DRAFT

pr ETS 300575

July 1997
Fourth Edition

Key words: Digital cellular telecommunications system, Global System for Mobile communications (GSM)

Gク円n:

GLOBAL SYSTEM FOR MOBILE COMMUNICATIONS

Digital cellular telecommunications system (Phase 2); Channel coding
 (GSM 05.03 version 4.5.0)

ETSI

European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE

Tel.: +33492944200-Fax: +33493654716

[^0]
Page 2

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997

Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page.

Contents

Foreword 5
1 Scope 7
1.2 Normative references 7
1.3 Definitions and abbreviations 8
2 General 8
2.1 General Organization 8
2.2 Naming Convention 10
3 Traffic Channels (TCH) 10
3.1 Speech channel at full rate (TCH/FS and TCH/EFS) 10
3.1.1 Preliminary channel coding for EFR only 11
3.1.1.1 CRC calculation 11
3.1.1.2 Repetition bits 11
3.1.1.3 Correspondence between input and output of preliminary channel coding. 11
3.1.2 Channel coding for FR and EFR 12
3.1.2.1 Parity and tailing for a speech frame 12
3.1.2.2 Convolutional encoder 12
3.1.3 Interleaving 13
3.1.4 Mapping on a Burst 13
3.2 Speech channel at half rate (TCH/HS) 13
3.2.1 Parity and tailing for a speech frame 13
3.2.2 Convolutional encoder. 14
3.2.3 Interleaving 15
3.2.4 Mapping on a burst. 15
3.3 Data channel at full rate, $12,0 \mathrm{kbit} / \mathrm{s}$ radio interface rate ($9,6 \mathrm{kbit} / \mathrm{s}$ services (TCH/F9.6)) 15
3.3.1 Interface with user unit 15
3.3.2 Block code 15
3.3.3 Convolutional encoder. 16
3.3.4 Interleaving 16
3.3.5 Mapping on a Burst 16
3.4 Data channel at full rate, $6.0 \mathrm{kbit} / \mathrm{s}$ radio interface rate ($4.8 \mathrm{kbit} / \mathrm{s}$ services (TCH/F4.8)) 16
3.4.1 Interface with user unit 16
3.4.2 Block code 17
3.4.3 Convolutional encoder. 17
3.4.4 Interleaving 17
3.4.5 Mapping on a Burst 17
3.5 Data channel at half rate, $6.0 \mathrm{kbit} / \mathrm{s}$ radio interface rate ($4.8 \mathrm{kbit} / \mathrm{s}$ services $(\mathrm{TCH} / \mathrm{H} 4.8)$ 17
3.5.1 Interface with user unit 17
3.5.2 Block code 17
3.5.3 Convolutional encoder. 17
3.5.4 Interleaving 17
3.5.5 Mapping on a Burst 18
3.6 Data channel at full rate, $3,6 \mathrm{kbit} / \mathrm{s}$ radio interface rate ($2,4 \mathrm{kbit} / \mathrm{s}$ and less services (TCH/F2.4)) 18
3.6.1 Interface with user unit 18
3.6.2 Block code 18
3.6.3 Convolutional encoder. 18
3.6.4 Interleaving 18
3.6.5 Mapping on a Burst 18
3.7 Data channel at half rate, $3.6 \mathrm{kbit} / \mathrm{s}$ radio interface rate ($2.4 \mathrm{kbit} / \mathrm{s}$ and less services (TCH/H2.4)) 18
3.7.1 Interface with user unit 18
3.7.2 Block code 19
3.7.3 Convolutional encoder 19
3.7.4 Interleaving 19
3.7.5 Mapping on a Burst 19
4 Control Channels 19
4.1 Slow associated control channel (SACCH) 19
4.1.1 Block constitution 19
4.1.2 Block code 19
4.1.3 Convolutional encoder 20
4.1.4 Interleaving 20
4.1.5 Mapping on a Burst 20
4.2 Fast associated control channel at full rate (FACCH/F) 20
4.2.1 Block constitution 20
4.2.2 Block code 20
4.2.3 Convolutional encoder 20
4.2.4 Interleaving 20
4.2.5 Mapping on a Burst 21
4.3 Fast associated control channel at half rate (FACCH/H) 21
4.3.1 Block constitution 21
4.3.2 Block code 21
4.3.3 Convolutional encoder 21
4.3.4 Interleaving 21
4.3.5 Mapping on a Burst 22
4.4 Broadcast, Paging, Access grant and Cell broadcast channels (BCCH, PCH, AGCH, CBCH) 22
4.5 Stand-alone dedicated control channel (SDCCH) 22
4.6 Random access channel (RACH) 23
4.7 Synchronization channel (SCH) 23
4.8 Handover Access Burst 24
Annex A (informative): Summary of Channel Types 36
Annex B (informative): Summary of Polynomials used for Convolutional Codes 37
History 38

Foreword

This draft fourth edition European Telecommunication Standard (ETS) has been produced by the Special Mobile Group (SMG) Technical Committee (TC) of the European Telecommunications Standards Institute (ETSI) and is now submitted for the One-step Approval Procedure (OAP) phase of the ETSI standards approval process.

This ETS specifies the channel coding of used within the digital cellular telecommunications system (Phase 2).

The specification from which this ETS has been derived was originally based on CEPT documentation, hence the presentation of this ETS may not be entirely in accordance with the ETSI/PNE Rules.

Proposed transposition dates	
Date of latest announcement of this ETS (doa):	3 months after ETSI publication
Date of latest publication of new National Standard	6 months after doa
or endorsement of this ETS (dop/e):	6 months after doa
Date of withdrawal of any conflicting National Standard (dow):	

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997
Blank page

1 Scope

A reference configuration of the transmission chain is shown in GSM 05.01. According to this reference configuration, this European Telecommunication Standard (ETS) specifies the data blocks given to the encryption unit.

It includes the specification of encoding, reordering, interleaving and the stealing flag. It does not specify the channel decoding method.

The definition is given for each kind of logical channel, starting from the data provided to the channel encoder by the speech coder, the data terminal equipment, or the controller of the MS or BS. The definitions of the logical channel types used in this technical specification are given in GSM 05.02, a summary is in annex 1 .

1.2 Normative references

This ETS incorporates by dated and undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this ETS only when incorporated in it by amendment or revision. For undated references, the latest edition of the publication referred to applies.
[1] GSM 01.04 (ETR 100): "Digital cellular telecommunications system (Phase 2); Abbreviations and acronyms".

GSM 04.08 (ETS 300 557): "Digital cellular telecommunications system (Phase 2); Mobile radio interface layer 3 specification".

GSM 04.21 (ETS 300 562): "Digital cellular telecommunications system (Phase 2); Rate adaption on the Mobile Station - Base Station System (MS BSS) Interface ".

GSM 05.01 (ETS 300 573): "Digital cellular telecommunications system (Phase 2); Physical layer on the radio path; General description".
[5] GSM 05.02 (ETS 300 574): "Digital cellular telecommunications system (Phase 2); Multiplexing and multiple access on the radio path".
[6]
[7]
[8]
GSM 06.20 (ETS 300 581-2): "Digital cellular telecommunications system; Half rate speech Part 2: Half rate speech transcoding".
[9]
GSM 06.60 (prEN 301 245): "Digital cellular telecommunications system (Phase 2); Enhanced Full Rate (EFR) speech transcoding".

Page 8

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997

1.3 Definitions and abbreviations

Abbreviations used in this ETS are listed in GSM 01.04.

2 General

2.1 General Organization

Each channel has its own coding and interleaving scheme. However, the channel coding and interleaving is organized in such a way as to allow, as much as possible, a unified decoder structure.

Each channel uses the following sequence and order of operations:

- The information bits are coded with a systematic block code, building words of information + parity bits.
- \quad These information + parity bits are encoded with a convolutional code, building the coded bits.
- Reordering and interleaving the coded bits, and adding a stealing flag, gives the interleaved bits.

All these operations are made block by block, the size of which depends on the channel. However, most of the channels use a block of 456 coded bits which is interleaved and mapped onto bursts in a very similar way for all of them. Figure 1 gives a diagram showing the general structure of the channel coding.

This block of 456 coded bits is the basic structure of the channel coding scheme. In the case of full rate speech TCH, this block carries the information of one speech frame. In case of control channels, it carries one message.

In the case of half rate speech TCH, the information of one speech frame is carried in a block of 228 coded bits.

In the case of the Enhanced full rate speech the information bits coming out of the source codec first go though a preliminary channel coding. Then the channel coding as described above takes place.

In the case of FACCH , a coded message block of 456 bits is divided into eight sub-blocks. The first four sub-blocks are sent by stealing the even numbered bits of four timeslots in consecutive frames used for the TCH. The other four sub-blocks are sent by stealing the odd numbered bits of the relevant timeslot in four consecutive used frames delayed 2 or 4 frames relative to the first frame. Along with each block of 456 coded bits there is, in addition, a stealing flag (8 bits), indicating whether the block belongs to the TCH or to the FACCH. In the case of $\mathrm{SACCH}, \mathrm{BCCH}$ or CCCH , this stealing flag is dummy.

Some cases do not fit in the general organization, and use short blocks of coded bits which are sent completely in one timeslot. They are the random access messages of the RACH on uplink and the synchronization information broadcast of the SCH on downlink.

TCH/EFS
(Enhanced full
rate speech TCH)

Figure 1: Channel Coding and Interleaving Organization
In each box, the last line indicates the chapter defining the function. In the case of RACH, $\mathrm{P} 0=8$ and $\mathrm{P} 1=18$; in the case of $\mathrm{SCH}, \mathrm{P} 0=25$ and $\mathrm{P} 1=39$. In the case of data $\mathrm{TCHs}, \mathrm{N} 0, \mathrm{~N} 1$ and n depend on the type of data TCH.

Interfaces:

1) information bits (d);
2) information + parity + tail bits (u);
3) coded bits (c);
4) interleaved bits (e).

Page 10

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997

2.2 Naming Convention

For ease of understanding a naming convention for bits is given for use throughout the technical specification:

General naming

" k " and " j " for numbering of bits in data blocks and bursts;
" K_{x} " gives the amount of bits in one block, where " x " refers to the data type;
" n " is used for numbering of delivered data blocks where;
" N " marks a certain data block;
" B " is used for numbering of bursts or blocks where;
" B_{0} " marks the first burst or block carrying bits from the data block with $\mathrm{n}=0$ (first data block in the transmission).

