
N
ew

 p
re

se
nt

at
io

n
-

se
e

H
is

to
ry

 b
ox

EUROPEAN ETS 300 414

TELECOMMUNICATION December 1995

STANDARD

Source: ETSI TC-MTS Reference: DE/MTS-00011

ICS: 33.020

Key words: SDL, MSC, ASN.1, specification, testability, formal validation

Methods for Testing and Specification (MTS);
Use of SDL in European Telecommunication Standards;

Rules for testability and facilitating validation

ETSI
European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1995. All rights reserved.

Page 2
ETS 300 414: December 1995

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
ETS 300 414: December 1995

Contents

Foreword ...7

Introduction..7

1 Scope ..9

2 Normative references..9

3 Definitions..10

4 Symbols and abbreviations ...11

5 Conformance to this ETS ..11

6 Testing and validation ...11
6.1 Validation of specifications...11

6.1.1 Formal validation ...12
6.1.2 Important aspects of a specification from a validation perspective...............13

6.2 Testing of telecommunication products ...14
6.2.1 Conformance testing ...14
6.2.2 Important aspects of a specification from a testing perspective14

6.2.2.1 Normative interfaces..15
6.2.2.2 Implementation options ...16
6.2.2.3 Conformance requirements...17
6.2.2.4 Handling of invalid inputs...18

6.3 Specification principles to enable validation and testing..19

7 SDL in European Telecommunication Standards ...19
7.1 Introduction ..19
7.2 Structure and contents of an ETS containing SDL ..20

8 Specification and description language concepts ...22
8.1 Introduction ..22
8.2 SDL diagrams ..23

8.2.1 System diagram ..24
8.2.2 Block diagram..25
8.2.3 Process diagram ...27
8.2.4 Procedure diagram..29
8.2.5 Macro diagram ..31

8.3 Symbols used in system diagrams ..31
8.3.1 Block..31
8.3.2 Channel ...31
8.3.3 Signal definition ...33
8.3.4 Signallist ..33
8.3.5 Select symbol ..33
8.3.6 Text symbol ...34
8.3.7 Text extension ...34
8.3.8 Comment...34
8.3.9 Procedure symbol ...34
8.3.10 Macro call ..35
8.3.11 Synonyms..35

8.4 Symbols used in block diagrams ...35
8.4.1 Process symbol ...36
8.4.2 Signal route ...36
8.4.3 Create line ...37
8.4.4 Connection between channels and signal routes..37

Page 4
ETS 300 414: December 1995

8.5 Symbols used in process diagrams .. 37
8.5.1 Variable... 37
8.5.2 Process start... 38
8.5.3 State ... 38
8.5.4 Input.. 39
8.5.5 Priority input .. 40
8.5.6 Save symbol ... 40
8.5.7 Spontaneous transition ... 40
8.5.8 Continuous signal ... 41
8.5.9 Timer... 41
8.5.10 Optional transition... 42
8.5.11 Task.. 42
8.5.12 Decision .. 43
8.5.13 Process creation ... 44
8.5.14 Procedure call... 44
8.5.15 Remote procedure call.. 45
8.5.16 Output ... 45
8.5.17 Nextstate... 46
8.5.18 Process stop ... 46
8.5.19 Join ... 46

8.6 Symbols used in procedure diagrams... 47
8.6.1 Procedure start ... 47
8.6.2 Procedure return... 47

8.7 Symbols used in macro diagrams... 48
8.7.1 Macro connections.. 48

8.8 Data types ... 48
8.8.1 Predefined data .. 48
8.8.2 User defined data types.. 51

8.8.2.1 Subrange of a predefined data type.................................... 51
8.8.2.2 Construction of data types .. 52
8.8.2.3 Abstract data types ... 53
8.8.2.4 User defined operations.. 53

9 Message sequence charts concepts .. 53
9.1 Introduction.. 53
9.2 Symbols used in message sequence charts... 54

9.2.1 Instance .. 55
9.2.2 Message ... 56
9.2.3 Comment .. 56
9.2.4 Timer... 56
9.2.5 Action.. 57
9.2.6 Process creation ... 57
9.2.7 Condition... 57
9.2.8 Process stop ... 58

10 ASN.1 concepts .. 58
10.1 ASN.1 identifiers.. 59
10.2 ASN.1 import ... 59
10.3 ASN.1 simple types ... 60
10.4 ASN.1 structured types ... 63

10.4.1 SEQUENCE.. 63
10.4.2 Default and optional components in SEQUENCE .. 64
10.4.3 SEQUENCE OF.. 64
10.4.4 SET OF... 65
10.4.5 CHOICE.. 65

10.5 ASN.1 subtypes... 66
10.5.1 Subtyping of simple types... 66
10.5.2 Subtyping of structured types ... 67

10.6 ASN.1 tags .. 68
10.7 ASN.1 useful types.. 68

Annex A (normative): Summary of use of ITU SDL 1992 in European Telecommunication
Standards... 69

Page 5
ETS 300 414: December 1995

A.1 Selection of SDL concepts ..69

A.2 List of rules ..70

Annex B (informative): Motivation for exclusion of SDL, MSC and ASN.1 concepts73

B.1 Motivation for exclusion of SDL concepts ...73
B.1.1 Channel partitioning ...73
B.1.2 SDL signal refinement ...73
B.1.3 SDL service..73
B.1.4 Revealed and viewed variable ...73
B.1.5 Imported and exported variable ...74
B.1.6 SDL internal input and output ..74
B.1.7 SDL enabling condition ..74
B.1.8 Name class literals...75

B.2 Motivation for exclusion of MSC concepts in combination with SDL...75
B.2.1 MSC co-regions ...75
B.2.2 MSC sub message sequence charts ...75

B.3 Motivation for exclusion of ASN.1 concepts in combination with SDL ..76
B.3.1 ASN.1 comment...76
B.3.2 Set..76
B.3.3 Macro mechanism ...76
B.3.4 Value notation for ASN.1 type ANY ...76
B.3.5 ASN.1 encoding rules ..76

Annex C (informative): Examples..77

C.1 Addressing in SDL...77

C.2 Remote operations..83
C.2.1 Actions at the Activating X ...84
C.2.2 Actions at the Served User X...84
C.2.3 Timer values ..84
C.2.4 Message sequence chart...84
C.2.5 SDL diagrams ..85

C.3 Specification of implementation options..89

C.4 Optional functionality ...90

C.5 Alternative behaviour...91

C.6 Optional fields in a message ...92

C.7 Shared data between processes...92

C.8 Informative parts of a specification..95

Annex D (informative): Bibliography..96

Annex E (informative): Index...97

E.1 Textual index ...97

E.2 Graphical index ...98

History..99

Page 6
ETS 300 414: December 1995

Blank page

Page 7
ETS 300 414: December 1995

Foreword

This European Telecommunication Standard (ETS) has been produced by the Methods for Testing and
Specification (MTS) Technical Committee of the European Telecommunications Standards Institute
(ETSI).

Transposition dates

Date of adoption of this ETS: 27 October 1995

Date of latest announcement of this ETS (doa): 31 March 1996

Date of latest publication of new National Standard
or endorsement of this ETS (dop/e): 30 September 1996

Date of withdrawal of any conflicting National Standard (dow): 30 September 1996

Introduction

Specification, validation and testing

The growing complexity of telecommunication systems, requires advanced methods for design,
implementation, and testing. Errors or omissions in telecommunication standards are often costly to
correct. Moreover, if errors are not detected, and permeate in telecommunication products, they may lead
to loss of property or revenue. Therefore, validation of telecommunication standards and testing of
products that claim to implement a standard, is of extreme importance.

International standardisation organisations have developed formal description techniques, such as
Specification and Description Language (SDL) (ITU-T Recommendation Z.100 [1]). The essence of these
techniques is that they have a mathematical basis. This facilitates precision and has enabled development
of computer-based tools that support their use. SDL tools are commercially available. These tools typically
include facilities to edit SDL diagrams, to check consistency and completeness of the specifications, to
run a simulation of the specified system, to validate the specifications and to generate tests from the
specifications. Application of formal description techniques in specifications is a first and essential step
towards improvement of validation of standards and easier testing of telecommunication products.

This ETS specifies how to use the ITU-T Recommendation Z.100 [1] SDL in ETSs. The use of SDL
diagrams in an ETS and SDL tools in the development process of standards, will add to the clarity, non-
ambiguity, and consistency of telecommunication standards:

clarity: use of standard diagrams known to telecommunication experts, instead of own
inventions;

non-ambiguity: the meaning of SDL diagrams is determined completely by the formal semantics
described in ITU-T Recommendation Z.100 [1], and implemented in simulation
tools;

consistency: the use of tools allows thorough cross checking of system diagrams, block
diagrams, process diagrams and message sequence charts.

Applications of SDL in telecommunication standards include (see ITU-T Recommendation Z.100 [1], §§
1.1.2):

- call processing;
- maintenance and fault treatment;
- system control;
- operation & network management;
- data communication protocols;
- telecommunication services.

Page 8
ETS 300 414: December 1995

Formal techniques should be used in ETSs in combination with established and proven specification
methods. SDL diagrams need to be used to specify those parts of a telecommunication system, that need
to be defined precisely and unambiguously. Message Sequence Charts (MSCs) (ITU-T Recommendation
Z.120 [3]) need to be used to illustrate the functions of a system. Normal text, tables and informal figures
can be used in combination with SDL diagrams. Furthermore, Abstract Syntax Notation One (ASN.1)
(CCITT Recommendation X.208 [4]) is recommended for use in combination with SDL and MSC
diagrams. This recommendation is based on practical experience in application of SDL by
telecommunication manufacturers and telecommunication operators.

If both SDL diagrams and MSCs are used in an ETS, a certain amount of redundancy in the information
provided cannot be avoided. This is not necessarily harmful; redundancy is beneficial for human
understanding. Duplication of information should, however, be avoided. It should be assumed that a
telecommunication expert is able to "read" SDL diagrams, MSCs and ASN.1 type definitions. Therefore,
there is no need to explain in normal text what can be read in a diagram. There is an analogy here with
the situation in construction companies. Every professional in such a company can read the drawings of
an architect. As a rule, explanatory text is not provided for floor plans or drawings of construction details.

The rules presented in this ETS make the specification more suitable as a basis for formal validation and
testing, without paying attention to how every requirement in the specification should be validated or
tested.

Furthermore, if the rules are followed, the specifications will be more suitable for application of automated
test generation techniques. This may lead to important cost reduction in the development and
maintenance of conformance tests.

About this ETS

This ETS is structured as follows:

Clauses 1 to 4 contain the scope of this ETS, the normative references and definitions, and symbols and
abbreviations that are used in this ETS.

Clause 5 is the conformance clause. In this clause, the requirements, which ETSs that claim to conform to
this ETS should meet are defined.

Clause 6 contains informative text on validation and testing, which provides a rationale for the selection of
concepts and restrictions of the use of concepts by rules.

Clause 7 describes on a global level, how SDL diagrams are to be used in ETSs.

Clauses 8, 9, and 10 list, in more detail, which concepts of SDL, MSC and ASN.1 are selected for use in
ETSs. Moreover, rules are provided that restrict the use of these concepts. Clauses 8, 9 and 10 are
normative, the rules are to be considered as requirements on ETSs.

Annex A is normative, all other annexes are informative.

- Annex A presents an overview of the selected SDL, MSC and ASN.1 concepts;
- Annex B gives a detailed motivation for the exclusion of certain SDL, MSC, ASN.1 concepts;
- Annex C gives a collection of examples of good use of SDL;
- Annex D contains a bibliography of books and reports on SDL, MSC, ASN.1, conformance testing,

and formal validation;
- Annex E contains an index to this ETS, including a graphical index of SDL symbols.

Intended audience

This ETS is written for telecommunication experts that are familiar with SDL, MSC and ASN.1. For tutorial
introductions to these formalisms a number of text books are available. A selection of these books is listed
in annex D.

This ETS is intended to be used in the production of ETSs. However, its use is not necessarily restricted
to ETSs.

Page 9
ETS 300 414: December 1995

1 Scope

This European Telecommunication Standard (ETS) specifies rules for the use of the Specification and
Description Language (SDL), defined in ITU-T Recommendation Z.100 [1] and Message Sequence
Charts (MSC), defined in ITU-T Recommendation Z.120 [3], in ETSs. Object oriented extensions in SDL
are not considered. It is intended that SDL and MSC diagrams will be used in ETSs, in combination with
text, informal figures and tables. SDL diagrams are to be used to formalise those parts of an ETS that
need to be defined precisely and unambiguously.

Furthermore, it is recommended to use the Abstract Syntax Notation One (ASN.1), formalism defined in
ITU-T Recommendation X.680-X683 [7], that is related to SDL. Therefore, this ETS also specifies rules
for the use of ASN.1, when used in combination with SDL.

