
*

FINAL DRAFT

EUROPEAN pr ETS 300 658

TELECOMMUNICATION June 1996

STANDARD

Source: ETSI TC-SPS Reference: DE/SPS-02030

ICS: 33.080

Key words: ISDN, SS7, TC, testing, ASN.1

Integrated Services Digital Network (ISDN);
Signalling System No.7;

Transaction Capabilities (TC) version 2;
Test responder specification

ETSI
European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1996. All rights reserved.

Page 2
Final draft prETS 300 658: June 1996

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
Final draft prETS 300 658: June 1996

Contents

Foreword ...5

1 Scope ..7

2 Normative references..7

3 Abbreviations...7

4 Architecture ...8

5 TC testing user Application Service Element (ASE) ...9
5.1 General principles ..9
5.2 Operations and Errors ...9

6 TC test management protocol...10
6.1 Test management protocol PDUs ...10
6.2 Command structure ...10
6.3 Abstract syntax ..11
6.4 Procedures...11

6.4.1 Procedure at the test system side ...11
6.4.2 Procedure at the test responder side ..11

6.4.2.1 Generic rules ...11
6.4.2.2 Handling of TMP-PDUs ...12
6.4.2.3 Execution of the wait command...13
6.4.2.4 Execution of other commands...13
6.4.2.5 Data echo ..14

Annex A (normative): TC test responder Operations and Errors ..15

Annex B (normative): Test management protocol PDUs ..17

Annex C (informative): Example of use of the TC test responder...19

Annex D (informative): Implementing loops using the TC test responder...22

Annex E (informative): Bibliography..23

History..24

Page 4
Final draft prETS 300 658: June 1996

Blank page

Page 5
Final draft prETS 300 658: June 1996

Foreword

This final draft European Telecommunication Standard (ETS) has been produced by the Signalling
Protocols and Switching (SPS) Technical Committee of the European Telecommunications Standards
Institute (ETSI), and is now submitted for the Voting phase of the ETSI standards approval procedure.

Proposed transposition dates

Date of latest announcement of this ETS (doa): 3 months after ETSI publication

Date of latest publication of new National Standard
or endorsement of this ETS (dop/e): 6 months after doa

Date of withdrawal of any conflicting National Standard (dow): 6 months after doa

Page 6
Final draft prETS 300 658: June 1996

Blank page

Page 7
Final draft prETS 300 658: June 1996

1 Scope

This ETS defines a simple and flexible test responder which enables the use of Abstract Test Suites
(ATSs) for Transaction Capabilities (TC) independently from the actual TC-users which reside in a System
Under Test (SUT).

No assumption is made about the actual implementation of the interface between this function and TC.

The availability of a standardized TC test responder has the following advantages:

- it makes it possible to write a unique ATS which can be executed against any TC implementation
which resides in a system where the test responder is also implemented;

- it allows all the defined TC functionalities to be tested, irrespective of the sub-set of functionalities
actually used by the TC-users which are available at the moment when an equipment is under test;

- it helps to isolate faults during testing, since the proper response to a TC message or component
will be independent of the proper execution of a real TC-user operation;

- it allows the TC stack to be tested before being delivered to a customer for supporting one ore more
particular TC-user applications;

- the test responder can even be used to perform stack-to-stack interoperability testing independently
of any particular TC-user application.

2 Normative references

This ETS incorporates by dated and undated reference, provisions from other publications. These
normative references are cited at the appropriate places in the text and the publications are listed
hereafter. For dated references, subsequent amendments to or revisions of any of these publications
apply to this ETS only when incorporated in it by amendment or revision. For undated references the latest
edition of the publication referred to applies.

[1] ETS 300 134: "Integrated Services Digital Network (ISDN); Signalling System
No.7; Transaction Capabilities Application Part (TCAP)".

[2] ETS 300 287: "Integrated Services Digital Network (ISDN); Signalling System
No.7; Transaction Capabilities Application Part (TCAP) version 2".

[3] ISO/IEC 8824: "Information Technology - Abstract Syntax Notation One
(ASN.1)" (also published as ITU-T Recommendations X.680, X.681, X.682 and
X.683).

[4] ISO/IEC 8825-1 (1995): "Information Technology - ASN.1 Encoding Rules -
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER)
and Distinguished Encoding Rules (DER)" (also published as ITU-T
Recommendation X.690 (1994)).

