
N
ew

 p
re

se
nt

at
io

n
-

se
e

H
is

to
ry

 b
ox

EUROPEAN ETS 300 580-6

TELECOMMUNICATION September 1994

STANDARD

Source: ETSI TC-SMG Reference: GSM 06.32

ICS: 33.060.30

Key words: European digital cellular telecommunications system, Global System for Mobile communications
(GSM)

European digital cellular telecommunications system (Phase 2);
Voice Activity Detection (VAD)

(GSM 06.32)

ETSI
European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1994. All rights reserved.

Page 2
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Contents

Foreword ...5

0.1 Scope ..7

0.2 Normative references ..7

0.3 Definitions and abbreviations ..7

1 General ..7

2 Functional description ..8
2.1 Overview and principles of operation ..8
2.2 Algorithm description ...8

2.2.1 Adaptive filtering and energy computation... 10
2.2.2 ACF averaging ... 10
2.2.3 Predictor values computation... 11
2.2.4 Spectral comparison... 12
2.2.5 Periodicity detection ... 13
2.2.6 Threshold adaptation .. 14
2.2.7 VAD decision ... 16
2.2.8 VAD hangover addition ... 16

3 Computational details .. 16
3.1 Adaptive filtering and energy computation ... 18
3.2 ACF averaging.. 19
3.3 Predictor values computation ... 20

3.3.1 Schur recursion to compute reflection coefficients..................................... 20
3.3.2 Step-up procedure to obtain the aav1[0..8]... 21
3.3.3 Computation of the rav1[0..8] .. 22

3.4 Spectral comparison.. 22
3.5 Periodicity detection .. 23
3.6 Threshold adaptation... 23
3.7 VAD decision .. 27
3.8 VAD hangover addition .. 27
3.9 Periodicity updating ... 27

4 Digital test sequences.. 28
4.1 Test configuration.. 28
4.2 Test sequences .. 29

Annex 1 (informative): Simplified block filtering operation... 30

Annex 2 (informative): Description of digital test sequences... 31
A2.1 Test sequences .. 31
A2.2 File format description ... 33

Annex 3 (informative): VAD performance ... 35

History ... 36

Page 4
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Blank page

Page 5
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Foreword

This European Telecommunication Standard (ETS) has been produced by the Special Mobile Group
(SMG) Technical Committee (TC) of the European Telecommunications Standards Institute (ETSI).

This ETS specifies the Voice Activity Detection (VAD) for the European digital cellular telecommunications
system (Phase 2).

This ETS correspond to GSM technical specification, GSM 06.32 version 4.0.5.

The specification from which this ETS has been derived was originally based on CEPT documentation,
hence the presentation of this ETS may not be entirely in accordance with the ETSI/PNE rules.

Reference is made within this ETS to GSM Technical Specifications (GSM-TSs) (NOTE).

NOTE: TC-SMG has produced documents which give the technical specifications for the
implementation of the European digital cellular telecommunications system. Historically,
these documents have been identified as GSM Technical Specifications (GSM-TS).
These TSs may have subsequently become I-ETSs (Phase 1), or ETSs (Phase 2),
whilst others may become ETSI Technical Reports (ETRs). GSM-TSs are, for editorial
reasons, still referred to in GSM ETSs.

Page 6
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Blank page

Page 7
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

0.1 Scope

This technical specification specifies the voice activity detector (VAD) to be used in the Discontinuous
Transmission (DTX) as described in GSM 06.31. It also specifies the test methods to be used to verify
that a VAD complies with the technical specification.

The requirements are mandatory on any VAD to be used either in the GSM Mobile Stations or Base
Station Systems.

0.2 Normative references

This ETS incorporates by dated and undated reference, provisions from other publications. These
normative references are cited at the appropriate places in the text and the publications are listed
hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply
to this ETS only when incorporated in it by amendment or revision. For undated references, the latest
edition of the publication referred to applies.

[1] GSM 01.04 (ETR 100): "European digital cellular telecommunication system
(Phase 2); Definitions, abbreviations and acronyms".

[2] GSM 06.10 (ETS 300 580-2): "European digital cellular telecommunication
system (Phase 2); Full rate speech transcoding".

[3] GSM 06.12 (ETS 300 580-4): "European digital cellular telecommunication
system (Phase 2); Comfort noise aspect for full rate speech traffic channels".

[4] GSM 06.31 (ETS 300 580-5): "European digital cellular telecommunication
system (Phase 2); Discontinuous Transmission (DTX) for full rate speech traffic
channel".

0.3 Definitions and abbreviations

Definitions and abbreviations used in this specification are listed in GSM 01.04.

1 General

The function of the VAD is to indicate whether each 20ms frame produced by the speech encoder contains
speech or not. The output is a binary flag which is used by the TX DTX handler defined in GSM 06.31.

The technical specification is organised as follows:

Section 2 describes the principles of operation of the VAD.

In section 3, the computational details necessary for the fixed point implementation of the VAD algorithm
are given. This section uses the same notation as used for computational details in GSM 06.10.

The verification of the VAD is based on the use of digital test sequences. Section 4 defines the input and
output signals and the test configuration, whereas the detailed description of the test sequences is
contained in Annex 2.

The performance of the VAD algorithm is characterised by the amount of audible speech clipping it
introduces and the percentage activity it indicates. These characteristics for the VAD defined in this
technical specification have been established by extensive testing under a wide range of operating
conditions. The results are summarised in Annex 3.

Page 8
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

2 Functional description

The purpose of this section is to give the reader an understanding of the principles of operation of the
VAD, whereas the detailed description is given in section 3. In case of discrepancy between the two
descriptions, the detailed description of section 3 shall prevail.

In the following subsections of section 2, a Pascal programming type of notation has been used to
describe the algorithm.

2.1 Overview and principles of operation

The function of the VAD is to distinguish between noise with speech present and noise without speech
present. The biggest difficulty for detecting speech in a mobile environment is the very low speech/noise
ratios which are often encountered. The accuracy of the VAD is improved by using filtering to increase the
speech/noise ratio before the decision is made.

For a mobile environment, the worst speech/noise ratios are encountered in moving vehicles. It has been
found that the noise is relatively stationary for quite long periods in a mobile environment. It is therefore
possible to use an adaptive filter with coefficients obtained during noise, to remove much of the vehicle
noise.

