
DRAFT

EUROPEAN pr ETS 300 670

TELECOMMUNICATION August 1996

STANDARD

Source: ETSI TC-SPS Reference: DE/SPS-02004

ICS: 33.080

Key words: IN, UPT

Universal Personal Telecommunication (UPT) phase 1;
Intelligent Network (IN) Capability Set 1 (CS1);

Application of
core Intelligent Network Application Protocol (INAP)

ETSI

European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1996. All rights reserved.

Page 2
Draft prETS 300 670: August 1996

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
Draft prETS 300 670: August 1996

Contents

Foreword ...5

Introduction..5

1 Scope ..7

2 Normative references..7

3 Definitions and abbreviations ..8
3.1 Definitions ..8
3.2 Abbreviations ...8

4 UPT phase 1 requirements ...8
4.1 Architecture requirements..9
4.2 Requirements on the network..10

4.2.1 Requirements on the originating network side ..10
4.2.2 Requirements on the terminating network side...10
4.2.3 Requirements on the fixed network...10

5 UPT Application Contexts ...10

6 UPT Information Model ...11
6.1 Introduction ..11
6.2 UPT Information Base ...11

6.2.1 Information Base ...11
6.2.1.1 UPT provider..12
6.2.1.2 Agreed Service ..12
6.2.1.3 User profile ..13
6.2.1.4 User profile alias..15
6.2.1.5 Basic service..16
6.2.1.6 Routeing service ..17
6.2.1.7 Registered routeing services ...18

6.2.2 Structure of the UPT information model..19
6.2.2.1 Existence relations between classes...................................19
6.2.2.2 Name forms...20
6.2.2.3 Structure rules ...22

6.3 UPT Security model ...24
6.3.1 Basic access control..24
6.3.2 Authentication..27
6.3.3 Permitted Values ...28

7 SCF procedures ..28
7.1 General ..28

7.1.1 Overview..28
7.1.2 Charging procedures in the SDLs ...29
7.1.3 Conventions and notation..29
7.1.4 SLP description ...33

7.2 Generic sequences..35
7.2.1 Identification and authentication..35

7.2.1.1 General ..35
7.2.1.2 Detailed procedure ..35

7.2.2 Feature request identification ..46
7.2.2.1 General ..46
7.2.2.2 Detailed procedure ..46

7.2.3 Release of the calling user ..50
7.2.3.1 General ..50

Page 4
Draft prETS 300 670: August 1996

7.2.3.2 Detailed procedure.. 50
7.2.4 Connection of an SRF .. 51

7.2.4.1 General ... 51
7.2.4.2 Detailed procedure.. 51

7.2.5 Disconnection of an SRF.. 53
7.2.5.1 General ... 53
7.2.5.2 Detailed procedure.. 53

7.3 Personal Mobility ... 55
7.3.1 Registration for incoming calls.. 55

7.3.1.1 General ... 55
7.3.1.2 Detailed procedure.. 55

7.3.2 Deregistration for Incoming Calls ... 67
7.3.2.1 General ... 67
7.3.2.2 Detailed procedure.. 67

7.4 Call Handling ... 74
7.4.1 Outgoing UPT Call.. 74

7.4.1.1 General ... 74
7.4.1.2 Detailed Procedure ... 74

7.4.2 Incoming UPT Call.. 118
7.4.2.1 General ... 118
7.4.2.2 Detailed Procedure ... 118

7.5 Service Profile Modification ... 142
7.5.1 General ... 142
7.5.2 Detailed procedure ... 142

7.6 Change of PIN Code ... 146
7.6.1 General ... 146
7.6.2 Detailed procedure ... 146

8 SDF Procedures ... 151
8.1 Agreement check at the service provider level ... 151
8.2 User's authentication... 151
8.3 Provider agreement at the service feature level.. 151
8.4 Check on the subscription to the service .. 151
8.5 Check on the registration address .. 152
8.6 Update of the registration address .. 152
8.7 Reading the registration address .. 153
8.8 Deregistration .. 153
8.9 Check on the user credit ... 153
8.10 Check on the destination address... 154
8.11 Reading of the routeing address ... 154
8.12 Transfer of call records ... 155
8.13 Retrieving call forwarding parameters... 155
8.14 Modifying the service profile.. 155
8.15 Getting the routeing address for conditional call forwarding services 157
8.16 Retrieving the default charging reference point .. 157
8.17 Changing the PIN code ... 158

Annex A (Normative): ASN.1 Information Object Notation.. 159

History ... 165

Page 5
Draft prETS 300 670: August 1996

Foreword

This draft European Telecommunication Standard (ETS) has been produced by the Signalling Protocols
and Switching (SPS) Technical Committee of the European Telecommunications Standards Institute
(ETSI), and is now submitted for the Public Enquiry phase of the ETSI standards approval procedure.

This ETS is based on the information contained in ETR 066 [9], ETS 300 374-1 [2] and ETS 300 374-5 [3].

Introduction

This ETS describes the application of core INAP as specified in ETS 300 374-1 [2] and ETS 300 374-5 [3]
for UPT phase 1. Clauses 1 to 3 contain general information. Clause 4 describes the network
requirements for UPT. In clause 5 the application contexts used for UPT are listed. Clause 6 describes
both the UPT information model and the UPT security model as used in the SDF. In clause 7 the UPT
specific behaviour of the SCF is described for every UPT procedures, using both a textual and an SDL
description. Clause 8 contains the description of the operations exchanged between networks on the
SCF-SDF interface. This clause together with clause 6 constitutes the core part of the UPT specification.
The other clauses are included in the ETS because clauses 6 and 8 are not self-explanatory.

Proposed transposition dates

Date of latest announcement of this ETS (doa): 3 months after ETSI publication

Date of latest publication of new National Standard
or endorsement of this ETS (dop/e): 6 months after doa

Date of withdrawal of any conflicting National Standard (dow): 6 months after doa

Page 6
Draft prETS 300 670: August 1996

Blank page

Page 7
Draft prETS 300 670: August 1996

1 Scope

This European Telecommunication Standard (ETS) specifies the application of core INAP for the UPT
service and describes the internetwork interface. It is applicable to UPT phase 1 as defined in
ETR 055-2 [6]. It is mainly based on the information in ETR 066 [9] and ETS 300 374-1 [2] and
ETS 300 374-5 [3]. The UPT service relies on the IN architecture as described in ETS 300 356-15 [1].

2 Normative references

This ETS incorporates by dated and undated reference, provisions from other publications. These
normative references are cited at the appropriate places in the text and the publications are listed
hereafter. For dated references, subsequent amendments to or revisions of any of these publications
apply to this ETS only when incorporated in it by amendment or revision. For undated references the latest
edition of the publication referred to applies.

[1] ETS 300 356-15 (1995): "Integrated Services Digital Network (ISDN); Signalling
System No.7; ISDN User Part (ISUP) version 2 for the international interface;
Part 15: Diversion supplementary services [ITU-T Recommendation Q.732,
clauses 2 to 5 (1993), modified]".

[2] ETS 300 374-1 (1994): "Intelligent Network (IN); Intelligent Network Capability
Set 1 (CS1), Core Intelligent Network Application Protocol (INAP); Part 1:
Protocol specification".

[3] ETS 300 374-5 (1996): "Intelligent Network (IN); Intelligent Network Capability
Set 1 (CS1), Core Intelligent Network Application Protocol (INAP), Part 5:
Protocol specification for the Service Control Function (SCF) - Service Data
Function (SDF) interface".

[4] ETS 300 287 -1 (1996): "Integrated Services Digital Network (ISDN); Signalling
System No.7; Transaction Capabilities (TC) version 2; Part 1: Protocol
specification".

[5] ETS 300 391-1: "Universal Personal Telecommunication (UPT); Specification of
the security architecture for UPT phase 1; Part 1: Specification".

[6] ETR 055-2: "Universal Personal Telecommunication (UPT); The service
concept; Part 2: General service description".

[7] ETR 055-3: "Universal Personal Telecommunication (UPT); The service
concept; Part 3: Service aspects of charging, billing and accounting".

[8] ETR 060 (1995): "Signalling Protocols and Switching (SPS); Guidelines for using
Abstract Syntax Notation One (ASN.1) in telecommunication application
protocols".

[9] ETR 066 (1993): "Universal Personal Telecommunication (UPT); Requirements
on information flows and protocols".

[10] ETR 164 (1995): "Integrated Services Digital Network (ISDN); Intelligent
Network (IN); Interaction between IN Application Protocol (INAP) and ISDN User
Part (ISUP) version 2".

[11] ETR 315 (1996): "Universal Personal Telecommunication (UPT); UPT access
parameters and identities for UPT users".

[12] ITU-T E.164: "Telephone Network and ISDN operation; Numbering, Routing and
Mobile Service; Numbering Plan for the ISDN era".

[13] ITU-T Recommendation Q.1213: "General Recommendations on Telephone
Switching and Signalling; Intelligent Network, Global Functional Plane for
Intelligent Network CS-1".

Page 8
Draft prETS 300 670: August 1996

[14] ITU-T Recommendation X.501 (1993): "Information Technology; Open Systems
Interconnection; The Directory: Models".

3 Definitions and abbreviations

3.1 Definitions

No definitions have been identified.

3.2 Abbreviations

For the purposes of this ETS, the following abbreviations apply:

AC Application Context
BCSM Basic Call State Model
CD Call Deviation
CFB Call Forwarding on Busy
CFNR Call Forwarding on No Reply
CFU Call Forwarding Unconditional
CS1 Capability Set 1
DEREG_IN Deregistration for incoming calls
DTMF Dual Tone Multi Frequency
FRI Feature Request Identification
FSM Finite State Model
IA Identification and Authentication
IN Intelligent Network
INAP Intelligent Network Application Protocol
INCALL Incoming Call
IP Intelligent Peripheral
ISDN Integrated Services Digital Network
ns Sent part of the sequence number, i.e. the 16 least significant bits
OUTCALL Outgoing Call
PIN Personal Identification Number
PSTN Public Switched Telephone Network
PUI Personal User Identity
REG_IN Registration for incoming calls
SCF Service Control Function
SCSM SCF State Model
SDF Service Data Function
SDFh Home Service Data Function
SDFo Originating Service Data Function
SIB Service Independent Building Blocks
SLP Service Logic Program
SLPI Service Logic Program Invocation
SPIN Special Personal Identification Number
SPM Service Profile Modification
SRF Specialised Resource Function
SSF Service Switching Function
SSP Service Switching Point
TCAP Transaction Capabilities Application Part
UPT Universal Personal Telecommunication
UPTAC UPT Access Code
UPTAN UPT Access Number

4 UPT phase 1 requirements

The UPT phase 1 service is a set of UPT features that can be implemented without major changes to
current technology, and is basically restricted to provision in PSTN and ISDN, with voice and telephony
type services (see ETR 055-2 [6]). This clause includes a number of operational requirements.

Page 9
Draft prETS 300 670: August 1996

4.1 Architecture requirements

CCAF

SMFo

SCEF

SMAF

SRF

CCAF

SSF

CCF

SMF

SCEF

SMAF

SRF

SMFh

SCEF SMAF

SDFo

SDFh

SCFh

SCFo

SDFt

SCFt

CCF

SSF

CCF

Originating

Home

Terminating

Service
Management

Figure 1: General UPT functional architecture.

Figure 1 gives an overview of the general UPT functional architecture. Apart from standard Intelligent
Network (IN) terminology, the following notations are used in figure 1:

SCFh Home SCF;
SDFh Home SDF;
SMFh Home SMF;
SCFo Local ("visited") SCF, originating side;
SDFo Local ("visited") SDF, originating side;
SMFo Local ("visited") SMF, originating side;
SCFt Local ("visited") SCF, terminating side;
SDFt Local ("visited") SDF, terminating side.

The functional architecture for UPT Phase 1 is described in figure 2.

CCAF

SRF

CCAFCCF

Service
Management

SDFo SDFh

SCFo

CCF

SSF

CCF

Originating

Home

Terminating

Service
Management

Figure 2: Phase 1 UPT functional architecture.

The differences with the general UPT functional architecture are :

a) The interconnection of networks takes place between the SCFo and SDFh functional entities, as
indicated by the arrow on the figure. The interface between SCF and SDF is specified in IN CS1;

b) SDFh stores all data related to the UPT user (i.e. the database in UPT Phase 1 is centralized);

c) SDFh must as a consequence provide access control functions to check whether or not requests
received from remote entities are authorized requests or not;

Page 10
Draft prETS 300 670: August 1996

d) SDFh performs the authentication of the UPT user;

e) SDFo stores a list of agreements, which indicates the identity of all the service providers whose
subscribers are allowed to access UPT service in SDFo's network;

f) SDFo stores a list of service limitations resulting from agreements with service providers or network
limitations;

g) SDFo also stores information related to the management of the UPT service in its network, e.g.
charging records which will be used later on for accounting.

4.2 Requirements on the network

The UPTAC, UPTAN and UPT number shall be recognized by the SSP.

4.2.1 Requirements on the originating network side

The requirements on the originating network side are:

a) Signalling systems used on the UNI will be those for the PSTN and ISDN. For interaction with the
user, user-information is to be collected in-band by means of Dual Tone Multi Frequency (DTMF).
This means that for ISDN the D-channel is not used for collecting user-information.

b) In the PSTN, DTMF devices or terminals have to be used, because e.g. the non-fixed length
numbers are ended with an #.

c) ISDN terminals have to be provided with DTMF functionality, otherwise it would not be possible to
carry in-band information for user interactions.

4.2.2 Requirements on the terminating network side

Signalling systems used at the UNI will be those for the PSTN and ISDN.

4.2.3 Requirements on the fixed network

Feature interactions with line services are outside the scope of this ETS. It is covered in ETR 164 [10].

5 UPT Application Contexts

The UPT phase 1 service shall use the application contexts as defined in ETS 300 374-1 [2] and
ETS 300 374-5 [3]. The following application contexts are used at the interfaces with the SCF:

SSP-SCP

Core-INAP-CS1-SSP-to-SCP-AC
Core-INAP-CS1-assist-handoff-SSP-to-SCP-AC
Core-INAP-CS1-SCP-to-SSP-AC
Core-INAP-CS1-SCP-to-SSP-traffic-management-AC
Core-INAP-CS1-SCP-to-SSP-service-management-AC

IP-SCP

Core-INAP-CS1-IP-to-SCP-AC

SCP-SDP

Core-INAP-CS1-SCP-to-SDP-AC

Page 11
Draft prETS 300 670: August 1996

6 UPT Information Model

6.1 Introduction

The UPT phase 1 needs a significant amount of data stored in the SDFs. Data for UPT are contained in
the following data model. The aim of that model is twofold: first to provide a list of all the data needed to
support UPT phase 1 from the service and secondly to present the data as formally as possible so that
they are ready to be used as parameters of the database operations.

Due to the amount of information contained in the data model, the model needs to be formally organized.
The information and its associated structure make up the UPT information base (UPT-IB). The contents of
the data model is described in subclause 6.2.1 and its structure in subclause 6.2.2. The generic
information base on which the present UPT-IB is based is described in ETS 300 374-5 [3]. In that
document the different classes are specified.

The organization of information provided with the UPT-IB does not imply any physical mapping of
information even though some specific mappings will facilitate the use of the model.

Subclause 6.2 defines the objects, their attributes and the relations between them are specified according
to ETR 060 [8]. This part of the data model is UPT-specific (but could probably be extended to other
services). The complete ASN.1 module gathering the ASN.1 definitions of the next clauses is provided in
annex A.

6.2 UPT Information Base

6.2.1 Information Base

The information model has been organized in object classes. Each object class is a general
representation of an object of telecommunications (service, user, subscriber...). An object is an instance
of the object class. Each object class is characterized by attributes. The attributes contain the data
needed to fulfil the service.

Several object classes have been identified as well as their attributes. Figure 3 gives the inheritance
relationships between the different object classes. All the object classes are subclasses of top which is an
abstract class from which all the other classes are subclasses.

Apart from top , 8 types of object classes have been identified:

1) alias;
2) UPT provider;
3) agreed service;
4) user profile;
5) basic service
6) user profile alias;
7) routeing service;
8) registered routeing service (one for each type of routeing service).

They are described in more detail in the following subclauses. The classes top and alias are part of the
ITU-T Recommendation X.501 [14] and are therefore not described within this ETS.

Page 12
Draft prETS 300 670: August 1996

Registered
Routing
Service

Top

Agreed Service

Alias

User
Profile
Alias

UPT
Provider

User
ProfileRouting Service

Basic
Service

Figure 3: Inheritance for the object classes

6.2.1.1 UPT provider

This object-class defines a UPT provider. It gives all the information concerning the provider that is
necessary to support the UPT service. The definition involves:

- identifying the provider;

The following ASN.1 description shall be used to define the UPT provider object class:

uptProvider OBJECT-CLASS ::= {
MUST CONTAIN {providerId}
ID id-oc-uptProvider}

providerId ATTRIBUTE ::= {
WITH SYNTAX AddressString {ub-providerId}
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
SINGLE VALUE TRUE
ID id-at-providerId}

AddressString {INTEGER: ub-max-value} ::= NumericString (SIZE (1..ub-max-value))

The correspondence between the parts of the definition given above and the various pieces of the notation
introduced by the object class is as follows:

- The providerId attribute identifies the UPT provider. This identifier is a numeric string. It may be
part of a numbering plan. In case of the home service provider, it shall be possible to get the
providerId value from a translation of the UPT number or the PUI.

6.2.1.2 Agreed Service

This object class gives the service, that is provided to home users by a visited provider, and its restrictions
of use. The definition involves:

- identifying the service;

- giving the restrictions on the use of the service. The restrictions on a service under agreement
might be different from those on a service proposed by a provider to its subscribers.

Page 13
Draft prETS 300 670: August 1996

The following ASN.1 description shall be used to define the agreed service object classes:

agreedService OBJECT-CLASS ::= {
MUST CONTAIN {

providedServiceId|
providedLocations}

ID id-oc-agreement}

providedServiceId ATTRIBUTE ::= {
WITH SYNTAX Service
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
ID id-at-providedServiceId}

Service ::= INTEGER {
--basic services 0-9

isdnTelephony (0),
-- registration service 10-19

icRegistration (10),
--profile service 20-29

serviceProfileModification (20),
-- charging service 30-39

standard (30),
-- routing service 40-49

callForwardingUnconditional (40),
callForwardingOnNoReply (41),
callForwardingOnBusy (42),
variableRoutingOnTime (43),
variableRoutingOnCallingLine (44)}

providedLocations ATTRIBUTE ::= {
WITH SYNTAX AddressString{ub-locations}
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringMatch
ID id-at-providedLocations}

The correspondence between the parts of the definition given above and the various pieces of the notation
introduced by the object class is as follows:

- the providedServiceId attribute gives the service identifier;

- the providedLocations attribute gives the service restrictions on the use of the service, in
particular the destination of a service (geographic coverage zone for a unique provider). The
restrictions are specified at the provider level. They give the limits on the provision of a service
agreed between the provider and other providers for the roaming users. If any other restriction
appears in the future, it should accompany the attribute presently described.

The values contained in attributes describing ISDN addresses or part of them shall be built upon
international addresses without the international prefix.

6.2.1.3 User profile

This object class defines a user profile. The user profile gives the service information attached to one of
the users in a subscription. This information may differ from one user to another in the same subscription.
This definition involves:

- identifying the user;

- giving the list of the allowed services and locations for those services;

- giving service parameters for the allowed services.

Page 14
Draft prETS 300 670: August 1996

The following ASN.1 description shall be used to define the user profile object class:

userProfile OBJECT-CLASS ::= {
MUST CONTAIN {

pui|
chargingAttributeSet|
allowedServices|
allowedCFParameters|
nbOfFailedAuthentication}

MAY CONTAIN {
userPassword| -- defined in X.509
specialPassword|
variablePassword|
callInfoRecords}

ID id-oc-userProfile}

pui ATTRIBUTE ::= {
WITH SYNTAX AddressString{ub-pui}
EQUALITY MATCHING RULE numericStringMatch
SINGLE VALUE TRUE
ID id-at-pui}

specialPassword ATTRIBUTE ::= {
WITH SYNTAX OCTET STRING (SIZE (0..ub-special-password)
EQUALITY MATCHING RULE octetStringMatch
ID id-at-specialPassword}

variablePassword ATTRIBUTE ::= {
WITH SYNTAX OCTET STRING (SIZE (0..ub-variable-password)
EQUALITY MATCHING RULE octetStringMatch
ID id-at-variablePassword}

nbOfFailedAuthentications ATTRIBUTE ::= {
WITH SYNTAX INTEGER (1..ub-max-nbOfFailedAuthentications)
ORDERING MATCHING RULE integerOrderingMatch
SINGLE VALUE TRUE
ID id-at-nbOfFailedAuthentications}

chargingAttributeSet ATTRIBUTE ::= {
defaultChargingReference|
userCredit|
activeChargingService}

defaultChargingReference ATTRIBUTE ::= {
WITH SYNTAX IsdnAddress,
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
SINGLE VALUE TRUE
ID id-at-defaultChargingReference}

IsdnAddress ::=AddressString{ub-international-isdn-number}

userCredit ATTRIBUTE ::= {
WITH SYNTAX INTEGER (1..ub-maxUserCredit)
ORDERING MATCHING RULE integerOrderingMatch
SINGLE VALUE TRUE
ID id-at-userCredit}

callInfoRecords ATTRIBUTE ::= {
WITH SYNTAX CallInfoRecord
ID id-at-callInfoRecords}

CallInfoRecord ::= SEQUENCE {
authenticationTime [0] UTCTime,
callStopTimeValue [1] UTCTime,
callStartTimeValue [2] UTCTime,
callingAddressValue [3] IsdnAddress, calledNumber [4] IsdnAddress,
duration [5] INTEGER (0..2147483647) OPTIONAL,
routingAddress [6] IsdnAddress OPTIONAL,
forwardedToAddress [7] IsdnAddress OPTIONAL,
invokedSupplementaryServices [8] CFServices OPTIONAL,
visitedNetwork [9] NetworkCode OPTIONAL,
callCost [10] Cost OPTIONAL,
surcharges [11] Cost OPTIONAL,
releaseCause [12] Cause OPTIONAL}

Cost ::= CHOICE {
pulse [0] INTEGER (1..ub-pulse),
cost [1] CurrencyValue}

CurrencyValue::=CHOICE {
usDollar [0] Currency,
frenchFranc [1] Currency,
germanMark [2] Currency,
dutchGuilder [3] Currency,
italianLira [4] Currency,

Page 15
Draft prETS 300 670: August 1996

englishPound [5] Currency,
spanishPeseta [6] Currency,
swedishKrone [7] Currency,
norwegianKrone [8] Currency}

Currency::= REAL
CFServices ::= SET OF Service (40..49)
Cause ::= OCTET STRING (SIZE(lb-causeLength..ub-causeLength))

activeChargingService ATTRIBUTE ::= {
WITH SYNTAX Service (30..39)
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
ID id-at-activeChargingService}

allowedServices ATTRIBUTE ::= {
WITH SYNTAX Service
EQUALITY MATCHING RULE integerMatch
ID id-at-allowedServices}

allowedCFParameters ATTRIBUTE ::= {
WITH SYNTAX CFParameter
EQUALITY MATCHING RULE integerMatch
ID id-at-allowedCFParameters}

CFParameter ::= INTEGER {
notifyActivation (0),
notifyForwarding (1),
notifyCallingPartyWithNumber (2),
notifyCallingPartyWithoutNumber (3),
notifyForwardedTo (4)}

The correspondence between the parts of the definition given above and the various pieces of the notation
introduced by the object class is as follows:

- The pui (personal user identifier) attribute is a number used to identify the UPT user. The PUI may
be made-up of a country code, a network code and a personal identifier (see ETR 164 [11]). It
should be possible to retrieve the provider identifier of the user from the PUI.

- Several attributes are related to security. The Password attribute which could be of three types
depending on the type of authentication available to the user gives the password used by the user
to authenticate. The userProfile object class should at least contain one type of Password
attribute. The nbOfFailedAuthentications gives the remaining number of authentications that can
be failed before the identifier is blocked. This number is limited by a value controlled by the
subscriber or the provider.

- The chargingAttributeSet attribute-set contains several attributes related to charging. The
defaultChargingReference attribute gives the default reference point for charging. The reference
point may be specified with an IsdnAddress type. The userCredit gives the credit still available to
the user. It also permits the update of the value of the userCredit attribute (however this calculation
cannot be performed on-line by the SDF that is not able to do it). The activeChargingService
attribute indicates which charging service has been selected by the user and should be used to
charge his calls.

- The callInfoRecords attribute contains all the call records related to a given user. It is used to keep
track of the use of the service by a given user.

- The allowedServices attribute gives the list of the services subscribed by the user and also the
places where the services are available (locations are defined as contexts of the different service
values).

- The allowedCFParameters attribute provides a list of the call forwarding parameters that have
been subscribed by the user for the different call forwarding services.

6.2.1.4 User profile alias

This object class also describes the user profile. It is used to have another naming path for the user using
in that case the UPT number. This definition involves:

- identifying the user;

- referring to the object (userProfile) that really contains the user profile information.

Page 16
Draft prETS 300 670: August 1996

The following ASN.1 description shall be used to define the user profile alias object class:

userProfileAlias OBJECT-CLASS ::= {
SUBCLASS OF {alias}
MUST CONTAIN {uptNumber}
ID id-oc-userProfileAlias}

uptNumber ATTRIBUTE ::= {
WITH SYNTAX IsdnAddress
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
SINGLE VALUE TRUE
ID id-at-uptNumber}

The correspondence between the parts of the definition given above and the various pieces of the notation
introduced by the object class is as follows:

- the uptNumber attribute is the dialable number through which the user may be reached. The
format of this attribute is an ISDN address (see ITU-T Recommendation E.164 [12]);

6.2.1.5 Basic service

This object class defines the registration addresses attached to a given basic service. The definition
involves:

- identifying the service;
- giving the registration addresses for incoming and outgoing calls.

The following ASN.1 description shall be used to define the basic service object class:

basicService OBJECT-CLASS ::= {
MUST CONTAIN {

basicServiceId|
icRegistrationAddress|
allowedDestinations|
allowedRegistrationAddress}

ID id-oc-basicService}

basicServiceId ATTRIBUTE ::= {
WITH SYNTAX Service (0..9)
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
ID id-at-basicServiceId}

icRegistrationAddress ATTRIBUTE ::= {
WITH SYNTAX IsdnAddress
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-icRegistrationAddress}

allowedRegistrationAddress ATTRIBUTE ::= {
WITH SYNTAX AddressString{ub-locations}
EQUALITY MATCHING RULE numericString
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-allowedRegistrationAddress}

allowedDestinations ATTRIBUTE ::= {
WITH SYNTAX AddressString{ub-locations}
EQUALITY MATCHING RULE numericString
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-allowedDestinations}

The correspondence between the parts of the definition given above and the various pieces of the notation
introduced by the object class is as follows:

- The basicServiceId attribute gives the service name or its identifier to which the registration
addresses are attached.

- The icRegistrationAddress attribute gives the registration addresses for incoming calls and
outgoing calls. It also contains the default registration addresses which is a value of the attribute
with the default context. The other values have a time context that indicates the time validity of the
values.

Page 17
Draft prETS 300 670: August 1996

- The allowedRegistrationAddress attribute contains complete or initial part of international ISDN
addresses corresponding to areas where the user can be registered. The icRegistrationAddress
attribute should take its values within the values of that attribute.

- The allowedDestinations attribute contains complete or initial part of international ISDN addresses
corresponding to areas to which the user can set-up a call.

6.2.1.6 Routeing service

The routingService object class contains the information related to the routeing services in general. This
object class is an abstract object class that is not used for the provision of the UPT service. It allows the
building of the registeredRoutingService object classes (see next clause).

The definition involves:

- identifying the routeing service;
- giving the parameters of the routeing service.

