

## EUROPEAN TELECOMMUNICATION STANDARD

**DRAFT** pr **ETS 300 417-4a-1** 

**April 1996** 

Source: ETSI TC-TM Reference: DE/TM 01015-4-1

ICS: 33.020

Key words: Transmission, SDH, interface

# Transmission and Multiplexing (TM); Generic Functional Requirements for Synchronous Digital Hierarchy (SDH) Equipment Part 4a-1: SDH Path Layer Functions

#### **ETSI**

European Telecommunications Standards Institute

#### **ETSI Secretariat**

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE

Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE

X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

\*

**Copyright Notification:** No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page.

#### **Contents**

| -ore | wora     |                |               |                                                                         | 5  |
|------|----------|----------------|---------------|-------------------------------------------------------------------------|----|
| 1    | Scope    |                |               |                                                                         | 7  |
| 2    | Normativ | e References   | s             |                                                                         | 7  |
| 3    |          |                |               | pols                                                                    |    |
|      | 3.1      |                |               |                                                                         |    |
|      | 3.2      |                |               |                                                                         |    |
|      | 3.3      | •              | •             | ic Conventions                                                          |    |
|      | 3.4      | Introduction   |               |                                                                         | 10 |
| 4    |          |                |               |                                                                         |    |
|      | 4.1      |                |               | unction S4_C                                                            |    |
|      | 4.2      | •              |               | ion Functions                                                           |    |
|      |          | 4.2.1          |               | Trail Termination Source S4_TT_So                                       |    |
|      | 4.0      | 4.2.2          |               | rail Termination Sink S4_TT_Sk                                          |    |
|      | 4.3      |                |               | nctions                                                                 |    |
|      |          | 4.3.1          |               | o P4x Layer Adaptation Source S4/P4x_A_So                               |    |
|      |          | 4.3.2          |               | o P4x Layer Adaptation Sink S4/P4x_A_Sk                                 |    |
|      |          | 4.3.3<br>4.3.4 |               | o P4e Layer Adaptation Source S4/P4e_A_So                               |    |
|      |          |                |               | o P4e Layer Adaptation Sink S4/P4e_A_Sk                                 | 29 |
|      |          | 4.3.5          | VC-4 Layer to | o VC-3, VC-2, VC-12, and VC-11 Layer Compound ource Function S4/SX_A_So | 24 |
|      |          |                | 4.3.5.1       | VC-4 Layer to TUG Adaptation Source Function                            | 31 |
|      |          |                | 4.3.3.1       | S4/TUG_A_So                                                             | 22 |
|      |          |                | 4.3.5.2       | TUG Termination Source Function TUG_T_So                                |    |
|      |          |                | 4.3.5.3       | TUG to VC-3 Layer Adaptation Source Function                            | 34 |
|      |          |                | 4.3.3.3       | TUG/S3_A_So/K.0.0                                                       | 25 |
|      |          |                | 4.3.5.4       | TUG to VC-2 Layer Adaptation Source Function                            | 33 |
|      |          |                | 4.3.3.4       | S4/S2_A_So/K.L.0                                                        | 37 |
|      |          |                | 4.3.5.5       | TUG to VC-12 Layer Adaptation Source Function                           |    |
|      |          |                | 4.0.0.0       | TUG/S12_A_So/K.L.M                                                      | 40 |
|      |          |                | 4.3.5.6       | TUG to VC-11 Layer Adaptation Source Function                           |    |
|      |          |                | 4.0.0.0       | S4/S11*_A_So/K.L.M                                                      | 42 |
|      |          | 4.3.6          | VC-4 Laver to | o VC-3, VC-2, VC-12, and VC-11 Layer Compound                           | 72 |
|      |          | 1.0.0          |               | ink Function S4/SX_A_Sk                                                 | 45 |
|      |          |                | 4.3.6.1       | VC-4 Layer to TUG Adaptation Sink Function                              |    |
|      |          |                |               | S4/TUG_A_Sk                                                             | 47 |
|      |          |                | 4.3.6.2       | TUG Termination Sink Function TUG_T_Sk                                  |    |
|      |          |                | 4.3.6.3       | TUG to VC-3 Layer Adaptation Sink Function                              |    |
|      |          |                |               | TUG/S3_A_Sk/K.0.0                                                       | 49 |
|      |          |                | 4.3.6.4       | TUG to VC-2 Layer Adaptation Sink Function                              |    |
|      |          |                |               | TUG/S2_A_Sk                                                             | 50 |
|      |          |                | 4.3.6.5       | TUG to VC-12 Layer Adaptation Sink Function                             |    |
|      |          |                |               | TUG/S12_A_Sk/K.L.M                                                      | 52 |
|      |          |                | 4.3.6.6       | TUG to VC-11 Layer Adaptation Sink Function                             |    |
|      |          |                |               | TUG/S11*_A_Sk/K.L.M                                                     | 53 |
|      |          | 4.3.7          | VC-4 Layer to | o P0x Layer Adaptation Source S4/P0x_A_So                               |    |
|      |          | 4.3.8          | ,             | o P0x Layer Adaptation Sink S4/P0x_A_Sk                                 |    |
|      |          | 4.3.9          |               | DODDB Layer Adaptation Source S4/DQDB_A_So                              |    |
|      |          | 4.3.10         |               | DODDB Layer Adaptation Sink S4/DQDB_A_Sk                                |    |
|      |          | 4.3.11         |               | o TSS1 Adaptation Source S4/TSS1_A_So                                   |    |
|      |          | 4.3.12         |               | o TSS1 Adaptation Sink S4/TSS1_A_Sk                                     |    |
|      |          | 4.3.13         |               | o ATM Layer (ATM) Compound Adaptation Source                            |    |
|      |          |                | S4/ATM_A_S    | So                                                                      | 64 |

|        |             | 4.3.14             | VC-4 Layer to ATM Layer (ATM) Compound Adaptation Sink S4/ATM A Sk                                             | 64  |
|--------|-------------|--------------------|----------------------------------------------------------------------------------------------------------------|-----|
|        | 4.4         | VC-4 Laye          | er Monitoring Functions                                                                                        | 64  |
|        |             | 4.4.1              | VC-4 Layer Non-intrusive Monitoring Function S4m_TT_Sk                                                         |     |
|        |             | 4.4.2              | VC-4 Layer Supervisory-Unequipped Termination Source S4s_TT_So                                                 |     |
|        | 4.5         | 4.4.3<br>VC-4 Lave | VC-4 Layer Supervisory-unequipped Termination Sink S4s_TT_Sker Trail Protection Functions                      |     |
|        |             | 4.5.1              | VC-4 Trail Protection Connection Functions S4P_C                                                               | 71  |
|        |             |                    | 4.5.1.1 VC-4 Layer 1+1 single ended Protection Connection                                                      |     |
|        |             |                    | Function S4P1+1se_C                                                                                            |     |
|        |             | 4.5.2              | VC-4 Layer Trail Protection Trail Termination Functions                                                        |     |
|        |             | 4.3.2              | 4.5.2.1 VC-4 Protection Trail Termination Source S4P_TT_So                                                     |     |
|        |             |                    | 4.5.2.2 VC-4 Protection Trail Termination Source 541 _11 _50  VG-4 Protection Trail Termination Sink S4P_TT_Sk |     |
|        |             | 4.5.3              | VC-4 Layer Linear Trail Protection Adaptation Functions                                                        |     |
|        |             | 4.0.0              | 4.5.3.1 VC-4 trail to VC-4 trail Protection Layer Adaptation                                                   |     |
|        |             |                    | Source S4/S4P_A_So                                                                                             | 76  |
|        |             |                    | 4.5.3.2 VC-4 trail to VC-4 trail Protection Layer Adaptation Sink                                              |     |
|        | 4.0         | VO 4 T-            | \$4/\$4P_A_\$k                                                                                                 |     |
|        | 4.6         |                    | dem Connection Sublayer Functions                                                                              | 78  |
|        |             | 4.6.1              | VC-4 Tandem Connection Trail Termination Source function                                                       | 70  |
|        |             | 4.0.0              | (S4D_TT_S0)                                                                                                    | 78  |
|        |             | 4.6.2              | VC-4 Tandem Connection Trail Termination Sink function (S4D_TT_Sk).                                            | 81  |
|        |             | 4.6.3              | VC-4 Tandem Connection to VC-4 Adaptation Source function                                                      | 00  |
|        |             | 1.0.1              | (S4D/S4_A_So)                                                                                                  | 80  |
|        |             | 4.6.4              | VC-4 Tandem Connection to VC-4 Adaptation Sink function (S4D/S4_A_Sk)                                          | 87  |
|        |             | 4.6.5              | VC-4 Tandem Connection non-intrusive Trail Termination Sink function                                           | 01  |
|        |             | 4.0.5              | (S4Dm TT Sk)                                                                                                   | 88  |
|        |             |                    | (0.15                                                                                                          | 00  |
| 5      | VC-3 Pat    | h Layer Fu         | ınctions                                                                                                       | 91  |
| 6      | VC-2 Pat    | h Layer Fu         | inctions                                                                                                       | 91  |
| 7      | VC-12 Pa    | ath Laver F        | unctions                                                                                                       | 91  |
| •      |             | •                  |                                                                                                                |     |
| 8      | VC-11 Pa    | ath Layer F        | unctions                                                                                                       | 91  |
| 9      | VC-4-4c     | Path Laver         | Functions                                                                                                      | 91  |
|        |             |                    |                                                                                                                |     |
| Annex  | A (inform   | native):           | Jitter/wander in justification processes                                                                       | 92  |
| A.1    | VC-n pha    | ase accurad        | cy/timing error/jitter/wander                                                                                  | 92  |
| A.2    | VC-n poi    | nter proces        | ssor introduced phase error measurement                                                                        | 92  |
| A.3    | SDH/PDI     | H and PDH          | I/PDH mapping introduced phase error measurement                                                               | 95  |
|        |             |                    |                                                                                                                |     |
| Annex  | k B (inform | native): S         | SDH/PDH interconnection examples                                                                               | 96  |
| Annex  | C (inforn   |                    | Interaction between 2 Mbit/s and VC 12 signals for the case of byte synchronous mapping                        | 98  |
| Histor | V           |                    |                                                                                                                | 100 |

#### **Foreword**

This European Telecommunications Standard (ETS) was produced by the Transmission and Multiplexing (TM) Technical Committee of the European Telecommunications Standards Institute (ETSI) in order to provide inter-vendor and inter-operator compatibility of SDH equipments.

This ETS has been produced in order to provide inter-vendor and inter-operator compatibility for Synchronous Digital Hierarchy (SDH) equipment.

This ETS consists of 8 parts as follows:

Part 1: "Generic processes and performance" (ETS 300 417-1-1). Part 2: "Physical section layer functions" (prETS 300 417-2-1).

Part 3: "STM-N regenerator and multiplex section layer functions" (prETS 300 417-3-1).

Part 4: "SDH path layer functions" (prETS 300 417-4-1).
Part 5: "PDH path layer functions" (prETS 300 417-5-1).

Part 6: "Synchronisation distribution layer functions" (prETS 300 417-6-1).

Part 7: "Auxiliary layer functions" (prETS 300 417-7-1).

Part 8: "Compound and major compound functions" (prETS 300 417-8-1).

This sub-part 4-1 of the ETS has been further split into five sub-parts to simplify the handling of the document. These sub-parts of prETS 300 417-4-1 have been identified as parts 4a-1 to 4e-1. To minimise delay and for Public Enquiry purposes, this set of five documents should be considered as one document (namely, prETS 300 417-4-1). During subsequent processing (the Voting stage) the documents will be merged into a single document.

Blank page

#### 1 Scope

[12]

This ETS specifies a library of basic building blocks and a set of rules by which they are combined in order to describe a digital transmission equipment. The library comprises the functional building blocks needed to completely specify the generic functional structure of the European Digital Transmission Hierarchy. Equipment which is compliant with this standard must be describable as an interconnection of a subset of these functional blocks contained within this ETS. The interconnections of these blocks must obey the combination rules given. The generic functionality is described in ETS 300 417-1-1 [1].

#### 2 Normative References

This draft ETS incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references subsequent amendments to, or revisions of, any of these publications apply to this ETS only when incorporated in it by amendments or revisions. For undated references the latest edition of the publication referred to applies.

| [1]  | ETS 300 417-1-1 (1996): "Transmission and Multiplexing (TM); Generic functional requirements for Synchronous Digital Hierarchy (SDH) equipment; Part 1-1: Generic processes and performance".                                        |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [2]  | ETS 300 147 (1995): "Transmission and Multiplexing (TM); Synchronous Digital Hierarchy (SDH) Multiplexing structure".                                                                                                                |
| [3]  | ETS 300 166 (1993): "Transmission and Multiplexing (TM); Physical and electrical characteristics of hierarchical digital interfaces for equipment using the 2 048 kbit/s - based plesiochronous or synchronous digital hierarchies". |
| [4]  | prETS 300 417-3-1: "Transmission and Multiplexing (TM); Generic functional requirements for Synchronous Digital Hierarchy (SDH) equipment Part 3-1: STM-N regenerator and multiplex section layer functions".                        |
| [5]  | prETS 300 417-6-1: "Transmission and Multiplexing (TM); Generic functional requirements for Synchronous Digital Hierarchy (SDH) equipment; Part 6-1: Synchronization distribution layer functions".                                  |
| [6]  | ETS 300 216 (1992): "Network Aspects (NA); Metropolitan Area Network (MAN) Physical layer convergence procedure for 155,520 Mbit/s".                                                                                                 |
| [7]  | ITU-T Recommendation G.823 (1993): "The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy".                                                                                          |
| [8]  | ITU-T Recommendation G.751 (1988): "Digital multiplex equipments operating at the third order bit rate of 34 368 kbit/s and the fourth order bit rate of 139 264 kbit/s and using positive justification".                           |
| [9]  | ITU-T Recommendation O.151 (1992): "Error performance measuring equipment operating at the primary rate and above".                                                                                                                  |
| [10] | ITU-T draft Recommendation O.181: "Equipment to assess error performance on STM-N interfaces".                                                                                                                                       |
| [11] | IEEE 802.6: "Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific                                                                                        |

physical layer specifications".

Digital Hierarchy".

requirements-Part 6: Distributed Queue Dual Bus (DQDB) access method and

ITU-T Recommendation G.708: "Network node interface for the Synchronous

#### 3 Definitions, Abbreviations and Symbols

#### 3.1 Definitions

The functional definitions are described in ETS 300 417-1-1 [1].

#### 3.2 Abbreviations

A Adaptation function
AcTI Accepted Trace identifier
ADM Add-Drop Multiplexer
AI Adapted Information
AIS Alarm Indication Signal

AP Access Point

APId Access Point Identifier
APS Automatic Protection Switch
ATM Asynchronous Transfer Mode

AU Administrative Unit

AU-n Administrative Unit, level n AUG Administrative Unit Group

BER Bit Error Ratio

BIP Bit Interleaved Parity

BIP-N Bit Interleaved Parity, width N

C Connection function
CI Characteristic Information

CK Clock

CM Connection Matrix
CP Connection Point
CS Clock Source

D Data

DCC Data Communications Channel

DEC Decrement DEG Degraded

DEGTHR Degraded Threshold EBC Errored Block Count

ECC Embedded Communications Channel

ECC(x) Embedded Communications Channel, Layer x

EDC Error Detection Code

EDCV Error Detection Code Violation
EMF Equipment Management Function

EQ Equipment
ES Electrical Section
ES Errored Second

ExTI Expected Trace Identifier

F\_B Far-end Block

FAS Frame Alignment Signal
FOP Failure Of Protocol
FS Frame Start signal
HO Higher Order

HOVC Higher Order Virtual Container

HP Higher order Path

ID Identifier
IF In Frame state
INC Increment
LC Link Connection
LO Lower Order

LOA Loss Of Alignment; generic for LOF, LOM, LOP

LOF Loss Of Frame
LOP Loss Of Pointer
LOS Loss Of Signal

LOVC Lower Order Virtual Container

MC Matrix Connection

MCF Message Communications Function

MDT Mean Down Time

mei maintenance event information MI Management Information

MO Managed Object MON Monitored

MP Management Point MS Multiplex Section

MS1 STM-1 Multiplex Section
MS16 STM-16 Multiplex Section
MS4 STM-4 Multiplex Section
MSB Most Significant Bit

MSOH Multiplex Section Overhead
MSP Multiplex Section Protection
MSPG Multiplex Section Protection Group

N.C. Not Connected

N\_B Near-end Block

NC Network Connection

NDF New Data Flag

NE Network Element

NMON Not Monitored

NNI Network Node Interface
NU National Use (bits, bytes)
NUx National Use, bit rate order x

OAM Operation, Administration and Management

OFS Out of Frame Second
OOF Out Of Frame state
OS Optical Section

OSI(x) Open Systems Interconnection, Layer x

OW Order Wire Protection

P\_A Protection Adaptation
P\_C Protection Connection
P\_TT Protection Trail Termination
PDH Plesiochronous Digital Hierarchy
PJE Pointer Justification Event
PM Performance Monitoring
Pn Plesiochronous signal, Level n

POH Path Overhead

PRC Primary Reference Clock
PS Protection Switching
PSC Protection Switch Count

PTR Pointer

RS4

QOS Quality Of Service **RDI** Remote Defect Indicator REI Remote Error Indicator Remote Information RΙ RΡ Remote Point RS Regenerator Section RS<sub>1</sub> STM-1 Regenerator Section **RS16** STM-16 Regenerator Section

RSOH Regenerator Section Overhead RxTI Received Trace identifier

S4 VC-4 path layer

SASE Stand-Alone Synchronization Equipment

SD Synchronization Distribution layer, Signal Degrade

STM-4 Regenerator Section

SDH Synchronous Digital Hierarchy

SEC SDH Equipment Clock

SF Signal Fail Sk Sink

SNC Sub-Network Connection

SNC/I Inherently monitored Sub-Network Connection protection SNC/N Non-intrusively monitored Sub-Network Connection protection

#### Page 10

#### Draft prETS 300 417-4-1: April 1996

So Source

SOH Section Overhead
SPRING Shared Protection Ring
SR Selected Reference
SSD Server Signal Degrade
SSF Server Signal Fail

SSM Synchronization Status Message SSU Synchronization Supply Unit STM Synchronous Transport Module

STM-N Synchronous Transport Module, level N

TCP Termination Connection Point

TI Timing Information
TIM Trace Identifier Mismatch

TM Transmission Medium, Transmission & Multiplexing

TMN Telecommunications Management Network

TP Timing Point

TPmode Termination Point mode

TS Time Slot

TSD Trail Signal Degrade TSF Trail Signal Fail

TT Trail Termination function
TTI Trail Trace Identifier

TTs Trail Termination supervisory function

TxTI Transmitted Trace Identifier

UNEQ Unequipped

UNI User Network Interface

USR User channels
VC Virtual Container

VC-n Virtual Container, level n

W Working

#### 3.3 Symbols and Diagrammatic Conventions

The symbols and diagrammatic conventions are described in ETS 300 417-1-1 [1].

#### 3.4 Introduction

The atomic and some compound functions used in the SDH Path Layers are defined below.

#### 4 VC-4 Path Layer Functions

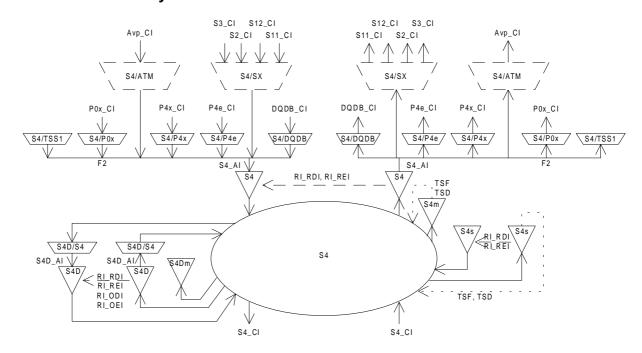



Figure 1: VC-4 Higher Order Path layer atomic functions

#### **VC-4 Layer Characteristic Information**

The Characteristic Information S4\_CI is octet structured with an 125  $\mu$ s frame (figure 2). Its format is characterised as S4\_AI plus the VC-4 trail termination overhead in the J1, B3, and G1 locations as defined in ETS 300 147 [2] or as an unequipped signal as defined in ETS 300 417-1-1 [1], subclause 7.2. For the case the signal has passed the tandem connection sublayer, S4\_CI has defined VC-4 tandem connection trail termination overhead in location N1.

NOTE 1: N1 will be undefined when the signal S4\_CI has not been processed in a tandem connection adaptation and trail termination function. N1 is all "0"s in a (supervisory) unequipped VC-4 signal.

#### **VC-4 Layer Adaptation Information**

The Adaptation Information AI is octet structured with an 125 µs frame (figure 2). It represents adapted client layer information comprising 2 340 bytes of client layer information, the signal label byte C2, and 2 bytes F3 and H4 of client specific information combined with an 1 byte user channel (F2). For the case the signal has passed the trail protection sublayer, S4\_AI has defined APS bits (1 to 4) in byte K3.

- NOTE 2: Bits 1 to 4 of byte K3 will be undefined when the signal S4\_AI has not been processed in a trail protection connection function S4P\_C.
- NOTE 3: Bits 5 to 8 of byte K3 are reserved for future international standardisation. Currently, their values are undefined.
- NOTE 4: Bytes F2 and F3 will be undefined when the adaptation functions sourcing these bytes are not present in the network element.
- NOTE 5: Byte H4 will be undefined when the VC-4 transports a 140 Mbit/s or an ATM signal.

A VC-4 comprises one of the following payloads:

- a 139 264 kbit/s signal asynchronous mapped into a C-4;
- a TUG-structured signal;
- an ATM 149 760 kbit/s cell stream signal;
- a DQDB 149 888 kbit/s signal.

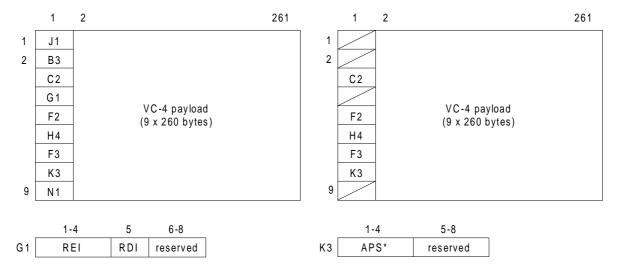



Figure 2: S4\_CI\_D (left) and S4\_AI\_D (right)

NOTE 6: The APS signal has not been defined; a multiframed APS signal might be required.

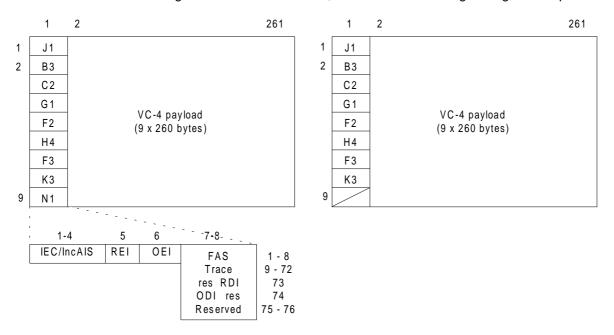



Figure 3: S4\_CI\_D (left) with defined N1 and S4D\_AI\_D (right)

Figure 4 shows the trail protection sublayer atomic functions added to (a subset of) the layer atomic functions presented in figure 1. It should be noted that the S4/P0x\_A function can be absent, or connected before or after the protection functions S4P\_C. When connected before S4P\_C the transport of the user channel signal is not protected, otherwise it is protected.

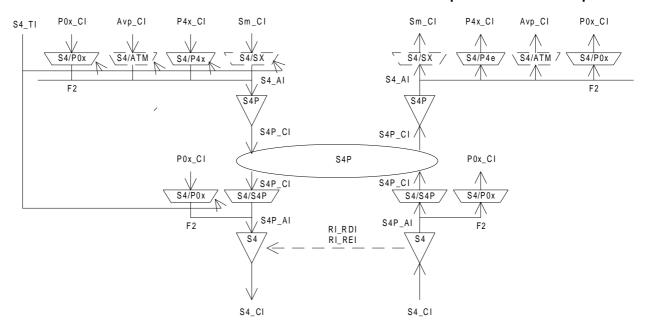



Figure 4: VC-4 Layer Trail Protection atomic functions

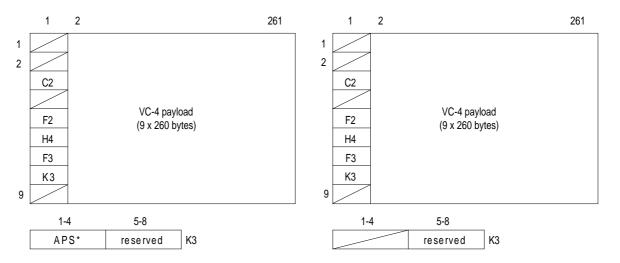



Figure 5: S4P\_AI\_D (left) and S4P\_CI\_D (right) signals

Figures 6 to 11 show connectivity examples of atomic functions associated with linear trail and SNC protection.

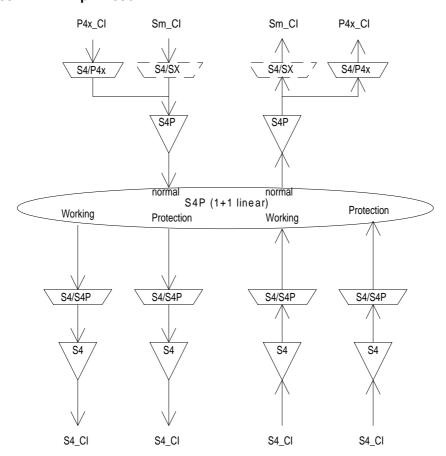



Figure 6: 1+1 VC-4 Linear Trail Protection model (example)

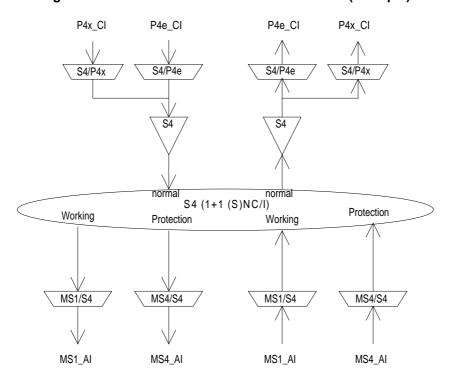



Figure 7: 1+1 VC-4 SNC/I protection model within a network element terminating the VC-4 path (example)

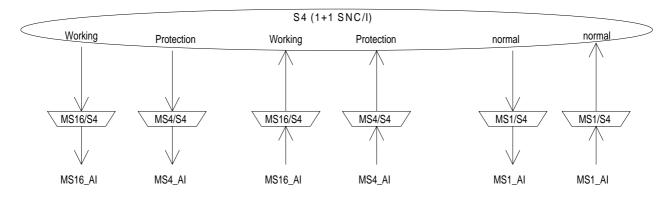



Figure 8: 1+1 VC-4 SNC/I protection model within a network element passing through the VC-4 signal (example)

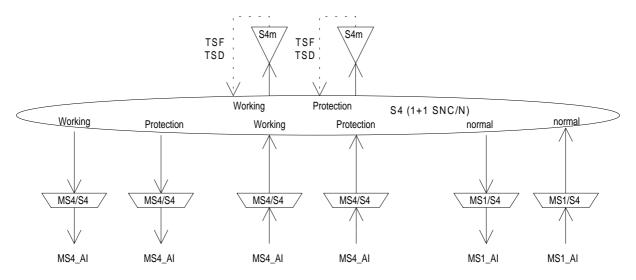



Figure 9: 1+1 VC-4 SNC/N protection model within a network element passing through the VC-4 signal (example)

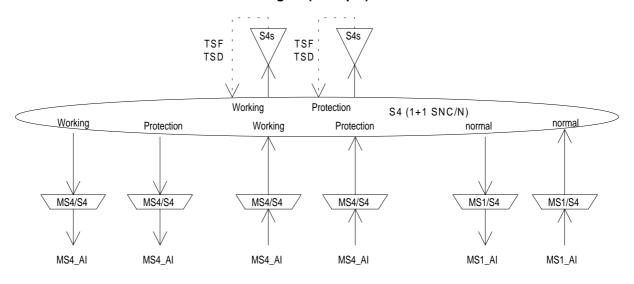



Figure 10: 1+1 VC-4 SNC/N protection model for a supervisory-unequipped signal within a network element passing through the VC-4 signal (example)

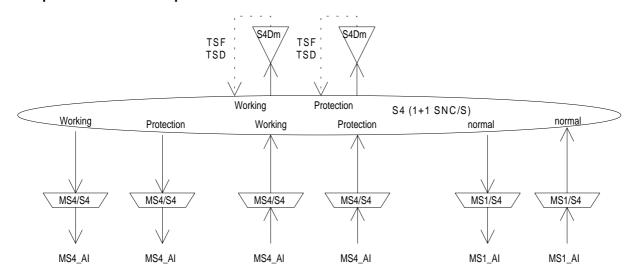



Figure 11: 1+1 VC-4 tandem connection SNC/S protection model within a network element passing through the VC-4 tandem connection (TC4) signal (example)

#### 4.1 VC-4 Layer Connection Function S4\_C

#### Symbol:

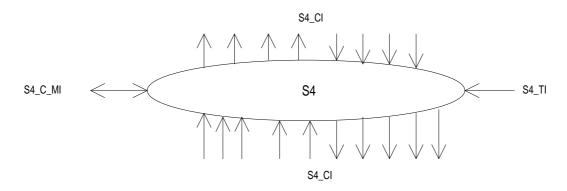



Figure 12: S4\_C symbol

#### Interfaces:

Table 1: S4\_C input and output signals

| Input(s)                               |              | Output(s)                                                  |
|----------------------------------------|--------------|------------------------------------------------------------|
| per S4_CI, n x for the function:       | per S4_CI, n | n x per function:                                          |
| S4_CI_D                                | S4_CI_D      |                                                            |
| S4_CI_CK                               | S4_CI_CK     |                                                            |
| S4_CI_FS                               | S4_CI_FS     |                                                            |
| S4_CI_SSF                              | S4_CI_SSF    |                                                            |
| S4_AI_TSF                              |              |                                                            |
| S4_AI_TSD                              |              |                                                            |
|                                        | NOTE:        | protection status reporting signals are for further study. |
| 1 x per function:                      |              |                                                            |
| S4_TI_CK                               |              |                                                            |
| S4_TI_FS                               |              |                                                            |
|                                        |              |                                                            |
| per input and output connection point: |              |                                                            |
| S4_C_MI_ConnectionPortIds              |              |                                                            |
|                                        |              |                                                            |
| per matrix connection:                 |              |                                                            |
| S4_C_MI_ConnectionType                 |              |                                                            |
| S4_C_MI_Directionality                 |              |                                                            |
|                                        |              |                                                            |
| per SNC protection group:              |              |                                                            |
| S4_C_MI_PROTtype                       |              |                                                            |
| S4_C_MI_OPERtype                       |              |                                                            |
| S4_C_MI_WTRtime                        |              |                                                            |
| S4_C_MI_HOtime                         |              |                                                            |
| S4_C_MI_EXTCMD                         |              |                                                            |

#### **Processes:**

In the S4\_C function VC-4 Layer Characteristic Information is routed between input (termination) connection points ((T)CPs) and output (T)CPs by means of matrix connections. (T)CPs may be allocated within a protection group.

NOTE 1: Neither the number of input/output signals to the connection function, nor the connectivity is specified in this ETS. That is a property of individual network elements.

Figure 1 present a subset of the atomic functions that can be connected to this VC-4 connection function: VC-4 trail termination functions, VC-4 non-intrusive monitor trail termination sink function, VC-4 unequipped-supervisory trail termination functions, VC-4 tandem connection trail termination and adaptation functions. In addition, adaptation functions in the VC-4 server (i.e. STM-N multiplex section) layers will be connected to this VC-4 connection function.

Routing: The function shall be able to connect a specific input with a specific output by means of establishing a matrix connection between the specified input and output. It shall be able to remove an established matrix connection.

Each (matrix) connection in the S4\_C function shall be characterised by the:

Type of connection: unprotected, 1+1 protected (SNC/I or SNC/N protection);

Traffic direction: unidirectional, bidirectional;

Input and output connection points: set of connection point identifiers (refer to ETS 300 417-1-1 [1], subclause 3.3.6).

NOTE 2: Broadcast connections are handled as separate connections to the same input CP.

Provided no protection switching action is activated/required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- addition and removal of protection;
- addition and removal of connections to/from a broadcast connection;
- change between operation types;
- change of WTR time;
- change of Hold-off time.

*Unequipped VC generation:* The function shall generate an unequipped VC signal, as specified in ETS 300 417-1-1 [1], subclause 7.2.

SNC protection: The function shall provide the option to establish protection groups between a number of (T)CPs (ETS 300 417-1-1 [1], subclause 9.4.1 and subclause 9.4.2) to perform the VC-4 linear (sub)network connection protection process for 1+1 protection architectures (refer to ETS 300 417-1-1 [1], subclause 9.2). The SNC protection process shall perform the bridge and selector functionality as presented in figure 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the working connection or the protection connection; this is determined by the SF,SD conditions (relayed via CI\_SSF or AI\_TSF/AI\_TSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

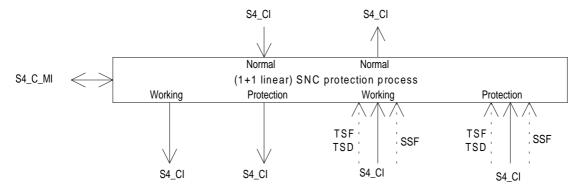



Figure 13: 1+1 SNC protection process (SNC/I, SNC/N)

*SNC Protection Operation:* The SNC protection process shall operate as specified in prETS 300 417-3-1 [4] annex A, according the following characteristics:

| Table 2: | SNC protec | tion paran | neters |
|----------|------------|------------|--------|
|          |            |            |        |

| architecture type (ARCHtype)   | 1+1                                             |
|--------------------------------|-------------------------------------------------|
| switching type (SWtype)        | single-ended                                    |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | false                                           |
| Wait-To-Restore time (WTRtime) | in the order of 5-12 minutes                    |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | SNC/I, SNC/N                                    |
| Signal switch conditions:      | SF = SSF (SNC/I), SF = TSF (SNC/N, SNC/S),      |
|                                | SD = TSD (SNC/N, SNC/S)                         |
| External commands (EXTCMD)     | LO-#0, FSw-#i, MSw-#i, CLR; i = 0, 1            |
| Extra traffic (EXTRAtraffic)   | false                                           |

In the sink case of a protection connection the source of the connection is determined by the SF (and SD) signals associated with each of the two inputs to the connection and the possible external switch requests. The set of SF and SD signals used, is controlled by the protection type setting.

**Defects:** None

#### **Consequent Actions:**

If an output of this function is not connected to one of its inputs, the function shall connect the unequipped VC-4 (with valid frame start (FS) and SSF=false) to the output.

**Defect Correlations:** None

Performance Monitoring: None

#### 4.2 VC-4 Layer Trail Termination Functions

#### 4.2.1 VC-4 Layer Trail Termination Source S4\_TT\_So

#### Symbol:

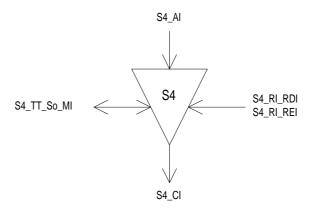



Figure 14: S4\_TT\_So symbol

#### Interfaces:

Table 3: S4\_TT\_So input and output signals

| Input(s)         | Output(s) |
|------------------|-----------|
| S4_AI_D          | S4_CI_D   |
| S4_AI_CK         | S4_CI_CK  |
| S4_AI_FS         | S4_CI_FS  |
| S4_RI_RDI        |           |
| S4_RI_REI        |           |
| S4_TT_So_MI_TxTI |           |

#### **Processes:**

This function adds error monitoring and status overhead bytes to the S4\_AI (containing payload (or client layer) independent overhead of 4 bytes per frame) presented at its input to form the VC4 layer Characteristic Information. The processing of the trail termination overhead bytes is defined as follows:

**J1:** In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in ETS 300 417-1-1 [1], subclause 7.1.

**B3:** In this byte the function shall insert the BIP-8 EDC with even bit parity. Each bit n of current B3 is computed to provide even parity over the n<sup>th</sup> bit of every byte in the previous frame of the Characteristic

Information S4\_CI, i.e. B3 is calculated over the entire previous VC-4. Further reference is provided in ETS 300 417-1-1 [1], subclause 7.3.

G1: This byte is set to represent the status of the associated S4\_TT\_Sk. Its format is defined in figure 2.

**G1[1-4]:** The signal value applied at RI\_REI shall be inserted in the VC-4 REI, bits 1 to 4 of byte G1. The coding shall be as follows:

| Number of BIP-8<br>violations conveyed via<br>RI_REI | G1[1] | G1[2] | G1[3] | G1[4] |
|------------------------------------------------------|-------|-------|-------|-------|
| 0                                                    | 0     | 0     | 0     | 0     |
| 1                                                    | 0     | 0     | 0     | 1     |
| 2                                                    | 0     | 0     | 1     | 0     |
| 3                                                    | 0     | 0     | 1     | 1     |
| 4                                                    | 0     | 1     | 0     | 0     |
| 5                                                    | 0     | 1     | 0     | 1     |
| 6                                                    | 0     | 1     | 1     | 0     |
| 7                                                    | 0     | 1     | 1     | 1     |
| 0                                                    | 1     | 0     | ^     | 0     |

Table 4: G1[1-4] coding

**G1[5]:** Bit 5 of byte G1, a RDI indication, shall be set to "1" on activation of S4\_RI\_RDI within 250  $\mu$ s, determined by the associated S4\_TT\_Sk function, and set to "0" within 250  $\mu$ s on clearing of S4\_RI\_RDI.

**G1[6-8]:** The value of the bits 6 to 8 of byte G1 is undefined.

**Defects:** None

Consequent Actions: None

**Defect Correlations:** None

Performance Monitoring: None

#### 4.2.2 VC-4 Layer Trail Termination Sink S4\_TT\_Sk

#### Symbol:

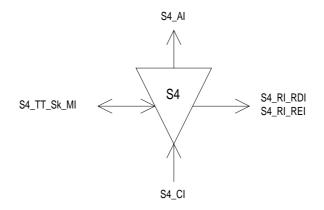



Figure 15: S4\_TT\_Sk symbol

#### Interfaces:

Table 5: S4\_TT\_Sk input and output signals

| Input(s)                 | Output(s)          |
|--------------------------|--------------------|
| S4_CI_D                  | S4_AI_D            |
| S4_CI_CK                 | S4_AI_CK           |
| S4_CI_FS                 | S4_AI_FS           |
| S4_CI_SSF                | S4_AI_TSF          |
|                          | S4_AI_TSD          |
| S4_TT_Sk_MI_TPmode       | S4_TT_Sk_MI_cTIM   |
| S4_TT_Sk_MI_SSF_Reported | S4_TT_Sk_MI_cUNEQ  |
| S4_TT_Sk_MI_ExTI         | S4_TT_Sk_MI_cDEG   |
| S4_TT_Sk_MI_RDI_Reported | S4_TT_Sk_MI_cRDI   |
| S4_TT_Sk_MI_DEGTHR       | S4_TT_Sk_MI_cSSF   |
| S4_TT_Sk_MI_DEGM         | S4_TT_Sk_MI_AcTI   |
| S4_TT_Sk_MI_1second      | S4_RI_RDI          |
| S4_TT_Sk_MI_TIMdis       | S4_RI_REI          |
| S4_TT_Sk_MI_ExTImode     | S4_TT_Sk_MI_pN_EBC |
|                          | S4_TT_Sk_MI_pF_EBC |
|                          | S4_TT_Sk_MI_pN_DS  |
|                          | S4_TT_Sk_MI_pF_DS  |

#### Processes:

This function monitors VC-4 for errors, and recovers the trail termination status. It extracts the payload independent overhead bytes (J1, B3, C2, G1) from the VC-4 layer Characteristic Information:

**J1:** The Received Trail Trace Identifier RxTI shall be recovered from the J1 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3.

**B3:** Even bit parity shall be computed for each bit n of every byte of the preceding VC-4 and compared with bit n of B3 recovered from the current frame (n=1 to 8 inclusive). A difference between the computed and recovered B3 values shall be taken as evidence of one or more errors (nN\_B) in the computation block.

**G1[1-4], G1[5]:** The information carried in the G1 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 5) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI) and 7.4.11 and 8.2 (RDI).

G1[6-8]: The value in the bits 6 to 8 of byte G1 shall be ignored.

Table 6: G1[1-4] code interpretation

| G1[1] | G1[2] | G1[3] | G1[4] | REI code interpretation |
|-------|-------|-------|-------|-------------------------|
| 0     | 0     | 0     | 0     | 0 errors                |
| 0     | 0     | 0     | 1     | 1 error                 |
| 0     | 0     | 1     | 0     | 2 errors                |
| 0     | 0     | 1     | 1     | 3 errors                |
| 0     | 1     | 0     | 0     | 4 errors                |
| 0     | 1     | 0     | 1     | 5 errors                |
| 0     | 1     | 1     | 0     | 6 errors                |
| 0     | 1     | 1     | 1     | 7 errors                |
| 1     | 0     | 0     | 0     | 8 errors                |
| 1     | 0     | 0     | 1     | 0 errors                |
| 1     | 0     | 1     | 0     | 0 errors                |
| 1     | 0     | 1     | 1     | 0 errors                |
| 1     | 1     | 0     | 0     | 0 errors                |
| 1     | 1     | 0     | 1     | 0 errors                |
| 1     | 1     | 1     | 0     | 0 errors                |
| 1     | 1     | 1     | 1     | 0 errors                |

C2: The information in the C2 byte shall be extracted to allow unequipped VC defect detection.

#### **Defects:**

The function shall detect for dDEG, dRDI, dUNEQ and dTIM defects according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

#### **Consequent Actions:**

aAIS  $\leftarrow$  dUNEQ or dTIM

aTSF  $\leftarrow$  CI\_SSF or dUNEQ or dTIM

aRDI  $\leftarrow$  CI\_SSF or dUNEQ or dTIM

aTSD  $\leftarrow$  dDEG

aREI  $\leftarrow$  "#EDCV"

On declaration of aAIS the function shall output all-ONEs signal within 250  $\mu$ s; on clearing of aAIS the function shall output normal data within 250  $\mu$ s.

#### **Defect Correlations:**

cUNEQ ← dUNEQ and MON

cTIM  $\leftarrow$  dTIM and (not dUNEQ) and MON

cDEG ← dDEG and (not dTIM) and MON

cRDI ← dRDI and (not dUNEQ) and (not dTIM) and MON and RDI\_Reported

cSSF ← CI\_SSF and MON and SSF\_Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

#### **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $pN_DS \leftarrow aTSF \text{ or } dEQ$ 

 $\mathsf{pF\_DS} \quad \leftarrow \quad \mathsf{dRDI}$ 

 $pN\_EBC \leftarrow \Sigma nN\_B$ 

 $\mathsf{pF\_EBC} \quad \leftarrow \quad \Sigma \, \mathsf{nF\_B}$ 

#### 4.3 VC-4 Layer Adaptation Functions

#### 4.3.1 VC-4 Layer to P4x Layer Adaptation Source S4/P4x\_A\_So

#### Symbol:

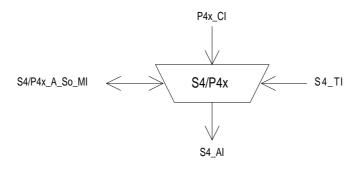



Figure 16: S4/P4x\_A\_So symbol

#### Interfaces:

Table 7: S4/P4x A So input and output signals

| Input(s)              | Output(s) |
|-----------------------|-----------|
| P4x_CI_D              | S4_AI_D   |
| P4x_CI_CK             | S4_AI_CK  |
| S4_TI_CK              | S4_AI_FS  |
| S4_TI_FS              |           |
| S4/P4x_A_So_MI_Active |           |

#### **Processes:**

This function maps a 139 264 kbit/s information stream into a VC-4 payload using bit stuffing and adds bytes C2 and H4. It takes  $P4x_CI$ , a bit-stream with a rate of 139 264 kbit/s  $\pm$  15 ppm, present at its input and inserts it into the synchronous container-4 having a capacity of 2 340 bytes and the justification frame as defined in ETS 300 147 [2] and depicted in figure 18.

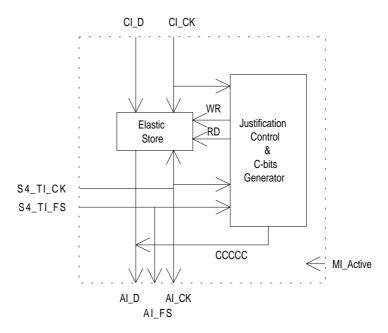
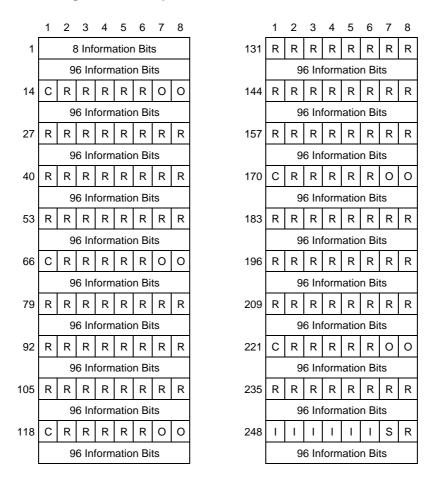




Figure 17: main processes within S4/P4x\_A\_So



#### Legend:

I = Information Bit, R = Fixed Stuff Bit, O = O-Bit, S = Justification Opportunity Bit, C = Justification Control Bit

Figure 18: Asynchronous mapping of P4x\_Cl (139 264 kbit/s) showing one row of the nine-row Container-4 structure

Figure 19: S4/P4x AI So D

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process (figure 17). The data signal shall be written into the buffer under control of the associated input clock. The data shall be read out of the buffer and written onto the I and S bits under control of the VC-4 clock, frame position (S4\_TI), and justification decisions.

The justification decisions determine the phase error introduced by the S4/P4x\_A\_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the justification control bits C (figure 18). An example is given in annex A.3.

Each justification decision results in a corresponding positive justification action. Upon a positive justification action, the reading of 1 data bit shall be cancelled once and no data are written at the justification opportunity bit S. If no justification action is to be performed, data shall be written onto S.

NOTE: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced.

*Buffer size:* In the presence of jitter as specified by ITU-T Recommendation G.823 [7] and a frequency within the range 139 264 kbit/s  $\pm$  15 ppm, this justification process shall not introduce any errors. Any step in frequency within this range shall not cause any errors.

**C** bits: *Justification control generation:* The function shall generate the justification control (C) bits according the specification in ETS 300 147 [2]. It shall insert the justification control bits in the appropriate C bit positions.

Two bytes of payload specific POH information, bytes C2 and H4, shall be added to container-4 to form the VC-4 AI and a fixed Frame Start (FS) shall be generated.

**H4:** The value of H4 byte is undefined.

**C2:** In this byte the function shall insert code "0001 0010" (Asynchronous mapping of 139 264 kbit/s into the Container-4) as defined in ETS 300 147 [2].

O bits: The value of the O bits is undefined.

R bits: The value of an R bits is undefined.

Figure 1 shows that more than one adaptation source function exists in this VC-4 layer that can be connected to one VC-4 access point. For such case, a subset of these adaptation source functions is allowed to be activated together. For this subset, access to the access point by other adaptation source functions must be denied.

Activation: The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

Defects: None

An elastic store under/overflow defect (dUOF) is for further study.

Consequent Actions: None

Page 26

Draft prETS 300 417-4-1: April 1996

**Defect Correlations:** None

Performance Monitoring: None

#### 4.3.2 VC-4 Layer to P4x Layer Adaptation Sink S4/P4x\_A\_Sk

#### Symbol:

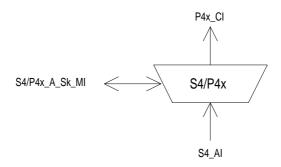



Figure 20: S4/P4x\_A\_Sk symbol

#### Interfaces:

Table 8: S4/P4x\_A\_Sk input and output signals

| Input(s)              | Output(s)           |
|-----------------------|---------------------|
| S4_AI_D               | P4x_CI_D            |
| S4_AI_CK              | P4x_CI_CK           |
| S4_AI_FS              | S4/P4x_A_Sk_MI_cPLM |
| S4_AI_TSF             | S4/P4x_A_Sk_MI_AcSL |
| S4/P4x_A_Sk_MI_Active |                     |

#### **Processes:**

The function recovers plesiochronous P4x Characteristic Information (139 264 kbit/s  $\pm$  15 ppm) from the synchronous container-4 (having a frequency accuracy within  $\pm$  4.6 ppm) according to ETS 300 147 [2] , and monitors the reception of the correct payload signal type.

**C2:** The function shall compare the content of the accepted C2 byte with the expected value code "0001 0010" (Asynchronous mapping of 139 264 kbit/s into the Container-4) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclauses 7.2 and 8.1.2.

**H4:** The value in the H4 byte shall be ignored.

O bits: The value in the O bits shall be ignored.

**R bits:** The value in the R bits shall be ignored.

**C bits:** *Justification control interpretation:The* function shall perform justification control interpretation specified by ETS 300 147 [2] to recover the 139 264 kbit/s signal from the VC-4. If the majority of the C bits is "0" the S bit shall be taken as a data bit, otherwise (majority of C bits is "1") S bit shall be taken as a justification bit and consequently ignored.

Smoothing & jitter limiting process: The function shall provide for a clock smoothing and elastic store (buffer) process. The 139 264 kbit/s data signal shall be written into the buffer under control of the associated (gapped) input clock (with a frequency accuracy within  $\pm$  4.6 ppm). The data signal shall be read out of the buffer under control of a smoothed (equally spaced) 139 264 kHz  $\pm$  15 ppm clock (the rate is determined by the 140 Mbit/s signal at the input of the remote S4/P4x\_A\_So). The residual jitter caused

by pointer adjustments and bit justifications (measured at the 139 264 kbit/s interface) shall be within the limits specified in subclause 11.3.1.2 of ETS 300 417-1-1 [1].

*Buffer size:* In the presence of jitter as specified by subclause 11.3.1.2 of ETS 300 417-1-1 [1] and a frequency within the range 139 264 kbit/s  $\pm$  15 ppm, this justification process shall not introduce any errors.

Following a step in frequency of the P4x signal transported by the S4\_AI (for example due to reception of P4x CI from a new P4x\_TT\_So at the far end or removal of all-ONEs (AIS) signal with a frequency offset) there will be a maximum recovery time of X seconds after which this process shall not generate any bit errors.

The value of X is for further study; a value of 1 second has been proposed.

Figure 1 shows that more than one adaptation sink function exists in this VC-4 layer that can be connected to one VC-4 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

Activation: The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via the management point.

Defects: The function shall detect for dPLM defect according the

specification in ETS 300 417-1-1 [1], subclause 8.2.1.

Consequent Actions: aAIS  $\leftarrow$  AI\_TSF or dPLM

On declaration of the aAIS the function shall output an all-ONEs (AIS) signal in the P4x\_CI\_D within 250  $\mu$ s; on clearing of aAIS the function shall output normal data within 250  $\mu$ s. The P4x\_CI\_CK during the all-ONEs signal shall be within 139 264 kHz  $\pm$  15 ppm.

**Defect Correlations:**  $CPLM \leftarrow dPLM \text{ and (not AI TSF)}$ 

Performance Monitoring: None

#### 4.3.3 VC-4 Layer to P4e Layer Adaptation Source S4/P4e\_A\_So

Symbol:

Figure 21: S4/P4e\_A\_So symbol

#### Interfaces:

Table 9: S4/P4e A So input and output signals

| Input(s)              | Output(s) |
|-----------------------|-----------|
| P4e_CI_D              | S4_AI_D   |
| P4e_CI_CK             | S4_AI_CK  |
| S4_TI_CK              | S4_AI_FS  |
| S4_TI_FS              |           |
| S4/P4e_A_So_MI_Active |           |

#### Processes:

This function maps a 139 264 kbit/s information stream into a VC-4 payload using bit stuffing and adds bytes C2 and H4. It takes P4e\_CI, a bit-stream with a rate of 139 264 kbit/s ±15 ppm, present at its input and inserts it into the synchronous container C4 having a capacity of 2 340 bytes and the justification frame as defined in ETS 300 147 [2] and depicted in figure 18.

NOTE 1: The insertion of the frame alignment signal would be a S4/P4e\_A\_So process as specified in clause 5 of ETS 300 417-1-1 [1]. The (historical) definition of the 139 264 kbit/s signal in ITU-T Recommendation G.751 [8] causes a violation of this process allocation, hence the FAS insertion process is located in the P4e\_TT\_So function.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process (figure 17). The data signal shall be written into the buffer under control of the associated input clock. The data shall be read out of the buffer and written onto the I and S bits under control of the VC-4 clock, frame position (S4\_TI), and justification decisions.

The justification decisions determine the phase error introduced by the S4/P4e\_A\_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the justification control bits C (figure 18). An example is given in annex A.3.

Each justification decision results in a corresponding positive justification action. Upon a positive justification action, the reading of 1 data bit shall be cancelled once an no data are written at the justification opportunity bit S. If no positive justification action is to be performed, data shall be written onto S.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced.

Buffer size: In the presence of jitter as specified by ITU-T Recommendation G.823 [7] and a frequency within the range 139 264 kbit/s  $\pm$  15 ppm, this justification process shall not introduce any errors. Any step in frequency within this range shall not cause any errors.

**C bits:** *Justification control generation:* The function shall generate the justification control (C) bits according the specification in ETS 300 147 [2]. It shall insert the justification control bits in the appropriate C bit positions.

Two bytes of payload specific POH information, bytes C2 and H4, shall be added to container-4 to form the VC-4 AI and a fixed Frame Start (FS) shall be generated.

**H4:** The value of H4 byte is undefined.

**C2:** In this byte the function shall insert code "0001 0010" (Asynchronous mapping of 139 264 kbit/s into the Container-4) as defined in ETS 300 147 [2].

O bits: The value of the O bits is undefined.

R bits: The value of an R bit is undefined.

Figure 1 shows that more than one adaptation source function exists in this VC-4 layer that can be connected to one VC-4 access point. For such case, a subset of these adaptation source functions is allowed to be activated together. For this subset, access to the access point by other adaptation source functions must be denied.

Activation: The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

**Defects:** None

An elastic store under/overflow defect (dUOF) is for further study.

Consequent Actions: None

**Defect Correlations:** None

Performance Monitoring: None

#### 4.3.4 VC-4 Layer to P4e Layer Adaptation Sink S4/P4e\_A\_Sk

#### Symbol:

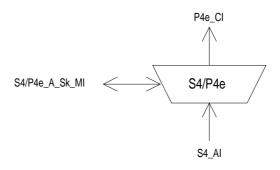



Figure 22: S4/P4e\_A\_Sk symbol

#### Interfaces:

Table 10: S4/P4e\_A\_Sk input and output signals

| Input(s)                    | Output(s)           |
|-----------------------------|---------------------|
| S4_AI_D                     | P4e_CI_D            |
| S4_AI_CK                    | P4e_CI_CK           |
| S4_AI_FS                    | P4e_CI_FS           |
| S4_AI_TSF                   | P4e_CI_SSF          |
|                             | S4/P4e_A_Sk_MI_cPLM |
| S4/P4e_A_Sk_MI_Active       | S4/P4e_A_Sk_MI_AcSL |
| S4/P4e_A_Sk_MI_AIS_Reported | S4/P4e_A_Sk_MI_cLOF |
|                             | S4/P4e_A_Sk_MI_cAIS |

#### Processes:

The function recovers plesiochronous P4e Characteristic Information (139 264 kbit/s  $\pm$  15 ppm) from the synchronous container-4 according to ETS 300 147 [2], and monitors the reception of the correct payload signal type, and recovers P4e frame start reference (FS) from the received signal.

**C2:** The function shall compare the content of the accepted C2 byte with the expected value code "0001 0010" (Asynchronous mapping of 139 264 kbit/s into the Container-4) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclause 7.2 and 8.1.2.

Page 30

Draft prETS 300 417-4-1: April 1996

**H4:** The value in the H4 byte shall be ignored.

O bits: The value in the O bits shall be ignored.

**R bits:** The value in the R bits shall be ignored.

**C bits:** *Justification control interpretation:* The function shall perform justification control interpretation according ETS 300 147 [2] to recover the 139 264 kbit/s signal from the VC-4. If the majority of the C bits is "0" the S bit shall be taken as a data bit, otherwise (majority of C bits is "1") S bit shall be taken as a justification bit and consequently ignored.

Smoothing & jitter limiting process: The function shall provide for a clock smoothing and elastic store (buffer) process. The 139 264 kbit/s data signal shall be written into the buffer under control of the associated (gapped) input clock. The data signal shall be read out of the buffer under control of a smoothed (equally spaced) 139 264 kHz ± 15 ppm clock (the rate is determined by the 140 Mbit/s signal at the input of the remote S4/P4e\_A\_So). The residual jitter caused by pointer adjustments and bit justifications (measured at the 139 264 kbit/s interface) shall be within the limits specified in subclause 11.3.1.2 of ETS 300 417-1-1 [1].

*Buffer size:* In the presence of jitter as specified by subclause 11.3.1.2 of ETS 300 417-1-1 [1] and a frequency within the range 139 264 kbit/s  $\pm$  15 ppm, this justification process shall not introduce any errors.

Following a step in frequency of the P4e signal transported by the S4\_AI (for example due to reception of P4e CI from a new P4e\_TT\_So at the far end or removal of all-ONEs (AIS) signal with a frequency offset) there will be a maximum recovery time of X seconds after which this process shall not generate any bit errors.

The value of X is for further study; a value of 1 second has been proposed.

Figure 1 shows that more than one adaptation sink function exists in this VC-4 layer that can be connected to one VC-4 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

Activation: The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via the management point.

Frame alignment: The function shall perform the frame alignment of the 139 264 kbit/s signal to recover the frame start information FS. The procedures to assume the loss and recovery of frame alignment shall be according the ITU-T Recommendation G.751 [8], §1.5.3.

#### Defects:

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

The function shall detect a loss of frame defect (dLOF) when four consecutive frame alignment signals have been incorrectly received in their predicted positions. When frame alignment is lost, the dLOF defect shall be cleared when three consecutive frame alignment signals are detected.

The function shall detect an AIS defect (dAIS) according the specification in subclause 8.2.1.7 of ETS  $300\,417-1-1$  [1], with X=5,  $Y=2\,928$ , Z=6.

#### **Consequent Actions:**

 $aSSF \leftarrow dPLM \text{ or dLOF or dAIS or AI\_TSF}$ 

aAIS  $\leftarrow$  dPLM or dLOF or dAIS or AI\_TSF

On declaration of the aAIS the function shall output an all-ONEs (AIS) signal in the P4e\_CI\_D within 250  $\mu$ s; on clearing of aAIS the function shall output normal data within 250  $\mu$ s. The P4e\_CI\_CK during the all-ONEs signal shall be within 139 264 kHz  $\pm$  15 ppm.

#### **Defect Correlations:**

 $cPLM \leftarrow dPLM \text{ and (not AI\_TSF)}$ 

cAIS  $\leftarrow$  dAIS and (not dPLM) and (not AI\_TSF) and AIS\_Reported

cLOF ← dLOF and (not dAIS) and (not dPLM)

It shall be an option to report AIS as a fault cause. This is controlled by means of the parameter AIS\_reported. The default shall be AIS\_Reported = false.

#### Performance Monitoring: None

### 4.3.5 VC-4 Layer to VC-3, VC-2, VC-12, and VC-11 Layer Compound Adaptation Source Function S4/SX\_A\_So

#### Symbol:

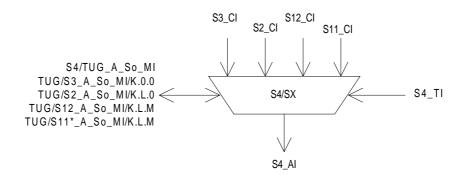



Figure 23: S4/SX\_A\_So symbol

#### Interfaces:

Table 11: S4/SX\_A\_So input and output signals

| Input(s)                                               | Output(s) |
|--------------------------------------------------------|-----------|
| S4/TUG_A_So_MI<br>S4_TI                                | S4_AI     |
| maximum 3 inputs:<br>S3_CI<br>TUG/S3_A_So_MI/K.0.0     |           |
| maximum 21 inputs:<br>S2_CI<br>TUG/S2_A_So_MI/K.L.0    |           |
| maximum 63 inputs:<br>S12_CI<br>TUG/S12_A_So_MI/K.L.M  |           |
| maximum 63 inputs:<br>S11_CI<br>TUG/S11*_A_So_MI/K.L.M |           |

#### Processes:

The S4/SX\_A\_So compound function provides adaptation from the VC-3/2/12/11 layers to the VC-4 layer. This process is performed by a combination of several atomic functions as shown in figure 24. The S4/TUG\_A\_So function performs the VC-4 layer specific signal label and multiframe processing, while the TUG/S3\_A\_So, TUG/S2\_A\_So, TUG/S12\_A\_So and TUG/S11\*\_A\_So functions perform the lower order VC specific frequency justification and bitrate adaptation. Each of these TUG/Sm\_A\_So functions is characterised by the K.L.M parameters, which define the number of the TU within the VC-4 the function has access to (TU numbering scheme according to ETS 300 417-1-1 [1], subclause 3.3.5). According to the TUG multiplex structures supported by the NE, a variety of possible combinations of these TUG/Sm\_A\_So functions exists. Table 12 lists all possible TUG/Sm\_A\_So functions within a S4/SX\_A\_So compound functions.

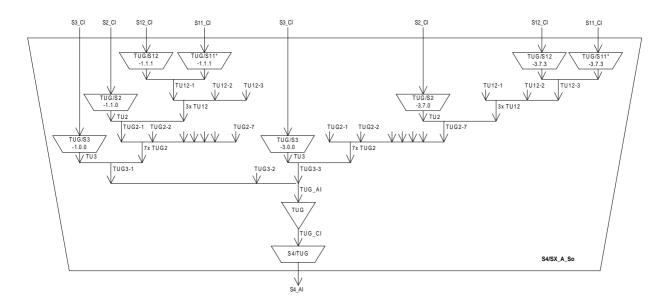



Figure 24: S4/SX\_A\_So compound function with set of S4/Sm\_A\_So atomic functions

| Atomic function      | TU-3/TUG-3 number<br>K | TU-2/TUG-2 number<br>L | TU-12 number<br>M |
|----------------------|------------------------|------------------------|-------------------|
| TUG/S3_A_So/K.0.0    | 13                     | -                      | -                 |
| TUG/S2_A_So/K.L.0    | 13                     | 17                     | -                 |
| TUG/S12_A_So/K.L.M   | 13                     | 17                     | 13                |
| TUG/S11*_A_So/ K.L.M | 13                     | 17                     | 13                |

For specific implementations only a subset of these TUG/Sm\_A\_So functions may be used (e.g. a terminal multiplexer with fixed 2 Mbit/s access has 63 TUG/S12\_A\_So functions). If a flexible TUG multiplex structure is supported, several TUG/Sm\_A\_So functions may have access to the same TU timeslot. For such case, only one of these adaptation source functions is allowed to be activated. This is controlled by the equipment management function by activating/deactivating the functions according to the configured TUG multiplex structure.

NOTE: The S4/TUG\_A\_So, TUG\_T\_So and TUG/Sm\_A\_So (m = 3, 2, 12, 11\*) defined in the

following subclauses can only be used in a S4/Sm\_A\_So compound function. These

functions can not be used as stand alone functions.

NOTE: The TUG is a virtual sub-layer only applicable in a S4/SX\_A compound function.

NOTE: The number of TUG/Sm A (m=3,2,12,11\*) functions that is active must completely fill

the VC4 payload.

#### 4.3.5.1 VC-4 Layer to TUG Adaptation Source Function S4/TUG\_A\_So

#### Symbol:



Figure 25: S4/TUG\_A\_So symbol

#### Interfaces:

Table 13: S4/TUG A So input and output signals

| Input(s)              | Output(s) |
|-----------------------|-----------|
| TUG_CI_D              | S4_AI_D   |
| TUG_CI_CK             | S4_AI_CK  |
| TUG_CI_FS             | S4_AI_FS  |
| TUG_CI_MFS            |           |
|                       |           |
| S4/TUG_A_So_MI_Active |           |
| S4/TUG_A_So_MI_TU3_1  |           |
| S4/TUG_A_So_MI_TU3_2  |           |
| S4/TUG_A_So_MI_TU3_3  |           |

NOTE: The S4/TUG\_A\_So functions can only be used in a S4/SX\_A\_So compound function. It can not be used as a standalone function.

#### **Processes:**

The function adds two payload specific bytes C2 and H4 to the VC-4 POH and fixed stuff (R0) bytes to the VC-4 payload (figure 27). The fixed stuff bytes R1, R2 and R3 are added depending on the TUG multiplex structure.

NOTE: The fixed stuff bytes (R0, R1, R2, R3) are undefined.

C2: In this byte the function shall insert code "0000 0010" (TUG structure) as defined in ETS 300 147 [2].

**H4:** If the TUG structure consists of TU-3s only (MI\_TU3\_1 is true and MI\_TU3\_2 is true and MI\_TU3\_3 is true), the value of H4 is undefined. Otherwise, the value of the multiframe indicator byte H4 shall be set as specified by ETS 300 147 [2],  $500 \mu s$  TU multiframe sequence, and aligned with TUG\_CI\_MFS.

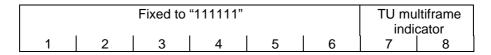



Figure 26: TU multiframe indicator byte H4

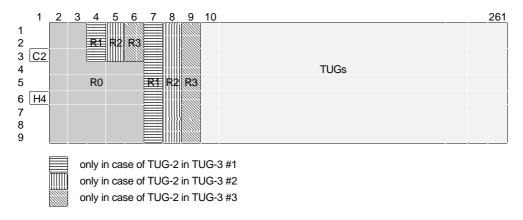



Figure 27: VC-4 payload (TUGs and fixed stuff "R" bytes)

Fixed Stuff bytes: The R0 bytes are always added. The R1 bytes are added if the TUG-3-1 contains TUG-2s (MI\_TU3\_1 is false). The R2 bytes are added if the TUG-3-2 contains TUG-2s (MI\_TU3\_2 is false). The R3 bytes are added if the TUG-3-3 contains TUG-2s (MI\_TU3\_3 is false).

Figure 1 shows that more than one adaptation source function exists in a VC-4 layer that can be connected to one VC-4 access point. For such case, only one of these adaptation source functions is allowed to be activated. Access to the access point by other adaptation source functions must be denied.

Activation: The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

**Defects:** None

Consequent Actions: None

**Defect Correlations:** None

Performance Monitoring: None

#### 4.3.5.2 TUG Termination Source Function TUG\_T\_So

#### Symbol:

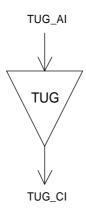



Figure 28: TUG\_T\_So symbol

#### Interfaces:

Table 14: TUG\_T\_So input and output signals

| Input(s)   | Output(s)  |
|------------|------------|
| TUG_AI_D   | TUG_CI_D   |
| TUG_AI_CK  | TUG_CI_CK  |
| TUG_AI_FS  | TUG_CI_FS  |
| TUG_AI_MFS | TUG_CI_MFS |

NOTE: The TUG\_T\_So functions can only be used in a S4/SX\_A\_So compound function. It

can not be used as a standalone function.

Processes: None

Defects: None

Consequent Actions: None

**Defect Correlations:** None

Performance Monitoring: None

#### 4.3.5.3 TUG to VC-3 Layer Adaptation Source Function TUG/S3\_A\_So/K.0.0

#### Symbol:

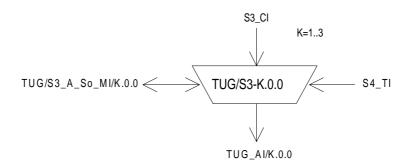



Figure 29: TUG/S3\_A\_So/K.0.0 symbol

#### Interfaces:

Table 15: TUG/S3\_A\_So input and output signals

| Input(s)              | Output(s) |
|-----------------------|-----------|
| S3_CI_D               | TUG_AI_D  |
| S3_CI_CK              | TUG_AI_CK |
| S3_CI_FS              | TUG_AI_FS |
| S3_CI_SSF             |           |
| S4_TI_CK              |           |
| S4_TI_FS              |           |
| TUG/S3_A_So_MI_Active |           |

NOTE: The TUG/S3\_A\_So functions can only be used in a S4/SX\_A\_So compound function.

It can not be used as a standalone function.

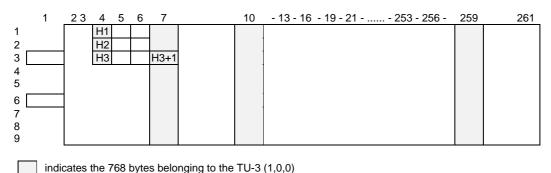



Figure 30: TUG AI D/1.0.0 signal

#### **Processes:**

This function provides frequency justification and bitrate adaptation for a VC-3 signal, represented by a nominally (765 \* 64) = 48 960 kbit/s information stream with a frequency accuracy within  $\pm$  4.6 ppm and the related frame phase, to be multiplexed into a VC-4 signal via a TU-3.

The frame phase of the VC-3 is coded in the related TU-3 pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. Refer to annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the VC-4 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the TUG/S3\_A\_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the TU-3 pointer actions. An example is given in annex A.2.

Each justification decision results in a corresponding negative/positive justification action. Upon a positive justification action, the reading of 8 data bits shall be cancelled once and no data are written at the justification opportunity position H3+1. Upon a negative justification action, an extra 8 data bits shall be read out once into the justification opportunity position H3.

NOTE:

A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Buffer size: For further study.

The TU-3 pointer is carried in 2 bytes of payload specific OH in each container frame. The TU-3 pointer is aligned in the VC-4 payload in fixed position relative to the VC-4 frame. The TU-3 pointer points to the begin of the VC-3 frame within the VC-4. The format of the TU-3 pointer and its location in the frame are defined in ETS 300 147 [2] .

**H1, H2:** Pointer generation: The function shall generate the TU-3 pointer as is described in ETS 300 417-1-1 [1], annex A: Pointer Generation. It shall insert the pointer in the appropriate H1, H2 positions with the SS field set to 10 to indicate TU-3.

*TU-3 timeslot:* The adaptation source function has access to a specific TU-3 of the TUG access point. The TU-3 is defined by the parameter K (K=1..3).

Figure 24 shows that more than one adaptation source function exists in the TUG layer that can be connected to one TUG access point. For such case, a subset of these adaptation source functions is allowed to be activated together, but only one adaptation source function may have access to a specific TU *timeslot*. Access to the same TU *timeslot* by other adaptation source functions must be denied.

Activation: The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

**Defects:** None

**Consequent Actions:** 

aAIS  $\leftarrow$  CI\_SSF

On declaration of aAIS the function shall output an all-ONEs signal within 250  $\mu$ s; on clearing of aAIS the function shall output normal data within 250  $\mu$ s.

NOTE: If CI\_SSF is not connected (when connected to a S3\_TT\_So), CI\_SSF is assumed to

be false.

Performance Monitoring: None

## 4.3.5.4 TUG to VC-2 Layer Adaptation Source Function S4/S2\_A\_So/K.L.0

## Symbol:

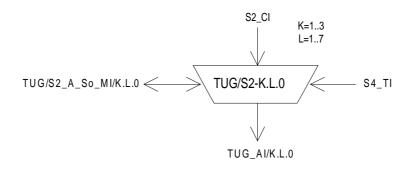



Figure 31: TUG/S2\_A\_So/K.L.0 symbol

## Interfaces:

Table 16: TUG/S2\_A\_So input and output signals

| Input(s)              | Output(s)  |
|-----------------------|------------|
| S2_CI_D               | TUG_AI _D  |
| S2_CI_CK              | TUG_AI_CK  |
| S2_CI_FS              | TUG_AI_FS  |
| S2_CI_SSF             | TUG_AI_MFS |
|                       |            |
| S4_TI_CK              |            |
| S4_TI_FS              |            |
| S4_TI_MFS             |            |
|                       |            |
| TUG/S2_A_So_MI_Active |            |

NOTE: The TUG/S2\_A\_So functions can only be used in a S4/SX\_A\_So compound function. It can not be used as a standalone function.

Page 38

Draft prETS 300 417-4-1: April 1996

#### Processes:

This function provides frequency justification and bitrate adaptation for a VC-2 signal, represented by a nominally (428 \* 64/4) = 6 848 kbit/s information stream with a frequency accuracy within  $\pm$  4.6 ppm and the related frame phase, to be multiplexed into a VC-4 signal via a TU-2.

The (500  $\mu$ s) frame phase of the VC-2 is coded in the related TU-2 pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. Refer to annex A.

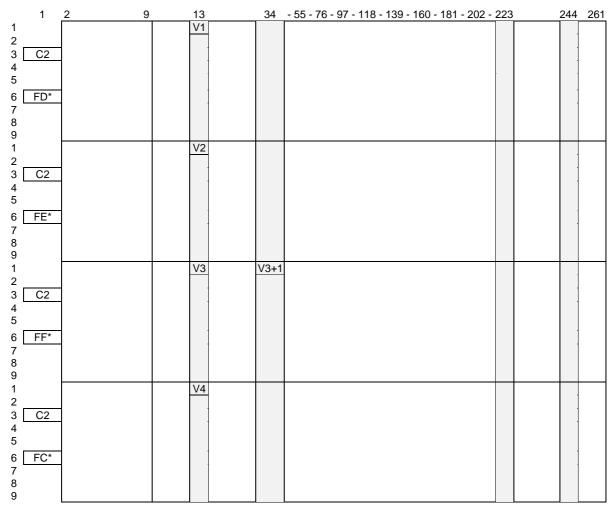
Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the VC-4 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the TUG/S2\_A\_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the TU-2 pointer actions. An example is given in annex A.2.

Each justification decision results in a corresponding negative/positive justification action. Upon a positive justification action, the reading of 8 data bits shall be cancelled once and no data are written at the justification opportunity position V3+1 (figure 32). Upon a negative justification action, an extra 8 data bits shall be read out once into the justification opportunity position V3.

NOTE:

A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.


The TU-2 pointer is carried in bytes V1 and V2 of payload specific OH once per 500 µs multiframe (figure 32). The TU-2 pointer is aligned in the VC-4 payload in fixed positions relative to the VC-4 frame and multiframe. The format of the TU-2 pointer and its location in the frame/multiframe are defined in ETS 300 147 [2].

Buffer size: For further study.

**V1, V2:** *Pointer generation:* The function shall generate the TU-2 pointer as is described in ETS 300 417-1-1 [1], annex A: Pointer Generation. It shall insert the pointer in the appropriate V1, V2 positions with the SS field set to 00 to indicate TU-2.

NOTE: The byte V4 is undefined.

The configured TU structure is coded as follows:



indicates the 432 bytes belonging to the TU-2 (1,2,0) FC\*, FD\*, FE\*, and FF\* indicate code value in Hex in byte H4

Figure 32: TUG\_AI\_D/1.2.0 signal

*TU-2 timeslot:* The adaptation source function has access to a specific TU-2 of the TUG access point. The TU-2 is defined by the parameters K and L (K=1..3, L=1..7).

Figure 24 shows that more than one adaptation source function exists in the TUG layer that can be connected to one TUG access point. For such case, a subset of these adaptation source functions is allowed to be activated together, but only one adaptation source function may have access to a specific TU timeslot. Access to the same TU timeslot by other adaptation source functions must be denied.

Activation: The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

Defects: None

On declaration of aAIS the function shall output an all ONEs signal within 1000  $\mu$ s; on clearing of aAIS the function shall output normal data within 1000  $\mu$ s.

NOTE: if CI\_SSF is not connected (when connected to a S2\_TT\_So), CI\_SSF is assumed to

be false.

**Defect Correlations:** None

Page 40

Draft prETS 300 417-4-1: April 1996

Performance Monitoring: None

4.3.5.5 TUG to VC-12 Layer Adaptation Source Function TUG/S12\_A\_So/K.L.M

Symbol:

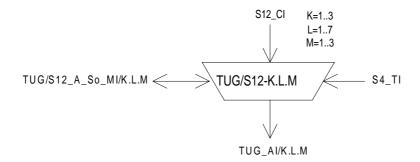



Figure 33: TUG/S12\_A\_So/K.L.M symbol

#### Interfaces:

Table 17: TUG/S12\_A\_So input and output signals

| Input(s)               | Output(s) |
|------------------------|-----------|
| S12_CI_D               | TUG_AI_D  |
| S12_CI_CK              | TUG_AI_CK |
| S12_CI_FS              | TUG_AI_FS |
| S12_CI_SSF             |           |
|                        |           |
| S4_TI_CK               |           |
| S4_TI_FS               |           |
| S4_TI_MFS              |           |
|                        |           |
| TUG/S12_A_So_MI_Active |           |

NOTE 1: The TUG/S12\_A\_So functions can only be used in a S4/SX\_A\_So compound function. It can not be used as a standalone function.

## Processes:

This function provides frequency justification and bitrate adaptation for a VC-12 signal, represented by a nominally (140 \* 64/4) = 2 240 kbit/s information stream with a frequency accuracy within  $\pm 4.6$  ppm and the related frame phase, to be multiplexed into a VC-4 signal via a TU-12.

The (500  $\mu$ s) frame phase of the VC-12 is coded in the related TU-12 pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. Refer to annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the VC-4 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the TUG/S12\_A\_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the TU-12 pointer actions. An example is given in annex A.2.

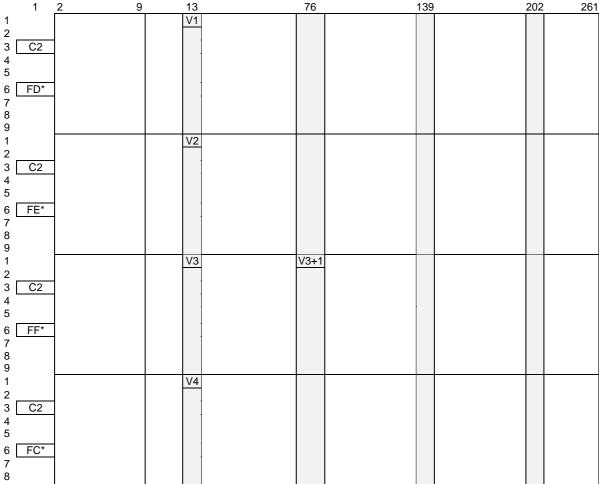
Each justification decision results in a corresponding negative/positive justification action. Upon a positive justification action, the reading of 8 data bits shall be cancelled once and no data are written at the

justification opportunity position V3+1(figure 34). Upon a negative justification action, an extra 8 data bits shall be read out once into the justification opportunity position V3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Buffer size: For further study.

NOTE 3:


The TU-12 pointer is carried in bytes V1 and V2 of payload specific OH per 500 μs multiframe (figure 34). The TU-12 pointer is aligned in the VC-4 payload in fixed positions relative to the VC-4 frame and multiframe. The format of the TU-12 pointer and its location in the frame/multiframe are defined in ETS 300 147 [2].

V1, V2: Pointer generation: The function shall generate the TU-12 pointer as is described in ETS 300 417-1-1 [1], annex A: Pointer Generation. It shall insert the pointer in the appropriate V1, V2 positions with the SS field set to 10 to indicate TU-12.

139

V1

The byte V4 is undefined.



indicates the 144 bytes belonging to the TU-12 (1,2,1) FC\*, FD\*, FE\*, and FF\* indicate code value in Hex in byte H4

Figure 34: TUG\_AI\_D/1.2.1 signal

## Page 42

## Draft prETS 300 417-4-1: April 1996

*TU-12 timeslot:* The adaptation source function has access to a specific TU-12 of the TUG access point. The TU-12 is defined by the parameters K, L and M (K=1..3, L=1..7, M=1..3).

Figure 24 shows that more than one adaptation source function exists in the TUG layer that can be connected to one TUG access point. For such case, a subset of these adaptation source functions is allowed to be activated together, but only one adaptation source function may have access to a specific TU timeslot. Access to the same TU timeslot by other adaptation source functions must be denied.

Activation: The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

**Defects:** None

## **Consequent Actions:**

aAIS ← CI\_SSF

On declaration of aAIS the function shall output an all-ONEs signal within 1000  $\mu$ s; on clearing of aAIS the function shall output normal data within 1000  $\mu$ s.

NOTE 4: if CI\_SSF is not connected (when connected to a S12\_TT\_So), CI\_SSF is assumed to

be false.

**Defect Correlations:** None

Performance Monitoring: None

4.3.5.6 TUG to VC-11 Layer Adaptation Source Function S4/S11\* A So/K.L.M

Symbol:

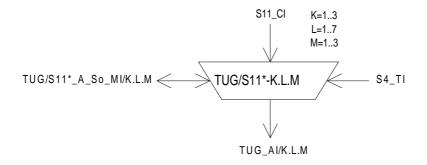



Figure 35: TUG/S11\*\_A\_So/K.L.M symbol

#### Interfaces:

Table 18: TUG/S11\*\_A\_So input and output signals

| Input(s)                | Output(s) |
|-------------------------|-----------|
| S11_CI_D                | TUG_AI_D  |
| S11_CI_CK               | TUG_AI_CK |
| S11_CI_FS               | TUG_AI_FS |
| S11_CI_SSF              |           |
|                         |           |
| S4_TI_CK                |           |
| S4_TI_FS                |           |
| S4_TI_MFS               |           |
|                         |           |
| TUG/S11*_A_So_MI_Active |           |

NOTE 1: The TUG/S11\*\_A\_So functions can only be used in a S4/SX\_A\_So compound function. It can not be used as a standalone function.

#### **Processes:**

This function provides frequency justification and bitrate adaptation for a VC-11 signal, represented by a nominally (104 \* 64/4) = 1 664 kbit/s information stream with a frequency accuracy within  $\pm$  4.6 ppm and the related frame phase, to be multiplexed into a VC-4 signal. The VC-11 is transported within a TU-12; 9 bytes of fixed stuff (figure 36) are added per 125  $\mu$ s to the VC-11 as specified by ETS 300 147 [2] to map the VC-11 into the TU-12 payload<sup>1</sup>.

The (500  $\mu$ s) frame phase of the VC-11 is coded in the related TU-12 pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. Refer to annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the VC-4 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the TUG/S11\*\_A\_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the TU-12 pointer actions. An example is given in annex A.2.

Each justification decision results in a corresponding negative/positive justification action. Upon a positive justification action, the reading of 8 data bits shall be cancelled once and no data are written at the justification opportunity position V3+1 (figure 36). Upon a negative justification action, an extra 8 data bits shall be read out once into the justification opportunity position V3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Buffer size: For further study.

Mapping a VC-11 into a TU-12 allows the VC-11 signal to be transported in a VC-12 based network (via S12\_C and TUG/S12\_A functions) and to non-intrusively monitor this VC-11 by means of a VC-12 non-intrusive monitor (S12m\_TT\_Sk). The S4/S11\*\_A function will be used at the junction of VC-11 and VC-12 networks.

Page 44 Draft prETS 300 417-4-1: April 1996

| 1 2                      | 9 13 | 76                                 | 139                  | 202 261 |
|--------------------------|------|------------------------------------|----------------------|---------|
| 1 2 3 C2 4 5 6 FD* 7 8 9 | V1   | R*<br>R*<br>R*<br>R*<br>R*         | R*<br>R*<br>R*<br>R* | V5      |
| 1 2 3 C2 4 5 6 FE* 7 8 9 | V2   | R*<br>R*<br>R*<br>R*<br>R*         | R*<br>R*<br>R*<br>R* | J2      |
| 1 2 3 C2 4 5 6 FF* 7 8 9 | V3   | V3+1<br>R*<br>R*<br>R*<br>R*<br>R* | R*<br>R*<br>R*<br>R* | N2      |
| 1 2 3 C2 4 5 6 FC* 7 8 9 | V4   | R*<br>R*<br>R*<br>R*<br>R*         | R*<br>R*<br>R*<br>R* | K4      |

indicates the 144 bytes belonging to the TU-12 (1,2,1)

FC\*, FD\*, FE\*, and FF\* indicate code value in Hex in byte H4

R\* indicates fixed stuff with even parity

The positions of the V5, J2, N2, K4 and R^ bytes is relative to the position of the VC-11 in the TU-12. The start of the VC-11 (V5 byte) is defined by the TU-12 pointer.