The VAD is basically an energy detector. The energy of the filtered signal is compared with a threshold;
speech is indicated whenever the threshold is exceeded.

The noise encountered in mobile environments may be constantly changing in level. The spectrum of the
noise can also change, and varies greatly over different vehicles. Because of these changes the VAD
threshold and adaptive filter coefficients must be constantly adapted. To give reliable detection the
threshold must be sufficiently above the noise level to avoid noise being identified as speech but not so far
above it that low level parts of speech are identified as noise. The threshold and the adaptive filter
coefficients are only updated when speech is not present. It is, of course, potentially dangerous for a VAD
to update these values on the basis of its own decision. This adaptation therefore only occurs when the
signal seems stationary in the frequency domain but does not have the pitch component inherent in voiced
speech and information tones.

A further mechanism is used to ensure that low level noise (which is often not stationary over long periods)
is not detected as speech. Here, an additional fixed threshold is used.

A VAD hangover period is used to eliminate mid-burst clipping of low level speech. Hangover is only added
to speech-bursts which exceed a certain duration to avoid extending noise spikes.

2.2 Algorithm description

The block diagram of the VAD algorithm is shown in figure 2-1. The individual blocks are described in the
following sections. ACF and N are calculated in the speech encoder.

Page 9
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Predictor
values
computation

ACF
averaging

Spectral
comparison

VAD
decision

VAD
hangover
addition

Periodicity
detection

Threshold
adaption

vvad

th
vad

stat

rvad

pvadACF

N

av1

rav1

ptch

av0

vad
Adaptive
filtering and
energy
computation

Figure 2-1: Functional block diagram of the VAD

The global variables shown in the block diagram are described as follows:

- ACF are autocorrelation coefficients which are calculated in the speech encoder defined in GSM
06.10 (section 3.1.4, see also Annex 1). The inputs to the speech encoder are 16 bit 2's
complement numbers, as described in GSM 06.10, section 4.2.0.

- av0 and av1 are averaged ACF vectors.

- rav1 are autocorrelated predictor values obtained from av1.

- rvad are the autocorrelated predictor values of the adaptive filter.

- N is the long term predictor lag value which is obtained every subsegment in the speech coder
defined in GSM 06.10.

- ptch indicates whether the signal has a steady periodic component.

- pvad is the energy in the current frame of the input signal after filtering.

- thvad is an adaptive threshold.

- stat indicates spectral stationarity.

- vvad indicates the VAD decision before hangover is added.

- vad is the final VAD decision with hangover included.

Page 10
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

2.2.1 Adaptive filtering and energy computation

Pvad is computed as follows:

 8
 Pvad := rvad[0] ACF[0] + 2SUM rvad[i] ACF[i]
 i=1

This corresponds to performing an 8th order block filtering on the input samples to the speech encoder,
after zero offset compensation and pre-emphasis. This is explained in Annex 1.

2.2.2 ACF averaging

Spectral characteristics of the input signal have to be obtained using blocks that are larger than one 20ms
frame. This is done by averaging the autocorrelation values for several consecutive frames. This averaging
is given by the following equations:

 frames-1
 av0{n}[i] := SUM ACF{n-j}[i] ; i = 0..8
 j=0

 av1{n}[i] := av0{n-frames}[i] ; i = 0..8

Where n represents the current frame, n-1 represents the previous frame etc. The values of constants are
given in table 2-1.

Table 2-1. Constants and variables for ACF averaging

 ==
 Constant Value Variable Initial value
 --
 frames 4 previous ACF's
 av0 & av1 All set to 0
 ==

Page 11
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

2.2.3 Predictor values computation

The filter predictor values aav1 are obtained from the autocorrelation values av1 according to the equation:

 -1
 a := R p

where:

 - -
R := |av1[0],av1[1],av1[2],av1[3],av1[4],av1[5],av1[6],av1[7]|
 |av1[1],av1[0],av1[1],av1[2],av1[3],av1[4],av1[5],av1[6]|
 |av1[2],av1[1],av1[0],av1[1],av1[2],av1[3],av1[4],av1[5]|
 |av1[3],av1[2],av1[1],av1[0],av1[1],av1[2],av1[3],av1[4]|
 |av1[4],av1[3],av1[2],av1[1],av1[0],av1[1],av1[2],av1[3]|
 |av1[5],av1[4],av1[3],av1[2],av1[1],av1[0],av1[1],av1[2]|
 |av1[6],av1[5],av1[4],av1[3],av1[2],av1[1],av1[0],av1[1]|
 |av1[7],av1[6],av1[5],av1[4],av1[3],av1[2],av1[1],av1[0]|
 - -

and:

 - - - -
p := |av1[1]| a := |aav1[1]|
 |av1[2]| |aav1[2]|
 |av1[3]| |aav1[3]|
 |av1[4]| |aav1[4]|
 |av1[5]| |aav1[5]|
 |av1[6]| |aav1[6]|
 |av1[7]| |aav1[7]|
 |av1[8]| |aav1[8]|
 - - - -

aav1[0] := -1

av1 is used in preference to av0 as av0 may contain speech.

The autocorrelated predictor values rav1 are then obtained:

 8-i
 rav1[i] := SUM aav1[k] aav1[k+i] ; i = 0..8
 k=0

Page 12
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

2.2.4 Spectral comparison

The spectra represented by the autocorrelated predictor values rav1 and the averaged autocorrelation
values av0 are compared using the distortion measure dm defined below. This measure is used to produce
a boolean value stat every 20ms, as given by these equations:

 8
 dm := (rav1[0]av0[0] + 2SUM rav1[i]av0[i]) / av0[0]
 i=1

 difference := |dm - lastdm|

 lastdm := dm

 stat := difference < thresh

The values of constants and initial values are given in table 2-2.

