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1 Scope

This European Telecommunication Standard (ETS) specifies the data syntax to be used by Videotex and
Multimedia/Hypermedia Information retrieval services for implementation of the Videotex Enhanced Man
Machine Interface (VEMMI).

In the Videotex case this ETS is applicable to both the Videotex service and the attached Videotex
terminals. Those terminals may be connected to the Videotex service via the Public Switched Telephone
Network (PSTN), Integrated Services Digital Network (ISDN) or Packet Switched Public Data Network
(PSPDN). Typically, the terminals should support ISDN Syntax-Based Videotex (SBV).

The ETS can also be used for any kind of retrieval service (not related to Videotex) by using the relevant
underlying platform and content data types.

2 Normative references

This ETS incorporates by dated and undated reference, provisions from other publications. These
normative references are cited at the appropriate places in the text and the publications are listed
hereafter. For dated references, subsequent amendments to or revisions of any of these publications
apply to this ETS only when incorporated in it by amendment or revision. For undated references the latest
edition of the publication referred to applies.

[1] CCITT Recommendation T.50 (1992): "International Reference Alphabet (IRA)
(Formerly International Alphabet No. 5 or IA5) - Information technology - 7-bit
coded character set for information interchange".

[2] CCITT Recommendation T.51 (1992): "Latin based coded character sets for
telematic services".

[3] CCITT Recommendation T.52 (1993): "Non-Latin coded character sets for
telematic services".

[4] ITU-T Recommendation T.101 (1994): "International interworking for videotex
services".

[5] ITU-T Recommendation T.102 (1993): "Syntax-based videotex end-to-end
protocols for circuit mode ISDN".

[6] ITU-T Recommendation T.105 (1994): "Syntax-based videotex application layer
protocol".

[7] ITU-T Recommendation H.261 (1994): "Video codec for audiovisual services at
p x 64 kbit/s".

[8] ITU-TS Recommendation H.320 (1994): "Narrow-band visual telephone
systems and terminal equipment".

[9] ITU-T Recommendation F.300 (1994): "Videotex service".

[10] ISO 2022 (1986): "Information technology - ISO 7-bit and 8-bit coded character
sets - Code extension techniques".

[11] ISO 2375 (1985): "Data processing - Procedure for registration of escape
sequences".

[12] ISO/IEC 8632 (1992): "Information technology - Computer graphics - Metafile for
storage and transfer of picture description information".

[13] ISO 8859 (1987): "Information Processing - 8-bit single byte coded graphic
character set".

[14] ISO/IEC 9281 (1990): "Information technology - Picture coding methods".
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[15] ISO/IEC 10646-1 (1993): "Information technology - Universal Multiple-Octet
Coded Character Set (UCS); Part 1: Architecture and Basic Multilingual Plane".

[16] ISO/IEC 10918-1 (1994): "Information technology - Digital compression and
coding of continuous-tone still images: Requirements and guidelines".

[17] ISO/IEC 11172-1 (1993): "Information technology - Coding of moving pictures
and associated audio for digital storage media at up to about 1.5 Mbit/s - Part 1:
Systems".

[18] ISO/IEC 11172-2 (1993): "Information technology - Coding of moving pictures
and associated audio for digital storage media at up to about 1.5 Mbit/s - Part 2:
Video".

[19] ISO 639 (1988): "Codes for the representation of names of languages".

[20] ETS 300 072 (1990): "Terminal Equipment (TE); Videotex presentation layer
protocol, Videotex presentation layer data syntax".

[21] ETS 300 073: "Videotex presentation layer data syntax; Geometric Display
(CEPT Recommendation T/TE 06-02, Edinburgh 1988)".

[22] ETS 300 076 (1994): "Terminal Equipment (TE); Videotex, Terminal Facility
Identifier (TFI)".

[23] ETS 300 079 (1991): "Integrated Services Digital Network (ISDN); Syntax-based
Videotex, End-to-end protocols, circuit mode DTE-DTE".

[24] ETS 300 149 (1992): "Terminal Equipment (TE); Videotex, Audio syntax".

[25] ETS 300 177 (1995): "Terminal Equipment (TE); Videotex, Photographic
syntax".

[26] ETS 300 223 (1993): "Terminal Equipment (TE); Syntax-based Videotex,
Common end-to-end protocols".

[27] ISO/IEC DIS 13818-1: "Information technology - Generic coding of moving
pictures and associated audio information; Part 1: Systems".

[28] ISO/IEC DIS 13818-2: Information technology - Generic coding of moving
pictures and associated audio information; Part 2: Video".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this ETS, the following definitions apply:

controls: Visual user-interface elements that allow a user to interact with data.

dedicated terminal: Designed to support VEMMI but using a different platform than a multipurpose
personal computer. Such terminals may have processing, storage and presentation limitations.

Defined Display Area (DDA): See ITU-T Recommendation F.300 [9].

emphasis: Highlighting, colour change or other visible indication of the condition of an element or choice
and the effect of that condition on a user's ability to interact with that element. Emphasis can also give
additional information about the state of an object. The method used to emphasize an element is terminal
dependent.

label: Text data associated with a VEMMI component to inform the user of the purpose of a particular
component or item.
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local manager: See VEMMI local manager.

mnemonic: A single, easy-to-remember alphanumeric character that activates a VEMMI Menu Choice
component and validates it. A Mnemonic character can also be used to validate an active Push Button.

modal mode: When a VEMMI object is "modal" it is not possible for the user to leave this VEMMI object
to the benefit of another VEMMI object of the same application with different possible access tools. Each
attempt to access another object by the user is refused and possibly indicated by a sound signal.

resource file transfer: Mechanism to transfer files referenced by VEMMI resource objects from a VEMMI
application to a VEMMI terminal.

stretched presentation:  Reduced or enlarged display of a bitmap in order to meet given space
requirements.

tiled presentation:  Repeated display of a given bitmap in a horizontal and/or vertical direction in order to
meet given space requirements.

videotex application: Videotex application using encoded data, protocols and profiles, as defined in the
Videotex ETSs referenced in clause 2. A Videotex application does not use a VEMMI service, data and
protocols (see ITU-T Recommendation F.300 [9]).

videotex data: Data interchanged between a Videotex application and a Videotex terminal.

VEMMI application: Application offering an enhanced man/machine interface as described in this ETS.

VEMMI data: VEMMI objects description and contents and VEMMI commands exchanged between the
VEMMI application and the VEMMI terminal.

VEMMI local manager: Software running in the VEMMI terminal to handle and to present the VEMMI
objects that are sent to the user by the VEMMI application.

VEMMI terminal: A terminal which is able to run a VEMMI local manager.

Videotex host computer: See ITU-T Recommendation F.300 [9].

Videotex terminal: See ITU-T Recommendation F.300 [9].

3.2 Abbreviations

For the purposes of this ETS, the following abbreviations apply:

BIN Bitmap Identification Number
BMP Microsoft Windows Device-Independent Bitmap
CD-ROM Compact Disk-Read Only Memory
CGM Computer Graphics Metafile
CIN Component Identification Number
CMI Coding Method Identifier
CR Carriage Return
DDA Defined Display Area
DE Data Entity
DIB Device-Independent Bitmap
DLL Dynamic Link Libraries
DRCS Dynamically Redefinable Character Set
DS I Data Syntax according to ITU-T Recommendation T.101 [4], annex B
DS II Data Syntax according to ITU-T Recommendation T.101 [4], annex C
DS III Data Syntax according to ITU-T Recommendation T.101 [4], annex D
ESC Escape
FIN Font Identification Number
G0 Primary character set of CCITT Recommendation T.51 [2]
G2 Supplementary character set of CCITT Recommendation T.51 [2]
GIF Graphics Interchange Format
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GMT Greenwich Mean Time
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IP Internet Protocol
IRV International Reference Version
ISDN Integrated Services Digital Network
JIS Japanese Institute for Standardization
JPEG Joint Photographic Experts Groups
LF Line Feed
LI Length Indicator
MDI More Data Indicator
MIDI Musical Instrument Digital Interface
MIN Multimedia Identification Number
MPEG Moving Picture Experts Group
NDC Normalized Device Co-ordinate
OIN Object Identification Number
PCD Picture Code Delimiter
PCE Picture Control Entity
PDA Personal Digital Assistant
PDE Picture Data Entity
PE Picture Element
PI Picture Identifier
PM Picture Mode
PSPDN Packet Switched Public Data Network
PSTN Public Switched Telephone Network
RGB Red Green Blue
SBV Syntax-Based Videotex
TCP Transmission Control Protocol
TE Terminal Equipment
TFI Terminal Facility Identifier
TIN Text Identification Number
TLV Type Length Value
TV Television
UI User Interface
VEMMI Videotex Enhanced Man Machine Interface
VIF VEMMI Interchange Format
VIN Videotex Identification Number
VPDE Videotex Presentation Data Element
VTX Videotex

4 General model

4.1 Introduction

Between a host and a VEMMI terminal a VEMMI service handles:

- general VEMMI objects as described in this ETS;
- data contents as defined in this ETS;
- data contents as referenced in this ETS.

A VEMMI terminal may also handle a Videotex application using encoded data and protocols as described
in the Videotex ETSs referenced in clause 2.
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4.2 Definition of the VEMMI elements

The logical units which form the structure of the VEMMI shall be named and defined as follows:

- VEMMI objects;
- VEMMI components or components;
- VEMMI component items or items.

VEMMI element is a generic name used in this ETS to designate an object, a component or an item.

An example is given in figure 1.

VEMM I O bject

T e xt L ab e l: Te xt  Inp ut :

V E M M I o b jec t

V E M M I c o m po ne nt

V E M M I c o m p o n en t ite m

Figure 1: Example showing objects/components/items

4.2.1 VEMMI object definition and identification

The following four different types of VEMMI objects are defined in this ETS:

- display objects;
- operative objects;
- resource objects;
- metacode objects.

If not stated otherwise the term object used alone always refers to a display object.

VEMMI objects are the logical units which are used by a VEMMI application to interact with the user.

VEMMI objects can be composed of different components.

The objects are only defined regarding their functionality, their size and position relative to the Defined
Display Area (DDA). The representation of the objects is terminal dependent.

Every object shall be identified by an Object Identification Number (OIN) which shall be unique within a
VEMMI application at any one time.

4.2.2 VEMMI component definition

VEMMI components always belong to a VEMMI object and are only valid within this object. The object, to
which a component belongs, is named the parent object.

In order to transport information, components may carry a data content (see subclause 4.5).
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The components are only defined regarding their functionality, their type of content and their size and
position relative to the object. The representation of the components is terminal dependent. The
representation of data content is specified either by this ETS (for the datatypes that are defined within this
document) or by the corresponding presentation standard (for datatypes that are defined outside this
standard).

Every component shall be identified by a Component Identification Number (CIN) which shall be unique
within an object.

4.2.3 VEMMI component item definition

The sub-unit of a VEMMI component is a component item. Every item is an integral part of a component.
The definition of a component item is only valid within this component.

4.2.4 Resource definition

Resources are elements which can be referenced by components or objects. One resource can be
referenced by more than one element. The following resources are defined:

- the colour table which is unique in one application;
- files stored in the terminal (identified by filenames) can contain sound data, operative objects etc.;
- a combination of a font family name and a set of attributes is a resource object. It is identified via a

Font Identification Number (FIN);
- a bitmap can be a resource object. It is identified via a Bitmap Identification Number (BIN);
- text can be a resource object. It is identified via a Text Identification Number (TIN);
- Videotex can be a resource object. It is identified via a Videotex Identification Number (VIN);
- Multimedia can be a resource object. It is identified via a Multimedia Identification Number (MIN);
- objects sets stored in the terminal between two sessions (they are identified via attributes).

NOTE: FIN, BIN, VIN, TIN, MIN are OINs. The terms FIN, BIN, MIN and VIN are only used to
clearly indicate that the corresponding object is a resource object.

4.2.5 Transfer of VEMMI objects

VEMMI objects can be transmitted to the VEMMI terminal using a telecommunication network. If they are
stored then in the terminal they become local objects. VEMMI objects can also be downloaded using any
suitable file transfer. They become local objects as well and are treated in the same way as objects
transferred within the VEMMI dialogue and stored by the corresponding service primitive. VEMMI objects
may also be transferred to the VEMMI terminal by postal mail (CD-ROM, diskettes etc.).

4.2.6 Resource-file transfer

VEMMI resource objects can reference files that contain the resource display data. These files are called
resource-files.

VEMMI specifies the way the resource-files are transmitted to the terminal (VEMMI resource-file transfer).
VEMMI resources data files may also be transferred to the VEMMI terminal using the file transfer used in
the standard service in which the terminal operates or by postal mail (CD-ROM, diskettes etc.).

In order to offer a satisfactory level of quality and features matching the VEMMI functionality the resource-
file transfer mechanism offers the following facilities:

- the resource-file transfer can be performed without the user being aware of it;
- the resource-file transfer can be performed as a parallel task. During the resource-file transfer the

user may continue to interact with the VEMMI application (although if the network speed is not
sufficient, the server response time may be adversely affected by the resource-file transfer
operation);

- the application may open a VEMMI object (window) displaying the actual status of the transfer (e.g.:
a graphics representing the percentage of the resource copied), and optionally offer a method to
cancel, hold and resume the transfer (e.g.: using buttons);

- several resource-file transfers can be performed independently;
- possible user interaction on the resource-file transfer operation (abort).
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The support of a permanent storage is not mandatory for a VEMMI terminal.

4.3 VEMMI plane structure model

The VEMMI display model consists of two independent planes:

- the standard data memory and standard data window;
- the VEMMI data memory and VEMMI data window.

This model and a possible terminal structure is presented in figure 2.

A VEMMI terminal shall implement the behaviour of this display model. However, no assumption is made
on the real physical plane structure of the terminal and how the terminal implements that plane structure
model.
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NOTE: Standard protocols including SBV based protocols or protocols amended for VEMMI
mode as defined in clause 5.

Figure 2: Example of possible VEMMI terminal structure

The standard plane is the output area where the retrieval service used as a platform for the VEMMI
service displays its data. If a Videotex service is used as a platform the standard plane is the DDA that is
used by a regular Videotex application. In the following subclauses it is assumed that Videotex is used as
a platform. However, all the rules apply as well if the underlying platform is different from Videotex (e.g.
VT100, TV-channel).

The two output planes are independent with respect to their positions and dimensions on the terminal
screen.

The terminal has a logical command input queue in which the commands that are received from the
network are stored in the order of reception before they are processed by the VEMMI local manager.

4.3.1 The standard plane for Videotex data

The standard plane receives standard Videotex data. It shall continue to support the Videotex data rules
and priorities defined in the Videotex ETSs referenced in clause 2.
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4.3.2 The VEMMI objects plane

This plane receives VEMMI objects described in this ETS and their encoded data contents. The VEMMI
objects plane shall be able to handle object overlapping and restoring mechanisms as referenced in
subclauses 4.6 and 4.10.1. Within this plane, and for a given data content, the data rules and priorities as
defined in the corresponding standards apply.

4.4 Operation modes for VEMMI terminals

Regardless of the current operation mode of the terminal, it shall always provide specific tools to manage
the platform specific functions (disconnect, etc.).

4.4.1 The standard mode

This is the initial mode of operation of a VEMMI terminal when powered-on or reset.

In standard mode, the VEMMI terminal displays standard data in the standard plane. This standard
datatype depends on the retrieval service to which the VEMMI terminal is connected. Standard data are
fully visible. User inputs are not controlled by the VEMMI local manager.

The terminal shall ignore all VEMMI commands except VEMMI_Open or VEMMI_Resume if the VEMMI
session previously was suspended with a VEMMI_Suspend. This command shall perform a switch to the
VEMMI mode (VEMMI on/off switches are then switched to the on position).

4.4.2 The VEMMI mode

In VEMMI mode, a VEMMI terminal can receive standard data and VEMMI objects data in two parallel
paths, as shown in figure 2.

VEMMI object data are displayed in the VEMMI objects plane. Standard data are displayed in the standard
plane. The display order for objects and for components within objects shall correspond to the ascending
order of their CINs (component with the smallest CIN is displayed first).

In VEMMI mode, the received standard data is used to update the standard data display memory. An
update of the standard data window does not cause its activation.

User inputs are controlled by the VEMMI local manager on the VEMMI window, which is the active window
in this mode.

4.4.3 Switching between standard mode and VEMMI mode

Logically, the terminal has two different paths to the communication part, one for the standard data and
one for VEMMI data. This allows a distinction between the two data types. On the communication line the
two data types can be received interleaved.

The standard mode  is the initial mode of operation when the connection to the system has been
established. The terminal keeps this mode until it receives:

- VEMMI_Open or;
- VEMMI_Resume.

and is switched in VEMMI mode.

In VEMMI mode the terminal shall process all VEMMI commands and standard data. The commands
VEMMI_Close and VEMMI_Suspend cause the terminal to leave this mode and the terminal is switched
back to the standard mode. With VEMMI_Suspend the current objects and the VEMMI specific data and
states are not destroyed. That means, a temporary switch to the standard mode and a return back to the
VEMMI mode with VEMMI_Resume allows a continuation of the VEMMI dialogue.

The following table shows the active states of the terminal. Standard data shall be processed in all states,
independently whether the standard data window is active or not.
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Table 1: Active terminal states

Command Process standard data Active window
VEMMI_Open Yes VEMMI window
VEMMI_Resume Yes VEMMI window
VEMMI_Close Yes Standard data window
VEMMI_Suspend Yes Standard data window

4.5 VEMMI elements data content

The following presentation formats, content data types and attributes are defined within this ETS:

- VEMMI high quality text;
- VEMMI bitmaps;
- colour.

The following content datatypes and attributes are defined outside this ETS, but used as data content for
VEMMI elements in this ETS:

- Videotex data;
- bitmaps;
- sound;
- graphical;
- video data;
- multimedia data.

A detailed list of all data types that are supported by VEMMI is given in subclause 7.17. A detailed list of all
data types that are mandatory to be supported by a VEMMI terminal implementation is given in annex C.

A VEMMI terminal shall understand all commands related to the above mentioned data contents.

It shall not be required to use any specific content datatype in a VEMMI application. However, in order to
provide a satisfactory VEMMI service a terminal should, as a minimum requirement, support the datatypes
listed in annex C.

4.5.1 Text data definition

Text Data shall be encoded in accordance with ISO 8859 [13]. Depending on the terminal implementation,
only a part of ISO 8859 [13] may be supported (see annex B for ISO 8859 mandatory subset of
ISO 8859 [13]). In addition, the host application can use the VEMMI_Identify_Term_Cap command to
enquire about the character sets supported in the terminal. A specific character set can be selected using
the VEMMI_Set_Options command. This text data encoding is considered as the basic text encoding.
When several character sets are used in the same application (multilingual application), the application
can use the registered ISO appropriate designation escape sequences, as defined in ISO 2022 [10] and
ISO 8859 [13] to switch between the different character sets.

The following text data encodings may optionally be used:

- ISO/IEC 10646-1 Unicode [15];
- CCITT Recommendation T.51 [2] as given in annex A;
- CCITT Recommendation T.52 [3] (for further study).

For displaying window titles, menu choices and labels, the terminal application can use the local system
font. For the application specific text-output, VEMMI offers enhanced capabilities. However, simple text
based terminals can use the system font to display the high quality text. These terminals may then ignore
the text attributes that they are not able to process and display text using the system font, in the available
system colour, on the system background.
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Text data can be part of an object or component definition or it can be defined as a resource object. The
following text attributes are specified:

- text colour;
- text font;
- text height.

The text colour defines the colour of the characters foreground. The character background is terminal
specific. The text font is a set of characters with a particular, similar character design. In this context, an
application can choose a font family, the specific font pertaining to this family is selected by the terminal
application (in this document, by "font", a font family is meant). The following table presents the VEMMI
font families:

Table 2: VEMMI font families

Font family Font characteristics Example
SWISS Proportional, without serifs Helvetica, Switzerland
ROMAN Proportional, with serifs Times Roman
FIXFONT Monospaced Courier

The fonts of these families should support variable sizes (scaleable fonts).

The "text height" specifies the height of the font. It is the height of the character cell, including a possible
internal leading. The local manager shall insert additional space between adjacent text rows. The height is
measured in points (1/72 inch). One point corresponds to 1/400 Normalized Device Co-ordinate (NDC).
Italicised characters can be achieved with the "Italic" attribute. "Bold" increases the line thickness and
"Underline" draws a line under each character.

EXAMPLE:

SWISS, 10 points and bold

FIXFONT, 12 points, white

A combination of a font and a set of attributes is further named an attributed font and handled as a font
resource object. It is referenced via the FIN.

The following control characters should be used to format the text correctly:

- SP, NBSP, SHY: see ISO 8859 [13];
- CR, LF: see CCITT Recommendation T.50 [1].

To provide the "Line Feed" functionality within the text content of a component or a component item the
Carriage Return (CR) + Line Feed (LF) control characters given in CCITT Recommendation T.50 [1] shall
be used.

4.5.2 Bitmaps

A bitmap is a pixel matrix containing either colour indices which point into the colour table, or Red Green
Blue (RGB) components. A bitmap can be referenced by an object or component and when it is
instantiated by the terminals it appears as a rectangle with a colour pattern of the corresponding matrix of
pixels. The definition is almost device-independent while the relationship between the bitmap bits and the
pixels on the device is device specific. Some bitmaps can have associated colour tables different from the
one defined in VEMMI.

The bitmap is handled as a resource object and referenced by objects or components via the BIN which is
unique in one application. Several bitmaps can be defined at a given point in time.



Page 19
ETS 300 709: September 1996

4.5.3 Colour

The colour table provides a method for accessing the colour capabilities of the terminal device. It is
assumed that the device can display at least 256 colours simultaneously. Since the device colour table is
shared by more than one application, the User Interfaces (UIs) provide mechanisms (e.g. logical colour
palettes) to support each application with its own table. This clause defines the colour table for the VEMMI
application.

From the 256 colours, the UI reserves 20 colours for a system table. Therefore, the maximum number of
colours for the VEMMI colour table is 236. In practice an application will use only a few numbers from
these colours. The host application can define the colour table by sending the RGB components. Objects,
components or bitmaps can select these colours via indices. By default, 16 colour entries (0 to 15) are
predefined. If the application uses a colour index > 15 which was not defined, the displayed colour is
terminal dependent.

Colour entries may be in use by other active applications in the terminals. This shall be managed by the
local UI.

Monochrome terminals support either two colour indices (e.g. black and white) or the colour table loaded
with shades of one colour.

4.5.4 Videotex data

Data encoded in accordance with ETS 300 072 [20], ETS 300 073 [21], ETS 300 076 [22] for e.g.: text,
geometric.

Data encoded in accordance with ETS 300 149 [24] for audio data.

Data encoded in accordance with ETS 300 177 [25] for photographic data.

The support of Videotex data is optional for a VEMMI terminal.

The host application can inquire about the support of these data types using the
VEMMI_Identify_Term_Cap command.

4.5.5 Sound

An application can embed references to sound sequences in objects. The terminal stores the sound in
files. Upon a user action the sound is processed, possibly with an audio interface card.

The three sound formats are:

- wave (WAVE);
- Musical Instrument Digital Interface (MIDI);
- ETS 300 149 [24] for audio data.

Sound can also be provided using the Videotex audio syntax defined as Videotex data content (see
subclause 4.5.4).

4.5.6 Graphical data

Graphical data, such as lines, arcs, fill areas and the relevant drawing attributes are supported by this
standard (Videotex geometric display and Computer Graphics Metafile (CGM)). An application can also
use VEMMI-integrated programmes (via operative objects), in which graphical drawing operations are
performed.

4.5.7 Video data

This ETS identifies video data formats and provides the container (object) which can be used to embed
audiovisual and pure video information in VEMMI applications.
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4.6 VEMMI objects positioning and dimensioning

4.6.1 Positioning

The standard plane shall continue to support the co-ordinate system used at the underlying platform.

The VEMMI objects plane shall support a NDC system for positioning VEMMI objects and components
within the DDA (see figure 3). The normalized co-ordinates are theoretically expressed in the range 0;0 to
1;1. The 0;0 co-ordinate origin reference point represents the upper left hand corner of the DDA, the 1;1
co-ordinate point represents the lower right hand corner of a virtual square DDA with a side equal to the
unit. For a non-square DDA the unit is equal to the greatest side of the DDA.

For typical display devices, using common 4:3 aspect ratio, the horizontal positioning is in the range 0 to 1
corresponding to the whole width of the DDA, the vertical positioning is in the range 0 to 0,75
corresponding to the whole height of the DDA.

The origin reference point to position an object within the DDA is always the upper left corner of the DDA.
The origin reference point to position a component within its parent object (container object) is also the
upper left corner of a virtual DDA attached to the upper left corner of the object; that virtual DDA has
exactly the same size as the standard DDA but with a position translation up to the object for positioning
its own components (see note).

VEMMI items are, generally, implicitly positioned with respect to the width or the height of the nearest item
on the left or above.

NOTE: For specific rules for Dialogue Boxes with title and/or border see subclause 7.6.
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Figure 3: VEMMI positioning NDC space
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4.6.2 Dimensioning

The standard plane shall continue to support the co-ordinate system used for dimensioning at the
underlying platform.

The VEMMI objects plane and VEMMI objects and components shall support a dimensioning system
based NDC.

The width and the height of a VEMMI object or of a VEMMI component, expressed in NDC, are referred
with respect to the object positioning reference point (upper left-hand corner), see figure 4.

In a VEMMI element, data content follows the rules for the coding of its relevant data syntax including a
possible picture placement or positioning using the relevant co-ordinate system.
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0;0,75

1;0

X 0;0

y

1;0,75
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x

DDA origin reference point DDA

Object origin reference point

Component origin 

reference point
Element display area

VTX DATA

Virtual DDA used for element
content (the positioning inside the virtual DDA
shall follow the rules given with the specific content.)

Figure 4: VEMMI positioning system

4.7 VEMMI elements states and state parameters

4.7.1 Object

An object can adopt different logical states with different state parameters. These states and state
parameters may be results of:

- user inputs;
- local actions;
- actions taken by the VEMMI local manager;
- commands from the VEMMI application directly or via a metacode object.
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4.7.1.1 Definition of object states

Figure 5 shows the commands which can be used by the VEMMI application to change the object state or
its state parameters.