Data delivered to the preliminary channel encoding unit (for EFR only):

$$
s(k) \quad \text { for } \quad k=1 \ldots, K_{S}
$$

Data delivered by the preliminary channel encoding unit (for EFR only) before bits rearrangement $w(k)$ for $k=1 \ldots, K_{w}$

Data delivered to the encoding unit (interface 1 in figure 1):

$$
d(k) \quad \text { for } \quad k=0,1, \ldots, K_{d}-1
$$

Data after the first encoding step (block code, cyclic code; interface 2 in figure 1):
$u(k) \quad$ for $\quad k=0,1, \ldots, K_{u}-1$

Data after the second encoding step (convolutional code; interface 3 in figure 1):

$$
\begin{array}{ll}
c(n, k) \text { or } c(k) \quad \text { for } \quad \begin{array}{l}
k=0,1, \ldots, K_{C}-1 \\
\\
\\
n=0,1, \ldots, N, N+1, \ldots
\end{array}
\end{array}
$$

Interleaved data:
$i(B, k)$ for $k=0,1, \ldots, K_{i}-1$

$$
\mathrm{B}=\mathrm{B}_{0}, \mathrm{~B}_{0}+1, \ldots
$$

Bits in one burst (interface 4 in figure 1):
e(B,k) for $\quad \begin{aligned} & k=0,1, \ldots, 114,115 \\ & B=B_{0}, B_{0}+1, \ldots\end{aligned}$

3 Traffic Channels (TCH)

Two kinds of traffic channel are considered: speech and data. Both of them use the same general structure (see figure 1), and in both cases, a piece of information can be stolen by the FACCH.

3.1 Speech channel at full rate (TCH/FS and TCH/EFS)

The speech coder (whether Full rate or Enhanced full rate) delivers to the channel encoder a sequence of blocks of data. In case of a full rate and enhanced full rate speech TCH, one block of data corresponds to one speech frame.

For the full rate coder each block contains 260 information bits, including 182 bits of class 1 (protected bits), and 78 bits of class 2 (no protection), (see table 2).

The bits delivered by the speech coder are received in the order indicated in GSM 06.10 and have to be rearranged according to table 2 before channel coding as defined in subclauses 3.1.1 to 3.1.4. The rearranged bits are labelled $\{\mathrm{d}(0), \mathrm{d}(1), \ldots, \mathrm{d}(259)\}$, defined in the order of decreasing importance.

For the EFR coder each block contains 244 information bits. The block of 244 information bits, labelled $\mathrm{s}(1) . ., \mathrm{s}(244)$, passes through a preliminary stage, applied only to EFR (see figure 1) which produces 260 bits corresponding to the 244 input bits and 16 redundancy bits. Those 16 redundancy bits correspond to 8 CRC bits and 8 repetition bits, as described in subclause 3.1.1. The 260 bits, labelled $\mathrm{w}(1) . . \mathrm{w}(260)$, have to be rearranged according to table 7 before they are delivered to the channel encoding unit which is identical to that of the TCH/FS. The 260 bits block includes 182 bits of class 1 (protected bits) and 78 bits of class 2 (no protection). The class 1 bits are further divided into the class 1 a and class 1 b , class 1 a bits being protected by a cyclic code and the convolutional code whereas the class 1 b are protected by the convolutional code only.

3.1.1 Preliminary channel coding for EFR only

3.1.1.1 CRC calculation

An 8 -bit CRC is used for error-detection. These 8 parity bits (bits w253-w260) are generated by the cyclic generator polynomial: $g(D)=D^{8}+D^{4}+D^{3}+D^{2}+1$ from the 65 most important bits (50 bits of class 1a and 15 bits of class 1 b). These 65 bits $(b(1)-b(65)$) are taken from the table 5 in the following order (read row by row, left to right):

$s 39$	$s 40$	$s 41$	$s 42$	$s 43$	$s 44$	$s 48$	$s 87$	$s 45$	$s 2$
$s 3$	$s 8$	$s 10$	$s 18$	$s 19$	$s 24$	$s 46$	$s 47$	$s 142$	$s 143$
$s 144$	$s 145$	$s 146$	$s 147$	$s 92$	$s 93$	$s 195$	$s 196$	$s 98$	$s 137$
$s 148$	$s 94$	$s 197$	$s 149$	$s 150$	$s 95$	$s 198$	$s 4$	$s 5$	$s 11$
$s 12$	$s 16$	$s 9$	$s 6$	$s 7$	$s 13$	$s 17$	$s 20$	$s 96$	$s 199$
$s 1$	$s 14$	$s 15$	$s 21$	$s 25$	$s 26$	$s 28$	$s 151$	$s 201$	$s 190$
$s 240$	$s 88$	$s 138$	$s 191$	$s 241$					

The encoding is performed in a systematic form, which means that, in $G F(2)$, the polynomial:

$$
b(1) D^{72}+b(2) D^{71}+\ldots+b(65) D^{8}+p(1) D^{7}+p(2) D^{6}+\ldots+p(7) D^{1}+p(8)
$$

$p(1)-p(8)$: the parity bits (w253-w260)
$b(1)-b(65)=$ the data bits from the table above
when divided by $g(D)$, yields a remainder equal to 0 .

3.1.1.2 Repetition bits

The repeated bits are $s 70, s 120, s 173$ and $s 223$. They correspond to one of the bits in each of the PULSE_5, the most significant one not protected by the channel coding stage.

3.1.1.3 Correspondence between input and output of preliminary channel coding

The preliminary coded bits $w(k)$ for $k=1$ to 260 are hence defined by:

$$
\begin{aligned}
& w(k)=s(k) \text { for } k=1 \text { to } 71 \\
& w(k)=s(k-2) \text { for } k=74 \text { to } 123 \\
& w(k)=s(k-4) \text { for } k=126 \text { to } 178 \\
& w(k)=s(k-6) \text { for } k=181 \text { to } s 230 \\
& w(k)=s(k-8) \text { for } k=233 \text { to } s 252
\end{aligned}
$$

Page 12

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997
Repetition bits:

$$
\begin{aligned}
& w(k)=s(70) \text { for } k=72 \text { and } 73 \\
& w(k)=s(120) \text { for } k=124 \text { and } 125 \\
& w(k)=s(173) \text { for } k=179 \text { and } 180 \\
& w(k)=s(223) \text { for } k=231 \text { and } 232
\end{aligned}
$$

Parity bits:
$w(k=p(k-252)$ for $k=253$ to 260

3.1.2 Channel coding for FR and EFR

3.1.2.1 Parity and tailing for a speech frame

a) Parity bits:

The first 50 bits of class 1 (known as class 1a for the EFR)_are protected by three parity bits used for error detection. These parity bits are added to the 50 bits, according to a degenerate (shortened) cyclic code (53,50,2), using the generator polynomial:

$$
g(D)=D^{3}+D+1
$$

The encoding of the cyclic code is performed in a systematic form, which means that, in $G F(2)$, the polynomial:

$$
d(0) D^{52}+d(1) D^{51}+\ldots+d(49) D^{3}+p(0) D^{2}+p(1) D+p(2)
$$

where $p(0), p(1), p(2)$ are the parity bits, when divided by $g(D)$, yields a remainder equal to:

$$
1+D+D^{2}
$$

b) Tailing bits and reordering:

The information and parity bits of class 1 are reordered, defining 189 information + parity + tail bits of class $1,\{u(0), u(1), \ldots, u(188)\}$ defined by:

$$
\begin{array}{lll}
u(k) & =d(2 k) \text { and } \quad u(184-k)=d(2 k+1) & \text { for } k=0,1, \ldots, 90 \\
u(91+k)=p(k) & & \text { for } k=0,1,2 \\
u(k) & =0 & \text { for } k=185,186,187,188 \text { (tail bits) }
\end{array}
$$

3.1.2.2 Convolutional encoder

The class 1 bits are encoded with the 1/2 rate convolutional code defined by the polynomials:

$$
\begin{aligned}
& \mathrm{G} 0=1+\mathrm{D}^{3}+\mathrm{D}^{4} \\
& \mathrm{G} 1=1+\mathrm{D}+\mathrm{D}^{3}+\mathrm{D}^{4}
\end{aligned}
$$

The coded bits $\{c(0), c(1), \ldots, c(455)\}$ are then defined by:

$$
\begin{array}{lll}
\text { - class 1: } & \begin{array}{l}
c(2 k) \\
\\
c(2 k+1)
\end{array}=u(k)+u(k-3)+u(k-4) & \\
& & \\
\text { - class 2: } & c(378+k)=d(182+k) & \text { for } k=0,1, \ldots, 188 \\
u(k)=0 \text { for } k<0
\end{array}
$$

3.1.3 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$
\begin{aligned}
i(B, j)=c(n, k), \quad \text { for } \quad & k=0,1, \ldots, 455 \\
& n=0,1, \ldots, N, N+1, \ldots \\
& B=B_{0}+4 n+(k \bmod 8) \\
& j=2((49 k) \bmod 57)+((k \bmod 8) \operatorname{div} 4)
\end{aligned}
$$

See table 1. The result of the interleaving is a distribution of the reordered 456 bits of a given data block, $n=N$, over 8 blocks using the even numbered bits of the first 4 blocks ($B=B_{0}+4 N+0,1,2,3$) and odd numbered bits of the last 4 blocks ($B=B_{0}+4 N+4,5,6,7$). The reordered bits of the following data block, $n=N+1$, use the even numbered bits of the blocks $B=B_{0}+4 N+4,5,6,7\left(B=B_{0}+4(N+1)+0\right.$, $1,2,3$) and the odd numbered bits of the blocks $B=B_{0}+4(N+1)+4,5,6,7$. Continuing with the next data blocks shows that one block always carries 57 bits of data from one data block ($n=N$) and 57 bits of data from the next block $(\mathrm{n}=\mathrm{N}+1)$, where the bits from the data block with the higher number always are the even numbered data bits, and those of the data block with the lower number are the odd numbered bits.

The block of coded data is interleaved "block diagonal", where a new data block starts every 4th block and is distributed over 8 blocks.

