getVisibleDurationPosition operation

Synopsis:

Interface: Socket
Operation: getVisibleDurationPosition
Result: unsigned long
Exception: InvalidTarget

Description:

This operation retrieves the visible duration position value of the socket within its parent relative generic
space. This value is retrieved in relative generic temporal unit.

The getVisibleDurationPosition operation triggers the execution of the 'get VD position'
elementary action with the bound socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.7.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 54
Draft prETS 300 714: April 1996

7.1.19.8 IDL description

interface Socket: Entity, RtObjectOrSocket {

SocketIdentification
bind(

in SocketReference
socket_reference)

raises(AlreadyBound, InvalidTarget);

void unbind()
raises(NotBound);

SocketIdentification
getIdentifier();

void
kill();

void
plug(

in PlugIn
plug_in)

raises(InvalidTarget);

void
setVisibleDurationPosition(

in VisibleDurationPosition
visible_duration_position)

raises(InvalidTarget, InvalidParameter);

unsigned long
getVisibleDurationPosition()

raises(InvalidTarget);

};

7.1.20 RtScript object

The following subclause defines the operations of the RtScript object. The object inherits from the
RtObject object.

7.1.20.1 setParameters operation

Synopsis:

Interface: RtScript
Operation: setParameters
Result: void
In: sequence<Parameter> parameters
Exception: InvalidTarget

Description:

This operation enables parameter passing between rt-scripts and other MHEG entities.

The setParameters operation triggers the execution of the 'set parameters' elementary action with the
bound rt-script as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 46.2.1.

The parameters parameter specifies the value of the 'parameters' parameter of the 'set parameters'
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 55
Draft prETS 300 714: April 1996

7.1.20.2 getTerminationStatus operation

Synopsis:

Interface: RtScript
Operation: getTerminationStatus
Result: TerminationStatusValue
Exception: InvalidTarget

Description:

This operation gets the process termination of each rt-script and by the script process.

The getTerminationStatus operation triggers the execution of the 'get termination status' elementary
action with the bound rt-script as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 47.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.20.3 IDL description

interface RtScript: RtObject {

void
setParameters(

in sequence<Parameter>
parameters)

raises(InvalidTarget);

TerminationStatusValue
getTerminationStatus()

raises(InvalidTarget);

};

7.1.21 RtComponentOrSocket object

The following subclause defines the operations of the RtComponentOrSocket object.

7.1.21.1 setRGS operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setRGS
Result: void
In: ChannelIdentifier channel_identifier
Exception: InvalidTarget

Description:

This operation assigns an rt-component or a socket to a Relative Generic Space (RGS).

The setRGS operation triggers the execution of the 'set RGS' elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 50.2.1.

The channel_identifier parameter specifies the value of the 'channel identifier' parameter of the 'set
RGS' action.

Page 56
Draft prETS 300 714: April 1996

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.2 getRGS operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getRGS
Result: RGSValue
Exception: InvalidTarget

Description:

This operation retrieves the RGS assigned to an rt-component or to a socket.

The getRGS operation triggers the execution of the 'get RGS' elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 50.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.3 setOpacity operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setOpacity
Result: void
In: unsigned short opacity_rate
In: unsigned long transition_duration
Exception: InvalidTarget

Description:

This operation assigns an opacity rate value to an rt-component or a socket.

The setOpacity operation triggers the execution of the 'set opacity' elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 51.2.1.

The opacity_rate parameter specifies the value of the 'opacity rate' parameter of the 'set opacity'
action.

The transition_duration parameter specifies the value of the 'transition duration' parameter of the
'set opacity' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 57
Draft prETS 300 714: April 1996

7.1.21.4 setPresentationPriority operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setPresentationPriority
Result: void
In: PresentationPriority presentation_priority
In: unsigned long transition_duration
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation specifies the presentation priority between the rt-components or sockets assigned to the
same RGS. The operation defines the priority of the rt-component or socket with respect to the other
rt-components or sockets assigned to the same RGS.

The setPresentationPriority operation triggers the execution of the 'set Presentation priority'
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 51.2.2.

The presentation_priority parameter specifies the value of the 'presentation priority' parameter of
the 'set Presentation priority' action.

The transition_duration parameter specifies the value of the 'transition duration' parameter of the
'set Presentation priority' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.21.5 getOpacity operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getOpacity
Result: unsigned short
Exception: InvalidTarget

Description:

This operation retrieves the opacity value of an rt-component or a socket.

The getOpacity operation triggers the execution of the 'get opacity' elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 51.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 58
Draft prETS 300 714: April 1996

7.1.21.6 getEffectiveOpacity operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getEffectiveOpacity
Result: unsigned short
Exception: InvalidTarget

Description:

This operation retrieves the effective opacity value of an rt-component or a socket.

The getEffectiveOpacity operation triggers the execution of the 'get effective opacity' elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 51.3.2.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.7 getPresentationPriority operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getPresentationPriority
Result: unsigned short
Exception: InvalidTarget

Description:

This operation retrieves the presentation priority of an rt-component or a socket.

The getPresentationPriority operation triggers the execution of the 'get presentation priority'
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 51.3.3.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.8 setVisibleDuration operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setVisibleDuration
Result: void
In: TemporalPosition initial_temporal_position
In: TemporalPosition terminal_temporal_position
Exception: InvalidTarget
Exception: InvalidParameter

Page 59
Draft prETS 300 714: April 1996

Description:

This operation retrieves the presentation priority of an rt-component or a socket.

The setVisibleDuration operation triggers the execution of the 'set visible duration' elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 51.3.3.

The initial_temporal_position parameter specifies the value of the 'initial temporal position'
parameter of the 'set visible duration' action.

The terminal_temporal_position parameter specifies the value of the 'terminal temporal position'
parameter of the 'set visible duration' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.21.9 setTemporalTermination operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setTemporalTermination
Result: void
In: TemporalTermination temporal_termination
Exception: InvalidTarget

Description:

This operation specifies the type of temporal termination when the current temporal position passes the
terminal temporal position.

The setTemporalTermination operation triggers the execution of the 'set temporal termination'
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.2.2.

The temporal_termination parameter specifies the value of the 'temporal termination' parameter of
the 'set temporal termination' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.10 setCurrentTemporalPosition operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setCurrentTemporalPosition
Result: void
In: TemporalPosition temporal_position
Exception: InvalidTarget
Exception: InvalidParameter

Page 60
Draft prETS 300 714: April 1996

Description:

This operation specifies a current temporal position within the Visible Duration (VD).

The setCurrentTemporalPosition operation triggers the execution of the 'set current temporal
position' elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.2.3.

The temporal_position parameter specifies the value of the 'temporal position' parameter of the 'set
current temporal position' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.21.11 setSpeed operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setSpeed
Result: void
In: Speed the_speed
In: unsigned long transition_duration
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation defines the speed of the presentation of an rt-component or socket. The effective
presentation speed is calculated from this value by the MHEG engine.

The setSpeed operation triggers the execution of the 'set speed' elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.2.5.

The the_speed parameter specifies the value of the 'speed' parameter of the 'set speed' action.

The transition_duration parameter specifies the value of the 'transition duration' parameter of the
'set speed' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

Page 61
Draft prETS 300 714: April 1996

7.1.21.12 setTimestones operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setTimestones
Result: void
In: sequence<Timestone> timestones
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation specifies a complete set of temporal markers within the perceptible duration of the
presentable.

The setTimestones operation triggers the execution of the 'set timestones' elementary action with the
bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.2.6.

The timestones parameter specifies the value of the 'timestones' parameter of the 'set timestones'
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.21.13 getInitialTemporalPosition operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getInitialTemporalPosition
Result: unsigned long
Exception: InvalidTarget

Description:

This operation retrieves the initial temporal position value of the rt-component or socket. This value is
retrieved in Original generic space Generic Temporal Unit (OGTU).

The getInitialTemporalPosition operation triggers the execution of the 'get initial temporal
position' elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.2.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 62
Draft prETS 300 714: April 1996

7.1.21.14 getTerminalTemporalPosition operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getTerminalTemporalPosition
Result: unsigned long
Exception: InvalidTarget

Description:

This operation retrieves the terminal temporal position value of the rt-component or socket. This value is
retrieved in OGTU.

The getTerminalTemporalPosition operation triggers the execution of the 'get terminal temporal
position' elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.3.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.15 getVDLength operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getVDLength
Result: unsigned long
In: GTIndicator gt_indicator
Exception: InvalidTarget

Description:

This operation retrieves the VD length value of the rt-component or socket either in OGTU or in Relative
generic space Generic Temporal Unit (RGTU).

The getVDLength operation triggers the execution of the 'get VD length' elementary action with the
bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.4.

The gt_indicator parameter specifies the value of the 'GT indicator' parameter of the 'get VD length'
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.16 getTemporalTermination operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getTemporalTermination
Result: TemporalTermination
Exception: InvalidTarget

Page 63
Draft prETS 300 714: April 1996

Description:

This operation retrieves the 'temporal termination' value of the rt-component or socket.

The getTemporalTermination operation triggers the execution of the 'get temporal termination'
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.5.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.17 getCurrentTemporalPosition operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getCurrentTemporalPosition
Result: unsigned long
Exception: InvalidTarget

Description:

This operation retrieves the current temporal position value of the rt-component or socket. This value is
retrieved in OGTU.

The getCurrentTemporalPosition operation triggers the execution of the 'get current temporal
position' elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.6.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.18 getSpeedRate operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getSpeedRate
Result: short
Exception: InvalidTarget

Description:

This operation retrieves the speed rate value of the rt-component or socket. This value is a percentage
negative or positive. This speed rate, is used to indicate the required change of speed since the Initial
Original generic space Generic Temporal Ratio (IOGTR) and also the required direction of the
presentation.

The getSpeedRate operation triggers the execution of the 'get speed rate' elementary action with the
bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.8.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 64
Draft prETS 300 714: April 1996

7.1.21.19 getOGTR operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getOGTR
Result: unsigned long
Exception: InvalidTarget

Description:

This operation retrieves the Original generic space Generic Temporal Ratio (OGTR) value of the
rt-component or socket. This value is a positive or null numeric which corresponds to the number of
OGTU to be mapped in one second.

The getOGTR operation triggers the execution of the 'get OGTR' elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 52.3.9.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.20 getEffectiveSpeedRate operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getEffectiveSpeedRate
Result: short
Exception: InvalidTarget

Description:

This operation retrieves the effective speed rate value of the rt-component or socket. This value is a
percentage negative or positive. This effective speed rate, is used to calculate the effective change of
speed since the IOGTR and also the effective direction of the presentation.

The getEffectiveSpeedRate operation triggers the execution of the 'get effective speed rate'
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
52.3.10.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.21 getEffectiveOGTR operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getEffectiveOGTR
Result: unsigned long
Exception: InvalidTarget

Page 65
Draft prETS 300 714: April 1996

Description:

This operation retrieves the effective OGTR value of the rt-component or socket. This value is a positive
or null numeric which corresponds to the effective number of OGTU to be mapped in one second.

The getEffectiveOGTR operation triggers the execution of the 'get effective OGTR elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
52.3.11.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.22 getTimestoneStatus operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getTimestoneStatus
Result: unsigned short
Exception: InvalidTarget

Description:

This operation retrieves the timestone status value of the rt-component or socket.

The getTimestoneStatus operation triggers the execution of the 'get timestone status' elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
52.3.12.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.23 setPerceptibleSizeProjection operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setPerceptibleSizeProjection
Result: void
In: PerceptibleSizeProjection perceptible_size_projection
In: unsigned long transition_duration
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation defines the projection of the perceptible size in its RGS.

The setPerceptibleSizeProjection operation triggers the execution of the 'set perceptible size
projection' elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.1.

Page 66
Draft prETS 300 714: April 1996

The perceptible_size_projection parameter specifies the value of the 'perceptible size projection'
parameter of the 'set perceptible size projection' action.

The transition_duration parameter specifies the value of the 'transition duration' parameter of the
'set perceptible size projection' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.21.24 setAspectRatio operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setAspectRatio
Result: void
In: AspectRatio preserved
Exception: InvalidTarget

Description:

This operation specifies whether in performing the projection of an rt-component or socket in the Channel
Generic Space (CGS) (through the chain of mappings Original Generic Space (OGS)-RGS), the ratio
between the Perceptible Size (PS) in Original generic space Generic Spatial Unit (OGSU), i.e. the OGS
lengths, and the projection in Channel Generic Space Unit (CGSU) of the 'size of the content information'
is to be the same for each axis. In such case the aspect ratio is preserved.

The setAspectRatio operation triggers the execution of the 'set aspect ratio preserved' elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.3.

The preserved parameter specifies the value of the 'preserved' parameter of the 'set aspect ratio
preserved' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.25 setVisibleSize operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setVisibleSize
Result: void
In: VSGS the_vsgs
In: VS the_vs
In: unsigned long transition_duration
Exception: InvalidTarget
Exception: InvalidParameter

Page 67
Draft prETS 300 714: April 1996

Description:

This operation specifies the Visible Size (VS), which defines which portion of the PS is perceived by the
user.

The setVisibleSize operation triggers the execution of the 'set visible size' elementary action with the
bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.4.

The the_vsgs parameter specifies the value of the 'vsgs' parameter of the 'set visible size' action.

The the_vs parameter specifies the value of the 'vs' parameter of the 'set visible size' action.

The transition_duration parameter specifies the value of the 'transition duration' parameter of the
'set visible size' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.21.26 setVisibleSizesAdjustment operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setVisibleSizesAdjustment
Result: void
In: sequence<AdjustmentAxis> set_of_axes
In: AdjustmentPolicy adjustment_policy
In: unsigned long transition_duration
Exception: InvalidTarget

Description:

This operation specifies the adjustment of a set of VSs on a same axis or on a set of axes. All the VSs to
be adjusted need to be assigned to the same CGS.

The setVisibleSizesAdjustment operation triggers the execution of the 'set visible sizes
adjustment' elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.5.

The set_of_axes parameter specifies the value of the 'set of axes' parameter of the 'set visible sizes
adjustment' action.

The adjustment_policy parameter specifies the value of the 'adjustment policy' parameter of the 'set
visible sizes adjustment' action.

The transition_duration parameter specifies the value of the 'transition duration' parameter of the
'set visible sizes adjustment' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 68
Draft prETS 300 714: April 1996

7.1.21.27 setBox operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setBox
Result: void
In: BoxConstants box
Exception: InvalidTarget

Description:

This operation specifies whether the rt-component or the socket is presented with a box to show the
perimeter of the VS.