Opened Closed

VEMMI_Obj_Access Enable
VEMMI_Obj_Access Disable
VEMMI_Open_Object
Activation by the user
Deactivation by the user

Idle

VEMMI_Create_Object
VEMMI_Destroy_Object
Local Action Destroy

VEMMI_Close_Object
VEMMI_Close_All
Local Action Close Object

VEMMI_Obj_Access Enable
VEMMI_Obj_Access Disable

VEMMI_Create_Object
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Figure 5: State diagram for objects

In general, the following logical states for objects are defined with certain restrictions applying to specific
objects (see clause 7):

- Opened - an object which exists in the terminal is displayed:

a) opening an object is initiated by the VEMMI application, either as initial state at the time of the
object creation, by a direct VEMMI command any time during the application or by a local
action which is associated to a component and triggered by user interaction.

- Closed: - an object which exists in the terminal is not displayed:

a) closing an object is initiated by the VEMMI application, either as initial state at the time of the
object creation, by a command any time during the application or by a local action which is
associated to a component and triggered by user interaction.

- Referenced: - an object which does not exist in the terminal was referenced by a
VEMMI_Open_Object command or the local action "Open object". The terminal shall request the
retransmission of the specified object with the VEMMI_Object_Retransmission command;

- Requested: - after the attempt to open a non-existing object a request for object retransmission
shall be sent from the terminal to the VEMMI application. While the terminal is waiting for the
creation of the requested object the object is in the requested state;

- Stored: - a copy of an object (including all its components), which was used in an earlier session or
in the actual opened session and has been stored permanently in the terminal (e.g. on hard disk):

a) a stored object shall implicitly have the closed state. Stored objects are made available for
object operations with the Open Application command. Then they behave like received
closed objects;

b) if an object that was previously stored in the terminal is requested to be stored again by the
host application, the newer one shall replace the older one with all its parameters and states;
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c) stored objects can be destroyed with the command VEMMI_Erase_Objects.

An object which is in the closed state may be destroyed from terminal memory by a local decision of the
VEMMI local manager (e.g. because of a memory limitation). The VEMMI application may be informed
about this local deletion using the VEMMI error command "Object Destroy Indication". If the terminal
receives a VEMMI_Open_Object command referring to an object that has been destroyed or if a local
action "Open object" referring to a destroyed object is executed, the terminal shall request the
retransmission of the object from the application, using the VEMMI_Object_Retransmission command.
The VEMMI application shall then create the requested object again using the VEMMI_Create_Object
command, applying its current state and its current state parameters within the VEMMI application. A
VEMMI_Create_Object command resulting from a VEMMI_Object_Retransmission request shall always
create the object in the open state.

4.7.1.2 Definition of object state parameters

In general, the following state parameters for objects are defined with certain restrictions applying to
specific objects (see clause 7):

- active - an object currently has the input focus. The user inputs always refer to the active object.
The active object is on top of the DDA. If the active object is inaccessible it is not possible for the
user to interact with it. The active state management is described in subclause 4.10.1;

- inactive - the opposite of active;

- accessible - the user can interact with the object. Enabling the interaction with an object is initiated
by the VEMMI application, either as initial state at the time of the object creation, by a VEMMI
command any time during the application or by a local action which is associated to a component
and triggered by user interaction;

- inaccessible - the opposite of accessible.

The active/inactive state parameter applies only to components which are in the opened state. The
accessible/inaccessible state parameter is applicable to open and closed components. Any combination of
the state parameters active/inactive and accessible/inaccessible can exist for an open component.

4.7.2 Component

4.7.2.1 Definition of component states

A component can adopt different logical states with different state parameters. These states and state
parameters may be results of:

- user inputs;
- local actions;
- commands from the VEMMI application.

Figure 6 shows the possible states for components. The states and state parameters of components can
be changed during the applications using the VEMMI_Modify_Component command.
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Figure 6: State diagram for components

In general, the following logical states for components are defined with certain restriction applying to
specific components (see clause 7).

- Opened: - a component which exists within an object is displayed. Opening a component is initiated
by the VEMMI application, either as initial state at the time of the object creation, by a
VEMMI_Modify_Component command any time during the application or by a local action which is
associated to a component and triggered by user interaction;

- Closed - a component which exists in the terminal is not displayed. Closing a component is initiated
by the VEMMI application, either as initial state at the time of the object creation, by a
VEMMI_Modify_Component command any time during the application or by a local action which is
associated to a component and triggered by user interaction.

NOTE: The local deletion and retransmission of text components is possible (see
subclause 5.2.2). As the corresponding component states (idle, referenced, requested)
are not applicable to any other component they are not described explicitly. The
retransmission-functionality for text components is similar to the retransmission-
functionality for objects.

4.7.2.2 Definition of component state parameters

In general the following state parameters for components are defined with certain restrictions applying to
specific components (see clause 7).

- active - a component currently has the input focus. The user input always refers to the active
component within the active object. If the active component is inaccessible the user cannot interact
with it. The active state management is described in subclause 4.10.1;

- inactive - the opposite of active;

- accessible - the user can interact with the component if it is part of the current active object.
Enabling the user interaction with a component is initiated by the VEMMI application, either as initial
state at the time of the object creation, by a VEMMI_Modify_Component command any time during
the application or by a local action which is associated with a component and triggered by user
interaction;

- inaccessible - the opposite of accessible.

4.8 Local action management

VEMMI commands are generally issued by the VEMMI application to change the state or the state
parameters of an object or component. Only a very limited number of changes of object or component
states or their parameters can be initiated by the terminal.

To enable the VEMMI application to interact with the user, the terminal shall provide the capability to
report the user inputs on the activation or validation of components.
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The result of these interactions is that changes of object or component states, which are the result of user
inputs, could be delayed because the user inputs were sent to the VEMMI application first and then the
application could react with a VEMMI command to change the state. This procedure might cause
unacceptable response times on data links with lower data throughput. To improve the response times, a
set of local actions has been defined.

Local actions are part of the component definitions and stored in the terminal at the time of the object
creation. Each local action can consist of a list of "Element specific commands", a list of "Report
commands" and a list of "General commands" in any order. The following commands are defined:

- Element specific commands:

a) open components of the parent object (parameter: list of CINs);
b) close components of the parent object (parameter: list of CINs);
c) open objects (parameter: list of OINs);
d) close objects (parameter: list of OINs) with which the local action is associated;
e) report the current values of the component;
f) report the values of all components in the parent object;
g) report all values of all components in the parent objects that have changed (also via a

VEMMI_Modify_Component) since the last report or since the object creation if this is the first
report.

- General commands:

a) user lock;
b) restore creation values of all input components in the parent object. This command should

only be applied if the object was created with the "StoreCreationValue" attribute set true;
c) no operation. This command is used to delete local action definition with the

VEMMI_Modify_Component command.

These commands are part of the object definition and they can appear in the local action of a component
in any possible order. The order of appearance shall be equal to the order of their execution. There are
two specific trigger events which induce the performance of local actions:

- activation of a component;
- validation of a component.

A list of "Element specific commands", a list of "Report commands" and a list of "General commands" can
be used to specify one local action for a component. No command of a specific type is mandatory for a
local action.

There are two specific trigger events which induce the performance of local actions:

- activation of a component;
- validation of a component.

A local action can be associated to each of these trigger events.

4.9 Memory considerations

VEMMI terminals should have memory capabilities correctly dimensioned in order to provide a satisfactory
VEMMI service in close relationship with their data type contents handling.

When there is not enough memory to execute a VEMMI command or a local action the local manager
may decide to destroy some closed objects. This mechanism is terminal dependent.

The VEMMI terminal shall send a VEMMI_Error (Out of memory) message to the VEMMI application
when it does not have the possibility to release enough memory to process a received object description
with a VEMMI_Create_Object command, VEMMI_Modify_Component command or VEMMI_Open_Object
command. In that case it may ignore further VEMMI_Create_Object commands as long as the VEMMI
application has not released a significant part of memory using VEMMI_Close_Object or
VEMMI_Destroy_Object commands. The VEMMI application may also decide to disconnect the line if the
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application cannot be performed correctly due to a lack of memory in the terminal; however, the user shall
always be informed of that decision by means of a message in a Message Box.

4.10 Common rules for object handling

4.10.1 Active state and focus management

A VEMMI object can become active as the result of:

- being opened by the VEMMI application;
- user access;
- a local action with the element specific command "open object";
- closing the active object. The open object that was most recently active becomes the new active

object.

The active state shall be given up by  the last opened VEMMI object  to a user access to a different
opened VEMMI object. When an accessible opened VEMMI object is accessed by the user, the active
state shall be given to this VEMMI object by the local manager. The active state is then handled by the
local manager up to a new VEMMI object opening or re-opening action from the VEMMI application. There
should always be one single active object on the DDA. The active object can be inaccessible.

If objects use a common area on the DDA, successive object activation leads to partial or full object
overlapping. The active object shall always be fully visible to the user just after its activation. The previous
active object is logically just beneath the active object. This rule shall apply to all previously active objects.

When set to active, the VEMMI object and/or one of its components shall receive its focus from the local
manager. The active state of the VEMMI object and/or of the VEMMI components shall be clearly
indicated visually to the user. Within the active VEMMI object, not more than one accessible VEMMI
component shall receive the active state and the focus.

The first time an object is displayed and consequently activated, the component which gets the focus may
be specified by the VEMMI application within the object description. If there is no component specified or
the component specified is not opened, then the terminal shall give the focus to the first created opened
and accessible component. At other times the manner of giving the focus on activation of an object to one
of its components is terminal dependent (same rule as above, memorisation of the last accessed
component, the nearest component of the user access to the parent object).

4.10.2 Behaviour of the modal mode

For a modal active object, any user interaction with another VEMMI object of the current VEMMI
application shall be forbidden by the terminal, any tentative attempt shall be indicated to the user (buzzer).

All the commands received from the host and all the local actions resulting from user interactions with the
components of the modal object shall be executed.

4.10.3 Size considerations and clipping

The data content of a VEMMI element shall be sent with dimensions and a possible position compatible
with the size description of its container (object or component). A VEMMI terminal shall clip non-consistent
data content to the overall dimensions of the container.

For bitmap data content, specific rules apply that are given with the description of the elements.

4.11 Local object storage

A host application has the possibility to request the loading of objects locally stored in the terminal. Such a
set of objects is application specific and contains typically those parts which remain unchanged for a
longer time period and it is, therefore, more efficient not to transmit them in each dialogue session to the
terminal. The loaded objects are processed in the same way as if they were received during the present
session. Upon a host request they can be restored again in order to keep them up-to-date. The objects
storage does not imply a removal of the objects from the terminal application, only a copy of the objects is
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stored. The dialogue may continue and is not affected by the objects storage. An object set is identified
with the application identifier.

The timestamp is received from the host at the beginning of the application. It is stored with the objects
and re-used in later sessions. The timestamp value is never calculated by the terminal, it is only used in
comparison to find outdated objects. Whenever an object is stored locally in the terminal it shall have an
associated timestamp. The value of this timestamp shall be determined as follows:

- if the object was created by the host (by VEMMI_Create_Object) during the current session or if any
component of the object was modified (by VEMMI_Modify_Component) during the current session,
the object shall be stored with the timestamp value given by the VEMMI_Open_Application
command for the current application;

- in all other cases the objects timestamp shall remain unchanged. (The object was loaded without
change from the local storage during this session).

Two attributes which are part of the object definition can be used additionally to request the object storage
either immediately after the object creation (template) or at the end of the application (autostore).

A stored set of objects contains the following:

- the application identifier;
- the objects including their components and the associated timestamp;
- the referenced files (if a referenced file is not available in the terminal the object is considered

incomplete and shall not be stored);
- the relevant loaded colour table.

The storage format is terminal specific because the objects are loaded and stored only by the same
terminal. For the purpose of object interchange the VEMMI local storage interchange format is defined in
subclause 4.14.

The terminal implementation should provide the user with the appropriate means to manage the local
storage and typically the user may limit its maximum size.

4.12 Symbolic directory names

In order to support the host application in locating the correct files, symbolic directory names are defined.
They can be used as part of the "filename" parameter. The terminal maps them on real directory res.
filenames. In the following example a host application uses a symbolic directory name to identify a bitmap
file:

VEMMI_Create_Object (OIN=7, ... , filename="$CD\ARTISTS\DANCER\LISA.BMP", pict file type=BMP).

The string "$CD" identifies the CD-ROM drive. The terminal substitutes this symbolic name with the real
drive identification. The complete file identification might be "H:\ARTISTS\DANCER\LISA.BMP".

The following symbolic names are predefined, the application may use other symbolic names:

Name Meaning

$APL reference directory of the application(s) stored in the terminal

$FTD reference directory of downloaded files

$CD drive resp. directory name of a CD-ROM drive

These symbolic names can be used in the "filename" parameter of the VEMMI commands. The symbolic
name shall appear first and only once in the filename parameter. For the separation of the symbolic name
from additional sub-directories and from the filename, the character "\", code 5/12, should be used.
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4.13 Specific rules for dedicated terminals and PDAs

All service primitives including their parameters shall be understood also by a dedicated terminal.
Regarding the execution of the commands related to specific functionality, a dedicated terminal may apply
graceful degradation mechanisms.

The following functionality can be gracefully degraded by a dedicated terminal:

- colour definition;
- in-text attributes (fonts, colours, font attributes);
- local storage;
- NDC positioning and dimensioning.

For dedicated VEMMI terminals only able to handle Videotex data contents on a character basis
(alphamosaic, Dynamically Redefinable Character Set (DRCS), Photographic Profile 1), VEMMI objects
and components can be physically positioned and dimensioned to the nearest corresponding display
character position. Consequently, to avoid side effects between VEMMI objects, NDC object positions
should be expressed in a direct multiple of character positions for a VEMMI application using only this type
of Videotex data content.

For dedicated VEMMI terminals only able to handle Videotex data contents on a character basis, VEMMI
can be used with 80 character mode making use of the appropriate SWITCHING SEQUENCE or the
DEFINE FORMAT Videotex Presentation Data Element (VPDE) to switch to the desired Data Syntax.
Eighty character mode is not mandatory for a VEMMI terminal.

Dedicated VEMMI terminals shall recognise, but not necessarily process the whole or part of the VEMMI
high quality text attributes they are unable to display. These terminals may then ignore the text attributes
and display text using the system font, in the available system colour, on the system background.

Dedicated VEMMI terminals shall support the different kinds of VEMMI objects, with possible restrictions
applying to the operative objects. As a file management system is not mandatory, they can manage the
files they receive in the VEMMI_Resource-file_Transfer command in their own internal representation.

Dedicated terminals should support the minimum kernel datatypes defined in annex C. However, when
used in a retrieval service where the standard mode is the Videotex mode and when the terminal does not
support the Videotex photographic syntax (to be verified using the Terminal Facility Identifier (TFI)) the
support of Joint Photographic Experts Groups (JPEG) and Graphics Interchange Format (GIF) is not
mandatory. When the terminal supports the Videotex photographic syntax the support of JPEG is
mandatory and the support of GIF is recommended. Under the same service conditions, when a terminal
does not support the Videotex audio syntax the support of WAVE and MIDI is not mandatory. When the
terminal supports the Videotex audio syntax the support of WAVE is mandatory and the support of MIDI is
recommended.

Dedicated terminals need not support the stretching of bitmap data to fill the element display area. If the
presentation attribute for a bitmap is set to "stretched" the terminal may present the bitmap filled.

VEMMI applications targeting Personal Digital Assistants (PDA)s and dedicated terminals should not use
font sizes smaller than 10 point because these terminals will often have limited display capabilities.

4.14 VEMMI local storage interchange format

To allow the interchange of locally stored objects between terminals the following rules shall be followed
when storing the objects:

- the VEMMI objects constituting an application are stored independently of each other in a specific
sub-directory, in order to allow for an easy insertion, replacement and retrieval of a single object;

- the application objects are then stored in a specific sub-directory bearing the application name
(abbreviated to the first 8 characters on platforms that do not support more than 8 characters in
filename):
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a) the files in which the objects are stored, are named nnnnnnnn (8 characters with VEMMI
Interchange Format (VIF) extension): the name nnnnnnnn represents the object OIN in
hexadecimal format (from 1 to 232-1);

b) the internal data stored in the files represent the timestamp, immediately followed by the
object content in the VEMMI encoded format.

5 Service description

This clause describes the service characteristics offered by the VEMMI.

The service is defined between a terminal and a remote application. No assumption is made about the
way the terminal accesses the service (PSTN/PSPDN/ISDN) and the way the connection is established.

All VEMMI service elements or VEMMI commands shall be issued only on an established network
connection. Before sending the first VEMMI command the VEMMI application should issue a TFI request
to ensure that the terminal is able to support the VEMMI standard.

All VEMMI service elements are mandatory for a VEMMI terminal. A VEMMI terminal shall understand all
VEMMI service elements including all their parameters.

The VEMMI services are divided into two groups:

- services initiated by the VEMMI application;
- services initiated by the VEMMI terminal.

A second source of commands for a VEMMI terminal is the metacode object.
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Table 3: VEMMI services

VEMMI Services Initiated
Appl/Term

Function

VEMMI_Open Application Switch to VEMMI mode and reset
VEMMI_Close Application Switch to standard mode and reset
VEMMI_Suspend Application Switch to standard mode
VEMMI_Resume Application Switch to VEMMI mode
VEMMI_Identify_Term_Cap Application Request for terminal capabilities
VEMMI_Identify_Term_Cap_Resp Terminal Response to the "identify terminal capability"

request
VEMMI_Set_Options Application Set options in the terminal
VEMMI_Create_Object Application Object definition
VEMMI_Open_Object Application Display object
VEMMI_Open_Blocking_Object Application Open object
VEMMI_Close_Object Application Clear an object from the screen
VEMMI_Close_All Application Clear all the objects from the screen
VEMMI_Destroy_Object Application Clear object in the terminal memory
VEMMI_Obj_Access_Disable Application User access is not permitted
VEMMI_Obj_Access_Enable Application User access is permitted
VEMMI_Modify_Component Application Modify components characteristics
VEMMI_Obj_Location_Change Application Defines a new object position
VEMMI_Load_Col_Table Application Loads a colour table
VEMMI_Reset_Col_Table Application Resets a colour table
VEMMI_Open_Application Application Opens an application
VEMMI_Open_Application_Resp Terminal Response to "open application" request
VEMMI_Delete_Outdated_Objects Application Deletes outdated objects
VEMMI_Store_Objects Application Stores a set of objects
VEMMI_Store_Objects_Resp Terminal Response to a "store object" request
VEMMI_Erase_Objects Application Delete objects from the local storage
VEMMI_User_Lock Application User inputs are not permitted
VEMMI_User_Unlock Application User inputs are permitted
VEMMI_Object_Retransmission Terminal Request for object retransmission
VEMMI_User_Data Terminal User data in VEMMI mode
VEMMI_Error Terminal Error condition or situation
VEMMI_Resource-file_Transfer Application Resource-file transfer
VEMMI_Transfer_Acknowledge Terminal Resource-file transfer acknowledge
Abbreviations:

Appl = Application;
Term = Terminal.

The following services are confirmed explicitly:

- VEMMI_Identify_Term_Cap is confirmed with VEMMI_Identify_Term_Cap_Resp;
- VEMMI_Open_Application is confirmed with VEMMI_Open_Application_Resp;
- VEMMI_Store_Objects is confirmed with VEMMI_Store_Objects_Resp.

There is no explicit confirmation for any other of the service elements.

All VEMMI services, except VEMMI_Open_Object, which refer to a non-existing object shall be ignored by
the VEMMI terminal. If a VEMMI_Open_Object refers to a non-existing object the terminal shall request its
retransmission.

5.1 Service elements initiated by the VEMMI application

This subclause describes all VEMMI services but only those parameters which are necessary in order to
understand the service are listed. For a complete parameter list, see clause 8.
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5.1.1 VEMMI_Open

This service element shall be used to switch the VEMMI terminal to the VEMMI operational mode. The
switching mechanism is defined in subclause 4.4.3. In VEMMI operational mode the mechanism
described in subclause 4.4.2 shall apply.

In addition to the switch to VEMMI operational mode the service element shall perform the following
resets:

- close an open application;
- destroy all objects from the set of objects that are in the "opened" or "closed" state;
- all opened objects are cleared from the display;
- release all identification numbers for resource objects;
- set the colour table to the predefined values.

Objects stored in local storage are not affected.

If this command is received in the VEMMI mode no switch shall be necessary, only the resets are
performed.

Table 4

Parameters Description
Version Identifier of the VEMMI version.
PrivateMode Private parameter which can be used in

some "page-based" Videotex services.
This mode is not described in this ETS.

5.1.2 VEMMI_Close

This service element shall be used to switch the VEMMI terminal to the standard mode. The switching
mechanism is defined in subclause 4.4.3. In standard operational mode, the mechanism described in
subclause 4.4.1 shall apply.

In addition to the switch to standard mode the service element shall perform the resets defined in
subclause 5.1.1.

Table 5

Parameters Description
None

5.1.3 VEMMI_Resume

This service element shall be used to switch the VEMMI terminal to the VEMMI operational mode. The
parameters of this service element are the same as for the VEMMI_Open (see subclause 5.1.1). With this
service element no reset shall be performed.

Table 6

Parameters Description
Version Identifier of the VEMMI version.
PrivateMode Private parameter which can be used in

some "page-based" Videotex services.
This mode is not described in this ETS.
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5.1.4 VEMMI_Suspend

This service element shall be used to switch the VEMMI terminal to the standard mode. No reset shall be
performed.

Table 7

Parameters Description
None

5.1.5 VEMMI_Identify_Term_Cap

This service element shall be used to request identification of the capabilities of the terminal.

The following information can be obtained:

- VEMMI version identification;
- local storage support (supported/not supported);
- list of preferred user languages (string);
- system type (e.g.: IBM compatible, Macintosh, etc.);
- operating system (e.g.: MS-DOS, OS2, Microsoft Windows, etc.);
- operating system version (e.g.: 3.1, etc.) (string);
- a list of supported data types (reference to the VEMMI content encoding identification catalogue);
- a list of file transfer protocols supported by the terminal.

Table 8

Parameters Description
DesiredInformation The type of information that is

requested from the terminal.

If the DesiredInformation parameter is not present, the terminal shall respond by giving a complete list that
identifies all its capabilities.

5.1.6 VEMMI_Set_Options

This service element shall be used to set options in the terminal.

The following option can be set:

- if the terminal supports different kinds of text encoding, the desired encoding standard can be
selected.

Table 9

Parameters Description
TextStandard Reference to a text encoding standard in the

VEMMI content encoding identification catalogue
which shall be used at the beginning of the
encoding of datatypes string and character.

5.1.7 VEMMI_Create_Object

This service element shall be used to define a VEMMI object and its components in the VEMMI terminal.
The VEMMI terminal shall create the object and shall apply the object state and state parameters given in
its definition.

OINs shall be unique at one time in an application. The creation of an object with an already existing OIN
shall cause the replacement of the object.

CINs shall be unique within an object. The definition of a component with an already existing CIN shall
cause the destruction of the previously defined component.
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Table 10

Parameters Description
Object Identification Number
Template If an application is open the object shall be

stored immediately after creation.
Autostore If an application is open the object shall be

stored at the reception of a VEMMI_Open, a
VEMMI_Close or a VEMMI_Open_Application.

NOTE: The parameters Template and Autostore exclude each other.

5.1.8 VEMMI_Open_Object

This service element shall be used to set an object to the opened state in the VEMMI terminal. If the
referenced object is displayable the terminal shall display it immediately. If the object is not present in the
terminal, it shall request the object by sending a VEMMI_Object_Retransmission request to the VEMMI
application with the specified OIN, in this case "Rule A" as described in subclause 5.3.2 shall be used.
The application shall then create the object again, applying its current state and state parameters.

A VEMMI_Open_Object command referring to an already opened object causes the activation of the
object.

If a VEMMI_Open_Object is applied to a resource object the terminal shall verify whether the object and
the referenced resource-file are available. If the object is not available it shall be requested. If the
referenced resource-file is not available the terminal shall use the service element
VEMMI_Object_Retransmission with the appropriate parameters to request the file.

If a VEMMI_Open_Object is applied to a metacode object the terminal copies all commands of the
metacode object on top of the logical command input queue. The next command read from the command
input queue is the first command from the metacode. If not present it shall be requested.

If a VEMMI_Open_Object is applied to a operative object the terminal executes the programme. If not
present it shall be requested.

Table 11

Parameters Description
Object Identification Number

5.1.9 VEMMI_Open_Blocking_Object

This service element performs the same function as VEMMI_Open_Object except that the retransmission
case rule B as described in subclause 5.2.2 shall be used.

5.1.10 VEMMI_Close_Object

This service element shall be used to close a VEMMI object in the VEMMI terminal. The VEMMI terminal
shall clear the indicated object from the screen but keep it in it’s memory. The current state parameters
and values of the components shall not be changed.

When receiving a VEMMI_Close_Object indication referring to an active object, the new active object in
the VEMMI terminal shall be the opened object that was most recently active in the terminal.

For objects that are not displayable or are already in a closed state the VEMMI_Close_Object has no
effect.

Table 12

Parameters Description
Object Identification Number
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5.1.11 VEMMI_Close_All

This service element shall be used to close all the VEMMI objects in the VEMMI terminal. A
VEMMI_Close_All service element shall not change the current operational mode of the terminal.

Table 13

Parameters Description
None

5.1.12 VEMMI_Destroy_Object

This service element shall be used to remove a VEMMI object from a set of objects that are in the
"opened" or "closed" state. The terminal shall remove all data belonging to this object from its memory. If
the VEMMI_Destroy_Object is applied on an opened object it shall be closed by the local manager and
then destroyed. If the object was active, the new active object in the VEMMI terminal shall be the opened
object that was most recently active in the terminal.

The VEMMI_Destroy_Object shall not be applied on a Resource object that is referenced by other opened
objects or whose associated file is referenced by other open objects. If a VEMMI_Destroy_Object is
applied on a resource object also the file associated to the object shall be deleted.

The VEMMI application shall ensure consistency with regard to the handling of resource-files referenced
by Resource objects. If a file referenced by a Resource object is not present at the terminal when needed,
the terminal shall use the VEMMI_Object_Retransmission primitive to request the file.

Table 14

Parameters Description
Object Identification Number

5.1.13 VEMMI_Obj_Access_Disable

This service element shall be used to restrict the user access to an object in the VEMMI terminal. The
access shall be restricted until a VEMMI_Obj_Access_Enable service element referring to the same
object is received by the VEMMI terminal.

If the object was active, the new active object should be the open object that was most recently active in
the terminal. A VEMMI_Obj_Access_Disable Indication referring to an active object shall interrupt the user
interaction with this object.

Table 15

Parameters Description
Object Identification Number

5.1.14 VEMMI_Obj_Access_Enable

This service element shall be used to permit user access to an object in the VEMMI terminal. The access
shall be permitted until a VEMMI_Obj_Access_Disable service element referring to the same object is
received by the VEMMI terminal.