3.1.4 Mapping on a Burst

The mapping is given by the rule:

$$
e(B, j)=i(B, j) \quad \text { and } \quad e(B, 59+j)=i(B, 57+j) \quad \text { for } j=0,1, \ldots, 56
$$

and

$$
e(B, 57)=h l(B) \quad \text { and } \quad e(B, 58)=h u(B)
$$

The two bits, labelled $h(B)$ and $h(B)$ on burst number B are flags used for indication of control channel signalling. For each TCH/FS block not stolen for signalling purposes:

$$
\begin{array}{lll}
\text { hu }(B)=0 & \text { for the first } 4 \text { bursts } & \text { (indicating status of even numbered bits) } \\
\text { hl(B) }=0 & \text { for the last } 4 \text { bursts } & \text { (indicating status of odd numbered bits) }
\end{array}
$$

For the use of $h(B)$ and $h u(B)$ when a speech frame is stolen for signalling purposes see subclause 4.2.5.

3.2 Speech channel at half rate (TCH/HS)

The speech coder delivers to the channel encoder a sequence of blocks of data. In case of a half rate speech TCH, one block of data corresponds to one speech frame. Each block contains 112 bits, including 95 bits of class 1 (protected bits), and 17 bits of class 2 (no protection), see tables 3a and 3b.

The bits delivered by the speech coder are received in the order indicated in GSM 06.20 and have to be arranged according to either table 3a or table 3b before channel encoding as defined in subclauses 3.2.1 to 3.2.4. The rearranged bits are labelled $\{\mathrm{d}(0), \mathrm{d}(1), \ldots, \mathrm{d}(111)\}$. Table 3 a has to be taken if parameter Mode $=0$ (which means that the speech encoder is in unvoiced mode), while table 3b has to be taken if parameter Mod e = 1, 2 or 3 (which means that the speech encoder is in voiced mode).

3.2.1 Parity and tailing for a speech frame

a) Parity bits:

The most significant 22 class 1 bits $\mathrm{d}(73), \mathrm{d}(74), \ldots, \mathrm{d}(94)$ are protected by three parity bits used for error detection. These bits are added to the 22 bits, according to a cyclic code using the generator polynomial:

$$
g(D)=D^{3}+D+1
$$

The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial:

Page 14

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997

$$
d(73) D^{24}+d(74) D^{23}+\ldots+d(94) D^{3}+p(0) D^{2}+p(1) D+p(2)
$$

where $p(0), p(1), p(2)$ are the parity bits, when divided by $g(D)$, yields a remainder equal to:

$$
1+D+D^{2}
$$

b) Tail bits and reordering:

The information and parity bits of class 1 are reordered, defining 104 information + parity + tail bits of class $1,\{u(0), u(1), \ldots, u(103)\}$ defined by:
$u(k)=d(k)$
for $k=0,1, \ldots, 94$
$u(k)=p(k-95)$
for $k=95,96,97$
$u(k)=0$
for $k=98,99, \ldots, 103$ (tail bits)

3.2.2 Convolutional encoder

The class 1 bits are encoded with the punctured convolutional code defined by the mother polynomials:

$$
\begin{aligned}
& G 4=1+D^{2}+D^{3}+D^{5}+D^{6} \\
& G 5=1+D+D^{4}+D^{6} \\
& G 6=1+D+D^{2}+D^{3}+D^{4}+D^{6}
\end{aligned}
$$

and the puncturing matrices:

$$
\begin{align*}
& \text { for }\{u(0), u(1), \ldots, u(94)\} \text { (class } 1 \text { information bits); } \tag{1,0,1}\\
& \text { and }\{u(98), u(99), \ldots, u(103)\} \text { (tail bits). } \\
& \text { for }\{u(95), u(96), u(97)\} \text { (parity bits) } \tag{1,1,1}
\end{align*}
$$

In the puncturing matrices, a 1 indicates no puncture and a 0 indicates a puncture.
The coded bits $\{c(0), c(1), \ldots, c(227)\}$ are then defined by:
class 1 information bits:

$$
\begin{array}{ll}
\mathrm{c}(2 \mathrm{k}) & =\mathrm{u}(\mathrm{k})+\mathrm{u}(\mathrm{k}-2)+\mathrm{u}(\mathrm{k}-3)+\mathrm{u}(\mathrm{k}-5)+\mathrm{u}(\mathrm{k}-6) \\
\mathrm{c}(2 \mathrm{k}+1) & =\mathrm{u}(\mathrm{k})+\mathrm{u}(\mathrm{k}-1)+\mathrm{u}(\mathrm{k}-2)+\mathrm{u}(\mathrm{k}-3)+\mathrm{u}(\mathrm{k}-4)+\mathrm{u}(\mathrm{k}-6) \quad \text { for } \mathrm{k}=0,1, \ldots, 94 ; \mathrm{u}(\mathrm{k})=0 \text { for } \mathrm{k}<0
\end{array}
$$

parity bits:

```
c(3k-95) =u(k)+u(k-2)+u(k-3)+u(k-5)+u(k-6)
c(3k-94) =u(k)+u(k-1)+u(k-4)+u(k-6)
c(3k-93) =u(k)+u(k-1)+u(k-2)+u(k-3)+u(k-4)+u(k-6) for k=95,96,97
```

tail bits:

$$
\begin{array}{ll}
c(2 k+3) & =u(k)+u(k-2)+u(k-3)+u(k-5)+u(k-6) \\
c(2 k+4) & =u(k)+u(k-1)+u(k-2)+u(k-3)+u(k-4)+u(k-6) \quad \text { for } k=98,99, \ldots, 103
\end{array}
$$

class 2 information bits:
$c(k+211)=d(k+95)$
for $k=0,1, \ldots, 16$

3.2.3 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$
\begin{array}{ll}
\mathrm{i}(\mathrm{~B}, \mathrm{j})=\mathrm{c}(\mathrm{n}, \mathrm{k}) \quad \text { for } \quad \begin{array}{l}
\mathrm{k}
\end{array}=0,1, \ldots, 227 \\
\mathrm{n}=0,1, \ldots, \mathrm{~N}, \mathrm{~N}+1, \ldots \\
\mathrm{~B} & =\mathrm{BO}+2 \mathrm{n}+\mathrm{b}
\end{array}
$$

The values of b and j in dependence of k are given by table 4 .
The result of the interleaving is a distribution of the reordered 228 bits of a given data block, $\mathrm{n}=\mathrm{N}$, over 4 blocks using the even numbered bits of the first 2 blocks ($\mathrm{B}=\mathrm{BO}+2 \mathrm{~N}+0,1$) and the odd numbered bits of the last 2 blocks ($B=B 0+2 N+2,3$). The reordered bits of the following data block, $\mathrm{n}=\mathrm{N}+1$, use the even numbered bits of the blocks $\mathrm{B}=\mathrm{BO}+2 \mathrm{~N}+2,3(\mathrm{~B}=\mathrm{BO}+2(\mathrm{~N}+1)+0,1)$ and the odd numbered bits of the blocks $B=B 0+2(N+1)+2,3$. Continuing with the next data blocks shows that one block always carries 57 bits of data from one data block ($n=N$) and 57 bits from the next block $(n=N+1)$, where the bits from the data block with the higher number always are the even numbered data bits, and those of the data block with the lower number are the odd numbered bits. The block of coded data is interleaved "block diagonal", where a new data block starts every 2nd block and is distributed over 4 blocks.

3.2.4 Mapping on a burst

The mapping is given by the rule:

$$
e(B, j)=i(B, j) \text { and } e(B, 59+j)=i(B, 57+j) \text { for } j=0,1, \ldots, 56
$$

and

$$
e(B, 57)=h(B) \text { and } e(B, 58)=h u(B)
$$

The two bits, labelled $h(B)$ and $h u(B)$ on burst number B are flags used for indication of control channel signalling. For each TCH/HS block not stolen for signalling purposes:

$$
\begin{array}{ll}
\text { hu(B) }=0 & \text { for the first } 2 \text { bursts (indicating status of the even numbered bits) } \\
\text { hl(B) }=0 & \text { for the last } 2 \text { bursts (indicating status of the odd numbered bits) }
\end{array}
$$

For the use of $h(B)$ and $h(B)$ when a speech frame is stolen for signalling purposes, see subclause 4.3.5.

3.3 Data channel at full rate, $12,0 \mathrm{kbit} / \mathrm{s}$ radio interface rate ($9,6 \mathrm{kbit} / \mathrm{s}$ services (TCH/F9.6))

The definition of a $12,0 \mathrm{kbit} / \mathrm{s}$ radio interface rate data flow for data services is given in GSM 04.21.

3.3.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 60 information bits (data frames) every 5 ms . Four such blocks are dealt with together in the coding process $\{\mathrm{d}(0), \ldots, \mathrm{d}(239)\}$. For non-transparent services those four blocks shall align with one 240-bit RLP frame.

3.3.2 Block code

The block of 4 * 60 information bits is not encoded, but only increased with 4 tail bits equal to 0 at the end of the block.

$$
\begin{array}{ll}
u(k)=d(k) & \text { for } k=0,1, \ldots, 239 \\
u(k)=0 & \text { for } k=240,241,242,243 \text { (tail bits) }
\end{array}
$$

Page 16

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997

3.3.3 Convolutional encoder

This block of 244 bits $\{u(0), \ldots, u(243)\}$ is encoded with the $1 / 2$ rate convolutional code defined by the following polynomials:

$$
\begin{aligned}
& \mathrm{G} 0=1+\mathrm{D}^{3}+\mathrm{D}^{4} \\
& \mathrm{G} 1=1+\mathrm{D}+\mathrm{D}^{3}+\mathrm{D}^{4}
\end{aligned}
$$

resulting in 488 coded bits $\{C(0), C(1), \ldots, C(487)\}$ with:

$$
C(2 k)=u(k)+u(k-3)+u(k-4)
$$

$$
C(2 k+1)=u(k)+u(k-1)+u(k-3)+u(k-4) \quad \text { for } k=0,1, \ldots, 243 ; u(k)=0 \text { for } k<0
$$

The code is punctured in such a way that the following 32 coded bits:
$\{\mathrm{C}(11+15 \mathrm{j})$ for $\mathrm{j}=0,1, \ldots, 31\}$ are not transmitted.
The result is a block of 456 coded bits, $\{c(0), c(1), \ldots, c(455)\}$

3.3.4 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$
\begin{aligned}
i(B, j)=c(n, k) \quad \text { for } \quad & k=0,1, \ldots, 455 \\
n & =0,1, \ldots, N, N+1, \ldots \\
B & =B_{0}+4 n+(k \bmod 19)+(k \operatorname{div} 114) \\
j & =(k \bmod 19)+19(k \bmod 6)
\end{aligned}
$$

The result of the interleaving is a distribution of the reordered 114 bit of a given data block, $\mathrm{n}=\mathrm{N}$, over 19 blocks, 6 bits equally distributed in each block, in a diagonal way over consecutive blocks.