The setBox operation triggers the execution of the 'set box' elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.6.

The box parameter specifies the value of the 'box' parameter of the 'set box' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.28 setDefaultBackground operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setDefaultBackground
Result: void
In: unsigned short background
In: unsigned long transition_duration
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation specifies whether the areas within the VS of an rt-component or a socket which are not
filled by the presentation process need to be considered as opaque or transparent.

The setDefaultBackground operation triggers the execution of the 'set default background'
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.7.

The background parameter specifies the value of the 'background' parameter of the 'set default
background' action.

The transition_duration parameter specifies the value of the 'transition duration' parameter of the
'set default background' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was

Page 69
Draft prETS 300 714: April 1996

completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.21.29 setAttachmentPoint operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setAttachmentPoint
Result: void
In: AttachmentPointType type
In: AttachmentPoint positions
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation specifies one of the following AP: Perceptible Size Attachment Point (PSAP), Visible Size
Internal Attachment Point (VSIAP) or Visible Size External Attachment Point (VSEAP).

The setAttachmentPoint operation triggers the execution of the 'set attachment point' elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.8.

The type parameter specifies the value of the 'type' parameter of the 'set attachment point' action.

The positions parameter specifies the value of the 'positions' parameter of the 'set attachment point'
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.21.30 setAttachmentPointPosition operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setAttachmentPointPosition
Result: void
In: AttachmentPointType type
In: ReferenceType vseap_reference_point
In: Lengths the_lengths
In: unsigned long transition_duration
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation specifies the position of the VSIAP relatively to the PSAP, or the position of the VSEAP in
its RGS relatively to the origin or to another VSEAP.

The setAttachmentPointPosition operation triggers the execution of the 'set attachment point
position' elementary action with the bound rt-component or socket as its single target.

Page 70
Draft prETS 300 714: April 1996

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.9.

The type parameter specifies the value of the 'type' parameter of the 'set attachment point position'
action.

The vseap_reference_point parameter specifies the value of the 'vseap reference point' parameter
of the 'set attachment point position' action.

The the_lengths parameter specifies the value of the 'lengths' parameter of the 'set attachment point
position' action.

The transition_duration parameter specifies the value of the 'transition duration' parameter of the
'set attachment point position' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.21.31 setVisibleSizesAlignment operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setVisibleSizesAlignment
Result: void
In: SizeBorder size_border
In: long interval
In: unsigned long transition_duration
Exception: InvalidTarget

Description:

This operation specifies the alignment of a set of VSs. The VSs are aligned on a border and an interval
between two VSs may be provided. All the VSs to be aligned needs to be assigned to the same CGS.

The setVisibleSizesAlignment operation triggers the execution of the 'set visible sizes alignment'
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.10.

The size_border parameter specifies the value of the 'size border' parameter of the 'set visible sizes
alignment' action.

The interval parameter specifies the value of the 'interval' parameter of the 'set visible sizes alignment'
action.

The transition_duration parameter specifies the value of the 'transition duration' parameter of the
'set visible sizes alignment' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 71
Draft prETS 300 714: April 1996

7.1.21.32 setMovingAbility operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setMovingAbility
Result: void
In: UserControls moving_ability
Exception: InvalidTarget

Description:

This operation specifies whether the user is able to move or not to move the VS of the targets in their
CGS.

The setMovingAbility operation triggers the execution of the 'set moving ability' elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.11.

The moving_ability parameter specifies the value of the 'moving ability' parameter of the 'set moving
ability' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.33 setResizingAbility operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setResizingAbility
Result: void
In: UserControls resizing_ability
Exception: InvalidTarget

Description:

This operation specifies whether the user is able to resize or not the VS of the targets in their CGS.

The setResizingAbility operation triggers the execution of the 'set resizing ability' elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.12.

The resizing_ability parameter specifies the value of the 'resizing ability' parameter of the 'set
resizing ability' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 72
Draft prETS 300 714: April 1996

7.1.21.34 setScalingAbility operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setScalingAbility
Result: void
In: UserControls scaling_ability
Exception: InvalidTarget

Description:

This operation specifies whether the user is able to scale or not the PS of the targets in their CGS.

The setScalingAbility operation triggers the execution of the 'set scaling ability' elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.13.

The scaling_ability parameter specifies the value of the 'scaling ability' parameter of the 'set scaling
ability' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.35 setScrollingAbility operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setScrollingAbility
Result: void
In: UserControls scrolling_ability
Exception: InvalidTarget

Description:

This operation specifies whether the user is able/unable to scroll the PS through the VS of the targets in
their CGS.

The setScrollingAbility operation triggers the execution of the 'set scrolling ability' elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.14.

The scrolling_ability parameter specifies the value of the 'scrolling ability' parameter of the 'set
scrolling ability' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.36 getGSR operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getGSR
Result: unsigned short
Exception: InvalidTarget

Page 73
Draft prETS 300 714: April 1996

Description:

This operation retrieves the Generic Spatial Ratio (GSR) value of the OGS of the rt-component or socket.
This ratio defines the number of OGSU which are to be mapped in one Relative generic space Generic
Spatial Unit (RGSU).

The getGSR operation triggers the execution of the 'get GSR' elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.37 getPS operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getPS
Result: SpecifiedPosition
In: GSIndicator gs
Exception: InvalidTarget

Description:

This operation retrieves the PS value of the rt-component or socket either in OGSU or in RGSU.

The getPS operation triggers the execution of the 'get PS' elementary action with the bound rt-component
or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.2.

The gs parameter specifies the value of the 'gs' parameter of the 'get PS' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.38 getAspectRatio operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getAspectRatio
Result: AspectRatio
Exception: InvalidTarget

Description:

This operation retrieves the aspect ratio value of the PS of the rt-component or socket.

The getAspectRatio operation triggers the execution of the 'get aspect ratio' elementary action with
the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.4.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 74
Draft prETS 300 714: April 1996

7.1.21.39 getPSAP operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getPSAP
Result: SpecifiedPosition
In: PointType point_type
Exception: InvalidTarget

Description:

This operation retrieves the PSAP value of the rt-component or socket.

The getPSAP operation triggers the execution of the 'get PSAP' elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.5.

The point_type parameter specifies the value of the 'point type' parameter of the 'get PSAP' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.40 getVSGS operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getVSGS
Result: VSGS
Exception: InvalidTarget

Description:

This operation retrieves the Visible Size Generic Space (VSGS) value of the rt-component or socket.

The getVSGS operation triggers the execution of the 'get VSGS' elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.6.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.41 getVS operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getVS
Result: SpecifiedPosition
Exception: InvalidTarget

Page 75
Draft prETS 300 714: April 1996

Description:

This operation retrieves the VS value of the rt-component or socket in Visible Size Generic Spatial Unit
(VSGSU).

The getVS operation triggers the execution of the 'get v s' elementary action with the bound rt-component
or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.7.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.42 getBox operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getBox
Result: BoxConstants
Exception: InvalidTarget

Description:

This operation retrieves the visible size box value of the rt-component or socket.

The getBox operation triggers the execution of the 'get box' elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.8.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.43 getDefaultBackground operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getDefaultBackground
Result: unsigned short
Exception: InvalidTarget

Description:

This operation retrieves the default background value of the VS of the rt-component or socket.

The getDefaultBackground operation triggers the execution of the 'get default background'
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.9.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 76
Draft prETS 300 714: April 1996

7.1.21.44 getVSIAP operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getVSIAP
Result: SpecifiedPosition
In: PointType point_type
Exception: InvalidTarget

Description:

This operation retrieves the VSIAP value of the rt-component or socket.

The getVSIAP operation triggers the execution of the 'get VSIAP' elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.10.

The point_type parameter specifies the value of the 'point type' parameter of the 'get VSIAP' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.45 getVSIAPPosition operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getVSIAPPosition
Result: SpecifiedPosition
Exception: InvalidTarget

Description:

This operation retrieves the VSIAP position value of the rt-component or socket. This is used to position
the VSIAP relative to the PSAP.

The getVSIAPPosition operation triggers execution of the 'get VSIAP position' elementary action with
the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.11.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.46 getVSEAP operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getVSEAP
Result: SpecifiedPosition
In: PointType point_type
Exception: InvalidTarget

Page 77
Draft prETS 300 714: April 1996

Description:

This operation retrieves the VSEAP value of the rt-component or socket.

The getVSEAP operation triggers the execution of the 'get VSEAP' elementary action with the bound
rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.12.

The point_type parameter specifies the value of the 'point type' parameter of the 'get VSEAP' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.47 getVSEAPPosition operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getVSEAPPosition
Result: SpecifiedPosition
In: ReferencePoint reference_point
Exception: InvalidTarget

Description:

This operation retrieves the VSEAP position value of the rt-component or socket relative to a reference
point. This is used to position the VSEAP relative to the PSAP.

The getVSEAPPosition operation triggers the execution of the 'get VSEAP position' elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.13.

The reference_point parameter specifies the value of the 'reference point' parameter of the 'get
VSEAP position' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.48 getMovingAbility operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getMovingAbility
Result: UserControls
Exception: InvalidTarget

Description:

This operation retrieves the moving ability value of the rt-component or socket.

The getMovingAbility operation triggers the execution of the 'get moving ability' elementary action
with the bound rt-component or socket as its single target.

Page 78
Draft prETS 300 714: April 1996

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.14.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.49 getResizingAbility operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getResizingAbility
Result: UserControls
Exception: InvalidTarget

Description:

This operation retrieves the resizing ability value of the rt-component or socket.

The getResizingAbility operation triggers the execution of the 'get resizing ability' elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.15.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.50 getScalingAbility operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getScalingAbility
Result: UserControls
Exception: InvalidTarget

Description:

This operation retrieves the scaling ability value of the rt-component or socket.

The getScalingAbility operation triggers the execution of the 'get scaling ability' elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.16.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.51 getScrollingAbility operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getScrollingAbility
Result: UserControls
Exception: InvalidTarget

Page 79
Draft prETS 300 714: April 1996

Description:

This operation retrieves the scrolling ability value of the rt-component or socket.

The getScrollingAbility operation triggers the execution of the 'get scrolling ability' elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause
53.4.17.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.52 setSelectability operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setSelectability
Result: void
In: unsigned short min_number_of_selections
In: unsigned short max_number_of_selections
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation assigns a 'minimum number of selections required' value and a 'maximum number of
selections required' value to an rt-component or a socket. The MHEG engine calculates the 'selectability'
value of the rt-component or socket from these two values. The 'effective selectability' value of the
rt-component or socket is also calculated by the MHEG engine from this 'selectability' value and the
'effective selectability' value of the rt-component or socket parent.

The setSelectability operation triggers the execution of the 'set selectability' elementary action with
the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.2.1.

The min_number_of_selections parameter specifies the value of the 'min number of selections'
parameter of the 'set selectability' action.

The max_number_of_selections parameter specifies the value of the 'max number of selections'
parameter of the 'set selectability' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

Page 80
Draft prETS 300 714: April 1996

7.1.21.53 setSelectionStatus operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setSelectionStatus
Result: void
In: SelectionStatusValue selection_state
Exception: InvalidTarget

Description:

This operation assigns a value to the 'selection status' of an rt-component or a socket.

The setSelectionStatus operation triggers the execution of the 'set selection status' elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.2.2.

The selection_state parameter specifies the value of the 'selection state' parameter of the 'set
selection status' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.54 setSelectionPresentationEffectResponsibility operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setSelectionPresentationEffectResponsibility
Result: void
In: Responsibility the_responsibility
Exception: InvalidTarget

Description:

This operation assigns a value to the 'selection presentation effect responsibility' of an rt-component or a
socket. This attribute indicates if it is the MHEG engine or the author who is responsible for reflecting a
new state of the rt-component or socket as its single target

The setSelectionPresentationEffectResponsibility operation triggers the execution of the
'set selection presentation effect responsibility' elementary action with the bound rt-component or socket
as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.2.3.

The the_responsibility parameter specifies the value of the ' responsibility' parameter of the 'set
selection presentation effect responsibility' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 81
Draft prETS 300 714: April 1996

7.1.21.55 getSelectability operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getSelectability
Result: void
Out: unsigned short min_mumber_of_selections
Out: unsigned short max_mumber_of_selections
Exception: InvalidTarget

Description:

This operation retrieves the 'minimum number of selections required' and the 'maximum number of
selections required'. If the 'maximum number of selections required' is equal to 0 the 'selectability' of the
rt-component or socket is 'not selectable'.

The getSelectability operation triggers the execution of the 'get selectability' elementary action with
the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.3.1.

The min_mumber_of_selections parameter specifies the value of the 'min number of selections'
parameter of the 'get selectability' action.

The max_mumber_of_selections parameter specifies the value of the 'max number of selections'
parameter of the 'get selectability' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.56 getEffectiveSelectability operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getEffectiveSelectability
Result: EffectiveSelectability
Exception: InvalidTarget

Description:

This operation retrieves the 'effective selectability' attribute value of the rt-component or socket.

The getEffectiveSelectability operation triggers the execution of the 'get effective selectability'
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.3.2.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 82
Draft prETS 300 714: April 1996

7.1.21.57 getSelectionStatus operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getSelectionStatus
Result: SelectionStatusValue
Exception: InvalidTarget

Description:

This operation retrieves the 'selection status' value of the rt-component or socket.

The getSelectionStatus operation triggers the execution of the 'get selection status' elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.3.3.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.58 getSelectionMode operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getSelectionMode
Result: SelectionModeValue
Exception: InvalidTarget

Description:

This operation retrieves the 'selection mode' attribute value of the rt-component or socket.

The getSelectionMode operation triggers the execution of the 'get selection mode' elementary action
with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.3.4.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.59 getSelectionPresentationEffectResponsibility operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getSelectionPresentationEffectResponsibility
Result: Responsibility
Exception: InvalidTarget

Description:

This operation retrieves the 'selection presentation effect responsibility' attribute value of the rt-component
or socket.

The getSelectionPresentationEffectResponsibility operation triggers the execution of the
'get selection presentation effect responsibility' elementary action with the bound rt-component or socket
as its single target.

Page 83
Draft prETS 300 714: April 1996

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.3.6.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.60 setModifiability operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setModifiability
Result: void
In: unsigned short min_number_of_modifications
In: unsigned short max_number_of_modifications
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation assigns a 'minimum number of modifications required' value and a 'maximum number of
modifications required' value to an rt-component or a socket. The MHEG engine calculates the
'modifiability' value of the rt-component or socket from these two values. The 'effective modifiability' value
of the rt-component or socket is also calculated by the MHEG engine from this 'modifiability' value and the
'effective modifiability' value of the parent of the rt-component or socket.