A VEMMI_Obj_Access_Enable Indication received in the VEMMI terminal and referring to an inactive
object shall not change this state parameter.

Table 16

Parameters Description
Object Identification Number



Page 35
ETS 300 709: September 1996

5.1.15 VEMMI_Modify_Component

This service element shall be used to modify one or several VEMMI components belonging to a VEMMI
object created into the VEMMI terminal. The possible modifications in VEMMI components are defined in
the component definition tables of subclause 9.6.

If a VEMMI_Modify_Component command is applied to an opened object it shall have an immediate
visual effect in the VEMMI terminal if the modified part is visible.

A VEMMI_Modify_Component command shall not change the active/inactive state parameter of the object
in the VEMMI terminal.

Table 17

Parameters Description
Object Identification Number
Modification Description

5.1.16 VEMMI_Obj_Location_Change

This service element shall be used only to change the position of a VEMMI object (not component) in the
VEMMI terminal screen. If a VEMMI_Obj_Location_Change command is referring to a VEMMI closed
object no visible effects shall be encountered. This service element shall not change the active/inactive
state parameter of an object.

A VEMMI_Obj_Location_Change service element shall never be applied to an Application Bar.

Table 18

Parameters Description
Object Identification Number
XPos New horizontal position.
YPos New vertical position.

5.1.17 VEMMI_Load_Col_Table

This service element shall be used by the host to define colours in the colour table.

The colours are defined consecutively, starting with the index "ColEntry". The terminal shall send an error
message to the host, if the requested colours cannot be defined, e.g. because the device supports less
colours than the host requested.

Table 19

Parameters Description
ColEntry Colour index from which the colours are

defined in ascending order.
ColRGBList The list consists of triplets which give

the red, green and blue component of a
colour. Each component value is in the range
0 to 255. The value 0 means no intensity for
the component, the value 255 means
maximum intensity.

NOTE: If this service is not supported by the terminal, this shall be
reported to the using application using the VEMMI_Error
"Service not supported".
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5.1.18 VEMMI_Reset_Col_Table

This service element shall be used by the host to reset all previously defined colours. This command has
no parameters. Only the default colours (indices 0 to 15) remain defined. If the default colours have been
redefined with VEMMI_Load_Col_Table, this command sets the default colours to their predefined values.

Table 20

Parameters Description
None

The default colours are given in the following table:

Table 21: Default colours

Colour
Index

Red Green Blue Colour

0 0 0 0 Black
1 0 0 168 Blue
2 0 168 0 Green
3 0 168 168 Cyan
4 168 0 0 Red
5 168 0 168 Magenta
6 168 84 0 Brown
7 168 168 168 White
8 84 84 84 Grey
9 84 84 255 Light blue
10 84 255 84 Light green
11 84 255 255 Light cyan
12 255 84 84 Light red
13 255 84 255 Light magenta
14 255 255 84 Yellow
15 255 255 255 Bright white

NOTE: If this service is not supported by the terminal, this shall be
reported to the using application using the VEMMI_Error "Service
not supported".

5.1.19 VEMMI_Open_Application

This service element shall be used by the host to load a set of objects and to define the name and
attributes of the current application. Additional support can be provided using symbolic directory names as
described in subclause 4.12. Locally stored object sets are identified by the application identifier. A
timestamp is used to associate version information with the objects of this application.

The VEMMI_Open_Application performs the same resets as the VEMMI_Open

Table 22

Parameters Description
ApplId String with the application name.
ApplAddData Additional application identification data.
Timestamp Time in seconds since 1.1.1970, Greenwich

Mean Time (GMT).

The parameter ApplId shall contain the application name. Additional information, such as name of the
company or the organisation to which the application belongs or the author of the application can be given
with the parameter ApplAddData, which is not mandatory. The terminal does not need to analyse the
content of ApplId, it is only used to identify the requested application.

Application providers should take care to choose unique application identifiers, in order to avoid
overwriting of other applications.
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5.1.20 VEMMI_Delete_Outdated_Objects

This service element shall be used by the host to request the deletion of outdated local objects of the
current application from the terminal storage.

If the host issues a VEMMI_Delete_Outdated_Objects with the timestamp requirements for specific
objects the terminal shall react as follows:

- if an object is referenced with a timestamp value higher than the timestamp value of the locally
stored object, this object shall be deleted from the local storage. The host application can thus be
certain that outdated objects are no longer used.

Table 23

Parameters Description
UpdateList This parameter contains groups, each of two

elements, a timestamp and a set of objects.

In order to update an application partially, this command is typically sent following a
VEMMI_Open_Application.

5.1.21 VEMMI_Store_Objects

This service element shall be used by the host to request the terminal to store the current loaded objects
or a part of them. The timestamp of the current open application, supplied with the
VEMMI_Open_Application command, is associated to each object.

Table 24

Parameters Description
Object Identification Numbers

If the parameter is absent all currently loaded objects are stored.

5.1.22 VEMMI_Erase_Objects

This service element shall be used by the host to request the deletion of objects of the current application
from the local storage of a terminal. To increase security implementation the VEMMI terminal could ask
the user before executing the deletion. (e.g.: one time at the beginning of the application or with every
deletion). If no application is open, the command has no effect.

Table 25

Parameters Description
Object Identification Numbers

5.1.23 VEMMI_User_Lock

This service element shall be used to restrict any user input in the terminal until a VEMMI_User_Unlock is
sent.

Table 26

Parameters Description
None
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5.1.24 VEMMI_User_Unlock

This service element shall be used to permit user inputs in the terminal.

Table 27

Parameters Description
None

5.1.25 VEMMI_Resource-file_Transfer

This service element shall be used to transfer files referenced by VEMMI resource objects from a VEMMI
application to a VEMMI terminal.

A file can be downloaded using one or more VEMMI_Resource-file_Transfer commands. A parameter of
the VEMMI_Resource-file_Transfer command (TransferID) associates the command to a given resource-
file transfer. This allows several resource-file transfers to be performed simultaneously with commands
pertaining to different resource-file transfers interleaving each other without interference.

The VEMMI_Resource-file_Transfer commands pertaining to the same resource-file transfer are
numbered consecutively using the parameter BlockNumber.

The first block of a given resource-file transfer shall always contain the following header information of the
file:

- filename;
- filesize;
- date of creation.

The first block of a given resource-file transfer shall also contain the number of VEMMI_Resource-
file_Transfer commands used to transmit the file.

The TransferType parameter of the VEMMI_Resource-file_Transfer command indicates if the
VEMMI_Resource-file_Transfer command of a given resource-file transfer is:

- the first command;
- an intermediate command or;
- if the resource-file transfer is aborted by the VEMMI application.

Table 28

Parameters Description
TransferType First command, intermediate

command, abort.
TransferID Transfer Identifier.
BlockNumber Number of the command

within a given resource-file
transfer.

FileInformation Header information about the
file.

TotalBlocks Number of
VEMMI_Resource_Transfer
commands used to transmit
a given file.

5.2 Service elements initiated by the terminal

5.2.1 VEMMI_Identify_Term_Cap_Resp

This service element shall be used to respond to a VEMMI_Identify_Term_Cap request.
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The following information can be given:

- VEMMI version identification;
- local storage support (supported/not supported);
- list of preferred user languages (string);
- system type (e.g.: IBM compatible, Macintosh, etc.);
- operating system (e.g.: MS-DOS, OS2, Microsoft Windows, etc.);
- operating system version (e.g.:3.1, etc.) (string);
- a list of supported data types (reference to the VEMMI content encoding identification catalogue);
- a list of file transfer protocols supported by the terminal.

Table 29

Parameters Description
SupportedVEMMIVersions This parameter contains the VEMMI version

identification.
ContentList The list gives references of the supported

data types in the VEMMI content encoding
identification catalogue.

LocalStorage Identifies the support of the local
storage facility.

PreferredUserLanguages Languages preferred by the user (for
multilingual applications).
The first language in the list is the most
preferred. The list may contain only one
language.

SystemInfo Information to support the correct use of
operative objects (e.g.: System Type,
Operating System, Operating System
Version).

FileTransfer A list of file transfer protocols supported by
the terminal.

5.2.2 VEMMI_Object_Retransmission

This service element shall be used to request the VEMMI application to retransmit a VEMMI object. It shall
be used only after:

- the reception of a VEMMI_Open_Object command;
- a VEMMI_Open_Blocking_Object command;
- a local action "Open object".

Referring to an object that does not exist on the terminal. The service element can also be used by a
terminal supporting the anticipation mechanism for text resource objects described in subclause 7.6.1.4 to
anticipate user scrolling.

To request a file that is referenced by a Resource object and not available in the terminal, the service
element shall be used with the appropriate parameter set.

For the further processing of VEMMI commands until the requested object is received the terminal shall
apply one of the following rules:

Rule A:

- inform the user about possible delay due to a retransmission (terminal dependent);
- send a VEMMI_Object_Retransmission request;
- execute all VEMMI commands and local actions which do not refer to the requested object;
- memorise all VEMMI commands and local actions which refer to the requested object.
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After the recreation and the opening of the requested object, the terminal shall:

- resume the execution of the possibly suspended local action;
- resume the execution of the possibly memorised VEMMI commands received in the order of

their reception.

Rule B:

- lock the user;
- inform the user about possible delay due to a retransmission (terminal dependent);
- send a VEMMI_Object_Retransmission request;
- suspend and memorise any execution of VEMMI commands or local actions.

After the recreation and the opening of the requested object, the terminal shall:

- resume the execution of the possibly suspended local action;
- resume the execution of the possibly memorised VEMMI commands received in the order of

their reception;
- unlock the user.

For referenced bitmap, Videotex or multimedia resources the retransmission rules that shall be applied by
the terminal can be specified by the application with an attribute in the encoding of the respective
elements.

NOTE: The local destruction and retransmission of text components is a specific functionality
for text components only. It is similar to the retransmission-functionality for objects
except that the RequestType parameter is set to "text component".

Table 30

Parameters Description
Object Identification Numbers
RequestType The parameter indicates if an

object, a resource-file or a
text component is requested.

5.2.3 VEMMI_User_Data

This service element shall be used to send user data corresponding to one object, to the VEMMI
application.

Table 31

Parameters Description
Object Identification Number
CompData User inputs.
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5.2.4 VEMMI_Open_Application_Resp

This service element shall be used by the terminal to respond to a VEMMI_Open_Application command.

Table 32

Parameters Description
OpenApplResult True: the application has been identified

and the objects have been loaded.
False: the application has not been
identified, no objects have been loaded.
The parameters that where used with the
VEMMI_Open_Application command are
used to describe a new application
environment.

5.2.5 VEMMI_Store_Objects_Resp

This service element shall be used by the terminal to respond to a VEMMI_Store_Objects.

Table 33

Parameters Description
StoreResult True: the objects have been stored.

False: the objects have not been
stored.

5.2.6 VEMMI_Error

This service element shall be used only by the VEMMI terminal to report different error situations to the
VEMMI application.

A VEMMI_Error command with the parameter Type of Error = "Out of memory" is only referring to the
specified object. Other objects created after this one may be stored in the terminal.

Table 34

Parameters Description
Object Identification Number
ErrorType
Component Identification Number
ErrorComCode Identification of the command

that caused the error.

The following types of errors are defined:

- General error: a general error has occurred;
- Unknown VEMMI command: the VEMMI command code does not exist;
- Erroneous VEMMI command: the VEMMI command received does not have the mandatory

parameters or they have erroneous values;
- Object syntax error: the description of a VEMMI element is not correct in an object creation or

component modification;
- Unexpected VEMMI command: the VEMMI command received is correct but it occurs at the wrong

point in time;
- Out of memory: the terminal does not have enough memory to store the data corresponding to an

object creation or component modification;
- Cannot process audio objects;
- Cannot process video objects;
- Invalid colour index;
- File not found;
- Conversion to bitmap failed;
- Cannot process direct colour definition;
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- Operative object was rejected by the user;
- Out of local permanent storage space;
- Object destroy indication (a closed object was destroyed by the terminal);
- Service not supported;
- Object not supported;
- Data content type not supported;
- A datatype not supported has been identified (e.g.: HyperText Markup Language (HTML));
- Version not supported: the VEMMI version requested in the VEMMI_Open command is not

supported by the terminal.

5.2.7 VEMMI_Transfer_Acknowledge

This service element shall be used by the VEMMI terminal to acknowledge a resource-file transfer. The
service element shall be used at the end of every successful resource-file transfer or to indicate a transfer
abort.

Table 35

Parameters Description
TransferID Transfer Identifier.
Acknowledge Successful transfer or

transfer abort.

6 VEMMI objects introduction

VEMMI objects offer a basic choice of dialogue elements needed by VEMMI applications.

Following VEMMI objects are defined in this ETS:

- Application Bar;
- Button Bar;
- Pop-Up Menu;
- Dialogue Box;
- Message Box;
- Operative object;
- Bitmap resource object;
- Videotex resource object;
- Text resource object;
- Font resource object;
- Metacode object;
- Sound object;
- Video object;
- Multimedia resource object.

A VEMMI application can be designed using any of the defined objects. No particular VEMMI object or
component is mandatory within a VEMMI application. All VEMMI objects may be multiple within a VEMMI
application, except the Application Bar. Within an object, all components may be multiple except certain
restrictions applying to specific components (see clause 7).

6.1 The Application Bar

The Application Bar allows the user to make a choice between the different VEMMI application parts and
sub-application parts offered by the selected VEMMI application. When used, the Application Bar is
unique and located either on the top (horizontal Bar) or the left side (vertical Bar) of the DDA.
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6.1.1 Composition

The Application Bar is subdivided into three different logical groups of Menu Choice components. These
groups differ in their behaviour and functionality. The three different groups are named:

- Bar;
- Pull-Down Menu;
- Cascading Menu.

The Bar is a horizontal or vertical list of Menu Choice components representing the different parts of the
VEMMI application.

The Pull-Down Menus are vertical lists of Menu Choice components associated with the same Menu
Choice component of the Bar. The Pull-Down Menus represent the different sub-application parts of the
VEMMI application.

The Cascading Menus are vertical lists of Menu Choice components associated with the same Menu
Choice component of the Pull-Down Menu. The Cascading Menus represent the different sub-application
parts of the VEMMI application.

6.2 The Button Bar

The Button Bar permits a choice among a set of alternatives, at a given time, during the execution of the
VEMMI application. Each choice is represented by a Button. The Button Bar may be located anywhere in
the DDA. The Button Bar can be horizontal or vertical.

6.2.1 Composition

The Button Bar is composed of a series of components, named Buttons. The purpose of the Buttons is to
trigger a local action to be immediately performed.

6.3 The Pop-Up Menu

The Pop-Up Menu offers appropriate choices and sub-choices for a given VEMMI element in its current
context. The Pop-Up Menu may be located anywhere in the DDA.

6.3.1 Composition

The Pop-Up Menu is subdivided into two different logical groups of Menu Choice components. These
groups differ in their behaviour and functionality. The two different groups are named:

- Primary Pop-Up Menu;
- Cascading Menu.

The Primary Pop-Up Menu is a vertical list of Menu Choice components which offers appropriate choices
for a given VEMMI element in its current context.

The Cascading Menu is a vertical list of Menu Choice components associated to the same Menu Choice
component of the Primary Pop-Up Menu. The Cascading Menu offers appropriate sub-choices for a given
VEMMI element in its current context.

6.4 The Dialogue Box

The Dialogue Box is the object where the main interaction between the user and the VEMMI application
takes place. To enable this interaction, a set of components is defined. These components can be
classified as presentation or dialogue components.

Presentation components are inaccessible; their purpose is only to present the different dialogue
components coherently and attractively.

Dialogue components permit the interaction between the user and the VEMMI application.
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Five presentation components are defined:

- the Separator;
- the Frame;
- the Text Presentation Area;
- the Text component;
- the Graphic Output Area.

Ten dialogue components are defined:

- the Push Button;
- the Text Input Field;
- the Check Box;
- the Radio Button;
- the List Box;
- the Combination Box;
- the Slider;
- the Sensitive Area;
- the Sensitive Text;
- the Multimedia Area.

6.4.1 Composition

6.4.1.1 The Separator component

A Separator is a horizontal or vertical solid line. Its goal is to visually separate different dialogue
components within the Dialogue Box.

6.4.1.2 The Frame component

A Frame is a presentation element to visually separate a particular area of the Dialogue Box and its
different components.

6.4.1.3 The Text Presentation Area component

The Text Presentation Area is a rectangular area in which text data is displayed. The purposes of this
component are:

- to present text information;
- to title or to label dialogue components;
- to present results from the VEMMI application execution.

6.4.1.4 The Text component

The purpose of this component is to split large text data in units (text components) and to define the
necessary structural information (concatenation of the text components) in order to be displayed in a text
area.

6.4.1.5 The Graphic Output Area component

The purpose of this component is to present graphical data to the user. Several graphical data encoding
formats are supported.

6.4.1.6 The Sensitive Text component

The purpose of this component is to define the activation and validation operations for sensitive text
strings.

6.4.1.7 The Push Button component

The purpose of the Push Button is to trigger a local action to be immediately performed.
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6.4.1.8 The Text Input Field component

The purpose of the Text Input Field is to collect text data, entered by the user. It is a rectangular area
composed of a text label associated to an input area.

6.4.1.9 The Check Box component

The purpose of the Check Box is to enter and to display an independent user choice. A Check Box keeps
the value selected or deselected independently of any other Check Boxes.

6.4.1.10 The Radio Button component

The purpose of the Radio Button is to enter and to display a user choice. The Radio Button permits a
single choice among several possibilities offered in a Radio Button group. The selection of one Radio
Button leads to the deselection of the other Radio Buttons belonging to the same Radio Button group.

6.4.1.11 The List Box component

The purpose of the List Box is to offer a single or multiple choice among a list of text items. The list is,
generally, not entirely visible to the user, therefore different controls are offered to scroll the list up and
down.

6.4.1.12 The Combination Box component

The purpose of the Combination Box is to combine the functionality of a single choiceList Box with the
functionality of a Text Input Field. It contains a list of text items the user can scroll through to complete the
Text Input Field. A parameter of the Combination Box specifies whether the Text Input Field content can
be edited or not. If the Text Input Field content can be edited, the user can type text directly into the Text
Input Field.

A variation of the Combination Box is a Drop Down Combination Box. It is composed of a Combination
Box and a Push Button. Only the Text Input Field and the Push Button are displayed until the user selects
the associated Push Button. The validation of the Push Button causes the display of the associated List
Box.

6.4.1.13 The Slider Component

The slider offers the selection of an analogue value by moving a adjustable marker on a slide bar between
a minimum and a maximum value. The intervals are set by the application.

6.4.1.14 The Sensitive Area component

The purpose of the Sensitive Area in the Dialogue Box is to offer a selection area associated to a Graphic
Output Area.

6.4.1.15 The Multimedia Area component

The purpose of this component is to present multimedia information to the user and to allow integration of
the Internet World Wide Web.

6.5 Operative Object

With this object an application references a program which will be linked to the VEMMI application. This
object type provides a method to extent the capabilities of an application during runtime.

6.6 Bitmap resource object

A bitmap resource object contains either the bitmap definition itself or only a reference to a file with the
bitmap definition. The object is referenced via the BIN.
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6.7 Videotex Resource Object

A Videotex object contains either the Videotex content itself or only a reference to a file with the Videotex
content. The object is referenced via the VIN.

6.8 Text Resource Object

This object defines text content as a resource which can be referenced via the TIN. It contains either the
text content itself or a reference to a file with the text content.

6.9 Font resource object

This object combines a set of text attributes in on font resource which can be referenced via the FIN.

6.10 Metacode object

The metacode object contains VEMMI commands. This object provides an easy way to avoid
unnecessary dialogue steps with the host application.

6.11 The Message Box

The purpose of the Message Box is among others, to display information not requested by a user but sent
by the VEMMI application in response to an unexpected event, or when something undesirable occurs.

6.12 Sound Object

The purpose of this object is to link files with sound/audio content to the application.

6.13 Video Object

The purpose of this object is to link files with moving video content to the application.

6.14 Multimedia Resource Object

A Multimedia object contains a reference to a file with the multimedia content. The object is referenced via
the MIN.

7 Functional description

7.1 General rules for the behaviour of elements

7.1.1 User interaction

The user shall have the possibility to access and activate the different VEMMI elements. The terminal
shall also enable the user to change the values of the VEMMI elements and to validate these inputs.

7.1.2 Local actions and reports

The report of user inputs from the terminal to the server shall be induced by a report command defined in
a local action by the VEMMI application. On executing a report command the terminal shall send a
VEMMI_User_Data command to the VEMMI application. The trigger events which induce the performance
of local actions are:

- activation of a component;
- validation of a component.
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The available report commands are:

- report OIN + CIN of the component to which the local action is associated;
- report the current values of the component;
- report the values of all components in this object;
- report all values of all components in the parent objects that have changed (also via a

VEMMI_Modify_Component) since the last report or since the object creation if this is the first
report.

If a report command reports more than one value or more than one CIN, the first value (in the encoding of
the report) shall be the one of the component that triggered the report.

All local actions associated with a given trigger event shall be executed in the order of their definition and
without intermediate execution of commands from the logical command input queue.

Tables 35 and 36 show the possible trigger events and the possible reports for each component.

Table 36: Trigger events

Component Activation Validation
Menu Choice Bar 9 9

Menu Choice Pull-Down 9 9

Menu Choice Cascading 9 9

Menu Choice Pop-Up 9 9

Menu Choice Separator
Button 9 9

Separator
Frame
Text Presentation Area
Text Component
Push Button 9 9

Text Input Field 9 9

Check Box 9 9

Radio Button 9 9

List Box 9 9

Combination Box 9 9

Slider 9 9

Sensitive Area 9 9

Sensitive Text 9 9

Graphic Output Area
Multimedia Area note note
NOTE: Trigger events are defined by the content.
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Table 37: Reports

Component CIN Value of all
Cmp

Value
(note 1)

Menu Choice Bar 9

Menu Choice Pull-Down 9

Menu Choice Cascading 9

Menu Choice Pop-Up 9

Menu Choice Separator
Button 9

Menu Choice 9

Separator
Frame
Text Presentation Area
Text Component
Push Button 9 9

Text Input Field 9 9 String
Check Box 9 9 Boolean
Radio Button 9 9 Boolean
List Box 9 9 String list,

integer list
Combination Box 9 9 String
Slider 9 9 Integer, boolean
Sensitive Area 9 9

Sensitive Text 9 9

Graphic Output Area
Multimedia Area 9 String (note 2)
NOTE 1: The entries in this column specify the data type of the values that are reported.
NOTE 2: In controlled mode only.

Abbreviations:
Cmp = Components

The overall structure of local actions is defined in subclause 4.8.

7.1.3 Relationship between objects and components

The closed state of an object overrules the opened state of a component. If an object is closed, the entire
object including all its components is removed from the screen, regardless of whether its components are
in the opened state or not. The opened state of an object does not overrule the closed state of a
component. If an object gets opened, the components which are in the closed state are not displayed.

The inaccessible state parameter of an object overrules the accessible state parameter of a component. If
an object is set inaccessible, the entire object including all its components becomes inaccessible,
regardless of whether the components are accessible or not. The accessible state parameter of an object
does not overrule the inaccessible state parameter of a component. If an object is set accessible, the user
can only interact with those components that are accessible.

7.1.4 Open/Close of Sound, Video, Resource and Metacode objects

If a sound object is opened, the sound shall be performed. At the end of the sound output the object shall
be considered closed.

The same rule applies to video objects. If the object is opened, the video display process starts and at its
end the object is closed.

The open operation of a resource only checks if it is present at the terminal.
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If a VEMMI_Open_Object is applied to a metacode object the terminal copies all commands of the
metacode object on top of the logical command input queue. The next command read from the command
input queue is the first command from the metacode. If the commands are copied, it is considered closed.

7.1.5 Maximize operation

An object can be defined as maximizable. In this case it is displayed with a maximize button. Upon
activation of this button it is displayed enlarged. The enlarged object is completed with a restore button
and upon activation of the restore button the object is re-displayed at its initial size. These operations are
terminal and UI dependent, especially the enlarged size. Only the host application can mark an object as
maximizable.

The operation described above is not mandatory for a VEMMI terminal. If a terminal does not implement
this operation it shall ignore the corresponding attributes and operations.

There are two recommended strategies for enlarged presentation. The terminal is free to select locally the
most appropriate.

Strategy 1 (applicable to the Text Presentation Area, Text Input Field):

All object elements and components, except the Text Presentation Area (Text Input Field), are enlarged
on a terminal specific basis. The Text Presentation Area (Text Input Field) component of a Dialogue Box
has a specific behaviour, in order to allow an enlarged object to add locally more text content in its display
area. If the Text Presentation Area (Text Input Field) contains in its initial size the whole text, the maximize
operation is terminal dependent. If the text is only partly displayed in its initial position, the terminal shall
add additional text in the maximized object. The enlarged object can display the text in a new formatted
form. This can be set by the host.

Strategy 2 (applicable to the Text Presentation Area and/or Multimedia Area, Text Input Field):

If the "Maximizable" attribute is set, the terminal shall offer the possibility to view the content of the
component in a separate window that is resizeable by the user. If the user locally selects that option, the
content of the component shall be copied in a separate window and the component of the Dialogue Box
should be closed. If the user locally returns from that maximized presentation the component of the
Dialogue Box should be locally opened again and if changed, the content should be copied from the new
window to the component.

If an object is closed in its enlarged size and later reopened it is displayed in its initial (not enlarged) size.
If a maximized object is deactivated it keeps its size.

Additional local operations on objects, which are not definable by the host can be offered to the user on a
terminal specific basis. These can be: minimize, moving, iconize, unidirectional increase and decrease
etc.

7.1.6 Notational conventions

In the next subclauses the following notational conventions apply:

- each object and component description contains an attribute list. These lists contain those attributes
that are needed to describe the properties of the elements. The precise syntax of the element
encoding is defined in clause 9;

- the identification numbers for resource objects, BIN, FIN, TIN, VIN and MIN are special cases of
OINs and used on the same level, e.g. as parameters of VEMMI commands. The CIN differs from
them in that it always denotes a component.

The naming conventions for the boolean attributes in the VEMMI element description follows the following
rules:

- if the attribute is present in the encoding, it’s boolean value corresponds to the value expressed by
it’s name;
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- if the attribute is not present, it’s default values apply (the contrary of the value expressed by the
name).

EXAMPLE: The default value of the state "Opened" is true. If the "closed" attribute is present
in the encoding of a VEMMI element the element shall be in the "Closed" state.
If the "closed" attribute is not present in the encoding of a VEMMI element the
element shall be in it’s default state, the "Opened" state.