All rules are aimed at improving the possibilities to validate a standard in an early phase of development,
and to improve the possibilities to test products that claim to implement a standard.

This ETS does not contain any changes to the (formal) semantics of SDL, MSC or ASN.1. The use of SDL
and related formalisms, enforced by the rules in this ETS, fully conforms to the language definitions of
SDL, with exception of the use of ASN.1 within SDL diagrams.

This ETS does not provide a methodology for the production of ETSs which contain SDL.

This ETS does not restrict the use of ASN.1 in ETSs, if ASN.1 is used otherwise than in combination with
SDL diagrams.

This ETS is not aimed at the use of SDL for product design and development. The subset of SDL that is
selected in this ETS is tailored to standardisation, where clarity is of the utmost importance.

This ETS is not applicable to the specification of conformance test standards.

2 Normative references

This ETS incorporates by dated or undated reference, provisions from other publications. These
normative references are cited at the appropriate places in the text and the publications are listed
hereafter. For dated references, subsequent amendments to or revisions of any of these publications
apply to this ETS only when incorporated in it by amendment or revision. For undated references the latest
edition of the publication referred to applies.

[1] ITU-T Recommendation Z.100 (1993): "Specification and description language
(SDL)".

[2] ITU-T Recommendation Z.105 (1994): "SDL combined with ASN.1
(SDL/ASN.1)".

[3] ITU-T Recommendation Z.120 (1993): "Messages sequence charts".

[4] CCITT Recommendation X.208 (1988): "Specification of Abstract Syntax
Notation One (ASN.1)".

[5] CCITT Recommendation X.209 (1988): "Specification of basic encoding rules
for Abstract Syntax Notation One (ASN.1)".

[6] CCITT Recommendation X.229 (1988): "Remote operations: Protocol
specification".

[7] ITU-T Recommendations X.680-X.683 (1994): "Abstract Syntax Notation One
(ASN.1)".

[8] CEN/CENELEC IR (1989): "Part 3: Rules for the drafting and presentation of
European Standards (PNE - Rules)".

Page 10
ETS 300 414: December 1995

[9] ISO Standard 9646-1 (1992): "Information technology - Open Systems
Interconnection-Conformance testing methodology and framework - General
concepts”.

[10] ISO Standard 9646-3 (1992): "Information technology - Open Systems
Interconnection-Conformance testing methodology and framework - The Tree
and Tabular Combined Notation (TTCN)”.

[11] ETS 300 175 (1992): "Radio Equipment and Systems (RES); Digital European
Cordless Telecommunications (DECT) Common interface".

3 Definitions

For the purposes of this ETS, the following definitions apply:

conformance testing: Testing the extent to which an implementation under test satisfies both static and
dynamic conformance requirements, consistent with the capabilities stated in the implementation
conformance statement (ISO 9646-1 [9], subsections 3.4.10, and 3.5.6).

conformance requirement: Statement in a standard that shall hold in a product that claims to conform to
the specification.

black box testable requirement: A conformance requirement that can be tested by applying tests at the
normative interfaces of an implementation.

external validation: Validation of the consistency of a standard with other related standards.

implementation conformance statement: A document supplied by the manufacturer of a product that
defines which standards are claimed to be implemented and which implementation options in the
standards are supported.

implementation option: A statement in a standard that may or may not be supported in an
implementation. If it is supported, the statement shall hold in the implementation.

internal validation: Validation of the internal correctness of a standard.

invalid event: The reception or sending of a signal that is not listed in the signallist of a channel or signal
route.

normative interface: A physical or software interface of a product on which requirements are imposed by
a standard.

normative channel: A channel in an SDL specification that models a normative interface.

testability: A specification is testable if it unambiguously defines the allowed implementation options, the
conformance requirements, and the normative interfaces, and if all conformance requirements can be
checked, up to a certain degree of confidence, by applying tests at the normative interfaces of a product.

validation: The process, with associated methods, procedures and tools, by which evidence is given that
a standard actually can be implemented and is able to provide, when correctly implemented, the intended
level of functionality and performance at minimal cost.

formal validation: Automatic analysis of specifications to determine whether or not they possess certain
desirable properties.

validation model: A detailed version of the specification, possibly including parts of its environment, that
is used to perform formal validation.

state space: The collection of all states of a system that can be reached from the initial state.

Page 11
ETS 300 414: December 1995

4 Symbols and abbreviations

For the purposes of this ETS, the following symbols and abbreviations apply:

APDU Application Protocol Data Unit
ASN.1 Abstract Syntax Notation No. one
DECT Digital European Cordless Telecommunications
ICS Implementation Conformance Statement
MSC Message Sequence Chart
OSI Open systems Interconnection
PCO Point of Control and Observation
PDU Protocol Data Unit
PICS Protocol Implementation Conformance Statement
PId Process Instance Identifier
SDL Specification and Description Language
TTCN Tree and Tabular Combined Notation
TPDU Transport Protocol Data Unit

5 Conformance to this ETS

An ETS conforms to this standard if all rules stated in clauses 8 and 9 are adhered to.

If an ETS uses ASN.1 in combination with SDL, also the rules in clause 10 can apply. Alternatively, an
ETS can use the SDL concepts for definition of data types and values, in which case the rules in clause 10
are not applicable.

6 Testing and validation

6.1 Validation of specifications

Validation can be defined as follows:

"Validation of a standard is the process, with associated methods, procedures and tools, by which
evidence is given that a standard actually can be implemented and is able to provide, when
correctly implemented, the intended level of functionality and performance at minimal cost".

This is a very broad definition, which covers validation approaches, ranging from automatic deadlock
detection in a formal model of the standard, up to field trials of telecommunications products. A formal
approach to analyse a formal model puts the burden on the standardization process itself; the
implementation and field trials on the manufacturers, if they are prepared to implement a standard and
subsequently perform interoperability tests. The latter type of validation may, however, take considerable
time before the results are available and this may not be timely for standards development.

Furthermore, a standard should not only be correct in itself but it should also be consistent with other
related standards (for example the standard containing a protocol specification needs to be consistent
with the standard containing the test suite for that protocol). The terms internal validation and external
validation differentiate between these two aspects of validation.

Page 12
ETS 300 414: December 1995

Figure 1: Internal and external validation of a draft ETS

Currently, the most frequently used technique for early validation is to organise reviews performed by
experts. Subclause 6.1.1 focuses on formal validation, i.e. approaches to simulate or analyse the formal
description of the system by means of computer-based tools. Formal validation is an emerging
technology, that will gain importance in the near future.

6.1.1 Formal validation

Formal validation of a standard includes both checking the syntactic and semantic correctness of the
specification, and checking that the known requirements on the specified system are expressed by the
specification.

The main techniques implemented in tools for formal validation are:

a) interactive simulation;

b) random state space exploration;

c) "exhaustive" state space exploration.

All techniques are based on execution of the specification by computer. Therefore the techniques can only
be applied if it is feasible to execute the SDL diagrams used in the specification, for example by
generating executable code. In most cases the SDL diagrams as they are found in an ETS may not be
complete and/or detailed enough to be processed by the tools directly. In that case additional information
needs to be provided. This information can comprise, for example:

- choices between implementation options;

- specification of parts of the system that are out of the scope of the standard but still needed in order
to have a complete system specification for execution;

- programming language code for SDL concepts that are too complicated to automatically generate
code from (typically, abstract data types and operations).

These activities will be referred to as the building of a validation model. One or more validation models
can be built and be processed by validation tools.

Page 13
ETS 300 414: December 1995

With a simulation tool, the specifier can interactively simulate the execution of the specified system and
investigate the specified behaviour, variable values, etc. In this way the specifier can verify that the
intended behaviour is indeed part of the specified behaviour. The major drawback with this technique is
that it focuses on the expected behaviour of the specified system, since the person performing the
simulation has a clear understanding of how the system is supposed to function. The behaviour of the
system related to unintentional usage will not be revealed during simulation.

The second type of automated validation techniques is based on state space exploration or reachability
analysis. A state space exploration algorithm generates and analyses, by approximation, all system states
that can be reached from an initial system state. In other words, it will automatically construct all possible
execution sequences of the system starting from the initial system state. The states, or sequences of
states, can then be analysed with respect to certain correctness criteria. The correctness criteria can be,
for example, absence of deadlock, no violations of dynamic semantics (e.g. division by zero, or sending of
signals to non-existent processes), or temporal claims about the behaviour of the system. An example of
a temporal claim is "signal A cannot be sent before signal B is received". In general, algorithms for state
space exploration are based on operational definitions of the semantics of the specification language (see
ETR 060 for an operational semantics of SDL).

However, it is often not possible to generate all possible system states of a realistic system due to the
state space explosion, i.e. the number of states is so large that it exceeds the capabilities of the computer
system used for the analysis. Several techniques have been developed to deal with the state space
explosion problem. For a detailed description of techniques that are applicable to SDL specifications, see
references 7), 12) and 14) of annex D.

Since all techniques based on state space exploration suffer from this state space explosion problem, it is
important to decrease the size of the state space (complexity) of the validation model. This can be done in
the following way:

a) restrict the number of instances of a process;

b) reduce the size of the state space of processes;

c) specify (parts of) the behaviour of the environment;

d) make assumptions on maximum number of signals in channels, signal routes, and input queues of
process instances.

Unfortunately, these adaptations will increase the distance between the validation model(s) and the
standard SDL diagrams. The validation model(s) may contain details that are not present in the standard
(because they do not need to be standardised) or make assumptions on queue sizes that are in conflict
with the semantics of SDL.

It is important to be aware of this distance between the standard and its validation model(s). If errors are
discovered during the validation process, it should be investigated if the errors can be traced back to the
standard. If so, the standard should be corrected and new validation model(s) can be built. If not, an error
was made in the building of the validation model, which is not significant for the standard. Since this is an
ongoing process, a specification team should continuously experiment with validation model(s) during the
development of a standard.

6.1.2 Important aspects of a specification from a validation perspective

One of the major concerns of this ETS is how to restrict the features and styles of using SDL to enable
adequate validation of a specification.

Since reviews by human experts is the most frequently used validation technique, it is important that a
standard can be understood without unnecessary difficulties. The use of SDL in standards is helpful for
understanding. SDL concepts have a clear and unambiguous interpretation. SDL diagrams allow to
present the standard in a well structured way.

It can be expected that the application of computer-based tools for formal validation will play a more and
more important role. In order to apply formal validation techniques it is essential that the SDL diagrams
are correct with respect to the language definition. Furthermore, the use of SDL concepts that prohibit
execution of the specification should be avoided. In order to minimise the distance between the standard

Page 14
ETS 300 414: December 1995

specification and its validation model(s), the state space of the specification should not be unnecessarily
big. This can be realised, for example, by limiting the number of processes, limiting size of data structures,
or limiting the number of states per process.

6.2 Testing of telecommunication products

6.2.1 Conformance testing

Standardisation of telecommunication systems, services, protocols, and interfaces is aimed at enabling
interoperability between products made by different manufacturers. Testing the conformance of a product
to a standard, is considered to be essential to ensure that a product is able to interoperate with other
products that implement the same standard. Conformance tests are usually carried out by an independent
test laboratory.

A conformance test consists of two parts (ISO 9646-1 [9]):

a) the static conformance review, i.e. checking whether the choices between the implementation
options that the manufacturer claims to have implemented is a combination allowed by the
standard. The static conformance review consists of a check of the Implementation Conformance
Statement (ICS), part of the documentation of the product, against the standard.

b) the dynamic conformance test, i.e. execution of test cases against the product, to check if the
product really has implemented the standard, given the options that are claimed to be implemented
in the ICS.

A conformance test suite is aimed at checking whether a product conforms to the standard. The purpose
of an individual test case is related to one conformance requirement of the standard. A conformance test
case is a black box test: it only controls and observes the product via the PCOs. Usually abstract test
cases are described in the standard test notation TTCN (ISO 9646-3 [10]).

6.2.2 Important aspects of a specification from a testing perspective

In the process of test suite development for an ETS, problems to be dealt with are:

- identification of the conformance requirements in the ETS;

- identification of the interfaces of the product type that can be accessed for test execution;

- determine how the requirements can be tested using the available interfaces, in a
telecommunication product that claims to implement the standard.

The suitability of an ETS to perform these steps determines the testability of the ETS. One of the major
concerns of this ETS is to restrict the features and styles of SDL in order to enable adequate testing of a
product that implements the specification.

A specification can be defined to be testable 1) if it unambiguously defines:

a) the allowed implementation options;

b) the conformance requirements;

c) the normative interfaces;

and if

d) all conformance requirements can be checked, up to a certain degree of confidence, by running
tests against a product via normative interfaces.