Or in other words the interleaving is a distribution of the encoded, reordered 456 bits from four given input data blocks, which taken together give $\mathrm{n}=\mathrm{N}$, over 22 bursts, 6 bits equally distributed in the first and $22^{\text {nd }}$ bursts, 12 bits distributed in the second and 21st bursts, 18 bits distributed in the third and 20th bursts and 24 bits distributed in the other 16 bursts.

The block of coded data is interleaved "diagonal", where a new block of coded data starts with every fourth burst and is distributed over 22 bursts.

3.3.5 Mapping on a Burst

The mapping is done as specified for TCH/FS in subclause 3.1.4. On bitstealing by a FACCH, see subclause 4.2.5.

3.4 Data channel at full rate, 6.0 kbit/s radio interface rate ($4.8 \mathrm{kbit} / \mathrm{s}$ services (TCH/F4.8))

The definition of a 6.0 kbit/s radio interface rate data flow for data services is given in GSM 04.21.

3.4.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 60 information bits (data frames) every $10 \mathrm{~ms},\{\mathrm{~d}(0), \mathrm{d}(1), \ldots, \mathrm{d}(59)\}$.

In the case where the user unit delivers to the encoder a bit stream organized in blocks of 240 information bits every 40 ms (e.g. RLP frames), the bits $\{d(0), d(1), \ldots, d(59), d(60), \ldots, d(60+59), d(2 * 60), \ldots, d(2 * 60+59)$, $\left.d\left(3^{*} 60\right), \ldots, d\left(3^{*} 60+59\right)\right\}$ shall be treated as four blocks of 60 bits each as described in the remainder of this clause. To ensure end-to-end synchronization of the 240 bit blocks, the resulting block after coding of the first 120 bits $\{d(0), d(1), \ldots, d(60+59)\}$ shall be transmitted in one of the transmission blocks B0, B2, B4 of the channel mapping defined in GSM 05.02.

3.4.2 Block code

Sixteen bits equal to 0 are added to the 60 information bits, the result being a block of 76 bits, $\{u(0), u(1), \ldots, u(75)\}$, with:

$$
\begin{array}{ll}
u(19 k+p)=d(15 k+p) & \text { for } k=0,1,2,3 \text { and } p=0,1, \ldots, 14 ; \\
u(19 k+p)=0 & \text { for } k=0,1,2,3 \text { and } p=15,16,17,18 .
\end{array}
$$

Two such blocks forming a block of 152 bits $\left\{u^{\prime}(0), u^{\prime}(1), \ldots, u^{\prime}(151)\right\}$ are dealt with together in the rest of the coding process.

$$
\begin{array}{lll}
\mathrm{u}^{\prime}(\mathrm{k}) & =\mathrm{u} 1(\mathrm{k}), & \\
\mathrm{u}^{\prime}(\mathrm{k}+76) & =0,1, \ldots, 75 \text { (u1 = 1st block) } \\
=\mathrm{u}(\mathrm{k}), & & \mathrm{k}=0,1, \ldots, 75 \text { (u2 = 2nd block) }
\end{array}
$$

3.4.3 Convolutional encoder

This block of 152 bits is encoded with the convolutional code of rate $1 / 3$ defined by the following polynomials:

$$
\begin{aligned}
& \mathrm{G} 1=1+\mathrm{D}+\mathrm{D}^{3}+\mathrm{D}^{4} \\
& \mathrm{G} 2=1+\mathrm{D}^{2}+\mathrm{D}^{4} \\
& \mathrm{G} 3=1+\mathrm{D}+\mathrm{D}^{2}+\mathrm{D}^{3}+\mathrm{D}^{4}
\end{aligned}
$$

The result is a block of 3 * $152=456$ coded bits, $\{c(0), c(1), \ldots, c(455)\}$,

$$
\begin{array}{ll}
c(3 k) & =u^{\prime}(k)+u^{\prime}(k-1)+u^{\prime}(k-3)+u^{\prime}(k-4) \\
c(3 k+1) & =u^{\prime}(k)+u^{\prime}(k-2)+u^{\prime}(k-4) \\
c(3 k+2) & =u^{\prime}(k)+u^{\prime}(k-1)+u^{\prime}(k-2)+u^{\prime}(k-3)+u^{\prime}(k-4) \quad \text { for } \quad \begin{array}{l}
k=0,1, \ldots, 151 ; \\
\end{array} \quad \begin{array}{l}
u^{\prime}(k)=0 \text { for } k<0
\end{array}
\end{array}
$$

3.4.4 Interleaving

The interleaving is done as specified for the TCH/F9.6 in subclause 3.3.4.

3.4.5 Mapping on a Burst

The mapping is done as specified for the $T C H / F S$ in subclause 3.1.4. On bitstealing for signalling purposes by a FACCH, see subclause 4.2.5.

3.5 Data channel at half rate, $6.0 \mathrm{kbit} / \mathrm{s}$ radio interface rate ($4.8 \mathrm{kbit} / \mathrm{s}$ services $(\mathrm{TCH} / \mathrm{H} 4.8)$)

The definition of a $6.0 \mathrm{kbit} / \mathrm{s}$ radio interface rate data flow for data services is given in GSM 04.21.

3.5.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 60 information bits (data frames) every 10 ms . Four such blocks are dealt with together in the coding process, $\{\mathrm{d}(0), \mathrm{d}(1), \ldots, \mathrm{d}(239)\}$.

For non-transparent services those four blocks shall align with one complete 240-bit RLP frame.

3.5.2 Block code

The block encoding is done as specified for the TCH/F9. 6 in subclause 3.3.2.

3.5.3 Convolutional encoder

The convolutional encoding is done as specified for the TCH/F9.6 in subclause 3.3.3.

3.5.4 Interleaving

The interleaving is done as specified for the TCH/F9.6 in subclause 3.3.4.

Page 18

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997

3.5.5 Mapping on a Burst

The mapping is done as specified for the TCH/FS in subclause 3.1.4. On bitstealing for signalling purposes by a FACCH, see subclause 4.3.5.

3.6 Data channel at full rate, $3,6 \mathrm{kbit} / \mathrm{s}$ radio interface rate ($2,4 \mathrm{kbit} / \mathrm{s}$ and less services (TCH/F2.4))

The definition of a 3.6 kbit/s radio interface rate data flow for data services is given in GSM 04.21.

3.6.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 36 information bits (data frames) every 10 ms . Two such blocks are dealt with together in the coding process, $\{\mathrm{d}(0), \mathrm{d}(1), \ldots, \mathrm{d}(71)\}$.

3.6.2 Block code

This block of 72 information bits is not encoded, but only increased with four tail bits equal to 0 at the end of the block.

$$
\begin{array}{ll}
\mathrm{u}(\mathrm{k})=\mathrm{d}(\mathrm{k}), & \mathrm{k}=0,1, \ldots, 71 \\
\mathrm{u}(\mathrm{k})=0, & \mathrm{k}=72,73,74,75 \text { (tail bits) }
\end{array}
$$

3.6.3 Convolutional encoder

This block of 76 bits $\{u(0), u(1), \ldots, u(75)\}$ is encoded with the convolutional code of rate $1 / 6$ defined by the following polynomials:

$$
\begin{aligned}
& \mathrm{G} 1=1+\mathrm{D}+\mathrm{D}^{3}+\mathrm{D}^{4} \\
& \mathrm{G} 2=1+\mathrm{D}^{2}+\mathrm{D}^{4} \\
& \mathrm{G} 3=1+\mathrm{D}+\mathrm{D}^{2}+\mathrm{D}^{3}+\mathrm{D}^{4} \\
& \mathrm{G} 1=1+\mathrm{D}+\mathrm{D}^{3}+\mathrm{D}^{4} \\
& \mathrm{G} 2=1+\mathrm{D}^{2}+\mathrm{D}^{4} \\
& \mathrm{G} 3=1+\mathrm{D}+\mathrm{D}^{2}+\mathrm{D}^{3}+\mathrm{D}^{4}
\end{aligned}
$$

The result is a block of 456 coded bits:
$\{c(0), c(1), \ldots, c(455)\}$, defined by

```
\(c(6 k) \quad=c(6 k+3)=u(k)+u(k-1)+u(k-3)+u(k-4)\)
\(c(6 k+1) \quad=c(6 k+4)=u(k)+u(k-2)+u(k-4)\)
\(c(6 k+2) \quad=c(6 k+5)=u(k)+u(k-1)+u(k-2)+u(k-3)+u(k-4), \quad\) for \(\quad k \quad=0,1, \ldots, 75\);
    \(u(k)=0\) for \(k<0\)
```


3.6.4 Interleaving

The interleaving is done as specified for the TCH/FS in subclause 3.1.3.

3.6.5 Mapping on a Burst

The mapping is done as specified for the TCH/FS in subclause 3.1.4.
3.7 Data channel at half rate, $3.6 \mathrm{kbit} / \mathrm{s}$ radio interface rate ($2.4 \mathrm{kbit} / \mathrm{s}$ and less services (TCH/H2.4))

The definition of a $3.6 \mathrm{kbit} / \mathrm{s}$ radio interface rate data flow for data services is given in GSM 04.21.

3.7.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 36 information bits (data frames) every 10 ms . Two such blocks are dealt with together in the coding process, $\{\mathrm{d}(0), \mathrm{d}(1), \ldots, \mathrm{d}(71)\}$.

3.7.2 Block code

The block of 72 information bits is not encoded, but only increased with 4 tail bits equal to 0 , at the end of the block.

Two such blocks forming a block of 152 bits $\{u(0), u(1), \ldots, u(151)\}$ are dealt with together in the rest of the coding process.

$u(k)$	$=d 1(k)$,	
$u=0,1, \ldots, 75(d 1=1$ st information block $)$		
$u(k+76)$	$=d 2(k)$,	
$u(k)$	$=0$,	
$u=72,1, \ldots, 75(d 2=2$ nd information block $)$		

3.7.3 Convolutional encoder

The convolutional encoding is done as specified for the TCH/F4.8 in subclause 3.4.3.

3.7.4 Interleaving

The interleaving is done as specified for the TCH/F9.6 in subclause 3.3.4.

3.7.5 Mapping on a Burst

The mapping is done as specified for the $T C H / F S$ in subclause 3.1.4. On bit stealing for signalling purposes by a FACCH, see subclause 4.3.5.