The following ASN.1 description shall be used to define the routeing service object class:

routingService OBJECT-CLASS ::={
KIND abstract
MUST CONTAIN {

routingAddress|
allowedRoutingAddress|
activationStatus}

MAY CONTAIN {
activatedCFParameters}

ID id-oc-routingService}

routingAddress ATTRIBUTE ::= {
WITH SYNTAX IsdnAddress
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-routingAddress}

allowedRoutingAddress ATTRIBUTE ::= {
WITH SYNTAX IsdnAddress
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-routingAddress}

activationStatus ATTRIBUTE ::= {
WITH SYNTAX ActivationStatus
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
ID id-at-activationStatus}

ActivationStatus ::= INTEGER {
notActivated (0),
activated (1)}

activatedCFParameters ATTRIBUTE ::= {
WITH SYNTAX CFParameter
EQUALITY MATCHING RULE integerMatch
ID id-at-activatedCFParameters}

The correspondence between the parts of the definition given above and the various pieces of the notation
introduced by the object class is as follows:

- the routingAddress is expressed as an international ISDN number according to the
ITU-T Recommendation E.164 [12]. It indicates the address to which the call should be routed
depending on the time of the day or on the calling party or on the status of the called user. This
address should be within the limits authorized to the user by his subscriber. The permitted values
are contained in the allowedRoutingAddress attribute. The allowedRegistrationAddress and the
allowedRoutingAddress attributes could be one and the same and in that case it should be a
collective attribute;

- the activationStatus attribute indicates whether a service is activated or not. This information may
be modified by the user, using service profile modification procedures;

Page 18
Draft prETS 300 670: August 1996

- the activatedCFParameters attribute gives the provision parameters for the call forwarding
services selected by the user. The parameters can only be taken out of the subscribed parameters
contained in the allowedCFParameters attribute.

6.2.1.7 Registered routeing services

The object classes defined in this subclause are the specialisation of the abstract object class defined in
the previous subclause. Each class is associated to a unique routeing service. The routeing services
considered in UPT phase 1 are as follows:

- call forwarding unconditional;
- call forwarding on no reply;
- call forwarding on busy;
- variable routeing on time;
- variable routeing on calling line.

According to the routeing services 5 object classes are defined. Compared with the parent class only the
attributes specific from a routeing service are added.

The following ASN.1 description shall be used to define the routeing service object classes:

cfuService OBJECT-CLASS ::={
SUBCLASS OF {routingService}
MUST CONTAIN {

cfuServiceId}
ID id-oc-cfuService}

cfnrService OBJECT-CLASS ::={
SUBCLASS OF {routingService}
MUST CONTAIN {

cfnrServiceId|
noReplyConditionTimer}

ID id-oc-cfnrService}

cfbService OBJECT-CLASS ::={
SUBCLASS OF {routingService}
MUST CONTAIN {

cfbServiceId}
ID id-oc-cfbService}

vrtService OBJECT-CLASS ::={
SUBCLASS OF {routingService}
MUST CONTAIN {

vrtServiceId}
ID id-oc-vrtService}

vrclService OBJECT-CLASS ::={
SUBCLASS OF {routingService}
MUST CONTAIN {

vrclServiceId}
ID id-oc-vrclService}

cfuServiceId ATTRIBUTE ::= {
WITH SYNTAX Service (40)
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
ID id-at-cfuServiceId}

cfnrServiceId ATTRIBUTE ::= {
WITH SYNTAX Service (41)
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
ID id-at-cfnrServiceId}

cfbServiceId ATTRIBUTE ::= {
WITH SYNTAX Service (42)
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
ID id-at-cfbServiceId}

vrtServiceId ATTRIBUTE ::= {
WITH SYNTAX Service (43)
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
ID id-at-vrtServiceId}

Page 19
Draft prETS 300 670: August 1996

vrclServiceId ATTRIBUTE ::= {
WITH SYNTAX Service (44)
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
ID id-at-vrclServiceId}

noReplyConditionTimer ATTRIBUTE ::= {
WITH SYNTAX INTEGER
ORDERING MATCHING RULE integerOrderingMatch
SINGLE VALUE TRUE
ID id-at-noReplyConditionTimer}

The correspondence between the parts of the definition given above and the various pieces of the notation
introduced by the object class is as follows:

- the routingServiceId attribute indicates the routeing service described in the object class;

- the noReplyConditionTimer attribute gives the time after which a call is considered as not
answered.

6.2.2 Structure of the UPT information model

6.2.2.1 Existence relations between classes

Figure 4 gives the object classes used to define the UPT data model. The lines between the object
classes indicate existence relations between two object classes. A existence relation expresses the fact
that an object class does not exist by itself, it needs the object classes put above in the figure to have a
meaning. For example, a userProfile object class is not a stand alone object class, it is subordinated to
the existence of a uptProvider object class. Since the Top object class always exists, the uptProvider
object class can exist by itself.

A existence relation is not a one to one relation. The instance of a "superior" object class can be
associated to several instances of the "inferior" object class. For example, a subscriber profile can be
linked with several user profile, since one subscriber can have several users within its subscription. In the
present case, all the relations shown in figure 4 are one to n relations.

The use of the terms "superior" and "inferior" does not imply any class relation. It only means a instance of
the "inferior" class has no meaning if the instance of the "superior" class does not exist.

This type of relations between classes has nothing to do with the naming relations that will be described in
the following subclause. It has no direct effect on the ASN.1 notation, but should be considered when
creating new class instances during O&M operations.

Page 20
Draft prETS 300 670: August 1996

UPT
Provider

User
Profile
Alias

Agreed Service

UPT
Provider

User
Profile

Basic
Service

Registered
Routing
Service

Figure 4: Existence relationships between object classes

6.2.2.2 Name forms

For each object class, the name forms define the attributes which will be involved in the naming of the
object class. This attribute will identify instances of the object class. The naming attribute is chosen so that
instances of the object class can be uniquely addressed. The naming attribute should be a mandatory
attribute of the object class.

The following ASN.1 description may be used to define the naming attributes of all the object classes
defined in the previous chapter. The name form gives the object class to be named and its naming
attribute. For the object classes defined in the previous subclause, the following name forms shall be
used:

uptProviderNameForm NAME-FORM ::= {
NAMES uptProvider
WITH ATTRIBUTES {providerId}
ID id-nf-uptProviderNameForm}

agreedServiceNameForm NAME-FORM ::= {
NAMES agreedService
WITH ATTRIBUTES {providedServiceId}
ID id-nf-agreedServiceNameForm}

userProfileNameForm NAME-FORM ::= {
NAMES userProfile
WITH ATTRIBUTES {pui}
ID id-nf-userProfileNameForm}

userProfileAliasNameForm NAME-FORM ::= {
NAMES userProfileAlias
WITH ATTRIBUTES {uptNumber}
ID id-nf-userProfileAliasNameForm}

basicServiceNameForm NAME-FORM ::= {
NAMES basicService
WITH ATTRIBUTES {basicServiceId}
ID id-nf-basicServiceNameForm}

Page 21
Draft prETS 300 670: August 1996

cfuServiceNameForm NAME-FORM ::= {
NAMES cfuService
WITH ATTRIBUTES {cfuServiceId}
ID id-nf-cfuServiceNameForm}

cfnrServiceNameForm NAME-FORM ::= {
NAMES cfnrService
WITH ATTRIBUTES {cfnrServiceId}
ID id-nf-cfnrServiceNameForm}

cfbServiceNameForm NAME-FORM ::= {
NAMES cfbService
WITH ATTRIBUTES {cfbServiceId}
ID id-nf-cfbServiceNameForm}

vrtServiceNameForm NAME-FORM ::= {
NAMES vrtService
WITH ATTRIBUTES {vrtServiceId}
ID id-nf-vrtServiceNameForm}

vrclServiceNameForm NAME-FORM ::= {
NAMES vrclService
WITH ATTRIBUTES {vrclServiceId}
ID id-nf-vrclServiceNameForm}

The correspondence between the parts of the definition given above and the various pieces of the notation
introduced by the object class is given below:

- The providerId attribute is the naming attribute for the uptProvider object class.

- The providedServiceId attribute is the naming attribute for the agreedService object class.

- The uptNumber attribute and the pui attribute are respectively used to name the userProfile and
the userProfileAlias object classes.

- The routingServiceId attribute is the naming attribute for the registeredRoutingService object
class.

Page 22
Draft prETS 300 670: August 1996

6.2.2.3 Structure rules

User
Profile
Alias

Root

UPT
Provider

Subscriber
Profile

Agreed
Service

User
Profile
Alias2

UPT
Provider

Basic
Service

Registered
Routing
Service

User
Profile

1

5

3

7,8,9,10,11

2

6

4

Figure 5: Naming structure for UPT

In the database, a data item is located with the name of the object to which it belongs. The name of the
object is the concatenation of the names of the objects superior to it in the naming structure. This implies
that a hierarchical structure exists between the objects to create the object names. The structure rules
provide the relationships between the objects in the naming context. This structure is independent of the
structure defined for the object-classes in the inheritance context and in the existence context.

The relationships between the object classes are represented by lines in figure 5.

To build a name to access a given object, it is necessary to follow a path defined on the figure.
For example to access userProfile the path is (1,3). Each object is uniquely named. However an object
can have another name through the use of an alias like for userProfile . The userProfile can be named
with the userProfileAlias that directly points to userProfile . The dashed arrow shows the relationship
between the alias and the object class it represents whereas the plain arrows show the structure rules.

The object classes subscriberProfile and UserProfileAlias2 (see figure 5) have been introduced to
show how the concept of subscriber could be integrated in the model without modifying it. The two classes
are not described in this ETS, because they are not accessed through the SCF-SDF interface. They are
not used for the UPT on-line service, even though they may be used in the UPT service. The dotted lines
are used to represent the object classes linked to the subscriber since they are not integral part of this
ETS.

Page 23
Draft prETS 300 670: August 1996

The following ASN.1 description shall be used to define the structure rules for the global naming of all
object classes:

sr1 STRUCTURE-RULE ::= {
NAME FORM uptProviderNameForm
ID 1}

sr2 STRUCTURE-RULE::= {
NAME FORM uptProviderNameForm
SUPERIOR RULES {sr1}
ID 2}

sr3 STRUCTURE-RULE::= {
NAME-FORM userProfileNameForm
SUPERIOR RULES {sr1}
ID 3}

sr4 STRUCTURE-RULE::= {
NAME FORM userProfileAliasNameForm
SUPERIOR RULES {sr1}
ID 4}

sr5 STRUCTURE-RULE::= {
NAME FORM agreedServiceNameForm
SUPERIOR RULES {sr2}
ID 5}

sr6 STRUCTURE-RULE::= {
NAME FORM basicServiceNameForm
SUPERIOR RULES {sr3}
ID 6}

sr7 STRUCTURE-RULE::= {
NAME FORM cfuServiceNameForm
SUPERIOR RULES {sr6}
ID 7}

sr8 STRUCTURE-RULE::= {
NAME FORM cfnrServiceNameForm
SUPERIOR RULES {sr6}
ID 8}

sr9 STRUCTURE-RULE::= {
NAME FORM cfbServiceNameForm
SUPERIOR RULES {sr6}
ID 9}

sr10 STRUCTURE-RULE::= {
NAME FORM vrtServiceNameForm
SUPERIOR RULES {sr6}
ID 10}

sr11 STRUCTURE-RULE::= {
NAME FORM vrclServiceNameForm
SUPERIOR RULES {sr6}
ID 11}

The correspondence between the parts of the definition given above and the various pieces of the notation
introduced by the object class is given below:

- The uptProvider object class can be accessed using the providerId attribute (relation 1).

- The uptProvider object class can also be accessed using the providerId attribute from the
uptProvider object class (relation 2). In that case it represents the providers with whom the home
provider has agreements.

- The agreedService object class can be accessed using the providedServiceId attribute from the
uptProvider object class (relation 5).

- The userProfile object class can be accessed using the pui attribute from the uptProvider object
class (relation 3) and its alias can be accesses using the uptNumber attribute from the same
object class (relation 4).

- The basicService object class can be accessed using the basicServiceId attribute from the
usererProfile object class (relation 6).

Page 24
Draft prETS 300 670: August 1996

- The registeredRoutingService object classes can be accessed using the routingServiceId
attributes from the basicService object class (relations 7, 8, 9, 10, 11).

6.3 UPT Security model

6.3.1 Basic access control

Different classes of access rights exist. Those classes are determined by the type of agent accessing
them. These three agents are considered here:

a) the home UPT service provider;
b) the visited UPT service provider;
c) the UPT user.

NOTE: The subscriber could be another agent but was not considered in the description of the
model. The management system could also have an access to the database and could
also be considered as an agent. Both the subscriber and the manager could have
specific access rights.

The access rights are described according to the rules given in ETS 300 374-5 [3]. The access rights do
not only depend on the type of agent, they also depend on the type of authentication that has been
performed. The user can identify and authenticate himself with three different authentication procedures
that give him different rights. The user can modify his profile according to the rights attached to the
subscription that rules his use of the service. The visited service providers acting on their own do not use
authentication when accessing the home database, they have the lowest access rights and can only
retrieve information concerning the routeing of the call. Whether the home service provider needs to
authenticate is a local matter, because he can always be recognized with the access points he uses.
He has all the rights on the data he owns.

The different access rights needed to access a data of the information model are defined in ETR 060 [8].
However this information is only indicative and the access rights given in this subclause try to follow the
description given in ETR 060 [8]. They are also indicative, but they are given in this ETS to show the use
of the access control information. They should be specified according to the security model contained in
ETS 300 391-1 [5].

Three subentries can be defined to specify the access rights, one for each type of agents. The first one is
for the home service provider that can perform all kinds of operations on data in the SDF. The second one
is for the visited service providers that can only read routeing information for all the users. The third one is
for the user that can only access his own data which he can modify according to his subscription.

The two subentries are instanciations of the subentry object class and as such contained the
commonName and subentrySpecification attributes. The first subentry which is attached to the root
administrative point has the following values for its two attributes:

wholeTree DirectoryString ::= {
universalString providerSubtree}

wholeSubtreeSpecification SubtreeSpecification ::={}

-- this indicates that this subtree corresponds to the whole tree

The second subentry is attached to the service provider administrative point and has the following values
for its attributes:

usersTree DirectoryString ::= {
universalString usersSubtree}

usersSubtreeSpecification SubtreeSpecification ::={
base {{{ type providerId,

value ???}}}, --provided when instanciated
minimum 2}

NOTE: The ??? notation is used to represent values that have to be provided at instanciation
time.

Page 25
Draft prETS 300 670: August 1996

The subtree specification indicates that only the objects basic service and registered routeing service for
all the users should be considered in this subtree.

The third subtree is attached to the user administrative point and has the following values for its attributes:

userTree DirectoryString ::= {
universalString userSubtree}

userSubtreeSpecification SubtreeSpecification ::={
base {{{ type providerId,

value ???}},
{{ type pui,

value ???}}},
minimum 1}

The subtree specification indicates that this subtree is the subtree under the user profile object.

The access rights for the first subtree that is used to define the access rights of the home service provider
can be applied to the whole subtree. The service provider can have all the rights on the data he owns.
Those access rights are expressed and contained in a prescriptiveACI attribute with the following value:

homeProviderSubentryACI ACIItem ::= {
identificationTag {

universalString id-homeProviderACI},
precedence ???, -- the definition of the precedence is a local matter
authenticationLevel {

basicLevels {
level none}}, -- a local qualifier could be added

itemOrUserFirst {
userFirst {

userClasses {
name {{dn {{{type providerId,

value ???}}}}}},
userPermissions {{

protectedItems {
subtree wholeSubtreeSpecification},

grantsAndDenials {
grantAdd,
grantRead,
grantDiscloseOnError,
grantRemove,
grantBrowse,
grantModify,
grantRename,
grantReturnDN,
grantCompare,
grantFilterMatch}}}}}}

NOTE: The attributes that can be modified by the user through service profile modification,
could be protected against changes made by the service provider, but since the
service provider defines and enforces the access control, he has all the rights.

The access rights for the second subtree that is used to define the access rights of the service providers
are different for the home service provider. Those rights apply to the users subtree. The service providers
do not perform authentication. They have only read access to the user information. Those access rights
are expressed and contained in a prescriptiveACI attribute with the following value:

otherProviderSubentryACI ACIItem ::= {
identificationTag {

universalString id-otherProviderACI},
precedence ???, -- see above
authenticationLevel {

basicLevels {
level none}},

itemOrUserFirst {
userFirst {

userClasses {
userGroup {{dn {{{type providerId,

value ???}},
{{type providerId,
value ???}}}}}},

-- this example contains the name of one service provider instead of the name of all the
-- service providers

userPermissions {{
protectedItems {

subtree usersSubtreeSpecification},
grantsAndDenials {

grantRead,

Page 26
Draft prETS 300 670: August 1996

grantDiscloseOnError,
grantBrowse,
grantReturnDN,
grantCompare,
grantFilterMatch}}}}}}

NOTE: The access rights could be refined by restricting the access to only the attributes
needed for the routeing. But the purpose of this ACIItem is more to show the general
contents of the access control than a real ACIItem that will be
implementation-dependent anyway.

To specify the user's access rights, it is possible to use a subtree userTree defined above. The rights are
determined by the type of authentication procedure performed by the user. The access rights can be
expressed with the following values of an entryACI object:

userSubentryACI ACIItem ::= {
identificationTag {

universalString id-userACI},
precedence ???,
authenticationLevel {

basicLevels {
level simple,
localQualifier ???}},

-- a local qualifier needs to be added for simple authentication to differentiate PIN, SPIN
-- and strong authentication.

itemOrUserFirst {
userFirst {

userClasses {
name {{dn {{{type providerId,

value ???}},
{{type pui,
value ???}}}}}},

userPermissions {{
protectedItems {

subtree userSubtreeSpecification},
grantsAndDenials {

grantRead,
grantDiscloseOnError,
grantBrowse,
grantModify,
grantReturnDN,
grantCompare,
grantFilterMatch}}}}}}

This ACIItem only gives the general rights for a user on all the user subtree, but for the different objects of
the subtree stronger access control procedures may apply. For example, for the userProfile object class,
restrictions on access should be defined. The restrictions are defined thanks to the addition of an attribute
in the object class. They prevent a user from modifying his authentication information, his charging
records and the options of his subscription. The attribute is of class entryACI and may take the following
value:

userProfileACI ACIItem ::= {
identificationTag {

universalString id-userProfileACI},
precedence ???,
authenticationLevel {

basicLevels {
level simple,
localQualifier ???}},

itemOrUserFirst {
userFirst {

userClasses {
thisEntry NULL,

userPermissions {{
protectedItems {

entry NULL},
grantsAndDenials {

denyModify,
grantRead,
grantBrowse}}}}}}

For the SPIN authentication, the right for the user to modify his password should be added. The different
ACIItem should be included in the different subentries or entries of the DIT to enforce the access rights
control.

Page 27
Draft prETS 300 670: August 1996

6.3.2 Authentication

For the weak authentication, the information sent to identify and authenticate the user are his PUI and his
PIN. To fit the BIND operation description, the name contains the PUI. It is the name used to access the
user data in the database, the concatenation of the providerId and of the PUI (where the provider identity
has been removed). The PIN is transported in the password parameter and is not protected. This gives
the following credentials for a user trying to identify himself with the weak authentication:

pinCredentials Credentials ::= {
simple {

name {{{
type providerId,
value ???},
{type pui,
value ???}}}, -- user's name

password {
unprotected ???}}} -- user's password (pin)

The algorithm used for this type of authentication is just a comparison between the stored PIN and the
provided PIN. When the user has used the weak authentication, he has the simple access rights with the
local qualifier as defined by his service provider to differentiate this type of simple authentication from the
other types.

The SPIN authentication leads to the same results as with the PIN. The only differences are that the
unprotected password should contain the SPIN instead of the PIN. And once the SPIN authentication has
succeeded, a local qualifier for the access rights is allocated to the user. This local qualifier shall be
different from the one used for the PIN authentication.

For the strong authentication, the information sent to identify and authenticate the user are the PUI, the
algorithm identifier, a sequential number and the authentication code. The PUI is used as it is done for the
PIN authentication. The sequential number is carried in the validity parameter as a random number and
the algorithm identifier with the authentication code is carried as a protected password. This gives the
following credentials for a user trying to identify himself with the strong authentication:

strongCredentials Credentials ::= {
simple {

name {{{
type providerId,
value ???},
{type pui,
value ???}}},

validity {
random1 ns},

password {
protected {

algorithmIdentifier ???,
encrypted authenticationCode}}}}

The algorithmIdentifier parameter takes the values that describe the algorithm. The algorithm identifiers
should be defined internationally. When the algorithm is specific to the service provider, the
externalProcedure credentials should be used.

When the user has authenticated with the strong authentication procedure, he is granted the simple
access rights with the local qualifier different from the ones given to the other simple authentications.

Page 28
Draft prETS 300 670: August 1996

6.3.3 Permitted Values

The icRegistrationAddress attribute of the userProfile object class is an attribute with permitted values
and with a restricted number of values. The permitted values are contained in the
allowedRegistrationAddress attribute. It is exactly the same thing with the routingAddress attribute of
the registeredRoutingService object class whose permitted values are contained in the
allowedRoutingAddress . The relationships between the icRegistrationAddress and the
allowedRegistrationAddress attributes can be expressed in a ACItem as follows:

registrationAddressACI ACIItem ::={
identificationTag {

universalString id-registrationAddressACI},
precedence ???,
authenticationLevel {

basicLevels {
level simple,
localQualifier ???}},

itemOrUserFirst {
itemFirst {

protectedItems {
restrictedBy {{type icRegistrationAddress,

valuesIn allowedRegistrationAddress}},
maxValueCount {{type icRegistrationAddress,

maxCount ???}}},
-- decided at subscription time

itemPermissions {{
userClasses {

name {{dn {{{type providerId,
value ???}},
{{type pui,
value ???}}}}}},

grantsAndDenials {
grantAdd,
grantRead,
grantDiscloseOnError,
grantRemove,
grantBrowse,
grantModify,
grantRename,
grantReturnDN,
grantCompare,
grantFilterMatch}}}}}}

The ACIItem for the routingAddress attribute would be similar to the one just described above.

7 SCF procedures

7.1 General

7.1.1 Overview

This subclause is an introduction to the UPT-specific procedures in the SCF.

The UPT-specific procedures described in this clause form the UPT-specific service logic program (SLP)
needed in the SCF to handle the UPT procedures as described in ETR 066 [9]. An SLP is normally
implementation-dependent and should not be standardized in general. However, this ETS gives a global
view of the UPT service and puts in context the database requests that have to be standardized.

These procedures are:

a) The common sequences: These elementary procedures are independent of the actual UPT
procedures but are executed before and after them. They include the Identification and
Authentication procedure (IA), the Feature Request Identification procedure (FRI), the Release
(RELEASE) procedure, the SRF Connection procedure (SRF_Connect) and the SRF Disconnection
macro (SRF_Disconnect). They are further described in subclause 7.2.

b) The personal mobility procedures: This includes the Registration for Incoming Calls procedure
(REG_IN) and the Deregistration for Incoming Calls (DEREG_IN). They are further described in
subclause 7.3.

Page 29
Draft prETS 300 670: August 1996

c) The UPT call handling procedures: This includes the Outgoing UPT Call procedure (OUTCALL) and
the Incoming UPT Call procedure (INCALL). They are further described in subclause 7.4.

d) The service profile management procedures: This is only the Service Profile Modification procedure
(SPM) which is further described in subclause 7.5.

e) The PIN modification procedure: This procedure is called the PIN Change procedure
(PIN_CHANGE). It is further described in subclause 7.6.

The UPT-specific SLP is invoked when an instance of the SCF State Model (SCSM) is created in the SCF
FSM on receipt of an IN request related to the UPT service (i.e. indicated by the value of the "serviceKey"
parameter of the InitialDP operation). This occurs when the SSF detects the presence of an incoming
UPT call or of a UPT user request. The recognition of a UPT request is based on the format of the UPT
number, UPT access code or UPT access number. This format is specified in ETR 315 [11]. This part of
the SLP is also called the Access procedure and is executed in all the SLP invocations (SLPI).

The FSM behaviour is described in ETS 300 374-1 [2] and is partly driven by the SLP.

The description technique for the SLP in this clause uses both text and SDLs. The SLP is modelled by a
single SDL process type UPT_SLP. To each SLPI corresponds a process instance. The UPT_SLP
process is further described in subclause 7.1.3.

7.1.2 Charging procedures in the SDLs

Several types of charging procedures have been defined in ETS 300 374-1 [2]. Depending on the
operations used, the charging is performed in the SCF or in the SSF:

a) "FurnishChargingInformation" is used if call records are generated at the SSF side;

b) "ApplyCharging" is used if call records are generated at the SSF side and collected by the SCF. It is
used when real-time transfer of charging information is necessary.

In the present ETS all the types of charging are included. However the choice of the type of charging
procedure is an implementation choice and some charging operations may not be relevant for a given
implementation.

7.1.3 Conventions and notation

Although the TC interface is not subject to standardization the use of some conventions for representing it
in terms of events which virtually occur at this interface. Such events are used as input and output signals
of the SDL description.

For that purpose, the TC interface is modelled using the following pseudo-events:

a) Events to TC:

1) Dialogue_Released(x): The dialogue with the functional entity x has been released by the
FSM or by the peer;

2) <Operation_Name>.inv: A valid TC_Invoke_Ind primitive for <Operation_Name> operation
has been received by the FSM;

3) <Operation_Name>.res: A valid TC_Result_L_Ind primitive for <Operation_Name> operation
has been received by the FSM;

4) <Operation_Name>.err: A valid TC_U_Error_Ind primitive for <Operation_Name> operation
has been received by the FSM. This signal has a formal parameter which represents the type
or error being received;

5) <Operation_Name>.rej: A valid TC_U_Reject_Ind primitive for <Operation_Name> operation
has been received by the FSM.

Page 30
Draft prETS 300 670: August 1996

b) Events from TC:

1) Release_Dialogue(x): The FSM is requested to release the dialogue with functional entity x;

2) <Operation_Name>.inv: The FSM is requested to invoke the <Operation_Name> operation;

3) <Operation_Name>.res: The FSM is requested to send a positive result for the
<Operation_Name> operation;

4) <Operation_Name>.err: The FSM is requested to send an error for the <Operation_Name>
operation. This signal has a formal parameter which represents the type of error being
reported.

These conventions assume that the SCF FSM performs some logical transformations on the primitives
received and sent on the TC/INAP interface. These transformations are such that:

a) from a receiving point of view, only the events which have an impact on the FSM are represented
as input signals in the model of the TC interface;

b) if several events in the FSM have the same impact , they are combined into a single input signal in
the TC interface model;

c) from a sending point of view, only the events which cannot be autonomously triggered by the FSM
(according to ETS 300 374-1 [2]), are defined as output signal in the TC interface model.

These transformations and the associated assumptions are summarized in table 1 and 2.

Table 1 indicates for each TC service primitive which can be received by the FSM, the corresponding
event on the TC interface and (if any) the subsequent request passed to TC by the FSM according to
ETS 300 374-1 [2].

Table 2 indicates for each primitive which can be passed to TC by the FSM, whether it is generated
autonomously by the FSM (according to the rules defined in ETS 300 374-1 [2], clause 10) or at the
request of the SLP. In the former case, the associated signal passed by the FSM is indicated. In the latter
case the name of the corresponding event on the TC interface is also provided.