Table 2-2. Constants and variables for spectral comparison

 ===
 Constant: Value: Variable: Initial value:

 thresh 0.05 lastdm 0
 ===

Page 13
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

2.2.5 Periodicity detection

The frequency spectrum of mobile noise is relatively stationary over quite long periods. The Inverse Filter
Autocorrelated Predictor coefficients of the adaptive filter rvad are only updated when this stationarity is
detected. Vowel sounds and Information tones however, also have this stationarity, but can be excluded by
detecting the periodicity of these sounds using the long term predictor lag values (Nj) which are obtained
every subsegment from the speech codec defined in GSM 06.10. Consecutive lag values are compared.
Cases in which one lag value is a factor of the other are catered for, however cases in which both lag
values have a common factor, are not. This case is not important for speech input but this method of
periodicity detection may fail for some sine waves. The boolean variable ptch is updated every 20ms and
is true when periodicity is detected. It is calculated according to the following equation:

 ptch := oldlagcount + veryoldlagcount >= nthresh

The following operations are done after the VAD decision and when the current LTP lag values (N0 .. N3)
are available, this reduces the delay of the VAD decision. (N{-1} = N3 of previous segment.)

 lagcount := 0

 for j := 0 to 3 do
 begin
 smallag := maximum(Nj,N{j-1}) mod minimum(Nj,N{j-1})
 if minimum(smallag,minimum(Nj,N{j-1})-smallag) < lthresh
 then increment(lagcount)
 end

 veryoldlagcount := oldlagcount

 oldlagcount := lagcount

The values of constants and initial values are given in table 2-3.

Table 2-3. Constants and variables for periodicity detection

 ===
 Constant: Value: Variable: Initial value:

 lthresh 2 oldlagcount 0
 nthresh 4 veryoldlagcount 0
 N3 40
 ===

Page 14
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

2.2.6 Threshold adaptation

A check is made every 20ms to determine whether the VAD decision threshold (thvad) should be changed.
This adaptation is carried out according to the flowchart shown in figure 2-2. The constants used are given
in table 2-4.

Adaptation takes place in two different situations: firstly whenever ACF[0] is very low and secondly
whenever there is a very high probability that speech is not present.

In the first case, the threshold is adapted if the energy of the input signal is less than pth. The threshold is
set to plev without carrying out any further tests because at these very low levels the effect of the signal
quantization makes it impossible to obtain reliable results from these tests.

In the second case, the decision threshold (thvad) and the adaptive filter coefficients (rvad) are only
updated with the rav1 values when the signal is stationary and has no periodic component. In this situation
there is a very high probability that speech is not present. The stationarity is detected in the frequency
domain, by calculating the spectral difference using consecutive averaged ACF values. If this spectral
difference changes very little over a certain number of frames (adp), and the signal does not have a
periodic component inherent in voiced speech and information tones, then adaptation occurs.

The step-size by which the threshold is adapted is not constant but a proportion of the current value
(determined by constants dec and inc). The adaptation begins by experimentally multiplying the threshold
by a factor of (1-1/dec). If the new threshold is now higher than or equal to Pvad times fac then the
threshold needed to be decreased and it is left at this new lower level. If, on the other hand, the new
threshold level is less than Pvad times fac then the threshold either needed to be increased or kept
constant. In this case it is set to Pvad times fac unless this would mean multiplying it by more than a factor
of (1+1/inc) (in which case it is multiplied by a factor of (1+1/inc)). The threshold is never allowed to be
greater than Pvad+margin.

Table 2-4. Constants and variables for threshold adaptation

 ==
 Constant: Value: Variable: Initial value:
 --
 pth 300000 adaptcount 0
 plev 800000 thvad 1000000
 fac 3.0 rvad[0] 6
 adp 8 rvad[1] -4
 inc 16 rvad[2] 1
 dec 32 rvad[3] to
 margin 80000000 rvad[8] All 0
 ==

Page 15
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

BEGIN

no

increment
adaptcount

yes

adaptcount = 0

no

th
vad

= plev

END

thvad = thvad thvad- / dec

thvad
thvad thvad= min (+ / inc , p

vad *fac)

th
vad

= p
vad+ margin

rvad = rav1

adaptcount = adp + 1

yes

no

yes

no

no

END

thvad< p
vad* fac ?

ACF[0] < pth ?

stat and not ptch ?

adaptcount > adp ?

th
vad

> p
vad+ margin ?

Fi 2 2 Fl di f h h ld d i

yes

yes

Figure 2-2: Flow diagram for threshold adaptation

Page 16
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

2.2.7 VAD decision

Prior to hangover the VAD decision condition is:

 vvad := pvad > thvad

2.2.8 VAD hangover addition

VAD hangover is only added to bursts of speech greater than or equal to burstconst blocks. The boolean
variable vad indicates the decision of the VAD with hangover included. The values of the constants are
given in table 2-5. The hangover algorithm is as follows:

 if vvad then increment(burstcount) else burstcount := 0

 if burstcount >= burstconst then
 begin
 hangcount := hangconst;
 burstcount := burstconst
 end

 vad := vvad or (hangcount >= 0)

 if hangcount >= 0 then decrement(hangcount)

Table 2-5. Constants and variables for VAD hangover addition

 ==
 Constant: Value: Variable: Initial value:
 --
 burstconst 3 burstcount 0
 hangconst 5 hangcount -1
 ==

3 Computational details

In the next paragraphs, the detailed description of the VAD algorithm follows the preceeding high level
description. This detailed description is divided in nine sections related to the blocks of figure 2-1 (except
the last one) in the high level description of the VAD algorithm.

Those sections are:

1) Adaptive filtering and energy computation;
2) ACF averaging;
3) Predictor values computation;
4) Spectral comparison;
5) Periodicity detection;
6) Threshold adaptation;
7) VAD decision;
8) VAD hangover addition;
9) Periodicity updating.

The VAD algorithm takes as input the following variables of the RPE-LTP encoder (see the detailed
description of the RPE-LTP encoder GSM 06.10):

- L_ACF[0..8], autocorrelation function (GSM 06.10/4.2.4);
- scalauto, scaling factor to compute the L_ACF[0..8] (GSM 06.10/4.2.4);
- Nc, LTP lag (one for each sub-segment, GSM 06.10/4.2.11).

So four Nc values are needed for the VAD algorithm.

Page 17
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

The VAD computation can start as soon as the L_ACF[0..8] and scalauto variables are known. This means
that the VAD computation can take place after part 4.2.4 of GSM 06.10 (Autocorrelation) of the LPC
analysis section of the RPE-LTP encoder. This scheme will reduce the delay to yield the VAD information.
The periodicity updating which is included in section 2.2.5, is done after the processing of the current
speech encoder frame.