1) Testability is currently only defined on the level of specification, not on the level of individual conformance requirements. This
may be improved in future versions of this ETS.

Page 15
ETS 300 414: December 1995

This definition is based on experience in development of test suites for telecommunication systems. A
major problem in designing a test suite is to identify the optional parts in a specification. In most cases it is
necessary to first produce a ICS proforma that clearly indicates which parts of a specification are
mandatory and which parts are optional. Another problem is the selection of an abstract test method, i.e.
to decide which interfaces of a type of product will be accessible for testing.

Furthermore, the definition anticipates expected problems in test derivation from an SDL specification.
Many current automated test derivation methods have in common that they produce enormous amounts
of tests, too many to run in practice. Often, an individual test case is not clearly related to a conformance
requirement, which makes it difficult to select a subset of the test suite. In a natural language
specification, it is quite easy to find conformance requirements. The test designer goes through the text
with a marker, and highlights every sentence containing a "shall". If SDL is used to define a rather
complete model of the telecommunications system, this is more complicated.

An example of a class of requirements that usually is well addressed in a conformance test, but is often
neglected in specifications using SDL, is the handling of inopportune or invalid events.

In the following, the main issues concerning testability are discussed in more detail. These issues are:

- normative interfaces;

- implementation options;

- conformance requirements;

- handling of invalid inputs.

6.2.2.1 Normative interfaces

A normative interface in a telecommunication product is defined as the physical or software interface of a
product on which requirements are imposed by a telecommunication standard. Definition of normative
interfaces allows telecommunication products built by different manufacturers to be interconnected, to
jointly provide a telecommunication service. These requirements typically concern the information flow
between the systems, encoding of information, and the way products can be connected. If the products
are physical devices, the latter may comprise the dimension of plugs or frequencies used to transmit radio
signals. In case of software products, the connection may be defined by language bindings for
programming interfaces.

An example of a normative interface in ISDN is the user-network interface (the S reference point).

A telecommunication standard, or set of related standards that together define a product type, shall clearly
indicate which interfaces in the product are considered to be normative. The definition of normative
interfaces should be kept to the minimum that is necessary in order to guarantee interoperability.
Restriction of implementation freedom by defining more normative interfaces than necessary should be
avoided.

Normative interfaces shall be marked in an SDL diagram with a comment "normative" attached to the
channels that model the interfaces. Informative channels may optionally be marked with a comment
"informative". Figure 2 shows an example.

Page 16
ETS 300 414: December 1995

SYSTEM AccesProtocol

normative informative

SIGNAL
ring, alert_tone, discon_tone, speech(SpeechElement),
onhook, offhook, digit (DigitType), alert, connect,
information(DataElement), disconReq, disconInd,
setup(TelephoneNumber),

/* Protocol describes the access protocol
 * between a telephone and the network.
 */

Telephone Network

UserInterface

ring,
alert_tone,
discon_tone,
speech

onhook,
offhook,
digit,
speech

NetworkInterface

setup,
information,
disconReq

alert,
connect,
information,
disconInd

Figure 2: A system diagram indicating the normative interfaces of a system

However, in many ETSs it may not be possible to indicate the normative interface, because the ETS
describes only part of a product type. A specification of a supplementary service, for example, uses a
parameter of standard call control messages to exchange information. Hence, the normative interface can
not be indicated in a supplementary service standard. It should, however, be possible to find the definition
of the normative interface in one of the normative references that are listed in the standard.

A normative interface should not be confused with a Point of Control and Observation (PCO) (see ISO
9646-1 [9]) a concept in conformance testing. Normative interfaces can be used as PCOs, but a PCO is
not necessarily a normative interface. For example, the remote PCO in the distributed test method (ISO
9646-1 [9]) is located at an internal interface of the test execution system and not a part of the product
under test.

6.2.2.2 Implementation options

Most ETSs do not describe a single system, but rather a type of system, for example mobile telephones
that function within the Digital European Cordless Telecommunications (DECT) infrastructure. Often these
standards contain implementation options, allowing products conforming to the standard to have different
features. In the example of DECT telephones a common basic function is the possibility to initiate
telephone calls. An optional feature is the capability to receive incoming calls.

For a tester it is important to know which parts of the standard are claimed to be implemented in a
product. Therefore, the manufacturer of a product is requested to provide an ICS.

As a consequence, it is important that an ETS clearly documents the implementation options in the
standard. Figure 3 shows how SDL can be applied for this purpose.

Page 17
ETS 300 414: December 1995

SYSTEM DECT_PAP

/*
External information from portable terminal PICS
*/
synonym cap_inc_call Boolean = external ;
synonym cap_call_hold Boolean = external;
synonym cap_paging Boolean = external;
/*
External information from fixed terminal PICS
*/
synonym nr_of_frequencies Number = external;

/*
specification of the
Public Access Profile
of Digital European
Cordless Telecommunication
*/

FixedTerminal PortableTerminal

ft_to_pt

SETUPresponse

pt_to_ft

SETUPrequest

Figure 3: System diagram with declaration of external synonyms

The system diagram uses external synonyms to model basic implementation options. The external
synonym cap_inc_call has an unknown value, which has to be provided externally. However, the synonym
can be used within the specification. In annex C a complete example is given that shows how
implementation options are related to the behaviour of the system.

6.2.2.3 Conformance requirements

The normative parts of SDL diagrams express conformance requirements. This subclause gives an
overview of which requirements are expressed by the different diagrams.

In a system or block diagram, channels can be marked as normative. The requirements imposed by this
are, that the signals that are listed at the normative channels, including the parameters they carry, can be
transmitted via a normative interface of a product.

Data type definitions (in ASN.1 or SDL data types) of signals or signal parameters that are to be
exchanged via normative interfaces, impose requirements on the structure and information contents of
signals.

Process and procedure diagrams contain requirements concerning the precise temporal ordering of
signals, values of their parameters, and timing.

The conformance requirement expressed by an MSC is that the sequence of events given in the MSC can
be performed by the system. Such a requirement is already expressed in the related SDL diagrams. The
use of MSCs contributes to the testability of a standard, because they may be used to guide the selection
of test purposes.

In order to distinguish between parts of SDL diagrams that are normative and parts that are given just for
information, the normative parts should be marked as such. A normative part of a specification (normative
channel, normative data type definition) should not be confused with a normative interface in a product.
Normative parts of a specification put requirements on message exchange via normative interfaces, but
do not need to define the normative interface completely.

Page 18
ETS 300 414: December 1995

For example, suppose that in the Open systems Interconnection (OSI) transport protocol specification the
channel that conveys Transport Protocol Data Units (TPDUs) is marked as normative. This implies that in
an implementation of the transport protocol, there is an interface where these T-PDUs can be
observed: the T-PDUs will be contained in the user data field of lower-layer PDUs (or may even be
segmented over multiple lower layer PDUs). In the lowest layer the T-PDUs are embedded in bit streams.
The OSI transport specification does not contain the precise definition of what happens on a cable that
connects two systems (the OSI normative interface). To determine this, the standards of all other layers
need to be consulted (there are even multiple possibilities, depending on whether a Local Area Network
(LAN), Connectionless-mode Network Service (CLNS) or Connection Oriented-mode Network Service
(CONS) is used to provide the lower layer services). The OSI transport specification does, however,
impose strict requirements on the encoding of those parts of the bit stream that represent the T-PDUs.

It is hard to derive conformance requirements from a standard that specifies a system at more than one
level of abstraction. Suppose, for example, that one part of the standard specifies that a complete file is
sent from A to B, and in another part it is stated that A should send a big file in blocks of a specific size, of
which the receipt should be acknowledged. This makes it complicated to decide which conformance
requirements apply. Therefore the normative parts of a standard shall specify the system at one level of
abstraction only.

Levels of abstraction should not be confused with structure. It is possible to specify a system at one level
of abstraction, and still use structure, i.e. describe the parts of a system and how the system is composed
of these parts.

6.2.2.4 Handling of invalid inputs

A conformance test of a system usually includes tests for response of the system under test to invalid
inputs. Therefore, it is important that a specification defines how the system should respond to invalid
inputs.

A concept of "invalid" inputs does not exist in SDL. As soon as a signal is declared it is considered to be
valid. The formal semantics of ITU-T Recommendation Z.100 [1], annex F, assumes that the environment
of the system sends only valid signals to the system.

However, to specify the response of the system to invalid inputs, a signal named "invalid_input" can be
introduced. This signal is assumed to informally represent all signals that are in reality considered to be
invalid. Formally, however, it is just another SDL signal, for which it is possible to define how it should be
handled. Figure 4 shows three ways in which a process may handle the "invalid_input" signal:

a) ignore invalid input;

b) give an error message;

c) future behaviour undefined.

invalid_input invalid_input invalid_input

error_message

*

_

_

* *

Figure 4: Three ways to handle invalid input

Page 19
ETS 300 414: December 1995

In practice it is often necessary to distinguish between different types of invalid inputs, for example
"unexpected signal", "contents error", and "missing signal parameter". In that case it is possible to
introduce a signal for each of these types, and specify how they should be processed.

6.3 Specification principles to enable validation and testing

Based on the previous considerations concerning conformance testing and validation, some principles can
be formulated. These principles form the basis for the selection of the CCITT SDL concepts for use in
ETSs, and rules for the use of selected concepts.

consistency An ETS shall be internally consistent, i.e. there shall be no contradictions
between text paragraphs, or between a diagram and the text, or between
different diagrams.

clarity An ETS shall clearly and unambiguously define requirements on the
telecommunication product it specifies. The specification shall be well-structured,
in order to ease reviews by human experts.

correct use of
formalisms

The diagrams presented in an ETS shall be syntactically and semantically correct
with respect to the formal language definitions. The use of concepts that are not
supported by tools should be avoided. This principle is essential to enable the
use of computer-based tools for consistency checking, validation, and test
derivation.

avoid state
space explosion

An important class of formal validation methods is based on state space
exploration. By specification of infinite numbers of process instances, or infinite
data types, the state space of the system explodes. This prohibits the use of
validation tools that are currently available.

avoid implicit
non-
determinism

If non-determinism is not explicitly specified, it is not easy to discover, and may
easily be overlooked by the designer of tests. Furthermore, it is difficult to
determine whether the non-determinism is intentional, or is a mistake in the
standard.

indicate
implementation
options

A standard should clearly describe the implementation options. These options will
be reflected in the ICS, that a manufacturer provides to indicate which options
are supported in a product. This is important for selection of relevant tests for a
product.

indicate
normative parts
of standard

A standard should clearly indicate which parts are normative. This determines
which conformance requirements are implied by the standard.

one level of
abstraction

A standard should not specify a system on multiple levels of abstraction. This is
essential in order avoid misinterpretation about which conformance requirements
are implied by the standard.

7 SDL in European Telecommunication Standards

7.1 Introduction

The SDL diagrams are to be presented in the main body of an ETS, together with normal textual
information, tables and informal figures. SDL diagrams, or parts of them, shall be marked as normative or
informative. The SDL diagrams should also contain comments to ease understanding and indicate
relations with text clauses.

Duplication of information should be avoided. Requirements that can be read in an SDL diagram, should
not be repeated in the text, except when the text brings together requirements that are distributed over
several SDL diagrams.

Page 20
ETS 300 414: December 1995

For example, textual information such as:

"on receipt of a SUSPEND message, the network shall respond by sending a SUSPEND REJECT
message with cause # 84 "call identity in use" if the information contained in the SUSPEND
message is not sufficient to avoid ambiguities in subsequent call re-establishment".

is to be considered as duplication of the information found in the SDL process diagram in figure 5.

Whenever a conflict exists between the natural language description and a SDL or MSC diagram, or
between SDL and MSC diagrams, this shall be considered as an error in the specification. If such an error
is detected, the conflict should be resolved by changing either the text, the SDL diagram, or the MSC
diagram. There shall be no order of precedence that automatically resolves conflicts by giving priority to
either the textual or formal descriptions.

Process Network 3(5)

SUSPEND

State_37

State_37

CALL

(info)

Sufficient(info)

SUSPEND
REJECT(84)

False True

State_60

Figure 5: Part of network call control process

7.2 Structure and contents of an ETS containing SDL

It is recommended that an ETS containing SDL diagrams has the following structure:

Title page According to PNE-Rules [8], subclauses 2.2.1, 2.3.1

Table of
Contents

According to PNE-Rules [8], subclause 2.2.2, with the exception that its
presence is mandatory

Foreword According to PNE-Rules [8], subclause 2.2.3

Introduction Describes the environment of the standardised telecommunication system.
If the standard only describes part of a telecommunication product then
this clause also describes other relevant parts of the telecommunications
product.