The setModifiability operation triggers the execution of the 'set modifiability' elementary action with
the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.2.1.

The min_number_of_modifications parameter specifies the value of the 'min number of
modifications' parameter of the 'set modifiability' action.

The max_number_of_modifications parameter specifies the value of the 'max number of
modifications' parameter of the 'set modifiability' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.21.61 setModificationStatus operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setModificationStatus
Result: void
In: ModificationStatusValue modification_state
Exception: InvalidTarget

Page 84
Draft prETS 300 714: April 1996

Description:

This operation assigns a value to the 'modification status' of an rt-component or a socket.

The setModificationStatus operation triggers the execution of the 'set modification status'
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.2.2.

The modification_state parameter specifies the value of the 'modification state' parameter of the
'set modification status' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.62 setModificationPresentationEffectResponsibility operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setModificationPresentationEffectResponsibility
Result: void
In: Responsibility the_responsibility
Exception: InvalidTarget

Description:

This operation assigns a value to the 'modification presentation effect responsibility' of an rt-component or
a socket. This attribute indicates if it is the MHEG engine or the author who is responsible for reflecting a
new state of the component or socket.

The setModificationPresentationEffectResponsibility operation triggers the execution of
the 'set modification presentation effect responsibility' elementary action with the bound rt-component or
socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.2.3.

The the_responsibility parameter specifies the value of the 'responsibility' parameter of the 'set
modification presentation effect responsibility' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.63 getModifiability operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getModifiability
Result: void
Out: unsigned short min_numbers_of_modifications
Out: unsigned short max_numbers_of_modifications
Exception: InvalidTarget

Description:

This operation retrieves the 'minimum number of modifications required' and the 'maximum number of
modifications required'. If the 'maximum number of modifications required' is equal to 0 the 'modifiability'
of the rt-component or socket is 'not modifiable'.

Page 85
Draft prETS 300 714: April 1996

The getModifiability operation triggers the execution of the 'get modifiability' elementary action with
the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.3.1.

The min_numbers_of_modifications parameter specifies the value of the 'min numbers of
modifications' parameter of the 'get modifiability' action.

The max_numbers_of_modifications parameter specifies the value of the 'max numbers of
modifications' parameter of the 'get modifiability' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.64 getEffectiveModifiability operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getEffectiveModifiability
Result: EffectiveModifiability
Exception: InvalidTarget

Description:

This operation retrieves the 'effective modifiability' attribute value of the rt-component or socket.

The getEffectiveModifiability operation triggers the execution of the 'get effective modifiability'
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.3.2.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.65 getModificationStatus operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getModificationStatus
Result: ModificationStatusValue
Exception: InvalidTarget

Description:

This operation retrieves the 'modification status' value of the rt-component or socket.

The getModificationStatus operation triggers the execution of the 'get modification status'
elementary action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.3.3.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 86
Draft prETS 300 714: April 1996

7.1.21.66 getModificationMode operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getModificationMode
Result: ModificationModeValue
Exception: InvalidTarget

Description:

This operation retrieves the 'modification mode' attribute value of the rt-component or socket.

The getModificationMode operation triggers the execution of the 'get modification mode' elementary
action with the bound rt-component or socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.3.4.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.67 getModificationPresentationEffectResponsibility operation

Synopsis:

Interface: RtComponentOrSocket
Operation: getModificationPresentationEffectResponsibility
Result: Responsibility
Exception: InvalidTarget

Description:

This operation retrieves the 'modification presentation effect responsibility' attribute value of the
rt-component or socket.

The getModificationPresentationEffectResponsibility operation triggers the execution of
the 'get modification presentation effect responsibility' elementary action with the bound rt-component or
socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.3.6.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.68 setNoInteractionStyle operation

Synopsis:

Interface: RtComponentOrSocket
Operation: setNoInteractionStyle
Result: void
Exception: InvalidTarget

Description:

This operation deassigns the currently assigned interaction style to an rt-component or a socket.

The setNoInteractionStyle operation triggers the execution of the 'set no style' elementary action
with the bound rt-component or socket as its single target.

Page 87
Draft prETS 300 714: April 1996

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 59.2.6.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.21.69 IDL description

interface RtComponentOrSocket {

void
setRGS(

in ChannelIdentifier
channel_identifier)

raises(InvalidTarget);

RGSValue
getRGS()

raises(InvalidTarget);

void
setOpacity(

in unsigned short
opacity_rate,

in unsigned long
transition_duration)

raises(InvalidTarget);

void
setPresentationPriority(

in PresentationPriority
presentation_priority,

in unsigned long
transition_duration)

raises(InvalidTarget, InvalidParameter);

unsigned short
getOpacity()

raises(InvalidTarget);

unsigned short
getEffectiveOpacity()

raises(InvalidTarget);

unsigned short
getPresentationPriority()

raises(InvalidTarget);

void
setVisibleDuration(

in TemporalPosition
initial_temporal_position,

in TemporalPosition
terminal_temporal_position)

raises(InvalidTarget, InvalidParameter);

void
setTemporalTermination(

in TemporalTermination
temporal_termination)

raises(InvalidTarget);

void
setCurrentTemporalPosition(

in TemporalPosition
temporal_position)

raises(InvalidTarget, InvalidParameter);

void
setSpeed(

in Speed
the_speed,

in unsigned long
transition_duration)

raises(InvalidTarget, InvalidParameter);

void
setTimestones(

in sequence<Timestone>
timestones)

Page 88
Draft prETS 300 714: April 1996

raises(InvalidTarget, InvalidParameter);

unsigned long
getInitialTemporalPosition()

raises(InvalidTarget);

unsigned long
getTerminalTemporalPosition()

raises(InvalidTarget);

unsigned long
getVDLength(

in GTIndicator
gt_indicator)

raises(InvalidTarget);

TemporalTermination
getTemporalTermination()

raises(InvalidTarget);

unsigned long
getCurrentTemporalPosition()

raises(InvalidTarget);

short
getSpeedRate()

raises(InvalidTarget);

unsigned long
getOGTR()

raises(InvalidTarget);

short
getEffectiveSpeedRate()

raises(InvalidTarget);

unsigned long
getEffectiveOGTR()

raises(InvalidTarget);

unsigned short
getTimestoneStatus()

raises(InvalidTarget);

void
setPerceptibleSizeProjection(

in PerceptibleSizeProjection
perceptible_size_projection,

in unsigned long
transition_duration)

raises(InvalidTarget, InvalidParameter);

void
setAspectRatio(

in AspectRatio
preserved)

raises(InvalidTarget);

void
setVisibleSize(

in VSGS
the_vsgs,

in VS
the_vs,

in unsigned long
transition_duration)

raises(InvalidTarget, InvalidParameter);

void
setVisibleSizesAdjustment(

in sequence<AdjustmentAxis>
set_of_axes,

in AdjustmentPolicy
adjustment_policy,

in unsigned long
transition_duration)

raises(InvalidTarget);

void
setBox(

in BoxConstants
box)

raises(InvalidTarget);

Page 89
Draft prETS 300 714: April 1996

void
setDefaultBackground(

in unsigned short
background,

in unsigned long
transition_duration)

raises(InvalidTarget, InvalidParameter);

void
setAttachmentPoint(

in AttachmentPointType
type,

in AttachmentPoint
positions)

raises(InvalidTarget, InvalidParameter);

void
setAttachmentPointPosition(

in AttachmentPointType
type,

in ReferenceType
vseap_reference_point,

in Lengths
the_lengths,

in unsigned long
transition_duration)

raises(InvalidTarget, InvalidParameter);

void
setVisibleSizesAlignment(

in SizeBorder
size_border,

in long
interval,

in unsigned long
transition_duration)

raises(InvalidTarget);

void
setMovingAbility(

in UserControls
moving_ability)

raises(InvalidTarget);

void
setResizingAbility(

in UserControls
resizing_ability)

raises(InvalidTarget);

void
setScalingAbility(

in UserControls
scaling_ability)

raises(InvalidTarget);

void
setScrollingAbility(

in UserControls
scrolling_ability)

raises(InvalidTarget);

unsigned short
getGSR()

raises(InvalidTarget);

SpecifiedPosition
getPS(

in GSIndicator
gs)

raises(InvalidTarget);

AspectRatio
getAspectRatio()

raises(InvalidTarget);

SpecifiedPosition
getPSAP(

in PointType
point_type)

raises(InvalidTarget);

Page 90
Draft prETS 300 714: April 1996

VSGS
getVSGS()

raises(InvalidTarget);

SpecifiedPosition
getVS()

raises(InvalidTarget);

BoxConstants
getBox()

raises(InvalidTarget);

unsigned short
getDefaultBackground()

raises(InvalidTarget);

SpecifiedPosition
getVSIAP(

in PointType
point_type)

raises(InvalidTarget);

SpecifiedPosition
getVSIAPPosition()

raises(InvalidTarget);

SpecifiedPosition
getVSEAP(

in PointType
point_type)

raises(InvalidTarget);

SpecifiedPosition
getVSEAPPosition(

in ReferencePoint
reference_point)

raises(InvalidTarget);

UserControls
getMovingAbility()

raises(InvalidTarget);

UserControls
getResizingAbility()

raises(InvalidTarget);

UserControls
getScalingAbility()

raises(InvalidTarget);

UserControls
getScrollingAbility()

raises(InvalidTarget);

void
setSelectability(

in unsigned short
min_number_of_selections,

in unsigned short
max_number_of_selections)

raises(InvalidTarget, InvalidParameter);

void
setSelectionStatus(

in SelectionStatusValue
selection_state)

raises(InvalidTarget);

void
setSelectionPresentationEffectResponsibility(

in Responsibility
the_responsibility)

raises(InvalidTarget);

void
getSelectability(

out unsigned short
min_mumber_of_selections,

out unsigned short
max_mumber_of_selections)

raises(InvalidTarget);

EffectiveSelectability

Page 91
Draft prETS 300 714: April 1996

getEffectiveSelectability()
raises(InvalidTarget);

SelectionStatusValue
getSelectionStatus()

raises(InvalidTarget);

SelectionModeValue
getSelectionMode()

raises(InvalidTarget);

Responsibility
getSelectionPresentationEffectResponsibility()

raises(InvalidTarget);

void
setModifiability(

in unsigned short
min_number_of_modifications,

in unsigned short
max_number_of_modifications)

raises(InvalidTarget, InvalidParameter);

void
setModificationStatus(

in ModificationStatusValue
modification_state)

raises(InvalidTarget);

void
setModificationPresentationEffectResponsibility(

in Responsibility
the_responsibility)

raises(InvalidTarget);

void
getModifiability(

out unsigned short
min_numbers_of_modifications,

out unsigned short
max_numbers_of_modifications)

raises(InvalidTarget);

EffectiveModifiability
getEffectiveModifiability()

raises(InvalidTarget);

ModificationStatusValue
getModificationStatus()

raises(InvalidTarget);

ModificationModeValue
getModificationMode()

raises(InvalidTarget);

Responsibility
getModificationPresentationEffectResponsibility()

raises(InvalidTarget);

void
setNoInteractionStyle()

raises(InvalidTarget);

};

7.1.22 RtComponent object

For the RtComponent object no specific operations are defined. The object inherits from the
RtComponentOrSocket object and from the RtObject object .

7.1.22.1 IDL description

interface RtComponent: RtComponentOrSocket, RtObject {};

7.1.23 RtCompositeOrStructuralSocket object

The following subclause defines the operations of the RtCompositeOrStructuralSocket object.

Page 92
Draft prETS 300 714: April 1996

7.1.23.1 setResizingStrategy operation

Synopsis:

Interface: RtCompositeOrStructuralSocket
Operation: setResizingStrategy
Result: void
In: ResizingStrategy resizing_strategy
Exception: InvalidTarget

Description:

This operation specifies the PS resizing strategy that an rt-composite or structural socket is to have
regarding the modification of the VSs of the child sockets having a Parent Relative Generic Space
(PRGS).

The setResizingStrategy operation triggers the execution of the 'set resizing strategy' elementary
action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.2.2.

The resizing_strategy parameter specifies the value of the 'resizing strategy' parameter of the 'set
resizing strategy' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.23.2 getResizingStrategy operation

Synopsis:

Interface: RtCompositeOrStructuralSocket
Operation: getResizingStrategy
Result: ResizingStrategy
Exception: InvalidTarget

Description:

This operation retrieves the resizing strategy value of the rt-composite or structural socket.

The getResizingStrategy operation triggers the execution of the 'get resizing strategy' elementary
action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 53.4.3.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.23.3 setAudibleCompositionEffect operation

Synopsis:

Interface: RtCompositeOrStructuralSocket
Operation: setAudibleCompositionEffect
Result: void
In: unsigned short audible_effect
In: unsigned long transition_duration
Exception: InvalidTarget

Page 93
Draft prETS 300 714: April 1996

Description:

This operation specifies the audible composition effect of an rt-composite or a structural socket. This
effect is to be propagated to their descendant sockets having a PRGS. It is used to calculate the effective
Original Volume (OV) of the descendant sockets having a PRGS.

The setAudibleCompositionEffect operation triggers the execution of the 'set audible composition
effect' elementary action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.2.2.

The audible_effect parameter specifies the value of the 'audible effect' parameter of the 'set audible
composition effect' action.

The transition_duration parameter specifies the value of the 'transition duration' parameter of the
'set audible composition effect' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.23.4 getAudibleCompositionEffect operation

Synopsis:

Interface: RtCompositeOrStructuralSocket
Operation: getAudibleCompositionEffect
Result: unsigned short
Exception: InvalidTarget

Description:

This operation retrieves the audible composition effect value of the rt-composite or structural socket. This
effect is expressed as a percentage and used to determine the effective OV of the child sockets of the
rt-composite or structural socket having as PRGS the rt-composite or structural socket. This effect is
recursive for the child sockets of the structural sockets having as PRGS the rt-composite or structural
socket, and so on.

The getAudibleCompositionEffect operation triggers the execution of the 'get audible composition
effect' elementary action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.3.3.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.23.5 getNumberOfSelectedSockets operation

Synopsis:

Interface: RtCompositeOrStructuralSocket
Operation: getNumberOfSelectedSockets
Result: unsigned short
Exception: InvalidTarget

Page 94
Draft prETS 300 714: April 1996

Description:

This operation retrieves the 'number of selected sockets' attribute value of the rt-composite or structural
socket.