Figure 36: TUG\_AI\_D/1.2.1 signal

The TU-12 pointer is carried in bytes V1 and V2 of payload specific OH per 500  $\mu$ s multiframe (figure 34). The TU-12 pointer is aligned in the VC-4 payload in fixed positions relative to the VC-4 frame and multiframe. The format of the TU-12 pointer and its location in the frame/multiframe are defined in ETS 300 147 [2].

**V1, V2:** *Pointer generation:* The function shall generate the TU-12 pointer as is described in ETS 300 417-1-1 [1], annex A: Pointer Generation. It shall insert the pointer in the appropriate V1, V2 positions with the SS field set to 10 to indicate TU-12.

NOTE 3: The byte V4 is undefined.

*TU-12 timeslot:* The adaptation source function has access to a specific TU-12 of the TUG access point. The TU-12 is defined by the parameters K, L and M (K=1..3, L=1..7, M=1..3).

Figure 24 shows that more than one adaptation source function exists in the TUG layer that can be connected to one TUG access point. For such case, a subset of these adaptation source functions is allowed to be activated together, but only one adaptation source function may have access to a specific TU timeslot. Access to the same TU timeslot by other adaptation source functions must be denied.

Activation: The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

Page 45

Draft prETS 300 417-4-1: April 1996

**Defects:** None

**Consequent Actions:** aAIS  $\leftarrow$  CI\_SSF

On declaration of aAIS the function shall output an all-ONEs signal within 1000  $\mu$ s; on clearing of aAIS the function shall output normal data within 1000  $\mu$ s.

**Defect Correlations:** None

Performance Monitoring: None

4.3.6 VC-4 Layer to VC-3, VC-2, VC-12, and VC-11 Layer Compound Adaptation Sink

Function S4/SX\_A\_Sk

### Symbol:

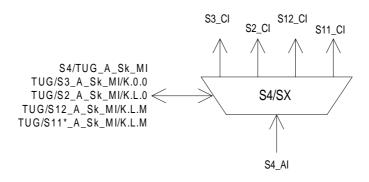



Figure 37: S4/TUG\_A\_Sk symbol

### Interfaces:

Table 19: S4/TUG\_A\_Sk input and output signals

| Input(s)               | Output(s)              |
|------------------------|------------------------|
| S4_AI                  | S4/TUG_A_Sk_MI         |
| S4/TUG_A_Sk_MI         |                        |
|                        | maximum 3 outputs:     |
| maximum 3 inputs:      | S3_CI                  |
| TUG/S3_A_Sk_MI/K.0.0   | TUG/S3_A_Sk_MI/K.0.0   |
| maximum 21 inputs:     | maximum 21 outputs:    |
| TUG/S2 A Sk MI/K.L.0   | S2 CI                  |
|                        | TUG/S2 A Sk MI/K.L.0   |
| maximum 63 inputs:     |                        |
| TUG/S12_A_Sk_MI/K.L.M  | maximum 63 outputs:    |
|                        | S12_CI                 |
| maximum 63 inputs:     | TUG/S12_A_Sk_MI/K.L.M  |
| TUG/S11*_A_Sk_MI/K.L.M |                        |
| _                      | maximum 63 outputs:    |
|                        | S11_CI                 |
|                        | TUG/S11*_A_Sk_MI/K.L.M |
|                        |                        |

## **Processes:**

The S4/SX\_A\_Sk compound function provides adaptation from the VC-4 layer to the VC-3/2/12/11 layers. This process is performed by a combination of several atomic functions as shown in figure 38. The S4/TUG\_A\_Sk function performs the VC-4 layer specific signal label and multiframe processing, while the TUG/S3\_A\_Sk, TUG/S2\_A\_Sk, TUG/S12\_A\_Sk and TUG/S11\*\_A\_Sk functions perform the lower order VC specific frequency justification and bitrate adaptation. Each of these TUG/Sm\_A\_Sk functions is

characterised by the K.L.M parameters, which define the number of the TU within the VC-4 the function has access to (TU numbering scheme according to ETS 300 417-1-1 [1], subclause 3.3.5). According to the TUG multiplex structures supported by the NE, a variety of possible combinations of these TUG/Sm\_A\_Sk functions exists. Table 20 lists all possible TUG/Sm\_A\_Sk functions within a S4/SX\_A\_Sk compound functions.

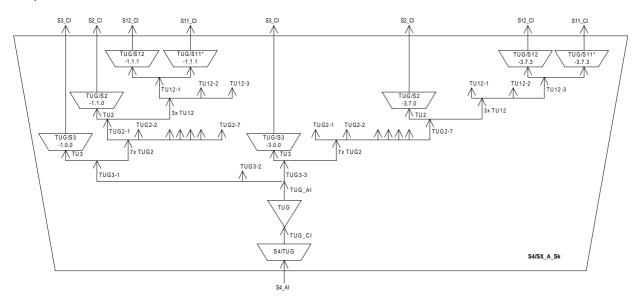



Figure 38: S4/SX\_A\_Sk compound function with set of S4/Sm\_A\_Sk atomic functions

| Table 20: Possible TUG/Sm | _ <b>A</b> _ | _Sk functions of a S4/SX_A | ١_ | Sk compound function |
|---------------------------|--------------|----------------------------|----|----------------------|
|---------------------------|--------------|----------------------------|----|----------------------|

| Atomic function     | TU-3/TUG-3 number<br>K | TU-2/TUG-2 number<br>L | TU-12 number<br>M |
|---------------------|------------------------|------------------------|-------------------|
| TUG/S3_A_Sk/K.0.0   | 13                     | 0                      | 0                 |
| TUG/S2_A_Sk/K.L.0   | 13                     | 17                     | 0                 |
| TUG/S12_A_Sk/K.L.M  | 13                     | 17                     | 13                |
| TUG/S11*_A_Sk/K.L.M | 13                     | 17                     | 13                |

For specific implementations only a subset of these TUG/Sm\_A\_Sk functions may be used (e.g. a terminal multiplexer with fixed 2 Mbit/s access has 63 TUG/S12\_A\_Sk functions). If a flexible TUG multiplex structure is supported, several TUG/Sm\_A\_Sk functions may have access to the same TU timeslot. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cLOP) to be detected and reported. To prevent this an adaptation sink function can be deactivated. This is controlled by the equipment management function by activating/deactivating the functions according to the configured TUG multiplex structure.

NOTE 1: The S4/TUG\_A\_Sk, TUG\_T\_Sk and TUG/Sm\_A\_Sk (m = 3, 2, 12, 11\*) defined in the following subclauses can only be used in a S4/Sm\_A\_Sk compound function. These functions can not be used as stand alone functions.

NOTE 2: The TUG is a virtual sub-layer only applicable in a S4/SX\_A compound function.

## 4.3.6.1 VC-4 Layer to TUG Adaptation Sink Function S4/TUG\_A\_Sk

### Symbol:

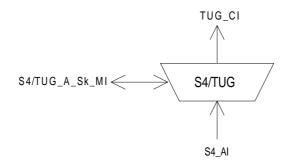



Figure 39: S4/TUG\_A\_Sk symbol

#### Interfaces.

Table 21: S4/TUG\_A\_Sk input and output signals

| Input(s)                | Output(s)           |
|-------------------------|---------------------|
| S4_AI_D                 | TUG_CI_D            |
| S4_AI_CK                | TUG_CI_CK           |
| S4_AI_FS                | TUG_CI_FS           |
| S4_AI_TSF               | TUG_CI_MFS          |
|                         | TUG_CI_SSF_TUG2     |
| S4/TUG_A_Sk_MI_Active   | TUG_CI_SSF_TU3      |
| S4/TUG_A_Sk_MI_TU3_only |                     |
|                         | S4/TUG_A_Sk_MI_cPLM |
|                         | S4/TUG_A_Sk_MI_cLOM |

NOTE: The S4/TUG\_A\_Sk functions can only be used in a S4/SX\_A\_Sk compound function. It can not be used as a standalone function.

### **Processes:**

The function monitors two payload specific bytes C2 and H4 of the VC-4 POH.

**C2:** The function shall compare the content of the accepted C2 byte with the expected value code "0000 0010" (TUG structure) as a check on consistency between the provisioning operation at each end. The application, acceptance and mismatch detection processes are described in ETS 300 417-1-1 [1], subclauses 7.2 and 8.1.2.

**H4:** If the TUG structure consists of TU-3s only (MI\_TU3\_only is true), the value of H4 byte shall be ignored. Otherwise, the function shall recover the 500 μs (multi)frame start phase performing multi-frame alignment on bits 7 and 8 of byte H4. Out-of-multiframe (OOM) shall be assumed once when an error is detected in the H4 bit 7 and 8 sequence. Multiframe alignment shall be assumed to be recovered, and the in-multiframe (IM) state shall be entered, when in four consecutive VC-4 frames an error free H4 sequence is found.

Figure 1 shows that more than one adaptation sink function exists in this VC-4 layer that can be connected to one VC-4 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

Activation: The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall activate the SSF signals at its output (CI\_SSF\_TU3 and CI\_SSF\_TUG2) and not report its status via the management point.

#### Defects:

The function shall detect for the dPLM defect according ETS 300 417-1-1 [1], subclause 8.2.1.

If the multiframe alignment process is in the OOM state and the H4 multiframe is not recovered within X ms, a dLOM defect shall be declared. Once in a dLOM state, this state shall be exited when the multiframe is recovered (multiframe alignment process enter the IM state). X shall be a value in the range 1 ms to 5 ms. X is not configurable.

## **Consequent Actions:**

 $\mathsf{aSSF\_TU3} \; \leftarrow \quad \mathsf{dPLM}$ 

aSSF\_TUG2  $\leftarrow$  dPLM or dLOM

### **Defect Correlations:**

cPLM ← dPLM and (not AI\_TSF)

cLOM ← dLOM and (not AI\_TSF) and (not dPLM)

Performance Monitoring: None

## 4.3.6.2 TUG Termination Sink Function TUG\_T\_Sk

## Symbol:

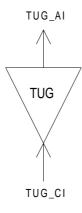



Figure 40: TUG\_T\_Sk symbol

### Interfaces:

Table 22: TUG\_T\_Sk input and output signals

| Input(s)        | Output(s)       |
|-----------------|-----------------|
| TUG_CI_D        | TUG_AI_D        |
| TUG_CI_CK       | TUG_AI_CK       |
|                 | TUG_AI_FS       |
| TUG_CI_SSF_TUG2 | TUG_AI_TSF_TUG2 |
| TUG_CI_SSF_TU3  | TUG_AI_TSF_TU3  |
|                 |                 |

NOTE: The TUG\_T\_Sk functions can only be used in a S4/SX\_A\_Sk compound function. It

can not be used as a standalone function.

Processes: None

**Defects:** None

## **Consequent Actions:**

aTSF\_TUG2  $\leftarrow$  CI\_SSF\_TUG2

aTSF\_TU3  $\leftarrow$  CI\_SSF\_TU3

**Defect Correlations:** None

Performance Monitoring: None

4.3.6.3 TUG to VC-3 Layer Adaptation Sink Function TUG/S3\_A\_Sk/K.0.0

## Symbol:

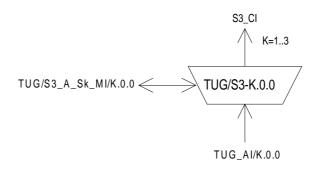



Figure 41: TUG/S3\_A\_Sk/K.0.0 symbol

### Interfaces:

Table 23: TUG/S3\_A\_Sk input and output signals

| Input(s)                    | Output(s)           |
|-----------------------------|---------------------|
| TUG_AI_D                    | S3_CI_D             |
| TUG_AI_CK                   | S3_CI_CK            |
| TUG_AI_FS                   | S3_CI_FS            |
| TUG_AI_TSF_TU3              | S3_CI_SSF           |
|                             |                     |
| TUG/S3_A_Sk_MI_AIS_Reported | TUG/S3_A_Sk_MI_cLOP |
| TUG/S3_A_Sk_MI_Active       | TUG/S3_A_Sk_MI_cAIS |

NOTE: The TUG/S3\_A\_Sk functions can only be used in a S4/SX\_A\_Sk compound function. It can not be used as a standalone function.

## **Processes:**

This function recovers the VC-3 data with frame phase information from a TU-3-3.

**H1, H2:** *TU-3 pointer interpretation:* The function shall perform TU-3 pointer interpretation as specified in annex B of ETS 300 417-1-1 [1] to recover the VC-3 frame phase within a TU-3 of a VC-4.

*TU-3 timeslot:* The adaptation source function has access to a specific TU-3 of the TUG access point. The TU-3 is defined by the parameter K (K=1..3).

Figure 20 shows that more than one adaptation sink function exists in this TUG layer that can be connected to one TUG access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cLOP) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

### Page 50

## Draft prETS 300 417-4-1: April 1996

Activation: The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via its management point.

### **Defects:**

The function shall detect for dAIS and dLOP defects according the algorithm described under the pointer interpreter process in ETS 300 417-1-1 [1], annex B, Pointer Interpretation.

### **Consequent Actions:**

aAIS  $\leftarrow$  dAIS or dLOP or AI\_TSF\_TU3

aSSF  $\leftarrow$  dAIS or dLOP or AI\_TSF\_TU3

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250  $\mu$ s; on clearing of aAIS the function shall output the recovered data within 250  $\mu$ s.

### **Defect Correlations:**

cAIS ← dAIS and (not AI\_TSF\_TU3) and AIS\_Reported

cLOP ← dLOP and (not AI\_TSF\_TU3)

It shall be an option to report AIS as a fault cause. This is controlled by means of the parameter AIS\_Reported. The default shall be AIS\_Reported = false.

## Performance Monitoring: None

## 4.3.6.4 TUG to VC-2 Layer Adaptation Sink Function TUG/S2\_A\_Sk

# Symbol:

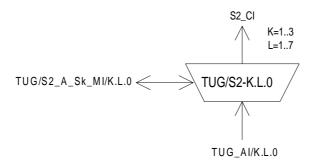



Figure 42: TUG/S2\_A\_Sk/K.L.0 symbol

#### Interfaces:

Table 24: TUG/S2\_A\_Sk input and output signals

| Input(s)                    | Output(s)           |
|-----------------------------|---------------------|
| TUG_AI_D                    | S2_CI_D             |
| TUG_AI_CK                   | S2_CI_CK            |
| TUG_AI_FS                   | S2_CI_FS            |
| TUG_AI_TSF_TUG2             | S2_CI_SSF           |
|                             |                     |
| TUG/S2_A_Sk_MI_AIS_Reported | TUG/S2_A_Sk_MI_cLOP |
| TUG/S2_A_Sk_MI_Active       | TUG/S2_A_Sk_MI_cAIS |

NOTE: The TUG/S2\_A\_Sk functions can only be used in a S4/SX\_A\_Sk compound function. It can not be used as a standalone function.

#### Processes:

This function recovers VC-2 data with frame phase information from a TU-2.

**V1, V2:** *TU-2 pointer interpretation:* The function shall perform TU-2 pointer interpretation as specified in annex B of ETS 300 417-1-1 [1] to recover the VC-2 frame phase within a TU-2 of a VC-4.

### **Defects:**

The function shall detect for dAIS and dLOP defect according the algorithm described under the pointer interpreter process in ETS 300 417-1-1 [1], annex B, Pointer Interpretation.

*TU-2 timeslot:* The adaptation source function has access to a specific TU-2 of the TUG access point. The TU-2 is defined by the parameters K and L (K=1..3, L=1..7).

Figure 20 shows that more than one adaptation sink function exists in this TUG layer that can be connected to one TUG access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cLOP) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

Activation: The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via its management point.

## **Consequent Actions:**

aAIS  $\leftarrow$  dAIS or dLOP or AI\_TSF\_TUG2

aSSF  $\leftarrow$  dAIS or dLOP or AI\_TSF\_TUG2

On declaration of aAIS the function shall output all-ONEs signal within 1000  $\mu$ s; on clearing of aAIS the function shall output the recovered data within 1000  $\mu$ s.

## **Defect Correlations:**

cAIS ← dAIS and (not AI\_TSF\_TUG2) and AIS\_Reported

cLOP ← dLOP and (not AI\_TSF\_TUG2)

It shall be an option to report AIS as a fault cause. This is controlled by means of the parameter AIS\_Reported. The default shall be AIS\_Reported = false.

Performance Monitoring: None

## 4.3.6.5 TUG to VC-12 Layer Adaptation Sink Function TUG/S12\_A\_Sk/K.L.M

#### Symbol:

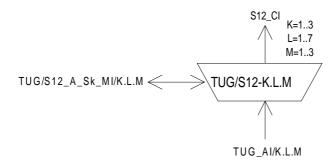



Figure 43: TUG/S12\_A\_Sk/K.L.M symbol

### Interfaces:

Table 25: TUG/S12\_A\_Sk input and output signals

| Input(s)                     | Output(s)            |
|------------------------------|----------------------|
| TUG_AI_D                     | S12_CI_D             |
| TUG_AI_CK                    | S12_CI_CK            |
| TUG_AI_FS                    | S12_CI_FS            |
| TUG_AI_TSF_TUG2              | S12_CI_SSF           |
|                              |                      |
| TUG/S12_A_Sk_MI_AIS_Reported | TUG/S12_A_Sk_MI_cLOP |
| TUG/S12_A_Sk_MI_Active       | TUG/S12_A_Sk_MI_cAIS |

NOTE: The TUG/S12\_A\_Sk functions can only be used in a S4/SX\_A\_Sk compound function. It can not be used as a standalone function.

### Processes:

This function recovers VC-12 data with frame phase information from a TU-12.

**V1, V2:** *TU-12 pointer interpretation:* The function shall perform TU-12 pointer interpretation as specified in annex B of ETS 300 417-1-1 [1] to recover the VC-12 frame phase within a TU-12 of a VC-4.

*TU-12 timeslot:* The adaptation source function has access to a specific TU-12 of the TUG access point. The TU-12 is defined by the parameters K, L and M (K=1..3, L=1..7, M=1..3).

Figure 20 shows that more than one adaptation sink function exists in this TUG layer that can be connected to one TUG access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cLOP) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

Activation: The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via its management point.

#### **Defects:**

The function shall detect for dAIS and dLOP defect according the algorithm described under the pointer interpreter process in ETS 300 417-1-1 [1], annex B, Pointer Interpretation.

## **Consequent Actions:**

aAIS  $\leftarrow$  dAIS or dLOP or AI\_TSF\_TUG2

aSSF  $\leftarrow$  dAIS or dLOP or AI\_TSF\_TUG2

On declaration of aAIS the function shall output all ONEs signal within 1000  $\mu$ s; on clearing of aAIS the function shall output the recovered data within 1000  $\mu$ s.

### **Defect Correlations:**

cAIS ← dAIS and (not AI\_TSF\_TUG2) and AIS\_Reported

cLOP ← dLOP and (not AI\_TSF\_TUG2)

It shall be an option to report AIS as a fault cause. This is controlled by means of the parameter AIS\_Reported. The default shall be AIS\_Reported = false.

Performance Monitoring: None

## 4.3.6.6 TUG to VC-11 Layer Adaptation Sink Function TUG/S11\*\_A\_Sk/K.L.M

### Symbol:

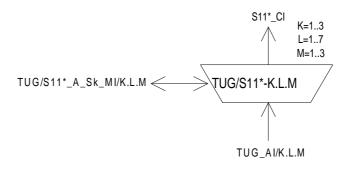



Figure 44: TUG/S11\*\_A\_Sk symbol

## Interfaces:

Table 26: TUG/S11\* A Sk input and output signals

| Input(s)                      | Output(s)             |
|-------------------------------|-----------------------|
| TUG_AI_D                      | S11_CI_D              |
| TUG_AI_CK                     | S11_CI_CK             |
| TUG_AI_FS                     | S11_CI_FS             |
| TUG_AI_TSF_TUG2               | S11_CI_SSF            |
|                               |                       |
| TUG/S11*_A_Sk_MI_AIS_Reported | TUG/S11*_A_Sk_MI_cLOP |
| TUG/S11*_A_Sk_MI_Active       | TUG/S11*_A_Sk_MI_cAIS |

NOTE: The TUG/S11\*\_A\_Sk functions can only be used in a S4/SX\_A\_Sk compound function. It can not be used as a standalone function.

### **Processes:**

This function recovers VC-11 data with frame phase information from a TU-12

**V1, V2:** *TU-12 pointer interpretation:* The function shall perform TU-12 pointer interpretation as specified in annex B of ETS 300 417-1-1 [1] to recover the VC-11 frame phase within a TU-12 of a VC-4.

#### Page 54

## Draft prETS 300 417-4-1: April 1996

*TU-12 timeslot:* The adaptation source function has access to a specific TU-12 of the TUG access point. The TU-12 is defined by the parameters K, L and M (K=1..3, L=1..7, M=1..3).

Figure 20 shows that more than one adaptation sink function exists in this TUG layer that can be connected to one TUG access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cLOP) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

Activation: The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via its management point.

#### Defects:

The function shall detect for dAIS and dLOP defect according the algorithm described under the pointer interpreter process in ETS 300 417-1-1 [1], annex B, Pointer Interpretation.

### **Consequent Actions:**

aAIS ← dAIS or dLOP or AI\_TSF\_TUG2

 $\mathsf{aSSF} \leftarrow \mathsf{dAIS} \ \mathsf{or} \ \mathsf{dLOP} \ \mathsf{or} \ \mathsf{AI\_TSF\_TUG2}$ 

On declaration of aAIS the function shall output all ONEs signal within 1000  $\mu$ s; on clearing of aAIS the function shall output the recovered data within 1000  $\mu$ s.

### **Defect Correlations:**

cAIS ← dAIS and (not AI\_TSF\_TUG2) and AIS\_Reported

cLOP ← dLOP and (not AI\_TSF\_TUG2)

It shall be an option to report AIS as a fault cause. This is controlled by means of the parameter AIS\_Reported. The default shall be AIS\_Reported = false.

## Performance Monitoring: None

## 4.3.7 VC-4 Layer to P0x Layer Adaptation Source S4/P0x\_A\_So

## Symbol:

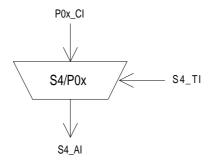



Figure 45: S4/P0x\_A\_So symbol

#### Interfaces:

Table 27: S4/P0x\_A\_So input and output signals

| Input(s)  | Output(s) |
|-----------|-----------|
| P0x_CI_D  | S4_AI_D   |
| P0x_CI_CK |           |
| P0x_CI_FS |           |
| S4_TI_CK  |           |
| S4_TI_FS  |           |

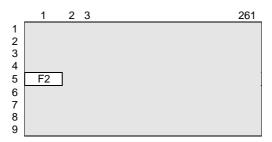



Figure 46: S4/ P0x\_AI\_D signal

#### **Processes:**

This function provides the multiplexing of a 64 kbit/s information stream into the S4\_Al using slip buffering. It takes  $P0x_Cl$ , defined in ETS 300 166 [3] as an octet structured bit-stream with a rate of 64 kbit/s  $\pm$  100 ppm, present at its input and inserts it into the VC-4 POH byte F2 as defined in ETS 300 147 [2] and depicted in figure 2.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (slip buffer) process. The data signal shall be written into the buffer under control of the associated input clock. The data shall be read out of the buffer under control of the VC-4 clock, frame position (S4\_TI), and justification decisions.

Each justification decision results in a corresponding negative/positive justification (slip) action. Upon a positive justification (slip) action, the reading of one 64 kbit/s octet (8 bits) shall be cancelled once. Upon a negative justification (slip) action, the same 64 kbit/s octet (8 bits) shall be read out a second time.

Buffer size: The elastic store (slip buffer) size shall be at least 2 octets.

Defects: None

Consequent Actions: None

**Defect Correlations:** None

Performance Monitoring: None

## 4.3.8 VC-4 Layer to P0x Layer Adaptation Sink S4/P0x\_A\_Sk

#### Symbol:

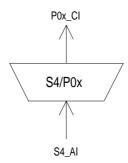



Figure 47: S4/P0x A Sk symbol

#### Interfaces:

Table 28: S4/P0x A Sk input and output signals

| Input(s)  | Output(s) |  |  |
|-----------|-----------|--|--|
| S4_AI_D   | P0x_CI_D  |  |  |
| S4_AI_CK  | P0x_CI_CK |  |  |
| S4_AI_FS  | P0x_CI_FS |  |  |
| S4_AI_TSF |           |  |  |

### **Processes:**

The function extracts the path user channel byte F2 from the VC-4 layer Characteristic Information. The recovered byte provides a 64 kbit/s channel for the client (user).

Smoothing and jitter limiting process: The function shall provide for a clock smoothing and elastic store (buffer) process. The data signal shall be written into the buffer under control of the associated (gapped) input clock. The data signal shall be read out of the buffer under control of a smoothed (equally spaced) 64 kHz clock (the rate is determined by the VC-4 signal generated at the remote node containing S4/P0x\_A\_So). The residual jitter caused by pointer adjustments (measured at the 64 kbit/s interface) shall be within the limits specified in TBD.

*Buffer size:* In the presence of jitter as specified by TBD and a frequency within the range  $64 \text{ kbit/s} \pm 4.6 \text{ ppm}$ , this justification process shall not introduce any errors.

Following a step in frequency of the P0x signal transported by the S4\_AI (for example due to a frequency step of the server VC-4 signal, or removal of all-ONEs (AIS) signal with a frequency offset) there will be a maximum recovery time of X seconds after which this process shall not generate any bit errors.

The value of X is for further study; a value of 1 second has been proposed.

**Defects:** None

Consequent Actions:  $aAIS \leftarrow AI\_TSF$ 

On declaration of aAIS the function shall output an all-ONEs (AIS) signal - complying to the frequency limits for this signal (a bit rate in range 64 kbit/s  $\pm$  100 ppm) - within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

**Defect Correlations:** None

Performance Monitoring: None

Page 57

Draft prETS 300 417-4-1: April 1996

## 4.3.9 VC-4 Layer to DQDB Layer Adaptation Source S4/DQDB A So

### Symbol:

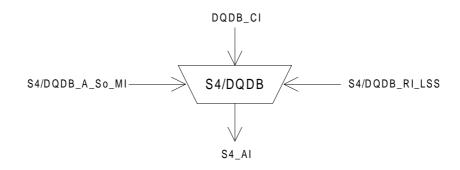



Figure 48: S4/DQDB\_A\_So symbol

### Interfaces:

Table 29: S4/DQDB\_A\_So input and output signals

| Input(s)               | Output(s) |
|------------------------|-----------|
| DQDB_CI_D              | S4_AI_D   |
| DQDB_CI_DTYPE          | S4_AI_CK  |
| DQDB_CI_DSTATUS        | S4_AI_FS  |
| DQDB_CI_CK             |           |
| DQDB_CI_FS             |           |
| DQDB_CI_SSF            |           |
| S4/DQDB_RI_LSS         |           |
| S4/DQDB_A_So_MI_Active |           |

#### Processes:

This function provides the mapping of a DQDB slots into VC-4 and it also adds the bytes F2, H4 and F3 of specific client information. The frequency accuracy of the DQDB signal is within ± 4.6 ppm.

The convergence procedure for transfer of Distributed Queue Dual Bus (DQDB) slots using Synchronous Digital Hierarchy at 155,520 Mbit/s is defined in the ETS 300 216 [6].

The DQDB slots are located horizontally (by row) in the VC-4 payload capacity with the slot boundaries aligned with the VC-4 octet boundaries. Because the VC-4 payload capacity is not an integer multiple of the DQDB slot length (53 octets), a slot is allowed to cross the VC-4 boundary.

In figure 49 is represented the mapping of DQDB\_CI (Slots and Management Octets) in the VC-4.

The adaptation function make use of a dedicated input signal, DQDB\_CI\_DTYPE to identify the boundary of the slot (first octet), the M1 and M2 management octets in the incoming DQDB\_CI\_D stream. The additional signal DQDB\_CI\_DSTATUS provides an indication to the atomic function that the DQDB\_CI\_D is either VALID or INVALID. These signals represent the services provided by the Physical Layer at Each Service Access point to the DQDB layer defined in IEEE Standard 802.6 [11], clause 4.

Figure 51 shows the DQDB slot format. The slot payload of 48 octets shall be scrambled before mapping in the VC-4 frame. The scrambler operates for a duration of the 48 octet slot payload. Operation is suspended and the scrambler state is retained at all other times. A self-synchronous scrambler with generator polynomial  $x^{43}$ +1 shall be used. An eight bit pattern shall be added (module 2) to the HCS field of the slot header in order to improve slot delineation procedure in the sink direction. The bit pattern shall be "01010101".

In addition, in the source direction, slot boundary indication shall be provided on a 125  $\mu$ s basis by use of six bit field in the H4 octet.

The DQDB Management octets M1 and M2 are carried in the F2 and F3 octets of VC-4. Two bytes of payload specific POH information, bytes C2 and H4, shall be added to container-4 to form the S4 Al and a fixed Frame Start (FS) shall be generated.

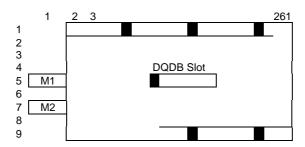



Figure 49: Mapping of DQDB\_CI (Slots and Management octet) in the VC-4 structure

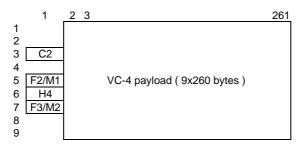



Figure 50: S4/DQDB\_AI\_So\_D

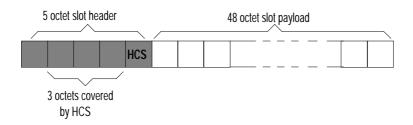



Figure 51: DQDB slot format

**H4:** The H4 byte carries the slot boundary information and the Link Status Signal (LSS) as depicted in figure 52. The bits 1 and 2 are used for the LSS code as described in IEEE Standard 802.6 [11], section 11.3.2. This signal is used to communicate information about the status of the transmission link between two adjacent DQDB nodes. The LSS codes are shown in table 30.

| Link Stat | us Signal | Slot Offset Indicator |   |   |   |   |   |
|-----------|-----------|-----------------------|---|---|---|---|---|
| 1         | 2         | 3                     | 4 | 5 | 6 | 7 | 8 |

Figure 52: Position indicator (H4) coding

| LSS Code | LSS name             | Link Status                                 |
|----------|----------------------|---------------------------------------------|
| 00       | Connected rx_link_dn | Received link connected                     |
| 11       | rx_link_dn           | Received link down, no input or forced down |
| 01       | rx_link_up           | Received link up                            |
| 10       | Hob_incapable        | Lack of upstream head of bus                |

Table 30: Link Status Signal (LSS) codes

Bit 3 to 8 of the H4 octet form the slot offset indicator. The slot offset indicator shall contain a binary number indicating the offset in octets between the H4 octet and the first slot boundary following the H4 octet. The valid range of the slot offset indicator value shall be 0 to 52.

capability

C2: In this byte the function shall insert code "0001 0100" which indicates an IEEE Standard 802.6 [11] payload as defined in ETS 300 147 [2].

F2 and F3: These two octets are used to carry the DQDB Layer management information octets (M1 and M2) which are described in IEEE Standard 802.6 [11], section 10.1. M1 and M2 octets are generated at the Head Of Bus node as described in IEEE Standard 802.6 [11], section 4.2, and are operated on each DQDB node management protocol entity inside the DQDB layer as described in sections 5.4.3.2., 10.2 and 10.3, There need be no correlation between TYPE=0 or TYPE=1 octets and the M1 or M2 octets.

Defects: None

**Consequent Actions:** None

Continuous octets marked as INVALID (DQDB CI DSTATUS=INVALID) or no octet received from the DQDB layer cause void slot to be generated and mapped into the VC-4 payload. A void slot is defined as a 53 octets each with default code of "0000 0000".

**Defect Correlations:** None

**Performance Monitoring:** None

#### 4.3.10 VC-4 Layer to DQDB Layer Adaptation Sink S4/DQDB\_A\_Sk

Symbol:

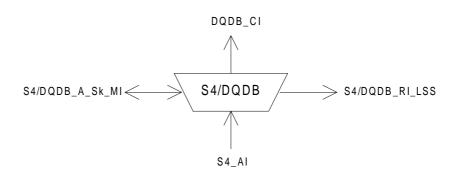



Figure 53: S4/DQDB\_A\_Sk symbol

## Interfaces:

Table 31: S4/DQDB A Sk input and output signals

| Input(s)                 | Output(s)            |
|--------------------------|----------------------|
| S4_AI_D                  | DQDB_CI_D            |
| S4_AI_CK                 | DQDB_CI_CK           |
| S4_AI_FS                 | DQDB_CI_FS           |
| S4_AI_TSF                | DQDB_CI_DTYPE        |
| S4/DQDB_A_Sk_MI_FORCE_DN | DQDB_CI_DSTATUS      |
| S4/DQDB_A_Sk_MI_HOB      | DQDB_CI_LSTATUS      |
| S4/DQDB_A_Sk_MI_Active   | DQDB_CI_TMARK        |
|                          | DQDB_CI_SSF          |
|                          | S4/DQDB_RI_LSS       |
|                          | S4/DQDB_A_Sk_MI_cPLM |
|                          | S4/DQDB_A_Sk_MI_cLSD |
|                          | S4/DQDB_A_Sk_MI_AcSL |

### **Processes:**

The function recovers DQDB Characteristic Information from the synchronous container-4 as specified in the ETS 300 216 [6].

Slot delineation shall be achieved using either the H4 octet slot offset indicator method or the HCS method.

When using the HCS method, slot boundaries are derived within the VC-4 payload using the correlation between the 3 slot header octets that are protected by the HCS, and the slot header HCS octet itself. The Header Check sequence method, similar to the Header Error Control (HEC) method used for ATM cell delineation, is described in details in ETS 300 216 [6] subclause 5.6.1.1.2.

When using the H4 octet slot offset indicator method, the H4 slot offset indicator value provides slot boundary indication. As the VC-4 payload capacity is not an integer multiple of the DQDB slot length, the received H4 slot offset indicator value in two consecutive VC-4s shall be expected to increase by 45 modulo 53. A H4 slot offset indicator value out of range shall be regarded as an unexpected slot offset indicator value. The H4 slot delineation method is described in detail in ETS 300 216 [6] subclause 5.6.1.1.1.

Following slot delineation, the bit pattern "0101 0101" is subtracted (equal to add modulo 2) from the HCS field of the slot headers and the slot payload shall be descrambled. The de-scrambler operates for the duration of the assumed slot payload according to the derived slot delineation. A self-synchronous scrambler with generator polynomial  $x^{43}$ +1 shall be used. Operation is suspended an the descrambler state is retained at all other times.

The Sink adaptation function make use of a dedicated output signal, DQDB\_CI\_DTYPE to indicate the boundary of the slot (first octets), the M1 and M2 management octets in DQDB\_CI\_D stream sent to the DQDB layer. The additional signal DQDB\_CI\_DSTATUS provides an indication to the DQDB layer that the DQDB\_CI\_D is either VALID or INVALID.

In addition the Sink adaptation function shall provide to the DQDB layer a 125  $\mu$ s timing information (DQDB\_CI\_TMARK) and the operational state of the transmission link (DQDB\_CI\_LSTATUS) between two adjacent DQDB node.

These signals represent the services provided by the Physical Layer at Each Service Access point to the DQDB layer defined in IEEE Standard 802.6 [11] clause 4.

C2: The function shall compare the content of the accepted C2 byte with the expected value code "0001 0100" (Man (DQDB) mapping, IEEE Standard 802.6 [11]) as a check on consistency between the

provisioning operation at each end. The application and acceptance and mismatch process are described in ETS 300 417-1-1 [1], subclause 7.2 and 8.1.2.

**H4:** The bits 1 and 2 are recovered and processed to generate the outgoing LSS as reported in table 30. When using the H4 slot offset indicator method, the H4 slot offset indicator values (bits 3-8) provides slot boundary indication.

**F2 and F3:** These two octets are used to carry the DQDB Layer management information octets (M1 and M2) which are described in IEEE Standard 802.6 [11], section 10.1. These octets shall be sent to the DQDB layer without any processing in the atomic function.

### Defects:

The function shall detect for Loss of Slot Delineation defect (dLSD) according the specification in ETS 300 216 [6] subclause 5.6.1.2.

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

### **Consequent Actions:**

aSSF  $\leftarrow$  AI\_TSF or dPLM or dLSD

The sink adaptation function shall generate the outgoing LSS (DQDB\_RI\_LSS) and the Link Status indication (DQDB\_CI\_LSTATUS) according to the Link Status Signal Operation Table defined in table 4. The operations table determines the status of the transmission link according to the VC-4 layer state (SSF), the incoming LSS and the Physical Layer Connection State Machine (PLCSM) control.

**INPUT OUTPUT PLCSM Control** DQDB\_CI\_LSTATUS VC-4 Layer state Incoming LSS Outgoing LSS DQDB\_RI\_LSS UP Not aSSF Normal connected connected Not aSSF Normal rx\_link\_up UP connected Not aSSF Normal rx\_link\_dn/ DOWN rx\_link\_up hob\_incapable Don't Care aSSF Normal **DOWN** rx link dn Don't Care FORCE DN Don't Care **DOWN** rx\_link\_dn

Table 32: Link Status Signal (LSS) operations table

If aSSF it is no declared this function shall send to the DQDB layer the DQDB slots and DQDB Management octet marked as VALID.

If aSSF is declared, the function shall send to the DQDB layer a DQDB\_CI\_LSTATUS indication equal DOWN. If the DQDB node is capable to perform Head Of Bus operation (DQDB\_MI\_HOB=true), this function shall send to the DQDB layer EMPTY slot and EMPTY DQDB management octet (M1 and M2). If it is not capable this function shall send to the DQDB layer octets marked as INVALID and the outgoing LSS code equal to hob\_incapable irrespective of the incoming LSS code.

### **Defect Correlations:**

cPLM  $\leftarrow$  dPLM and (not AI\_TSF)

cLSD ← dLSD and (not AI\_TSF) and (not dPLM)

Performance Monitoring: None

## 4.3.11 VC-4 Layer to TSS1 Adaptation Source S4/TSS1\_A\_So

#### Symbol:

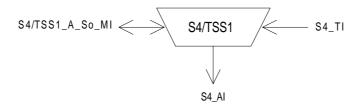



Figure 54: S4/TSS1\_A\_So symbol

### Interfaces:

Table 33: S4/TSS1\_A\_So input and output signals

| Input(s)               | Output(s) |
|------------------------|-----------|
| S4_TI_CK               | S4_AI_D   |
| S4_TI_FS               | S4_AI_CK  |
| S4/TSS1_A_So_MI_Active | S4_AI_FS  |

#### Processes:

This function maps a VC-4 synchronous Test Signal Structure TSS1 PRBS stream as described in ITU-T draft Recommendation O.181 [10] into a VC-4 payload and adds the C2 and H4 bytes. It creates a 2<sup>23</sup> PRBS with timing derived from the S4\_TI\_Ck and maps it without justification bits into the whole of the synchronous container-4 having a capacity of 2 340 as depicted in figure 55. The PRBS is a sequence which repeats itself over a period which is not an exact multiple of the capacity available in the container-4 frame. Therefore the start of the sequence will move relative to the start of the container-4 frame over time.

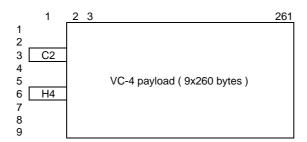



Figure 55: S4/TSS1\_AI\_So\_D

H4: The value of H4 byte shall be set to a value in range '0000 0000' to '1111 1111'.

**C2:** In this byte the function shall insert code "1111 1110" (TSS1 in the Container-4) as defined in ITU-T Recommendation G.708 [12].

Figure 1 shows that more than one adaptation source function exists in this VC-4 layer that can be connected to one VC-4 access point. For such case, a subset of these adaptation source functions is allowed to be activated together. Access to the access point by other adaptation source functions must be denied.

Activation: The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

**Defects:** None

Consequent Actions: None

**Defect Correlations:** None

Performance Monitoring: None

### 4.3.12 VC-4 Layer to TSS1 Adaptation Sink S4/TSS1\_A\_Sk

#### Symbol:

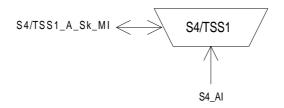



Figure 56: S4/TSS1\_A\_Sk symbol

#### Interfaces:

Table 34: S4/TSS1\_A\_Sk input and output signals

| Input(s)               | Output(s)               |
|------------------------|-------------------------|
| S4_AI_D                | S4/TSS1_A_Sk_MI_cPLM    |
| S4_AI_CK               | S4/TSS1_A_SK_MI_cLSS    |
| S4_AI_FS               | S4/TSS1_A_Sk_MI_AcSL    |
| S4_AI_TSF              | S4/TSS1_A_Sk_MI_ pN_TSE |
| S4/TSS1_A_Sk_MI_Active | ·                       |

#### **Processes:**

The function recovers a TSS1  $2^{23}$  PRBS test sequence as defined in ITU-T draft Recommendation O.181 [10] from the synchronous container-4 (having a frequency accuracy within  $\pm 4.6$  ppm) and monitors the reception of the correct payload signal type and for the presence of test sequence error blocks (TSE) in the PRBS sequence.

**C2**: The function shall compare the content of the recovered C2 byte (RxSL) expecteded value code "1111 1110" (TSS1 into the Container-4) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch process shall be as specified in ETS 300 417-1-1 [1], subclauses 7.2 and 8.1.2.

**H4:** The value in the H4 byte shall be ignored.

Figure 1 shows that more than one adaptation sink function exists in this VC-4 layer that can be connected to one VC-4 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

Activation: The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall not report its status via the management point.

## Defects:

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

The function shall detect for loss of PRBS lock (dLSS) according to the criteria defined in ITU-T Recommendation O.151 [9] Section 2.6.

Consequent Actions: None

### **Defect Correlations:**

 $cPLM \leftarrow dPLM \text{ and (not AI\_TSF)}$ 

 $cLSS \leftarrow dLSS \text{ and not } (AI\_TSF)$ 

## **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ITU-T draft Recommendation O.181 [10] annex A section A.1.8.

pN\_TSE ← Sum of test sequence errors (TSE) within one second period.

NOTE: The TSE error block size is equal to the B3 BIP-8 error block size with the exception of

the VC-4 POH.

## 4.3.13 VC-4 Layer to ATM Layer (ATM) Compound Adaptation Source S4/ATM\_A\_So

The specification of this function is for further study.

## 4.3.14 VC-4 Layer to ATM Layer (ATM) Compound Adaptation Sink S4/ATM\_A\_Sk

The specification of this function is for further study.

## 4.4 VC-4 Layer Monitoring Functions

## 4.4.1 VC-4 Layer Non-intrusive Monitoring Function S4m\_TT\_Sk

## Symbol:

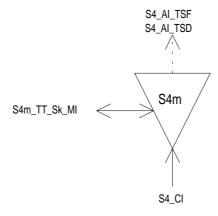



Figure 57: S4m\_TT\_Sk symbol

#### Interfaces:

Table 35: S4m TT Sk input and output signals

| Input(s)                  | Output(s)           |
|---------------------------|---------------------|
| S4_CI_D                   | S4_AI_TSF           |
| S4_CI_CK                  | S4_AI_TSD           |
| S4_CI_FS                  | S4m_TT_Sk_MI_cTIM   |
| S4_CI_SSF                 | S4m_TT_Sk_MI_cUNEQ  |
| S4m_TT_Sk_MI_TPmode       | S4m_TT_Sk_MI_cDEG   |
| S4m_TT_Sk_MI_SSF_Reported | S4m_TT_Sk_MI_cRDI   |
| S4m_TT_Sk_MI_ExTI         | S4m_TT_Sk_MI_cSSF   |
| S4m_TT_Sk_MI_RDI_Reported | S4m_TT_Sk_MI_AcTI   |
| S4m_TT_Sk_MI_DEGTHR       | S4m_TT_Sk_MI_pN_EBC |
| S4m_TT_Sk_MI_DEGM         | S4m_TT_Sk_MI_pF_EBC |
| S4_TT_Sk_MI_ExTImode      | S4m_TT_Sk_MI_pN_DS  |
| S4m_TT_Sk_MI_1second      | S4m_TT_Sk_MI_pF_DS  |
| S4m_TT_Sk_MI_TIMdis       |                     |

#### **Processes:**

NOTE: this non-intrusive monitor trail termination sink function has no associated source function.

This function monitors VC-4 for errors, and recovers the trail termination status. It extracts the payload independent overhead bytes (J1, B3, G1, C2) from the VC-4 layer Characteristic Information:

**J1:** The Received Trail Trace Identifier RxTI shall be recovered from the J1 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1 and 8.2.1.3.

**B3:** Even bit parity is computed for each bit n of every byte of the preceding VC-4 and compared with bit n of B3 recovered from the current frame (n=1 to 8 inclusive). A difference between the computed and recovered B3 values is taken as evidence of one or more errors (nN\_B) in the computation block.

**G1[1-4], G1[5]:** The information carried in the G1 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 5) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI), subclause 7.4.11 and 8.2 (RDI).

| Table | 26. | C41 | [4 4]            |      | :    | ~~4atian  |
|-------|-----|-----|------------------|------|------|-----------|
| rabie | 30. | GII | I I <b>-</b> 4 I | code | mter | pretation |

| G1[1] | G1[2] | G1[3] | G1[4] | REI code interpretation |
|-------|-------|-------|-------|-------------------------|
| 0     | 0     | 0     | 0     | 0 errors                |
|       | -     |       | _     |                         |
| 0     | 0     | 0     | 1     | 1 error                 |
| 0     | 0     | 1     | 0     | 2 errors                |
| 0     | 0     | 1     | 1     | 3 errors                |
| 0     | 1     | 0     | 0     | 4 errors                |
| 0     | 1     | 0     | 1     | 5 errors                |
| 0     | 1     | 1     | 0     | 6 errors                |
| 0     | 1     | 1     | 1     | 7 errors                |
| 1     | 0     | 0     | 0     | 8 errors                |
| 1     | 0     | 0     | 1     | 0 errors                |
| 1     | 0     | 1     | 0     | 0 errors                |
| 1     | 0     | 1     | 1     | 0 errors                |
| 1     | 1     | 0     | 0     | 0 errors                |
| 1     | 1     | 0     | 1     | 0 errors                |
| 1     | 1     | 1     | 0     | 0 errors                |
| 1     | 1     | 1     | 1     | 0 errors                |

C2: The information in the C2 byte shall be extracted to allow unequipped VC and VC-AIS defect detection.

G1[6-8]: The value in the bits 6 to 8 of byte G1 shall be ignored.

### Defects:

The detection and removal conditions and processes for dDEG, dRDI, dUNEQ and dTIM defects shall be as specified by ETS 300 417-1-1 [1], subclause 8.2.1 with the condition "aSSF" read as "aSSF or VC dAIS". To use the function within e.g. a tandem connection<sup>2</sup>, it shall be possible to disable the trace id mismatch detection (TIMdis).

### VC AIS:

The function shall detect for an AIS condition by monitoring the VC PSL for code "1111 1111". If 5 consecutive frames contain the '1111 1111' pattern in byte C2 a dAIS defect shall be detected. dAIS shall be cleared if in 5 consecutive frames any pattern other than the '1111 1111' is detected in byte C2.

NOTE:

Equipment designed prior to this ETS may be able to perform VC-AIS detection either as specified above interpreting "frames" as "samples (not necessary consecutive frames)", or by a comparison of the accepted signal label with the all-ONEs pattern. If the accepted signal label is equal to all-ONEs, VC-AIS defect is detected. If the accepted signal label is not equal to all-ONEs, VC-AIS defect is cleared.

## **Consequent actions:**

aTSF  $\leftarrow$  CI\_SSF or dAIS or dUNEQ or dTIM

aTSD  $\leftarrow$  dDEG

### **Defect Correlations:**

cUNEQ ← dUNEQ and MON

cTIM  $\leftarrow$  dTIM and (not dUNEQ) and MON

cDEG  $\leftarrow$  dDEG and (not dTIM) and MON

Presumably, in such case the VC Trace Id. will be unknown to the tandem connection operator.

cRDI ← dRDI and (not dUNEQ) and (not dTIM) and MON and RDI\_Reported

cSSF ← (CI\_SSF or dAIS) and MON and SSF\_Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

### **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $pN_DS \leftarrow aTSF \text{ or } dEQ$ 

 $pF_DS \leftarrow dRDI$ 

 $pN\_EBC \leftarrow \Sigma nN\_B$ 

 $\mathsf{pF\_EBC} \quad \leftarrow \quad \Sigma \, \mathsf{nF\_B}$ 

NOTE: pF\_DS/pF\_EBC represent the performance of the total trail while pN\_DS/pN\_EBC represents only part of the trail up to the point of the non-intrusive monitor.

## 4.4.2 VC-4 Layer Supervisory-Unequipped Termination Source S4s\_TT\_So

## Symbol:

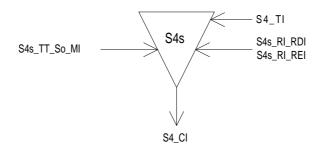



Figure 58: S4s\_TT\_So symbol

### Interfaces:

Table 37: S4s\_TT\_So input and output signals

| Input(s)          | Output(s) |
|-------------------|-----------|
| S4s_RI_RDI        | S4_CI_D   |
| S4s_RI_REI        | S4_CI_CK  |
| S4_TI_CK          | S4_CI_FS  |
| S4_TI_FS          |           |
| S4s_TT_So_MI_TxTI |           |

#### Processes:

This function generates error monitoring and status overhead bytes to an undefined VC-4. The processing of the trail termination overhead bytes is defined as follows:

**J1:** In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in ETS 300 417-1-1 [1], subclause 7.1.

**B3:** In this byte the function shall insert the BIP-8 EDC with even bit parity. Each bit n of current B3 is computed to provide even parity over the nth bits of every byte in the previous frame of the Characteristic Information S4\_CI, i.e., B3 is calculated over the entire previous VC-4. Further reference is provided in ETS 300 417-1-1 [1], subclause 7.3.

**C2:** In this byte the function shall insert code "0000 0000" (unequipped VC or supervisory-unequipped VC) as defined in subclause 7.2 of ETS 300 417-1-1 [1] and ETS 300 147 [2] .

**G1:** This byte is set to represent the status of the associated S4s\_TT\_Sk. Its format is defined in the figure 2.

**G1[1-4]:** The signal value applied at RI\_REI shall be inserted in the VC-4 REI, bits 1 to 4 of byte G1. The coding shall be as follows:

| Number of BIP-8<br>violations<br>conveyed via<br>RI_REI | G1[1] | G1[2] | G1[3] | G1[4] |
|---------------------------------------------------------|-------|-------|-------|-------|
| 0                                                       | 0     | 0     | 0     | 0     |
| 1                                                       | 0     | 0     | 0     | 1     |
| 2                                                       | 0     | 0     | 1     | 0     |
| 3                                                       | 0     | 0     | 1     | 1     |
| 4                                                       | 0     | 1     | 0     | 0     |
| 5                                                       | 0     | 1     | 0     | 1     |
| 6                                                       | 0     | 1     | 1     | 0     |
| 7                                                       | 0     | 1     | 1     | 1     |
| 8                                                       | 1     | 0     | 0     | 0     |

Table 38: G1[1-4] coding

**G1[5]:** Bit 5 of byte G1, a RDI indication, shall be set to "1" on activation of the S4s\_RI\_RDI within 250  $\mu$ s, determined by the associated S4s\_TT\_Sk function and set to "0" within 250  $\mu$ s on the S4s\_RI\_RDI removal.

G1[6-8]: The value of the bits 6 to 8 of byte G1 is undefined.

**N1:** In the byte the function shall insert code "0000 0000" (unequipped tandem connection) as defined in subclause 7.2 of ETS 300 417-1-1 [1].

Other VC-4 bytes: The function shall generate the other VC-4 bytes and bits. Their content is undefined.

**Defects:** None

Consequent Actions: None

**Defect Correlations:** None

Performance Monitoring: None

## 4.4.3 VC-4 Layer Supervisory-unequipped Termination Sink S4s\_TT\_Sk

### Symbol:

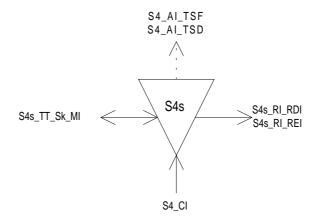



Figure 59: S4s\_TT\_Sk symbol

#### Interfaces:

Table 39: S4s\_TT\_Sk input and output signals

| Input(s)                  | Output(s)           |
|---------------------------|---------------------|
| S4_CI_D                   | S4_AI_TSF           |
| S4_CI_CK                  | S4_AI_TSD           |
| S4_CI_FS                  | S4s_TT_Sk_MI_cTIM   |
| S4_CI_SSF                 | S4s_TT_Sk_MI_cUNEQ  |
| S4s_TT_Sk_MI_TPmode       | S4s_TT_Sk_MI_cDEG   |
| S4s_TT_Sk_MI_SSF_Reported | S4s_TT_Sk_MI_cRDI   |
| S4s_TT_Sk_MI_ExTI         | S4s_TT_Sk_MI_cSSF   |
| S4s_TT_Sk_MI_RDI_Reported | S4s_TT_Sk_MI_AcTI   |
| S4s_TT_Sk_MI_DEGTHR       | S4s_RI_RDI          |
| S4s_TT_Sk_MI_DEGM         | S4s_RI_REI          |
| S4s_TT_Sk_MI_1second      | S4s_TT_Sk_MI_pN_EBC |
| S4s_TT_Sk_MI_TIMdis       | S4s_TT_Sk_MI_pF_EBC |
| S4s_TT_Sk_MI_ExTImode     | S4s_TT_Sk_MI_pN_DS  |
|                           | S4s_TT_Sk_MI_pF_DS  |

### **Processes:**

This function monitors VC-4 for errors, and recovers the trail termination status as defined in ETS 300 147 [2]. It extracts the payload independent overhead bytes (J1, B3, G1, C2) from the VC-4 layer Characteristic Information:

- **J1:** The Received Trail Trace Identifier RxTI shall be recovered from the J1 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclauses 7.1 and 8.2.1.3.
- **B3:** Even bit parity shall be computed for each bit n of every byte of the preceding VC-4 and compared with bit n of B3 recovered from the current frame (n=1 to 8 inclusive) A difference between the computed and recovered B3 values shall be taken as evidence of one or more errors (nN\_B) in the computation block.

**G1[1-4], G1[5]:** The information carried in the G1 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 5) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI) and 7.4.11 and 8.2 (RDI).

G1[6-8]: The value in the bits 6 to 8 of byte G1 shall be ignored.

Table 40: G1[1-4] code interpretation

| G1[1] | G1[2] | G1[3] | G1[4] | REI code interpretation |
|-------|-------|-------|-------|-------------------------|
| 0     | 0     | 0     | 0     | 0 errors                |
| 0     | 0     | 0     | 1     | 1 error                 |
| 0     | 0     | 1     | 0     | 2 errors                |
| 0     | 0     | 1     | 1     | 3 errors                |
| 0     | 1     | 0     | 0     | 4 errors                |
| 0     | 1     | 0     | 1     | 5 errors                |
| 0     | 1     | 1     | 0     | 6 errors                |
| 0     | 1     | 1     | 1     | 7 errors                |
| 1     | 0     | 0     | 0     | 8 errors                |
| 1     | 0     | 0     | 1     | 0 errors                |
| 1     | 0     | 1     | 0     | 0 errors                |
| 1     | 0     | 1     | 1     | 0 errors                |
| 1     | 1     | 0     | 0     | 0 errors                |
| 1     | 1     | 0     | 1     | 0 errors                |
| 1     | 1     | 1     | 0     | 0 errors                |
| 1     | 1     | 1     | 1     | 0 errors                |

C2: The information in the C2 byte shall be extracted to allow unequipped VC defect detection.

### Defects:

The function shall detect for dDEG, dRDI, dUNEQ and dTIM defects according the specifications in ETS 300 417-1-1 [1], subclause 8.2.1.

## **Consequent Actions:**

aTSF  $\leftarrow$  CI\_SSF or dTIM

 $aTSD \leftarrow dDEG$ 

aRDI  $\leftarrow$  CI\_SSF or dTIM

aREI  $\leftarrow$  "#EDCV"

NOTE:

dUNEQ can not be used to activate aTSF and aRDI; an expected supervisory-unequipped signal will have the signal label set to all-0's, causing a continuous detection of dUNEQ. If an unequipped VC comes in, dTIM will be activated and can serve as a trigger for aTSF/aRDI instead of dUNEQ.

#### **Defect Correlations:**

cUNEQ ← MON and dTIM and (AcTI = all "0"s) and dUNEQ

cTIM ← MON and dTIM and not (dUNEQ and AcTI = all "0"s)

cDEG ← MON and (not dTIM) and dDEG

cRDI ← MON and (not dTIM) and dRDI and RDI\_reported

cSSF ← MON and CI\_SSF and SSF\_Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

## **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $pN_DS \leftarrow aTSF \text{ or } dEQ$ 

 $pF_DS \leftarrow dRDI$ 

 $pN\_EBC \leftarrow \Sigma nN\_B$ 

 $pF\_EBC \leftarrow \Sigma nF\_B$ 

## 4.5 VC-4 Layer Trail Protection Functions

## 4.5.1 VC-4 Trail Protection Connection Functions S4P\_C

## 4.5.1.1 VC-4 Layer 1+1 single ended Protection Connection Function S4P1+1se\_C

### Symbol:

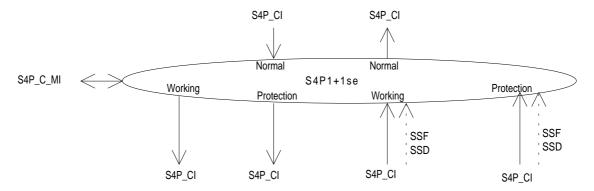



Figure 60: S4P1+1se\_C symbol

### Interfaces:

Table 41: S4P1+1se\_C input and output signals

| Input(s)                       | Output(s)                         |
|--------------------------------|-----------------------------------|
| for connection points W and P: | for connection points W and P:    |
| S4P_CI_D                       | S4P_CI_D                          |
| S4P_CI_CK                      | S4P_CI_CK                         |
| S4P_CI_FS                      | S4P_CI_FS                         |
| S4P_CI_SSF                     |                                   |
| S4P_CI_SSD                     | for connection point N:           |
|                                | S4P_CI_D                          |
| for connection point N:        | S4P_CI_CK                         |
| S4P_CI_D                       | S4P_CI_FS                         |
| S4P_CI_CK                      | S4P_CI_SSF                        |
| S4P_CI_FS                      |                                   |
|                                | Note: protection status reporting |
| S4P_C_MI_OPERType              | signals are for further study.    |
| S4P_C_MI_WTRTime               |                                   |
| S4P_C_MI_HOTime                |                                   |
| S4P_C_MI_EXTCMD                |                                   |

### **Processes:**

The function performs the VC-4 linear trail protection process for 1+1 protection architecture with single-ended switching; refer to ETS 300 417-1-1 [1], subclause 9.2. It performs the bridge and selector functionality as presented in figures 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the associated working path or the protection path; this is determined by the SF,SD conditions (relayed via CI\_SSF,CI\_SSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

Provided no protection switching action is activated/required the following changes to (the configuration of) a trail shall be possible without disturbing the CI passing the trail:

- change between operation types;
- change of WTR and HO times.

<u>Operation:</u> The VC trail protection process shall operate as specified in prETS 300 417-3-1 [4], annex A, according the following characteristics:

**Table 42: Trail protection parameters** 

| Parameter                      | Value options                                   |
|--------------------------------|-------------------------------------------------|
| architecture type (ARCHtype)   | 1 + 1                                           |
| switching type (SWtype)        | single-ended                                    |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | false                                           |
| Wait-To-Restore time (WTRtime) | in the order of 5-12 minutes                    |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | trail                                           |
| Signal switch conditions:      | SF = SSF (originated as AI_TSF)                 |
|                                | SD = SSD (originated as AI_TSD)                 |
| External commands (EXTCMD)     | LO-#0, FSw-#i, MSw-#i, CLR                      |
| Extra traffic (EXTRAtraffic)   | false                                           |

Page 73

Draft prETS 300 417-4-1: April 1996

**Defects:** None

Consequent Actions: None

**Defect Correlations:** None

Performance Monitoring: None

#### 4.5.1.2 VC-4 Layer Protection Connection Function S4P1+1de\_C

#### Symbol:

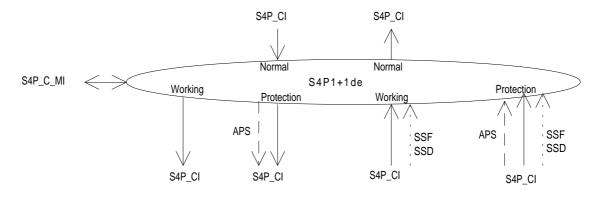



Figure 61: S4P1+1de\_C symbol

#### Interfaces:

Table 43: S4P1+1de\_C input and output signals

| Input(s)                       | Output(s)                      |
|--------------------------------|--------------------------------|
| for connection points W and P: | for connection points W and P: |
| S4P_CI_D                       | S4P_CI_D                       |
| S4P_CI_CK                      | S4P_CI_CK                      |
| S4P_CI_FS                      | S4P_CI_FS                      |
| S4P_CI_SSF                     |                                |
| S4P_CI_SSD                     | for connection point N:        |
|                                | S4P_CI_D                       |
| for connection point N:        | S4P_CI_CK                      |
| S4P_CI_D                       | S4P_CI_FS                      |
| S4P_CI_CK                      | S4P_CI_SSF                     |
| S4P_CI_FS                      |                                |
|                                | for connection point P:        |
| for connection point P:        | S4P_CI_APS                     |
| S4P_CI_APS                     |                                |
|                                | NOTE: protection status        |
| S4P_C_MI_OPERType              | reporting signals are for      |
| S4P_C_MI_WTRTime               | further study.                 |
| S4P_C_MI_HOTime                |                                |
| S4P_C_MI_EXTCMD                |                                |

#### **Processes:**

The function performs the VC-4 linear trail protection process for 1+1 protection architecture with dual-ended switching; refer to ETS 300 417-1-1 [1], subclause 9.2. It performs the bridge and selector functionality as presented in figures 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the associated working path or the protection path; this is determined by the SF,SD conditions (relayed via CI\_SSF,CI\_SSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

Provided no protection switching action is activated/required the following changes to (the configuration of) a trail shall be possible without disturbing the CI passing the trail:

- change between operation types;
- change of WTR and HO times.

*VC Trail Protection Operation:* The VC trail protection process shall operate as specified in prETS 300 417-3-1 [4], annex A, according the following characteristics:

**Table 44: Trail protection parameters** 

| Parameter                      | Value options                                   |
|--------------------------------|-------------------------------------------------|
| architecture type (ARCHtype)   | 1 + 1                                           |
| switching type (SWtype)        | dual-ended                                      |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | true                                            |
| Wait-To-Restore time (WTRtime) | in the order of 5-12 minutes                    |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | trail                                           |
| Signal switch conditions:      | SF = SSF (originated as AI_TSF)                 |
|                                | SD = SSD (originated as AI_TSD)                 |
| External commands (EXTCMD)     | LO-#0, FSw-#i, MSw-#i, EXER-#i, CLR             |
| Extra traffic (EXTRAtraffic)   | false                                           |

NOTE: The VC-4 APS signal definition is for further study.

**Defects:** None

Consequent Actions: None

**Defect Correlations:** None

Performance Monitoring: None

#### 4.5.2 VC-4 Layer Trail Protection Trail Termination Functions

#### 4.5.2.1 VC-4 Protection Trail Termination Source S4P\_TT\_So

#### Symbol:

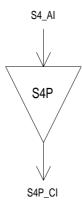



Figure 62: S4P\_TT\_So symbol

#### Interfaces:

Table 45: S4P\_TT\_So input and output signals

| Input(s) | Output(s) |
|----------|-----------|
| S4_AI_D  | S4P_CI_D  |
| S4_AI_CK | S4P_CI_CK |
| S4_AI_FS | S4P_CI_FS |

#### Processes:

No information processing is required in the S4P\_TT\_So, the S4\_AI at its output is identical to the S4P\_CI at its input.

Defects: None

Consequent Actions: None

**Defect Correlations:** None

Performance Monitoring: None

#### 4.5.2.2 VC-4 Protection Trail Termination Sink S4P\_TT\_Sk

#### Symbol:

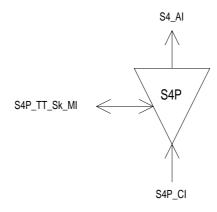



Figure 63: S4P\_TT\_Sk symbol

#### Interfaces:

Table 46: S4P\_TT\_Sk input and output signals

| Input(s)                  | Output(s)         |
|---------------------------|-------------------|
| S4P_CI_D                  | S4_AI_D           |
| S4P_CI_CK                 | S4_AI_CK          |
| S4P_CI_FS                 | S4_AI_FS          |
| S4P_CI_SSF                | S4_AI_TSF         |
| S4P_TT_Sk_MI_SSF_Reported | S4P_TT_Sk_MI_cSSF |

#### **Processes:**

The S4P\_TT\_Sk function reports, as part of the S4 layer, the state of the protected VC-4 trail. In case all trails are unavailable the S4P\_TT\_Sk reports the signal fail condition of the protected trail.

Defects: None

**Consequent Actions:** 

 $\mathsf{aTSF} \leftarrow \mathsf{CI\_SSF}$ 

**Defect Correlations:** 

 $cSSF \leftarrow CI_SSF$  and  $SSF_Reported$ 

Performance Monitoring: None

4.5.3 VC-4 Layer Linear Trail Protection Adaptation Functions

4.5.3.1 VC-4 trail to VC-4 trail Protection Layer Adaptation Source S4/S4P\_A\_So

Symbol:

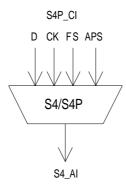



Figure 64: S4/S4P\_A\_So symbol

#### Interfaces:

Table 47: S4/S4P\_A\_So input and output signals

| Input(s)   | Output(s) |
|------------|-----------|
| S4P_CI_D   | S4_AI_D   |
| S4P_CI_CK  | S4_AI_CK  |
| S4P_CI_FS  | S4_AI_FS  |
| S4P_CI_APS |           |

#### Processes:

The function shall multiplex the S4 APS signal and S4 data signal onto the S4 access point.

**K3[1-4]:** The insertion of the VC-APS signal is for further study. This process is required only for the protection path.

Defects: None

Consequent actions: None

**Defect Correlations:** None

Performance Monitoring: None

#### 4.5.3.2 VC-4 trail to VC-4 trail Protection Layer Adaptation Sink S4/S4P\_A\_Sk

#### Symbol:

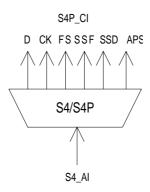



Figure 65: S4/S4P\_A\_Sk symbol

#### Interfaces:

Table 48: S4/S4P\_A\_Sk input and output signals

| Input(s) Output(s) |                                         |
|--------------------|-----------------------------------------|
| S4_AI_D            | S4P_CI_D                                |
| S4_AI_CK           | S4P_CI_CK                               |
| S4_AI_FS           | S4P_CI_FS                               |
| S4_AI_TSF          | S4P_CI_SSF                              |
| S4_AI_TSD          | S4P_CI_SSD                              |
|                    | S4P_CI_APS (for Protection signal only) |

#### Processes:

The function shall extract and output the S4P\_CI\_D signal from the S4\_AI\_D signal.

**K3[1-4]:** The extraction and persistency processing of the VC-APS signal is for further study. This process is required only for the protection path.

Defects: None

#### Consequent actions:

 $\mathsf{aSSF} \leftarrow \mathsf{AI\_TSF}$ 

 $aSSD \leftarrow AI\_TSD$ 

**Defect Correlations:** None

Performance Monitoring: None

#### 4.6 VC-4 Tandem Connection Sublayer Functions

#### 4.6.1 VC-4 Tandem Connection Trail Termination Source function (S4D\_TT\_So)

#### Symbol:

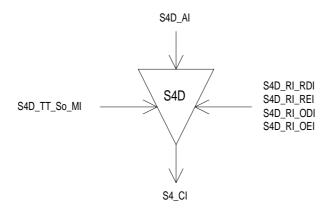



Figure 66: S4D\_TT\_So symbol

#### Interfaces:

Table 49: S4D TT So input and output signals

| Input(s)          | Output(s) |
|-------------------|-----------|
| S4D_AI_D          | S4_CI_D   |
| S4D_AI_CK         | S4_CI_CK  |
| S4D_AI_FS         | S4_CI_FS  |
| S4D_AI_SF         |           |
| S4D_RI_RDI        |           |
| S4D_RI_REI        |           |
| S4D_RI_ODI        |           |
| S4D_RI_OEI        |           |
| S4D_TT_So_MI_TxTI |           |

#### **Processes:**

N1[8][73]<sup>3</sup>: The function shall insert the TC RDI code within 1 multiframe (9.5 ms) after the RDI request generation (RI\_RDI)) in the tandem connection trail termination sink function. It ceases TC RDI code insertion within 1 multiframe (9.5 ms) after the TC RDI request has cleared.

N1[5]: The function shall insert the RI REI value in the REI bit in the following frame.

**N1[7][74]:** The function shall insert the ODI code within 1 multiframe (9.5 ms) after the ODI request generation (aODI)) in the tandem connection trail termination sink function. It ceases ODI code insertion at the first opportunity after the ODI request has cleared.

**N1[6]:** The function shall insert the RI\_OEI value in the OEI bit in following frame.

N1[7-8]: The function shall insert in the multiframed N1[7-8] channel:

- the Frame Alignment Signal (FAS) "1111 1111 1110" in FAS bits in frames 1 to 8;
- the TC trace identifier, received via MI TxTI, in the TC-TI bits in frames 9 to 72;
- the TC RDI (N1[8][73]) and ODI (N1[7][74]) signals; and
- all-0s in the six reserved bits in frames 73 to 76.

N1[x][y] refers to bit x (x = 7,8) of byte N1 in frame y (y=1..76) of the 76 frame multiframe.

**N1[1-4]:** Even BIP-8 shall be computed for each bit n of every byte of the preceding VC-4 including B3 and compared with byte B3 recovered from the current frame. A difference between the computed and recovered BIP-8 values shall be taken as evidence of one or more errors in the computation block, and shall be inserted in bits 1 to 4 of byte N1 (figure 67, table 50<sup>4</sup>). If Al\_SF is true, code "1110" shall be inserted in bits 1 to 4 of byte N1 instead of the number of incoming BIP-8 violations.

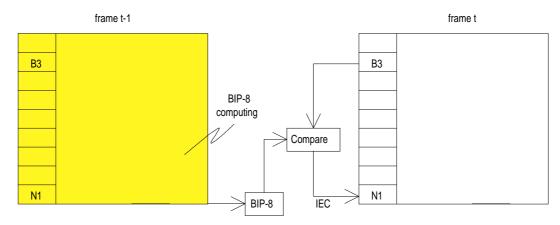



Figure 67: TC IEC computing and insertion

| Number of BIP-8 violations | N1[1] | N1[2] | N1[3] | N1[4] |
|----------------------------|-------|-------|-------|-------|
| 1                          | 0     | 0     | 0     | 1     |
| 2                          | 0     | 0     | 1     | 0     |
| 3                          | 0     | 0     | 1     | 1     |
| 4                          | 0     | 1     | 0     | 0     |
| 5                          | 0     | 1     | 0     | 1     |
| 6                          | 0     | 1     | 1     | 0     |
| 7                          | 0     | 1     | 1     | 1     |
| 8                          | 1     | 0     | 0     | 0     |

Table 50: IEC code generation

#### **B3:** The function shall compensate the VC4 BIP8 (in B3) according the following rule:

Since the BIP-8 parity check is taken over the VC (including N1), writing into N1 at the S4D\_TT\_So will affect the VC-4 path parity calculation. Unless this is compensated for, a device which monitors VC-4 path parity within the Tandem Connection (e.g., a non-intrusive monitor) may incorrectly count errors. The BIP-8 parity bits should always be consistent with the current state of the VC. Therefore, whenever N1 is written, BIP-8 shall be modified to compensate for the change in the N1 value. Since the BIP-8 value in a given frame reflects a parity check over the previous frame (including the BIP-8 bits in that frame), the changes made to the BIP-8 bits in the previous frame shall also be considered in the compensation of BIP-8 for the current frame. Therefore, the following equation shall be used for BIP-8 compensation:

 $B3[i]'(t) = B3[i](t-1) \oplus B3[i]'(t-1) \oplus N1[i](t-1) \oplus N1[i]'(t-1) \oplus B3[i](t)$ 

#### Where:

B3[i] = the existing B3[i] value in the incoming signal

0

B3[i]' = the new (compensated) B3[i] value

N1[i] = the existing N1[i] value in the incoming signal

N1[i]' = the new value written into the N1[i] bit

⊕ = exclusive OR operator

t = the time of the current frame

t-1 = the time of the previous frame

Zero BIP-8 violations detected in the tandem connection incoming signal must be coded with a non-all-ZEROs IEC code. This allows this IEC field to be used at the TC tail end as differentiator between TC incoming unequipped VC and unequipped TC.

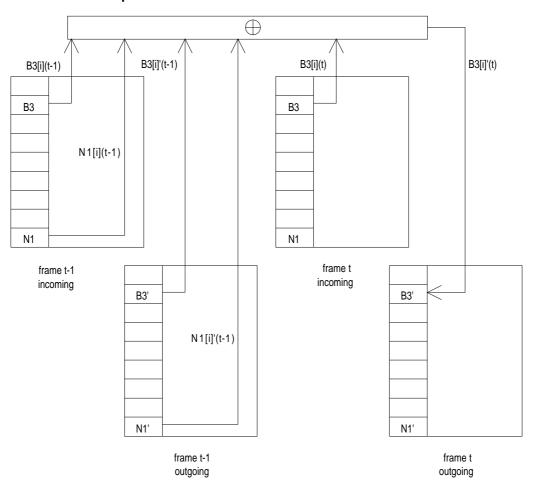



Figure 68: B3[i], i=1..8 compensating process

**Defects:** None

Consequent Actions: None

**Defect Correlations:** None

Performance Monitoring: None

#### 4.6.2 VC-4 Tandem Connection Trail Termination Sink function (S4D\_TT\_Sk)

#### Symbol:

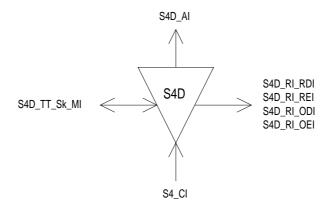



Figure 69: S4D\_TT\_Sk symbol

#### Interfaces:

Table 51: S4D\_TT\_Sk input and output signals

| Input(s)                   | Output(s)            |
|----------------------------|----------------------|
| S4_CI_D                    | S4D_AI_D             |
| S4_CI_CK                   | S4D_AI_CK            |
| S4_CI_FS                   | S4D_AI_FS            |
| S4_CI_SSF                  | S4D_AI_TSF           |
| S4D_TT_Sk_MI_ExTI          | S4D_AI_TSD           |
| S4D_TT_Sk_ MI_SSF_Reported | S4D_AI_OSF           |
| S4D_TT_Sk_ MI_RDI_Reported | S4D_TT_Sk_MI_cLTC    |
| S4D_TT_Sk_ MI_ODI_Reported | S4D_TT_Sk_MI_cTIM    |
| S4D_TT_Sk_ MI_TIMdis       | S4D_TT_Sk_MI_cUNEQ   |
| S4D_TT_Sk_ MI_DEGM         | S4D_TT_Sk_MI_cDEG    |
| S4D_TT_Sk_ MI_DEGTHR       | S4D_TT_Sk_MI_cRDI    |
| S4D_TT_Sk_ MI_1second      | S4D_TT_Sk_MI_cSSF    |
|                            | S4D_TT_Sk_MI_cODI    |
|                            | S4D_TT_Sk_MI_AcTI    |
|                            | S4D_RI_RDI           |
|                            | S4D_RI_REI           |
|                            | S4D_RI_ODI           |
|                            | S4D_RI_OEI           |
|                            | S4D_TT_Sk_MI_pN_EBC  |
|                            | S4D_TT_Sk_MI_pF_EBC  |
|                            | S4D_TT_Sk_MI_pN_DS   |
|                            | S4D_TT_Sk_MI_pF_DS   |
|                            | S4D_TT_Sk_MI_pON_EBC |
|                            | S4D_TT_Sk_MI_pOF_EBC |
|                            | S4D_TT_Sk_MI_pON_DS  |
|                            | S4D_TT_Sk_MI_pOF_DS  |

#### Processes:

**TC EDC violations:** Even bit parity shall be computed for each bit n of every byte of the preceding VC-4 and compared with bit n of B3 recovered from the current frame (n=1 to 8 inclusive). A difference between the computed and recovered B3 values shall be taken as evidence of one or more errors in the computation block (nON\_B). The magnitude (absolute value) of the difference between this calculated number of errors and the number of errors written into the IEC (see table 52) at the trail termination source shall be used to determine the error performance of the tandem connection for each transmitted VC-4 (figure 70). If this magnitude of the difference is one or more, an errored TC block is detected (nN\_B).

NOTE: The B3 data and the IEC read in the current frame both apply to the previous frame.

| N1[1] | N1[2] | N1[3] | N1[4] | IEC code interpretation |
|-------|-------|-------|-------|-------------------------|
| 0     | 0     | 0     | 0     | 0 errors                |
| 0     | 0     | 0     | 1     | 1 error                 |
| 0     | 0     | 1     | 0     | 2 errors                |
| 0     | 0     | 1     | 1     | 3 errors                |
| 0     | 1     | 0     | 0     | 4 errors                |
| 0     | 1     | 0     | 1     | 5 errors                |
| 0     | 1     | 1     | 0     | 6 errors                |
| 0     | 1     | 1     | 1     | 7 errors                |
| 1     | 0     | 0     | 0     | 8 errors                |
| 1     | 0     | 0     | 1     | 0 errors                |
| 1     | 0     | 1     | 0     | 0 errors                |
| 1     | 0     | 1     | 1     | 0 errors                |
| 1     | 1     | 0     | 0     | 0 errors                |
| 1     | 1     | 0     | 1     | 0 errors                |
| 1     | 1     | 1     | 0     | 0 errors                |
| 1     | 1     | 1     | 1     | 0 errors                |

Table 52: IEC code interpretation

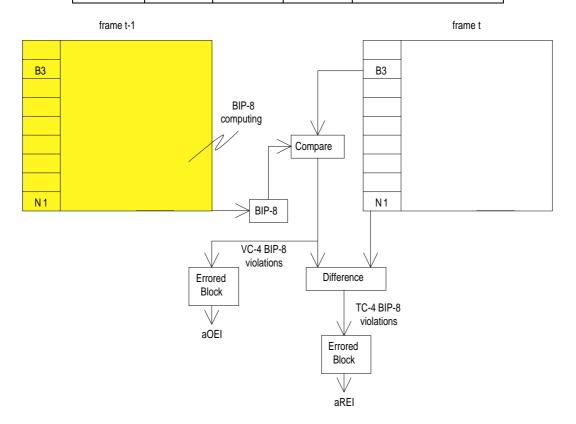



Figure 70: TC-4 and VC-4 BIP-8 computing and comparison

**N1[1-4]:** The function shall extract the Incoming Error Code (IEC). It shall accept the received code without further processing.

**N1[7-8][9-72]:** The Received Trail Trace Identifier RxTI shall be recovered from the tandem connection trail trace identifier overhead and shall be made available as AcTI for network management purposes. The application and acceptance process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3. The mismatch detection process shall be as specified below.

The trace identifier process in this function is required to support "mode 1" (ETS 300 417-1-1 [1], subclause 7.1) operation only. "Old" tandem connection equipment does not exist.

N1[1-4]: The function shall extract the Incoming AIS code.

N1[5], N1[8][73]: The information carried in the REI, RDI bits in byte N1 shall be extracted to enable single ended maintenance of a bi-directional tandem connection Trail. The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI) and 7.4.11 and 8.2 (RDI).

N1[6], N1[7][74]: The information carried in the OEI, ODI bits in byte N1 shall be extracted to enable single ended (intermediate) maintenance of a the VC-4 egressing the tandem connection Trail. The OEI (nOF\_B) shall be used to monitor the error performance of the other direction of transmission, and the ODI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Outgoing Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed equivalent to the remote maintenance case, as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI/OEI) and 7.4.11 and 8.2 (RDI/ODI).

**N1[7-8]:** *Multiframe alignment:* The function shall perform a multiframe alignment on bits 7 and 8 of byte N1 to recover the TTI, RDI, and ODI signals transported within the multiframed bits. The multiframe alignment shall be found by searching for the pattern "1111 1111 1110" within the bits 7 and 8 of byte N1. The signal shall be continuously checked with the presumed multiframe start position for the alignment.

Frame alignment is deemed to have been lost (entering Out Of Multiframe (OOM) state) when two consecutive FAS are detected in error (i.e. ≥ 1 error in each FAS);

Frame alignment is deemed to have been recovered (entering In Multiframe (IM) state) when one non-errored FAS is found.

**N1:** The function shall terminate N1 channel by inserting an all-ZEROs pattern.

**B3:** The function shall compensate the VC-4 BIP8 in byte B3 according the algorithm defined in S4D\_TT\_So.

#### Defects:

#### TC Unequipped (dUNEQ):

The function shall detect for an unequipped Tandem Connection (UNEQ) condition by monitoring byte N1 for code "00000000". The algorithm shall be according subclause 8.2.1.2 of ETS 300 417-1-1 [1], in which "accepted TSL" shall be read as "accepted N1 byte".

#### TC Loss of Tandem Connection (dLTC):

The function shall detect for the presence/absence of the tandem connection overhead in the byte N1 by evaluating the multiframe alignment signal in bits 7 and 8 of byte N1. The loss of tandem connection defect (dLTC) shall be detected if the multiframe alignment process is in the OOM state. The dLTC shall be cleared if the multiframe alignment process is in the IM state.

#### TC Connectivity (Trace Identifier) (dTIM):

The function shall detect for a TC mis-connection condition by monitoring the TC trace identifier. The Trace Identifier Mismatch defect (dTIM) shall be detected and cleared within a maximum period of 1 s in the absence of bit errors.

#### Page 84

#### Draft prETS 300 417-4-1: April 1996

The defect detection process and its operation during the presence of bit errors is for further study.

The defect shall be suppressed during the receipt of SSF.

It shall be possible to disable the trace identifier mismatch defect detection (TIMdis).

#### TC Signal Degrade (dDEG):

The function shall detect for a TC signal degrade defect condition by monitoring for TC BIP-8 violations. The algorithm shall be according subclause 8.2.1.4 of ETS 300 417-1-1 [1].

#### TC Remote Defect (dRDI):

The function shall detect for a TC remote defect indication defect condition by monitoring the TC RDI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

#### TC Remote Outgoing VC Defect (dODI):

The function shall detect for a TC remote outgoing VC defect indication defect condition by monitoring the TC ODI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

#### Incoming AIS (dIncAIS):

The function shall detect for a tandem connection incoming AIS condition by monitoring the IEC bits in byte N1 for code "1110". If 5 consecutive frames contain the '1110' pattern in the IEC bits a dlncAIS defect shall be detected. dlncAIS shall be cleared if in 5 consecutive frames any pattern other than the '1110' is detected in the IEC bits.