1 Scope According to PNE-Rules [8], subclause 2.3.2

2 Normative
references

Where applicable references to:
- ITU-T Recommendation Z.100 (1993): "Specification and

Description Language (SDL)" [1].

Page 21
ETS 300 414: December 1995

- ITU-T Recommendation Z.105: "SDL combined with ASN.1
(SDL/ASN.1)".[2].

- ITU-T Recommendation Z.120 (1993): "Message Sequence Charts
(MSC)".[3].

- ITU-T Recommendations X.680-X.683: "Abstract Syntax Notation
One (ASN.1)". [7].

- ETS 300 414: "Use of SDL in European Telecommunication
Standards; Rules for testability and facilitating validation ".

3 Definitions According to PNE-Rules [8], subclause 2.4.1, if any definitions are given.

4 Symbols and
abbreviations

According to PNE-Rules [8], subclause 2.4.2, if any symbols or
abbreviations are given.

5 Conformance to
this standard

Describes which parts of the standard contain requirements on
implementations and which parts are included only for information.

6 System overview A description of the system containing:

a) an overview in natural language of the functions provided by
the system;

b) an identification of the environment of the system;

c) a decomposition of the system into functional entities;

d) a description of the normative interfaces of the system, if
applicable;

Items c) and d) shall be described using a SDL system diagram
including signal declarations and data type definitions for signal
parameters associated with the normative parts of the ETS.

e) a list of global functional requirements, i.e. requirements only
implicitly given by the SDL specification as a whole;

Item e) should be described in precise, natural language.

f) typical examples of the communication between the system
and its environment in normal situations;

g) typical examples of the communication between the system
and its environment in exceptional situations.

items f) and g) shall be described using MSCs (at least one MSC for
each global function).

Functional
specification

Describes the behaviour of the system by using:

a) SDL block diagrams giving the structure of the specification
up to the process level;

b) SDL process and procedure diagrams describing the
behaviour for each process in the system;

c) data type definitions.

Page 22
ETS 300 414: December 1995

Performance
and reliability
requirements

Since these requirements can not be expressed in the SDL formalism,
they have to be stated in normal text.

Encoding of
messages that
cross normative
interfaces

Encoding shall be defined unambiguously. For example with ASN.1
definitions and a reference to standardised encoding rules, or definition of
original encoding rules. Alternatively, bit tables can be used, that show the
exact lay-out in bits of the messages (see example in figure 6) and their
meaning.

The normative requirements are contained in the sections on system overview, functional specification
and performance and reliability requirements. These sections can also, in addition to the SDL and MSC
diagrams, contain state overview diagrams, block tree diagrams or other kinds of diagrams. Such
diagrams are considered as illustrations only, and shall not contain any normative requirements.

Bits
5 4 3 2 1
0 0 0 0 0 speech
0 1 0 0 0 unrestricted digital information
0 1 0 0 1 restricted digital information
1 0 0 0 0 3,1 kHz audio
1 0 0 0 1 7 kHz audio
1 1 0 0 0 video

All other values are reserved

Figure 6: Bit table defining the encoding of ISDN information transfer capability

A drawback of using bit tables is that they are not related to the SDL diagrams in the specification.
Furthermore, they can be complicated to use and understand for structured messages.

8 Specification and description language concepts

8.1 Introduction

This clause describes the subset of SDL 1992 that is allowed for use in ETSs. The description is given
with respect to two categories of SDL concepts: diagrams and symbols. Not all symbols of ITU-T SDL are
included: those that are harmful for testability or validation are left out. In annex B, motivations for the
exclusion of concepts can be found.

A short explanation is given for every included diagram or symbol. There are references to the relevant
sections in ITU-T Recommendation Z.100 [1], where the exact meaning of each diagram or symbol can
be found. Occasionally examples of how the concept can be used in ETSs are given. For some concepts,
rules are given when unrestricted use of that concept decreases the testability and validability of the
specification. In such cases, guidelines are given about how to overcome the restrictions introduced by the
rules.

Rule 1: In the printed version of an ETS only the graphical representation of SDL shall
be used.

NOTE: The graphical representation includes the common textual grammar between SDL/PR
(textual, Phrase Representation) but not the textual grammar only used by SDL/PR.

This rule is motivated by reasons of clarity. The graphical representation of SDL is more easy to
understand for human experts than the textual representation.

Page 23
ETS 300 414: December 1995

Table 1: Selection of SDL concepts

Unrestricted use
allowed

Restricted use
allowed

Not allowed

System or block
diagrams

block, channel,
comment, package,
process, process
create line, select,
signal list, signal
route, text, text
extension

block substructure,
data type definition,
macro call, signal
declaration

channel partitioning,
signal refinement

Process or Procedure
diagram

comment, input, join,
label, optional
transition, priority
input, process
creation, process
start, process stop,
procedure call,
procedure return,
procedure reference,
procedure start, save,
state, synonym, text,
text extension,
variable

continuous signal,
decision, macro call,
output, task, timer

enabling condition,
import and export,
internal input and
output, service, view
and reveal

Data type diagram predefined data abstract data types,
ASN.1 type definition

name class literal

Table 1 gives an overview of the selection of SDL concepts. There are no provisions in this standard
either allowing or prohibiting use of concepts of Z.100 [1] not explicitly listed in table 1. This is because
very little experience in using them exists:

- the concepts in the column "Full use allowed" are the concepts that can be used without any
restrictions, i.e. they are not considered harmful for testability or validation, or they were considered
indispensable by a panel of experienced SDL users;

- the concepts in the column "Restricted use allowed" are concepts that, when used in a specific way,
influences testability or validation. For each such concept a rule is given restricting the allowed use;

- the concepts in the column "Not allowed" are concepts that are harmful for testability or validation,
or were considered superfluous.

Rule 2: The following SDL symbols shall not be used in ETSs: channel partitioning,
signal refinement, enabling condition, internal input and output, view and reveal,
import and export, service, and name class literals.

The motivation for this rule can be found in annex B.

NOTE: If a concept is not selected for use in ETSs, this does not necessarily mean that the
concept is useless in general. For example, having multiple levels of abstraction is
undesirable in standardisation, but may be extremely useful in product development.

The use of abstract data types with axioms and the use of macros is discouraged.

8.2 SDL diagrams

This subclause describes the different kinds of diagrams of an SDL specification. A diagram can consist
of multiple pages. The top right hand corner should show the page number of the diagram, and between
parentheses, the total number of pages of the diagram. For example if the top right hand corner of a page
shows "2(5)", then that page is the second page of a diagram with a total of five pages.

Page 24
ETS 300 414: December 1995

 8.2.1 System diagram

A system diagram (ITU-T Recommendation Z.100 [1], §§ 2.4.2) gives an overview of the specified
system. It describes the static structure of the system. It is further refined using block diagrams
(subclause 8.2.2). The normative interfaces of the system (see subclause 6.2.2.1) shall be indicated in the
specification if applicable. This may impose restrictions on the way how the system is structured.

The symbols which can be used in a system diagram are shown in table 2.

Rule 3: A system diagram shall be used to describe how the system is composed of
functional units (modelled with blocks).

The motivation for this rule is given by the principle of clarity. The system diagram provides a uniform way
to indicate implementation options and normative parts.

Rule 4: In a system diagram, the blocks, and channels shall appear on page 1. Signal
definitions shall come before the data definitions.

This rule is motivated by the principle of clarity.

Page 25
ETS 300 414: December 1995

Table 2: Symbols allowed in a system diagram

<block name>

Block symbol <text> Text symbol

<channel name>

<signal list name>,
<signal list name>,
...

<signal name>,
<signal name>,
...

Channel with
delay symbol

<channel name>

<signal list name>,
<signal list name>,
...

<signal name>,
<signal name>,
...

Channel
without delay

symbol

/*** SIGNAL DEFINITIONS ***/

<signal name>(<data type>, <data type>, ...),
<signal name>(<data type>, <data type>, ...),
... ;

SIGNAL

Signal definitions
in text symbol

/*** SIGNALLIST DEFINITIONS ***/

<signallist name> = <signal name>, ...;

SIGNALLIST

Signallist
definitions in
text symbol

SELECT IF (<boolean

expression>)

Select symbol

<data type definition>;
<data type definition>;

/*** DATA TYPE DEFINITIONS ***/ Data type
definitions in
text symbol

<procedure
name>

Procedure
reference symbol

<macro name>
(<par1>, ..)

Macro call
symbol

<extended text>
Text extension

symbol <free text>
Comment

symbol

8.2.2 Block diagram

A block diagram (ITU-T Recommendation Z.100 [1], §§ 2.4.2) is used to describe how a block is
composed of functional units and how these units are interconnected. The composition of a block can
either be described by processes and how the processes are interconnected, or by blocks and how the
blocks are interconnected.

If the composition of a block is described by blocks, the same rules as for a system diagram shall apply,
and the same symbols as in a system diagram can be used, only their scope is restricted to that block.

The following symbols can be used in both a block diagram composed of processes and in a system
diagram:

- signal definition;

- signallist definition;

Page 26
ETS 300 414: December 1995

- text symbol;

- text extension;

- comment;

- data type definition;

- macro call;

- procedure symbol;

- select symbol.

The description of these symbols can be found in subclause 8.3. The symbols that can be used in addition
in a block diagram composed of processes are shown in table 3.

Table 3: Additional symbols that can be used in a block diagram

<process name>

(<init>, <max>) Process
symbol

<signal route name>

<signal name>,
<signal name>,
...

<signal name>,
<signal name>,
...

Signal route
symbol

Process
create line

symbol

By using block diagrams that are composed of blocks, the SDL specification can be structured in a
hierarchical way of any complexity: the system is made up of blocks, blocks can consist of blocks, etc.
Blocks on the lowest level of the hierarchy are composed of processes. Figure 7 gives an example of a
block TransportLayer, which is composed of blocks. The diagram of one of these blocks, NetworkLayer is
shown in figure 8. This block is composed of one process and, therefore, is not further structured.

NetworkLayer

TransportEntity2TransportEntity1

TSAP2
(TSDUlist2)

(TSDUlist)

TSAP1
(TSDUlist2)

(TSDUlist)

NSAP2
(NSDUlist)

(NSDUlist2)
NSAP1

(NSDUlist)

(NSDUlist2)

BLOCK
TransportLayer

Figure 7: A block composed of blocks

Page 27
ETS 300 414: December 1995

NetworkService

(1,1)

sap2

(NSDUlist2)

(NSDUlist)

sap1

(NSDUlist2)

(NSDUlist)

BLOCK
NetworkLayer

NSAP1 NSAP2

Figure 8: A block composed of processes

Rule 5: Block diagrams shall be used to describe how the functional units are composed
of processes or blocks.

This rule is motivated by reasons of clarity. A well structured specification simplifies review by human
experts.

Rule 6: A block diagram in the normative part of a specification shall not have
alternative sub-block definitions, i.e. the feature of SDL (ITU-T Recommendation
Z.100 [1], §§ 3.2.2) to describe the decomposition of a block in blocks as well as
in processes is not allowed.

This rule is motivated by the principle of having only one level of abstraction.

8.2.3 Process diagram

A process diagram (ITU-T Recommendation Z.100 [1], §§ 2.6) is used to describe the dynamic behaviour
of a process. A process is described as a graph with states and transitions between states.

The symbols that can be used in a process diagram are listed in table 4.

Symbols that can be used in process diagrams, block diagrams, and system diagrams are:

- data type definitions;
- text symbol;
- text extension symbol;
- comment;
- macro call.

Page 28
ETS 300 414: December 1995

Table 4: Allowed symbols in process diagrams

Process start
symbol

Process stop
symbol

<state>
State symbol /*** VARIABLE DECLARATIONS ***/

DCL
<variable> <type>,

...;

Variable
declarations in

text symbol

<signal>
<parameters>

Input symbol
<signal>
<parameter>

Output symbol

<signal>
<parameters>

Priority input
symbol

<boolean
expression>

Continuous
signal symbol

NONE
Spontaneous

transition symbol <signal>,
...

Save symbol

<expression>
Decision symbol

<simple
expression>

Option symbol

<procedure>
<parameters>

Procedure call
symbol

<process>
<parameters>

Process creation
symbol

<variable> :=
<expression>

Task symbol
<procedure>

Procedure
reference symbol

<extended text>
Text extension

symbol <free text>
Comment

symbol

<label>
Join symbol

SET timer
Set timer symbol

A process can be parameterized. The parameters are passed during the creation of the process by the
creating process. The parameters of a process are declared in the process heading. A declaration of a
parameter is similar to a normal variable declaration (subclause 8.5.2), with the exception that it is
preceded by the keyword fpar .