4 Control Channels

4.1 Slow associated control channel (SACCH)

4.1.1 Block constitution

The message delivered to the encoder has a fixed size of 184 information bits $\{d(0), \mathrm{d}(1), \ldots, \mathrm{d}(183)\}$. It is delivered on a burst mode.

4.1.2 Block code

a) Parity bits:

The block of 184 information bits is protected by 40 extra bits used for error correction and detection. These bits are added to the 184 bits according to a shortened binary cyclic code (FIRE code) using the generator polynomial:

$$
g(D)=\left(D^{23}+1\right)^{*}\left(D^{17}+D^{3}+1\right)
$$

The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial:
$d(0) D^{223}+d(1) D^{222}+\ldots+d(183) D^{40}+p(1) D^{38}+\ldots+p(38) D+p(39)$ where $\{p(0), p(1), \ldots, p(39)\}$ are the parity bits, when divided by $g(D)$ yields a remainder equal to:

$$
1+D+D^{2}+\ldots+D^{39}
$$

b) Tail bits

Four tail bits equal to 0 are added to the information and parity bits, the result being a block of 228 bits:

$$
\begin{array}{ll}
u(k)=d(k) & \text { for } k=0,1, \ldots, 183 \\
u(k)=p(k-184) & \text { for } k=184,185, \ldots, 223 \\
u(k)=0 & \text { for } k=224,225,226,227 \text { (tail bits) }
\end{array}
$$

Page 20

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997

4.1.3 Convolutional encoder

This block of 228 bits is encoded with the $1 / 2$ rate convolutional code (identical to the one used for TCH/FS) defined by the polynomials:

$$
\begin{aligned}
& \mathrm{G} 0=1+\mathrm{D}^{3}+\mathrm{D}^{4} \\
& \mathrm{G} 1=1+\mathrm{D}+\mathrm{D}^{3}+\mathrm{D}^{4}
\end{aligned}
$$

This results in a block of 456 coded bits: $\{c(0), c(1), \ldots, c(455)\}$ defined by

$$
\begin{aligned}
& c(2 k)=u(k)+u(k-3)+u(k-4) \\
& c(2 k+1)=u(k)+u(k-1)+u(k-3)+u(k-4) \quad \text { for } k=0,1, \ldots, 227 ; u(k)=0 \text { for } k<0
\end{aligned}
$$

4.1.4 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$
\begin{aligned}
i(B, j)=c(n, k) \quad \text { for } \quad & k=0,1, \ldots, 455 \\
n & =0,1, \ldots, N, N+1, \ldots \\
& B=B_{0}+4 n+(k \bmod 4) \\
j & =2((49 k) \bmod 57)+((k \bmod 8) \operatorname{div} 4)
\end{aligned}
$$

See table 1.The result of the reordering of bits is the same as given for a TCH/FS (subclause 3.1.3) as can be seen from the evaluation of the bit number-index j, distributing the 456 bits over 4 blocks on even numbered bits and 4 blocks on odd numbered bits. The resulting 4 blocks are built by putting blocks with even numbered bits and blocks with odd numbered bits together into one block.

The block of coded data is interleaved "block rectangular" where a new data block starts every 4th block and is distributed over 4 blocks.

4.1.5 Mapping on a Burst

The mapping is given by the rule
$e(B, j)=i(B, j) \quad$ and $\quad e(B, 59+j)=i(B, 57+j) \quad$ for $j=0,1, \ldots, 56$
and

$$
e(B, 57)=h l(B) \quad \text { and } \quad e(B, 58)=h u(B)
$$

The two bits labelled $h l(B)$ and $h u(B)$ on burst number B are flags used for indication of control channel signalling. They are set to "1" for a SACCH.

4.2 Fast associated control channel at full rate (FACCH/F)

4.2.1 Block constitution

The message delivered to the encoder has a fixed size of 184 information bits. It is delivered on a burst mode.

4.2.2 Block code

The block encoding is done as specified for the SACCH in subclause 4.1.2.

4.2.3 Convolutional encoder

The convolutional encoding is done as specified for the SACCH in subclause 4.1.3.

4.2.4 Interleaving

The interleaving is done as specified for the TCH/FS in subclause 3.1.3.

4.2.5 Mapping on a Burst

A FACCH/F frame of 456 coded bits is mapped on 8 consecutive bursts as specified for the TCH/FS in subclause 3.1.4. As a FACCH is transmitted on bits which are stolen in a burst from the traffic channel, the even numbered bits in the first 4 bursts and the odd numbered bits of the last 4 bursts are stolen.

To indicate this to the receiving device the flags $h(B)$ and $h u(B)$ have to be set according to the following rule:
$h u(B)=1$ for the first 4 bursts (even numbered bits are stolen)
$h l(B)=1$ for the last 4 bursts (odd numbered bits are stolen)
The consequences of this bitstealing by a FACCH/F is for a :

- speech channel (TCH/FS) and data channel (TCH/F2.4):

One full frame of data is stolen by the FACCH.

- Data channel (TCH/F9.6):

The bitstealing by a FACCH/F disturbs a maximum of 96 coded bits generated from an input frame of four data blocks. A maximum of 24 of the 114 coded bits resulting from one input data block of 60 bits may be disturbed.

- Data channel (TCH/F4.8):

The bit stealing by FACCH/F disturbs a maximum of 96 coded bits generated from an input frame of two data blocks. A maximum of 48 of the 228 coded bits resulting from one input data block of 60 bits may be disturbed.

NOTE: In the case of consecutive stolen frames, a number of bursts will have both the even and the odd bits stolen and both flags hu(B) and $\mathrm{hl}(\mathrm{B})$ must be set to 1 .

4.3 Fast associated control channel at half rate (FACCH/H)

4.3.1 Block constitution

The message delivered to the encoder has a fixed size of 184 information bits. It is delivered on a burst mode.

4.3.2 Block code

The block encoding is done as specified for the SACCH in subclause 4.1.2.

4.3.3 Convolutional encoder

The convolutional encoding is done as specified for the SACCH in subclause 4.1.3.

4.3.4 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$
\begin{aligned}
i(B, j)=c(n, k) \quad \text { for } \quad & k=0,1, \ldots, 455 \\
& n=0,1, \ldots, N, N+1, \ldots \\
& B=B_{0}+4 n+(k \bmod 8)-4((k \bmod 8) \operatorname{div} 6) \\
& j=2((49 k) \bmod 57)+((k \bmod 8) \operatorname{div} 4)
\end{aligned}
$$

See table 1. The result of the reordering of bits is the same as given for a TCH/FS (subclause 3.1.3) as can be seen from the evaluation of the bit number-index j, distributing the 456 bits over 4 blocks on even numbered bits and 4 blocks on odd numbered bits. The 2 last blocks with even numbered bits and the 2 last blocks with odd numbered bits are put together into 2 full middle blocks.

The block of coded data is interleaved "block diagonal" where a new data block starts every 4th block and is distributed over 6 blocks.

Page 22

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997

4.3.5 Mapping on a Burst

A FACCH/H frame of 456 coded bits is mapped on 6 consecutive bursts by the rule:

$$
e(B, j)=i(B, j) \quad \text { and } \quad e(B, 59+j)=i(B, 57+j) \quad \text { for } \quad j=0,1, \ldots, 56
$$

and

$$
e(B, 57)=h l(B) \quad \text { and } \quad e(B, 58=h u(B)
$$

As a FACCH/H is transmitted on bits which are stolen from the traffic channel, the even numbered bits of the first 2 bursts, all bits of the middle 2 bursts and the odd numbered bits of the last 2 bursts are stolen.

To indicate this to the receiving device the flags $\mathrm{hl}(\mathrm{B})$ and hu(B) have to be set according to the following rule:

hu $(B)=1$	for the first 2 bursts (even numbered bits are stolen)
hu $(B)=1$ and $h l(B)=1$	for the middle 2 bursts (all bits are stolen)
$h l(B)=1$	for the last 2 bursts (odd numbered bits are stolen)

The consequences of this bitstealing by a FACCH/H is for a:

- speech channel (TCH/HS):

Two full consecutive speech frames are stolen by a FACCH/H.
data channel (TCH/H4.8):
The bitstealing by FACCH/H disturbs a maximum of 96 coded bits generated from an input frame of four data blocks. A maximum of 24 out of the 114 coded bits resulting from one input data block of 60 bits may be disturbed.
data channel (TCH/H2.4):
The bitstealing by FACCH/H disturbs a maximum of 96 coded bits generated from an input frame of four data blocks. A maximum of 24 out of the 114 coded bits resulting from one input data block of 36 bits may be disturbed.

NOTE: In the case of consecutive stolen frames, two overlapping bursts will have both the even and the odd numbered bits stolen and both flags hu(B) and $\mathrm{hl}(\mathrm{B})$ must be set to 1.

4.4 Broadcast, Paging, Access grant and Cell broadcast channels (BCCH, PCH, AGCH, CBCH)

The coding scheme used for the broadcast, paging, access grant and cell broadcast messages is the same as for the SACCH messages, specified in subclause 4.1.

4.5 Stand-alone dedicated control channel (SDCCH)

The coding scheme used for the dedicated control channel messages is the same as for SACCH messages, specified in subclause 4.1.

4.6 Random access channel (RACH)

The burst carrying the random access uplink message has a different structure. It contains 8 information bits $d(0), d(1), \ldots, d(7)$.

Six parity bits $p(0), p(1), \ldots, p(5)$ are defined in such a way that in $G F(2)$ the binary polynomial $d(0) D^{13}+\ldots+d(7) D^{6}+p(0) D^{5}+\ldots+p(5)$, when divided by $D^{6}+D^{5}+D^{3}+D^{2}+D+1$ yields a remainder equal to $D^{5}+D^{4}+D^{3}+D^{2}+D+1$.