[5] ISO/IEC 9646-1 (1994): "Information technology - Open Systems
Interconnection - Conformance testing methodology and framework - Part 1:
General concepts".

[6] CCITT Recommendations Q.771-Q.775 (1988): "Specifications of Signalling
System No.7, Transaction Capabilities Application Part (TCAP)" (Blue Book).

[7] ITU-T Recommendations Q.771-Q.775 (1993): "Specifications of Signalling
System No.7: Transaction Capabilities (TC)" (White Book).

Page 8
Final draft prETS 300 658: June 1996

3 Abbreviations

For the purposes of this ETS, the following abbreviations apply:

AE Application Entity
ASE Application Service Element
ASN.1 Abstract Syntax Notation One (as specified in ISO/IEC 8824 [3])
ATS Abstract Test Suite
IUT Implementation Under Test
LT Lower Tester
PDU Protocol Data Unit
SCCP Signalling Connection Control Part (SS7)
SUT System Under Test
TC Transaction Capabilities
TMP Test Management Protocol
UT Upper Tester

4 Architecture

The TC test responder is a particular TC-user which can be implemented together with TC in any system,
using several possible configurations.

The communication between the TC test responder which resides in a SUT and a test system relies on
the use of a particular Application Service Element (ASE), called "TC Testing User ASE". The TC test
responder plays the role of the ASE supplier while the test system plays the role of the ASE consumer.

The TC Testing User ASE can be implemented as the single component of an Application Entity (AE)
located at a particular sub-system number, or it can be combined with other application layer elements in
which case it is selected by using any application-context-name starting with the following value:

{ccitt identified-organization etsi(0) 658 ac(5)}

NOTE: ETS 300 009-1, Signalling Connection Control Part (SCCP) will allocate a sub-system
number which may be used for addressing an AE which contains the test responder
(e.g. when only CCITT Blue Book [6] TC facilities are available).

According to ISO/IEC 9646-1 [5], the set of data units conveyed between two instances of the test
responder and a test system can be considered as an "in-band" Test Management Protocol (TMP), which
can be used to support co-ordinated test methods between the test responder acting as an Upper Tester
(UT) and the Lower Tester (LT) functionality of the test system (see figure 1).

Test system SUT

LT Test co-ordination
procedures
TMP-PDU

UT

Testing
User
ASE

IUT

(TC)

SCCP

Figure 1

Page 9
Final draft prETS 300 658: June 1996

The use of this test responder does not require any access to the TC service interface within the SUT, nor
does it place any constraints on its implementation. This test responder does not provide means for
testing the behaviour of a TC implementation in response to invalid behaviour of the local TC-user.

The "in-band" nature of the TMP implies that, although being under test, the TC service is reliable enough
to carry such Protocol Data Units (PDUs) and deliver them to a user. In order to overcome potential
difficulties due to a missing or unreliable TC service, the Testing User ASE procedures are defined in
such a way that each TMP-PDU can be received in different types of messages or components.

The main purpose of the TMP is to allow series of commands to be sent from the test system to the test
responder in order to provoke some behaviour in the TC Implementation Under Test (IUT). Each
command is either a TC service primitive to be passed by the test responder to the TC under test or the
indication that the test responder should keep waiting for a subsequent event.

5 TC testing user Application Service Element (ASE)

5.1 General principles

The TC testing user ASE can be built on top of the 1988 version (ETS 300 134 [1], based on the CCITT
Blue Book [6]) or the 1993 version (ETS 300 287 [2], based on the ITU-T White Book [7]) of TC1). This
ASE can handle simultaneously several dialogues. It embodies the knowledge of seven operations; two of
them can be invoked by the ASE consumer (i.e. the test system), five of them can be invoked by the ASE
supplier (i.e. SUT). The two operations invoked by the test responder are defined as class 1 operations.
However, this has no impact on the behaviour of the test responder2).

The TMP-PDUs can be conveyed in the operations arguments, operations result parameters, errors
parameters and when available, in the user information parameter of the dialogue portion.

There is no specific relation between a TMP-PDU and the type of message or component which is used to
carry it.