If the process is further composed of procedures, these have to be referenced using a procedure symbol.
A procedure symbol is used to indicate the procedures that are declared in the process diagram.

Page 29
ETS 300 414: December 1995

There are a number of transitions associated with a state. For each transition there is a trigger describing
the condition for the transition to fire, for example the reception of a signal. During a transition, several
actions can be executed. The transition ends in either a process stop or a nextstate symbol. An action can
be any of the following:

- set/reset;
- task;
- decision;
- process creation;
- procedure call;
- output;
- macro call.

In figure 9 an example is shown of a page of a process diagram. The page shows how service data unit is
split into a number of protocol data units.

Idle

DR

DiscReq

CurrOctet
<=8

DT(PDU)

PDU:=CALL
Segmentation(SDU,CurrOctet)

DataReq(SDU)

DataTransfer_
Ready

DataTransfer_
Ready

True

PROCESS Protocol;

/*** VARIABLE DECLARATIONS ***/

DCL
SDU ServiceDataUnit;
PDU Octet;
CurrOctet CONSTANTS Natural 0:3;

(10/25)

NEWTYPE Octet
 Array(OctetLength, Boolean)
ENDNEWTYPE Octet;

NEWTYPE ServiceDataUnit
 Array(SDULength, Octet)
ENDNEWTYPE ServiceDataUnit;

CONSTANTS Natural 1:8
NEWTYPE OctetLength

ENDNEWTYPE OctetLength;

CONSTANTS Natural 1:37
NEWTYPE SDULength

ENDNEWTYPE SDULength;

/*** DATA TYPE DEFINITIONS ***/

Figure 9: Example of a process diagram

8.2.4 Procedure diagram

A procedure is used to structure processes. It is described as a graph with states and transitions between
states (ITU-T Recommendation Z.100 [1], §§ 2.4.6), containing the same symbols as a process graph
except that the symbols for the start and end of the procedure are different. A procedure can return a
result by attaching a result expression to the procedure end symbol.

<result value>

Figure 10: Start (left) and end (right) symbols used in procedure descriptions

The parameters of a procedure are listed in the upper left corner of the procedure diagram. There are two
kinds of parameters:

Page 30
ETS 300 414: December 1995

In parameters These parameters are used to pass a value to the procedure. Changes to
such a parameter in the procedure body have no effect on the calling
procedure or process. These parameters can be preceded by the keyword
in , although this is not necessary.

In/out parameters If such a parameter is changed in the procedure body, then the
corresponding actual parameter in the calling process/procedure is also
changed. These parameters are preceded by the in/out keyword.

In figure 11 an example is shown of a procedure that realises synchonization, by means of a handshake
mechanism.

PROCEDURE Synchronize;

/* procedure synchrones
with process B, by means
of a handshake mechanism */

hand TO B

Wait

hand

SIGNAL
hand;

Figure 11: An example of a procedure defining a handshake mechanism

In figure 12 an example is shown of a value returning procedure named Segmentation. The procedure
can be used to split a service data unit in a series of octets.

SDU(1)
SDU(CurrOctet)

CurrOctet :=
CurrOctet + 1

CurrOctet
<= 8

True False

CurrOctet := 0

PROCEDURE Segmentation;
FPAR SDU ServiceDataUnit,
 IN/OUT CurrOctet CONSTANTS Natural 0:9
RETURNS ServiceDataUnit;

SDU(CurrOctet)

Figure 12: A value returning procedure defining segmentation

Page 31
ETS 300 414: December 1995

8.2.5 Macro diagram

A macro diagram (ITU-T Recommendation Z.100 [1], §§ 4.2) is used to describe a part of a system, block,
process, or procedure diagram. Macros can be parameterized. A macro call in one of these diagrams
expands to the full macro diagram with actual parameters. The connection points of the macro are
named. When a macro is expanded in a diagram, these names are used to establish the right
connections.

The use of macros is discouraged. The motivation is that macros are very powerful, and therefore can be
used instead of many other SDL concepts, for example procedure or block substructure. Use of macros
decreases the clarity of a specification. Furthermore the checking of macros is limited, which makes it
impossible to use tools to check correctness (principle of correct use of formalisms).

8.3 Symbols used in system diagrams

8.3.1 Block

A block symbol (ITU-T Recommendation Z.100 [1], §§ 2.4.6) refers to a block diagram that defines a
functional unit. The block symbol contains the name of the block.

<block name>

Figure 13: The block symbol

8.3.2 Channel

A channel (ITU-T Recommendation Z.100 [1], §§ 2.5.1) is used to describe an information flow between
blocks. A channel can convey signals either in one direction or bidirectionally, which is indicated by
arrows. For each direction it is described which signals can be conveyed by the channel. There exist two
types of channels in SDL:

Channel without delay the time to transmit a signal is zero

Channel with delay the time to transmit a signal is unknown

The symbols for both channels are distinguished by the placement of the arrows: in channels without
delay, the arrows are placed at the endpoint. In channels with delay they are placed anywhere on the
channel line, except at the endpoint.

<channel name>

<signal name>,
<signal name>,
...

<signal name>,
<signal name>,
...

<channel name>

<signal name>,
<signal name>,
...

<signal name>,
<signal name>,
...

Figure 14: The channel symbols, channel without delay (left) and with delay (right)

Use of channels with delay may cause implicit non-determinism, which is harmful for testability. This is for
example the case where the behaviour of a system depends on the arrival order of some signals
conveyed by channels with delay.

An example of such a case is given in figure 15. This is an example of bad use of SDL. The system
contains two blocks Block_A and Block_B, connected by two channels Channel_B and Channel_C. In
Block_A there is one process, named A, connected to Channel_A, Channel_B and Channel_C. In the

Page 32
ETS 300 414: December 1995

Block_B there is one process, named B, connected to Channel_B, Channel_C and Channel_D. The
process graphs of processes A and B are given in figure 16.

If signal a is sent to the system via Channel_A, it is not possible to predict whether signal d or signal e will
be sent first from the system via Channel_D. The reason is that it is impossible to know whether signal b
or signal c arrives first at process B, due to the unknown and possibly different delays of the channels
Channel_B and Channel_C.

Block_BBlock_A

Channel_D

d,e

Channel_A

a

Channel_C

c

Channel_B

b

System SignalRace

SIGNAL
a, b, c, d, e;

/* This is an example of
prohibited use of SDL. */

Figure 15: Example of a system where two channels with delay cause implicit non-determinism

S

c

b

a

S

S

ed

cb

S

PROCESS A 1(1) PROCESS B 1(1)

Figure 16: Process diagrams of process A and process B

Rule 7: Implicit non-determinism arising as an effect of using channels with delay shall
be avoided.

This rule is motivated by the principles of clarity and avoiding implicit non-determinism.

Implicit non-determinism may also occur when two signals from different sources arrive almost
simultaneously at the input queue of a process instance. This should be avoided as much as possible.

Rule 8: To every normative channel of the standardised system a comment "normative"
shall be attached.

This rule is motivated by the principle that normative parts of an ETS should be clearly indicated.

Informative channels may be marked as such when this increases readability.

Page 33
ETS 300 414: December 1995

8.3.3 Signal definition

A signal definition (CCITT Recommendation Z100 [1], §§ 2.5.4) is used to define the parameters of
signals. Signals are units of communication and may, for example, be used to specify PDUs. In order to
use signals, they have to be defined in a system or block diagram. Signals are defined by putting the
signal keyword in a text symbol, followed by the names of the signals and the data type of the
parameters, if present.

SIGNAL
<signal name>(<parameter type>, ...),
<signal name>, ...;

Figure 17: Text symbol with signal definition

Rule 9: The data types of all parameters of all signals relevant to the system and
conveyed over normative channels shall be specified.

This rule is motivated by the principle that normative parts shall be clearly and unambiguously indicated.

Rule 10: The data types of parameters of signals that are conveyed over normative
channels shall have a finite size.

This rule is motivated by the principle of avoiding state space explosion. A parameter that can have an
infinite size or an infinite number of values may make the state space of the system infinite.

If it is not possible to give a maximum value at specification time, an externally defined synonym can be
used as a maximum value.

8.3.4 Signallist

If the same list of signals appears at several channels and signal routes, it is convenient to declare these
signals as a list using the signallist construct (ITU-T Recommendation Z.100 [1], §§ 2.5.5) in a text
symbol. At any signal route or channel where this list occurs, the name of the signallist is put between
parentheses, instead of typing the names of all the individual signals.

SIGNALLIST
<signallist name> =
<signal name>, <signal name>, ...;

Figure 18: Signallist definition

<channel name>

(<signallist name>)

Figure 19: Use of signallist

8.3.5 Select symbol

The select symbol (ITU-T Recommendation Z.100 [1], §§ 4.3.3) is used to indicate that the presence of
the symbols contained in the dashed area is dependent on one or more implementation options. The
select symbol is useful for major optional implementation capabilities. If the selection expression evaluates
to TRUE, the symbols in the dashed area are selected. If the selection expression evaluates to FALSE,
the symbols in the dashed area and all channels and signal routes that cross the boundary are left out.

Page 34
ETS 300 414: December 1995

SELECT IF (<static condition>)

<text>
<block name>

Figure 20: The select symbol

Rule 11: The selection expression in a select symbol shall depend on implementation
options.

This rule is motivated by the principle to clearly indicate implementation options in an ETS.

8.3.6 Text symbol

The text symbol (ITU-T Recommendation Z.100 [1], §§ 2.2.8) can be used in any diagram. It is used for
many purposes: it can contain comment, definitions of signals, signallists, timers, data types and
variables.

<text>

Figure 21: The text symbol

8.3.7 Text extension

When a symbol does not have enough space to contain the text, it is possible to attach a text extension
symbol (ITU-T Recommendation Z.100 [1], §§ 2.2.7) to that symbol. The text that is in the text extension
symbol is considered to be a continuation of the text in the other symbol.

<continuation

of text>

<beginning

of text>

Figure 22: The text extension symbol attached to another symbol

8.3.8 Comment

A comment (ITU-T Recommendation Z.100 [1], §§ 2.2.6) can either be placed in a comment symbol or as
text between the /* and */ in other symbols. The comment symbol can be placed in any diagram. It can be
attached to any other symbol.

Comment in a
comment symbol

/* Comment in
a text symbol */

Figure 23: The comment symbol and comment used in another symbol

8.3.9 Procedure symbol

The procedure symbol (ITU-T Recommendation Z.100 [1], §§ 2.4.6) is used in a process diagram to
indicate that a procedure is called by that process. If the same procedure is used in several processes in
the same block or system, it is possible to place the procedure symbol in the block or system diagram
instead.

If a procedure is declared as a remote procedure (ITU-T Recommendation Z.100 [1], §§ 4.14), it can be
called from other processes. In that case the procedure symbol contains the keyword exported . An
example of the use of remote procedures is given in annex C.

Page 35
ETS 300 414: December 1995

<procedure
name>

<procedure
name>

EXPORTED

Figure 24: The procedure symbol

8.3.10 Macro call

The macro call symbol (ITU-T Recommendation Z.100 [1], §§ 4.2.3) is a shorthand notation. The macro
call symbol is replaced by the symbols in the corresponding macro diagram. A macro call can be used in
any diagram. It can also contain parameters. In that case, the formal parameters in the macro diagram
are substituted by the actual parameters supplied in the macro call.

<macro name>
(<par1>,<par2>,...)

Figure 25: The macro call symbol

In some cases it may be necessary to explicitly indicate how the macro is connected to other symbols.
This is done by using the names of the connection points of the corresponding macro definition.

<macro name>

<connection2><connection1>

Figure 26: A macro call using the names of the connection points

The use of macros is discouraged. Procedures can usually be used instead.

8.3.11 Synonyms

A synonym (ITU-T Recommendation Z.100 [1], §§ 5.3.1.13) is used to give a name to a value. A synonym
is always local to the diagram in which it is defined. The value of a synonym is constant, it cannot be
changed. A synonym has to be declared with the synonym keyword in a text symbol, as depicted in figure
27.

SYNONYM

...;

/*** SYNONYM DECLARATIONS ***/

<synonym name> <type> = <value>,

Figure 27: Declaration of synonyms

If ASN.1 is used in combination with SDL, the type of the synonym can be an ASN.1 type.

8.4 Symbols used in block diagrams

The following symbols can be used in both block diagrams and system diagrams:

- block;
- channel;
- signal definition;
- signallist definition;
- comment;
- data type definition;
- macro call;
- procedure symbol;

Page 36
ETS 300 414: December 1995

- select symbol;
- synonym declaration.

The description of these symbols can be found in subclause 8.3.

The additional symbols that can be used in block diagrams are described in subclauses 8.4.1 to 8.4.4.