NOTE:

Bits 1 to 4 of byte N1 support two applications: conveying the incoming error information (table 52) and conveying the incoming AIS information to the TC tail end. Codes 0000 to 1101, 1111 represent IncAIS is false, code 1110 represents IncAIS is true.

#### **Consequent Actions:**

The function shall perform the following consequent actions (refer to subclause 8.2.2 of ETS 300 417-1-1 [1]):

aAIS ← dUNEQ or dTIM or dLTC

aTSF ← CI\_SSF or dUNEQ or dTIM or dLTC

aTSD  $\leftarrow$  dDEG

aRDI ← CI SSF or dUNEQ or dTIM or dLTC

aREI ← nN\_B

aODI ← CI\_SSF or dUNEQ or dTIM or dIncAIS or dLTC

aOEI ← nON\_B

 $\mathsf{aOSF} \ \leftarrow \ \mathsf{CI\_SSF} \ \mathsf{or} \ \mathsf{dUNEQ} \ \mathsf{or} \ \mathsf{dTIM} \ \mathsf{or} \ \mathsf{dLTC} \ \mathsf{or} \ \mathsf{dIncAIS}$ 

The function shall insert the all-ONEs (AIS) signal within 250  $\mu$ s after AIS request generation (aAIS), and cease the insertion within 250  $\mu$ s after the AIS request has cleared.

#### **Defect Correlations:**

The function shall perform the following defect correlations (refer to subclause 8.2.3 of ETS 300 417-1-1 [1]):

cUNEQ ← MON and dUNEQ

cLTC ← MON and (not dUNEQ) and dLTC

cTIM ← MON and (not dUNEQ) and (not dLTC) and dTIM

cDEG ← MON and (not dTIM) and (not dLTC) and dDEG

cSSF ← MON and CI\_SSF and SSF\_reported

cRDI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dRDI and RDI\_Reported

cODI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dODI and ODI\_Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI reported. The default shall be RDI Reported = false.

It shall be an option to report ODI as a fault cause. This is controlled by means of the parameter ODI\_Reported. The default shall be ODI\_Reported = false.

#### **Performance Monitoring:**

The following TC error performance parameters shall be counted for each 1-second period (refer to subclauses 8.2.4 to 8.2.7 of ETS 300 417-1-1 [1])<sup>5</sup>:

pN\_DS ← aTSF or dEQ

 $pF_DS \leftarrow dRDI$ 

 $pN\_EBC \leftarrow \Sigma nN\_B$ 

 $\mathsf{pF}\_\mathsf{EBC} \leftarrow \Sigma \mathsf{nF}\_\mathsf{B}$ 

pON\_DS ← aODI or dEQ

 $\mathsf{pOF} \mathsf{\_DS} \leftarrow \mathsf{dODI}$ 

pON EBC  $\leftarrow \Sigma$ nON B

 $pOF\_EBC \leftarrow \Sigma nOF\_B$ 

pN\_EBC and pN\_DS do not represent the actual perfromance monitoring support within an equipment. For that, these pN\_DS/pN\_EBC signals must be connected to performance monitoring functions within the element management function. Similar for the far-end signals pF\_EBC and pF\_DS and for pON\_EBC/pON\_DS, pOF\_EBC/pOF\_DS.

#### 4.6.3 VC-4 Tandem Connection to VC-4 Adaptation Source function (S4D/S4\_A\_So)

#### Symbol:

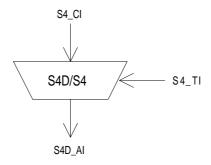



Figure 71: S4D/S4\_A\_So symbol

#### Interfaces:

Table 53: S4D/S4\_A\_So input and output signals

| Input(s)  | Output(s) |
|-----------|-----------|
| S4_CI_D   | S4D_AI_D  |
| S4_CI_CK  | S4D_AI_CK |
| S4_CI_FS  | S4D_AI_FS |
| S4_CI_SSF | S4D_AI_SF |
| S4_TI_CK  |           |

#### **Processes:**

NOTE 1: The function has no means to verify the existence of a tandem connection within the incoming signal. Nested tandem connections are not supported.

The function shall replace the incoming Frame Start (CI\_FS) signal by a local generated one (i.e. enter "holdover") if an all-ONEs (AIS) VC is received (i.e. if CI\_SSF is TRUE).

NOTE 2: This replacement of the (invalid) incoming frame start signal result in the generation of a valid pointer in the MSn/S4\_A\_So function; SSF=true signal is not passed through via S4D\_TT\_So to the MSn/S4\_A\_So.

NOTE 3: The local frame start is generated with the S4\_TI timing.

Defects: None

**Consequent Actions:** 

AI\_SF← CI\_SSF

Defect Correlations: None

Performance Monitoring: None

#### 4.6.4 VC-4 Tandem Connection to VC-4 Adaptation Sink function (S4D/S4\_A\_Sk)

#### Symbol:

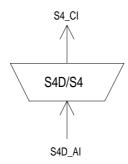



Figure 72: S4D/S4\_A\_Sk symbol

#### Interfaces:

Table 54: S4D/S4\_A\_Sk input and output signals

| Input(s)   | Output(s) |
|------------|-----------|
| S4D_AI_D   | S4_CI_D   |
| S4D_AI_CK  | S4_CI_CK  |
| S4D_AI_FS  | S4_CI_FS  |
| S4D_AI_OSF | S4_CI_SSF |

#### **Processes:**

The function shall restore the invalid frame start condition (i.e. output aSSF = true) if that existed at the ingress of the tandem connection.

NOTE: In addition, the invalid frame start condition is activated on a tandem connection

connectivity defect condition that causes all-ONEs (AIS) insertion in the S4D\_TT\_Sk.

**Defects:** None

#### **Consequent Actions:**

aAIS  $\leftarrow$  AI\_OSF

 $aSSF \leftarrow AI OSF$ 

The function shall insert the all-ONEs (AIS) signal within 250  $\mu$ s after AIS request generation (aAIS), and cease the insertion within 250  $\mu$ s after the AIS request has cleared.

**Defect Correlations:** None

Performance Monitoring: None

#### 4.6.5 VC-4 Tandem Connection non-intrusive Trail Termination Sink function (S4Dm\_TT\_Sk)

#### Symbol:

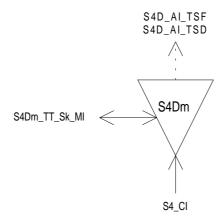



Figure 73: S4Dm\_TT\_Sk symbol

#### Interfaces:

Table 55: S4Dm\_TT\_Sk input and output signals

| Input(s)                   | Output(s)            |
|----------------------------|----------------------|
| S4_CI_D                    | S4D_AI_TSF           |
| S4_CI_CK                   | S4D_AI_TSD           |
| S4_CI_FS                   | S4D_TT_Sk_MI_cLTC    |
| S4_CI_SSF                  | S4D_TT_Sk_MI_cTIM    |
| S4D_TT_Sk_MI_ExTI          | S4D_TT_Sk_MI_cUNEQ   |
| S4D_TT_Sk_ MI_SSF_Reported | S4D_TT_Sk_MI_cDEG    |
| S4D_TT_Sk_ MI_RDI_Reported | S4D_TT_Sk_MI_cRDI    |
| S4D_TT_Sk_ MI_ODI_Reported | S4D_TT_Sk_MI_cSSF    |
| S4D_TT_Sk_ MI_TIMdis       | S4D_TT_Sk_MI_cODI    |
| S4D_TT_Sk_ MI_DEGM         | S4D_TT_Sk_MI_AcTI    |
| S4D_TT_Sk_ MI_DEGTHR       | S4D_TT_Sk_MI_pN_EBC  |
| S4D_TT_Sk_ MI_1second      | S4D_TT_Sk_MI_pF_EBC  |
|                            | S4D_TT_Sk_MI_pN_DS   |
|                            | S4D_TT_Sk_MI_pF_DS   |
|                            | S4D_TT_Sk_MI_pOF_EBC |
|                            | S4D_TT_Sk_MI_pOF_DS  |

#### **Processes:**

This function can be used to perform the following:

- single ended maintenance of the TC by monitoring at an intermediate node, using remote information (RDI,REI);
- 2 aid in fault localisation within TC trail by monitoring near-end defects;
- monitoring of VC performance at TC egressing point (except for connectivity defects before the TC) using remote outgoing information (ODI,OEI);
- 4 performing non-intrusive monitor function within SNC/S protection.

TC EDC violations: Even bit parity shall be computed for each bit n of every byte of the preceding VC-4 and compared with bit n of B3 recovered from the current frame (n=1 to 8 inclusive). A difference between the computed and recovered B3 values shall be taken as evidence of one or more errors in the computation block (nON\_B). The magnitude (absolute value) of the difference between this calculated number of errors and the number of errors written into the IEC (see table 52) at the trail termination source shall be used to determine the error performance of the tandem connection for each transmitted VC-4 (figure 70). If this magnitude of the difference is one or more, an errored TC block is detected (nN B). Refer to S4D TT Sk.

**N1[1-4]:** The function shall extract the Incoming Error Code (IEC). It shall accept the received code without further processing.

**N1[7-8][9-72]:** The Received Trail Trace Identifier RxTI shall be recovered from the tandem connection trail trace identifier overhead and shall be made available as AcTI for network management purposes. The application and acceptance process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3. The mismatch detection process shall be as specified below.

The trace identifier process in this function is required to support "mode 1" (ETS 300 417-1-1 [1], subclause 7.1) operation only. "Old" tandem connection equipment does not exist.

N1[1-4]: The function shall extract the Incoming AIS code.

N1[5], N1[8][73]: The information carried in the REI, RDI bits in byte N1 shall be extracted to enable single ended maintenance of a bi-directional tandem connection Trail. The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI), subclause 7.4.11 and 8.2 (RDI).

N1[6], N1[7][74]: The information carried in the OEI, ODI bits in byte N1 shall be extracted to enable single ended (intermediate) maintenance of a the VC-4 egressing the tandem connection Trail. The OEI (nOF\_B) shall be used to monitor the error performance of the other direction of transmission, and the ODI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Outgoing Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed equivalent to the remote maintenance case, as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI/OEI), subclause 7.4.11 and 8.2 (RDI/ODI).

N1[7-8]: Multiframe alignment: The function shall perform a multiframe alignment on bits 7 and 8 of byte N1 to recover the TTI, RDI, and ODI signals transported within the multiframed bits. The multiframe alignment shall be found by searching for the pattern "1111 1111 1110" within the bits 7 and 8 of byte N1. The signal shall be continuously checked with the presumed multiframe start position for the alignment.

Frame alignment is deemed to have been lost (entering Out Of Multiframe (OOM) state) when two consecutive FAS are detected in error (i.e.  $\geq$  1 error in each FAS). Frame alignment is deemed to have been recovered (entering In Multiframe (IM) state) when one non-errored FAS is found.

#### Defects:

#### TC Unequipped (dUNEQ):

The function shall detect for an unequipped Tandem Connection (UNEQ) condition by monitoring byte N1 for code "00000000". The algorithm shall be according subclause 8.2.1.2 of ETS 300 417-1-1 [1], in which "accepted TSL" shall be read as "accepted N1 byte".

#### TC Loss of Tandem Connection (dLTC):

The function shall detect for the presence/absence of the tandem connection overhead in the byte N1 by evaluating the multiframe alignment signal in bits 7 and 8 of byte N1. The loss of tandem connection defect (dLTC) shall be detected if the multiframe alignment process is in the OOM state. The dLTC shall be cleared if the multiframe alignment process is in the IM state.

#### Page 90

#### Draft prETS 300 417-4-1: April 1996

#### TC Connectivity (Trace Identifier) (dTIM):

The function shall detect for a TC mis-connection condition by monitoring the TC trace identifier. The Trace Identifier Mismatch defect (dTIM) shall be detected and cleared within a maximum period of 1 s in the absence of bit errors.

The defect detection process and its operation during the presence of bit errors is for further study.

The defect shall be suppressed during the receipt of SSF.

It shall be possible to disable the trace identifier mismatch defect detection (TIMdis).

#### TC Signal Degrade (dDEG):

The function shall detect for a TC signal degrade defect condition by monitoring for TC BIP-8 violations. The algorithm shall be according subclause 8.2.1.4 of ETS 300 417-1-1 [1].

#### TC Remote Defect (dRDI):

The function shall detect for a TC remote defect indication defect condition by monitoring the TC RDI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

#### TC Remote Outgoing VC Defect (dODI):

The function shall detect for a TC remote outgoing VC defect indication defect condition by monitoring the TC ODI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

#### **Consequent Actions:**

aTSF ← CI\_SSF or dUNEQ or dTIM or dLTC

aTSD ← dDEG

#### **Defect Correlations:**

The function shall perform the following defect correlations (refer to subclause 8.2.3 of ETS 300 417-1-1 [1]):

cUNEQ ← MON and dUNEQ

cLTC ← MON and (not dUNEQ) and dLTC

cTIM ← MON and (not dUNEQ) and (not dLTC) and dTIM

cDEG ← MON and (not dTIM) and (not dLTC) and dDEG

cSSF ← MON and CI\_SSF and SSF\_reported

cRDI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dRDI and RDI\_reported

cODI  $\leftarrow$  MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dODI and ODI\_Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_reported. The default shall be RDI\_Reported = false.

It shall be an option to report ODI as a fault cause. This is controlled by means of the parameter ODI\_Reported. The default shall be ODI\_Reported = false.

#### **Performance Monitoring:**

The following TC error performance parameters shall be counted for each 1 second period (refer to subclauses 8.2.4 to 8.2.7 of ETS 300 417-1-1 [1]):

 $pN_DS \leftarrow aTSF \text{ or } dEQ$   $pF_DS \leftarrow dRDI$   $pN_EBC \leftarrow \Sigma nN_B$   $pF_EBC \leftarrow \Sigma nF_B$   $pOF_DS \leftarrow dODI$   $pOF_EBC \leftarrow \Sigma nOF_B$ 

#### 5 VC-3 Path Layer Functions

Refer to part 4b-1 of this ETS 300 417-4-1 (see Foreword for details).

#### 6 VC-2 Path Layer Functions

Refer to part 4c-1 of this ETS 300 417-4-1 (see Foreword for details).

#### 7 VC-12 Path Layer Functions

Refer to part 4d-1 of this ETS 300 417-4-1 (see Foreword for details).

#### 8 VC-11 Path Layer Functions

Refer to part 4e-1 of this ETS 300 417-4-1 (see Foreword for details).

#### 9 VC-4-4c Path Layer Functions

The applicability of this path layer within ETSI is for further study in ETSI STC TM3.

#### Annex A (informative): Jitter/wander in justification processes

#### A.1 VC-n phase accuracy/timing error/jitter/wander

Bit rate adaptation (stuffing), i.e. pointer justification events, generate timing errors. The timing errors result from three basic parameters:

- the accuracy of the phase detector initiating the justification events (the threshold spacing);
- the time period between the point in time where the decision is made to adjust the pointer and the point in time where the PJE is actually realised; and
- the pointer step width.

The threshold spacing gives rise to low frequency wander not resulting in PJEs. The corresponding frequency spectrum is arbitrary.

Pointer adjustments are changing (correcting) the phase error, in the case of VC-m (m = 3,2,12,11) by an 8 UI step, and give rise to jitter (low frequency spectrum).

As the TU-3 (TU-2/12/11) pointer can be changed only at points in time spaced 125 (500) µs, this pointer adjustment related jitter is enlarged by the delayed realisation of the PJE with respect to the actually threshold crossing event. This additional jitter component is characterised by a very small amplitude and a very low frequency spectrum (i.e. it is practically negligible).

PJE sequences depend on the implementation of the justification decision process and the frequency/phase relationships of the incoming and outgoing signals.

#### A.2 VC-n pointer processor introduced phase error measurement

This annex describes how the phase error introduced by pointer processing in the S4/S3\_A\_So function can be measured. The method described allows very accurate measurement of the phase behaviour of the tributary (VC-3) because:

- a) the clock of the multiplex signal is regular;
- b) the time slots allocated to the tributary are fixed;
- c) the phase shift of the tributary relative to the multiplex signal is exactly defined by the stuffing indication.

The figure below shows the measurement set-up to determine the phase error introduced by the adaptation source functions. This example refers to the phase error introduced by an S4/S3\_A\_So function; equivalent measurements are possible for other adaptation functions.

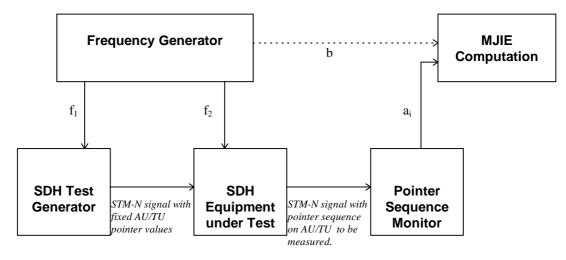



Figure A.1: Test Set-up to Measure Phase Errors (MJIE)

The SDH test generator is synchronised by a clock frequency  $f_1$  and generates an STM-N test signal comprising a VC-4 and a VC-3. The VC-4 and the VC-3 have a fixed phase with respect to the STM-N signal, i.e. no pointer adjustments occur.

The SDH equipment under test receives the incoming STM-N signal from the SDH test generator and demultiplexes the VC-4 from the AU-4 and the VC-3 out of the VC-4/TU-3. The VC-3 is then mapped into a TU-3/VC-4 synchronised to the frequency  $f_2$ . The VC-4 is then mapped into an outgoing STM-N signal which is also synchronised to  $f_2$ .

A frequency difference between  $f_1$  and  $f_2$  causes a continuously increasing phase difference between incoming and outgoing VC-3. The amount of this phase shift during one frame period T (T = 125  $\mu$ s) of the outgoing STM-N is b.

$$b = T \times \Delta f/f_2$$
 where  $\Delta f = (f_1 - f_2)$ 

In order to prevent buffer overflow/underflow in the S4/S3\_A\_So (to limit the phase difference) negative/positive stuffing is performed. This is observable by monitoring the TU-3 pointers in the outgoing STM-N signal. A change of a TU-3 pointer value by 1 (i.e. a pointer justification event), results in a phase shift of the outgoing VC-3 by one VC-3 byte. As there are 765 VC-3 bytes per frame the amount of the phase shift is T/765.

**The pointer sequence monitor** synchronises to the outgoing STM-N signal and monitors the TU-3 pointers in each frame. For each frame a corresponding value  $a_i$  is output to the MJIE computation block. The value of  $a_i$  is zero if in the  $i^{th}$  frame no pointer adjustment occurs. The value of  $a_i$  is T/765 if in the  $i^{th}$  frame the pointer value is incremented. The value of  $a_i$  is -T/765 if in the  $i^{th}$  frame the pointer value is decremented.

Starting at time  $t_0$  the MJIE computation block calculates the differences  $(a_i - b)$  at the times  $t_i = t_0 + (i \times T)$ . The results are accumulated giving values for each  $t_i$ :

$$c_i = \sum_{j=1}^{j=i} (a_j - b)$$

The measurement time  $T_m$  continues at least until  $T_m > f_2/\Delta f \times T$ . This correlates to a minimum upper limit for i of  $f_2/\Delta f$ .

The maximum difference calculated from each pair of  $c_i$  is the MJIE and represents the maximum phase error observed. The MJIE computation is summarised in the following figure:

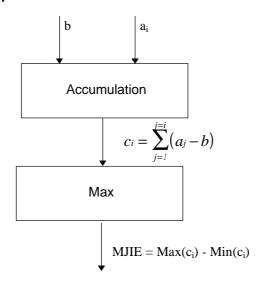



Figure A.2: Unweighted MJIE Computation

Due to different accumulation properties of networks for low frequency and high frequency phase distortions (jitter and wander) the frequency distribution of the phase distortions may be of interest. In this case the sequence of  $c_i$  values may be filtered by a digital filter. In the case of a first order low pass filter the sequence of  $c_i$  will be transformed into a sequence of  $e_i$  by the following equation

$$e_i = (D \times c_i) + ((D-1) \times e_{(i-1)})$$
 where D is a constant corresponding to the cutoff frequency and 
$$e_0 = 0$$

A value of D = 1/32 corresponds to a corner frequency close to 10 Hz and would therefore deliver the wander components of the phase distortions. The corresponding MJIE computation is summarised in the following figure:

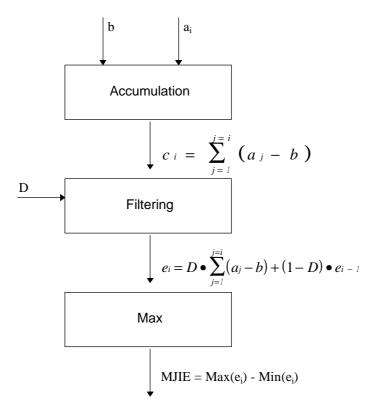



Figure A.3: Weighted MJIE Computation

#### A.3 SDH/PDH and PDH/PDH mapping introduced phase error measurement

For further study.

#### Annex B (informative): SDH/PDH interconnection examples

For the bitrate 139 264 kbit/s, three different types of signals are defined:

P4e: This is a multiplexed signal with 34 368 kbit/s tributaries of the PDH. It may be

used in transmultiplex application SDH  $\leftrightarrow$  PDH.

P4s: A multiplex signal which transports clients such as SDH TUs or ATM VP signals.

It may be used for transporting signals of SDH or ATM over PDH.

P4x: A signal with the aforementioned bitrate and with undefined content. The signals

P4e and P4s are a subset of the possible P4x signals (figure B.4).

The reason for defining this set of signals is to cover the following combinations of atomic functions:

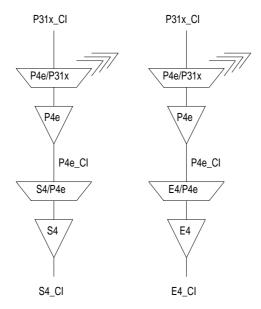



Figure B.1

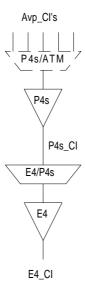



Figure B.2

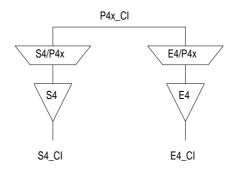



Figure B.3

A combination of atomic functions processing P4e, P4s, or P4x different to the combinations shown above may cause formal or physical problems.

The aforementioned applies similar to the signals of the plesiochronous layers P31 (P31e, P31s, P31x) and P22 (P22e, P22x).

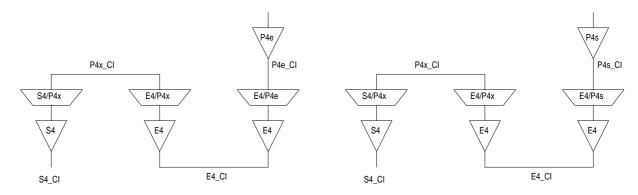



Figure B.4

### Annex C (informative): Interaction between 2 Mbit/s and VC 12 signals for the case of byte synchronous mapping

Byte synchronous mappings into SDH VC signals introduce a dependency between the PDH signal and the SDH VC signal on clearing of a defect condition. Two examples are described in this annex.

- For the case a 2 Mbit/s intra-station signal is mapped byte synchronous into a VC-12 an interaction between the 2 Mbit/s and VC-12 signal is present;
- For the case a byte synchronous mapped 1 984 kbit/s signal into a VC-12 outputs the SDH network via a 2 Mbit/s section signal an interaction between the VC-12 and the 2 Mbit/s section signal carrying the 1 984 kbit/s signal is present.

It should be noted that practically the dependency can be neglected; for the majority of the time a signal is transported free of defects.

#### Example 1: direction 2 Mbit/s $\rightarrow$ VC-12

A 2 Mbit/s dLOS, dLOF, or dAIS defect state change (absence to presence, presence to absence) may lead to bit error detection (BIP-2) in the VC-12 path. I.e. one or two (severely) errored second(s) may be detected.

In a byte synchronization mapping the VC-12 is locked to the 2 Mbit/s signal; byte V5 is placed 2 bytes above TS0. If a phase jump occurs at the 2 Mbit/s signal the VC-12 will follow that. Consequently, the 2 Mbit/s and VC-12 layers are not independent during byte synchronization mapping modes.

NOTE: TU-12 pointer increments and decrements will forward phase changes that are not phase jumps, but are build up gradually over time (due to e.g. a frequency difference).

The mentioned phase jumps will occur due to the insertion/removal of the all-ONEs (AIS) signal with its free-running AIS clock on the mentioned defect conditions. When 2 Mbit/s all-ONEs (AIS) signal is byte synchronization mapped in the VC-12 the (clock and frame) phase relation with the incoming 2 Mbit/s is lost. Entering this condition can be done without introducing a VC-12 phase jump if the TU-12 pointer starts flywheeling. Returning from this condition will almost certainly cause a VC-12 phase jump due to:

- the 2 Mbit/s frame returns with a different phase;
- the difference in AIS and 2 Mbit/s clock frequencies;
- the recentering of the elastic store to prevent excessive pointer adjustments after re-establishment of the 2 Mbit/s VC-12 relation.

This VC-12 phase jump will be communicated to the far-end VC-12 termination function via NDFs in the TU-12 pointer. NDF propagation takes between ≈0 to 2 frames per TU pointer processor (PP). I.e. there is a large probability that the TU-12 pointer received at the far-end VC-12 termination will be out of phase with the VC-12 itself for one or more frames. The calculation of BIP-2 violations in the VC-12 termination sink will, as such, detect violations. This results in the declaration of errored seconds and signalling of some background block errors. Depending on the number of TU PPs to pass, a VC-12 defect (e.g. trace identifier mismatch) may be detected. This results in declaration of severely errored second(s).

#### Example 2: direction VC-12 $\rightarrow$ 2 Mbit/s

A TU12dAIS, TU12dLOP, S12dTIM, or S12dPLM defect condition change may lead to 2 Mbit/s frame phase jump. This results in one (or two) (severely) errored seconds.

If the VC-12 suffers a phase jump, the 2 Mbit/s signal will follow that. This is unexpected when TS0 itself is not transported via SDH (byte synchronization 1 984 kbit/s mapping), but generated at the SDH/PDH boundary. I.e. the 2 Mbit/s path is not including the SDH network.

Consequently, the 2 Mbit/s and VC-12 layers are not independent during byte synchronization mapping of 1 984 kbit/s.

The mentioned phase jumps will occur due to the insertion/removal of the all-ONEs (AIS) signal with its free-running AIS clock on the mentioned defect conditions:

When a TU/VC-12 defect condition is detected and the VC-12 did not transport TS0 (i.e. byte synchronization 1 984 kbit/s mapping), a 2 Mbit/s framed AIS will be generated (all-ONEs in TS1 to TS31 and valid TS0) with an independent AIS clock. For similar reasons as above the removal of the AIS insertion will cause a 2 Mbit/s frame phase jump in the outgoing 2 Mbit/s signal. The receiving network element will detect the out-of-frame (LOF) condition and reframes on it in presumably 9 or 10 frames. This causes a few CRC4 violations to be detected. The dLOF and CRC4 violation conditions will result in 2 Mbit/s (severely) errored second declaration.

Page 100 Draft prETS 300 417-4-1: April 1996

#### History

| Document history |                                          |  |                          |  |
|------------------|------------------------------------------|--|--------------------------|--|
| April 1996       | Public Enquiry PE 105: 1996-04-08 to 199 |  | 1996-04-08 to 1996-08-30 |  |
|                  |                                          |  |                          |  |
|                  |                                          |  |                          |  |
|                  |                                          |  |                          |  |
|                  |                                          |  |                          |  |



## EUROPEAN TELECOMMUNICATION STANDARD

**DRAFT** pr **ETS 300 417-4b-1** 

**April 1996** 

Source: ETSI TC-TM Reference: DE/TM-01015-4-1

ICS: 33.020

Key words: Transmission, SDH, interface

# Transmission and Multiplexing (TM); Generic Functional Requirements for Synchronous Digital Hierarchy (SDH) Equipment Part 4b-1: SDH Path Layer Functions

#### **ETSI**

European Telecommunications Standards Institute

#### **ETSI Secretariat**

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE

Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE

X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

\*

**Copyright Notification:** No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

| Draft prETS 300 417-4b-1: April 1996 |  |  |  |  |
|--------------------------------------|--|--|--|--|
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |

Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page.

#### **Contents**

| Fore | wora     |                        |                  |                                                                                      | 5   |
|------|----------|------------------------|------------------|--------------------------------------------------------------------------------------|-----|
| 1    | Scope    |                        |                  |                                                                                      | 7   |
| 2    | Norma    | tive Referen           | ces              |                                                                                      | 7   |
| 3    | Definiti | ons, Abbrev            | riations and Syr | nbols                                                                                | 7   |
|      | 3.1      |                        |                  |                                                                                      |     |
|      | 3.2      | Abbreviat              | tions            |                                                                                      | 7   |
|      | 3.3      | Symbols                | and Diagramm     | atic Conventions                                                                     | 10  |
|      | 3.4      |                        |                  |                                                                                      |     |
| 4    | VC-4 P   | ath Layer F            | unctions         |                                                                                      | 10  |
| 5    | VC-3 P   | ath Laver F            | unctions         |                                                                                      | 10  |
| Ü    | 5.1      |                        |                  | Function S3_C                                                                        |     |
|      | 5.2      |                        |                  | ation Functions                                                                      |     |
|      | 0.2      | 5.2.1                  |                  | Trail Termination Source S3_TT_So                                                    |     |
|      |          | 5.2.2                  |                  | Trail Termination Sink S3 TT Sk                                                      |     |
|      |          | 0.2.2                  | 5.2.2.1          | VC-3 Layer Adaptation Functions                                                      |     |
|      |          | 5.2.3                  |                  | to P32x Layer Adaptation Source S3/P32x_A_So                                         |     |
|      |          | 5.2.4                  |                  | to P32x Layer Adaptation Sink S3/P32x A Sk                                           |     |
|      |          | 5.2.4                  |                  | to P31x Layer Adaptation Source S3/P31x_A_So                                         |     |
|      |          | 5.2.6                  |                  | to P31x Layer Adaptation Sink S3/P31x_A_S6to P31x Layer Adaptation Sink S3/P31x_A_Sk |     |
|      |          | 5.2.7                  |                  |                                                                                      |     |
|      |          | 5.2. <i>1</i><br>5.2.8 |                  | to P31e Layer Adaptation Source S3/P31e_A_So                                         |     |
|      |          |                        |                  | to P31e Layer Adaptation Sink S3/P31e_A_Sk                                           |     |
|      |          | 5.2.9                  |                  | to P0x Layer Adaptation Source S3/P0x_A_So                                           |     |
|      |          | 5.2.10                 |                  | to P0x Layer Adaptation Sink S3/P0x_A_Sk                                             |     |
|      |          | 5.2.11                 |                  | to TSS3 Adaptation Source S3/TSS3_A_So                                               |     |
|      |          | 5.2.12                 |                  | to TSS3 Adaptation Sink S3/TSS3_A_Sk                                                 | 41  |
|      |          | 5.2.13                 |                  | to Virtual Path Layer (ATM) Compound Adaptation Source _So                           | 42  |
|      |          | 5.2.14                 | VC-3 Layer       | to Virtual Path Layer (ATM) Compound Adaptation Sink                                 |     |
|      |          |                        |                  | _Sk                                                                                  |     |
|      | 5.3      | VC-3 Lay               |                  | unctions                                                                             |     |
|      |          | 5.3.1                  |                  | Non-intrusive Monitoring Function S3m_TT_Sk                                          |     |
|      |          | 5.3.2                  | VC-3 Layer       | Supervisory-Unequipped Termination Source S3s_TT_So                                  | 45  |
|      |          | 5.3.3                  |                  | Supervisory-unequipped Termination Sink S3s_TT_Sk                                    |     |
|      | 5.4      | VC-3 Lay               | er Trail Protect | ion Functions                                                                        | 50  |
|      |          | 5.4.1                  | VC-3 Trail F     | Protection Connection Functions S3P_C                                                | 50  |
|      |          |                        | 5.4.1.1          | VC-3 Layer 1+1 single ended Protection Connection                                    |     |
|      |          |                        |                  | Function S3P1+1se_C                                                                  |     |
|      |          |                        | 5.4.1.2          | VC-3 Layer Protection Connection Function S3P1+1de_C                                 |     |
|      |          | 5.4.2                  | VC-3 Layer       | Trail Protection Trail Termination Functions                                         |     |
|      |          |                        | 5.4.2.1          | VC-3 Protection Trail Termination Source S3P_TT_So                                   |     |
|      |          |                        | 5.4.2.2          | VC-3 Protection Trail Termination Sink S3P_TT_Sk                                     | 55  |
|      |          | 5.4.3                  | VC-3 Layer       | Linear Trail Protection Adaptation Functions                                         | 56  |
|      |          |                        | 5.4.3.1          | VC-3 trail to VC-3 trail Protection Layer Adaptation                                 | F.C |
|      |          |                        | 5.4.3.2          | Source S3/S3P_A_SoVC-3 trail to VC-3 trail Protection Layer Adaptation Sink          | 56  |
|      |          |                        | 5.4.5.2          | S3/S3P A Sk                                                                          | 57  |
|      | 5.5      | VC-3 Tan               | ndem Connectio   | on Sublayer Functions                                                                |     |
|      | 0.0      | 5.5.1                  |                  | em Connection Trail Termination Source function                                      | 50  |
|      |          | J.J. I                 |                  | 60)                                                                                  | 59  |
|      |          | 5.5.2                  |                  | em Connection Trail Termination Sink function (S3D_TT_Sk)                            |     |
|      |          | 5.5.2<br>5.5.3         |                  |                                                                                      | 01  |
|      |          | 5.5.5                  |                  | em Connection to VC-3 Adaptation Source function<br>_So)                             | ee. |
|      |          |                        | (33D/33_A        | _00/                                                                                 | 00  |

| Page 4                               |  |
|--------------------------------------|--|
| Draft prETS 300 417-4b-1: April 1996 |  |
|                                      |  |

|         | 5.5.4 | VC-3 Tandem Connection to VC-3 Adaptation Sink function (S3D/S3_A_Sk)             | 67   |
|---------|-------|-----------------------------------------------------------------------------------|------|
|         | 5.5.5 | VC-3 Tandem Connection non-intrusive Trail Termination Sink function (S3Dm_TT_Sk) |      |
| History |       |                                                                                   | . 72 |

#### **Foreword**

This draft European Telecommunications Standard (ETS) was produced by the Transmission and Multiplexing (TM) Technical Committee of the European Telecommunications Standards Institute (ETSI), and is now submitted for the Public Enquiry phase of the ETSI standards approval procedure.

This ETS has been produced in order to provide inter-vendor and inter-operator compatibility for Synchronous Digital Hierarchy (SDH) equipment.

This ETS consists of 8 parts as follows:

Part 1: "Generic processes and performance" (ETS 300 417-1-1). Part 2: "Physical section layer functions" (prETS 300 417-2-1).

Part 3: "STM-N regenerator and multiplex section layer functions" (prETS 300 417-3-1).

Part 4: "SDH path layer functions" (prETS 300 417-4-1).
Part 5: "PDH path layer functions" (prETS 300 417-5-1).

Part 6: "Synchronisation distribution layer functions" (prETS 300 417-6-1).

Part 7: "Auxiliary layer functions" (prETS 300 417-7-1).

Part 8: "Compound and major compound functions" (prETS 300 417-8-1).

This sub-part 4-1 of the ETS has been further split into five sub-parts to simplify the handling of the document. These sub-parts of prETS 300 417-4-1 have been identified as parts 4a-1 to 4e-1. To minimise delay and for Public Enquiry purposes, this set of five documents should be considered as one document (namely, prETS 300 417-4-1). During subsequent processing (the Voting stage) the documents will be merged into a single document.

Page 6 Draft prETS 300 417-4b-1: April 1996

Blank page

#### 1 Scope

This ETS specifies a library of basic building blocks and a set of rules by which they are combined in order to describe a digital transmission equipment. The library comprises the functional building blocks needed to completely specify the generic functional structure of the European Digital Transmission Hierarchy. Equipment which is compliant with this standard must be describable as an interconnection of a subset of these functional blocks contained within this ETS. The interconnections of these blocks must obey the combination rules given. The generic functionality is described in ETS 300 417-1-1 [1].

#### 2 Normative References

This draft ETS incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references subsequent amendments to, or revisions of, any of these publications apply to this ETS only when incorporated in it by amendments or revisions. For undated references the latest edition of the publication referred to applies.

| [1] | ETS 300 417-1-1 (1996): "Transmission and Multiplexing (TM); Generic functional requirements for Synchronous Digital Hierarchy (SDH) equipment; Part 1-1: Generic processes and performance".                                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [2] | ETS 300 147 (1995): "Transmission and Multiplexing (TM); Synchronous Digital Hierarchy (SDH) Multiplexing structure".                                                                                                               |
| [3] | ETS 300 166 (1993): "Transmission and Multiplexing (TM); Physical and electrical characteristics of hierarchical digital interfaces for equipment using the 2048 kbit/s - based plesiochronous or synchronous digital hierarchies". |
| [4] | prETS 300 417-3-1: "Transmission and Multiplexing (TM); Generic functional requirements for Synchronous Digital Hierarchy (SDH) equipment Part 3-1: STM-N regenerator and multiplex section layer functions".                       |
| [5] | ITU-T Recommendation G.823 (1993): "The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy".                                                                                         |
| [6] | ITU-T Recommendation G.751 (1988): "Digital multiplex equipments operating at the third order bit rate of 34 368 kbit/s and the fourth order bit rate of 139 264 kbit/s and using positive justification".                          |
| [7] | ITU-T draft Recommendation O.181: "Equipment to assess error performance on STM-N interfaces".                                                                                                                                      |
| [8] | ITU-T Recommendation O.151 (1992): "Error performance measuring equipment operating at the primary rate and above".                                                                                                                 |
| [9] | ITU-T Recommendation G.708: "Network Node Interface for the Synchronous                                                                                                                                                             |

#### 3 Definitions, Abbreviations and Symbols

Digital Hierarchy".

#### 3.1 Definitions

The functional definitions are described in ETS 300 417-1-1 [1].

#### 3.2 Abbreviations

A Adaptation function
AcTI Accepted Trace identifier
ADM Add-Drop Multiplexer
Al Adapted Information
AIS Alarm Indication Signal

AP Access Point

#### Page 8

#### Draft prETS 300 417-4b-1: April 1996

APId Access Point Identifier
APS Automatic Protection Switch
ATM Asynchronous Transfer Mode

AU Administrative Unit
AU-n Administrative Unit, level n
AUG Administrative Unit Group

BER Bit Error Ratio
BIP Bit Interleaved Parity

BIP-N Bit Interleaved Parity, width N

C Connection function
CI Characteristic Information

CK Clock

CM Connection Matrix
CP Connection Point
CS Clock Source

D Data

DCC Data Communications Channel

DEC Decrement DEG Degraded

DEGTHR Degraded Threshold EBC Errored Block Count

ECC Embedded Communications Channel

ECC(x) Embedded Communications Channel, Layer x

EDC Error Detection Code

EDCV Error Detection Code Violation
EMF Equipment Management Function

EQ Equipment
ES Electrical Section
ES Errored Second

ExTI Expected Trace Identifier

F\_B Far-end Block

FAS Frame Alignment Signal
FOP Failure Of Protocol
FS Frame Start signal
HO Higher Order

HOVC Higher Order Virtual Container

HP Higher order Path

ID Identifier
IF In Frame state
INC Increment
LC Link Connection
LO Lower Order

LOA Loss Of Alignment; generic for LOF, LOM, LOP

LOF Loss Of Frame
LOP Loss Of Pointer
LOS Loss Of Signal

LOVC Lower Order Virtual Container

MC Matrix Connection

MCF Message Communications Function

MDT Mean Down Time

mei maintenance event information MI Management Information

MO Managed Object

MON Monitored

MP Management Point
MS Multiplex Section
MS1 STM-1 Multiplex Section
MS16 STM-16 Multiplex Section
MS4 STM-4 Multiplex Section
MSB Most Significant Bit
MSCH Multiplex Section Outsthees

MSOH Multiplex Section Overhead MSP Multiplex Section Protection

MSPG Multiplex Section Protection Group

Draft prETS 300 417-4b-1: April 1996

N.C.
N\_B
Near-end Block
NC
Network Connection
NDF
New Data Flag
NE
Network Element
NMON
Not Monitored

NNI Network Node Interface
NU National Use (bits, bytes)
NUx National Use, bit rate order x

OAM Operation, Administration and Management

OFS Out of Frame Second
OOF Out Of Frame state
OS Optical Section

OSI(x) Open Systems Interconnection, Layer x

OW Order Wire Protection

P\_A Protection Adaptation
P\_C Protection Connection
P\_TT Protection Trail Termination
PDH Plesiochronous Digital Hierarchy
PJE Pointer Justification Event
PM Performance Monitoring
Pn Plesiochronous signal, Level n

POH Path Overhead

PRC Primary Reference Clock
PS Protection Switching
PSC Protection Switch Count

PTR Pointer

QOS Quality Of Service
RDI Remote Defect Indicator
REI Remote Error Indicator
RI Remote Information
RP Remote Point
RS Regenerator Section

RS1 STM-1 Regenerator Section
RS16 STM-16 Regenerator Section
RS4 STM-4 Regenerator Section
RSOH Regenerator Section Overhead
RxTI Received Trace identifier

S4 VC-4 path layer

SASE Stand-Alone Synchronization Equipment

SD Synchronization Distribution layer, Signal Degrade

SDH Synchronous Digital Hierarchy

SEC SDH Equipment Clock

SF Signal Fail Sk Sink

SNC Sub-Network Connection

SNC/I Inherently monitored Sub-Network Connection protection SNC/N Non-intrusively monitored Sub-Network Connection protection

So Source

SOH Section Overhead
SPRING Shared Protection Ring
SR Selected Reference
SSD Server Signal Degrade
SSF Server Signal Fail

SSM Synchronization Status Message SSU Synchronization Supply Unit STM Synchronous Transport Module

STM-N Synchronous Transport Module, level N

TCP Termination Connection Point

TI Timing Information
TIM Trace Identifier Mismatch

TM Transmission\_Medium, Transmission & Multiplexing

# Draft prETS 300 417-4b-1: April 1996

TMN Telecommunications Management Network

TP Timing Point

TPmode Termination Point mode

TS Time Slot

TSD Trail Signal Degrade TSF Trail Signal Fail

TT Trail Termination function
TTI Trail Trace Identifier

TTs Trail Termination supervisory function

TxTI Transmitted Trace Identifier

UNEQ Unequipped

UNI User Network Interface

USR User channels VC Virtual Container

VC-n Virtual Container, level n

W Working

# 3.3 Symbols and Diagrammatic Conventions

The symbols and diagrammatic conventions are described in ETS 300 417-1-1 [1].

## 3.4 Introduction

The atomic and some compound functions used in the SDH Path Layers are defined below.

# 4 VC-4 Path Layer Functions

Refer to part 4a-1 of this ETS 300 417-4-1 (see Foreword for details).

# 5 VC-3 Path Layer Functions.

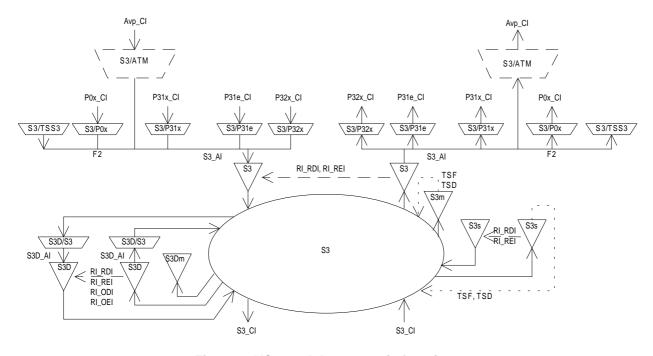



Figure 1: VC-3 path layer atomic functions

# **Order VC-3 Layer Characteristic Information**

The Characteristic Information S3\_CI is octet structured with an 125  $\mu$ s frame (figure 2). Its format is characterised as S3\_AI plus the VC-3 trail termination overhead in the J1, B3, and G1 locations as defined in ETS 300 147 [2] or as an unequipped signal as defined in ETS 300 417-1-1 [1], subclause 7.2. For the case the signal has passed the tandem connection sublayer, S3\_CI has defined VC-3 tandem connection trail termination overhead in location N1.

NOTE 1: N1 will be undefined when the signal S3\_CI has not been processed in a tandem connection adaptation and trail termination function. N1 is all-"0"s in a (supervisory-) unequipped VC-3 signal.

# **VC-3 Layer Adaptation Information**

The Adaptation Information AI is octet structured with an 125 µs frame (figure 2). It represents adapted client layer information comprising 756 bytes of client layer information, the signal label byte C2, and two bytes F3 and H4 of client specific information combined with an 1 byte user channel (F2). For the case the signal has passed the trail protection sublayer, S3\_AI has defined APS bits (1 to 4) in byte K3.

- NOTE 2: Bits 1 to 4 of byte K3 will be undefined when the signal S3\_AI has not been processed in a trail protection connection function S3P\_C.
- NOTE 3: Bits 5 to 8 of byte K3 are reserved for future international standardisation. Currently, their values are undefined.
- NOTE 4: Bytes F2 and F3 will be undefined when the adaptation functions sourcing these bytes are not present in the network element.
- NOTE 5: Byte H4 will be undefined.

A VC-3 comprises one of the following payloads:

- a 34 368 kbit/s signal asynchronous mapped into a Container-3;
- an ATM 48 384 kbit/s cell stream signal;
- a 44 736 kbit/s signal asynchronous mapped into a Container-3.

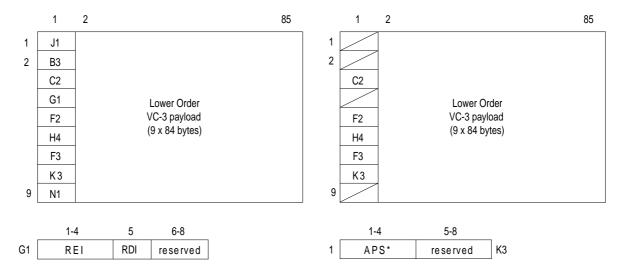



Figure 2: S3 CI D (left) and S3 AI D (right)

NOTE 6: The APS signal has not been defined; a multiframed APS signal might be required.

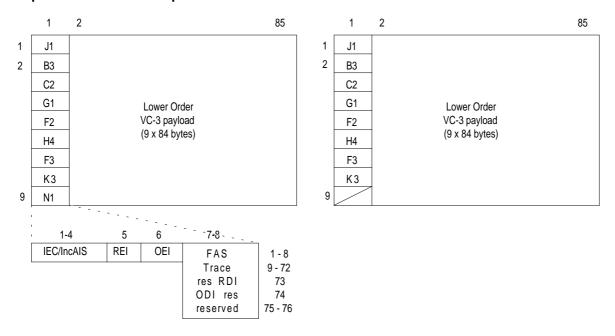



Figure 3: S3\_CI\_D (left) with defined N1 and S3D\_AI\_D (right)

Figure 4 shows the trail protection sublayer atomic functions added to (a subset of) the layer atomic functions presented in figure 1. It should be noted that the S3/P0x\_A function can be absent, or connected before or after the protection functions S3P\_C. When connected before S3P\_C the transport of the user channel signal is not protected, otherwise it is protected.

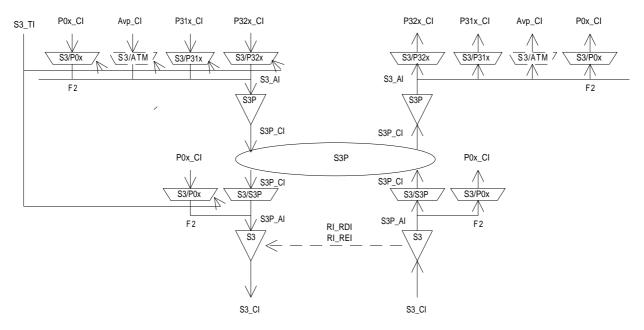



Figure 4: VC-3 Layer Trail Protection atomic functions

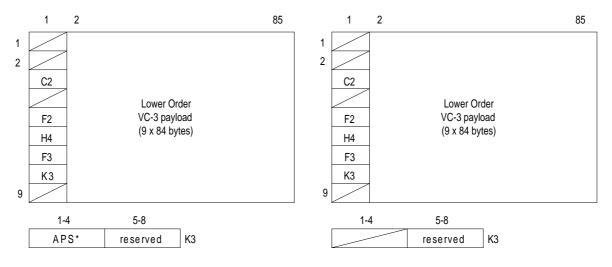



Figure 5: S3P\_AI\_D (left) and S3P\_CI\_D (right) signals

Figures 6 to 11 show connectivity examples of atomic functions associated with linear trail and SNC protection.

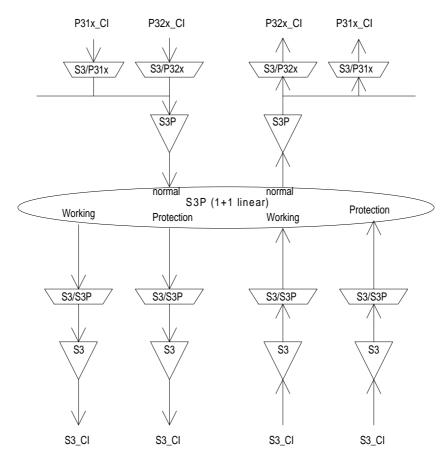



Figure 6: 1+1 VC-3 Linear Trail Protection model (example)

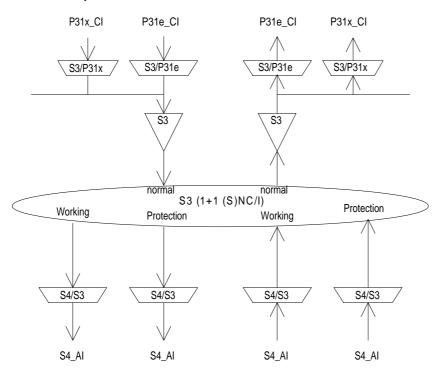



Figure 7: 1+1 VC-3 SNC/I protection model within a network element terminating the VC-3 path (example)

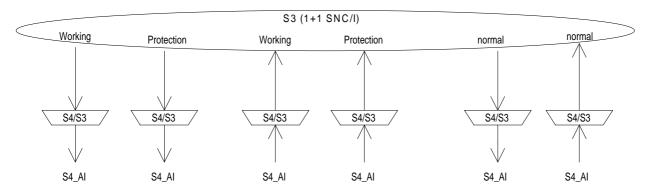



Figure 8: 1+1 VC-3 SNC/I protection model within a network element passing through the VC-3 signal (example)

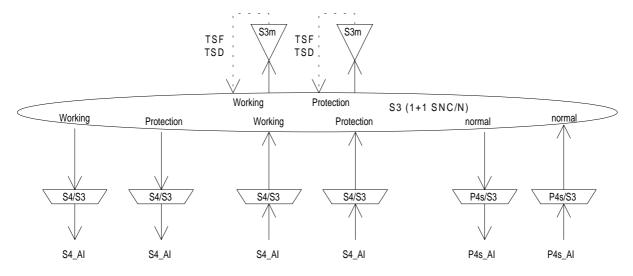



Figure 9: 1+1 VC-3 SNC/N protection model within a network element passing through the VC-3 signal (example)

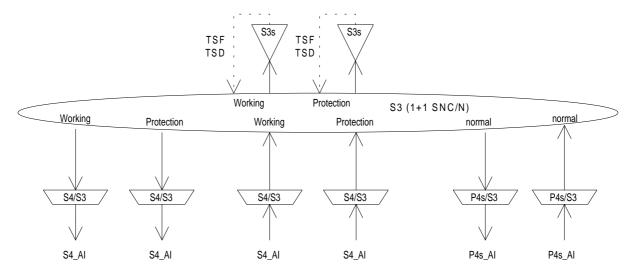



Figure 10: 1+1 VC-3 SNC/N protection model for a supervisory-unequipped signal within a network element passing through the VC-3 signal (example)

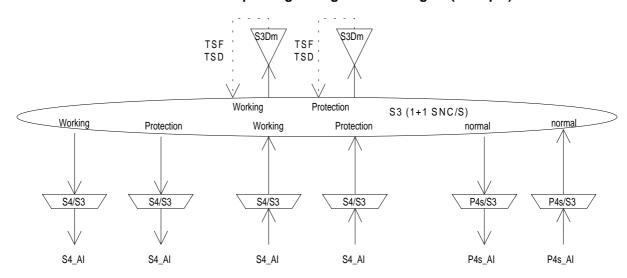



Figure 11: 1+1 VC-3 tandem connection SNC/S protection model within a network element passing through the VC-3 tandem connection (TC3) signal (example)

# 5.1 VC-3 Layer Connection Function S3\_C

# Symbol:

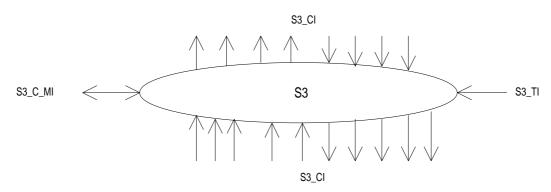



Figure 12: S3\_C symbol

### Interfaces:

Table 1: S3\_C input and output signals

| Input(s)                                                         | Output(s)                                                        |
|------------------------------------------------------------------|------------------------------------------------------------------|
| per S3_CI, n x for the function:                                 | per S3_CI, m x per function:                                     |
| S3_CI_D                                                          | S3_CI_D                                                          |
| S3_CI_CK                                                         | S3_CI_CK                                                         |
| S3_CI_FS                                                         | S3_CI_FS                                                         |
| S3_CI_SSF                                                        | S3_CI_SSF                                                        |
| S3_AI_TSF                                                        |                                                                  |
| S3_AI_TSD                                                        | NOTE: protection status reporting signals are for further study. |
| 1 x per function:                                                |                                                                  |
| S3_TI_CK                                                         |                                                                  |
| S3_TI_FS                                                         |                                                                  |
| per input and output connection point: S3_C_MI_ConnectionPortIds |                                                                  |
| per matrix connection:                                           |                                                                  |
| S3_C_MI_ConnectionType                                           |                                                                  |
| S3_C_MI_Directionality                                           |                                                                  |
| per SNC protection group:                                        |                                                                  |
| S3_C_MI_PROTtype                                                 |                                                                  |
| S3_C_MI_OPERtype                                                 |                                                                  |
| S3_C_MI_WTRtime                                                  |                                                                  |
| S3_C_MI_HOtime                                                   |                                                                  |
| S3_C_MI_EXTCMD                                                   |                                                                  |

# **Processes:**

In the S3\_C function VC-3 Layer Characteristic Information is routed between input (termination) connection points ((T)CPs) and output (T)CPs by means of matrix connections. (T)CPs may be allocated within a protection group.

NOTE 1: Neither the number of input/output signals to the connection function, nor the connectivity is specified in this ETS. That is a property of individual network elements.

Figure 1 present a subset of the atomic functions that can be connected to this VC-3 connection function: VC-3 trail termination functions, VC-3 non-intrusive monitor trail termination sink function, VC-3 unequipped-supervisory trail termination functions, VC-3 tandem connection trail termination and adaptation functions. In addition, adaptation functions in the VC-3 server (i.e. STM-N multiplex section) layers will be connected to this VC-3 connection function.

# Routing:

The function shall be able to connect a specific input with a specific output by means of establishing a matrix connection between the specified input and output. It shall be able to remove an established matrix connection.

Each (matrix) connection in the S3 C function shall be characterised by the:

Type of connection: unprotected, 1+1 protected (SNC/I or SNC/N protection)

Traffic direction: unidirectional, bidirectional

Input and output connection points: set of connection point identifiers (refer to ETS 300 417-1-1 [1],

subclause 3.3.6)

NOTE 2: Broadcast connections are handled as separate connections to the same input CP.

Provided no protection switching action is activated/required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- addition and removal of protection
- addition and removal of connections to/from a broadcast connection
- change between operation types
- change of WTR time
- change of Hold-off time

## Unequipped VC generation:

The function shall generate an unequipped VC signal, as specified in ETS 300 417-1-1 [1], subclause 7.2.

# SNC protection:

The function shall provide the option to establish protection groups between a number of (T)CPs (pr ETS 300 417-1-1 [1], subclause 9.4.1 and subclause 9.4.2) to perform the VC-3 linear (sub)network connection protection process for 1+1 protection architectures (refer to ETS 300 417-1-1 [1], subclause 9.2). The SNC protection process shall perform the bridge and selector functionality as presented in figure 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the working connection or the protection connection; this is determined by the SF,SD conditions (relayed via CI\_SSF or AI\_TSF/AI\_TSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

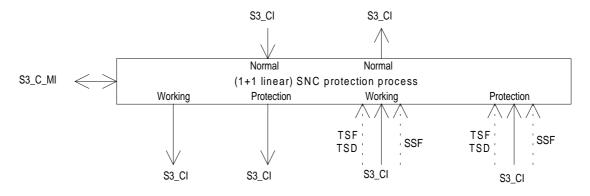



Figure 13: VC-3 1+1 SNC protection process (SNC/I, SNC/N)

## SNC Protection Operation:

The SNC protection process shall operate as specified in prETS 300 417-3-1 [4] Annex A, according the following characteristics:

**Table 2: SNC protection parameters** 

| architecture type (ARCHtype)   | 1+1                                             |
|--------------------------------|-------------------------------------------------|
| switching type (SWtype)        | single-ended                                    |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | false                                           |
| Wait-To-Restore time (WTRtime) | in the order of 5-12 minutes                    |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | SNC/I, SNC/N                                    |
| Signal switch conditions:      | SF = SSF (SNC/I), SF = TSF (SNC/N, SNC/S),      |
|                                | SD = TSD (SNC/N, SNC/S)                         |
| External commands (EXTMND)     | LO-#0, FSw-#i, MSw-#i, CLR; i = 0, 1            |
| Extra traffic (EXTRAtraffic)   | false                                           |

In the sink case of a protection connection the source of the connection is determined by the SF (and SD) signals associated with each of the two inputs to the connection and the possible external switch requests. The set of SF and SD signals used, is controlled by the protection type setting.

## Defects:

None.

# **Consequent Actions:**

If an output of this function is not connected to one of its inputs, the function shall connect the unequipped VC-3 (with valid frame start (FS) and SSF=false) to the output.

# **Defect Correlations:**

None.

# **Performance Monitoring:**

None.

# 5.2 VC-3 Layer Trail Termination Functions

# 5.2.1 VC-3 Layer Trail Termination Source S3\_TT\_So

# Symbol:

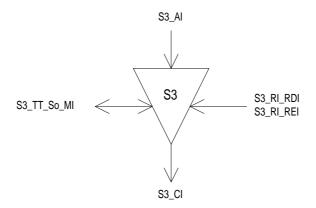



Figure 14: S3\_TT\_So symbol

### Interfaces:

Table 3: S3\_TT\_So input and output signals

| Input(s)         | Output(s) |
|------------------|-----------|
| S3_AI_D          | S3_CI_D   |
| S3_AI_CK         | S3_CI_CK  |
| S3_AI_FS         | S3_CI_FS  |
| S3_RI_RDI        |           |
| S3_RI_REI        |           |
| S3_TT_So_MI_TxTI |           |

### **Processes:**

This function adds error monitoring and status overhead bytes to the S3\_AI (containing payload (or client layer) independent overhead of 4 bytes per frame) presented at its input to form the VC4 layer Characteristic Information. The processing of the trail termination overhead bytes is defined as follows:

## J1:

In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in ETS 300 417-1-1 [1], subclause 7.1.

## **B3**:

In this byte the function shall insert the BIP-8 EDC with even bit parity. Each bit n of current B3 is computed to provide even parity over the nth bit of every byte in the previous frame of the Characteristic Information S3\_CI, i.e. B3 is calculated over the entire previous VC-3. Further reference is provided in ETS 300 417-1-1 [1], subclause 7.3.

### G1:

This byte is set to represent the status of the associated S3\_TT\_Sk. Its format is defined in figure 2.

# G1[1-4]:

The signal value applied at RI\_REI shall be inserted in the VC-3 REI, bits 1 to 4 of byte G1. The coding shall be as follows:

Table 4: G1[1-4] coding

| Number of BIP-8<br>violations<br>conveyed via<br>RI_REI | G1[1] | G1[2] | G1[3] | G1[4] |
|---------------------------------------------------------|-------|-------|-------|-------|
| 0                                                       | 0     | 0     | 0     | 0     |
| 1                                                       | 0     | 0     | 0     | 1     |
| 2                                                       | 0     | 0     | 1     | 0     |
| 3                                                       | 0     | 0     | 1     | 1     |
| 4                                                       | 0     | 1     | 0     | 0     |
| 5                                                       | 0     | 1     | 0     | 1     |
| 6                                                       | 0     | 1     | 1     | 0     |
| 7                                                       | 0     | 1     | 1     | 1     |
| 8                                                       | 1     | 0     | 0     | 0     |

## G1[5]:

Bit 5 of byte G1, a RDI indication, shall be set to "1" on activation of S3\_RI\_RDI within 250  $\mu$ s, determined by the associated S3\_TT\_Sk function, and set to "0" within 250  $\mu$ s on clearing of S3 RI RDI.

# G1[6-8]:

The value of the bits 6 to 8 of byte G1 is undefined.

Draft prETS 300 417-4b-1: April 1996

**Defects:** 

None.

**Consequent Actions:** 

None.

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

5.2.2 VC-3 Layer Trail Termination Sink S3\_TT\_Sk

Symbol:

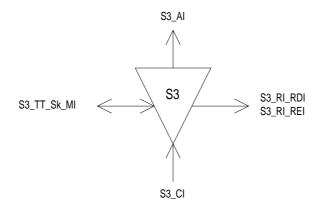



Figure 15: S3\_TT\_Sk symbol

Interfaces:

Table 5: S3\_TT\_Sk input and output signals

| Input(s)                 | Output(s)          |
|--------------------------|--------------------|
| S3_CI_D                  | S3_AI_D            |
| S3_CI_CK                 | S3_AI_CK           |
| S3_CI_FS                 | S3_AI_FS           |
| S3_CI_SSF                | S3_AI_TSF          |
|                          | S3_AI_TSD          |
| S3_TT_Sk_MI_TPmode       | S3_TT_Sk_MI_cTIM   |
| S3_TT_Sk_MI_SSF_Reported | S3_TT_Sk_MI_cUNEQ  |
| S3_TT_Sk_MI_ExTI         | S3_TT_Sk_MI_cDEG   |
| S3_TT_Sk_MI_RDI_Reported | S3_TT_Sk_MI_cRDI   |
| S3_TT_Sk_MI_DEGTHR       | S3_TT_Sk_MI_cSSF   |
| S3_TT_Sk_MI_DEGM         | S3_TT_Sk_MI_AcTI   |
| S3_TT_Sk_MI_1second      | S3_RI_RDI          |
| S3_TT_Sk_MI_TIMdis       | S3_RI_REI          |
| S3_TT_Sk_MI_ExTImode     | S3_TT_Sk_MI_pN_EBC |
|                          | S3_TT_Sk_MI_pF_EBC |
|                          | S3_TT_Sk_MI_pN_DS  |
|                          | S3_TT_Sk_MI_pF_DS  |

### Processes:

This function monitors VC-3 for errors, and recovers the trail termination status. It extracts the payload independent overhead bytes (J1, B3, C2, G1) from the VC-3 layer Characteristic Information:

### J1:

The Received Trail Trace Identifier RxTI shall be recovered from the J1 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1 and 8.2.1.3.

## **B3**:

Even bit parity is computed for each bit n of every byte of the preceding VC-3 and compared with bit n of B3 recovered from the current frame (n=1 to 8 inclusive). A difference between the computed and recovered B3 values is taken as evidence of one or more errors (nN\_B) in the computation block.

# G1[1-4], G1[5]:

The information carried in the G1 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 5) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI) and 7.4.11 and 8.2 (RDI).

# G1[6-8]:

The value in the bits 6 to 8 of byte G1 shall be ignored.

| G1[1] | G1[2] | G1[3] | G1[4] | REI code interpretation |
|-------|-------|-------|-------|-------------------------|
| 0     | 0     | 0     | 0     | 0 errors                |
| 0     | 0     | 0     | 1     | 1 error                 |
| 0     | 0     | 1     | 0     | 2 errors                |
| 0     | 0     | 1     | 1     | 3 errors                |
| 0     | 1     | 0     | 0     | 4 errors                |
| 0     | 1     | 0     | 1     | 5 errors                |
| 0     | 1     | 1     | 0     | 6 errors                |
| 0     | 1     | 1     | 1     | 7 errors                |
| 1     | 0     | 0     | 0     | 8 errors                |
| 1     | 0     | 0     | 1     | 0 errors                |
| 1     | 0     | 1     | 0     | 0 errors                |
| 1     | 0     | 1     | 1     | 0 errors                |
| 1     | 1     | 0     | 0     | 0 errors                |
| 1     | 1     | 0     | 1     | 0 errors                |
| 1     | 1     | 1     | 0     | 0 errors                |
| 1     | 1     | 1     | 1     | 0 errors                |

Table 6: G1[1-4] code interpretation

# C2:

The information in the C2 byte shall be extracted to allow unequipped VC defect detection.

## Defects:

The function shall detect for dDEG, dRDI, dUNEQ and dTIM defects according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

Draft prETS 300 417-4b-1: April 1996

# **Consequent Actions:**

aAIS  $\leftarrow$  dUNEQ or dTIM

aTSF  $\leftarrow$  CI\_SSF or dUNEQ or dTIM

aRDI  $\leftarrow$  CI\_SSF or dUNEQ or dTIM

 $aTSD \leftarrow dDEG$ 

aREI ← "#EDCV"

On declaration of aAIS the function shall output all-ONEs signal within 250  $\mu$ s; on clearing of aAIS the function shall output normal data within 250  $\mu$ s.

## **Defect Correlations:**

cUNEQ ← dUNEQ and MON

cTIM  $\leftarrow$  dTIM and (not dUNEQ) and MON

cDEG ← dDEG and (not dTIM) and MON

cRDI ← dRDI and (not dUNEQ) and (not dTIM) and MON and RDI\_Reported

cSSF ← CI SSF and MON and SSF Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

# **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $pN_DS \leftarrow aTSF \text{ or } dEQ$ 

 $pF_DS \leftarrow dRDI$ 

 $\mathsf{pN\_EBC} \quad \leftarrow \quad \Sigma \, \mathsf{nN\_B}$ 

 $pF\_EBC \leftarrow \Sigma nF\_B$ 

# 5.2.2.1 VC-3 Layer Adaptation Functions

# 5.2.3 VC-3 Layer to P32x Layer Adaptation Source S3/P32x\_A\_So

# Symbol:

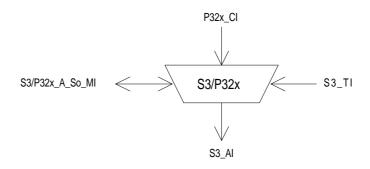



Figure 16: S3/P32x\_A\_So symbol

### Interfaces:

Table 7: S3/P32x\_A\_So input and output signals

| Input(s)               | Output(s) |
|------------------------|-----------|
| P32x_CI_D              | S3_AI_D   |
| P32x_CI_CK             | S3_AI_CK  |
| S3_TI_CK               | S3_AI_FS  |
| S3_TI_FS               |           |
| S3/P32x_A_So_MI_Active |           |

# **Processes:**

This function maps a 44 736 kbit/s information stream into a VC-3 payload using bit stuffing and adds bytes C2 and H4. It takes P32x\_CI, a bit-stream with a rate of 44 736 kbit/s ± 20 ppm, present at its input and inserts it into the synchronous container-3 having a capacity of 756 bytes and the justification frame as defined in ETS 300 147 [2] and depicted in figures 18, 19.

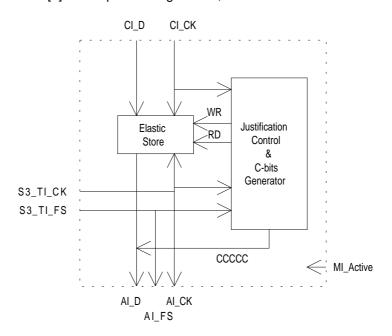



Figure 17: main processes within S3/P32x\_A\_So

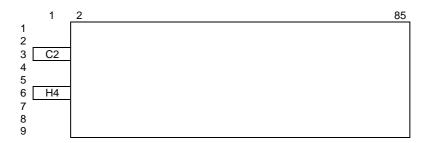



Figure 18: S3/P32x AI D

| Legend: I = Information Bit, R = Fixed Stuff Bit, O = O-Bit, S = Justification Oppor |                   |       |          |       |         | ortunity | Bit, C = Justifica              | tion Cor | ntrol Bit |       |          |       |         |
|--------------------------------------------------------------------------------------|-------------------|-------|----------|-------|---------|----------|---------------------------------|----------|-----------|-------|----------|-------|---------|
|                                                                                      | 8 x R             | 8 x R | RRCIIIII | 8 x I | 200 x I | 8 x R    | CCRRRRRR                        | 8 x I    | 200 x I   | 8 x R | CCRROORS | 8 x I | 200 x I |
| Legend: R Fixed stuff bit                                                            |                   |       |          |       |         |          | C Justification                 | control  | bit       |       |          |       |         |
|                                                                                      | I Information bit |       |          |       |         |          | S Justification opportunity bit |          |           |       |          |       |         |
|                                                                                      | O Overhead bit    |       |          |       |         |          |                                 |          |           |       |          |       |         |

Figure 19: Asynchronous mapping of P32x\_CI (44736 kbit/s) showing one row of the nine-row container-3 structure

Frequency justification and bitrate adaptation:

The function shall provide for an elastic store (buffer) process (figure 17). The data signal shall be written into the buffer under control of the associated input clock. The data shall be read out of the buffer and written onto the I and S bits under control of the VC-3 clock, frame position (S3\_TI), and justification decisions.

The justification decisions determine the phase error introduced by the S3/P32x\_A\_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the justification control bits C (figure 19). An example is given in Annex A.3.

Each justification decision results in a corresponding positive justification action. Upon a positive justification action, the reading of 1 data bit shall be cancelled once and no data are written at the justification opportunity bit S. If no justification action is to be performed, data shall be written onto S.

NOTE 1: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced.

## Buffer size:

In the presence of jitter as specified by ITU-T Recommendation G.823 [5] and a frequency within the range 34 368 kbit/s  $\pm$  20 ppm, this justification process shall not introduce any errors. Any step in frequency within this range shall not cause any errors.

# C bits:

Justification control generation:

The function shall generate the justification control (C) bits according the specification in ETS 300 147 [2]. It shall insert the justification control bits in the appropriate C bit positions.

Two bytes of payload specific POH information, bytes C2 and H4, shall be added to container-3 to form the VC-3 AI and a fixed Frame Start (FS) shall be generated.

## H4:

The value of H4 byte is undefined.

## C2:

In this byte the function shall insert code "0000 0100" (Asynchronous mapping of 44 736 kbit/s into the Container-3) as defined in ETS 300 147 [2].

NOTE 2: The mapping of 44 736 kbit/s into VC-3 as well as the mapping of 34 368 kbit/s into VC-3 have the same signal label.

### O bits:

The value of the O bits is undefined.

### R bits:

The value of an R bit is undefined.

Figure 1 shows that more than one adaptation source function exists in this VC-3 layer that can be connected to one VC-3 access point. For such case, a subset of these adaptation source functions is allowed to be activated together. For this subset, access to the access point by other adaptation source functions must be denied.

## Activation:

The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

# Defects:

None.

An elastic store under/overflow defect (dUOF) is for further study.

# **Consequent Actions:**

None.

## **Defect Correlations:**

None.

# **Performance Monitoring:**

None.

# 5.2.4 VC-3 Layer to P32x Layer Adaptation Sink S3/P32x\_A\_Sk

# Symbol:



Figure 20: S3/P32x\_A\_Sk symbol

## Interfaces:

Table 8: S3/P32x A Sk input and output signals

| Input(s)               | Output(s)            |
|------------------------|----------------------|
| S3_AI_D                | P32x_CI_D            |
| S3_AI_CK               | P32x_CI_CK           |
| S3_AI_FS               | S3/P32x_A_Sk_MI_cPLM |
| S3_AI_TSF              | S3/P32x_A_Sk_MI_AcSL |
| S3/P32x_A_Sk_MI_Active |                      |

### Processes:

The function recovers plesiochronous P32x Characteristic Information (44 736 kbit/s  $\pm$  20 ppm) from the synchronous container-3 (having a frequency accuracy within  $\pm$  4,6 ppm) according to ETS 300 147 [2], and monitors the reception of the correct payload signal type.

### C2:

The function shall compare the content of the accepted C2 byte with the expected value code "0000 0100" (Asynchronous mapping of 44 736 kbit/s into the Container-3) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclause 7.2 and 8.1.2.

NOTE:

The mapping of 44 736 kbit/s into VC-3 as well as the mapping of 34 368 kbit/s into VC-3 have the same signal label. Consequently, it is not possible to check consistent adaptation function provisioning at each end between these two mappings.

## H4:

The value in the H4 byte shall be ignored.

# R bits:

The value in the R bits shall be ignored.

## O bits:

The value in the O bits shall be ignored.

## C bits:

## Justification control interpretation:

The function shall perform justification control interpretation specified by ETS 300 147 [2] to recover the 44 736 kbit/s signal from the VC-3. If the majority of the C bits is "0" the S bit shall be taken as a data bit, otherwise (majority of C bits is "1") S bit shall be taken as a justification bit and consequently ignored.

## Smoothing & jitter limiting process

The function shall provide for a clock smoothing and elastic store (buffer) process. The 44 736 kbit/s data signal shall be written into the buffer under control of the associated (gapped) input clock (with a frequency accuracy within  $\pm$  4,6 ppm). The data signal shall be read out of the buffer under control of a smoothed (equally spaced) 44 736 kHz  $\pm$  20 ppm clock (the rate is determined by the 45 Mbit/s signal at the input of the remote S3/P32x\_A\_So). The residual jitter caused by pointer adjustments and bit justifications (measured at the 44 736 kbit/s interface) shall be within the limits specified in subclause 11.3.1.2 of ETS 300 417-1-1 [1].

## Buffer size:

In the presence of jitter as specified by subclause 11.3.1.2 of ETS 300 417-1-1 [1] and a frequency within the range 44 736 kbit/s  $\pm 20$  ppm, this justification process shall not introduce any errors.

Following a step in frequency of the P32x signal transported by the S3\_AI (for example due to reception of P32x CI from a new P32x\_TT\_So at the far end or removal of all-ONEs (AIS) signal with a frequency offset) there will be a maximum recovery time of X seconds after which this process shall not generate any bit errors.

The value of X is for further study; a value of 1 second has been proposed.

Figure 1 shows that more than one adaptation sink function exists in this VC-3 layer that can be connected to one VC-3 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

### Activation:

The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via the management point.

#### Defects:

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

# **Consequent Actions:**

aAIS 
$$\leftarrow$$
 AI TSF or dPLM

On declaration of the aAIS the function shall output an all-ONEs (AIS) signal in the P32x\_CI\_D within 250  $\mu$ s; on clearing of aAIS the function shall output normal data within 250  $\mu$ s. The P32x\_CI\_CK during the all-ONEs signal shall be within 34 368 kHz  $\pm$  20 ppm.

### **Defect Correlations:**

cPLM ← dPLM and (not AI\_TSF)

# **Performance Monitoring:**

None.

# 5.2.5 VC-3 Layer to P31x Layer Adaptation Source S3/P31x\_A\_So

## Symbol:

Figure 21: S3/P31x\_A\_So symbol

## Interfaces:

Table 9: S3/P31x\_A\_So input and output signals

| Input(s)               | Output(s) |
|------------------------|-----------|
| P31x_CI_D              | S3_AI_D   |
| P31x_CI_CK             | S3_AI_CK  |
| S3_TI_CK               | S3_AI_FS  |
| S3_TI_FS               |           |
| S3/P31x_A_So_MI_Active |           |

## **Processes:**

This function maps a 34 368 kbit/s information stream into a VC-3 payload using bit stuffing and adds bytes C2 and H4. It takes P31x\_CI, a bit-stream with a rate of 34 368 kbit/s ± 20 ppm, present at its input and inserts it into the synchronous container-3 having a capacity of 756 bytes and the justification frame as defined in ETS 300 147 [2] and depicted in figures 23, 24.

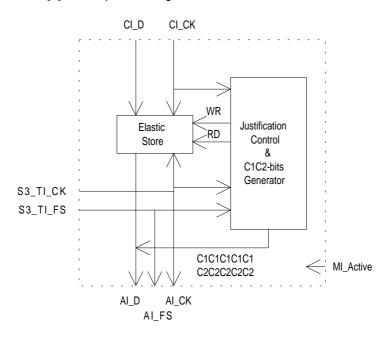



Figure 22: main processes within S3/P31x\_A\_So

|   | 1  | 2 43 | 44 85 |
|---|----|------|-------|
| 1 |    | Та   | Та    |
| 2 |    | Та   | Та    |
| 3 | C2 | Ta   | Tb    |
| 4 |    | Ta   | Ta    |
| 5 |    | Ta   | Ta    |
| 6 | H4 | Ta   | Tb    |
| 7 |    | Ta   | Ta    |
| 8 |    | Та   | Та    |
| 9 |    | Та   | Tb    |

Figure 23: S3/P31x\_AI\_D

|    | 1                   | 2 | 3 | 4   | 5     | 6 | 7  | 8  |  |    | 1  | 2 |
|----|---------------------|---|---|-----|-------|---|----|----|--|----|----|---|
| 1  |                     |   |   | R + | 3 x l |   | 1  |    |  |    |    |   |
|    |                     |   |   | R + | 3 x l |   |    |    |  |    |    |   |
|    |                     |   |   | R + | 3 x l |   |    |    |  |    |    |   |
|    |                     |   |   | R + | 3 x l |   |    |    |  |    |    |   |
| 18 | R                   | R | R | R   | R     | R | R  | R  |  | 18 | R  | R |
|    |                     |   |   | R + | 3 x l |   |    |    |  |    |    |   |
|    |                     |   |   | R + | 3 x l |   |    |    |  |    |    |   |
|    |                     |   |   | R + | 3 x l |   |    |    |  |    |    |   |
|    |                     |   |   | R + | 3 x l | ı |    |    |  |    |    |   |
|    |                     |   |   | R + | 3 x l | l |    |    |  |    |    |   |
| 38 | R                   | R | R | R   | R     | R | R  | R  |  | 38 | R  | R |
| 39 | R                   | R | R | R   | R     | R | C1 | C2 |  | 39 | R  | R |
| 40 |                     |   |   |     |       |   |    |    |  | 40 | R  | R |
| 41 | 24 Information Bits |   |   |     |       |   |    |    |  | 41 | S2 | - |
| 42 |                     |   |   |     |       |   |    |    |  | 42 |    |   |

5 6 7 R + 3xI $R + 3 \times I$  $R + 3 \times I$  $R + 3 \times I$ R R R R R  $R + 3 \times I$  $R + 3 \times I$ RRRRRR R R R R R R R R R S1 \_ \_ \_ 8 Information Bits

Legend:

I = Information Bit, R = Fixed Stuff Bit,

S1,S2 = Justification Opportunity Bit, C1,C2 = Justification Control Bit

R R R R R R R R R R R 24 Information Bits

Block of four bytes: R + 3 x I

Figure 24: Ta (left) and Tb (right) of S3/P31x\_AI\_D

Frequency justification and bitrate adaptation:

The function shall provide for an elastic store (buffer) process (figure 22). The data signal shall be written into the buffer under control of the associated input clock. The data shall be read out of the buffer and written onto the I, S1, S2 bits under control of the VC-3 clock, frame position (S3\_TI), and justification decisions.

The justification decisions determine the phase error introduced by the S3/P31x\_A\_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the justification control bits C1C2 (figure 24). An example is given in Annex A.3.

Each justification decision results in a corresponding positive or negative justification action. Upon a positive justification action, the reading of 1 data bit shall be cancelled once and no data are written at the justification opportunity bit S2 and no data are written onto S1. Upon a negative justification action, 1 extra data bit shall be read once and written onto the justification opportunity bit S1 and data shall be written onto S2. If neither a positive nor a negative justification action is to be performed, either no data shall be written onto S1 and data shall be written onto S2, or vice versa.

NOTE 1: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced.

# Buffer size:

In the presence of jitter as specified by ITU-T Recommendation G.823 [5] and a frequency within the range 34 368 kbit/s  $\pm$  20 ppm, this justification process shall not introduce any errors. Any step in frequency within this range shall not cause any errors.

## C1C2 bits:

Justification control generation:

The function shall generate the justification control (C1C2) bits according the specification in ETS 300 147 [2]. It shall insert the justification control bits in the appropriate C1C2 bit positions.

Two bytes of payload specific POH information, bytes C2 and H4, shall be added to container-3 to form the VC-3 AI and a fixed Frame Start (FS) shall be generated.

## H4:

The value of H4 byte is undefined.

Draft prETS 300 417-4b-1: April 1996

C2:

In this byte the function shall insert code "0000 0100" (Asynchronous mapping of 34 368 kbit/s into the Container-3) as defined in ETS 300 147 [2].

The mapping of 44 736 kbit/s into VC-3 as well as the mapping of 34 368 kbit/s into NOTE 2: VC-3 have the same signal label.

| R bits: The value of an R bit is undefined.                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1 shows that more than one adaptation source function exists in this VC-3 layer that can be connected to one VC-3 access point. For such case, a subset of these adaptation source functions allowed to be activated together. For this subset, access to the access point by other adaptation source functions must be denied. |
| Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, shall not access the access point.                                                                                                                                                                                         |
| Defects:                                                                                                                                                                                                                                                                                                                               |
| None.                                                                                                                                                                                                                                                                                                                                  |
| An elastic store under/overflow defect (dUOF) is for further study.                                                                                                                                                                                                                                                                    |
| Consequent Actions:                                                                                                                                                                                                                                                                                                                    |
| None.                                                                                                                                                                                                                                                                                                                                  |
| Defect Correlations:                                                                                                                                                                                                                                                                                                                   |
| None.                                                                                                                                                                                                                                                                                                                                  |
| Performance Monitoring:                                                                                                                                                                                                                                                                                                                |
| None.                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                        |

# 5.2.6 VC-3 Layer to P31x Layer Adaptation Sink S3/P31x\_A\_Sk

## Symbol:

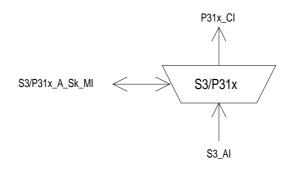



Figure 25: S3/P31x\_A\_Sk symbol

### Interfaces:

Table 10: S3/P31x\_A\_Sk input and output signals

| Input(s)               | Output(s)            |
|------------------------|----------------------|
| S3_AI_D                | P31x_CI_D            |
| S3_AI_CK               | P31x_CI_CK           |
| S3_AI_FS               | S3/P31x_A_Sk_MI_cPLM |
| S3_AI_TSF              | S3/P31x_A_Sk_MI_AcSL |
| S3/P31x_A_Sk_MI_Active |                      |

### Processes:

The function recovers plesiochronous P31x Characteristic Information (34 368 kbit/s  $\pm$  20 ppm) from the synchronous container C-3 (having a frequency accuracy within  $\pm$  4,6 ppm) according to ETS 300 147 [2], and monitors the reception of the correct payload signal type.

## C2:

The function shall compare the content of the accepted C2 byte with the expected value code "0000 0100" (Asynchronous mapping of 34 368 kbit/s into the Container-3) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclause 7.2 and 8.1.2.

NOTE 1: The mapping of 44 736 kbit/s into VC-3 as well as the mapping of 34 368 kbit/s into VC-3 have the same signal label. Consequently, it is not possible to check consistent adaptation function provisioning at each end between these two mappings.