All the arithmetic operations and names of the variables follow the RPE-LTP detailed description. To
increase the precision within the fixed point implementation, a pseudo-floating point representation of some
variables is used. This stands for the following variables (and related constants) of the VAD algorithm:

pvad: Energy of filtered signal;
thvad: Threshold of the VAD decision;
acf0: Energy of input signal.

For the representation of these variables, two integers (16 bits) are needed:

- one for the exponent (e_pvad, e_thvad, e_acf0);
- one for the mantissa (m_pvad, m_thvad, m_acf0).

The value e_pvad represents the lowest power of 2 just greater or equal to the actual value of pvad and
the m_pvad value represents a integer which is always greater or equal to 16384 (normalized mantissa). It
means that the pvad value is equal to:

 (e_pvad) x (m_pvad/32768).
 pvad = 2

This scheme guarantees a large dynamic range for the pvad value and always keeps a precision of 16
bits. All the comparisons are easy to make by comparing the exponents of two variables and the VAD
algorithm needs only one pseudo-floating point addition. All the computations related to the pseudo-floating
point variables require very simple 16 or 32 bits arithmetic operations defined in the detailed description of
the RPE-LTP encoder. This pseudo-floating point arithmetic is only used in section 3.1 and 3.6.

Table 3-1 gives a list of all the variables of the VAD algorithm that must be initialized in the reset procedure
and kept in memory for processing the subsequent frame of the RPE- LTP encoder. The types (16 or 32
bits) and initial values of all these variables are clearly indicated and their related sub-section is also
mentionned. The bit exact implementation uses other temporary variables that are introduced in the
detailed description whenever it is needed.

Page 18
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Table 3-1. Initial values for variables to be stored in memory

==
Names of variables: type (# of bits): Initialization: Sub-section:
==
Adaptive filter coefficients:
 rvad[0] 16 24576 3.1, 3.6
 rvad[1] 16 -16384 3.1, 3.6
 rvad[2] 16 4096 3.1, 3.6
 rvad[3..8] 16 0 3.1, 3.6
--
Scaling factor of ravd[0..8]:
 normrvad 16 7 3.1, 3.6
--
Delay line of the autocorrelation coefficients:
 L_sacf[0..26] 32 0 3.2
 L_sav0[0..35] 32 0 3.2
--
Pointers on the delay lines:
 pt_sacf 16 0 3.2
 pt_sav0 16 0 3.2
--
Distance measure:
 L_lastdm 32 0 3.4
--
Periodicity counters:
 oldlagcount 16 0 3.5, 3.9
 veryoldlagcount 16 0 3.5, 3.9
--
Adaptive threshold:
 e_thvad (exponent) 16 20 3.6
 m_thvad (mantissa) 16 31250 3.6
--
Counter for adaptation:
 adaptcount 16 0 3.6
--
Hangover flags:
 burstcount 16 0 3.8
 hangcount 16 -1 3.8
--
LTP lag memory:
 oldlag 16 40 3.9
==

3.1 Adaptive filtering and energy computation

This section computes the e_pvad and m_pvad variables which represent the pvad value. It needs the
L_ACF[0..8] and scalauto variables of the RPE-LTP algorithm and the rvad[0..8] and normrvad variables
produced by section 3.6 of the VAD algorithm. It also computes a floating point representation of L_ACF[0]
(e_acf0 and m_acf0) used in section 3.6.

Page 19
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Test if L_ACF[0] is equal to 0:

IF (scalauto < 0) THEN scalvad = 0;
ELSE scalvad = scalauto; / keep scalvad for use in section 3.2 /

IF (L_ACF[0] == 0) THEN
 | e_pvad = -32768;
 | m_pvad = 0;
 | e_acf0 = -32768;
 | m_acf0 = 0;
 | EXIT /continue with section 3.2/

Re-normalization of the L_acf[0..8]:

normacf = norm(L_ACF[0]);

| FOR i = 0 to 8:
| sacf[i] = (L_ACF[i] << normacf) >> 19;
| NEXT i:

Computation of e_acf0 and m_acf0:

e_acf0 = add(32, (scalvad << 1));
e_acf0 = sub(e_acf0, normacf);
m_acf0 = sacf[0] << 3;

Computation of e_pvad and m_pvad:

e_pvad = add(e_acf0, 14);
e_pvad = sub(e_pvad, normrvad);

L_temp = 0;

| FOR i = 1 to 8:
| L_temp = L_add(L_temp, L_mult(sacf[i], rvad[i]));
| NEXT i:

L_temp = L_add(L_temp, L_mult(sacf[0], rvad[0]) >> 1);

IF (L_temp <= 0) THEN L_temp = 1;

normprod = norm(L_temp);
e_pvad = sub(e_pvad, normprod);
m_pvad = (L_temp << normprod) >> 16;

3.2 ACF averaging

This section uses the L_ACF[0..8] and the scalvad variables to compute the array L_av0[0..8] and
L_av1[0..8] used in section 3.3 and 3.4.

Computation of the scaling factor:

scal = sub(10, (scalvad << 1));

Page 20
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Computation of the arrays L_av0[0..8] and L_av1[0..8]:

| FOR i = 0 to 8:
| L_temp = L_ACF[i] >> scal;
| L_av0[i] = L_add(L_sacf[i], L_temp);
| L_av0[i] = L_add(L_sacf[i+9], L_av0[i]);
| L_av0[i] = L_add(L_sacf[i+18], L_av0[i]);
| L_sacf[pt_sacf + i] = L_temp;
| L_av1[i] = L_sav0[pt_sav0 + i];
| L_sav0[pt_sav0 + i] = L_av0[i];
| NEXT i:

Update of the array pointers:

IF (pt_sacf == 18) THEN pt_sacf = 0;
ELSE pt_sacf = add(pt_sacf, 9);

IF (pt_sav0 == 27) THEN pt_sav0 = 0;
ELSE pt_sav0 = add(pt_sav0, 9);

3.3 Predictor values computation

This section computes the array rav1[0..8] needed for the spectral comparison and the threshold
adaptation. It uses the L_av1[0..8] computed in section 3.2, and is divided in the three following sub-
sections:

- Schur recursion to compute reflection coefficients.
- Step up procedure to obtain the aav1[0..8].
- Computation of the rav1[0..8].