NOTE: The upper service interface of the TC Testing User ASE is not standardized. However
such an interface could be made accessible to locally trigger a particular test scenario
(e.g., for interoperability testing) or enable the test responder to report to some
management function expiry of the timer T-Test.

5.2 Operations and Errors

The Abstract Syntax Notation One (ASN.1) module TC-Testing-User defined in annex A contains the
specification of the operations which can be invoked by the test system or the test responder during
communication.

The local values assigned to the following operations and errors shall be considered as default values.
The actual local values used for these operations and errors shall be treated as configuration parameters.

class1SupplierOperation
class2SupplierOperation
class3SupplierOperation
class4SupplierOperation
localConsumerError
localSupplierError

1) It is up to the test suite designer to write the test cases in such a way that the Test Responder does not request 1993
functionalities from a 1988 TC implementation.

2) Whether the test responder reports an outcome for these operations depends on the commands received in the TMP PDUs.
This does not violate any rule as far as TC is concerned since the class of an operation is irrelevant to the TC residing at the
side where the operation is executed.

Page 10
Final draft prETS 300 658: June 1996

6 TC test management protocol

6.1 Test management protocol PDUs

There are three types of TMP-PDU3):

Test Init

The testInit PDU requests the test responder to initiate a test session and conveys a set of
commands to be executed sequentially by the test responder. This PDU can only be sent by the
test system.

Test Continue

The testContinue PDU conveys a set of additional commands to be executed sequentially by the
test responder. This PDU can only be sent by the test system.

Test Data Echo

The testDataEcho PDU conveys user data echoing the user data received with a particular
command. This PDU can only be sent by the test responder.

The testInit and testContinue PDUs can be conveyed in the argument of the operations invoked by the
test system, in the result or error parameter returned by the test system in response to an operation
invoked by the test responder or in the user information parameter of the dialogue portion of the
messages sent by the test system.

The testDataEcho PDU can be conveyed in the argument of the operations invoked by the test responder,
in the result or error parameter returned by the System Under Test in response to an operation invoked by
the test system, or in the user information parameter of the dialogue portion of the messages sent by the
test responder.

6.2 Command structure

Each command sent from the test system in a testInit or test Continue PDU indicates to the test responder
that it shall keep waiting for an external event from the local TC or that it shall issue a particular request
primitive to the local TC.

Commands indicating to the test responder that is has to wait for an external event also indicate whether
this event shall occur on a particular dialogue or that this does not matter.

Commands requesting the test responder to issue a primitive comprise up to three items:

1) an indication of the type of request primitive to be passed to the local TC;

2) the reference to the dialogue over which the action should be taken. If this information is not
explicitly provided, the test responder assumes that the command refers to the dialogue over which
the TMP-PDU has been received. The dialogue reference is always chosen by the test system.
Unlike transaction Ids and dialogue Ids, the dialogue reference is a common reference shared by
both sides of a dialogue.

The test responder has to keep track of the one-to-one relation which exists between a dialogue-
reference and the local TC dialogue-Id which has been agreed between TC and the Testing User
ASE for this dialogue;

3) optionally, a user data parameter to be echoed as user data associated with the service primitive to
be issued.

3) The need for a "TestEnd" PDU is for further study.

Page 11
Final draft prETS 300 658: June 1996

6.3 Abstract syntax

The ASN.1 module TC-TMP defined in annex B contains the specification of the TMP-PDUs.

When the TMP-PDUs are conveyed in the user information parameter of the dialogue portion, the
following abstract-syntax-name is used as a direct-reference to identify the set of data values each of
which is a value of type TMP-Protocol.TMP-PDU:

{ccitt identified-organization etsi(0) 658 as(4) tmp-pdus(1) version1(1)}

The applicable encoding rules are the basic encoding rules defined in ISO/IEC 8825-1 [4].

6.4 Procedures

6.4.1 Procedure at the test system side

The Testing User ASE has limited error detection and error recovery functionalities. It is up to the designer
of the ATS to ensure that the sequence of commands which are sent to the test responder corresponds to
a valid TC-user behaviour and does not conflict with the automatic procedures of this ASE.

It is up to the Test Suite designer to choose how a TMP-PDU is conveyed to the test responder (i.e. which
message and which component, if any, etc.). The test system can send a TMP-PDU in any type of
message and component with the sole restriction that a TestInit PDU can only be sent in a Begin
message or in a Unidirectional message.