The six bits of the $\operatorname{BSIC},\{B(0), B(1), \ldots, B(5)\}$, of the $B S$ to which the Random Access is intended, are added bitwise modulo 2 to the six parity bits, $\{p(0), p(1), \ldots, p(5)\}$. This results in six colour bits, $C(0)$ to $C(5)$ defined as $C(k)=b(k)+p(k)(k=0$ to 5$)$ where

$$
\begin{aligned}
& b(0)=\text { MSB of PLMN colour code } \\
& b(5)=L S B \text { of BS colour code. }
\end{aligned}
$$

This defines $\{u(0), u(1), \ldots, u(17)\}$ by:

$$
\begin{array}{lll}
u(k) & =d(k) & \\
\text { for } k=0,1, \ldots, 7 \\
u(k) & =C(k-8) & \\
\text { for } k=8,9, \ldots, 13 \\
u(k) & =0 & \\
\text { for } k=14,15,16,17 \text { (tail bits) }
\end{array}
$$

The bits $\{e(0), e(1), \ldots, e(35)\}$ are obtained by the same convolutional code of rate $1 / 2$ as for TCH/FS, defined by the polynomials:

$$
\begin{aligned}
& G 0=1+D^{3}+D^{4} \\
& G 1=1+D+D^{3}+D^{4}
\end{aligned}
$$

and with

$$
\begin{array}{ll}
e(2 k) & =u(k)+u(k-3)+u(k-4) \\
e(2 k+1) & =u(k)+u(k-1)+u(k-3)+u(k-4) \text { for } k=0,1, \ldots, 17 ; u(k)=0 \text { for } k<0
\end{array}
$$

4.7 Synchronization channel (SCH)

The burst carrying the synchronization information on the downlink BCCH has a different structure. It contains 25 information bits $\{d(0), d(1), \ldots, d(24)\}, 10$ parity bits $\{p(0), p(1), \ldots, p(9)\}$ and 4 tail bits. The precise ordering of the information bits is given in GSM 04.08.

The ten parity bits $\{p(0), p(1), \ldots, p(9)\}$ are defined in such a way that in $G F(2)$ the binary polynomial:
$d(0) D^{34}+\ldots+d(24) D^{10}+p(0) D^{9}+\ldots+p(9)$, when divided by:
$D^{10}+D^{8}+D^{6}+D^{5}+D^{4}+D^{2}+1$, yields a remainder equal to:
$D^{9}+D^{8}+D^{7}+D^{6}+D^{5}+D^{4}+D^{3}+D^{2}+D+1$.
Thus the encoded bits $\{u(0), u(1), \ldots, u(38)\}$ are:

$$
\begin{aligned}
u(k) & =d(k) & & \text { for } k=0,1, \ldots, 24 \\
u(k) & =p(k-25) & & \text { for } k=25,26, \ldots, 34 \\
u(k) & =0 & & \text { for } k=35,36,37,38 \text { (tail bits) }
\end{aligned}
$$

The bits $\{\mathrm{e}(0), \mathrm{e}(1), \ldots, \mathrm{e}(77)\}$ are obtained by the same convolutional code of rate $1 / 2$ as for TCH/FS, defined by the polynomials:

$$
\begin{aligned}
& \mathrm{G} 0=1+\mathrm{D}^{3}+\mathrm{D}^{4} \\
& \mathrm{G} 1=1+\mathrm{D}+\mathrm{D}^{3}+\mathrm{D}^{4}
\end{aligned}
$$

and with
$e(2 k) \quad=u(k)+u(k-3)+u(k-4)$
$e(2 k+1) \quad=u(k)+u(k-1)+u(k-3)+u(k-4)$ for $k=0,1, \ldots, 77 ; u(k)=0$ for $k<0$

Page 24

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997

4.8 Handover Access Burst

The encoding of this burst is as defined in subclause 4.6 for the random access channel (RACH). The BSIC used shall be the BSIC of the BS to which the HO is done.

Table 1: Reordering and partitioning of a coded block of 456 bits into 8 sub-blocks

k mod 8=	0	1	2	3	k mod 8=	4	5	6	7
j=0	$\mathrm{k}=0$	57	114	171	$\mathrm{j}=1$	228	285	342	399
2	64	121	178	235	3	292	349	406	7
4	128	185	242	299	5	356	413	14	71
6	192	249	306	363	7	420	21	78	135
8	256	313	370	427	9	28	85	142	199
10	320	377	434	35	11	92	149	206	263
	384	441	42	99		156	213	270	327
	448	49	106	163		220	277	334	391
	56	113	170	227		284	341	398	455
	120	177	234	291		348	405	6	63
20	184	241	298	355	21	412	13	70	127
	248	305	362	419		20	77	134	191
	312	369	426	27		84	141	198	255
	376	433	34	91		148	205	262	319
	440	41	98	155		212	269	326	383
30	48	105	162	219	31	276	333	390	447
	112	169	226	283		340	397	454	55
	176	233	290	347		404	5	62	119
	240	297	354	411		12	69	126	183
	304	361	418	19		76	133	190	247
40	368	425	26	83	41	140	197	254	311
	432	33	90	147		204	261	318	375
	40	97	154	211		268	325	382	439
	104	161	218	275		332	389	446	47
	168	225	282	339		396	453	54	111
50	232	289	346	403	51	4	61	118	175
	296	353	410	11		68	125	182	239
	360	417	18	75		132	189	246	303
	424	25	82	139		196	253	310	367
	32	89	146	203		260	317	374	431
60	96	153	210	267	61	324	381	438	39
	160	217	274	331		388	445	46	103
	224	281	338	395		452	53	110	167
	288	345	402	3		60	117	174	231
	352	409	10	67		124	181	238	295
70	416	17	74	131	71	188	245	302	359
	24	81	138	195		252	309	366	423
	88	145	202	259		316	373	430	31
	152	209	266	323		380	437	38	95
	216	273	330	387		444	45	102	159
80	280	337	394	451	81	52	109	166	223
	344	401	2	59		116	173	230	287
	408	9	66	123		180	237	294	351
	16	73	130	187		244	301	358	415
	80	137	194	251		308	365	422	23
90	144	201	258	315	91	372	429	30	87
	208	265	322	379		436	37	94	151
	272	329	386	443		44	101	158	215
	336	393	450	51		108	165	222	279
	400	1	58	115		172	229	286	343
100	8	65	122	179	101	236	293	350	407
	72	129	186	243		300	357	414	15
	136	193	250	307		364	421	22	79
	200	257	314	371		428	29	86	143
	264	321	378	435		36	93	150	207
110	328	385	442	43	111	100	157	214	271
112	392	449	50	107	113	164	221	278	335

Table 2: Subjective importance of encoded bits for the full rate speech TCH (Parameter names and bit indices refer to GSM 06.10)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Importance class \& Parameter name \& Parameter number \& \[
\begin{gathered}
\text { Bit } \\
\text { index }
\end{gathered}
\] \& Label \& Class \\
\hline 1 \& Log area ratio 1 block amplitude \& \[
\begin{aligned}
\& 1 \\
\& 12,29,46,63
\end{aligned}
\] \& \[
\begin{aligned}
\& 5 \\
\& 5
\end{aligned}
\] \& \multirow[t]{4}{*}{\[
\begin{gathered}
\mathrm{d} 0 \\
\mathrm{~d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4
\end{gathered}
\]} \& \multirow{4}{*}{\begin{tabular}{l}
1 \\
with parity check
\end{tabular}} \\
\hline 2 \& \[
\begin{aligned}
\& \text { Log area ratio } 1 \\
\& \text { Log area ratio } 2 \\
\& \text { Log area ratio } 3
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 2 \\
\& 3 \\
\& 3
\end{aligned}
\] \& \[
\begin{aligned}
\& 4 \\
\& 5 \\
\& 4
\end{aligned}
\] \& \& \\
\hline 3 \& \begin{tabular}{l}
Log area ratio 1 \\
Log area ratio 2 \\
Log area ratio 3 \\
Log area ratio 4 \\
LPT lag \\
block amplitude \\
Log area ratio 2,5,6 \\
LPT lag \\
LPT lag \\
LPT lag \\
LPT lag
\end{tabular} \& 1
1
2
3
4
\(9,26,43,60\)
\(12,29,43,63\)
\(2,5,6\)
\(9,26,43,60\)
\(9,26,43,60\)
\(9,26,43,60\)
\(9,26,43,60\) \& \[
\begin{aligned}
\& \hline 3 \\
\& 4 \\
\& 3 \\
\& 4 \\
\& 4 \\
\& 6 \\
\& 4 \\
\& 3 \\
\& 5 \\
\& 4 \\
\& 3 \\
\& 2
\end{aligned}
\] \& \& \\
\hline \multirow[t]{2}{*}{4} \& block amplitude Log area ratio 1 Log area ratio 4 Log area ratio 7 LPT lag \& \[
\begin{aligned}
\& 12,29,43,63 \\
\& 1 \\
\& 4 \\
\& 7 \\
\& 9,26,43,60
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 3 \\
\& 2 \\
\& 3 \\
\& 2 \\
\& 1
\end{aligned}
\] \& \& \\
\hline \& \begin{tabular}{l}
Log area ratio 5,6 \\
LPT gain \\
LPT lag \\
Grid position
\end{tabular} \& \[
\begin{aligned}
\& 5,6 \\
\& 10,27,44,61 \\
\& 9,26,43,60 \\
\& 11,28,45,62
\end{aligned}
\] \& \[
\begin{aligned}
\& 2 \\
\& 1 \\
\& 0 \\
\& 1
\end{aligned}
\] \& d50 \& \multirow[b]{2}{*}{\begin{tabular}{l}
1 \\
with parity check
\end{tabular}} \\
\hline \multirow[t]{2}{*}{5} \& \begin{tabular}{l}
Log area ratio 1 \\
Log area ratio 2,3,8,4 \\
Log area ratio 5,7 \\
LPT gain \\
block amplitude \\
RPE pulses \\
RPE pulses \\
RPE pulses \\
RPE pulses \\
Grid position \\
block amplitude \\
RPE pulses \\
RPE pulses \\
RPE pulses \\
RPE pulses
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& \hline 2,3,8,4 \\
\& 5,7 \\
\& 10,27,44,61 \\
\& 12,29,43,63 \\
\& 13 . .25 \\
\& 30 . .42 \\
\& 47 . .59 \\
\& 64 . .76 \\
\& 11,28,45,62 \\
\& 12,29,43,63 \\
\& 13 . .25 \\
\& 30 . .42 \\
\& 47 . .59 \\
\& 64 . .67
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 1 \\
\& 2 \\
\& 1 \\
\& 0 \\
\& 2 \\
\& 2 \\
\& 2 \\
\& 2 \\
\& 2 \\
\& 2 \\
\& 0 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& \hline
\end{aligned}
\] \& ...d181 \& \\
\hline \& RPE pulses \& \(68 . .76\) \& 1 \& \multirow[t]{2}{*}{d182