3.3.1 Schur recursion to compute reflection coefficients

This sub-section is identical to the one used in the RPE-LTP algorithm. The array vpar[1..8] is computed
with the array L_av1[0..8] as an input.

Schur recursion with 16 bits arithmetic:

IF(L_av1[0] == 0) THEN
 |== FOR i = 1 to 8:
 | vpar[i] = 0;
 |== NEXT i:
 | EXIT; /continue with section 3.3.2/
temp = norm(L_av1[0]);
|== FOR k=0 to 8:
| sacf[k] = (L_av1[k] << temp) >> 16;
|== NEXT k:

Page 21
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Initialize array P[..] and K[..] for the recursion:

|== FOR i=1 to 7:
| K[9-i] = sacf[i];
|== NEXT i:

|== FOR i=0 to 8:
| P[i] = sacf[i];
|== NEXT i:

Compute reflection coefficients:

|== FOR n=1 to 8:
| IF(P[0] < abs(P[1])) THEN
| |== FOR i = n to 8:
| | vpar[i] = 0;
| |== NEXT i:
| | EXIT; /continue with
| | section 3.3.2/
| vpar[n] = div(abs(P[1]), P[0]);
| IF (P[1] > 0) THEN vpar[n] = sub(0, vpar[n]);
| IF (n == 8) THEN EXIT; /continue with section 3.3.2/
|
| Schur recursion:
|
| P[0] = add(P[0], mult_r(P[1], vpar[n]));
|==== FOR m=1 to 8-n:
| P[m] = add(P[m+1], mult_r(K[9-m], vpar[n]));
| K[9-m] = add(K[9-m], mult_r(P[m+1], vpar[n]));
|==== NEXT m:
|
|== NEXT n:

3.3.2 Step-up procedure to obtain the aav1[0..8]

Initialization of the step-up recursion:

L_coef[0] = 16384 << 15;
L_coef[1] = vpar[1] << 14;

Loop on the LPC analysis order:

|= FOR m = 2 to 8:
|== FOR i = 1 to m-1:
|== temp = L_coef[m-i] >> 16; / takes the msb /
|== L_work[i] = L_add(L_coef[i], L_mult(vpar[m], temp));
|== NEXT i
|=
|== FOR i = 1 to m-1:
|== L_coef[i] = L_work[i];
|== NEXT i
|=
|= L_coef[m] = vpar[m] << 14;
|= NEXT m:

Page 22
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Keep the aav1[0..8] on 13 bits for next section:

| FOR i = 0 to 8:
| aav1[i] = L_coef[i] >> 19;
| NEXT i:

3.3.3 Computation of the rav1[0..8]

|= FOR i= 0 to 8:
|= L_work[i] = 0;
|== FOR k = 0 to 8-i:
|== L_work[i] = L_add(L_work[i], L_mult(aav1[k], aav1[k+i]));
|== NEXT k:
|= NEXT i:

IF (L_work[0] == 0) THEN normrav1 =0;
ELSE normrav1 = norm(L_work[0]);

|= FOR i= 0 to 8:
|= rav1[i] = (L_work[i] << normrav1) >> 16;
|= NEXT i:

Keep the normrav1 for use in section 3.4 and 3.6.

3.4 Spectral comparison

This section computes the variable stat needed for the threshold adaptation. It uses the array L_av0[0..8]
computed in section 3.2 and the array rav1[0..8] computed in section 3.3.3.

Re-normalize L_av0[0..8]:

IF (L_av0[0] == 0) THEN
 | FOR i = 0 to 8:
 | sav0[i] = 4095;
 | NEXT i:
ELSE
 | shift = norm(L_av0[0]);
 |= FOR i = 0 to 8:
 |= sav0[i] = (L_av0[i] << shift-3) >> 16;
 |= NEXT i:

Compute partial sum of dm:

L_sump = 0;
|= FOR i = 1 to 8:
|= L_sump = L_add(L_sump, L_mult(rav1[i], sav0[i]));
|= NEXT i:

Page 23
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Compute the division of partial sum by sav0[0]:

IF (L_sump < 0) THEN L_temp = L_sub(0, L_sump);
ELSE L_temp = L_sump;

IF (L_temp == 0) THEN
 | L_dm = 0;
 | shift = 0;
ELSE
 | sav0[0] = sav0[0] << 3;
 | shift = norm(L_temp);
 | temp = (L_temp << shift) >> 16;
 | IF (sav0[0] >= temp) THEN
 | | divshift = 0;
 | | temp = div(temp, sav0[0]);
 | ELSE
 | | divshift = 1;
 | | temp = sub(temp, sav0[0]);
 | | temp = div(temp, sav0[0]);
 |
 | IF(divshift == 1) THEN L_dm = 32768;
 | ELSE L_dm = 0;
 |
 | L_dm = L_add(L_dm, temp) << 1;
 | IF(L_sump < 0) THEN L_dm = L_sub(0, L_dm);

Re-normalization and final computation of L_dm:

L_dm = (L_dm << 14);
L_dm = L_dm >> shift;
L_dm = L_add(L_dm, (rav1[0] << 11));
L_dm = L_dm >> normrav1;

Compute the difference and save L_dm:

L_temp = L_sub(L_dm, L_lastdm);
L_lastdm = L_dm;
IF (L_temp < 0) THEN L_temp = L_sub(0, L_temp);
L_temp = L_sub(L_temp, 3277);

Evaluation of the stat flag:

IF (L_temp < 0) THEN stat = 1;
ELSE stat = 0;

3.5 Periodicity detection

This section just sets the ptch flag needed for the threshold adaptation.

temp = add(oldlagcount, veryoldlagcount);
IF (temp >= 4) THEN ptch = 1;
ELSE ptch = 0;

3.6 Threshold adaptation

This section uses the variables e_pvad, m_pvad, e_acf0 and m_acf0 computed in section 3.1. It also uses
the flags stat (see section 3.4) and ptch (see section 3.5). It follows the flowchart represented on figure
2.2.