It is also the responsibility of the designer of the ATS to ensure that the TMP PDU will be delivered to the
Test User ASE (i.e. it should be conveyed in a valid TC message or component).

Starting a Test Case: at the beginning of each Test Case, the test system shall send a TestInit PDU in
order to ensure that no resources associated with a previous test case are still active. This PDU shall
include a sequence of commands to be executed by the test responder and optionally the value of a
watch-dog timer (T-Test). If no timer value is provided, an implementation value is selected4).

Continuing a Test Case: if all the commands are not sent in the testInit PDU, the test system can send
further commands to the test responder using the testContinue PDU which also contains a sequence of
commands to be executed by the test responder. A TC message can convey more than one testContinue
PDU.

Ending a Test Case: there is no specific command nor TMP-PDU for ending a test case. It is up to the
test designer to write the test case postamble in such a way that all active dialogues are closed.

6.4.2 Procedure at the test responder side

6.4.2.1 Generic rules

The test responder refuses any application-context-name whose object identifier value does not start with
the following root:

{ccitt identified-organization etsi(0) 658 ac(5)}

When the test responder accepts a 1993 dialogue (i.e. a dialogue according to ETS 300 287 [2] and the
ITU-T White Book [7]), it uses the received application-context-name in the next dialogue handling
primitive it issues.

When the test responder refuses a 1993 dialogue, it proposes the following application-context-name:

{ccitt identified-organization etsi(0) 658 ac(5) testing-ac(1) version1 (1)}

4) Implementors may choose a very large value if the test responder is intended to be used for running background traffic or
load testing.

Page 12
Final draft prETS 300 658: June 1996

When requesting TC to send a Begin message or a Unidirectional message, the test responder uses as
destination address, the originating address of the message in which the TestInit PDU was received. If an
application-context-name has to be provided by the test responder, it always uses the following value:

{ccitt identified-organization etsi(0) 658 ac(5) testing-ac(1) version1 (1)}

If the test responder detects that it has been reached with a destination address which is not the one it
knows from the configuration data, it forces TC to insert the address it knows in the first backward
Continue message sent to the test system.

During one dialogue, the following rules apply:

- the first invoke Id used by the test responder has the value 0, then this value is incremented each
time the test responder invokes an operation;

- if the invocation received by the test responder gives reason for a user reject to be generated, the
test responder automatically requests TC to return a reject component (e.g. it rejects any operation
which is not defined in the TC-Testing-User module) with the appropriate reject problem;

- the test responder always requests the return option when issuing a TC-BEGIN request primitive. In
all other cases the setting of this parameter is an implementation option;

- when requesting the sending of partial results, the test responder always requests the sequencing
option. In all other cases the setting of this parameter is an implementation option;

- the timer value provided by the test responder when invoking an operation is a configuration
parameter.

6.4.2.2 Handling of TMP-PDUs

If an event is received without any TMP-PDU, the test responder does nothing5).

If an event is received with several TMP-PDUs, they are processed sequentially, starting with the ones
included in the user information field of the dialogue portion (if any).

On receipt of a testInit PDU, the test responder releases all the active resources (e.g. it closes any active
dialogue, releases the dialogue references, etc.)6) and starts the T-Test timer. Then the commands are
executed sequentially and the test responder keeps waiting for the next event or expiry of timer T-Test.

On Receipt of a testContinue PDU, the test responder executes sequentially the specified commands and
keeps waiting for the next event or expiry of timer T-Test.

On receipt of a testDataEcho PDU, the test responder does nothing.

According to the generic rules, receipt of any other data value will lead to:

- a TC-user reject procedure if the invalid PDU value is received in an operation argument, a result
parameter or an error parameter;

- a TC-user abort procedure if it is received in the user information field of the dialogue portion.

When the T-Test timer, expires all the resources associated with the test are automatically released.

The test responder interprets and executes sequentially each command received from the test system, as
described in subclauses 6.4.2.3 and 6.4.2.4.

5) This includes receipt of a TC-NOTICE indication primitive which may can contain a returned TMP-PDU.
6) How the resources are released is an implementation matter. However this should not lead to the sending of any external

message (e.g., END or ABORT message).