## H4:

The value in the H4 byte shall be ignored.

## R bits:

The value in the R bits shall be ignored.

# C1C2 bits:

Justification control interpretation:

The function shall perform justification control interpretation specified by ETS 300 147 [2] to recover the 34 368 kbit/s signal from the VC-3. If the majority of the C1 bits is "0" the S1 bit shall be taken as a data bit, otherwise (majority of C1 bits is "1") S1 bit shall be taken as a justification bit and consequently ignored. If the majority of the C2 bits is "0" S2 bit shall be taken as a data bit, otherwise (majority of C2 bits is "1") S2 bit shall be taken as a justification bit and consequently ignored.

# Draft prETS 300 417-4b-1: April 1996

NOTE 2:

A negative justification is effectuated if the majority of C1 bits and the majority of C2 bits is "0". A positive justification is effectuated if the majority of the C1 bits and the majority of C2 bits is "1". The other combinations (C1 majority is "0" and C2 majority is "1", or C1 majority is "1" and C2 majority is "0") do not result in an actual justification.

# Smoothing & jitter limiting process:

The function shall provide for a clock smoothing and elastic store (buffer) process. The 34 368 kbit/s data signal shall be written into the buffer under control of the associated (gapped) input clock (with a frequency accuracy within  $\pm$  4,6 ppm). The data signal shall be read out of the buffer under control of a smoothed (equally spaced) 34 368 kHz  $\pm$  20 ppm clock (the rate is determined by the 34 Mbit/s signal at the input of the remote S3/P31x\_A\_So). The residual jitter caused by pointer adjustments and bit justifications (measured at the 34 368 kbit/s interface) shall be within the limits specified in subclause 11.3.1.2 of ETS 300 417-1-1 [1].

# Buffer size:

In the presence of jitter as specified by subclause 11.3.1.2 of ETS 300 417-1-1 [1] and a frequency within the range 34 368 kbit/s  $\pm$  20 ppm, this justification process shall not introduce any errors.

Following a step in frequency of the P31x signal transported by the S3\_AI (for example due to reception of P31x CI from a new P31x\_TT\_So at the far end or removal of all-ONEs (AIS) signal with a frequency offset) there will be a maximum recovery time of X seconds after which this process shall not generate any bit errors.

The value of X is for further study; a value of 1 second has been proposed.

Figure 1 shows that more than one adaptation sink function exists in this VC-3 layer that can be connected to one VC-3 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

#### Activation:

The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via the management point.

## **Defects:**

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

# **Consequent Actions:**

aAIS  $\leftarrow$  AI TSF or dPLM

On declaration of the aAIS the function shall output an all-ONEs (AIS) signal in the P31x\_CI\_D within 250  $\mu$ s; on clearing of aAIS the function shall output normal data within 250  $\mu$ s. The P31x\_CI\_CK during the all-ONEs signal shall be within 34 368 kHz  $\pm$  20 ppm.

## **Defect Correlations:**

cPLM ← dPLM and (not Al TSF)

## **Performance Monitoring:**

None.

## 5.2.7 VC-3 Layer to P31e Layer Adaptation Source S3/P31e A So

## Symbol:

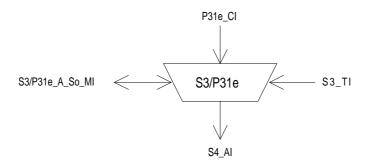



Figure 26: S3/P31e\_A\_So symbol

#### Interfaces:

Table 11: S3/P31e\_A\_So input and output signals

| Input(s)               | Output(s) |
|------------------------|-----------|
| P31e_CI_D              | S3_AI_D   |
| P31e_CI_CK             | S3_AI_CK  |
| S3_TI_CK               | S3_AI_FS  |
| S3_TI_FS               |           |
| S3/P31e_A_So_MI_Active |           |

## **Processes:**

This function maps a 34 368 kbit/s information stream into a VC-3 payload using bit stuffing and adds bytes C2 and H4. It takes P31e\_Cl, a bit-stream with a rate of 34 368 kbit/s ± 20 ppm, present at its input and inserts it into the synchronous container-3 having a capacity of 756 bytes and the justification frame as defined in ETS 300 147 [2] and depicted in figure 23, 24.

NOTE 1: The insertion of the frame alignment signal would be a S3/P31e\_A\_So process as specified in clause 5 ETS 300 417-1-1 [1]. The (historical) definition of the 34 368 kbit/s signal in ITU-T Recommendation G.751 [6] causes a violation of this process allocation, hence the FAS insertion process is located in the P31e\_TT\_So function.

Frequency justification and bitrate adaptation:

The function shall provide for an elastic store (buffer) process (figure 22). The data signal shall be written into the buffer under control of the associated input clock. The data shall be read out of the buffer under control of the VC-3 clock, frame position (S3\_TI), and justification decisions.

The justification decisions determine the phase error introduced by the S3/P31e\_A\_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the justification control bits C1C2 (figure 24). An example is given in Annex A.3.

Each justification decision results in a corresponding positive or negative justification action. Upon a positive justification action, the reading of 1 data bit shall be cancelled once and no data are written at the justification opportunity bit S2 and no data are written onto S1. Upon a negative justification action, 1 extra data bit shall be read once and written onto the justification opportunity bit S1 and data shall be written onto S2. If neither a positive nor a negative justification action is to be performed, either no data shall be written onto S1 and data shall be written onto S2, or vice versa.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced.

Draft prETS 300 417-4b-1: April 1996

### Buffer size:

In the presence of jitter as specified by ITU-T Recommendation G.823 [5] and a frequency within the range 34 368 kbit/s  $\pm$  20 ppm, this justification process shall not introduce any errors. Any step in frequency within this range shall not cause any errors.

## C1C2 bits:

Justification control generation:

The function shall generate the justification control (C1C2) bits according the specification in ETS 300 147 [2]. It shall insert the justification control bits in the appropriate C1C2 bit positions.

Two bytes of payload specific POH information, bytes C2 and H4, shall be added to container-4 to form the VC-3 AI and a fixed Frame Start (FS) shall be generated.

## H4:

The value of H4 byte is undefined.

## C2:

In this byte the function shall insert code "0001 0010" (Asynchronous mapping of 34 368 kbit/s into the Container-3) as defined in ETS 300 147 [2].

## R bits:

The value of an R bit is undefined.

Figure 1 shows that more than one adaptation source function exists in this VC-3 layer that can be connected to one VC-3 access point. For such case, a subset of these adaptation source functions is allowed to be activated together. For this subset, access to the access point by other adaptation source functions must be denied.

### Activation:

The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

# Defects: None. An elastic store under/overflow defect (dUOF) is for further study. Consequent Actions:

**Defect Correlations:** 

None.

None.

**Performance Monitoring:** 

None.

# 5.2.8 VC-3 Layer to P31e Layer Adaptation Sink S3/P31e\_A\_Sk

## Symbol:

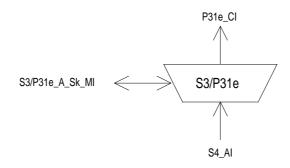



Figure 27: S3/P31e\_A\_Sk symbol

### Interfaces:

Table 12: S3/P31e\_A\_Sk input and output signals

| Input(s)                     | Output(s)            |
|------------------------------|----------------------|
| S3_AI_D                      | P31e_CI_D            |
| S3_AI_CK                     | P31e_CI_CK           |
| S3_AI_FS                     | P31e_CI_FS           |
| S3_AI_TSF                    | P31e_CI_SSF          |
|                              | S3/P31e_A_Sk_MI_cPLM |
| S3/P31e_A_Sk_MI_Active       | S3/P31e_A_Sk_MI_AcSL |
| S3/P31e_A_Sk_MI_AIS_Reported | S3/P31e_A_Sk_MI_cLOF |
|                              | S3/P31e_A_Sk_MI_cAIS |

# **Processes:**

The function recovers plesiochronous P31e Characteristic Information (34 368 kbit/s  $\pm$  20 ppm) from the synchronous container C-3 according to ETS 300 147 [2], and monitors the reception of the correct payload signal type, and recovers P31e frame start reference (FS) from the received signal.

# C2:

The function shall compare the content of the accepted C2 byte with the expected value code "0000 0100" (Asynchronous mapping of 34 368 kbit/s into the Container-3) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclause 7.2 and 8.1.2.

# H4:

The value in the H4 byte shall be ignored.

## R bits:

The value in the R bits shall be ignored.

## C1C2 bits:

Justification control interpretation:

The function shall perform justification control interpretation according ETS 300 147 [2] to recover the 34 368 kbit/s signal from the VC-3. If the majority of the C1 bits is "0" the S1 bit shall be taken as a data bit, otherwise (majority of C1 bits is "1") S1 bit shall be taken as a justification bit and consequently ignored. If the majority of the C2 bits is "0" S2 bit shall be taken as a data bit, otherwise (majority of C2 bits is "1") S2 bit shall be taken as a justification bit and consequently ignored.

# Draft prETS 300 417-4b-1: April 1996

NOTE:

A negative justification is effectuated if the majority of C1 bits and the majority of C2 bits is "0". A positive justification is effectuated if the majority of the C1 bits and the majority of C2 bits is "1". The other combinations (C1 majority is "0" and C2 majority is "1", or C1 majority is "1" and C2 majority is "0") do not result in an actual justification.

# Smoothing & jitter limiting process:

The function shall provide for a clock smoothing and elastic store (buffer) process. The  $34\,368$  kbit/s data signal shall be written into the buffer under control of the associated (gapped) input clock. The data signal shall be read out of the buffer under control of a smoothed (equally spaced)  $34\,368$  kHz  $\pm\,20$  ppm clock (the rate is determined by the 140 Mbit/s signal at the input of the remote  $S3/P31e\_A\_So$ ). The residual jitter caused by pointer adjustments and bit justifications (measured at the  $34\,368$  kbit/s interface) shall be within the limits specified in subclause 11.3.1.2 of ETS  $300\,417-1-1$  [1].

## Buffer size:

In the presence of jitter as specified by subclause 11.3.1.2 of ETS 300 417-1-1 [1] and a frequency within the range 34 368 kbit/s  $\pm$  20 ppm, this justification process shall not introduce any errors.

Following a step in frequency of the P31e CI (for example due to reception of P31e CI from a new P31e\_TT\_So at the far end or removal of all-ONEs (AIS) signal with a frequency offset) there will be a maximum recovery time of X seconds after which this process shall not generate any bit errors.

The value of X is for further study; a value of 1 second has been proposed.

Figure 1 shows that more than one adaptation sink function exists in this VC-3 layer that can be connected to one VC-3 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

### Activation:

The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via the management point.

# Frame alignment:

The function shall perform the frame alignment of the 34 368 kbit/s signal to recover the frame start information FS. The procedures to assume the loss and recovery of frame alignment shall be according the ITU-T Recommendation G.751 [6], §1.4.3.

## Defects:

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

The function shall detect a loss of frame defect (dLOF) when four consecutive frame alignment signals have been incorrectly received in their predicted positions. When frame alignment is lost, the dLOF defect shall be cleared when three consecutive frame alignment signals are detected.

The function shall detect an AIS defect (dAIS) according the specification in subclause 8.2.1.7 of ETS 300 417-1-1 [1], with X = ..., Y = ...., Z = ....

# **Consequent Actions:**

 $aSSF \leftarrow dPLM \text{ or dLOF or dAIS or AI TSF}$ 

aAIS  $\leftarrow$  dPLM or dLOF or dAIS or AI\_TSF

On declaration of the aAIS the function shall output an all-ONEs (AIS) signal in the P31e\_CI\_D within 250  $\mu$ s; on clearing of aAIS the function shall output normal data within 250  $\mu$ s. The P31e\_CI\_CK during the all-ONEs signal shall be within 34 368 kHz  $\pm$  20 ppm.

# **Defect Correlations:**

 $cPLM \leftarrow dPLM \text{ and (not AI\_TSF)}$ 

cAIS  $\leftarrow$  dAIS and (not dPLM) and (not AI\_TSF) and AIS\_Reported

cLOF ← dLOF and (not dAIS) and (not dPLM)

It shall be an option to report AIS as a fault cause. This is controlled by means of the parameter AIS\_Reported. The default shall be AIS\_Reported = false.

# **Performance Monitoring:**

None.

# 5.2.9 VC-3 Layer to P0x Layer Adaptation Source S3/P0x\_A\_So

# Symbol:

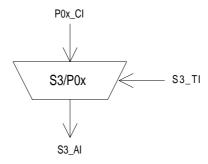



Figure 28: S3/P0x\_A\_So symbol

## Interfaces:

Table 13: S3/P0x\_A\_So input and output signals

| Input(s)  | Output(s) |
|-----------|-----------|
| P0x_CI_D  | S3_AI_D   |
| P0x_CI_CK |           |
| P0x_CI_FS |           |
| S3_TI_CK  |           |
| S3_TI_FS  |           |

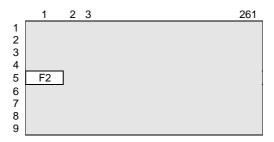



Figure 29 : S3/ P0x\_AI\_D signal

Draft prETS 300 417-4b-1: April 1996

### Processes:

This function provides the multiplexing of a 64 kbit/s information stream into the S3\_Al using slip buffering. It takes  $P0x_Cl$ , defined in ETS 300 166 [3] as an octet structured bit-stream with a rate of 64 kbit/s  $\pm$  100 ppm, present at its input and inserts it into the VC-3 POH byte F2 as defined in ETS 300 147 [2] and depicted in figure 2.

Frequency justification and bitrate adaptation:

The function shall provide for an elastic store (slip buffer) process. The data signal shall be written into the buffer under control of the associated input clock. The data shall be read out of the buffer under control of the VC-3 clock, frame position (S3\_TI), and justification decisions.

Each justification decision results in a corresponding negative/positive justification action. Upon a positive justification (slip) action, the reading of one 64 kbit/s octet (8 bits) shall be cancelled once. Upon a negative justification (slip) action, the same 64 kbit/s octet (8 bits) shall be read out a second time.

Buffer size:

The elastic store (slip buffer) size shall be at least 2 octets.

Defects:

None

**Consequent Actions:** 

None.

**Defect Correlations:** 

None

**Performance Monitoring:** 

None

5.2.10 VC-3 Layer to P0x Layer Adaptation Sink S3/P0x A Sk

Symbol:

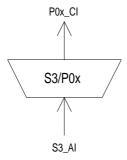



Figure 30: S3/P0x\_A\_Sk symbol

#### Interfaces:

Table 14: S3/P0x\_A\_Sk input and output signals

| Input(s)  | Output(s) |
|-----------|-----------|
| S3_AI_D   | P0x_CI_D  |
| S3_AI_CK  | P0x_CI_CK |
| S3_AI_FS  | P0x_CI_FS |
| S3_AI_TSF |           |

## **Processes:**

The function extracts the path user channel byte F2 from the VC-3 layer Characteristic Information. The recovered byte provides a 64 kbit/s channel for the client (user).

Smoothing and jitter limiting process:

The function shall provide for a clock smoothing and elastic store (buffer) process. The data signal shall be written into the buffer under control of the associated (gapped) input clock. The data signal shall be read out of the buffer under control of a smoothed (equally spaced) 64 kHz clock (the rate is determined by the VC-3 signal generated at the remote node containing S3/P0x\_A\_So). The residual jitter caused by pointer adjustments (measured at the 64 kbit/s interface) shall be within the limits specified in TBD.

#### Buffer size:

In the presence of jitter as specified by TBD and a frequency within the range 64 kbit/s  $\pm$  4,6 ppm, this justification process shall not introduce any errors.

Following a step in frequency of the P0x signal transported by the S3-AI (for example due to a frequency step of the server VC-3 signal, or removal of all-ONEs (AIS) signal with a frequency offset) there will be a maximum recovery time of X seconds after which this process shall not generate any bit errors.

The value of X is for further study; a value of 1 second has been proposed.

## Defects:

None.

# **Consequent Actions:**

aAIS ← AI\_TSF

On declaration of aAIS the function shall output an all-ONEs (AIS) signal - complying to the frequency limits for this signal (a bit rate in range 64 kbit/s  $\pm$  100 ppm) - within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

# **Defect Correlations:**

None.

# **Performance Monitoring:**

None.

# 5.2.11 VC-3 Layer to TSS3 Adaptation Source S3/TSS3\_A\_So

## Symbol:

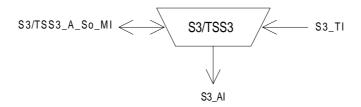



Figure 31: S3/TSS3\_A\_So symbol

## Interfaces:

Table 15: S3/TSS3\_A\_So input and output signals

| Input(s)               | Output(s) |
|------------------------|-----------|
| S3_TI_CK               | S3_AI_D   |
| S3_TI_FS               | S3_AI_CK  |
| S3/TSS3_A_So_MI_Active | S3_AI_FS  |

## Processes:

This function maps a VC-3 synchronous Test Signal Structure TSS3 PRBS stream as described in ITU-T draft Recommendation O.181 [7] into a VC-3 payload and adds the C2 and H4 bytes. It creates a 2<sup>23</sup> PRBS with timing derived from the S3\_TI\_Ck and maps it without justification bits into the whole of the synchronous container-3 having a capacity of 756 bytes as depicted in figure 32. The PRBS is a sequence which repeats itself over a period which is not an exact multiple of the capacity available in the container-3 frame. Therefore the start of the sequence will move relative to the start of the container-3 frame over time.

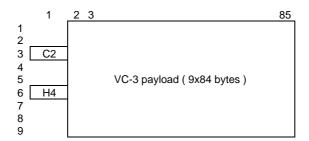



Figure 32: S3/TSS3\_AI\_So\_D

H4:

The value of H4 byte shall be set to a value in range '0000 0000' to '1111 1111'.

C2:

In this byte the function shall insert code "1111 1110" (TSS3 in the Container-3) as defined in ITU-T Recommendation G.708 [9].

Figure 1 shows that more than one adaptation source function exists in this VC-3 layer that can be connected to one VC-3 access point. For such case, a subset of these adaptation source functions is allowed to be activated together. Access to the access point by other adaptation source functions must be denied.

# Activation:

The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

Draft prETS 300 417-4b-1: April 1996

Defects:

None.

**Consequent Actions:** 

None.

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

5.2.12 VC-3 Layer to TSS3 Adaptation Sink S3/TSS3 A Sk

Symbol:




Figure 33: S3/TSS3\_A\_Sk symbol

## Interfaces:

Table 16: S3/TSS3\_A\_Sk input and output signals

| Input(s)               | Output(s)               |
|------------------------|-------------------------|
| S3_AI_D                | S3/TSS3_A_Sk_MI_cPLM    |
| S3_AI_CK               | S3/TSS3_A_SK_MI_cLSS    |
| S3_AI_FS               | S3/TSS3_A_Sk_MI_AcSL    |
| S3_AI_TSF              | S3/TSS3_A_Sk_MI_ pN_TSE |
| S3/TSS3_A_Sk_MI_Active | ·                       |

## **Processes:**

The function recovers a TSS3  $2^{23}$  PRBS test sequence as defined in ITU-T draft Recommendation O.181 [7] from the synchronous container-3 (having a frequency accuracy within  $\pm$  4,6 ppm) and monitors the reception of the correct payload signal type and for the presence of test sequence error blocks (TSE) in the PRBS sequence.

## C2:

The function shall compare the content of the recovered C2 byte (RxSL) expecteded value code "1111 1110" (TSS3 into the Container-3) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch process shall be as specified in ETS 300 417-1-1 [1], subclause 7.2 and 8.1.2.

## H4:

The value in the H4 byte shall be ignored.

Figure 1 shows that more than one adaptation sink function exists in this VC-3 layer that can be connected to one VC-3 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

# Draft prETS 300 417-4b-1: April 1996

Activation:

The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall not report its status via the management point.

## **Defects:**

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

The function shall detect for loss of PRBS lock (dLSS) according to the criteria defined in ITU-T Recommendation O.151 [8] Section 2.6.

# **Consequent Actions:**

None

## **Defect Correlations:**

 $cPLM \leftarrow dPLM \text{ and (not AI\_TSF)}$ 

cLSS ← dLSS and not (AI\_TSF)

# **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ITU-T Recommendation O.181 [7] Annex A section A.1.8.

 $pN\_TSE \leftarrow Sum of test sequence errors (TSE) within one second period.$ 

NOTE: The TSE error block size is equal to the B3 BIP-8 error block size with the exception of the VC-3 POH.

# 5.2.13 VC-3 Layer to Virtual Path Layer (ATM) Compound Adaptation Source S3/ATM\_A\_So

The specification of this function is for further study.

# 5.2.14 VC-3 Layer to Virtual Path Layer (ATM) Compound Adaptation Sink S3/ATM\_A\_Sk

The specification of this function is for further study.

Draft prETS 300 417-4b-1: April 1996

# 5.3 VC-3 Layer Monitoring Functions

## 5.3.1 VC-3 Layer Non-intrusive Monitoring Function S3m\_TT\_Sk

## Symbol:

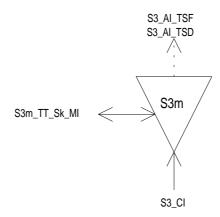



Figure 34: S3m\_TT\_Sk symbol

### Interfaces:

Table 17: S3m\_TT\_Sk input and output signals

| Input(s)                  | Output(s)           |
|---------------------------|---------------------|
| S3_CI_D                   | S3_AI_TSF           |
| S3_CI_CK                  | S3_AI_TSD           |
| S3_CI_FS                  | S3m_TT_Sk_MI_cTIM   |
| S3_CI_SSF                 | S3m_TT_Sk_MI_cUNEQ  |
| S3m_TT_Sk_MI_TPmode       | S3m_TT_Sk_MI_cDEG   |
| S3m_TT_Sk_MI_SSF_Reported | S3m_TT_Sk_MI_cRDI   |
| S3m_TT_Sk_MI_ExTI         | S3m_TT_Sk_MI_cSSF   |
| S3m_TT_Sk_MI_RDI_Reported | S3m_TT_Sk_MI_AcTI   |
| S3m_TT_Sk_MI_DEGTHR       | S3m_TT_Sk_MI_pN_EBC |
| S3m_TT_Sk_MI_DEGM         | S3m_TT_Sk_MI_pF_EBC |
| S3m_TT_Sk_MI_ExTImode     | S3m_TT_Sk_MI_pN_DS  |
| S3m_TT_Sk_MI_1second      | S3m_TT_Sk_MI_pF_DS  |
| S3m_TT_Sk_MI_TIMdis       |                     |

## **Processes:**

NOTE 1: this non-intrusive monitor trail termination sink function has no associated source function.

This function monitors VC-3 for errors, and recovers the trail termination status. It extracts the payload independent overhead bytes (J1, B3, G1, C2) from the VC-3 layer Characteristic Information:

# J1:

The Received Trail Trace Identifier RxTI shall be recovered from the J1 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3.

## **B3**:

Even bit parity is computed for each bit n of every byte of the preceding VC-3 and compared with bit n of B3 recovered from the current frame (n=1 to 8 inclusive). A difference between the computed and recovered B3 values is taken as evidence of one or more errors (nN\_B) in the computation block.

# G1[1-4], G1[5]:

The information carried in the G1 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 5) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI) and 7.4.11 and 8.2 (RDI).

**REI** code G1[1] G1[2] G1[3] G1[4] interpretation 0 errors 1 error 2 errors 3 errors 4 errors 5 errors 6 errors 7 errors 8 errors 0 errors 0 errors 0 errors

Table 18: G1[1-4] code interpretation

# C2:

The information in the C2 byte shall be extracted to allow unequipped VC and VC-AIS defect detection.

0 errors

0 errors

0 errors

0 errors

# G1[6-8]:

The value in the bits 6 to 8 of byte G1 shall be ignored.

## Defects:

The detection and removal conditions and processes for dDEG, dRDI, dUNEQ and dTIM defects shall be as specified by ETS 300 417-1-1 [1], subclause 8.2.1 with the condition "aSSF" read as "aSSF or VC dAIS". To use the function within e.g. a tandem connection<sup>1</sup>, it shall be possible to disable the trace id mismatch detection (TIMdis).

## VC AIS:

The function shall detect for an AIS condition by monitoring the VC PSL for code "1111 1111". If 5 consecutive frames contain the '1111 1111' pattern in byte C2 a dAIS defect shall be detected. dAIS shall be cleared if in 5 consecutive frames any pattern other than the '1111 1111' is detected in byte C2.

NOTE 2: Equipment designed prior to this ETS may be able to perform VC-AIS detection either as specified above interpreting "frames" as "samples (not necessary consecutive frames)", or by a comparison of the accepted signal label with the all-ONEs pattern. If the accepted signal label is equal to all-ONEs, VC-AIS defect is detected. If the accepted signal label is not equal to all-ONEs, VC-AIS defect is cleared.

<sup>1</sup> Presumably, in such case the VC Trace Id. will be unknown to the tandem connection operator.

# Consequent actions:

 $aTSF \leftarrow CI SSF or dAIS or dUNEQ or dTIM$ 

 $aTSD \leftarrow dDEG$ 

#### **Defect Correlations:**

cUNEQ ← dUNEQ and MON

cTIM  $\leftarrow$  dTIM and (not dUNEQ) and MON

cDEG ← dDEG and (not dTIM) and MON

cRDI ← dRDI and (not dUNEQ) and (not dTIM) and MON and RDI\_Reported

 $cSSF \leftarrow (CI\_SSF \text{ or dAIS}) \text{ and MON and SSF\_Reported}$ 

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

# **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $pN_DS \leftarrow aTSF \text{ or } dEQ$ 

 $pF_DS \leftarrow dRDI$ 

 $\mathsf{pN\_EBC} \quad \leftarrow \quad \Sigma \, \mathsf{nN\_B}$ 

 $\mathsf{pF\_EBC} \quad \leftarrow \quad \Sigma \, \mathsf{nF\_B}$ 

NOTE 3: pF\_DS/pF\_EBC represent the performance of the total trail while pN\_DS/pN\_EBC represents only part of the trail up to the point of the non-intrusive monitor.

# 5.3.2 VC-3 Layer Supervisory-Unequipped Termination Source S3s\_TT\_So

# Symbol:

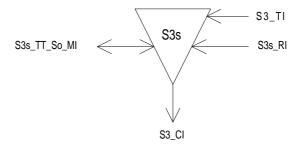



Figure 35: S3s\_TT\_So symbol

#### Interfaces:

Table 19: S3s\_TT\_So input and output signals

| Input(s)          | Output(s) |
|-------------------|-----------|
| S3s_RI_RDI        | S3_CI_D   |
| S3s_RI_REI        | S3_CI_CK  |
| S3_TI_CK          | S3_CI_FS  |
| S3_TI_FS          |           |
| S3s_TT_So_MI_TxTI |           |

#### Processes:

This function generates error monitoring and status overhead bytes to an undefined VC-3. The processing of the trail termination overhead bytes is defined as follows:

#### J1:

In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in ETS 300 417-1-1 [1], subclause 7.1.

# **B3**:

In this byte the function shall insert the BIP-8 EDC with even bit parity. Each bit n of current B3 is computed to provide even parity over the nth bits of every byte in the previous frame of the Characteristic Information S3\_CI, i.e., B3 is calculated over the entire previous VC-3. Further reference is provided in ETS 300 417-1-1 [1], subclause 7.3.

#### C2:

In this byte the function shall insert code "0000 0000" (unequipped VC or supervisory-unequipped VC) as defined in subclause 7.2 of ETS 300 417-1-1 [1] and ETS 300 147 [2].

#### G1:

This byte is set to represent the status of the associated S3s\_TT\_Sk. Its format is defined in the figure 2.

# G1[1-4]:

The signal value applied at RI\_REI shall be inserted in the VC-3 REI, bits 1 to 4 of byte G1. The coding shall be as follows:

Table 20: G1[1-4] coding

| Number of BIP-8<br>violations conveyed<br>via RI_REI | G1[1] | G1[2] | G1[3] | G1[4] |
|------------------------------------------------------|-------|-------|-------|-------|
| 0                                                    | 0     | 0     | 0     | 0     |
| 1                                                    | 0     | 0     | 0     | 1     |
| 2                                                    | 0     | 0     | 1     | 0     |
| 3                                                    | 0     | 0     | 1     | 1     |
| 4                                                    | 0     | 1     | 0     | 0     |
| 5                                                    | 0     | 1     | 0     | 1     |
| 6                                                    | 0     | 1     | 1     | 0     |
| 7                                                    | 0     | 1     | 1     | 1     |
| 8                                                    | 1     | 0     | 0     | 0     |

#### G1[5]:

Bit 5 of byte G1, a RDI indication, shall be set to "1" on activation of the S3s\_RI\_RDI within 250 µs, determined by the associated S3s\_TT\_Sk function and set to "0" within 250 µs on the S3s\_RI\_RDI removal.

# G1[6-8]:

The value of the bits 6 to 8 of byte G1 is undefined.

N1:

In the byte the function shall insert code "0000 0000" (unequipped tandem connection) as defined in subclause 7.2 of ETS 300 417-1-1 [1].

Other VC-3 bytes:

The function shall generate the other VC-3 bytes and bits. Their content is undefined.

**Defects:** 

None.

**Consequent Actions:** 

None.

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

5.3.3 VC-3 Layer Supervisory-unequipped Termination Sink S3s\_TT\_Sk

Symbol:

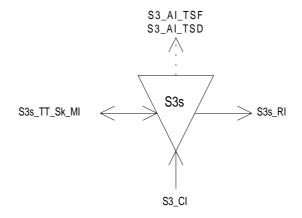



Figure 36: S3s\_TT\_Sk symbol

#### Interfaces:

Table 21: S3s\_TT\_Sk input and output signals

| Input(s)                  | Output(s)           |
|---------------------------|---------------------|
| S3_CI_D                   | S3_AI_TSF           |
| S3_CI_CK                  | S3_AI_TSD           |
| S3_CI_FS                  | S3s_TT_Sk_MI_cTIM   |
| S3_CI_SSF                 | S3s_TT_Sk_MI_cUNEQ  |
|                           | S3s_TT_Sk_MI_cDEG   |
| S3s_TT_Sk_MI_TPmode       | S3s_TT_Sk_MI_cRDI   |
| S3s_TT_Sk_MI_SSF_Reported | S3s_TT_Sk_MI_cSSF   |
| S3s_TT_Sk_MI_ExTI         | S3s_TT_Sk_MI_AcTI   |
| S3s_TT_Sk_MI_RDI_Reported | S3s_RI_RDI          |
| S3s_TT_Sk_MI_DEGTHR       | S3s_RI_REI          |
| S3s_TT_Sk_MI_DEGM         | S3s_TT_Sk_MI_pN_EBC |
| S3s_TT_Sk_MI_ExTImode     | S3s_TT_Sk_MI_pF_EBC |
| S3s_TT_Sk_MI_1second      | S3s_TT_Sk_MI_pN_DS  |
| S3s_TT_Sk_MI_TIMdis       | S3s_TT_Sk_MI_pF_DS  |

#### **Processes:**

This function monitors VC-3 for errors, and recovers the trail termination status as defined in ETS 300 147 [2]. It extracts the payload independent overhead bytes (J1, B3, G1, C2) from the VC-3 layer Characteristic Information:

#### J1:

The Received Trail Trace Identifier RxTI shall be recovered from the J1 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3.

#### **B3**:

Even bit parity shall be computed for each bit n of every byte of the preceding VC-3 and compared with bit n of B3 recovered from the current frame (n = 1 to 8 inclusive). A difference between the computed and recovered B3 values shall be taken as evidence of one or more errors ( $nN_B$ ) in the computation block.

# G1[1-4], G1[5]:

The information carried in the G1 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 5) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI) and 7.4.11 and 8.2 (RDI).

# G1[6-8]:

The value in the bits 6 to 8 of byte G1 shall be ignored.

Table 22: G1[1-4] code interpretation

| G1[1] | G1[2] | G1[3] | G1[4] | REI code interpretation |
|-------|-------|-------|-------|-------------------------|
| 0     | 0     | 0     | 0     | 0 errors                |
| 0     | 0     | 0     | 1     | 1 error                 |
| 0     | 0     | 1     | 0     | 2 errors                |
| 0     | 0     | 1     | 1     | 3 errors                |
| 0     | 1     | 0     | 0     | 4 errors                |
| 0     | 1     | 0     | 1     | 5 errors                |
| 0     | 1     | 1     | 0     | 6 errors                |
| 0     | 1     | 1     | 1     | 7 errors                |
| 1     | 0     | 0     | 0     | 8 errors                |
| 1     | 0     | 0     | 1     | 0 errors                |
| 1     | 0     | 1     | 0     | 0 errors                |
| 1     | 0     | 1     | 1     | 0 errors                |
| 1     | 1     | 0     | 0     | 0 errors                |
| 1     | 1     | 0     | 1     | 0 errors                |
| 1     | 1     | 1     | 0     | 0 errors                |
| 1     | 1     | 1     | 1     | 0 errors                |

# C2:

he information in the C2 byte shall be extracted to allow unequipped VC defect detection.

#### Defects:

The function shall detect for dDEG, dRDI, dUNEQ and dTIM defects according the specifications in ETS 300 417-1-1 [1], subclause 8.2.1.

# **Consequent Actions:**

 $aTSF \leftarrow CI SSF or dTIM$ 

 $\mathsf{aTSD} \leftarrow \mathsf{dDEG}$ 

aRDI  $\leftarrow$  CI\_SSF or dTIM

aREI ← "#EDCV"

NOTE:

dUNEQ can not be used to activate aTSF and aRDI; an expected supervisory-unequipped signal will have the signal label set to all-0's, causing a continuous detection of dUNEQ. If an unequipped VC comes in, dTIM will be activated and can serve as a trigger for aTSF/aRDI instead of dUNEQ.

#### **Defect Correlations:**

cUNEQ  $\leftarrow$  MON and dTIM and (AcTI = all "0"s) and dUNEQ

cTIM ← MON and dTIM and (not dUNEQ and AcTI = all "0"s)

 $cDEG \leftarrow MON \ and \ (not \ dTIM) \ and \ dDEG$ 

cRDI ← MON and (not dTIM) and dRDI and RDI\_Reported

 $\mathsf{cSSF} \leftarrow \quad \mathsf{MON} \ \mathsf{and} \ \mathsf{CI\_SSF} \ \mathsf{and} \ \mathsf{SSF\_Reported}$ 

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

# **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $\begin{array}{lll} \mathsf{pN\_DS} & \leftarrow & \mathsf{aTSF} \ \mathsf{or} \ \mathsf{dEQ} \\ \\ \mathsf{pF\_DS} & \leftarrow & \mathsf{dRDI} \\ \\ \mathsf{pN\_EBC} & \leftarrow & \Sigma \ \mathsf{nN\_B} \end{array}$ 

# 5.4 VC-3 Layer Trail Protection Functions

 $\Sigma\, nF\_B$ 

# 5.4.1 VC-3 Trail Protection Connection Functions S3P\_C

# 5.4.1.1 VC-3 Layer 1+1 single ended Protection Connection Function S3P1+1se\_C

# Symbol:

pF\_EBC

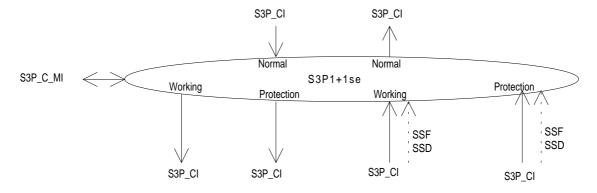



Figure 37: S3P1+1se\_C symbol

Page 51

Draft prETS 300 417-4b-1: April 1996

#### Interfaces:

Table 23: S3P1+1se\_C input and output signals

| Input(s)                       | Output(s)                      |
|--------------------------------|--------------------------------|
| for connection points W and P: | for connection points W and P: |
| S3P_CI_D                       | S3P_CI_D                       |
| S3P_CI_CK                      | S3P_CI_CK                      |
| S3P_CI_FS                      | S3P_CI_FS                      |
| S3P_CI_SSF                     |                                |
| S3P_AI_SSD                     | for connection point N:        |
|                                | S3P_CI_D                       |
| for connection point N:        | S3P_CI_CK                      |
| S3P_CI_D                       | S3P_CI_FS                      |
| S3P_CI_CK                      | S3P_CI_SSF                     |
| S3P_CI_FS                      |                                |
|                                | NOTE: protection status        |
| S3P_C_MI_OPERType              | reporting signals are for      |
| S3P_C_MI_WTRTime               | further study.                 |
| S3P_C_MI_HOTime                |                                |
| S3P_C_MI_EXTCMD                |                                |

#### **Processes:**

The function performs the VC-3 linear trail protection process for 1+1 protection architecture with single ended switching; refer to ETS 300 417-1-1 [1], subclause 9.2. It performs the bridge and selector functionality as presented in figures 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the associated working path or the protection path; this is determined by the SF,SD conditions (relayed via CI\_SSF,CI\_SSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

Provided no protection switching action is activated/required the following changes to (the configuration of) a trail shall be possible without disturbing the CI passing the trail:

- change between operation types
- change of WTR and HO times

# Operation:

The VC trail protection process shall operate as specified in prETS 300 417-3-1 [4], Annex A, according the following characteristics:

**Table 24: Trail protection parameters** 

| Parameter                      | Value options                                   |
|--------------------------------|-------------------------------------------------|
| architecture type (ARCHtype)   | 1 + 1                                           |
| switching type (SWtype)        | single-ended                                    |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | false                                           |
| Wait-To-Restore time (WTRtime) | in the order of 5-12 minutes                    |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | trail                                           |
| Signal switch conditions:      | SF = SSF (originated as AI_TSF)                 |
|                                | SD = SSD (originated as AI_TSD)                 |
| External commands (EXTCMD)     | LO-#0, FSw-#i, MSw-#i, CLR                      |
| Extra traffic (EXTRAtraffic)   | false                                           |

Page 52

Draft prETS 300 417-4b-1: April 1996

**Defects:** 

None.

**Consequent Actions:** 

None.

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

# 5.4.1.2 VC-3 Layer Protection Connection Function S3P1+1de\_C

# Symbol:

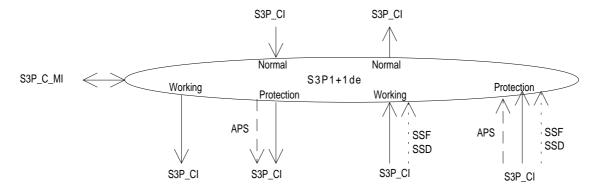



Figure 38: S3P1+1de\_C symbol

# Interfaces:

Table 25: S3P1+1de\_C input and output signals

| Input(s)                       | Output(s)                      |  |
|--------------------------------|--------------------------------|--|
| for connection points W and P: | for connection points W and P: |  |
| S3P_CI_D                       | S3P_CI_D                       |  |
| S3P_CI_CK                      | S3P_CI_CK                      |  |
| S3P_CI_FS                      | S3P_CI_FS                      |  |
| S3P_CI_SSF                     |                                |  |
| S3P_CI_SSD                     | for connection point N:        |  |
|                                | S3P_CI_D                       |  |
| for connection point N:        | S3P_CI_CK                      |  |
| S3P_CI_D                       | S3P_CI_FS                      |  |
| S3P_CI_CK                      | S3P_CI_SSF                     |  |
| S3P_CI_FS                      |                                |  |
|                                | for connection point P:        |  |
| for connection point P:        | S3P_CI_APS                     |  |
| S3P_CI_APS                     |                                |  |
|                                | NOTE: protection status        |  |
| S3P_C_MI_OPERType              | reporting signals are for      |  |
| S3P_C_MI_WTRTime               | further study.                 |  |
| S3P_C_MI_HOTime                |                                |  |
| S3P_C_MI_EXTCMD                |                                |  |

#### Processes:

The function performs the VC-3 linear trail protection process for 1+1 protection architecture with dual-ended switching; refer to ETS 300 417-1-1 [1], subclause 9.2. It performs the bridge and selector functionality as presented in figures 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the associated working path or the protection path; this is determined by the SF,SD conditions (relayed via CI\_SSF,CI\_SSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

Provided no protection switching action is activated/required the following changes to (the configuration of) a trail shall be possible without disturbing the CI passing the trail:

- change between operation types;
- change of WTR and HO times.

# Operation:

None.

The VC trail protection process shall operate as specified in prETS 300 417-3-1 [4], Annex A, according the following characteristics:

**Table 26: Trail protection parameters** 

| Parameter                      | Value options                                   |
|--------------------------------|-------------------------------------------------|
| architecture type (ARCHtype)   | 1 + 1                                           |
| switching type (SWtype)        | dual-ended                                      |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | true                                            |
| Wait-To-Restore time (WTRtime) | in the order of 5-12 minutes                    |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | trail                                           |
| Signal switch conditions:      | SF = SSF (originated as AI_TSF)                 |
|                                | SD = SSD (originated as AI_TSD)                 |
| External commands (EXTCMD)     | LO-#0, FSw-#i, MSw-#i, EXER-#i, CLR             |
| Extra traffic (EXTRAtraffic)   | false                                           |

| N        | OTE:        | The VC-3 APS signal definition is for further study. |
|----------|-------------|------------------------------------------------------|
| Defects  | :           |                                                      |
| None.    |             |                                                      |
| Conseq   | uent Actio  | ons:                                                 |
| None.    |             |                                                      |
| Defect ( | Correlation | ns:                                                  |
| None.    |             |                                                      |
| Perform  | nance Mon   | itoring:                                             |

# 5.4.2 VC-3 Layer Trail Protection Trail Termination Functions

# 5.4.2.1 VC-3 Protection Trail Termination Source S3P\_TT\_So

Symbol:

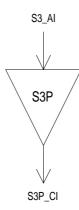



Figure 39: S3P\_TT\_So symbol

#### Interfaces:

Table 27: S3P\_TT\_So input and output signals

| Input(s)  | Output(s) |
|-----------|-----------|
| S3P_AI_D  | S3P_CI_D  |
| S3P_AI_CK | S3P_CI_CK |
| S3P_AI_FS | S3P_CI_FS |

# **Processes:**

No information processing is required in the S3P\_TT\_So, the S3\_AI at its output is identical to the S3P\_CI at its input.

| Dafaata  |  |
|----------|--|
| Defects: |  |
| DCICCIO. |  |

None.

# **Consequent Actions:**

None

# **Defect Correlations:**

None.

# **Performance Monitoring:**

# 5.4.2.2 VC-3 Protection Trail Termination Sink S3P\_TT\_Sk

# Symbol:

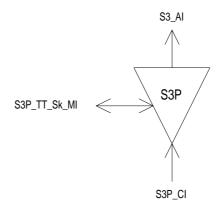



Figure 40: S3P\_TT\_Sk symbol

# Interfaces:

Table 28: S3P\_TT\_Sk input and output signals

| Input(s)                  | Output(s)         |
|---------------------------|-------------------|
| S3P_CI_D                  | S3_AI_D           |
| S3P_CI_CK                 | S3_AI_CK          |
| S3P_CI_FS                 | S3_AI_FS          |
| S3P_CI_SSF                | S3_AI_TSF         |
| S3P_TT_Sk_MI_SSF_Reported | S3P_TT_Sk_MI_cSSF |

# **Processes:**

The S3P\_TT\_Sk function reports, as part of the S3 layer, the state of the protected VC-3 trail. In case all trails are unavailable the S3P\_TT\_Sk reports the signal fail condition of the protected trail.

# Defects:

None.

# **Consequent Actions:**

 $\mathsf{aTSF} \leftarrow \mathsf{CI\_SSF}$ 

# **Defect Correlations:**

 $\mathsf{cSSF} \leftarrow \quad \mathsf{CI\_SSF} \ \mathsf{and} \ \mathsf{SSF\_Reported}$ 

# **Performance Monitoring:**

# Page 56

Draft prETS 300 417-4b-1: April 1996

# 5.4.3 VC-3 Layer Linear Trail Protection Adaptation Functions

# 5.4.3.1 VC-3 trail to VC-3 trail Protection Layer Adaptation Source S3/S3P\_A\_So

Symbol:

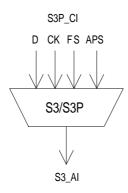



Figure 41: S3/S3P\_A\_So symbol

# Interfaces:

Table 29: S3/S3P\_A\_So input and output signals

| Input(s)   | Output(s) |
|------------|-----------|
| S3P_CI_D   | S3_AI_D   |
| S3P_CI_CK  | S3_AI_CK  |
| S3P_CI_FS  | S3_AI_FS  |
| S3P_CI_APS |           |

# **Processes:**

The function shall multiplex the S3 APS signal and S3 data signal onto the S3 access point.

# K3[1-4]:

The insertion of the VC-APS signal is for further study. This process is required only for the protection path.

| Defects:            |  |
|---------------------|--|
| None.               |  |
| Consequent actions: |  |
| None.               |  |

**Defect Correlations:** 

None.

**Performance Monitoring:** 

# 5.4.3.2 VC-3 trail to VC-3 trail Protection Layer Adaptation Sink S3/S3P\_A\_Sk

# Symbol:

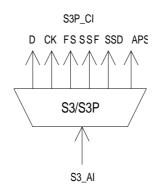



Figure 42: S3/S3P\_A\_Sk symbol

# Interfaces:

Table 30: S3/S3P\_A\_Sk input and output signals

| Input(s)  | Output(s)                         |
|-----------|-----------------------------------|
| S3_AI_D   | S3P_CI_D                          |
| S3_AI_CK  | S3P_CI_CK                         |
| S3_AI_FS  | S3P_CI_FS                         |
| S3_AI_TSF | S3P_CI_SSF                        |
| S3_AI_TSD | S3P_CI_SSD                        |
|           | S3P_CI_APS (for Protection signal |
|           | only)                             |

#### **Processes:**

The function shall extract and output the S3P\_CI\_D signal from the S3\_AI\_D signal.

# K3[1-4]:

The extraction and persistency processing of the VC-APS signal is for further study. This process is required only for the protection section.

# **Defects:**

None.

# **Consequent actions:**

 $\mathsf{aSSF} \leftarrow \mathsf{AI\_TSF}$ 

aSSD ← AI TSD

# **Defect Correlations:**

None.

# **Performance Monitoring:**

# 5.5 VC-3 Tandem Connection Sublayer Functions

# 5.5.1 VC-3 Tandem Connection Trail Termination Source function (S3D\_TT\_So)

## Symbol:

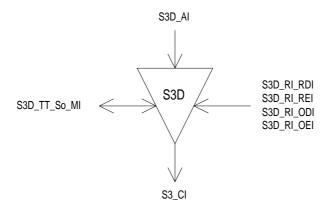



Figure 43: S3D\_TT\_So symbol

#### Interfaces:

Table 31: S3D\_TT\_So input and output signals

| Input(s)          | Output(s) |
|-------------------|-----------|
| S3D_AI_D          | S3_CI_D   |
| S3D_AI_CK         | S3_CI_CK  |
| S3D_AI_FS         | S3_CI_FS  |
| S3D_AI_SF         |           |
| S3D_RI_RDI        |           |
| S3D_RI_REI        |           |
| S3D_RI_ODI        |           |
| S3D_RI_OEI        |           |
| S3D_TT_So_MI_TxTI |           |

# **Processes:**

# N1[8][73]<sup>2</sup>:

The function shall insert the TC RDI code within 1 multiframe (9,5 ms) after the RDI request generation (RI\_RDI)) in the tandem connection trail termination sink function. It ceases TC RDI code insertion within 1 multiframe (9,5 ms) after the TC RDI request has cleared.

# N1[5]:

The function shall insert the RI\_REI value in the REI bit in the following frame.

# N1[7][74]:

The function shall insert the ODI code within 1 multiframe (9,5 ms) after the ODI request generation (aODI)) in the tandem connection trail termination sink function. It ceases ODI code insertion at the first opportunity after the ODI request has cleared.

# N1[6]:

The function shall insert the RI\_OEI value in the OEI bit in following frame.

N1[x][y] refers to bit x (x = 7,8) of byte N1 in frame y (y=1..76) of the 76 frame multiframe.

# N1[7-8]:

The function shall insert in the multiframed N1[7-8] channel:

the Frame Alignment Signal (FAS) "1111 1111 1110" in FAS bits in frames 1 to 8, the TC trace identifier, received via MI\_TxTI, in the TC-TI bits in frames 9 to 72, the TC RDI (N1[8][73]) and ODI (N1[7][74]) signals, and all-0s in the six reserved bits in frames 73 to 76.

# N1[1-4]:

Even BIP-8 shall be computed for each bit n of every byte of the preceding VC-3 including B3 and compared with byte B3 recovered from the current frame. A difference between the computed and recovered BIP-8 values shall be taken as evidence of one or more errors in the computation block, and shall be inserted in bits 1 to 4 of byte N1 (figure 44, table 32³). If Al\_SF is true, code "1110" shall be inserted in bits 1 to 4 of byte N1 instead of the number of incoming BIP-8 violations.



Figure 44: TC IEC computing and insertion

| Number of BIP-8 violations | N1[1] | N1[2] | N1[3] | N1[4] |
|----------------------------|-------|-------|-------|-------|
| 1                          | 0     | 0     | 0     | 1     |
| 2                          | 0     | 0     | 1     | 0     |
| 3                          | 0     | 0     | 1     | 1     |
| 4                          | 0     | 1     | 0     | 0     |
| 5                          | 0     | 1     | 0     | 1     |
| 6                          | 0     | 1     | 1     | 0     |
| 7                          | 0     | 1     | 1     | 1     |
| 8                          | 1     | 0     | 0     | 0     |
| 0                          | 1     | 0     | 0     | 1     |

Table 32: IEC code generation

B3: The function shall compensate the VC4 BIP8 (in B3) according the following rule:

Since the BIP-8 parity check is taken over the VC (including N1), writing into N1 at the S3D\_TT\_So will affect the VC-3 path parity calculation. Unless this is compensated for, a device which monitors VC-3 path parity within the Tandem Connection (e.g., a non-intrusive monitor) may incorrectly count errors. The BIP-8 parity bits should always be consistent with the current state of the VC. Therefore, whenever N1 is written, BIP-8 shall be modified to compensate for the change in the N1 value. Since the BIP-8 value in a given frame reflects a parity check over the previous frame (including the BIP-8 bits in that frame), the changes made to the BIP-8 bits in the previous frame shall also be considered in the compensation of BIP-8 for the current frame. Therefore, the following equation shall be used for BIP-8 compensation:

Zero BIP-8 violations detected in the tandem connection incoming signal must be coded with a non-all-ZEROs IEC code. This allows this IEC field to be used at the TC tail end as differentiator between TC incoming unequipped VC and unequipped TC.

None.

 $B3[i]'(t) = B3[i](t-1) \oplus B3[i]'(t-1) \oplus N1[i](t-1) \oplus N1[i]'(t-1) \oplus B3[i](t)$ 

Where:

B3[i] = the existing B3[i] value in the incoming signal

B3[i]' = the new (compensated) B3[i] value

N1[i] = the existing N1[i] value in the incoming signal

N1[i]' = the new value written into the N1[i] bit

⊕ = exclusive OR operator

t = the time of the current frame

t-1 = the time of the previous frame

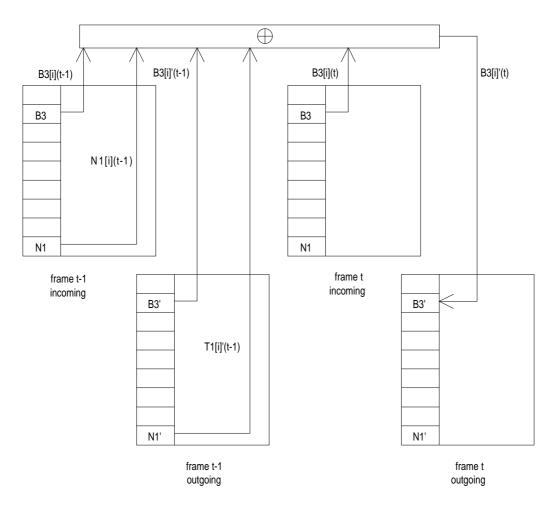



Figure 45: B3[i], i=1..8 compensating process

| Defects:                |  |
|-------------------------|--|
| None.                   |  |
| Consequent Actions:     |  |
| None.                   |  |
| Defect Correlations:    |  |
| None.                   |  |
| Performance Monitoring: |  |

# 5.5.2 VC-3 Tandem Connection Trail Termination Sink function (S3D\_TT\_Sk)

# Symbol:

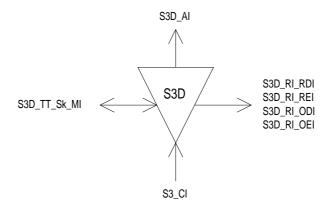



Figure 46: S3D\_TT\_Sk symbol

# Interfaces:

Table 33: S3D\_TT\_Sk input and output signals

| Input(s)                  | Output(s)            |
|---------------------------|----------------------|
| S3_CI_D                   | S3D_AI_D             |
| S3_CI_CK                  | S3D_AI_CK            |
| S3_CI_FS                  | S3D_AI_FS            |
| S3_CI_SSF                 | S3D_AI_TSF           |
| S3D_TT_Sk_MI_ExTI         | S3D_AI_TSD           |
| S3D_TT_Sk_MI_SSF_Reported | S3D_AI_OSF           |
| S3D_TT_Sk_MI_RDI_Reported | S3D_TT_Sk_MI_cLTC    |
| S3D_TT_Sk_MI_ODI_Reported | S3D_TT_Sk_MI_cTIM    |
| S3D_TT_Sk_MI_TIMdis       | S3D_TT_Sk_MI_cUNEQ   |
| S3D_TT_Sk_MI_DEGM         | S3D_TT_Sk_MI_cDEG    |
| S3D_TT_Sk_MI_DEGTHR       | S3D_TT_Sk_MI_cRDI    |
| S3D_TT_Sk_MI_1second      | S3D_TT_Sk_MI_cSSF    |
|                           | S3D_TT_Sk_MI_cODI    |
|                           | S3D_TT_Sk_MI_AcTI    |
|                           | S3D_RI_RDI           |
|                           | S3D_RI_REI           |
|                           | S3D_RI_ODI           |
|                           | S3D_RI_OEI           |
|                           | S3D_TT_Sk_MI_pN_EBC  |
|                           | S3D_TT_Sk_MI_pF_EBC  |
|                           | S3D_TT_Sk_MI_pN_DS   |
|                           | S3D_TT_Sk_MI_pF_DS   |
|                           | S3D_TT_Sk_MI_pON_EBC |
|                           | S3D_TT_Sk_MI_pOF_EBC |
|                           | S3D_TT_Sk_MI_pON_DS  |
|                           | S3D_TT_Sk_MI_pOF_DS  |

#### **Processes:**

#### TC EDC violations:

Even bit parity shall be computed for each bit n of every byte of the preceding VC-3 and compared with bit n of B3 recovered from the current frame (n = 1 to 8 inclusive). A difference between the computed and recovered B3 values shall be taken as evidence of one or more errors in the computation block (nON\_B). The magnitude (absolute value) of the difference between this calculated number of errors and the number of errors written into the IEC (see table 34) at the trail termination source shall be used to determine the error performance of the tandem connection for each transmitted VC-3 (figure 47). If this magnitude of the difference is one or more, an errored TC block is detected (nN\_B).

NOTE 1: The B3 data and the IEC read in the current frame both apply to the previous frame.

Table 34: IEC code interpretation

| N1[1] | N1[2] | N1[3] | N1[4] | IEC code interpretation |
|-------|-------|-------|-------|-------------------------|
| 0     | 0     | 0     | 0     | 0 errors                |
| 0     | 0     | 0     | 1     | 1 error                 |
| 0     | 0     | 1     | 0     | 2 errors                |
| 0     | 0     | 1     | 1     | 3 errors                |
| 0     | 1     | 0     | 0     | 4 errors                |
| 0     | 1     | 0     | 1     | 5 errors                |
| 0     | 1     | 1     | 0     | 6 errors                |
| 0     | 1     | 1     | 1     | 7 errors                |
| 1     | 0     | 0     | 0     | 8 errors                |
| 1     | 0     | 0     | 1     | 0 errors                |
| 1     | 0     | 1     | 0     | 0 errors                |
| 1     | 0     | 1     | 1     | 0 errors                |
| 1     | 1     | 0     | 0     | 0 errors                |
| 1     | 1     | 0     | 1     | 0 errors                |
| 1     | 1     | 1     | 0     | 0 errors                |
| 1     | 1     | 1     | 1     | 0 errors                |

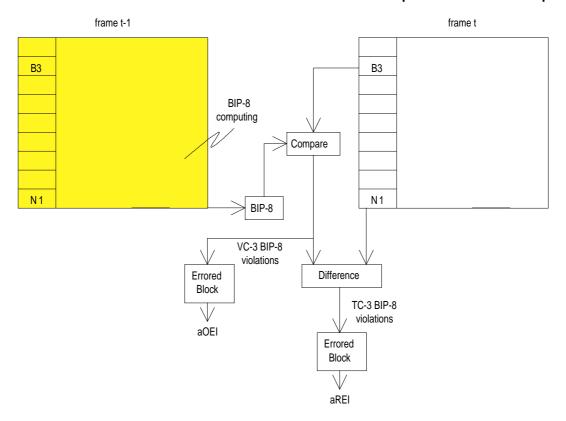



Figure 47: TC-3 and VC-3 BIP-8 computing and comparison

# N1[1-4]:

The function shall extract the Incoming Error Code (IEC). It shall accept the received code without further processing.

# N1[7-8][9-72]:

The Received Trail Trace Identifier RxTI shall be recovered from the tandem connection trail trace identifier overhead and shall be made available as AcTI for network management purposes. The application and acceptance process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3. The mismatch detection process shall be as specified below.

The trace identifier process in this function is required to support "mode 1" (ETS 300 417-1-1 [1], subclause 7.1) operation only. "Old" tandem connection equipment does not exist.

# N1[1-4]:

The function shall extract the Incoming AIS code.

# N1[5], N1[8][73]:

The information carried in the REI, RDI bits in byte N1 shall be extracted to enable single ended maintenance of a bi-directional tandem connection Trail. The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI) and 7.4.11 and 8.2 (RDI).

# N1[6], N1[7][74]:

The information carried in the OEI, ODI bits in byte N1 shall be extracted to enable single ended (intermediate) maintenance of a the VC-3 egressing the tandem connection Trail. The OEI (nOF\_B) shall be used to monitor the error performance of the other direction of transmission, and the ODI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Outgoing Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed equivalent to the remote maintenance case, as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI/OEI) and 7.4.11 and 8.2 (RDI/ODI).

# N1[7-8]:

# Multiframe alignment:

The function shall perform a multiframe alignment on bits 7 and 8 of byte N1 to recover the TTI, RDI, and ODI signals transported within the multiframed bits. The multiframe alignment shall be found by searching for the pattern "1111 1111 1110" within the bits 7 and 8 of byte N1. The signal shall be continuously checked with the presumed multiframe start position for the alignment.

Frame alignment is deemed to have been lost (entering Out Of Multiframe (OOM) state) when two consecutive FAS are detected in error (i.e. ≥ 1 error in each FAS);

Frame alignment is deemed to have been recovered (entering In Multiframe (IM) state) when one non-errored FAS is found.

#### N1:

The function shall terminate N1 channel by inserting an all-ZEROs pattern.

**B3:** The function shall compensate the VC-3 BIP8 in byte B3 according the algorithm defined in S3D TT So.

#### Defects:

# TC Unequipped (dUNEQ):

The function shall detect for an unequipped Tandem Connection (UNEQ) condition by monitoring byte N1 for code "00000000". The algorithm shall be according subclause 8.2.1.2 of ETS 300 417-1-1 [1], in which "accepted TSL" shall be read as "accepted N1 byte".

# TC Loss of Tandem Connection (dLTC):

The function shall detect for the presence/absence of the tandem connection overhead in the byte N1 by evaluating the multiframe alignment signal in bits 7 and 8 of byte N1. The loss of tandem connection defect (dLTC) shall be detected if the multiframe alignment process is in the OOM state. The dLTC shall be cleared if the multiframe alignment process is in the IM state.

# TC Connectivity (Trace Identifier) (dTIM):

The function shall detect for a TC mis-connection condition by monitoring the TC trace identifier. The Trace Identifier Mismatch defect (dTIM) shall be detected and cleared within a maximum period of 1 s in the absence of bit errors.

The defect detection process and its operation during the presence of bit errors is for further study. The defect shall be suppressed during the receipt of SSF.

It shall be possible to disable the trace identifier mismatch defect detection (TIMdis).

## TC Signal Degrade (dDEG):

The function shall detect for a TC signal degrade defect condition by monitoring for TC BIP-8 violations. The algorithm shall be according subclause 8.2.1.4 of ETS 300 417-1-1 [1].

# TC Remote Defect dRDI):

The function shall detect for a TC remote defect indication defect condition by monitoring the TC RDI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

# TC Remote Outgoing VC Defect (dODI):

The function shall detect for a TC remote outgoing VC defect indication defect condition by monitoring the TC ODI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417 1-1 [1].

Page 65

Draft prETS 300 417-4b-1: April 1996

Incoming AIS (dIncAIS):

The function shall detect for a tandem connection incoming AIS condition by monitoring the IEC bits in byte N1 for code "1110". If 5 consecutive frames contain the '1110' pattern in the IEC bits a dlncAIS defect shall be detected. dlncAIS shall be cleared if in 5 consecutive frames any pattern other than the '1110' is detected in the IEC bits.

NOTE 2: Bits 1 to 4 of byte N1 support two applications: conveying the incoming error information (table 34) and conveying the incoming AIS information to the TC tail end. Codes 0000 to 1101, 1111 represent IncAIS is false, code 1110 represents IncAIS is true.

# **Consequent Actions:**

The function shall perform the following consequent actions (refer to subclause 8.2.2 of ETS 300 417-1-1 [1]):

aAIS ← dUNEQ or dTIM or dLTC

 $aTSF \leftarrow CI\_SSF$  or dUNEQ or dTIM or dLTC

 $aTSD \leftarrow dDEG$ 

aRDI  $\leftarrow$  CI\_SSF or dUNEQ or dTIM or dLTC

aREI ← "errored TC block, where block is 1 VC-3 tandem connection frame (125 μs)"

aODI  $\leftarrow$  CI\_SSF or dUNEQ or dTIM or dIncAIS or dLTC

aOEI  $\leftarrow$  "errored VC block, where block is 1 VC-3 frame (125  $\mu$ s)"

aOSF ← CI\_SSF or dUNEQ or dTIM or dLTC or dIncAIS

The function shall insert the all-ONEs (AIS) signal within 250  $\mu$ s after AIS request generation (aAIS), and cease the insertion within 250  $\mu$ s after the AIS request has cleared.

# **Defect Correlations:**

The function shall perform the following defect correlations (refer to subclause 8.2.3 of ETS 300 417-1-1 [1]):

cUNEQ ← MON and dUNEQ

cLTC ← MON and (not dUNEQ) and dLTC

cTIM ← MON and (not dUNEQ) and (not dLTC) and dTIM

cDEG ← MON and (not dTIM) and (not dLTC) and dDEG

 $\mathsf{cSSF} \leftarrow \quad \mathsf{MON} \ \mathsf{and} \ \mathsf{CI\_SSF} \ \mathsf{and} \ \mathsf{SSF\_Reported}$ 

cRDI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dRDI and RDI\_Reported

cODI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dODI and ODI\_Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF Reported. The default shall be SSF Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

# Page 66

# Draft prETS 300 417-4b-1: April 1996

It shall be an option to report ODI as a fault cause. This is controlled by means of the parameter ODI\_Reported. The default shall be ODI\_Reported = false.

# **Performance Monitoring:**

The following TC error performance parameters shall be counted for each 1 second period (refer to subclauses 8.2.4 to 8.2.7 of ETS 300 417-1-1 [1])<sup>4</sup>:

$$pN\_DS \leftarrow aTSF \text{ or dEQ}$$

$$pF\_DS \leftarrow dRDI$$

$$pN\_EBC \leftarrow \Sigma nN\_B$$

$$pF\_EBC \leftarrow \Sigma nF\_B$$

$$pON\_DS \leftarrow aODI \text{ or dEQ}$$

$$pOF\_DS \leftarrow dODI$$

$$pON\_EBC \leftarrow \Sigma nON\_B$$

$$pOF\_EBC \leftarrow \Sigma nOF\_B$$

# 5.5.3 VC-3 Tandem Connection to VC-3 Adaptation Source function (S3D/S3\_A\_So)

# Symbol:

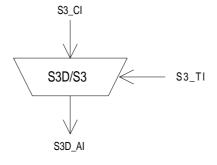



Figure 48: S3D/S3\_A\_So symbol

# Interfaces:

Table 35: S3D/S3\_A\_So input and output signals

| Input(s)  | Output(s) |
|-----------|-----------|
| S3_CI_D   | S3D_AI_D  |
| S3_CI_CK  | S3D_AI_CK |
| S3_CI_FS  | S3D_AI_FS |
| S3_CI_SSF | S3D_AI_SF |
| S3_TI_CK  |           |

PN\_EBC and pN\_DS does not represent the actual performance monitoring support within an equipment. For that, these pN\_DS/pN\_EBC signals must be connected to performance monitoring functions within the element management function. Similar for the far-end signals pF\_EBC and pF\_DS, and for pON\_EBC/pON\_DS, pOF\_EBC/pOF\_DS.

#### Processes:

NOTE 1: The function has no means to verify the existence of a tandem connection within the incoming signal. Nested tandem connections are not supported.

The function shall replace the incoming Frame Start (CI\_FS) signal by a local generated one (i.e. enter "holdover") if an all-ONEs (AIS) VC is received (i.e. if CI\_SSF is TRUE).

NOTE 2: This replacement of the (invalid) incoming frame start signal result in the generation of a valid pointer in the MSn/S3\_A\_So function; SSF=true signal is not passed through via S3D\_TT\_So to the MSn/S3\_A\_So.

NOTE 3: The local frame start is generated with the S3\_TI timing.

Defects:

None.

**Consequent Actions:** 

Al\_SF← Cl\_SSF

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

5.5.4 VC-3 Tandem Connection to VC-3 Adaptation Sink function (S3D/S3\_A\_Sk)

#### Symbol:

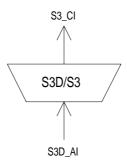



Figure 49: S3D/S3\_A\_Sk symbol

# Interfaces:

Table 36: S3D/S3\_A\_Sk input and output signals

| Input(s)   | Output(s) |
|------------|-----------|
| S3D_AI_D   | S3_CI_D   |
| S3D_AI_CK  | S3_CI_CK  |
| S3D_AI_FS  | S3_CI_FS  |
| S3D_AI_OSF | S3_CI_SSF |

Page 68

Draft prETS 300 417-4b-1: April 1996

# **Processes:**

The function shall restore the invalid frame start condition (i.e. output aSSF = true) if that existed at the ingress of the tandem connection.

NOTE: In addition, the invalid frame start condition is activated on a tandem connection connectivity defect condition that causes all-ONEs (AIS) insertion in the S3D\_TT\_Sk.

**Defects:** 

None.

# **Consequent Actions:**

aAIS ← AI\_OSF

 $aSSF \leftarrow AI\_OSF$ 

The function shall insert the all-ONEs (AIS) signal within 250  $\mu$ s after AIS request generation (aAIS), and cease the insertion within 250  $\mu$ s after the AIS request has cleared.

# **Defect Correlations:**

None.

# **Performance Monitoring:**

None.

# 5.5.5 VC-3 Tandem Connection non-intrusive Trail Termination Sink function (S3Dm\_TT\_Sk)

# Symbol:

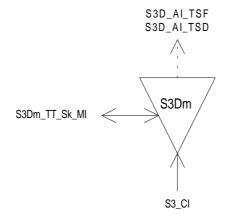



Figure 50: S3Dm\_TT\_Sk symbol

#### Interfaces:

Table 37: S3Dm TT Sk input and output signals

| Input(s)                  | Output(s)            |
|---------------------------|----------------------|
| S3_CI_D                   | S3D_AI_TSF           |
| S3_CI_CK                  | S3D_AI_TSD           |
| S3_CI_FS                  | S3D_TT_Sk_MI_cLTC    |
| S3_CI_SSF                 | S3D_TT_Sk_MI_cTIM    |
| S3D_TT_Sk_MI_ExTI         | S3D_TT_Sk_MI_cUNEQ   |
| S3D_TT_Sk_MI_SSF_Reported | S3D_TT_Sk_MI_cDEG    |
| S3D_TT_Sk_MI_RDI_Reported | S3D_TT_Sk_MI_cRDI    |
| S3D_TT_Sk_MI_ODI_Reported | S3D_TT_Sk_MI_cSSF    |
| S3D_TT_Sk_MI_TIMdis       | S3D_TT_Sk_MI_cODI    |
| S3D_TT_Sk_MI_DEGM         | S3D_TT_Sk_MI_AcTI    |
| S3D_TT_Sk_MI_DEGTHR       | S3D_TT_Sk_MI_pN_EBC  |
| S3D_TT_Sk_MI_1second      | S3D_TT_Sk_MI_pF_EBC  |
|                           | S3D_TT_Sk_MI_pN_DS   |
|                           | S3D_TT_Sk_MI_pF_DS   |
|                           | S3D_TT_Sk_MI_pOF_EBC |
|                           | S3D_TT_Sk_MI_pOF_DS  |

#### Processes:

This function can be used to perform the following:

- single ended maintenance of the TC by monitoring at an intermediate node, using remote information (RDI,REI),
- 2 aid in fault localisation within TC trail by monitoring near-end defects,
- monitoring of VC performance at TC egressing point(except for connectivity defects before the TC) using remote outgoing information (ODI,OEI).
- 4 performing non-intrusive monitor function within SNC/S protection.

#### TC EDC violations:

Even bit parity shall be computed for each bit n of every byte of the preceding VC-3 and compared with bit n of B3 recovered from the current frame (n = 1 to 8 inclusive). A difference between the computed and recovered B3 values shall be taken as evidence of one or more errors in the computation block (nON\_B). The magnitude (absolute value) of the difference between this calculated number of errors and the number of errors written into the IEC (see table 34) at the trail termination source shall be used to determine the error performance of the tandem connection for each transmitted VC-3 (figure 47). If this magnitude of the difference is one or more, an errored TC block is detected (nN\_B). Refer to S3D\_TT\_Sk.

#### N1[1-4]:

The function shall extract the Incoming Error Code (IEC). It shall accept the received code without further processing.

#### N1[7-8][9-72]:

The Received Trail Trace Identifier RxTI shall be recovered from the tandem connection trail trace identifier overhead and shall be made available as AcTI for network management purposes. The application and acceptance process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3. The mismatch detection process shall be as specified below. The trace identifier process in this function is required to support "mode 1" (ETS 300 417-1-1 [1], subclause 7.1) operation only. "Old" tandem connection equipment does not exist.

#### N1[1-4]:

The function shall extract the Incoming AIS code.

# N1[5], N1[8][73]:

The information carried in the REI, RDI bits in byte N1 shall be extracted to enable single ended maintenance of a bi-directional tandem connection Trail. The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI) and 7.4.11 and 8.2 (RDI).

# N1[6], N1[7][74]:

The information carried in the OEI, ODI bits in byte N1 shall be extracted to enable single ended (intermediate) maintenance of a the VC-3 egressing the tandem connection Trail. The OEI (nOF\_B) shall be used to monitor the error performance of the other direction of transmission, and the ODI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Outgoing Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed equivalent to the remote maintenance case, as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI/OEI) and 7.4.11 and 8.2 (RDI/ODI).

# N1[7-8]:

#### Multiframe alignment:

The function shall perform a multiframe alignment on bits 7 and 8 of byte N1 to recover the TTI, RDI, and ODI signals transported within the multiframed bits. The multiframe alignment shall be found by searching for the pattern "1111 1111 1110" within the bits 7 and 8 of byte N1. The signal shall be continuously checked with the presumed multiframe start position for the alignment.

Frame alignment is deemed to have been lost (entering Out Of Multiframe (OOM) state) when two consecutive FAS are detected in error (i.e. ≥ 1 error in each FAS);

Frame alignment is deemed to have been recovered (entering In Multiframe (IM) state) when one non-errored FAS is found.

# **Defects:**

# TC Unequipped (dUNEQ):

The function shall detect for an unequipped Tandem Connection (UNEQ) condition by monitoring byte N1 for code "00000000". The algorithm shall be according subclause 8.2.1.2 of ETS 300 417-1-1 [1], in which "accepted TSL" shall be read as "accepted N1 byte".

# TC Loss of Tandem Connection (dLTC):

The function shall detect for the presence/absence of the tandem connection overhead in the byte N1 by evaluating the multiframe alignment signal in bits 7 and 8 of byte N1. The loss of tandem connection defect (dLTC) shall be detected if the multiframe alignment process is in the OOM state. The dLTC shall be cleared if the multiframe alignment process is in the IM state.

#### TC Connectivity (Trace Identifier) (dTIM):

The function shall detect for a TC mis-connection condition by monitoring the TC trace identifier. The Trace Identifier Mismatch defect (dTIM) shall be detected and cleared within a maximum period of 1 s in the absence of bit errors.

The defect detection process and its operation during the presence of bit errors is for further study.

The defect shall be suppressed during the receipt of SSF.

It shall be possible to disable the trace identifier mismatch defect detection (TIMdis).

# TC Signal Degrade (dDEG):

The function shall detect for a TC signal degrade defect condition by monitoring for TC BIP-8 violations. The algorithm shall be according subclause 8.2.1.4 of ETS 300 417-1-1 [1].

# TC Remote Defect (dRDI):

The function shall detect for a TC remote defect indication defect condition by monitoring the TC RDI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

TC Remote Outgoing VC Defect (dODI):

The function shall detect for a TC remote outgoing VC defect indication defect condition by monitoring the TC ODI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

# **Consequent Actions:**

 $\mathsf{aTSF} \leftarrow \quad \mathsf{CI\_SSF} \ \mathsf{or} \ \mathsf{dUNEQ} \ \mathsf{or} \ \mathsf{dTIM} \ \mathsf{or} \ \mathsf{dLTC}$ 

 $aTSD \leftarrow dDEG$ 

#### **Defect Correlations:**

The function shall perform the following defect correlations (refer to subclause 8.2.3 of ETS 300 417-1-1 [1]):

cUNEQ ← MON and dUNEQ

cLTC ← MON and (not dUNEQ) and dLTC

cTIM ← MON and (not dUNEQ) and (not dLTC) and dTIM

cDEG ← MON and (not dTIM) and (not dLTC) and dDEG

cSSF ← MON and CI SSF and SSF Reported

cRDI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dRDI and RDI\_Reported

cODI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dODI and ODI\_Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

It shall be an option to report ODI as a fault cause. This is controlled by means of the parameter ODI\_Reported. The default shall be ODI\_Reported = false.

# **Performance Monitoring:**

The following TC error performance parameters shall be counted for each 1-second period (refer to subclauses 8.2.4 to 8.2.7 of ETS 300 417-1-1 [1]):

pN DS ← aTSF or dEQ

 $pF_DS \leftarrow dRDI$ 

 $pN\_EBC \leftarrow \Sigma nN\_B$ 

 $\mathsf{pF}\_\mathsf{EBC} \leftarrow \Sigma \mathsf{nF}\_\mathsf{B}$ 

pOF DS  $\leftarrow$  dODI

 $\mathsf{pOF\_EBC} \leftarrow \Sigma \mathsf{nOF\_B}$ 

Page 72 Draft prETS 300 417-4b-1: April 1996

# History

| Document history |                |         |                          |
|------------------|----------------|---------|--------------------------|
| April 1996       | Public Enquiry | PE 105: | 1996-04-08 to 1996-08-30 |
|                  |                |         |                          |
|                  |                |         |                          |
|                  |                |         |                          |
|                  |                |         |                          |



# EUROPEAN TELECOMMUNICATION STANDARD

**DRAFT** pr **ETS 300 417-4c-1** 

**April 1996** 

Source: ETSI TC-TM Reference: DE/TM-01015-4-1

ICS: 33.020

Key words: Transmission, SDH, interface

# Transmission and Multiplexing (TM); Generic Functional Requirements for Synchronous Digital Hierarchy (SDH) Equipment Part 4c-1: SDH Path Layer Functions

# **ETSI**

European Telecommunications Standards Institute

# **ETSI Secretariat**

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE

Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE

X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

\*

**Copyright Notification:** No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

| ge 2<br>lft prETS 300 417 | -4c-1: April 199 | Ь |  |  |
|---------------------------|------------------|---|--|--|
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |
|                           |                  |   |  |  |

Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page.

# Contents

| Fore  | eword    |                |               |                                                                       | 5  |
|-------|----------|----------------|---------------|-----------------------------------------------------------------------|----|
| 1     | Scope    |                |               |                                                                       | 7  |
| 2     | Norma    | tive Reference | s             |                                                                       | 7  |
| 3     | Definiti | ons. Abbreviat | ions and Svn  | nbols                                                                 | 7  |
| •     | 3.1      |                |               |                                                                       |    |
|       | 3.2      |                |               |                                                                       |    |
|       | 3.3      |                |               | atic Conventions                                                      |    |
|       | 3.4      |                |               | allo Goliverillorio                                                   |    |
| 4     | VC-4 P   | ath Layer Fun  | ctions        |                                                                       | 10 |
| 5     | VC-3 P   | ath Layer Fun  | ctions        |                                                                       | 10 |
|       |          | ·              |               |                                                                       |    |
| 6     |          | ath Layer Fun  | ctions        |                                                                       | 10 |
|       | 6.1      |                |               | Function S2_C                                                         |    |
|       | 6.2      |                |               | ation Functions                                                       |    |
|       |          | 6.2.1          |               | Trail Termination Source S2_TT_So                                     |    |
|       |          | 6.2.2          |               | Trail Termination Sink S2_TT_Sk                                       |    |
|       | 6.3      |                |               | unctions                                                              |    |
|       |          | 6.3.1          |               | to TSS4 Adaptation Source S2/TSS4_A_So                                |    |
|       |          | 6.3.2          |               | to TSS4 Adaptation Sink S2/TSS4_A_Sk                                  |    |
|       |          | 6.3.3          |               | to ATM Layer Compound Adaptation Source S2/ATM_A_So                   |    |
|       |          | 6.3.4          |               | to ATM Layer Compound Adaptation Sink S2/ATM_A_Sk                     |    |
|       | 6.4      | ,              |               | unctions                                                              |    |
|       |          | 6.4.1          |               | Non-intrusive Monitoring Function S2m_TT_Sk                           |    |
|       |          | 6.4.2          |               | $Supervisory-Unequipped\ Termination\ Source\ S2s\_TT\_So\$           |    |
|       |          | 6.4.3          |               | Supervisory-unequipped Termination Sink S2s_TT_Sk                     |    |
|       | 6.5      |                |               | on Functions                                                          |    |
|       |          | 6.5.1          |               | Protection Connection Functions S2P_C                                 | 32 |
|       |          |                | 6.5.1.1       | VC-2 Layer 1+1 single ended Protection Connection Function S2P1+1se_C | 32 |
|       |          |                | 6.5.1.2       | VC-2 Layer 1+1 dual ended Protection Connection Function S2P1+1de_C   |    |
|       |          | 6.5.2          | \/C 2   aver  | Trail Protection Trail Termination Functions                          |    |
|       |          | 6.5.2          | 6.5.2.1       |                                                                       |    |
|       |          |                | 6.5.2.1       | VC-2 Protection Trail Termination Source S2P_TT_So                    |    |
|       |          | 6.5.2          |               | VC-2 Protection Trail Termination Sink S2P_TT_Sk                      | 30 |
|       |          | 6.5.3          | 6.5.3.1       | Linear Trail Protection Adaptation Functions                          | 31 |
|       |          |                | 0.5.5.1       | Source S2/S2P_A_So                                                    | 27 |
|       |          |                | 6.5.3.2       | VC-2 trail to VC-2 trail Protection Layer Adaptation Sink             | 31 |
|       |          |                | 0.5.5.2       | S2/S2P_A_Sk                                                           | 38 |
|       | 6.6      | VC-2 Tande     | m Connectic   | on Sublayer Functions                                                 |    |
|       | 0.0      | 6.6.1          |               | em Connection Trail Termination Source function                       | 00 |
|       |          | 0.0.1          |               | 50)                                                                   | 30 |
|       |          | 6.6.2          | \/C-2 Tando   | em Connection Trail Termination Sink function (S2D_TT_Sk)             | 42 |
|       |          | 6.6.3          |               | em Connection to VC-2 Adaptation Source function                      | 72 |
|       |          | 0.0.3          |               | _So)                                                                  | 17 |
|       |          | 6.6.4          |               | em Connection to VC-2 Adaptation Sink function                        | 41 |
|       |          | 0.0.4          |               | Sk)                                                                   | ΛQ |
|       |          | 6.6.5          | (02D/02_A     | em Connection non-intrusive Trail Termination Sink function           | 40 |
|       |          | 0.0.5          |               | Sk)                                                                   | 49 |
|       |          |                | \ <b>0_</b> 2 |                                                                       | 0  |
| Histo | orv      |                |               |                                                                       | 53 |

Page 4 Draft prETS 300 417-4c-1: April 1996

Blank page

# **Foreword**

This draft European Telecommunications Standard (ETS) was produced by the Transmission and Multiplexing (TM) Technical Committee of the European Telecommunications Standards Institute (ETSI), and is now submitted for the Public Enquiry phase of the ETSI standards approval procedure.

This ETS has been produced in order to provide inter-vendor and inter-operator compatibility for Synchronous Digital Hierarchy (SDH) equipment.

This ETS consists of 8 parts as follows:

Part 1: "Generic processes and performance" (ETS 300 417-1-1).

Part 2: "Physical section layer functions" (prETS 300 417-2-1).

Part 3: "STM-N regenerator and multiplex section layer functions" (prETS 300 417-3-1).

Part 4: "SDH path layer functions" (prETS 300 417-4-1).
Part 5: "PDH path layer functions" (prETS 300 417-5-1).

Part 6: "Synchronisation distribution layer functions" (prETS 300 417-6-1).

Part 7: "Auxiliary layer functions" (prETS 300 417-7-1).

Part 8: "Compound and major compound functions" (prETS 300 417-8-1).

This sub-part 4-1 of the ETS has been further split into five sub-parts to simplify the handling of the document. These sub-parts of prETS 300 417-4-1 have been identified as parts 4a-1 to 4e-1. To minimise delay and for Public Enquiry purposes, this set of five documents should be considered as one document (namely, prETS 300 417-4-1). During subsequent processing (the Voting stage) the documents will be merged into a single document.

Page 6 Draft prETS 300 417-4c-1: April 1996

Blank page

# 1 Scope

This European Telecommunications Standard (ETS) specifies a library of basic building blocks and a set of rules by which they are combined in order to describe a digital transmission equipment. The library comprises the functional building blocks needed to completely specify the generic functional structure of the European Digital Transmission Hierarchy. Equipment which is compliant with this standard must be describable as an interconnection of a subset of these functional blocks contained within this ETS. The interconnections of these blocks must obey the combination rules given. The generic functionality is described in ETS 300 417-1-1 [1].

# 2 Normative References

This draft ETS incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references subsequent amendments to, or revisions of, any of these publications apply to this ETS only when incorporated in it by amendments or revisions. For undated references the latest edition of the publication referred to applies.

| [1] | ETS 300 417-1-1 (1996): "Transmission and Multiplexing (TM); Generic functional requirements for Synchronous Digital Hierarchy (SDH) equipment; Part 1-1: Generic processes and performance".                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [2] | ETS 300 147 (1995): "Transmission and Multiplexing (TM); Synchronous Digital Hierarchy (SDH) Multiplexing structure".                                                                                         |
| [3] | prETS 300 417-3-1: "Transmission and Multiplexing (TM); Generic functional requirements for Synchronous Digital Hierarchy (SDH) equipment Part 3-1: STM-N regenerator and multiplex section layer functions". |
| [4] | ITU-T draft Recommendation O.181: "Equipment to assess error performance on STM-N interfaces".                                                                                                                |
| [5] | ITU-T Recommendation O.151 (1992): "Error performance measuring equipment operating at the primary rate and above".                                                                                           |
| [6] | ITU-T Recommendation G.708: "Network Node Interface for the Synchronous Digital Hierarchy".                                                                                                                   |

# 3 Definitions, Abbreviations and Symbols

#### 3.1 Definitions

The functional definitions are described in ETS 300 417-1-1 [1].