Some constants, represented by a floating point format, are needed and a symbolic name (in capital letter)
for their exponent and mantissa is used; table 3-2 lists all these constants with the symbolic names
associated and their numerical constant values.

Page 24
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Table 3-2. List of constants

 ===
 Constant Exponent Mantissa
 ===
 pth E_PTH = 19 M_PTH = 18750
 margin E_MARGIN = 27 M_MARGIN = 19531
 plev E_PLEV = 20 M_PLEV = 25000
 ===

NOTE: Floating point representation of constants used in section 3.6:

pth = 2(E_PTH)x(M_PTH/32768).
margin = 2(E_MARGIN)x(M_MARGIN/32768).
plev = 2(E_PLEV)x(M_PLEV/32768).

Test if acf0 < pth; if yes set thvad to plev:

comp = 0;
IF (e_acf0 < E_PTH) THEN comp = 1;
IF (e_acf0 == E_PTH) THEN IF (m_acf0 < M_PTH) THEN comp =1;
IF (comp == 1) THEN
 | e_thvad = E_PLEV;
 | m_thvad = M_PLEV;
 | EXIT; /continue with section 3.7/

Test if an adaptation is needed:

comp = 0;
IF (ptch == 1) THEN comp = 1;
IF (stat == 0) THEN comp = 1;
IF (comp == 1) THEN
 | adaptcount = 0;
 | EXIT; /continue with section 3.7/

Incrementation of adaptcount:

adaptcount = add(adaptcount, 1);
IF (adaptcount <= 8) THEN EXIT; /continue with section 3.7/

Page 25
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Computation of thvad-(thvad/dec):

m_thvad = sub(m_thvad, (m_thvad >> 5));
IF (m_thvad < 16384) THEN
 | m_thvad = m_thvad << 1;
 | e_thvad = sub(e_thvad, 1);

Computation of pvad*fac:

L_temp = L_add(m_pvad, m_pvad);
L_temp = L_add(L_temp, m_pvad);
L_temp = L_temp >> 1;
e_temp = add(e_pvad, 1);
IF (L_temp > 32767) THEN
 | L_temp = L_temp >> 1;
 | e_temp = add(e_temp, 1);
m_temp = L_temp;

Test if thvad < pvad*fac:

comp = 0;
IF (e_thvad < e_temp) THEN comp = 1;
IF (e_thvad == e_temp) THEN IF (m_thvad < m_temp) THEN comp =1;

Computation of minimum (thvad+(thvad/inc), pvad*fac) if comp = 1:

IF (comp == 1) THEN
| Compute thvad +(thvad/inc).
| L_temp = L_add(m_thvad, (m_thvad >> 4));
| IF (L_temp > 32767) THEN
| | m_thvad = L_temp >> 1;
| | e_thvad = add(e_thvad,1);
| ELSE m_thvad = L_temp;
| comp2 = 0;
| IF (e_temp < e_thvad) THEN comp2 = 1;
| IF (e_temp == e_thvad) THEN IF (m_temp<m_thvad) THEN comp2 = 1;
| IF (comp2 == 1) THEN
| | e_thvad = e_temp;
| | m_thvad = m_temp;

Page 26
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Computation of pvad + margin:

IF (e_pvad == E_MARGIN) THEN
 | L_temp = L_add(m_pvad, M_MARGIN);
 | m_temp = L_temp >> 1;
 | e_temp = add(e_pvad, 1);
ELSE
 | IF (e_pvad > E_MARGIN) THEN
 | | temp = sub(e_pvad, E_MARGIN);
 | | temp = M_MARGIN >> temp;
 | | L_temp = L_add(m_pvad, temp);
 | | IF (L_temp > 32767) THEN
 | | | e_temp = add(e_pvad, 1);
 | | | m_temp = L_temp >> 1;
 | | ELSE
 | | | e_temp = e_pvad;
 | | | m_temp = L_temp;
 | ELSE
 | | temp = sub(E_MARGIN, e_pvad);
 | | temp = m_pvad >> temp;
 | | L_temp = L_add(M_MARGIN, temp);
 | | IF (L_temp > 32767) THEN
 | | | e_temp = add(E_MARGIN, 1);
 | | | m_temp = L_temp >> 1;
 | | ELSE
 | | | e_temp = E_MARGIN;
 | | | m_temp = L_temp;

Test if thvad > pvad + margin:

comp = 0;
IF (e_thvad > e_temp) THEN comp = 1;
IF (e_thvad == e_temp) THEN IF (m_thvad > m_temp) THEN comp =1;

IF (comp == 1) THEN
 | e_thvad = e_temp;
 | m_thvad = m_temp;

Initialize new rvad[0..8] in memory:

normrvad = normrav1;

|= FOR i = 0 to 8:
|= rvad[i] = rav1[i];
|= NEXT i:

Set adaptcount to adp + 1:

adaptcount = 9;

Page 27
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

3.7 VAD decision

This section only outputs the result of the comparison between pvad and thvad using the pseudo-floating
point representation of thvad and pvad. The values e_pvad and m_pvad are computed in section 3.1 and
the values e_thvad and m_thvad are computed in section 3.6.

vvad = 0;
IF (e_pvad > e_thvad) THEN vvad = 1;
IF (e_pvad == e_thvad) THEN IF (m_pvad > m_thvad) THEN vvad =1;

3.8 VAD hangover addition

This section finally sets the vad decision for the current frame to be processed.

IF (vvad == 1) THEN burstcount = add(burstcount, 1);
ELSE burstcount = 0;

IF (burstcount >= 3) THEN
 | hangcount = 5;
 | burstcount = 3;

vad = vvad;
IF (hangcount >= 0) THEN
 | vad = 1;
 | hangcount = sub(hangcount, 1);

3.9 Periodicity updating

This section must be delayed until the LTP lags are computed by the RPE-LTP algorithm. The LTP lags
called Nc in the speech encoder are renamed lags[0..3] (index 0 for the first sub- segment of the frame, 1
for the second and so on).