Page 13
Final draft prETS 300 658: June 1996

6.4.2.3 Execution of the wait command

The test responder keeps waiting for an incoming event from the IUT. When the incoming event has been
received it executes the next command (if any) or keeps waiting for the next TMP-PDU7).

Conceptually, an incoming event corresponds to one or more related TC indication primitives. The later
case corresponds to a situation where the test responder receives a dialogue handling primitive indicating
that component are present. In such a case, the test responder consumes all the component handling
primitives until the "last component" parameter takes the value "TRUE". However this does not place any
constraint on the actual implementation of the interface between the Test responder and TC.

If the command is accompanied by an explicit dialogue reference, primitives whose dialogue identifier
does not correspond to this reference, are ignored (the test responder keeps waiting for a next event).
Otherwise the dialogue identifier value is not checked.

6.4.2.4 Execution of other commands

The test responder interprets the service type as follows:

- v1988uniReq: the test responder requests the IUT to send a 1988 Unidirectional message;

- v1993uniReq: the test responder requests the IUT to send a 1993 Unidirectional message;

- v1988beginReq: the test responder requests the IUT to send a 1988 Begin message;

- v1993beginReq: the test responder requests the IUT to send a 1993 Begin message including a
dialogue portion;

- continueReq: the test responder requests the IUT to send a Continue message for the dialogue
which corresponds to the dialogue-reference value included in the command;

- basicEndReq: the test responder requests the IUT to send an End message for the dialogue which
corresponds to the dialogue-reference value included in the command;

- localEndReq: the test responder requests the IUT to locally terminate the dialogue which
corresponds to the dialogue-reference value included in the command;

- uAbortReq: the test responder requests the IUT to abort the dialogue which corresponds to the
dialogue-reference value included in the command. If the dialogue has been established using 1992
procedure, the abort-reason is set to "user-specific";

- class1invokeReq: the test responder requests the IUT to invoke the class 1 operation defined in the
module TC-Testing-User (see annex A);

- class2invokeReq: the test responder requests the IUT to invoke the class 2 operation defined in the
module TC-Testing-User (see annex A);

- class3invokeReq: the test responder requests the IUT to invoke the class 3 operation defined in the
module TC-Testing-User (see annex A);

- class4invokeReq: the test responder requests the IUT to invoke the class 4 operation defined in the
module TC-Testing-User (see annex A);

- linkedInvokedReq: the test responder request the IUT to invoke the class 1 operation defined in the
module TC-Testing-User (see annex A) as a linked operation to the oldest pending operation;

- resultNlReq: the test responder requests the IUT to send a result not last component in response to
the oldest pending operation;

7) The Test Responder is always waiting for events. The wait command is only required when there is a need to explicitly wait
for an event before executing a command which has been sent in advance.

Page 14
Final draft prETS 300 658: June 1996

- resultLReq: the test responder requests the IUT to send a result last component in response to the
oldest pending operation;

- uErrorReq: the test responder requests the IUT to send an error component in response to the
oldest pending operation. The error code is the single error code allowed by the operation definition;

- uCancelReq: the test responder requests the IUT to cancel the oldest pending operation;

- uRejectReq: the test responder requests the IUT to send a reject component indicating
"invoke-problem: resource limitation" for the oldest pending operation.

NOTE: In this context, a "1988 message" is a message defined according to ETS 300 134 [1]
and the CCITT Blue Book [6], while a "1993 message" is a message defined according
to ETS 300 287 [2] and the ITU-T White Book [7].

6.4.2.5 Data echo

When requesting a dialogue handling service from the 1993 TC (i.e. as defined in ETS 300 287 [2] and
the ITU-T White Book [7]) and if a "to-be-echoed" element was present in the associated command
received from the test system, the test responder shall include one or more testDataEcho TMP-PDUs as
value of the user information parameter. Each "testDataEcho" value is identical to the received
"toBeEchoed" value. During the dialogue establishment phase or when the unstructured dialogue mode is
used, the number of "testDataEcho" values provided by the test responder is a configuration parameter.
Once the dialogue has been established, only one value can be sent.

When requesting a component handling service from TC, the test responder includes a testDataEcho
TMP-PDU as user parameter (i.e. operation argument, result parameter, error parameter, etc.) if a
"to-be-echoed" element was present in the associated command received from the test system. If
included, the "testDataEcho" value is identical to the received "toBeEchoed" value.