# 3.2 Abbreviations

| Adaptation function         |
|-----------------------------|
| Accepted Trace identifier   |
| Add-Drop Multiplexer        |
| Adapted Information         |
| Alarm Indication Signal     |
| Access Point                |
| Access Point Identifier     |
| Automatic Protection Switch |
| Asynchronous Transfer Mode  |
|                             |

AU Administrative Unit
AU-n Administrative Unit, level n

AU-n Administrative Unit, level n
AUG Administrative Unit Group

BER Bit Error Ratio
BIP Bit Interleaved Parity

BIP-N Bit Interleaved Parity, width N

C Connection function

#### Page 8

# Draft prETS 300 417-4c-1: April 1996

CI Characteristic Information

CK Clock

CM Connection Matrix
CP Connection Point
CS Clock Source

D Data

DCC Data Communications Channel

DEC Decrement DEG Degraded

DEGTHR Degraded Threshold EBC Errored Block Count

ECC Embedded Communications Channel

ECC(x) Embedded Communications Channel, Layer x

EDC Error Detection Code

EDCV Error Detection Code Violation
EMF Equipment Management Function

EQ Equipment
ES Electrical Section
ES Errored Second

ExTI Expected Trace Identifier

F B Far-end Block

FAS Frame Alignment Signal
FOP Failure Of Protocol
FS Frame Start signal
HO Higher Order

HOVC Higher Order Virtual Container

HP Higher order Path

ID Identifier
IF In Frame state
INC Increment
LC Link Connection
LO Lower Order

LOA Loss Of Alignment; generic for LOF, LOM, LOP

LOF Loss Of Frame
LOP Loss Of Pointer
LOS Loss Of Signal

LOVC Lower Order Virtual Container

MC Matrix Connection

MCF Message Communications Function

MDT Mean Down Time

mei maintenance event information MI Management Information

MO Managed Object MON Monitored

MP Management Point
MS Multiplex Section
MS1 STM-1 Multiplex Section

MS1 STM-1 Multiplex Section
MS16 STM-16 Multiplex Section
MS4 STM-4 Multiplex Section
MSB Most Significant Bit
MSOH Multiplex Section Overhead

MSP Multiplex Section Protection
MSPG Multiplex Section Protection Group

N.C.
Near-end Block
NC
Network Connection
NDF
New Data Flag
NE
Network Element
NMON
Not Monitored

NNI Network Node Interface
NU National Use (bits, bytes)
NUx National Use, bit rate order x

OAM Operation, Administration and Management

Draft prETS 300 417-4c-1: April 1996

OFS Out of Frame Second
OOF Out Of Frame state
OS Optical Section

OSI(x) Open Systems Interconnection, Layer x

OW Order Wire Protection

P\_A Protection Adaptation
P\_C Protection Connection
P\_TT Protection Trail Termination
PDH Plesiochronous Digital Hierarchy
PJE Pointer Justification Event
PM Performance Monitoring
Pn Plesiochronous signal, Level n

POH Path Overhead

PRC Primary Reference Clock
PS Protection Switching
PSC Protection Switch Count

PTR Pointer

QOS Quality Of Service RDI Remote Defect Indicator Remote Error Indicator REI RΙ Remote Information RΡ Remote Point RS Regenerator Section RS1 STM-1 Regenerator Section STM-16 Regenerator Section **RS16** STM-4 Regenerator Section RS4 **RSOH** Regenerator Section Overhead **RxTI** Received Trace identifier

S4 VC-4 path laver

SASE Stand-Alone Synchronization Equipment

SD Synchronization Distribution layer, Signal Degrade

SDH Synchronous Digital Hierarchy

SEC SDH Equipment Clock

SF Signal Fail Sk Sink

SNC Sub-Network Connection

SNC/I Inherently monitored Sub-Network Connection protection SNC/N Non-intrusively monitored Sub-Network Connection protection

So Source

SOH Section Overhead
SPRING Shared Protection Ring
SR Selected Reference
SSD Server Signal Degrade
SSF Server Signal Fail

SSM Synchronization Status Message
SSU Synchronization Supply Unit
STM Synchronous Transport Module

STM-N Synchronous Transport Module, level N

TCP Termination Connection Point

TI Timing Information
TIM Trace Identifier Mismatch

TM Transmission\_Medium, Transmission & Multiplexing

TMN Telecommunications Management Network

TP Timing Point

TPmode Termination Point mode

TS Time Slot

TSD Trail Signal Degrade
TSF Trail Signal Fail

TT Trail Termination function
TTI Trail Trace Identifier

TTs Trail Termination supervisory function

TxTI Transmitted Trace Identifier

## Draft prETS 300 417-4c-1: April 1996

UNEQ Unequipped

UNI User Network Interface

USR User channels
VC Virtual Container
VC-n Virtual Container, level n

W Working

### 3.3 Symbols and Diagrammatic Conventions

The symbols and diagrammatic conventions are described in ETS 300 417-1-1 [1].

## 3.4 Introduction

The atomic and some compound functions used in the SDH Path Layers are defined below.

# 4 VC-4 Path Layer Functions

Refer to part 4a-1 of this ETS (see Foreword for explanation).

# 5 VC-3 Path Layer Functions

Refer to part 4b-1 of this ETS (see Foreword for explanation).

# 6 VC-2 Path Layer Functions

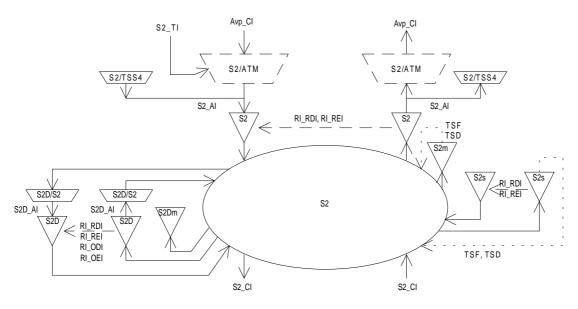



Figure 1: VC-2 Path layer functions

# VC-2 Layer Characteristic Information.

The Characteristic Information CI is octet structured with an 500 µs frame (Figure 2). Its format is characterised as S2 AI plus the VC-2 Trail Termination overhead in the V5 and J2 locations (1 byte each) as defined in ETS 300 147 [2] or as an unequipped signal as defined in ETS 300 417-1-1 [1], subclause 7.2. For the case the signal has passed the tandem connection sublayer, S2\_CI has defined VC-2 tandem connection trail termination overhead in location N2.

NOTE 1: N2 will be undefined when the signal S2\_CI has not been processed in a tandem connection adaptation and trail termination function. N2 is all-"0"s in a (supervisory-)unequipped VC-2 signal.

NOTE 2: Bit 4 of byte V5 is reserved for an application not supported by ETSI. Currently its value is undefined.

## VC-2 Layer Adaptation Information.

The Adaptation Information (AI) is octet structured with an 500 µs frame. It represents adapted client layer information comprising 424 bytes of client layer information and the Signal Label bits 5,6, and 7 of the V5 byte. For the case the signal has passed the trail protection sublayer, S2\_AI has defined APS bits (1 to 4) in byte K4.

NOTE 3: Bits 1 to 4 of byte K4 will be undefined when the signal S2\_AI has not been processed in a trail protection connection function S2P\_C.

A VC-2 comprises one of the following payloads:

an ATM 6 784 kbit/s cell stream signal.

NOTE 4: Other VC-2 payloads are not defined within the ETSI multiplexing scheme.

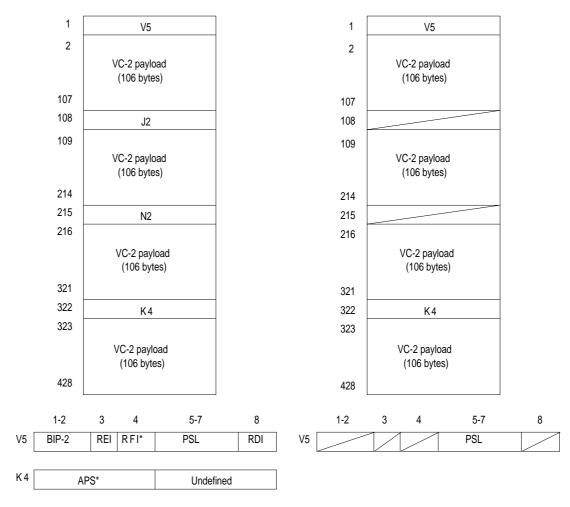



Figure 2: S2\_CI\_D (left) and S2\_AI\_D (right)

NOTE 5: The APS signal has not been defined; a multiframed APS signal might be required. The RFI signal is not supported within ETSI.

Page 12 Draft prETS 300 417-4c-1: April 1996

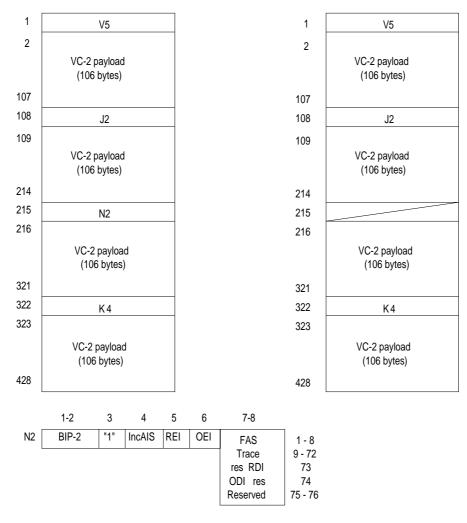



Figure 3: S2\_CI\_D (left) with defined N2 and S2D\_AI\_D (right)

Figure 4 shows the trail protection sublayer atomic functions added to (a subset of) the layer atomic functions presented in figure 1.

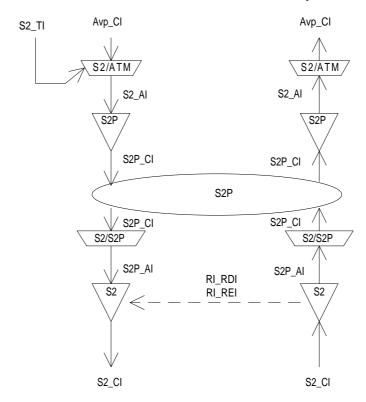



Figure 4: VC-2 Layer Trail Protection atomic functions

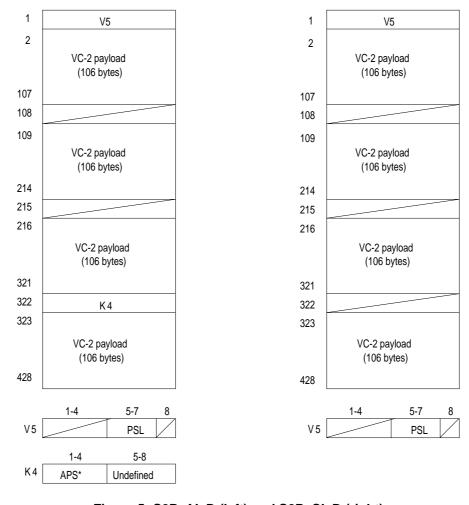



Figure 5: S2P\_AI\_D (left) and S2P\_CI\_D (right)

Figures 6 to 11 show connectivity examples of atomic functions associated with linear trail and SNC protection.

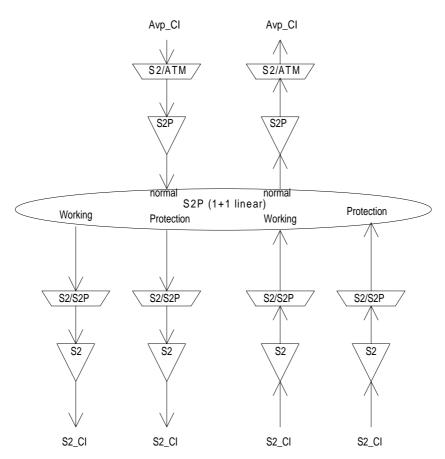



Figure 6: 1+1 VC-2 Linear Trail Protection model (example)

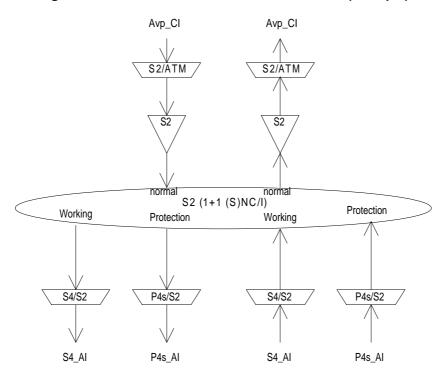



Figure 7: 1+1 VC-2 SNC/I protection model within a network element terminating the VC-2 path

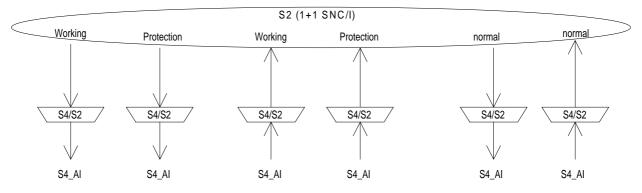



Figure 8: 1+1 VC-2 SNC/I protection model within a network element passing through the VC-2 signal (example)

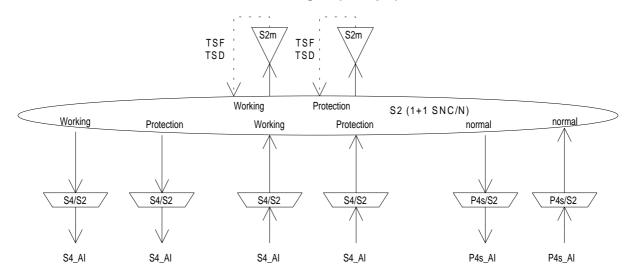



Figure 9: 1+1 VC-2 SNC/N protection model within a network element passing through the VC-2 signal (example)

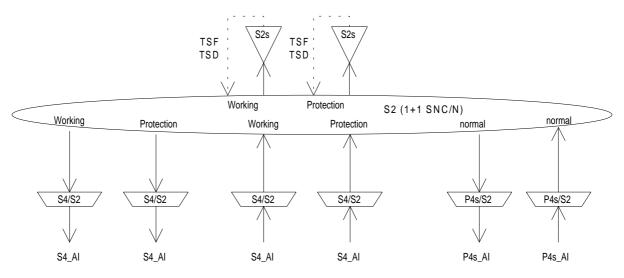



Figure 10: 1+1 VC-2 SNC/N protection model for a supervisory-unequipped signal within a network element passing through the VC-2 signal (example)

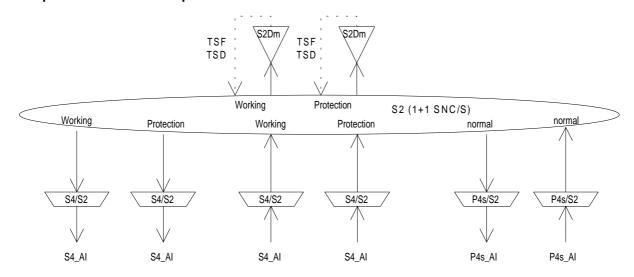



Figure 11: 1+1 VC-2 tandem connection SNC/S protection model within a network element passing through the VC-2 tandem connection (TC2) signal (example)

# 6.1 VC-2 Layer Connection Function S2\_C

# Symbol:

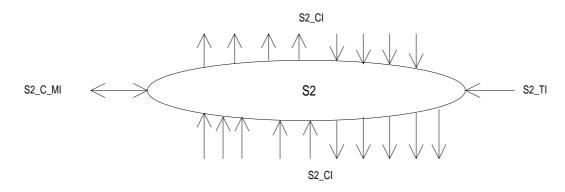



Figure 12: S2\_C symbol

#### Interfaces:

Table 1: S2\_C input and output signals

| Input(s)                               |              | Output(s)                           |
|----------------------------------------|--------------|-------------------------------------|
| per S2_CI, n x for the function:       | per S2_CI, r | n x per function:                   |
| S2_CI_D                                | S2_CI_D      |                                     |
| S2_CI_CK                               | S2_CI_CK     |                                     |
| S2_CI_FS                               | S2_CI_FS     |                                     |
| S2_CI_SSF                              | S2_CI_SSF    |                                     |
| S2_AI_TSF                              |              |                                     |
| S2_AI_TSD                              | NOTE:        | protection status reporting signals |
| 1 x per function:                      |              | are for further study.              |
| S2_TI_CK                               |              |                                     |
| S2_TI_FS                               |              |                                     |
| per input and output connection point: |              |                                     |
| S2_C_MI_ConnectionPortIds              |              |                                     |
| per matrix connection:                 |              |                                     |
| S2_C_MI_ConnectionType                 |              |                                     |
| S2_C_MI_Directionality                 |              |                                     |
| per SNC protection group:              |              |                                     |
| S2_C_MI_PROTtype                       |              |                                     |
| S2_C_MI_OPERtype                       |              |                                     |
| S2_C_MI_WTRtime                        |              |                                     |
| S2_C_MI_HOtime                         |              |                                     |
| S2_C_MI_EXTCMD                         |              |                                     |

## Processes:

In the S2\_C function VC-2 Layer Characteristic Information is routed between input (termination) connection points ((T)CPs) and output (T)CPs by means of matrix connections. (T)CPs may be allocated within a protection group.

NOTE 1: Neither the number of input/output signals to the connection function, nor the connectivity is specified in this ETS. That is a property of individual network elements.

Figure 1 present a subset of the atomic functions that can be connected to this VC-2 connection function: VC-2 trail termination functions, VC-2 non-intrusive monitor trail termination sink function, VC-2 unequipped-supervisory trail termination functions, VC-2 tandem connection trail termination and adaptation functions. In addition, adaptation functions in the VC-2 server (e.g. VC-4, P4s) layers will be connected to this VC-2 connection function.

#### Routing:

The function shall be able to connect a specific input with a specific output by means of establishing a matrix connection between the specified input and output. It shall be able to remove an established matrix connection.

Each (matrix) connection in the S2\_C function shall be characterised by the:

| Type of connection: | unprotected, 1+1 protected (SNC/I or SNC/N protection)                              |
|---------------------|-------------------------------------------------------------------------------------|
| Traffic direction:  | unidirectional, bidirectional                                                       |
|                     | set of connection point identifiers (refer to ETS 300 417-1-1 [1], subclause 3.3.6) |

NOTE 2: Broadcast connections are handled as separate connections to the same input CP.

## Draft prETS 300 417-4c-1: April 1996

Provided no protection switching action is activated/required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- addition and removal of protection;
- addition and removal of connections to/from a broadcast connection;
- change between operation types;
- change of WTR time;
- change of Hold-off time.

### Unequipped VC generation:

The function shall generate an unequipped VC signal, as specified in ETS 300 417-1-1 [1], subclause 7.2.

## SNC protection:

The function shall provide the option to establish protection groups between a number of (T)CPs (see ETS 300 417-1-1 [1], subclause 9.4.1 and subclause 9.4.2) to perform the VC-2 linear (sub)network connection protection process for 1+1 protection architectures (refer to ETS 300 417-1-1 [1], subclause 9.2). The SNC protection process shall perform the bridge and selector functionality as presented in figure 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the working connection or the protection connection; this is determined by the SF,SD conditions (relayed via CI\_SSF or AI\_TSF/AI\_TSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input

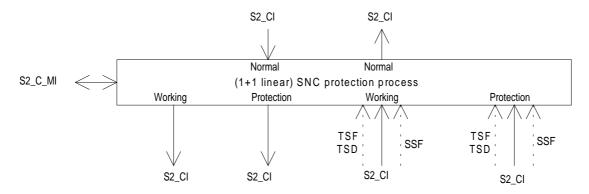



Figure 13: VC-2 1+1 SNC protection process (SNC/I, SNC/N)

## SNC Protection Operation:

The SNC protection process shall operate as specified in prETS 300 417-3-1 [3], Annex A, according the following characteristics:

**Table 2: SNC protection parameters** 

| architecture type (ARCHtype)   | 1+1                                             |
|--------------------------------|-------------------------------------------------|
| switching type (SWtype)        | single-ended                                    |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | false                                           |
| Wait-To-Restore time (WTRtime) | in the order of 5 to 12 minutes                 |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | SNC/I, SNC/N                                    |
| Signal switch conditions:      | SF = SSF (SNC/I), SF = TSF (SNC/N, SNC/S),      |
|                                | SD = TSD (SNC/N, SNC/S)                         |
| External commands (EXTMND)     | LO-#0, FSw-#i, MSw-#i, CLR; i = 0, 1            |
| Extra traffic (EXTRAtraffic)   | false                                           |

In the sink case of a protection connection the source of the connection is determined by the SF (and SD) signals associated with each of the two inputs to the connection and the possible external switch requests. The set of SF and SD signals used, is controlled by the protection type setting.

#### Defects:

None.

## **Consequent Actions:**

If an output of this function is not connected to one of its inputs, the function shall connect the unequipped VC-2 (with valid frame start (FS) and SSF=false) to the output.

### **Defect Correlations:**

None.

## **Performance Monitoring:**

None.

# 6.2 VC-2 Layer Trail Termination Functions

# 6.2.1 VC-2 Layer Trail Termination Source S2\_TT\_So

# Symbol:

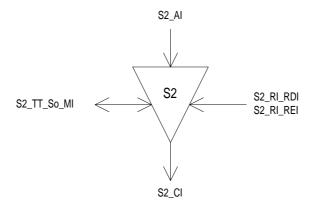



Figure 14: S2\_TT\_So symbol

#### Interfaces:

Table 3: S2\_TT\_So input and output signals

| Input(s)         | Output(s) |
|------------------|-----------|
| S2_AI_D          | S2_CI_D   |
| S2_AI_CK         | S2_CI_CK  |
| S2_AI_FS         | S2_CI_FS  |
| S2_RI_RDI        |           |
| S2_RI_REI        |           |
| S2_TT_So_MI_TxTI |           |

#### Processes:

This function adds error monitoring and status and control overhead bits to the S2\_AI as defined in ETS 300 147 [2]. The processing of the trail overhead is defined as follows:

#### J2:

In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in ETS 300 417-1-1 [1], subclause 7.1.

## V5[3]:

The signal value applied at RI\_REI shall be inserted in the VC-2 REI, bit 3 of byte V5. The coding shall be as follows:

Table 4: V5[3] coding

| Number of BIP-2 violations conveyed via RI_REI | V5[3] |
|------------------------------------------------|-------|
| 0                                              | 0     |
| 1                                              | 1     |
| 2                                              | 1     |

# V5[8]:

Bit 8 of byte V5, a RDI indication, shall be set to "1" on activation of S2\_RI\_RDI within 1 000  $\mu$ s, determined by the associated S2\_TT\_Sk function, and set to "0" within 1 000  $\mu$ s on clearing of S2\_RI\_RDI.

# V5[1-2]:

In these bits the function shall insert the BIP-2 EDC with even bit parity. Each bit of current bits 1 or 2 is computed to provide even parity over the associated (odd and even) bits of every byte in the previous frame of the Characteristic Information S2\_CI, i.e., bits 1 and 2 are calculated over the entire previous VC-2. Further reference is provided in ETS 300 417-1-1 [1], subclause 7.3.

### K4[5-8]:

The value of the bits 5 to 8 of byte K4 is undefined.

Defects:

None.

**Consequent Actions:** 

None.

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

Draft prETS 300 417-4c-1: April 1996

## 6.2.2 VC-2 Layer Trail Termination Sink S2\_TT\_Sk

### Symbol:

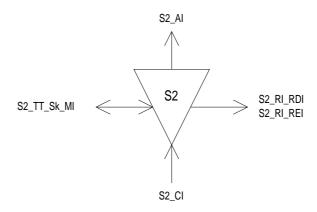



Figure 15: S2\_TT\_Sk symbol

#### Interfaces:

Table 5: S2\_TT\_Sk input and output signals

| Input(s)                 | Output(s)          |
|--------------------------|--------------------|
| S2_CI_D                  | S2_AI_D            |
| S2_CI_CK                 | S2_AI_CK           |
| S2_CI_FS                 | S2_AI_FS           |
| S2_CI_SSF                | S2_AI_TSF          |
|                          | S2_AI_TSD          |
| S2_TT_Sk_MI_TPmode       | S2_TT_Sk_MI_cTIM   |
| S2_TT_Sk_MI_SSF_Reported | S2_TT_Sk_MI_cUNEQ  |
| S2_TT_Sk_MI_ExTI         | S2_TT_Sk_MI_cDEG   |
| S2_TT_Sk_MI_RDI_Reported | S2_TT_Sk_MI_cRDI   |
| S2_TT_Sk_MI_DEGTHR       | S2_TT_Sk_MI_cSSF   |
| S2_TT_Sk_MI_DEGM         | S2_TT_Sk_MI_AcTI   |
| S2_TT_Sk_MI_1second      | S2_RI_RDI          |
| S2_TT_Sk_MI_TIMdis       | S2_RI_REI          |
| S2_TT_Sk_MI_ExTImode     | S2_TT_Sk_MI_pN_EBC |
|                          | S2_TT_Sk_MI_pN_DS  |
|                          | S2_TT_Sk_MI_pF_EBC |
|                          | S2_TT_Sk_MI_pF_DS  |

# **Processes:**

This function monitors VC-2 for errors, and recovers the trail termination status. It extracts the payload independent overhead bytes/bits (J2, V5[1-2], V5[3], V5[5-7], V5[8]) from the VC-2 layer Characteristic Information:

#### J2:

The Received Trail Trace Identifier RxTI shall be recovered from the J2 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3.

### V5[1-2]:

Even bit parity is computed for each bit pair of every byte of the preceding VC-2 including V5 and compared with bit 1 and 2 of V5 recovered from the current frame. A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block.

# V5[3], V5[8]:

The information carried in the bits 3 and 8 of the V5 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 8) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI) and 7.4.11 and 8.2 (RDI).

## K4[5-8]:

The value in the bits 5 to 8 of byte K4 shall be ignored.

Table 6: V5[3] code interpretation

| V5[3] | REI code interpretation |
|-------|-------------------------|
| 0     | 0 errored blocks        |
| 1     | 1 errored block         |

### V5[5-7]:

The information in bits 5 to 7 of byte V5 shall be extracted to allow unequipped VC defect detection.

#### **Defects:**

The function shall detect for dDEG, dRDI, dUNEQ and dTIM defects according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

### **Consequent Actions:**

aAIS  $\leftarrow$  dUNEQ or dTIM

aTSF  $\leftarrow$  CI\_ SSF or dUNEQ or dTIM

aRDI  $\leftarrow$  CI\_SSF or dUNEQ or dTIM

aTSD  $\leftarrow$  dDEG

aREI  $\leftarrow$  "#EDCV"

On declaration of aAIS the function shall output all-ONEs signal within 1 000  $\mu$ s; on clearing of aAIS the function shall output normal data within 1 000  $\mu$ s.

### **Defect Correlations:**

cUNEQ ← dUNEQ and MON

cTIM  $\leftarrow$  dTIM and (not dUNEQ) and MON

cDEG ← dDEG and (not dTIM) and MON

cRDI  $\leftarrow$  dRDI and (not dUNEQ) and (not dTIM) and MON and RDI\_Reported

 $\mathsf{cSSF} \ \leftarrow \quad \mathsf{CI\_SSF} \ \mathsf{and} \ \mathsf{MON} \ \mathsf{and} \ \mathsf{SSF\_Reported}$ 

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

## **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $pN_DS \leftarrow aTSF \text{ or } dEQ$ 

 $pF_DS \leftarrow dRDI$ 

 $pN\_EBC \leftarrow \Sigma nN\_B$ 

 $pF\_EBC \leftarrow \Sigma nF\_B$ 

## 6.3 VC-2 Layer Adaptation Functions

## 6.3.1 VC-2 Layer to TSS4 Adaptation Source S2/TSS4\_A\_So

## Symbol:

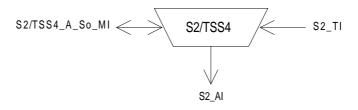



Figure 16: S2/TSS4\_A\_So symbol

#### Interfaces:

Table 7: S2/TSS4\_A\_So input and output signals

| Input(s)               | Output(s) |
|------------------------|-----------|
| S2_TI_CK               | S2_AI_D   |
| S2_TI_FS               | S2_AI_CK  |
| S2/TSS4_A_So_MI_Active | S2_AI_FS  |

### **Processes:**

This function maps a VC-2 synchronous Test Signal Structure TSS4 PRBS stream as described in ITU-T draft Recommendation O.181 [4] into a VC-2 payload and adds the bits V5[5-7] bytes. It creates a 2<sup>15</sup> PRBS with timing derived from the S2\_TI\_Ck and maps it without justification bits into the whole of the synchronous container-2 having a capacity of 424 bytes. The PRBS is a sequence which repeats itself over a period which is not an exact multiple of the capacity available in the container-2 frame. Therefore the start of the sequence will move relative to the start of the container-2 frame over time.

Three bits of payload specific POH information, V5[5-7], shall be added to container-2 to form the VC-2 AI and a fixed Frame Start (FS) shall be generated.

### V5[5-7]:

In these bits the function shall insert code "110" (TSS4 into the Container-2) as defined in ITU-T draft Recommendation G.708 [6].

Figure 1 shows that more than one adaptation source function exists in this VC-2 layer that can be connected to one VC-2 access point. For such case, a subset of these adaptation source functions is allowed to be activated together. Access to the access point by other adaptation source functions must be denied.

# Draft prETS 300 417-4c-1: April 1996

Activation:

The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

**Defects:** 

None.

**Consequent Actions:** 

None.

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

6.3.2 VC-2 Layer to TSS4 Adaptation Sink S2/TSS4\_A\_Sk

Symbol:

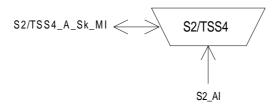



Figure 17: S2/TSS4\_A\_Sk symbol

## Interfaces:

Table 8: S2/TSS4\_A\_Sk input and output signals

| Input(s)               | Output(s)               |
|------------------------|-------------------------|
| S2 _AI_D               | S2/TSS4_A_Sk_MI_cPLM    |
| S2_AI_CK               | S2/TSS4_A_SK_MI_cLSS    |
| S2_AI_FS               | S2/TSS4_A_Sk_MI_AcSL    |
| S2_AI_TSF              | S2/TSS4_A_Sk_MI_ pN_TSE |
| S2/TSS4_A_Sk_MI_Active | ·                       |

### **Processes:**

The function recovers a TSS4  $2^{15}$  PRBS test sequence as defined in ITU-T draft Recommendation O.181 [4] from the synchronous container-2 (having a frequency accuracy within  $\pm$  4,6 ppm) and monitors the reception of the correct payload signal type and for the presence of test sequence error blocks (TSE) in the PRBS sequence.

### V5[5-7]:

The function shall compare the content of the accepted bits 5 to 7 of byte V5 with the expected value code "110" (TSS4 into the Container-2) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclauses 7.2 and 8.1.2.

Figure 1 shows that more than one adaptation sink function exists in this VC-2 layer that can be connected to one VC-2 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

#### Activation:

The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall not report its status via the management point.

#### Defects:

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

The function shall detect for loss of PRBS lock (dLSS) according to the criteria defined in ITU-T Recommendation O.151 [5] Section 2.6.

# **Consequent Actions:**

None.

#### **Defect Correlations:**

```
cPLM ← dPLM and (not AI_TSF)
```

cLSS  $\leftarrow$  dLSS and not (AI\_TSF)

## **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ITU-T Recommendation O.181 [4] Annex A section A.1.8.

pN\_TSE ← Sum of test sequence errors (TSE) within one second period.

NOTE: The TSE error block size is equal to the V5[1-2] BIP-2 error block size with the exception of the VC-2 POH.

# 6.3.3 VC-2 Layer to ATM Layer Compound Adaptation Source S2/ATM\_A\_So

For further study.

### 6.3.4 VC-2 Layer to ATM Layer Compound Adaptation Sink S2/ATM\_A\_Sk

For further study.

## 6.4 VC-2 Layer Monitoring Functions

## 6.4.1 VC-2 Layer Non-intrusive Monitoring Function S2m\_TT\_Sk

### Symbol:

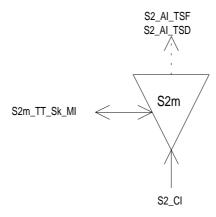



Figure 18: S2m\_TT\_Sk symbol

#### Interfaces:

Table 9: S2m\_TT\_Sk input and output signals

| Input(s)                  | Output(s)           |
|---------------------------|---------------------|
| S2_CI_D                   | S2_AI_TSF           |
| S2_CI_CK                  | S2_AI_TSD           |
| S2_CI_FS                  | S2m_TT_Sk_MI_cTIM   |
| S2_CI_SSF                 | S2m_TT_Sk_MI_cUNEQ  |
| S2m_TT_Sk_MI_TPmode       | S2m_TT_Sk_MI_cDEG   |
| S2m_TT_Sk_MI_SSF_Reported | S2m_TT_Sk_MI_cRDI   |
| S2m_TT_Sk_MI_ExTI         | S2m_TT_Sk_MI_cSSF   |
| S2m_TT_Sk_MI_RDI_Reported | S2m_TT_Sk_MI_AcTI   |
| S2m_TT_Sk_MI_DEGTHR       | S2m_TT_Sk_MI_pN_EBC |
| S2m_TT_Sk_MI_DEGM         | S2m_TT_Sk_MI_pF_EBC |
| S2m_TT_Sk_MI_ExTImode     | S2m_TT_Sk_MI_pN_DS  |
| S2m_TT_Sk_MI_1second      | S2m_TT_Sk_MI_pF_DS  |
| S2m_TT_Sk_MI_TIMdis       | -                   |

## **Processes:**

NOTE 1: this non-intrusive monitor trail termination sink function has no associated source function.

This function monitors VC-2 for errors, and recovers the trail termination status. It extracts the payload independent overhead bytes/bits (J2, V5[1-2], V5[3], V5[5-7], V5[8]) from the VC-2 layer Characteristic Information

#### J2:

The Received Trail Trace Identifier RxTI shall be recovered from the J2 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3.

## V5[1-2]:

Even bit parity is computed for each bit pair of every byte of the preceding VC-2 including V5 and compared with bit 1 and 2 of V5 recovered from the current frame. A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block.

## V5[3], V5[8]:

The information carried in the bits 3 and 8 of the V5 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 8) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI) and 7.4.11 and 8.2 (RDI).

## K4[5-8]:

The value in the bits 5 to 8 of byte K4 shall be ignored.

Table 10: V5[3] code interpretation

| V5[3] | REI code interpretation |
|-------|-------------------------|
| 0     | 0 errored blocks        |
| 1     | 1 errored block         |

## V5[5-7]:

The information in bits 5 to 7 of byte V5 shall be extracted to allow unequipped VC defect detection.

#### **Defects:**

The detection and removal conditions and processes for dDEG, dRDI, dUNEQ and dTIM defects shall be as specified by ETS 300 417-1-1 [1], subclause 8.2.1 with the condition "aSSF" read as "aSSF or VC dAIS". To use the function within e.g. a tandem connection<sup>1</sup>, it shall be possible to disable the trace id mismatch detection (TIMdis).

#### VC AIS:

The function shall detect for an AIS VC (VC-AIS) condition by monitoring the VC PSL for code "111". If 5 consecutive frames contain the '111' pattern in bits 5 to 7 of byte V5 a dAIS defect shall be detected. dAIS shall be cleared if in 5 consecutive frames any pattern other then the '111' is detected in bits 5 to 7 of byte V5.

NOTE 2: Equipment designed prior to this ETS may be able to perform VC-AIS detection either as specified above interpreting "frames" as "samples (not necessary consecutive frames)", or by a comparison of the accepted signal label with the all-ONEs pattern. If the accepted signal label is equal to all-ONEs, VC-AIS defect is detected. If the accepted signal label is not equal to all-ONEs, VC-AIS defect is cleared.

### Consequent actions:

aTSF  $\leftarrow$  CI\_SSF or dAIS or dUNEQ or dTIM

aTSD  $\leftarrow$  dDEG

#### **Defect Correlations:**

cUNEQ ← dUNEQ and MON

cTIM  $\leftarrow$  dTIM and (not dUNEQ) and MON

cDEG ← dDEG and (not dTIM) and MON

cRDI ← dRDI and (not dUNEQ) and (not dTIM) and MON and RDI\_Reported

cSSF ← (CI\_SSF or dAIS) and MON and SSF\_Reported

1 Presumably, in such case the VC Trace Id. will be unknown to the tandem connection operator.

# Draft prETS 300 417-4c-1: April 1996

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI Reported. The default shall be RDI Reported = false.

### **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $pN_DS \leftarrow aTSF \text{ or } dEQ$ 

 $pF_DS \leftarrow dRDI$ 

 $pN\_EBC \leftarrow \Sigma nN\_B$ 

 $pF\_EBC \leftarrow \Sigma nF\_B$ 

NOTE 3: pF\_DS/pF\_EBC represent the performance of the total trail while pN\_DS/pN\_EBC represents only part of the trail up to the point of the non-intrusive monitor.

# 6.4.2 VC-2 Layer Supervisory-Unequipped Termination Source S2s\_TT\_So

### Symbol:

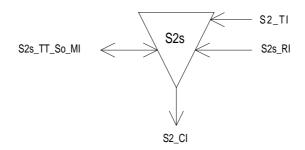



Figure 19: S2s\_TT\_So symbol

## Interfaces:

Table 11: S2s\_TT\_So input and output signals

| Input(s)          | Output(s) |
|-------------------|-----------|
| S2s_RI_RDI        | S2_CI_D   |
| S2s_RI_REI        | S2_CI_CK  |
| S2_TI_CK          | S2_CI_FS  |
| S2_TI_FS          |           |
| S2s_TT_So_MI_TxTI |           |

#### Processes:

This function generates error monitoring and status overhead bytes to an undefined VC-2. The processing of the trail termination overhead bytes is defined as follows:

### J2:

In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in ETS 300 417-1-1 [1], subclause 7.1.

# V5[3]:

The signal value applied at RI\_REI shall be inserted in the VC-2 REI, bit 3 of byte V5. The coding shall be as follows:

Table 12: V5[3] coding

| Number of BIP-2<br>violations conveyed via<br>RI_REI | V5[3] |
|------------------------------------------------------|-------|
| 0                                                    | 0     |
| 1                                                    | 1     |
| 2                                                    | 1     |

## V5[8]:

Bit 8 of byte V5, a RDI indication, shall be set to "1" on activation of S2s\_RI\_RDI within 1 000 μs, determined by the associated S2s\_TT\_Sk function, and set to "0" within 1 000 µs on clearing of S2s\_RI\_RDI.

## V5[5-7]:

In this byte the function shall insert code "000" (unequipped VC or supervisory-unequipped VC) as defined in subclause 7.2 of ETS 300 417-1-1 [1] and ETS 300 147 [2].

# V5[1-2]:

In these bits the function shall insert the BIP-2 EDC with even bit parity. Each bit of current bits 1 or 2 is computed to provide even parity over the associated (odd and even) bits of every byte in the previous frame of the Characteristic Information S2\_CI, i.e., bits 1 and 2 are calculated over the entire previous VC-2. Further reference is provided in ETS 300 417-1-1 [1], subclause 7.3.

## K4[5-8]:

The value of the bits 5 to 8 of byte K4 is undefined.

### N2:

In this byte the function shall insert code "0000 0000" (unequipped tandem connection) as defined in subclause 7.2 of FTS 300 417-1-1 [1]

| in subclause 7.2 of £10 500 417-1-1 [1].                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other VC-2 bytes: The function shall generate the other VC-2 bytes and bits. Their content is undefined (i.e. bits as set to either a value of "0" or "1"). |
| Defects:                                                                                                                                                    |
| None.                                                                                                                                                       |
| Consequent Actions:                                                                                                                                         |
| None.                                                                                                                                                       |
| Defect Correlations:                                                                                                                                        |
| None.                                                                                                                                                       |
| Performance Monitoring:                                                                                                                                     |
| None.                                                                                                                                                       |

## 6.4.3 VC-2 Layer Supervisory-unequipped Termination Sink S2s\_TT\_Sk

#### Symbol:

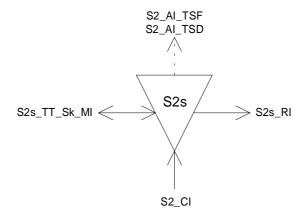



Figure 20: S2s\_TT\_Sk symbol

## Interfaces:

Table 13: S2s\_TT\_Sk input and output signals

| Input(s)                  | Output(s)           |
|---------------------------|---------------------|
| S2_CI_D                   | S2_AI_TSF           |
| S2_CI_CK                  | S2_AI_TSD           |
| S2_CI_FS                  | S2s_TT_Sk_MI_cTIM   |
| S2_CI_SSF                 | S2s_TT_Sk_MI_cUNEQ  |
| S2s_TT_Sk_MI_TPmode       | S2s_TT_Sk_MI_cDEG   |
| S2s_TT_Sk_MI_SSF_Reported | S2s_TT_Sk_MI_cRDI   |
| S2s_TT_Sk_MI_ExTI         | S2s_TT_Sk_MI_cSSF   |
| S2s_TT_Sk_MI_RDI_Reported | S2s_TT_Sk_MI_AcTI   |
| S2s_TT_Sk_MI_DEGTHR       | S2s_RI_RDI          |
| S2s_TT_Sk_MI_DEGM         | S2s_RI_REI          |
| S2s_TT_Sk_MI_1second      | S2s_TT_Sk_MI_pN_EBC |
| S2s_TT_Sk_MI_TIMdis       | S2s_TT_Sk_MI_pF_EBC |
| S2s_TT_Sk_MI_ExTImode     | S2s_TT_Sk_MI_pN_DS  |
|                           | S2s_TT_Sk_MI_pF_DS  |

### **Processes:**

This function monitors VC-2 for errors, and recovers the trail termination status. It extracts the payload independent overhead bytes/bits (J2, V5[1-2], V5[3], V5[5-7], V5[8]) from the VC-2 layer Characteristic Information:

## J2:

The Received Trail Trace Identifier RxTI shall be recovered from the J2 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3.

## V5[1-2]:

Even bit parity is computed for each bit pair of every byte of the preceding VC-2 including V5 and compared with bit 1 and 2 of V5 recovered from the current frame. A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block.

## V5[3], V5[8]:

The information carried in the bits 3 and 8 of the V5 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 8) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI) and 7.4.11 and 8.2 (RDI).

### K4[5-8]:

The value of the bits 5 to 8 of byte K4 shall be ignored.

Table 14: V5[3] code interpretation

| V5[3] | REI code interpretation |
|-------|-------------------------|
| 0     | 0 errored blocks        |
| 1     | 1 errored block         |

## V5[5-7]:

The information in bits 5 to 7 of byte V5 shall be extracted to allow unequipped VC defect detection.

#### Defects:

The function shall detect for dDEG, dRDI, dUNEQ and dTIM defects according the specifications in ETS 300 417-1-1 [1], subclause 8.2.1.

### **Consequent Actions:**

aTSF  $\leftarrow$  CI\_SSF or dTIM

aTSD  $\leftarrow$  dDEG

aRDI  $\leftarrow$  CI\_SSF or dTIM

aREI  $\leftarrow$  "#EDCV"

NOTE:

dUNEQ can not be used to activate aTSF and aRDI; an expected supervisory-unequipped signal will have the signal label set to all-0's, causing a continuous detection of dUNEQ. If an unequipped VC comes in, dTIM will be activated and can serve as a trigger for aTSF/aRDI instead of dUNEQ.

# **Defect Correlations:**

cUNEQ ← MON and dTIM and (AcTI = all "0"s) and dUNEQ

cTIM ← MON and dTIM and (not dUNEQ and AcTI = all "0"s)

cDEG ← MON and (not dTIM) and dDEG

cRDI ← MON and (not dTIM) and dRDI and RDI\_Reported

 $\mathsf{cSSF} \ \leftarrow \quad \quad \mathsf{MON} \ \mathsf{and} \ \mathsf{CI\_SSF} \ \mathsf{and} \ \mathsf{SSF\_Reported}$ 

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

# **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $\mathsf{pN\_DS} \qquad \qquad \leftarrow \qquad \mathsf{aTSF} \ \mathsf{or} \ \mathsf{dEQ}$ 

 $\mathsf{pF\_DS} \qquad \leftarrow \quad \mathsf{dRDI}$ 

 $\mathsf{pN\_EBC} \qquad \leftarrow \qquad \Sigma \, \mathsf{nN\_B}$ 

 $\mathsf{pF\_EBC} \qquad \leftarrow \qquad \Sigma \, \mathsf{nF\_B}$ 

## 6.5 VC-2 Layer Trail Protection Functions

# 6.5.1 VC-2 Trail Protection Connection Functions S2P\_C

# 6.5.1.1 VC-2 Layer 1+1 single ended Protection Connection Function S2P1+1se\_C

# Symbol:

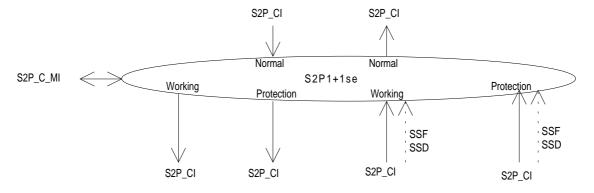



Figure 21: S2P1+1se\_C symbol

## Interfaces:

Table 15: S2P1+1se\_C input and output signals

| Input(s)                       | Output(s)                         |
|--------------------------------|-----------------------------------|
| for connection points W and P: | for connection points W and P:    |
| S2P_CI_D                       | S2P_CI_D                          |
| S2P_CI_CK                      | S2P_CI_CK                         |
| S2P_CI_FS                      | S2P_CI_FS                         |
| S2P_CI_SSF                     | for connection point N:           |
| S2P_AI_SSD                     | S2P_CI_D                          |
| for connection point N:        | S2P_CI_CK                         |
| S2P_CI_D                       | S2P_CI_FS                         |
| S2P_CI_CK                      | S2P_CI_SSF                        |
| S2P_CI_FS                      | NOTE: protection status reporting |
| S2P_C_MI_OPERType              | signals are for further study.    |
| S2P_C_MI_WTRTime               |                                   |
| S2P_C_MI_HOTime                |                                   |
| S2P_C_MI_EXTCMD                |                                   |

#### Processes:

The function performs the VC-2 linear trail protection process for 1+1 protection architectures with single-ended switching; refer to ETS 300 417-1-1 [1], subclause 9.2. It performs the bridge and selector functionality as presented in figures 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the associated working path or the protection path; this is determined by the SF,SD conditions (relayed via CI\_SSF,CI\_SSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

Provided no protection switching action is activated/required the following changes to (the configuration of) a trail shall be possible without disturbing the CI passing the trail:

- change between operation types
- change of WTR and HO times.

### Operation:

The VC trail protection process shall operate as specified in prETS 300 417-3-1 [3], Annex A, according the following characteristics:

**Table 16: Trail protection parameters** 

| Parameter                      | Value options                                   |
|--------------------------------|-------------------------------------------------|
| architecture type (ARCHtype)   | 1 + 1                                           |
| switching type (SWtype)        | single-ended                                    |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | false                                           |
| Wait-To-Restore time (WTRtime) | in the order of 5-12 minutes                    |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | trail                                           |
| Signal switch conditions:      | SF = SSF (originated as AI_TSF)                 |
|                                | SD = SSD (originated as AI_TSD)                 |
| External commands (EXTCMD)     | LO-#0, FSw-#i, MSw-#i, CLR                      |
| Extra traffic (EXTRAtraffic)   | false                                           |

| Defects:                |
|-------------------------|
| None.                   |
| Consequent Actions:     |
| None.                   |
| Defect Correlations:    |
| None.                   |
| Performance Monitoring: |
|                         |

None.

## 6.5.1.2 VC-2 Layer 1+1 dual ended Protection Connection Function S2P1+1de\_C

#### Symbol:

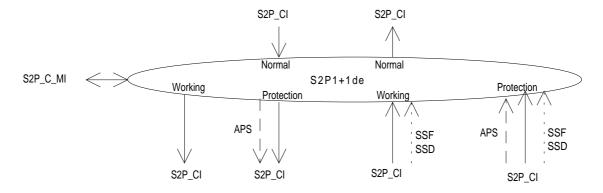



Figure 22: S2P1+1de\_C symbol

# Interfaces:

Table 17: S2P1+1de\_C input and output signals

| Input(s)                       | Output(s)                         |
|--------------------------------|-----------------------------------|
| for connection points W and P: | for connection points W and P:    |
| S2P_CI_D                       | S2P_CI_D                          |
| S2P_CI_CK                      | S2P_CI_CK                         |
| S2P_CI_FS                      | S2P_CI_FS                         |
| S2P_CI_SSF                     | for connection point N:           |
| S2P_CI_SSD                     | S2P_CI_D                          |
| for connection point N:        | S2P_CI_CK                         |
| S2P_CI_D                       | S2P_CI_FS                         |
| S2P_CI_CK                      | S2P_CI_SSF                        |
| S2P_CI_FS                      | for connection point P:           |
| for connection point P:        | S2P_CI_APS                        |
| S2P_CI_APS                     | NOTE: protection status reporting |
| S2P_C_MI_OPERType              | signals are for further study.    |
| S2P_C_MI_WTRTime               |                                   |
| S2P_C_MI_HOTime                |                                   |
| S2P_C_MI_EXTCMD                |                                   |

#### **Processes:**

The function performs the VC-2 linear trail protection process for 1+1 protection architecture with dual-ended switching; refer to ETS 300 417-1-1 [1], subclause 9.2. It performs the bridge and selector functionality as presented in figures 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the associated working path or the protection path; this is determined by the SF,SD conditions (relayed via CI\_SSF,CI\_SSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

Provided no protection switching action is activated/required the following changes to (the configuration of) a trail shall be possible without disturbing the CI passing the trail:

- change between operation types;
- change of WTR and HO times.

### Operation:

The VC trail protection process shall operate as specified in prETS 300 417-3-1 [3], Annex A, according the following characteristics:

| Parameter                      | Value options                                   |
|--------------------------------|-------------------------------------------------|
| architecture type (ARCHtype)   | 1 + 1                                           |
| switching type (SWtype)        | dual-ended                                      |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | true                                            |
| Wait-To-Restore time (WTRtime) | in the order of 5 to 12 minutes                 |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | trail                                           |
| Signal switch conditions:      | SF = SSF (originated as AI_TSF)                 |
|                                | SD = SSD (originated as AI_TSD)                 |
| External commands (EXTCMD)     | LO-#0, FSw-#i, MSw-#i, EXER-#i, CLR             |
| Extra traffic (EXTRAtraffic)   | false                                           |

NOTE: The VC-2 APS signal definition is for further study.

Defects:

None.

**Consequent Actions:** 

None.

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

6.5.2 VC-2 Layer Trail Protection Trail Termination Functions

6.5.2.1 VC-2 Protection Trail Termination Source S2P\_TT\_So

Symbol:



Figure 23: S2P\_TT\_So symbol

Interfaces:

Table 19: S2P\_TT\_So input and output signals

| Input(s)  | Output(s) |
|-----------|-----------|
| S2P_AI_D  | S2P_CI_D  |
| S2P_AI_CK | S2P_CI_CK |
| S2P_AI_FS | S2P_CI_FS |

## **Processes:**

No information processing is required in the S2P\_TT\_So, the S2\_AI at its output is identical to the S2P\_CI at its input.

**Defects:** 

None.

**Consequent Actions:** 

None

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

6.5.2.2 VC-2 Protection Trail Termination Sink S2P\_TT\_Sk

Symbol:

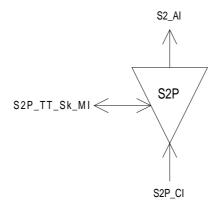



Figure 24: S2P\_TT\_Sk symbol

Interfaces:

Table 20: S2P\_TT\_Sk input and output signals

| Input(s)                  | Output(s)         |
|---------------------------|-------------------|
| S2P_CI_D                  | S2_AI_D           |
| S2P_CI_CK                 | S2_AI_CK          |
| S2P_CI_FS                 | S2_AI_FS          |
| S2P_CI_SSF                | S2_AI_TSF         |
| S2P_TT_Sk_MI_SSF_Reported | S2P_TT_Sk_MI_cSSF |

Draft prETS 300 417-4c-1: April 1996

#### Processes:

The S2P\_TT\_Sk function reports, as part of the S2 layer, the state of the protected VC-2 trail. In case all trails are unavailable the S2P\_TT\_Sk reports the signal fail condition of the protected trail.

**Defects:** 

None.

**Consequent Actions:** 

aTSF  $\leftarrow$  CI\_SSF

**Defect Correlations:** 

 $\mathsf{cSSF} \ \leftarrow \quad \mathsf{CI\_SSF} \ \mathsf{and} \ \mathsf{SSF\_Reported}$ 

**Performance Monitoring:** 

None.

6.5.3 VC-2 Layer Linear Trail Protection Adaptation Functions

6.5.3.1 VC-2 trail to VC-2 trail Protection Layer Adaptation Source S2/S2P\_A\_So

Symbol:

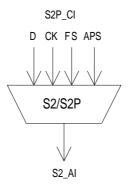



Figure 25: S2/S2P\_A\_Sk symbol

### Interfaces:

Table 21: S2/S2P\_A\_So input and output signals

| Input(s)   | Output(s) |
|------------|-----------|
| S2P_CI_D   | S2_AI_D   |
| S2P_CI_CK  | S2_AI_CK  |
| S2P_CI_FS  | S2_AI_FS  |
| S2P_CI_APS |           |

### **Processes:**

The function shall multiplex the S2 APS signal and S2 data signal onto the S2 access point.

# K4[1-4]:

The insertion of the VC-APS signal is for further study. This process is required only for the protection path.

Draft prETS 300 417-4c-1: April 1996

**Defects:** 

None.

**Consequent actions:** 

None.

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

6.5.3.2 VC-2 trail to VC-2 trail Protection Layer Adaptation Sink S2/S2P\_A\_Sk

Symbol:

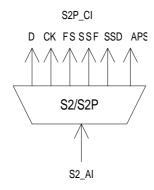



Figure 26: S2/S2P\_A\_Sk symbol

## Interfaces:

Table 22: S2/S2P\_A\_Sk input and output signals

| Input(s)  | Output(s)                         |
|-----------|-----------------------------------|
| S2_AI_D   | S2P_CI_D                          |
| S2_AI_CK  | S2P_CI_CK                         |
| S2_AI_FS  | S2P_CI_FS                         |
| S2_AI_TSF | S2P_CI_SSF                        |
| S2_AI_TSD | S2P_CI_SSD                        |
|           | S2P_CI_APS (for Protection signal |
|           | only)                             |

## **Processes:**

The function shall extract and output the S2P\_CI\_D signal from the S2\_AI\_D signal.

# K4[1-4]:

The extraction and persistency processing of the VC-APS signal is for further study. This process is required only for the protection path.

**Defects:** 

None.

Draft prETS 300 417-4c-1: April 1996

# **Consequent actions:**

aSSF  $\leftarrow$  Al\_TSF

aSSD  $\leftarrow$  AI\_TSD

## **Defect Correlations:**

None.

## **Performance Monitoring:**

None.

# 6.6 VC-2 Tandem Connection Sublayer Functions

# 6.6.1 VC-2 Tandem Connection Trail Termination Source function (S2D\_TT\_So)

# Symbol:

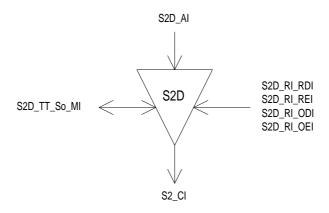



Figure 27: S2D\_TT\_So symbol

## Interfaces:

Table 23: S2D\_TT\_So input and output signals

| Input(s)          | Output(s) |
|-------------------|-----------|
| S2D_AI_D          | S2_CI_D   |
| S2D_AI_CK         | S2_CI_CK  |
| S2D_AI_FS         | S2_CI_FS  |
| S2D_AI_SF         |           |
| S2D_RI_RDI        |           |
| S2D_RI_REI        |           |
| S2D_RI_ODI        |           |
| S2D_RI_OEI        |           |
| S2D_TT_So_MI_TxTI |           |

### **Processes:**

# N2[8][73]:

The function shall insert the TC RDI code within 1 multiframe (38 ms) after the RDI request generation (aRDI)) in the tandem connection trail termination sink function. It ceases TC RDI code insertion within 1 multiframe (38 ms) after the RDI request has cleared.

## N2[3]:

The function shall insert a "1" in this bit.

Draft prETS 300 417-4c-1: April 1996

### N2[4]:

The function shall insert an incoming AIS code in this bit. If AI\_SF is true this bit will be set to the value "1", otherwise value "0" shall be inserted.

## N2[5]:

The function shall insert the RI\_REI value in the REI bit in the following frame.

## N2[7][74]:

The function shall insert the ODI code at the first opportunity after the ODI request generation (aODI)) in the tandem connection trail termination sink function. It ceases ODI code insertion at the first opportunity after the ODI request has cleared.

## N2[6]:

The function shall insert the RI\_OEI value in the OEI bit in the following frame.

# N2[7-8]:

The function shall insert in the multiframed N2[7-8] channel:

the Frame Alignment Signal (FAS) "1111 1111 1110" in FAS bits in frames 1 to 8, the TC trace identifier, received via MI\_TxTI, in the TC-TI bits in frames 9 to 72, the TC RDI (N2[8][73]) and ODI (N2[7][74]) signals, and all-0s in the six reserved bits in frames 73 to 76.

## N2[1-2]:

The function shall calculate a BIP2 over the VC-2, and insert this value in TC BIP2 in the next frame (figure 28).

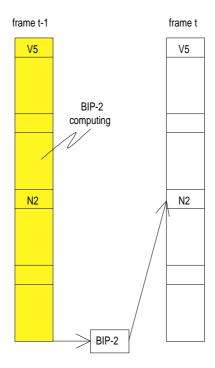



Figure 28: TC BIP-2 computing and insertion

# V5[1-2]:

The function shall compensate the VC12 BIP2 (in bits 1 and 2 of byte V5) according the following rule:

Since the BIP-2 parity check is taken over the VC (including N2), writing into N2 at the S2D\_TT\_So will affect the VC-2 path parity calculation. Unless this is compensated for, a device which monitors VC-2 path parity within the Tandem Connection (e.g., a non-intrusive monitor) may incorrectly count errors. The BIP-2 parity bits should always be consistent with the current state of the VC. Therefore, whenever N2 is written, BIP-2 shall be modified to compensate for the change in the N2 value. Since the BIP-2 value in a given frame reflects a parity check over the previous frame (including the BIP-2 bits in that frame), the changes made to the BIP-2 bits in the previous frame shall also be

considered in the compensation of BIP-2 for the current frame. Therefore, the following equation shall be used for BIP-2 compensation:

```
\begin{split} V5[1]'(t) &= V5[1](t\text{-}1) \\ &\oplus V5[1]'(t\text{-}1) \\ &\oplus N2[1](t\text{-}1) \oplus N2[3](t\text{-}1) \oplus N2[5](t\text{-}1) \oplus N2[7](t\text{-}1) \\ &\oplus N2[1]'(t\text{-}1) \oplus N2[3]'(t\text{-}1) \oplus N2[5]'(t\text{-}1) \oplus N2[7]'(t\text{-}1) \\ &\oplus V5[1](t) \end{split} V5[2]'(t) &= V5[2](t\text{-}1) \\ &\oplus V5[2]'(t\text{-}1) \\ &\oplus N2[2]'(t\text{-}1) \oplus N2[4](t\text{-}1) \oplus N2[6](t\text{-}1) \oplus N2[8](t\text{-}1) \\ &\oplus N2[2]'(t\text{-}1) \oplus N2[4]'(t\text{-}1) \oplus N2[6]'(t\text{-}1) \oplus N2[8]'(t\text{-}1) \\ &\oplus V5[2](t) \end{split}
```

## Where:

V5[i] = the existing V5[i] value in the incoming signal V5[i]' = the new (compensated) V5[i] value N2[i] = the existing N2[i] value in the incoming signal N2[i]' = the new value written into the N2[i] bit  $\oplus$  = exclusive OR operator t = the time of the current frame

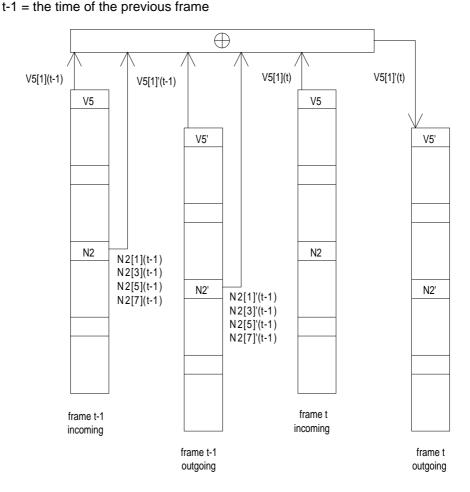



Figure 29: V5[1] compensating process

Draft prETS 300 417-4c-1: April 1996

**Defects:** 

None.

**Consequent Actions:** 

None.

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

6.6.2 VC-2 Tandem Connection Trail Termination Sink function (S2D\_TT\_Sk)

Symbol:



Figure 30: S2D\_TT\_Sk symbol

## Interfaces:

Table 24: S2D\_TT\_Sk input and output signals

| Input(s)                  | Output(s)            |
|---------------------------|----------------------|
| S2_CI_D                   | S2D_AI_D             |
| S2_CI_CK                  | S2D_AI_CK            |
| S2_CI_FS                  | S2D_AI_FS            |
| S2_CI_SSF                 | S2D_AI_TSF           |
| S2D_TT_Sk_MI_ExTI         | S2D_AI_TSD           |
| S2D_TT_Sk_MI_SSF_Reported | S2D_AI_OSF           |
| S2D_TT_Sk_MI_RDI_Reported | S2D_TT_Sk_MI_cLTC    |
| S2D_TT_Sk_MI_ODI_Reported | S2D_TT_Sk_MI_cTIM    |
| S2D_TT_Sk_MI_TIMdis       | S2D_TT_Sk_MI_cUNEQ   |
| S2D_TT_Sk_MI_DEGM         | S2D_TT_Sk_MI_cDEG    |
| S2D_TT_Sk_MI_DEGTHR       | S2D_TT_Sk_MI_cRDI    |
| S2D_TT_Sk_MI_1second      | S2D_TT_Sk_MI_cSSF    |
|                           | S2D_TT_Sk_MI_cODI    |
|                           | S2D_TT_Sk_MI_AcTI    |
|                           | S2D_RI_RDI           |
|                           | S2D_RI_REI           |
|                           | S2D_RI_ODI           |
|                           | S2D_RI_OEI           |
|                           | S2D_TT_Sk_MI_pN_EBC  |
|                           | S2D_TT_Sk_MI_pF_EBC  |
|                           | S2D_TT_Sk_MI_pN_DS   |
|                           | S2D_TT_Sk_MI_pF_DS   |
|                           | S2D_TT_Sk_MI_pON_EBC |
|                           | S2D_TT_Sk_MI_pOF_EBC |
|                           | S2D_TT_Sk_MI_pON_DS  |
|                           | S2D_TT_Sk_MI_pOF_DS  |

## **Processes:**

# N2[1-2]:

Even BIP-2 is computed for each bit pair of every byte of the preceding VC-2 including V5 and N2 and compared with bit 1 and 2 of V5 and N2 recovered from the current frame (figure 31). A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block.

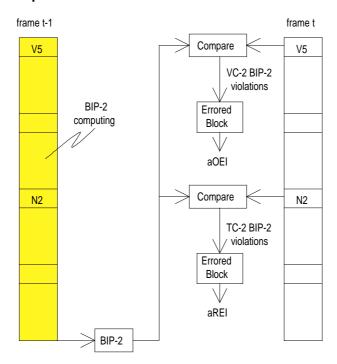



Figure 31: TC-2 and VC-2 BIP-2 computing and comparison

## N2[7-8][9-72]:

The Received Trail Trace Identifier RxTI shall be recovered from the tandem connection trail trace identifier overhead and shall be made available as AcTI for network management purposes. The application and acceptance process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3. The mismatch detection process shall be as specified below.

The trace identifier process in this function is required to support "mode 1" (ETS 300 417-1-1 [1], subclause 7.1) operation only. "Old" tandem connection equipment does not exist.

## N2[4]:

The function shall extract the Incoming AIS code.

## N2[5], N2[8][73]:

The information carried in the REI, RDI bits in byte N2 shall be extracted to enable single ended maintenance of a bi-directional tandem connection Trail. The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI) and 7.4.11 and 8.2 (RDI).

### N2[6], N2[7][74]:

The information carried in the OEI, ODI bits in byte N2 shall be extracted to enable single ended (intermediate) maintenance of a the VC-12 egressing the tandem connection Trail. The OEI (nOF\_B) shall be used to monitor the error performance of the other direction of transmission, and the ODI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Outgoing Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed equivalent to the remote maintenance case, as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI/OEI), subclause 7.4.11 and 8.2 (RDI/ODI).

# N2[7-8]:

#### Multiframe alignment:

The function shall perform a multiframe alignment on bits 7 and 8 of byte N2 to recover the TTI, RDI, and ODI signals transported within the multiframed bits. The multiframe alignment shall be found by searching for the pattern "1111 1111 1110" within the bits 7 and 8 of byte N2. The signal shall be continuously checked with the presumed multiframe start position for the alignment.

Frame alignment is deemed to have been lost (entering Out Of Multiframe (OOM) state) when two consecutive FAS are detected in error (i.e. ≥ 1 error in each FAS);

Frame alignment is deemed to have been recovered (entering In Multiframe (IM) state) when one non-errored FAS is found.

# V5[1-2]:

Even BIP-2 is computed for each bit pair of every byte of the preceding VC-2 including V5 and compared with bit 1 and 2 of V5 recovered from the current frame. A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nON\_B) in the computation block.

# N2:

The function shall terminate N2 channel by inserting an all-ZEROs pattern.

# V5[1-2]:

The function shall compensate the VC12 BIP2 in bits 1 and 2 of byte V5 according the algorithm defined in S2D TT So.

#### Defects:

#### TC Unequipped (dUNEQ):

The function shall detect for an unequipped Tandem Connection (UNEQ) condition by monitoring byte N2 for code "00000000". The algorithm shall be according subclause 8.2.1.2 of ETS 300 417-1-1 [1], in which "accepted TSL" shall be read as "accepted N2 byte". The defect is referred to as dUNEQ.

# TC Loss of Tandem Connection (dLTC):

The function shall detect for the presence/absence of the tandem connection overhead in the byte N2 by evaluating the multiframe alignment signal in bits 7 and 8 of byte N2. The loss of tandem connection defect (dLTC) shall be detected if the multiframe alignment process is in the OOM state. The dLTC shall be cleared if the multiframe alignment process is in the IM state.

# TC Connectivity (Trace Identifier) (dTIM):

The function shall detect for a TC mis-connection condition by monitoring the TC trace identifier. The Trace Identifier Mismatch defect (dTIM) shall be detected and cleared within a maximum period of 4 s in the absence of bit errors.

The defect detection process and its operation during the presence of bit errors is for further study. The defect shall be suppressed during the receipt of SSF.

It shall be possible to disable the trace identifier mismatch defect detection (TIMdis).

# TC Signal Degrade (dDEG):

The function shall detect for a TC signal degrade defect condition by monitoring for TC BIP2 violations. The algorithm shall be according subclause 8.2.1.4 of ETS 300 417-1-1 [1].

# TC Remote Defect (dRDI):

The function shall detect for a TC remote defect indication defect condition by monitoring the TC RDI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

# TC Remote Outgoing VC Defect (dODI):

The function shall detect for a TC remote outgoing VC defect indication defect condition by monitoring the TC ODI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

# *Incoming AIS (dIncAIS):*

The function shall detect for a tandem connection incoming AIS condition by monitoring bit 4 in byte N2 for code "1". If 5 consecutive frames contain the value "1" in bit 4 a dlncAIS defect shall be detected. dlncAIS shall be cleared if in 5 consecutive frames value "0" is detected in bit 4 of byte N2.

# **Consequent Actions:**

The function shall perform the following consequent actions (refer to subclause 8.2.2 of ETS 300 417-1-1 [1]):

aAIS dUNEQ or dTIM or dLTC aTSF CI SSF or dUNEQ or dTIM or dLTC  $\leftarrow$ dDEG aTSD  $\leftarrow$ CI SSF or dUNEQ or dTIM or dLTC aRDI  $\leftarrow$ aREI nN\_B  $\leftarrow$ aODI  $\leftarrow$ CI SSF or dUNEQ or dTIM or dIncAIS or dLTC aOEI nON B aOSF ← CI\_SSF or dUNEQ or dTIM or dLTC or dIncAIS

The function shall insert the all-ONEs (AIS) signal within 1 ms after AIS request generation (aAIS), and cease the insertion within 1 ms after the AIS request has cleared.

#### **Defect Correlations:**

The function shall perform the following defect correlations (refer to subclause 8.2.3 of ETS 300 417-1-1 [1]):

MON and dUNEQ  $cUNEQ \leftarrow$ MON and (not dUNEQ) and dLTC cLTC cTIM MON and (not dUNEQ) and (not dLTC) and dTIM  $\leftarrow$ cDEG ← MON and (not dTIM) and (not dLTC) and dDEG MON and CI\_SSF and SSF\_Reported cSSF cRDI MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dRDI and RDI\_Reported MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dODI and cODI  $\leftarrow$ **ODI** Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

It shall be an option to report ODI as a fault cause. This is controlled by means of the parameter ODI\_Reported. The default shall be ODI\_Reported = false.

# **Performance Monitoring:**

The following TC error performance parameters shall be counted for each 1-second period (refer to subclauses 8.2.4 to 8.2.7 of ETS 300 417-1-1 [1])<sup>2</sup>:

$$pN\_DS \leftarrow aTSF \text{ or dEQ}$$
 
$$pF\_DS \leftarrow dRDI$$
 
$$pN\_EBC \leftarrow \Sigma nN\_B$$
 
$$pF\_EBC \leftarrow \Sigma nF\_B$$
 
$$pON\_DS \leftarrow aODI$$
 
$$pOF\_DS \leftarrow dODI$$
 
$$pON\_EBC \leftarrow \Sigma nON\_B$$

 $pOF\_EBC \leftarrow \Sigma nOF\_B$ 

# 6.6.3 VC-2 Tandem Connection to VC-2 Adaptation Source function (S2D/S2\_A\_So)

# Symbol:

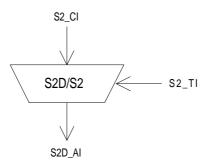



Figure 32: S2D/S2\_A\_So symbol

# Interfaces:

Table 25: S2D/S2\_A\_Sk input and output signals

| Input(s)  | Output(s) |
|-----------|-----------|
| S2_CI_D   | S2D_AI_D  |
| S2_CI_CK  | S2D_AI_CK |
| S2_CI_FS  | S2D_AI_FS |
| S2_CI_SSF | S2D_AI_SF |
| S2_TI_CK  |           |

# **Processes:**

NOTE 1: The function has no means to verify the existence of a tandem connection within the incoming signal. Nested tandem connections are not supported.

The function shall replace the incoming Frame Start (CI\_FS) signal by a local generated one (i.e. enter "holdover") if an all-ONEs (AIS) VC is received (i.e. if CI\_SSF is TRUE).

pN\_EBC and pN\_DS does not represent the actual performance monitoring support within an equipment. For that, these pN\_DS/pN\_EBC signals must be connected to performance monitoring functions within the element management function. Similar for the far-end signals pF\_EBC and pF\_DS and for pON\_EBC/pON\_DS, pOF\_EBC/pOF\_DS.

# Draft prETS 300 417-4c-1: April 1996

This replacement of the (invalid) incoming frame start signal result in the generation of NOTE 2:

a valid pointer in e.g. the S4/S2\_A\_So function; SSF=true signal is not passed through

via S2D\_TT\_So to the S4/S2\_A\_So.

NOTE 3: The local frame start is generated with the S2\_TI timing.

**Defects:** 

None.

**Consequent Actions:** 

AI SF ← CI SSF

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

6.6.4 VC-2 Tandem Connection to VC-2 Adaptation Sink function (S2D/S2\_A\_Sk)

# Symbol:

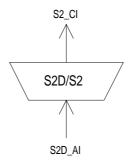



Figure 33: S2D/S2\_A\_Sk symbol

# Interfaces:

Table 26: S2D/S2\_A\_Sk input and output signals

| Input(s)   | Output(s) |
|------------|-----------|
| S2D_AI_D   | S2_CI_D   |
| S2D_AI_CK  | S2_CI_CK  |
| S2D_AI_FS  | S2_CI_FS  |
| S2D_AI_OSF | S2_CI_SSF |

## **Processes:**

The function shall restore the invalid frame start condition (i.e. output aSSF = true) if that existed at the ingress of the tandem connection.

NOTE: In addition, the invalid frame start condition is activated on a tandem connection connectivity defect condition that causes all-ONEs (AIS) insertion in the S2D\_TT\_Sk.

**Defects:** 

None.

Draft prETS 300 417-4c-1: April 1996

# **Consequent Actions:**

 $\mathsf{aAIS} \leftarrow \mathsf{AI\_OSF}$ 

 $\mathsf{aSSF} \gets \mathsf{AI\_OSF}$ 

The function shall insert the all-ONEs (AIS) signal within 1 ms after AIS request generation (aAIS), and cease the insertion within 1 ms after the AIS request has cleared.

#### **Defect Correlations:**

None.

# **Performance Monitoring:**

None.

# 6.6.5 VC-2 Tandem Connection non-intrusive Trail Termination Sink function (S2Dm\_TT\_Sk)

# Symbol:

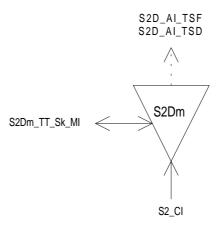



Figure 34: S2Dm\_TT\_Sk symbol

# Interfaces:

Table 27: S2Dm\_TT\_Sk input and output signals

| Input(s)                  | Output(s)            |
|---------------------------|----------------------|
| S2D_CI_D                  | S2D_AI_TSF           |
| S2D_CI_CK                 | S2D_AI_TSD           |
| S2D_CI_FS                 | S2D_TT_Sk_MI_cLTC    |
| S2D_CI_SSF                | S2D_TT_Sk_MI_cTIM    |
| S2D_TT_Sk_MI_ExTI         | S2D_TT_Sk_MI_cUNEQ   |
| S2D_TT_Sk_MI_SSF_Reported | S2D_TT_Sk_MI_cDEG    |
| S2D_TT_Sk_MI_RDI_Reported | S2D_TT_Sk_MI_cRDI    |
| S2D_TT_Sk_MI_ODI_Reported | S2D_TT_Sk_MI_cSSF    |
| S2D_TT_Sk_MI_TIMdis       | S2D_TT_Sk_MI_cODI    |
| S2D_TT_Sk_MI_DEGM         | S2D_TT_Sk_MI_AcTI    |
| S2D_TT_Sk_MI_DEGTHR       | S2D_TT_Sk_MI_pN_EBC  |
| S2D_TT_Sk_MI_1second      | S2D_TT_Sk_MI_pF_EBC  |
|                           | S2D_TT_Sk_MI_pN_DS   |
|                           | S2D_TT_Sk_MI_pF_DS   |
|                           | S2D_TT_Sk_MI_pOF_EBC |
|                           | S2D_TT_Sk_MI_pOF_DS  |

#### Processes:

This function can be used to perform the following:

- single ended maintenance of the TC by monitoring at an intermediate node, using remote information (RDI,REI),
- 2 aid in fault localisation within TC trail by monitoring near-end defects,
- monitoring of VC performance at TC egressing point(except for connectivity defects before the TC) using remote outgoing information (ODI,OEI),
- 4 performing non-intrusive monitor function within SNC/S protection.

#### N2[1-2]:

Even BIP-2 is computed for each bit pair of every byte of the preceding VC-2 including V5 and N2 and compared with bits 1 and 2 of V5 and N2 recovered from the current frame (figure 28). A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block. Refer to S2D\_TT\_Sk.

# N2[7-8][9-72]:

The Received Trail Trace Identifier RxTI shall be recovered from the tandem connection trail trace identifier overhead and shall be made available as AcTI for network management purposes. The application and acceptance process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3. The mismatch detection process shall be as specified below.

The trace identifier process in this function is required to support "mode 1" (ETS 300 417-1-1 [1], subclause 7.1) operation only. "Old" tandem connection equipment does not exist.

# N2[4]:

The function shall extract the Incoming AIS code.

# N2[5], N2[8][73]:

The information carried in the REI, RDI bits in byte N2 shall be extracted to enable single ended maintenance of a bi-directional tandem connection Trail. The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI) and 7.4.11 and 8.2 (RDI).

# N2[6], N2[7][74]:

(nOF\_B). The information carried in the OEI, ODI bits in byte N2 shall be extracted to enable single ended (intermediate) maintenance of a the VC-2 egressing the tandem connection Trail. The OEI (nOF\_B) shall be used to monitor the error performance of the other direction of transmission, and the ODI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Outgoing Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed equivalent to the remote maintenance case, as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI/OEI), subclause 7.4.11 and subclause 8.2 (RDI/ODI).

#### N2[7-8]:

Multiframe alignment:

The function shall perform a multiframe alignment on bits 7 and 8 of byte N2 to recover the TTI, RDI, and ODI signals transported within the multiframed bits. The multiframe alignment shall be found by searching for the pattern "1111 1111 1110" within the bits 7 and 8 of byte N2. The signal shall be continuously checked with the presumed multiframe start position for the alignment.

Frame alignment is deemed to have been lost (entering Out Of Multiframe (OOM) state) when two consecutive FAS are detected in error (i.e.  $\geq$  1 error in each FAS);

Frame alignment is deemed to have been recovered (entering In Multiframe (IM) state) when one non-errored FAS is found.

#### Defects:

#### TC Unequipped (dUNEQ):

The function shall detect for an unequipped Tandem Connection (UNEQ) condition by monitoring byte N2 for code "00000000". The algorithm shall be according subclause 8.2.1.2 of ETS 300 417-1-1 [1], in which "accepted TSL" shall be read as "accepted N2 byte". The defect is referred to as dUNEQ.

#### TC Loss of Tandem Connection (dLTC):

The function shall detect for the presence/absence of the tandem connection overhead in the byte N2 by evaluating the multiframe alignment signal in bits 7 and 8 of byte N2. The loss of tandem connection defect (dLTC) shall be detected if the multiframe alignment process is in the OOM state. The dLTC shall be cleared if the multiframe alignment process is in the IM state.

# TC Connectivity (Trace Identifier) (dTIM):

The function shall detect for a TC mis-connection condition by monitoring the TC trace identifier. The Trace Identifier Mismatch defect (dTIM) shall be detected and cleared within a maximum period of 4 s in the absence of bit errors.

The defect detection process and its operation during the presence of bit errors is for further study. The defect shall be suppressed during the receipt of SSF.

It shall be possible to disable the trace identifier mismatch defect detection (TIMdis).

#### TC Signal Degrade (dDEG):

The function shall detect for a TC signal degrade defect condition by monitoring for TC BIP2 violations. The algorithm shall be according subclause 8.2.1.4 of ETS 300 417-1-1 [1].

#### TC Remote Defect (dRDI):

The function shall detect for a TC remote defect indication defect condition by monitoring the TC RDI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

#### TC Remote Outgoing VC Defect (dODI):

The function shall detect for a TC remote outgoing VC defect indication defect condition by monitoring the TC ODI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

# Incoming AIS (dIncAIS):

The function shall detect for a tandem connection incoming AIS condition by monitoring bit 4 in byte N2 for code "1". If 5 consecutive VC-2 frames contain the value "1" in bit 4 a dlncAIS defect shall be detected. dlncAIS shall be cleared if in 5 consecutive VC-2 frames value "0" is detected in bit 4 of byte N2.

#### **Consequent Actions:**

aTSF  $\leftarrow$  CI\_SSF or dUNEQ or dTIM or dLTC

aTSD  $\leftarrow$  dDEG

Draft prETS 300 417-4c-1: April 1996

#### **Defect Correlations:**

The function shall perform the following defect correlations (refer to subclause 8.2.3 of ETS 300 417-1-1 [1]):

cUNEQ ← MON and dUNEQ

cLTC ← MON and (not dUNEQ) and dLTC

cTIM ← MON and (not dUNEQ) and (not dLTC) and dTIM

cDEG ← MON and (not dTIM) and (not dLTC) and dDEG

cSSF ← MON and CI\_SSF and SSF\_Reported

cRDI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dRDI and RDI Reported

cODI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dODI and ODI\_Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

It shall be an option to report ODI as a fault cause. This is controlled by means of the parameter ODI Reported. The default shall be ODI Reported = false.

#### **Performance Monitoring:**

The following TC error performance parameters shall be counted for each 1 second period (refer to subclauses 8.2.4 to 8.2.7 of ETS 300 417-1-1 [1])  $^{3}$ :

 $pN\_DS \leftarrow aTSF \ or \ dEQ$ 

 $pF_DS \leftarrow dRDI$ 

 $pN\_EBC \leftarrow \Sigma nN\_B$ 

 $pF\_EBC \leftarrow \Sigma nF\_B$ 

 $pOF_DS \leftarrow dODI$ 

pOF EBC  $\leftarrow \Sigma$ nOF B

pN\_EBC and pN\_DS does not represent the actual performance monitoring support within an equipment. For that, these pN\_DS/pN\_EBC signals must be connected to performance monitoring functions within the element management function. Similar for the far-end signals pF\_EBC and pF\_DS and for pOF\_EBC/pOF\_DS.

# History

| Document history |                |         |                          |
|------------------|----------------|---------|--------------------------|
| April 1996       | Public Enquiry | PE 105: | 1996-04-08 to 1996-08-30 |
|                  |                |         |                          |
|                  |                |         |                          |
|                  |                |         |                          |
|                  |                |         |                          |



# EUROPEAN TELECOMMUNICATION STANDARD

**DRAFT** pr **ETS 300 417-4d-1** 

**April 1996** 

Source: ETSI TC-TM Reference: DE/TM-01015-4-1

ICS: 33.020

Key words: Transmission, SDH, interface

# Transmission and Multiplexing (TM); Generic Functional Requirements for Synchronisation Digital Hierarchy (SDH) Equipment Part 4d-1: SDH Path Layer Functions

# **ETSI**

European Telecommunications Standards Institute

# **ETSI Secretariat**

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE

Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE

X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

\*

**Copyright Notification:** No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

| Praft prETS 300 417-4d-1: April 1 | 1996 |  |  |
|-----------------------------------|------|--|--|
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |
|                                   |      |  |  |

Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page.