Loop on sub-segments for the frame:

lagcount = 0;

|= FOR i = 0 to 3:
|= Search the maximum and minimum of consecutive lags.
|= IF (oldlag > lags[i]) THEN
|= | minlag = lags[i];
|= | maxlag = oldlag;
|= ELSE
|= | minlag = oldlag;
|= | maxlag = lags[i] ;
|=
|= Compute smallag (modulo operation not defined):
|=
|= smallag = maxlag;
|== | FOR j = 0 to 2:
|== | IF (smallag >= minlag) THEN smallag =sub(smallag, minlag);
|== | NEXT j;
|=

Page 28
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

|= Minimum of smallag and minlag - smallag:
|=
|= temp = sub(minlag, smallag);
|= IF (temp < smallag) THEN smallag = temp;
|= IF (smallag < 2) THEN lagcount = add(lagcount, 1);
|= Save the current LTP lag.
|= oldlag = lags[i];
|= NEXT i:

Update the veryoldlagcount and oldlagcount:

veryoldlagcount = oldlagcount;
oldlagcount = lagcount;

4 Digital test sequences

This chapter provides information on the digital test sequences that have been designed to help the
verification of implementations of the Voice Activity Detector. Copies of these sequences are available
(see Annex 2).

4.1 Test configuration

The VAD must be tested in conjunction with the speech encoder defined in GSM 06.10. The test
configuration is shown in figure 4-1. The input signal to the speech encoder is the sop[...] signal as defined
in GSM 06.10 table 5.1. The relevant parameters produced by the speech encoder are input to the VAD
algorithm to produce the VAD output. This output has to be checked against some reference files.

The file format of the encoder output parameters given in GSM 06.10 table 5.1 is extended to carry the
VAD information.

The VAD information is placed in the unused bit 15 (MSB) of the first encoded parameter:

 LAR(1): bit 15 := 1 if VAD on
 bit 15 := 0 if VAD 0ff

Furthermore, in order to facilitate approval testing over the air interface, the SP flag generated by the TX
DTX handler (see GSM 06.31) on the basis of the VAD flag is placed in the MSB position of the second
encoded parameter:

 LAR(2): bit 15 := 1 if SP on
 bit 15 := 0 if SP off

The output file will also contain the SID codeword and the comfort noise parameters as described in GSM
06.12 and GSM 06.31.

Page 29
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

RPE-LTP
encoder

VAD
under test

TX

DTX

handler

13 bit PCM

Reset

VAD flag
 1 bit

260 bits
SID or speech
260 bits

SP flag
1 bit

8kHz clock

COMPARISON

Figure 4-1: VAD test configuration

4.2 Test sequences

The test sequences are described in detail in Annex 2.

Page 30
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Annex 1 (informative): Simplified block filtering operation

Consider an 8th order transversal filter with filter coefficients a0..a8, through which a signal is being
passed, the output of the filter being:

 8
 s'n := -SUM a s [1]
 i n-i
 i=0

If we apply block filtering over 20ms segments, then this equation becomes:

 8
 s'n := -SUM a s ; n = 0..167 [2]
 i n-i ; 0 <= n-i <= 159
 i=0

If the energy of the filtered signal is then obtained for every 20 ms segment, the equation for this is:

 167 8 2
 Pvad := SUM (-SUM a s) ; 0 <= n-i <= 159 [3]
 i n-i
 n=0 i=0

We know that (see GSM 06.10, section 3.1.4):

 159
 ACF[i] := SUM s s ; i = 0..8 [4]
 n n-i ; 0 <= n-i <= 159
 n=0

If equation [3] is expanded and ACF[0]..ACF[8] are substituted for sn then we arrive at the equations:

 8
 Pvad := r[0]ACF[0] + 2SUM r[i]ACF[i] [5]
 i=1

Where:

 8-i
 r[i] := SUM a a ; i = 0..8 [6]
 k k+i
 k=0

Page 31
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Annex 2 (informative): Description of digital test sequences

A2.1 Test sequences

The VAD algorithm uses results from the full rate speech encoder defined in GSM 06.10. In the testing of
the VAD, it is assumed that the relevant speech encoder functions have been verified by the test
sequences defined in GSM 06.10.

The five types of input sequences are briefly described below.

Spectral comparison

The two kinds of statements of the spectral comparison algorithm (section 3.4), arithmetic statements and
control statements, are tested by separate test sequences.

Arithmetic statements:

spec_a1.*
spec_a2.*

Control statements

spec_c1.*
spec_c2.*
spec_c3.*
spec_c4.*

Threshold adaptation

There are two types of tests to verify the threshold adaptation described in section 3.6:

adapt_i1.*
adapt_i2.*

The initial test sequences test the acf0 and VAD decision. A fault in the VAD decision will cause all the
other sequences to fail, so it is recommended that this test is run before all other tests.

adapt_m1.*
adapt_m2.*

The main test sequences will check the basic threshold adaptation mechanism.

Periodicity detection

pitch1.*
pitch2.*

These sequences check the periodicity detection algorithm described in section 3.5.

"Safety" and initialisation

safety.*

This sequence checks that safety tests have been implemented to prevent zero values being passed to the
norm function. It checks the functions described in the Adaptive Filtering and Energy Computation section
(section 3.1), and the Predictor Values Computation (section 3.3). This sequence also checks the
initialization of thvad and the rvad array.

Page 32
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Real speech

good_sp.*
bad_sp.*

Because the test sequences cannot be guaranteed to find every possible error, there is a small possibility
that an implementation of the correct output for test sequences, but fail with real speeech. Because of this,
an extra set of sequences are included that consist of barely detectable speech and very clean speech.

There are 3 different file extensions:

*.inp: speech encoder input sequences, binary files
*.vad: output flag of the VAD algorithm, ASCII files
*.cod: TX DTX handler output sequences, binary files for comparison with VAD/DTX handler output.

The *.cod files contain speech coder output information in the format described in section 4.

It should be noted that there is no requirement in GSM 06.12 for a bit exact implementation of the
averaging procedure to calculate the "LAR" and "xmax" parameters in the SID frames. Different
implementations are allowed.