The getNumberOfSelectedSockets operation triggers the execution of the 'get number of selected
sockets' elementary action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 57.3.5.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.23.6 getNumberOfModifiedSockets operation

Synopsis:

Interface: RtCompositeOrStructuralSocket
Operation: getNumberOfModifiedSockets
Result: unsigned short
Exception: InvalidTarget

Description:

This operation retrieves the 'number of modified sockets' attribute value of the rt-composite or structural
socket.

The getNumberOfModifiedSockets operation triggers the execution of the 'get number of modified
sockets' elementary action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 58.3.5.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.23.7 setMenuInteractionStyle operation

Synopsis:

Interface: RtCompositeOrStructuralSocket
Operation: setMenuInteractionStyle
Result: void
In: Orientation upper_menu_orientation
In: sequence <Association> list_of_associations
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation assigns the menu interaction style to an rt-composite or a structural socket. This operation
defines a style which affects the complete rt-composite or structural socket, i.e. all generations.

The setMenuInteractionStyle operation triggers the execution of the 'set menu style' elementary
action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 59.2.4.

Page 95
Draft prETS 300 714: April 1996

The upper_menu_orientation parameter specifies the value of the 'upper menu orientation'
parameter of the 'set menu style' action.

The list_of_associations parameter specifies the value of the 'list of associations' parameter of the
'set menu style' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.23.8 setScrollingListInteractionStyle operation

Synopsis:

Interface: RtCompositeOrStructuralSocket
Operation: setScrollingListInteractionStyle
Result: void
In: PerceptibleReference background
In: unsigned short visible_items_number
In: SocketTail first_item
In: Separator the_separator
In: Orientation the_orientation
In: SliderSide slider_side
In: PerceptibleReference slider
In: PerceptibleReference slider_cursor
In: PerceptibleReference slider_background
In: long slider_min_value
In: long slider_max_value
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation assigns the scrolling list interaction style to an rt-composite or a structural socket. This
operation defines a style which affects the first generation and only the child presentable sockets of the
rt-composite or structural socket.

The setScrollingListInteractionStyle operation triggers the execution of the 'set scrolling list
style' elementary action with the bound rt-composite or structural socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 59.2.5.

The background parameter specifies the value of the 'background' parameter of the 'set scrolling list
style' action.

The visible_items_number parameter specifies the value of the 'number of visible items' parameter
of the 'set scrolling list style' action.

The first_item parameter specifies the value of the 'first item' parameter of the 'set scrolling list style'
action.

The the_separator parameter specifies the value of the 'separator' parameter of the 'set scrolling list
style' action.

The the_orientation parameter specifies the value of the 'scrolling list orientation' parameter of the
'set scrolling list style' action.

Page 96
Draft prETS 300 714: April 1996

The slider_side parameter specifies the value of the 'slider side' parameter of the 'set scrolling list
style' action.

The slider, slider_cursor, slider_background, slider_min_value, slider _max_value parameters
specify the values of the parameters of the 'set slider style' action embedded by the 'set scrolling list style'
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.23.9 IDL description

interface RtCompositeOrStructuralSocket {

void
setResizingStrategy(

in ResizingStrategy
resizing_strategy)

raises(InvalidTarget);

ResizingStrategy
getResizingStrategy()

raises(InvalidTarget);

void
setAudibleCompositionEffect(

in unsigned short
audible_effect,

in unsigned long
transition_duration)

raises(InvalidTarget);

unsigned short
getAudibleCompositionEffect()

raises(InvalidTarget);

unsigned short
getNumberOfSelectedSockets()

raises(InvalidTarget);

unsigned short
getNumberOfModifiedSockets()

raises(InvalidTarget);

void
setMenuInteractionStyle(

in Orientation
upper_menu_orientation,

in sequence <Association>
list_of_associations)

raises(InvalidTarget, InvalidParameter);

void
setScrollingListInteractionStyle(

in PerceptibleReference
background,

in unsigned short
visible_items_number,

in SocketTail
first_item,

in Separator
the_separator,

in Orientation
the_orientation,

in SliderSide
slider_side,

in PerceptibleReference
slider,

in PerceptibleReference
slider_cursor,

in PerceptibleReference
slider_background,

Page 97
Draft prETS 300 714: April 1996

in long
slider_min_value,

in long
slider_max_value)

raises(InvalidTarget, InvalidParameter);

};

7.1.24 RtComposite object

For the RtComposite object no specific operations are defined. The object inherits from the
RtCompositeOrStructuralSocket object and from the RtComponent object.

7.1.24.1 IDL description

interface RtComposite: RtCompositeOrStructuralSocket, RtComponent {};

7.1.25 StructuralSocket object

For the StructuralSocket object no specific operations are defined. The object inherits from the
RtCompositeOrStructuralSocket object and from the Socket object.

7.1.25.1 IDL description

interface StructuralSocket: RtCompositeOrStructuralSocket, Socket {};

7.1.26 RtGenericContentOrPresentableSocket object

The following subclause defines the operations of the RtGenericContentOrPresentableSocket
object.

7.1.26.1 setAudibleVolume operation

Synopsis:

Interface: RtGenericContentOrPresentableSocket
Operation: setAudibleVolume
Result: void
In: AudibleVolume audible_volume
In: unsigned long transition_duration
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This action specifies the audible volume of an rt-content, an rt-multiplexed content, a presentable socket
or a multiplexed presentable socket.

The setAudibleVolume operation triggers the execution of the 'set audible volume' elementary action
with the bound rt-content, rt-multiplexed content, presentable socket or multiplexed presentable socket as
its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.2.1.

The audible_volume parameter specifies the value of the 'audible volume' parameter of the 'set
audible volume' action.

The transition_duration parameter specifies the value of the 'transition duration' parameter of the
'set audible volume' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 98
Draft prETS 300 714: April 1996

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.26.2 getInitialOriginalAudibleVolume operation

Synopsis:

Interface: RtGenericContentOrPresentableSocket
Operation: getInitialOriginalAudibleVolume
Result: unsigned long
Exception: InvalidTarget

Description:

This operation retrieves the initial original audible volume value of the rt-content, rt-multiplexed content,
presentable socket or multiplexed presentable socket. This initial volume is expressed in original generic
audible volume unit within the interval defined by the original audible volume range.

The getInitialOriginalAudibleVolume operation triggers the execution of the 'get IOV'
elementary action with the bound rt-content, rt-multiplexed content, presentable socket or multiplexed
presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.26.3 getCurrentOriginalAudibleVolume operation

Synopsis:

Interface: RtGenericContentOrPresentableSocket
Operation: getCurrentOriginalAudibleVolume
Result: unsigned long
Exception: InvalidTarget

Description:

This operation retrieves the current original audible volume value of the rt-content, rt-multiplexed content,
presentable socket or multiplexed presentable socket. This current volume is expressed in original
generic audible volume unit within the interval defined by the original audible volume range.

The getCurrentOriginalAudibleVolume operation triggers the execution of the 'get current OV'
elementary action with the bound rt-content, rt-multiplexed content, presentable socket or multiplexed
presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.3.2.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 99
Draft prETS 300 714: April 1996

7.1.26.4 getEffectiveOriginalAudibleVolume operation

Synopsis:

Interface: RtGenericContentOrPresentableSocket
Operation: getEffectiveOriginalAudibleVolume
Result: unsigned long
Exception: InvalidTarget

Description:

This operation retrieves the effective original audible volume value of the rt-content, rt-multiplexed
content, presentable socket or multiplexed presentable socket. This effective volume is expressed in
original generic audible volume unit within the interval defined by the original audible volume range. It is
calculated by the MHEG engine using the current original audible volume and the audible composition
effect.

The getEffectiveOriginalAudibleVolume operation triggers the execution of the 'get effective OV'
elementary action with the bound rt-content, rt-multiplexed content, presentable socket or multiplexed
presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.3.4.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.26.5 getPerceptibleAudibleVolume operation

Synopsis:

Interface: RtGenericContentOrPresentableSocket
Operation: getPerceptibleAudibleVolume
Result: unsigned long
Exception: InvalidTarget

Description:

This operation retrieves the perceptible original audible volume value of the rt-content, rt-multiplexed
content, presentable socket or multiplexed presentable socket in the assigned channel. This perceptible
volume is expressed in channel generic audible volume unit within the interval defined by the channel
audible volume range. It is calculated by the MHEG engine and corresponds to a projection of the
effective original audible volume in the channel generic space.

The getPerceptibleAudibleVolume operation triggers the execution of the 'get perceptible OV'
elementary action with the bound rt-content, rt-multiplexed content, presentable socket or multiplexed
presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 54.3.5.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 100
Draft prETS 300 714: April 1996

7.1.26.6 setButtonInteractionStyle operation

Synopsis:

Interface: RtGenericContentOrPresentableSocket
Operation: setButtonInteractionStyle
Result: void
In: PresentationState initial_state
In: AlternatePresentation alternate_presentation_1
In: AlternatePresentation alternate_presentation_2
In: AlternatePresentation alternate_presentation_3
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation assigns the button interaction style to an rt-content, rt-multiplexed content, a presentable
socket or a multiplexed presentable socket.

The setButtonInteractionStyle operation triggers the execution of the 'set button style' elementary
action with the bound rt-content, rt-multiplexed content, presentable socket or multiplexed presentable
socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 59.2.1.

The initial_state parameter specifies the value of the 'initial state' parameter of the 'set button style'
action.

The alternate_presentation_1 parameter specifies the value of the 'alternate presentation 1'
parameter of the 'set button style' action.

The alternate_presentation_2 parameter specifies the value of the 'alternate presentation 2'
parameter of the 'set button style' action.

The alternate_presentation_3 parameter specifies the value of the 'alternate presentation 3'
parameter of the 'set button interaction style' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.26.7 IDL description

interface RtGenericContentOrPresentableSocket {

void
setAudibleVolume(

in AudibleVolume
audible_volume,

in unsigned long
transition_duration)

raises(InvalidTarget, InvalidParameter);

unsigned long
getInitialOriginalAudibleVolume()

raises(InvalidTarget);

unsigned long
getCurrentOriginalAudibleVolume()

raises(InvalidTarget);

Page 101
Draft prETS 300 714: April 1996

unsigned long
getEffectiveOriginalAudibleVolume()

raises(InvalidTarget);

unsigned long
getPerceptibleAudibleVolume()

raises(InvalidTarget);

void
setButtonInteractionStyle(

in PresentationState
initial_state,

in AlternatePresentation
alternate_presentation_1,

in AlternatePresentation
alternate_presentation_2,

in AlternatePresentation
alternate_presentation_3)

raises(InvalidTarget, InvalidParameter);

};

7.1.27 RtGenericContent object

For the RtGenericContent object no specific operations are defined. The object inherits from the
RtGenericContentOrPresentableSocket object and from the RtComponent object.

7.1.27.1 IDL description

interface RtGenericContent: RtGenericContentOrPresentableSocket, RtComponent {};

7.1.28 GenericPresentableSocket object

For the GenericPresentableSocket object no specific operations are defined. The object inherits
from the RtGenericContentOrPresentableSocket object and from the Socket object.

7.1.28.1 IDL description

interface GenericPresentableSocket: RtGenericContentOrPresentableSocket, Socket {};

7.1.29 RtContentOrPresentableSocket object

The following subclause defines the operations of the RtContentOrPresentableSocket object.

7.1.29.1 setSliderInteractionStyle operation

Synopsis:

Interface: RtContentOrPresentableSocket
Operation: setSliderInteractionStyle
Result: void
In: PerceptibleReference cursor
In: PerceptibleReference background
In: Orientation the_orientation
In: short min_value
In: short max_value
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation assigns the slider interaction style to an rt-content or a presentable socket created from a
content object model which contains a generic numeric as 'content data'.

The setSliderStyle operation triggers the execution of the 'set slider style' elementary action with the
bound rt-content or presentable socket as its single target.

Page 102
Draft prETS 300 714: April 1996

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 59.2.2.

The cursor parameter specifies the value of the 'cursor' parameter of the 'set slider style' action.

The background parameter specifies the value of the 'background' parameter of the 'set slider style'
action.

The the_orientation parameter specifies the value of the 'orientation' parameter of the 'set slider
style' action.

The min_value parameter specifies the value of the 'minimum value' parameter of the 'set slider style'
action.

The max_value parameter specifies the value of the 'maximum value' parameter of the 'set slider style'
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.29.2 setEntryFieldInteractionStyle operation

Synopsis:

Interface: RtContentOrPresentableSocket
Operation: setEntryFieldInteractionStyle
Result: void
In: EchoStyle echo_style
In: PerceptibleReference background
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation assigns the entry field interaction style to an rt-content or a presentable socket created
from a content object model which contains a generic numeric or a generic string as 'content data'.

The setEntryFieldInteractionStyle operation triggers the execution of the 'set entry field style'
elementary action with the bound rt-content or presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 59.2.3.

The echo_style parameter specifies the value of the 'echo style' parameter of the 'set entry field style'
action.

The background parameter specifies the value of the 'background' parameter of the 'set entry field style'
action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

Page 103
Draft prETS 300 714: April 1996

7.1.29.3 IDL description

interface RtContentOrPresentableSocket {

void
setSliderInteractionStyle(

in PerceptibleReference
cursor,

in PerceptibleReference
background,

in Orientation
the_orientation,

in short
min_value,

in short
max_value)

raises(InvalidTarget, InvalidParameter);

void
setEntryFieldInteractionStyle(

in EchoStyle
echo_style,

in PerceptibleReference
background)

raises(InvalidTarget, InvalidParameter);

};

7.1.30 RtContent object

For the RtContent object no specific operations are defined. The object inherits from the
RtContentOrPresentableSocket object and from the RtGenericContent object.

7.1.30.1 IDL description

interface RtContent: RtContentOrPresentableSocket, RtGenericContent {};

7.1.31 PresentableSocket object

For the PresentableSocket object no specific operations are defined. The object inherits from the
RtContentOrPresentableSocket object and from the GenericPresentableSocket object.

7.1.31.1 IDL description

interface PresentableSocket: RtContentOrPresentableSocket, GenericPresentableSocket {};

7.1.32 RtMultiplexedContentOrPresentableSocket object

The following subclause defines the operations of the RtMultiplexedContentOrPresentableSocket
object.