If the test responder receives some unknown information in the user information parameter of a dialogue
handling primitives, it provides it unchanged in the user information parameter of the next dialogue
handling primitive it issues.

Page 15
Final draft prETS 300 658: June 1996

Annex A (normative): TC test responder Operations and Errors

The following module defines the TC Testing User ASE in terms of which operations can be invoked by
the consumer (the test system) and the supplier (the SUT).

TC-Testing-User {ccitt identified-organization etsi(0) 658 modules(0) testing-user(1)
version1(1)}

DEFINITIONS ::=

BEGIN

IMPORTS

OPERATION, ERROR
FROM TCAPMessages {ccitt recommendation q 773 modules(2) messages(1) version2(2)}

APPLICATION-SERVICE-ELEMENT
FROM Notation-Extensions {joint-iso-ccitt remote-operations (4) notation-extension(2)}

TMP-PDU
FROM TC-TMP {ccitt identified-organization etsi(0) 658 modules(0) tmp(2) version1(1)}

;

-- application-context-names

ac-id OBJECT IDENTIFIER ::= {ccitt identified-organization etsi(0) 658 ac(5)}
testing-ac-id OBJECT IDENTIFIER ::= {ac-id testing-ac(1) version1(1)}

-- ase

Testing-User-ASE APPLICATION-SERVICE-ELEMENT

CONSUMER INVOKES {
localConsumerOperation,
globalConsumerOperation
}

-- consumer is the test system

SUPPLIER INVOKES {
class1SupplierOperation,
class2SupplierOperation,
class3SupplierOperation,
class4SupplierOperation,
globalSupplierOperation
}

-- supplier is the test responder

::= {ccitt identified-organization etsi(0) 658 ase(3) testing-user (1) version1(1)}

LocalConsumerOperation ::= OPERATION
ARGUMENT TMP-PDU
RESULT TMP-PDU
ERRORS {localSupplierError}

GlobalConsumerOperation ::= OPERATION
ARGUMENT TMP-PDU
RESULT TMP-PDU
ERRORS {globalSupplierError}

Class1SupplierOperation ::= OPERATION
ARGUMENT TMP-PDU
RESULT TMP-PDU
ERRORS {localConsumerError}
LINKED {localConsumerOperation}

Class2SupplierOperation ::= OPERATION
ARGUMENT TMP-PDU
ERRORS {localConsumerError}
LINKED {localConsumerOperation}

Class3SupplierOperation ::= OPERATION
ARGUMENT TMP-PDU
RESULT TMP-PDU

Page 16
Final draft prETS 300 658: June 1996

Class4SupplierOperation ::= OPERATION
ARGUMENT TMP-PDU

GlobalSupplierOperation ::= OPERATION
ARGUMENT TMP-PDU
RESULT TMP-PDU
ERRORS {globalConsumerError}
LINKED {globalConsumerOperation}

ConsumerError ::= ERROR
PARAMETER TMP-PDU

SupplierError ::= ERROR
PARAMETER TMP-PDU

localConsumerOperation LocalConsumerOperation ::= localValue : 0
globalConsumerOperation GlobalConsumerOperation ::=

globalValue : {ccitt identified-organization etsi(0) 658 operations(1) consumer(1)}

class1SupplierOperation Class1SupplierOperation ::= localValue : 1
class2SupplierOperation Class2SupplierOperation ::= localValue : 2
class3SupplierOperation Class3SupplierOperation ::= localValue : 3
class4SupplierOperation Class4SupplierOperation ::= localValue : 4
globalSupplierOperation Class1SupplierOperation ::=

globalValue : {ccitt identified-organization etsi(0) 658 operations(1) supplier(2)}

localConsumerError ConsumerError ::= localValue : 1
globalConsumerError ConsumerError ::=

globalValue : {ccitt identified-organization etsi(0) 658 errors(2) consumer(1)}

localSupplierError SupplierError ::= localValue : 2
globalSupplierError SupplierError ::=

globalValue : {ccitt identified-organization etsi(0) 658 errors(2) supplier(2)}

END

Page 17
Final draft prETS 300 658: June 1996

Annex B (normative): Test management protocol PDUs

The following module defines the TMP-PDUs.