...d259} \& \multirow[b]{2}{*}{2}

\hline 6 \& | Log area ratio 1 |
| :--- |
| Log area ratio 2,3,6 |
| Log area ratio 7 |
| Log area ratio 8 |
| Log area ratio 8,3 |
| Log area ratio 4 |
| Log area ratio 4,5 |
| block amplitude |
| RPE pulses |
| RPE pulses |
| RPE pulses |
| RPE pulses |
| Log area ratio 2,6 | \& 1

$2,3,6$
7
8
8,3
4
4,5
$12,29,43,63$
$13 . .25$
$30 . .42$
$47 . .59$
$64 . .67$

2,6 \& $$
\begin{aligned}
& \hline 0 \\
& 1 \\
& 0 \\
& 1 \\
& 0 \\
& 1 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$ \& \&

\hline
\end{tabular}

Table 3a: Subjective importance of encoded bits for the half rate speech TCH for unvoiced speech frames (Parameter names and bit indices refer to GSM 06.20)

Parameter name	Bit index	Label	Class
R0	1	d0	
LPC 3	7	d1	
GSP 0-1	2	d2	
GSP 0-2	2	d3	
GSP 0-3	2	d4	
GSP 0-4	2	d5	
LPC 1	0	d6	
LPC 2	5... 1	d7...d11	
LPC 3	6... 1	d12...	
Code 1-2	0		
Code 2-2	6... 0		
Code 1-3	6... 0		1
Code 2-3	6... 3		
LPC3	0		without
R0	0		parity
INT-LPC	0		check
Code 1-2	1... 6		
Code 2-1	0... 6		
Code 1-1	0... 6		
GSP 0-4	0		
GSP 0-3	0		
GSP 0-2	0		
GSP 0-1	0		
LPC 2	0		
GSP 0-4	1		
GSP 0-3	1		
GSP 0-2	1		
GSP 0-1	1		
LPC 1	1... 4	...d72	
LPC 1	5	d73...	
GSP 0-4	3		
GSP 0-3	3		
GSP 0-2	3		
GSP 0-1	3		
LPC2	6... 8		1
GSP 0-4	4		
GSP 0-3	4		with
GSP 0-2	4		parity
GSP 0-1	4		check
LPC 1	6... 9		
R0	2		
LPC 1	10		
R0	3,4		
Mode	0,1	...d94	
Code 2-4	0... 6	d95...	
Code 1-4	0... 6		2
Code 2-3	0... 2	...d111	

Page 28

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997
Table 3b: Subjective importance of encoded bits for the half rate speech TCH for voiced speech frames (Parameter names and bit indices refer to GSM 06.20)

Parameter name	Bit index	Label	Class
LPC 1	2,1	d0, d1	
LPC 2	6... 4	d2...	
GSP 0-1	4		
GSP 0-2	4		
GSP 0-3	4		
GSP 0-4	4		
GSP 0-1	3		
GSP 0-2	3		
GSP 0-3	3		
GSP 0-4	3		
GSP 0-1	2		
GSP 0-2	2		
GSP 0-3	2		
GSP 0-4	2		
Code 1	8... 0		
Code 2	8... 5		
Code 2	2... 0		
Code 3	8		
Code 2	4,3		
GSP 0-1	1		
GSP 0-2	1		
GSP 0-3	1		
GSP 0-4	1		1
GSP 0-1	0		
GSP 0-2	0		without
GSP 0-3	0		parity
GSP 0-4	0		
INT-LPC	0		
LPC 2	0		
LPC 3	0		
LAG 4	0		
LPC 3	1		
LPC 2	1		
LAG 4	1		
LAG 3	0		
LAG 2	0		
LAG 1	0		
LAG 4	2		
LAG 3	1		
LAG 2	1		
LAG 1	1		
LPC 3	2... 4		
LPC 2	2		
LPC 3	5,6		
LPC 2	3		
R0	0		
LPC 3	7		
LPC 1	0		
LAG 4	3		
LAG 3	2		
LAG 2	2		
LAG 1	2		
R0	1	...d72	

Parameter name	Bit index	Label	Class
LAG 3	3	d73...	
LAG 2	3		
LAG 1	3,4		1
LPC 2	7,8		
LPC 1	3... 6		with
R0	2		parity
LAG 1	5... 7		check
LPC 1	7... 10		
R0	3,4		
Mode	0,1	...d94	
Code 4	0...8	d95...	2
Code 3	0... 7	...d111	

Table 4: Reordering and partitioning of a coded block of 228 bits into 4 sub-blocks for TCH/HS

$\mathrm{b}=$	0	1
i=0	k=0	150
2	38	188
4	76	226
6	114	14
8	152	52
10	190	90
	18	128
	56	166
	94	204
	132	32
20	170	70
	208	108
	8	146
	46	184
	84	222
30	122	10
	160	48
	198	86
	28	124
	66	162
40	104	200
	142	30
	180	68
	218	106
	4	144
50	42	182
	80	220
	118	6
	156	44
	194	82
60	22	120
	60	158
	98	196
	136	24
	174	62
70	212	100
	12	138
	50	176
	88	214
	126	2
80	164	40
	202	78
	34	116
	72	154
	110	192
90	148	26
	186	64
	224	102
	16	140
	54	178
100	92	216
	130	20
	168	58
	206	96
	36	134
110	74	172
112	112	210

$\mathrm{b}=$	2	3
i=1	k=1	151
3	39	189
5	77	227
7	115	15
9	153	53
11	191	91
	19	129
	57	167
	95	205
	133	33
21	171	71
	209	109
	9	147
	47	185
	85	223
31	123	11
	161	49
	199	87
	29	125
	67	163
41	105	201
	143	31
	181	69
	219	107
	5	145
51	43	183
	81	221
	119	7
	157	45
	195	83
61	23	121
	61	159
	99	197
	137	25
	175	63
71	213	101
	13	139
	51	177
	89	215
	127	3
81	165	41
	203	79
	35	117
	73	155
	111	193
91	149	27
	187	65
	225	103
	17	141
	55	179
101	93	217
	131	21
	169	59
	207	97
	37	135
111	75	173
113	113	211

Page 30

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997
Table 5: Enhanced Full rate Source Encoder output parameters in order of occurrence and bit allocation within the speech frame of 244 bits/ 20 ms (Parameter names and bit indices refer to GSM 06.60)

Bits (MSB-LSB)	Description
s1-s7	index of 1st LSF submatrix
s8-s15	index of 2nd LSF submatrix
s16-s23	index of 3rd LSF submatrix
S24	sign of 3rd LSF submatrix
s25-s32	index of 4th LSF submatrix
s33-s38	index of 5th LSF submatrix
subframe 1	
s39-s47	adaptive codebook index
s48-s51	adaptive codebook gain
s52	sign information for 1st and 6th pulses
s53-s55	position of 1st pulse
s56	sign information for 2nd and 7th pulses
s57-s59	position of 2nd pulse
s60	sign information for 3rd and 8th pulses
s61-s63	position of 3rd pulse
s64	sign information for 4th and 9th pulses
s65-s67	position of 4th pulse
s68	sign information for 5th and 10th pulses
s69-s71	position of 5th pulse
s72-s74	position of 6th pulse
s75-s77	position of 7th pulse
s78-s80	position of 8th pulse
s81-s83	position of 9th pulse
s84-s86	position of 10th pulse
s87-s91	fixed codebook gain
subframe 2	
s92-s97	adaptive codebook index (relative)
s98-s141	same description as s48-s91
subframe 3	
s142-s194	same description as s39-s91
subframe 4	
s195-s244	same description as s92-s141

Page 31
Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997
Table 6: Ordering of enhanced full rate speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding)
(Parameter names refers to GSM 06.60)

Description	$\begin{gathered} \text { Bits } \\ \text { (Table 5) } \end{gathered}$	Bit index within parameter
CLASS 1a: 50 bits (protected by 3 bit TCH-FS CRC)		
LTP-LAG 1	w39-w44	b8, b7, b6, b5, b4, b3
LTP-LAG 3	w146-w151	b8, b7, b6, b5, b4, b3
LTP-LAG 2	w94-w95	b5, b4
LTP-LAG 4	w201-w202	b5, b4
LTP-GAIN 1	n48	b3
FCB-GAIN 1	w89	b4
LTP-GAIN 2	w100	b3
FCB-GAIN 2	w141	b4
LTP-LAG 1	w45	b2
LTP-LAG 3	w152	b2
LTP-LAG 2	w96	b3
LTP-LAG 4	w203	b3
LPC 1	w2 - w3	b5, b4
LPC 2	w8	b7
LPC 2	w10	b5
LPC 3	w18-w19	b6, b5
LPC 3	w24	b0
LTP-LAG 1	w46-w47	b1, b0
LTP-LAG 3	w153-w154	b1, b0
LTP-LAG 2	w97	b2
LTP-LAG 4	w204	b2
LPC 1	w4 - w5	b3, b2
LPC 2	w11-w12	b4, b3
LPC 3	w16	b8
LPC 2	w9	b6
LPC 1	w6-w7	b1, b0
LPC 2	w13	b2
LPC 3	w17	b7
LPC 3	w20	b4
LTP-LAG 2	w98	b1
LTP-LAG 4	w205	b1
CLASS 1b: 132 bits (protected)		
LPC 1	w1	b6
LPC 2	w14-w15	b1, b0
LPC 3	w21	b3
LPC 4	w25-w26	b7, b6
LPC 4	w28	b4
LTP-GAIN 3	w155	b3
LTP-GAIN 4	w207	b3
FCB-GAIN 3	w196	b4
FCB-GAIN 4	w248	b4
FCB-GAIN 1	w90	b3
FCB-GAIN 2	w142	b3
FCB-GAIN 3	w197	b3
FCB-GAIN 4	w249	b3
(continued)		

Page 32
Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997
Table 6 (continued): Ordering of enhanced full rate speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding)
(Parameter names refers to GSM 06.60)