7.1.7 Mnemonic

When text data is used in a component, the text can contain the character "&" which marks the next
character as a mnemonic key. The mnemonic key can be used to validate or activate the component. To
present the "&" character in a text it shall be doubled (e.g.: text content ="&Cats && Dogs"; text presented
to the user is therefore "Cats & Dogs").

7.1.8 Activation and Validation

On user activation a VEMMI dialogue element gets the input focus, the user inputs refer to the active
element.

A validation event for Menu Choice components, Button components, Sensitive Text, Sensitive Areas,
Check Boxes, Radio buttons and List Boxes is one of the following:

- user activation action followed by a confirmation of the choice (e.g.: activation with the "Tab" key,
validation with the "Return" key);

- direct validation with a pointing device (e.g.: mouse-click).

For all other components the validation event is triggered on the loss of input focus.

7.2 Text formats

7.2.1 VEMMI high quality text

The implementation of text attributes (change of text font, text size, etc. inside a text string) and the
definition of sensitive areas for text (sensitive text or "hot-spot") is realized with "In-text attributes". These
are applicable for the following elements:

- Text Presentation Area components of a Dialogue box;
- labels.

7.2.1.1 Text attributes

The attributed font can be changed inside a text output operation. The font is referenced via the FIN. A
selected new font applies to all subsequent text up to the next in-text attribute which changes the font, or
to the end of the component. The initial attributed font applied to the first text of the component is defined
as an additional attribute in the component.

The following example shows the use of in-text attributes. The brackets <...> denote attributes of the
components with their parameter.

EXAMPLE:

.....
<text1> = "Customer service note:(CR,LF,CR,LF)"
<use FIN 5>
<text2> ="110 size negatives "
<use FIN 6>
<text3> =" shall not be cut but shall be returned in strip form for reprinting."
<use FIN 5>
<text4> =" If they are cut we are unable to make prints from them."
<use FIN 7>
<text5> ="(CR,LF,CR,LF)Issued by the A.P.L."
.....
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FIN 5 is defined as ROMAN, height 12
FIN 6 is defined as ROMAN, height 12, bold, underlined
FIN 7 is defined as SWISS, height 8

The above text sequence with in-text attributes might look as follows:

Issued by the A.P.L

7.2.1.2 In-text attributes for the definition of sensitive text

Each text string defined as sensitive has the reference to a Sensitive Text component. This component
contains two attributes which define the activation and validation operations to be performed upon the
user interaction with the Sensitive Text.

The two groups of attributes can be mixed in one text component, so that the application can apply text
attributes, e.g. colour, to sensitive strings. Such a string may appear green and possibly in addition
highlighted, in order to be easy distinguished from the plain text, which might be black on white. With
these attributes the application can offer the user "hypertext"-like output with VEMMI.

7.2.2 Text labels and titles

The text contents of labels and titles are clipped at the borders of their containers. This shall be applied to
the following attributes:

- all title attributes;
- all label attributes;
- text content attribute of Menu Choice components;
- list text attribute of List Box and Combination Box components.

There shall be no CR + LF in the text content of titles and labels.

7.3 The Application Bar

The Application Bar is subdivided into three different logical groups of Menu Choice components. These
groups differ in their behaviour and functionality. The three different groups are named:

- Bar;
- Pull-Down Menu;
- Cascading Menu.

The Bar is a horizontal or vertical list of Menu Choice components. The Pull-Down Menus are vertical lists
of Menu Choice components associated with the same Menu Choice component of the Bar. The
Cascading Menus are vertical lists of Menu Choice components associated with the same Menu Choice
component of the Pull-Down Menu. The Bar is implicitly positioned in the top left corner of the DDA. A
displacement can be selected for vertical Bars.

All Menu Choice components of the Application Bar shall only have text content. They are generally
positioned and dimensioned implicitly by their content. The terminal may ignore CR+LF that are part of the
text content of a Menu Choice component.

A Menu Choice Separator component can be used to visually separate Menu Choice components in a
logical group. It is defined by setting the attribute "Separator" with the definition of a regular Menu Choice.
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The structure of the Application Bar Object is given, by the canonical descending order of its components
(path left to right with priority to the depth).

In the following Application Bar example the canonical descending order of the components is:
(AB(FG(IJK)H)CDE(L))

A B C D E
F L
G I
H J

K

NOTE: The use of parenthesis in the above example is only to show the different levels of
encapsulation of the different object groups for the path description.

The description of the structure of the object is then:

Object: Application Bar
Component: Menu Choice Bar A
Component: Menu Choice Bar B
Component: Menu Choice Pull-Down F
Component: Menu Choice Pull-Down G
Component: Menu Choice Cascading I
Component: Menu Choice Cascading J
Component: Menu Choice Cascading K
Component: Menu Choice Pull-Down H
Component: Menu Choice Bar C
Component: Menu Choice Bar D
Component: Menu Choice Bar E
Component: Menu Choice Pull-Down L

General visual aspect (see figures 7 and 8):

C hoice 3.1

C hoice 3 .2

C hoice 3 .3

C hoice 3 .4

C hoice 3 .5

C hoice 3 .6

C hoice 3 .7

C hoice 3 .8

C hoice 3 .9

C hoic e 3.7 .1

C hoic e 3.7 .2

C hoic e 3.7 .5

C hoic e 3.7 .3

C hoic e 3.7 .4

C ho ice 1 C hoice 2 C hoic e 3 C hoice 4 C hoice 5

Figure 7: Horizontal Application Bar
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Choice 8.1

1

2

3

4

5

6

7

8

9

C hoice 8.2

C hoice 8.3

C hoice 8.4

C hoice 8.5

C hoice 8.6

C hoice 8.7

Cho ic e 8.7 .1

Cho ic e 8.7 .2

Cho ic e 8.7 .3

Cho ic e 8.7 .4

Y p o s

Figure 8: Vertical Application Bar

Attributes:

- YPos: This attribute carries the vertical displacement of the element in NDC. It is only applicable to
vertical Application Bars.

- Closed: The element shall be in the closed state.
- NotAccessible: The object is not accessible.
- DefActive: This attribute carries the CIN of the Menu Choice which is active by default, the first time

the object is opened.
- Vertical: The Application Bar shall be presented vertical. The vertical representation of the

Application Bar is an optional feature for a VEMMI terminal. If the vertical attribute is present and
set true in the encoding of an Application Bar, the terminal may ignore it and present the Application
Bar horizontally. However, no error message shall be send to the host.

7.3.1 Composition

7.3.1.1 Menu Choice components of the bar

- description: The bar is a consecutive list of Menu Choices positioned side by side horizontally, or
vertically. If the space requirements of the Bar are greater than the space available the terminal
should either apply a line-fold mechanism or clip each menu choice. However, all menu choices
should remain visible;

- behaviour: When the Application Bar is active, the terminal shall emphasize one Menu Choice, and
offer shifting and validation facilities to the user. A mnemonic key can be used to validate the Menu
Choice (see subclause 7.1.7). If a Menu Choice of the Bar is validated the associated local action
shall be performed and then the associated Pull-Down Menu shall be opened (the Menu Choice
remains emphasized);

- Interactive functionality:

a) shifting;
b) activation;
c) validation.



Page 54
ETS 300 709: September 1996

Visual aspect (see figures 9 and 10):

C h oic e  1 C ho ic e  2 C h oic e  3 C h o ice  4

Figure 9: Horizontal Menu Bar

Choice 1

Choice 2

T w o row

Choice 3

Choice 4

Choice 5

Choice 6

Choice 7

Choice 8

Choice 9

M nem o n ic

Figure 10: Vertical Menu Bar

Attributes:

- CIN: This attribute carries the Component Identification Number;
- NotAccessible: The element shall not be accessible;
- Text: This attribute carries the text content of the component;
- LocActAct: This attribute carries the code for the local action which is associated to the component

and triggered by its activation;
- LocActVal: This attribute carries the code for the local action which is associated to the component

and triggered by its validation.

7.3.1.2 Menu Choice components of the Pull-Down Menu

- description: The Pull-Down Menu is a consecutive list of Menu Choices components associated
with the same Menu Choice of the Bar and presented vertically on several rows.

a) the Pull-Down Menu shall be positioned next to the associated Menu Choice of the Bar;
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b) a Separator can be used in an Pull-Down Menu to visually separate different Menu Choices.

- behaviour: When the Pull-Down Menu is active, the terminal shall emphasize one Menu Choice,
and offer shifting and validation facilities to the user. A mnemonic key can be used to validate the
Menu Choice (see subclause 7.1.7). If a Menu Choice is validated the associated local action shall
be performed and then the associated Cascading Menu shall be opened (the Menu Choice remains
emphasized). If no Cascading Menu is associated to the Menu Choice after a user validation, the
associated local action shall be performed and then the Pull-Down Menu shall be closed.

- interactive functionality:

a) shifting;
b) activation;
c) validation.

Visual aspect (see figures 11 and 12):

C h o ice  1 C ho ic e  2 C h o ic e  3 C h o ic e  4 C h o ic e  5

C ho ic e 2 .1

C ho ic e 2 .2

C h o ic e 2 .4

C h o ic e  2 .5

T w o  ro w

C h o ice  2 .3

Figure 11: Pull-Down Menu

Choice 2

Choice 1

Choice 3

Choice 4

 Two row

Choice 5

Choice 6

Choice 7

Choice 8

Choice 9

Choice 2.1

Choice 2.2

Choice 2.3

Choice 2.4

Choice 2.5

Two row

Figure 12: Pull-Down Menu

Attributes:

- CIN: This attribute carries the Component Identification Number;
- NotAccessible: The element shall not be accessible;
- Text: This attribute carries the text content of the component;
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- Separated: A Separator shall be drawn to separate the element from the element above;
- LocActAct: This attribute carries the code for the local action which is associated to the component

and triggered by its activation;
- LocActVal: This attribute carries the code for the local action which is associated to the component

and triggered by its validation.

7.3.1.3 Menu Choice components of the Cascading Menu

Menu Choice components of a Cascading Menu are common to the Pull-Down Menu and the Pop-Up
Menu.

- description: The Cascading Menu is a consecutive list of Menu Choices associated with the same
Menu Choice of the Pull-Down Menu or Pop-Up Menu and presented vertically on several rows.

a) the width allocated for each Menu Choice shall be the same;
b) the Cascading Menu shall be positioned next to the associated Pull-Down Menu or Pop-Up

Menu;
c) a Separator can be used in a Cascading Menu to visually separate different Menu Choices.

Figure 13 shows the recommended presentation for a Cascading Menu. If the terminal is not
able to present a Cascading Menu as shown in figure 13 it can, as a fallback solution,
present the Menu Choices of the Cascading Menu in the Pull-Down Menu but it should
visually associate the Menu Choices of the Cascading Menu to the corresponding Menu
Choice of the Pull-Down Menu. The terminal should set the Menu Choice in the Pull-Down
Menu, to which the Cascading Menu is associated, inaccessible and present it as a title for
the Menu Choices of the Cascading Menu (see figure 14).

- behaviour: When the Cascading Menu is active, the terminal shall emphasize one Menu Choice,
and offer shifting and validation facilities to the user. A mnemonic key can be used to validate the
Menu Choice (see subclause 7.1.7). After the validation of a Menu Choice the associated local
action shall be performed and then the Cascading Menu and the Pull-Down Menu (Pop-Up Menu)
shall be closed.

- Interactive functionality:

a) shifting;
b) activation;
c) validation.

Visual aspect (see figure 13 and 14):

Choice 2

C hoic e 2.1

Tw o row

C hoic e 2.2

C hoic e 2.3

C hoic e 2.4

C hoic e 1 Choic e 3 Choice 4 C hoice 5

C ho ic e 2.3.1

C hoice 2 .3.2

Figure 13: Cascading Menu (recommended presentation)
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Choice 2

Choic e 2 .1

Tw o row

Choic e 2 .2

C hoice 2.3

Choic e 1 Choice 3 Choic e 4 C ho ice 5

C hoice 2.3 .1

Ch oice  2.3 .2

Choic e 2 .4

Figure 14: Cascading Menu (fallback presentation)

Attributes:

- CIN: This attribute carries the CIN;
- NotAccessible: The element shall not be accessible;
- Text: This attribute carries the text content of the component;
- Separated: A Separator shall be drawn to separate the element from the element above;
- LocActAct: This attribute carries the code for the local action which is associated to the component

and triggered by its activation;
- LocActVal: This attribute carries the code for the local action which is associated to the component

and triggered by its validation.

7.4 The Button Bar

- description: The Button Bar is a consecutive list of Buttons positioned side by side horizontally, or
vertically.

a) horizontal representation: the height allocated for each Button shall be the same (the height
of the biggest button);

b) vertical representation: the width allocated for each Button shall be the same (the width of the
biggest button);

c) a text title may be given to the Button Bar which shall be displayed directly above the buttons.
The title height should equal to 1/32 NDC.

- behaviour: When the Button Bar is active, the terminal shall emphasize one Button, and offer to the
user shifting facilities from one button to another.

- interactive functionality:

a) shifting;
b) activation.
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Visual aspect (see figure 15):

H orizo n ta l B a r

V ert ic a l B a r
Y P o s

Y P os

X P o s X P o s

D D A

Title Text

Figure 15: Button Bar

Attributes:

- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
- Vertical: Boolean switch between the alternatives;
- FirstActive: This attribute carries the CIN of the Button which is active by default, the first time the

object is opened;
- Modal: The element shall be modal;
- Closed: The element shall be in the closed state;
- NotAccessible: The element shall not be accessible;
- Title: This attribute carries the text title of the object.

7.4.1 Composition

7.4.1.1 The Button component

- description: The Button is a rectangular area in the DDA.

a) a button can have either text content or graphic content. If formed with text data it should be
represented by a text label, possibly associated with a terminal dependent graphic to draw
the shape of the button. The button graphic shape shall be included in the space allocated by
the VEMMI application for the whole Button component. If formed with graphic data and if the
graphic shape does not cover the entire space allocated for the button the terminal can resize
the content. The terminal may centre the text data in the element display area reserved by
the VEMMI application for the component.

b) the drawing of the Button and the possible visual trigger effect are terminal dependent.

- behaviour: When a Button is active, the terminal shall emphasize it. A mnemonic key can be used -
to validate the Button (see subclause 7.1.7). When a trigger effect is implemented the Button shall
go back to the initial display state after user validation.

- Interactive functionality:

a) activation;
b) validation.
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Visual aspect (see figure 16):

O K

W id th

M n em o n ic

H e ig h t

Figure 16: Button

Attributes:

- CIN: This attribute carries the Component Identification Number;
- Height: This attribute carries the height of the component. If not present the corresponding value of

the previously defined Button shall be applied. If the attribute is not present at the first button of a
Button Bar the default value shall be applied;

- Width: This attribute carries the width of the component. If not present the corresponding value of
the previously defined Button shall be applied. If the attribute is not present at the first button of a
Button Bar the default value shall be applied;

- Closed: The element shall be in the closed state;
- NotAccessible: The element shall not be accessible;
- BIN: The BIN of the component;
- Text: The text content of the component;
- LocActAct: This attribute carries the code for the local action which is associated to the component

and triggered by its activation;
- LocActVal: This attribute carries the code for the local action which is associated to the component

and triggered by its validation.

7.5 The Pop-Up Menu

The Pop-Up Menu is subdivided into two different logical groups of Menu Choice components. These
groups differ in their behaviour and functionality. The two different groups are named:

- Primary Pop-Up Menu;
- Cascading Menu.

The Primary Pop-Up Menu is a vertical list of Menu Choice components. The Cascading Menu is a
vertical list of Menu Choice components associated to the same Menu Choice component of the Primary
Pop-Up Menu.

A Menu Choice Separator can be used to visually separate menu choice components in a logical group. It
is defined by setting the attribute "Separator" with the definition of a regular Menu Choice.

The structure of the Pop-Up Menu Object is given, with the following conventions, by the canonical
descending order of its components (path top down).

In the following Pop-Up Menu example the canonical descending order of the components is: (BFG(IJK)H)

B
F
G I
H J

K

NOTE: The parenthesis in the above example are only for showing the different levels of
encapsulation of the different object groups for the path description.

The description of the structure of the object is then:

Object: Pop-Up Menu;
Component: Menu Choice Pop-Up B;
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Component: Menu Choice Pop-Up F;
Component: Menu Choice Pop-Up G;
Component: Menu Choice Cascading I;
Component: Menu Choice Cascading J;
Component: Menu Choice Cascading K;
Component: Menu Choice Pop-Up H.

- Interactive functionality:

a) shifting;
b) activation.

General Visual Aspect (see figure 17):

1

2

3

4

5

6

7

Ch oice 5.1

Ch oice 5.2

Ch oice 5.3

D D A

Y P o s

X P o s

Figure 17: Pop-Up Menu

A text title may be given to the Pop-Up Menu which shall be displayed in its first row of the Primary
Pop-Up Menu.

Attributes:

- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
- Title: This attribute carries the title of the object. The title shall be displayed in the first row of the

object;
- TitleFont: This attribute carries the FIN of the title;
- FirstActive: This attribute carries the CIN of the component which is active by default, the first time

the object is opened;
- Modal: The element shall be modal;
- Closed: The element shall be in the closed state;
- NotAccessible: The element shall not be accessible.

7.5.1 Composition

7.5.1.1 Menu Choice components of the Primary Pop-Up Menu

- description: The Primary Pop-Up Menu is a consecutive list of Menu Choices and presented
vertically on several rows. A Separator can be used in a Primary Pop-Up Menu to visually separate
different Menu Choices;

- behaviour: When the Primary Pop-Up Menu is active, the terminal shall emphasize one Menu
Choice, and offer to the user shifting and validation facilities. A mnemonic key can be used to
validate the Menu Choice (see subclause 7.1.7). If a Pop-Up Menu component is validated the
associated local action shall be performed and then the associated Cascading Menu shall be
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opened (the Pop-Up Menu component remains emphasized). If no Cascading Menu is associated
to the Menu Choice after a user validation, the associated local action shall be performed and then
the Pop-Up Menu shall be closed;

- Interactive functionality:

a) shifting;
b) activation;
c) validation.

Visual aspect (see figure 18):

C h o ice  1

C h o ice  2

C h o ice  4

C h o ice  5

T w o  row
C h o ic e  3

Figure 18: Primary Pop-Up Menu

Attributes:

- CIN: This attribute carries the Component Identification Number;
- Closed: The element shall be in the closed state;
- NotAccessible: The element shall not be accessible;
- Text: This attribute carries the text content of the component;
- Separated: The elements shall be separated;
- LocActAct: This attribute carries the code for the local action which is associated to the component

and triggered by its activation;
- LocActVal: This attribute carries the code for the local action which is associated to the component

and triggered by its validation.

7.5.1.2 Menu Choice components of the Cascading Menu

- description, behaviour, interactive functionality, attributes:

See subclause 7.3.1.3.
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Visual aspect (see figure 19):
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C ho ic e  3 .3
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T h re e
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Figure 19: Recommended presentation of a Pop-Up Menu with associated Cascading Menu

7.6 The Dialogue Box

- description: The Dialogue Box is a rectangular area in the DDA which contains VEMMI components
in order to establish user interaction;

DIALOGUE BOX

Separator

F rame

Graphic Output   Area

Text  Area

Text Input Field

Push But ton

Check Box

Radio But ton

Combo Box

Sl ider

Sensi t ive Area

List  Box

BIN

FIN

FIN

BIN

FIN

FIN

BIN

BIN

Text  Component

Sensi t ive Text

T IN

FIN

BIN

VIN

Mul t imedia Area MIN

FIN

Figure 20: Element relationships within the Dialogue Box
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a) the components themselves contain (or have references to ) other components or resource
objects. Figure 20 shows the relationship. Each arrow indicates a possible reference to a
component or a resource object. These references can be multiple as well as the dialogue
box can contain several components of the same type;

b) a text title may be given to the Dialogue Box which shall be displayed in its first row. The title
height equals 1/32 NDC;

c) the Dialogue Box can be provided with a border area which should be equal to one character
position. When present, this border shall be included in the dimensions defined by the
VEMMI application. When a border is requested, a frame shall be drawn by the terminal. This
frame drawing is terminal dependent (it should not be wider than 1/160 NDC);

d) the object origin of the Dialogue Box is the top left corner of the box rectangle, independent
whether the box has a title or not. The components are positioned relatively to this point for
Dialogue Boxes that do not have a text title. In the case of boxes with a text title this point is
moved downwards by a distance corresponding to the titles height and the borders width and
horizontally by the distance equal to the border width;

e) The background area of the Dialogue Box is the rectangle defined by the box dimensions,
except the title bar and the border. The background can be coloured uniform or with a data
content.

- behaviour: The user can activate any component with a pointing device or with the keyboard. If the
user activates the components with the keyboard keys providing the functionality "Previous" and
"Next", the order of activation should correspond to the CIN order of the components of the
Dialogue Box;

- Interactive functionality:

a) activation;
b) maximisation.

Visual aspect (see figure 21):

Check  Box 6

Check  Box 5

Check  Box 4

Check  Box 3

Check  Box 2

Check  Box 1

 P resentation Data
M onitor

Radio B utton 1

Radio B utton 2

Radio B utton 3

Radio B utton Group

Canc el

O K
D rop dow n L ist B ox item  7

Dialog u e  B o x T it le

17 7

XPos

Y Pos

Fram e H eigh t

W idth DD A

Figure 21: Dialogue Box

Attributes:

- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
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- Width: This attribute carries the width of the object;
- Height: This attribute carries the height of the object;
- NoBorder: No border shall be drawn;
- Title: This attribute carries the title of the object. The title shall be displayed in the first row of the

object;
- FirstActive: This attribute carries the CIN of the component which is active by default, the first time

the object is opened;
- Modal: The element shall be modal;
- Closed: The element shall be in the closed state;
- NotAccessible: The element shall not be accessible;
- StoreCreationValues: The terminal shall memorise the initial values of the components at the time

of the component creation (either object creation or addition of a new component to an existing
object). If a local action "restore initial values" is applied the these stored values shall be restored;

- Maximizable: The object is maximizable;
- Colour: Colour index of the background;
- BIN: Bitmap identification number to fill the Dialogue Box Background;
- DispType: Specifies the display mode of the background bitmap: centred, stretched (default) or

tiled.

7.6.1 Composition

7.6.1.1 The Separator component

- description: The Separator is either a horizontal or a vertical solid line (thickness e.g.: 1/160 NDC)
used to separate different areas within a Dialogue Box;

- behaviour: The Separator shall be inaccessible;
- interactive functionality:

a) none.

Visual aspect (see figure 22):
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Figure 22: Separator

Attributes:

- CIN: This attribute carries the Component Identification Number;
- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
- Vertical:  The element shall be drawn vertical;
- Height: This attribute carries the height of the component. It is only applicable to vertical Separators;
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- Width: This attribute carries the width of the component. It is only applicable to horizontal
Separators;

- Closed: The element shall be in the closed state;
- Colour: Colour index.

7.6.1.2 The Frame component

- description: A Frame consists of four solid lines (thickness e.g.: 1/160 NDC) which visually separate
a rectangular area of the Dialogue Box. The Frame can have an associated title. A terminal may
ignore the LabelFont attribute of the frame component;

- behaviour: The Frame shall be inaccessible;
- interactive functionality:

a) none.

Visual aspect (see figure 23):
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Figure 23: Frame

Attributes:

- CIN: This attribute carries the Component Identification Number;
- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
- Width: This attribute carries the width of the component;
- Height: This attribute carries the height of the component;
- Closed: The element shall be in the closed state;
- TextLabel: This attribute carries the text label of the component;
- LabelFont:  Specifies the FIN for the text label;
- Colour: Colour index.

7.6.1.3 The Text Presentation Area component

- description: The Text Presentation Area is an area intended to present text data to the user.
Basically, this element is used to present text that fits in one window (the space defined by one text
area component) or to present large text data where the user has to use scrolling tools in order to
navigate through the text. The Text Presentation Area has its starting location in the top left corner
of the rectangle defined by the component and the text is displayed row by row from the left to the
right. The text content can contain "In-Text" attributes to switch between different attribute fonts and
to define "sensitive text strings". The "In-Text" attributes can appear multiple, in any order, and they
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are evaluated during the display operation sequentially and on the basis of structural information
contained in text components ("previous, next" attributes).

- scrolling, Border: If the space needed for the presentation of the data is bigger than the space
allocated for the component, vertical scrolling tolls shall be provided by the terminal application. The
terminal may present:

a) scrolling tools next to the right side of the area;
b) reduced scrolling tools as buttons overlapping the area;
c) cursor keys that provide the scrolling functionality.

The space needed for the scrolling tools is included in the overall dimensions of the component.

The component can be provided with a border area. When present, the border shall be included in
the overall dimensions of the component. When a border is requested a frame shall be drawn by
the terminal. The frame drawing is terminal dependent. It should not be wider than 1/160 NDC. If
scrolling tools are provided next to the right side of the component the border shall be extended to
include them visually in the box.

- Maximize operation: The size of the Dialogue Box can be changed by the user with the scrolling
tools provided by the local Graphical User Interface (GUI) and via a defined maximize button. The
recommended strategy is described in subclause 7.1.5. These are default recommendations. If the
attribute "NoFormat" is selected and the terminal applies strategy 1, the following applies:

a) increasing the width should not change the text form, no additional text should be added;
b) decreasing the width should clip the text on the new border;
c) increasing the height should add new text lines;
d) decreasing the height should clip the text;
e) if the attribute "MaximTxt" is set the text shall be increased and decreased proportionally.

- Interactive functionality:

a) activation and validation of sensitive text, defined via in-text attributes.

NOTE: To transfer a large amount of text data it is recommended not to use the direct text
definition but to use the Text Resource object and transmit the data using the VEMMI
resource-file transfer.

Visual aspect (see figure 24):
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Figure 24: Text Presentation Area
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Attribute:

- CIN: This attribute carries the Component Identification Number;
- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
- Width: This attribute carries the width of the component;
- Height: This attribute carries the height of the component;
- NoScrollingTools: No scrolling tools shall be drawn by the terminal;
- NoFormat: There are no formatting rules for the maximization of the dialogue box;
- MaximTxt: Local maximization can maximize the text of the component;
- NoBorder: No Border shall be drawn to frame the element;
- InitialFnt: FIN of the attribute font to be applied on the first text;
- InText: Text content possibly including in-text attributes, and references to font objects;
- TextCompRef: Reference to a text component;
- Closed: The element shall be in the closed state.