TC-TMP {ccitt identified-organization etsi(0) 658 modules(0) tmp(2) version1(1)}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

TMP-PDU ::= CHOICE
{
testInit [0] TestInit,
testContinue [1] CommandSequence,
testDataEcho [2] UserData
}

CommandSequence ::= SEQUENCE SIZE(0..maxNbOfCommands) OF TestCommand

maxNbOfCommands INTEGER ::= 30

TestInit ::= SEQUENCE
{
timeout INTEGER (1..127) OPTIONAL, -- T-Test (unit is 30 sec)
commands CommandSequence,
...
}

UserData ::= CHOICE
{
simple OCTET STRING (SIZE(0..maxUserDataLength)),
complex [0] ABSTRACT-SYNTAX.&Type
}

maxUserDataLength INTEGER ::= 2048

TestCommand ::= CHOICE
{
wait [0] DialogueReference,
action [1] ActionInfo
}

DialogueReference ::= CHOICE
{
unspecified NULL,
dialogue INTEGER (0..255)
}

ActionInfo ::= SEQUENCE
{
service ServiceType,
dialogueReference DialogueReference DEFAULT unspecified : NULL,
to-be-echoed UserData OPTIONAL,
...
}

ServiceType ::= ENUMERATED
{
v1988uniReq (10),
v1993uniReq (11),
v1988beginReq (12),
v1993beginReq (13),
continueReq (14),
basicEndReq (15),
localEndReq (16),
uAbortReq (17),
class1invokeReq (21),
class2invokeReq (22),
class3invokeReq (23),
class4invokeReq (24),
linkedInvokeReq (25),
resultNlReq (26),
resultLReq (27),
uErrorReq (28),
uCancelReq (29),
uRejectReq (30),
...
}

Page 18
Final draft prETS 300 658: June 1996

-- abstract syntax name for TMP PDUs

tmp-pdus-as OBJECT IDENTIFIER ::= {ccitt identified-organization etsi(0) 658 as(4) tmp-pdus(1)
version1(1)}

END

Page 19
Final draft prETS 300 658: June 1996

Annex C (informative): Example of use of the TC test responder

This annex illustrates how some of the test purposes defined in ITU-T Recommendation Q.787 can be
implemented using the TC test responder.

a) Test 2.1.6 Valid functions, User cancel

Test responder/TC interface Message flow Test
system

BEGIN [Invoke (localConsumerOperation, 1)]
<--

TC-Begin-Ind
TC-Invoke-Ind (1)

TC-Invoke-Req (0)
TC-ContinueReq

CONTINUE[Invoke (class1SupplierOperation, 0)]
-->

TC-U-Cancel-Req (0)
CONTINUE[Return-Result-L (0)]
<--

TC-L-Reject-Ind (0)
TC-End-Req

END[Reject (0)]

Figure C.1

The localConsumerOperation argument is defined as follows:

testInit : {
timeOut 30,
commands

{
action : {service class1InvokeReq},
action : {service continueReq},
action : {service uCancelReq},
wait : {unspecified : NULL},
action : {service basicEndReq}
}

}

Page 20
Final draft prETS 300 658: June 1996

b) Test 2.1.2.1.1 Valid functions, Linked operations, Class 1 original operation, IUT as sender

Test responder/TC interface Message flow Test
system

BEGIN [Invoke(localConsumerOperation, 1)]
<--

TC-Begin-Ind
TC-Invoke-Ind (1)
TC-Invoke-Req (0)
TC-Continue-Req

CONTINUE[INV(class1SupplierOperation, 0)]
-->

CONTINUE[Invoke(localConsumerOperation), 2]
<--

TC-Continue-Ind
TC-Invoke-Ind (2)
TC-Result-L (2)
TC-Continue-Req

CONTINUE[Return-Result-L(2)]

END[Return-Result-L(0)]
TC-End-Ind
TC-Result-L (0)

Figure C.2

The first localConsumerOperation invocation argument is defined as follows:

testInit : {
timeOut 30,
commands {

action : {service class1InvokeReq},
action : {service continueReq},
wait : {unspecified : NULL}
}

}

The second localConsumerOperation invocation argument is defined as follows:

testContinue : {
action : {service resultLReq},
action : {service continueReq},
wait : {unspecified : NULL}
}