7.1.32.1 setStreamChoice operation

Synopsis:

Interface: RtMultiplexedContentOrPresentableSocket
Operation: setStreamChoice
Result: void
In: StreamIdentifier stream_identifier
Exception: InvalidTarget
Exception: InvalidParameter

Description:

This operation specifies a stream to be chosen in the multiplexed data and assigned to the rt-multiplexed
content or multiplexed presentable socket. Once a stream is chosen for an rt-multiplexed content or a
multiplexed presentable socket, when it becomes running, the rt-multiplexed content or the multiplexed
presentable socket is responsible for the presentation of this chosen stream.

Page 104
Draft prETS 300 714: April 1996

The setStreamChoice operation triggers the execution of the 'set stream choice' elementary action with
the bound rt-multiplexed content or multiplexed presentable socket as its single target.

The stream_identifier parameter specifies the value of the 'stream choice' parameter of the 'set
stream choice' action.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 55.2.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.32.2 getStreamChosen operation

Synopsis:

Interface: RtMultiplexedContentOrPresentableSocket
Operation: getStreamChosen
Result: StreamValue
Exception: InvalidTarget

Description:

This operation retrieves the stream chosen for the rt-multiplexed content or multiplexed presentable
socket.

The getStreamChosen operation triggers the execution of the 'get stream chosen' elementary action
with the bound rt-multiplexed content or multiplexed presentable socket as its single target.

The effect of the action on its target, the semantics of its parameters, the computation of its result and the
error conditions that cause exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 55.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.32.3 IDL description

interface RtMultiplexedContentOrPresentableSocket {

void
setStreamChoice(

in StreamIdentifier
stream_identifier)

raises(InvalidTarget, InvalidParameter);

StreamValue
getStreamChosen()

raises(InvalidTarget);
};

7.1.33 RtMultiplexedContent object

For the RtMultiplexedContent object no specific operations are defined. The object inherits from the
RtMultiplexedContentOrPresentableSocket object and from the RtGenericContent object.

7.1.33.1 IDL description

interface RtMultiplexedContent: RtMultiplexedContentOrPresentableSocket, RtGenericContent {};

Page 105
Draft prETS 300 714: April 1996

7.1.34 MultiplexedPresentableSocket object

For the MultiplexedPresentableSocket object no specific operations are defined. The object
inherits from the RtMultiplexedContentOrPresentableSocket object and from the
GenericPresentableSocket object.

7.1.34.1 IDL description

interface MultiplexedPresentableSocket: RtMultiplexedContentOrPresentableSocket,
GenericPresentableSocket {};

7.1.35 Channel object

The following subclause defines the operations of the Channel object. The object inherits from the
Entity object.

7.1.35.1 bind operation

Synopsis:

Interface: Channel
Operation: bind
Result: ChannelIdentifier
In: ChannelReference channel_reference
Exception: AlreadyBound
Exception: InvalidTarget

Description:

This operation binds the Channel instance (an interface object instance) with a channel (an MHEG entity).

The channel_reference parameter specifies the reference of the channel.

The operation returns the identifier of the bound channel.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

7.1.35.2 unbind operation

Synopsis:

Interface: Channel
Operation: unbind
Result: void
Exception: NotBound

Description:

This operation cancels the binding between the Channel instance (an interface object instance) and a
channel (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

Page 106
Draft prETS 300 714: April 1996

7.1.35.3 new operation

Synopsis:

Interface: Channel
Operation: new
Result: ChannelIdentifier
In: ChannelReference channel_reference
In: OriginalDefDeclaration original_definition_declaration
Exception: AlreadyBound
Exception: InvalidTarget

Description:

This operation enables the creation of a channel by the MHEG engine.

The new operation triggers the execution of the 'new channel' elementary action targeted at a single
channel.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 61.2.1.

The channel_reference parameter specifies a reference to a channel.

The original_definition_declaration parameter specifies the value of the 'original definition
declaration' parameter of the 'new channel' action.

This operation implicitly binds the Channel instance (an interface object instance) with the new created
channel (an MHEG entity).

The operation returns the identifier of the new created channel bound with the Channel instance.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

7.1.35.4 delete operation

Synopsis:

Interface: Channel
Operation: delete
Result: void
Exception: NotBound
Exception: InvalidTarget

Description:

This operation enables the removing of a channel by the MHEG engine.

The delete operation triggers the execution of the 'delete channel' elementary action targeted at a single
channel.

The effect of the action on its target and the error conditions that cause exceptions to be raised are
defined by ISO/IEC 13522-1 [1], subclause 61.2.2.

Page 107
Draft prETS 300 714: April 1996

This operation implicitly cancels the binding between the Channel instance (an interface object instance)
and the new deleted channel (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

7.1.35.5 getRtAvailabilityStatus operation

Synopsis:

Interface: Channel
Operation: getAvailability
Result: ChannelStatusValue
Exception: NotBound
Exception: InvalidTarget

Description:

This operation retrieves the availability of a channel to the MHEG engine.

The getAvailability operation triggers the execution of the 'get channel availability status'
elementary action with the bound channel as its single target.

The effect of the action on its target, the computation of its result and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 61.3.1.

The operation returns the availability of the channel bound with the Channel instance. The returned value
is either NOT_AVAILABLE, PROCESSING or AVAILABLE .

When the returned value is NOT_AVAILABLE, the operation implicitly cancels the binding between the
Channel instance (an interface object instance) and the channel (an MHEG entity).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.35.6 getIdentifier operation

Synopsis:

Interface: Channel
Operation: getIdentifier
Result: ChannelIdentifier
Exception: NotBound

Description:

This operation retrieves the identifier of the channel (an MHEG entity) bound with the Channel instance
(an interface object instance).

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

Page 108
Draft prETS 300 714: April 1996

7.1.35.7 kill operation

Synopsis:

Interface: Channel
Operation: kill
Result: void

Description:

This operation deletes the Channel instance (an interface object instance).

7.1.35.8 setPerceptability operation

Synopsis:

Interface: Channel
Operation: setPerceptability
Result: void
In: ChannelPerceptabilityValue channel_perceptability
Exception: InvalidTarget

Description:

This operation enables a channel to be turned on or off. This is used to enable or disable the perception
of a channel by a user.

The setPerceptability operation triggers the execution of the 'set channel perceptability' elementary
action with the bound channel as its single target.

The effect of the action on its target, the semantics of its parameters and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 62.2.1.

The channel_perceptability parameter specifies the value of the 'perceptability' parameter of the
'set channel perceptability' action.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.35.9 getPerceptability operation

Synopsis:

Interface: Channel
Operation: getPerceptability
Result: ChannelPerceptabilityValue
Exception: InvalidTarget

Description:

This operation retrieves the perceptability of a channel.

The getPerceptability operation triggers the execution of the 'get channel perceptability' elementary
action with the bound channel as its single target.

The effect of the action on its target, the computation of its result and the error conditions that cause
exceptions to be raised are defined by ISO/IEC 13522-1 [1], subclause 62.3.1.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

Page 109
Draft prETS 300 714: April 1996

7.1.35.10 getAssignedPerceptibles operation

Synopsis:

Interface: Channel
Operation: getAssignedPerceptibles
Result: sequence<PerceptibleReference>
Exception: InvalidTarget

Description:

This operation retrieves the perceptibles assigned to the channel.

The getAssignedPerceptibles operation has no corresponding MHEG elementary action. It is
symmetrical to the 'get RGS' elementary action which retrieves the channel assigned to a perceptible.

The InvalidTarget exception is raised when the object instance does not represent a valid target for
the normal completion of the action. The period member returns the current period of the target.

7.1.35.11 IDL description

interface Channel: Entity {

ChannelIdentifier
bind(

in ChannelReference
channel_reference)

raises(AlreadyBound, InvalidTarget);

void
unbind()

raises(NotBound);

ChannelIdentifier
new(

in ChannelReference
channel_reference,

in OriginalDefDeclaration
original_definition_declaration)

raises(AlreadyBound, InvalidTarget);

void
delete()

raises(NotBound, InvalidTarget);

ChannelStatusValue
getAvailability()

raises(NotBound, InvalidTarget);

ChannelIdentifier
getIdentifier()

raises(NotBound);

void
kill();

void
setPerceptability(

in ChannelPerceptabilityValue
channel_perceptability)

raises(InvalidTarget);

ChannelPerceptabilityValue
getPerceptability()

raises(InvalidTarget);

sequence<PerceptibleReference>
getAssignedPerceptibles()

raises(InvalidTarget);

};

Page 110
Draft prETS 300 714: April 1996

7.1.36 Parameter definition

The following subclause defines the parameters that are used by the mandatory primitives.

//==
typedef sequence<long> ApplicationIdentifier;

// Corresponding MHEG datatype: Object-Number
//==
typedef long ObjectNumber;

// Interface: MhObject Operation: bind
// Interface: MhObject Operation: prepare
// Interface: MhObject Operation: getIdentifier
// Corresponding MHEG datatype: MHEG-Identifier
//==
struct MHEGIdentifier {

sequence<ApplicationIdentifier,1>
application_identifier;

ObjectNumber
object_number;

};

// Corresponding MHEG datatype: Public-Identifier
//==
typedef string PublicIdentifier;

// Corresponding MHEG datatype: System-Identifier
//==
typedef string SystemIdentifier;

// Corresponding MHEG datatype: External-Long-Identifier
//==
struct ExternalLongIdentifier {

PublicIdentifier
public_identifier;

SystemIdentifier
system_identifier;

};

// Corresponding MHEG datatype: Alias
//==
typedef string Alias;

// Corresponding MHEG datatype: Container-Child-Reference
//==
enum ContainerChildReference {

CHILD,
DESCENDANT

};

// Interface: MhObject Operation: getPreparationStatus
// Corresponding MHEG datatype: Preparation-Status-Value
//==
enum PreparationStatusValue {

READY,
NOT_READY,
PROCESSING

};

// Interface: MhMultiplexedContent Operation: setMultiplex
// Interface: MhMultiplexedContent Operation: setDemultiplex
// Interface: RtMultiplexedContentOrPresentableSocket Operation: setStreamChoice
// Corresponding MHEG datatype: Stream-Identifier
//==
typedef sequence<long> StreamIdentifier;

// Corresponding MHEG datatype: Rt-Dynamic-Reference
//==
enum RtDynamicReference {

QUESTION_MARK,
STAR

Page 111
Draft prETS 300 714: April 1996

};

// Interface: RtObject Operation: getAvailabilityStatus
// Corresponding MHEG datatype: Rt-Availibility-Status-Value
//==
enum RtAvailabilityStatusValue {

RT_AVAILIBILITY_STATUS_VALUE_AVAILABLE,
RT_AVAILIBILITY_STATUS_VALUE_NOT_AVAILABLE,
RT_AVAILIBILITY_STATUS_VALUE_PROCESSING

};

// Interface: RtObject Operation: getRunningStatus
// Corresponding MHEG datatype: Running-Status-Value
//==
enum RunningStatusValue {

RUNNING_STATUS_VALUE_RUNNING,
RUNNING_STATUS_VALUE_NOT_RUNNING,
RUNNING_STATUS_VALUE_PROCESSING

};

// Interface: RtScript Operation: getTerminationStatus
// Corresponding MHEG datatype: Termination-Status-Value
//==
enum TerminationStatusValue {

TERMINATED,
NOT_TERMINATED

};

// Interface: RtComponentOrSocket Operation: setRGS
// Interface: Channel Operation: getIdentifier
// Corresponding MHEG datatype: Channel-Identifier
//==
typedef long ChannelIdentifier;

// Corresponding MHEG datatype: Priority-Level
//==
enum PriorityLevel {

INCREMENT_PRIORITY,
DECREMENT_PRIORITY

};

// Interface: RtComponentOrSocket Operation: setVisibleDuration
// Corresponding MHEG datatype: Temporal-Position
//==
enum TemporalPositionTag { SPECIFIED_TEMPORAL_POINT_TAG, LOGICAL_TEMPORAL_PD_POINT_TAG };
union TemporalPosition
switch (TemporalPositionTag){

case SPECIFIED_TEMPORAL_POINT_TAG:
long

specified_temporal_point;
case LOGICAL_TEMPORAL_PD_POINT_TAG:

long
logical_temporal_PD_point;

};

// Interface: RtComponentOrSocket Operation: setCurrentTemporalPosition
// Corresponding MHEG datatype: Current-Temporal-Position
//==
enum CurrentTemporalPositionTag { CURRENT_TEMPORAL_POSITION_SPECIFIED_TEMPORAL_POINT_TAG,
CURRENT_TEMPORAL_POSITION_LOGICAL_TEMPORAL_VD_POINT_TAG };
union CurrentTemporalPosition
switch (CurrentTemporalPositionTag){

case CURRENT_TEMPORAL_POSITION_SPECIFIED_TEMPORAL_POINT_TAG:
long

specified_temporal_point;
case CURRENT_TEMPORAL_POSITION_LOGICAL_TEMPORAL_VD_POINT_TAG:

long
logical_temporal_vd_point;

};

// Interface: RtComponentOrSocket Operation: setTemporalTermination
// Interface: RtComponentOrSocket Operation: getTemporalTermination
// Corresponding MHEG datatype: Temporal-Termination
//==
enum TemporalTermination {

Page 112
Draft prETS 300 714: April 1996

TEMPORAL_TERMINATION_FREEZE,
TEMPORAL_TERMINATION_STOP

};

// Interface: RtComponentOrSocket Operation: setSpeed
// Corresponding MHEG datatype: Speed
//==
enum SpeedTag { SPECIFIED_OGTR_TAG, SPEED_RATE_TAG, SCALING_FACTOR_TAG };
union Speed
switch (SpeedTag){

case SPECIFIED_OGTR_TAG:
long

specified_OGTR;
case SPEED_RATE_TAG:

long
speed_rate;

case SCALING_FACTOR_TAG:
long

scaling_factor;
};

// Corresponding MHEG datatype: Timestone-Position
//==
enum TimestonePositionTag { TIMESTONE_POSITION_SPECIFIED_TEMPORAL_POINT_TAG,
TIMESTONE_POSITION_LOGICAL_TEMPORAL_PD_POINT_TAG,
TIMESTONE_POSITION_LOGICAL_TEMPORAL_VD_POINT_TAG };
union TimestonePosition
switch (TimestonePositionTag){

case TIMESTONE_POSITION_SPECIFIED_TEMPORAL_POINT_TAG:
long

specified_temporal_point;
case TIMESTONE_POSITION_LOGICAL_TEMPORAL_PD_POINT_TAG:

long
logical_temporal_PD_point;

case TIMESTONE_POSITION_LOGICAL_TEMPORAL_VD_POINT_TAG:
long

logical_temporal_VD_point;
};

// Interface: RtComponentOrSocket Operation: getVDLength
// Corresponding MHEG datatype: GT-Indicator
//==
enum GTIndicator {