# **Contents**

| Fore | word       |                |                                                                  | 5    |
|------|------------|----------------|------------------------------------------------------------------|------|
| 1    | Scope      |                |                                                                  | 7    |
| 2    | Normativ   | e References   | S                                                                | 7    |
| 3    | Definition | ns. Abbreviati | ons and Symbols                                                  | 7    |
|      | 3.1        |                |                                                                  |      |
|      | 3.2        |                | NS                                                               |      |
|      | 3.3        |                | Diagrammatic Conventions                                         |      |
|      | 3.4        |                |                                                                  |      |
| 4    | VC-4 Pa    | th Layer Fund  | etions                                                           | 10   |
| 5    | VC-3 Pa    | th Layer Fund  | ctions                                                           | 10   |
| •    | VC 2 Day   | th Laves Tune  | etions                                                           | 40   |
| 6    | VC-2 Pa    | ın Layer Func  | cions                                                            | 10   |
| 7    |            | ath Layer Fur  | nctions                                                          | 10   |
|      | 7.1        |                | r Connection Function S12_C                                      |      |
|      | 7.2        | VC-12 Trail    | Termination Functions                                            |      |
|      |            | 7.2.1          | VC-12 Trail Termination Source S12_TT_So                         |      |
|      |            | 7.2.2          | VC-12 Trail Termination Sink S12_TT_Sk                           |      |
|      | 7.3        | VC-12 Adap     | tation Functions                                                 |      |
|      |            | 7.3.1          | VC-12 to P12x Adaptation Source S12/P12x_A_So                    |      |
|      |            | 7.3.2          | VC-12 to P12x Adaptation Sink S12/P12x_A_Sk                      |      |
|      |            | 7.3.3          | VC-12 to P12s Adaptation Source S12/P12s_A_So                    |      |
|      |            |                | 7.3.3.1 Type 1 VC-12 to P12s Adaptation Sink S12/P12s-b_A_S      |      |
|      |            |                | 7.3.3.2 Type 2 VC-12 to P12s Adaptation Sink S12/P12s-a_A_S      |      |
|      |            | 7.3.4          | VC-12 to P12s Adaptation Sink S12/P12s_A_Sk                      |      |
|      |            |                | 7.3.4.1 Type 1 VC-12 to P12s Adaptation Sink S12/P12s-x_A_S      | k.35 |
|      |            |                | 7.3.4.2 Type 2 VC-12 to P12s Adaptation Sink S12/P12s-b_A_S      |      |
|      |            |                | 7.3.4.3 Type 3 VC-12 to P12s Adaptation Sink S12/P12s-a_A_S      |      |
|      |            | 7.3.5          | VC-12 to P0-31c Adaptation Source S12/P0-31c_A_So                |      |
|      |            | 7.3.6          | VC-12 to P0-31c Adaptation Sink S12/P0-31c_A_Sk                  | 49   |
|      |            | 7.3.7          | VC-12 Layer to TSS4 Adaptation Source S12/TSS4_A_So              |      |
|      |            | 7.3.8          | VC-12 Layer to TSS4 Adaptation Sink S12/TSS4_A_Sk                | 51   |
|      |            | 7.3.9          | VC-12 Layer to ATM Layer Compound Adaptation Source              |      |
|      |            |                | S12/ATM_A_So                                                     |      |
|      |            | 7.3.10         | VC-12 Layer to ATM Layer Compound Adaptation Sink S12/ATM_A_Sk.  |      |
|      | 7.4        |                | r Monitoring Functions                                           |      |
|      |            | 7.4.1          | VC-12 Layer Non-intrusive Monitoring Function S12m_TT_Sk         |      |
|      |            | 7.4.2          | VC-12 Layer Supervisory-Unequipped Termination Source S12s_TT_So |      |
|      |            | 7.4.3          | VC-12 Layer Supervisory-unequipped Termination Sink S12s_TT_Sk   |      |
|      | 7.5        |                | r Trail Protection Functions                                     | 60   |
|      |            | 7.5.1          | VC-12 Trail Protection Connection Functions S12P_C               | 60   |
|      |            |                | 7.5.1.1 VC-12 Layer 1+1 single ended Protection Connection       |      |
|      |            |                | Function S12P1+1se_C                                             | 60   |
|      |            |                | 7.5.1.2 VC-12 Layer 1+1 dual ended Protection Connection         |      |
|      |            |                | Function S12P1+1de_C                                             |      |
|      |            | 7.5.2          | VC-12 Layer Trail Protection Trail Termination Functions         |      |
|      |            |                | 7.5.2.1 VC-12 Protection Trail Termination Source S12P_TT_Sc     |      |
|      |            |                | 7.5.2.2 VC-12 Protection Trail Termination Sink S12P_TT_Sk       |      |
|      |            | 7.5.3          | VC-12 Layer Linear Trail Protection Adaptation Functions         | 66   |
|      |            |                | 7.5.3.1 VC-12 trail to VC-12 trail Protection Layer Adaptation   |      |
|      |            |                | Source S12/S12P A So                                             | 66   |

|          | 7.5.3.2                                   | VC-12 trail to VC-12 trail Protection Layer Adaptation Sin                                                                                             | k                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                           | S12/S12P_A_Sk                                                                                                                                          | 67                                                                                                                                                                                                                                                                                                                                                                                      |
| VC-12 Ta | andem Connect                             | tion Sublayer Functions                                                                                                                                | 68                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.6.1    | VC-12 Tand                                | dem Connection Trail Termination Source function                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                         |
|          | (S12D_TT_                                 | _So)                                                                                                                                                   | 68                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.6.2    | VC-12 Tand                                | dem Connection Trail Termination Sink function                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                         |
|          | (S12D_TT_                                 | _Sk)                                                                                                                                                   | 71                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.6.3    | VC-12 Tand                                | dem Connection to VC-12 Adaptation Source function                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                         |
|          | (S12D/S12                                 | _A_So)                                                                                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.6.4    | VC-12 Tand                                | dem Connection to VC-12 Adaptation Sink function                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                           |                                                                                                                                                        | 76                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.6.5    | VC-12 Tand                                | dem Connection non-intrusive Trail Termination Sink function                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                         |
|          | (S12Dm_T                                  | T_Sk)                                                                                                                                                  | 77                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                           |                                                                                                                                                        | 81                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 7.6.1<br>7.6.2<br>7.6.3<br>7.6.4<br>7.6.5 | VC-12 Tandem Connect 7.6.1 VC-12 Tan (S12D_TT_ 7.6.2 VC-12 Tan (S12D_TT_ 7.6.3 VC-12 Tan (S12D/S12 7.6.4 VC-12 Tan (S12D/S12 7.6.5 VC-12 Tan (S12D/S12 | S12/S12P_A_Sk  VC-12 Tandem Connection Sublayer Functions  7.6.1 VC-12 Tandem Connection Trail Termination Source function (S12D_TT_So)  7.6.2 VC-12 Tandem Connection Trail Termination Sink function (S12D_TT_Sk)  7.6.3 VC-12 Tandem Connection to VC-12 Adaptation Source function (S12D/S12_A_So)  7.6.4 VC-12 Tandem Connection to VC-12 Adaptation Sink function (S12D/S12_A_Sk) |

# **Foreword**

This draft European Telecommunications Standard (ETS) was produced by the Transmission and Multiplexing (TM) Technical Committee of the European Telecommunications Standards Institute (ETSI), and is now submitted for the Public Enquiry phase of the ETSI standards approval procedure.

This ETS has been produced in order to provide inter-vendor and inter-operator compatibility for Synchronous Digital Hierarchy (SDH) equipment.

This ETS consists of 8 parts as follows:

Part 1: "Generic processes and performance" (ETS 300 417-1-1). Part 2: "Physical section layer functions" (prETS 300 417-2-1).

Part 3: "STM-N regenerator and multiplex section layer functions" (prETS 300 417-3-1).

Part 4: "SDH path layer functions" (prETS 300 417-4-1).
Part 5: "PDH path layer functions" (prETS 300 417-5-1).

Part 6: "Synchronisation distribution layer functions" (prETS 300 417-6-1).

Part 7: "Auxiliary layer functions" (prETS 300 417-7-1).

Part 8: "Compound and major compound functions" (prETS 300 417-8-1).

This sub-part 4-1 of the ETS has been further split into five sub-parts to simplify the handling of the document. These sub-parts of prETS 300 417-4-1 have been identified as parts 4a-1 to 4e-1. To minimise delay and for Public Enquiry purposes, this set of five documents should be considered as one document (namely, prETS 300 417-4-1). During subsequent processing (the Voting stage) the documents will be merged into a single document.

Blank page

# 1 Scope

This ETS specifies a library of basic building blocks and a set of rules by which they are combined in order to describe a digital transmission equipment. The library comprises the functional building blocks needed to completely specify the generic functional structure of the European Digital Transmission Hierarchy. Equipment which is compliant with this standard must be describable as an interconnection of a subset of these functional blocks contained within this ETS. The interconnections of these blocks must obey the combination rules given. The generic functionality is described in ETS 300 417-1-1 [1].

# 2 Normative References

This draft ETS incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references subsequent amendments to, or revisions of, any of these publications apply to this ETS only when incorporated in it by amendments or revisions. For undated references the latest edition of the publication referred to applies.

| [1] | ETS 300 417-1-1 (1996): "Transmission and Multiplexing (TM); Generic functional requirements for Synchronous Digital Hierarchy (SDH) equipment; Part 1-1: Generic processes and performance".                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [2] | ETS 300 147 (1995): "Transmission and Multiplexing (TM); Synchronous Digital Hierarchy (SDH) Multiplexing structure".                                                                                         |
| [3] | prETS 300 417-3-1: "Transmission and Multiplexing (TM); Generic functional requirements for Synchronous Digital Hierarchy (SDH) equipment Part 3-1: STM-N regenerator and multiplex section layer functions". |
| [4] | prETS 300 417-5-1: "Transmission and Multiplexing (TM); Generic functional requirements for Synchronous Digital Hierarchy (SDH) equipment; Part 6-1: PDH path layer functions".                               |
| [5] | ITU-T Recommendation G.823 (1993): "The control of jitter and wander within digital networks which are based on the 2 048 kbit/s hierarchy".                                                                  |
| [6] | ITU-T Recommendation O.151 (1992): "Error performance measuring equipment operating at the primary rate and above".                                                                                           |
| [7] | ITU-T draft Recommendation O.181: "Equipment to assess error performance on STM-N interfaces".                                                                                                                |
| [8] | ITU-T Recommendation G.708: "Network Node Interace for the Synchronous Digital Hierarchy".                                                                                                                    |

# 3 Definitions, Abbreviations and Symbols

# 3.1 Definitions

The functional definitions are described in ETS 300 417-1-1 [1].

# 3.2 Abbreviations

For the purposes of this ETS, the following abbreviations apply:

A Adaptation function
AcTI Accepted Trace identifier
ADM Add-Drop Multiplexer
AI Adapted Information
AIS Alarm Indication Signal
AP Access Point

APId Access Point Identifier
APS Automatic Protection Switch

# Draft prETS 300 417-4d-1: April 1996

ATM Asynchronous Transfer Mode

AU Administrative Unit
AU-n Administrative Unit, level n
AUG Administrative Unit Group

BER Bit Error Ratio
BIP Bit Interleaved Parity

BIP-N Bit Interleaved Parity, width N

C Connection function
CI Characteristic Information

CK Clock

CM Connection Matrix
CP Connection Point
CS Clock Source

D Data

DCC Data Communications Channel

DEC Decrement DEG Degraded

DEGTHR Degraded Threshold EBC Errored Block Count

ECC Embedded Communications Channel

ECC(x) Embedded Communications Channel, Layer x

EDC Error Detection Code

EDCV Error Detection Code Violation
EMF Equipment Management Function

EQ Equipment
ES Electrical Section
ES Errored Second

ExTI Expected Trace Identifier

F\_B Far-end Block

FAS Frame Alignment Signal
FOP Failure Of Protocol
FS Frame Start signal
HO Higher Order

HOVC Higher Order Virtual Container

HP Higher order Path

ID Identifier
IF In Frame state
INC Increment
LC Link Connection
LO Lower Order

LOA Loss Of Alignment; generic for LOF, LOM, LOP

LOF Loss Of Frame
LOP Loss Of Pointer
LOS Loss Of Signal

LOVC Lower Order Virtual Container

MC Matrix Connection

MCF Message Communications Function

MDT Mean Down Time

mei maintenance event information
MI Management Information

MO Managed Object MON Monitored

MP Management Point MS Multiplex Section

MS1 STM-1 Multiplex Section
MS16 STM-16 Multiplex Section
MS4 STM-4 Multiplex Section
MSB Most Significant Bit

MSOH Multiplex Section Overhead
MSP Multiplex Section Protection
MSPG Multiplex Section Protection Group

N.C. Not Connected N\_B Near-end Block

Draft prETS 300 417-4d-1: April 1996

NC Network Connection
NDF New Data Flag
NE Network Element
NMON Not Monitored

NNI Network Node Interface
NU National Use (bits, bytes)
NUx National Use, bit rate order x

OAM Operation, Administration and Management

OFS Out of Frame Second
OOF Out Of Frame state
OS Optical Section

OSI(x) Open Systems Interconnection, Layer x

OW Order Wire Protection

P\_A Protection Adaptation
P\_C Protection Connection
P\_TT Protection Trail Termination
PDH Plesiochronous Digital Hierarchy
PJE Pointer Justification Event
PM Performance Monitoring
Pn Plesiochronous signal, Level n

POH Path Overhead

PRC Primary Reference Clock
PS Protection Switching
PSC Protection Switch Count

PTR Pointer

Quality Of Service QOS RDI Remote Defect Indicator REI Remote Error Indicator RΙ Remote Information RP Remote Point RS Regenerator Section RS1 STM-1 Regenerator Section **RS16** STM-16 Regenerator Section STM-4 Regenerator Section RS4 Regenerator Section Overhead **RSOH** Received Trace identifier RxTI

S4 VC-4 path layer

SASE Stand-Alone Synchronization Equipment

SD Synchronization Distribution layer, Signal Degrade

SDH Synchronous Digital Hierarchy

SEC SDH Equipment Clock

SF Signal Fail Sk Sink

SNC Sub-Network Connection

SNC/I Inherently monitored Sub-Network Connection protection SNC/N Non-intrusively monitored Sub-Network Connection protection

So Source

SOH Section Overhead
SPRING Shared Protection Ring
SR Selected Reference
SSD Server Signal Degrade
SSF Server Signal Fail

SSM Synchronization Status Message SSU Synchronization Supply Unit STM Synchronous Transport Module

STM-N Synchronous Transport Module, level N

TCP Termination Connection Point

TI Timing Information
TIM Trace Identifier Mismatch

TM Transmission\_Medium, Transmission & Multiplexing

TMN Telecommunications Management Network

TP Timing Point

# Page 10 Draft prETS 300 417-4d-1: April 1996

| TPmode | Termination Point mode |
|--------|------------------------|
|        |                        |

TS Time Slot

TSD Trail Signal Degrade
TSF Trail Signal Fail

TT Trail Termination function
TTI Trail Trace Identifier

TTs Trail Termination supervisory function

TxTI Transmitted Trace Identifier

UNEQ Unequipped

UNI User Network Interface

USR User channels
VC Virtual Container
VC-n Virtual Container, level n

W Working

# 3.3 Symbols and Diagrammatic Conventions

The symbols and diagrammatic conventions are described in ETS 300 417-1-1 [1].

# 3.4 Introduction

The atomic and some compound functions used in the SDH Path Layers are defined below.

# 4 VC-4 Path Layer Functions

Refer to part 4a-1 of this ETS (see Foreword for explanation).

# 5 VC-3 Path Layer Functions

Refer to part 4b-1 of this ETS (see Foreword for explanation).

# 6 VC-2 Path Layer Functions

Refer to part 4c-1 of this ETS (see Foreword for explanation).

# 7 VC-12 Path Layer Functions

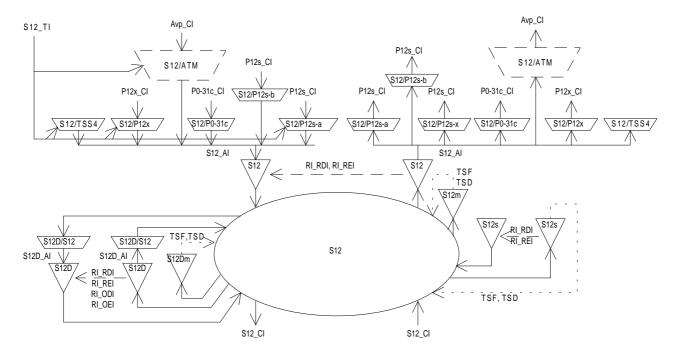



Figure 1: VC-12 Path layer functions

# VC-12 Layer Characteristic Information.

The Characteristic Information CI is octet structured with an 500 µs frame (Figure 2). Its format is characterised as S12 AI plus the VC-12 Trail Termination overhead in the V5 and J2 locations (1 byte each) as defined in ETS 300 147 [2] or as an unequipped signal as defined in ETS 300 417-1-1 [1]. For the case the signal has passed the tandem connection sublayer, S12\_CI has defined VC-12 tandem connection trail termination overhead in location N2.

- NOTE 1: N2 will be undefined when the signal S12\_CI has not been processed in a tandem connection adaptation and trail termination function. N2 is all "0"s in a (supervisory-)unequipped VC-12 signal.
- NOTE 2: Bit 4 of byte V5 is reserved for an application not supported by ETSI. Currently its value is undefined.

# VC-12 Layer Adaptation Information.

The Adaptation Information AI is octet structured with an  $500 \,\mu s$  frame. It represents adapted client layer information comprising 136 bytes of client layer information and the Signal Label bits 5,6, and 7 of the V5 byte. For the case the signal has passed the trail protection sublayer, S12\_AI has defined APS bits (1 to 4) in byte K4.

NOTE 3: Bits 1 to 4 of byte K4 will be undefined when the signal S12\_AI has not been processed in a trail protection connection function S12P\_C.

A VC-12 comprises one of the following payloads:

- a 2 048 kbit/s signal P12x\_Cl asynchronous mapped into a container-12;
- a 2 048 kbit/s signal P12s\_CI byte-synchronous mapped into a container-12;
- a 2 048 kbit/s signal P12s\_Cl asynchronous mapped into a container-12;
- a 1 984 kbit/s signal P0-31c\_CI byte-synchronous mapped into a container-12;
- a n x 64 kbit/s structured signal;
- an ATM 2 176 kbit/s cell stream signal.

Page 12 Draft prETS 300 417-4d-1: April 1996

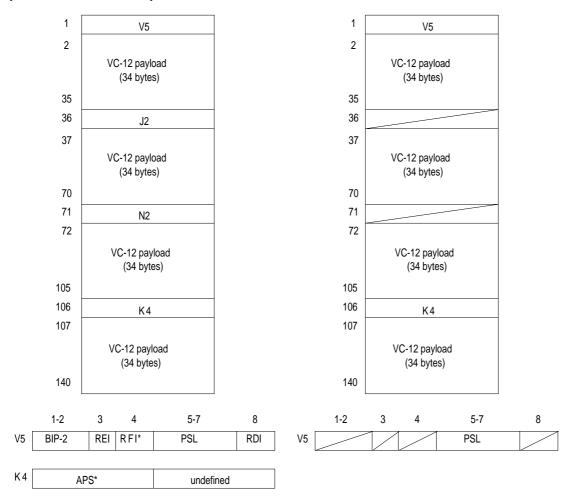



Figure 2: S12\_CI\_D (left) and S12\_AI\_D (right)

NOTE 4: The APS signal has not been defined; a multiframed APS signal might be required. The RFI signal is not supported within ETSI.

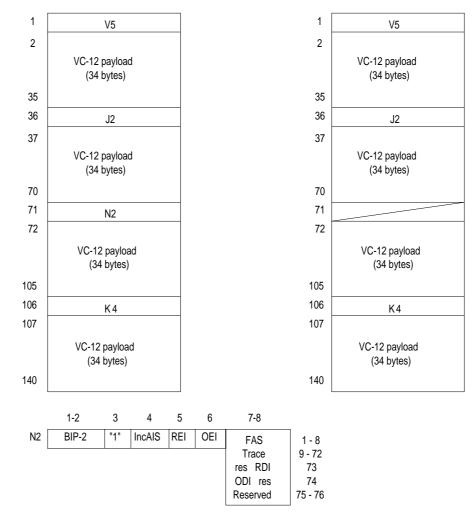



Figure 3: S12\_CI\_D (left) with defined N2 and S12D\_AI\_D (right)

Figure 4 shows the trail protection sublayer atomic functions added to (a subset of) the layer atomic functions presented in figure 1.

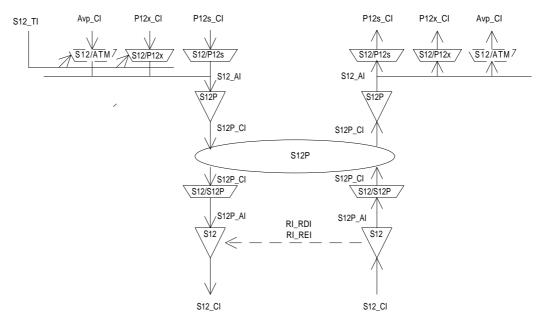



Figure 4: VC-12 Layer Trail Protection atomic functions

Page 14 Draft prETS 300 417-4d-1: April 1996

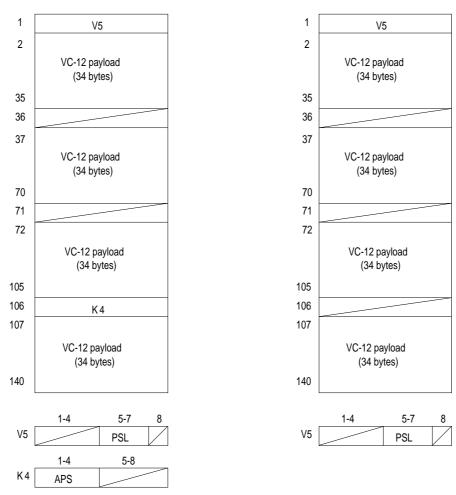



Figure 5: S12P\_AI\_D (left) and S12P\_CI\_D (right)

Figures 6 to 11 show connectivity examples of atomic functions associated with linear trail and SNC protection.

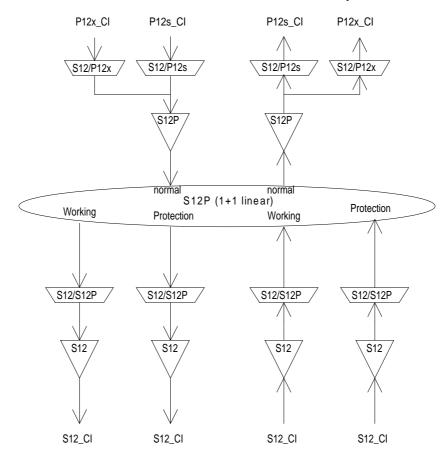



Figure 6: 1+1 VC-12 Linear Trail Protection model (example)

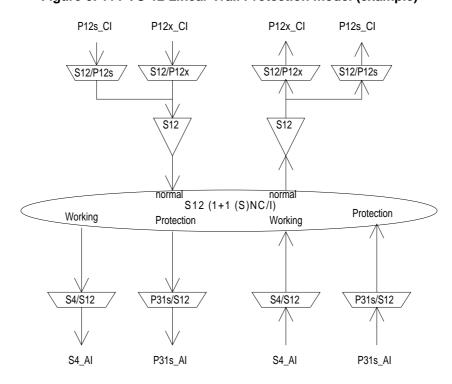



Figure 7: 1+1 VC-12 SNC/I protection model within a network element terminating the VC-12 path

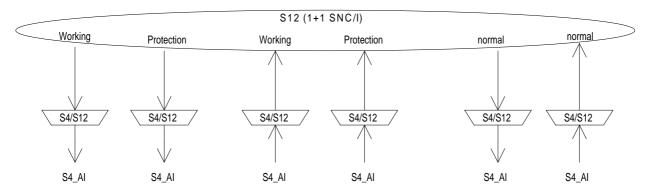



Figure 8: 1+1 VC-12 SNC/I protection model within a network element passing through the VC-12 signal (example)

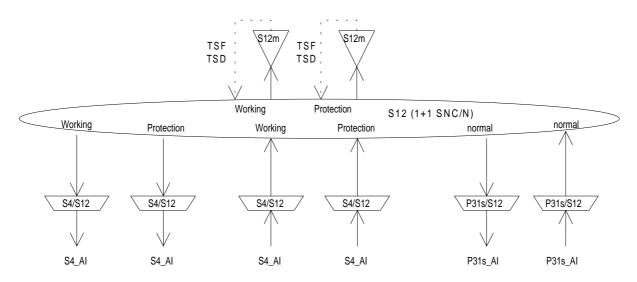



Figure 9: 1+1 VC-12 SNC/N protection model within a network element passing through the VC-12 signal (example)

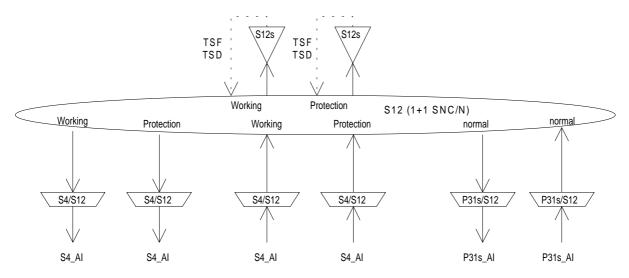



Figure 10: 1+1 VC-12 SNC/N protection model for a supervisory-unequipped signal within a network element passing through the VC-12 signal (example)

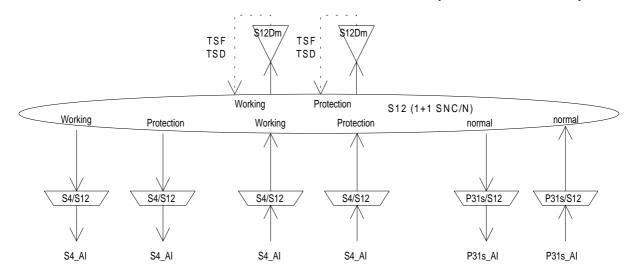



Figure 11: 1+1 VC-12 tandem connection SNC/S protection model within a network element passing through the VC-12 tandem signal (TC12) (example)

# 7.1 VC-12 Layer Connection Function S12\_C

# Symbol:

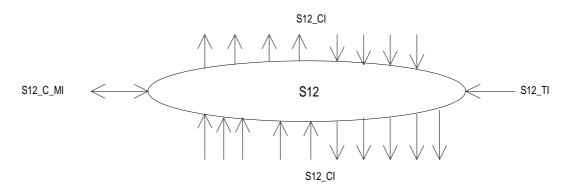



Figure 12: S12\_C symbol

#### Interfaces:

Table 1: S12\_C input and output signals

| Input(s)                               |             | Output(s)                                                  |
|----------------------------------------|-------------|------------------------------------------------------------|
| per S12_CI, n x for the function:      | per S12_CI, | m x per function:                                          |
| S12_CI_D                               | S12_CI_D    |                                                            |
| S12_CI_CK                              | S12_CI_CK   |                                                            |
| S12_CI_FS                              | S12_CI_FS   |                                                            |
| S12_CI_SSF                             | S12_CI_SS   | F                                                          |
| S12_AI_TSF                             |             |                                                            |
| S12_AI_TSD                             | NOTE:       | protection status reporting signals are for further study. |
| 1 x per function:                      |             |                                                            |
| S12_TI_CK                              |             |                                                            |
| S12_TI_FS                              |             |                                                            |
|                                        |             |                                                            |
| per input and output connection point: |             |                                                            |
| S12_C_MI_ConnectionPortIds             |             |                                                            |
|                                        |             |                                                            |
| per matrix connection:                 |             |                                                            |
| S12_C_MI_ConnectionType                |             |                                                            |
| S12_C_MI_Directionality                |             |                                                            |
|                                        |             |                                                            |
| per SNC protection group:              |             |                                                            |
| S12_C_MI_PROTtype                      |             |                                                            |
| S12_C_MI_OPERtype                      |             |                                                            |
| S12_C_MI_WTRtime                       |             |                                                            |
| S12_C_MI_HOtime                        |             |                                                            |
| S12_C_MI_EXTCMD                        |             |                                                            |

#### Processes:

In the S12\_C function VC-12 Layer Characteristic Information is routed between input (termination) connection points ((T)CPs) and output (T)CPs by means of matrix connections. (T)CPs may be allocated within a protection group.

NOTE 1: Neither the number of input/output signals to the connection function, nor the connectivity is specified in this ETS. That is a property of individual network elements.

Figure 1 present a subset of the atomic functions that can be connected to this VC-12 connection function: VC-12 trail termination functions, VC-12 non-intrusive monitor trail termination sink function, VC-12 unequipped-supervisory trail termination functions, VC-12 tandem connection trail termination and adaptation functions. In addition, adaptation functions in the VC-12 server (e.g. VC-4, P31s, P4s) layers will be connected to this VC-12 connection function.

# Routing:

The function shall be able to connect a specific input with a specific output by means of establishing a matrix connection between the specified input and output. It shall be able to remove an established matrix connection.

Each (matrix) connection in the S12 C function shall be characterised by the:

| Type of connection:                 | unprotected, 1+1 protected (SNC/I or SNC/N protection)                              |
|-------------------------------------|-------------------------------------------------------------------------------------|
| Traffic direction:                  | unidirectional, bidirectional                                                       |
| Input and output connection points: | set of connection point identifiers (refer to ETS 300 417-1-1 [1], subclause 3.3.6) |

NOTE 2: Broadcast connections are handled as separate connections to the same input CP.

Provided no protection switching action is activated/required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- addition and removal of protection;
- addition and removal of connections to/from a broadcast connection;
- change between operation types;
- change of WTR time;
- change of Hold-off time.

#### Unequipped VC generation:

The function shall generate an unequipped VC signal, as specified in ETS 300 417-1-1 [1], subclause 7.2.

#### SNC protection:

The function shall provide the option to establish protection groups between a number of (T)CPs (pr ETS 300 417-1-1 [1], subclause 9.4.1 and subclause 9.4.2) to perform the VC-12 linear (sub)network connection protection process for 1+1 protection architectures (refer to ETS 300 417-1-1 [1], subclause 9.2). The SNC protection process shall perform the bridge and selector functionality as presented in figure 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the working connection or the protection connection; this is determined by the SF,SD conditions (relayed via CI\_SSF or AI\_TSF/AI\_TSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

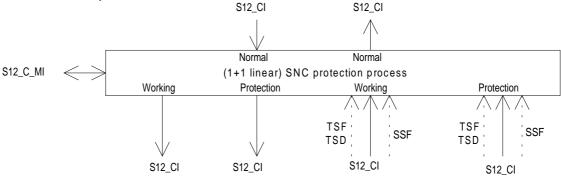



Figure 13: VC-12 1+1 SNC protection process (SNC/I, SNC/N)

# SNC Protection Operation:

The SNC protection process shall operate as specified in prETS 300 417-3-1 [3] Annex A, according the following characteristics:

**Table 2: SNC protection parameters** 

| architecture type (ARCHtype)   | 1+1                                             |
|--------------------------------|-------------------------------------------------|
| switching type (SWtype)        | single-ended                                    |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | false                                           |
| Wait-To-Restore time (WTRtime) | in the order of 5 to 12 minutes                 |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | SNC/I, SNC/N                                    |
| Signal switch conditions:      | SF = SSF (SNC/I), SF = TSF (SNC/N, SNC/S),      |
|                                | SD = TSD (SNC/N, SNC/S)                         |
| External commands (EXTMND)     | LO-#0, FSw-#i, MSw-#i, CLR; i = 0, 1            |
| Extra traffic (EXTRAtraffic)   | false                                           |

In the sink case of a protection connection the source of the connection is determined by the SF (and SD) signals associated with each of the two inputs to the connection and the possible external switch requests. The set of SF and SD signals used, is controlled by the protection type setting.

#### Defects:

None.

# **Consequent Actions:**

If an output of this function is not connected to one of its inputs, the function shall connect the unequipped VC-12 (with valid frame start (FS) and SSF=false) to the output.

# **Defect Correlations:**

None.

# **Performance Monitoring:**

None.

# 7.2 VC-12 Trail Termination Functions

# 7.2.1 VC-12 Trail Termination Source S12\_TT\_So

#### Symbol:

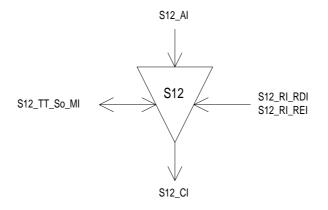



Figure 14: S12\_TT\_So symbol

#### Interfaces:

Table 3: S12\_TT\_So input and output signals

| Input(s)          | Output(s) |
|-------------------|-----------|
| S12_AI_D          | S12_CI_D  |
| S12_AI_CK         | S12_CI_CK |
| S12_AI_FS         | S12_CI_FS |
| S12_RI_RDI        |           |
| S12_RI_REI        |           |
| S12_TT_So_MI_TxTI |           |

#### **Processes:**

This function adds error monitoring and status and control overhead bits to the S12\_AI as defined in ETS 300 147 [2]. The processing of the trail overhead is defined as follows:

# **J2**:

In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in ETS 300 417-1-1 [1], subclause 7.1.

# V5[3]:

The signal value applied at RI\_REI shall be inserted in the VC-12 REI, bit 3 of byte V5. The coding shall be as follows:

Table 4: V5[3] coding

| Number of BIP-2<br>violations<br>conveyed via<br>RI_REI | V5[3] |
|---------------------------------------------------------|-------|
| 0                                                       | 0     |
| 1                                                       | 1     |
| 2                                                       | 1     |

# V5[8]:

Bit 8 of byte V5, a RDI indication, shall be set to "1" on activation of S12\_RI\_RDI within 1 000  $\mu$ s, determined by the associated S12\_TT\_Sk function, and set to "0" within 1 000  $\mu$ s on clearing of S12\_RI\_RDI.

# V5[1-2]:

In these bits the function shall insert the BIP-2 EDC with even bit parity. Each bit of current bits 1 or 2 is computed to provide even parity over the associated (odd and even) bits of every byte in the previous frame of the Characteristic Information S12\_CI, i.e., bits 1 and 2 are calculated over the entire previous VC-12. Further reference is provided in ETS 300 417-1-1 [1], subclause 7.3.

# K4[5-8]:

The value of the bits 5 to 8 of byte K4 is undefined.

Defects:

None.

**Consequent Actions:** 

None.

**Defect Correlations:** 

None.

# **Performance Monitoring:**

None.

# 7.2.2 VC-12 Trail Termination Sink S12\_TT\_Sk

# Symbol:

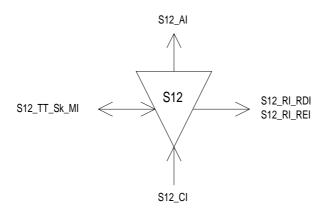



Figure 15: S12\_TT\_Sk symbol

#### Interfaces:

Table 5: S12\_TT\_Sk input and output signals

| Input(s)                  | Output(s)           |
|---------------------------|---------------------|
| S12_CI_D                  | S12_AI_D            |
| S12_CI_CK                 | S12_AI_CK           |
| S12_CI_FS                 | S12_AI_FS           |
| S12_CI_SSF                | S12_AI_TSF          |
|                           | S12_AI_TSD          |
| S12_TT_Sk_MI_TPmode       | S12_TT_Sk_MI_cTIM   |
| S12_TT_Sk_MI_SSF_Reported | S12_TT_Sk_MI_cUNEQ  |
| S12_TT_Sk_MI_ExTI         | S12_TT_Sk_MI_cDEG   |
| S12_TT_Sk_MI_RDI_Reported | S12_TT_Sk_MI_cRDI   |
| S12_TT_Sk_MI_DEGTHR       | S12_TT_Sk_MI_cSSF   |
| S12_TT_Sk_MI_DEGM         | S12_TT_Sk_MI_AcTI   |
| S12_TT_Sk_MI_1second      | S12_RI_RDI          |
| S12_TT_Sk_MI_TIMdis       | S12_RI_REI          |
| S12_TT_Sk_MI_ExTImode     | S12_TT_Sk_MI_pN_EBC |
|                           | S12_TT_Sk_MI_pN_DS  |
|                           | S12_TT_Sk_MI_pF_EBC |
|                           | S12_TT_Sk_MI_pF_DS  |

#### **Processes:**

This function monitors VC-12 for errors, and recovers the trail termination status. It extracts the payload independent overhead bytes/bits (J2, V5[1-2], V5[3], V5[5-7], V5[8]) from the VC-12 layer Characteristic Information:

# J2:

The Received Trail Trace Identifier RxTI shall be recovered from the J2 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3.

# V5[1-2]:

Even bit parity is computed for each bit pair of every byte of the preceding VC-12 including V5 and compared with bit 1 and 2 of V5 recovered from the current frame. A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block.

# V5[3], V5[8]:

The information carried in the bits 3 and 8 of the V5 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 8) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI), subclause 7.4.11 and subclause 8.2 (RDI).

# K4[5-8]:

The value in the bits 5 to 8 of byte K4 shall be ignored.

Table 6: V5[3] code interpretation

| V5[3] | REI code interpretation |
|-------|-------------------------|
| 0     | 0 errored blocks        |
| 1     | 1 errored block         |

# V5[5-7]:

The information in bits 5 to 7 of byte V5 shall be extracted to allow unequipped VC defect detection.

#### Defects:

The function shall detect for dDEG, dRDI, dUNEQ and dTIM defects according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

# **Consequent Actions:**

aAIS ← dUNEQ or dTIM

 $\mathsf{aTSF} \leftarrow \quad \mathsf{CI\_SSF} \ \mathsf{or} \ \mathsf{dUNEQ} \ \mathsf{or} \ \mathsf{dTIM}$ 

aRDI  $\leftarrow$  CI\_SSF or dUNEQ or dTIM

 $aTSD \leftarrow dDEG$ 

aREI ← "#EDCV"

On declaration of aAIS the function shall output all-ONEs signal within 1 000  $\mu$ s; on clearing of aAIS the function shall output normal data within 1 000  $\mu$ s.

# **Defect Correlations:**

cUNEQ ← dUNEQ and MON

cTIM  $\leftarrow$  dTIM and (not dUNEQ) and MON

cDEG ← dDEG and (not dTIM) and MON

cRDI ← dRDI and (not dUNEQ) and (not dTIM) and MON and RDI Reported

 $cSSF \leftarrow CI\_SSF$  and MON and  $SSF\_Reported$ 

# Draft prETS 300 417-4d-1: April 1996

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

#### **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $pN_DS \leftarrow aTSF \text{ or } dEQ$ 

 $pF_DS \leftarrow dRDI$ 

 $pN\_EBC \leftarrow \Sigma nN\_B$ 

 $pF\_EBC \leftarrow \Sigma nF\_B$ 

# 7.3 VC-12 Adaptation Functions

# 7.3.1 VC-12 to P12x Adaptation Source S12/P12x\_A\_So

# Symbol:

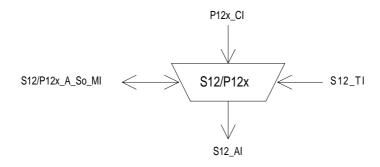



Figure 16: S12/P12x A So symbol

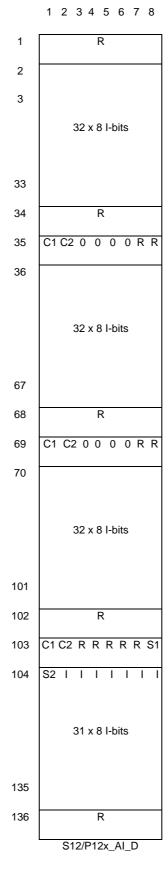

#### Interfaces:

Table 7: S12/P12x\_A\_So input and output signals

| Input(s)                | Output(s) |
|-------------------------|-----------|
| P12x_CI_D               | S12_AI_D  |
| P12x_CI_CK              | S12_AI_CK |
| S12_TI_CK               | S12_AI_FS |
| S12_TI_FS               |           |
| S12/P12x_A_So_MI_Active |           |

# **Processes:**

This function maps a 2 048 kbit/s information stream into a VC-12 payload using bit stuffing and adds bits 5 to 7 of byte V5. It takes P12x\_CI, a bit-stream with a rate of 2 048 kbit/s  $\pm$  50 ppm, present at its input and inserts it into the synchronous container-12 having a capacity of 136 bytes and the justification frame as defined in ETS 300 147 [2] and depicted in figure 17.



 $\label{eq:local_local_local_local_local} \begin{tabular}{ll} Legend: I = Information Bit, R = Fixed Stuff, \\ S1,S2 = Justification Opportunity Bit, C1,C2 = Justification Control Bit \\ \end{tabular}$ 

Figure 17: 2 Mbit/s asynchronous mapped into a Container-12 (using bit justification)

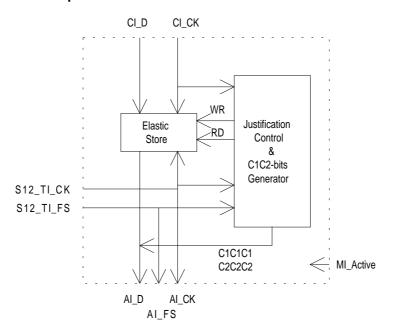



Figure 18: main processes within S12/P12x A So

# Frequency justification and bit rate adaptation:

The function shall provide for an elastic store (buffer) process (figure 18). The data signal shall be written into the buffer under control of the associated input clock. The data shall be read out of the buffer and written onto the I, S1, S2 bits under control of the VC-12 clock, frame position (S12\_TI), and justification decisions.

The justification decisions determine the phase error introduced by the S12/P12x\_A\_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the justification control bits C1C2 (figure 17). An example is given in Annex A.3.

Each justification decision results in a corresponding positive or negative justification action. Upon a positive justification action, the reading of 1 data bit shall be cancelled once and no data are written at the justification opportunity bit S2 and no data are written onto S1. Upon a negative justification action, 1 extra data bit shall be read once and written onto the justification opportunity bit S1 and data shall be written onto S2. If neither a positive nor a negative justification action is to be performed, either no data shall be written onto S1 and data shall be written onto S2, or vice versa.

NOTE: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced.

# Buffer size:

In the presence of jitter as specified by ITU-T Recommendation G.823 [5] and a frequency within the range 2 048 kbit/s  $\pm$  50 ppm, this justification process shall not introduce any errors. Any step in frequency within this range shall not cause any errors.

# C1C2 bits:

Justification control generation:

The function shall generate the justification control (C1,C2) bits according the specification in ETS 300 147 [2]. It shall insert the justification control bits in the appropriate C1C2 bit positions.

Three bits of payload specific POH information, V5[5-7], shall be added to container-12 to form the VC-12 AI and a fixed Frame Start (FS) shall be generated.

# V5[5-7]:

In these bits the function shall insert code "010" (Asynchronous mapping of 2 048 kbit/s into the Container-12) as defined in ETS 300 147 [2].

#### O bits:

The value of the O bits is undefined.

Draft prETS 300 417-4d-1: April 1996

#### R bits:

The value of an R bit is undefined.

Figure 1 shows that more than one adaptation source function exists in this VC-12 layer that can be connected to one VC-12 access point. For such case, a subset of these adaptation source functions is allowed to be activated together. For this subset, access to the access point by other adaptation source functions must be denied.

# Activation:

The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

# **Defects:**

None.

An elastic store under/overflow defect (dUOF) is for further study.

# **Consequent Actions:**

None.

# **Defect Correlations:**

None.

# **Performance Monitoring:**

None.

# 7.3.2 VC-12 to P12x Adaptation Sink S12/P12x\_A\_Sk

# Symbol:

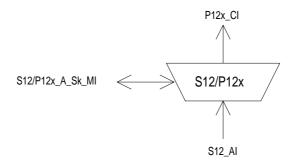



Figure 19: S12/P12x\_A\_Sk symbol

# Interfaces:

Table 8: S12/P12x\_A\_Sk input and output signals

| Input(s)                | Output(s)             |
|-------------------------|-----------------------|
| S12_AI_D                | P12x_CI_D             |
| S12_AI_CK               | P12x_CI_CK            |
| S12_AI_FS               | S12/P12x_A_Sk_MI_cPLM |
| S12_AI_TSF              | S12/P12x_A_Sk_MI_AcSL |
|                         |                       |
| S12/P12x_A_Sk_MI_Active |                       |

Draft prETS 300 417-4d-1: April 1996

#### Processes:

The function recovers plesiochronous P12x Characteristic Information (2 048 kbit/s  $\pm$  50 ppm) from the synchronous container-12 with a frequency accuracy within  $\pm$  4,6 ppm according to ETS 300 147 [2] , and monitors the reception of the correct payload signal type.

### V5[5-7]:

The function shall compare the content of the accepted bits 5 to 7 of byte V5 with the expected value code "010" (Asynchronous mapping of 2 048 kbit/s into the Container-12) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclause 7.2 and 8.1.2.

## R bits:

The value in the R bits shall be ignored.

#### O bits:

The value in the O bits shall be ignored.

#### C1C2 bits:

Justification control interpretation:

The function shall perform justification control interpretation according ETS 300 147 [2] to recover the 2 048 kbit/s signal from the VC-12. If the majority of the C1 bits is "0" the S1 bit shall be taken as a data bit, otherwise (majority of C1 bits is "1") S1 bit shall be taken as a justification bit and consequently ignored. If the majority of the C2 bits is "0" S2 bit shall be taken as a data bit, otherwise (majority of C2 bits is "1") S2 bit shall be taken as a justification bit and consequently ignored.

NOTE:

A negative justification is effectuated if the majority of C1 bits and the majority of C2 bits is "0". A positive justification is effectuated if the majority of the C1 bits and the majority of C2 bits is "1". The other combinations (C1 majority is "0" and C2 majority is "1", or C1 majority is "1" and C2 majority is "0") do not result in an actual justification.

# Smoothing & jitter limiting process:

The function shall provide for a clock smoothing and elastic store (buffer) process. The 2 048 kbit/s data signal shall be written into the buffer under control of the associated (gapped) input clock with a frequency accuracy within  $\pm$  4,6 ppm. The data signal shall be read out of the buffer under control of a smoothed (equally spaced) 2 048 kHz  $\pm$  50 ppm clock (the rate is determined by the 2 Mbit/s signal at the input of the remote S12/P12x\_A\_So). The residual jitter caused by pointer adjustments and bit justifications (measured at the 2 048 kbit/s interface) shall be within the limits specified in subclause 11.3.1.2 of ETS 300 417-1-1 [1].

# Buffer size:

In the presence of jitter as specified by subclause 11.3.1.2 of ETS 300 417-1-1 [1] and a frequency within the range 2 048 kbit/s  $\pm$  50 ppm, this justification process shall not introduce any errors.

Following a step in frequency of the P12x signal transported by the S12\_AI (for example due to reception of P12x\_CI from a new P12x\_TT\_So at the far end or removal of all-ONEs (AIS) signal with a frequency offset) there will be a maximum recovery time of X seconds after which this process shall not generate any bit errors.

The value of X is for further study; a value of 1 second has been proposed.

Figure 1 shows that more than one adaptation sink function exists in this VC-12 layer that can be connected to one VC-12 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

#### Activation:

The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via the management point.

### **Defects:**

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

# **Consequent Actions:**

aAIS  $\leftarrow$  AI\_TSF or dPLM

On declaration of the aAIS the function shall output an all-ONEs (AIS) signal in the P12x\_CI\_D within 1 000  $\mu$ s; on clearing of aAIS the function shall output normal data within 1 000  $\mu$ s. The P12x\_CI\_CK during the all-ONEs signal shall be within 2 048 kHz  $\pm$  50 ppm.

### **Defect Correlations:**

 $cPLM \leftarrow dPLM \text{ and (not AI\_TSF)}$ 

## **Performance Monitoring:**

None.

## 7.3.3 VC-12 to P12s Adaptation Source S12/P12s\_A\_So

Two types of S12/P12s\_A\_So functions are defined:

- type 1 for byte synchronous mapped P12s\_CI: S12/P12s-b\_A\_So;
- type 2 for asynchronous mapped P12s\_CI: S12/P12s-a\_A\_So.

### 7.3.3.1 Type 1 VC-12 to P12s Adaptation Sink S12/P12s-b A So

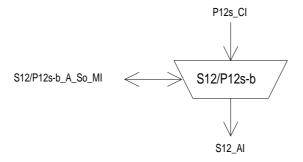



Figure 20: S12/P12s-b\_A\_So symbol

Draft prETS 300 417-4d-1: April 1996

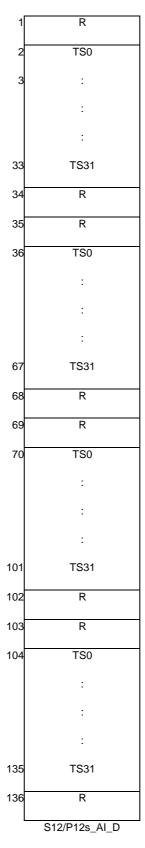

## Interfaces:

Table 9: S12/P12s-b\_A\_So input and output signals

| Input(s)                  | Output(s) |
|---------------------------|-----------|
| P12s_CI_D                 | S12_AI_D  |
| P12s_CI_CK                | S12_AI_CK |
| P12s_CI_FS                | S12_AI_FS |
| P12s_CI_SSF               |           |
| S12/P12s-b_A_So_MI_Active |           |

## **Processes:**

This function byte-synchronously maps a synchronous octet structured 2 048 kbit/s information stream into a VC-12 payload and adds bits 5 to 7 of byte V5. It takes P12s\_CI, a bit-stream with a rate of 2 048 kbit/s  $\pm$  4,6 ppm (nominally locked to a PRC), present at its input and inserts it into the synchronous container-12 having a capacity of 136 bytes and a frame as defined in ETS 300 147 [2] and depicted in figure 21.



Legend: R = Fixed Stuff, TS = Time Slot (of structured 2 048 kbit/s signal)

Figure 21: 2 048 kbit/s byte synchronous mapping into Container 12

Bitrate adaptation:

The function shall provide for a (35/32) clock multiplier process taking P12s\_CI\_CK as input to generate the VC-12 clock signal S12\_AI\_CK (figure 22).

The function shall provide for a buffer process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the VC-12 clock. No data shall be read out of the buffer at the VC-12 POH byte positions (figure 2) and fixed stuff "R" byte positions (figure 21).

The function shall convert the P12s frame start signal (P12s\_CI\_FS) identifying TS0 position into a VC-12 frame start signal (S12\_AI\_FS) identifying V5 byte position.

#### Buffer size:

The length of the buffer shall be such that the above process shall not introduce errors.

NOTE:

Contrary to the asynchronous mapping, this byte-synchronous mapping process locks the VC-12 to the 2 Mbit/s signal's bitrate and frame phase. Frequency and/or phase differences between the 2 Mbit/s signal (mapped into the VC-12 signal) and the network element clock (TI\_CK) generated within the synchronisation distribution layer are accommodated via TU-12 pointer adjustments.

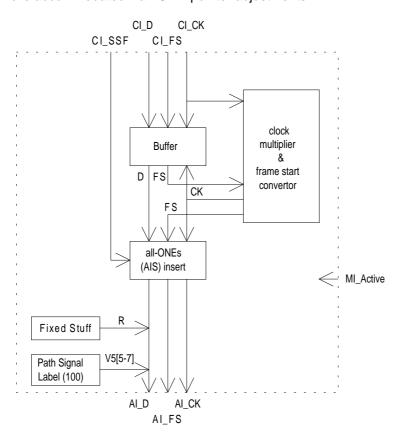



Figure 22: main processes within S12/P12s A So

Three bits of payload specific POH information, V5[5-7], shall be added to container-12 to form the VC-12 Al and a fixed Frame Start (FS) shall be generated.

### V5[5-7]:

In these bits the function shall insert code "100" (byte-synchronous mapping of 2 048 kbit/s into the Container-12) as defined in ETS 300 147 [2].

#### R bits:

The value of an R bit is undefined.

Figure 1 shows that more than one adaptation source function exists in this VC-12 layer that can be connected to one VC-12 access point. For such case, a subset of these adaptation source functions is

allowed to be activated together. For this subset, access to the access point by other adaptation source functions must be denied.

#### Activation:

The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

#### Defects:

None.

## **Consequent Actions:**

On declaration of the aAIS the function shall output an all-ONEs (AIS) signal within the bytes carrying TS0 to TS31:with a frequency accuracy of  $\pm$  4,6 ppm - and an associating VC-12 frame start signal within 250 µs; on clearing of aAIS the function shall output normal data within 250 µs.

### **Defect Correlations:**

None.

## **Performance Monitoring:**

None.

# 7.3.3.2 Type 2 VC-12 to P12s Adaptation Sink S12/P12s-a\_A\_So

### Symbol:

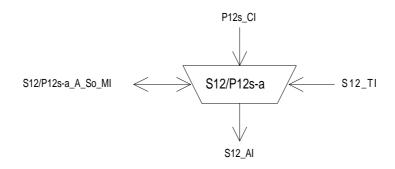



Figure 23: S12/P12s-a\_A\_So symbol

### Interfaces:

Table 10: S12/P12s-a\_A\_So input and output signals

| Input(s)                  | Output(s) |
|---------------------------|-----------|
| P12s_CI_D                 | S12_AI_D  |
| P12s_CI_CK                | S12_AI_CK |
| S12_TI_CK                 | S12_AI_FS |
| S12_TI_FS                 |           |
| S12/P12s-a_A_So_MI_Active |           |

# **Processes:**

This function maps a 2 048 kbit/s information stream into a VC-12 payload using bit stuffing and adds bits 5 to 7 of byte V5. It takes P12s\_CI, a bit-stream with a rate of 2 048 kbit/s  $\pm$  4,6 ppm, present at its input and inserts it into the synchronous container-12 having a capacity of 136 bytes and the justification frame as defined in ETS 300 147 [2] and depicted in figure 17.

## Draft prETS 300 417-4d-1: April 1996

Frequency justification and bit rate adaptation:

The function shall provide for an elastic store (buffer) process (figure 18). The data signal shall be written into the buffer under control of the associated input clock. The data shall be read out of the buffer and written onto the I, S1, S2 bits under control of the VC-12 clock, frame position (S12\_TI), and justification decisions.

The justification decisions determine the phase error introduced by the S12/P12s-a\_A\_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the justification control bits C1C2 (figure 17). An example is given in Annex A.3.

Each justification decision results in a corresponding positive or negative justification action. Upon a positive justification action, the reading of 1 data bit shall be cancelled once an no data are written at the justification opportunity bit S2 and no data are written onto S1. Upon a negative justification action, 1 extra data bit shall be read once and written onto the justification opportunity bit S1 and data shall be written onto S2. If neither a positive nor a negative justification action is to be performed, either no data shall be written onto S1 and data shall be written onto S2, or vice versa.

NOTE: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced.

#### Buffer size:

In the presence of jitter as specified by ITU-T Recommendation G.823 [5] and a frequency within the range 2 048 kbit/s  $\pm$  4,6 ppm, this justification process shall not introduce any errors. Any step in frequency within this range shall not cause any errors.

#### C1C2 bits:

Justification control generation:

The function shall generate the justification control (C1,C2) bits according the specification in ETS 300 147 [2]. It shall insert the justification control bits in the appropriate C1C2 bit positions.

Three bits of payload specific POH information, V5[5-7], shall be added to container-12 to form the VC-12 Al and a fixed Frame Start (FS) shall be generated.

# V5[5-7]:

In these bits the function shall insert code "010" (Asynchronous mapping of 2 048 kbit/s into the Container-12) as defined in ETS 300 147 [2].

#### O bits:

The value of the O bits is undefined.

#### R bits:

The value of an R bit is undefined.

Figure 1 shows that more than one adaptation source function exists in this VC-12 layer that can be connected to one VC-12 access point. For such case, a subset of these adaptation source functions is allowed to be activated together. For this subset, access to the access point by other adaptation source functions must be denied.

#### Activation:

The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

### **Defects:**

None.

An elastic store under/overflow defect (dUOF) is for further study.

# **Consequent Actions:**

None.

Draft prETS 300 417-4d-1: April 1996

#### **Defect Correlations:**

None.

### **Performance Monitoring:**

None.

# 7.3.4 VC-12 to P12s Adaptation Sink S12/P12s\_A\_Sk

Three types of S12/P12s\_A\_Sk functions are defined:

- type 1 when the recovered byte synchronously mapped P12s\_CI is passed through the P12s layer towards another server layer (e.g. E12, P22e): S12/P12s-x\_A\_So;
- type 2 when the recovered byte synchronously mapped P12s\_CI is terminated in the P12s layer. In this case, an additional frame phase recovery process is required: S12/P12s-b\_A\_Sk;
- type 3 when the recovered asynchronously mapped P12s\_CI is terminated in the P12s layer. In this
  case, an additional frame phase recovery process is required: S12/P12s-a\_A\_Sk.

# 7.3.4.1 Type 1 VC-12 to P12s Adaptation Sink S12/P12s-x\_A\_Sk

### Symbol:



Figure 24: S12/P12s-x\_A\_Sk symbol

### Interfaces:

Table 11: S12/P12s-x\_A\_Sk input and output signals

| Input(s)                  | Output(s)               |
|---------------------------|-------------------------|
| S12_AI_D                  | P12s_CI_D               |
| S12_AI_CK                 | P12s_CI_CK              |
| S12_AI_FS                 | P12s_CI_SSF             |
| S12_AI_TSF                | S12/P12s-x_A_Sk_MI_cPLM |
| S12/P12s-x_A_Sk_MI_Active | S12/P12s-x_A_Sk_MI_AcSL |

# **Processes:**

The function recovers byte-synchronous mapped P12s Characteristic Information (2 048 kbit/s  $\pm$  4,6 ppm) from the synchronous container-12 with a frequency accuracy within  $\pm$  4,6 ppm according to ETS 300 147 [2], and monitors the reception of the correct payload signal type.

# V5[5-7]:

The function shall compare the content of the accepted bits 5 to 7 of byte V5 with the expected value code "100" (byte-synchronous mapping of 2 048 kbit/s into the Container-12) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclauses 7.2 and 8.1.2.

## Draft prETS 300 417-4d-1: April 1996

### Smoothing & jitter limiting process:

The function shall provide for a clock smoothing and elastic store (buffer) process. The 2 048 kbit/s data signal shall be written into the buffer under control of the associated (gapped) input clock with a frequency accuracy within  $\pm$  4,6 ppm. The data signal shall be read out of the buffer under control of a smoothed (equally spaced) 2 048 kHz  $\pm$  4,6 ppm clock (the rate is determined by the 2 Mbit/s signal at the input of the remote S12/P12s\_A\_So). The residual jitter caused by pointer adjustments (measured at the 2 048 kbit/s interface) shall be within the limits specified in subclause 11.3.1.2 of ETS 300 417-1-1 [1].

### Buffer size:

In the presence of jitter as specified by subclause 11.3.1.2 of ETS 300 417-1-1 [1] and a frequency within the range 2 048 kbit/s  $\pm$  4,6 ppm, this justification process shall not introduce any errors.

Following a step in frequency of the P12s\_CI signal transported by the S12\_AI (for example due to reception of P12s\_CI from a new P12s\_TT\_So at the far end or removal of all-ONEs (AIS) signal with a frequency offset) there will be a maximum recovery time of X seconds after which this process shall not generate any bit errors.

The value of X is for further study; a value of 1 second has been proposed.

Figure 1 shows that more than one adaptation sink function exists in this VC-12 layer that can be connected to one VC-12 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

#### Activation:

The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via the management point.

#### R bits:

The value in the R bits shall be ignored.

#### Defects:

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

# **Consequent Actions:**

aSSF  $\leftarrow$  AI\_TSF or dPLM

 $\mathsf{aAIS} \; \leftarrow \quad \mathsf{AI\_TSF} \; \mathsf{or} \; \mathsf{dPLM}$ 

On declaration of the aAIS the function shall output an all-ONEs (AIS) signal in the P12s\_CI\_D within 1 000  $\mu$ s; on clearing of aAIS the function shall output normal data within 1 000  $\mu$ s. The P12s\_CI\_CK during the all-ONEs signal shall be within 2 048 kHz ± 4,6 ppm.

#### **Defect Correlations:**

 $cPLM \leftarrow dPLM \text{ and (not AI\_TSF)}$ 

# **Performance Monitoring:**

None.

Draft prETS 300 417-4d-1: April 1996

# 7.3.4.2 Type 2 VC-12 to P12s Adaptation Sink S12/P12s-b\_A\_Sk

### Symbol:

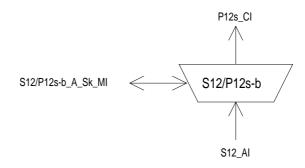



Figure 25: S12/P12s-b\_A\_Sk symbol

#### Interfaces:

Table 12: S12/P12s-b\_A\_Sk input and output signals

| Input(s)                        | Output(s)               |
|---------------------------------|-------------------------|
| S12_AI_D                        | P12s_CI_D               |
| S12_AI_CK                       | P12s_CI_CK              |
| S12_AI_FS                       | P12s_CI_SSF             |
| S12_AI_TSF                      | P12s_CI_FS              |
|                                 | P12s_CI_MFS             |
| S12/P12s-b_A_Sk_MI_Active       | P12s_CI_LOM             |
| S12/P12s-b_A_Sk_MI_AIS_Reported | S12/P12s-b_A_Sk_MI_cPLM |
| S12/P12s-b_A_Sk_MI_CRC4mode     | S12/P12s-b_A_Sk_MI_AcSL |
|                                 | S12/P12s-b_A_Sk_MI_cAIS |
|                                 | S12/P12s-b_A_Sk_MI_cLOF |
|                                 | S12/P12s-b_A_Sk_MI_NCI  |

# **Processes:**

The function recovers byte-synchronous mapped P12s Characteristic Information (2 048 kbit/s  $\pm$  4,6 ppm) from the synchronous container-12 with a frequency accuracy within  $\pm$  4,6 ppm according to ETS 300 147 [2], and monitors the reception of the correct payload signal type. It recovers the frame (and CRC4 multiframe) phase of the 2 048 kbit/s signal.

# V5[5-7]:

The function shall compare the content of the accepted bits 5 to 7 of byte V5 with the expected value code "100" (byte-synchronous mapping of 2 048 kbit/s into the Container-12) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclauses 7.2 and 8.1.2.

### Smoothing & jitter limiting process:

The function shall provide for a clock smoothing and elastic store (buffer) process. The 2 048 kbit/s data signal shall be written into the buffer under control of the associated (gapped) input clock with a frequency accuracy within  $\pm$  4,6 ppm. The data signal shall be read out of the buffer under control of a smoothed (equally spaced) 2 048 kHz  $\pm$  4,6 ppm clock (the rate is determined by the 2 Mbit/s signal at the input of the remote S12/P12s\_A\_So). The residual jitter caused by pointer adjustments (measured at the 2 048 kbit/s interface) shall be within the limits specified in subclause 11.3.1.2 of ETS 300 417-1-1 [1].

#### Buffer size:

In the presence of jitter as specified by subclause 11.3.1.2 of ETS 300 417-1-1 [1] and a frequency within the range 2 048 kbit/s  $\pm$  4.6 ppm, this justification process shall not introduce any errors.

Following a step in frequency of the P12s\_CI signal transported by the S12\_AI (for example due to reception of P12s\_CI from a new P12s\_TT\_So at the far end or removal of all-ONEs (AIS) signal with a frequency offset) there will be a maximum recovery time of X seconds after which this process shall not generate any bit errors.

The value of X is for further study; a value of 1 second has been proposed.

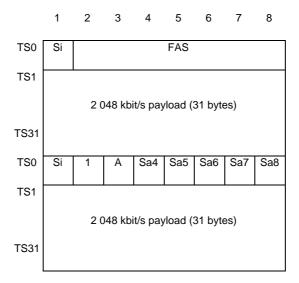



Figure 26: P12s\_CI\_D (without CRC-4 multiframe)

|       |      | 1                               | 2        | 3      | 4        | 5       | 6       | 7                               | 8                               |        |          | 1       | 2        | 3        | 4        | 5       | 6        | /        | 8        |
|-------|------|---------------------------------|----------|--------|----------|---------|---------|---------------------------------|---------------------------------|--------|----------|---------|----------|----------|----------|---------|----------|----------|----------|
|       | TS0  | C1                              |          |        |          | FAS     |         |                                 |                                 |        | TS0      | C1      |          |          |          | FAS     |          |          |          |
| Frame | TS1  |                                 |          |        |          |         |         |                                 |                                 | Frame  | TS1      |         |          |          |          |         |          |          |          |
| 0     |      | 2 048 kbit/s payload (31 bytes) |          |        |          |         | 8       |                                 | 2 048 kbit/s payload (31 bytes) |        |          |         |          |          |          |         |          |          |          |
|       | TS31 |                                 |          |        |          |         |         |                                 | TS31                            |        |          |         |          |          |          |         |          |          |          |
|       | TS0  | MFAS                            | 1        | А      | Sa4      | Sa5     | Sa6     | Sa7                             | Sa8                             |        | TS0      | MFAS    | 1        | Α        | Sa4      | Sa5     | Sa6      | Sa7      | Sa8      |
| Frame | TS1  |                                 |          |        | I        | I       | l       | ı                               | ı                               | Frame  | TS1      |         |          |          | I        |         | <u> </u> |          | <u>I</u> |
| 1     |      | 2 048 kbit/s payload (31 bytes) |          |        |          |         |         | 9                               |                                 |        | 2 (      | )48 kb  | it/s pay | /load (  | 31 byte  | es)     |          |          |          |
|       | TS31 |                                 |          |        |          |         |         |                                 |                                 |        | TS31     |         |          |          |          |         |          |          |          |
|       | TS0  | C2                              |          |        |          | FAS     |         |                                 |                                 |        | TS0      | C2 FAS  |          |          |          |         |          |          |          |
| Frame | TS1  |                                 |          |        |          |         |         |                                 |                                 | Frame  | TS1      |         |          |          |          |         |          |          |          |
| 2     |      |                                 | 2 (      | 048 kb | it/s pay | /load ( | 31 byte | es)                             |                                 | 10     |          |         | 2 (      | )48 kb   | it/s pay | /load ( | 31 byte  | es)      |          |
|       | TS31 |                                 |          |        |          |         |         |                                 |                                 |        | TS31     |         |          |          |          |         |          |          |          |
|       | TS0  | MFAS                            | 1        | Α      | Sa4      | Sa5     | Sa6     | Sa7                             | Sa8                             |        | TS0      | MFAS    | 1        | Α        | Sa4      | Sa5     | Sa6      | Sa7      | Sa8      |
| Frame | TS1  |                                 |          |        |          |         | Frame   | TS1                             |                                 |        |          |         |          |          |          | I       |          |          |          |
| 3     |      | 2 048 kbit/s payload (31 bytes) |          |        |          | 11      |         | 2 048 kbit/s payload (31 bytes) |                                 |        |          |         |          |          |          |         |          |          |          |
|       | TS31 | 1                               |          |        |          |         |         | TS31                            |                                 |        |          |         |          |          |          |         |          |          |          |
|       | TS0  | C3 FAS                          |          |        |          |         | TS0     | C3                              |                                 |        |          | FAS     |          |          |          |         |          |          |          |
| Frame | TS1  |                                 |          |        |          |         |         |                                 |                                 | Frame  | TS1      |         |          |          |          |         |          |          |          |
| 4     |      | 2 048 kbit/s payload (31 bytes) |          |        |          | 12      |         |                                 | 2 (                             | )48 kb | it/s pay | /load ( | 31 byte  | es)      |          |         |          |          |          |
|       | TS31 |                                 |          |        |          |         |         |                                 |                                 |        | TS31     |         |          |          |          |         |          |          |          |
|       | TS0  | MFAS                            | 1        | Α      | Sa4      | Sa5     | Sa6     | Sa7                             | Sa8                             | _      | TS0      | E       | 1        | Α        | Sa4      | Sa5     | Sa6      | Sa7      | Sa8      |
| Frame | TS1  |                                 |          |        |          | I       |         | 1                               | 1                               | Frame  | TS1      |         |          |          |          |         | I        |          | I        |
| 5     |      |                                 | 2 (      | 048 kb | it/s pay | /load ( | 31 byte | es)                             |                                 | 13     |          |         | 20       | )48 kb   | it/s pay | /load ( | 31 byte  | es)      |          |
|       | TS31 |                                 |          |        |          |         |         |                                 | TS31                            |        |          |         |          |          |          |         |          |          |          |
|       | TS0  | C4 FAS                          |          |        |          |         |         | TS0                             | C4                              |        |          |         | FAS      |          |          |         |          |          |          |
| Frame | TS1  |                                 |          |        |          |         |         |                                 |                                 | Frame  | TS1      |         |          |          |          |         |          |          |          |
| 6     |      | 2 048 kbit/s payload (31 bytes) |          |        |          | 14      |         | 2 048 kbit/s payload (31 bytes) |                                 |        |          |         |          |          |          |         |          |          |          |
|       | TS31 |                                 |          |        |          |         |         | TS31                            |                                 |        |          |         |          |          |          |         |          |          |          |
|       | TS0  | MFAS                            | 1        | А      | Sa4      | Sa5     | Sa6     | Sa7                             | Sa8                             |        | TS0      | E       | 1        | Α        | Sa4      | Sa5     | Sa6      | Sa7      | Sa8      |
| Frame | TS1  |                                 | <u> </u> |        | 1        | 1       | 1       | 1                               | 1                               | Frame  | TS1      |         |          | <u> </u> | 1        |         | 1        | <u> </u> | I        |
| 7     |      |                                 | 2 (      | 048 kb | it/s pay | /load ( | 31 byte | es)                             |                                 | 15     |          |         | 20       | )48 kb   | it/s pay | /load ( | 31 byte  | es)      |          |
|       | TS31 |                                 |          |        |          |         |         |                                 |                                 | TS31   |          |         |          |          |          |         |          |          |          |

Figure 27: P12s\_CI\_D (with CRC-4 multiframe)

### 8 kHz Frame phase:

The function shall extract from the VC-12 frame phase the 2 048 kbit/s signal (125  $\mu$ s) frame phase.

#### Basic & Multi frame alignment process:

The function shall recover the (250  $\mu$ s) basic frame and (2 ms) CRC-4 multiframe phase according the provisioned CRC-4 interworking selection (control parameters: CRC4AUTO, CRC4PRST):

| mode          | CRC4AUTO | CRC4PRST   | remark                         |
|---------------|----------|------------|--------------------------------|
| automatic     | true     | don't care | CRC-4 may be present           |
| fixed-present | false    | true       | CRC-4 is assumed to be present |
| fixed-absent  | false    | false      | CRC-4 is assumed to be absent  |

The default mode shall be automatic CRC-4 interworking (CRC4AUTO = true).

# AUTOMATIC 8 FIXED-PRESENT CRC-4 INTERWORKING

The incoming signal is continuously monitored for basic frame alignment. Once basic frame alignment is recovered, CRC-4 multiframe alignment recovery will be performed. When CRC-4 multiframe alignment is not achieved within 8 ms, it is assumed that the distant end is a non CRC-4 equipment or a dLOF condition is detected. This depends on the selected interworking mode. A "non CRC-4 multiframe indication (NCI)" status will be reported [or a dLOF defect will be detected]. Multiframe alignment process continues; when multi frame alignment is recovered, the NCI status [or dLOF] will be cleared.

Basic frame and CRC-4 Multiframe alignment process: The function shall recover the (250 μs) basic frame and (2 ms) CRC-4 multiframe phase evaluating the bytes containing TS0 (figure 21) in the VC-12.

For this purpose four subprocesses shall be present: basic frame alignment, CRC-4 multiframe alignment, 8 ms timer, and interworking subprocess. The subprocesses shall perform the operations described below:

<u>Basic frame alignment subprocesses</u>: Basic Frame Alignment (BFA) shall be recovered (entering the In-BFA state) when the following sequence is detected:

- for the first time, the presence of the correct Frame Alignment Signal (FAS: 0011011);
- the absence of frame alignment signal in the following TS0 byte by verifying that bit 2 is a "1";
- for the second time, the presence of the correct FAS in the next TS0 byte.

The BFA shall be lost (entering the Out-Of-BFA state) when one or both of the following two conditions hold:

- if three consecutive even P12s frames contain errored FASs. An errored FAS is defined as an FAS with incorrect bits in one or more of the seven FAS bits in TS0 of even P12s frames;
- if three consecutive odd P12s frames contain an error in the second bit of TS0.

The BFA process shall be enabled continuously.

<u>CRC-4 Multiframe alignment subprocess</u>: CRC-4 multiframe alignment shall be recovered (entering In-MFA state) if at least two valid CRC-4 Multiframe Alignment Signals (MFAS: 001011) can be located within 8 ms, the time separating two CRC-4 MFASs being 2 ms or multiples of 2 ms.

CRC-4 multiframe alignment shall be lost (entering the Out-Of-MFA state) if three consecutive multiframes contain errored multiframe alignment signals (MFAS). An errored MFAS is defined as an MFAS with errors in one or more of the six MFAS bits (001011) in a multiframe.

The MFA subprocess shall be aligned with the frame start derived in the BFA subprocess at the CRC-4 interworking state transition  $OOB \rightarrow IB$ .

The MFA subprocess shall be disabled in the OOB CRC-4 interworking state. It shall be enabled in the IB and CRC CRC-4 interworking states.

<u>Timer 8 ms subprocess</u>: An 8 ms timer shall be started at the CRC-4 interworking state transitions OOB  $\rightarrow$  IB and CRC  $\rightarrow$  IB.

The 8 ms timer shall be stopped at the CRC-4 interworking events BFA\_loss, MFA\_recovery, and Timer\_8ms\_expiry.

<u>CRC-4 interworking subprocess</u>: The automatic and fixed-present CRC-4 interworking subprocesses shall operate as specified by figure 29.

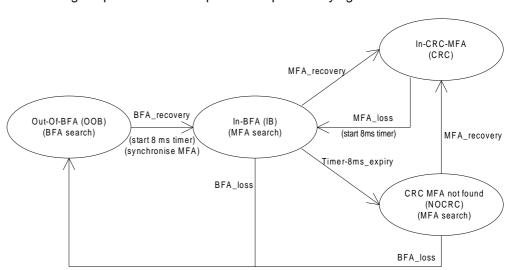



Figure 28: fixed-present and automatic CRC-4 interworking process state diagram

- NOTE 1: The difference between the fixed-present (mandatory CRC-4 multiframe) and the automatic CRC-4 interworking is related to the defect definition of dLOF.
- NOTE 2: It is not possible to recover BFA incorrectly when evaluating TS0 bytes in the VC-12 only.

FIXED-ABSENT CRC-4 INTERWORKING The incoming signal is continuously monitored for basic frame alignment.

NOTE 3: CRC-4 multiframe alignment recovery will not be performed.

<u>Frame alignment process</u>: The function shall recover the (250  $\mu$ s) basic frame phase evaluating the bytes containing TS0 (figure 21) in the VC-12.

<u>Basic frame alignment subprocesses</u>: Basic Frame Alignment (BFA) shall be recovered (entering the In-BFA state) when the following sequence is detected:

- for the first time, the presence of the correct Frame Alignment Signal (FAS: 0011011);
- the absence of frame alignment signal in the following TS0 byte by verifying that bit 2 is a "1";
- for the second time, the presence of the correct FAS in the next TS0 byte.

The BFA shall be lost (entering the Out-Of-BFA state) when one or both of the following two conditions hold:

- if three consecutive even P12s frames contain errored FASs. En errored FAS is defined as an FAS with incorrect bits in one or more of the seven FAS bits in TS0 of even P12s frames;
- if three consecutive odd P12s frames contain an error in the second bit of TS0.

For the case a research for a frame alignment is required, this shall start at the TS0 byte 125  $\mu s$  after the location of the previous FAS.

The BFA process shall be enabled continuously.

<u>CRC-4 interworking subprocess</u>: The fixed-absent CRC-4 interworking subprocess shall operate as specified by figure 29.

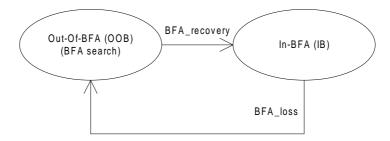



Figure 29: fixed-absent CRC-4 interworking state diagram

Figure 1 shows that more than one adaptation sink function exists in this VC-12 layer that can be connected to one VC-12 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

## Activation:

The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via the management point.

### R bits:

The value in the R bits shall be ignored.

#### Defects:

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

The function shall detect dLOF defect when the CRC-4 interworking process is in (one of) the states:

| CRC-4 mode    | dLOF detected in state(s) |
|---------------|---------------------------|
| automatic     | OOB                       |
| fixed-present | OOB, NOCRC                |
| fixed-absent  | OOB                       |

The function shall clear dLOF defect when the CRC-4 interworking process is in (one of) the states:

| CRC-4 mode    | dLOF cleared in state(s) |
|---------------|--------------------------|
| automatic     | IB, NOCRC, CRC           |
| fixed-present | IB, CRC                  |
| fixed-absent  | IB                       |

The function shall report NCI status in the automatic CRC-4 interworking mode if the CRC-4 interworking state machine is in the state "NOCRC". The status report shall be cleared when the automatic CRC-4 interworking process is in one of the states: "OOB", "IB", "CRC".

The dAIS defect shall be detected specified by ETS 300 417-1-1 [1], subclause 8.2.1.7 for 2 Mbit/s, with X = 2, Y = 512, Z = 3.

### **Consequent Actions:**

 $aSSF \leftarrow AI TSF or dPLM or dAIS or dLOF$ 

aAIS  $\leftarrow$  AI\_TSF or dPLM or dAIS or dLOF

On declaration of the aAIS the function shall output an all-ONEs (AIS) signal in the P12s\_CI\_D within 1 000  $\mu$ s; on clearing of aAIS the function shall output normal data within 1 000  $\mu$ s. The P12s\_CI\_CK during the all-ONEs signal shall be within 2 048 kHz  $\pm$  4,6 ppm.

aLOM ← OOB or IB (automatic CRC-4 interworking mode only)

NOTE:

For the case of automatic CRC-4 interworking, to control the generation of the E-bit in the associated P12s\_TT\_So (via P12s\_RI\_REI) and to stop the CRC-4 violation detection process during multiframe loss periods, a linkage between S12/P12s\_A\_Sk and P12s TT Sk is required. This is modelled as a signal CI LOM.

#### **Defect Correlations:**

 $cPLM \leftarrow dPLM \text{ and (not Al\_TSF)}$ 

cAIS ← dAIS and (not dPLM) and (not AI\_TSF) and AIS\_Reported

cLOF ← dLOF and (not dAIS) and (not dPLM) and (not AI\_TSF)

# **Performance Monitoring:**

None.

## 7.3.4.3 Type 3 VC-12 to P12s Adaptation Sink S12/P12s-a\_A\_Sk

#### Symbol:

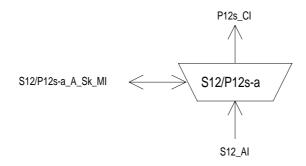



Figure 30: S12/P12s-a A Sk symbol

## Interfaces:

Table 13: S12/P12s-a A Sk input and output signals

| Input(s)                        | Output(s)               |
|---------------------------------|-------------------------|
| S12_AI_D                        | P12s_CI_D               |
| S12_AI_CK                       | P12s_CI_CK              |
| S12_AI_FS                       | P12s_CI_SSF             |
| S12_AI_TSF                      | P12s_CI_FS              |
|                                 | P12s_CI_MFS             |
| S12/P12s-a_A_Sk_MI_Active       | P12s_CI_LOM             |
| S12/P12s-a_A_Sk_MI_AIS_Reported | S12/P12s-a_A_Sk_MI_cPLM |
| S12/P12s-a_A_Sk_MI_CRC4mode     | S12/P12s-a_A_Sk_MI_AcSL |
|                                 | S12/P12s-a_A_Sk_MI_cAIS |
|                                 | S12/P12s-a_A_Sk_MI_cLOF |
|                                 | S12/P12s-a_A_Sk_MI_NCI  |

## Processes:

The function recovers asynchronous mapped P12s Characteristic Information (2 048 kbit/s  $\pm$  4,6 ppm) from the synchronous container-12 with a frequency accuracy within  $\pm$  4,6 ppm according to ETS 300 147 [2] , and monitors the reception of the correct payload signal type. It recovers the frame (and CRC4 multiframe) phase of the 2 048 kbit/s signal.

# V5[5-7]:

The function shall compare the content of the accepted bits 5 to 7 of byte V5 with the expected value code "010" (Asynchronous mapping of 2 048 kbit/s into the Container-12) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclause 7.2 and 8.1.2.

### R bits:

The value in the R bits shall be ignored.

O bits: The value in the O bits shall be ignored.

### C1C2 bits:

Justification control interpretation:

The function shall perform justification control interpretation according ETS 300 147 [2] to recover the 2 048 kbit/s signal from the VC-12. If the majority of the C1 bits is "0" the S1 bit shall be taken as a data bit, otherwise (majority of C1 bits is "1") S1 bit shall be taken as a justification bit and consequently ignored. If the majority of the C2 bits is "0" S2 bit shall be taken as a data bit, otherwise (majority of C2 bits is "1") S2 bit shall be taken as a justification bit and consequently ignored.

Draft prETS 300 417-4d-1: April 1996

NOTE:

A negative justification is effectuated if the majority of C1 bits and the majority of C2 bits is "0". A positive justification is effectuated if the majority of the C1 bits and the majority of C2 bits is "1". The other combinations (C1 majority is "0" and C2 majority is "1", or C1 majority is "1" and C2 majority is "0") do not result in an actual justification."

### Smoothing & jitter limiting process:

The function shall provide for a clock smoothing and elastic store (buffer) process. The 2 048 kbit/s data signal shall be written into the buffer under control of the associated (gapped) input clock with a frequency accuracy within  $\pm$  4,6 ppm. The data signal shall be read out of the buffer under control of a smoothed (equally spaced) 2 048 kHz  $\pm$  4,6 ppm clock (the rate is determined by the 2 Mbit/s signal at the input of the remote S12/P12s-a\_A\_So or S12/P12x\_A\_So). The residual jitter caused by pointer adjustments and bit justifications (measured at the 2 048 kbit/s interface) shall be within the limits specified in subclause 11.3.1.2 of ETS 300 417-1-1 [1].

#### Buffer size:

In the presence of jitter as specified by subclause 11.3.1.2 of ETS 300 417-1-1 [1] and a frequency within the range 2 048 kbit/s  $\pm$  4,6 ppm, this justification process shall not introduce any errors.

Following a step in frequency of the P12s signal transported by the S12\_AI (for example due to reception of P12s\_CI from a new P12s\_TT\_So at the far end or removal of all-ONEs (AIS) signal with a frequency offset) there will be a maximum recovery time of X seconds after which this process shall not generate any bit errors.

The value of X is for further study; a value of 1 second has been proposed.

# Basic frame and CRC-4 Multiframe alignment:

The function shall recover the (250  $\mu$ s) basic frame and (2 ms) CRC-4 multiframe phase evaluating the I-bits and S1, S2 bits according to the justification control interpretation process in the VC-12 (figure 17). The process shall operate as specified by prETS 300 417-5-1 [4], Annex A.

Figure 1 shows that more than one adaptation sink function exists in this VC-12 layer that can be connected to one VC-12 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

### Activation:

The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via the management point.

### Defects:

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

The function shall detect dLOF defect as specified by prETS 300 417-5-1 [4], Annex A.

The function shall clear dLOF defect as specified by prETS 300 417-5-1 [4], Annex A.

The function shall report NCI status in the automatic CRC-4 interworking mode as specified by prETS 300 417-5-1 [4], Annex A.

## **Consequent Actions:**

aSSF  $\leftarrow$  All TSF or dPLM or dAIS or dLOF

aAIS  $\leftarrow$  AI\_TSF or dPLM or dAIS or dLOF

On declaration of the aAIS the function shall output an all-ONEs (AIS) signal in the P12s\_CI\_D within 1 000  $\mu$ s; on clearing of aAIS the function shall output normal data within 1 000  $\mu$ s. The P12s\_CI\_CK during the all-ONEs signal shall be within 2 048 kHz  $\pm$  50 ppm.

Draft prETS 300 417-4d-1: April 1996

aLOM ← refer to prETS 300 417-5-1 [4], Annex A.

NOTE:

For the case of automatic CRC-4 interworking, to control the generation of the E-bit in the associated P12s\_TT\_So (via P12s\_RI\_REI) and to stop the CRC-4 violation detection process during multiframe loss periods, a linkage between S12/P12s\_A\_Sk and P12s\_TT\_Sk is required. This is modelled as a signal CI\_LOM.