}

Page 21
Final draft prETS 300 658: June 1996

c) Test 1.1.2.2.1.1-3: Valid functions, Clearing after Continue message, IUT Abort by TC-User

Test responder/TC interface Message flow Test
system

BEGIN [Invoke(localConsumerOperation, 1)]
<--

TC-Begin-Ind (0)
TC-Invoke-Ind (1)
TC-Begin-Req (1)

BEGIN
-->

CONTINUE
<--

TC-Continue-Ind (1)
TC-U-Abort-Req (1)

ABORT
-->

TC-End-Req (local,0)

Figure C.3

The localConsumerOperation invocation argument is defined as follows:

testInit : {
timeOut 30,
commands {

action : {service v1988beginReq, dialogueReference value : 1},
wait : {dialogueReference value : 1},
action : {service uAbortReq, dialogueReference value : 1},
action : {service localEndReq, dialogueReference value : 0}
}

}

Page 22
Final draft prETS 300 658: June 1996

Annex D (informative): Implementing loops using the TC test responder

This annex illustrates the use of the TC test responder for implementing loops. The test case is such that
both the test system and the test responder keep continuously opening dialogues which are immediately
ended by the other entity.

Test responder/TC interface Message flow Test
system

BEGIN (OTID = X1, testInit)
<--

TC-Begin-Ind (0)
TC-Begin-Req (1) BEGIN (OTID = Y1)

-->

TC-End-Req (0) END (DTID = X1)
-->

END (DTID = Y1)
<--

BEGIN (OTID = X2, testContinue)
<--

TC-Begin-Ind (2)
TC-Begin-Req (3)

BEGIN (OTID = Y2)
-->

TC-End-Req (2) END (DTID = X2)
-->

END (DTID = Y2)
<--

...

Figure D.1

The first BEGIN message sent from the Tester to the test responder includes a testInit PDU defined as
follows:

testInit : {
timeOut 30,
commands {

action : {service v1988beginReq, dialogueReference value : 1},
action : {service basicEndReq, dialogueReference value : 0},
wait : {dialogueReference value : 1}
}

}

The subsequent BEGIN messages include a testContinue PDU defined as follows:

testContinue : {
action : {service v1988beginReq, dialogueReference value : i+1},
action : {service basicEndReq, dialogueReference value : i},
wait : {dialogueReference value : i+1}
}

}

where i is incremented from 1 to the number of desired loops (N).

When i = N, the test case can be terminated by sending a testContinue PDU without the v1988beginReq
command. In this example, there exist at most two dialogues at a time. However, for load testing
purposes, the test case could be rewritten in such a way that the Tester does not send any END message
and the TMP-PDUs (except the one which terminates the test case) do not contain any
"basicEndRequest" in the list of commands.

Page 23
Final draft prETS 300 658: June 1996

Annex E (informative): Bibliography

- ETS 300 009-1: "Integrated Services Digital Network (ISDN); Signalling System No.7; Signalling
Connection Control Part (SCCP) to support international interconnection; Part 1: Protocol
specification".

- ITU-T Recommendation Q.787 (1993): "Transaction Capabilities (TC) test specification".

Page 24
Final draft prETS 300 658: June 1996

History

Document history

December 1995 Public Enquiry PE 97: 1995-12-04 to 1996-04-12

June 1996 Vote V 106: 1996-06-24 to 1996-08-30

	Foreword
	1	Scope
	2	Normative references
	3	Abbreviations
	4	Architecture
	5	TC testing user Application Service Element (ASE)
	5.1	General principles
	5.2	Operations and Errors

	6	TC test management protocol
	6.1	Test management protocol PDUs
	6.2	Command structure
	6.3	Abstract syntax
	6.4	Procedures
	6.4.1	Procedure at the test system side
	6.4.2	Procedure at the test responder side
	6.4.2.1	Generic rules
	6.4.2.2	Handling of TMP-PDUs
	6.4.2.3	Execution of the wait command
	6.4.2.4	Execution of other commands
	6.4.2.5	Data echo

	Annex A (normative):	TC test responder Operations and Errors
	Annex B (normative):	Test management protocol PDUs
	Annex C (informative):	Example of use of the TC test responder
	Annex D (informative):	Implementing loops using the TC test responder
	Annex E (informative):	Bibliography
	History