Page 31
Draft prETS 300 670: August 1996

Table 1: Events on the TC interface on reception of TC-primitives

Input on the TC/FSM interface Corresponding output on the TC
interface

Associated subsequent
output on FSM/TC interface

TC-Begin-Ind (SLPI creation) -
TC-Continue-Ind Initial Bind.res1) -
TC-Continue-Ind Subsequent - -
TC-End-Ind Dialogue_Released(x) -
TC-Notice-Ind Dialogue_Released(x) TC-End-Req (Local)
TC-U-Abort-Ind Bind.err 2) or Dialogue_Released(x)
TC-P-Abort-Ind Dialogue_Released(x) -
TC-Invoke-Ind (Valid) <Operation_Name>.inv -
TC-Invoke-Ind (Invalid) Dialogue_Released(x) TC-U-Reject-Req, TC-End-Req
TC-Result-Ind (Valid) <Operation_Name>.res -
TC-Result-Ind (Invalid) Dialogue_Released(x) TC-U-Reject-Req, TC-End-Req
TC-U-Error-Ind (Valid) <Operation_Name>.err -
TC-U-Error-Ind (Invalid) Dialogue_Released(x) TC-U-Reject-Req, TC-End-Req
TC-U/R-Reject-Ind <Operation_Name>.rej3) -
TC-L-Reject-Ind Dialogue_Released(x) TC-End-Req
TC-L-Cancel-Ind (Class 1,3) Dialogue_Released(x) TC-U-Abort-Req
TC-L-Cancel-Ind (Class 2,4) - -

Table 2: Origins of TC-primitives

Output to TC Originated by Subsequent output from
FSM to SLP

TC-Begin-Req FSM Initiated -
TC-Continue-Req FSM Initiated -
TC-End-Req (local) FSM Initiated Dialogue_Released(x)
TC-End-Req (basic) Release_Dialogue(x) from SLP -
TC-End-Req (basic) FSM Initiated Dialogue_Released(x)
TC-U-Abort-Req FSM Initiated Dialogue_Released(x)
TC-Invoke-Req <Operation_Name>.inv received from SLP -
TC-Result-Req <Operation_Name>.res received from SLP -
TC-U-Error-Req - FSM Initiated (parameter missing, unexpected

parameter,...), or
- <Operation_Name>.err (error.name) received from
SLP

-

TC-U-Reject-Req FSM Initiated, followed by TC-End-Req (basic) to
TC (if the dialogue exists)

Dialogue_Released(x)

1) If a Bind-Result PDU is received
2) If a Bind-Error PDU is received
3) If it appears that this signal is of no use in the SLP, it can be replaced by Dialogue_Released

Page 32
Draft prETS 300 670: August 1996

The following BNF description summarizes the convention used for naming the signals exchanged across
the TC interface:

<Internal_Signal> := <Dialogue_Control_Event> | <Operation_Event>

<Dialogue_Control_Event> := <Dialogue_Event_Name> <Functional_Entity>

<Dialogue_Event_Name> := "Dialogue_Released" | "Release_Dialogue"

<Functional_Entity> := "SSF" | "SRF" | "SDFo" | "SDFh" | "SDFhA" | "SDFhB"

<Operation_Event> := <Operation_Name> | <Result> | <Error> | <Reject>

<Result> := <Operation_Name> ".res"

<Error> := <Operation_Name> ".err"

<Reject> := <Operation_Name> ".rej"

<Operation_Name> := "P&C" | "PLAYANN" | "FURNCHGINFO" | "CONNTORES" | "APPLYCHG" |
"INITIALDP" | "CONNECT" | "REQREPBCSM" | "ETC" | "ARI" | "EVREPBCSM" |
"BIND" | "SEARCH" | "MODIFY" | "ADD" | "REMOVE" | "RELEASECALL" |
"SRFRPT" | "DISCFWDCONN"

Tables 3 and 4 give the mapping between the names used in the above convention and the actual
operation names. Table 4 gives the name of the operations on the SCF-SDF interface. These operations
have to be used to fulfil the UPT service. Table 3 describes the other operations of the core INAP. These
operations may be used for the UPT service, however, other operations, even proprietary operations,
could be used because they are used within one network whereas SCF-SDF operations may cross
network boundaries.

Table 3: Intra-network operations used by the UPT SLP

Operation Name SDL Signal
ApplyCharging APPLYCHG
ApplyChargingReport APPLYCHGRPT
AssistRequestInstructions ARI
Connect CONNECT
ConnectToResource CONNTORES
DisconnectForwardConnection DISCFWDCONN
EstablishTemporaryConnection ETC
EventReportBCSM EVREPBCSM
FurnishChargingInformation FURNCHGINFO
InitialDP INITIALDP
PlayAnnoucement PLAYANN
PromptAndCollectUserInformation P&C
ReleaseCall RELEASECALL
RequestReportBCSMEvent REQREPBCSM
SpecializedResourceReport SRFRPT

Table 4: Inter-network operations used by the UPT SLP

Operation Name SDL Signal
Bind BIND
Search SEARCH
RemoveEntry REMOVE
ModifyEntry MODIFY
AddEntry ADD

Page 33
Draft prETS 300 670: August 1996

The following additional conventions are used as far as the parameter representation is concerned:

a) The parameters of an INAP operation are given in a comment box next to the signal box associated
with the INAP operation.

b) The ASN.1 value notation is used to describe these parameters. This notation is extended to
support variable parameters (noted with the suffix Var). The type of these parameters is given in the
core INAP as part of the operation definitions.

c) The optional parameters depending on implantation choices are not represented.

d) A counter in the SCF is used to count the number of unsuccessful attempts (failed requests) to
prevent the service or the network from being misused. This counter is named Counter1.

e) A counter in the SCF is used to count the number of times a database operation is sent to an busy
SDF to discard the operation after too many attempts. This counter is named Counter2. Together
with this counter, a timer is used to wait before sending again a database operation to the busy
SDF.

7.1.4 SLP description

The UPT SLP is represented by the behaviour of the SCF in the "UPT_SLP" process (see figure 6). This
process calls several SDL procedures, each of them corresponds to one of the UPT procedures defined in
ETR 066 [9]. These SDL procedures are further described from subclause 7.2 to subclause 7.6. This SLP
reflects the options adopted by the UPT Stage 2 as described in ETR 066 [9]. The ordering of the
operations might be different, especially if the SLP is derived from a stage 2 based on SIBs as described
in ITU-T Recommendation Q.1213 [13].

An instance of the "UPT_SLP" process is created by the SCSM on receipt of an InitialDP invocation with
the "serviceKey" parameter identifying the UPT service. The SCSM moves at the same time to the state
"Preparing SSF Instructions". The detection point "Analysed Information" indicates the presence of an
incoming UPT call or a UPT user request.

The SLPI starts with the Access procedure. If the "calledPartyNumber" includes the UPT access code
(UPTAC) or the UPT access number (UPTAN), the "UPT_SLP" process enters the Identification and
Authentication procedure and the user request is further processed. Otherwise it calls the INCALL
procedure and stops once it has been executed.

The "UPT_SLP" process starts by calling the IA procedure to identify and authenticate the user. If the user
has used his special PIN code (SPIN) to authenticate, a success in the authentication procedure will allow
the user to directly change his PIN code using for this purpose the PIN procedure. After a successful
authentication with the normal PIN code, the service logic executes the FRI procedure to get the feature
requested by the user.

Then, depending on the feature code provided by the UPT user, the REG_IN, the DEREG_IN, the
OUTCALL, the SPM or the PIN_CHANGE SDL procedure is called.

As soon as a procedure is terminated, the user can either identify a new request (new call to the FRI SDL
procedure) or abandon the follow-on procedure. The follow-on procedure allows a user to perform a
sequence of service features with one unique authentication. It is represented in the SDL diagram by a
loop that goes from a successful service feature procedure to the FRI procedure.

At any stage of the follow-on procedure, the user can abandon. If he does so, the RELEASE procedure is
called.

The user can also be released by the network with the RELEASE procedure, if authentication has failed, if
an operation error has occurred or if the user has misused the UPT service. The follow-on procedure ends
when the user has performed all his requests and abandons or when the user is released by the network.

In any state of the different procedures (except in the states of the user/network initiated release
procedure), the user can abandon, he can be disconnected or errors for pending operations can occur. In
the latter case, the dialogue with the SSF and the other functional entities are released before ending the
process.

Page 34
Draft prETS 300 670: August 1996

Process UPT_SLP 1(1)

Figure 6: SCF UPT procedure

Process UPT_SLP

Wait for DP

INITIALDP
{serviceKey uptKey,

callingPartyNumber callingLineIdVar,

calledPartyNumber calledNumberVar,

iPSSPCapabilities iPSSPCapabilitiesVar}

Called party

number =

UPTAC/UPTAN

INCALLIA

Exit

FRI

Exit

RELEASE

Feature code

PIN_CHANGE

Exit

SPMOUTCALLDEREG_INREG_IN

PIN_CHANGE

Exit

(No)

(Yes)

(OK)

(NOK)

(OK)

(PinChange)

(OK)

(NOK)

(ServProfileModif)(Outcall)(Dereg)(Reg)

(NOK)(SPIN)

(NOK)(OK)

Figure 6: Process UPT_SLP

Page 35
Draft prETS 300 670: August 1996

7.2 Generic sequences

This subclause regroups sequences of messages common to several procedures of UPT protocols. The
information flows describing those sequences are originated from ETR 066 [9]. They are the basis to the
SDL procedures presented in the following subclauses. In the SDL specification, the timers for the various
states and operations are not described, only service related timers are shown.

7.2.1 Identification and authentication

7.2.1.1 General

The identification and authentication (IA) procedure takes place each time a UPT user is requested to
identify himself. This is always the case when the user asks for the access to the UPT service.

The user identifies himself with his personal identifier and secret codes depending on the security option
chosen and the type of terminal. If the code matches the code stored in the database for the given
identifier and for a predefined algorithm, the user gets access to the UPT service and other procedures
can follow. The different authentication procedures are described in ETS 300 391-1 [5]

Within the SDL procedure describing the IA procedure, the user should have the possibility to make
several identification attempts. The procedure has three logical outputs4) :

- OK: The procedure has succeeded and the user may proceed to the next procedure.

- NOK: The procedure has failed and the user is released by the network; the reason of this release
can be either that the last permitted identification attempt has failed, that the maximum number of
rejected requests is reached or that an error has occurred. The SCF and the SDF maintain a
counter of the rejected attempts to have the user released by the network after a given number of
consecutive retries to prevent misuse of the service and network. The other possibility to have this
kind of output corresponds to the abandon of the request by the user.

- SPIN: The user has identified himself with his SPIN. This means that his authentication is
immediately followed by a procedure to change his PIN code.

At any stage of the IA procedure, the user can abandon, he can be disconnected or errors for pending
operations can occur. Therefore the SDL notation "State *" is used to show that those events can occur at
any state of the procedure.

7.2.1.2 Detailed procedure

Figure 7 shows the IA procedure.

The UPT request is notified to the SCF by a INITIALDP. The SSF has recognized the UPTAC (or UPTAN)
in a user request. The purpose of the UPTAC (or UPTAN) is to identify the SCF that can handle UPT
requests. This procedure and the structure of this number is presented in ETR 315 [11]. The need for an
identification and authentication of the user has been recognized. The procedure can start. The SCF
sends a REQREPBCSM to request the SSF to monitor a call-related event and to send a notification back
to the SCF when the event is detected. For this procedure where only one party is involved, the only types
of events to be notified are the user's abandon or his disconnection of the SCF. For charging purposes,
the SCF sends also a FURNCHGINFO to instruct the SSF to create a call record. At the beginning of the
procedure, the counter in the SCF (Counter1) for unsuccessful attempts (failed requests) to prevent the
service or the network from being misused is reset.

4) A parameter named Exit is used to distinguish the two outputs. This parameter has three possible values, one for each
output, OK, NOK and SPIN.

Page 36
Draft prETS 300 670: August 1996

Identification of the user

Then the SCF asks for the connection of an SRF this is done through the "SRF Connect" procedure
(SRF, see subclause 7.2.4.). Once the SRF is connected, the SCF is able to ask the user to provide his
identity. This is done with a P&C. The SCF moves to the state "Waiting for user info". Three situations
move it out of this state:

a) The user has abandoned the procedure: The SCF receives an EVREPBCSM indicating the user
release. The IA procedure is terminated and followed by a release procedure. This is included in the
"State *" of the SDL diagram.

b) An error has occurred for the P&C operation or for the CONNTORES operation in the case of
relayed operations: The SCF receives an error indication. This error indication includes a timer
expiry, a rejection of an operation or an error response:

1) if the error is of type UnavailableResource in response to the P&C operation, the
implementer can (if it is possible) select another SRF and restart the connection procedure.
This option which is implementer-dependent is not shown on the SDL diagram;

2) if the error is an ImproperCallResponse error, the user is allowed to retry the authentication
procedure from the beginning, but the number of retries is limited. A prompt informs him
about his mistake and a counter of failed attempts is incremented;

3) for the remaining errors, the IA procedure is terminated with Exit = NOK. The user is
released.

c) The user has provided the data in a correct format: The SCF receives a P&C response and the
procedure can continue as described below.

Authentication

In UPT phase 1, a user has three possible ways of authentication (simple PIN, SPIN or strong one-way
ETS 300 391-1 [5]) depending on the authentication procedures that the user has subscribed and on the
type of terminal available. To each authentication procedure corresponds a sequence of messages. The
three sequences are:

a) PIN code authentication (manual): This is a two-step procedure. The user is requested to provide
his identifier (PUI) and then to provide his PIN code via two consecutive P&Cs5). As it was said
previously the only error for P&C that receives special treatment is ImproperCallerResponse. It is
followed by a procedure that informs the SSF of the failed attempt with a FURNCHGINFO and that
allows the user to redial his authentication information or notifies him about a denied access to the
UPT service depending on the number of failed attempts. This last procedure is used each time a
user is suspected to have mistyped his identification sequence.

b) SPIN authentication (manual): This procedure is similar to the previous one (same message and
same treatment). However, to be differentiated from the PIN procedure, the SPIN is preceded by
the special digit * (the user has to dial two consecutive* digits in a row if he combines his identifier
and his SPIN). This procedure is followed by a PIN procedure and only takes place when the PUI is
blocked.

c) Strong one-way authentication (automatic): The user gives his identity and his variable
authentication code at the same time. This is done automatically using a user device. The different
pieces of data are combined with a separator "*".

5) The user has always the possibility to combine the 2 pieces of data or more (if wanted) in one dialling sequence using a
separator * to separate the different pieces of data. By this means, the user speeds up the UPT procedures.

Page 37
Draft prETS 300 670: August 1996

The use of a special leading digit ("*") differentiates the automatic authentication from the manual ones.
After all the user information is received through a P&C response, the identity of the home service
provider and the address of the database containing the user's information is extracted from the user
identity6) . The procedure to obtain the database address is described in ETR 315 [11]. If this operation
cannot be performed (i.e. the format of the user identity is wrong), the user is allowed to re-enter his
authentication data following a procedure already described above. Once the identity of the home service
provider is known, a database operation checks in the local database if an agreement exists between the
local service provider and the service provider of the UPT user (home service provider). There are three
outcomes to this query:

a) The user has abandoned the procedure: The SCF receives an EVREPBCSM indicating the user's
release. The IA procedure is terminated and followed by the release procedure.

b) An error has occurred: The SCF receives an error indication:

1) If a service error of type Busy occurs, the implementer has the possibility (if desired) to
resend the database operation to this same SDF after a given time set with a timer. This
remark applies to all error configurations where this type of error can occur (i.e. when waiting
for a database answer). The Counter2 counts the number of retries.

2) Otherwise the IA procedure is terminated and followed by the release procedure.

c) A response to the database operation has been received: The content of the response is checked.
If there is no agreement between the service providers, the SSF is informed of the end of the call
and is requested to modify the call record by a FURNCHGINFO. The user is informed by a prompt
that he cannot have access to the service and is later released. If there is an agreement between
the service providers, a check with the home service provider takes place to authenticate the user
and to know if the user is allowed to use the UPT service in that area.

If an agreement exists between the two service providers, the SCF starts an authenticated dialogue with
the home database of the user. The dialogue is opened with a BIND operation whose argument contains
all the authentication information provided by the user. The number of failed authentication attempts is
limited for a given user's identifier. The SDFh monitors and keeps the count of the number of attempts.
The counter used is attached to the PIN attribute. The three possible outcomes to this query are:

a) The user has abandoned the procedure: The SCF receives an EVREPBCSM indicating the user
release. The IA procedure is terminated and followed by a release procedure.

b) The BIND operation fails: The SCF receives an error indication:

1) If the error is a service error (unavailable), the implementer can (if desired) resend the
database operation to this same SDFh after a given time.

2) If the error is a security error (blocked credentials), indicating that the maximum number of
authentication attempts has been reached, the call record is updated with a FURNCHGINFO
and before being released by the network, the user is informed by a PLAYANN that his
line/number is blocked.

3) If the error is a security error (invalidCredential), the SSF is requested to modify the call
record (FURNCHGINFO) and the user is requested to restart dialling his identification
information.

4) If the error is a security error (inappropriateAuthentication), the SSF is requested to modify
the call record (FURNCHGINFO) and the user is informed by a PLAYANN.

5) Otherwise the IA procedure is terminated and followed by a release procedure.

c) The BIND operation succeeds: The user can go on to the next procedure (feature identification
request, see subclause 7.2.2.).

6) It is assumed that the identifier contains enough information to know the home service provider and the corresponding SDF.

Page 38
Draft prETS 300 670: August 1996

Once the authentication has been successfully performed, the SRF instructed by the SCF sends a prompt
to the user requesting him to enter the code of the feature service he wants to access. This is only valid
for all authentications except the SPIN one (see paragraph above) and when the user has not yet entered
the feature code.

NOTE: To decrease the signalling load on an inter-network interface, a first database
operation could be sent with the authentication information in the BEGIN message.
The operation to be send would be the first database operation encountered in the FRI
procedure (check on agreement between service providers). For the sake of simplicity,
the different operations are treated separately.

Before a release after a prompt, the SRF is disconnected. The disconnection with a macro is described in
subclause 7.2.5.

Page 39
Draft prETS 300 670: August 1996

Procedure Identification_Authentication 1(7)

Figure 7: Identification and

Authentication procedure (IA)

REQREPBCSM.inv

To SSF

{bcsmEvents

 {{eventTypeBCSM oDisconnect,

 monitorMode 1},

 {eventTypeBCSM oAbandon,

 monitorMode 1}}}

FURNCHGINFO.inv

To SSF

Reset

Counter1

SRF_Connect

Exit

A

P&C.inv

To SRF

Wait for

user info

(NOK)

(OK)

Figure 7 (sheet 1 of 7): Identification and Authentication procedure (IA)

Page 40
Draft prETS 300 670: August 1996

Procedure Identification_Authentication 2(7)

Figure 7: Identification and

Authentication procedure (IA)

Wait for

user info

P&C.err(errorType)

errorType

1A

P&C.res

2

{digitsResponse info1Var}
CONNTORES.err

CONNTORES.rej

P&C.rej

(ImproperCallerResponse)

Else

Figure 7 (sheet 2 of 7): Identification and Authentication procedure (IA)

Page 41
Draft prETS 300 670: August 1996

Procedure Identification_Authentication 3(7)

Figure 7: Identification and

Authentication procedure (IA)

4

SEARCH.inv

To SDFo

see 8.1

Wait for

agreement

3

Reset

Counter2

2

digitsResponse valid

1

All auth. info

present

P&C.inv

To SRF

Wait for

user info(2)

P&C.rej

A

P&C.err(errorType)

errorType

1

P&C.res

3

{digitsResponse info2Var}

(No)

(Yes)

(Yes)

(No)

Else

(ImproperCallerResponse)

Figure 7 (sheet 3 of 7): Identification and Authentication procedure (IA)

Page 42
Draft prETS 300 670: August 1996

Procedure Identification_Authentication 4(7)

Figure 7: Identification and

Authentication procedure (IA)

8

FURNCHGINFO.inv

To SSF

PLAYANN.inv

To SRF

9

5

* Leading Digit

Additional *

BIND.inv

To SDFh see 8.2

Authen:=spin

Wait for

authentication

BIND.inv

To SDFh see 8.2

Authen:=pin

BIND.inv

To SDFh see 8.2

Authen:=auto

Wait for

agreement

SEARCH.err(errorType)

errorType

Counter2=1?

Increment

Counter2

Wait

4

A

SEARCH.rejSEARCH.res

Agreement

Reset

Counter2

(No)

(Yes)

(No)

(Yes)

(Busy)

(No)

(Yes)

Else

(Yes)

(No)

Figure 7 (sheet 4 of 7): Identification and Authentication procedure (IA)

Page 43
Draft prETS 300 670: August 1996

Procedure Identification_Authentication 5(7)

Figure 7: Identification and

Authentication procedure (IA)

9

SRF_Disconnect

A

Wait for

authentication

BIND.err

Authen=spin?

8FURCHGINFO.inv

To SSF

errorType

AIncrement

Counter1

Counter1=Max?

PLAYANN.inv

To SRF

Error type

7

P&C.inv

To SRF

Automatic?

Wait for

user info(2)

Wait for

user info

BIND.res

61

(Yes)

(No)

Else

(Blocked credentials)

(Invalid credentials)

(Yes)

(No)

(Blocked credentials)(Invalid credentials)

(No)

(Yes)

Figure 7 (sheet 5 of 7): Identification and Authentication procedure (IA)

Page 44
Draft prETS 300 670: August 1996

Procedure Identification_Authentication 6(7)

Figure 7: Identification and

Authentication procedure (IA)

6

FURNCHGINFO.inv

To SSF

Authen=spin?

Exit::=OK

FeatureCode

present

P&C.inv

To SRF

Exit::=SPIN

A

Exit::=NOK

*

FURNCHGINFO.err

FURNCHGINFO.rej

REQREPBCSM.err

REQREPBCSM.rej

Dialogue_Released(SRF)

Dialogue_Released(SDF)

Dialogue_Released(SSF)

A

EVREPBCSM

A

{eventTypeBCSM oDisconnect,

 eventSpecificInformationBCSM

 {oDisconnectSpecificInfo

 {releaseCause causeVar}},

 miscCallInfo

 {messageType notification},

 eventTypeBCSM oAbandon,

 miscCallInfo

 {messageType notification}}

(No)

(Yes)

(No)

(Yes)

Figure 7 (sheet 6 of 7): Identification and Authentication procedure (IA)

Page 45
Draft prETS 300 670: August 1996

Procedure Identification_Authentication 7(7)

Figure 7: Identification and

Authentication procedure (IA)

7

P&C.inv

To SRF

Wait for

user info (3)

P&C.err(errorType)

P&C.rej

A

P&C.res

BIND.inv

To SDFh

Authen:=spin

Wait for

PIN

 unblocking

BIND.err

8

BIND.res

6

see 8.2

{digitsResponse info3Var}

Figure 7 (sheet 7 of 7): Identification and Authentication procedure (IA)

Page 46
Draft prETS 300 670: August 1996

7.2.2 Feature request identification

7.2.2.1 General

The feature request identification (FRI) procedure takes places:

- after a successful authentication;

- within the follow-on procedure after any other procedure.

It is used to identify a feature request and check if the feature can be supported for the user.

The associated procedure is named Feature Request Identification (FRI). It has two logical outputs.
They are identical to the ones for the IA procedure except that the SPIN output does not exist.

Like in the IA procedure, at any stage of the FRI procedure, the user can abandon, he can be
disconnected or errors for pending operations can occur. Therefore the same "State *" applies to the FRI
procedure.

7.2.2.2 Detailed procedure

Figure 8 is the SDL diagram for this procedure.

Identification of the service feature

The SCF starts to check if the feature was already given by the user. If so, no P&C is sent to the user to
ask him for the requested feature code. If not, the P&C is sent and the SCF moves to the state "Wait for
feature code". It is waiting for the user response to a previous P&C. There are three responses to expect:

- The user has abandoned the procedure: The SCF receives an EVREPBCSM indicating the user's
release. The FRI procedure is terminated and followed by a release procedure.

- An error has occurred: The SCF receives an error indication. What follows is a typical error
treatment for a P&C. Only ImproperCallerResponse is considered. It is followed by a procedure that
informs the SSF of the failed attempt with a FURNCHGINFO and that allows the user to redial the
feature code or that notifies him about a denied access to the UPT service after the maximum
number of retries is reached.

- The user has answered the request: The SCF receives a P&C response.

Service provider agreements

Once the user information is collected, the user information is used to send a database operation to the
SDFo. This operation checks if particular agreements exist between the local service provider and the
user's home service provider for the requested feature. The three possible outcomes are:

a) The user has abandoned the procedure: The SCF receives an EVREPBCSM indicating the user
release. The FRI procedure is terminated and followed by a release procedure.

b) An error has occurred: The SCF receives an error indication:

- If a service error of type Busy occurs, the implementer can resend the database operation to
this same entity after a given time;

- Otherwise the FRI procedure is terminated and the user is released by the network;

c) A response to the database operation has been received: The content of the response is checked.
If there is no agreement between the service providers, the SSF is informed of the failure of the FRI
procedure and is requested to modify the call record by a FURNCHGINFO. Depending on the
number of retries available, the user is informed with a P&C that he can perform another FRI
procedure or he is informed with a PLAYANN that he will be released by the network. If there is an
agreement between the service providers, the user has access to the requested feature.

Page 47
Draft prETS 300 670: August 1996

Procedure Feature_Request_Identification 1(3)

Figure 8: Feature request

identification procedure

2

Search.inv

To SDFo

Wait for

agreement

see 8.3

FeatureCode

present

Wait for

feature code

P&C.rej

A

P&C.err(errorType)

ErrorType

1

P&C.res {digitsResponse featureCodeVar}

Reset

Counter2

(No)

Else

(ImproperCallerResponse)

(Yes)

Figure 8 (sheet 1 of 3): Feature request identification procedure

Page 48
Draft prETS 300 670: August 1996

Procedure Feature_Request_Identification 2(3)

Figure 8: Feature request

identification procedure

Wait for

agreement

Search.rej

A

Search.err(errorType)

ErrorType

Counter2=1?

Increment

Counter2

Wait

2

A

Search.res

Matched

FURNCHGINFO.inv

To SSF

Increment

Counter1

Counter1=Max?

PLAYANN.inv

To SRF

SRF_Disconnect

A

P&C.inv

To SRF

Wait for

feature code

B

1

(Busy)

(Yes)

(No)

Else
(False)

(Yes)(No)

(True)

Figure 8 (sheet 2 of 3): Feature request identification procedure

Page 49
Draft prETS 300 670: August 1996

Procedure Feature_Request_Identification 3(3)

Figure 8: Feature request

identification procedure

*

EVREPBCSM

A

{eventTypeBCSM oAbandon,

 miscCallInfo

 {messageType notification},

 eventTypeBCSM oDisconnect,

 eventSpecificInformationBCSM

 {oDisconnectSpecificInfo

 {releaseCause causeVar}},

 miscCallInfo

 {messageType notification}}

FURNCHGINFO.err

FURNCHGINFO.rej

REQREPBCSM.err

REQREPBCSM.rej

DialogueRelease(SRF)

DialogueRelease(SDF)

DialogueRelease(SSF)

A

B

Exit ::=

OK

A

Exit ::=

NOK

Figure 8 (sheet 3 of 3): Feature request identification procedure

Page 50
Draft prETS 300 670: August 1996

7.2.3 Release of the calling user

7.2.3.1 General

The release of the calling user takes place at the end of every UPT user request (including one or more
feature requests).

The following situations may be encountered:

- release initiated by the user hanging up in any state. The release may also be initiated by the
originating network;

- forced release initiated by the IN-node.

Even though the two types of released are triggered by different events, the release procedure is the
same in both cases. The release procedure generally includes the release of all the external connections
(e.g. lines, circuits) and the release of all engaged IN resources (e.g. intelligent peripheral).

7.2.3.2 Detailed procedure

Figure 9 is the SDL diagram for this procedure.

At the beginning of the procedure, the SCF sends a Call Release to the SSF and closes the dialogues
established with the other entities. The procedure is then terminated.

Procedure Release 1(1)

Figure 9: Release procedure (RELEASE)

Release Call.inv

To SSF

DialogueRelease

To SRF

DialogueRelease

To SSF

DialogueRelease

To SDF

one for each dialogue

open with an SDF

{cause causeVar}

Figure 9: Release procedure

Page 51
Draft prETS 300 670: August 1996

7.2.4 Connection of an SRF

7.2.4.1 General

The connection of an SRF takes place when there is a need to send a message to a user. It is also used
to collect information provided by the user. For example this procedure occurs at the beginning of the IA
procedure to send messages to the user and to receive back provided information (like authentication
information). It also occurs for the follow-on procedure following an outgoing call procedure. It allows the
SCF to interact with the user.