OGTU,
RGTU

};

// Corresponding MHEG datatype: Perceptible-Projection
//==
enum PerceptibleProjectionTag { SPECIFIED_SIZE_TAG, IOGSR_SCALING_FACTOR_TAG,
COGSR_SCALING_FACTOR_TAG };
union PerceptibleProjection
switch (PerceptibleProjectionTag){

case SPECIFIED_SIZE_TAG:
long

specified_size;
case IOGSR_SCALING_FACTOR_TAG:

long
iogsr_scaling_factor;

case COGSR_SCALING_FACTOR_TAG:
long

cogsr_scaling_factor;
};

// Interface: RtComponentOrSocket Operation: setAspectRatioPreserved
// Interface: RtComponentOrSocket Operation: getAspectRatio
// Corresponding MHEG datatype: Aspect-Ratio
//==
enum AspectRatio {

PRESERVED,
NOT_PRESERVED

};

// Interface: RtComponentOrSocket Operation: setVisibleSize
// Interface: RtComponentOrSocket Operation: getVSGS
// Corresponding MHEG datatype: VSGS
//==

Page 113
Draft prETS 300 714: April 1996

enum VSGS {
THIS,
RELATIVE

};

// Corresponding MHEG datatype: Size-Attribute
//==
enum SizeAttributeTag { SIZE_ATTRIBUTE_SPECIFIED_SIZE_TAG, SIZE_ATTRIBUTE_IVS_RELATIVE_TAG,
SIZE_ATTRIBUTE_CVS_RELATIVE_TAG };
union SizeAttribute
switch (SizeAttributeTag){

case SIZE_ATTRIBUTE_SPECIFIED_SIZE_TAG:
long

specified_size;
case SIZE_ATTRIBUTE_IVS_RELATIVE_TAG:

long
ivs_relative;

case SIZE_ATTRIBUTE_CVS_RELATIVE_TAG:
long

cvs_relative;
};

// Interface: RtComponentOrSocket Operation: setVisibleSizesAdjustment
// Corresponding MHEG datatype: Adjustment-Axis
//==
enum AdjustmentAxis {

X_AXIS,
Y_AXIS,
Z_AXIS

};

// Corresponding MHEG datatype: Sub-Socket-Reference
//==
enum SubSocketReference {

SUB_SOCKET_REFERENCE_CHILD,
SUB_SOCKET_REFERENCE_DESCENDANT,
SUB_SOCKET_REFERENCE_QUESTION_MARK_CHILD,
SUB_SOCKET_REFERENCE_QUESTION_MARK_DESCENDANT

};

// Interface: RtComponentOrSocket Operation: setBox
// Interface: RtComponentOrSocket Operation: getBox
// Corresponding MHEG datatype: Box-Constants
//==
enum BoxConstants {

PRESENTED,
NOT_PRESENTED

};

// Interface: RtComponentOrSocket Operation: setAttachmentPointPosition
// Corresponding MHEG datatype: Reference-Type
//==
enum ReferenceType {

VSIAP,
VSEAP

};

// Interface: RtComponentOrSocket Operation: setAttachmentPoint
// Interface: RtComponentOrSocket Operation: setAttachmentPointPosition
// Corresponding MHEG datatype: Attachment-Point-Type
//==
enum AttachmentPointType {

ATTACHMENT_POINT_TYPE_PSAP,
ATTACHMENT_POINT_TYPE_VSIAP,
ATTACHMENT_POINT_TYPE_VSEAP

};

// Interface: RtComponentOrSocket Operation: setVisibleSizesAlignment
// Corresponding MHEG datatype: Size-Border
//==
enum SizeBorder {

TOP,
BOTTOM,
RIGHT,
LEFT,
UPPER_Z,
LOWER_Z,

Page 114
Draft prETS 300 714: April 1996

CENTER_X,
CENTER_Y,
CENTER_Z

};

// Interface: RtComponentOrSocket Operation: setMovingAbility
// Interface: RtComponentOrSocket Operation: setResizingAbility
// Interface: RtComponentOrSocket Operation: setScalingAbility
// Interface: RtComponentOrSocket Operation: setScrollingAbility
// Interface: RtComponentOrSocket Operation: getMovingAbility
// Interface: RtComponentOrSocket Operation: getResizingAbility
// Interface: RtComponentOrSocket Operation: getScalingAbility
// Interface: RtComponentOrSocket Operation: getScrollingAbility
// Corresponding MHEG datatype: User-Controls
//==
enum UserControls {

ALLOWED,
NOT_ALLOWED

};

// Interface: RtComponentOrSocket Operation: getPS
// Corresponding MHEG datatype: GS-Indicator
//==
enum GSIndicator {

OGSU,
RGSU

};

// Interface: RtComponentOrSocket Operation: getPSAP
// Interface: RtComponentOrSocket Operation: getVSIAP
// Corresponding MHEG datatype: Point-Type
//==
enum PointType {

RELATIVE_POINT,
ABSOLUTE_POINT

};

// Interface: RtComponentOrSocket Operation: setSelectionStatus
// Interface: RtComponentOrSocket Operation: getSelectionStatus
// Corresponding MHEG datatype: Selection-Status-Value
//==
enum SelectionStatusValue {

SELECTED,
NOT_SELECTED

};

// Interface: RtComponentOrSocket Operation: setSelectionPresentationEffectResponsibility
// Interface: RtComponentOrSocket Operation: getSelectionPresentationEffectResponsibility
// Interface: RtComponentOrSocket Operation: setModificationPresentationEffectResponsibility
// Interface: RtComponentOrSocket Operation: getModificationPresentationEffectResponsibility
// Corresponding MHEG datatype: Responsibility
//==
enum Responsibility {

MHEG_ENGINE,
AUTHOR

};

// Interface: RtComponentOrSocket Operation: getEffectiveSelectability
// Corresponding MHEG datatype: Effective-Selectability
//==
enum EffectiveSelectability {

EFFECTIVELY_SELECTABLE,
EFFECTIVELY_NOT_SELECTABLE

};

// Interface: RtComponentOrSocket Operation: setModificationStatus
// Interface: RtComponentOrSocket Operation: getModificationStatus
// Corresponding MHEG datatype: Modification-Status-Value
//==
enum ModificationStatusValue {

MODIFIED,
MODIFYING,
NOT_MODIFIED

};

Page 115
Draft prETS 300 714: April 1996

// Interface: RtComponentOrSocket Operation: getEffectiveModifiability
// Corresponding MHEG datatype: Effective-Modifiability
//==
enum EffectiveModifiability {

EFFECTIVELY_MODIFIABLE,
EFFECTIVELY_NOT_MODIFIABLE

};

// Interface: RtCompositeOrStructuralSocket Operation: setResizingStrategy
// Interface: RtCompositeOrStructuralSocket Operation: getResizingStrategy
// Corresponding MHEG datatype: Resizing-Strategy
//==
enum ResizingStrategy {

FIXED,
MINIMUM,
GROWS_ONLY

};

// Interface: RtCompositeOrStructuralSocket Operation: setMenuInteractionStyle
// Interface: RtCompositeOrStructuralSocket Operation: setScrollingListInteractionStyle
// Interface: RtContentOrPresentableSocket Operation: setSliderInteractionStyle
// Corresponding MHEG datatype: Orientation
//==
enum Orientation {

HORIZONTAL,
VERTICAL

};

// Corresponding MHEG datatype: Presentation-Persistence
//==
enum PresentationPersistence {

PERSISTENT,
NOT_PERSISTENT

};

// Interface: RtCompositeOrStructuralSocket Operation: setScrollingListInteractionStyle
// Corresponding MHEG datatype: Slider-Side
//==
enum SliderSide {

SIDE1,
SIDE2

};

// Interface: RtGenericContentOrPresentableSocket Operation: setAudibleVolume
// Corresponding MHEG datatype: Audible-Volume
//==
enum AudibleVolumeTag { SPECIFIED_VOLUME_TAG, LOGICAL_VOLUME_TAG, IOV_SCALING_FACTOR_TAG,
OV_SCALING_FACTOR_TAG };
union AudibleVolume
switch (AudibleVolumeTag){

case SPECIFIED_VOLUME_TAG:
long

specified_volume;
case LOGICAL_VOLUME_TAG:

long
logical_volume;

case IOV_SCALING_FACTOR_TAG:
long

iov_scaling_factor;
case OV_SCALING_FACTOR_TAG:

long
ov_scaling_factor;

};

// Interface: RtGenericContentOrPresentableSocket Operation: setButtonInteractionStyle
// Corresponding MHEG datatype: Presentation-State
//==
enum PresentationState {

SELECTABLE_NOT_SELECTED,
SELECTABLE_SELECTED,
NOT_SELECTABLE_SELECTED,
NOT_SELECTABLE_NOT_SELECTED

};

// Corresponding MHEG datatype: Echo-Mode
//==

Page 116
Draft prETS 300 714: April 1996

enum EchoMode {
ITSELF,
HIDDEN

};

// Interface: RtContentOrPresentableSocket Operation: setEntryFieldInteractionStyle
// Corresponding MHEG datatype: Echo-Style
//==
enum EchoStyleTag { MODE_TAG, SPECIFIED_TAG };
union EchoStyle
switch (EchoStyleTag){

case MODE_TAG:
EchoMode

mode;
case SPECIFIED_TAG:

string
specified;

};

// Corresponding MHEG datatype: Channel-Reference
//==
enum ChannelReferenceTag { CHANNEL_IDENTIFIER_TAG, ALIAS_TAG, NULL_CHANNEL_REFERENCE_TAG };
union ChannelReference
switch (ChannelReferenceTag){

case CHANNEL_IDENTIFIER_TAG:
ChannelIdentifier

channel_identifier;
case ALIAS_TAG:

Alias
alias;

};

// Corresponding MHEG datatype: Interval
//==
struct Interval {

sequence<long,1>
start_point;

sequence<long,1>
end_point;

};

// Corresponding MHEG datatype: Generic-Volume-Range
//==
struct GenericVolumeRange {

sequence<long,1>
maximum_volume;

sequence<long,1>
minimum_volume;

};

// Interface: Channel Operation: new
// Corresponding MHEG datatype: Original-Def-Declaration
//==
struct OriginalDefDeclaration {

sequence<long,1>
generic_temporal_ratio;

sequence<Interval,1>
x_axis_interval;

sequence<Interval,1>
y_axis_interval;

sequence<Interval,1>
z_axis_interval;

sequence<GenericVolumeRange,1>
audible_volume_range_declaration;

};

// Interface: Channel Operation: getAvailability
// Corresponding MHEG datatype: Channel-Status-ValueCHANNEL-STATUS-VALUE-
//==
enum ChannelStatusValue {

CHANNEL_STATUS_VALUE_AVAILABLE,
CHANNEL_STATUS_VALUE_NOT_AVAILABLE,
CHANNEL_STATUS_VALUE_PROCESSING

};

// Interface: Channel Operation: setPerceptability

Page 117
Draft prETS 300 714: April 1996

// Interface: Channel Operation: getPerceptability
// Corresponding MHEG datatype: Channel-Perceptability-Values
//==
enum ChannelPerceptabilityValue {

ON,
OFF

};

// Interface: NotificationManager Operation: getNotification
// Interface: MhContent Operation: getData
// Corresponding MHEG datatype: Generic-Value
//==
enum GenericValueTag { BOOLEAN_FIELD_TAG, NUMERIC_TAG, STRING_FIELD_TAG, GENERIC_LIST_TAG,
UNSPECIFIED_TAG };
union GenericValue
switch (GenericValueTag){

case BOOLEAN_FIELD_TAG:
boolean

boolean_field;
case NUMERIC_TAG:

long
numeric;

case STRING_FIELD_TAG:
string

string_field;
case GENERIC_LIST_TAG:

sequence<GenericValue>
generic_list;

};

// Corresponding MHEG datatype: Generic-String
//==
enum GenericStringTag { GENERIC_STRING_CONSTANT_TAG, GENERIC_STRING_UNSPECIFIED_TAG };
union GenericString
switch (GenericStringTag){

case GENERIC_STRING_CONSTANT_TAG:
string

constant;
};

// Interface: Socket Operation: setVisibleDurationPosition
// Corresponding MHEG datatype: Visible-Duration
//==
enum VisibleDurationPositionTag { VISIBLE_DURATION_POSITION_SPECIFIED_TEMPORAL_POINT_TAG,
VISIBLE_DURATION_POSITION_LOGICAL_TEMPORAL_PD_POINT_TAG,
VISIBLE_DURATION_POSITION_LOGICAL_TEMPORAL_VD_POINT_TAG };
union VisibleDurationPosition
switch (VisibleDurationPositionTag){

case VISIBLE_DURATION_POSITION_SPECIFIED_TEMPORAL_POINT_TAG:
long

specified_temporal_point;
case VISIBLE_DURATION_POSITION_LOGICAL_TEMPORAL_PD_POINT_TAG:

long
logical_temporal_PD_point;

case VISIBLE_DURATION_POSITION_LOGICAL_TEMPORAL_VD_POINT_TAG:
long

logical_temporal_VD_point;
};

// Interface: RtComponentOrSocket Operation: getRGS
// Corresponding MHEG datatype: none
//==
enum RGSValueTag { RGS_VALUE_CHANNEL_IDENTIFIER_TAG, RGS_VALUE_NULL_CHANNEL_TAG,
RGS_VALUE_PRGS_TAG };
union RGSValue
switch (RGSValueTag){

case RGS_VALUE_CHANNEL_IDENTIFIER_TAG:
ChannelIdentifier

channel_identifier;
};

// Corresponding MHEG datatype: Generic-Numeric
//==
enum GenericNumericTag { GENERIC_NUMERIC_CONSTANT_TAG, GENERIC_NUMERIC_UNSPECIFIED_TAG };
union GenericNumeric
switch (GenericNumericTag){

case GENERIC_NUMERIC_CONSTANT_TAG:
long

Page 118
Draft prETS 300 714: April 1996

constant;
};

// Interface: RtComponentOrSocket Operation: getSelectionMode
// Corresponding MHEG datatype: none
//==
enum SelectionModeValueTag { USER_INTERACTION_TAG, NO_SELECTION_TAG, MHEG_ACTION_TAG,
USING_APPLICATION_ACTION_TAG };
union SelectionModeValue
switch (SelectionModeValueTag){

case USER_INTERACTION_TAG:
unsigned long

user_interaction;
};