8.4.1 Process symbol

The processes within a block shall be referenced in the block diagram. This is done by using the process
symbol (ITU-T Recommendation Z.100 [1], §§ 2.4.6).

<process name>

(<init>, <max>)

Figure 28: The process symbol

The process symbol contains:

- the name of the process;
- a specification of the number of initial instances of the process at system start up, and the

maximum number of allowed instances of the process.

The specification of the behaviour of the process is given in the corresponding process diagram. The
interface of the process is described by the signal routes connected to the process symbol.

Rule 12: If the process diagram contains a create symbol, this shall be shown in the block
diagram by using the create line symbol.

This rule is motivated by reasons of clarity. A specification that clearly indicates the relations between
processes simplifies review by human experts.

Rule 13: In the normative part of a specification, the maximum number of instances of a
process shall be limited.

This rule is motivated by the principle of avoiding state space explosion. Allowing an unlimited number of
instances of a process may make the state space of the system infinite.

If the maximum number of instances is not known at specification time, the maximum number can, for
example, be given as an external synonym related to an entry in the ICS.

8.4.2 Signal route

A signal route (ITU-T Recommendation Z.100 [1], §§ 2.5.2) is used to describe an information flow
between two processes. A signal route can convey signals either in one direction or bidirectionally, which
is indicated by arrows. For each direction there is a signal list describing which signals can be conveyed
by the signal route. The transmission time to convey a signal over a signal route is zero.

Page 37
ETS 300 414: December 1995

<signal route name>

<signal name>,
<signal name>,
...

<signal name>,
<signal name>,
...

Figure 29: The signal route symbol

8.4.3 Create line

The process create line (ITU-T Recommendation Z.100 [1], §§ 2.4.3) shows that process instances at the
beginning of the create line can create new instances of the process at the end of the create line.

Figure 30: The create line symbol

instances of
ProcessB can be
created by processA

ProcessB

(0, 15)

ProcessA

Figure 31: An example of the use of the create line

8.4.4 Connection between channels and signal routes

A signal route that leads to the boundary of a block diagram is connected to a channel of the surrounding
block or system diagram in the following way: the name of the channel is put just outside the block
boundary near the place where the signal route ends (ITU-T Recommendation Z.100 [1], §§ 2.5.3). If
more than one signal route is connected to the same channel, it is possible to give the name of the
channel only once, as is shown in figure 32.

<signal route
name>

BLOCK
 <block name>

 <process name>

 <channel name>

<signal route

name>

 <process name>

Figure 32: Connection between channel and signal routes

8.5 Symbols used in process diagrams

8.5.1 Variable

A variable (ITU-T Recommendation Z.100 [1], §§ 2.6.1.1) is used to store a value. A variable is always
local to the process instance in which it is defined. Global variables (for example global to a block or to a

Page 38
ETS 300 414: December 1995

system) do not exist. A variable has to be declared with the dcl keyword in a text symbol, as depicted in
figure 33.

DCL

<variable name>, <variable name> <type>,
<variable name>, ... <type>, ...;...;

/*** VARIABLE DECLARATIONS ***/

<variable name> <type>,

Figure 33: Declaration of variables

For validation purposes it is important that a variable cannot get an infinite number of different values.
Therefore, finite-sized data structures should be used where possible.

If ASN.1 is used in combination with SDL, the type of the variable can be an ASN.1 type. For example, it is
allowed to use "INTEGER (0..31)" in an SDL variable declaration to define a variable that can have integer
values 0 to 31.

Every process instance contains a number of predefined variables that are updated implicitly during
process execution. These variables are:

Parent The Process instance Identifier (PId) of the process instance that created this
instance. If the process was created at system initialisation, the value of Parent equals
NULL.

Offspring The PId of the process instance that was most recently created by this instance.

Sender The PId of the process instance that sent the last received signal.

Self The PId of this process instance.

Now A variable of type TIME containing the current system time.

8.5.2 Process start

The process start (ITU-T Recommendation Z.100 [1], §§ 2.6.2) indicates where the execution of a
process starts. From the start node a transition is started. The transition can be empty, in which case it
directly leads to a state symbol.

Figure 34: Process start symbol

8.5.3 State

When a state is entered (ITU-T Recommendation Z.100 [1], §§ 2.6.3), the process waits for a transition to
be triggered.

<state name>

Figure 35: The state symbol

Page 39
ETS 300 414: December 1995

A transition can be triggered in the following cases 2) :

- a signal is received and the signal is covered by an input symbol attached to the state;

- a timer has expired and the timer is listed in an input symbol attached to the state;

- a continuous signal is attached to the state, and the value of its expression evaluates to TRUE;

- a spontaneous transition is attached to the state.

The following events are also handled by the process, but do not trigger a transition:

- a signal is received that is listed in a save symbol attached to the state. The signal is left in the input
queue for later use, and the process remains in the same state;

- a signal is received that is not listed in an input or save symbol attached to that state. The signal is
discarded, and the process remains in the same state.

The occurrence of automatic discarding of signals during execution of a specification may be an indication
that the specification is incomplete. Usually, SDL validation tools are capable of generating warnings if
signals are discarded automatically.

*
*

(<state name>, ...)

Figure 36: The *-state construct

It is possible to put more than one state name in one state symbol. In this case the transitions which start
from that symbol are valid for all the states with the names in the symbol. A shorthand notation is to put a
"*" in the state symbol, which denotes all states of the process. This is useful if the process reacts in all
states in the same way on certain inputs, e.g. such as is often the case for invalid inputs. By putting a *,
followed by a list of signals between parentheses, it can be indicated that all signals except the ones listed
in the parentheses have to be saved.

8.5.4 Input

The input symbol (ITU-T Recommendation Z.100 [1], §§ 2.6.4) is used to indicate that the reception of the
specified signal triggers the associated transition. The input symbol is shown in figure 37.

<signal name>

Figure 37: The input symbol

The predefined variable Sender is updated implicitly when a transition is triggered by an input. The new
value of Sender is the PId of the process instance that sent the signal.

If the signal contains parameters, there shall be a variable in the input symbol for every signal parameter.
These variables receive the values of the actual parameters that are conveyed by the received signal. The
input symbol for a signal with parameters is shown in figure 38.

<signal name>
(<variable>, ...)

Figure 38: The input symbol for a signal with parameters

2) This is a slight simplification of the semantics given in Annex F of ITU-T Recommendation Z.100 [1].

Page 40
ETS 300 414: December 1995

It is possible to list more than one signal in the input symbol. If one of the signals is received, the transition
starts. It is also possible to put a * in the input symbol, which denotes all signals except those already
listed in input or save symbols attached to the state.

8.5.5 Priority input

The priority input symbol (ITU-T Recommendation Z.100 [1], §§ 4.10) is used to indicate that a signal has
priority over other signals contained in ordinary input symbols (see subclause 8.5.5). Normally in SDL it is
the arrival order of the signals that decides in which order they are processed. The signal which arrives
first is the first one to be processed. By using the priority input symbol, it is the signal in the priority input
symbol that is processed first, independent of its location in the input queue. The priority input symbol is
shown in figure 39.

<signal name>
(<variable>,...)

Figure 39: The priority input symbol

In all other respects, there is no difference between the priority input and the normal input.

8.5.6 Save symbol

The save symbol (ITU-T Recommendation Z.100 [1], §§ 2.6.5) is used to bypass the normal removal of
incoming messages that are not referred to in input symbols. By putting a * in the save symbol, all signals
will be saved, except those listed in inputs attached to that state. By putting a *, followed by a list of signals
between parentheses, it can be indicated that all signals except the ones listed in the parentheses have to
be saved.

<signal
name>

Figure 40: The save symbol

CONreq * (CONreq)
*

Figure 41: Examples of save symbol

8.5.7 Spontaneous transition

A spontaneous transition (ITU-T Recommendation Z.100 [1], §§ 2.6.6) is used in a process definition to
specify that a particular transition can take place without any corresponding input. It appears as an input
symbol with the keyword none , instead of a signal name. A spontaneous transition can always take place,
even if there is a signal in the process queue that can trigger another transition.

reason for
spontaneous
transition

NONE

Figure 42: A spontaneous transition

A spontaneous transitions is used when the condition for the associated transition to occur is
implementation dependent, or difficult to formalise using SDL.

Rule 14: A comment shall be attached to a spontaneous transition that explains the
condition for the transition to fire.

Page 41
ETS 300 414: December 1995

This rule is motivated by reasons of testability. For the production of a test specification it is important to
have more information about the reason for a transition to fire.

8.5.8 Continuous signal

The continuous signal symbol (ITU-T Recommendation Z.100 [1], §§ 4.11) is used to specify that the
associated transition is triggered if the Boolean expression in the symbol evaluates to TRUE, and the input
queue is empty.

<boolean
expression>

Figure 43: The continuous signal symbol

If there is more than one continuous signal in the same state, then a priority can be provided for each
continuous signal. The priority is given as an integer; the lower the number the higher the priority. If more
than one continuous signal with the same priority evaluates to TRUE, a non-deterministic choice is made
among these. A continuous signal has always a lower priority than an input.

<boolean expression>

PRIORITY <integer>

Figure 44: The continuous signal symbol with priority

Rule 15: The Boolean expression in a continuous signal shall not contain NOW, ANY, or
remote procedure calls.

The motivation for this rule is given by the principle to avoid state space explosion.

NOTE: The only circumstances in which continuous signals can be effectively used is to test if
a certain condition is true, and continue if no other signals can be received.

It is discouraged to use many continuous signals in the same state, since this leads to state space
explosion.

8.5.9 Timer

A timer in SDL (ITU-T Recommendation Z.100 [1], §§ 2.8) is used to model a time-out. A timer is set to
expire at a certain moment in time. When the timer expires, a signal with the name of the timer is put in
the process queue of the process that set the timer. The duration of the time unit can not be specified in
SDL: it needs to be supplied using informal text.

A timer needs to be defined in a text symbol in the process diagram.

TIMER

<timer name>, <timer name>, ...;

Figure 45: A text symbol with timer definition

Page 42
ETS 300 414: December 1995

set timer to expire
after <duration> time units

SET (NOW +
<duration>,

deactivate
timer

RESET

 condition which is true if the timer
is set and time-out signal is(<timer name>)

 (<timer name>)

<timer name>)

ACTIVE

not yet processed

Figure 46: Operations set, reset and timer active

 input of a timer
models
timer expiry

<timer name>

Figure 47: Timer expiry

It is possible to associate a default value with a timer. In that case it is not necessary to provide the
duration as a parameter in the set statement. A default timer is set to now + the default value.

TIMER

<timer name> := <duration>;

Figure 48: Definition of a timer with a default value

Rule 16: The basic real time associated with a unit of a timer shall be one second.

Rule 17: A timer shall be started as set (now + <Duration>, <TimerName>) or, if a
default timer value is specified: set (<TimerName>).

These rules are motivated by reasons of testability. For writing tests related to timers it is necessary to
have information about the real time requirement imposed by a timer.

A timer should never be started as: “set(<Time>, <TimerName>)" where <Time> is an absolute value.

8.5.10 Optional transition

The optional transition symbol (ITU-T Recommendation Z.100 [1], §§ 4.3.4) is used to indicate optional
behaviour in a branch of a process or procedure description. The optional transition symbol contains a
condition that is evaluated statically, i.e. variables are not allowed in the condition.

<static
condition>

reference to ICS entry

Figure 49: The option symbol

Rule 18: The condition of the option symbol shall depend on implementation options.

This rule is motivated by the principle to clearly indicate implementation options in an ETS.

8.5.11 Task

A task symbol (ITU-T Recommendation Z.100 [1], §§ 2.7.1) contains either assignment statements or
informal text. An assignment statement is used to assign values to variables.

Page 43
ETS 300 414: December 1995

<var> := <expression>,

...
<var> := <expression>,

Figure 50: Task symbol containing assignment statements

Rule 19: Task symbols with informal text shall not occur in the normative part of a
standard.

This rule is motivated by the principles of correct use of formalisms and clarity. A task box with informal
text may be interpreted in several different ways, thus decreasing the clarity of the specification. If task
boxes contain informal text, the application of computer-based tools for validation and test derivation is
more difficult.

Informal text can be used in draft versions of a standard. But in the final version it shall be replaced by
formal text. How informal text can be formalised differs from case to case. Below, three possibilities are
listed:

a) replace by an assignment (for example "increment subscriber counter by the call charge" becomes
SubscrCounter := SubscrCounter + CallCharge, in which SubscrCounter and CallCharge are
variables;

b) replace by a procedure call: "calculate charge" becomes a procedure call to CallCharge, with some
relevant parameters added;

c) if the task is too difficult to formalise: introduce non-determinism. For example if it is too difficult to
specify how the call charge is computed in "increment subscriber counter by the call charge", this
can be formalised by SubscrCounter := SubscrCounter + ANY Real, with the comment /* increment
with call charge */ attached. This approach is more difficult to test and validate than possibilities a)
and b).