Two technical options are available to connect an SRF. They depend on the type of interface used
between the SCF and the SSF or on whether the operations from the SCF are relayed through the SSP
(i.e. SSF and SRF integrated or not). Both options are presented in the procedure.

The associated procedure is named SRF connection (SRF_Connect). It has two logical outputs. They are
identical to the ones for the FRI procedure. Like in the IA and in the FRI procedures, at any stage of the
procedure, the user can abandon.

7.2.4.2 Detailed procedure

Figure 10 is the SDL diagram for this procedure.

The technical choice concerning the relation between the IP and the SSP is left open in the SDL
procedure. An attribute internal to the SCF called Op_Relayed contains indications on whether the
operations are relayed or not by the SSP. To show this implementation choice, the value of the attribute is
checked and the following sequence of the messages depends on the result of the check. However, this
choice is not present in a given implementation where only one message sequence is selected. The two
possible sequences are:

- Operations relayed: The SCF sends a CONNTORES to the SSF. The message orders the SSF to
connect an SRF.

- Operations not relayed: The SCF sends an ETC to the SSF and waits for the confirmation of the
connection with an SRF through an ARI message. If the confirmation is received, the procedure
normally ends (exit=OK). If the confirmation is not received, this means that a problem arose with
the previous ETC operation. Either the operation was rejected and the user should be released by
the network or an error was detected in the processing of the operation. The only case of error
recovery is for the ETCFailed error. Then the SCF has the possibility of contacting a new SRF
(if any available) via a new ETC operation. The other error cases lead to a release (exit = NOK).

Page 52
Draft prETS 300 670: August 1996

Procedure SRF_Connect 1(1)

Figure 10: SRF Connect procedure (SRF_Connect)

Op_Relayed

ETC.inv

To SSF

Wait for

ARI

ETC.err(errorType)

errorType

Another SRF

available

Exit::=NOK

ETC.inv

To SSF

{assistingSSPIPRoutingAddress sRFAddressVar’,

 correlationID correlationIDVar,

 scfID scfIDvar}

Wait for

ARI

ETC.rej ARI

0

{correlationID correlationIDVar}

{assistingSSPIPRoutingAddress sRFAddressVar,

 correlationID correlationIDVar,

 scfID scfIDvar}

CONNTORES.inv

To SSF

Exit::=OK

{resourceAddress

 {iPRoutingAddress sRFAddressVar}}

0

(False)

(ETCFailed)

(No)

(Yes)

Else

(True)

Figure 10: SRF Connect procedure

Page 53
Draft prETS 300 670: August 1996

7.2.5 Disconnection of an SRF

7.2.5.1 General

The disconnection of an SRF takes place either when a message has been sent to a user announcing him
the end of his request or when a call initiated by the user is about to be processed. It is used to release
the resources engaged in the dialogue between the SRF and the SCF. This procedure occurs at the end
of a user request or when the resources are needed to set-up a call.

Two technical options are available to disconnect an SRF. They depend on the type of interface used
between the SCF and the SSF or on whether the operations from the SCF are relayed through the SSP
(i.e. SSF and SRF integrated or not). Both options are presented in the procedure.

The associated macro is named SRF disconnection (SRF_Disconnect). It has one logical output.

7.2.5.2 Detailed procedure

Figure 11 is the SDL diagram for this procedure (macro).

Either the disconnection takes place after an announcement has been sent or after the abandon of the B
user. In the first case an SRFRPT is expected whereas in the other case the disconnection can be
executed right away. This is represented in the choice "direct disc". There are two possible ways to
disconnect a SRF either by using the DISCFWDCONN operation or by a backward disconnect from the
SRF. The choice between the two alternatives is controlled by the use of the
"DisconnectFromIPForbidden" parameter of the PLAYANN and P&C operations. The variable "disconn" is
used instead of the full parameter name to have shorter names on the diagram.

Page 54
Draft prETS 300 670: August 1996

Macro SRF_Disconnect 1(1)

Figure 11: SRF Disconnection

Macro SRF_Disconnect

direct disc?

Disconn

DISCFWDCONN.inv

To SSF

Wait for

termination

SRFRPTPLAYANN.err

PLAYANN.rej

(Yes)

(Implicit)

(Explicit)

(No)

Figure 11: Macro SRF Disconnect

Page 55
Draft prETS 300 670: August 1996

7.3 Personal Mobility

Personal Mobility Procedures are UPT procedures relating to the personal, or discrete, mobility of the UPT
user, used in order to ensure that the UPT user is able to receive or make UPT calls. The personal
mobility procedures do not involve actual making or receiving of calls.

7.3.1 Registration for incoming calls

7.3.1.1 General

Registration for incoming calls is a feature by which a UPT user registers from the current terminal access
for incoming UPT calls to be presented to that terminal access.

When registered, all incoming calls to UPT user will be presented to that terminal access for the duration
specified by the UPT user (by a new registration or an explicit deregistration) or until a specified
registration limitation. A UPT user's Incall Registration will cancel the previous one of that UPT user.
Several UPT users may be registered for incoming calls to the same terminal access simultaneously.

The Identification and Authentication (IA) and Feature Request Identification (FRI) procedures must have
been successfully completed before this procedure.

7.3.1.2 Detailed procedure

Figure 12 shows the Registration for Incoming Calls (REG_IN) procedure.

The REG_IN procedure is invoked by the UPT_SLP process when the UPT user answers with the Incall
Registration Code during the FRI procedure. In order to simplify the description of the procedure this
subclause is structured in subclauses describing different part of the registration.

Terminal ID available

When the terminal ID is provided by the user with the feature code the SCF formulates and sends a P&C
operation to the SRF in order to ask the user if he wants to register at the terminal specified by the
terminal ID and waits for the answer (state "Wait for User ACK"). The processing continues as described
in subclause "User's acknowledgement for terminal ID".

CLI available

When CLI (Calling Line Identity) is available, the SCF formulates and sends a P&C operation to the SRF
and waits for the answer (state "Wait for CLI ACK"). The SRF receives and reacts to the P&C and plays to
the user the requested announcement asking the UPT user to indicate whether the registration will be at
that terminal or not.

The following events move the SCF out of "Wait for CLI ACK" state:

a) The user has abandoned the procedure: The SCF receives an EVREPBCSM indicating the user
release. The procedure is terminated with Exit = NOK. This is included in the "State *" of the SDL
diagrams.

b) An error has occurred for the P&C operation (P&C.err):

1) If the error is "ImproperCallerResponse", the SCF sends a FURNCHGINFO to request the
SSF to create a record for the user request, the number of retries is incremented and, if not
exceeded, the prompt is repeated to the user that is allowed to make another attempt. If the
number of retries is exceeded the processing continues as described in subclause
"Maximum number of retries exceeded";

2) Else for any other error the procedure is terminated with Exit=NOK.

c) The P&C operation is rejected (P&C.rej): The procedure is terminated with Exit = NOK.

Page 56
Draft prETS 300 670: August 1996

d) The user answers "yes" to the prompt: The processing continues as described in subclause
"UPT user's permission screening".

e) The user answers "no" to the prompt: The processing continues as described in the subclause
"CLI not available".

f) The user answers "esc" to the prompt: The SCF sends a FURNCHGINFO to request the SSF to
create a record for the user request, the number of retries is incremented and, if not exceeded, the
SCF formulates and sends a P&C operation indicating that the user's request has been cancelled
and allowing him to return to the feature request identification (FRI) (follow-on). If the number of
retries is exceeded the processing continues as described in subclause "Maximum number of
retries exceeded".

CLI not available

If CLI is not available or the user's response to register on the current terminal is "no", the desired
terminal identity is requested. The SCF formulates and sends a P&C operation to the SRF and waits for
the answer (state "Wait for Terminal ID"). The SRF receives and reacts to the P&C and plays to the user
the requested announcement to appeal for the terminal identity on which the user wants to register.

The following events move the SCF out of "Wait for Terminal ID" state:

a) P&C operation is successful: The SRF echoes the received terminal identity to the user and sends
the dialled digits to the SCF. The SCF formulates and sends the P&C operation in order to prompt
the user to confirm or cancel the input data (state "Wait for User ACK"). This is described in
subclause "User's acknowledgement for terminal ID".

b) An error has occurred for the P&C operation (P&C.err):

1) If the error is "ImproperCallerResponse", the SCF sends a FURNCHGINFO to request the
SSF to create a record for the user request, the number of retries is incremented and, if not
exceeded, the user is requested to enter valid information with a P&C operation. If the
number of retries is exceeded the processing continues as described in subclause
"Maximum number of retries exceeded";

2) Else for any other error the procedure is terminated with Exit=NOK.

c) The P&C operation is rejected (P&C.rej): The procedure is terminated with Exit = NOK.

Maximum number of retries exceeded

If the maximum number of retries is exceeded a PLAYANN is sent to SRF in order to inform the user to
hang up, the procedure is terminated with Exit = NOK and the calling user is released by the Release
procedure.

User's acknowledgement for terminal ID

If the user confirms the echoed terminal ID the processing continues as described in subclause
"UPT user's permission screening".

If the user dials "esc" the same treatment described in subclause "CLI available" is applied.

If the user does not confirm the echoed terminal ID the SCF sends a FURNCHGINFO to request the SSF
to create a record for the user request and the number of retries counter is incremented. If the maximum
number of retries is not exceeded, a new attempt is allowed. The SCF formulates and sends a P&C to the
SRF in order to prompt the user to retry the registration procedure and collect again the registration input
data and returns to the "Wait for Terminal ID" state. If the number of retries is exceeded the processing
continues as described in subclause "Maximum number of retries exceeded".

Page 57
Draft prETS 300 670: August 1996

UPT user's permission screening

The SCF formulates and sends a Search operation to the local SDF to verify the UPT user's permission to
register on a specified network access and wait for the SDFo answer (state "Wait for Screen results").

The following events move the SCF out of "Wait for screen results" state:

a) An error has occurred for the Search operation (SEARCH.err):

1) If the error is "Busy" and it is the first attempt (Counter2 = 0) the Search operation is sent
again to the SDF after a time-out (timer) and the "UPT user's permission screening"
subclause is repeated.

2) If the error is "Insufficient Access Rights" the procedure is terminated as described in
subclause "Unsuccessful registration".

3) For any other error or after a second "Busy" error the procedure is terminated with
Exit = NOK.

b) The Search operation is rejected (SEARCH.rej) the procedure is terminated with Exit = NOK;

c) A response to the Search operation has been received. The Counter2 is reset and the ResultArg
received is checked:

1) If the registration is allowed the processing continues as described in subclause
"Collect limitation information".

2) If the registration for incoming calls is not allowed, the SCF sends a FURNCHGINFO to
request the SSF to create a record for the user request and the number of retries counter is
incremented. If the maximum number of retries is not exceeded, a new attempt is allowed.
The SCF formulates and sends a P&C to the SRF in order to prompt the user to retry the
registration procedure and collect again the registration input data and returns to the "Wait for
Terminal ID" state. If the number of retries is exceeded the processing continues as
described in subclause "Maximum number of retries exceeded".

Unsuccessful registration

The SCF formulates and sends FURNCHGINFO to request the SSF to send a record for all user requests
and the number of retries counter is incremented. If the maximum number of retries is not exceeded the
SCF formulates and sends a P&C operation in order to inform the user that the request can not be
handled and to terminate or request another procedure (this is done by the FRI procedure). If the
maximum number is exceeded the processing continues as described in subclause "Maximum number of
retries exceeded".

Collect limitation Information

If the registration is allowed, the SCF formulates and sends P&C operation to SRF to request the user to
provide time limitation information and waits for the answer (state "Wait for limitation sequence"). The
following events move the SCF out of "Wait for limitation sequence" state:

a) P&C operation is successful: The SRF echoes the received limitation sequence to the user and
sends the dialled digits to the SCF. The SCF formulates and sends the P&C operation to SRF in
order to prompt the user to confirm or cancel the input data (state "Wait for limitation ACK."). This is
described in subclause "User's acknowledgement for limitation sequence".

b) An error has occurred for the P&C operation (P&C.err):

1) If the error is "ImproperCallerResponse", the SCF sends a FURNCHGINFO to request the
SSF to create a record for the user request, the number of retries is incremented and, if not
exceeded, the user is requested to enter valid information with a P&C operation. If the
number of retries is exceeded the processing continues as described in
subclause "Maximum number of retries exceeded";

Page 58
Draft prETS 300 670: August 1996

2) Else for any other error the procedure is terminated with Exit=NOK.

c) The P&C operation is rejected (P&C.rej): The procedure is terminated with Exit = NOK.

User's acknowledgement for limitation sequence

If the user confirms the echoed limitation sequence the processing continues as described in
subclause "Collect limitation Information".

If the user dials "esc" the same treatment described in subclause "CLI available" is applied.

If the user does not confirm the echoed terminal ID the SCF sends a FURNCHGINFO to request the SSF
to create a record for the user request and the number of retries counter is incremented. If the maximum
number of retries is not exceeded, a new attempt is allowed. The SCF formulates and sends a P&C
operation to the SRF in order to prompt the user to retry the registration procedure and collect again the
limitation sequence and returns to the "Wait for limitation sequence" state. If the number of retries is
exceeded the processing continues as described in subclause "Maximum number of retries exceeded".

Update of UPT current location

When the registration for incoming calls is allowed, the SCF formulates and sends a ModifyEntry
operation to the SDF home to check if the given number does not violate input restrictions and if so, to
update the UPT user current location with the given information. The SCF formulates and sends a P&C
operation in order to inform the user that his request has been processed. The SCF waits for the SDFh
answer (state "Wait for Update Confirmation"). The following events move the SDF out of this state:

a) The ModifyEntry operation is successful: The registration is accepted. The Counter2 is reset and
the SCF formulates and sends FURNCHGINFO to the SSF. Afterwards the SCF sends a P&C
operation in order to prompt the UPT user that the registration has been successfully executed and
ask to terminate or request another procedure (this is done by the FRI procedure).

b) An error has occurred for the ModifyEntry operation (MODIFY.err):

1) If the error is "Insufficient Access Rights" the registration is denied and the processing
continues as described in subclause "Unsuccessful registration".

2) If the error is "Busy" and it is the first attempt (Counter2 = 0) the ModifyEntry operation is sent
again to the SDF after a time-out (timer) and the "Update of UPT current location"
subclause is repeated.

3) For any other error or after a second "Busy" error the procedure is terminated with
Exit = NOK.

c) The ModifyEntry operation is rejected (MODIFY.rej) the procedure is terminated with Exit = NOK.

Page 59
Draft prETS 300 670: August 1996

Procedure REG_IN 1(8)

Figure 12: SCF Registration

for Imcoming Calls Procedure

Procedure REG_IN

*

FURNCHGINFO.err

FURNCHGINFO.rej

REQREPBCSM.err

REQREPBCSM.rej

Dialogue_Released(SRF)

Dialogue_Released(SDF)

Dialogue_Released(SSF)

A

EVREPBCSM.inv
{ eventTypeBCSM oAbandon,

miscCallInfo

{messageType notification }}

Terminal ID

available

CLI

Available?

P&C.inv

To SRF

Wait for

Terminal ID

P&C.inv

To SRF

Wait for

CLI ACK

P&C.inv

To SRF

Wait for

User ACK0

(no)

(no) (yes)

(yes)

Figure 12 (sheet 1 of 8): SCF Registration for Incoming Calls procedure

Page 60
Draft prETS 300 670: August 1996

Procedure REG_IN 2(8)

Figure 12: SCF Registration

for Imcoming Calls Procedure

Procedure REG_IN

4

FURNCHGINFO.inv

TO SSF

Increment

Counter 1

Counter 1 = max?

2P&C.inv

To SRF

B

Wait for

CLI ACK

P&C.rej

A

P&C.err

(errorType)

errorType

FURNCHGINFO.inv

TO SSF

Increment

Counter 1

Counter 1 = max?

P&C.inv

TO SRF

Wait for

CLI ACK

2

P&C.res

digitsResponse

01

digitsResponse Var

(yes)

(no)

else(improperCallerResponse)

(no)

(yes)

(no)(yes)(esc)

Figure 12 (sheet 2 of 8): SCF Registration for Incoming Calls procedure

Page 61
Draft prETS 300 670: August 1996

Procedure REG_IN 3(8)

Figure 12: SCF Registration

for Imcoming Calls Procedure

Procedure REG_IN

2

PLAYANN.inv

To SRF

A

3

FURNCHGINFO.inv

To SSF

Increment

Counter 1

Counter 1 = max?

P&C.inv

To SRF

Wait for

Terminal ID

2

Wait for

Terminal ID

P&C.rej

A

P&C.err

(errorYype)

errorType

P&C.res { digitsResponse terminalID var }

P&C

TO SRF

Wait for

User ACK

(no)

(yes)

else(improperCallerResponse)

Figure 12 (sheet 3 of 8): SCF Registration for Incoming Calls procedure

Page 62
Draft prETS 300 670: August 1996

Procedure REG_IN 4(8)

Figure 12: SCF Registration

for Imcoming Calls Procedure

Procedure REG_IN

1

SEARCH.inv

To SDFo see 8.5

Wait for Screen

Result Arg.

Wait for

User ACK

P&C.rej

A

P&C.err

(errorType)

errorType

3

P&C.res

digitsResponse

34

{ digitsResponse var }

(improperCallerResponse) else

(no)(esc)

(yes)

Figure 12 (sheet 4 of 8): SCF Registration for Incoming Calls procedure

Page 63
Draft prETS 300 670: August 1996

Procedure REG_IN 5(8)

Figure 12: SCF Registration

for Imcoming Calls Procedure

Procedure REG_IN

Wait for Screen

Result Arg.

Search.rej

A

Search.err

(errorType)

errorType

Counter 2 = 0

Increment

Counter 2

Wait

1

4

Search.res

Reset

Counter 2

Matched

P&C.inv

To SRF

Wait for

limitation

sequence

3

else

(Busy)

(no)

(yes)

(Insufficient Access Rights)

(true)

(false)

Figure 12 (sheet 5 of 8): SCF Registration for Incoming Calls procedure

Page 64
Draft prETS 300 670: August 1996

Procedure REG_IN 6(8)

Figure 12: SCF Registration

for Imcoming Calls Procedure

Procedure REG_IN

6

FURNCHGINFO.inv

To SSF

Increment

Counter 1

Counter 1 = max?

P&C.inv

To SRF

Wait for

limitation

sequence

2

Wait for

limitation

sequence

P&C.rej

A

P&C.err

(errorType)

errorType

P&C.res

P&C.inv

TO SRF

Wait for

limitation ACK

{ digitsResponse limitation var }

(no)

(yes)

(improperCallerResponse) else

Figure 12 (sheet 6 of 8): SCF Registration for Incoming Calls procedure

Page 65
Draft prETS 300 670: August 1996

Procedure REG_IN 7(8)

Figure 12: SCF Registration

for Imcoming Calls Procedure

Procedure REG_IN

Wait for

limitation ACK

P&C.rej

A

P&C.err

(errorType)

errrorType

6

P&C.res

digitsResponse

5 6 4

{ digitsResponse var }

(improperCallerResponse) else

(yes) (no) (esc)

Figure 12 (sheet 7 of 8): SCF Registration for Incoming Calls procedure

Page 66
Draft prETS 300 670: August 1996

Procedure REG_IN 8(8)

Figure 12: SCF Registration

for Imcoming Calls Procedure

Procedure REG_IN

5

PLAYANN.inv

To srf

Modify.inv

To SDFh

Wait forUpdate

Confirmation

MODIFY.rej	

A

MODIFY.err

(errorType)

errorType

4Counter 2 = 0

Increment

Counter 2

Wait

5

MODIFY.res

Reset

Busy Counter

FURNCHGINFI.inv

To SSF

P&C.inv

TO SRF

B

see 8.6

else (Insufficient AccessRights)

(Busy)

(no)

(yes)

Figure 12 (sheet 8 of 8): SCF Registration for Incoming Calls procedure

Page 67
Draft prETS 300 670: August 1996

7.3.2 Deregistration for Incoming Calls

7.3.2.1 General

The Deregistration for Incoming Calls procedure is used when the UPT user explicitly deregisters.

The IA and FRI procedures must have been successfully completed before this procedure.

7.3.2.2 Detailed procedure

Figure 13 shows the Deregistration for Incoming Calls (DEREG_IN) procedure

The DEREG_IN procedure is invoked by the UPT_SLP process when the UPT user answers with the
Incall Deregistration Code during the FRI procedure.

Retrieve of registration information

As the retrieval of registration information is optional two cases may occur:

Option 1: If the data retrieval is necessary for obtaining the current registration information the SCF
formulates and sends a Search operation to the home SDF in order to retrieve the terminal
address where the user is currently registered for incoming calls. After that it waits for the
SDF answer (state "Wait for Retrieve res.").

Option 2: Otherwise the procedure continues as described in subclause "User Ack. For Deregistration"

The following events move the SCF out of "Wait for Retrieve res." state:

a) an error has occurred for the Search operation (SEARCH.err):

1) If the error is "Busy" and it is the first attempt (Counter2 = 0) the ModifyEntry operation is sent
again to the SDF after a time-out (timer) and the "Retrieve of registration information"
subclause is repeated.

2) If the error is "Insufficient Access Rights" the procedure is terminated as described in
subclause "Unsuccessful deregistration".

3) For any other error the procedure is terminated with Exit = NOK.

b) The Search operation is rejected (SEARCH.rej) the procedure is terminated with Exit = NOK.

c) A response to the Search operation has been received. If a previous registration was done by the
user (terminal ID available) the procedure continues as described in the subclause "User Ack. for
Deregistration". Otherwise the procedure is terminated as described in subclause
"Unsuccessful deregistration".

User Ack. for Deregistration

The SCF formulates and sends a P&C operation to SRF. The SRF receives and reacts to P&C in two
different ways according to options described below:

Option 1: If the data retrieval of registration information has occurred the SRF plays to the user to
appeal for his acknowledgement of the deregistration from the terminal where the user is
currently registered for incoming calls and waits for the answer (state "Wait for user dereg.
Ack.").

Option 2: Otherwise the SRF plays to the user for his acknowledgement of the deregistration without
expliciting the terminal identity from where the user is currently registered for incoming calls
and waits for the answer (state "Wait for user dereg. Ack.).

Page 68
Draft prETS 300 670: August 1996

The following events move the SCF out of "Wait for user dereg. ack." state:

a) The user has abandoned the procedure: The SCF receives an EVREPBCSM indicating the user
release. The procedure is terminated with Exit = NOK. This is included in the "State *" of the SDL
diagrams.

b) An error has occurred for the P&C operation (P&C.err):

1) If the error is "ImproperCallerResponse", the SCF sends a FURNCHGINFO to request the
SSF to create a record for the user request, the number of retries is incremented and, if not
exceeded, the prompt is repeated to the user that is allowed to make another attempt. If the
number of retries is exceeded the processing continues as described in
subclause "Maximum number of retries exceeded";

2) Else for any other error the procedure is terminated with Exit=NOK.

c) The P&C operation is rejected (P&C.rej): The procedure is terminated with Exit = NOK.

d) The user answers "yes" to the prompt: The processing continues as described in subclause
"Set to default registration address".

e) The user answers "no" or "esc" to the prompt the procedure is terminated as described in
subclause "Unsuccessful deregistration".

Set to default registration address

If the user accepts the deregistration the SCF formulates and sends a P&C operation to SRF in order to
inform the user that his request has been processed. The SCF formulates and sends an ModifyEntry
operation to the SDFh to set the UPT user current location to the default value. The SCF waits for the
SDFh answer (state "Wait for Update Confirmation").

The following events move the SDF out of this state:

a) The ModifyEntry operation is successful: The deregistration is accepted. The SCF formulates and
sends FURNCHGINFO to the SSF. Afterwards the SCF sends a P&C operation in order to prompt
the UPT user that the deregistration has been successfully executed and ask to terminate or
request another procedure (this is done by the FRI procedure).

b) An error has occurred for the ModifyEntry operation (MODIFY.err):

1) If the error is "Insufficient Access Rights" the deregistration is denied and the processing
continues as described in subclause "Denied Update".

2) If the error is "Busy" and it is the first attempt (Counter2 = 0) the ModifyEntry operation is sent
again to the SDF after a time-out (timer) and the "Set to default registration address"
subclause is repeated.

3) For any other error or after a second "Busy" error the procedure is terminated with
Exit = NOK.

c) The ModifyEntry operation is rejected (MODIFY.rej) the procedure is terminated with Exit = NOK.

Denied update

The SCF formulates and sends FURNCHGINFO to request the SSF to send a record for all user requests
and the number of retries counter is incremented. If the maximum number of retries is not exceeded the
SCF formulates and send a P&C operation in order to inform the user that the request can not be handled
and to terminate or request another procedure (this is done by the FRI procedure). If the maximum
number is exceeded the processing continues as described in subclause "Maximum number of retries
exceeded".

Page 69
Draft prETS 300 670: August 1996

Unsuccessful deregistration

The SCF sends a FURNCHGINFO to request the SSF to create a record for the user request, the number
of retries is incremented and, if not exceeded, the SCF formulates and sends a P&C operation allowing
the user to return to the feature request identification (FRI) (follow-on). If the number of retries is
exceeded the processing continues as described in subclause "Maximum number of retries exceeded".

Maximum number of retries exceeded

If the maximum number of retries is exceeded a PLAYANN operation is played to the user for asking him
to hang up; the procedure is terminated with Exit = NOK and the calling user is released by the Release
procedure.

Page 70
Draft prETS 300 670: August 1996

Procedure DEREG_IN 1(4)

Figure 13: SCF Deregistration

for incoming Calls Procedure

Procedure DEREG_IN

*

EVREPBCSM.inv
{eventTypeBCSM oAbandon,

miscCallInfo

{messageType notification }}

A

FURNCHGINFO.err

FURNCHGINFO.rej

REQREPBCSM.err

REQREPBCSM.rej

Dialogue_Release(SRF)

Dialogue_Release(SDF)

Dialogue_Release(SSF)

0

option 1

or

option 2

Search.inv

To SDFh

Wait for

Retrieve res.

See 8.71

(option 1)(option 2)

Figure 13 (sheet 1 of 4): SCF Deregistration for incoming Calls procedure

Page 71
Draft prETS 300 670: August 1996

Procedure DEREG_IN 2(4)

Figure 13: SCF Deregistration

for incoming Calls Procedure

Procedure DEREG_IN

2

PLAYANN.inv

To SRF

A

1

P&C.inv

To SRF

Wait for user

dereg.ack.

Wait for

Retrieve res.

Search.res

Reset

Counter 2

terminal ID

available

3

entries terminalAddress Search.rej

A

Search.err

errorType

Counter 2 = 0

Increment

Counter 2

Wait

0

(no)

(yes)

else(Insufficient Access Rights)

(Busy)

(no)(yes)

Figure 13 (sheet 2 of 4): SCF Deregistration for incoming Calls procedure

Page 72
Draft prETS 300 670: August 1996

Procedure DEREG_IN 3(4)

Figure 13: SCF Deregistration

for incoming Calls Procedure

Procedure DEREG_IN

3

FURNCHINFO.inv

To SSF

Increment

Counter 1

Counter 1 = max?

P&C.inv

To SRF

C

2

4

PLAYANN.inv

To SRF

MODIFY.inv

To SDFh

Wait for

Update confirmation

see 8.8

Wait for user

dereg.ack.

P&C.err

(errorType)

errorType

A FURNCHINFO.inv

To SSF

Increment

Counter 1

Counter 1 = max?

P&C.inv

To SRF

Wait for user

dereg.ack.