// Interface: RtComponentOrSocket Operation: getModificationMode
// Corresponding MHEG datatype: none
//==
enum ModificationModeValueTag { MODIFICATION_MODE_VALUE_USER_INTERACTION_TAG,
MODIFICATION_MODE_VALUE_NO_MODIFICATION_TAG, MODIFICATION_MODE_VALUE_MHEG_ACTION_TAG,
MODIFICATION_MODE_VALUE_USING_APPLICATION_ACTION_TAG, MODIFICATION_MODE_VALUE_CHILD_TAG };
union ModificationModeValue
switch (ModificationModeValueTag){

case MODIFICATION_MODE_VALUE_USER_INTERACTION_TAG:
unsigned long

user_interaction;
};

// Corresponding MHEG datatype: External-Identifier
//==
enum ExternalIdentifierTag { EXTERNAL_LONG_ID_TAG, PUBLIC_ID_TAG, SYSTEM_ID_TAG };
union ExternalIdentifier
switch (ExternalIdentifierTag){

case EXTERNAL_LONG_ID_TAG:
ExternalLongIdentifier

external_long_id;
case PUBLIC_ID_TAG:

PublicIdentifier
public_id;

case SYSTEM_ID_TAG:
SystemIdentifier

system_id;
};

// Corresponding MHEG datatype: Container-Tail
//==
struct ContainerTail {

sequence<long>
indexes;

enum ContainerTailTag { INDEX_TAG, CONTAINER_CHILD_REF_TAG } tag;
union ContainerTail
switch (ContainerTailTag){

case INDEX_TAG:
long

index;
case CONTAINER_CHILD_REF_TAG:

ContainerChildReference
container_child_ref;

} end;
};

// Corresponding MHEG datatype: Specified-Sizes
//==
struct SpecifiedSizes {

sequence<GenericNumeric,1>
x_axis_length;

sequence<GenericNumeric,1>
y_axis_length;

sequence<GenericNumeric,1>
z_axis_length;

};

// Corresponding MHEG datatype: Attachment-Attribute
//==
enum AttachmentAttributeTag { SPECIFIED_POSITION_TAG, LOGICAL_POSITION_TAG };
union AttachmentAttribute
switch (AttachmentAttributeTag){

case SPECIFIED_POSITION_TAG:
GenericNumeric

Page 119
Draft prETS 300 714: April 1996

specified_position;
case LOGICAL_POSITION_TAG:

GenericNumeric
logical_position;

};

// Corresponding MHEG datatype: Length-Attribute
//==
enum LengthAttributeTag { SPECIFIED_LENGTH_TAG, RELATIVE_LENGTH_TAG };
union LengthAttribute
switch (LengthAttributeTag){

case SPECIFIED_LENGTH_TAG:
GenericNumeric

specified_length;
case RELATIVE_LENGTH_TAG:

GenericNumeric
relative_length;

};

// Interface: RtComponentOrSocket Operation: getPS
// Interface: RtComponentOrSocket Operation: getPSAP
// Interface: RtComponentOrSocket Operation: getVS
// Interface: RtComponentOrSocket Operation: getVSIAP
// Interface: RtComponentOrSocket Operation: getVSIAPPosition
// Interface: RtComponentOrSocket Operation: getVSEAP
// Interface: RtComponentOrSocket Operation: getVSEAPPosition
// Corresponding MHEG datatype: Specified-Position
//==
struct SpecifiedPosition {

GenericNumeric
x_point;

GenericNumeric
y_point;

GenericNumeric
z_point;

};

// Interface: RtComponentOrSocket Operation: setPresentationPriority
// Corresponding MHEG datatype: Presentation-Priority
//==
enum PresentationPriorityTag { GENERIC_NUMERIC_TAG, PRIORITY_LEVEL_TAG };
union PresentationPriority
switch (PresentationPriorityTag){

case GENERIC_NUMERIC_TAG:
GenericNumeric

generic_numeric;
case PRIORITY_LEVEL_TAG:

PriorityLevel
priority_level;

};

// Interface: RtComponentOrSocket Operation: setTimestones
// Corresponding MHEG datatype: Timestone
//==
struct Timestone {

long
timestone_identifier;

TimestonePosition
timestone_position;

};

// Interface: RtComponentOrSocket Operation: setVisibleSize
// Corresponding MHEG datatype: none
//==
enum VSTag { X_SIZE_ATTRIBUTE_TAG, Y_SIZE_ATTRIBUTE_TAG, Z_SIZE_ATTRIBUTE_TAG };
union VS
switch (VSTag){

case X_SIZE_ATTRIBUTE_TAG:
SizeAttribute

x_size_attribute;
case Y_SIZE_ATTRIBUTE_TAG:

SizeAttribute
y_size_attribute;

case Z_SIZE_ATTRIBUTE_TAG:
SizeAttribute

z_size_attribute;
};

Page 120
Draft prETS 300 714: April 1996

// Interface: RtComponentOrSocket Operation: setAttachmentPoint
// Corresponding MHEG datatype: none
//==
struct AttachmentPoint {

sequence<AttachmentAttribute,1>
x_attachment;

sequence<AttachmentAttribute,1>
y_attachment;

sequence<AttachmentAttribute,1>
z_attachment;

};

// Interface: RtComponentOrSocket Operation: setAttachmentPointPosition
// Corresponding MHEG datatype: Lengths
//==
struct Lengths {

sequence<LengthAttribute,1>
x_length;

sequence<LengthAttribute,1>
y_length;

sequence<LengthAttribute,1>
z_length;

};

// Interface: RtMultiplexedContentOrPresentableSocket Operation: getStreamChosen
// Corresponding MHEG datatype: none
//==
enum StreamValueTag { STREAM_IDENTIFIER_TAG, NO_STREAM_CHOSEN_TAG };
union StreamValue
switch (StreamValueTag){

case STREAM_IDENTIFIER_TAG:
StreamIdentifier

stream_identifier;
};

// Interface: MhContent Operation: setData
// Corresponding MHEG datatype: Data-Element
//==
struct DataElement {

sequence<long>
element_list_index;

GenericValue
generic_value;

};

// Interface: NotificationManager Operation: getNotification
// Interface: MhObject Operation: bind
// Interface: MhObject Operation: prepare
// Interface: MhGenericContent Operation: copy
// Corresponding MHEG datatype: Mh-Object-Reference
//==
struct MhObjectReference {
enum MhObjectReferenceHeadTag { MHEG_IDENTIFIER_TAG, EXTERNAL_IDENTIFIER_TAG,
ALIAS_TAG, NULL_OBJECT_REF_TAG } head_tag;
union MhObjectReferenceHead
switch (MhObjectReferenceHeadTag){

case MHEG_IDENTIFIER_TAG:
MHEGIdentifier

mheg_identifier;
case EXTERNAL_IDENTIFIER_TAG:

ExternalIdentifier
external_identifier;

case ALIAS_TAG:
Alias

alias;
} head;
enum MhObjectReferenceTailTag { CONTAINER_ELEMENT_REFERENCE_TAG, OTHER_REFERENCE_TAG
} tail_tag;
union MhObjectReferenceTail
switch (MhObjectReferenceTailTag){

case CONTAINER_ELEMENT_REFERENCE_TAG:
ContainerTail

container_tail;
} tail;
};

// Interface: RtComponentOrSocket Operation: setPerceptibleSizeProjection
// Corresponding MHEG datatype: Perceptible-Size-Projection

Page 121
Draft prETS 300 714: April 1996

//==
struct PerceptibleSizeProjection {

sequence<PerceptibleProjection,1>
x_perceptible_size_projection;

sequence<PerceptibleProjection,1>
y_perceptible_size_projection;

sequence<PerceptibleProjection,1>
z_perceptible_size_projection;

};

// Corresponding MHEG datatype: Rt-Object-Number-Reference
//==
enum RtObjectNumberReferenceTag { RT_OBJECT_NUMBER_TAG, RT_DYNAMIC_REFERENCE_TAG };
union RtObjectNumberReference
switch (RtObjectNumberReferenceTag){

case RT_OBJECT_NUMBER_TAG:
long

rt_object_number;
case RT_DYNAMIC_REFERENCE_TAG:

RtDynamicReference
rt_dynamic_reference;

};

// Interface: RtObject Operation: bind
// Interface: RtObject Operation: new
// Corresponding MHEG datatype: Rt-Object-Reference
//==
struct RtObjectReference {

MhObjectReference
model_object_reference;

RtObjectNumberReference
rt_object_number_reference;

};

// Corresponding MHEG datatype: Rt-Reference
//==
enum RtReferenceTag { RT_REFERENCE_RT_OBJECT_REFERENCE_TAG, RT_REFERENCE_ALIAS_TAG,
RT_REFERENCE_NULL_RT_OBJECT_TAG };
union RtReference
switch (RtReferenceTag){

case RT_REFERENCE_RT_OBJECT_REFERENCE_TAG:
RtObjectReference

rt_object_reference;
case RT_REFERENCE_ALIAS_TAG:

Alias
alias;

};

// Corresponding MHEG datatype: Socket-Tail
//==
struct SocketTail {

sequence<long>
indexes;

enum SocketTailTag { INDEX_TAG, SUB_SOCKET_REF_TAG } tag;
union SocketTail
switch (SocketTailTag){

case INDEX_TAG:
long

index;
case SUB_SOCKET_REF_TAG:

SubSocketReference
sub_socket_ref;

} end;
};

// Corresponding MHEG datatype: Indexed-Child-Socket
//==
struct IndexedChildSocket {

long
index;

SocketTail
tail;

};

// Interface: Socket Operation: bind
// Interface: Socket Operation: getIdentification
// Corresponding MHEG datatype: Socket-Identification

Page 122
Draft prETS 300 714: April 1996

//==
struct SocketIdentification {

RtReference
rt_composite_reference;

SocketTail
socket_tail;

};

// Interface: Socket Operation: bind
// Corresponding MHEG datatype: Socket-Reference
//==
enum SocketReferenceTag { SOCKET_REFERENCE_SOCKET_IDENT_TAG, SOCKET_REFERENCE_ALIAS_TAG };
union SocketReference
switch (SocketReferenceTag){

case SOCKET_REFERENCE_SOCKET_IDENT_TAG:
SocketIdentification

socket_ident;
case SOCKET_REFERENCE_ALIAS_TAG:

Alias
alias;

};

// Corresponding MHEG datatype: Rt-Object-Socket-Reference
//==
enum RtObjectSocketReferenceTag { RT_REFERENCE_TAG, SOCKET_REFERENCE_TAG };
union RtObjectSocketReference
switch (RtObjectSocketReferenceTag){

case RT_REFERENCE_TAG:
RtReference

rt_reference;
case SOCKET_REFERENCE_TAG:

SocketReference
socket_reference;

};

// Interface: RtCompositeOrStructuralSocket Operation: setScrollingListInteractionStyle
// Interface: RtContentOrPresentableSocket Operation: setSliderInteractionStyle
// Interface: RtContentOrPresentableSocket Operation: setEntryFieldInteractionStyle
// Interface: Channel Operation: getAssignedPerceptibles
// Corresponding MHEG datatype: Perceptible-Reference
//==
enum PerceptibleReferenceTag { RT_COMPONENT_REFERENCE_TAG, RT_SOCKET_REFERENCE_TAG };
union PerceptibleReference
switch (PerceptibleReferenceTag){

case RT_COMPONENT_REFERENCE_TAG:
RtReference

rt_component_reference;
case RT_SOCKET_REFERENCE_TAG:

SocketReference
rt_socket_reference;

};

// Interface: RtCompositeOrStructuralSocket Operation: setScrollingListInteractionStyle
// Corresponding MHEG datatype: Separator
//==
enum SeparatorTag { NO_TAG, YES_DEFAULT_TAG, SEPARATOR_PIECE_TAG };
union Separator
switch (SeparatorTag){

case SEPARATOR_PIECE_TAG:
PerceptibleReference

separator_piece;
};

// Interface: RtCompositeOrStructuralSocket Operation: setMenuInteractionStyle
// Corresponding MHEG datatype: Association
//==
struct Association {

sequence<SocketReference,1>
title;

sequence<Separator,1>
separator;

sequence<SocketReference,1>
submenu;

sequence<PresentationPersistence,1>
submenu_presentation_persistence;

sequence<Orientation,1>
submenu_orientation;

};

Page 123
Draft prETS 300 714: April 1996

// Interface: RtSocket Operation: plug
// Corresponding MHEG datatype: Plug-In
//==
enum PlugInTag { PLUG_IN_RT_COMPONENT_REFERENCE_TAG, PLUG_IN_COMPONENT_REFERENCE_TAG,
PLUG_IN_LABEL_TAG };
union PlugIn
switch (PlugInTag){

case PLUG_IN_RT_COMPONENT_REFERENCE_TAG:
RtObjectReference

rt_component_reference;
case PLUG_IN_COMPONENT_REFERENCE_TAG:

MhObjectReference
component_reference;

case PLUG_IN_LABEL_TAG:
GenericString

label;
};

// Interface: RtComponentOrSocket Operation: getVSEAPPosition
// Corresponding MHEG datatype: none
//==
enum ReferencePointTag { VSEAP_POSITION_ORIGIN_RGS_TAG, VSEAP_POSITION_ORIGIN_CGS_TAG,
VSEAP_POSITION_SAME_RGS_COMPONENT_TAG, VSEAP_POSITION_SAME_CGS_COMPONENT_TAG,
VSEAP_POSITION_SPECIFIED_POSITION_TAG };
union ReferencePoint
switch (ReferencePointTag){

case VSEAP_POSITION_SAME_RGS_COMPONENT_TAG:
RtObjectSocketReference

same_RGS_component;
case VSEAP_POSITION_SAME_CGS_COMPONENT_TAG:

RtObjectSocketReference
same_CGS_component;

case VSEAP_POSITION_SPECIFIED_POSITION_TAG:
SpecifiedPosition

specified_position;
};

// Interface: RtScript Operation: setParameters
// Corresponding MHEG datatype: Parameter
//==
enum ParameterTag { GENERIC_VALUE_TAG, MH_OBJECT_REFERENCE_TAG };
union Parameter
switch (ParameterTag){

case GENERIC_VALUE_TAG:
GenericValue

generic_value;
case MH_OBJECT_REFERENCE_TAG:

MhObjectReference
mh_object_reference;

};

// Interface: RtObjectOrSocket Operation: setGlobalBehaviour
// Corresponding MHEG datatype: Global-Behaviour
//==
enum GlobalBehaviourTag { GLOBAL_BEHAVIOUR_RT_REFERENCE_TAG, GLOBAL_BEHAVIOUR_GENERIC_LIST_TAG,
GLOBAL_BEHAVIOUR_UNSPECIFIED_TAG };
union GlobalBehaviour
switch (GlobalBehaviourTag){

case GLOBAL_BEHAVIOUR_RT_REFERENCE_TAG:
RtReference

rt_reference;
case GLOBAL_BEHAVIOUR_GENERIC_LIST_TAG:

GenericValue
generic_list;

};

// Interface: RtComponentOrSocket Operation: setVisibleSizesAdjustment
// Corresponding MHEG datatype: Adjustment-PolicyADJUSTMENT-POLICY-
//==
enum AdjustmentPolicyTag { ADJUSTMENT_POLICY_COMPONENT_REFERENCE_TAG,
ADJUSTMENT_POLICY_SPECIFIED_TAG, ADJUSTMENT_POLICY_GREATEST_TAG, ADJUSTMENT_POLICY_SMALLEST_TAG
};
union AdjustmentPolicy
switch (AdjustmentPolicyTag){

case ADJUSTMENT_POLICY_COMPONENT_REFERENCE_TAG:
RtObjectSocketReference

component_reference;

Page 124
Draft prETS 300 714: April 1996

case ADJUSTMENT_POLICY_SPECIFIED_TAG:
SpecifiedSizes

specified;
};

// Interface: RtObject Operation: bind
// Interface: RtObject Operation: new
// Interface: RtObject Operation: getIdentifier
// Corresponding MHEG datatype: none
//==
struct RtObjectIdentifier {

MHEGIdentifier
model_object_id;

long
rt_object_number;

};

// Interface: RtGenericContentOrPresentableSocket Operation: setButtonInteractionStyle
// Corresponding MHEG datatype: Alternate-Presentation-State
//==
struct AlternatePresentation {

PresentationState
presentation_state;

PerceptibleReference
perceptible_target;

};

7.1.37 Exceptions

7.1.37.1 InvalidTarget exception

Description:

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current period of the target.