8.5.12 Decision

The decision symbol (ITU-T Recommendation Z.100 [1], §§ 2.7.5) is used to split a transition into two or
more branches depending on a condition. A condition can be described either with:

- an expression; or
- the keyword any , which means that the decision is non-deterministic.

<expression><expression>
ELSE(<value>)(<value>)

(<value>)

(<value>)

ANY
(False)(True) comment explaining

the condition

Figure 51: Decision symbol

The non-deterministic decision (ITU-T Recommendation Z.100 [1], §§ 2.7.5) is used to abstract from
details of the associated condition. This is useful when it is unfeasible to formally specify the condition, or
when the condition depends on implementation specific details. It is also possible to use informal text in
the decision symbol.

Rule 20: Decisions with informal text shall not occur in the normative part of the final
version of a standard.

Page 44
ETS 300 414: December 1995

This rule is motivated by the principle of clarity. A decision with formal text can only be given one
interpretation. Informal text may be interpreted in several different ways, therefore decreasing the clarity of
the specification. Furthermore, if all decisions contain formal text, the application of computer-based tools
for validation and test derivation is simplified.

There are a number of ways to formalise informal text. Some examples are given in figure 52 and in
subclause 8.5.12 on the task symbol.

ResourcesAvailable'resources

Resources available?ANY

available?'
FalseTrue

ResourcesAvailable
FalseTrue

CALL

(OutgoingLine, ExchangeB)

Figure 52: Decision symbol with informal text and possible (formal) replacements

Rule 21: Whenever any , is used a comment shall be given explaining how the value is
determined.

This rule is motivated by the clarity principle. For the production of a test specification it is important to
have more information about the condition for the selection of a branch in the decision.

8.5.13 Process creation

A process creation symbol (ITU-T Recommendation Z.100 [1], §§ 2.7.2) is used to specify dynamic
creation of processes. Parameters can be given to the new process. Predefined variable Offspring of the
creating process instance is implicitly updated with the PId of the created process instance. If an attempt
is made to create more than the maximum number of process instances, no process instance is created
and the predefined variable Offspring becomes NULL.

<process name>
(<parameter>, ...)

Figure 53: The process creation symbol

8.5.14 Procedure call

The procedure call symbol (ITU-T Recommendation Z.100 [1], §§ 2.7.3) is used to call a procedure.

<procedure name>
(<parameter>, ...)

Figure 54: The procedure call symbol

When the procedure call is completed, i.e. the execution has reached the procedure return symbol in the
called procedures diagram, the execution continues with the next symbol following the procedure call.

Page 45
ETS 300 414: December 1995

The procedure may return a value as a result. In which case, the procedure call occurs in a decision
symbol or a task symbol preceded by the keyword call .

Procedure call in
a task

Procedure call
in a decision

<variable> :=
CALL <procedure name>

CALL <procedure name>

Figure 55: Call of a value returning procedure

8.5.15 Remote procedure call

It is possible to call a procedure that is defined in another process if the procedure is defined as remote
(ITU-T Recommendation Z.100 [1], §§ 4.14). When a remote procedure is called, implicitly a signal is sent
to the process that exports the procedure. This process executes the remote procedure, and the result is
returned to the calling process by sending a signal with result parameters.

The process in which the remote procedure is defined contains a procedure symbol with the keyword
exported . An incoming remote procedure call is handled as an incoming signal: they are processed on a
first come-first served basis. The processing of an incoming remote procedure call can be postponed in a
certain state by using a save symbol with keyword procedure followed by the name of the procedure.

In order to call a remote procedure, it has to be declared as remote in a text box. The actual call of a
remote procedure is the same as a normal procedure call.

8.5.16 Output

The output symbol (ITU-T Recommendation Z.100 [1], §§ 2.7.4) is used to send a signal to another
process instance. To which instance it is sent depends on the channels and signal routes between the
blocks/processes. However, in some situations this instance may be ambiguous. Different ways to resolve
this ambiguity exist, by explicitly addressing the receiver of the signal that is sent:

Output via used to send signals over an explicitly specified channel or signal route. This
resolves ambiguity if there is more than one channel that can bear the same
signal, and the PId of the receiver is not known. Output via leads to non-
determinism if there exist more than one instance of the receiving process;

Output to there are two possible ways to use output to:

1) the name of the receiving process is provided: output <sig> to
<process name>. This is leads to implicit non-determinism if there
is more than one instance of that process;

2) the process identifier is provided: output <sig> to <PId>. This
delivers the signal at the right receiver, even if there are more
instances of that process;

Output to via a combination of output to and output via.

It is possible to send a signal to a number of receivers by using the "output via all" construct. With this
construct the same signal is sent via every signal route or channel mentioned in the VIA §§. Note that this
does not guarantee a full broadcast. If multiple processes are connected to the same signal route, only
one process will receive the signal.

Page 46
ETS 300 414: December 1995

broadcast
<signal name>
VIA ALL <route>,

<signal name>
VIA <route>
TO <process>

explicit routeing<signal name>
VIA <route>

implicit addressing
and routeing

<signal name>

<signal name>

<process name>
explicit addressingTO

<route>, ...

explicit addressing
and routeing

Figure 56: Ways to address the receiver of an output

Rule 22: The receiving process instance shall always be uniquely identified in order to
avoid non-deterministic behaviour.

This rule is motivated by the principle to avoid implicit non-determinism.

8.5.17 Nextstate

The nextstate symbol (ITU-T Recommendation Z.100 [1], §§ 2.6.8.2.1) is used to terminate a transition
and enter a new state of the process. The name of the next state is given in the nextstate symbol.

<name of next state>

Figure 57: The nextstate symbol

Instead of giving a specific state name in the nextstate symbol, a "-" can be given instead. This means
that the next state is the same as the state from which the transition originated, i.e. "return to the same
state".

-

Figure 58: The nextstate symbol with a "-" as the next state

8.5.18 Process stop

The process stop symbol (ITU-T Recommendation Z.120 [3], §§ 2.6.8.2.3) is used to specify that a
process instance ceases to exist.

Figure 59: The process stop symbol

8.5.19 Join

The join symbol (ITU-T Recommendation Z.100 [1], §§ 2.6.8.2.2) is a page-layout mechanism that is used
to redirect the flow of control. If the execution reaches a join symbol with an incoming arrow, the execution
continues at the join symbol with an outgoing arrow that has the same label.

Page 47
ETS 300 414: December 1995

<label
name>

<label
name>

Figure 60: The join symbol with incoming arrow and outgoing arrow

The join construct makes it more difficult to understand the flow of control. Therefore, it should only be
used if the normal way of connecting symbols (using solid lines) is not possible.

8.6 Symbols used in procedure diagrams

The following symbols can be used in both process diagrams and procedure diagrams:

- text symbol;
- state;
- input;
- priority input;
- save symbol;
- spontaneous transition;
- timer;
- continuous signal;
- label;
- task;
- process creation;
- procedure call;
- macro call;
- output;
- decision;
- nextstate;
- join;
- optional transition;
- comment;
- variable.

The description of these symbols can be found in subclause 8.5.

In the remainder of this subclause the additional symbols that can be used in procedure diagrams are
described.

8.6.1 Procedure start

The procedure start (ITU-T Recommendation Z.100 [1], §§ 2.6.2) indicates where the execution of a
procedure starts. From the start node a transition is started. The transition can be empty, in which case it
directly leads to a state symbol.

Figure 61: The procedure start symbol

8.6.2 Procedure return

The procedure return symbol (ITU-T Recommendation Z.120 [3], §§ 2.6.8.2.3) is used to specify that the
execution of a procedure is stopped. The control is returned to the calling process or procedure, and all
variables local to the procedure cease to exist. A procedure can also return a result by attaching a result
expression to the procedure return symbol.

Page 48
ETS 300 414: December 1995

<expression>

Figure 62: The procedure return symbol, normal (left) and with a value returned as a result (right)

8.7 Symbols used in macro diagrams

All symbols can be used in a macro diagram. There are some special symbols to indicate the connections
of the macro.

The use of macros is discouraged.

8.7.1 Macro connections

Macro connections (ITU-T Recommendation Z.100 [1], §§ 4.2.2) are used to specify how the branches
connected to the macro call symbol are connected to the branches of the macro diagram. There are two
ways to specify macro connections:

a) with a line from a symbol in the macro diagram to the border of the diagram, labelled with a label
name;

b) with the macro inlet and outlet symbols. The inlet or outlet symbols indicate the connections of a
macro diagram.

<label

name>
macro
inlet

macro
outlet

<label name> <symbol> symbol in
macro diagram

Figure 63: Macro connections

8.8 Data types

SDL contains predefined data types and facilities to let the user define additional data types if the
predefined data types are not sufficient. Definition of additional data types can be done in two ways:

- with construction mechanisms; or

- with abstract data type definitions.

This ETS also provides an alternative to the SDL construction mechanisms, which enables specifiers to
use ASN.1 to define data structures.

8.8.1 Predefined data

SDL contains the following predefined data types (ITU-T Recommendation Z.100 [1], §§ 5.1.1): Boolean;
Character; Integer; Natural; Real; PId; Duration; and Time. The following list shows the predefined data
types and related operations. Because they are predefined, they can be used directly in declarations of
variables or formal parameters.

Page 49
ETS 300 414: December 1995

Boolean values: True, False

operations:
not ... Boolean -> Boolean /* logical negation */
... and... Boolean, Boolean -> Boolean /* logical and */
... or ... Boolean, Boolean -> Boolean /* logical or */
... xor ... Boolean, Boolean -> Boolean /* exclusive or */
...=>...Boolean, Boolean -> Boolean /* logical implication */
... = ...Boolean, Boolean -> Boolean /* equality */
... /= ... Boolean, Boolean -> Boolean /* inequality */
any(Boolean) -> Boolean /* gives a random value */

Character values: All international alphabet No. 5 (ASCII) characters, e.g. "a", "B", "("

operations:
num(...) Character -> Integer /* gives ASCII code of character */
chr(...) Integer -> Character /* gives character with given ASCII code */
... = ...Character, Character -> Boolean /* equality */
... /= ... Character, Character -> Boolean /* inequality */
... < ...Character, Character -> Boolean /* less than */
... <= ... Character, Character -> Boolean /* less than or equal */
... > ...Character, Character -> Boolean /* greater than */
... >= ... Character, Character -> Boolean /* greater than or equal */
/* all comparison operators are based on numerical order of ASCII code */
any(Character) -> Character /* gives a random value */

Charstring values: strings of characters between apostrophes ('), for example 'a string', 'XYz_
8&*', "

operations:

mkstring (...) Character -> Charstring
/* makes a Charstring from a character */

first (...) Charstring -> Character
/* gives the first character of a Charstring */

last (...) Charstring -> Character
/* gives the last character of a Charstring */

length (...) Charstring -> Integer
/* gives the length of a charstring */

... // ... Charstring, Charstring -> Charstring
/* concatenates two Charstrings */

... (...) Charstring, Integer -> Character
/* s(i) returns the i-th character of s (s(1) the first) */

... (...) := ... Charstring, Integer, Character -> CharacterString
/* s(i) := c changes the i-th character of s to c */

substring (..., ..., ...) Charstring, Integer, Integer -> Charstring
/* substring (s, i, n) gives substring s(i)..s(i+n-1) */

... = ..., ... /= ..., ... < ..., ... <= ..., ... > ..., ... >= ...
/* comparison operators based on lexicographic ordering */

Page 50
ETS 300 414: December 1995

Integer values: all whole numbers in decimal notation, for example 37, -5, 185

operations:
- ... Integer -> Integer /* unary minus */
... + ...Integer, Integer -> Integer /* addition */
... - ... Integer, Integer -> Integer /* subtraction */
... * ... Integer, Integer -> Integer /* multiplication */
... / ... Integer, Integer -> Integer /* division */
... mod ... Integer, Integer -> Integer /* modulo, remainder of

 Integer division */
Float(...) Integer -> Real /* Integer to Real conversion */
... = ..., ... /= ..., ... < ..., ... <= ..., ... > ..., ... >= ...

/* comparison operators */
any(Integer) -> Integer /* gives a random integer */

Natural values: all positive integers including zero, for example 1958, 11, 6

operations (in every operation on Natural also Integer operands are allowed):
- ... Integer -> Natural /* unary minus */
... + ...Natural, Natural -> Natural /* addition */
... - ... Natural, Natural -> Natural /* subtraction */
... * ... Natural, Natural -> Natural /* multiplication */
... / ... Natural, Natural -> Natural /* division */
... mod ... Natural, Natural -> Natural /* modulo, remainder of
 Natural division */
Float(...) Natural -> Real /* Natural to Real

 conversion */
... = ..., ... /= ..., ... < ..., ... <= ..., ... > ..., ... >= ...