2

P&C.rejP&C.res

digitsResponse

3

{ digitsResponse var }

(no) (yes)

else (improperCallerResponse)

(no) (yes)

(no / esc)

(yes)

Figure 13 (sheet 3 of 4): SCF Deregistration for incoming Calls procedure

Page 73
Draft prETS 300 670: August 1996

Procedure DEREG_IN 4(4)

Figure 13: SCF Deregistration

for incoming Calls Procedure

Procedure DEREG_IN

C

Exit = OK

A

Exit = NOK

Wait for

Update confirmation

Modify.rej

A

Modify.err

(errorType)

errorType

3 Counter 2 = 0

Increment

Counter 2

Wait

4

Modify.res

Reset

Counter 2

FURNCHINFO.inv

To SSF

P&C.inv

To SRF

C

(insufficient Access Rights)

(Busy)

(no)

(yes)

(else)

Figure 13 (sheet 4 of 4): SCF Deregistration for incoming Calls procedure

Page 74
Draft prETS 300 670: August 1996

7.4 Call Handling

UPT call handling procedures are the procedures related to the making and receiving of UPT calls. The
description of the procedures assumes that:

a) ISUP signalling will be used for the network signalling;

b) the limit for the redirection counter is a network provider option with an upper limit of 5 redirections;

c) as the default registration address will always be present in the UPT user profile
(see subclause 6.2.1.4) the UPT to UPT Call Forwarding on Not Reachable service is not
considered as it cannot be used;

d) interaction with ISDN fixed network call diversion services and IN based UPT call diversion services
will follow the procedures described in ISUP/INAP interaction ETR 164 [10];

e) to enable UPT to UPT call forwarding to be detected it will be possible to differentiate between a
UPT and non UPT number;

f) numbers not recognized as UPT numbers will result in the call being treated as a normal call;

g) as the cost of forwarding a call is at the expense of the forwarding user no service restriction or
credit limit checks will be performed on the forwarded-to leg of the call.

7.4.1 Outgoing UPT Call

This subclause describes how the UPT user can make a single outgoing UPT call independent of any
previous registrations by the UPT user or any other UPT user for incoming and/or outgoing calls to the
used terminal access.

7.4.1.1 General

Outgoing calls from a UPT user may be single calls, in which the procedure terminates at the end of the
call, or may allow follow-on. The follow-on may be of another call or of another UPT procedure. Follow-on
will be offered to the UPT user after the B party disconnects at the end of a conversation or following call
set-up failure. The procedures for follow-on are described in more detail in subclause 7.1.3.

The IA and FRI procedures (see subclause 7.2) must have been successfully completed before this
procedure.

7.4.1.2 Detailed Procedure

The procedure for outgoing call handling for UPT calls is described in figure 14. The related macro is
shown in figure 15 The outgoing call procedure is called by the process UPT_SLP as described in
subclause 7.1.3. of this specification.

If Redirection Information is provided in the INITIALDP operation, the Call Forwarding Counter
(CFCOUNTER) is set to the same value as the Redirection Counter (see ETS 300 356-15 [1] for a
description of this ISUP information element), otherwise the Call Forwarding Counter (CFCOUNTER) is
set to zero.

Destination number

If the calling UPT user has already provided a destination number the Call Handling procedures continue
with screening of the UPT users home data base otherwise, the Destination number is requested via
invocation of the operation P&C which is sent to the SRF. The result of this operation will be one of the
following events:

a) Dialogue released by IN node (P&C.rej or dialogue_released): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-1 [2]. Regardless of the reason for the release, the call handling procedure is
terminated and the RELEASE procedure (as described in subclause 7.2.3.) is invoked.

Page 75
Draft prETS 300 670: August 1996

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call set-up procedure as described below in the subclause User
Initiated Release.

c) Operation error returned (P&C.err): The possible error causes returned in the P&C operation (.err)
are described in ETS 300 374-1 [2]. If the error "Improper Caller Response" is returned, the user is
given another opportunity to enter the destination number, providing the users retry counter
(COUNTER1)has not been exceeded. If the retry counter (COUNTER1) has been exceeded the
calling user is informed that the maximum number of denied call attempts is reached and is asked
to hang up, the SCF will instruct the SRF to send this announcement by invoking the PLAYANN
operation. The call handling procedure is then terminated and the RELEASE procedure is activated,
see subclause 7.2.3. This also applies for all other error causes which may be returned by the P&C
operation.

d) Successful result: A destination number is provided by the calling UPT user. The procedure
continues as described in the subclause Screening of the home database.

Screening of the home database

The SCF checks the calling UPT users home database (SDFhA) for any restrictions which may apply to
the dialled number. If the call has already been forwarded but has not been forwarded more times than
permitted by the network (the maximum number of times a single call can be diverted is a network
provider option, there is an upper limit of 5, refer to ETS 300 356-15 [1] for further information) this check
will not be performed. If the call has already been forwarded more times that permitted by the network,
this call will be terminated and the calling UPT user will be given an opportunity to enter a different
destination number as described below in the subclause User Retry.

To screen the dialled number the SCF will invoke the SEARCH operation (as defined in subclause 8.10).
The outcome of this operation will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or SEARCH.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the Release procedure (as described in subclause 7.2.3.) is invoked;

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure as described below in the subclause User
Initiated Release.

c) Operation error returned (SEARCH.err): The possible error causes returned in the SEARCH
operation (.err) is described in ETS 300 374-5 [3]:

1) In the case of "Service Error" type Busy the SCF can make a further attempt, after a time
delay, to retry the same SDF. If the number of retries (COUNTER2) is exceeded, the
Release procedure is performed.

2) For all other error types returned by the SDF, the procedure is terminated with Exit = NOK.

d) Successful result (SEARCH.res): This means that the operation has been successfully executed by
the SDF. If there are no restrictions the procedure will continue as described below. If restrictions
apply, the calling UPT user will be given an opportunity to enter a different destination number as
described below in the subclause User retry.

A further query may then be made on the UPT users home database (SDFhA) to check the Credit Limit to
see if there is any credit available to make the call. This check will not be repeated for subsequent call
set-up attempts for the same call (i.e. UPT to UPT Call Forwarding has occurred). The SCF will invoke
another SEARCH operation (as defined in subclause 8.9) for this purpose. The outcome of this operation
will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or SEARCH.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the Release procedure (as described in subclause 7.2.3.) is invoked.

Page 76
Draft prETS 300 670: August 1996

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure as described below in the subclause User
Initiated Release.

c) Operation error returned (SEARCH.err): The possible error causes returned in the SEARCH
operation (.err) is described in ETS 300 374-5 [3]:

1) In the case of "Service Error" type Busy the SCF can make a further attempt, after a time
delay, to retry the same SDF If the number of retries (COUNTER2) is exceeded, the
RELEASE procedure is performed.

2) For all other error types returned by the SDF, the procedure is terminated with Exit = NOK.

d) Successful result (SEARCH.res): This means that the operation has been successfully executed by
the SDF. If credit is available to make the call the procedure will continue as described below.
If there is no credit available the calling UPT user will be given an opportunity to select another
feature, the procedure will continue as described in the subclause User retry.

For UPT to non-UPT user calls the call handling procedures continue with the Call Set-up procedures.

UPT to UPT call

For UPT to UPT user calls (i.e the called number is recognized as a UPT number), the originating network
database (SDFo) is interrogated to check if agreements between the local service provider and the called
UPT users (or the forwarded-to UPT users) home provider exist for establishing outgoing calls.
An analysis of the number provided by the calling user should be performed to avoid retriggering the same
SCF (the problem of interaction between IN and other services is to be solved). This interrogation is
performed by invoking the SEARCH operation (as defined in subclause 8.3). The outcome of this
operation will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or SEARCH.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the RELEASE procedure (as described in subclause 7.2.3.) is invoked.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure as described below in the subclause User
Initiated Release.

c) Operation error returned (SEARCH.err): The possible error causes returned in the SEARCH
operation (.err) are described in ETS 300 374-5 [3]:

1) In the case of "Service Error" type Busy the SCF can make a further attempt, after a time
delay, to retry the same SDF. If the number of retries (COUNTER2) is exceeded, the
Release procedure is performed.

2) For all other error types returned by the SDF, the procedure is terminated with Exit = NOK.

d) Successful result (SEARCH.res): This means that the operation has been successfully executed by
the SDF. If the result is a match (i.e. agreement exists between the local service provider and the
called UPT users home provider for establishing outgoing calls from the current location) then the
procedure will continue as described below. In the case of no match (i.e. there is no agreement to
establish outgoing calls) the call will be treated as a normal call and routed to another network for
completion, for this the procedure continues as described in the subclause call set-up.

Page 77
Draft prETS 300 670: August 1996

Following the successful service provider check, the database of the home network of the called or
forwarded UPT user (SDFhB) is then interrogated to retrieve the location of the called user. The dialogue
is opened with an "empty" Directory BIND operation (i.e the Credentials parameter will not be present), the
outcome of this operation can be one of the following events:

a) Dialogue released by IN node (Dialogue_released or BIND.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the RELEASE procedure (as described in subclause 7.2.3.) is invoked.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure as described below in the subclause User
Initiated Release.

c) Operation error returned (BIND.err): The possible error causes returned in the SEARCH operation
(.err) are described in ETS 300 374-5 [3] regardless of the reason for the error the call handling
procedure is terminated and the calling UPT user will be given an opportunity to enter a different
destination number or select another feature, the procedure will continue as described in the
subclause User retry.

d) Successful result (BIND.res): This means that SDFhB accepts the dialogue and the procedure
continues as described below.

To retrieve the location of the called user the operation SEARCH (as defined in subclause 8.11) is invoked
by the SCF, the outcome of this operation will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or SEARCH.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the Release procedure (as described in subclause 7.2.3.) is invoked.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure as described below in the subclause User
Initiated Release.

c) Operation error returned (SEARCH.err): The possible error causes returned in the SEARCH
operation result (.err) are described in ETS 300 374-5 [3]:

1) In the case of "Service Error" type Busy the SCF can make a further attempt, after a time
delay, to retry the same SDF. If the number of retries (COUNTER2) is exceeded, the
RELEASE procedure is performed.

2) For all other error types returned by the SDF, the procedure is terminated with EXIT = NOK.

d) Successful result (SEARCH.res): This means that the operation has been successfully executed by
the SDFhB. The result is the routeing address(es) applicable at the time the request is made. If
more than one routeing address is returned the SCF will select the address to use based on the
following priority:

1) The routeing address for the Call Forwarding Unconditional service, if this service is active.

2) If the Call Forwarding Unconditional service is not active but the registration is still valid, the
routeing address used will be the registration address.

3) If the Call Forwarding Unconditional service is not active but the Variable Routeing service is
active, the address used will depend on the time or on the calling user.

4) Default registration address if none of the above criteria apply.

Page 78
Draft prETS 300 670: August 1996

Retrieve Default Charging Reference Point

If the call is being forwarded the retrieval of the default charging reference point is not required. The
charging for the forwarded leg of the call is a matter for the original called user and is not described here.

To retrieve the default charging reference point the SDFhB is interrogated by the SCF using a SEARCH
operation (as defined in subclause 8.16) the outcome of this operation will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or SEARCH.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the RELEASE procedure (as described in subclause 7.2.3.) is invoked.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure as described below in the subclause User
Initiated Release.

c) Operation error returned (SEARCH.err): The possible error causes returned in the SEARCH
operation result (.err) are described in ETS 300 374-5 [3]:

1) In the case of "Service Error" type Busy the SCF can make a further attempt, after a time
delay, to retry the same SDF. If the number of retries (COUNTER2) is exceeded, the
RELEASE procedure is performed.

2) For all other error types returned by the SDF, the procedure is terminated with Exit = NOK.

d) Successful result (SEARCH.res): This means that the operation has been successfully executed by
the SDFhB. The procedure then continues as described below.

If split charging (see ETR 055-3 [7]) is not to be applied the procedure continues with the UPT charging
notification subclause below. If split charging is to be applied then the called UPT user's credit limit is
checked to determine if there is sufficient credit available to receive the call. The SCF will invoke another
SEARCH operation (as defined in subclause 8.9) for this purpose. The outcome of this operation will be
one of the following events:

a) Dialogue released by IN node (Dialogue_released or SEARCH.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the RELEASE procedure (as described in subclause 7.2.3.) is invoked.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure as described below in the subclause User
Initiated Release.

c) Operation error returned (SEARCH.err): The possible error causes returned in the SEARCH
operation result (.err) are described in ETS 300 374-5 [3]:

1) In the case of "Service Error" type Busy the SCF can make a further attempt, after a time
delay, to retry the same SDF. If the number of retries (COUNTER2) is exceeded, the
RELEASE procedure is performed.

2) For all other error types returned by the SDF, the procedure is terminated with Exit = NOK.

d) Successful result (SEARCH.res): This means that the operation has been successfully executed by
the SDFhB. If credit is available to make the call the procedure will continue as described in
subclause UPT Charging Notification. If there is no credit available the calling UPT user will be
given an opportunity to select another feature, the procedure will continue as described in the
subclause User retry.

Page 79
Draft prETS 300 670: August 1996

UPT Charging Notification

The calling user is informed that "UPT Charging is Applicable" via invocation of the PLAYANN operation.
This notification will not be repeated for subsequent call set-up attempts (i.e. UPT to UPT call forwarding
has occurred and the calling user was notified that UPT charging was applicable from a previous attempt
to set-up this call). Following the instruction for the PLAYANN operation the macro SRF_Disconnect is
called, this macro will handle the operation errors and the disconnection of the SRF.

Retrieve supplementary service information

The purpose of this part of the procedure is to query the called UPT users home database (SDFhB) for
the status of supplementary services and for those call forwarding services which are active, retrieve the
relevant conditional forwarding parameters (e.g. No Reply Condition Timer). The SCF will invoke a
SEARCH operation (as defined in subclause 8.13) for this. The outcome of this operation will be one of
the following events:

a) Dialogue released by IN node (Dialogue_released or SEARCH.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the RELEASE procedure (as described in subclause 7.2.3.) is invoked.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure as described below in the subclause User
Initiated Release.

c) Operation error returned (SEARCH.err): The possible error causes returned in the SEARCH
operation result (.err) are described in ETS 300 374-5 [3]:

1) In the case of "Service Error" type Busy the SCF can make a further attempt, after a time
delay, to retry the same SDF. If the number of retries (COUNTER2) is exceeded, the
RELEASE procedure is performed.

2) For all other error types returned by the SDF, the procedure is terminated with Exit = NOK.

d) Successful result (SEARCH.res): This means that the operation has been successfully executed by
the SDFhB. The call forwarding parameters retrieved (if any) are stored for future use. The
procedure continues as described below.

Call set-up

The SCF can now instruct the SSF to set-up the call, several operations are invoked for this purpose:

a) DISCFWDCONN: This instructs the SSF to release the SRF, this operation will not be repeated for
subsequent call set-up attempts (i.e. UPT to UPT Call Forwarding has occurred). This operation is
invoked from within the macro SRF_Disconnect.

b) REQREPBCSM: This requests the SSF to monitor for a call-related event (e.g. busy, no answer,
release...) and report back to the SCF when the event has been detected. If a No Reply Condition
Timer value was retrieved from the called UPT users home database (SDFhB) when searched for
supplementary service information, the value will be provided with this operation.

c) FURNCHGINFO: This requests the SSF to generate call record information for the following event.

d) APPLYCHG: This operation requests the SSF to report back to the SCF when a charging related
event has been detected.

e) CONNECT: This instructs the SSF to set-up the call (i.e. generate the IAM). If any redirection
information was provided in the INITIALDP operation the information will be returned in this
operation, the redirection counter may have been updated as a result of further call forwarding. If no
redirection information was provided in the INITIALDP operation but call forwarding has occurred,
then the redirection information will be constructed by the SCF. Redirection information will not be
provided if no call forwarding has occurred. The SSF will determine how to handle this information.

Page 80
Draft prETS 300 670: August 1996

The outcome of this procedure will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or <operation_name>.rej): The reasons for
releasing the dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-1 [2]. Regardless of the reason for the release, the call handling procedure is
terminated and the RELEASE procedure (as described in subclause 7.2.3.) is invoked.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure as described below in the subclause User
Initiated Release.

c) Called Party busy: This state is reported to the SCF by the SSF returning the operation
EVREPBCSM. There are three possible outcomes:

1) If call forwarding on busy service is not active, the calling UPT user is informed that the call
cannot be connected and is provided with an opportunity to enter another destination number
or select another feature. The SCF will first ask the SSF to establish a temporary connection
to the SRF by invoking the SRF_Connect procedure (see subclause 7.2.4). The procedure
continues as described in the subclause User retry.

2) If call forwarding on busy service is active but the Call Forwarding Counter (CFCOUNTER)
has exceeded the network redirection limit (note that the upper limit for this counter is 5),
then the calling UPT user is informed that the call cannot be connected and provide the UPT
user with an opportunity to enter another destination number or select another feature. The
SCF will first ask the SSF to establish a temporary connection to the SRF by invoking the
SRF_Connect procedure (see subclause 7.2.4). The procedure continues as described in the
subclause User retry.

3) If call forwarding on busy service is active, and the Call Forwarding Counter (CFCOUNTER)
has not exceeded the network redirection limit, the call can be forwarded. The Call
Forwarding Counter (CFCOUNTER) is incremented and the outgoing call procedure
restarted.

d) Called Party no answer: This state is reported to the SCF by the SSF returning the operation
EVREPBCSM. There are three possible outcomes:

1) If call forwarding on no reply service is not active, the calling UPT user is informed that the
call cannot be connected and is provided with an opportunity to enter another destination
number or select another feature. The SCF will first ask the SSF to establish a temporary
connection to the SRF by invoking the SRF_Connect procedure (see subclause 7.2.4). The
procedure continues as described in the subclause User retry.

2) If call forwarding on no reply service is active but the Call Forwarding Counter
(CFCOUNTER) has exceeded the network redirection limit (note that the upper limit for this
counter is 5), then the calling UPT user is informed that the call cannot be connected and
provide the UPT user with an opportunity to enter another destination number or select
another feature. The SCF will first ask the SSF to establish a temporary connection to the
SRF by invoking the SRF_Connect procedure (see subclause 7.2.4). The procedure
continues as described in the subclause User retry.

3) If call forwarding on no reply service is active and the Call Forwarding Counter
(CFCOUNTER) has not exceeded the network redirection limit, the call can be forwarded.
The Call Forwarding Counter (CFCOUNTER) is incremented and the outgoing call procedure
restarted.

e) Route select failure: This state will be reported to the SCF by the SSF returning the operation
EVREPBCSM. This indicates that it was not possible to complete set up of the call due to either
congestion, unsubscribed number or number blocked. The calling UPT user is informed that the call
cannot be connected and provide the UPT user with an opportunity to enter another destination
number or select another feature. The SCF will first ask the SSF to establish a temporary
connection to the SRF by invoking the SRF_Connect procedure (see subclause 7.2.4). The
procedure continues as described in the subclause User retry.

Page 81
Draft prETS 300 670: August 1996

f) Operation error returned (CONNECT.err, REQREPBCSM.err, FURNCHGINFO.err,
APPLYCHGRPT.err or DISCFWDCONN.err): The possible error causes returned by these
operations are described in ETS 300 374-1 [2]. Regardless of the reason for the error, the call
set-up procedure is terminated and the calling user is then given an opportunity to select another
feature, the procedure continues as described in the subclause User retry.

g) Called Party Answers: The SCF is notified of this event by an EVREPBCSM operation.

Call release and follow-on

The set-up having been completed, the SCF waits for the release of the call. The SCF is notified of the
release by the SSF sending an EVREPBCSM operation. If the B party releases the call and the A party
does not release the call immediately this means that a follow-on call is required.

Before invoking the follow-on procedure, the SCF sends the FURNCHGINFO operation to the SSF, this
requests the SSF to update the call record. The SCF then waits for the call record from the SSF, during
this period the calling UPT user may choose to release the call, the SCF is notified of this event by an
EVREPBCSM operation from the SSF.

The SSF will provide the call record in the APPLYCHGRPT operation. This information is then used to
update the Calling Party's home database (SDFhA) by the SCF invoking the MODIFY operation
(as defined in subclause 8.12) to store the call record in the SDF. It should be noted that it is not possible
to directly use the call record to modify the users credit as the SDF is not able to calculate the charge that
corresponds to the call record. The outcome of this operation will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or MODIFY.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the RELEASE procedure (as described in subclause 7.2.3.) is invoked.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure as described below in the subclause User
Initiated Release.

c) Operation error returned (MODIFY.err): The possible error causes returned in the MODIFY
operation (.err) are described in ETS 300 374-5 [3]:

1) If the error is "Busy", the MODIFY operation can be attempted again, after a time delay. If the
number of retries (COUNTER2) is exceeded, the RELEASE procedure is performed but to
avoid the loss of the call record an implementation dependant action could be performed at
this stage.

2) For any other error the procedure is terminated. To avoid loss of the call record an
implementation dependant action could be performed at this stage.

d) Successful result (MODIFY.res): The SDF will report the update of the database with MODIFY.res.

In the case of UPT to UPT calls the original called UPT user's home database (SDFhB) will also be
updated in the same manner as described above.

To offer the follow-on to the user the SCF will instruct the SSF to reconnect an SRF through the
SRF_Connect procedure described in subclause 7.2.4.

Once the connection to the SRF is confirmed the SCF will instruct the SRF to inform the UPT user that
another request can be made or terminate, by sending the operation P&C. The follow-on procedure then
continues with the feature request identification procedures as described in subclause 7.2.2.

The dialogue to the original SDFhB is released. There may be more than one SDFhB dialogues open,
these should also be released.

Page 82
Draft prETS 300 670: August 1996

User retry

Firstly, the SCF will request the SSF to create a call record for the following call event by invoking the
operation FURNCHGINFO. The retry counter (COUNTER1) is incremented.

If the retry counter (COUNTER1) has been exceeded the calling user is informed that the maximum
number of denied call attempts is reached and is asked to hang up, the SCF will instruct the SRF to send
this announcement by invoking the PLAYANN operation. The call handling procedure is then terminated
and the Release procedure is activated, see subclause 7.2.3.

If the retry counter (COUNTER1) has not been exceeded the calling user is informed that the request is
denied and is requested to either hang up or to make another feature request. The SCF will instruct the
SRF to send this announcement by invoking the PLAYANN operation. The procedure then continues with
the Feature Request Identification procedure as described in subclause 7.2.2, call handling procedures
are terminated.

User Initiated Release

The SCF, following notification of early release of the call by the calling party, waits for the
APPLYCHGRPT operation which returns to the SCF the call record. Once this message is received, the
SCF sends a MODIFY operation (as defined in subclause 8.12) to SDFhA to store the call record in the
SDF. It should be noted that it is not possible to directly use the call record to modify the user credit as the
SDF is not able to calculate the charge that corresponds to the call record. The outcome of this operation
will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or MODIFY.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the RELEASE procedure (as described in subclause 7.2.3) is invoked.

b) Operation error returned (MODIFY.err): The possible error causes returned in the MODIFY
operation ration (.err) are described in ETS 300 374-5 [3]:

1) If the error is "Busy", the SCF can make a further attempt, after a time delay, to retry the
same SDF. If the number of retries is exceeded (COUNTER2) the procedure is terminated.
To avoid loss of the call record an implementation dependant operation could be performed
at this stage.

2) For any other error the procedure is terminated. To avoid loss of the call record an
implementation dependant operation could be performed at this stage.

c) Successful result (MODIFY.res): This confirms that the SDF has been successfully updated.

If the call is a UPT to UPT call the same procedure as described for SDFhA will be performed on the
original SDFhB.

Page 83
Draft prETS 300 670: August 1996

Procedure Outcall 1(23)

Wait for

user info

P&C.err

Error

Type

X

Increment

COUNTER1

COUNTER1

= max?

PLAYANN.inv

Maximum number

of call attempts

reached

2

Reset

ANNIND

Set CFCOUNTER

to Redirection

counter

Destination

No Rec’d?

1 P&C.inv
To collect

destination

number

Wait for

user info

P&C.res

CFCOUNTER

> 0?

CFCOUNTER

= n

The value of n is

a network provider

option, this value

has an upper limit

of 5

3B

SEARCH.inv

Reset

COUNTER2

Wait for

restrictions

To SDF(h)A to check

if any restrictions

apply to dialled number

Operation 8.10

{digitsResponse

 var}

2

1

else

Improper caller

response

Yes

No

Yes
No

Yes

Yes
No

No

Figure 14 (sheet 1 of 23): Outgoing UPT Call procedure

Page 84
Draft prETS 300 670: August 1996

Procedure Outcall 2(23)

Wait for

restrictions

SEARCH.err

Error

Type

COUNTER2

= 1?

Inc COUNTER2

Wait

SEARCH.inv Same parameters as

previous SEARCH

Wait for

restrictions

X

SEARCH.res

Restrictions?

3A

Busy

No

Yes

Else

No
Yes

Figure 14 (sheet 2 of 23): Outgoing UPT Call procedure

Page 85
Draft prETS 300 670: August 1996

Procedure Outcall 3(23)

5

P&C.inv
Enter another

feature or

destination

number

Z

3

FURNCHGINFO.inv

Increment

COUNTER1

COUNTER1

= max?

PLAYANN.inv
Maximum number of

call attempts

reached

X

No

Yes

Figure 14 (sheet 3 of 23): Outgoing UPT Call procedure

Page 86
Draft prETS 300 670: August 1996

Procedure Outcall 4(23)

Wait for

Credit check

SEARCH.res

Avail

Credit?

3B

SEARCH.err

Error

Type

COUNTER2

= 1?

Increment

COUNTER2

Wait

SEARCH.inv
Same parameters as

previous SEARCH

operation 8.9

Wait for

credit check

X

A

SEARCH.inv

Reset

COUNTER2

Wait for

credit check

To SDFhA to

check credit limit

Operation 8.9

No
Yes

Busy

No

Yes

Else

Figure 14 (sheet 4 of 23): Outgoing UPT Call procedure

Page 87
Draft prETS 300 670: August 1996

Procedure Outcall 5(23)

B

UPT

to UPT

call?

4 SEARCH.inv

Reset

COUNTER2

Wait for

provider

agreements

SEARCH.err

D

SEARCH.res

Agreements?

4 BIND.inv

Wait for

sdfhb Bind

To SDF(h)B

this is a bind

with no Credentials

parameter

To SDFO to check for

provider agreements

Operation 8.3

No

Yes

No Yes

Figure 14 (sheet 5 of 23): Outgoing UPT Call procedure

Page 88
Draft prETS 300 670: August 1996

Procedure Outcall 6(23)

Wait for

sdfhb Bind

BIND.err

3

BIND.res

SEARCH.inv

Reset

COUNTER2

Wait for

retrieve

To SDF(h)B to retrieve

the location of the

called party

Operation 8.11

Figure 14 (sheet 6 of 23): Outgoing UPT Call procedure

Page 89
Draft prETS 300 670: August 1996

Procedure Outcall 7(23)

Wait for

Retrieve

SEARCH.err

E

SEARCH.res

Select

Address

CFCOUNTER

> 0?

CSEARCH.inv

Reset

COUNTER2

Wait for

default CR

To SDFhB to

retrieve the

default charging

reference point

operation 8.6

Refer to text

for selection

rules

Yes

No

Figure 14 (sheet 7 of 23): Outgoing UPT Call procedure

Page 90
Draft prETS 300 670: August 1996

Procedure Outcall 8(23)

Wait for

default CR

SEARCH.err

H

SEARCH.res

Split

charging

?

CSEARCH.inv

RESET

COUNTER2

Wait for

dest credit

SEARCH.err

P

SEARCH.res

Avail

credit?

3
To calling

user to offer

retry

C

To SDFhB to check

credit limit of

called user

operation 8.9

No

Yes

No
Yes

Figure 14 (sheet 8 of 23): Outgoing UPT Call procedure

Page 91
Draft prETS 300 670: August 1996

Procedure Outcall 9(23)

C

ANNIND

> 0?

6PLAYANN.inv

Set

ANNIND

to 1

K

P

Error

Type

COUNTER2

= 1?