7.6.1.4 The Text component

- description: This component is used to split large text data in units (text components) and to define
the necessary structural information (concatenation of the text components) in order to be displayed
in a text area. This structural information references the previous and next text components,
defined with the attributes "NextText" and "PreviousText";

- display concept: The components are not necessarily of the same length. During the display of
concatenated text components, the user should have the impression of a continuous text. The
continuity should not be interrupted by a switch from one component to the other. Vertical scrolling
capabilities, on a row-by-row and page-by-page basis, shall be offered within consecutive
components. This display continuity is interrupted in two cases:

a) a component contains no further concatenation, no "NextText" during a forward scrolling or
no "PreviousText" during a backward scrolling. The display does not continue because the
just displayed text pertains to a topic which has reached its logical end. Figure 29 shows two
sequences of concatenated components: CINs 7,8,9 and CIN 17;

b) "Jumps", due to the validation of sensitive text as part of the displayed components or other
interactive components of the dialogue box. These components can contain as a local action
an element specific command, e.g. "open component of parent object". In order to display the
text component in a specific text area the local actions shall contain the "open component"
command (encoding: specific command type is equal to "100", followed by two CINs) with
two CINs, the first specifying the text area the second specifying the text component. The
referenced parent component is a text component which will be displayed in the starting
position and not consecutively to the last displayed component. This effect is shown in
figures 27 and 28.

The text to be displayed is contained in the component definition, in another referenced text
component or in a referenced text resource object. If a referenced resource object has not been
created in the terminal, it can be requested from the host application with the command
VEMMI_Object_Retransmission with attribute RequestType set to resource. If the text file content of
the resource object is not available, the terminal can request the file from the server using
VEMMI_Object_Retransmission with attribute RequestType set to file.

If such a retransmission request is performed as a result of a user interaction (when the object or
content should be displayed), rule B for retransmission shall be applied (see subclause 5.2.2). If
enabled by its storage capabilities, the VEMMI terminal may decide to request the transmission of
resource objects or contents adjacent to the one currently displayed, anticipating user scrolling. In
this case, until the requested object or text file needs to be displayed to the user, the rule A for
retransmission shall be applied.

NOTE: To transfer a large amount of text data it is recommended not to use the direct text
definition but to use the Text Resource object and transmit the data using the VEMMI
resource-file transfer. Local destruction and retransmission of text components are
also permitted (see subclause 5.2.2).
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Visual aspect:

    General notes on operation

Basic sett ings

On switching on after a longer period without mains

power, all selectable functions are disabled and all
controls set to middle or zero. The loudspeaker outputs
remain connected to the power amplif iers. Displays:

e.g.87.  V 40  "LS  1 " "LS 2". To operate use  >loudn.<  to
select loudness compensated volume (display: loudn.)

and disable unoccupied loudspeaker outputs using
"LS1" or "LS 2" on the R4.

Using the remote control unit, press "speaker" (display:

e.g. SP1/2) and the press "1" or "2" to enable or disable
the corresponding loudspeaker output.

Text Area

Figure 25: A text area with text component(s), scroll bars and sensitive texts
(Attribute "NoFormat" is not set)

Now, the user becomes active and scrolls downward:

e.g.87. V40 "LS 1" "LS 2". To operate use >loudn.<  to
select loudness compensated volume (display: loudn.)

and disable unoccupied loudspeaker outputs using

"LS1" or "LS 2" on the R4.
Using the remote control unit, press "speaker" (display:

e.g. SP1/2) and the press "1" or "2" to enable or disable
the corresponding loudspeaker output.

On the unit, use the "fm" or "am" buttons to select FM or
AM wavebands. Display: e.g. 94.40 MHz, |  (center
tuning), |||||| (field strength display), stereo, if a stereo

station is being received with adequate quality.

Using the remote control unit,  press "fm" to select FM

Tuning

Figure 26
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In addition the user enlarges the window on both directions:

e.g.87. V40 "LS 1" "LS 2". To operate use >loudn.<  to select loudness

compensated volume (display: loudn.) and disable unoccupied loudspeaker

outputs using "LS1" or "LS 2" on the R4.
Using the remote control unit,  press "speaker" (display: e.g. SP1/2) and the

press "1" or "2" to enable or disable the corresponding loudspeaker output.

On the unit, use the "fm" or "am" buttons to select FM or AM wavebands.
Display: e.g. 94.40 MHz, | (center tuning), |||||| (field strength display), stereo,
if a stereo station is being received with adequate quality.

Using the remote control unit,  press "fm" to select FM reception (repeating

toggles between FM and AM).

To tune to a particular station, activate search on the unit by pressing
"autotune+" or "autotune-".

Using the remote control unit, press ">>" or "<<".

Tuning

Station search

Figure 27

And finally, clicks on the hot spot "speaker":

"speaker"

Activates buttons "1" and "2" (for 3 seconds) to switch the loudspeaker pairs

connected with terminals "LS 1" and "LS 2" to amplif ier output. Display SP1/-

and SP-/- with the coresponding loudspeaker symbols.
Attention ! Care must be taken to ensure that the phases are correctly

connected for the left and right speakers in a pair and for the two pairs of

loudspeakers ( i f  they are to be operated in the same room). The black

terminals are grounded.

Figure 28

The "speaker" text is displayed.
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A possible component architecture (text area component with CIN=10) for the display sequence showed if
figures 25 to 29 can be the following (the in-text attributes are not listed):

General notes on operation

Basic settings

On switching-on after a long period without mains power, all
selectable functions are disabled and all controls set to middle or
zero. The loudspeaker outputs remain connected to the power
amplifiers. Displays: e.g. 87. V40 "LS 1" "LS 2". To operate use
>loudn.< to select loudness compensated volume (display: loudn.)
and disable unoccupied loudspeaker outputs using "LS1" or "LS 2"
on the R4.

Using the remote control unit, press "speaker" (display: e.g. SP1/2)
and then press "1" or "2" to enable or disable the corresponding
loudspeaker output.

Text component

CIN: 7

Next Text: 8

Tuning

Using the remote control unit, press "fm" to select FM reception
(repeating toggles between FM and AM).
On the unit, use the "fm" or "am" buttons to select FM or AM
wavebands. Display: e.g. 94.40 MHz, | (centre tuning), |||||| (field
strength display), stereo, if a stereo station is being received with
adequate quality.

Text component

CIN: 8

Previous Text: 7

Next Text: 9

Station search

To tune to a particular station, activate search on the unit by
pressing "autotune+" or "autotune-".

Using the remote control unit, press ">>" or "<<".

The search, with automatic muting, continues in the selected
direction until the next station with adequate reception quality and
centre tuning position is located.

Text component

CIN: 9

Previous Text: 8

"speaker"

Activates buttons "1" and "2" (for 3 seconds) to switch the
loudspeaker pairs connected with terminals "LS 1" and "LS 2" to
amplifier output. Display SP1/- and SP-/- with the corresponding
loudspeaker symbols.

Attention! Care should be taken to ensure that the phases are
correctly connected for the left and right speakers in a pair and for
the two pairs of loudspeakers (if they are to be operated in the same
room). The black terminals are grounded.

Text component

CIN: 17

Figure 29: Text component architecture
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The local interactivity can be implemented by the correct cooperation of the local actions (LocActVal
parameter) which are part of the sensitive text and other interactive elements of the dialogue box. In the
example case, the user can skip from the text of figure 27 to figure 28 with the Sensitive Text "Speaker" if
the Sensitive Text contains the local action "open component (10,17)".

The content of a text component should always start with an in-text reference to a Font Resource object to
set the text attributes for the following text. This will ensure that if the user jumps between non-
consecutive text components in a chain, the correct text presentation is always selected. If the text content
of the text component does not start with a font selection the following rules apply:

- on scrolling down between two consecutive text blocks the text content of the latter block shall be
displayed starting with the text attributes that where last in use (text attributes do not change);

- on jumping between two non consecutive text blocks or on scrolling backwards the text content of
the jumped-to block shall be displayed starting with the text attributes that are defined in the
"<initial font>" attribute of the given text area component.

NOTE: The information contained in the PreviousText and NextText attributes can be used as
an indication how to draw (position of the slider) the local scrolling tools.

Attributes:

- CIN: Component Identification Number;
- PreviousText: CIN of the backward concatenated text component;
- CurrentText: Text definition, including references to font resource objects, text resource objects and

sensitive text components;
- NextText: CIN of the forward concatenated text component.

7.6.1.5 The Sensitive Text Component

This components defines the activation and validation operations for sensitive text strings. These are part
of text components.

Visual aspect: see subclause 7.6.1.4.

Attributes:

- CIN: Component Identification Number;
- NotAccessible: The element shall not be accessible;
- LocActAct:  Specifies the local actions which are associated with the component and triggered by its

activation;
- LocActVal: Specifies the local actions which are associated with the component and triggered by its

validation.

7.6.1.6 The Graphic Output Area component

- description: The Graphic Output Area is a rectangle for the display of graphical data (bitmaps,
Videotex data etc.). A bitmap is referenced via a BIN. Four different display modes exist: the bitmap
can be centred in the Graphic Output Area, it can be stretched to cover the whole area, it can be
tiled or it can be mapped. In any case, the displayed part of the bitmap shall not exceed the space
reserved with this component. If the Graphic Output Area references a non existing Resource
object the terminal shall request the Resource object from the VEMMI application using the
VEMMI_Object_Retransmission command with the <request type> attribute set to resource.

If the Graphic Output Area references a Resource object which again references a non existing file
the terminal shall request the file from the VEMMI application using the
VEMMI_Object_Retransmission command with the <request type> attribute set to file. The terminal
may allocate on the screen the space needed to display this bitmap. If the bitmap file is undergoing
a resource file transfer operation, the terminal may choose to display it at the end of the file transfer
or if possible to decode it and display it on the flow during the resource file transfer operation.

Videotex data are referenced via a VIN. In any case the Videotex data shall not exceed the space
reserved with this component. The VTX data decoder shall always be in the initial state (40x24
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mode, etc.) when starting to decode VTX data content. Within a given VTX data content the 80x24
VTX mode may be invoked. No more than two DRCSs shall be defined in a terminal at a given time.
If DRCSs are redefined there is no guaranteed effect.

Several display modes can be selected for the Graphic Output Area. Selecting different display
modes will result in different visual representations of the same bitmap. The following display
modes are defined:

a) centred: the bitmap is centred in the Graphic Output Area;
b) stretched: the bitmap is stretched to cover the entire Graphic Output Area (default);
c) tiled: the bitmap is repeated horizontally and vertically to cover the entire Graphic Output

Area;
d) mapped: the dimensions of the bitmap are greater than the dimensions of the Graphic Output

Area. Scrolling tools are offered to virtually move the bitmap in the Graphic Output Area to be
able to view it entirely. The Graphic Output Area acts like a window through which a part of
the bitmap can be seen. In this mode an attribute can be set specifying the initial position of
the bitmap within the Graphic Output Area before any user scrolling. The attribute gives the
point relative to the size of the bitmap that should be in the centre of the Graphic Output Area
in NDC.

The space allocated for the scrolling tools shall be included in the dimensions of the component.

If a terminal is not able to apply any of the advanced bitmap display modes it may display the
bitmaps in their original size and clip the bitmap to the overall dimensions of the Graphic Output
Area. The initial positioning in the mapped mode may also be ignored.

- behaviour: It is inaccessible;
- interactive functionality:

a) scrolling if display type is set to "mapped".

Visual aspect (see figure 30):
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Figure 30: Frame and a bitmap
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Attributes:

- CIN: Component Identification Number;
- XPos: Horizontal position of the top left corner of the bitmap rectangle;
- YPos: Vertical position of the top left corner of the bitmap rectangle;
- Width: Width of the bitmap rectangle;
- Height: Height of the bitmap rectangle;
- Closed: The element shall be in the closed state;
- DispType: Specifies the display mode of the bitmap: centred, stretched (default), tiled or mapped;
- BIN: Bitmap Identification Number;
- VIN: Videotex Identification Number.

7.6.1.7 The Push Button component

Description, Behaviour, Interactive functionality: See subclause 7.4.1.1.

Visual aspect (see figure 31):

YPos

XPos

OK

Width

Height

Mnemonic

Dialogue Box

Figure 31: Push Button

Attributes:

- CIN: This attribute carries the Component Identification Number;
- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
- Width: This attribute carries the width of the component;
- Height: This attribute carries the height of the component;
- Closed: The element shall be in the closed state;
- NotAccessible: The element shall not be accessible;
- BIN: The BIN of the component;
- LabelFont: FIN of the label;
- Text: The label of the component;
- LocActAct: This attribute carries the code for the local action which is associated to the component

and triggered by its activation;
- LocActVal: This attribute carries the code for the local action which is associated to the component

and triggered by its validation.
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7.6.1.8 The Text Input Field component

Description: The Text Input Field is composed of two items:

- the text label;
- the input area.

An attribute font can be associated to the text label. The input area has its starting location immediately
after the text label. The type of the input data can be specified by the application. The following predefined
types are available:

- any text character;
- alphabetic (A to Z, a to z, diacritical characters);
- numeric (0 to 9, +, -, comma, dot, space);
- alphanumeric (alphabetic, numeric).

An attribute of the Text Input Field specifies whether the user inputs are echoed or not. The VEMMI
application can define one character to echo all user inputs.

A mnemonic key can be used to activate the Text Input Field (see subclause 7.1.7).

- behaviour: If the space allocated for the input area in a one line Text Input Field is not sufficient to
display all characters entered by the user, the input area shall offer horizontal scrolling facilities. If
the space, allocated for the input area in a Text Input Field with more than one line, is not sufficient
to display all characters entered by the user, the input area shall offer vertical scrolling facilities. The
space needed to present scrolling facilities shall be included in the overall dimensions of the
component. In order to display all possible characters, it is recommended to give enough space for
user inputs. If the maximum number of the input characters is reached this should be indicated to
the user;

- constraints: The maximum length of the text label is limited to the first line of the Text Input Field
component width. For one line input fields the label is placed in front of the input area and left
aligned, while the input area is aligned to the right side. For multiline Text Input Fields it is placed in
the top row and shall be left aligned. There is no space reserved for the text label if the attribute
TextLabel is not present.

In case of several one-line input fields that should be presented left aligned on a terminal, text
labels should not be used. The Text Presentation Area can then be used to label the input field.

- Interactive functionality:

a) activation;
b) scrolling;
c) local editing functionality of the input area (terminal dependent).

Visual aspect (see figure 32):
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Figure 32: Text Input Field

Attributes:

- CIN: This attribute carries the Component Identification Number;
- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
- Width: This attribute carries the width of the component;
- Height: This attribute carries the height of the component;
- Closed: The element shall be in the closed state;
- NotAccessible: The element shall not be accessible;
- MaximTxt: Local maximization can maximize the text of the component;
- DefValue: This attribute carries the default value for the component;
- TextLabel: This attribute carries the text label of the component;
- LabelFont:  Specifies the FIN for the text label;
- InputType: This attribute specifies which type of user inputs shall be accepted by the component;
- EchoType: This attribute specifies which type of echo shall be made on user inputs;
- EchoChar: This attribute carries the character that shall be displayed to echo user inputs if the

EchoType is set to "echo defined character";
- MaxChar: This attribute carries the maximum number of characters the user can enter in one line;
- MaxLine: This attribute carries the maximum number of lines the user can enter in a multiline input

field;
- Multiline: Indicates a multiline input field;
- InputTransformation: The attribute specifies if the terminal shall convert the characters entered by

the user to upper case characters, to lower case characters or if no conversion shall be done;
- LocActAct: This attribute carries the code for the local action which is associated to the component

and triggered by its activation;
- LocActVal: This attribute carries the code for the local action which is associated to the component

and triggered by its validation.

7.6.1.9 The Check Box component

- description: The Check Box component is composed of two items:

a) the text label item;
b) the check item.

A mnemonic key can be used to activate the component (see subclause 7.1.7). The check item
shall support two different choices, visually identifiable, representing the two possible values
marked or unmarked. The space allocated for the component shall include, in its dimensions, the
space needed to represent this check item.
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- behaviour: A Check Box acts like a switch. When switched by the user, its value changes from
unmarked to marked or from marked to unmarked. The value of Check Boxes is independent of the
value of any other components.

- interactive functionality:

a) activation;
b) switch between the values marked and unmarked;
c) validation.

Visual aspect (see figure 33):
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Figure 33: Check Box

Attributes:

- CIN: This attribute carries the Component Identification Number;
- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
- Width: This attribute carries the width of the component;
- Height: This attribute carries the height of the component;
- Closed: The element shall be in the closed state;
- NotAccessible: The element shall not be accessible;
- TextLabel: This attribute carries the text label of the component;
- LabelFont: FIN of the label;
- DefMarked: The default value of the element shall be marked;
- LocActAct: This attribute carries the code for the local action which is associated with the

component and triggered by its activation;
- LocActVal: This attribute carries the code for the local action which is associated with the

component and triggered by its validation.

7.6.1.10 The Radio Button component

- description: The Radio Button component is composed of two items:

a) the text label item;
b) the check item.

A mnemonic key can be used to activate the component (see subclause 7.1.7).
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The check item shall support two different choices, visually identifiable, representing the two
possible values, marked and unmarked. The space allocated for the component shall include, in its
dimensions, the space needed to represent this check item.

Radio Buttons are typically used in groups to provide a single-choice field.

- behaviour: No more than one Radio Button shall be marked in a Radio Button group at a given
time. The attempt to mark a second Radio Buttons shall cause the unmarking of the previously
marked Radio Button, whatever its state (opened, closed, accessible, inaccessible) within the
application may be.

- interactive functionality:

a) activation;
b) switch between the values marked and unmarked;
c) validation.

Visual aspect (see figure 34):
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Figure 34: Radio Buttons with a Frame and a Text Presentation Area

Attributes:

- CIN: This attribute carries the Component Identification Number;
- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
- Width: This attribute carries the width of the component;
- Height: This attribute carries the height of the component;
- Closed: The element shall be in the closed state;
- NotAccessible: The element shall not be accessible;
- TextLabel: This attribute carries the text label of the component;
- LabelFont: FIN of the label;
- Group: This attribute carries the identifier of the Radio Button group. Only one Radio Button in a

group can be marked at one specific time;
- DefMarked: The default value of the element shall be marked;
- LocActAct: This attribute carries the code for the local action which is associated with the

component and triggered by its activation;
- LocActVal: This attribute carries the code for the local action which is associated with the

component and triggered by its validation.
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7.6.1.11 The List Box component

- description: The List Box component is a rectangular area in which a list of text items is offered to
the user for choice. If the total number of items exceeds the number of presented items, scrolling
facilities shall be offered to the user through dedicated scrolling controls. In this case the space
allocated for the component shall include in its dimensions the space needed to represent the
scrolling facilities. The tools to provide the scrolling functionality are terminal dependent (vertical
scrollbar, buttons, etc.). When the entire list is visible, the scrolling controls may be invisible. A list
can have several columns. Consequently list items can consist of several cells.

Small icons may be added to the cells in order to visually emphasize their meaning. The referenced
bitmap can be resized to fit to the local List Box representation.

The whole list is composed of list items. If the "sorted" attribute is selected, the list items should be
sorted in their alphabetical order (according to the first cell). If "sorted" is not selected the list shall
be presented in the ascending order of the list item indices. However, the correspondence between
the list items and the indices is always maintained. For each of the columns of a List Box an
alignment parameter can be specified;

- behaviour: When the List Box is active the terminal shall offer shifting facilities to the user. A List
Box contains a list of items that the user can scroll through and select from. Single or multiple
choice can be made by the user, depending on the list attributes.

There may be local actions associated with each List Box item. Additionally, the List Box may also
have local actions associated. Upon activation and validation of a List Box item , the local actions
associated with the List Box item shall be executed. If there is no local action associated with the
selected item, the local action associated with the List Box itself shall be executed. In this case, any
OIN appearing in element specific commands of the List Box component is incremented by the
value of the list index of the List Box item.

A List Box with multiple choice can not be validated;

- interactive functionality:

a) activation;
b) single or multiple choice;
c) validation (single choice);
d) scrolling;
e) shifting.

Visual aspect (see figure 35):
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Figure 35: List Box

Attributes:

- CIN: This attribute carries the Component Identification Number;
- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
- Width: This attribute carries the width of the component;
- Height: This attribute carries the height of the component;
- Closed: The element shall be in the closed state;
- NotAccessible: The element shall not be accessible;
- DefItem: This attribute carries the index of the list item that is selected by default when the

component is opened for the first time;
- Sorted: The list items are presented sorted in alphabetical order;
- MultipleChoice: The element allows multiple choices;
- Arrayed: The component shall consist of several columns;
- ColumnWidth: Width of the columns;
- Alignment: Text alignment in the columns (left, right, centred);
- ReportIndex: The report command shall report the index of the List item selected not the item itself.

The index report can lead to ambiguous interpretation of reported data when the server is
simultaneously updating the content of list items;

- LocActAct: This attribute carries the code for the local action which is associated with the
component and triggered by its activation;

- LocActVal: This attribute carries the code for the local action which is associated with the
component and triggered by its validation.

List item attributes:

- ListIndex: This attribute carries the index of the list item in the component description. It allows in a
modify command the modification of a specific list item. The list indices shall be defined in an
ascending order. The list indices may not be consecutive in order to allow easy updating of the list
(inserting of list items). The terminal shall present a consecutive list to the user, sorted by the
ascending value of the list indices (if Sorted is not set) corresponding to the list text. If in modify
command a list index for a list item is used which is already existing than the existing list item is
replaced. If in a modify command a list index of a list item is used that is not existing in the terminal,
the new list item shall be added. If in a modify command a list index is referenced and the "delete
list item" attribute is set the terminal shall delete the list item;

- Text: This attribute carries the text content of a list cell;

- IconReference: The BIN of the Bitmap Resource Object representing the icon;
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- ItemLocAct: This attribute carries the code for the local action which is associated to the item and
triggered by its activation;

- ItemLocVal: This attribute carries the code for the local action which is associated to the item and
triggered by its validation.

7.6.1.12 The Combination Box component

- description: The Combination Box is composed of two parts:

a) a single choice List Box;
b) a one line text field located at the top of the list.

If the total number of items exceeds the number of presentable items, scrolling shall be offered to
the user through dedicated scrolling facilities. In this case the space allocated for the component
shall include in its dimensions the space needed to represent the scrolling facilities. The tools to
provide the scrolling functionality are terminal dependent (vertical scrollbar, buttons, etc.).

Small icons may be added to the list items in order to visually emphasize their meaning. The
referenced bitmap can be resized to fit to the local Combination Box representation.

The whole list is a component composed of list items. The CR+LF characters shall not be present
in a list item of the Combination Box. If the "sorted" attribute is selected, the list items should be
sorted in their alphabetical order. If "sorted" is not selected, the list shall be presented in the
ascending order of the list item indices. However, the correspondence between the list items and
the indices is always maintained.

A variation of the Combination Box is a drop down Combination Box. It is composed of a
Combination Box and a Push Button. Only the text field and the Push Button are displayed until the
user validates the associated Push Button. The validation of the Push Button causes the display of
the associated List Box;

- behaviour: When the Combination Box is active the terminal shall offer shifting facilities to the user.
A Combination Box contains a list of items that the user can scroll through and select from to
complete the text field. A parameter of the Combination Box specifies if the text field is editable or
not. If the text field is editable, the user can type text directly into the text field. A parameter of the
component specifies if the text entered by the user shall match one of the items contained in the
list.

There may be local actions associated with each List Box item. Additionally, the Combination Box
may also have local actions associated. Upon activation and validation of a List Box item, the local
actions associated with the List Box item shall be executed. If there is no local action associated
with the selected item, the local action associated with the Combination Box itself shall be executed.
In this case, any OIN appearing in element specific commands of the List Box component is
incremented by the value of the list index of the listbox item (no increment in case of direct input in
the input field).

If the Combination Box is designed to be a drop down Combination Box, the validation of the Push
Button shall switch between displaying and hiding the List Box;

- interactive functionality:

a) activation;
b) single selection;
c) validation;
d) scrolling;
e) editing.

Visual aspect (see figure 36):
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Figure 36: Combination Box

Attributes:

- CIN: This attribute carries the Component Identification Number;
- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
- Width: This attribute carries the width of the component;
- Height: This attribute carries the height of the component;
- Closed: The element shall be in the closed state;
- NotAccessible: The element shall not be accessible;
- DefItem: This attribute carries the index of the list item that is selected by default when the

component is opened for the first time;
- NoEdit:  The text field of the component shall not be editable;
- NoConsistency: This attribute is applied if "NoEdit" is not set. It indicates that the text entered by the

user can be any text string, not necessarily one of the defined text items;
- MaxChar: This attribute carries the maximum number of characters the user can enter in the

component. It shall only be present if the "EditableInput" Parameter is set true;
- NoDropDown: The element shall not be drop down;
- NotSorted: The list items are presented sorted in alphabetical order;
- LocActAct: This attribute carries the code for the local action which is associated to the component

and triggered by its activation;
- LocActVal: This attribute carries the code for the local action which is associated to the component

and triggered by its validation.

List item attributes:

- ListIndex: This attribute carries the index of the list item in the component description. It allows in a
modify command the modification of a specific list item. The list indices shall be defined in an
ascending order. The list indices may not be consecutive in order to allow easy updating of the list
(inserting of list items). The terminal shall present a consecutive list to the user, sorted by the
ascending value of the list indices (if Sorted is not set) corresponding to the list text. If in modify
command a list index for a list item is used which is already existing, then the existing list item is
replaced. If in a modify command a list index of a list item is used that is not existing in the terminal,
the new list item shall be added. If in a modify command a list index is referenced and the "delete
list item" attribute is set the terminal shall delete the list item;

- Text: This attribute carries the text content of a list item;
- IconReference: The BIN of the Bitmap Resource Object representing the icon;
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- ItemLocAct: This attribute carries the code for the local action which is associated to the item and
triggered by its activation;

- ItemLocVal: This attribute carries the code for the local action which is associated to the item and
triggered by its validation.

7.6.1.13 The Slider Component

- description: The slider offers the selection of an analogue value by moving an adjustable marker on
a slide bar between a minimum and a maximum value. The intervals are set by the application. The
Slider component consists of the following items:

a) Slider (with the movable marker, the initial marker position shall correspond to the default
value, set by application);

b) DirectInputField (optional), an input and output field which contains:

1) the initial value when the Slider is activated;
2) the values in text form corresponding to the slider movements;
3) an Input field for user inputs of the slider position.

The Slider Component may be oriented in vertical and horizontal direction. All items shall fit in the
rectangle determined by the component dimensions. The DirectInputField should be located at the
left side of a horizontal slider and on top of a vertical slider.