The algorithms used for the calculation of the LAR and xmax parameters of the SID frames are therefore
reproduced below:

LAR averaging:

| FOR i = 1 to 8:
| L_Temp = 2;/* const. for rounding*/
| | FOR n = 1 to 4:
| | L_Temp1 = LAR[j-n](i); /*conversion 16 --> 32 bit*/
| | L_Temp = L_Add(L_Temp , L_Temp1);
| | NEXT n
| L_Temp = L_temp >> 2;
| mean (LAR(i)) = L_Temp; /*conversion 32 --> 16 bit*/
| NEXT i;

xmax averaging

L_Temp = 8; /* const. for rounding*/

| FOR n = 1 to 4:
| | FOR i = 1 to 4:
| | L_Temp1 = xmax[j-n](i); /*conversion 16 --> 32 bit*/
| | L_Temp = L_Add(L_Temp , L_Temp1);
| | NEXT i
| NEXT n

L_Temp = L_Temp >> 4;

mean (xmax) = L_Temp; /*conversion 32 --> 16 bit*/

Page 33
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

A2.2 File format description

All the *.inp and *.cod files are written in binary using 16 bit words, while all *.vad files are written in ASCII
format. The sizes of the files are shown in Table A2-1, A2-2 and A2-3. The detailed format of the *.inp and
*.cod files is in accordance with the descriptions given in GSM 06.10 section 5.

The diskette is formatted according to the high capacity (1.2 Mb) specifications for MS-DOS PC-AT
compatible computers.

Table A2-1. File sizes for *.inp extension files

===
File: Frames: Size in bytes:

spec_a1.inp 22 7040
spec_a2.inp 22 7040
spec_c1.inp 48 15360
spec_c2.inp 48 15360
spec_c3.inp 48 15360
spec_c4.inp 48 15360
adapt_i1.inp 67 21440
adapt_i2.inp 48 15360
adapt_m1.inp 403 128960
adapt_m2.inp 376 120320
pitch1.inp 35 11200
pitch2.inp 35 11200
safety.inp 5 1600
good_sp.inp 312 99840
bad_sp.inp 312 99840
===

Table A2-2. File sizes for *.cod extension files

==
File: Frames: Size in bytes:
--
spec_a1.cod 22 3344
spec_a2.cod 22 3344
spec_c1.cod 48 7296
spec_c2.cod 48 7296
spec_c3.cod 48 7296
spec_c4.cod 48 7296
adapt_i1.cod 67 10184
adapt_i2.cod 48 7296
adapt_m1.cod 403 61256
adapt_m2.cod 376 57152
pitch1.cod 35 5320
pitch2.cod 35 5320
safety.cod 5 760
good_sp.cod 312 47424
bad_sp.cod 312 47424
==

Page 34
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Table A2-3. File sizes for *.vad extension files

==
File: Frames: Size in bytes:
--
spec_a1.vad 22 88
spec_a2.vad 22 88
spec_c1.vad 48 192
spec_c2.vad 48 192
spec_c3.vad 48 192
spec_c4.vad 48 192
adapt_i1.vad 67 268
adapt_i2.vad 48 192
adapt_m1.vad 403 1612
adapt_m2.vad 376 1504
pitch1.vad 35 140
pitch2.vad 35 140
safety.vad 5 20
good_sp.vad 312 1248
bad_sp.vad 312 1248
===

Page 35
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

Annex 3 (informative): VAD performance

In optimising a VAD a difficult trade-off has to be made between speech clipping which reduces the
subjective performance of the system, and the average activity factor. The benefit of DTX is increased as
the average activity factor is reduced. However, in general, a reduction of the activity will be associated
with a greater risk for audible speech clipping.

In the optimisation process, great emphasis has been placed on avoiding unnecessary speech clipping.
However, it has been found that a VAD with virtually no audible clipping would result in a very high activity
and very little DTX advantage.

The VAD specified in this technical specification introduces audible and possibly objectionable clipping in
certain cases, mainly with low input levels. However, a comprehensive evaluation programme consisting of
about 600 individual conversations conducted in a wide range of realistic conditions, it was found that about
90% of the conversations were free from objectionable clipping.

The voice activity performance of the VAD is summarised in table A3-1. The activity figures are averages
of a large number of conversations covering factors like different talkers, noise characteristics and
locations. It should be noted that the actual activity of a particular talker in a specific conversation may vary
considerably relative to the averages given. This is due both to the variation in talker behaviour as well as
to the level dependency of the VAD (the channel activity has been found to decrease by about 0.5 points of
percentage per dB level reduction). However, as mentioned above, a decreased speech input level
increases the risk of objectionable speech clipping.

All the values given are activity figures, i.e. the % of time the radio channel has to be on.

Table A3-1. Summary of channel activity

 ==
 Telephone Situation: Typical channel
 instrument: activity factor:
 ==
 Handset Quiet location 55 %
 --
 Handset Moderate office
 noise with 60 %
 voice interference
 --
 Handset Strong voice
 interference (eg
 airport/railway 65-70 %
 station)
 --
 Handsfree/ Variable vehicle
 handset noise 60 %
 ==

Page 36
ETS 300 580-6: September 1994 (GSM 06.32 version 4.0.5)

History

Document history

September 1994 First Edition

April 1996 Converted into Adobe Acrobat Portable Document Format (PDF)

	Foreword
	0.1	Scope
	0.2	Normative references
	0.3	Definitions and abbreviations
	1	General
	2	Functional description
	2.1	Overview and principles of operation
	2.2	Algorithm description
	2.2.1	Adaptive filtering and energy computation
	2.2.2	ACF averaging
	2.2.3	Predictor values computation
	2.2.4	Spectral comparison
	2.2.5	Periodicity detection
	2.2.6	Threshold adaptation
	2.2.7	VAD decision
	2.2.8	VAD hangover addition

	3	Computational details
	3.1	Adaptive filtering and energy computation
	3.2	ACF averaging
	3.3	Predictor values computation
	3.3.1	Schur recursion to compute reflection coefficients
	3.3.2	Step-up procedure to obtain the aav1[0..8]
	3.3.3	Computation of the rav1[0..8]

	3.4	Spectral comparison
	3.5	Periodicity detection
	3.6	Threshold adaptation
	3.7	VAD decision
	3.8	VAD hangover addition
	3.9	Periodicity updating

	4	Digital test sequences
	4.1	Test configuration
	4.2	Test sequences

	Annex 1 (informative):	Simplified block filtering operation
	Annex 2 (informative):	Description of digital test sequences
	A2.1	Test sequences
	A2.2	File format description

	Annex 3 (informative):	VAD performance
	History