Description	$\begin{gathered} \text { Bits } \\ \text { (Table 5) } \end{gathered}$	Bit index within parameter
CRC-POLY	w253-w260	b7, b6, b5, b4, b3, b2, b1, b0
LTP-GAIN 1	w49	b2
LTP-GAIN 2	w101	b2
LTP-GAIN 3	w156	b2
LTP-GAIN 4	w208	b2
LPC 3	w22-w23	b2, b1
LPC 4	w27	b5
LPC 4	w29	b3
PULSE 1_1	w52	b3
PULSE 1_2	w56	b3
PULSE 1_3	w60	b3
PULSE 1_4	w64	b3
PULSE 1_5	w68	b3
PULSE 2_1	w104	b3
PULSE 2_2	w108	b3
PULSE 2_3	w112	b3
PULSE 2_4	w116	b3
PULSE 2-5	w120	b3
PULSE 3-1	w159	b3
PULSE 32	w163	b3
PULSE 3_3	w167	b3
PULSE 3_4	w171	b3
PULSE 3_5	w175	b3
PULSE 4_1	w211	b3
PULSE 4_2	w215	b3
PULSE 4_3	w219	b3
PULSE 4_4	w223	b3
PULSE 4 5	w227	b3
FCB-GAIN 1	w91	b2
FCB-GAIN 2	w143	b2
FCB-GAIN 3	w198	b2
FCB-GAIN 4	w250	b2
LTP-GAIN 1	w50	b1
LTP-GAIN 2	w102	b1
LTP-GAIN 3	w157	b1
LTP-GAIN 4	w209	b1
LPC 4	w30-w32	b2, b1, b0
LPC 5	w33-w36	b5, b4, b3, b2
LTP-LAG 2	w99	b0
LTP-LAG 4	w206	b0
PULSE 1_1	w53	b2
PULSE 1_2	w57	b2
(continued)		

Page 33
Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997
Table 6 (continued): Ordering of enhanced full rate speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding)
(Parameter names refers to GSM 06.60)

Description	$\begin{gathered} \text { Bits } \\ \text { (Table 5) } \end{gathered}$	Bit index within parameter
PULSE 1_3	w61	b2
PULSE 1_4	w65	b2
PULSE 1_5	w69	b2
PULSE 2_1	w105	b2
PULSE 2 2	w109	b2
PULSE 2_3	w113	b2
PULSE 2 4	w117	b2
PULSE 2 5	w121	b2
PULSE 3_1	w160	b2
PULSE 3_2	w164	b2
PULSE 3_3	w168	b2
PULSE 3 4	w172	b2
PULSE 3-5	w176	b2
PULSE 4_1	w212	b2
PULSE 4_2	w216	b2
PULSE 4_3	w220	b2
PULSE 4_4	w224	b2
PULSE 4_5	w228	b2
PULSE 1_1	w54	b1
PULSE 1_2	w58	b1
PULSE 1_3	w62	b1
PULSE 1_4	w66	b1
PULSE 2_1	w106	b1
PULSE 2 2	w110	b1
PULSE 2_3	w114	b1
PULSE 2_4	w118	b1
PULSE 3_1	w161	b1
PULSE 3_2	w165	b1
PULSE 33	w169	b1
PULSE 3_4	w173	b1
PULSE 4_1	w213	b1
PULSE 4_3	w221	b1
PULSE 4_4	w225	b1
FCB-GAIN 1	w92	b1
FCB-GAIN 2	w144	b1
FCB-GAIN 3	s199	b1
FCB-GAIN 4	w251	b1
LTP-GAIN 1	w51	b0
LTP-GAIN 2	w103	b0
LTP-GAIN 3	w158	b0
LTP-GAIN 4	w210	b0
FCB-GAIN 1	w93	b0
FCB-GAIN 2	w145	b0
FCB-GAIN 3	w200	b0
(continued)		

Page 34
Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997
Table 6 (continued): Ordering of enhanced full rate speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding) (Parameter names refers to GSM 06.60)

Description	Bits (Table 5)	Bit index within parameter
FCB-GAIN 4	w252	b0
PULSE 1_1	w55	b0
PULSE 1_2	w59	b0
PULSE 1_3	w63	b0
PULSE 1_4	w67	b0
PULSE 2_1	w107	b0
PULSE 2_2	w111	b0
PULSE 2_3	w115	b0
PULSE 2_4	w119	b0
PULSE 3_1	w162	b0
PULSE 3_2	w166	b0
PULSE 3_3	w170	b0
PULSE 3_4	w174	b0
PULSE 4_1	w214	b0
PULSE 4_3	w222	b0
PULSE 4_4	w226	b0
LPC 5	w37-w38	b1, b0
CLASS 2: 78 bits (unprotected)		
PULSE 1_5	w70	b1
PULSE 1_5	w72-w73	b1, b1
PULSE 2.5	w122	b1
PULSE 2 5	w124-s125	b1, b1
PULSE 3_5	w177	b1
PULSE 3_5	w179-w180	b1, b1
PULSE 4_5	w229	b1
PULSE 4_5	w231-w232	b1, b1
PULSE 4_2	w217-w218	b1, b0
PULSE 1_5	w71	b0
PULSE 255	w123	b0
PULSE 3_5	w178	b0
PULSE 4_5	w230	b0
PULSE 1_6	w74	b2
PULSE 1_7	w77	b2
PULSE 1_8	w80	b2
PULSE 1_9	w83	b2
PULSE 1_10	w86	b2
PULSE 2_6	w126	b2
PULSE 2_7	w129	b2
PULSE 2_8	w132	b2
PULSE 2_9	w135	b2
PULSE 2_10	w138	b2
PULSE 3_6	w181	b2
PULSE 3_7	w184	b2
PULSE 3_8	w187	b2
PULSE 3_9	w190	b2
(continued)		

Table 6 (concluded): Ordering of speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding)
(Parameter names refers to GSM 06.60)

Description	$\begin{gathered} \text { Bits } \\ \text { (Table 5) } \end{gathered}$	Bit index within parameter
PULSE 3_10	w193	b2
PULSE 4_6	w233	b2
PULSE 4_7	w236	b2
PULSE 4_8	w239	b2
PULSE 4_9	w242	b2
PULSE 4_10	w245	b2
PULSE 1_6	w75	b1
PULSE 1_7	w78	b1
PULSE 1_8	w81	b1
PULSE 1_9	w84	b1
PULSE 1_10	w87	b1
PULSE 2_6	w127	b1
PULSE 2-7	w130	b1
PULSE 2_8	w133	b1
PULSE 2_9	w136	b1
PULSE 2_10	w139	b1
PULSE 3_6	w182	b1
PULSE 3_7	w185	b1
PULSE 3_8	w188	b1
PULSE 3_9	w191	b1
PULSE 3_10	w194	b1
PULSE 4_6	w234	b1
PULSE 4_7	w237	b1
PULSE 4_8	w240	b1
PULSE 4_9	w243	b1
PULSE 4_10	w246	b1
PULSE 1_6	w76	b0
PULSE 1_7	w79	b0
PULSE 1_8	w82	b0
PULSE 1_9	w85	b0
PULSE 1_10	w88	b0
PULSE 2_6	w128	b0
PULSE 2_7	w131	b0
PULSE 2_8	w134	b0
PULSE 2_9	w137	b0
PULSE 2_10	w140	b0
PULSE 3_6	w183	b0
PULSE 3_7	w186	b0
PULSE 3_8	w189	b0
PULSE 3_9	w192	b0
PULSE 3_10	w195	b0
PULSE 4_6	w235	b0
PULSE 4_7	w238	b0
PULSE 4_8	w241	b0
PULSE 4_9	w244	b0
PULSE 4_10	w247	b0

Page 36

Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997

Annex A (informative): Summary of Channel Types

TCH/EFS: enhanced full rate speech traffic channel
TCH/FS: full rate speech traffic channel
TCH/HS: half rate speech traffic channel
TCH/F9.6: $\quad 9.6 \mathrm{kbit} / \mathrm{s}$ full rate data traffic channel
TCH/F4.8: $\quad 4.8 \mathrm{kbit} / \mathrm{s}$ full rate data traffic channel
$\mathrm{TCH} / \mathrm{H} 4.8: \quad 4.8 \mathrm{kbit} / \mathrm{s}$ half rate data traffic channel
TCH/F2.4: $\quad \leq 2.4 \mathrm{kbit} / \mathrm{s}$ full rate data traffic channel
TCH/H2.4: $\leq 2.4 \mathrm{kbit} / \mathrm{s}$ half rate data traffic channel
SACCH: slow associated control channel
FACCH/F: fast associated control channel at full rate
FACCH/H: fast associated control channel at half rate
SDCCH: stand-alone dedicated control channel
BCCH :
PCH:
AGCH
RACH:
SCH:
CBCH:
broadcast control channel
paging channel
access grant channel
random access channel
synchronization channel
cell broadcast channel

Annex B (informative): Summary of Polynomials used for Convolutional Codes

$\mathrm{G} 0=1+\mathrm{D}^{3}+\mathrm{D}^{4}$	TCH/FS, TCH/EFS, TCH/F9.6, TCH/H4.8, SDCCH, BCCH, PCH,SACCH,FACCH, AGCH, RACH, SCH
$\mathrm{G} 1=1+\mathrm{D}+\mathrm{D}^{3}+\mathrm{D}^{4}$	TCH/FS, TCH/EFS, TCH/F9.6, TCH/H4.8, SACCH, FACCH, SDCCH, BCCH,PCH, AGCH, RACH, SCH, TCH/F4.8,TCH/F2.4,TCH/H2.4
$\mathrm{G} 2=1+\mathrm{D}^{2}+\mathrm{D}^{4}$	TCH/F4.8, TCH/F2.4, TCH/H2.4
$\mathrm{G} 3=1+\mathrm{D}+\mathrm{D}^{2}+\mathrm{D}^{3}+\mathrm{D}^{4}$	TCH/F4.8, TCH/F2.4, TCH/H2.4
$\mathrm{G} 4=1+\mathrm{D}^{2}+\mathrm{D}^{3}+\mathrm{D}^{5}+\mathrm{D}^{6}$	TCH/HS
$\mathrm{G} 5=1+\mathrm{D}+\mathrm{D}^{4}+\mathrm{D}^{6}$	TCH/HS
$\mathrm{G} 6=1+\mathrm{D}+\mathrm{D}^{2}+\mathrm{D}^{3}+\mathrm{D}^{4}+\mathrm{D}^{6}$	TCH/HS

Page 38
Draft prETS 300575 (GSM 05.03 version 4.5.0): July 1997

History

Document history			
September 1994	First Edition	UAP 26:	1995-03-06 to 1995-06-30
March 1995	Unified Approval Procedure		
July 1995	Second Edition		
January 1996	Amendment 1 to Second Edition		
March 1997	One-step Approval Procedure (Third Edition)	OAP 9729:	1997-03-21 to 1997-07-18
July 1997	One-step Approval Procedure (Fourth Edition)	OAP 9747:	1997-07-21 to 1997-11-28

[^0]: Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