A local action which is triggered on the validation shall be performed when the user deactivates the
component;

- behaviour: When the Slider Component is active the marker can be moved by striking the cursor
keys or by mouse clicks. If the optional DirectInputField is present, the user should be able to put in
values directly by key strokes. The changed values shall be displayed immediately in the
DirectInputField. The marker shall be moved onto a position which is relative to this value input. In
the other case, when the marker is moved, the displayed value shall refer to this movement. If the
MinValue and MaxValue attributes are present, an indication about the valid input range could be
displayed to the user;

- interactive functionality:

a) local input functionality of the DirectInputField (application dependent);
b) local positioning of the slider marker;
c) validation by deactivation of the component;
d) activation.
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Visual aspect:
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Figure 37: Slider Component

Attributes:

- CIN: This attribute carries the Component Identification Number;
- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
- Width: This attribute carries the width of the component;
- Height: This attribute carries the height of the component;
- Closed: The element shall be in the closed state;
- NotAccessible: The element shall not be accessible;
- MinValue:  The lowest adjustable value;
- MaxValue:  The highest adjustable value;
- Increment:  The interval size between two adjustable values;
- InitialValue: The initial value, when the Slider Component is opened;
- Negative: This attribute can be associated with MinValue, MaxValue, InitialValue and also indicates

that the values are negative;
- DirectIn:  This attribute indicates that MinValue and MaxValue could be displayed, also the user's

direct input should be allowed;
- Vertical:  The element shall be presented vertical;
- LocActAct:  Specifies the code for the local action which is associated with the component and

triggered by its activation;
- LocActVal:  Specifies the code for the local action which is associated with the component and

triggered by its validation.

7.6.1.14 The Sensitive Area Component

- description: A Sensitive Area component is an area, non materialized, in which the application
permits a validation operation. The Sensitive Area component is intended to be used associated
with a Graphic Output Area component of the Dialogue Box. For the use with text components, the
in-text attributes for the definition of sensitive text are more appropriate. The sensitive area is a
rectangle inside the dialogue box or it can be locally associated to the content of a graphic display
area. In the latter case all positioning and all reports are done relative to the content of the area and
the Sensitive area shall be scrolled with the bitmap content.

If the "locator" attribute is set, the terminal shall send upon validation not only it’s CIN to the VEMMI
application, but also the coordinates of the cursor in NDC at the time of the validation with respect
to the component origin;

- behaviour: When active a visible effect (e.g. thread, dot lines) can be implemented;
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- constraints: A Sensitive Area shall not be covered by other components or items which are sensitive
to user interaction, in order to avoid conflicts;

- Interactive functionality:

a) activation;
b) validation.

Visual aspect:

Dialogue Box

Figure 38: Bitmap, Text and Sensitive Area

Attributes:

- CIN: Specifies the Component Identification Number;
- XPos: Specifies the horizontal position sensitive area;
- YPos: Specifies the vertical position of the sensitive area;
- Width: Specifies the width of the sensitive area;
- Height: Specifies the height of the sensitive area;
- Closed: The element shall be in the closed state;
- NotAccessible: The element shall not be accessible;
- Locator: The position of the cursor in NDC at the time of the validation with respect to the

component origin shall be sent with each report command;
- LocActAct: Specifies the local actions which are associated with the component and triggered by its

activation;
- LocActVal: Specifies the local actions which are associated with the component and triggered by its

validation. If the locator attribute is set, each report action shall also contain the coordinates of the
cursor in NDC at the time of the validation with respect to the component origin;

- Content Associated: The component is locally associated with a Graphic Display Area;
- AssGraphicReference: CIN reference to the associated graphic area. This attribute is only

applicable in content associated mode.

7.6.1.15 The Multimedia Area component

- description: The Multimedia Area is an area intended to present multimedia information to the user.
Multimedia information consists of several kinds of monomedia (text, graphics, bitmaps, audio,
video) that have defined relations (spatial and temporal) and that can be scrolled together as a
whole.

For the time being only HTML as a content coding format for the Multimedia Area is identified;
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- scrolling, Border: If the space needed for the presentation of the data is bigger than the space
allocated for the component, vertical and/or horizontal scrolling tools shall be provided by the
terminal application. The terminal may present:

a) scrolling tools next to the right side of the area for vertical scrolling and scrolling tools at the
bottom for horizontal scrolling;

b) reduced scrolling tools as buttons overlapping the area;
c) keys that provide the scrolling functionality.

The space needed for the scrolling tools is included in the overall dimensions of the component.

The component can be provided with a border area. When present, the border shall be included in
the overall dimensions of the component. When a border is requested a frame shall be drawn by
the terminal. The frame drawing is terminal dependent. It should not be wider than 1/160 NDC. If
scrolling tools are provided next to the right side of the component the border shall be extended to
include them visually in the box;

- input control: There are two different strategies for a Multimedia Area how to handle user inputs and
how two be updated. The two alternatives can be selected in the encoding of the component.

The first alternative is that user inputs are not controlled by the VEMMI local manager, but treated
as specified by the content encoding format.

EXAMPLE 1: A click on a HTML link induces a HTTP (or other appropriate Internet protocol)
request on the underlying protocol stack. Data sent in response to such a
request are presented directly in the Multimedia Area (not using the
VEMMI_Modify_Component). This procedure is appropriate for a VEMMI
implementation on top of the TCP/IP protocol stack.

The second alternative is that user inputs in the Multimedia Area are controlled by the VEMMI local
manager.

EXAMPLE 2: The click on a HTML link induces a VEMMI_User_Data primitive carrying the
URL (similar to an HTTP request only included in a VEMMI primitive send to the
VEMMI host across the VEMMI protocol stack). The VEMMI host may then use
the information to retrieve the appropriate document and send the data to the
terminal using VEMMI_Modify_Component. This procedure is appropriate for a
VEMMI implementation on top of a non-TCP/IP protocol stack.

- interactive functionality:

a) scrolling;
b) functionality offered by the data content (HTML).

Visual aspect (see figure 39):
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Conditions of Participation.

Dialogue Box

Figure 39: Multimedia Area

Attribute:

- CIN: This attribute carries the Component Identification Number;
- XPos: This attribute carries the horizontal position of the element in NDC;
- YPos: This attribute carries the vertical position of the element in NDC;
- Width: This attribute carries the width of the component;
- Height: This attribute carries the height of the component;
- Closed:  The element shall be in the closed state;
- NotAccessible:The element shall not be accessible;
- Maximizable: The terminal shall offer the local maximisation option as described in subclause 7.1.5

(strategy 2 should be implemented);
- NoBorder: The element shall not have a border;
- MultimContentType: The datatype of the content of the component. For the time being only HTML is

identified;
- MultimediaContent: Direct definition of a Multimedia content or reference to a Multimedia resource

object;
- DirectNavigation: The terminal should offer the possibility for the user to enter directly navigation

information related to the Multimedia Area. (direct URL-Input in case of HTML content). The input
field for the direct navigation information is terminal dependent;

- NonControlledMode: The VEMMI manager does not control the data handling (user input, content
updates.) in the Multimedia Area.

7.7 The Message Box

- description: The Message Box is a rectangular area in the DDA which contains text information.

Four specified types of message are defined:

a) general message;
b) information message;
c) warning message;
d) action message.

This information can be used to add an icon characterizing the type of the message to the
presentation of the message box.

An attribute of the Message Box specifies if the terminal should perform a sound at the time the
Message Box is opened.
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The Message Box can be provided with a border area which should be equal to 1/160 NDC. When
a border is requested, a frame shall be drawn by the terminal. This frame drawing is terminal
dependent;

- behaviour: An attribute of the Message Box specifies the destroy event of a Message Box. The
following five values are available:

a) destroy by any user interaction;
b) close by any user interaction;
c) destroy by the user validation of an implicitly defined button;
d) close by the user validation of an implicitly defined button;
e) no implicit destroy event is defined.

The destroying or closing of the Message Box shall not induce any report to the server.

If no position is defined by the VEMMI application the terminal shall centre the Message Box in the
DDA.

If no dimensions are defined by the VEMMI application the terminal shall calculate the appropriate
size of the Message Box, in order to have enough room to display the text message and the
possible Push Button. The size of the possible Push Button is terminal dependent. The label of the
Push Button should have a semantics similar to "OK";

- interactive functionality:

a) activation;
b) validation.

Visual aspect (see figure 40):

Message Box

OK

Text Message
W arn ing  
Icon

Im plic itly  de fined
Push Button

W arn ing

Figure 40: Message Box with a warning message

Attributes:

- XPos: Specifies the horizontal position of the message box;
- YPos: Specifies the vertical position of the message box;
- Width: Specifies the width of the message box;
- Height: Specifies the height of the message box;
- Closed: The element shall be in the closed state;
- MessageType: One of: general, information, warning, action;
- Modal: The element shall be modal;
- Title: This attribute carries the title of the object. The title shall be displayed in the first row of the

object;
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- NoBorder: The element shall not have a border;
- AttributedText: Text of the message with in-text attributes;
- MaxTime: Maximum time the object stays on the screen. If this time elapses the object is destroyed

regardless the specified destroy event;
- Destroy event: The events which lead to the destruction of the message box;
- NoSound: The terminal should not perform a sound when the message box is opened.

7.8 Operative object

With this object an application references a program which will be linked to the VEMMI application. This
object type provides a method to extend the capabilities of an application during runtime. Via the service
VEMMI_Create_Object the host application defines the operative object. The program is started with
VEMMI_Open_Object.

The program itself has been downloaded via file transfer as part of the operating system or its presence
has been negotiated in another way. It is referenced by its filename. It is up to the host to ensure that the
called program is started without error, by providing the correct program parameters. An often used
method to extend the functions of programs during runtime is the use of Dynamic Link Libraries (DLL)s.

The program referenced with an operative object can be of the following types:

- standalone program;
- program with a filter interface.

For the purpose of operative objects, the services VEMMI_Create_Object, VEMMI_Open_Object and
VEMMI_Destroy_Object are used. The program name and the program parameters are defined as
attributes of the operative object.

Two parameters, program description and the source identification, can be used by the terminal to
evaluate information to be presented to the user or only to be recorded. This precaution is necessary in
order to help the user to detect programs which have been linked to the VEMMI application with  intent of
sabotage. Their effect on the terminal may not be harmless. The terminal can answer the host "The user
refused the start of the program!". The basis on which such an answer is generated is application
dependent, but at least the information is available on a structured basis. If the terminal cannot find the
program the host needs to be informed with a specific error message.

7.8.1 Requirements for standalone programs

The program has no data exchange channel with the VEMMI local manager during the execution.
Program parameters can be defined by the host application and supplied to the program when started.
The operative object has no visual effect on the terminal and cannot be activated directly by the user, but
the started program may use the local UI on an application specific basis.
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Communication

start and stop 
of operative object

VEMMI command 
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Operative Object
(standalone program)

Figure 41: Standalone programs

The VEMMI command dispatcher is responsible for delivering the VEMMI commands between the VEMMI
local manager and the communication part. All these interfaces are terminal and implementation
dependent. They are used in this description to explain the integration of the two types of operative objects
in the VEMMI terminal architecture.

7.8.2 Requirements for programs with filter interface

The program with filter interface has the possibility to access the VEMMI command dispatcher. The
command dispatcher forwards the commands to the operative object, which decides to process them or
forward them to the VEMMI local manager. This mechanism works also for the sending direction. The
operative object has no visual effect on the terminal and cannot be activated directly by the user, but the
started program may use the local UI on an application specific basis or through the VEMMI local
manager. All these interfaces of such a program are terminal and implementation dependent and not
further described in this document. If an operative object receives a VEMMI_Close_Object with its own
OIN from the host or it is terminated by the VEMMI local manager, it shall stop and the VEMMI local
manager shall continue. All data exchange channels to the VEMMI local manager are disabled.

There may be several operative objects with filter interface open at a given time.
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Figure 42: Programs with filter interfaces

Attributes:

- Closed: The element shall be in the closed state;
- ProgName: The name of the program;
- ProgFilename: Filename of the program;
- ProgDescr: Description of the program;
- ProgAbout: Source identification of the program;
- ProgPar: List of parameters for the start of the program (optional);
- ProgType: Program type, standalone or with filter interface;
- DefaultDirectory: Default working directory for the operative object.

7.9 Bitmap Resource Object

- description: A bitmap object contains either the bitmap definition itself or only a reference to a file
with the bitmap definition;

- Direct Bitmap Definition: The pixel matrix contains indices into the colour table or the RGB-
components for each pixel. The attribute list is composed of two parts: the first is common to the
two cases and the second is dependent from the colour definition. The first part is as follows:

a) BmWidth: Width of the bitmap in pixel;
b) BmHeight: Height of the bitmap in pixel;
c) BmCompr: Compression type for the colour list. This value is currently not defined and only

uncompressed colour lists can be specified(optional).

In the case of a colour index definition the second part of the attribute list is as follows:

a) BmBitsPerPixel: Number of bits per pixel. The value shall be 1, 4 or 8 (optional, default value:
1);

b) BmClrEntry: The colour table index on which all other colour indices from the index list are
based(optional, default value: 0);

c) BmClrIxList: List of colour indices. This list contains BmWidth * BmHeight colour indices.
Depending on the number of bits per pixel, each colour index is in the range
0 to 2BmBitsPerPixel - 1. The colour indices are ordered row by row from left to right. The start
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point is the lower left corner of the bitmap. A colour index 0 means a colour table index equal
to BmClrEntry. All other indices are relative to BmClrEntry.

In the case of a colour component definition the second part of the parameter list is as follows:

a) BmBitsPerComp: Number of bits per colour component. The value shall be in the range 1 to
8 (optional, default value: 8);

b) BmClrCompList: List of RGB triplets. This list contains BmWidth * BmHeight triplets. The
RGB-triplets are ordered row by row from left to right. The start point is the lower left corner
of the bitmap.

- File Bitmap Definition: Such a bitmap is defined from a picture file stored in the terminal. The file
has been transmitted with a resource-file transfer service or by other means. A parameter indicates
the file coding. If the file could not be converted in a suitable bitmap (upon VEMMI_Create_Object)
the terminal shall send an error message to the host:

a) Filename: Name of the file with the bitmap definition;
b) PictFileType: Type of the picture file (one of JPEG, GIF, BMP).

The picture files conform to one of the following specifications:

a) JPEG: Baseline system from ISO/IEC 10918 [16];
b) GIF: Graphics Interchange Format (sm) Version 89a. CompuServe Incorporated Columbus,

Ohio, USA. Although the version 89a is referenced a terminal has to support only the
functions contained in the version 87;

c) BMP: Microsoft Windows Device-Independent Bitmap (DIB) with RLE4, RLE8 and 1, 4, 8 or
24 bits per pixel.

7.10 Videotex Resource Object

- Description: A Videotex object contains either the Videotex content itself or only a reference to a file
with the Videotex content.

Attributes:

- VTX: VTX content;
- Filename: Name of the file with the VTX content.

7.11 Text Resource Object

- description: This object defines text content as a resource which can be referenced via the TIN. It
contains either the text content itself or a reference to a file with the text content. In both cases the
text content can contain in-text attributes, with references to font resource objects.

Attributes - Direct Text Resource Definition

- Text: Text;
- FIN: Reference to a font resource object.

Attributes - File Text Resource Definition

- Filename: Name of the file with the text content;
- TextFileType: One of text or references to a font resource objects and text.

7.12 Font resource object

This object combines a set of text attributes in on font resource which can be referenced via the FIN.

Attributes:

- FnFamily: The font family: SWISS, ROMAN or FIXFONT. (optional, default value: SWISS);
- FnHeight: Character height. (optional, default value: 10);
- FnBold: Character weight bold (optional);
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- FnUnderline: Underlined (optional);
- FnItalic: Italic (optional);
- FnColour: Font colour: colour index. (optional, default: black).

7.13 Metacode object

The metacode object contains VEMMI commands. This object provides an easy way to avoid
unnecessary dialogue steps with the host application. If a VEMMI_Open_Object is applied to a metacode
object the terminal copies all commands of the metacode object on top of the logical command input
queue. The next command read from the command input queue is the first command from the metacode.
The commands (the content of the metacode object) are processed in the same way as if they were
received from the host application. For the content of the metacode object the following restrictions apply:

- the creation of a metacode object is not allowed;
- only host commands are allowed;
- a VEMMI_Open_Object command of another metacode object is not allowed (a

VEMMI_Open_Blocking_Object is allowed).

Attributes:

- VEMMICommands: VEMMI commands.

7.14 Sound Object

The purpose of this object is to link files with sound/audio content to the application. A parameter indicates
the sound format. Opening the object starts the sound processing. At the end the object is automatically
closed.

Attributes:

- Closed: The initial state of the object shall be closed;
- Filename: Filename;
- SoundForm: Sound format ( one of: WAVE, MIDI, ETS 300 149).

7.15 Video Object

The purpose of this object is to link files with moving video content to the application. Opening the object
starts the video display process. At the end the object is automatically closed. The object defined at the
time being has no specific video format. This shall be negotiated outside.

Attributes:

- Closed: The initial state of the object shall be closed;
- Filename: Filename.

7.16 Multimedia Resource Object

- Description: A Multimedia object contains a reference to a file with the Multimedia content.

Attributes:

- Filename: Name of the file with the Multimedia content.
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7.17 The VEMMI content encoding identification catalogue

The following table provides an overview of content encoding identifications defined in the VEMMI
catalogue:

Table 38: VEMMI content encoding identification catalogue

For text data encoding:
CCITTT Recommendation T.51 [2] String as defined in annex A
CCITTT Recommendation T.52 [3]
VEMMI high quality text
ISO 8859 [13] series. (fully formed accented char.)
ISO/IEC 10646-1 [15] (multi-octet character set (Unicode))
Shift JIS Code (for Japanese characters)

For still picture data encoding:
ETS 300 177 [25] for photographic data.
ISO/IEC 10918 [16] (JPEG)
VEMMI device independent bitmap
Graphics Interchange Format (sm) Version 89a. CompuServe
Incorporated Columbus, Ohio, USA
Microsoft Windows device-independent bitmap (DIB) with
RLE4, RLE8 and 1, 4, 8 or 24 bits per pixel

For graphic data encoding:
ETS 300 073 [21] (Geometric Display, Videotex)
ISO/IEC 8632 [12] (CGM)

For audio data encoding:
ETS 300 149 [24] (Audio syntax, Videotex)
WAVE format
MIDI format

For moving picture data
encoding and audiovisual data
encoding:

ISO/IEC 11172 -1 [17] (MPEG1 System)
ISO/IEC 11172 -2 [18] (MPEG1 Video)
ISO/IEC 13818 -1 [27] (MPEG2 System)
ISO/IEC 13818 -2 [28] (MPEG2 Video)
ITU-T Recommendation H.261 [7] (Video codec for AV
services)
ITU-T Recommendation H.320 [8] (videophone)
AVI
Quicktime

For multimedia data encoding
HTML

8 Complete coded representation of the VEMMI

8.1 Introduction

This clause contains the syntax notation, the VEMMI header and the syntax of the commands, objects,
components and local actions.

8.2 Notation used

The notation a/b with a, b = 0 to 15 denotes a byte value in hexadecimal.

The bits in a byte are noted b8, b7, to , b1. The bit b8 is the high-order or most significant bit.
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The syntax of the commands, objects, components and local actions is defined with a formal grammar
using the following notation:

<symbol> - nonterminal
<SYMBOL> - terminal
<a/b> - terminal, hexadecimal value: a, b = 0 to 15
<symbol>* - 0 or more occurrences
<symbol>+ - 1 or more occurrences
<symbol>o - optional ( 0 or 1 occurrences )
<symbol>n* - 0 or 1 or 2 or n occurrences
<symbol-1>:= <symbol-2> - symbol-1 has the syntax of symbol-2
<symbol-1> <symbol-2> - symbol-1 always precedes symbol-2
<symbol-1> | <symbol-2> - symbol-1 or alternatively symbol-2
<symbol-1: symbol-2> - symbol with the stated value
{ comment } - explanation of a symbol or production

The following list specifies the precedence of operators. The highest precedence level is at the top of the
list. Precedence levels are separated by lines.

Operator Meaning
* 0 or more occurrences
+ 1 or more occurrences
o optional ( 0 or 1 occurrences )
n* 0 or 1 or 2 or .. or n occurrences
| alternative

<..> <..> sequence
:= production

8.3 Overall switching of coding environment

ISO/IEC 9281 [14] describes a technique for identifying coding methods. The Videotex VEMMI mode is
one of the coding methods identified by ISO/IEC 9281 [14]. The diagram in figure 43 gives an overview of
the relationship between the Videotex data syntaxes and ISO/IEC 9281 [14] coding environments.

From an ISO 2022 [10] environment, a Videotex data syntax can be explicitly entered using an ESC 2/5 F
code. This is also the mechanism used for entering from an ISO 2022 environment [10] into an
ISO/IEC 9281 [14] environment. The F code "final byte" is allocated and registered, according to
ISO 2022 [10] by the registration authority ISO 2375 [11]. According to ISO 2375 [11], appendix B, the
Videotex data syntaxes are regarded as "coding systems different to that of ISO 2022 [10]". The F codes
are 4/3 for CCITT data syntax I, 4/4 for CCITT data syntax II and 4/1 for CCITT data syntax III.

NOTE: The name of the terminal symbols in clause 8 does not refer to concepts presented in
clause 4 to clause 7.
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Data Syntax I
(D I)

R an kE S C  2 /5  4 /3 E S C  7 /0  C M Ip

E S C  7 /0  C M Ia

E S C  7 /0  C M Iv

A lpha  P ho to

P h oto grap h ic

A u d io

V E M M I

Data Syntax II

E S C  2/5  4 /4 (P 1 -4 )

E S C  7 /0  C M Iv

E S C  7 /0  C M Ia

E S C  7 /0  C M Ip

U S  4 /0  .. 7 /1 5

U S  3 /4  U S  3 /5

U S  2 /0  .. 3 /1 5
O th er

O ld  ph o to

A M  dis p lay

P h oto grap h ic

A u d io

V E M M I

T .5 0  bas ed text

Data Syntax III

other

E S C  7 /0  C M Ip

ES C  7/0  C M Ia

E S C  7/0  C M Iv

A lp ha g eo

P h oto g rap h ic

A u dio

V E M M I

E S C  2 /5  4 /1

ES C  2/5 F

Key to figure 43

DI is data syntax I specific
P is a profile in data syntax II
F is a final code assigned by the ISO 2022 [10] registration authority
CMIa is any Coding Method Identifier (CMI) for Videotex audio data
CMIp is any CMI for Videotex photographic data
CMIv is any CMI for VEMMI data

Figure 43: Global switching mechanism
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Rank is data syntax I specific.

Since a Videotex terminal usually begins operation, by default, in one of the data syntaxes, it shall not be
mandatory to first send an ESC 2/5 F code (F is 4/1, 4/3 or 4/4). The diagram shows how these codes can
be used to switch a Videotex terminal supporting more than one data syntax, from one data syntax to
another.

8.3.1 Switching into the VEMMI mode

A Videotex terminal operating within one of the data syntaxes (i.e., a coding system other than that
described by ISO 2022 [10]) can enter the ISO/IEC 9281 [14] environment of the VEMMI mode according
to their own rules. In the case of Videotex for switching into the ISO/IEC 9281 [14] environment of the
VEMMI mode, the Picture Code Delimiter (PCD) of the first Picture Element (PE) is used. The CMI is used
to distinguish between picture coding methods. In the case of Videotex this shall be, for example, a
distinction between audio, Photographic and VEMMI data.

NOTE: As ISO/IEC 9281 [4] was developed especially for the identification of picture coding in
ISO 2022 [10] environments, the word "picture" is often used in the definitions, even
when applicable to e.g. "audio". ISO has already accepted use of ISO/IEC 9281 [14]
for non-pictorial information.

8.3.2 ISO/IEC 9281 syntax structure

The high level format of the syntax is as defined in ISO/IEC 9281 [14].

In the following description of the syntax, 8 bit coding is assumed, thus the word "byte" is used with bit 8
set to zero. The coding described in ISO 9281 [14] is also valid in a 7 bit environment. In this case the
word "byte" shall be interpreted as meaning a "7 bit byte" and the most significant bit, bit 8, shall not be
used.

The structure of the coding is as follows:

<VEMMI>:: = <PE>
PE:: = PCE PDE
PCE:: = PCD CMI LI
PCD:: = 01/11 07/00
CMI:: = PM PI
PM:: = 02/05 (Videotex VEMMI mode)
PI:: = 04/00
LI 1):: = x111 1111<byte1><byte2>...<byte n>
<byte k>:: = x10D DDDD (k=n)

| x11D DDDD (1=<k<n)
x indicates don't care.
D indicates binary number 0 or 1.

Each piece of information, in this case encoded VEMMI data, is encoded as one or more Picture Entities
(PEs). A PE (see figure 44) consists of Picture Control Entity (PCE) which is followed by the actual data
packed into a Picture Data Entity (PDE).

                                                     

1 ISO/IEC 9281 [14], subclause 5.2.7 should be consulted for the description of the Length Indicator.
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 Picture Entity
 Picture Control Entity

Coding Picture
Picture CMI Method Data
Code Identifier Length Entity

Delimiter Indicator

Picture Picture
Mode Identifier

Figure 44: Structure of a PE

NOTE 1: In Videotex VEMMI mode, the size of a file containing an encoded VEMMI object can
be rather large. One object may be transmitted in several PEs. The use of several PEs
could facilitate the termination of the transmission of an object by the user.

The PCE consists of a PCD and a CMI followed by a Length Indicator (LI).

The PCD is a fixed sequence of two octets: 01/11 07/00.

NOTE 2: 01/11 is ESC.

The CMI consists of a PM octet, followed by a PI. For VEMMI the PM is 02/05 as registered by
ISO 9281 [14]. The PI octet has the value 04/00.

The LI specifies the number of bytes in the PDE Its encoding is described in the following (except from
ISO/IEC 9281-1 [14]):

b8 b7 b6 b5 b4 b3 b2 b1
X ONE ZERO or

ONE

Bit b8 of each byte shall be ignored. Bit b7 of each byte shall be set to ONE. Bit b6 of each byte shall be
the Extension Flag. The LI value is specified in binary notation as an unsigned number using bits b5 to b1
with the weights 2

4
, 2

3
, 2

2
, 2

1
 and 2

0
, respectively. If the value of LI is less than or equal to 31 it shall be

represented by one byte and the Extension Flag shall be set to ZERO. If the value of LI is larger than 31 it
shall be represented by more than one byte. The most significant part of this value shall be recorded in the
first byte. The Extension Flag shall be set to ONE in all bytes except the last where it shall be set to
ZERO.