Inc COUNTER2

Wait

SEARCH.inv

Wait for

dest credit

Same parameters as

previous SEARCH

X

Yes

No

Busy

No

Yes

Else

Figure 14 (sheet 9 of 23): Outgoing UPT Call procedure

Page 92
Draft prETS 300 670: August 1996

Procedure Outcall 10(23)

K

SRF_

Disconnect

Exit

6 X6

SEARCH.inv

Reset

COUNTER2

Wait for

cf info

SEARCH.err

G

SEARCH.res

Store Call

Forward

info

J

To SDFhB to

retrieve Call

Forwarding parameters

operation 8.13

OK NOK

Figure 14 (sheet 10 of 23): Outgoing UPT Call procedure

Page 93
Draft prETS 300 670: August 1996

Procedure Outcall 11(23)

4

REQREPBCSM.inv
{bcsmEvents

 {{eventTypeBCSM routeSelectFailure},

 {eventTypeBCSM oCalledPartyBusy},

 {eventTypeBCSM oNoAnswer},

 {eventTypeBCSM oAnswer},

 {eventTypeBCSM oDisconnect},

 {eventTypeBCSM oAbandon}}}

FURNCHGINFO.inv

APPLYCHG.invTo SSF

CONNECT.invTo SSF

Wait for

setup

To SSF

J

Figure 14 (sheet 11 of 23): Outgoing UPT Call procedure

Page 94
Draft prETS 300 670: August 1996

Procedure Outcall 12(23)

D

Error

Type

COUNTER2

= 1?

Inc COUNTER2

Wait

SEARCH.inv

Wait for

provider

agreements

Same parameters as

previous SEARCH

X

Busy

No

Yes

Else

Figure 14 (sheet 12 of 23): Outgoing UPT Call procedure

Page 95
Draft prETS 300 670: August 1996

Procedure Outcall 13(23)

E

Error

Type

COUNTER2

= 1?

Inc COUNTER2

Wait

SEARCH.inv

Wait for

retrieve

Same parameters as

previous SEARCH

X

Busy

No

Yes

Else

Figure 14 (sheet 13 of 23): Outgoing UPT Call procedure

Page 96
Draft prETS 300 670: August 1996

Procedure Outcall 14(23)

G

Error

Type

COUNTER2

= 1?

Inc COUNTER2

Wait

SEARCH.inv

Wait for

cf info

Same parameters as

previous SEARCH

X

Busy

No

Yes

Else

Figure 14 (sheet 14 of 23): Outgoing UPT Call procedure

Page 97
Draft prETS 300 670: August 1996

Procedure Outcall 15(23)

H

Error

Type

COUNTER2

= 1?

Inc COUNTER2

Wait

SEARCH.inv

Wait for

default CR

Same parameters as

previous SEARCH

X

Busy

No

Yes

Else

Figure 14 (sheet 15 of 23): Outgoing UPT Call procedure

Page 98
Draft prETS 300 670: August 1996

Procedure Outcall 16(23)

Other inputs continued

next sheet

7

SRF_

Connect

Exit

X3

Wait for

setup

EVREPBCSM

CFB

active

?

CFCOUNTER

= n

The value of n is a

network provider option,

this count has an upper

limit of 5

Increment

CFCOUNTER

1 Restart call

procedure

{eventTypeBCSM oCalledPartyBusy

miscCallInfo

 {messageType notification}}

EVREPBCSM
{eventTypeBCSM

 oAnswer,

 miscCallInfo

 {messageType

 notification}}

Wait for

release

Nok

OK

No
Yes

Yes

No

Figure 14 (sheet 16 of 23): Outgoing UPT Call procedure

Page 99
Draft prETS 300 670: August 1996

Procedure Outcall 17(23)

The value of n is a

network provider option,

with an upper limit of 5

Wait for

setup

EVREPBCSM

7

{eventTypeBCSM

 routeSelectFailure,

miscCallInfo

 {messageType notification}}

EVREPBCSM

CFNR

active?

7

CFCOUNTER

= n

Increment

CFCOUNTER

1 Restart call

procedure

{eventTypeBCSM oNoAnswer

miscCallInfo

 {messageTypenotification}}

No
Yes

Yes

No

Figure 14 (sheet 17 of 23): Outgoing UPT Call procedure

Page 100
Draft prETS 300 670: August 1996

Procedure Outcall 18(23)

X

Exit=NOK

*

P&C.rej

SEARCH.rej

MODIFYENTRY.rej

PLAYANN.rej

REQREPBCSM.rej

FURNCHGINFO.rej

APPLYCHG.rej

ETC.rej

BIND.rej

Dialogue

Released EVREPBCSM

Wait for

applychgrep

{eventTypeBCSM

 oAbandon,

 miscCallInfo

 {messageType

 notification}}

PLAYANN.err

REQREPBCSM.err

FURNCHGINFO.err

APPLYCHG.err

ETC.err

Figure 14 (sheet 18 of 23): Outgoing UPT Call procedure

Page 101
Draft prETS 300 670: August 1996

Procedure Outcall 19(23)

Wait for

release

EVREPBCSM

Wait for

applychgrep

EVREPBCSM

Wait for

applychgrep

{eventTypeBCSM

 oDisconnect,

 miscCallInfo

 {messageType

 notification}}

APPLYCHGREP

MODIFY.inv

Wait for

update rsp

EVREPBCSM
{eventTypeBCSM

 oDisconnect,

 miscCallInfo

 {messageType

 notification}}

X

MODIFY.err

Q

MODIFY.res

UPT

to

UPT?

FM

To SDFhA to

update call

record

Operation 8.12

{eventTypeBCSM

 oDisconnect,

legId {receivingSideId

 LegType leg1}

 miscCallInfo

 {messageType

 notification}}

 - A Party disconnect

EVREPBCSM
{eventTypeBCSM

 oDisconnect,

 legId {receivingSideId

 LegType leg2}

 miscCallInfo

 {messageType

 notification}}

- B party disconnectFURNCHGINFO.inv

NoYes

Figure 14 (sheet 19 of 23): Outgoing UPT Call procedure

Page 102
Draft prETS 300 670: August 1996

Procedure Outcall 20(23)

Q

Error

Type

COUNTER2

= 1?

Inc COUNTER2

Wait

MODIFY.inv

Wait for

update rsp

Same parameters as

previous Modify

X

Busy

Yes

Else

Figure 14 (sheet 20 of 23): Outgoing UPT Call procedure

Page 103
Draft prETS 300 670: August 1996

Procedure Outcall 21(23)

Z

Dialogue

release to SDFhB

There may be more

than one SDFhB

dialogue open

EXIT = OK Follow-on

procedure

F

SRF

Connect

Exit

P&C.invEnter another

request X

OK
Nok

Figure 14 (sheet 21 of 23): Outgoing UPT Call procedure

Page 104
Draft prETS 300 670: August 1996

Procedure Outcall 22(23)

M

MODIFY.inv

Wait for

modify rsp

EVREPBCSM

X

{eventTypeBCSM

 oDisconnect,

 miscCallInfo

 {messageType

 notification}}

MODIFY.err

R

MODIFY.res

F

To SDFhB to

update the

call record

Operation 8.12

Figure 14 (sheet 22 of 23): Outgoing UPT Call procedure

Page 105
Draft prETS 300 670: August 1996

Procedure Outcall 23(23)

R

Error

Type

COUNTER2

= 1?

Inc COUNTER2

Wait

MODIFY.inv

Wait for

modify rsp

Same parameters as

previous Modify

X

Busy

No

Yes

Else

Figure 14 (sheet 23 of 23): Outgoing UPT Call procedure

Page 106
Draft prETS 300 670: August 1996

Macro Outcall 1(12)

Destination

No Rec’d?

1 P&C

Wait for

user info

P&C.err

Error

Type

X2

P&C.res {digitsResponse

 var}

x500op

Wait for

restrictions

To SDF(h)A to check

if any restrictions

apply to dialled number

{objectName

 {{{ ???

 }}},

 purported

 {{ ??

 }}}

{collectedInfo

 {collectedDigits

 {minimumNbOfDigits 4,

 maximumNbOfDigits 20}},

 informationToSend

 {inbandInfo

 {messageID

 {elementaryMessageID 10}}}}

2

1

Yes
No

Else
Improper Caller

Response

Figure 15 (sheet 1 of 12): Outgoing UPT Call macro

Page 107
Draft prETS 300 670: August 1996

Macro Outcall 2(12)

Wait for

restrictions

x500.err

Error

Type

Another

SDF?

3

x500 Same parameters as

previous screen

Wait for

restrictions

3

Type

Retry?

Another

SDF?

x500.res

Match?

3A

{matched

 matchedVar}

Referral

No
Yes

ElseService

Else
Busy

Yes

No

No
Yes

No
Yes

Figure 15 (sheet 2 of 12): Outgoing UPT Call macro

Page 108
Draft prETS 300 670: August 1996

Macro Outcall 3(12)

5

P&C

Z

{collectedInfo

 {collectedDigits

 {maximumNbOfDigits 1}},

 informationToSend

 {inbandInfo

 {messageID

 {elementaryMessageID 8}}}}

A

x500

Wait for

credit check

To SDFhA to

check credit limit

{objectName

 {{{ ???

 }}},

 purported

 {{ ??

 }}}

3

FURNCHGINFO

Increment No

of Retrys

Counter

No of

Retrys

exceeded?

PLAYANN

X

{informationToSend

 {inbandInfo

 {messageID

 {elementaryMessageID 16}}}}

No

Yes

Figure 15 (sheet 3 of 12): Outgoing UPT Call macro

Page 109
Draft prETS 300 670: August 1996

Macro Outcall 4(12)

Wait for

credit check

x500.err

Error

Type

Another

SDF?

3

x500 Same parameters as

previous screen

Wait for

credit check

3

Type

Retry?

Another

SDF?

x500.res

Match?

3B

{matched

 matchedVar}

Referral

Yes

ElseService

Else

Busy

Yes

No

No
Yes

No
Yes

Figure 15 (sheet 4 of 12): Outgoing UPT Call macro

Page 110
Draft prETS 300 670: August 1996

Macro Outcall 5(12)

B

UPT

to UPT

call?

4 x500

Wait for

provider

agreements

x500.err

D

x500.res

Match?

3

x500

Wait for

retrieve

x500.err

E

x500.res

C

To SDF(h)B -

to be defined

{matched matchedVar}

To SDFhO to check for

provider agreements

{objectName

 {{{type providerId,

 value providerIdVar}}},

 purported

 {{type providerAgreements,

 value localProviderIdVar}}}

No

Yes

No

Yes

Figure 15 (sheet 5 of 12): Outgoing UPT Call macro

Page 111
Draft prETS 300 670: August 1996

Macro Outcall 6(12)

4

SRF-

Disconnect

Exit

XREQREPBCSM
{bcsmEvents

 {{eventTypeBCSM routeSelectFailure},

 {eventTypeBCSM oCalledPartyBusy},

 {eventTypeBCSM oNoAnswer},

 {eventTypeBCSM oAnswer},

 {eventTypeBCSM oDisconnect},

 {eventTypeBCSM oAbandon}}}

FURNCHGINFO

APPLYCHGTo SSF

CONNECTTo SSF

Wait for

setup

To SSF

C

PLAYANN

Wait for

ann report

PLAYANN.err

X
Error, abandon

call setup

NIR

SRFRPT

{informationToSend

 {inbandInfo

 {messageID

 {elementaryMessageID 13}}}

NOK

Ok

Figure 15 (sheet 6 of 12): Outgoing UPT Call macro

Page 112
Draft prETS 300 670: August 1996

Macro Outcall 7(12)

D

Error

Type

Another

SDF?

3

x500

Wait for

provider

agreements

Same parameters as

previous screen 3

Type

Retry?

Another

SDF?

Referral

Yes

ElseService

Else

Busy

Yes

No

No
Yes

Figure 15 (sheet 7 of 12): Outgoing UPT Call macro

Page 113
Draft prETS 300 670: August 1996

Procedure Incall 8(15)

A

SRF_

Connect

Exit

ANNIND

> 0

4

PLAYANN.inv UPT Charging

notification

SRF

disconnect

D

2

OK

Yes

No

NOK

Figure 15 (sheet 8 of 12): Outgoing UPT Call macro

Page 114
Draft prETS 300 670: August 1996

Macro Outcall 9(12)

Wait for

setup

EVREPBCSM

SRF_

Connect

Exit

X5

{eventTypeBCSM oCalledPartyBusy

 or oNoAnswer

miscCallInfo

 {messageType notification}}

EVREPBCSM

{eventTypeBCSM

 oAnswer,

 miscCallInfo

 {messageType notification}}

Wait for

release

No
OK

Figure 15 (sheet 9 of 12): Outgoing UPT Call macro

Page 115
Draft prETS 300 670: August 1996

Macro Outcall 10(12)

X

Exit=NOK

*

P&C.rej

x500.rej

PLAYANN.rej

REQREPBCSM.rej

FURNCHGINFO.rej

APPLYCHG.rej

ETC.rej

Dialogue

Released EVREPBCSM

{eventTypeBCSM

 oAbandon,

 miscCallInfo

 {messageType

 notification}}

PLAYANN.err

REQREPBCSM.err

FURNCHGINFO.err

APPLYCHG.err

ETC.err

Figure 15 (sheet 10 of 12): Outgoing UPT Call macro

Page 116
Draft prETS 300 670: August 1996

Macro Outcall 11(12)

Wait for

release

EVREPBCSM
{eventTypeBCSM

 oDisconnect,

 miscCallInfo

 {messageType

 notification}}

A Party

X

EVREPBCSM
{eventTypeBCSM

 oDisconnect,

 miscCallInfo

 {messageType

 notification}}

B Party

FURNCHGINFO

Wait for

applychgrep

EVREPBCSM
{eventTypeBCSM

 oDisconnect,

 miscCallInfo

 {messageType

 notification}}

X

APPLYCHGREP

x500

Wait for

update rsp

EVREPBCSM
{eventTypeBCSM

 oDisconnect,

 miscCallInfo

 {messageType

 notification}}

X

x500.err

X

x500.res

F

To SDFhA to

be defined

Figure 15 (sheet 11 of 12): Outgoing UPT Call macro

Page 117
Draft prETS 300 670: August 1996

Macro Outcall 12(12)

Z

EXIT = OK Follow-on

procedure

F

ETC
{assistingSSPIPRoutingAddress sRFAddressVar,

correlationID correlationIDVar,

scfID scfIDVar}

Wait for

ARI 2

EVREPBCSM
{eventTypeBCSM

 oDisconnect,

 miscCallInfo

 {messageType

 notification}}

X

ARI {correlationID

 correlationIDVar}

P&C
{collectedInfo

 {collectedDigits

 {minimumNbOfDigits 1,

 maximumNbOfDigits 1}},

 informationToSend

 {inbandInfo

 {messageID

 {elementaryMessageID 5}}}}

Figure 15 (sheet 12 of 12): Outgoing UPT Call macro

Page 118
Draft prETS 300 670: August 1996

7.4.2 Incoming UPT Call

7.4.2.1 General

This subclause only describes the case of a non-UPT user calling a UPT user. The case of UPT user
calling another UPT user is covered in the previous subclause 7.4.1. It is assumed that a call to a UPT
user is always controlled from the "first" network with UPT capabilities. This network may be either the
originating network or the called user's home network or another network.

7.4.2.2 Detailed Procedure

The procedure for incoming call handling for UPT calls is described in figure 16. The related macro is
shown in figure 17. The incoming call procedure is called by the process UPT_SLP as described in
subclause 7.1.3. of this specification.

If Redirection Information is provided in the INITIALDP operation, the Call Forwarding Counter
(CFCOUNTER) is set to the same value as the Redirection Counter (see ETS 300 356-15 [1] for a
description of this ISUP information element), otherwise the Call Forwarding Counter (CFCOUNTER) is
set to zero.

Provider agreements

The purpose of the first SEARCH operation is to check the SDFo to determine whether agreement exists
between the local service provider and the called user's home provider for establishing incoming calls.
The outcome of this operation will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or SEARCH.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the SSF is instructed to release the call.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure.

c) Operation error returned (SEARCH.err): The possible error causes returned in the SEARCH
operation (.err) are described in ETS 300 374-5 [3]:

1) In the case of "Service Error" type Busy the SCF can make a further attempt to retry the
same SDF, after a time delay. If the number of retries (COUNTER2) is exceeded, the
RELEASE procedure is performed.

2) For all other error types returned by the SDF, the call handling procedure is terminated and
the call released.

d) Successful result (SEARCH.res): This means that the operation has been successfully executed by
the SDF. If the result is a match (i.e. agreement exists between the local service provider and the
called UPT users home provider for establishing incoming calls) then the procedure will continue as
described below (Screening of the home database). If there is no agreement to establish incoming
calls, the call will be treated as a normal call and the procedure continues with call set-up as
described in the subclause below.

Screening of the home database

Having established that agreements exist between the local and home service providers, the SCF can
now proceed to check the called UPT user's home database to retrieve the current location of the called
user. The dialogue is opened with an "empty" Directory BIND operation (i.e. the Credentials parameter will
not be present), the outcome of this operation will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or BIND.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the SSF is instructed to release the call.

Page 119
Draft prETS 300 670: August 1996

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure.

c) Operation error returned (BIND): The possible error causes returned in the BIND operation (.err)
are described in ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling
procedure is terminated and the SSF is instructed to release the call.

d) Successful result (SEARCH): This means that the operation has been successfully executed by the
SDF. The dialogue with the SDFhB can now proceed.

To retrieve the location of the called user the SCF will invoke a SEARCH operation (as defined in
subclause 8.11). The outcome of this operation will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or SEARCH.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the SSF is instructed to release the call.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure.

c) Operation error returned (SEARCH): The possible error causes returned in the SEARCH operation
(.err) are described in ETS 300 374-5[3]:

1) In the case of "Service Error" type Busy the SCF can make a further attempt to retry the
same SDF, after a time delay. If the number of retries (COUNTER2) is exceeded, the
RELEASE procedure is performed.

2) For all other error types returned by the SDF, the call handling procedure is terminated and
the call released.

d) Successful result (SEARCH): This means that the operation has been successfully executed by the
SDF. The result is one or more valid routeing addresses. The SCF will select the routeing address
based on the following priority:

1) The routeing address for the Call Forwarding Unconditional service, if this service is active.

2) If the Call Forwarding Unconditional service is not active but the registration is still valid, the
routeing address used will be the registration address.

3) If the Call Forwarding Unconditional service is not active but the Variable Routeing service is
active, the address used will depend on the time or on the calling user.

4) Default registration address if none of the above criteria apply.

Default Charging Reference Point

If the call is being forwarded the retrieval of the default charging reference point is not required, the
charging for the forwarded leg of the call is a matter for the original called user and is not described here.

To retrieve the default charging reference the SDFhB is interrogated by the SCF using a SEARCH
operation (as defined in subclause 8.16) the outcome of this operation will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or SEARCH.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the Release procedure (as described in subclause 7.2.3.) is invoked.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure.

c) Operation error returned (SEARCH.err): The possible error causes returned in the SEARCH
operation result (.err) are described in ETS 300 374-5 [3]:

Page 120
Draft prETS 300 670: August 1996

1) In the case of "Service Error" type Busy the SCF can make a further attempt, after a time
delay, to retry the same SDF. If the number of retries (COUNTER2) is exceeded, the
RELEASE procedure is performed.

2) For all other error types returned by the SDF, the procedure is terminated with Exit = NOK.

d) Successful result (SEARCH.res): This means that the operation has been successfully executed by
the SDFhB and the default charging reference point retrieved.

If split charging (see ETR 055-3 [7]) is not to be applied the procedure continues with the UPT charging
notification subclause below. If split charging is to be applied then the procedure continues with the Credit
Limit Check.

Credit Limit Check

The SCF will also check the called users Credit Limit to determine that there is sufficient credit available to
receive the call. This check will not be repeated for subsequent call set-up attempts (i.e. UPT to UPT Call
Forwarding has occurred). The SCF sends a SEARCH operation, the outcome of this operation will be
one of the following events:

a) Dialogue released by IN node (Dialogue_released or SEARCH.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the SSF is instructed to release the call.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure.

c) Operation error returned (SEARCH.err): The possible error causes returned in the SEARCH
operation (.err) are described in ETS 300 374-5 [3]:

1) In the case of "Service Error" type Busy the SCF can make a further attempt to retry the
same SDF, after a time delay. If the number of retries (COUNTER2) is exceeded, the
RELEASE procedure is performed.

2) For all other error types returned by the SDF, the call handling procedure is terminated and
the call released.

d) Successful result (SEARCH.res): This means that the operation has been successfully executed by
the SDF. If credit is available to receive the call the procedure will continue as described below. If
there is no credit available the call handling procedures are terminated and the SSF is instructed to
release the call.

UPT Charging Notification

The SCF instructs the SSF to establish a connection with an SRF. This is done with the SRF_Connect
procedure described in subclause 7.2.4. If the above procedure was completed successfully, the SCF
then instructs the SRF to play an announcement to the calling user to inform that UPT charging is
applicable by invoking the PLAYANN operation. This notification will not be repeated for subsequent call
set-up attempts for this call (i.e. UPT to UPT call forwarding has occurred and the calling user was notified
that UPT charging was applicable from a previous attempt to set-up this call). Following the instruction for
the PLAYANN operation the macro SRF_Disconnect is called, this macro will handle the operation errors
and the disconnection of the SRF.

Retrieve supplementary service information

The purpose of this part of the procedure is to query the called UPT users home database (SDFhB) for
the status of supplementary services and for those call forwarding services which are active, retrieve the
relevant conditional forwarding parameters (e.g. No Reply Condition Timer). The SCF will invoke a
SEARCH operation (see subclause 8.13) for this. The outcome of this operation will be one of the
following events:

Page 121
Draft prETS 300 670: August 1996

a) Dialogue released by IN node (Dialogue_released or SEARCH.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the RELEASE procedure (as described in subclause 7.2.3.) is invoked.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure.

c) Operation error returned (SEARCH.err): The possible error causes returned in the SEARCH
operation result (.err) are described in ETS 300 374-5 [3]:

1) In the case of "Service Error" type Busy the SCF can make a further attempt, after a time
delay, to retry the same SDF. If the number of retries (COUNTER2) is exceeded, the
RELEASE procedure is performed.

2) For all other error types returned by the SDF, the procedure is terminated with Exit = NOK.

d) Successful result (SEARCH.res): This means that the operation has been successfully executed by
the SDFhB. The call forwarding parameters retrieved (if any) are stored for future use. The
procedure continues as described below.

Call set-up

On successful completion of the above procedures the SCF can now instruct the SSF to set-up the call,
several operations are invoked for this purpose:

a) FURNCHGINFO: This requests the SSF to generate call record information for the following event.

b) APPLYCHG: The purpose of the operation is to request the SSF to report back to the SCF when a
charging related event has been detected (i.e. if UPT user is charged).

c) REQREPBCSM: This requests the SSF to monitor for a call-related event (e.g. busy, no answer,
release etc.) and report back to the SCF when the event has been detected. If a No Reply Condition
Timer value was retrieved from the called UPT users home database (SDFhB) when searched for
supplementary service information, the value will be provided with this operation.

d) CONNECT: This instructs the SSF to set-up the call (i.e. generate the IAM). If any redirection
information was provided in the INITIALDP operation the information will be returned in this
operation, the redirection counter may have been updated as a result of further call forwarding. If no
redirection information was provided in the INITIALDP operation but call forwarding has occurred,
then the redirection information will be constructed by the SCF. Redirection information will not be
provided if no call forwarding has occurred. The SSF will determine how to handle this information.

The outcome of this procedure will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or <operation_name>.rej): The reasons for
releasing the dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-1 [2]. Regardless of the reason for the release, the call handling procedure is
terminated and the SSF is instructed to release the call.

b) Calling party released: The SCF is notified of the release by the EVREPBCSM operation from the
SSF. The SCF will terminate the call handling procedure.

c) Called party busy: This state will be reported to the SCF by the SSF returning the operation
EVREPBCSM. There are three possible outcomes:

1) If call forwarding on busy service is not active, the call handling procedure is terminated and
the release procedure (as described in subclause 7.2.3) is invoked.

2) If call forwarding on busy service is active but the Call Forwarding Counter (CFCOUNTER)
has exceeded the network redirection limit (note that the upper limit for this counter is 5), the
call handling procedure is terminated and the release procedure (as described in
subclause 7.2.3) is invoked.

Page 122
Draft prETS 300 670: August 1996

3) If call forwarding on busy service is active and the Call Forwarding Counter (CFCOUNTER)
has not exceeded the network redirection limit, the call can be forwarded. The Call
Forwarding Counter (CFCOUNTER) is incremented and the outgoing call procedure
restarted.

d) Called party no answer: This state will be reported to the SCF by the SSF returning the operation
EVREPBCSM. There are three possible outcomes:

1) If call forwarding on no reply service is not active, the call handling procedure is terminated
and the release procedure (as described in subclause 7.2.3) is invoked.

2) If call forwarding on no reply service is active but the Call Forwarding Counter
(CFCOUNTER) has exceeded the network redirection limit (note that the upper limit for this
counter is 5), the call handling procedure is terminated and the release procedure
(as described in subclause 7.2.3) is invoked.

3) If call forwarding on no reply service is active and the Call Forwarding Counter
(CFCOUNTER) has not exceeded the network redirection limit, the call can be forwarded.
The Call Forwarding Counter (CFCOUNTER) is incremented and the outgoing call procedure
restarted.

e) Route select failure: This state will be reported to the SCF by the SSF returning the operation
EVREPBCSM. This indicates that it was not possible to complete set up of the call due to either
congestion, unsubscribed number or number blocked. The call handling procedure is terminated
and the release procedure (as described in subclause 7.2.3) is invoked.

f) Operation error returned (FURNCHGINFO.err, APPLYCHG.err or CONNECT.err): The possible
error causes returned in these operations are described in ETS 300 374-1 [2]. Regardless of the
reason for the error, the call handling procedure is terminated and the SSF is instructed to release
the call.

g) Calling Party Answers: The SCF is notified of this event by an EVREPBCSM operation.

Call Release

The SCF is informed of the release of the call by the EVREPBCSM operation. The SCF will then send a
FURNCHGINFO operation to the SSF to update the call record. Once the APPLYCHGRPT containing the
call record, is received the SCF sends a MODIFY operation (as defined in subclause 8.12) to the called
parties SDFhB to store the call record. It should be noted that it is not possible to directly use the call
record to modify the user credit as the SDF is not able to calculate the charge that corresponds to the call
record. The outcome of this operation will be one of the following events:

a) Dialogue released by IN node (Dialogue_released or MODIFY.rej): The reasons for releasing the
dialogue prematurely are described in subclause 7.1 and are further elaborated in
ETS 300 374-5 [3]. Regardless of the reason for the release, the call handling procedure is
terminated and the RELEASE procedure (as described in subclause 7.2.3) is invoked.

b) Operation error returned (MODIFY.err): The possible error causes returned in the MODIFY
operation (.err) are described in ETS 300 374-5 [3]:

1) If the error is "Busy", the SCF can make a further attempt, after a time delay, to retry the
same SDF. If the number of retries is exceeded (COUNTER2) the procedure is terminated.
To avoid loss of the call record an implementation dependant operation could be performed
at this stage.

2) For any other error the procedure is terminated. To avoid loss of the call record an
implementation dependant operation could be performed at this stage.

c) Successful result (MODIFY.res): This confirms that the SDF has been successfully updated.

Page 123
Draft prETS 300 670: August 1996

NOTE: If this incoming call was a result of UPT to UPT call forwarding from another IN
network but the forwarded-to leg of the call could not be recognized as another UPT
call by the original SCF (i.e. no provider agreements exist). Then the original called
parties SDFhB may not be the same SDFhB accessed during this incoming call
procedure, as this SDFhB will be the forwarded-to UPT user's SDFh. This may result
in discrepancies in the charging information. The problem cannot be solved at present.

Procedure Incall 1(15)

3

SEARCH.inv

Wait for

agreement

SEARCH.err

1

SEARCH.res

Agreement?