7.1.37.2 InvalidParameter exception

Description:

The InvalidParameter exception is raised when the value of one of the parameters prohibits the
normal execution of the action. The completion_status member indicates whether the action was
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

7.1.37.3 NotBound exception

Description:

The NotBound exception is raised when the interface object instance is not bound with an MHEG entity.

7.1.37.4 AlreadyBound exception

Description:

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity. The entity_identifier member identifies the bound entity.

7.1.37.5 IDL definition

exception InvalidTarget {
unsigned short period;

};

enum CompletionStatus { YES, NO};

exception InvalidParameter {
CompletionStatus completion_status;
unsigned short period;

Page 125
Draft prETS 300 714: April 1996

};

typedef long EntityIdentifier
exception AlreadyBound {

EntityIdentifier entity_identifier;
};

exception NotBound {};

7.2 Optional primitives

The following objects shall be used to modify MHEG objects in form b:

- mhAction
- mhComposite
- mhContainer
- mhContent
- mhDescriptor
- mhLink
- mhMultiplexedContent
- mhScript

Page 126
Draft prETS 300 714: April 1996

Annex A (normative): Complete IDL definition of the MHEG API

The complete IDL definition of the MHEG API is contained in a Winword 6 file (XEP0714.TXT) which can
be found on the diskette attached to the last page of this ETS.

Page 127
Draft prETS 300 714: April 1996

History

Document history

April 1996 Public Enquiry PE 105: 1996-04-08 to 1996-08-30

	Foreword
	Introduction
	1	Scope
	2	References
	3	Definitions and abbreviations
	3.1	Definitions
	3.2	Abbreviations

	4	Conformance
	4.1	Implementation conformance
	4.1.1	Conformance requirements
	4.1.2	Conformance documentation

	4.2	Application conformance
	4.2.1	Strictly conforming application
	4.2.2	Conforming application

	4.3	Test methods

	5	General description
	5.1	Functional reference model of applications using MHEG
	5.1.1	Reference model for multimedia applications
	5.1.2	The MHEG API

	5.2	Functional specification of the MHEG API
	5.2.1	MHEG usage specifications
	5.2.1.1	Definitions
	5.2.1.2	MHEG objects
	5.2.1.3	Mh-objects
	5.2.1.4	Rt-objects
	5.2.1.5	Channels
	5.2.1.6	Interchanged MHEG objects

	5.2.2	Description of MHEG-related services

	6	API definition principles
	6.1	Satisfaction of technical requirements on the MHEG API
	6.2	Use of Interface Definition Language
	6.2.1	Comprehensive introduction to IDL
	6.2.2	The Interface Definition Language
	6.2.2.1	Objects
	6.2.2.2	Requests
	6.2.2.3	Types
	6.2.2.4	Interfaces
	6.2.2.5	Operations
	6.2.2.6	Attributes
	6.2.2.7	Subtyping versus inheritance
	6.2.2.8	Subtyping
	6.2.2.9	Inheritance

	6.2.3	Principles for mapping IDL interfaces to API primitives
	6.2.4	Fulfilment of technical requirements

	6.3	Overview of the API definition and general principles
	6.3.1	The MHEG API object model

	7	Definition of the MHEG API
	7.1	Mandatory primitives
	7.1.1	MHEGEngine object
	7.1.1.1	initialiseEngine operation
	7.1.1.2	shutdownEngine operation
	7.1.1.3	IDL description

	7.1.2	NotificationManager object
	7.1.2.1	getReturnability operation
	7.1.2.2	getNotification operation
	7.1.2.3	IDL description

	7.1.3	EntityManager object
	7.1.3.1	getAvailableMhObjects operation
	7.1.3.2	getAvailableRtObjects operation
	7.1.3.3	getAvailableChannels operation
	7.1.3.4	releaseAlias operation
	7.1.3.5	IDL description

	7.1.4	Entity object
	7.1.4.1	setAlias operation
	7.1.4.2	getAlias operation
	7.1.4.3	IDL description

	7.1.5	MhObject object
	7.1.5.1	bind operation
	7.1.5.2	unbind operation
	7.1.5.3	prepare operation
	7.1.5.4	destroy operation
	7.1.5.5	getPreparationStatus operation
	7.1.5.6	getIdentifier operation
	7.1.5.7	kill operation
	7.1.5.8	IDL description

	7.1.6	MhAction object
	7.1.6.1	delay operation
	7.1.6.2	IDL description

	7.1.7	MhLink object
	7.1.7.1	abort operation
	7.1.7.2	IDL description

	7.1.8	MhModel object
	7.1.8.1	IDL description

	7.1.9	MhComponent object
	7.1.9.1	IDL description

	7.1.10	MhGenericContent object
	7.1.10.1	copy operation
	7.1.10.2	IDL description

	7.1.11	MhContent object
	7.1.11.1	setData operation
	7.1.11.2	getData operation
	7.1.11.3	IDL description

	7.1.12	MhMultiplexedContent object
	7.1.12.1	setMultiplex operation
	7.1.12.2	setDemultiplex operation
	7.1.12.3	IDL description

	7.1.13	MhComposite object
	7.1.13.1	IDL description

	7.1.14	MhScript object
	7.1.14.1	IDL description

	7.1.15	MhContainer object
	7.1.15.1	IDL description

	7.1.16	MhDescriptor object
	7.1.16.1	IDL description

	7.1.17	RtObjectOrSocket object
	7.1.17.1	setGlobalBehaviour operation
	7.1.17.2	getGlobalBehaviour operation
	7.1.17.3	run operation
	7.1.17.4	stop operation
	7.1.17.5	IDL description

	7.1.18	RtObject object
	7.1.18.1	bind operation
	7.1.18.2	unbind operation
	7.1.18.3	new operation
	7.1.18.4	delete operation
	7.1.18.5	getAvailabilityStatus operation
	7.1.18.6	getIdentifier operation
	7.1.18.7	kill operation
	7.1.18.8	getRunningStatus operation
	7.1.18.9	IDL description

	7.1.19	Socket object
	7.1.19.1	bind operation
	7.1.19.2	unbind operation
	7.1.19.3	getIdentifier operation
	7.1.19.4	kill operation
	7.1.19.5	plug operation
	7.1.19.6	setVisibleDurationPosition operation
	7.1.19.7	getVisibleDurationPosition operation
	7.1.19.8	IDL description

	7.1.20	RtScript object
	7.1.20.1	setParameters operation
	7.1.20.2	getTerminationStatus operation
	7.1.20.3	IDL description

	7.1.21	RtComponentOrSocket object
	7.1.21.1	setRGS operation
	7.1.21.2	getRGS operation
	7.1.21.3	setOpacity operation
	7.1.21.4	setPresentationPriority operation
	7.1.21.5	getOpacity operation
	7.1.21.6	getEffectiveOpacity operation
	7.1.21.7	getPresentationPriority operation
	7.1.21.8	setVisibleDuration operation
	7.1.21.9	setTemporalTermination operation
	7.1.21.10	setCurrentTemporalPosition operation
	7.1.21.11	setSpeed operation
	7.1.21.12	setTimestones operation
	7.1.21.13	getInitialTemporalPosition operation
	7.1.21.14	getTerminalTemporalPosition operation
	7.1.21.15	getVDLength operation
	7.1.21.16	getTemporalTermination operation
	7.1.21.17	getCurrentTemporalPosition operation
	7.1.21.18	getSpeedRate operation
	7.1.21.19	getOGTR operation
	7.1.21.20	getEffectiveSpeedRate operation
	7.1.21.21	getEffectiveOGTR operation
	7.1.21.22	getTimestoneStatus operation
	7.1.21.23	setPerceptibleSizeProjection operation
	7.1.21.24	setAspectRatio operation
	7.1.21.25	setVisibleSize operation
	7.1.21.26	setVisibleSizesAdjustment operation
	7.1.21.27	setBox operation
	7.1.21.28	setDefaultBackground operation
	7.1.21.29	setAttachmentPoint operation
	7.1.21.30	setAttachmentPointPosition operation
	7.1.21.31	setVisibleSizesAlignment operation
	7.1.21.32	setMovingAbility operation
	7.1.21.33	setResizingAbility operation
	7.1.21.34	setScalingAbility operation
	7.1.21.35	setScrollingAbility operation
	7.1.21.36	getGSR operation
	7.1.21.37	getPS operation
	7.1.21.38	getAspectRatio operation
	7.1.21.39	getPSAP operation
	7.1.21.40	getVSGS operation
	7.1.21.41	getVS operation
	7.1.21.42	getBox operation
	7.1.21.43	getDefaultBackground operation
	7.1.21.44	getVSIAP operation
	7.1.21.45	getVSIAPPosition operation
	7.1.21.46	getVSEAP operation
	7.1.21.47	getVSEAPPosition operation
	7.1.21.48	getMovingAbility operation
	7.1.21.49	getResizingAbility operation
	7.1.21.50	getScalingAbility operation
	7.1.21.51	getScrollingAbility operation
	7.1.21.52	setSelectability operation
	7.1.21.53	setSelectionStatus operation
	7.1.21.54	setSelectionPresentationEffectResponsibility operation
	7.1.21.55	getSelectability operation
	7.1.21.56	getEffectiveSelectability operation
	7.1.21.57	getSelectionStatus operation
	7.1.21.58	getSelectionMode operation
	7.1.21.59	getSelectionPresentationEffectResponsibility operation
	7.1.21.60	setModifiability operation
	7.1.21.61	setModificationStatus operation
	7.1.21.62	setModificationPresentationEffectResponsibility operation
	7.1.21.63	getModifiability operation
	7.1.21.64	getEffectiveModifiability operation
	7.1.21.65	getModificationStatus operation
	7.1.21.66	getModificationMode operation
	7.1.21.67	getModificationPresentationEffectResponsibility operation
	7.1.21.68	setNoInteractionStyle operation
	7.1.21.69	IDL description

	7.1.22	RtComponent object
	7.1.22.1	IDL description

	7.1.23	RtCompositeOrStructuralSocket object
	7.1.23.1	setResizingStrategy operation
	7.1.23.2	getResizingStrategy operation
	7.1.23.3	setAudibleCompositionEffect operation
	7.1.23.4	getAudibleCompositionEffect operation
	7.1.23.5	getNumberOfSelectedSockets operation
	7.1.23.6	getNumberOfModifiedSockets operation
	7.1.23.7	setMenuInteractionStyle operation
	7.1.23.8	setScrollingListInteractionStyle operation
	7.1.23.9	IDL description

	7.1.24	RtComposite object
	7.1.24.1	IDL description

	7.1.25	StructuralSocket object
	7.1.25.1	IDL description

	7.1.26	RtGenericContentOrPresentableSocket object
	7.1.26.1	setAudibleVolume operation
	7.1.26.2	getInitialOriginalAudibleVolume operation
	7.1.26.3	getCurrentOriginalAudibleVolume operation
	7.1.26.4	getEffectiveOriginalAudibleVolume operation
	7.1.26.5	getPerceptibleAudibleVolume operation
	7.1.26.6	setButtonInteractionStyle operation
	7.1.26.7	IDL description

	7.1.27	RtGenericContent object
	7.1.27.1	IDL description

	7.1.28	GenericPresentableSocket object
	7.1.28.1	IDL description

	7.1.29	RtContentOrPresentableSocket object
	7.1.29.1	setSliderInteractionStyle operation
	7.1.29.2	setEntryFieldInteractionStyle operation
	7.1.29.3	IDL description

	7.1.30	RtContent object
	7.1.30.1	IDL description

	7.1.31	PresentableSocket object
	7.1.31.1	IDL description

	7.1.32	RtMultiplexedContentOrPresentableSocket object
	7.1.32.1	setStreamChoice operation
	7.1.32.2	getStreamChosen operation
	7.1.32.3	IDL description

	7.1.33	RtMultiplexedContent object
	7.1.33.1	IDL description

	7.1.34	MultiplexedPresentableSocket object
	7.1.34.1	IDL description

	7.1.35	Channel object
	7.1.35.1	bind operation
	7.1.35.2	unbind operation
	7.1.35.3	new operation
	7.1.35.4	delete operation
	7.1.35.5	getRtAvailabilityStatus operation
	7.1.35.6	getIdentifier operation
	7.1.35.7	kill operation
	7.1.35.8	setPerceptability operation
	7.1.35.9	getPerceptability operation
	7.1.35.10	getAssignedPerceptibles operation
	7.1.35.11	IDL description

	7.1.36	Parameter definition
	7.1.37	Exceptions
	7.1.37.1	InvalidTarget exception
	7.1.37.2	InvalidParameter exception
	7.1.37.3	NotBound exception
	7.1.37.4	AlreadyBound exception
	7.1.37.5	IDL definition

	7.2	Optional primitives

	Annex A (normative):	Complete IDL definition of the MHEG API
	History