Values of LI:

1 byte: X111 1111
2 byte: 0 ≤ LI ≤ 2

5
 - 1

3 bytes: 2
5
 ≤ LI ≤ 2

10
 - 1

. .

. .
n bytes: 2

5(n-1)
 ≤ LI ≤ 2

5n
 - 1

Examples (the first byte shall always be encoded as 7FHex):

LI = 7FHex+31Dec

X 1 0 1 1 1 1 1
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Second byte LI = 7FHex+33Dec

X 1 1 0 0 0 0 1 X 1 0 0 0 0 0 1

Second byte  Third byte

The VEMMI command structure is specified in subclause 9.1.

8.4 VEMMI Command Syntax

Host Command Command Syntax

VEMMI_Open <open opc> <setup entity>
VEMMI_Close <close opc>
VEMMI_Resume <resume opc> <mode>o
VEMMI_Suspend <suspend opc>
VEMMI_Close_All <close all opc>
VEMMI_Identify_Term_Cap <term cap request opc> <cap request>
VEMMI_Set_Options <set options opc> <text type list>o
VEMMI_Reset_Col_Table <reset col opc>
VEMMI_User_Lock <user lock opc>
VEMMI_User_Unlock <user unlock opc>
VEMMI_Open_Object <open object opc> <oin spec>
VEMMI_Close_Object <close object opc> <oin spec>
VEMMI_Destroy_Object <destroy object opc> <oin spec>
VEMMI_Obj_Access_Disable <access disable opc> <oin spec>
VEMMI_Obj_Access_Enable <access enable opc> <oin spec>
VEMMI_Create_Object <create object opc> <entity create object>
VEMMI_Delete_Outdated_Objects <delete outdated objects opc> <entity versionlist>+
VEMMI_Modify_Component (see also 9.6) <modify comp opc> <entity modify comp>
VEMMI_Obj_Location_Change <object loc change opc> <oin> <xloc> <yloc>
VEMMI_Load_Col_Table <load coltable opc> <entity load coltable>
VEMMI_Open_Application <open appl opc> <entity open appl>
VEMMI_Store_Objects <store objects opc> <oin spec>o
VEMMI_Erase_Objects <erase objects opc> <oin spec>
VEMMI_Open_Blocking_Object <open block object opc> <oin>
VEMMI_Resource-file_Transfer <resource-file transfer opc> <transfer entity>

Terminal Command Command Syntax
VEMMI_Store_Objects_Response <store objects resp opc> <store result>
VEMMI_Object_Retransmission <object retrans opc> <oin> <request type>o
VEMMI_Identify_Term_Cap_Resp <term cap response opc> <cap response>+
VEMMI_Open_Application_Response <open appl resp opc> <entity open appl resp>
VEMMI_User_Data <user data opc> <entity user data>
VEMMI_Error <error opc> <entity errorreport>
VEMMI_Transfer_Acknowledge < resource-file transfer opc> <transfer id> <acknowledge>

NOTE: All values not assigned in the encoding of VEMMI now are reserved for future use.

<setup entity>:= <version> <mode> o
<version>:= <INTEGER> { Version }
<mode>:= <mode opc> <native> | <private 1> { <private n> left for future

extension}
<native>:= <INTEGER: 0> { VEMMI as described in this document }
<private 1>:= <page based>
<page based>:= <INTEGER: 1> <basic page #> <input timeout>o
<basic page #>:= <basic page # opc> <string>
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<input timeout>:= <input timeout opc> <INTEGER> { in seconds }
<cap request >:= <local storage opc> o <data types opc> o <user language opc>

<system information opc> o <file transfer opc> o
<cap response>:= <version><term cap list>
<term cap list>:= <local storage info> o <data type info> o <user language>o

<system information> o <file transfer information> o
<local storage info>:= <local storage opc> <true> | <false>
<data type info>:= <data type opc> <text type> <still picture> <audio> o <graphic> o

<audio visual> o <videotex syntax> o <multimedia type> o
<user language>:= <user language opc> <string> { list of alphabetical language codes

encoded according to ISO 639 Annex B (example: Dutch language:
"Nl") }

<system information>:= <system information opc> <string>
<file transfer information>:= <file transfer opc> <file transfer list>+ <end of list>
<file transfer list>:= <INTEGER: 0> | { unknown }

<INTEGER: 1> | { X-modem }
<INTEGER: 2> | { Y-modem }
<INTEGER: 3> | { Z-modem }
<INTEGER: 4> | { Kermit }
<INTEGER: 5> | { ETS 300 383, ISDN Eurofile }
<INTEGER: 6> { ETS 300 388 ISDN Simple FTAM }
<INTEGER: 7> { ETS 300 075 Processable Data File Transfer }

<text type>:= <text type opc> <text type list> + <end of list>
<still picture>:= <still picture opc> <still picture list> + <end of list>
<graphic>:= <graphic opc> <graphic list> + <end of list>.
<audio>:= <audio opc> <audio type list> + <end of list>

<audio visual>:= <audio visual opc> <audio visual list> + <end of list>
<videotex syntax>:= <videotex opc> <data syntax type> + <end of list>
<multimedia type>:= <multimedia type opc> <multimedia type list> + <end of list>
<text type list>:= <INTEGER: 0> | { T.51String }

<INTEGER: 1> | { reserved }
<INTEGER: 2> | { ISO 8859-1 }
<INTEGER: 3> | { ISO 10646-1 }
<INTEGER: 4> | { Shift JIS code }
<INTEGER: 5> | { ISO 8859-2 }
<INTEGER: 6> | { ISO 8859-3 }
<INTEGER: 7> | { ISO 8859-4 }
<INTEGER: 8> | { ISO 8859-5 }
<INTEGER: 9> | { ISO 8859-6 }
<INTEGER: 10> | { ISO 8859-7 }
<INTEGER: 11> | { ISO 8859-8 }
<INTEGER: 12> | { ISO 8859-9 }
<INTEGER: 13> { ISO 8859-10 }

{the values not used are reserved for extensions of the ISO 8859 series
extensions of the ISO 10646 series
national variations of character sets }

<still picture list>:= <INTEGER: 0> | { T.101 Annex F }
<INTEGER: 1> | { JPEG }
<INTEGER: 2> | { VEMMI DIB }
<INTEGER: 3> | { GIF }
<INTEGER: 4> { MS DIB }

<graphic list>:= <INTEGER: 0> | { ETS 300 073 (Geometric Display, Videotex) }
<INTEGER: 1> { CGM }

<audio type list>:= <INTEGER: 0> | { ETS 300 149 }
<INTEGER: 1> | { WAVE }
<INTEGER: 2> { MIDI }
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<audio visual list>:= <INTEGER: 0> | { ISO 11172-1, If Audio and Video is supported }
<INTEGER: 1> | { ISO 11172-2, If only Video is supported }
<INTEGER: 2> | { ISO 13818-1, If Audio and Video is supported }
<INTEGER: 3> | { ISO 13818-2, If only Video is supported }
<INTEGER: 4> | { H.261 }
<INTEGER: 5> | { H.320 }
<INTEGER: 6> | { AVI }
<INTEGER: 7> { Quicktime }

<multimedia list>:= <INTEGER: 0> | HTML }
<INTEGER: 1> | { HTML 1 }
<INTEGER: 2> | { HTML 2 }
<INTEGER: 3> { HTML 3 }

<entity create object >:= <oin> <save event> <object>
<save event>:= <template> o |

<autostore> o
<object>:= <display object> | <resource object> | <metacode object>
<entity versionlist >:= <timestamp> <oin spec>
<entity load coltable >:= <colour entry> o <col rgb list>
<colour entry>:= <colour entry opc> <INTEGER>
<col rgb list>:= <list spec>
<entity open appl >:= <applid> <appl add data> o <timestamp> <basic page #> o <input

timeout> o
<applid>:= <applid opc> <string>
<appl add data>:= <appl add data opc> <string>
<entity open appl resp >:= <result>
<entity user data >:= <oin> <trigger> <component data> +
<trigger>:= <INTEGER: 0> | { activation of a component }

<INTEGER: 1> { validation of a component }
<component data>:= <cin report> | { for menu choices, push buttons, pop-up menu,

sensitive area, sensitive text }
<text report> | { for text input fields, multimedia area }
<list string report> | { for list box, combo box }
<boolean report> | { for check box, radio button }
<slider report> | { for slider }
<locator report> | { for sensitive are with locator attribute set }
<list index report> { for list box }

<cin report>:= <INTEGER: 0> <cin>
<text report>:= <INTEGER: 1> <cin> <string>
<list string report>:= <INTEGER: 2> <cin> <string>
<boolean report>:= <INTEGER: 3> <cin> <true> | <false>
<slider report>:= <INTEGER: 4> <cin> <slider value> <negative>o
<locator report>:= <INTEGER: 5> <cin> <xloc > <yloc>
<list index report>:= <INTEGER: 6> <cin> <INTEGER>
<entity errorreport >:= <error type> <error oin> o <error cin> o <error com code>o
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<error type>:= <INTEGER: 0> | { general error }
<INTEGER: 1> | { unknown command }
<INTEGER: 2> | { erroneous command }
<INTEGER: 3> | { object syntax error }
<INTEGER: 4> | { unexpected command }
<INTEGER: 5> | { out of memory }
<INTEGER: 6> | { cannot process audio objects }
<INTEGER: 7> | { cannot process video objects }
<INTEGER: 8> | { invalid colour index }
<INTEGER: 9> | { file not found }
<INTEGER: 10> | { conversion to bitmap failed }
<INTEGER: 11> | { cannot process direct colour definition }
<INTEGER: 12> | { operative object was rejected by the user }
<INTEGER: 13> | { out of local storage space }
<INTEGER: 14> | { a closed object has been destroyed }
<INTEGER: 15> | { service not supported }
<INTEGER: 16> | { object not supported }
<INTEGER: 17> | { data content type not supported }
<INTEGER: 18> { VEMMI version not supported }

<error oin>:= <error oin opc> <INTEGER>
<error cin>:= <error cin opc> <INTEGER>
<error com code>:= <error com code opc> <a/b> { a = 2 ..4, b = 0 .. 15 }
<transfer entity>:= <data transfer> | <transfer abort>
<data transfer>:= <INTEGER: 0> <transfer id> <current block number> <block>
<transfer id>:= <INTEGER> { unique transfer identifier for each file }
<current block number>:= <INTEGER> { from one to the total number of blocks }
<current block data length>:= <INTEGER>
<block>:= <file&block> | <current block>
<file&block>:= <filespec> <current block>
<filespec>:= <filename><creation date> <file length> <total number of blocks>
<creation date>:= <string> { in the format YYYYMMDDHHMMSS }
<file length>:= <INTEGER>
<total number of blocks>:= <INTEGER>
<transfer abort>:= <INTEGER: 1> <transfer id>
<current block>:= <current block opc> <current block data length> <current block

data>
<acknowledge>:= <INTEGER: 0> | { transfer successful }

<INTEGER: 1> | { transfer abort, no further information }
<INTEGER: 2> | { transfer abort, invalid filename }
<INTEGER: 3> | { transfer abort, directory not found }
<INTEGER: 4> | { transfer abort, access not allowed }
<INTEGER: 5> | { transfer abort, filesize exceeds allowed space }
<INTEGER: 6> | { transfer abort, protocol error }

<current block data >:= <a/b>+ { a,b = 0 to 15 }

8.5 Objects, components

<display object>:= <application bar> | <button bar> | <pop-up menu> | <dialogue box> |
<operative object> | <sound object> | <video object> | <message
box>

<application bar >:= <appl bar opc> <application bar body> <menu item> +
<application bar body>:= <ypos> o <closed> o <notaccessible> o <defactive> o <vertical> o
<menu item>:= <bar menu choice> <pull down menu item>
<bar menu choice>:= <bar menu choice opc> <menu choice>
<pull down menu item>:= <pull down menu choice> <casc menu choice>
<pull-down menu choice>:= <pull down menu choice opc> <menu choice> <separated> o
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<casc menu choice>:= <casc menu choice opc> <menu choice> <separated> o
<menu choice>:= <cin> <notaccessible> o <text> <locactact>o <locactval> o
<button bar >:= <button bar opc> <button bar body> <push button comp> +
<button bar body>:= <xpos> <ypos> <closed> o <notaccessible> o <vertical> o

<defactive> o <modal> o <title> o
<push button comp>:= <push button comp opc> <cin> <height> o <width> o <closed> o

<notaccessible> o <button> <locactact> o <locactval> o
<pop-up menu >:= <pop-up menu opc> <pop-up menu body> <pop-up menu

choice> +
<pop-up menu body>:= <xpos> <ypos> <closed> o <notaccessible> o <title> o <title font> o

<defactive> o <m odal> o
<pop-up menu choice>:= <pop-up menu choice opc> <menu choice> <separated> o <casc

menu choice>
<dialogue box> := <dialogue box opc> <dialogue box body> < dialogue box

components >*
<dialogue box components>:= <separator> | <frame> | <graphic output area> | <text area> | <text

input field> | <box push button> | <check box> | <radio button><list
box> | <combo box> | <slider> | <sensitive area> | <text
component> | <sensitive text> | <multimedia area>

<dialogue box body>:= <xpos> o <ypos> o <width> o <height> o <closed> o
<notaccessible> o <no border> o <title> o <defactive> o <modal> o
<maximizable> o <background> o <store creation values> o

<background>:= <colour> | <bitmapped>
<bitmapped>:= <bin reference> <bitmap disptype> o <colour> o
<separator>:= <separator opc> <cin> <xpos> o <ypos> o <width> o <height> o

<closed> o <vertical> o <colour> o
<frame>:= <frame opc> <cin> <xpos> o <ypos> o <width> o <height> o

<closed> o <label> o <label font> o <colour> o
<graphic output area>:= <graphic output area opc> <cin> <xpos> o <ypos> o <width> o

<height> o <closed> o <graphic type>
<graphic type>:= <bitmap> | <videotex>
<bitmap>:= <output disp type> o <bin reference>
<output disp type>:= <bitmap disp type> |

<mapped>
< mapped>:= <mapped opc> <xpos> o <ypos> o
<videotex>:= <data syntax type> <direct videotex content> | <bin reference>
<data syntax type>:= <INTEGER: 0> | { T.101 Annex B }

<INTEGER: 1> | { T.101 Annex C, Profile 1 }

<INTEGER: 2> | { T.101 Annex C, Profile 2 }
<INTEGER: 3> | { T.101 Annex C, Profile 3 }
<INTEGER: 4> | { T.101 Annex C, Profile 4 }
<INTEGER: 5> | { T.101 Annex C, Profile 5 }
<INTEGER: 6> { T.101 Annex D }

<direct videotex content>:= <videotex content opc> <nr of vtx bytes> <vtx bytes> +
<nr of vtx bytes>:= <INTEGER> { number of Videotex bytes }
<text area>:= <text area opc> <cin> <xpos> o <ypos> o <width> o <height> o

<closed> o <initial font> o <maxim text> o <no scrolling tools> o
<no format> o <no border> o <text area content> o

<text area content>:= <direct text comp reference> | { cin of a text component }
<in-text> +

<direct text comp reference>:= <direct text comp reference opc> <cin reference>
<text component>:= <text component opc> <cin> <prev text> o <current text> <next

text> o
<prev text>:= <prev text opc> <cin reference> { cin of a text component }
<next text>:= <next text opc> <cin reference> { cin of a text component }
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<current text>:= <current text opc> <tin reference> | { tin of text resource object }
 <in-text> +

<in-text>:= <text> | <in-text string>
<in-text string>:= <fin reference> | { fin of a font resource object }

<sensitive text reference>
<sensitive text reference>:= <cin reference> <text> { cin of a sensitive text component }
<sensitive text>:= <sensitive text opc> <cin> <notaccessible> o <locactact> o

<locactval> o
<text input field>:= <text input field opc> <cin> <xpos> o <ypos> o <width> o <height>

o <closed> o <notaccessible> o <maxim text> o <default text> o
<label> o <label font> o <input type> o <echo type> o <echo char>
o <max char> o <max line> o <multiline> o <input transform> o
<locactact> o <locactval> o

<box push button>:= <box push button opc> <cin> <xpos> o <ypos> o <width> o
<height> o <closed> o <notaccessible> o <button> <locactact> o
<locactval> o

<check box>:= <check box opc> <cin> <xpos> o <ypos> o <width> o <height> o
<closed> o <notaccessible> o <label> o <label font> o <marked> o
<locactact> o <locactval> o

<radio button>:= <radio button opc> <cin> <xpos> o <ypos> o <width> o <height> o
<closed> o <notaccessible> o <label> o <label font> o <group> o
<marked> o <locactact> o <locactval> o

<list box>:= <list box opc> <cin> <xpos> o <ypos> o <width> o <height> o
<closed> o <notaccessible> o <default item> o <sorted> o
<multiple choice> o <locactact> o <locactval> o <report index> o
<arrayed> o <list text unit>

<arrayed>:= <arrayed opc> <def column> + <end of list>
<def column>:= <width> <alignment> o
<list text unit>:= <list text unit opc> <list index> o <cell> + <item locact> o <item

locval> o
<cell>:= <text> <icon reference> o { one cell for each cell of a list item }
<combo box>:= <combo box opc> <cin> <xpos> o <ypos> o <width> o <height> o

<closed> o <notaccessible> o <default item> o <sorted> o <no
drop> o<no consistency> o <no edit> o <max char> o <locactact> o
<locactval> o <combo list text unit>

<combo list text unit>:= <list index> o <text> <icon reference> o <item locact> o <item
locval> o

<icon reference>:= <bin reference>
<slider>:= <slider opc> <cin> <xpos> o <ypos> o <height> o <width> o

<closed> o <notaccessible> o <negative> o <min value>
<negative> o <max value> <increment> o <initial info> o <direct in>
o <vertical> o <locactact> o <locactval> o

<initial info>:= <negative> o <initial value>
<sensitive area>:= <sensitive area opc> <cin> <content associated> o <xpos> o

<ypos> o <width> o <height> o <closed> o <notaccessible> o
<locator> o <locactact> o <locactval> o

<content associated>:= <content associated opc> <associated graphic area reference>

<multimedia area>:= <multimedia area opc> <cin> <xpos> o <ypos>o <width> o
<height> o <closed> o <notaccessible> o <maximizable> o <no
border> o <multimedia content type> o <multimedia content> o
<direct navigation> o <non-controlled mode> o

<multimedia content type>:= <multimedia content type opc> <multimedia content id>
<multimedia content id>:= <INTEGER: 0> { HTML }
<multimedia content>:= <direct data>|

<min reference>
<direct data>:= <direct data opc> <data length> <data>
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<operative object >:= <operative object opc> <closed> o <program filename> <program
name> <program description> <program about> <program
parameter>o <program type> <default directory>o

<sound object >:= <sound object opc> <closed> o <filename> <sound format>
<sound format>:= <INTEGER: 0> | { wave format }

<INTEGER: 1> | { MIDI format }
<INTEGER: 2> { ETS 300 149 }

<video object >:= <video object opc> <closed> o <filename> <audio visual list>
<message box >:= <message box opc> <xpos> o <ypos> o <width> o <height> o

<closed> o <no border> o <title> o <modal> o <message type> o
<max time> o <destroy event> o <no sound> o <attributed text> +

<message type>:= <message type opc> <message>
<message>:= <INTEGER: 0> | { general message }

<INTEGER: 1> | { information message }
<INTEGER: 2> | { warning message }
<INTEGER: 3> { action message }

<destroy event>:= <destroy event opc> <event>
<event>:= <INTEGER: 0> | { destroy by any user action }

<INTEGER: 1> | { destroy by validation of implicit defined button }
<INTEGER: 2> | { destroy by a command from the host }
<INTEGER: 3> | { close by validation of implicit defined button }
<INTEGER: 4> | { close by any user interaction }
<INTEGER: 5> { no implicit destroy event defined }

<max time>:= <max time opc> <INTEGER> { time period in seconds }

<resource object>:= <bitmap object> | <font object> | <text object> |
<videotex object> | <multimedia object>

<bitmap object >:= <bitmap object opc> <bitmap data> | <bitmap file>
<bitmap data>:= <INTEGER: 0> <bmwidth> <bmheight> <bmcompr> o <pixel

definition>
<bmwidth>:= <INTEGER>
<bmheight>:= <INTEGER>
<bmcompr>:= <bmcompr opc> <INTEGER: 0> { no compression }
<pixel definition>:= <index def> | <rgb def>
<index def>:= <index def opc> <bits per pixel> o <colour entry>o <colour list>
<bits per pixel>:= <bits per unit>
<colour entry>:= <colour entry opc> <INTEGER>
<colour list>:= <list spec> { bmwidth * bmheight integers }
<rgb def>:= <rgb def opc> <bits per component> o <component list>
<bits per component>:= <bits per unit>
<component list>:= <list spec> { 3 * bmwidth * bmheight integers }
<bits per unit>:= <bits per unit opc> <INTEGER>
<bitmap file>:= <INTEGER: 1> <filename> <pict file type>
<pict file type>:= <INTEGER: 0> | { JPEG }

<INTEGER: 1> | { GIF }
<INTEGER: 2> { BMP }

<font object >:= <font object opc> <fn family> o <fn height> o <fn bold> o <fn
underline> o <fn italic> o <fn colour> o

<fn family>:= <fn family opc> <family>
<family>:= <INTEGER: 0> | { SWISS }

<INTEGER: 1> | { ROMAN }
<INTEGER: 2> { FIXFONT }

<fn height>:= <fn height opc> <INTEGER>
<fn bold>:= <fn bold opc>
<fn underline>:= <fn underline opc>
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<fn italic>:= <fn italic opc>
<fn colour>:= <fn colour opc> <INTEGER>
<text object >:= <text object opc> <in-text> + | <text file>
<text file>:= <file name> <text file type>
<text file type>:= <INTEGER: 0> | { "in-text" format }

<INTEGER: 1> { plain text, incl. CR, LF }
<videotex object >:= <videotex object opc> <data syntax type> <direct videotex content>

| <filename>
<multimedia object >:= <multimedia object opc> <multimedia content type> o <filename>

<metacode object>:= <metacode object opc> <command> + <command end>

8.6 Local actions

<locactact>:= <locactact opc> <local action> +
<locactval>:= <locactval opc> <local action> +
<local action>:= <report command> | <general command> | <specific command>
<report command>:= <loc command opc> <report type>
<report type>:= <INTEGER: 0> | { report OIN, CIN }

<INTEGER: 1> | { report current value }
<INTEGER: 2> | { report all values }
<INTEGER: 3> { report all changed values }

<general command>:= <loc command opc> <general command type>
<general command type>:= <INTEGER: 50> | { user lock }

<INTEGER: 51> | { set initial values and states in the parent obj.}
<INTEGER: 52> { No operation }

<specific command>:= <loc command opc> <specific command type> <oin spec> | <cin
spec>

<specific command type>:= <INTEGER: 100> | { open components of the parent object }
<INTEGER: 101> | { close components of the parent object }
<INTEGER: 102> | { open objects }
<INTEGER: 103> | { close objects }
<INTEGER: 104> | { change comp. of the parent obj. to inacc. }
<INTEGER: 105> | { change comp. of the parent obj. to access. }
<INTEGER: 106> | { destroy objects }
<INTEGER: 107> { open blocking object (only one) }

9 Encoding

9.1 Command structure

The PDE of one PE carries one or more VEMMI commands. The last VEMMI command of one PE can be
split on more than one PE. This is indicated with the first byte of the PDE, called "more data indicator".
The syntax of the PDE is as follows:

<PDE>:= <mdi><command> +
<mdi>:= <2/14> | {; MORE, no translation }

<3/14> | {; MORE, 3 in 4 encoding }
<4/14> | {; MORE, 7 shift encoding }
<2/15> | {; LAST, no translation }
<3/15> | {; LAST, 3 in 4 encoding }
<4/15> {; LAST, 7 shift encoding }

- "MORE": the last command is only partly contained in this PE, it continues in the next PE;
- "LAST": the last command is completely contained in the PE.



Page 106
ETS 300 709: September 1996

The value of the MDI is used to identify the transcoding algorithm used to transcode the VEMMI code in
"<command>+>". The following three transcoding algorithms are defined:

- no translation;
- 3 in 4 encoding (see ITU-T Recommendation T.101 [4]);
- 7 shift encoding (see ITU-T Recommendation T.101 [4]).

The translation mode can be different in both directions.

NOTE: Splitting commands over more than one PE is not reflected in the grammar
specification.

One or several VEMMI commands are preceded by the VEMMI-Header. This header is used to identify
VEMMI data in the data stream of the standard application. Such a sequence of VEMMI commands is
called the Data Entity (DE). The last command of a data entity can be split across more than one data
entity. This is indicated by the MDI. Examples:

Three commands contained in one data entity:

VEMMI
Header

MDI
(last)

Data Entity

Command 1 Command 2 Command 3

Three commands in two data entities, one is split:

VEMMI
Header

MDI
(more)

Data Entity

Command 1 Command 2
(first part)

VEMMI
Header

MDI
(last)

Data Entity

Command 2
(last part)

Command 3

A VEMMI_Create_Object command creating a Metacode object shall always be transmitted in a complete
sequence of PEs.

9.2 Object, component and attribute structure

Object structure:

The objects have one of the following structures:

- <object code> <object body> <component>*;
- <object code> <attribute>+;
- <object code> <command>+.

Component structure: <component code> <cin> <attribute>*

Attribute structure:

The attributes have one of the following structures:

- <attribute code> { the attribute is defined only by the code };
- <attribute code, value> { the attribute is defined by the code and the value }
- <attribute> { the attribute is defined by another attribute };
- <attribute code, attribute> { the attribute is defined by the code and another attribute }.
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9.3 Terminal symbols encoding

9.3.1 Opcodes

Opcodes are used to identify the parts of the VEMMI commands. They are used to encode:

- command codes;
- object codes;
- component codes;
- the MDI code;
- attribute codes.

The terminal symbol notation is: <a/b> with a, b = 0 to 15 (hexadecimal notation).

9.3.2 Integers

This format is used to encode non-negative values with no fractional part. An integer consists of a byte
sequence of one or more bytes.

Coding rules:

- bit 8 set to 1 means no extension, it is the last byte of the sequence;
- bit 8 set to 0 and bit 7 set to 1 indicates an extension, it is not the last byte;
- the encoded value is specified:

a) for one byte integers by bits 7 to 1;
b) for multi-byte integers by bits 6 to 1 from all bytes except the last byte, and bits 7 to 1 from

the last byte.

- the most significant part of the value is coded in the first byte;
- the least significant part of the value is coded in the last byte.