BIND.inv

Wait for

Bind

BIND with no Credentials

parameter to SDFhB

5

To SDFhO to check for

provider agreements

operation 8.3

Reset

ANNIND

Set CFCOUNTER

to Redirection

Counter

Yes

No

Figure 16 (sheet 1 of 15): Incoming UPT Call procedures

Page 124
Draft prETS 300 670: August 1996

Procedure Incall 2(15)

Wait for

Bind

BIND.err

RELEASE

BIND.res

SEARCH.inv

Wait for

Retrieve

To SDFhB to

retrieve current

location of called

party

operation 8.11

Figure 16 (sheet 2 of 15): Incoming UPT Call procedures

Page 125
Draft prETS 300 670: August 1996

Procedure Incall 3(15)

2

RELEASE

1

Error

Type

COUNTER2

= 1?

Inc COUNTER2

Wait

SEARCH
Same paramters

as previous

search

Wait for

agreement

Else

Busy

Yes

No

Figure 16 (sheet 3 of 15): Incoming UPT Call procedures

Page 126
Draft prETS 300 670: August 1996

Procedure Incall 4(15)

Wait for

Retrieve

SEARCH.err

B

SEARCH.res

Select

Address

CFCOUNTER

> 0

ASEARCH.inv

Reset

COUNTER2

Wait for

default CR

SEARCH.err

E

SEARCH.res

Split

charging

?

AC

To SDFhB to

retrieve default

charging reference

point

operation 8.6

Refer to

text for

selection

criteria

Yes

No

No

Yes

Figure 16 (sheet 4 of 15): Incoming UPT Call procedures

Page 127
Draft prETS 300 670: August 1996

Procedure Incall 5(15)

B

Error

Type

COUNTER2

= 1?

Inc COUNTER2

Wait

SEARCH.inv

Wait for

retrieve

Same parameters as

previous SEARCH

2

Busy

No

Yes

Else

Figure 16 (sheet 5 of 15): Incoming UPT Call procedures

Page 128
Draft prETS 300 670: August 1996

Procedure Incall 6(15)

C

ANNIND

> 0?

4SEARCH.inv

Reset

COUNTER2

Wait for

credit

check

To SDFhB to check

credit limit

operation 8.9

Yes

No

Figure 16 (sheet 6 of 15): Incoming UPT Call procedures

Page 129
Draft prETS 300 670: August 1996

Procedure Incall 7(15)

Wait for

credit check

SEARCH.err

Error

Type

COUNTER2

= 1?

2Inc COUNTER2

Wait

SEARCH.inv Same parameters as

previous SEARCH

Wait for

credit check

SEARCH.res

Avail

Credit?

2A

Busy

Yes

No

Else

No
Yes

Figure 16 (sheet 7 of 15): Incoming UPT Call procedures

Page 130
Draft prETS 300 670: August 1996

Procedure Incall 8(15)

A

SRF_

Connect

Exit

ANNIND

> 0

4

PLAYANN.inv UPT Charging

notification

SRF

disconnect

D

2

OK

Yes

No

NOK

Figure 16 (sheet 8 of 15): Incoming UPT Call procedures

Page 131
Draft prETS 300 670: August 1996

Procedure Incall 9(15)

5

FURNCHGINFO.inv

APPLYCHG.inv

REQREPBCSM.inv

CONNECT.inv

Wait for

setup

{bcsmEvents

{{eventTypeBCSM routeSelectFailure},

{eventTypeBCSM oCalledPartyBusy},

{eventTypeBCSM oNoAnswer},

{eventTypeBCSM oAnswer},

{eventTypeBCSM oDisconnect},

{eventTypeBCSM oAbandon}}}

D

Set

ANNIND to 1

SEARCH.inv

Reset

COUNTER2

Wait for

cf info

To SDFhB to retrive

call forwarding

parameters

operation 8.13

4

Wait for

cf info

SEARCH.err

F

SEARCH.res

Store cf

information

Figure 16 (sheet 9 of 15): Incoming UPT Call procedures

Page 132
Draft prETS 300 670: August 1996

Procedure Incall 10(15)

More inputs on

following page

Wait for

setup

EVREPBCSM

CFB

active?

2

CFCOUNTER

= n

The value of n is

a network provider

option with an

upper limit of 5

Increment

CFCOUNTER

3 Restart the

call procedure

{eventTypeBCSM oCalledPartyBusy

miscCallInfo

 {messageType notification}}

EVREPBCSM
{eventTypeBCSM

 oAnswer,

 miscCallInfo

 {messageType

 notification}}

Wait for

release

No
Yes

Yes
No

Figure 16 (sheet 10 of 15): Incoming UPT Call procedures

Page 133
Draft prETS 300 670: August 1996

Procedure Incall 11(15)

Wait for

setup

EVREPBCSM

CFNR

active?

2

CFCOUNTER

= n

The value for n is

a network provider

option, with an

upper limit of 5

Increment

CFCOUNTER

3 Restart the

call procedure

{eventTypeBCSM oNoAnswer

miscCallInfo

 {messageType notification}}

EVREPBCSM

2

{eventTypeBCSM

 oRouteSelectFailure,

 miscCallInfo

 {messageType

 notification}}

No
Yes

Yes
No

Figure 16 (sheet 11 of 15): Incoming UPT Call procedures

Page 134
Draft prETS 300 670: August 1996

Procedure Incall 12(15)

Wait for

release

EVREPBCSM
{eventTypeBCSM

 oDisconnect,

 legId {receivingSideId

 LegType leg1}

 miscCallInfo

 {messageType

 notification}}

- A party disconnect

Wait for

applychgrep

EVREPBCSM
{eventTypeBCSM

 oDisconnect,

 miscCallInfo

 {messageType

 notification}}

Wait for

applychgrep

APPLYCHGREP

MODIFY.inv

Wait for

update rsp

EVREPBCSM
{eventTypeBCSM

 oDisconnect,

 miscCallInfo

 {messageType

 notification}}

Wait for

update rsp

MODIFY.err

2

MODIFY.res

To SDFhB to

update call

record

Operation 8.12

EVREPBCSM
{eventTypeBCSM

 oDisconnect,

 legId {receivingSideId

 LegType leg2}

 miscCallInfo

 {messageType

 notification}}

- B party disconnectFURNCHGINFO.inv

Figure 16 (sheet 12 of 15): Incoming UPT Call procedures

Page 135
Draft prETS 300 670: August 1996

Procedure Incall 13(15)

F

Error

Type

COUNTER2

= 1?

Inc COUNTER2

Wait

SEARCH.inv

Wait for

cf info

Same parameters as

previous SEARCH

2

Busy

No

Yes

Else

Figure 16 (sheet 13 of 15): Incoming UPT Call procedures

Page 136
Draft prETS 300 670: August 1996

Procedure Incall 14(15)

E

Error

Type

COUNTER2

= 1?

Inc COUNTER2

Wait

SEARCH.inv

Wait for

default CR

Same parameters as

previous SEARCH

2

Busy

No

Yes

Else

Figure 16 (sheet 14 of 15): Incoming UPT Call procedures

Page 137
Draft prETS 300 670: August 1996

Procedure Incall 15(15)

*

SEARCH.rej

MODIFYENTRY.rej

ETC.rej

PLAYANN.rej

FURNCHGINFO.rej

REQREPBCSM.rej

APPLYCHG.rej

BIND.rej

RELEASE

EVREPBCSM

{evenTypeBCSM

 oAbandon,

 missCallInfo

 {messageType

 notification}}

Dialogue

Released

ETC.err

PLAYANN.err

FURNCHGINFO.err

APPLYCHG.err

Figure 16 (sheet 15 of 15): Incoming UPT Call procedures

Page 138
Draft prETS 300 670: August 1996

Macro Incall 1(4)

Note - If an alternative

SDF is available

SCREEN

Wait for

screen

SCREEN.err

Error

Type

Retry?

SCREEN
Same paramters

as previous

screen

Wait for

screen

Another

SDF?

EVREPBCSM

{eventTypeBCSM

 oAbandon,

 miscCallInfo

 {messageType

 notification}}

SCREEN.rej

Dialogue_ReleasedSCREEN.res

RETRIEVE

Wait for

Retrieve

To SDFhB to be

defined

{objectName

 {{{ ??

 }}},

 purported

 {{ ?

 }}}

1 2

Else Service

No
Yes

Referral

No

Yes

Figure 17 (sheet 1 of 4): Incoming UPT Call macro

Page 139
Draft prETS 300 670: August 1996

Macro Incall 2(4)

Implementation Note - in the case

of failure of ETC operation it is

possible to retry another SRF if

it is available.

Wait for

Retrieve

RETRIEVE.err

1

EVREPBCSM

{eventTypeBCSM

 oAbandon,

 miscCallInfo

 {messageType

 notification}}

2

RETRIEVE.rej

Dialogue_ReleasedRETRIEVE.res

ETC
{assistingSSPIPRoutingAddress sRFAddressVar,

correlationID correlationIDVar,

scfID scfIDVar}

WAIT for

ARI

EVREPBCSM

{eventTypeBCSM

 oAbandon,

 miscCallInfo

 {messageType

 notification}}

2

ETC.rej

ETC.err

Dialogue_Released

ARI

OK?

PLAYANN

{informationToSend

 {inbandInfo

 {messageID

 {elementaryMessageID 13}}}

Wait for

announcement

No

Yes

Figure 17 (sheet 2 of 4): Incoming UPT Call macro

Page 140
Draft prETS 300 670: August 1996

Macro Incall 3(4)

Wait for

announcement

EVREPBCSM
{eventTypeBCSM

 oAbandon,

 miscCallInfo

 {messageType

 notification}}

2

PLAYANN.rej

PLAYANN.err

Dialogue-Released

SRFRPT

FURNCHGINFO

APPLYCHG

CONNECT

Wait for

setup

EVREPBCSM
{eventTypeBCSM

 oAbandon,

 or tNoAnswer,

 or TCalledPartyBusy,

 miscCallInfo

 {messageType

 notification}}

2

FURNCHGINFO.rej

FURNCHGINFO.err

APPLYCHG.rej

APPLYCHG.err

CONNECT.rej

CONNECT.err

Dialogue_Released

No errors,

conversation

Applychgrpt

pending

3

No
Yes

Figure 17 (sheet 3 of 4): Incoming UPT Call macro

Page 141
Draft prETS 300 670: August 1996

Macro Incall 4(4)

3

NIR

Decrement

remaining no

of calls

Figure 17 (sheet 4 of 4): Incoming UPT Call macro

Page 142
Draft prETS 300 670: August 1996

7.5 Service Profile Modification

7.5.1 General

The Service Profile Modification takes place when a user requests to do so in the FRI procedure. It is
used in order for the user to make changes to his service profile from a network access.

The Service Profile Modification Procedure (SPM) has two logical outputs. They are identical to the ones
for the FRI procedure. Like in the IA and the FRI procedures the user is able to abandon at any stage in
the procedure.

7.5.2 Detailed procedure

The SDL for this procedure can be found in figure 18.

The user is invited to enter the modification request, after which the state "Wait for User Entry" is entered.
There are three exits from this state.

a) An error occurs in the P&C operation. If this error is an ImproperCallerResponse, the number of
retries counter is incremented. The user is invited to retry the SPM procedure from the beginning
unless the maximum number of retries is exceeded, in which case the user is released. Other
errors lead to the Exit=NOK, and the user is released.

b) The user abandon leads to Exit=NOK and the user is released.

c) The user enters valid data, the procedure can continue.

The user is requested to enter confirm, cancel or escape. The state "Wait for User Confirmation" is
entered. There are four exits from this state.

a) An error occurs in the P&C operation. If this error is an ImproperCallerResponse, the number of
retries counter is incremented. The user is invited to retry the SPM procedure from the beginning
unless the maximum number of retries is exceeded, in which case the user is released. Other
errors lead to the Exit=NOK, and the user is released.

b) The user refuses to perform the SPM by means of the ESC. In this case the counter of retries is
incremented. If it does not reach its maximum, the Exit=OK is used, otherwise the user is released.

c) The user abandon leads to Exit=NOK and release of the user.

d) The user enters the response Y, and the procedure can continue.

The user is then informed by means of a PLAYANN operation that he is waiting for an acknowledgement
from the Home Network to his request. At the same time the MODIFY operation is performed against the
SDFh. This operation contains parameters described in the table 5 in subclause 8.14. This table describes
how the string to be entered by the user conditions the contents of the operation. The sending of the
MODIFY operation leads to the state "Wait For Confirmation". This takes place for all the cases described
by the table. There are three exits from this state.

a) An error occurs in the MODIFY operation. If this error is a busy indication, one retry is attempted.
Otherwise and other errors lead to a PLAYANN to the user and the Exit=NOK, and the user is
released.

b) The user abandon leads to Exit=NOK and the user is released.

c) The ModifyEntry is successfully completed, and the procedure can continue.

The continuation of the procedure involves a P&C operation to the user. This indicates that the
modification was either performed or rejected, and invites the user to make another request or to
terminate. A FURNCHGINFO is then sent to the SSF, Exit=OK. The follow-on procedure then continues
with the FRI procedure as described in subclause 7.2.2.

Page 143
Draft prETS 300 670: August 1996

Procedure SPM 1(3)

Figure 18: Service Profile Modification

Procedure (SPM)

Info already

entered?

2P&C.inv

To SRF

Wait for

user

modification (1)

P&C.rej

A

P&C.err(errorType)

ErrorType

1

P&C.res

P&C.inv

To SRF

Wait for

user

modification (2)

P&C.rej

A

P&C.err(errorType)

ErrorType

1

P&C.res

Confirmation?

1FURNCHGINFO.inv

To SSF

B

PLAYANN.inv

To SRF

2

{digitsResponse confirmationVar}

{digitsResponse modificationVar}

(Yes)

(No)

Else

(ImproperCallerResponse)

Else

(ImproperCallerResponse)

(No)
ESC

(Yes)

Figure 18 (sheet 1 of 3): Service Profile Modification procedure

Page 144
Draft prETS 300 670: August 1996

Procedure SPM 2(3)

Figure 18: Service Profile Modification

Procedure (SPM)

A

Exit::=NOK

B

Exit::=OK

2

Reset

Counter2

MODIFY.inv

To SDFh

Wait for

acknowledgement

MODIFY.err(errorType)

errorType

Counter2=1?

Increment

Counter2

Wait

MODIFY.inv

To SDFh

Same parameters

as the previous

MODIFY operation

Wait for

acknowledgement

MODIFY.rejMODIFY.res

P&C.inv

To SRF

FURNCHGINFO.inv

To SSF

see 8.14

Else

busy

(Yes)

(No)

Figure 18 (sheet 2 of 3): Service Profile Modification procedure

Page 145
Draft prETS 300 670: August 1996

Procedure SPM 3(3)

Figure 18: Service Profile Modification

Procedure (SPM)

1

Increment

Counter1

Counter1=Max?

PLAYANN.inv

To SRF

SRF_Disconnect

A

P&C.inv

To SRF

2

*

FURNCHGINFO.err

FURNCHGINFO.rej

REQREPBCSM.err

REQREPBCSM.rej

Dialogue_Released(SRF)

Dialogue_Released(SDF)

Dialogue_Released(SSF)

A

EVREPBCSM

A

{eventTypeBCSM oDisconnect,

 eventSpecificInformationBCSM

 {oDisconnectSpecificInfo

 {releaseCause causeVar}},

 miscCallInfo

 {messageType notification},

 eventTypeBCSM oAbandon,

 miscCallInfo

 {messageType notification}}

(Yes)

(No)

Figure 18 (sheet 3 of 3): Service Profile Modification procedure

Page 146
Draft prETS 300 670: August 1996

7.6 Change of PIN Code

7.6.1 General

The change of PIN Code takes place either when a user has requested this procedure in the FIR
procedure or when he has successfully identified himself with the SPIN. It is used to change the PIN code
attached to the user's PUI. This can be done to personalize the PIN code or to prevent a third party from
guessing it.

The associated procedure is named PIN Change (PIN_CHANGE). It has two logical outputs. They are
identical to the ones for the FRI procedure. Like in the IA and in the FRI procedures, at any stage of the
procedure, the user can abandon.

7.6.2 Detailed procedure

The SDL diagram for this procedure is figure 19.

If the PIN_CHANGE procedure follows a SPIN authentication, the user is asked through a P&C operation
whether he wants to modify his PIN code or not. Then the SCF moves to the state "Wait for user
confirmation". Three solutions are possible to exit this state (besides the user abandon included in the
state *):

a) An error has occurred for the P&C operation. If the error is an ImproperCallerResponse, the user is
allowed to retry the PIN_CHANGE procedure from the beginning provided that the maximum
number of retries is not exceeded. When that number is reached, the user is automatically
released. For the other errors, the PIN_CHANGE procedure is terminated with Exit = NOK, the user
is released.

b) The user refuses to perform the PIN_CHANGE procedure. The procedure is normally stopped (Exit
= OK) and the user is proposed a new feature identification request (see subclause 7.2.2).

c) The user accepts the PIN_CHANGE procedure. The procedure can continue as described below.

The user is requested to enter his new PIN code sequence (twice the new PIN code separated by the *
digit) with a P&C operation. It is the first announcement made to a user when he has initiated this
procedure though the FRI procedure (i.e. the user has not used the SPIN procedure that automatically
starts the PIN_CHANGE procedure). The SCF moves to the state "Wait for user info" while waiting for the
user to input his new PIN. The four possible outcomes are:

a) The user has abandoned the procedure: The SCF receives an EVREPBCSM indicating the user's
release. The PIN_CHANGE procedure is terminated and followed by the RELEASE procedure.

b) The user has mistyped his input. This can be recognized either through an error of type
ImproperCallerResponse in response to the P&C operation or through an analysis of the user's
input (e.g. the two new PIN codes dialled by the user are different). In that case, the user is allowed
to retry the PIN_CHANGE procedure from the beginning provided that the maximum number of
retries is not exceeded. When that number is reached, the user is automatically released.

c) An error (other than ImproperCallerResponse) for the P&C operation has occurred. The
PIN_CHANGE procedure is terminated with Exit = NOK and the user is released.

d) The user has correctly provided the new PIN code sequence. The procedure can continue as
described below.

The user is informed with a PLAYANN operation that he has to wait for the acknowledgement of his
request and that his request is being processed. At the same time the ModifyEntry operation to change
the value of the PIN code is sent to the SDF. The three outcomes to this query are:

a) The user has abandoned the procedure: The SCF receives an EVREPBCSM indicating the user's
release. The PIN_CHANGE procedure is terminated and followed by the RELEASE procedure.

Page 147
Draft prETS 300 670: August 1996

b) An error has occurred and the SCF receives an error indication. The only error to be treated is the
Busy error. In that case the ModifyEntry operation is sent back to the SDF after a small delay set up
by a timer (network operator dependent). Another Busy error leads to the rejection of the operation
like in the other error cases and the termination of the PIN_CHANGE procedure. The user is then
released.

c) The ModifyEntry operation has succeeded: The user is informed with a P&C operation of that
success and can move on to the next procedure (feature request identification, see
subclause 7.2.2).

Page 148
Draft prETS 300 670: August 1996

Procedure Pin_Change 1(3)

Figure 19: Pin change procedure

(PIN_CHANGE)

2

P&C.inv

To SRF

Wait for

user info

Info already

present?

Authen=SPIN

P&C.inv

To SRF

Wait for user

 confirmation

P&C.rej

A

P&C.err(errorType)

errorType

3

P&C.res

Answer

B2

1

(No)

(No)

(Yes)

(ImproperCallerResponse)

Else

(Esc)

(No)

(Yes)

(Yes)

Figure 19 (sheet 1 of 3): PIN Change procedure

Page 149
Draft prETS 300 670: August 1996

Procedure Pin_Change 2(3)

Figure 19: Pin change procedure

(PIN_CHANGE)

4

MODIFY

To SDFh see 8.17

Wait for

acknowledgement

MODIFY.rej

A

MODIFY.err(errorType)

errorType

Counter2=1?

Increment

Counter2

Wait

4

MODIFY.res

P&C.inv

To SRF

FURNCHGINFO.inv

To SSF

B

1

Correct input?

(Pin1=Pin2)

PLAYANN.inv

To SRF

Reset

Counter2

3

Wait for

user info

P&C.rej

A

P&C.err(errorType)

errorType

P&C.res

(Busy)

(No)

(Yes)

Else

(Yes)

(No)

(ImproperCallerResponse)

Else

Figure 19 (sheet 2 of 3): PIN Change procedure

Page 150
Draft prETS 300 670: August 1996

Procedure Pin_Change 3(3)

Figure 19: Pin change procedure

(PIN_CHANGE)

A

Exit::=NOK

B

Exit::=OK

*

FURNCHGINFO.err

FURNCHGINFO.rej

Dialogue_Released(SRF)

Dialogue_Released(SDF)

Dialogue_Released(SSF)

EVREPBCSM

3

FURNCHGINFO.inv

To SSF

Increment

Counter1

Counter1=Max?

PLAYANN.inv

To SRF

SRF_Disconnect

A

P&C.inv

To SRF

Wait for

acknowledgement

(Yes)

(No)

Figure 19 (sheet 3 of 3): PIN Change procedure

Page 151
Draft prETS 300 670: August 1996

8 SDF Procedures

This clause describes the operations that sent from an SCF to an SDF. Most of these operations are
internetwork operations and fully describe the internetwork interface used in UPT. The operations are built
upon the data model presented in clause 6. The subclauses below serve as references in clause 7.

8.1 Agreement check at the service provider level

This operation taking place within the visited network allows the visited service provider to verify if there
exists a general agreement between the visited and the home service providers. It is used before giving to
the user access to the service. The operation used should be the SEARCH operation with the following
argument:

{{baseObject{ rdnSequence{{{ type providerId,
value visitedProviderId}}}},

subset oneLevel,
extendedFilter{ item{ equality{ type providerId,

assertion homeProviderId}}}}}

The value homeProviderId is deduced from the information provided by the user, i.e. his PUI.

8.2 User's authentication

This operation is used to identify and authenticate a user. The argument of this operation depends on the
type of authentication used. It initiates the dialogue between the SDFh and the visited SCF. The operation
used should be the BIND operation with the following argument:

{ credentials pinCredentials} -- for the PIN authentication

{ credentials spinCredentials} -- for the SPIN authentication

{ credentials strongCredentials} -- for the strong authentication

The pinCredentials, spinCredentials and strongCredentials values are defined in subclause 6.3.2.

8.3 Provider agreement at the service feature level

This operation allows the visited service provider to locally check if there exists an agreement between the
visited and the home service providers for a specific service feature, i.e. if any visiting user have normally
(if his subscription allows it) access to that specific service feature. At the same time it verifies if the
current location of the calling UPT user can be used given the service agreements. The operation used
should be the SEARCH operation with the following arguments:

{{baseObject{ rdnSequence{{{ type providerId,
value visitedProviderId}},

{{ type providerId,
value homeProviderId}}}},

subset oneLevel,
filter{ and{ item{ equality{ type serviceId,

assertion requestedServiceId}},
item{ extensibleMatch{ matchingRule

{numericStringSubstringsMatch},
type providedLocations,
matchValue

{initial currentLocation},
reverseMatch TRUE}}}}}}

The same operation is used to verify if a number provided by the user as a registration address is valid as
a registration address. In that case the value currentLocation is to be replaced by the registration
address provided by the user.

8.4 Check on the subscription to the service

This operation is used to verify in the home database that the user has subscribed to the service feature
he is requesting and if any particular restrictions apply. The type of restriction that is used in this example
is the check on the permission to perform the service feature at the current location of the user. The
operation used should be the SEARCH operation with the following argument:

Page 152
Draft prETS 300 670: August 1996

{{baseObject{ rdnSequence{{{ type providerId,
value homeProvider}},

{{ type pui,
value userPUI}}}},

subset baseObject,
selection{ attributes {select {allowedServices}},

contextAssertions {{type allowedServices,
contextAssertion

{contextType numericContext,
contextValues {currentLocation}}}}}}}

If there is no location restrictions due to the agreements between the service providers, the operation
should be modified and the contextAssertions component removed.

8.5 Check on the registration address

This operation is used for two purposes: Firstly to verify that the terminal number where the user wants to
register is not forbidden as a registration address (free phone, emergency service...), secondly to check if
any restrictions of the service offered to the visiting users apply to the registration address chosen by the
user. It is important to notice that the first case does not apply to the remote registration since the
forbidden registration addresses for a network are not necessarily known by another network. Also the
forbidden registration addresses of the visited network do not take into account the terminals that are
blocked for registration, because it is not possible to maintain such a list, however such a check is
desirable in the future. Concerning the possible restrictions of the service for the visiting users, it is a
service provider matter and might not exist. This type of check should be carried out by a SEARCH
operation with the following argument:

{{baseObject{ rdnSequence{{{ type providerId,
value visitedProviderId}},

{{ type pui,
value userPUI}},

{{ type basicServiceId,
value isdnTelephony}}}},

subset baseObject,
filter{ item{ extensibleMatch{ matchingRule {numericStringSubstringsMatch},

type allowedRegistrationAddress,
matchValue

{initial givenRegistrationAddress},
reverseMatch TRUE}}}}}

The givenRegistrationAddress attribute contains the address where the user wants to register and
provided before this operation being sent. If the user has entered the address, the address is translated
into an international address. Dialled local numbers are considered as local to the visited network. This
rule stands for all the numbers entered by the user.

8.6 Update of the registration address

This operation is used at the end of the registration procedure to change the registration of the address of
the user in the home database. The operation should not modify the default registration address. The
operation used should be the MODIFY operation with the following argument:

{{object{ rdnSequence{{{ type providerId,
value homeProviderId}},

{{ type pui,
value userPUI}},

{{ type basicServiceId,
value isdnTelephony}}}},

changes{{ resetValue icRegistrationAddress,
addValues {type icRegistrationAddress,

--see Note 1 valuesWithContext{
value newRegistrationAddress,
contextList {{contextType temporal,

contextValues
{{ startTime currentTime,

endTime
endOfRegistration}}}}}}}}}}

Page 153
Draft prETS 300 670: August 1996

The time entered by the user is a local time (local to the visited network). This time is translated into UTC
time. This is the case for the parameters currentTime and endOfRegistration .

NOTE: Depending whether the user has specified a limitation to his registration or not, a
context is used or not (i.e. the valuesWithContext component is replaced by the
values component). That context will contain the specification of the time validity of the
registration i.e when it starts and when it ends.

8.7 Reading the registration address

This operation is used to verify that a user is actually registered when he requests a deregistration. The
operation used should be the SEARCH operation with the following arguments:

{{baseObject{ rdnSequence{{{ type providerId,
value homeProviderId}},

{{ type pui,
value userPUI}},

{{ type basicServiceId,
value isdnTelephony}}}},

subset baseObject,
selection{ attributes{ select{ icRegistrationAddress}},

contextAssertions{{
type icRegistrationAddress,
contextAssertion{

contextType temporalContext,
contextValues {currentTime}}}}}}}

The registration addresses whose context assertion is true (i.e. applicable at the time of the request) are
retrieved. If no registration address is applicable, the default registration address is retrieved

8.8 Deregistration

This operation is used to remove the current registration address from the registrationAddress attribute in
the home database. The operation used should be the MODIFY operation with the following parameters:

{{object{ rdnSequence{{{ type providerId,
value homeProviderId}},

{{ type pui,
value userPUI}},

{{ type basicServiceId,
value isdnTelephony}}}},

changes{{ resetValues{ type icRegistrationAddress}}}}}

8.9 Check on the user credit

This operation verifies if the user's account has some available credit. It is important to notice that it is not
possible to do on-line charging since the home SDF is not able to calculate the charge. This credit check
is therefore not a real-time check. The operation used should be the SEARCH operation with the following
arguments:

{{baseObject{ rdnSequence{{{ type providerId,
value homeProviderId}},

{{ type pui,
value userPUI}}}},

subset baseObject,
filter{ item{ greaterOrEqual{ type userCredit,

assertion NULL}}}}}

When this operation is used to check the credit of the called used, the rdnSequence should be changed.
The pui and userPUI parameter should be respectively replaced by the uptNumber and
calledUserUPTN .