#### **Defect Correlations:**

cPLM ← dPLM and (not AI\_TSF)

cAIS ← dAIS and (not dPLM) and (not AI\_TSF) and AIS\_Reported

cLOF ← dLOF and (not dAIS) and (not dPLM) and (not AI\_TSF)

### **Performance Monitoring:**

None.

### 7.3.5 VC-12 to P0-31c Adaptation Source S12/P0-31c A So

# Symbol:

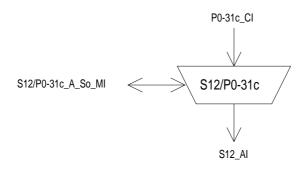



Figure 31: S12/P0-31c\_A\_So symbol

#### Interfaces:

Table 14: S12/P0-31c\_A\_So input and output signals

| Input(s)                  | Output(s) |
|---------------------------|-----------|
| P0-31c_CI_D               | S12_AI_D  |
| P0-31c_CI_CK              | S12_AI_CK |
| P0-31c_CI_FS              | S12_AI_FS |
| P0-31c_CI_SSF             |           |
| S12/P0-31c_A_So_MI_Active |           |

### **Processes:**

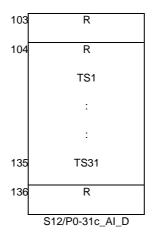
This function byte-synchronously maps 31 bytes representing any combination of 64 kbit/s channels as a 1 984 kbit/s byte structured information stream into a VC-12 payload and adds bits 5 to 7 of byte V5. It takes P0-31c\_CI, a bit-stream with a rate of 1 984 kbit/s  $\pm$  4,6 ppm (nominally locked to a PRC), present at its input and inserts it into the synchronous container C12 having a capacity of 136 bytes and a frame as defined in ETS 300 147 [2] and depicted in figure 32.

### Bitrate adaptation:

The function shall provide for a (35/31) clock multiplier process taking P0-31c\_CI\_CK as input to generate the VC-12 clock signal S12\_AI\_CK.

The function shall provide for a buffer process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the VC-12 clock. No data shall be read out of the buffer at the VC-12 POH byte positions (figure 2) and fixed stuff "R" byte positions (figure 32).

The function shall convert the P0-31c frame start signal (P0-31c\_CI\_FS) identifying TS1 position into a VC-12 frame start signal (S12\_AI\_FS) identifying V5 byte position.


### Buffer size:

The length of the buffer shall be such that the above process shall not introduce errors.

NOTE:

Contrary to the asynchronous mapping, this byte-synchronous mapping process locks the VC-12 to the 31 x 64 kbit/s signal's bit rate and frame phase. Frequency and/or phase differences between the 1 984 kbit/s signal (mapped into the VC-12 signal) and the network element clock (TI\_CK) generated within the synchronisation distribution layer are accommodated via TU-12 pointer adjustments.

| 1        | R    |
|----------|------|
| 2        | R    |
| 3        | TS1  |
|          | :    |
|          | :    |
| 33<br>34 | TS31 |
|          | R    |
| 35       | R    |
| 36       | R    |
|          | TS1  |
|          | :    |
|          | :    |
| 67       | TS31 |
| 68       | R    |
| 69       | R    |
| 70       | R    |
|          | TS1  |
|          | :    |
|          | :    |
| 101      | TS31 |
| 102      | R    |
|          |      |



Legend: R = Fixed Stuff, TS = Time Slot (of structured 2 048 kbit/s signal)

Figure 32: 1 984 kbit/s byte synchronous mapping into Container 12

Three bits of payload specific POH information, V5[5-7], shall be added to container-12 to form the VC-12 Al and a fixed Frame Start (FS) shall be generated.

## V5[5-7]:

In these bits the function shall insert code "100" (byte-synchronous mapping of 2 048 kbit/s into the Container-12) as defined in ETS 300 147 [2].

NOTE: The same signal label code is allocated for the byte-synchronous mapping of a 2 048 kbit/s signal and a 1 984 kbit/s signal into a VC-12.

#### R bits:

The value of an R bit is undefined.

Figure 1 shows that more than one adaptation source function exists in this VC-12 layer that can be connected to one VC-12 access point. For such case, a subset of these adaptation source functions is allowed to be activated together. For this subset, access to the access point by other adaptation source functions must be denied.

# Activation:

The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

### Defects:

None.

### **Consequent Actions:**

aAIS  $\leftarrow$  CI\_SSF

On declaration of the aAIS the function shall output an all-ONEs (AIS) signal within the bytes carrying TS1 to TS31 - with a frequency accuracy of  $\pm$  4,6 ppm - and an associating VC-12 frame start signal within 250  $\mu$ s; on clearing of aAIS the function shall output normal data within 250  $\mu$ s.

# **Defect Correlations:**

None.

### **Performance Monitoring:**

None.

## 7.3.6 VC-12 to P0-31c Adaptation Sink S12/P0-31c\_A\_Sk

### Symbol:

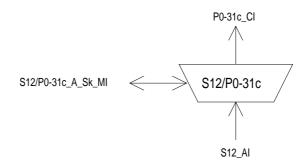



Figure 33: S12/P0-31c A Sk symbol

#### Interfaces:

Table 15: S12/P0-31c\_A\_Sk input and output signals

| Input(s)                  | Output(s)               |
|---------------------------|-------------------------|
| S12_AI_D                  | P0-31c_CI_D             |
| S12_AI_CK                 | P0-31c_CI_CK            |
| S12_AI_FS                 | P0-31c_CI_SSF           |
| S12_AI_TSF                | P0-31c_CI_FS            |
|                           | S12/P0-31c_A_Sk_MI_cPLM |
| S12/P0-31c_A_Sk_MI_Active | S12/P0-31c_A_Sk_MI_AcSL |

### Processes:

This function recovers 31 bytes representing any combination of 64 kbit/s channels as a 31 bytes per frame structured synchronous bit-stream with a rate of 1 984 kbit/s from byte synchronous mapping in VC-12 as specified by ETS 300 147 [2], and monitors the reception of the correct payload signal type.

## V5[5-7]:

The function shall compare the content of the accepted bits 5 to 7 of byte V5 with the expected value code "100" (byte-synchronous mapping of 2 048 kbit/s into the Container-12) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch process shall be as specified in ETS 300 417-1-1 [1], subclause 7.2 and 8.1.2.

# Smoothing & jitter limiting process:

The function shall provide for a clock smoothing and elastic store (buffer) process. The 1 984 kbit/s data signal shall be written into the buffer under control of the associated (gapped) input clock. The data signal shall be read out of the buffer under control of a smoothed (equally spaced) 1 984 kHz  $\pm$  4,6 ppm clock (the rate is determined by the 1 984 kbit/s signal at the input of the remote S12/P0-31c\_A\_So). The residual jitter caused by pointer adjustments (measured at the 2 048 kbit/s interface) shall be within the limits specified in subclause 11.3.1.2 of ETS 300 417-1-1 [1].

#### Buffer size:

In the presence of jitter as specified by subclause 11.3.1.2 of ETS 300 417-1-1 [1] and a frequency within the range 1 984 kbit/s  $\pm$  4,6 ppm, this justification process shall not introduce any errors.

Following a step in frequency of the P0-31c signal transported by the S12\_AI (for example due to reception of P0-31c CI from a new P0-31c\_TT\_So at the far end or removal of all-ONEs (AIS) signal with a frequency offset) there will be a maximum recovery time of X seconds after which this process shall not generate any bit errors.

The value of X is for further study; a value of 1 second has been proposed.

## Draft prETS 300 417-4d-1: April 1996

### Frame phase:

The function shall extract from the VC-12 frame phase the 1 984 kbit/s signal (8 kHz) frame phase.

Figure 1 shows that more than one adaptation sink function exists in this VC-12 layer that can be connected to one VC-12 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

#### Activation

The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via the management point.

### R bits:

The value in the R bits shall be ignored.

#### **Defects:**

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

### **Consequent Actions:**

aSSF  $\leftarrow$  AI\_TSF or dPLM

aAIS  $\leftarrow$  AI\_TSF or dPLM

On declaration of the aAIS the function shall output an all-ONEs (AIS) signal in the P0-31c\_CI\_D within 1 000  $\mu$ s; on clearing of aAIS the function shall output normal data within 1 000  $\mu$ s. The P0-31c\_CI\_CK during the all-ONEs signal shall be within 1 984 kHz  $\pm$  4.6 ppm.

#### **Defect Correlations:**

 $cPLM \leftarrow dPLM \text{ and (not AI\_TSF)}$ 

#### **Performance Monitoring:**

None.

# 7.3.7 VC-12 Layer to TSS4 Adaptation Source S12/TSS4\_A\_So

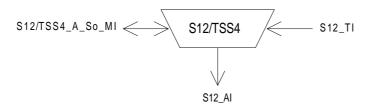



Figure 34: S12/TSS4 A So symbol

#### Interfaces:

Table 16: S12/TSS4\_A\_So input and output signals

| Input(s)                | Output(s) |
|-------------------------|-----------|
| S12_TI_CK               | S12_AI_D  |
| S12_TI_FS               | S12_AI_CK |
| S12/TSS4_A_So_MI_Active | S12_AI_FS |

#### **Processes:**

This function maps a VC-12 synchronous Test Signal Structure TSS4 PRBS stream as described in ITU-T draft Recommendation O.181 [7] into a VC-12 payload and adds the bits V5[5-7] bytes. It creates a 2<sup>15</sup> PRBS with timing derived from the S12\_TI\_Ck and maps it without justification bits into the whole of the synchronous container-12 having a capacity of 136 bytes. The PRBS is a sequence which repeats itself over a period which is not an exact multiple of the capacity available in the container-12 frame. Therefore the start of the sequence will move relative to the start of the container-12 frame over time.

Three bits of payload specific POH information, V5[5-7], shall be added to container-12 to form the VC-12 Al and a fixed Frame Start (FS) shall be generated.

### V5[5-7]:

In these bits the function shall insert code "110" (TSS4 into the Container-12) as defined in ITU-T Recommendation G.708 [8].

Figure 1 shows that more than one adaptation source function exists in this VC-12 layer that can be connected to one VC-12 access point. For such case, a subset of these adaptation source functions is allowed to be activated together. Access to the access point by other adaptation source functions must be denied.

# Activation:

The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

| Defects:             |  |
|----------------------|--|
| None.                |  |
| Consequent Actions:  |  |
| None.                |  |
| Defect Correlations: |  |
| None.                |  |

# **Performance Monitoring:**

None.

7.3.8 VC-12 Layer to TSS4 Adaptation Sink S12/TSS4\_A\_Sk

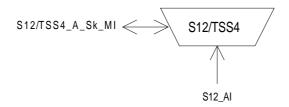



Figure 35: S12/TSS4\_A\_Sk symbol

#### Interfaces:

Table 17: S12/TSS4 A Sk input and output signals

| Input(s)                | Output(s)                |
|-------------------------|--------------------------|
| S12 _AI_D               | S12/TSS4_A_Sk_MI_cPLM    |
| S12_AI_CK               | S12/TSS4_A_SK_MI_cLSS    |
| S12_AI_FS               | S12/TSS4_A_Sk_MI_AcSL    |
| S12_AI_TSF              | S12/TSS4_A_Sk_MI_ pN_TSE |
| S12/TSS4_A_Sk_MI_Active | ·                        |

### **Processes:**

The function recovers a TSS4  $2^{15}$  PRBS test sequence as defined in ITU-T draft Recommendation O.181 [7] from the synchronous container-12 (having a frequency accuracy within  $\pm$  4,6 ppm) and monitors the reception of the correct payload signal type and for the presence of test sequence error blocks (TSE) in the PRBS sequence.

# V5[5-7]:

The function shall compare the content of the accepted bits 5 to 7 of byte V5 with the expected value code "110" (TSS4 into the Container-12) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclauses 7.2 and 8.1.2.

Figure 1 shows that more than one adaptation sink function exists in this VC-12 layer that can be connected to one VC-12 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

### Activation:

The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall not report its status via the management point.

# **Defects:**

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

The function shall detect for loss of PRBS lock (dLSS) according to the criteria defined in ITU-T Recommendation O.151 [6] Section 2.6.

### **Consequent Actions:**

None

### **Defect Correlations:**

 $cPLM \leftarrow dPLM \text{ and (not AI\_TSF)}$ 

 $cLSS \leftarrow dLSS$  and not (AI\_TSF)

## **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ITU-T Recommendation O.181 [7] Annex A section A.1.8.

 $pN\_TSE \leftarrow Sum of test sequence errors (TSE) within one second period.$ 

NOTE: The TSE error block size is equal to the V5[1-2] BIP-2 error block size with the exception of the VC-12 POH.

## 7.3.9 VC-12 Layer to ATM Layer Compound Adaptation Source S12/ATM\_A\_So

The specification of this function is for further study.

# 7.3.10 VC-12 Layer to ATM Layer Compound Adaptation Sink S12/ATM\_A\_Sk

The specification of this function is for further study.

# 7.4 VC-12 Layer Monitoring Functions

# 7.4.1 VC-12 Layer Non-intrusive Monitoring Function S12m\_TT\_Sk

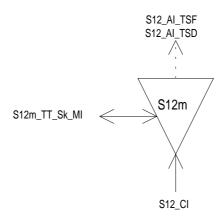



Figure 36: S12m\_TT\_Sk symbol

#### Interfaces:

Table 18: S12m\_TT\_Sk input and output signals

| Input(s)                   | Output(s)            |
|----------------------------|----------------------|
| S12_CI_D                   | S12_AI_TSF           |
| S12_CI_CK                  | S12_AI_TSD           |
| S12_CI_FS                  | S12m_TT_Sk_MI_cTIM   |
| S12_CI_SSF                 | S12m_TT_Sk_MI_cUNEQ  |
| S12m_TT_Sk_MI_TPmode       | S12m_TT_Sk_MI_cDEG   |
| S12m_TT_Sk_MI_SSF_Reported | S12m_TT_Sk_MI_cRDI   |
| S12m_TT_Sk_MI_ExTI         | S12m_TT_Sk_MI_cSSF   |
| S12m_TT_Sk_MI_RDI_Reported | S12m_TT_Sk_MI_AcTI   |
| S12m_TT_Sk_MI_DEGTHR       | S12m_TT_Sk_MI_pN_EBC |
| S12m_TT_Sk_MI_DEGM         | S12m_TT_Sk_MI_pF_EBC |
| S12m_TT_Sk_MI_ExTImode     | S12m_TT_Sk_MI_pN_DS  |
| S12m_TT_Sk_MI_1second      | S12m_TT_Sk_MI_pF_DS  |
| S12m_TT_Sk_MI_TIMdis       |                      |

#### Processes:

NOTE: This non-intrusive monitor trail termination sink function has no associated source function.

This function monitors VC-12 for errors, and recovers the trail termination status. It extracts the payload independent overhead bytes/bits (J2, V5[1-2], V5[3], V5[5-7], V5[8]) from the VC-12 layer Characteristic Information

#### J2:

The Received Trail Trace Identifier RxTI shall be recovered from the J2 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3.

### V5[1-2]:

Even bit parity is computed for each bit pair of every byte of the preceding VC-12 including V5 and compared with bit 1 and 2 of V5 recovered from the current frame. A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block.

## V5[3], V5[8]:

The information carried in the bits 3 and 8 of the V5 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 8) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.4.2 (REI), 7.4.11 and 8.2 (RDI).

Table 19: V5[3] code interpretation

| V5[3] | REI code interpretation |
|-------|-------------------------|
| 0     | 0 errored blocks        |
| 1     | 1 errored block         |

# V5[5-7]:

The information in bits 5 to 7 of byte V5 shall be extracted to allow unequipped VC defect detection.

#### K4[5-8]:

The value in the bits 5 to 8 of byte K4 shall be ignored.

#### Defects:

The detection and removal conditions and processes for dDEG, dRDI, dUNEQ and dTIM defects shall be as specified by ETS 300 417-1-1 [1], subclause 8.2.1 with the condition "aSSF" read as "aSSF or VC dAIS". To use the function within e.g. a tandem connection<sup>1</sup>, it shall be possible to disable the trace id mismatch detection (TIMdis).

#### VC AIS:

The function shall detect for an AIS VC (VC-AIS) condition by monitoring the VC PSL for code "111". If 5 consecutive frames contain the '111' pattern in bits 5 to 7 of byte V5 a dAIS defect shall be detected. dAIS shall be cleared if in 5 consecutive frames any pattern other then the '111' is detected in bits 5 to 7 of byte V5.

NOTE:

Equipment designed prior to this ETS may be able to perform VC-AIS detection either as specified above interpreting "frames" as "samples (not necessary consecutive frames)", or by a comparison of the accepted signal label with the all-ONEs pattern. If the accepted signal label is equal to all-ONEs, VC-AIS defect is detected. If the accepted signal label is not equal to all-ONEs, VC-AIS defect is cleared.

# **Consequent actions:**

aTSF  $\leftarrow$  CI\_SSF or dAIS or dUNEQ or dTIM

aTSD  $\leftarrow$  dDEG

### **Defect Correlations:**

cUNEQ ← dUNEQ and MON

cTIM  $\leftarrow$  dTIM and (not dUNEQ) and MON

cDEG ← dDEG and (not dTIM) and MON

cRDI ← dRDI and (not dUNEQ) and (not dTIM) and MON and RDI Reported

cSSF ← (CI SSF or dAIS) and MON and SSF Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

# **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $pN\_DS \qquad \leftarrow \quad aTSF \ or \ dEQ$ 

 $pF_DS \leftarrow dRDI$ 

 $pN\_EBC \leftarrow \Sigma nN\_B$ 

 $\mathsf{pF}\_\mathsf{EBC} \quad \leftarrow \quad \Sigma \, \mathsf{nF}\_\mathsf{B}$ 

NOTE: pF\_DS/pF\_EBC represent the performance of the total trail while pN\_DS/pN\_EBC

represents only part of the trail up to the point of the non-intrusive monitor.

<sup>1</sup> Presumably, in such case the VC Trace Id. will be unknown to the tandem connection operator.

## 7.4.2 VC-12 Layer Supervisory-Unequipped Termination Source S12s\_TT\_So

#### Symbol:

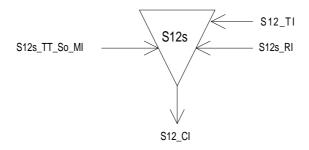



Figure 37: S12s\_TT\_So symbol

### Interfaces:

Table 20: S12s\_TT\_So input and output signals

| Input(s)           | Output(s) |
|--------------------|-----------|
| S12s_RI_RDI        | S12_CI_D  |
| S12s_RI_REI        | S12_CI_CK |
| S12_TI_CK          | S12_CI_FS |
| S12_TI_FS          |           |
| S12s_TT_So_MI_TxTI |           |

### **Processes:**

This function generates error monitoring and status overhead bytes to an undefined VC-12. The processing of the trail termination overhead bytes is defined as follows:

### J2:

In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in ETS 300 417-1-1 [1], subclause 7.1.

## V5[3]:

The signal value applied at RI\_REI shall be inserted in the VC-12 REI, bit 3 of byte V5. The coding shall be as follows:

Table 21: V5[3] coding

| Number of BIP-2         | V5[3] |
|-------------------------|-------|
| violations conveyed via |       |
| RI_REI                  |       |
| 0                       | 0     |
| 1                       | 1     |
| 2                       | 1     |

**V5[8]:** Bit 8 of byte V5, a RDI indication, shall be set to "1" on activation of S12s\_RI\_RDI within 1 000  $\mu$ s, determined by the associated S12s\_TT\_Sk function, and set to "0" within 1 000  $\mu$ s on clearing of S12s\_RI\_RDI.

# V5[5-7]:

In this byte the function shall insert code "000" (unequipped VC or supervisory-unequipped VC) as defined in subclause 7.1 of ETS 300 417-1-1 [1] and ETS 300 147 [2].

## V5[1-2]:

In these bits the function shall insert the BIP-2 EDC with even bit parity. Each bit of current bits 1 or 2 is computed to provide even parity over the associated (odd and even) bits of every byte in the previous frame of the Characteristic Information S12\_CI, i.e., bits 1 and 2 are calculated over the entire previous VC-12. Further reference is provided in ETS 300 417-1-1 [1], subclause 7.3.

### K4[5-8]:

The value of the bits 5 to 8 of byte K4 is undefined.

### N2:

In this byte the function shall insert code "0000 0000" (unequipped tandem connection) as defined in subclause 7.1 of ETS 300 417-1-1 [1].

# Other VC-12 bytes:

The function shall generate the other VC-12 bytes and bits. Their content is undefined (i.e. bits are set to either a value of "0" or "1".

**Defects:** 

None.

**Consequent Actions:** 

None.

**Defect Correlations:** 

None.

### **Performance Monitoring:**

None.

# 7.4.3 VC-12 Layer Supervisory-unequipped Termination Sink S12s\_TT\_Sk

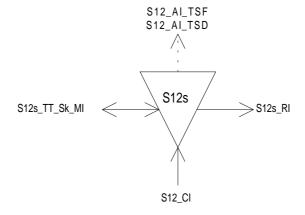



Figure 38: S12s\_TT\_Sk symbol

#### Interfaces:

Table 22: S12s\_TT\_Sk input and output signals

| Input(s)                   | Output(s)            |
|----------------------------|----------------------|
| S12_CI_D                   | S12_AI_TSF           |
| S12_CI_CK                  | S12_AI_TSD           |
| S12_CI_FS                  | S12s_TT_Sk_MI_cTIM   |
| S12_CI_SSF                 | S12s_TT_Sk_MI_cUNEQ  |
|                            | S12s_TT_Sk_MI_cDEG   |
| S12s_TT_Sk_MI_TPmode       | S12s_TT_Sk_MI_cRDI   |
| S12s_TT_Sk_MI_SSF_Reported | S12s_TT_Sk_MI_cSSF   |
| S12s_TT_Sk_MI_ExTI         | S12s_TT_Sk_MI_AcTI   |
| S12s_TT_Sk_MI_RDI_Reported | S12s_RI_RDI          |
| S12s_TT_Sk_MI_DEGTHR       | S12s_RI_REI          |
| S12s_TT_Sk_MI_DEGM         | S12s_TT_Sk_MI_pN_EBC |
| S12s_TT_Sk_MI_1second      | S12s_TT_Sk_MI_pF_EBC |
| S12s_TT_Sk_MI_TIMdis       | S12s_TT_Sk_MI_pN_DS  |
| S12s_TT_Sk_MI_ExTImode     | S12s_TT_Sk_MI_pF_DS  |

### **Processes:**

This function monitors VC-12 for errors, and recovers the trail termination status. It extracts the payload independent overhead bytes/bits (J2, V5[1-2], V5[3], V5[5-7], V5[8]) from the VC-12 layer Characteristic Information:

#### J2:

The Received Trail Trace Identifier RxTI shall be recovered from the J2 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3.

# V5[1-2:

Even bit parity is computed for each bit pair of every byte of the preceding VC-12 including V5 and compared with bit 1 and 2 of V5 recovered from the current frame. A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block.

# V5[3], V5[8]:

The information carried in the bits 3 and 8 of the V5 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 8) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.4.2 (REI), 7.4.11 and 8.2 (RDI).

Table 23: V5[3] code interpretation

| V5[3] | REI code interpretation |
|-------|-------------------------|
| 0     | 0 errored blocks        |
| 1     | 1 errored block         |

# V5[5-7]:

The information in bits 5 to 7 of byte V5 shall be extracted to allow unequipped VC defect detection.

#### K4[5-8]:

The value of the bits 5 to 8 of byte K4 shall be ignored.

Draft prETS 300 417-4d-1: April 1996

#### Defects:

The function shall detect for dDEG, dRDI, dUNEQ and dTIM defects according the specifications in ETS 300 417-1-1 [1], subclause 8.2.1.

## **Consequent Actions:**

aTSF  $\leftarrow$  CI\_SSF or dTIM

 $aTSD \leftarrow dDEG$ 

 $aRDI \leftarrow CI SSF or dTIM$ 

aREI ← "#EDCV"

NOTE: dUNEQ can not be used to activate aTSF and aRDI; an expected supervisory-

unequipped signal will have the signal label set to all-0's, causing a continuous detection of dUNEQ. If an unequipped VC comes in, dTIM will be activated and can

serve as a trigger for aTSF/aRDI instead of dUNEQ.

### **Defect Correlations:**

cUNEQ ← MON and dTIM and (AcTI = all "0"s) and dUNEQ

cTIM  $\leftarrow$  MON and dTIM and (not dUNEQ and AcTI = all "0"s)

 $cDEG \leftarrow MON \ and \ (not \ dTIM) \ and \ dDEG$ 

cRDI ← MON and (not dTIM) and dRDI and RDI Reported

 $cSSF \leftarrow MON$  and  $CI_SSF$  and  $SSF_Reported$ 

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

# **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $pN\_DS \qquad \leftarrow \quad aTSF \ or \ dEQ$ 

 $pF_DS \leftarrow dRDI$ 

 $pN\_EBC \leftarrow \Sigma nN\_B$ 

 $pF\_EBC \leftarrow \Sigma nF\_B$ 

# 7.5 VC-12 Layer Trail Protection Functions

# 7.5.1 VC-12 Trail Protection Connection Functions S12P\_C

## 7.5.1.1 VC-12 Layer 1+1 single ended Protection Connection Function S12P1+1se\_C

#### Symbol:

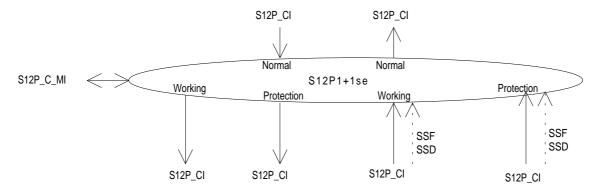



Figure 39: S12P1+1se\_C symbol

### Interfaces:

Table 24: S12P1+1se\_C input and output signals

| Input(s)                       | Output(s)                                     |
|--------------------------------|-----------------------------------------------|
| for connection points W and P: | for connection points W and P:                |
| S12P_CI_D                      | S12P_CI_D                                     |
| S12P_CI_CK                     | S12P_CI_CK                                    |
| S12P_CI_FS                     | S12P_CI_FS                                    |
| S12P_CI_SSF                    |                                               |
| S12P_CI_SSD                    | for connection point N:                       |
|                                | S12P_CI_D                                     |
| for connection point N:        | S12P_CI_CK                                    |
| S12P_CI_D                      | S12P_CI_FS                                    |
| S12P_CI_CK                     | S12P_CI_SSF                                   |
| S12P_CI_FS                     |                                               |
|                                | NOTE: protection status reporting signals are |
| S12P_C_MI_OPERType             | for further study.                            |
| S12P_C_MI_WTRTime              |                                               |
| S12P_C_MI_HOTime               |                                               |
| S12P_C_MI_EXTCMD               |                                               |

## **Processes:**

The function performs the VC-12 linear trail protection process for 1+1 protection architectures with single-ended switching; refer to ETS 300 417-1-1 [1], subclause 9.2. It performs the bridge and selector functionality as presented in figures 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the associated working path or the protection path; this is determined by the SF,SD conditions (relayed via CI\_SSF,CI\_SSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

Provided no protection switching action is activated/required the following changes to (the configuration of) a trail shall be possible without disturbing the CI passing the trail:

- change between operation types;
- change of WTR and HO times.

# Operation:

The VC trail protection process shall operate as specified in prETS 300 417-3-1 [3], Annex A, according the following characteristics:

**Table 25: Trail protection parameters** 

| Parameter                      | Value options                                   |
|--------------------------------|-------------------------------------------------|
| architecture type (ARCHtype)   | 1 + 1                                           |
| switching type (SWtype)        | single-ended                                    |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | false                                           |
| Wait-To-Restore time (WTRtime) | in the order of 5 to 12 minutes                 |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | trail                                           |
| Signal switch conditions:      | SF = SSF (originated as AI_TSF)                 |
|                                | SD = SSD (originated as AI_TSD)                 |
| External commands (EXTCMD)     | LO-#0, FSw-#i, MSw-#i, CLR                      |
| Extra traffic (EXTRAtraffic)   | false                                           |

| _  | •   | -   |   |
|----|-----|-----|---|
| ı١ | ΔτΔ | rte | • |

None.

# **Consequent Actions:**

None.

## **Defect Correlations:**

None.

# **Performance Monitoring:**

None.

# 7.5.1.2 VC-12 Layer 1+1 dual ended Protection Connection Function S12P1+1de\_C

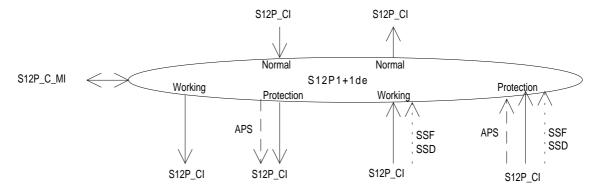



Figure 40: S12P1+1de\_C symbol

#### Interfaces:

Table 26: S12P1+1de\_C input and output signals

| Input(s)                       | Output(s)                                     |
|--------------------------------|-----------------------------------------------|
| for connection points W and P: | for connection points W and P:                |
| S12P_CI_D                      | S12P_CI_D                                     |
| S12P_CI_CK                     | S12P_CI_CK                                    |
| S12P_CI_FS                     | S12P_CI_FS                                    |
| S12P_CI_SSF                    |                                               |
| S12P_CI_SSD                    | for connection point N:                       |
|                                | S12P_CI_D                                     |
| for connection point N:        | S12P_CI_CK                                    |
| S12P_CI_D                      | S12P_CI_FS                                    |
| S12P_CI_CK                     | S12P_CI_SSF                                   |
| S12P_CI_FS                     |                                               |
|                                | for connection point P:                       |
| for connection point P:        | S12P_CI_APS                                   |
| S12P_CI_APS                    |                                               |
|                                | NOTE: protection status reporting signals are |
| S12P_C_MI_OPERType             | for further study.                            |
| S12P_C_MI_WTRTime              |                                               |
| S12P_C_MI_HOTime               |                                               |
| S12P_C_MI_EXTCMD               |                                               |

### **Processes:**

The function performs the VC-12 linear trail protection process for 1+1 protection architecture with dual-ended switching; refer to ETS 300 417-1-1 [1], subclause 9.2. It performs the bridge and selector functionality as presented in figures 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the associated working path or the protection path; this is determined by the SF,SD conditions (relayed via CI\_SSF,CI\_SSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

Provided no protection switching action is activated/required the following changes to (the configuration of) a trail shall be possible without disturbing the CI passing the trail:

- change between operation types;
- change of WTR and HO times.

## Operation:

The VC trail protection process shall operate as specified in prETS 300 417-3-1 [3], Annex A, according the following characteristics:

**Table 27: Trail protection parameters** 

| Parameter                      | Value options                                   |
|--------------------------------|-------------------------------------------------|
| architecture type (ARCHtype)   | 1 + 1                                           |
| switching type (SWtype)        | dual-ended                                      |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | true                                            |
| Wait-To-Restore time (WTRtime) | in the order of 5 to 12 minutes                 |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | trail                                           |
| Signal switch conditions:      | SF = SSF (originated as AI_TSF)                 |
|                                | SD = SSD (originated as AI_TSD)                 |
| External commands (EXTCMD)     | LO-#0, FSw-#i, MSw-#i, EXER-#i, CLR             |
| Extra traffic (EXTRAtraffic)   | false                                           |

NOTE: The VC-12 APS signal definition is for further study.

**Defects:** 

None.

**Consequent Actions:** 

None.

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

7.5.2 VC-12 Layer Trail Protection Trail Termination Functions

7.5.2.1 VC-12 Protection Trail Termination Source S12P\_TT\_So

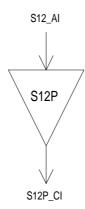



Figure 41: S12P\_TT\_So symbol

Page 64 Draft prETS 300 417-4d-1: April 1996

#### Interfaces:

Table 28: S12P\_TT\_So input and output signals

| Input(s)   | Output(s)  |
|------------|------------|
| S12P_AI_D  | S12P_CI_D  |
| S12P_AI_CK | S12P_CI_CK |
| S12P_AI_FS | S12P_CI_FS |

#### **Processes:**

| No information   | processing is | s required ir | the S12 | P_TT_So | , the | S12_A | Al at i | ts output is | identical | to | the |
|------------------|---------------|---------------|---------|---------|-------|-------|---------|--------------|-----------|----|-----|
| S12P_CI at its i | input.        |               |         |         |       |       |         |              |           |    |     |

| S12P_CI at its input.   |
|-------------------------|
| Defects:                |
| None.                   |
| Consequent Actions:     |
| None                    |
| Defect Correlations:    |
| None.                   |
| Performance Monitoring: |
| None.                   |

#### 7.5.2.2 VC-12 Protection Trail Termination Sink S12P\_TT\_Sk

#### Symbol:

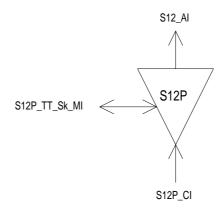



Figure 42: S12P\_TT\_Sk symbol

#### Interfaces:

Table 29: S12P\_TT\_Sk input and output signals

| Input(s)                   | Output(s)          |
|----------------------------|--------------------|
| S12P_CI_D                  | S12_AI_D           |
| S12P_CI_CK                 | S12_AI_CK          |
| S12P_CI_FS                 | S12_AI_FS          |
| S12P_CI_SSF                | S12_AI_TSF         |
| S12P_TT_Sk_MI_SSF_Reported | S12P_TT_Sk_MI_cSSF |

#### **Processes:**

The S12P\_TT\_Sk function reports, as part of the S12 layer, the state of the protected VC-12 trail. In case all trails are unavailable the S12P\_TT\_Sk reports the signal fail condition of the protected trail.

#### Defects:

None.

#### **Consequent Actions:**

 $\mathsf{aTSF} \leftarrow \mathsf{CI\_SSF}$ 

#### **Defect Correlations:**

 $\mathsf{cSSF} \leftarrow \quad \mathsf{CI\_SSF} \text{ and } \mathsf{SSF\_Reported}$ 

#### **Performance Monitoring:**

None.

Draft prETS 300 417-4d-1: April 1996

#### 7.5.3 **VC-12 Layer Linear Trail Protection Adaptation Functions**

#### 7.5.3.1 VC-12 trail to VC-12 trail Protection Layer Adaptation Source S12/S12P\_A\_So

#### Symbol:

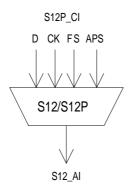



Figure 43: S12/S12P\_A\_Sk symbol

#### Interfaces:

Table 30: S12/S12P\_A\_So input and output signals

| Input(s)    | Output(s) |
|-------------|-----------|
| S12P_CI_D   | S12_AI_D  |
| S12P_CI_CK  | S12_AI_CK |
| S12P_CI_FS  | S12_AI_FS |
| S12P_CI_APS |           |

#### **Processes:**

The function shall multiplex the S12 APS signal and S12 data signal onto the S12 access point.

#### K4[1-4]:

|      | protection path. | the | VC-APS | signal | IS | tor | turther | study. | Ihis | process | IS | required | only | tor | th |
|------|------------------|-----|--------|--------|----|-----|---------|--------|------|---------|----|----------|------|-----|----|
| Defe | cts:             |     |        |        |    |     |         |        |      |         |    |          |      |     |    |
| None |                  |     |        |        |    |     |         |        |      |         |    |          |      |     |    |
| Cons | equent actions:  |     |        |        |    |     |         |        |      |         |    |          |      |     |    |
| None |                  |     |        |        |    |     |         |        |      |         |    |          |      |     |    |
| Defe | ct Correlations: |     |        |        |    |     |         |        |      |         |    |          |      |     |    |

None.

#### **Performance Monitoring:**

None.

#### 7.5.3.2 VC-12 trail to VC-12 trail Protection Layer Adaptation Sink S12/S12P\_A\_Sk

#### Symbol:

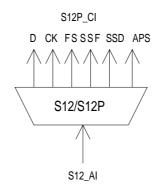



Figure 44: S12/S12P\_A\_Sk symbol

#### Interfaces:

Table 31: S12/S12P\_A\_Sk input and output signals

| Input(s)   | Output(s)                          |
|------------|------------------------------------|
| S12_AI_D   | S12P_CI_D                          |
| S12_AI_CK  | S12P_CI_CK                         |
| S12_AI_FS  | S12P_CI_FS                         |
| S12_AI_TSF | S12P_CI_SSF                        |
| S12_AI_TSD | S12P_CI_SSD                        |
|            | S12P_CI_APS (for Protection signal |
|            | only)                              |

#### **Processes:**

The function shall extract and output the S12P\_CI\_D signal from the S12\_AI\_D signal.

#### K4[1-4]:

The extraction and persistency processing of the VC-APS signal is for further study. This process is required only for the protection path.

**Defects:** 

None.

#### **Consequent actions:**

 $aSSF \leftarrow AI\_TSF$ 

 $\mathsf{aSSD} \leftarrow \quad \mathsf{AI\_TSD}$ 

**Defect Correlations:** 

None.

#### **Performance Monitoring:**

None.

#### 7.6 VC-12 Tandem Connection Sublayer Functions

#### 7.6.1 VC-12 Tandem Connection Trail Termination Source function (S12D\_TT\_So)

#### Symbol:

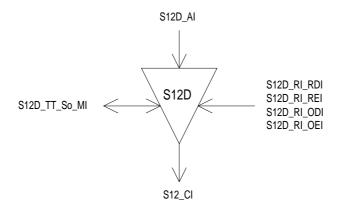



Figure 45: S12D\_TT\_So symbol

#### Interfaces:

Table 32: S12D\_TT\_So input and output signals

| Input(s)           | Output(s) |
|--------------------|-----------|
| S12D_AI_D          | S12_CI_D  |
| S12D_AI_CK         | S12_CI_CK |
| S12D_AI_FS         | S12_CI_FS |
| S12D_AI_SF         |           |
| S12D_RI_RDI        |           |
| S12D_RI_REI        |           |
| S12D_RI_ODI        |           |
| S12D_RI_OEI        |           |
| S12D_TT_So_MI_TxTI |           |

#### **Processes:**

#### N2[8][73]:

The function shall insert the TC RDI code within 1 multiframe (38 ms) after the RDI request generation (aRDI)) in the tandem connection trail termination sink function. It ceases TC RDI code insertion within 1 multiframe (38 ms) after the RDI request has cleared.

#### N2[3]:

The function shall insert a "1" in this bit.

#### N2[4]:

The function shall insert an incoming AIS code in this bit. If AI\_SF is true this bit will be set to the value "1", otherwise value "0" shall be inserted.

#### N2[5]:

The function shall insert the RI\_REI value in the REI bit in the following frame.

#### N2[7][74]:

The function shall insert the ODI code at the first opportunity after the ODI request generation (aODI)) in the tandem connection trail termination sink function. It ceases ODI code insertion at the first opportunity after the ODI request has cleared.

#### N2[6]:

The function shall insert the RI OEI value in the OEI bit in the following frame.

#### N2[7-8]:

The function shall insert in the multiframed N2[7-8] channel:

- the Frame Alignment Signal (FAS) "1111 1111 1110" in FAS bits in frames 1 to 8;
- the TC trace identifier, received via MI\_TxTI, in the TC-TI bits in frames 9 to 72;
- the TC RDI (N2[8][73]) and ODI (N2[7][74]) signals; and
- all-0s in the six reserved bits in frames 73 to 76.

#### N2[1-2]:

The function shall calculate a BIP2 over the VC-12, and insert this value in TC BIP2 in the next frame (figure 46).

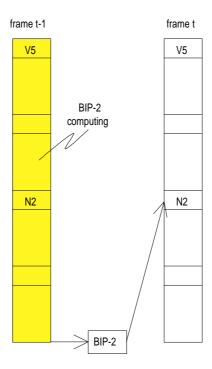



Figure 46: TC BIP-2 computing and insertion

#### V5[1-2]:

The function shall compensate the VC12 BIP2 (in bits 1 and 2 of byte V5) according the following rule:

Since the BIP-2 parity check is taken over the VC (including N2), writing into N2 at the S12D\_TT\_So will affect the VC-12 path parity calculation. Unless this is compensated for, a device which monitors VC-12 path parity within the Tandem Connection (e.g., a non-intrusive monitor) may incorrectly count errors. The BIP-2 parity bits should always be consistent with the current state of the VC. Therefore, whenever N2 is written, BIP-2 shall be modified to compensate for the change in the N2 value. Since the BIP-2 value in a given frame reflects a parity check over the previous frame (including the BIP-2 bits in that frame), the changes made to the BIP-2 bits in the previous frame shall also be considered in the compensation of BIP-2 for the current frame. Therefore, the following equation shall be used for BIP-2 compensation:

#### V5[1]'(t) = V5[1](t-1)

- ⊕ V5[1]'(t-1)
- ⊕ N2[1](t-1) ⊕ N2[3](t-1) ⊕ N2[5](t-1) ⊕ N2[7](t-1)
- $\oplus$  N2[1]'(t-1)  $\oplus$  N2[3]'(t-1)  $\oplus$  N2[5]'(t-1)  $\oplus$  N2[7]'(t-1)
- ⊕ V5[1](t)

#### Draft prETS 300 417-4d-1: April 1996

V5[2]'(t) = V5[2](t-1)

- ⊕ V5[2]'(t-1)
- $\oplus$  N2[2](t-1)  $\oplus$  N2[4](t-1)  $\oplus$  N2[6](t-1)  $\oplus$  N2[8](t-1)
- $\oplus$  N2[2]'(t-1)  $\oplus$  N2[4]'(t-1)  $\oplus$  N2[6]'(t-1)  $\oplus$  N2[8]'(t-1)
- ⊕ V5[2](t)

#### Where:

V5[i] = the existing V5[i] value in the incoming signal

V5[i]' = the new (compensated) V5[i] value

N2[i] = the existing N2[i] value in the incoming signal

N2[i]' = the new value written into the N2[i] bit

 $\oplus$  = exclusive OR operator

t = the time of the current frame

t-1 = the time of the previous frame

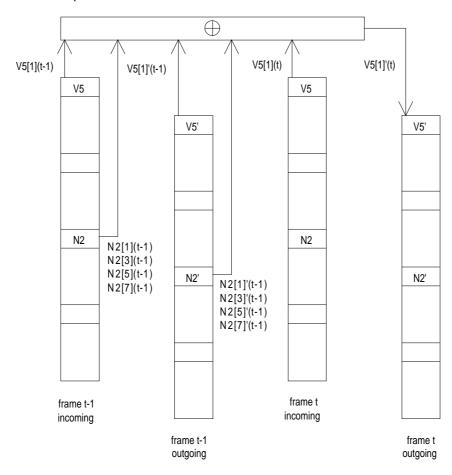



Figure 47: V5[1] compensating process

| Defects.            |  |
|---------------------|--|
| None.               |  |
| Consequent Actions: |  |
| None.               |  |
| None.               |  |

**Defect Correlations:** 

None.

Dofocto

#### **Performance Monitoring:**

None.

#### 7.6.2 VC-12 Tandem Connection Trail Termination Sink function (S12D\_TT\_Sk)

#### Symbol:

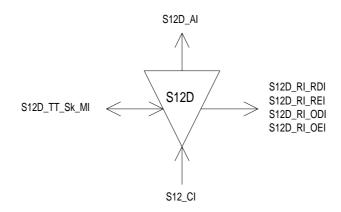



Figure 48: S12D\_TT\_Sk symbol

#### Interfaces:

Table 33: S12D\_TT\_Sk input and output signals

| Input(s)                    | Output(s)             |
|-----------------------------|-----------------------|
| S12_CI_D                    | S12D_AI_D             |
| S12_CI_CK                   | S12D_AI_CK            |
| S12_CI_FS                   | S12D_AI_FS            |
| S12_CI_SSF                  | S12D_AI_TSF           |
| S12D_TT_Sk_MI_ExTI          | S12D_AI_TSD           |
| S12D_TT_Sk_ MI_SSF_Reported | S12D_AI_OSF           |
| S12D_TT_Sk_ MI_RDI_Reported | S12D_TT_Sk_MI_cLTC    |
| S12D_TT_Sk_ MI_ODI_Reported | S12D_TT_Sk_MI_cTIM    |
| S12D_TT_Sk_ MI_TIMdis       | S12D_TT_Sk_MI_cUNEQ   |
| S12D_TT_Sk_ MI_DEGM         | S12D_TT_Sk_MI_cDEG    |
| S12D_TT_Sk_ MI_DEGTHR       | S12D_TT_Sk_MI_cRDI    |
| S12D_TT_Sk_ MI_1second      | S12D_TT_Sk_MI_cSSF    |
|                             | S12D_TT_Sk_MI_cODI    |
|                             | S12D_TT_Sk_MI_AcTI    |
|                             | S12D_RI_RDI           |
|                             | S12D_RI_REI           |
|                             | S12D_RI_ODI           |
|                             | S12D_RI_OEI           |
|                             | S12D_TT_Sk_MI_pN_EBC  |
|                             | S12D_TT_Sk_MI_pF_EBC  |
|                             | S12D_TT_Sk_MI_pN_DS   |
|                             | S12D_TT_Sk_MI_pF_DS   |
|                             | S12D_TT_Sk_MI_pON_EBC |
|                             | S12D_TT_Sk_MI_pOF_EBC |
|                             | S12D_TT_Sk_MI_pON_DS  |
|                             | S12D_TT_Sk_MI_pOF_DS  |

#### Processes:

#### N2[1-2]:

Even BIP-2 is computed for each bit pair of every byte of the preceding VC-12 including V5 and N2 and compared with bit 1 and 2 of V5 and N2 recovered from the current frame (figure 49). A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block.

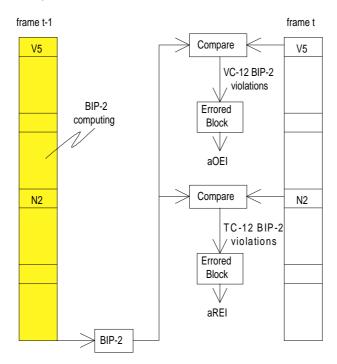



Figure 49: TC-12 and VC-12 BIP-2 computing and comparison

#### N2[7-8][9-72]:

The Received Trail Trace Identifier RxTI shall be recovered from the tandem connection trail trace identifier overhead and shall be made available as AcTI for network management purposes. The application and acceptance process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3. The mismatch detection process shall be as specified below.

The trace identifier process in this function is required to support "mode 1" (ETS 300 417-1-1 [1], subclause 7.1) operation only. "Old" tandem connection equipment does not exist.

#### N2[4]:

The function shall extract the Incoming AIS code.

#### N2[5], N2[8][73]:

The information carried in the REI, RDI bits in byte N2 shall be extracted to enable single ended maintenance of a bi-directional tandem connection Trail. The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.4.2 (REI), 7.4.11 and 8.2 (RDI).

## N2[6], N2[7][74]:

The information carried in the OEI, ODI bits in byte N2 shall be extracted to enable single ended (intermediate) maintenance of a the VC-12 egressing the tandem connection Trail. The OEI (nOF\_B) shall be used to monitor the error performance of the other direction of transmission, and the ODI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Outgoing Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed equivalent to the remote maintenance case, as specified in ETS 300 417-1-1 [1], subclauses 7.4.2 (REI/OEI), 7.4.11 and 8.2 (RDI/ODI).

Draft prETS 300 417-4d-1: April 1996

#### N2[7-8]:

Multiframe alignment:

The function shall perform a multiframe alignment on bits 7 and 8 of byte N2 to recover the TTI, RDI, and ODI signals transported within the multiframed bits. The multiframe alignment shall be found by searching for the pattern "1111 1111 1110" within the bits 7 and 8 of byte N2. The signal shall be continuously checked with the presumed multiframe start position for the alignment.

Frame alignment is deemed to have been lost (entering Out Of Multiframe (OOM) state) when two consecutive FAS are detected in error (i.e. ≥ 1 error in each FAS);

Frame alignment is deemed to have been recovered (entering In Multiframe (IM) state) when one non-errored FAS is found.

#### V5[1-2]:

Even BIP-2 is computed for each bit pair of every byte of the preceding VC-12 including V5 and compared with bit Nº1 and 2 of V5 recovered from the current frame. A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nON\_B) in the computation block.

#### N2:

The function shall terminate N2 channel by inserting an all-ZEROs pattern.

#### V5[1-2]:

The function shall compensate the VC12 BIP2 in bits 1 and 2 of byte V5 according the algorithm defined in S12D\_TT\_So.

#### Defects:

#### TC Unequipped (dUNEQ):

The function shall detect for an unequipped Tandem Connection (UNEQ) condition by monitoring byte N2 for code "00000000". The algorithm shall be according subclause 8.2.1.2 of ETS 300 417-1-1 [1], in which "accepted TSL" shall be read as "accepted N2 byte". The defect is referred to as dUNEQ.

#### TC Loss of Tandem Connection (dLTC):

The function shall detect for the presence/absence of the tandem connection overhead in the byte N2 by evaluating the multiframe alignment signal in bits 7 and 8 of byte N2. The loss of tandem connection defect (dLTC) shall be detected if the multiframe alignment process is in the OOM state. The dLTC shall be cleared if the multiframe alignment process is in the IM state.

#### TC Connectivity (Trace Identifier) (dTIM):

The function shall detect for a TC mis-connection condition by monitoring the TC trace identifier. The Trace Identifier Mismatch defect (dTIM) shall be detected and cleared within a maximum period of 4 s in the absence of bit errors.

The defect detection process and its operation during the presence of bit errors is for further study.

The defect shall be suppressed during the receipt of SSF.

It shall be possible to disable the trace identifier mismatch defect detection (TIMdis).

#### TC Signal Degrade (dDEG):

The function shall detect for a TC signal degrade defect condition by monitoring for TC BIP2 violations. The algorithm shall be according subclause 8.2.1.4 of ETS 300 417-1-1 [1].

#### TC Remote Defect (dRDI):

The function shall detect for a TC remote defect indication defect condition by monitoring the TC RDI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

#### TC Remote Outgoing VC Defect (dODI):

The function shall detect for a TC remote outgoing VC defect indication defect condition by monitoring the TC ODI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

Incoming AIS (dIncAIS):

The function shall detect for a tandem connection incoming AIS condition by monitoring bit 4 in byte N2 for code "1". If 5 consecutive frames contain the value "1" in bit 4 a dlncAIS defect shall be detected. dlncAIS shall be cleared if in 5 consecutive frames value "0" is detected in bit 4 of byte N2.

#### **Consequent Actions:**

The function shall perform the following consequent actions (refer to subclause 8.2.2 of ETS 300 417-1-1 [1]):

aAIS ← dUNEQ or dTIM or dLTC

aTSF ← CI SSF or dUNEQ or dTIM or dLTC

aTSD ← dDEG

aRDI ← CI\_SSF or dUNEQ or dTIM or dLTC

aREI ← nN B

aODI ← CI\_SSF or dUNEQ or dTIM or dIncAIS or dLTC

aOEI ← nON\_B

aOSF ← CI SSF or dUNEQ or dTIM or dLTC or dIncAIS

The function shall insert the all-ONEs (AIS) signal within 1 ms after AIS request generation (aAIS), and cease the insertion within 1 ms after the AIS request has cleared.

#### **Defect Correlations:**

The function shall perform the following defect correlations (refer to subclause 8.2.3 of ETS 300 417-1-1 [1]):

cUNEQ ← MON and dUNEQ

cLTC ← MON and (not dUNEQ) and dLTC

cTIM ← MON and (not dUNEQ) and (not dLTC) and dTIM

cDEG ← MON and (not dTIM) and (not dLTC) and dDEG

cSSF ← MON and CI\_SSF and SSF\_Reported

cRDI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dRDI and RDI Reported

cODI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dODI and ODI\_Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

It shall be an option to report ODI as a fault cause. This is controlled by means of the parameter ODI\_Reported. The default shall be ODI\_Reported = false.

#### **Performance Monitoring:**

The following TC error performance parameters shall be counted for each 1-second period (refer to subclauses 8.2.4 to 8.2.7 of ETS 300 417-1-1 [1])<sup>2</sup>:

 $pN_DS \leftarrow aTSF$  or dEQ

 $\mathsf{pF} \mathsf{\_DS} \leftarrow \mathsf{dRDI}$ 

 $pN\_EBC \leftarrow \Sigma nN\_B$ 

 $\mathsf{pF}\_\mathsf{EBC} \leftarrow \Sigma \mathsf{nF}\_\mathsf{B}$ 

pON\_DS ← aODI

pOF DS  $\leftarrow$  dODI

 $pON\_EBC \leftarrow \Sigma nON\_B$ 

 $pOF\_EBC \leftarrow \Sigma nOF\_B$ 

#### 7.6.3 VC-12 Tandem Connection to VC-12 Adaptation Source function (S12D/S12\_A\_So)

#### Symbol:

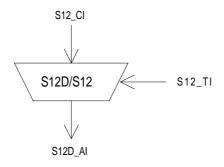



Figure 50: S12D/S12\_A\_So symbol

#### Interfaces:

Table 34: S12D/S12\_A\_So input and output signals

| Input(s)   | Output(s)  |
|------------|------------|
| S12_CI_D   | S12D_AI_D  |
| S12_CI_CK  | S12D_AI_CK |
| S12_CI_FS  | S12D_AI_FS |
| S12_CI_SSF | S12D_AI_SF |
| S12_TI_CK  |            |

#### **Processes:**

NOTE 1: The function has no means to verify the existence of a tandem connection within the incoming signal. Nested tandem connections are not supported.

pN\_EBC and pN\_DS does not represent the actual performance monitoring support within an equipment. For that, these pN\_DS/pN\_EBC signals must be connected to performance monitoring functions within the element management function. Similar for the far-end signals pF\_EBC and pF\_DS, and for pON\_EBC/pON\_DS and pOF\_EBC/pOF\_DS.

#### Draft prETS 300 417-4d-1: April 1996

The function shall replace the incoming Frame Start (CI\_FS) signal by a local generated one (i.e. enter "holdover") if an all-ONEs (AIS) VC is received (i.e. if CI\_SSF is TRUE).

NOTE 2: This replacement of the (invalid) incoming frame start signal result in the generation of a valid pointer in e.g. the S4/S12\_A\_So function; SSF=true signal is not passed through via S12D\_TT\_So to the S4/S12\_A\_So.

NOTE 3: The local frame start is generated with the S12\_TI timing.

**Defects:** 

None.

**Consequent Actions:** 

Al SF← Cl SSF

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

7.6.4 VC-12 Tandem Connection to VC-12 Adaptation Sink function (S12D/S12\_A\_Sk)

#### Symbol:

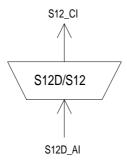



Figure 51: S12D/S12\_A\_Sk symbol

#### Interfaces:

Table 35: S12D/S12\_A\_Sk input and output signals

| Input(s)    | Output(s)  |
|-------------|------------|
| S12D_AI_D   | S12_CI_D   |
| S12D_AI_CK  | S12_CI_CK  |
| S12D_AI_FS  | S12_CI_FS  |
| S12D_AI_OSF | S12_CI_SSF |

#### **Processes:**

The function shall restore the invalid frame start condition (i.e. output aSSF = true) if that existed at the ingress of the tandem connection.

NOTE: In addition, the invalid frame start condition is activated on a tandem connection connectivity defect condition that causes all-ONEs (AIS) insertion in the S12D TT Sk.

Draft prETS 300 417-4d-1: April 1996

**Defects:** 

None.

#### **Consequent Actions:**

 $\mathsf{aAIS} \leftarrow \mathsf{AI\_OSF}$ 

 $\mathsf{aSSF} \gets \mathsf{AI\_OSF}$ 

The function shall insert the all-ONEs (AIS) signal within 1 ms after AIS request generation (aAIS), and cease the insertion within 1 ms after the AIS request has cleared.

#### **Defect Correlations:**

None.

#### **Performance Monitoring:**

None.

7.6.5 VC-12 Tandem Connection non-intrusive Trail Termination Sink function (S12Dm\_TT\_Sk)

#### Symbol:

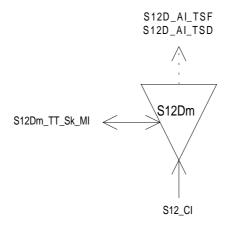



Figure 52: S12Dm\_TT\_Sk symbol

#### Interfaces:

Table 36: S12Dm TT Sk input and output signals

| Input(s)                    | Output(s)             |
|-----------------------------|-----------------------|
| S12_CI_D                    | S12D_AI_TSF           |
| S12_CI_CK                   | S12D_AI_TSD           |
| S12_CI_FS                   | S12D_TT_Sk_MI_cLTC    |
| S12_CI_SSF                  | S12D_TT_Sk_MI_cTIM    |
| S12D_TT_Sk_MI_ExTI          | S12D_TT_Sk_MI_cUNEQ   |
| S12D_TT_Sk_ MI_SSF_Reported | S12D_TT_Sk_MI_cDEG    |
| S12D_TT_Sk_ MI_RDI_Reported | S12D_TT_Sk_MI_cRDI    |
| S12D_TT_Sk_ MI_ODI_Reported | S12D_TT_Sk_MI_cSSF    |
| S12D_TT_Sk_ MI_TIMdis       | S12D_TT_Sk_MI_cODI    |
| S12D_TT_Sk_ MI_DEGM         | S12D_TT_Sk_MI_AcTI    |
| S12D_TT_Sk_ MI_DEGTHR       | S12D_TT_Sk_MI_pN_EBC  |
| S12D_TT_Sk_ MI_1second      | S12D_TT_Sk_MI_pF_EBC  |
|                             | S12D_TT_Sk_MI_pN_DS   |
|                             | S12D_TT_Sk_MI_pF_DS   |
|                             | S12D_TT_Sk_MI_pOF_EBC |
|                             | S12D_TT_Sk_MI_pOF_DS  |

#### Processes:

This function can be used to perform the following:

- single ended maintenance of the TC by monitoring at an intermediate node, using remote information (RDI,REI),
- 2 aid in fault localisation within TC trail by monitoring near-end defects,
- monitoring of VC performance at TC egressing point(except for connectivity defects before the TC) using remote outgoing information (ODI,OEI).
- 4 performing non-intrusive monitor function within SNC/S protection.

#### N2[1-2]:

Even BIP-2 is computed for each bit pair of every byte of the preceding VC-12 including V5 and N2 and compared with bits 1 and 2 of V5 and N2 recovered from the current frame (figure 46). A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block. Refer to S12D\_TT\_Sk.

#### N2[7-8][9-72]:

The Received Trail Trace Identifier RxTI shall be recovered from the tandem connection trail trace identifier overhead and shall be made available as AcTI for network management purposes. The application and acceptance process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3. The mismatch detection process shall be as specified below.

The trace identifier process in this function is required to support "mode 1" (ETS 300 417-1-1 [1], subclause 7.1) operation only. "Old" tandem connection equipment does not exist.

#### N2[4]:

The function shall extract the Incoming AIS code.

#### N2[5], N2[8][73]:

The information carried in the REI, RDI bits in byte N2 shall be extracted to enable single ended maintenance of a bi-directional tandem connection Trail. The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state,

while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.4.2 (REI), 7.4.11 and 8.2 (RDI).

#### N2[6], N2[7][74]:

(nOF\_B). The information carried in the OEI, ODI bits in byte N2 shall be extracted to enable single ended (intermediate) maintenance of a the VC-12 egressing the tandem connection Trail. The OEI (nOF\_B) shall be used to monitor the error performance of the other direction of transmission, and the ODI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Outgoing Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed equivalent to the remote maintenance case, as specified in ETS 300 417-1-1 [1], subclauses 7.4.2 (REI/OEI), 7.4.11 and 8.2 (RDI/ODI).

#### N2[7-8]:

Multiframe alignment:

The function shall perform a multiframe alignment on bits 7 and 8 of byte N2 to recover the TTI, RDI, and ODI signals transported within the multiframed bits. The multiframe alignment shall be found by searching for the pattern "1111 1111 1110" within the bits 7 and 8 of byte N2. The signal shall be continuously checked with the presumed multiframe start position for the alignment.

Frame alignment is deemed to have been lost (entering Out Of Multiframe (OOM) state) when two consecutive FAS are detected in error (i.e.  $\geq$  1 error in each FAS);

Frame alignment is deemed to have been recovered (entering In Multiframe (IM) state) when one non-errored FAS is found.

#### Defects:

#### TC Unequipped (dUNEQ):

The function shall detect for an unequipped Tandem Connection (UNEQ) condition by monitoring byte N2 for code "00000000". The algorithm shall be according subclause 8.2.1.2 of ETS 300 417-1-1 [1], in which "accepted TSL" shall be read as "accepted N2 byte". The defect is referred to as dUNEQ.

#### TC Loss of Tandem Connection (dLTC):

The function shall detect for the presence/absence of the tandem connection overhead in the byte N2 by evaluating the multiframe alignment signal in bits 7 and 8 of byte N2. The loss of tandem connection defect (dLTC) shall be detected if the multiframe alignment process is in the OOM state. The dLTC shall be cleared if the multiframe alignment process is in the IM state.

#### TC Connectivity (Trace Identifier) (dTIM):

The function shall detect for a TC mis-connection condition by monitoring the TC trace identifier. The Trace Identifier Mismatch defect (dTIM) shall be detected and cleared within a maximum period of 4 s in the absence of bit errors.

The defect detection process and its operation during the presence of bit errors is for further study.

The defect shall be suppressed during the receipt of SSF.

It shall be possible to disable the trace identifier mismatch defect detection (TIMdis).

#### TC Signal Degrade (dDEG):

The function shall detect for a TC signal degrade defect condition by monitoring for TC BIP2 violations. The algorithm shall be according subclause 8.2.1.4 of ETS 300 417-1-1 [1].

#### TC Remote Defect (dRDI):

The function shall detect for a TC remote defect indication defect condition by monitoring the TC RDI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

#### TC Remote Outgoing VC Defect (dODI):

The function shall detect for a TC remote outgoing VC defect indication defect condition by monitoring the TC ODI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

#### Incoming AIS (dIncAIS):

Connection incoming AIS condition by monitoring bit 4 in byte N2 for code "1". If 5 consecutive VC-12 frames contain the value "1" in bit 4 a dlncAIS defect shall be detected. dlncAIS shall be cleared if in 5 consecutive VC-12 frames value "0" is detected in bit 4 of byte N2.

#### **Consequent Actions:**

aTSF ← CI\_SSF or dUNEQ or dTIM or dLTC

aTSD ← dDEG

#### **Defect Correlations:**

The function shall perform the following defect correlations (refer to subclause 8.2.3 of ETS 300 417-1-1 [1]):

cUNEQ ← MON and dUNEQ

cLTC ← MON and (not dUNEQ) and dLTC

cTIM ← MON and (not dUNEQ) and (not dLTC) and dTIM

cDEG ← MON and (not dTIM) and (not dLTC) and dDEG

cSSF ← MON and CI\_SSF and SSF\_Reported

cRDI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dRDI and RDI\_Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

It shall be an option to report ODI as a fault cause. This is controlled by means of the parameter ODI\_Reported. The default shall be ODI\_Reported = false.

#### **Performance Monitoring:**

The following TC error performance parameters shall be counted for each 1 second period (refer to subclauses 8.2.4 to 8.2.7 of ETS 300 417-1-1 [1]):

 $pN\_DS \leftarrow aTSF \ or \ dEQ$ 

 $\mathsf{pF}\mathsf{\_DS} \leftarrow \mathsf{dRDI}$ 

 $pN\_EBC \leftarrow \Sigma nN\_B$ 

 $\mathsf{pF}\_\mathsf{EBC} \leftarrow \Sigma \mathsf{nF}\_\mathsf{B}$ 

pOF DS  $\leftarrow$  dODI

 $pOF\_EBC \leftarrow \Sigma nOF\_B$ 

# History

| Document history |                |         |                          |  |
|------------------|----------------|---------|--------------------------|--|
| April 1996       | Public Enquiry | PE 105: | 1996-04-08 to 1996-08-30 |  |
|                  |                |         |                          |  |
|                  |                |         |                          |  |
|                  |                |         |                          |  |
|                  |                |         |                          |  |



# EUROPEAN TELECOMMUNICATION STANDARD

**DRAFT** pr **ETS 300 417-4e-1** 

**April 1996** 

Source: ETSI TC-TM Reference: DE/TM-01015-4-1

ICS: 33.020

Key words: Transmission, SDH, interface

# Transmission and Multiplexing (TM); Generic Functional Requirements for Synchronous Digital Hierarchy (SDH) Equipment Part 4e-1: SDH Path Layer Functions

# **ETSI**

European Telecommunications Standards Institute

#### **ETSI Secretariat**

Postal address: F-06921 Sophia Antipolis CEDEX: FRANCE

Office address: 650 Route des Lucioles: Sophia Antipolis: Valbonne: FRANCE

**X.400:** c=fr, a=atlas, p=etsi, s=secretariat: **Internet:** secretariat@etsi.fr

Tel.: +33 92 94 42 00: Fax: +33 93 65 47 16

\*

**Copyright Notification:** No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

| it pr=13 300 / | 417-4e-1: April | 1996 |  |  |  |
|----------------|-----------------|------|--|--|--|
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |
|                |                 |      |  |  |  |

Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page.

# Contents

| Fore | eword  |               |                      |                                                                                                           | 5    |
|------|--------|---------------|----------------------|-----------------------------------------------------------------------------------------------------------|------|
| 1    | Scope  |               |                      |                                                                                                           | 7    |
| 2    | Norma  | tive Referen  | nces                 |                                                                                                           | 7    |
| 3    |        |               |                      | nbols                                                                                                     |      |
|      | 3.1    |               |                      |                                                                                                           |      |
|      | 3.2    |               |                      |                                                                                                           |      |
|      | 3.3    |               |                      | atic Conventions                                                                                          |      |
|      | 3.4    | Introducti    | ion                  |                                                                                                           | 10   |
| 4    | VC-4 F | Path Layer F  | unctions             |                                                                                                           | 10   |
| 5    | VC-3 F | Path Layer F  | unctions             |                                                                                                           | 10   |
| 6    | VC-2 F | Path Layer F  | unctions             |                                                                                                           | 10   |
| 7    | VC-12  | Path Laver    | Functions            |                                                                                                           | 10   |
|      |        | •             |                      |                                                                                                           |      |
| 8    | 8.1    |               |                      | n Function S11_C                                                                                          |      |
|      | 8.2    |               |                      | Functions                                                                                                 |      |
|      | 0.2    | 8.2.1         |                      | Termination Source S11_TT_So                                                                              |      |
|      |        | 8.2.2         |                      | Termination Source 311_11_So                                                                              |      |
|      | 8.3    | -             |                      | ions                                                                                                      |      |
|      | 0.0    | 8.3.1         |                      | 11x Adaptation Source S11/P11x_A_So                                                                       |      |
|      |        | 8.3.2         |                      | 11x Adaptation Sink S11/P11x_A_Sk                                                                         |      |
|      |        | 8.3.3         |                      | er to TSS4 Adaptation Source S11/TSS4_A_So                                                                |      |
|      |        | 8.3.4         |                      | er to TSS4 Adaptation Sink S11/TSS4_A_Sk                                                                  |      |
|      |        | 8.3.5         |                      | er to ATM Layer Compound Adaptation Source                                                                |      |
|      |        |               | S11/ATM_A            | A_So                                                                                                      | 32   |
|      |        | 8.3.6         | VC-11 Laye           | er to ATM Layer Compound Adaptation Sink S11/ATM_A_Sk                                                     | 32   |
|      | 8.4    | VC-11 La      |                      | Functions                                                                                                 |      |
|      |        | 8.4.1         |                      | er Non-intrusive Monitoring Function S11m_TT_Sk                                                           |      |
|      |        | 8.4.2         | VC-11 Laye           | er Supervisory-Unequipped Termination Source S11s_TT_So                                                   | 34   |
|      |        | 8.4.3         |                      | er Supervisory-unequipped Termination Sink S11s_TT_Sk                                                     |      |
|      | 8.5    |               |                      | ction Functions                                                                                           |      |
|      |        | 8.5.1         |                      | Protection Connection Functions S11P_C                                                                    | 38   |
|      |        |               | 8.5.1.1              | VC-11 Layer single ended Protection Connection                                                            |      |
|      |        |               |                      | Function S11P1+1se_C                                                                                      | 38   |
|      |        |               | 8.5.1.2              | VC-11 Layer 1+1 dual ended Protection Connection                                                          |      |
|      |        | 0.5.0         | \/O 44.I             | Function S11P1+1de_C                                                                                      | 40   |
|      |        | 8.5.2         |                      | er Trail Protection Trail Termination Functions                                                           |      |
|      |        |               | 8.5.2.1              | VC-11 Protection Trail Termination Source S11P_TT_So.                                                     | 42   |
|      |        | 0.5.2         | 8.5.2.2              | VC-11 Protection Trail Termination Sink S11P_TT_Sk                                                        |      |
|      |        | 8.5.3         | 8.5.3.1              | er Linear Trail Protection Adaptation Functions<br>VC-11 trail to VC-11 trail Protection Layer Adaptation | 44   |
|      |        |               | 0.5.5.1              | Source S11/S11P_A_So                                                                                      | 11   |
|      |        |               | 8.5.3.2              | VC-11 trail to VC-11 trail Protection Layer Adaptation Sink                                               |      |
|      |        |               | 0.0.0.2              | S11/S11P_A_Sk                                                                                             |      |
|      | 8.6    | VC-11 Ta      | andem Connect        | ion Sublayer Functions                                                                                    |      |
|      | 0.0    | 8.6.1         |                      | dem Connection Trail Termination Source function                                                          | 10   |
|      |        | 0.0.1         |                      | So)                                                                                                       | .46  |
|      |        | 8.6.2         |                      | dem Connection Trail Termination Sink function                                                            | . 10 |
|      |        | 5.5. <u>L</u> |                      | _Sk)                                                                                                      | 49   |
|      |        |               | \-·· <del>-</del> ·- | /                                                                                                         |      |

#### Page 4 Draft prETS 300 417-4e-1: April 1996

|         | 8.6.3 | VC-11 Tandem Connection to VC-11 Adaptation Source function (S11D/S11 A So)         | 53   |
|---------|-------|-------------------------------------------------------------------------------------|------|
|         | 8.6.4 | VC-11 Tandem Connection to VC-11 Adaptation Sink function (S11D/S11_A_Sk)           |      |
|         | 8.6.5 | VC-11 Tandem Connection non-intrusive Trail Termination Sink function (S11Dm_TT_Sk) |      |
| History |       |                                                                                     | . 59 |

#### **Foreword**

This draft European Telecommunications Standard (ETS) was produced by the Transmission and Multiplexing (TM) Technical Committee of the European Telecommunications Standards Institute (ETSI), and is now submitted for the Public Enquiry phase of the ETSI standards approval procedure.

This ETS has been produced in order to provide inter-vendor and inter-operator compatibility for Synchronous Digital Hierarchy (SDH) equipment.

This ETS consists of 8 parts as follows:

Part 1: "Generic processes and performance" (ETS 300 417-1-1). Part 2: "Physical section layer functions" (prETS 300 417-2-1).

Part 3: "STM-N regenerator and multiplex section layer functions" (prETS 300 417-3-1).

Part 4: "SDH path layer functions" (prETS 300 417-4-1).
Part 5: "PDH path layer functions" (prETS 300 417-5-1).

Part 6: "Synchronisation distribution layer functions" (prETS 300 417-6-1).

Part 7: "Auxiliary layer functions" (prETS 300 417-7-1).

Part 8: "Compound and major compound functions" (prETS 300 417-8-1).

This sub-part 4-1 of the ETS has been further split into five sub-parts to simplify the handling of the document. These sub-parts of prETS 300 417-4-1 have been identified as parts 4a-1 to 4e-1. To minimise delay and for Public Enquiry purposes, this set of five documents should be considered as one document (namely, prETS 300 417-4-1). During subsequent processing (the Voting stage) the documents will be merged into a single document.

Page 6 Draft prETS 300 417-4e-1: April 1996

Blank page

#### 1 Scope

This ETS specifies a library of basic building blocks and a set of rules by which they are combined in order to describe a digital transmission equipment. The library comprises the functional building blocks needed to completely specify the generic functional structure of the European Digital Transmission Hierarchy. Equipment which is compliant with this standard must be describable as an interconnection of a subset of these functional blocks contained within this ETS. The interconnections of these blocks must obey the combination rules given. The generic functionality is described in ETS 300 417-1-1 [1].

#### 2 Normative References

This draft ETS incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references subsequent amendments to, or revisions of, any of these publications apply to this ETS only when incorporated in it by amendments or revisions. For undated references the latest edition of the publication referred to applies.

| [1] | ETS 300 417-1-1 (1996): "Transmission and Multiplexing (TM); Generic functional requirements for Synchronous Digital Hierarchy (SDH) equipment; Part 1-1: Generic processes and performance".                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [2] | ETS 300 147 (1995): "Transmission and Multiplexing (TM); Synchronous Digital Hierarchy (SDH) Multiplexing structure".                                                                                         |
| [3] | prETS 300 417-3-1: "Transmission and Multiplexing (TM); Generic functional requirements for Synchronous Digital Hierarchy (SDH) equipment Part 3-1: STM-N regenerator and multiplex section layer functions". |
| [4] | ITU-T Recommendation G.823 (1993): "The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy".                                                                   |
| [5] | ITU-T draft Recommendation O.181: "Equipment to assess error performance on STM-N interfaces".                                                                                                                |
| [6] | ITU-T Recommendation O.151 (1992): "Error performance measuring equipment operating at the primary rate and above".                                                                                           |
| [7] | ITU-T Recommendation G.708: "Network Node Interface for the Synchronous Digital Hierarchy".                                                                                                                   |

#### 3 Definitions, Abbreviations and Symbols

#### 3.1 Definitions

The functional definitions are described in ETS 300 417-1-1 [1].

#### 3.2 Abbreviations

For the purposes of this ETS, the following abbreviations apply:

Α Adaptation function Accepted Trace identifier AcTI Add-Drop Multiplexer ADM Adapted Information ΑI AIS Alarm Indication Signal AΡ Access Point APId Access Point Identifier **Automatic Protection Switch APS** 

ATM Asynchronous Transfer Mode
AU Administrative Unit

AU-n Administrative Unit, level n
AUG Administrative Unit Group

#### Draft prETS 300 417-4e-1: April 1996

BER Bit Error Ratio
BIP Bit Interleaved Parity

BIP-N Bit Interleaved Parity, width N

C Connection function
CI Characteristic Information

CK Clock

CM Connection Matrix
CP Connection Point
CS Clock Source

D Data

DCC Data Communications Channel

DEC Decrement DEG Degraded

DEGTHR Degraded Threshold EBC Errored Block Count

ECC Embedded Communications Channel

ECC(x) Embedded Communications Channel, Layer x

EDC Error Detection Code

EDCV Error Detection Code Violation
EMF Equipment Management Function

EQ Equipment
ES Electrical Section
ES Errored Second

ExTI Expected Trace Identifier

F B Far-end Block

FAS Frame Alignment Signal
FOP Failure Of Protocol
FS Frame Start signal
HO Higher Order

HOVC Higher Order Virtual Container

HP Higher order Path

ID Identifier
IF In Frame state
INC Increment
LC Link Connection
LO Lower Order

LOA Loss Of Alignment; generic for LOF, LOM, LOP

LOF Loss Of Frame LOP Loss Of Pointer LOS Loss Of Signal

LOVC Lower Order Virtual Container

MC Matrix Connection

MCF Message Communications Function

MDT Mean Down Time

mei maintenance event information MI Management Information

MO Managed Object MON Monitored

MP Management Point
MS Multiplex Section
MS1 STM-1 Multiplex Section
MS16 STM-16 Multiplex Section
MS4 STM-4 Multiplex Section
MSB Most Significant Bit

MSOH Multiplex Section Overhead
MSP Multiplex Section Protection
MSPG Multiplex Section Protection Group

N.C.
N\_B
Near-end Block
NC
Network Connection
NDF
New Data Flag
NE
Network Element
NMON
Not Monitored

Draft prETS 300 417-4e-1: April 1996

NNI Network Node Interface
NU National Use (bits, bytes)
NUx National Use, bit rate order x

OAM Operation, Administration and Management

OFS Out of Frame Second
OOF Out Of Frame state
OS Optical Section

OSI(x) Open Systems Interconnection, Layer x

OW Order Wire Protection

P\_A Protection Adaptation
P\_C Protection Connection
P\_TT Protection Trail Termination
PDH Plesiochronous Digital Hierarchy
PJE Pointer Justification Event
PM Performance Monitoring
Pn Plesiochronous signal, Level n

POH Path Overhead

PRC Primary Reference Clock
PS Protection Switching
PSC Protection Switch Count

PTR Pointer

QOS Quality Of Service
RDI Remote Defect Indicator
REI Remote Error Indicator
RI Remote Information
RP Remote Point
RS Regenerator Section

RS1 STM-1 Regenerator Section
RS16 STM-16 Regenerator Section
RS4 STM-4 Regenerator Section
RSOH Regenerator Section Overhead
RxTI Received Trace identifier

S4 VC-4 path layer

SASE Stand-Alone Synchronization Equipment

SD Synchronization Distribution layer, Signal Degrade

SDH Synchronous Digital Hierarchy

SEC SDH Equipment Clock

SF Signal Fail Sk Sink

SNC Sub-Network Connection

SNC/I Inherently monitored Sub-Network Connection protection SNC/N Non-intrusively monitored Sub-Network Connection protection

So Source

SOH Section Overhead
SPRING Shared Protection Ring
SR Selected Reference
SSD Server Signal Degrade
SSF Server Signal Fail

SSM Synchronization Status Message SSU Synchronization Supply Unit STM Synchronous Transport Module

STM-N Synchronous Transport Module, level N

TCP Termination Connection Point

TI Timing Information
TIM Trace Identifier Mismatch

TM Transmission Medium, Transmission & Multiplexing

TMN Telecommunications Management Network

TP Timing Point

TPmode Termination Point mode

TS Time Slot

TSD Trail Signal Degrade TSF Trail Signal Fail

#### Draft prETS 300 417-4e-1: April 1996

| TT  | Trail Termination function |
|-----|----------------------------|
| TTI | Trail Trace Identifier     |

TTs Trail Termination supervisory function

TxTI Transmitted Trace Identifier

UNEQ Unequipped

UNI User Network Interface

USR User channels VC Virtual Container

VC-n Virtual Container, level n

W Working

#### 3.3 Symbols and Diagrammatic Conventions

The symbols and diagrammatic conventions are described in ETS 300 417-1-1 [1].

#### 3.4 Introduction

The atomic and some compound functions used in the SDH Path Layers are defined below.

#### 4 VC-4 Path Layer Functions

Refer to part 4a-1 of this ETS (see Foreword for details).

## 5 VC-3 Path Layer Functions

Refer to part 4b-1 of this ETS (see Foreword for details).

#### 6 VC-2 Path Layer Functions

Refer to part 4c-1 of this ETS (see Foreword for details).

#### 7 VC-12 Path Layer Functions

Refer to part 4d-1 of this ETS (see Foreword for details).

#### 8 VC-11 Path Layer Functions

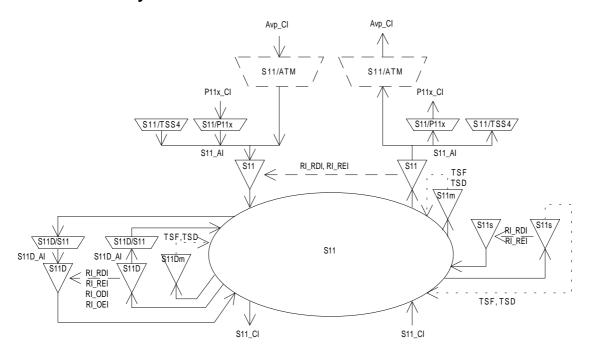



Figure 1: VC-11 Path layer functions

#### VC-11 Layer Characteristic Information.

The Characteristic Information CI is octet structured with an 500 µs frame (Figure 2) Its format is characterised as S11 AI plus the VC-11 Trail Termination overhead in the V5 and J2 locations (1 byte each) as defined in ETS 300 147 [2] or as an unequipped signal as defined in ETS 300 417-1-1 [1], subclause 7.2. For the case the signal has passed the tandem connection sublayer, S11\_CI has defined VC-11 tandem connection trail termination overhead in location N2.

NOTE 1: N2 will be undefined when the signal S11\_CI has not been processed in a tandem connection adaptation and trail termination function. N2 is all-"0"s in a (supervisory-) unequipped VC-11 signal.

NOTE 2: Bit 4 of byte V5 is reserved for an application not supported by ETSI. Currently its value is undefined.

#### **VC-11 Layer Adaptation Information.**

The Adaptation Information AI is octet structured with an  $500 \,\mu s$  frame. It represents adapted client layer information comprising 100 bytes of client layer information and the Signal Label bits 5.6, and 7 of the V5 byte. For the case the signal has passed the trail protection sublayer,  $S11\_AI$  has defined APS bits (1 to 4) in byte K4.

NOTE 3: Bits 1 to 4 of byte K4 will be undefined when the signal S11\_AI has not been processed in a trail protection connection function S11P\_C.

A VC-11 comprises one of the following payloads:

- 1 544 kbit/s signal asynchronous mapped into a Container-11;
- n ATM 1 600 kbit/s cell stream signal.

Page 12 Draft prETS 300 417-4e-1: April 1996

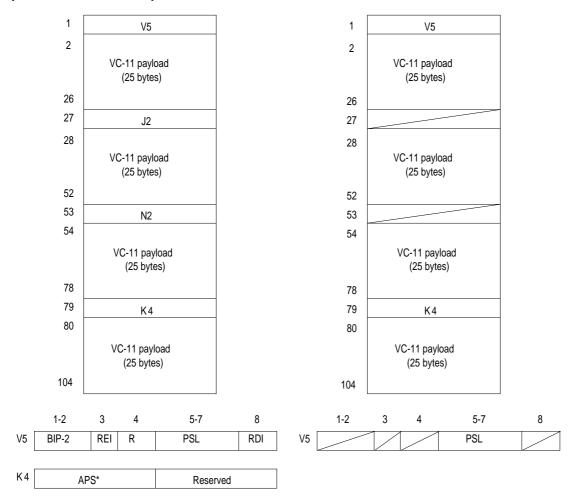



Figure 2: S11\_CI\_D (left) and S11\_AI\_D (right)

NOTE 4: The APS signal has not been defined; a multiframed APS signal might be required. The RFI signal is not supported within ETSI.

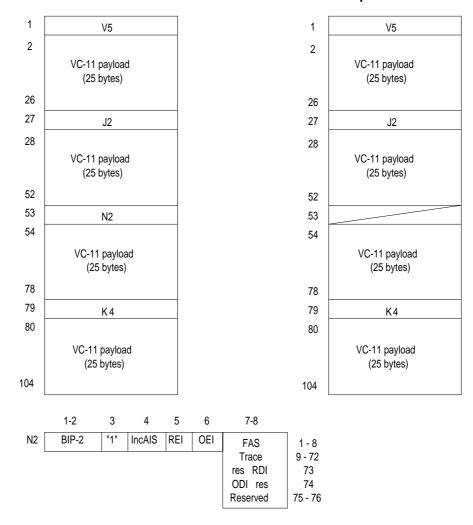



Figure 3: S11\_CI\_D (left) with defined N2 and S11D\_AI\_D (right)

Figure 4 shows the trail protection sublayer atomic functions added to (a subset of) the layer atomic functions presented in figure 1.