Symbols using integers: <INTEGER>
<false>:= <INTEGER: 0>
<true>:= <INTEGER: 1>

EXAMPLE 1: Coded representation of the number 37.

b8 b7 b6 b5 b4 b3 b2 b1
1 0 1 0 0 1 0 1

No
ext

integer value bits

EXAMPLE 2: Coded representation of the number 1741:

Byte 1 b8 b7 b6 b5 b4 b3 b2 b1
0 1 0 0 1 1 0 1

Ext Most significant bits

Byte 2 b8 b7 b6 b5 b4 b3 b2 b1
1 1 0 0 1 1 0 1

No
ext

Least significant bits

9.3.3 Enumerated

This data type denotes a value from a set of standardized values.

They are encoded as integers with the notation: <INTEGER: n> with n as a decimal value.
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9.3.4 Strings

This data type denotes a sequence of characters with the following structure:

<string>:= <latin string> | <non latin string> | <unicode string>
<latin string>:= <character> * <end of string>
<character>:= <a/b> | <c/b> | <CR> | <LF> | <ESC> | <SS2>  { a = 2 .. 7, b = 0 to

15, c = 10 to 15 characters coded according ISO.8859 [13]or
CCITT Recommendation T.51 [2] String}

<end of string>:= <9/12> { ST (string terminator) from ISO 6429 [x]}
<CR>:= <0/13>
<LF>:= <0/10>
<ESC>:= <1/11>
<SS2>:= <1/9>
<non latin string>:= <shift JIS string> | <T.52 string>
<shift JIS string>:= <shift JIS character> * <end of JIS string>
<shift JIS character>:= <a/b> | <c/d> <e/f> | <CR> | <LF> { a = 2 to  7, 10 to 13; b = 0 to

15, c = 8,9,14,15; d = 0 to 15; e = 4 to 15; f = 0 to 15}
<end of JIS string>:= <1/11> <5/12> { ST (string terminator) from ISO 6429 [x]}
<T.52 string>:= for further study
<unicode string>:= <uni char> * <end of unicode string> { string according

ISO 10646 [15]-1 (BMP) }
<uni char>:= <a/b a/b> { a = 0 to 15, b = 0 to 15 }
<end of unicode>:= <ST version> | <FF version>
<ST version>:= <0/0> <9/12>
<FF version>:= <F/F> <F/F>

9.3.5 NDC

This data type denotes horizontal or vertical scalar values in the NDC space. A NDC is a fixed point real
number from the range 0.0 (inclusive) to 1.0 (exclusive).

Coding rules:

- a NDC value is coded in a sequence of one or more bytes;
- bit 8 set to 1 means no extension, it is the last byte of the sequence;
- bit 8 set to 0 and bit 7 set to 1 indicates an extension, it is not the last byte;
- the encoded value is specified:

a) for one byte NDC by bits 7 to 1;
b) for multi-byte NDC by bits 6 to 1 from all bytes except the last byte and bits 7 to 1 from the

last byte.

- the binary radix point is not coded, but assumed to be:

a) for one byte NDC next left to the bit 7;
b) for multi-byte NDC next left to bit 6 in the first byte.

- the most significant part of the value is coded in the first byte;
- the least significant part of the value is coded in the last byte.

The terminal symbol notation is: <NDC>.
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EXAMPLE 1: Coded representation of the number 0,312510 = 0,01012

b8 b7 b6 b5 b4 b3 b2 b1
1 0 1 0 1 0 0 0

No
ext

NDC value bits

EXAMPLE 2: Coded representation of the NDC 0,20507812510 = 0,0010001012

Byte 1 b8 b7 b6 b5 b4 b3 b2 b1
0 1 0 0 1 1 0 1

Ext. Most significant bits

Byte 2 b8 b7 b6 b5 b4 b3 b2 b1
1 0 0 1 0 0 0 0

No
ext

Least significant bits

9.4 Attributes and lower level symbols

<alignment>:= <alignment opc> <INTEGER: 0> | { left }
<INTEGER: 1> | { right }
<INTEGER: 2> { centred }

<associated graphic area reference>:= <cin reference>
<attributed text>:= <text> | <fin reference>
<autostore>:= <7/8>
<bin>:= <INTEGER>
<bin reference>:= <11/8> <retransmission rule B> o <bin>
<bitmap disp type>:= <11/11> <INTEGER: 0> |{ stretched }

<INTEGER: 1> | { centred }
<INTEGER: 2> { tiled }

<block index>:= <12/4> <INTEGER>
<button>:= <button text> | <bin reference>
<button text>:= <label font> o <text>
<cin>:= <INTEGER>
<cin reference>:= <12/7> <INTEGER>{ reference to a component }
<cin spec>:= <in spec>+
<closed>:= <6/8>
<colour>:= <11/10> <INTEGER>{ colour index }
<command end>:= <2/15>
<data>:= <a|a> {a=0 to 15}
<data length>:= <INTEGER>
<defactive>:= <11/7> <INTEGER>{ the referenced cin }
<default directory>:= <14/2> <string>
<default item>:= <12/3> <INTEGER>
<default text>:= <text>
<delete list item>:= <6/12>
<direct navigation>:= <6/3>
<direct in>:= <7/10>
<display character>:= <a/b>{ a = 2 to 15, b = 0 to 15}
<echo char>:= <14/6> <display character>
<echo type>:= <12/0><INTEGER: 0> | { local echo }

<INTEGER: 1> | { no echo }
<INTEGER: 2> { echo defined character }
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<end of list>:= <3/15>
<filename>:= <14/8> <string>
<fin>:= <INTEGER>
<fin reference>:= <10/13> <INTEGER>{ reference to a font resource object }
<group>:= <12/2> <INTEGER>
<height>:= <9/2> <NDC>
<in spec>:= <list spec> | <range spec> | <one in>

{ defines a list, a range or a single identification number }
<list spec>:= <11/0> <INTEGER> + <end of list>
<range spec>:= <13/0> <from> <to>
<from>:= <INTEGER>
<to>:= <INTEGER>
<one in>:= <13/5> <INTEGER>
<increment>:= <12/10> <INTEGER>
<initial font>:= <11/12> <INTEGER>{ the referenced fin }
<initial value>:= <12/11> <INTEGER>
<input type>:= <11/14> <INTEGER: 0> | { any character }

<INTEGER: 1> | { alphabetic }
<INTEGER: 2> | { numeric }
<INTEGER: 3> { alphanumeric }

<input transform>:= <11/5><INTEGER: 0> | { no transformation }
<INTEGER: 1> | { to lower }
<INTEGER: 2> { to upper }

<item locact>:= <7/13> <local action> +
<item locval>:= <7/14> <local action> +
<label font>:= <11/13> <INTEGER>{ the referenced fin }
<label>:= <14/5> <string>
<list index>:= <12/4> <INTEGER>
<locator>:= <6/0>
<marked>:= <7/1>
<max char>:= <12/1> <INTEGER>
<max line>:= <12/5> <INTEGER>
<max value>:= <12/9> <INTEGER>
<maxim text>:= <7/0>
<maximizable>:= <6/14>
<min value>:= <12/8> <INTEGER>
<min reference>:= <10/14> <retransmission rule B> o <INTEGER>
<modal>:= <6/12>
<multiline>:= <6/15>
<multiple choice>:= <7/2>
<negative>:= <7/9>
<no border>:= <6/13>
<no consistency>:= <7/15>
<no drop>:= <7/3>
<no edit>:= <7/4>
<no format>:= <7/6>
<no scrolling tools>:= <7/5>
<no sound>:= <7/11>
<non-controlled mode>:= <7/4>
<notaccessible>:= <6/11>
<num blocks>:= <10/8> <INTEGER>
<oin>:= <INTEGER>
<oin spec>:= <in spec> + { defines object identifiers }
<output height>:= <9/4> <NDC>
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<program about>:= <string>
<program description>:= <string>
<program filename>:= <filename>
<program name>:= <string>
<program parameter>:= <program parameter opc> <string>
<program type>:= <13/1> <INTEGER: 0> | { standalone program }

<INTEGER: 1> { program with filter interface }
<report index>:= <6/2>
<result>:= <true> | <false>
<request type>:= <11/6> <INTEGER: 0> | { object request }

<INTEGER: 1> | { request for resource-file }
<INTEGER: 2> { request for text component }

<retransmission rule B>:= <6/15>
<scrolling tools>:= <11/1> <INTEGER: 0> | { terminal dependent }

<INTEGER: 1> | { two column scrolling }
<INTEGER: 2> { two row scrolling }

<slider value>:= <INTEGER>
<store result>:= <true> | <false>
<separated>:= <6/10>
<sorted>:= <7/12>
<template>:= <7/7>
<text>:= <14/3> <string>
<timestamp>:= <12/14> <INTEGER>
<tin reference>:= <10/15> <INTEGER> { reference to a text resource object }
<title font>:= <11/9> <INTEGER> { the referenced fin }
<title>:= <14/4> <string>
<vertical>:= <6/7>
<vin reference>:= <10/12> <retransmission rule B> o <INTEGER>
<width>:= <9/3> <NDC>
<xloc>:= <NDC>
<xpos>:= <9/0> <NDC>
<yes/no>:= <true> | <false>
<ypos>:= <9/1> <NDC>
<yloc>:= <NDC>
<vtx byte>:= <a/a> {a= 0 to 15}
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9.5 Opcodes

In the following two tables, the suffix "opc" from the symbols of the command syntax specification is
omitted.

The code positions currently not used are reserved for future extensions.

Table 39: Host commands opcodes

2 3

0 open create object
1 close delete outdated objects
2 resume modify component (see also 9.6.)
3 suspend obj location change
4 close all load coltable
5 reset col open application
6 user lock store objects
7 user unlock erase objects
8 open object open blocking object
9 close object resource-file transfer
10 destroy object term cap request
11 access disable

12 access enable set options
13

14

15

Table 40: Terminal commands opcodes

2 3
0 store objects resp
1 object retrans
2 open appl resp
3 user data
4 error
5
6 term cap resp
7
8
9 resource-file transfer
10
11
12
13
14
15

NOTE: The following tables contain symbols which have the same code. Their names are
separated with a "/".
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Table 41: Opcodes (part 1)

Objects "End"-codes Components
2 3 4 5

0 application bar bar menu choice,
menu choice

slider

1 button bar pull-down choice text component
2 pop-up menu push button

comp
sensitive text

3 dialogue box pop-up choice casc menu
choice

4 multimedia object separator multimedia area
5 operative object frame
6 sound object graphic output

area
7 video object text area
8 message box text input field
9 metacode object box push button
10 bitmap object check box
11 font object radio button
12 text object list box
13 videotex object combo box
14 command end sensitive area
15 end of list
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Table 42: Opcodes (part 2)

Boolean attributes, higher layer
symbols

Coordinates,
dimensions

6 7 9
0 fn bold/

locator
maxim text/
arrayed

xpos

1 fn underline/
local storage

marked/
list text unit

ypos

2 fn italic/
report index

multiple choice/
direct text comp
reference

height

3 index def/
direct navigation

no drop/
content
associated

width

4 rgb def/
alignment

no edit/non-
controlled mode

output height

5 locactact no scrolling tools
6 locactval no format
7 vertical template
8 closed autostore
9 mode negative
10 separated direct in/

more blocks
11 notaccessible no sound/

store creation
values

12 modal/delete list
item

sorted/direct data end of string

13 no border item locact
14 maximizable item locval
15 multiline/

retransmission rule
B

no consistency
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Table 43: Opcodes (part 3)

Integer attributes String attrib.
10 11 12 13 14

0 fn family list spec echo type range spec applid/
user language

1 fn height/
data types

error oin/
scrolling tools

max char program type appl add data/
system
information

2 fn colour/
text types

error cin/
multimedia type

group prev text default directory

3 bmcompr/
still picture

error com code default item current text text

4 bits per unit/
videotex

local commands list index/
block index

next text title

5 colour entry/
audio

input transform max line one in label

6 graphic request type multimedia
content type

echo char

7 audiovisual defective cin reference vtx content
8 num blocks/

file transfer
bin reference min value filename

9 message type title font max value program
parameter

10 destroy event colour increment current block
11 default vtx bitmap disptype initial

value/mapped
12 vin reference initial font max time basic page #
13 fin reference label font input timeout
14 min reference input type timestamp
15 tin reference

9.6 Syntax of the VEMMI_Modify_Component

VEMMI_Modify_Component is used to:

- modify existing components or attributes;
- add one or more new components to an existing object.

All attributes which are modifiable have respectively their higher symbol definitions summarised in the
following:

attributed text echo char label marked text
bin reference echo type label font message tin reference
cin reference group destroy event min value title
closed increment list text unit negative graphic type
colour initial font locactval next text
current text initial info locactact no sound
default item input type max char notaccessible

The modification of attributes is achieved by replacing the old value with a new value. There is no partial
modification of attributes. Only the transmitted attributes are applied; the attributes that are not transmitted
remain unchanged.

The modification of boolean attributes is achieved by transmitting the same attribute again. The host
application can either set or reset the value for a boolean attribute.

In order to set a boolean attribute, the host application shall transmit the attribute once (this is equivalent
to the object creation syntax). In order to reset a boolean attribute, the host application shall transmit the
attribute twice immediately following each other.
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In the following example a pop-up menu offers four choices to the user, two accessible (CINs 35, 36) and
two not accessible (CINs 37, 38):

Start New Game
Beginner Level
Intermediate Level
Advanced Level

Upon reception of VEMMI_Modify_Component with:

- <oin: 2>;
- <cin: 37> <NotAccessible> <NotAccessible>.

the menu is changed, one inaccessible component is made accessible.

Start New Game
Beginner Level
Intermediate Level
Advanced Level

If VEMMI_Modify_Component adds a new component, the command has the same syntax as
VEMMI_Create_Object. In this case, for the optional attributes the default values are applied. That is the
same rule as VEMMI_Create_Object uses.

Specific requirements for the modification of list items are described in subclause 7.6.1.11 and
subclause 7.6.1.12.

If an object was created without a title, the title attribute shall be ignored in a modify command referencing
this object. If a component was created without a label the label attribute shall be ignored in a modify
command referencing this component.

Based on the above description, the VEMMI_Modify_Component command syntax is as follows:

<entity modify comp >:= <oin> <modify comp> | <new comp> +
<modify comp>:= <modify application bar> | <modify button bar> | <modify pop-up

menu> | <modify dialogue box> <modify message box>
<modify application bar>:= <application bar opc> <modify menu item > *
<modify menu item >:= <menu choice opc> <cin> <notaccessible> 2* <text>o <locactact>

o <locactval> o <separated> 2*
<modify button bar>:= <button bar opc> <title> o <modify push button > *
<modify push button >:= <push button opc> <cin> <closed> 2* <notaccessible>2*

<button> o <locactact> o <locactval> o
<modify pop-up menu>:= <pop-up menu opc> <title> o <modify pop-up choice> *
<modify pop-up choice>:= <pop-up choice opc> <cin> <notaccessible> 2* <text> o

<locactact> o <locactval> o <separated> 2*
<modify dialogue box>:= <dialogue box opc> <modify dialogue box body> o < modify

dialogue box comp > *
<modify dialogue box body>:= <title> o
< modify dialogue box comp>:= <modify separator> | <modify frame> | <modify graphic output

area> | <modify text area> | <modify text input field> | <modify box
push button> | <modify check box> | <modify radio button> |
<modify list box> | <modify combo box> | <modify slider> | <modify
sensitive area> | <modify text component> | <modify sensitive text>
| <modify multimedia area>

<modify separator>:= <separator opc> <cin> <closed> 2* <colour> o
<modify frame>:= <frame opc> <cin> <closed> 2* <label> o <label font> o <colour>o
<modify graphic output area>:= <graphic output area opc> <cin> <closed> 2* <graphic type> o
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<modify text area>:= <text area opc> <cin> <closed> 2* <initial font> o <text area
content> o

<modify text component>:= <text component opc> <cin> <prev text> o <current text> o <next
text> o

<modify sensitive text>:= <sensitive text opc> <cin> <notaccessible> 2* <locactact> o
<locactval> o

<modify text input field>:= <text input field opc> <cin> <closed> 2* <notaccessible> 2*
<default text> o <label> o <label font> o <input type> o <echo type>
o <echo char> o <max char> o <locactact> o <locactval> o

<modify box push button>:= <box push button opc> <cin> <closed> 2* <notaccessible> 2*
<button> o <locactact> o <locactval> o

<modify check box>:= <check box opc> <cin> <closed> 2* <notaccessible> 2* <label> o
<label font> o <marked> 2* <locactact> o <locactval> o

<modify radio button>:= <radio button opc> <cin> <closed> 2* <notaccessible> 2* <label> o
<label font> o <marked> 2* <locactact> o <locactval> o

<modify list box>:= <list box opc> <cin> <closed> 2* <notaccessible> 2* <default item>
o <locactact> o <locactval> o <modify list text unit> *

<modify list text unit>:= <list text unit opc> <list index> <change or delete>
<change or delete>:= <change> |

<delete list item> o
<change>:= <cell> + <item locact> o <item locval> o
<modify combo box>:= <combo box opc> <cin> <closed> 2* <notaccessible> 2* <default

item> o <locactact> o <locactval> o <modify combo list text unit>*
<modify combo list text unit>:= <list index> <combo change or delete>
<combo change or delete>:= <combo change> | <delete list item>
<combo change>:= <text> o <icon reference> o <item locact> o <item locval> o
<modify slider>:= <slider opc> <cin> <closed> 2* <notaccessible> 2* <modify min

value> o <modify max value> o <increment> o <initial info> o
<locactact> o <locactval> o

<modify min value>:= <negative> o <min value>
<modify max value>:= <negative> o <max value>
<initial info>:= <negative> o <initial value>
<modify sensitive area>:= <sensitive area opc> <cin> <closed> 2* <notaccessible> 2*

<locactact> o <locactval> o
<modify multimedia area>:= <multimedia area opc> <cin> <closed> 2* <notaccessible> 2*

<maximizable> 2* <multimedia content> o <direct navigation> 2*
<non-controlled mode> 2*

<modify message box>:= <message box opc> <title> o <message type> o <destroy event> o
<no sound> 2* <attributed text> *

<new comp>:= <new menu choice> | <push button comp> | <separator> | <frame>
| <graphic output area> | <text area> | <text component> |
<sensitive text> | <text input field> | <box push button> | <check
box> | <radio button> | <list box> | <combo box> | <slider> |
<sensitive area>| <multimedia area>

<new menu choice>:= <logical group> <cin reference>o <menu choice>{ see NOTE }
<logical group>:= <INTEGER: 0> | { bar }

<INTEGER: 1> | { pull-down, pop-up }
<INTEGER: 2> { cascading }

If a new menu choice is added to an Application Bar or a Pop-Up menu the "logical group" attribute
specifies to which logical group of the object the component shall be added. The "cin reference" attribute
represents the CIN of an already defined menu choice of the object and indicates the position at which the
menu choice shall be added. If the menu choice that is referenced with the CIN is in the same logical
group identified with the "logical group" attribute, the new menu choice shall be inserted after the specified
menu choice. If the menu choice that is referenced with the CIN is in a higher logical group than identified
with the "logical group" attribute, the new menu choice shall be the first item of the associated group. If the
"cin reference" attribute is not present the menu choice shall be inserted at the first position of the highest
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logical group. It is not possible to associate a cascading menu directly to the Bar logical group of the
Application Bar.

9.7 Defaults

The default values of attributes are applied when an optional attribute is not contained in the element
definition. An exception makes VEMMI_Modify_Component applied on existing components, see
subclause 9.6. The default values depend from the attribute data type and from the object/component to
which they belong.

For the default value of a Boolean attribute (these are coded with the opcode only) the logical negative
meaning compared with its definition shall be assumed. A default value of a Boolean attribute can not be
coded and is never contained in the element definition.

Table 44: Boolean attributes defaults

Attribute Default value Attribute Default value
fn bold normal, non-bold maxim text no maximized text
fn underline not underlined marked unmarked
fn italic non-italic multiple choice single choice
vertical horizontal no drop drop
closed open no edit editable
notaccessible accessible no scrolling tools with scrolling tools
modal non-modal no format formatable
no border with border
locator no locator template no "template" store
separated not separated autostore no "autostore"
multiline single line no sound with sound
no consistency with consistency sorted not sorted
maximizable not maximizable negative positive
retransmission rule
B

retransmission rule
A

direct in no direct input

content associated independent
positioning

report index report string

direct navigation not allowed non controlled mode controlled mode

Table 45: Integer attributes defaults

Attribute Default value Attribute Default value
fn family SWISS input type 0
fn height 10 echo type 0
fn colour 0 (black) max char 1
bits per units (pixel) 1 group 1
bits per units
(component)

8 default item 1

list index 1 for the first, all other are numbered
consecutively

message type 0 max line terminal dependent
destroy event 1 sound format 0
colour entry 0 initial value min value
request type 0 increment 1
defactive 1 max time infinite
title font default font input timeout infinite
colour 0 (black) alignment 0, left aligned
bitmap disptype stretched multimedia

content type
0, HTML

initial font default font
label font default font
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Table 46: NDC attributes defaults

Attribute Default value
xpos, ypos of the message box terminal dependent
xpos 0.0
ypos 0.0

Table 47: Width and height defaults

Element Width default value Height default value
application bar terminal dependent terminal dependent
button: button bar 0,125 0,03
pop-up menu terminal dependent
dialogue box 1,0 0,75
separator dialogue box width dialogue box height
frame dialogue box width dialogue box height
text area dialogue box width dialogue box height
graphic output area dialogue box width dialogue box height
text input field dialogue box width 0,03
push button 0,125 0,03
check box 0,125 0,03
radio button 0,125 0,03
list box dialogue box width dialogue box height
combination box dialogue box width dialogue box height
sensitive area 0,125 0,03
message box terminal dependent terminal dependent

Table 48: String attributes defaults

Attribute Default value
echo char 2/13

10 Introduction of the VEMMI service into existing Videotex ETSs

10.1 Introduction of the VEMMI to ETS 300 072

The VEMMI Protocol Elements are mapped on the Videotex Presentation Data Elements (VPDEs).

In order to enable the data flow between Videotex terminal and VEMMI application, the logical channel
shall be transparent for VEMMI data blocks.

10.2 Introduction of the VEMMI to ETS 300 223 and ETS 300 079

The VEMMI Protocol Elements are mapped on one or more SBV_VTX_Data service element.

In order to enable the data flow between Videotex terminal and VEMMI application, the logical channel
shall be transparent for VEMMI data blocks.

NOTE: ETS 300 079 [23] corresponds to ITU-T Recommendation T.102 [5] and
ETS 300 223 [26] corresponds to ITU-T Recommendation T.105 [6].
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Annex A (normative): CCITT Recommendation T.51 [2] String

A.1 Scope

This annex describes the rules to be applied when encoding names, strings, etc. using CCITT
Recommendation T.51 [2]. The CCITT Recommendation T.51 [2] String defined by this annex serves as a
reference model by restricting CCITT Recommendation T.51 [2] to those elements of the code extension
mechanisms, of the character sets and repertoire which are necessary to ease the implementations.

This definition is not specific to an individual telematic service, but it can be referenced by telematic
application standards.

A.2 Graphic character sets

The primary set of graphic characters (see figure A1) is identical with the set of graphic characters of the
International Reference Version (IRV) of the 7-bit coded character set of CCITT Recommendation
T.50 [1].
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Figure A.1: Primary set of graphic characters for CCITT-Recommendation T.51 String

The supplementary set of graphic characters is specified in figure A.2.
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Figure A.2: Supplementary set of graphic characters for CCITT Recommendation T.51 String

For the CCITT Recommendation T.51 [2] String the following applies:

- the primary set is designated as the G0 set and invoked in columns 2 to 7 of the code table;
- the supplementary set is designated as a G2 set. In the 8 bit environment the set is invoked in

column 10 to 15;
- in the CCITT-Recommendation T.51 [2] String no designation and invocation sequences are

allowed;
- all characters in column 4 of the supplementary set are non-spacing characters (diacritical marks);
- unallocated code positions are reserved and shall not be used;
- The compatibility provisions described in CCITT Recommendation T.51 [2] subclause 2.2.4 notes 3,

4, 6 are not applied.
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A.3 Code extension technique

In the 8 bit environment no code extension sequence is allowed. In the 7 bit environment the single shift
function SS2 (code 1/9) is used to invoke one character from the G2 set. All other shift functions are not
allowed.

A.4 Repertoire of the latin-based character set

The CCITT Recommendation T.51 [2] String repertoire is identical with the superset of the repertoire of
the Latin based character set specified in CCITT Recommendation T.51 [2] annex A. All combinations of
diacritical marks with basic letters as specified in figure A2 of CCITT Recommendation T.51 [2] are
supported.

The notes and remarks from CCITT Recommendation T.51 [2], annex A subclause A.4 shall not apply.

A.5 Control functions

Invocation and designation sequences for control functions shall not be permitted. From columns 0 and 1
of the code table in use, only the control characters CR, Carriage Return (0/13) and LF, Line Feed (0/10)
can be used. They are specified in CCITT Recommendation T.50 [1].
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Annex B (normative): Mandatory subset of ISO 8859

2 3 4 5 6 7 10 11 12 13 14 15
0 SP 0 @ P ` p
1 ! 1 A Q a q
2 " 2 B R b r
3 # 3 C S c s
4 $ 4 D T d t
5 % 5 E U e u
6 & 6 F V f v
7 ' 7 G W g w
8 ( 8 H X h x
9 ) 9 I Y i y
10 * : J Z j z
11 + ; K [ k {
12 , < L \ l |
13 - = M ] m }
14 . > N ^ n ~
15 / ? O _ o

Figure B.1: Mandatory subset of ISO 8859 [13] code table
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Annex C (normative): Minimum datatype kernel

A VEMMI terminal shall support the following minimum datatype kernel:

Table C.1: Supported datatypes

Class Encoding standard Remarks
For text data

VEMMI high quality text

ISO 8859 [13] (fully formed accented
characters) from code position 2/0 to code
position 7/15 as given in annex B

For latin based terminal

Shift JIS Code (for Japanese characters) For Japanese terminals

For still picture

ISO/IEC 10918 [16] (JPEG)

VEMMI device independent bitmap

Graphics Interchange Format (sm) Version
89a. CompuServe Incorporated Columbus,
Ohio, USA (only the functions of Version 87
shall be supported)
Microsoft Windows device-independent
bitmap (DIB) with RLE4, RLE8 and 1, 4, 8 or
24 bits per pixel

For audio data

WAVE format
see note

MIDI format
see note

NOTE: Mandatory in this case denotes that a terminal shall support all VEMMI services
related to the functionality. It does not mean that a terminal shall be equipped with the
necessary device to play this data.
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