Page 154
Draft prETS 300 670: August 1996

8.10 Check on the destination address

The operation checks if the called address is an address that can be called according to the user's rights.
A similar check could take place in the visited network with the SDFo. The operation used should be the
SEARCH operation with the following argument:

{{baseObject{ rdnSequence{{{ type providerId,
value homeProviderId}},

{{ type pui,
value userPUI}},

{{ type basicServiceId,
value isdnTelephony}}}},

subset baseObject,
filter{item{ extensibleMatch{ matchingRule {numericStringSubstringsMatch},

type allowedDestinations,
matchValue {initial dialledNumber},
reverseMatch TRUE}}}}}

8.11 Reading of the routeing address

This operation is used to retrieve the routeing address corresponding to a UPT user. The address
returned takes into account the call forwarding unconditional service, the variable routeing service and the
registration service. If several values are returned in the response to the request, it is the service logic that
decides which one is valid at the time of the request. The operation used should be the SEARCH
operation with the following argument:

{{baseObject{ rdnSequence{{{ type providerId,
value calledHomeProviderId}},

{{ type uptNumber,
value userUPTN}},

{{ type basicServiceId,
value isdnTelephony}}}},

subset wholeSubtree,
selection{ attributes{ select{ routingAddress,

icRegistrationAddress}},
contextAssertions{

type icRegistrationAddress,
contextAssertion{

contextType temporalContext,
contextValues {currentTime}}},

type routingAddress,
contextType temporalContext,
contextValues {currentTime}}},

type routingAddress,
contextType numericContext,
contextValues {calledPartyAddress}}},

returnContexts TRUE},
filter{ or{{ item{ present icRegistration}},

{ and{{ item{ equality{ type cfuServiceId,
assertion

callForwardingUnconditional}}},
{ item{ equality{ type activationStatus,

assertion activated}}}}},
{ and{{ item{ equality{ type vrclServiceId,

assertion variableRoutingOnTime}}},
{ item{ equality{ type activationStatus,

assertion activated}}}}},
{ and{{ item{ equality{ type vrtServiceId,

assertion
variableRoutingOnCallingLine}}},

{ item{ equality{ type activationStatus,
assertion activated}}}}}}}}}

The calledHomeProviderId value is deduced from the UPT number provided by the user.

NOTE: The contexts attached to the routingAddress attribute define for the variable routeing
service which attribute values are valid at the time of the request. When the user has
activated the variable routeing on calling party, the calling party address need to be
provided and when the time-dependent variable routeing is activated, it is the data and
time that need to be provided. The contexts attached to the registrationAddress
attribute define for the registration service which attribute values are applicable at the
time of the request. When the registration address has a limited lifetime, the time of
the request should be provided as a context value. When the registration address is
not limited in time, the value of the registrationAddress attribute is given without
context.

Page 155
Draft prETS 300 670: August 1996

8.12 Transfer of call records

This operation allows the storage of call records in the database. That database could be the one of the
calling or called party. However, it is not possible to directly use the call records in order to modify the
user's credit since the SDF is not able to calculate the charge that corresponds to a call record. This
operation is used to pass the record of the user's calls over to the SDFh. The operation used should be
the MODIFY operation with the following argument:

{{object{ rdnSequence{{{ type providerId,
value homeProviderId}},

{{ type pui,
value userPUI}}}},

changes{{ addValues{ type callInfoRecords,
value newCallInfoRecord}}}}}

When this operation is used for the called user, the rdnSequence should be changed. The pui and
userPUI parameters should be respectively replaced by the uptNumber and calledUserUPTN .

8.13 Retrieving call forwarding parameters

This operation is used to retrieve the parameters allowed to the user and attached to his supplementary
services. This operation retrieves all the parameters attached to one service. It is possible to have
operations retrieving only one parameter and operations dealing with several services. The parameters
are retrieved only if the service is activated. By that means, this operation is used to check if a
supplementary service is activated when a call attempt reports that this supplementary service should be
invoked. It is important to notice that this checking is only applicable to a called UPT user i.e. when the
supplementary service is not attached to the line but to the user. The information flows related to this
handling of supplementary services are not described in ETR 066 [9]. The operation used should be the
SEARCH operation with the following argument:

{{baseObject{ rdnSequence{{{ type providerId,
value calledHomeProviderId}},

{{ type uptNumber,
value userUPTN}},

{{ type basicServiceId,
value isdnTelephony}},

{{ type routingServiceId,
value neededRoutingServiceId}}}},

subset baseObject,
filter{ item{ equality{ type activationStatus,

assertion activated}}},
selection attributes {select {activatedCFparameters,

noReplyConditionTimer}}}}

8.14 Modifying the service profile

This operation is used to modify the user's service profile. It is used to register and activate supplementary
services and for several other type of modifications. Hence it is very difficult to specify all the various types
of modifications with only one operation argument since the operation depending of the type of
modification can address different objects. However the operation should be in all cases the MODIFY
operation. Three call forwarding services are considered for UPT: call forwarding unconditional, call
forwarding on no reply and call forwarding on busy. The table 5 specifies the possible arguments
according to the type of modification requested by the user:

Page 156
Draft prETS 300 670: August 1996

Table 5: Arguments of the operations performed to change the user's profile

Type of modifications parameters for the MODIFY operation towards the SDFh
Activation of a call forwarding
service (unconditional, on
busy, on no reply)

{{object{rdnSequence{{{type providerId,
value homeProviderId}},
{{type pui,
value userPUI}},
{{type basicServiceId,
value isdnTelephony}}
{{type cfServiceId,
value requestedCallForwardingService}}}},

changes{{removeAttribute activationStatus,
addAttribute {type activationStatus,

values activated}}}}}
Deactivation of a call
forwarding service

{{object{rdnSequence{{{type providerId,
value homeProviderId}},
{{type pui,
value userPUI}},
{{type basicServiceId,
value isdnTelephony}}
{{type cfServiceId,
value requestedCallForwardingService}}}},

changes{{removeAttribute activationStatus,
addAttribute {type activationStatus,

values deactivated}}}}}
Registration of a call
forwarding service

{{object{rdnSequence{{{type providerId,
value homeProviderId}},
{{type pui,
value userPUI}},
{{type basicServiceId,
value isdnTelephony}}
{{type cfServiceId,
value requestCallForwardingService}}}},

changes{{removeAttribute activationStatus,
addAttribute {type activationStatus,

values activated},
removeAttribute RoutingAddress
addAttribute {type routingAddress,

value newForwardedToAddress}}}}}}
Deregistration of a call
forwarding service

{{object{rdnSequence{{{type providerId,
value homeProviderId}},
{{type pui,
value userPUI}},
{{type basicServiceId ,
value isdnTelephony}}
{{type cfServiceId,
value callForwardingUnconditional}}}},

changes{{removeAttribute activationStatus,
removeAttribute routingAddress,
addAttribute {type routing Address,

values NULL},
addAttribute {type activationStatus,

values deactivated}}}}}

(continued)

Page 157
Draft prETS 300 670: August 1996

Table 5 (concluded): Arguments of the operations performed to change the user's profile

Type of modifications parameters for the MODIFY operation towards the SDFh
Change of the default
registration address

{{object{rdnSequence{{{type providerId,
value homeProviderId}},
{{type pui,
value userPUI}},
{{type basicServiceId,
value isdnTelephony}}}},

changes{{removeValues {type icRegistrationAddress,
valueWithContext{

value oldRegistrationAddress,
contextList{{contextType override}}}}}}

addAttribute {type icRegistrationAddress,
valueWithContext{

value newRegistrationAddress,
contextList{{contextType override}}}}}}}}

Change of the no reply
condition timer

{{object{rdnSequence{{{type providerId,
value homeProviderId}},
{{type pui,
value userPUI}},
{{type basicServiceId,
value isdnTelephony}}
{{type cfServiceId,
value callForwardingOnNoReply}}}},

changes{{removeAttribute noReplyConditionTimer,
addAttribute {type noReplyConditionTimer,

value newTimer}}}}}

8.15 Getting the routeing address for conditional call forwarding services

This operation checks if a specific call forwarding service was activated and at the same time retrieves the
routeing address associated with the service. This operation can be used for all the call forwarding
services. The operation used should be the SEARCH operation with the following parameter:

{{baseObject{ rdnSequence{{{ type providerId,
value calledHomeProviderId}},

{{ type uptNumber,
value userUPTN}},

{{ type basicServiceId,
value isdnTelephony}},

{{ type routingServiceId,
value neededRoutingServiceId}}}},

subset baseObject,
filter{ item{ equality{ type activationStatus,

assertion activated}}},
selection attributes {select {routingAddress}}}}

8.16 Retrieving the default charging reference point

This operation is used to retrieve the default charging reference point. It could be used to check if a split
charging occurs and to calculate the cost of a call. The operation used should be the SEARCH operation
with the following argument:

{{baseObject{ rdnSequence{{{ type providerId,
value calledHomeProviderId}},

{{ type uptNumber,
value userUPTN}}}},

subset baseObject,
selection attributes {select {defaultChargingReference}}}}

Page 158
Draft prETS 300 670: August 1996

8.17 Changing the PIN code

This operation is used to change the PIN code of a user. The PIN code is the only user password that can
be modified. The operation used should be the MODIFY operation with the following argument:

{{object{ rdnSequence{{{ type providerId,
value homeProviderId}},

{{ type pui,
value userPUI}}}},

changes{{ removeAttribute{ type uptPassword},
addAttribute{ type uptPassword,

value newPin}}}}}

The newPin is the new value of the PIN code provided by the user.

Page 159
Draft prETS 300 670: August 1996

Annex A (Normative): ASN.1 Information Object Notation

This modules contains the ASN.1 Information Object Notation for defining the contents of an SDF to fulfil
the UPT service.

UPT-DataModel
--
DEFINITIONS::=

BEGIN

IMPORTS
OBJECT-CLASS,
ATTRIBUTE,
MATCHING-RULE,
STRUCTURE-RULE,
NAME-FORM,
top,
alias

FROM InformationFramework
{joint-iso-ccitt ds(5) module(1) informationFramework(1) 2}

FROM UsefulDefinitions {joint-iso-ccitt ds(5) module(1) usefulDefinitions(0) 2};

userPassword,
objectIdentifierMatch,
distinguishedNameMatch,
numericStringMatch,
numericStringSubstringsMatch,
integerOrderingMatch,
integerMatch,
octetStringMatch,
caseIgnoreMatch,
caseIgnoreSubstringsMatch,

FROM X.520

-- provider object-class

id-oc OBJECT IDENTIFIER::= {ccitt (0) identified-organisation (4) etsi (0) inDomain (1)
upt (1) object-class (0)}

id-at OBJECT IDENTIFIER::= {ccitt (0) identified-organisation (4) etsi (0) inDomain (1)
upt (1) attribute (1)}

id-nf OBJECT IDENTIFIER::= {ccitt (0) identified-organisation (4) etsi (0) inDomain (1)
upt (1) name-form (2)}

uptProvider OBJECT-CLASS ::= {
SUBCLASS OF {top}
MUST CONTAIN {

providerId}
ID id-oc-uptProvider}

providerId ATTRIBUTE ::= {
WITH SYNTAX NumericString (SIZE (1..ub-provider-id))
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
SINGLE VALUE TRUE
ID id-at-providerId}

-- agreed service object class

agreedService OBJECT-CLASS ::= {
SUBCLASS OF {top}
MUST CONTAIN {

providedServiceId|
providedLocations}

ID id-oc-agreedService}

providedServiceId ATTRIBUTE ::= {
WITH SYNTAX Service
SINGLE VALUE TRUE
ID id-at-providedServiceId}

Service ::=INTEGER {
isdnTelephony (0),
icRegistration (10),
serviceProfileModification (20),
standard (30),
callForwardingUnconditional (40),
callForwardingOnNoReply (41),
callForwardingOnBusy (42),
variableRouting (43)}

Page 160
Draft prETS 300 670: August 1996

providedLocations ATTRIBUTE ::= {
WITH SYNTAX NumericString (SIZE (1..ub-locations))
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringMatch
ID id-at-providedLocations}

-- user profile object class

userProfile OBJECT-CLASS ::= {
SUBCLASS OF {top}
MUST CONTAIN {

pui|
chargingAttributeSet|
allowedServices|
allowedCFParameters|
nbOfFailedAuthentications}

MAY CONTAIN {
userPassword|
callInfoRecords|
specialPassword|
variablePassword}

ID id-oc-userProfile}

pui ATTRIBUTE ::= {
WITH SYNTAX NumericString (SIZE (1..ub-pui))
EQUALITY MATCHING RULE numericStringMatch
SINGLE VALUE TRUE
ID id-at-pui}

specialPassword ATTRIBUTE ::={
WITH SYNTAX OCTET STRING (SIZE(0..ub-special-password))
EQUALITY MATCHING RULE octetStringMatch
ID id-at-specialPassword}

variablePassword ATTRIBUTE ::={
WITH SYNTAX OCTET STRING (SIZE(0..ub-variable-password))
EQUALITY MATCHING RULE octetStringMatch
ID id-at-variablePassword}

nbOfFailedAuthentications ATTRIBUTE ::= {
WITH SYNTAX INTEGER (SIZE (1..ub-max-number-of-failed-authentications))
ORDERING MATCHING RULE integerOrderingMatch
SINGLE VALUE TRUE
ID id-at-nbOfFailedAuthentications}

chargingAttributeSet ATTRIBUTE ::= {
defaultChargingReference|
userCredit|
activeChargingService}

defaultChargingReference ATTRIBUTE ::= {
WITH SYNTAX IsdnAddress
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
SINGLE VALUE TRUE
ID id-at-defaultChargingReference}

IsdnAddress ::=NumericString (SIZE(1.. ub-international-isdn-number))

userCredit ATTRIBUTE ::= {
WITH SYNTAX INTEGER (SIZE (1..ub-max-user-credit))
ORDERING MATCHING RULE integerOrderingMatch
SINGLE VALUE TRUE
ID id-at-userCredit}

callInfoRecords ATTRIBUTE ::= {
WITH SYNTAX CallInfoRecord
ID id-at-callInfoRecords}

CallInfoRecord ::= SEQUENCE {
authenticationTime [2] UTCTime,
callStopTimeValue [3] UTCTime,
callStartTimeValue [4] UTCTime,
callingAddressValue [6] IsdnAddress ,
calledNumber [7] IsdnAddress,
duration [5] INTEGER (0..2147483647) OPTIONAL,
visitedNetwork [0] NetworkCode OPTIONAL,
callCost [1] Cost OPTIONAL,
routingAddress [8] IsdnAddress OPTIONAL,
reroutingAddress [9] IsdnAddress OPTIONAL,
invokedSupplementaryServices [10] CFServices OPTIONAL,
surcharges [11] Cost OPTIONAL,
releaseCause [12] Cause OPTIONAL}

Page 161
Draft prETS 300 670: August 1996

Cost ::= CHOICE {
pulse [0] INTEGER (1..ub-pulse),
cost [1] CurrencyValue}

CurrencyValue::= SEQUENCE {
amount [0] INTEGER (0..ub-amount),
currency [1] Currency}

Currency ::= ENUMERATED {
usDollar (0),
frenchFranc (1),
germanMark (2),
dutchGuilder (3),
italianLira (4),
englishPound (5),
spanishPeseta (6),
swedishKrone (7)}

CFServices ::= SET OF Service(40..49)
Cause ::= OCTET STRING (SIZE(lb-causeLength..ub-causeLength))

activeChargingService ATTRIBUTE ::= {
WITH SYNTAX Service (30..39)
SINGLE VALUE TRUE
ID id-at-activeChargingService}

allowedServices ATTRIBUTE ::= {
WITH SYNTAX Service
EQUALITY MATCHING RULE integerMatch
ID id-at-allowedServices}

allowedCFParameters ATTRIBUTE ::= {
WITH SYNTAX CFParameter
EQUALITY MATCHING RULE integerMatch
ID id-at-allowedCFParameters}

CFParameter ::= INTEGER {
notifyActivation (0),
notifyForwarding (1),
notifyCallingPartyWithNumber (2),
notifyCallingPartyWithoutNumber (3),
notifyForwardedTo (4)}

-- user profile alias

userProfileAlias OBJECT-CLASS ::= {
SUBCLASS OF alias
MUST CONTAIN {

uptNumber}
ID id-oc-userProfile}
uptNumber ATTRIBUTE ::= {

WITH SYNTAX IsdnAddress
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
SINGLE VALUE TRUE
ID id-at-uptNumber}

-- basic service object class

basicService OBJECT-CLASS ::= {
SUBCLASS OF {top}
MUST CONTAIN {

basicServiceId|
icRegistrationAddress|
allowedDestinations|
allowedRegistrationAddress}

ID id-oc-basicService}

basicServiceId ATTRIBUTE ::= {
WITH SYNTAX Service(0..9)
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
ID id-at-basicServiceId}

icRegistrationAddresses ATTRIBUTE ::= {
WITH SYNTAX IsdnAddress
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-icRegistrationAddresses}

allowedDestinations ATTRIBUTE ::= {
WITH SYNTAX NumericString (SIZE (1..ub-locations))
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-allowedDestinations}

Page 162
Draft prETS 300 670: August 1996

allowedRegistrationAddress ATTRIBUTE ::= {
WITH SYNTAX NumericString (SIZE (1..ub-locations))
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-allowedRegistrationAddress}

-- registered routing service

registeredRoutingService OBJECT-CLASS ::={
SUBCLASS OF {top}
MUST CONTAIN {

routingServiceId|
routingAddress|
activationStatus}

MAY CONTAIN {
activatedCFParameters|
noReplyConditionTimer}

ID id-oc-registeredRoutingService}

routingServiceId ATTRIBUTE ::= {
WITH SYNTAX Service(40..49)
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
ID id-at-routingServiceId}

routingAddress ATTRIBUTE ::= {
WITH SYNTAX IsdnAddress
EQUALITY MATCHING RULE numericStringMatch
SUBSTRINGS MATCHING RULE numericStringSubstringsMatch
ID id-at-routingAddress}

activationStatus ATTRIBUTE ::= {
WITH SYNTAX ActivationStatus
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
ID id-at-activationStatus}

ActivationStatus ::= INTEGER {
notActivated (0),
activated (1)}

activatedCFParameters ATTRIBUTE ::= {
WITH SYNTAX CFParameter
EQUALITY MATCHING RULE integerMatch
ID id-at-allowedCFParameters}

noReplyConditionTimer ATTRIBUTE ::= {
WITH SYNTAX INTEGER
ORDERING MATCHING RULE integerOrderingMatch
ID id-at-noReplyConditionTimer}

-- name forms

uptProviderNameForm NAME-FORM ::= {
NAMES uptProvider
WITH ATTRIBUTES {providerId}
ID id-nf-uptProviderNameForm}

agreedServiceNameForm NAME-FORM ::= {
NAMES agreedService
WITH ATTRIBUTES {providedServiceId}
ID id-nf-agreedServiceNameForm}

userProfileNameForm NAME-FORM ::= {
NAMES userProfile
WITH ATTRIBUTES {pui}
ID id-nf-userProfileNameForm}

userProfileAliasNameForm NAME-FORM ::= {
NAMES userProfileAlias
WITH ATTRIBUTES {uptNumber}
ID id-nf-userProfileAliasNameForm}

basicServiceNameForm NAME-FORM ::= {
NAMES basicService
WITH ATTRIBUTES {basicServiceId}
ID id-nf-basicServiceNameForm}

registeredRoutingServiceNameForm NAME-FORM ::= {
NAMES registeredRoutingService
WITH ATTRIBUTES {routingServiceId}
ID id-nf-registeredRoutingServiceNameForm}

-- structure rules

Page 163
Draft prETS 300 670: August 1996

sr1 STRUCTURE-RULE ::= {
NAME FORM uptProviderNameForm
ID 1}

sr2 STRUCTURE-RULE::= {
NAME FORM uptProviderNameForm
SUPERIOR RULES {sr1}
ID 2}

sr3 STRUCTURE-RULE::= {
NAME-FORM userProfileNameForm
SUPERIOR RULES {sr1}
ID 3}

sr4 STRUCTURE-RULE::= {
NAME FORM userProfileAliasNameForm
SUPERIOR RULES {sr1}
ID 4}

sr5 STRUCTURE-RULE::= {
NAME FORM agreedServiceNameForm
SUPERIOR RULES {sr2}
ID 5}

sr6 STRUCTURE-RULE::= {
NAME FORM basicServiceNameForm
SUPERIOR RULES {sr3}
ID 6}

sr7 STRUCTURE-RULE::= {
NAME FORM registeredRoutingServiceNameForm
SUPERIOR RULES {sr6}
ID 7}

-- attributes
id-at-providerId OBJECT IDENTIFIER ::= {id-at 2}
id-at-providedServiceId OBJECT IDENTIFIER ::= {id-at 3}
id-at-providedLocations OBJECT IDENTIFIER ::= {id-at 4}
id-at-pui OBJECT IDENTIFIER ::= {id-at 5}
id-at-specialPassword OBJECT IDENTIFIER ::= {id-at 7}
id-at-variablePassword OBJECT IDENTIFIER ::= {id-at 8}
id-at-nbOfFailedAuthentications OBJECT IDENTIFIER ::= {id-at 9}
id-at-userCredit OBJECT IDENTIFIER ::= {id-at 10}
id-at-defaultChargingReference OBJECT IDENTIFIER ::= {id-at 11}
id-at-callInfoRecords OBJECT IDENTIFIER ::= {id-at 12}
id-at-allowedServices OBJECT IDENTIFIER ::= {id-at 13}
id-at-activeChargingService OBJECT IDENTIFIER ::= {id-at 14}
id-at-allowedCFParameters OBJECT IDENTIFIER ::= {id-at 15}
id-at-basicServiceId OBJECT IDENTIFIER ::= {id-at 16}
id-at-icRegistrationAddresses OBJECT IDENTIFIER ::= {id-at 17}
id-at-routingServiceId OBJECT IDENTIFIER ::= {id-at 18}
id-at-activationStatus OBJECT IDENTIFIER ::= {id-at 19}
id-at-routingAddress OBJECT IDENTIFIER ::= {id-at 20}
id-at-activatedCFParameters OBJECT IDENTIFIER ::= {id-at 21}
id-at-noReplyConditionTimer OBJECT IDENTIFIER ::= {id-at 22}
id-at-uptNumber OBJECT IDENTIFIER ::= {id-at 23}

SupportedAttributes ATTRIBUTE ::={
objectClass|
aliasedEntryName|
providerId|
providedServiceId|
providedLocations|
pui |
userPassword|
specialPassword|
variablePassword|
nbOfFailedAuthentications|
userCredit|
defaultChargingReference|
callInfoRecords|
allowedServices|
activeChargingService|
allowedCFParameters|
basicServiceId|
icRegistrationAddresses|
routingServiceId|
activationStatus|
routingAddress|
activatedCFParameters|
noReplyConditionTimer|
uptNumber }

Page 164
Draft prETS 300 670: August 1996

-- object classes
id-oc-uptProvider OBJECT IDENTIFIER ::= {id-oc 2}
id-oc-partner OBJECT IDENTIFIER ::= {id-oc 3}
id-oc-agreedService OBJECT IDENTIFIER ::= {id-oc 4}
id-oc-userProfile OBJECT IDENTIFIER ::= {id-oc 5}
id-oc-userProfileAlias OBJECT IDENTIFIER ::= {id-oc 6}
id-oc-basicService OBJECT IDENTIFIER ::= {id-oc 7
id-oc-registeredRoutingService OBJECT IDENTIFIER ::= {id-oc 8}

--name forms
id-nf-uptProviderNameForm OBJECT IDENTIFIER ::= {id-nf 0}
id-nf-partnerNameForm OBJECT IDENTIFIER ::= {id-nf 1}
id-nf-agreedServiceNameForm OBJECT IDENTIFIER ::= {id-nf 2}
id-nf-userProfileNameForm OBJECT IDENTIFIER ::= {id-nf 3}
id-nf-userProfileAliasNameForm OBJECT IDENTIFIER ::= {id-nf 4}
id-nf-basicServiceNameForm OBJECT IDENTIFIER ::= {id-nf 5}
id-nf-registeredRoutingServiceNameForm OBJECT IDENTIFIER ::= {id-nf 6}

--upper bounds
ub-provider-id INTEGER ::= 6
ub-locations INTEGER ::= 15
ub-pui INTEGER ::= 15
ub-user-password INTEGER ::= 128
ub-special-password INTEGER ::= 128
ub-variable-password INTEGER ::= 128
ub-max-number-of-failed-authentications INTEGER ::= 6
ub-international-isdn-number INTEGER ::= 15
ub-max-user-credit INTEGER ::= 4096
ub-pulse INTEGER ::= 32768
ub-amount INTEGER ::= 4096
lb-causeLength INTEGER ::= 2
ub-causeLength INTEGER ::= 128

END

Page 165
Draft prETS 300 670: August 1996

History

Document history

August 1996 Public Enquiry PE 111: 1996-08-05 to 1996-11-29

	Foreword
	Introduction
	1	Scope
	2	Normative references
	3	Definitions and abbreviations
	3.1	Definitions
	3.2	Abbreviations

	4	UPT phase€1 requirements
	4.1	Architecture requirements
	4.2	Requirements on the network
	4.2.1	Requirements on the originating network side
	4.2.2	Requirements on the terminating network side
	4.2.3	Requirements on the fixed network

	5	UPT Application Contexts
	6	UPT Information Model
	6.1	Introduction
	6.2	UPT Information Base
	6.2.1	Information Base
	6.2.1.1	UPT provider
	6.2.1.2	Agreed Service
	6.2.1.3	User profile
	6.2.1.4	User profile alias
	6.2.1.5	Basic service
	6.2.1.6	Routeing service
	6.2.1.7	Registered routeing services

	6.2.2	Structure of the UPT information model
	6.2.2.1	Existence relations between classes
	6.2.2.2	Name forms
	6.2.2.3	Structure rules

	6.3	UPT Security model
	6.3.1	Basic access control
	6.3.2	Authentication
	6.3.3	Permitted Values

	7	SCF procedures
	7.1	General
	7.1.1	Overview
	7.1.2	Charging procedures in the SDLs
	7.1.3	Conventions and notation
	7.1.4	SLP description

	7.2	Generic sequences
	7.2.1	Identification and authentication
	7.2.1.1	General
	7.2.1.2	Detailed procedure

	7.2.2	Feature request identification
	7.2.2.1	General
	7.2.2.2	Detailed procedure

	7.2.3	Release of the calling user
	7.2.3.1	General
	7.2.3.2	Detailed procedure

	7.2.4	Connection of an SRF
	7.2.4.1	General
	7.2.4.2	Detailed procedure

	7.2.5	Disconnection of an SRF
	7.2.5.1	General
	7.2.5.2	Detailed procedure

	7.3	Personal Mobility
	7.3.1	Registration for incoming calls
	7.3.1.1	General
	7.3.1.2	Detailed procedure

	7.3.2	Deregistration for Incoming Calls
	7.3.2.1	General
	7.3.2.2	Detailed procedure

	7.4	Call Handling
	7.4.1	Outgoing UPT Call
	7.4.1.1	General
	7.4.1.2	Detailed Procedure

	7.4.2	Incoming UPT Call
	7.4.2.1	General
	7.4.2.2	Detailed Procedure

	7.5	Service Profile Modification
	7.5.1	General
	7.5.2	Detailed procedure

	7.6	Change of PIN Code
	7.6.1	General
	7.6.2	Detailed procedure

	8	SDF Procedures
	8.1	Agreement check at the service provider level
	8.2	User's authentication
	8.3	Provider agreement at the service feature level
	8.4	Check on the subscription to the service
	8.5	Check on the registration address
	8.6	Update of the registration address
	8.7	Reading the registration address
	8.8	Deregistration
	8.9	Check on the user credit
	8.10	Check on the destination address
	8.11	Reading of the routeing address
	8.12	Transfer of call records
	8.13	Retrieving call forwarding parameters
	8.14	Modifying the service profile
	8.15	Getting the routeing address for conditional call forwarding services
	8.16	Retrieving the default charging reference point
	8.17	Changing the PIN code

	Annex A (Normative):	ASN.1 Information Object Notation
	History