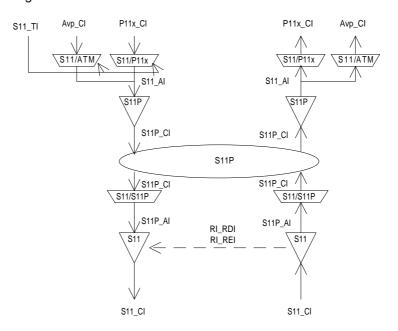



Figure 4: VC-11 Layer Trail Protection atomic functions

Page 14 Draft prETS 300 417-4e-1: April 1996

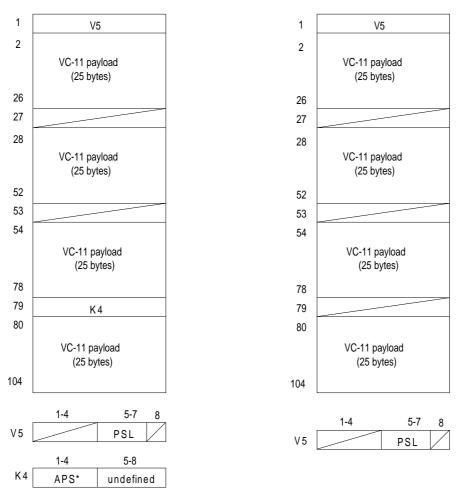



Figure 5: S11P\_AI\_D (left) and S11P\_CI\_D (right)

Figures 6 to 11 show connectivity examples of atomic functions associated with linear trail and SNC protection.

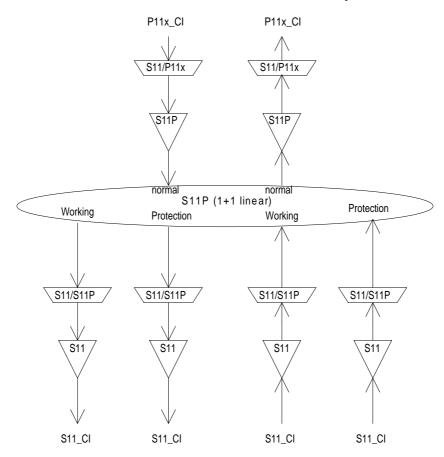



Figure 6: 1+1 VC-11 Linear Trail Protection model (example)

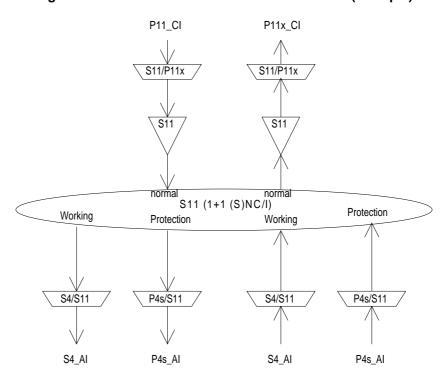



Figure 7: 1+1 VC-11 SNC/I protection model within a network element terminating the VC-11 path

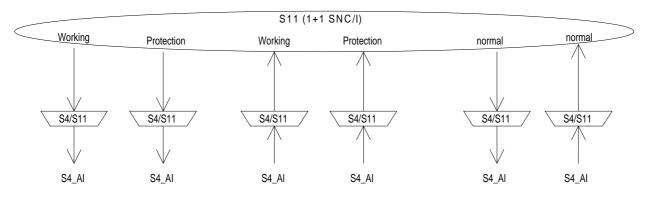



Figure 8: 1+1 VC-11 SNC/I protection model within a network element passing through the VC-11 signal (example)

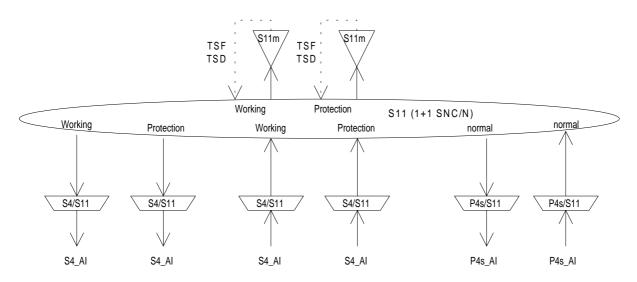



Figure 9: 1+1 VC-11 SNC/N protection model within a network element passing through the VC-11 signal (example)

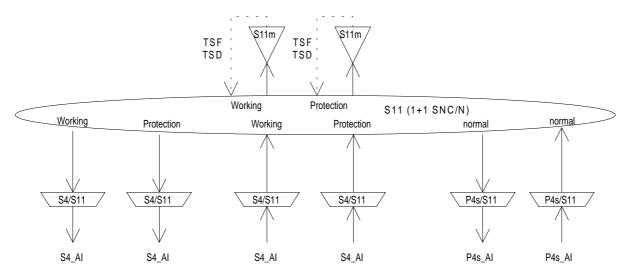



Figure 10: 1+1 VC-11 SNC/N protection model for a supervisory-unequipped signal within a network element passing through the VC-11 signal (example)

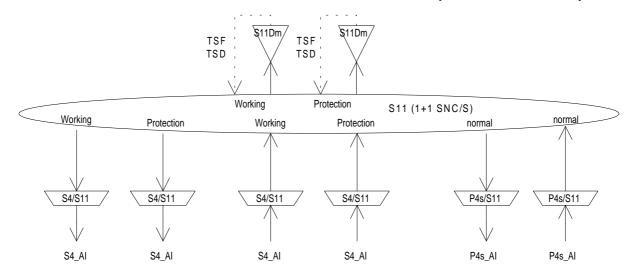



Figure 11: 1+1 VC-11tandem connection SNC/S protection model within a network element passing through the VC-11 tandem connection (TC11) signal (example)

# 8.1 VC-11 Layer Connection Function S11\_C

#### Symbol:

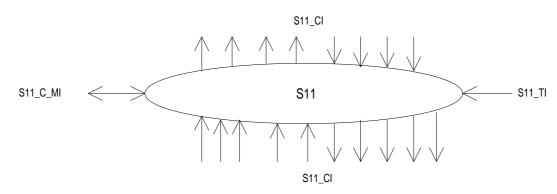



Figure 12: S11\_C symbol

#### Interfaces:

Table 1: S11\_C input and output signals

| Input(s)                               |             | Output(s)                                    |
|----------------------------------------|-------------|----------------------------------------------|
| per S11_CI, n x for the function:      | per S11_CI, | m x per function:                            |
| S11_CI_D                               | S11_CI_D    |                                              |
| S11_CI_CK                              | S11_CI_CK   |                                              |
| S11_CI_FS                              | S11_CI_FS   |                                              |
| S11_CI_SSF                             | S11_CI_SSF  |                                              |
| S11_AI_TSF                             |             |                                              |
| S11_AI_TSD                             | NOTE        | and ation at the properties of small and for |
| 4 v per functions                      | NOTE:       | protection status reporting signals are for  |
| 1 x per function:<br>S11_TI_CK         |             | further study.                               |
| S11_TI_CIK                             |             |                                              |
| 011_11_1 0                             |             |                                              |
| per input and output connection point: |             |                                              |
| S11_C_MI_ConnectionPortIds             |             |                                              |
|                                        |             |                                              |
| per matrix connection:                 |             |                                              |
| S11_C_MI_ConnectionType                |             |                                              |
| S11_C_MI_Directionality                |             |                                              |
| per SNC protection group:              |             |                                              |
| S11_C_MI_PROTtype                      |             |                                              |
| S11_C_MI_OPERtype                      |             |                                              |
| S11_C_MI_WTRtime                       |             |                                              |
| S11_C_MI_HOtime                        |             |                                              |
| S11_C_MI_EXTCMD                        |             |                                              |

#### **Processes:**

In the S11\_C function VC-11 Layer Characteristic Information is routed between input (termination) connection points ((T)CPs) and output (T)CPs by means of matrix connections. (T)CPs may be allocated within a protection group.

NOTE 1: Neither the number of input/output signals to the connection function, nor the connectivity is specified in this ETS. That is a property of individual network elements.

Figure 1 present a subset of the atomic functions that can be connected to this VC-11 connection function: VC-11 trail termination functions, VC-11 non-intrusive monitor trail termination sink function, VC-11 unequipped-supervisory trail termination functions, VC-11 tandem connection trail termination and adaptation functions. In addition, adaptation functions in the VC-11 server (e.g. VC-4, P31s, P4s) layers will be connected to this VC-11 connection function.

#### Routing:

The function shall be able to connect a specific input with a specific output by means of establishing a matrix connection between the specified input and output. It shall be able to remove an established matrix connection.

Each (matrix) connection in the S11\_C function shall be characterised by the:

| Type of connection: | unprotected, 1+1 protected (SNC/I or SNC/N protection)                              |
|---------------------|-------------------------------------------------------------------------------------|
| Traffic direction:  | unidirectional, bidirectional                                                       |
| 1                   | set of connection point identifiers (refer to ETS 300 417-1-1 [1], subclause 3.3.6) |

NOTE 2: Broadcast connections are handled as separate connections to the same input CP.

Provided no protection switching action is activated/required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- addition and removal of protection;
- addition and removal of connections to/from a broadcast connection;
- change between operation types;
- change of WTR time;
- change of Hold-off time.

### Unequipped VC generation:

The function shall generate an unequipped VC signal, as specified in ETS 300 417-1-1 [1], subclause 7.2.

## SNC protection:

The function shall provide the option to establish protection groups between a number of (T)CPs (pr ETS 300 417-1-1 [1], subclause 9.4.1, and subclause 9.4.2) to perform the VC-11 linear (sub)network connection protection process for 1+1 protection architectures (refer to ETS 300 417-1-1 [1], subclause 9.2). The SNC protection process shall perform the bridge and selector functionality as presented in figure 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the working connection or the protection connection; this is determined by the SF,SD conditions (relayed via CI\_SSF or AI\_TSF/AI\_TSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

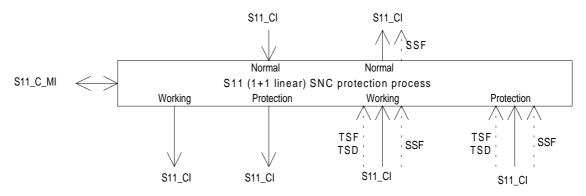



Figure 13: VC-11 1+1 SNC protection process (SNC/I, SNC/N)

### SNC Protection Operation:

The SNC protection process shall operate as specified in prETS 300 417-3-1 [3], Annex A, according the following characteristics:

| Table 2: SNC p | rotection | parameters |
|----------------|-----------|------------|
|----------------|-----------|------------|

| architecture type (ARCHtype)   | 1+1                                             |
|--------------------------------|-------------------------------------------------|
| switching type (SWtype)        | single-ended                                    |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | false                                           |
| Wait-To-Restore time (WTRtime) | in the order of 5 to 12 minutes                 |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | SNC/I, SNC/N                                    |
| Signal switch conditions:      | SF = SSF (SNC/I), SF = TSF (SNC/N,SNC/S),       |
|                                | SD = TSD (SNC/N, SNC/S)                         |
| External commands (EXTCMD)     | LO-#0, FSw-#i, MSw-#i, CLR; i = 0, 1            |
| Extra traffic (EXTRAtraffic)   | false                                           |

In the sink case of a protection connection the source of the connection is determined by the SF (and SD) signals associated with each of the two inputs to the connection and the possible external switch requests. The set of SF and SD signals used, is controlled by the protection type setting.

#### **Defects:**

None.

### **Consequent Actions:**

If an output of this function is not connected to one of its inputs, the function shall connect the unequipped VC-11 (with valid frame start (FS) and SSF=false) to the output.

### **Defect Correlations:**

None.

## **Performance Monitoring:**

None.

### 8.2 VC-11 Trail Termination Functions

### 8.2.1 VC-11 Trail Termination Source S11\_TT\_So

### Symbol:

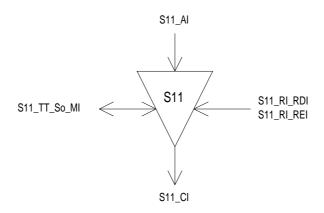



Figure 14: S11\_TT\_So symbol

### Interfaces:

Table 3: S11\_TT\_So input and output signals

| Input(s)          | Output(s) |
|-------------------|-----------|
| S11_AI_D          | S11_CI_D  |
| S11_AI_CK         | S11_CI_CK |
| S11_AI_FS         | S11_CI_FS |
| S11_RI_RDI        |           |
| S11_RI_REI        |           |
| S11_TT_So_MI_TxTI |           |

### **Processes:**

This function adds error monitoring and status and control overhead bits to the S11\_AI as defined in ETS 300 147 [2] . The processing of the trail overhead is defined as follows:

### **J2**:

In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in ETS 300 417-1-1 [1], subclause 7.1.

### V5[3]:

The signal value applied at RI\_REI shall be inserted in the VC-11 REI, bit 3 of byte V5. The coding shall be as follows:

Table 4: V5[3] coding

| Number of BIP-2 violations conveyed via RI_REI | V5[3] |
|------------------------------------------------|-------|
| 0                                              | 0     |
| 1                                              | 1     |
| 2                                              | 1     |

### V5[8]:

Bit 8 of byte V5, a RDI indication, shall be set to "1" on activation of S11\_RI\_RDI within 1 000  $\mu$ s, determined by the associated S11\_TT\_Sk function, and set to "0" within 1 000  $\mu$ s on clearing of S11\_RI\_RDI.

## V5[1-2]:

In these bits the function shall insert the BIP-2 EDC with even bit parity. Each bit of current bits 1 or 2 is computed to provide even parity over the associated (odd and even) bits of every byte in the previous frame of the Characteristic Information S11\_CI, i.e., bits 1 and 2 are calculated over the entire previous VC-11. Further reference is provided in ETS 300 417-1-1 [1], subclause 7.3.

## K4[5-8]:

The value of the bits 5 to 8 of byte K4 is undefined.

| Defects:                   |
|----------------------------|
| None.                      |
| <b>Consequent Actions:</b> |
| None.                      |
| Defect Correlations:       |

None.

**Performance Monitoring:** 

### 8.2.2 VC-11 Trail Termination Sink S11\_TT\_Sk

#### Symbol:

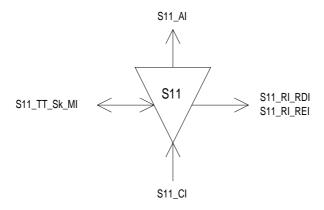



Figure 15: S11\_TT\_Sk symbol

#### Interfaces:

Table 5: S11\_TT\_Sk input and output signals

| Input(s)                  | Output(s)           |
|---------------------------|---------------------|
| S11_CI_D                  | S11_AI_D            |
| S11_CI_CK                 | S11_AI_CK           |
| S11_CI_FS                 | S11_AI_FS           |
| S11_CI_SSF                | S11_AI_TSF          |
|                           | S11_AI_TSD          |
| S11_TT_Sk_MI_TPmode       | S11_TT_Sk_MI_cTIM   |
| S11_TT_Sk_MI_SSF_Reported | S11_TT_Sk_MI_cUNEQ  |
| S11_TT_Sk_MI_ExTI         | S11_TT_Sk_MI_cDEG   |
| S11_TT_Sk_MI_RDI_Reported | S11_TT_Sk_MI_cRDI   |
| S11_TT_Sk_MI_DEGTHR       | S11_TT_Sk_MI_cSSF   |
| S11_TT_Sk_MI_DEGM         | S11_TT_Sk_MI_AcTI   |
| S11_TT_Sk_MI_1second      | S11_RI_RDI          |
| S11_TT_Sk_MI_TIMdis       | S11_RI_REI          |
| S11_TT_Sk_MI_ExTImode     | S11_TT_Sk_MI_pN_EBC |
|                           | S11_TT_Sk_MI_pN_DS  |
|                           | S11_TT_Sk_MI_pF_EBC |
|                           | S11_TT_Sk_MI_pF_DS  |

### **Processes:**

This function monitors VC-11 for errors, and recovers the trail termination status. It extracts the payload independent overhead bytes/bits (J2, V5[1-2], V5[3], V5[5-7], V5[8]) from the VC-11 layer Characteristic Information:

#### J2:

The Received Trail Trace Identifier RxTI shall be recovered from the J2 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3.

### V5[1-2]:

Even bit parity is computed for each bit pair of every byte of the preceding VC-11 including V5 and compared with bit 1 and 2 of V5 recovered from the current frame. A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block.

### V5[3], V5[8]:

The information carried in the bits 3 and 8 of the V5 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 8) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.4.2 (REI), 7.4.11 and 8.2 (RDI).

### K4[5-8]:

The value in the bits 5 to 8 of byte K4 shall be ignored.

Table 6: V5[3] code interpretation

| V5[3] | REI code interpretation |
|-------|-------------------------|
| 0     | 0 errored blocks        |
| 1     | 1 errored block         |

### V5[5-7]:

The information in bits 5 to 7 of byte V5 shall be extracted to allow unequipped VC defect detection.

#### **Defects:**

The function shall detect for dDEG, dRDI, dUNEQ and dTIM defects according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

### **Consequent Actions:**

aAIS ← dUNEQ or dTIM

aTSF  $\leftarrow$  CI\_SSF or dUNEQ or dTIM

aRDI  $\leftarrow$  CI\_SSF or dUNEQ or dTIM

aTSD  $\leftarrow$  dDEG

aREI  $\leftarrow$  "#EDCV"

On declaration of aAIS the function shall output all-ONEs signal within 1 000  $\mu$ s; on clearing of aAIS the function shall output normal data within 1 000  $\mu$ s.

### **Defect Correlations:**

cUNEQ ← dUNEQ and MON

cTIM  $\leftarrow$  dTIM and (not dUNEQ) and MON

 $cDEG \leftarrow dDEG$  and (not dTIM) and MON

cRDI ← dRDI and (not dUNEQ) and (not dTIM) and MON and RDI\_Reported

cSSF  $\leftarrow$  CI SSF and MON and SSF Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

## **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $\mathsf{pN\_DS} \qquad \leftarrow \quad \mathsf{aTSF} \, \, \mathsf{or} \, \, \mathsf{dEQ}$ 

 $\mathsf{pF\_DS} \qquad \leftarrow \quad \mathsf{dRDI}$ 

 $\mathsf{pN\_EBC} \qquad \leftarrow \qquad \Sigma \, \mathsf{nN\_B}$ 

 $\mathsf{pF\_EBC} \qquad \leftarrow \qquad \Sigma \, \mathsf{nF\_B}$ 

### 8.3 VC-11 Adaptation Functions

## 8.3.1 VC-11 to P11x Adaptation Source S11/P11x\_A\_So

### Symbol:

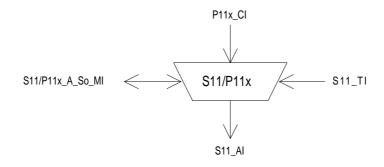



Figure 16: S11/P11x\_A\_So symbol

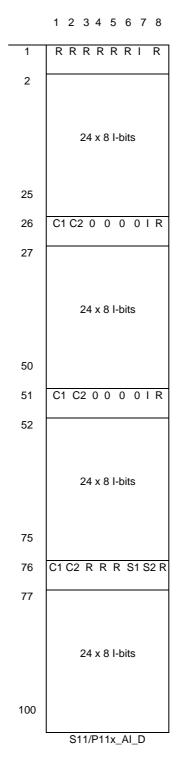

### Interfaces:

Table 7: S11/P11x\_A\_So input and output signals

| Input(s)                | Output(s) |
|-------------------------|-----------|
| P11x_CI_D               | S11_AI_D  |
| P11x_CI_CK              | S11_AI_CK |
| S11_TI_CK               | S11_AI_FS |
| S11_TI_FS               |           |
| S11/P11x_A_So_MI_Active |           |

#### Processes:

This function maps a 1 544 kbit/s information stream into a VC-11 payload using bit stuffing and adds bits 5 to 7 of byte V5. It takes P11x\_CI, a bit-stream with a rate of 1 544 kbit/s  $\pm$  50 ppm, present at its input and inserts it into the synchronous container-11 having a capacity of 100 bytes and the justification frame as defined in ETS 300 147 [2] and depicted in figure 17.



 $\label{eq:local_local_local_local} \begin{tabular}{ll} Legend: I = Information Bit, R = Fixed Stuff, \\ S1,S2 = Justification Opportunity Bit, C1,C2 = Justification Control Bit \\ \end{tabular}$ 

Figure 17: 1.5 Mbit/s asynchronous mapped into a Container-11 (using bit justification)

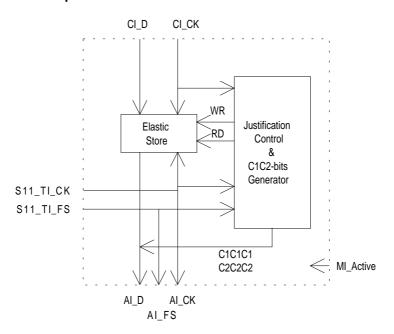



Figure 18: main processes within S11/P11x\_A\_So

Frequency justification and bitrate adaptation:

The function shall provide for an elastic store (buffer) process (figure 18). The data signal shall be written into the buffer under control of the associated input clock. The data shall be read out of the buffer and written onto the I, S1, S2 bits under control of the VC-11 clock, frame position (S11\_TI), and justification decisions.

The justification decisions determine the phase error introduced by the S11/P11x\_A\_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the justification control bits C1C2 (figure 17). An example is given in Annex A.3.

Each justification decision results in a corresponding positive or negative justification action. Upon a positive justification action, the reading of 1 data bit shall be cancelled once an no data are written at the justification opportunity bit S2 and no data are written onto S1. Upon a negative justification action, 1 extra data bit shall be read once and written onto the justification opportunity bit S1 and data shall be written onto S2. If neither a positive nor a negative justification action is to be performed, either no data shall be written onto S1 and data shall be written onto S2, or vice versa.

NOTE: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced.

### Buffer size:

In the presence of jitter as specified by ITU-T Recommendation G.823 [4] and a frequency within the range 1 544 kbit/s  $\pm$  50 ppm, this justification process shall not introduce any errors. Any step in frequency within this range shall not cause any errors.

### C1C2 bits:

Justification control generation:

The function shall generate the justification control (C1,C2) bits according the specification in ETS 300 147 [2]. It shall insert the justification control bits in the appropriate C1C2 bit positions.

Three bits of payload specific POH information, V5[5-7], shall be added to Container-11 to form the VC-11 Al and a fixed Frame Start (FS) shall be generated.

### V5[5-7]:

In these bits the function shall insert code "010" (Asynchronous mapping of 1 544 kbit/s into the Container-11) as defined in ETS 300 147 [2] .

Draft prETS 300 417-4e-1: April 1996

#### O bits:

The value of the O bits is undefined

#### R bits:

The value of an R bits is undefined

Figure 1 shows that more than one adaptation source function exists in this VC-11 layer that can be connected to one VC-11 access point. For such case, a subset of these adaptation source functions is allowed to be activated together. For this subset, access to the access point by other adaptation source functions must be denied.

### Activation:

The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

### Defects:

None.

An elastic store under/overflow defect (dUOF) is for further study.

## **Consequent Actions:**

None.

### **Defect Correlations:**

None.

## **Performance Monitoring:**

None.

## 8.3.2 VC-11 to P11x Adaptation Sink S11/P11x\_A\_Sk

### Symbol:

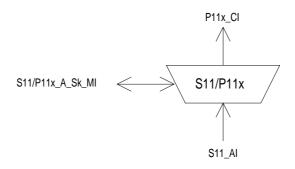



Figure 19: S11/P11x\_A\_Sk symbol

#### Interfaces:

Table 8: S11/P11x\_A\_Sk input and output signals

| Input(s)                | Output(s)             |
|-------------------------|-----------------------|
| S11_AI_D                | P11x_CI_D             |
| S11_AI_CK               | P11x_CI_CK            |
| S11_AI_FS               | S11/P11x_A_Sk_MI_cPLM |
| S11_AI_TSF              | S11/P11x A Sk MI AcSL |
| S11/P11x_A_Sk_MI_Active |                       |

#### Processes:

The function recovers plesiochronous P11x Characteristic Information (1 544 kbit/s  $\pm$  50 ppm) from the synchronous container C-11 with a frequency accuracy within  $\pm$  4,6 ppm according to ETS 300 147 [2] , and monitors the reception of the correct payload signal type.

### V5[5-7]:

The function shall compare the content of the accepted bits 5 to 7 of byte V5 with the expected value code "010" (Asynchronous mapping of 1 544 kbit/s into the Container-11) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclause 7.2 and 8.1.2.

#### R bits:

The value in the R bits shall be ignored.

#### O bits:

The value in the O bits shall be ignored.

### C1C2 bits:

Justificationcontrol interpretation:

The function shall perform justification control interpretation according ETS 300 147 [2] to recover the 1 544 kbit/s signal from the VC-11. If the majority of the C1 bits is "0" the S1 bit shall be taken as a data bit, otherwise (majority of C1 bits is "1") S1 bit shall be taken as a justification bit and consequently ignored. If the majority of the C2 bits is "0" S2 bit shall be taken as a data bit, otherwise (majority of C2 bits is "1") S2 bit shall be taken as a justification bit and consequently ignored.

### NOTE:

A negative justification is effectuated if the majority of C1 bits and the majority of C2 bits is "0". A positive justification is effectuated if the majority of the C1 bits and the majority of C2 bits is "1". The other combinations (C1 majority is "0" and C2 majority is "1", or C1 majority is "1" and C2 majority is "0") do not result in an actual justification.

### Smoothing & jitter limiting process:

The function shall provide for a clock smoothing and elastic store (buffer) process. The 1 544 kbit/s data signal shall be written into the buffer under control of the associated (gapped) input clock with a frequency accuracy within  $\pm$  4,6 ppm. The data signal shall be read out of the buffer under control of a smoothed (equally spaced) 1 544 kHz  $\pm$  50 ppm clock (the rate is determined by the 2 Mbit/s signal at the input of the remote S11/P11x\_A\_So). The residual jitter caused by pointer adjustments and bit justifications (measured at the 1 544 kbit/s interface) shall be within the limits specified in subclause 11.3.1.2 of ETS 300 417-1-1 [1].

#### Buffer size:

In the presence of jitter as specified by subclause 11.3.1.2 of ETS 300 417-1-1 [1] and a frequency within the range 1 544 kbit/s  $\pm$  50 ppm, this justification process shall not introduce any errors.

Following a step in frequency of the P11x signal transported by the S11\_AI(for example due to reception of P11x CI from a new P11x\_TT\_So at the far end or removal of all-ONEs (AIS) signal with a frequency offset) there will be a maximum recovery time of X seconds after which this process shall not generate any bit errors.

The value of X is for further study; a value of 1 second has been proposed.

Figure 1 shows that more than one adaptation sink function exists in this VC-11 layer that can be connected to one VC-11 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

Activation: The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI\_D) and not report its status via the management point.

### **Defects:**

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

### **Consequent Actions:**

aAIS 
$$\leftarrow$$
 AI\_TSF or dPLM

On declaration of the aAIS the function shall output an all-ONEs (AIS) signal in the P11x\_CI\_D within 1 000  $\mu$ s; on clearing of aAIS the function shall output normal data within 1 000  $\mu$ s. The P11x\_CI\_CK during the all-ONEs signal shall be within 1 544 kHz  $\pm$  50 ppm.

### **Defect Correlations:**

cPLM ← dPLM and (not AI TSF)

### **Performance Monitoring:**

None.

### 8.3.3 VC-11 Layer to TSS4 Adaptation Source S11/TSS4\_A\_So

### Symbol:

Figure 20: S11/TSS4\_A\_So symbol

## Interfaces:

Table 9: S11/TSS4 A So input and output signals

| Input(s)                | Output(s) |
|-------------------------|-----------|
| S11_TI_CK               | S11_AI_D  |
| S11_TI_FS               | S11_AI_CK |
| S11/TSS4_A_So_MI_Active | S11 AI FS |

Draft prETS 300 417-4e-1: April 1996

#### Processes:

This function maps a VC-11 synchronous Test Signal Structure TSS4 PRBS stream as described in ITU-T draft Recommendation O.181 [5] into a VC-11 payload and adds the bits V5[5-7] bytes. It creates a 2<sup>15</sup> PRBS with timing derived from the S11\_TI\_Ck and maps it without justification bits into the whole of the synchronous container-11 having a capacity of 100 bytes. The PRBS is a sequence which repeats itself over a period which is not an exact multiple of the capacity available in the container-11 frame. Therefore the start of the sequence will move relative to the start of the container-11 frame over time.

Three bits of payload specific POH information, V5[5-7], shall be added to container-11 to form the VC-11 Al and a fixed Frame Start (FS) shall be generated.

### V5[5-7]:

In these bits the function shall insert code "110" (TSS4 into the Container-11) as defined in ITU-T draft Recommendation G.708 [7] .

Figure 1 shows that more than one adaptation source function exists in this VC-11 layer that can be connected to one VC-11 access point. For such case, a subset of these adaptation source functions is allowed to be activated together. Access to the access point by other adaptation source functions must be denied.

#### Activation:

The function shall access the access point when it is activated (MI\_Active is true). Otherwise, it shall not access the access point.

| Defects:                                                |
|---------------------------------------------------------|
| None.                                                   |
| Consequent Actions:                                     |
| None.                                                   |
| Defect Correlations:                                    |
| None.                                                   |
| Performance Monitoring:                                 |
| None.                                                   |
| 8.3.4 VC-11 Layer to TSS4 Adaptation Sink S11/TSS4_A_Sk |
| Symbol:                                                 |

Figure 21: S11/TSS4 A Sk symbol

#### Interfaces:

Table 10: S11/TSS4\_A\_Sk input and output signals

| Input(s)                | Output(s)                |
|-------------------------|--------------------------|
| S11 _AI_D               | S11/TSS4_A_Sk_MI_cPLM    |
| S11_AI_CK               | S11/TSS4_A_SK_MI_cLSS    |
| S11_AI_FS               | S11/TSS4_A_Sk_MI_AcSL    |
| S11_AI_TSF              | S11/TSS4_A_Sk_MI_ pN_TSE |
| S11/TSS4_A_Sk_MI_Active |                          |

#### Processes:

The function recovers a TSS4  $2^{15}$  PRBS test sequence as defined in ITU-T draft Recommendation O.181 [5] from the synchronous container-11 (having a frequency accuracy within  $\pm$  4,6 ppm) and monitors the reception of the correct payload signal type and for the presence of test sequence error blocks (TSE) in the PRBS sequence.

### V5[5-7]:

The function shall compare the content of the accepted bits 5 to 7 of byte V5 with the expected value code "110" (TSS4 into the Container-12) as a check on consistency between the provisioning operation at each end. The application and acceptance and mismatch detection process shall be as specified in ETS 300 417-1-1 [1], subclauses 7.2 and 8.1.2.

Figure 1 shows that more than one adaptation sink function exists in this VC-11 layer that can be connected to one VC-11 access point. In contradiction with the source direction, adaptation sink functions may be activated all together. This will presumably cause faults (e.g. cPLM) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

#### Activation:

The function shall perform the operation specified above when it is activated (MI\_Active is true). Otherwise, it shall not report its status via the management point.

### Defects:

The function shall detect for dPLM defect according the specification in ETS 300 417-1-1 [1], subclause 8.2.1.

The function shall detect for loss of PRBS lock (dLSS) according to the criteria defined in ITU-T Recommendation O.151 [6] Section 2.6.

### **Consequent Actions:**

None

### **Defect Correlations:**

cPLM ← dPLM and (not AI TSF)

cLSS  $\leftarrow$  dLSS and not (AI\_TSF)

#### **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ITU-T Recommendation O.181 [5] Annex A section A.1.8.

pN\_TSE ← Sum of test sequence errors (TSE) within one second period.

NOTE: The TSE error block size is equal to the V5[1-2] BIP-2 error block size with the exception of the VC-11 POH.

## 8.3.5 VC-11 Layer to ATM Layer Compound Adaptation Source S11/ATM\_A\_So

The specification of this function is for further study.

## 8.3.6 VC-11 Layer to ATM Layer Compound Adaptation Sink S11/ATM\_A\_Sk

The specification of this function is for further study.

## 8.4 VC-11 Layer Monitoring Functions

## 8.4.1 VC-11 Layer Non-intrusive Monitoring Function S11m\_TT\_Sk

### Symbol:

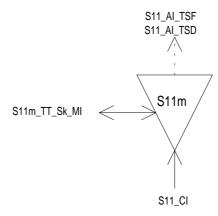



Figure 22: S11m\_TT\_Sk symbol

### Interfaces:

Table 11: S11m\_TT\_Sk input and output signals

| Input(s)                   | Output(s)            |
|----------------------------|----------------------|
| S11_CI_D                   | S11_AI_TSF           |
| S11_CI_CK                  | S11_AI_TSD           |
| S11_CI_FS                  | S11m_TT_Sk_MI_cTIM   |
| S11_CI_SSF                 | S11m_TT_Sk_MI_cUNEQ  |
| S11m_TT_Sk_MI_TPmode       | S11m_TT_Sk_MI_cDEG   |
| S11m_TT_Sk_MI_SSF_Reported | S11m_TT_Sk_MI_cRDI   |
| S11m_TT_Sk_MI_ExTI         | S11m_TT_Sk_MI_cSSF   |
| S11m_TT_Sk_MI_RDI_Reported | S11m_TT_Sk_MI_AcTI   |
| S11m_TT_Sk_MI_DEGTHR       | S11m_TT_Sk_MI_pN_EBC |
| S11m_TT_Sk_MI_DEGM         | S11m_TT_Sk_MI_pF_EBC |
| S11m_TT_Sk_MI_ExTImode     | S11m_TT_Sk_MI_pN_DS  |
| S11m_TT_Sk_MI_1second      | S11m_TT_Sk_MI_pF_DS  |
| S11m_TT_Sk_MI_TIMdis       |                      |

### Processes:

NOTE 1: this non-intrusive monitor trail termination sink function has no associated source function.

This function monitors VC-11 for errors, and recovers the trail termination status. It extracts the payload independent overhead bytes/bits (J2, V5[1-2], V5[3], V5[5-7], V5[8]) from the VC-11 layer Characteristic Information

#### **J2**:

The Received Trail Trace Identifier RxTI shall be recovered from the J2 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3.

### V5[1-2]:

Even bit parity is computed for each bit pair of every byte of the preceding VC-11 including V5 and compared with bit 1 and 2 of V5 recovered from the current frame. A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block.

### V5[3], V5[8]:

The information carried in the bits 3 and 8 of the V5 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 8) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.4.2 (REI), 7.4.11 and 8.2 (RDI).

Table 12: V5[3] code interpretation

| V5[3] | REI code interpretation |
|-------|-------------------------|
| 0     | 0 errored blocks        |
| 1     | 1 errored block         |

### V5[5-7]:

The information in bits 5 to 7 of byte V5 shall be extracted to allow unequipped VC defect detection.

### K4[5-8]:

The value in the bits 5 to 8 of byte K4 shall be ignored.

#### Defects:

The detection and removal conditions and processes for dDEG, dRDI, dUNEQ and dTIM defects shall be as specified by ETS 300 417-1-1 [1], subclause 8.2.1 with the condition "aSSF" read as "aSSF or VC dAIS". To use the function within e.g. a tandem connection<sup>1</sup>, it shall be possible to disable the trace id mismatch detection (TIMdis).

#### VC AIS:

The function shall detect for an AIS VC (VC-AIS) condition by monitoring the VC PSL for code "111". If 5 consecutive frames contain the '111' pattern in bits 5 to 7 of byte V5 a dAIS defect shall be detected. dAIS shall be cleared if in 5 consecutive frames any pattern other then the '111' is detected in bits 5 to 7 of byte V5.

NOTE 2: Equipment designed prior to this ETS may be able to perform VC-AIS detection either as specified above interpreting "frames" as "samples (not necessary consecutive frames)", or by a comparison of the accepted signal label with the all-ONEs pattern. If the accepted signal label is equal to all-ONEs, VC-AIS defect is detected. If the accepted signal label is not equal to all-ONEs, VC-AIS defect is cleared.

### Consequent actions:

aTSF  $\leftarrow$  CI\_SSF or dAIS or dUNEQ or dTIM aTSD  $\leftarrow$  dDEG

Presumably, in such case the VC Trace Id. will be unknown to the tandem connection operator.

### **Defect Correlations:**

cUNEQ ← dUNEQ and MON

cTIM  $\leftarrow$  dTIM and (not dUNEQ) and MON

cDEG ← dDEG and (not dTIM) and MON

cRDI ← dRDI and (not dUNEQ) and (not dTIM) and MON and RDI Reported

cSSF  $\leftarrow$  (CI\_SSF or dAIS) and MON and SSF\_Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

### **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $pN_DS \leftarrow aTSF \text{ or } dEQ$ 

 $pF_DS \leftarrow dRDI$ 

 $\mathsf{pN\_EBC} \qquad \leftarrow \qquad \Sigma \, \mathsf{nN\_B}$ 

 $pF\_EBC \leftarrow \Sigma nF\_B$ 

NOTE 3: pF\_DS/pF\_EBC represent the performance of the total trail while pN\_DS/pN\_EBC represents only part of the trail up to the point of the non-intrusive monitor.

### 8.4.2 VC-11 Layer Supervisory-Unequipped Termination Source S11s\_TT\_So

### Symbol:

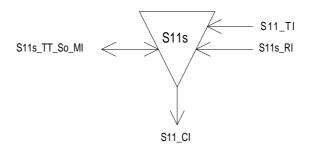



Figure 23: S11s\_TT\_So symbol

#### Interfaces:

Table 13: S11s\_TT\_So input and output signals

| Input(s)           | Output(s) |
|--------------------|-----------|
| S11s_RI_RDI        | S11_CI_D  |
| S11s_RI_REI        | S11_CI_CK |
| S11_TI_CK          | S11_CI_FS |
| S11_TI_FS          |           |
| S11s_TT_So_MI_TxTI |           |

#### Processes:

This function generates error monitoring and status overhead bytes to an undefined VC-11. The processing of the trail termination overhead bytes is defined as follows:

#### J2:

In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in ETS 300 417-1-1 [1], subclause 7.1.

### V5[3]:

The signal value applied at RI\_REI shall be inserted in the VC-11 REI, bit 3 of byte V5. The coding shall be as follows:

Table 14: V5[3] coding

| Number of BIP-2 violations conveyed via RI_REI | V5[3] |
|------------------------------------------------|-------|
| 0                                              | 0     |
| 1                                              | 1     |
| 2                                              | 1     |

## V5[8]:

Bit 8 of byte V5, a RDI indication, shall be set to "1" on activation of S11s\_RI\_RDI within 1 000  $\mu$ s, determined by the associated S11s\_TT\_Sk function, and set to "0" within 1 000  $\mu$ s on clearing of S11s\_RI\_RDI.

#### V5[5-7]:

In this byte the function shall insert code "000" (unequipped VC or supervisory-unequipped VC) as defined in subclause 7.2 of ETS 300 417-1-1 [1] and ETS 300 147 [2].

### V5[1-2]:

In these bits the function shall insert the BIP-2 EDC with even bit parity. Each bit of current bits 1 or 2 is computed to provide even parity over the associated (odd and even) bits of every byte in the previous frame of the Characteristic Information S11\_CI, i.e., bits 1 and 2 are calculated over the entire previous VC-11. Further reference is provided in ETS 300 417-1-1 [1], subclause 7.3.

#### K4[5-8]:

The value of the bits 5 to 8 of byte K4 is undefined.

### N2:

In this byte the function shall insert code "0000 0000" (unequipped tandem connection) as defined in subclause 7.2 of ETS 300 417-1-1 [1].

### Other VC-11 bytes:

The function shall generate the other VC-11 bytes and bits. Their content is undefined (i.e. bits are set to either a value of "0" or "1").

Draft prETS 300 417-4e-1: April 1996

Defects:

None.

**Consequent Actions:** 

None.

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

8.4.3 VC-11 Layer Supervisory-unequipped Termination Sink S11s\_TT\_Sk

## Symbol:

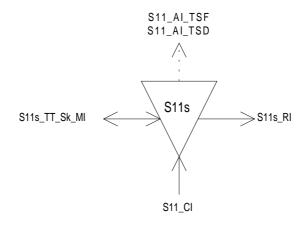



Figure 24: S11s\_TT\_Sk symbol

### Interfaces:

Table 15: S11s\_TT\_Sk input and output signals

| Input(s)                   | Output(s)            |
|----------------------------|----------------------|
| S11_CI_D                   | S11_AI_TSF           |
| S11_CI_CK                  | S11_AI_TSD           |
| S11_CI_FS                  | S11s_TT_Sk_MI_cTIM   |
| S11_CI_SSF                 | S11s_TT_Sk_MI_cUNEQ  |
|                            | S11s_TT_Sk_MI_cDEG   |
| S11s_TT_Sk_MI_TPmode       | S11s_TT_Sk_MI_cRDI   |
| S11s_TT_Sk_MI_SSF_Reported | S11s_TT_Sk_MI_cSSF   |
| S11s_TT_Sk_MI_ExTI         | S11s_TT_Sk_MI_AcTI   |
| S11s_TT_Sk_MI_RDI_Reported | S11s_RI_RDI          |
| S11s_TT_Sk_MI_DEGTHR       | S11s_RI_REI          |
| S11s_TT_Sk_MI_DEGM         | S11s_TT_Sk_MI_pN_EBC |
| S11s_TT_Sk_MI_1second      | S11s_TT_Sk_MI_pF_EBC |
| S11s_TT_Sk_MI_TIMdis       | S11s_TT_Sk_MI_pN_DS  |
| S11s_TT_Sk_MI_ExTImode     | S11s_TT_Sk_MI_pF_DS  |

Draft prETS 300 417-4e-1: April 1996

#### Processes:

This function monitors VC-11 for errors, and recovers the trail termination status. It extracts the payload independent overhead bytes/bits (J2, V5[1-2], V5[3], V5[5-7], V5[8]) from the VC-11 layer Characteristic Information:

#### J2:

The Received Trail Trace Identifier RxTI shall be recovered from the J2 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3.

### V5[1-2]:

Even bit parity is computed for each bit pair of every byte of the preceding VC-11 including V5 and compared with bit 1 and 2 of V5 recovered from the current frame. A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block.

## V5[3], V5[8]:

The information carried in the bits 3 and 8 of the V5 byte (REI, RDI) shall be extracted to enable single ended maintenance of a bi-directional Trail (Path). The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI (bit 8) shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.4.2 (REI), 7.4.11 and 8.2 (RDI).

Table 16: V5[3] code interpretation

| V5[3] | REI code interpretation |
|-------|-------------------------|
| 0     | 0 errored blocks        |
| 1     | 1 errored block         |

### V5[5-7]:

The information in bits 5 to 7 of byte V5 shall be extracted to allow unequipped VC defect detection.

#### K4[5-8]:

The value of the bits 5 to 8 of byte K4 shall be ignored.

### Defects:

The function shall detect for dDEG, dRDI, dUNEQ and dTIM defects according the specifications in ETS 300 417-1-1 [1], subclause 8.2.1.

## **Consequent Actions:**

aTSF  $\leftarrow$  CI SSF or dTIM

aTSD  $\leftarrow$  dDEG

aRDI  $\leftarrow$  CI\_SSF or dTIM

aREI  $\leftarrow$  "#EDCV"

NOTE:

dUNEQ can not be used to activate aTSF and aRDI; an expected supervisory-unequipped signal will have the signal label set to all-0's, causing a continuous detection of dUNEQ. If an unequipped VC comes in, dTIM will be activated and can serve as a trigger for aTSF/aRDI instead of dUNEQ.

### **Defect Correlations:**

cUNEQ ← MON and dTIM and (AcTI = all "0"s) and dUNEQ

cTIM ← MON and dTIM and (not dUNEQ and AcTI = all "0"s)

cDEG ← MON and (not dTIM) and dDEG

cRDI ← MON and (not dTIM) and dRDI and RDI\_Reported

cSSF ← MON and CI\_SSF and SSF\_Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

### **Performance Monitoring:**

The performance monitoring process shall be performed as specified in ETS 300 417-1-1 [1], subclause 8.2.4 through 8.2.7.

 $pN_DS \leftarrow aTSF \text{ or } dEQ$ 

 $pF_DS \leftarrow dRDI$ 

 $\mathsf{pN\_EBC} \qquad \leftarrow \qquad \Sigma \, \mathsf{nN\_B}$ 

 $pF\_EBC \leftarrow \Sigma nF\_B$ 

## 8.5 VC-11 Layer Trail Protection Functions

## 8.5.1 VC-11 Trail Protection Connection Functions S11P\_C

### 8.5.1.1 VC-11 Layer single ended Protection Connection Function S11P1+1se\_C

### Symbol:

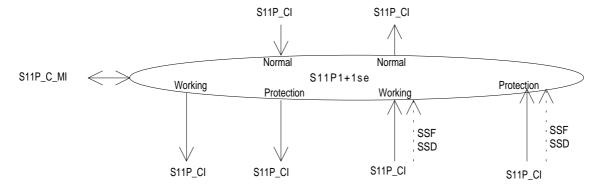



Figure 25: S11P1+1se\_C symbol

#### Interfaces:

Table 17: S11P\_C input and output signals

| Input(s)                       | Output(s)                                         |
|--------------------------------|---------------------------------------------------|
| for connection points W and P: | for connection points W and P:                    |
| S11P_CI_D                      | S11P_CI_D                                         |
| S11P_CI_CK                     | S11P_CI_CK                                        |
| S11P_CI_FS                     | S11P_CI_FS                                        |
| S11P_CI_SSF                    | S11P_CI_SSF                                       |
| S11P_AI_SSD                    |                                                   |
|                                | for connection point N:                           |
| for connection point N:        | S2P_CI_D                                          |
| S2P_CI_D                       | S2P_CI_CK                                         |
| S2P_CI_CK                      | S2P_CI_FS                                         |
| S2P_CI_FS                      | S2P_CI_SSF                                        |
| S11P_C_MI_OPERType             | NOTE: protection status reporting signals are for |
| S11P_C_MI_WTRTime              | further study.                                    |
| S11P_C_MI_HOTime               | -                                                 |
| S11P_C_MI_EXTCMD               |                                                   |

#### **Processes:**

The function performs the VC-11 linear trail protection process for 1+1 protection architectures with single-ended switching; refer to ETS 300 417-1-1 [1], subclause 9.2. It performs the bridge and selector functionality as presented in figures 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the associated working path or the protection path; this is determined by the SF,SD conditions (relayed via CI\_SSF,CI\_SSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

Provided no protection switching action is activated/required the following changes to (the configuration of) a trail shall be possible without disturbing the CI passing the trail:

- change between operation types;
- change of WTR and HO times.

### Operation:

The VC trail protection process shall operate as specified in prETS 300 417-3-1 [3], Annex A, according the following characteristics:

**Table 18: Trail protection parameters** 

| Parameter                      | Value options                                   |
|--------------------------------|-------------------------------------------------|
| architecture type (ARCHtype)   | 1 + 1                                           |
| switching type (SWtype)        | single-ended                                    |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | false                                           |
| Wait-To-Restore time (WTRtime) | in the order of 5 to 12 minutes                 |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | trail                                           |
| Signal switch conditions:      | SF = SSF (originated as AI_TSF)                 |
|                                | SD = SSD (originated as AI_TSD)                 |
| External commands (EXTCMD)     | LO-#0, FSw-#i, MSw-#i, CLR                      |
| Extra traffic (EXTRAtraffic)   | false                                           |

Draft prETS 300 417-4e-1: April 1996

**Defects:** 

None.

**Consequent Actions:** 

None.

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

## 8.5.1.2 VC-11 Layer 1+1 dual ended Protection Connection Function S11P1+1de\_C

## Symbol:

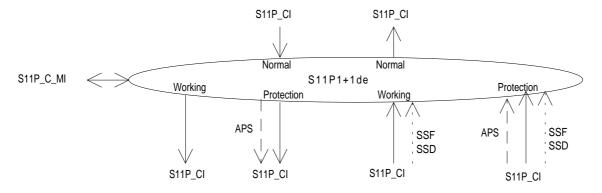



Figure 26: S11P1+1de\_C symbol

### Interfaces:

Table 19: S11P1+1de\_C input and output signals

| Input(s)                       | Output(s)                      |
|--------------------------------|--------------------------------|
| for connection points W and P: | for connection points W and P: |
| S11P_CI_D                      | S11P_CI_D                      |
| S11P_CI_CK                     | S11P_CI_CK                     |
| S11P_CI_FS                     | S11P_CI_FS                     |
| S11P_CI_SSF                    |                                |
| S11P_CI_SSD                    | for connection point N:        |
|                                | S11P_CI_D                      |
| for connection point N:        | S11P_CI_CK                     |
| S11P_CI_D                      | S11P_CI_FS                     |
| S11P_CI_CK                     | S11P_CI_SSF                    |
| S11P_CI_FS                     |                                |
|                                | for connection point P:        |
| for connection point P:        | S11P_CI_APS                    |
| S11P_CI_APS                    |                                |
|                                | NOTE: protection status        |
| S11P_C_MI_OPERType             | reporting signals are for      |
| S11P_C_MI_WTRTime              | further study.                 |
| S11P_C_MI_HOTime               |                                |
| S11P_C_MI_EXTCMD               |                                |

#### Processes:

The function performs the VC-11 linear trail protection process for 1+1 protection architecture with dual-ended switching; refer to ETS 300 417-1-1 [1], subclause 9.2. It performs the bridge and selector functionality as presented in figures 49 of ETS 300 417-1-1 [1]. In the sink direction, the signal output at the normal reference point can be the signal received via either the associated working path or the protection path; this is determined by the SF,SD conditions (relayed via CI\_SSF,CI\_SSD signals), and the external commands. In the source direction, the working output is connected to the associated normal input. The protection output is also connected to the normal input.

Provided no protection switching action is activated/required the following changes to (the configuration of) a trail shall be possible without disturbing the CI passing the trail:

- change between operation types;
- change of WTR and HO times.

**Performance Monitoring:** 

None.

### Operation:

The VC trail protection process shall operate as specified in prETS 300 417-3-1 [3], Annex A, according the following characteristics:

**Table 20: Trail protection parameters** 

| Parameter                      | Value options                                   |
|--------------------------------|-------------------------------------------------|
| architecture type (ARCHtype)   | 1 + 1                                           |
| switching type (SWtype)        | dual-ended                                      |
| operation type (OPERtype)      | revertive, non-revertive                        |
| APS signal (APSmode)           | true                                            |
| Wait-To-Restore time (WTRtime) | in the order of 5 to 12 minutes                 |
| Switch time                    | ≤ 50 ms                                         |
| Hold-off time (HOtime)         | 0 to 10 seconds in steps of the order of 100 ms |
| Protection type (PROTtype)     | trail                                           |
| Signal switch conditions:      | SF = SSF (originated as AI_TSF)                 |
|                                | SD = SSD (originated as Al_TSD)                 |
| External commands (EXTMND)     | LO-#0, FSw-#i, MSw-#i, EXER-#i, CLR             |
| Extra traffic (EXTRAtraffic)   | false                                           |

|                      | NOTE: | The VC-11 APS signal definition is for further study. |
|----------------------|-------|-------------------------------------------------------|
| Defec                | ets:  |                                                       |
| None.                |       |                                                       |
| Consequent Actions:  |       |                                                       |
| None.                |       |                                                       |
| Defect Correlations: |       |                                                       |
| None.                |       |                                                       |
|                      |       |                                                       |

Draft prETS 300 417-4e-1: April 1996

## 8.5.2 VC-11 Layer Trail Protection Trail Termination Functions

## 8.5.2.1 VC-11 Protection Trail Termination Source S11P\_TT\_So

Symbol:

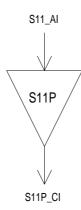



Figure 27: S11P\_TT\_So symbol

### Interfaces:

Table 21: S11P\_TT\_So input and output signals

| Input(s)   | Output(s)  |
|------------|------------|
| S11P_AI_D  | S11P_CI_D  |
| S11P_AI_CK | S11P_CI_CK |
| S11P_AI_FS | S11P_CI_FS |

### **Processes:**

No information processing is required in the S11P\_TT\_So, the S11\_AI at its output is identical to the S11P\_CI at its input.

| Defects: |   |
|----------|---|
| Delecto  | • |

None.

## **Consequent Actions:**

None

## **Defect Correlations:**

None.

## **Performance Monitoring:**

## 8.5.2.2 VC-11 Protection Trail Termination Sink S11P\_TT\_Sk

### Symbol:

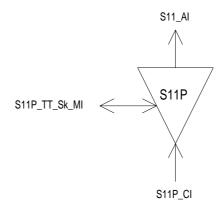



Figure 28: S11P\_TT\_Sk symbol

### Interfaces:

Table 22: S11P\_TT\_Sk input and output signals

| Input(s)                   | Output(s)          |
|----------------------------|--------------------|
| S11P_CI_D                  | S11_AI_D           |
| S11P_CI_CK                 | S11_AI_CK          |
| S11P_CI_FS                 | S11_AI_FS          |
| S11P_CI_SSF                | S11_AI_TSF         |
| S11P_TT_Sk_MI_SSF_Reported | S11P_TT_Sk_MI_cSSF |

### **Processes:**

The S11P\_TT\_Sk function reports, as part of the S11 layer, the state of the protected VC-11 trail. In case all trails are unavailable the S11P\_TT\_Sk reports the signal fail condition of the protected trail.

## Defects:

None.

## **Consequent Actions:**

aTSF  $\leftarrow$  CI\_SSF

## **Defect Correlations:**

 $\mathsf{cSSF} \ \leftarrow \quad \mathsf{CI\_SSF} \ \mathsf{and} \ \mathsf{SSF\_Reported}$ 

## **Performance Monitoring:**

Draft prETS 300 417-4e-1: April 1996

## 8.5.3 VC-11 Layer Linear Trail Protection Adaptation Functions

## 8.5.3.1 VC-11 trail to VC-11 trail Protection Layer Adaptation Source S11/S11P\_A\_So

## Symbol:

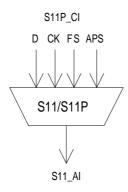



Figure 29: S11/S11P\_A\_Sk symbol

### Interfaces:

Table 23: S11/S11P\_A\_So input and output signals

| Input(s)    | Output(s) |
|-------------|-----------|
| S11P_CI_D   | S11_AI_D  |
| S11P_CI_CK  | S11_AI_CK |
| S11P_CI_FS  | S11_AI_FS |
| S11P_CI_APS |           |

### **Processes:**

The function shall multiplex the S11 APS signal and S11 data signal onto the S11 access point.

## K4[1-4]:

The insertion of the VC-APS signal is for further study. This process is required only for the protection path.

| F F                 |  |  |
|---------------------|--|--|
| Defects:            |  |  |
| None.               |  |  |
| Consequent actions: |  |  |
| None.               |  |  |

**Defect Correlations:** 

None.

**Performance Monitoring:** 

## 8.5.3.2 VC-11 trail to VC-11 trail Protection Layer Adaptation Sink S11/S11P\_A\_Sk

### Symbol:

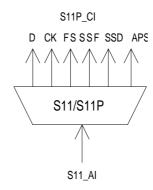



Figure 30: S11/S11P\_A\_Sk symbol

### Interfaces:

Table 24: S11/S11P\_A\_Sk input and output signals

| Input(s)   | Output(s)                                |
|------------|------------------------------------------|
| S11_AI_D   | S11P_CI_D                                |
| S11_AI_CK  | S11P_CI_CK                               |
| S11_AI_FS  | S11P_CI_FS                               |
| S11_AI_TSF | S11P_CI_SSF                              |
| S11_AI_TSD | S11P_CI_SSD                              |
|            | S11P_CI_APS (for Protection signal only) |

### **Processes:**

The function shall extract and output the S11P\_CI\_D signal from the S11\_AI\_D signal.

## K4[1-4]:

The extraction and persistency processing of the VC-APS signal is for further study. This process is required only for the protection path.

### **Defects:**

None.

## **Consequent actions:**

aSSF  $\leftarrow$  Al\_TSF

aSSD  $\leftarrow$  AI\_TSD

### **Defect Correlations:**

None.

## **Performance Monitoring:**

### 8.6 VC-11 Tandem Connection Sublayer Functions

### 8.6.1 VC-11 Tandem Connection Trail Termination Source function (S11D\_TT\_So)

### Symbol:

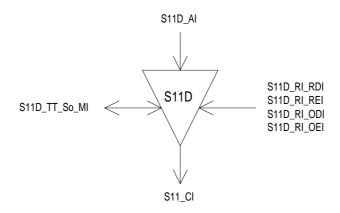



Figure 31: S11D\_TT\_So symbol

#### Interfaces:

Table 25: S11D\_TT\_So input and output signals

| Input(s)           | Output(s) |
|--------------------|-----------|
| S11D_AI_D          | S11_CI_D  |
| S11D_AI_CK         | S11_CI_CK |
| S11D_AI_FS         | S11_CI_FS |
| S11D_AI_SF         |           |
| S11D_RI_RDI        |           |
| S11D_RI_REI        |           |
| S11D_RI_ODI        |           |
| S11D_RI_OEI        |           |
| S11D_TT_So_MI_TxTI |           |

### **Processes:**

### N2[8][73]:

The function shall insert the TC RDI code within 1 multiframe (38 ms) after the RDI request generation (aRDI)) in the tandem connection trail termination sink function. It ceases TC RDI code insertion within 1 multiframe (38 ms) after the RDI request has cleared.

### N2[3]:

The function shall insert a "1" in this bit.

## N2[4]:

The function shall insert an incoming AIS code in this bit. If AI\_SF is true this bit will be set to the value "1", otherwise value "0" shall be inserted.

### N2[5]:

The function shall insert the RI\_REI value in the REI bit in the following frame.

### N2[7][74]:

The function shall insert the ODI code at the first opportunity after the ODI request generation (aODI)) in the tandem connection trail termination sink function. It ceases ODI code insertion at the first opportunity after the ODI request has cleared.

### N2[6]:

The function shall insert the RI\_OEI value in the OEI bit in the following frame.

### N2[7-8]:

The function shall insert in the multiframed N2[7-8] channel:

- the Frame Alignment Signal (FAS) "1111 1111 1110" in FAS bits in frames 1 to 8;
- the TC trace identifier, received via MI\_TxTI, in the TC-TI bits in frames 9 to 72;
- the TC RDI (N2[8][73]) and ODI (N2[7][74]) signals; and
- all-0s in the six reserved bits in frames 73 to 76.

### N2[1-2]:

The function shall calculate a BIP2 over the VC-11, and insert this value in TC BIP2 in the next frame (figure 32).

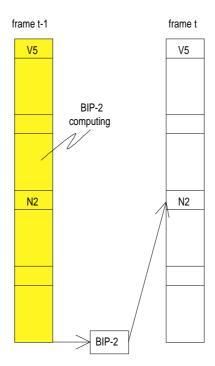



Figure 32: TC BIP-2 computing and insertion

### V5[1-2]:

The function shall compensate the VC11 BIP2 (in bits 1 and 2 of byte V5) according the following rule:

Since the BIP-2 parity check is taken over the VC (including N2), writing into N2 at the S11D\_TT\_So will affect the VC-11 path parity calculation. Unless this is compensated for, a device which monitors VC-11 path parity within the Tandem Connection (e.g., a non-intrusive monitor) may incorrectly count errors. The BIP-2 parity bits should always be consistent with the current state of the VC. Therefore, whenever N2 is written, BIP-2 shall be modified to compensate for the change in the N2 value. Since the BIP-2 value in a given frame reflects a parity check over the previous frame (including the BIP-2 bits in that frame), the changes made to the BIP-2 bits in the previous frame shall also be considered in the compensation of BIP-2 for the current frame. Therefore, the following equation shall be used for BIP-2 compensation:

```
\begin{split} V5[1]'(t) &= V5[1](t-1) \\ &\oplus V5[1]'(t-1) \\ &\oplus N2[1](t-1) \oplus N2[3](t-1) \oplus N2[5](t-1) \oplus N2[7](t-1) \\ &\oplus N2[1]'(t-1) \oplus N2[3]'(t-1) \oplus N2[5]'(t-1) \oplus N2[7]'(t-1) \\ &\oplus V5[1](t) \end{split} V5[2]'(t) &= V5[2](t-1) \\ &\oplus V5[2]'(t-1) \\ &\oplus N2[2](t-1) \oplus N2[4](t-1) \oplus N2[6](t-1) \oplus N2[8](t-1) \end{split}
```

## Draft prETS 300 417-4e-1: April 1996

### Where:

V5[i] = the existing V5[i] value in the incoming signal

V5[i]' = the new (compensated) V5[i] value

N2[i] = the existing N2[i] value in the incoming signal

N2[i]' = the new value written into the N2[i] bit

 $\oplus$  = exclusive OR operator

t = the time of the current frame

t-1 = the time of the previous frame

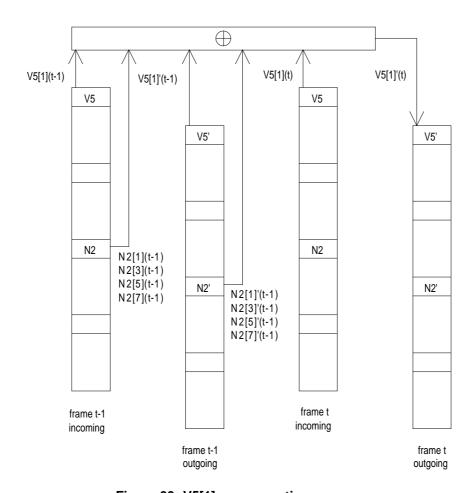



Figure 33: V5[1] compensating process

| Defects:                |
|-------------------------|
| None.                   |
| Consequent Actions:     |
| None.                   |
| Defect Correlations:    |
| None.                   |
| Performance Monitoring: |

## 8.6.2 VC-11 Tandem Connection Trail Termination Sink function (S11D\_TT\_Sk)

## Symbol:

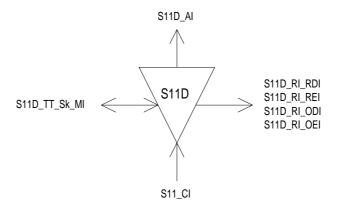



Figure 34: S11D\_TT\_Sk symbol

## Interfaces:

Table 26: S11D\_TT\_Sk input and output signals

| Input(s)                   | Output(s)             |
|----------------------------|-----------------------|
| S11_CI_D                   | S11D_AI_D             |
| S11_CI_CK                  | S11D_AI_CK            |
| S11_CI_FS                  | S11D_AI_FS            |
| S11_CI_SSF                 | S11D_AI_TSF           |
| S11D_TT_Sk_MI_ExTI         | S11D_AI_TSD           |
| S11D_TT_Sk_MI_SSF_Reported | S11D_AI_OSF           |
| S11D_TT_Sk_MI_RDI_Reported | S11D_TT_Sk_MI_cLTC    |
| S11D_TT_Sk_MI_ODI_Reported | S11D_TT_Sk_MI_cTIM    |
| S11D_TT_Sk_MI_TIMdis       | S11D_TT_Sk_MI_cUNEQ   |
| S11D_TT_Sk_MI_DEGM         | S11D_TT_Sk_MI_cDEG    |
| S11D_TT_Sk_MI_DEGTHR       | S11D_TT_Sk_MI_cRDI    |
| S11D_TT_Sk_MI_1second      | S11D_TT_Sk_MI_cSSF    |
|                            | S11D_TT_Sk_MI_cODI    |
|                            | S11D_TT_Sk_MI_AcTI    |
|                            | S11D_RI_RDI           |
|                            | S11D_RI_REI           |
|                            | S11D_RI_ODI           |
|                            | S11D_RI_OEI           |
|                            | S11D_TT_Sk_MI_pN_EBC  |
|                            | S11D_TT_Sk_MI_pF_EBC  |
|                            | S11D_TT_Sk_MI_pN_DS   |
|                            | S11D_TT_Sk_MI_pF_DS   |
|                            | S11D_TT_Sk_MI_pON_EBC |
|                            | S11D_TT_Sk_MI_pOF_EBC |
|                            | S11D_TT_Sk_MI_pON_DS  |
|                            | S11D_TT_Sk_MI_pOF_DS  |

#### Processes:

#### N2[1-2]:

Even BIP-2 is computed for each bit pair of every byte of the preceding VC-11 including V5 and N2 and compared with bit 1 and 2 of V5 and N2 recovered from the current frame (figure 35). A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block.

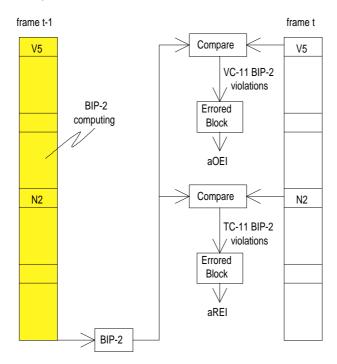



Figure 35: TC-11 and VC-11 BIP-2 computing and comparison

### N2[7-8]:

The Received Trail Trace Identifier RxTI shall be recovered from the tandem connection trail trace identifier overhead and shall be made available as AcTI for network management purposes. The application and acceptance process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3. The mismatch detection process shall be as specified below.

The trace identifier process in this function is required to support "mode 1" (ETS 300 417-1-1 [1], subclause 7.1) operation only. "Old" tandem connection equipment does not exist.

### N2[4]:

The function shall extract the Incoming AIS code.

### N2[5], N2[8][73]:

The information carried in the REI, RDI bits in byte N2 shall be extracted to enable single ended maintenance of a bi-directional tandem connection Trail. The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.4.2 (REI), 7.4.11 and 8.2 (RDI).

### N2[6], N2[7][74]:

The information carried in the OEI, ODI bits in byte N2 shall be extracted to enable single ended (intermediate) maintenance of a the VC-12 egressing the tandem connection Trail. The OEI (nOF\_B) shall be used to monitor the error performance of the other direction of transmission, and the ODI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Outgoing Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed equivalent to the remote maintenance case, as specified in ETS 300 417-1-1 [1], subclauses 7.4.2 (REI/OEI), 7.4.11 and 8.2 (RDI/ODI).

Draft prETS 300 417-4e-1: April 1996

### N2[7-8]:

### Multiframe alignment:

The function shall perform a multiframe alignment on bits 7 and 8 of byte N2 to recover the TTI, RDI, and ODI signals transported within the multiframed bits. The multiframe alignment shall be found by searching for the pattern "1111 1111 1111 1110" within the bits 7 and 8 of byte N2. The signal shall be continuously checked with the presumed multiframe start position for the alignment.

Frame alignment is deemed to have been lost (entering Out Of Multiframe (OOM) state) when two consecutive FAS are detected in error (i.e. ≥ 1 error in each FAS);

Frame alignment is deemed to have been recovered (entering In Multiframe (IM) state) when one non-errored FAS is found.

### V5[1-2]:

Even BIP-2 is computed for each bit pair of every byte of the preceding VC-11 including V5 and compared with bit 1 and 2 of V5 recovered from the current frame. A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nON\_B) in the computation block.

### N2:

The function shall terminate N2 channel by inserting an all-ZEROs pattern.

### V5[1-2]:

The function shall compensate the VC11 BIP2 in bits 1 and 2 of byte V5 according the algorithm defined in S11D TT So.

#### Defects:

### TC Unequipped (dUNEQ):

The function shall detect for an unequipped Tandem Connection (UNEQ) condition by monitoring byte N2 for code "00000000". The algorithm shall be according subclause 8.2.1.2 of ETS 300 417-1-1 [1], in which "accepted TSL" shall be read as "accepted N2 byte". The defect is referred to as dUNEQ.

### TC Loss of Tandem Connection (dLTC):

The function shall detect for the presence/absence of the tandem connection overhead in the byte N2 by evaluating the multiframe alignment signal in bits 7 and 8 of byte N2. The loss of tandem connection defect (dLTC) shall be detected if the multiframe alignment process is in the OOM state. The dLTC shall be cleared if the multiframe alignment process is in the IM state.

### TC Connectivity (Trace Identifier) (dTIM):

The function shall detect for a TC mis-connection condition by monitoring the TC trace identifier. The Trace Identifier Mismatch defect (dTIM) shall be detected and cleared within a maximum period of 4 s in the absence of bit errors.

The defect detection process and its operation during the presence of bit errors is for further study.

The defect shall be suppressed during the receipt of SSF.

It shall be possible to disable the trace identifier mismatch defect detection (TIMdis).

### TC Signal Degrade (dDEG):

The function shall detect for a TC signal degrade defect condition by monitoring for TC BIP2 violations. The algorithm shall be according subclause 8.2.1.4 of ETS 300 417-1-1 [1].

### TC Remote Defect (dRDI):

The function shall detect for a TC remote defect indication defect condition by monitoring the TC RDI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

### TC Remote Outgoing VC Defect (dODI):

The function shall detect for a TC remote outgoing VC defect indication defect condition by monitoring the TC ODI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

Incoming AIS (dIncAIS):

The function shall detect for a tandem connection incoming AIS condition by monitoring bit 4 in byte N2 for code "1". If 5 consecutive frames contain the value "1" in bit 4 a dlncAIS defect shall be detected. dlncAIS shall be cleared if in 5 consecutive frames value "0" is detected in bit 4 of byte N2.

### **Consequent Actions:**

The function shall perform the following consequent actions (refer to subclause 8.2.2 of ETS 300 417-1-1 [1]):

dUNEQ or dTIM or dLTC aAIS aTSF CI SSF or dUNEQ or dTIM or dLTC aTSD **dDEG**  $\leftarrow$ aRDI CI SSF or dUNEQ or dTIM or dLTC aREI nN B  $\leftarrow$ CI SSF or dUNEQ or dTIM or dIncAIS or dLTC aODI  $\leftarrow$ aOEI  $\leftarrow$ nON\_B aOSF ← CI SSF or dUNEQ or dTIM or dLTC or dIncAIS

The function shall insert the all-ONEs (AIS) signal within 1 ms after AIS request generation (aAIS), and cease the insertion within 1 ms after the AIS request has cleared.

### **Defect Correlations:**

The function shall perform the following defect correlations (refer to subclause 8.2.3 of ETS 300 417-1-1 [1]):

 $\mathsf{cUNEQ} \gets$ MON and dUNEQ MON and (not dUNEQ) and dLTC cLTC  $\leftarrow$ MON and (not dUNEQ) and (not dLTC) and dTIM cTIM  $\leftarrow$ cDEG ← MON and (not dTIM) and (not dLTC) and dDEG cSSF MON and CI SSF and SSF Reported cRDI MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dRDI and **RDI** Reported MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dODI and cODI **ODI** Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI Reported. The default shall be RDI Reported = false.

It shall be an option to report ODI as a fault cause. This is controlled by means of the parameter ODI\_Reported. The default shall be ODI\_Reported = false.

### **Performance Monitoring:**

The following TC error performance parameters shall be counted for each 1 second period (refer to subclauses 8.2.4 to 8.2.7 of ETS 300 417-1-1 [1])<sup>2</sup>:

$$pN\_DS \leftarrow aTSF \text{ or dEQ}$$
 
$$pF\_DS \leftarrow dRDI$$
 
$$pN\_EBC \leftarrow \Sigma nN\_B$$
 
$$pF\_EBC \leftarrow \Sigma nF\_B$$
 
$$pON\_DS \leftarrow aODI$$
 
$$pOF\_DS \leftarrow dODI$$
 
$$pON\_EBC \leftarrow \Sigma nON\_B$$

 $pOF\_EBC \leftarrow \Sigma nOF\_B$ 

### 8.6.3 VC-11 Tandem Connection to VC-11 Adaptation Source function (S11D/S11\_A\_So)

### Symbol:

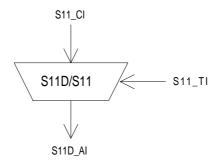



Figure 36: S11D/S11\_A\_So symbol

### Interfaces:

Table 27: S11D/S11\_A\_Sk input and output signals

| Input(s)   | Output(s)  |
|------------|------------|
| S11_CI_D   | S11D_AI_D  |
| S11_CI_CK  | S11D_AI_CK |
| S11 CI FS  | S11D AI FS |
| S11 CI SSF | S11D AI SF |
| S11 TI CK  |            |

### Processes:

NOTE 1: The function has no means to verify the existence of a tandem connection within the incoming signal. Nested tandem connections are not supported.

pN\_EBC and pN\_DS does not represent the actual performance monitoring support within an equipment. For that, these pN\_DS/pN\_EBC signals must be connected to performance monitoring functions within the element management function. Similar for the far-end signals pF\_EBC and pF\_DS, and for pON\_EBC/pON\_DS, pOF\_EBC/pOF\_DS.

The function shall replace the incoming Frame Start (CI\_FS) signal by a local generated one (i.e. enter "holdover") if an all-ONEs (AIS) VC is received (i.e. if CI\_SSF is TRUE).

NOTE 2: This replacement of the (invalid) incoming frame start signal result in the generation of a valid pointer in e.g. the S4/S11\_A\_So function; SSF=true signal is not passed through via S11D\_TT\_So to the S4/S11\_A\_So.

NOTE 3: The local frame start is generated with the S12\_TI timing.

**Defects:** 

None.

**Consequent Actions:** 

 $AI\_SF \leftarrow CI\_SSF$ 

**Defect Correlations:** 

None.

**Performance Monitoring:** 

None.

8.6.4 VC-11 Tandem Connection to VC-11 Adaptation Sink function (S11D/S11\_A\_Sk)

### Symbol:

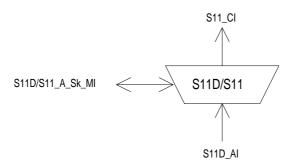



Figure 37: S11D/S11\_A\_Sk symbol

## Interfaces:

Table 28: S11D/S11\_A\_Sk input and output signals

| Input(s)    | Output(s)  |
|-------------|------------|
| S11D_AI_D   | S11_CI_D   |
| S11D_AI_CK  | S11_CI_CK  |
| S11D_AI_FS  | S11_CI_FS  |
| S11D_AI_OSF | S11_CI_SSF |

### Input(s):

| AI_D, AI_CK, AI_FS | VC-11 TC Adapted Information: Data, Clock, Frame Start |
|--------------------|--------------------------------------------------------|
| AI_OSF             | VC-11 TC Adapted Information: Outgoing Signal Fail     |
| AI_TSF             | VC-11 TC Adapted Information: Trail Signal Fail        |

## Output(s):

| CI_D, CI_CK, CI_FS | VC-11 Characteristic Information: Data, Clock, Frame Start |
|--------------------|------------------------------------------------------------|
| CI_SSF             | VC-11 Characteristic Information: Server Signal Fail       |

#### **Processes:**

The function shall restore the invalid frame start condition (i.e. output aSSF = true) if that existed at the ingress of the tandem connection.

NOTE: In addition, the invalid frame start condition is activated on a tandem connection

connectivity defect condition that causes all-ONEs (AIS) insertion in the S11D\_TT\_Sk.

**Defects:** 

None.

### **Consequent Actions:**

 $aAIS \leftarrow AI\_OSF$ 

 $aSSF \leftarrow AI\_OSF$ 

The function shall insert the all-ONEs (AIS) signal within 1 ms after AIS request generation (aAIS), and cease the insertion within 1 ms after the AIS request has cleared.

#### **Defect Correlations:**

None.

## **Performance Monitoring:**

None.

8.6.5 VC-11 Tandem Connection non-intrusive Trail Termination Sink function (S11Dm\_TT\_Sk)

### Symbol:

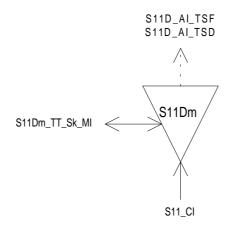



Figure 38: S11Dm\_TT\_Sk symbol

#### Interfaces:

Table 29: S11Dm\_TT\_Sk input and output signals

| Input(s)                   | Output(s)             |
|----------------------------|-----------------------|
| S11D_CI_D                  | S11D_AI_TSF           |
| S11D_CI_CK                 | S11D_AI_TSD           |
| S11D_CI_FS                 | S11D_TT_Sk_MI_cLTC    |
| S11D_CI_SSF                | S11D_TT_Sk_MI_cTIM    |
| S11D_TT_Sk_MI_ExTI         | S11D_TT_Sk_MI_cUNEQ   |
| S11D_TT_Sk_MI_SSF_Reported | S11D_TT_Sk_MI_cDEG    |
| S11D_TT_Sk_MI_RDI_Reported | S11D_TT_Sk_MI_cRDI    |
| S11D_TT_Sk_MI_ODI_Reported | S11D_TT_Sk_MI_cSSF    |
| S11D_TT_Sk_MI_TIMdis       | S11D_TT_Sk_MI_cODI    |
| S11D_TT_Sk_MI_DEGM         | S11D_TT_Sk_MI_AcTI    |
| S11D_TT_Sk_MI_DEGTHR       | S11D_TT_Sk_MI_pN_EBC  |
| S11D_TT_Sk_MI_1second      | S11D_TT_Sk_MI_pF_EBC  |
|                            | S11D_TT_Sk_MI_pN_DS   |
|                            | S11D_TT_Sk_MI_pF_DS   |
|                            | S11D_TT_Sk_MI_pOF_EBC |
|                            | S11D_TT_Sk_MI_pOF_DS  |

#### **Processes:**

This function can be used to perform the following:

- single ended maintenance of the TC by monitoring at an intermediate node, using remote information (RDI,REI),
- 2 aid in fault localisation within TC trail by monitoring near-end defects,
- monitoring of VC performance at TC egressing point(except for connectivity defects before the TC) using remote outgoing information (ODI,OEI).
- 4 performing non-intrusive monitor function within SNC/S protection.

### N2[1-2]:

ven BIP-2 is computed for each bit pair of every byte of the preceding VC-11 including V5 and N2 and compared with bits 1 and 2 of V5 and N2 recovered from the current frame (figure 32). A difference between the computed and recovered BIP-2 values is taken as evidence of one or more errors (nN\_B) in the computation block. Refer to S11D\_TT\_Sk.

### N2[7-8][9-72]:

he Received Trail Trace Identifier RxTI shall be recovered from the tandem connection trail trace identifier overhead and shall be made available as AcTI for network management purposes. The application and acceptance process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.1, and 8.2.1.3. The mismatch detection process shall be as specified below.

he trace identifier process in this function is required to support "mode 1" (ETS 300 417-1-1 [1], subclause 7.1) operation only. "Old" tandem connection equipment does not exist.

### N2[4]:

he function shall extract the Incoming AIS code.

#### N2[5], N2[8][73]:

he information carried in the REI, RDI bits in byte N2 shall be extracted to enable single ended maintenance of a bi-directional tandem connection Trail. The REI (nF\_B) shall be used to monitor the error performance of the other direction of transmission, and the RDI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Remote Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed as specified in ETS 300 417-1-1 [1], subclauses 7.4.2 (REI), 7.4.11 and 8.2 (RDI).

Draft prETS 300 417-4e-1: April 1996

### N2[6], N2[7][74]:

(nOF\_B). The information carried in the OEI, ODI bits in byte N2 shall be extracted to enable single ended (intermediate) maintenance of a the VC-11 egressing the tandem connection Trail. The OEI (nOF\_B) shall be used to monitor the error performance of the other direction of transmission, and the ODI shall be used to provide information as to the status of the remote receiver. A "1" indicates a Outgoing Defect Indication state, while a "0" indicates the normal, working state. The application process shall be performed equivalent to the remote maintenance case, as specified in ETS 300 417-1-1 [1], subclause 7.4.2 (REI/OEI) and 7.4.11 and 8.2 (RDI/ODI).

### N2[7-8]:

### Multiframe alignment:

The function shall perform a multiframe alignment on bits 7 and 8 of byte N2 to recover the TTI, RDI, and ODI signals transported within the multiframed bits. The multiframe alignment shall be found by searching for the pattern "1111 1111 1110" within the bits 7 and 8 of byte N2. The signal shall be continuously checked with the presumed multiframe start position for the alignment.

Frame alignment is deemed to have been lost (entering Out Of Multiframe (OOM) state) when two consecutive FAS are detected in error (i.e. ≥ 1 error in each FAS);

Frame alignment is deemed to have been recovered (entering In Multiframe (IM) state) when one non-errored FAS is found.

#### Defects:

### TC Unequipped (dUNEQ):

The function shall detect for an unequipped Tandem Connection (UNEQ) condition by monitoring byte N2 for code "00000000". The algorithm shall be according subclause 8.2.1.2 of ETS 300 417-1-1 [1], in which "accepted TSL" shall be read as "accepted N2 byte". The defect is referred to as dUNEQ.

### TC Loss of Tandem Connection (dLTC):

The function shall detect for the presence/absence of the tandem connection overhead in the byte N2 by evaluating the multiframe alignment signal in bits 7 and 8 of byte N2. The loss of tandem connection defect (dLTC) shall be detected if the multiframe alignment process is in the OOM state. The dLTC shall be cleared if the multiframe alignment process is in the IM state.

### TC Connectivity (Trace Identifier) (dTIM):

The function shall detect for a TC mis-connection condition by monitoring the TC trace identifier. The Trace Identifier Mismatch defect (dTIM) shall be detected and cleared within a maximum period of 1 s in the absence of bit errors.

The defect detection process and its operation during the presence of bit errors is for further study.

The defect shall be suppressed during the receipt of SSF.

It shall be possible to disable the trace identifier mismatch defect detection (TIMdis).

#### TC Signal Degrade (dDEG):

The function shall detect for a TC signal degrade defect condition by monitoring for TC BIP2 violations. The algorithm shall be according subclause 8.2.1.4 of ETS 300 417-1-1 [1].

#### TC Remote Defect (dRDI):

The function shall detect for a TC remote defect indication defect condition by monitoring the TC RDI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

### TC Remote Outgoing VC Defect (dODI):

The function shall detect for a TC remote outgoing VC defect indication defect condition by monitoring the TC ODI signal. The algorithm shall be according subclause 8.2.1.5 of ETS 300 417-1-1 [1].

### Draft prETS 300 417-4e-1: April 1996

Incoming AIS (dIncAIS):

The function shall detect for a tandem connection incoming AIS condition by monitoring bit 4 in byte N2 for code "1". If 5 consecutive VC-11 frames contain the value "1" in bit 4 a dlncAIS defect shall be detected. dlncAIS shall be cleared if in 5 consecutive VC-11 frames value "0" is detected in bit 4 of byte N2.

### **Consequent Actions:**

aTSF ← CI\_SSF or dUNEQ or dTIM or dLTC

aTSD  $\leftarrow$  dDEG

#### **Defect Correlations:**

The function shall perform the following defect correlations (refer to subclause 8.2.3 of ETS 300 417-1-1 [1]):

cUNEQ ← MON and dUNEQ

cLTC ← MON and (not dUNEQ) and dLTC

cTIM ← MON and (not dUNEQ) and (not dLTC) and dTIM

cDEG ← MON and (not dTIM) and (not dLTC) and dDEG

cSSF ← MON and CI\_SSF and SSF\_Reported

cRDI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dRDI and RDI\_Reported

cODI ← MON and (not dUNEQ) and (not dTIM) and (not dLTC) and dODI and ODI\_Reported

It shall be an option to report SSF as a fault cause. This is controlled by means of the parameter SSF\_Reported. The default shall be SSF\_Reported = false.

It shall be an option to report RDI as a fault cause. This is controlled by means of the parameter RDI\_Reported. The default shall be RDI\_Reported = false.

It shall be an option to report ODI as a fault cause. This is controlled by means of the parameter ODI\_Reported. The default shall be ODI\_Reported = false.

### **Performance Monitoring:**

The following TC error performance parameters shall be counted for each 1-second period (refer to subclauses 8.2.4 to 8.2.7 of ETS 300 417-1-1 [1]) 3:

 $pN_DS \leftarrow aTSF \text{ or } dEQ$   $pF_DS \leftarrow dRDI$   $pN_EBC \leftarrow \Sigma nN_B$   $pF_EBC \leftarrow \Sigma nF_B$   $pOF_DS \leftarrow dODI$   $pOF_EBC \leftarrow \Sigma nOF_B$ 

pN\_EBC and pN\_DS does not represent the actual performance monitoring support within an equipment. For that, these pN\_DS/pN\_EBC signals must be connected to performance monitoring functions within the element management function. Similar for the far-end signals pF\_EBC and pF\_DS and for pOF\_EBC/pOF\_DS.

# History

| Document history |                |         |                          |
|------------------|----------------|---------|--------------------------|
| April 1996       | Public Enquiry | PE 105: | 1996-04-08 to 1996-08-30 |
|                  |                |         |                          |
|                  |                |         |                          |
|                  |                |         |                          |
|                  |                |         |                          |