/* comparison operators */
any(Natural) -> Natural /* gives a random value */

Real values: all real numbers (infinite precision), for example 3.14159265, -37.73

operations:
- ... Real -> Real /* unary minus */
... + ...Real, Real -> Real /* addition */
... - ... Real, Real -> Real /* subtraction */
... * ... Real, Real -> Real /* multiplication */
... / ... Real, Real -> Real /* division */
Fix(...): Real -> Integer /* Real to Integer

 conversion */
... = ..., ... /= ..., ... < ..., ... <= ..., ... > ..., ... >= ...

/* comparison operators */
any(Real) -> Real /* gives a random real */

PId values: Null, and other non-literal values.

operations:
... = ...PId, PId -> Boolean /* equality */
... /= ... PId, PId -> Boolean /* inequality */
any(PId) -> PId /* gives a random PId */

Page 51
ETS 300 414: December 1995

Duration values: all values of time intervals (same value notation as Real), for example 5,
1.72358, 6.0828, 0

operations:
- ... Duration -> Duration /* unary minus */
... + ...Duration, Duration -> Duration /* addition */
... - ... Duration, Duration -> Duration /* subtraction */
... * ... Duration, Real -> Duration /* multiplication */
... * ... Real, Duration -> Duration /* multiplication */
... / ... Duration, Real -> Duration /* division */
... = ..., ... /= ..., ... < ..., ... <= ..., ... > ..., ... >= ...

/* comparison operators */
any(Duration) -> Duration /* gives a random duration */

Time values: same values as Real, for example 1993.75, 373, 18.5

operations:
... + ...Time, Duration -> Time /* addition with duration */
... + ...Duration, Time -> Time /* addition with duration */
... - ... Time, Duration -> Time /* subtraction with duration */
... - ... Time, Time -> Duration /* subtraction of times */
... = ..., ... /= ..., ... < ..., ... <= ..., ... > ..., ... >= ...

/* comparison operators */
any(Time) -> Time /* gives a random time */

The use of Integer and Natural is discouraged. Instead, a subrange sort with finite range can be
used. If a maximum value is not known, it is possible to use an external synonym as a place holder
for the maximum value.

The use of Charstring is discouraged, because the size of Charstring cannot be limited. It is
recommended to use an array of characters whenever possible.

8.8.2 User defined data types

If the predefined data types are not adequate, it is possible to define additional data types. Additional data
types are defined in text symbols. The scope of the data type definition is restricted to the diagram where
the text symbol is placed. For example, if the text symbol is placed in the system diagram, the scope is the
whole system, if the text symbol is placed in a process diagram, the scope is restricted to that process. It
is also possible to define operations on user defined data types by using value returning procedures.

The remainder of this subclause contains a presentation on how to define data types and operations.

8.8.2.1 Subrange of a predefined data type

The syntype construct is used to define a subrange and / or default values of an already defined data
type. The operations of the original type are automatically available for the new type. If the result of an
operation is out of range of the syntype, then the future behaviour of the system is undefined.

EXAMPLE 1: syntype Digit = Natural

constants 0:9

endsyntype Digit;

Page 52
ETS 300 414: December 1995

EXAMPLE 2 : synonym MaxIndex Integer = external ;

syntype IndexValues = Integer

constants 0:MaxIndex

default 0

endsyntype IndexValues;

8.8.2.2 Construction of data types

It is possible to construct data types from existing types. SDL contains a number of built-in construction
mechanisms to create data types, e.g. records, arrays, strings and sets:

Struct a record consisting of fields of possibly different types, e.g.

newtype MyStruct struct
i Integer;
b Boolean;
r Real;

endnewtype;
values: values of all fields between (. and .), e.g.

(. 5, True, -3.14 .)

operations:

<variable name>!<field name> /* access of a field */
... = ...Struct, Struct -> Boolean /* equality */
... /= ... Struct, Struct -> Boolean /* inequality */

Array an array of items of the same type which are indexed by an index type, for
example

newtype MyArray array(IndexValues, Boolean) endnewtype ;
 /* array of booleans */

values: value of element type between (. and .), for example (. False .) gives an
array with all elements set to False

operations on Array (Indextype, Itemtype):

... (...) Array, Indextype -> Itemtype /* returns i-th element */

... (...) := ... Array, Indextype, Itemtype /* changes i-th element */

... = ...Array, Array -> Boolean /* equality */

... /= ... Array, Array -> Boolean /* inequality */

String a string of items of the same type indexed with integer values starting from one.
The empty string gets a user defined name, for example,

newtype MyString String(Integer, EmptyString) endnewtype ;
/* defines a string of integers. EmptyString denotes an empty string of

integers */
values: the only literal value for strings is the emptystring

Page 53
ETS 300 414: December 1995

operations on String (Itemtype, emptystring):

<variable name>(<integer value>) /* access of an item */
length(...) String -> Integer /* length of a string */
first(...) String -> Itemtype /* first item of a string */
last(...) String -> Itemtype /* last item in string */
... // ...String, String -> String /* concatenation of strings

*/
mkstring(...,...,...) Itemtype -> String /* make string */
substring(...,...,...) String, Integer, Integer -> String /* get substring,
 substring(s,i,j) gives a string of length j starting at i */
... = ... Array, Array -> Boolean /* equality */
... /= ... Array, Array -> Boolean /* inequality */

PowerSet a set of elements of the same type, for example

newtype BoolSet PowerSet(Boolean) endnewtype ;
values:
operations on Powerset (Itemtype):

... in ... Itemtype, PowerSet -> Boolean /* is member of */
incl (..., ...) Itemtype, PowerSet -> PowerSet /* add to set */
del (..., ...) Itemtype, PowerSet -> PowerSet /* delete from set */
... and ... PowerSet, PowerSet -> PowerSet /* intersection */
... or ... PowerSet, PowerSet -> PowerSet /* union */
... = ...PowerSet, PowerSet -> Boolean /* equality */
... /= ... PowerSet, PowerSet -> Boolean /* inequality */
... < ...PowerSet, PowerSet -> Boolean /* proper subset */
... <= ... PowerSet, PowerSet -> Boolean /* subset */
... > ...PowerSet, PowerSet -> Boolean /* proper superset */
... >= ... PowerSet, PowerSet -> Boolean /* superset */

8.8.2.3 Abstract data types

In abstract data type definitions (ITU-T Recommendation Z.100 [1], §§ 5.2) new types and operations on
these types are defined in combination. Operations are defined using axioms, that state when two
expressions are equal.

The use of abstract data type definitions in ETSs is discouraged. It is in general impossible to verify that
the type is defined completely (i.e. enough axioms have been defined). Abstract data type definitions tend
to be cryptic, and thus hard to understand (against the principle of clarity). Value returning procedures can
be used instead to define new operations.

8.8.2.4 User defined operations

Operations on data types can be defined using value returning procedures (see subclause 8.2.4).

9 Message sequence charts concepts

9.1 Introduction

Message sequence charts are used to describe sequences of events that can be performed by the
standardised system. MSCs are useful to give an overview of the system functions. MSCs contribute to
the testability of a standard, because they may be used to guide the selection of test purposes.

MSCs are closely related to SDL: SDL diagrams give the complete behaviour of the standardised system,
while MSCs give typical cases. The sequence of events in an MSC shall be a part of the behaviour that is
defined in the SDL diagrams. Consistency between SDL and MSCs can be checked automatically with
tools.

This clause defines a subset of MSC for use in ETSs where also SDL is used. The presented rules do not
apply to ETSs which use MSCs but do not contain SDL diagrams.

Page 54
ETS 300 414: December 1995

Table 5 gives an overview of the MSC concepts that are allowed in combination with SDL.

Rule 23: The following MSC symbols shall not be used in ETSs: co-region; sub-MSC.

The motivation for this rule can be found in annex B.

NOTE: Not selecting a concept does not mean that the concept is useless in general. For
example, sub message sequence charts may be very useful when using MSCs in
ETSs that do not contain SDL diagrams.

Table 5: Overview of selection of MSC constructs for use in combination with SDL

unrestricted use allowed restricted use allowed not allowed
action process creation co-region
comment instance sub MSC
condition message
process stop timer
text extension

Rule 24: Message sequence charts shall be used to give at least one example of
message exchange for each required system function. The message sequence
charts shall also give examples of message exchange in exceptional situations.

This rule is motivated by the principle of clarity. Extensive experience from practice has shown that MSCs
are indispensable to give an overview of the system functions that are described in detail by the SDL
diagrams.

Rule 25: Message sequences shown in MSCs shall be in accordance with the allowed
behaviour of instances specified in the related SDL diagrams.

This rule is motivated by the principle of consistency.

Figure 64 gives an example of a MSC of the multi-party supplementary service in GSM. It is shown that
the visitors location register is consulted before a service is provided, and that a service request is
rejected if the subscriber is not authorised for use of the service.

MSC MPTY_req_unsuccessful

build_MPTYreq

build_MPTYreject

Mobile System A Mobile Switching Centre Visitor Location Register

info_req

info_ack

Call A-B on hold, call A-C active, subscriber
A wants to initiate a multi party conversation

MAP 026

Figure 64: Example of MSC showing an unsuccessful request for a GSM multi party call

9.2 Symbols used in message sequence charts

The symbols that can be used in MSCs are shown table 6.

Page 55
ETS 300 414: December 1995

Table 6: Allowed symbols in MSCs

<instance name>

<instance type>

Instance symbol
<messagel name>

<message name>

Message
exchange

<extended text>
Text extension

symbol <free text>
Comment

symbol

<timer name>
Timer symbol

<condition>
Condition

symbol

<free text> Action symbol

<process name>

PROCESS

Process creation
line symbol

Process end
symbol

9.2.1 Instance

An instance (ITU-T Recommendation Z.120 [3] §§ 4.2) is a party involved in the communication that is
shown in a MSC. Instances can be either part of the environment, or a SDL system, block, or an instance
of a process. The instance consists of a heading that gives a name to the instance, an instance axis, to
which events are attached, and the termination of the instance.

<instance name>

<instance type>

<instance name>

<instance type>

Figure 65: Two MSC instances with different instance axes

Provision of the instance type is optional. It refers to the corresponding SDL diagram where the type of
instance is defined, or it shows that the instance is part of the environment. There are the following
possibilities:

Page 56
ETS 300 414: December 1995

environment: the instance is part of the environment;

process: the instance refers to an instance of the SDL process with the given instance name;

block: the instance refers to an SDL block with the given instance name;

system: the instance represents the whole system.

The instance axis can appear in two different forms: a single vertical line; or a double vertical line. Both
forms are shown in figure 65.

Rule 26 : The instances shown in MSCs shall be related to system, blocks, processes or
parts of the environment (related to channels connected with the environment)
in the related SDL specification.

This rule is motivated by the principle of consistency.

9.2.2 Message

A message (ITU-T Recommendation Z.120 [3], §§ 4.3) represents information exchange between two
instances or an instance and the environment. The message symbol is an arrow labelled with the name of
the message.

<message name>

(<parameter list>)
<message name>

(<parameter list>)

Figure 66: MSC message

Rule 27: Every message in an MSC shall be defined in a signal definition in the related
SDL system or block diagram, and as an input and/or output in the related SDL
process diagram.

This is because consistency between the SDL and MSC diagrams is required.

9.2.3 Comment

Comments (ITU-T Recommendation Z.120 [3], §§ 2.3) can be placed in the comment symbol attached to
the symbol which is commented upon, or in any other symbol between delimiters /* and */.

/* comment in
other symbols */

comment symbol
(attached to MSC
symbol)

Figure 67: Comment symbol and alternative way to give comments in other symbols

9.2.4 Timer

In an MSC, a timer (ITU-T Recommendation Z.120 [3], §§ 4.5) is used to show the setting of a timer, and
its subsequent timer expiry or timer reset.

Page 57
ETS 300 414: December 1995

timer set

timer expiry

timer set

timer reset

Figure 68: Timer set, timer expiry and timer reset

Rule 28: A timer in an MSC shall be defined as a timer in a process that occurs in the
SDL diagram that is related to the MSC instance.

This rule is motivated by the principle of consistency.

9.2.5 Action

An action (ITU-T Recommendation Z.120 [3], §§ 4.6) describes internal processing by a MSC instance.
The action symbol is a box containing an informal textual description of the action.

text that describes

the action

Figure 69: Action symbol

Actions should be considered as comments.

9.2.6 Process creation

Process creation in an MSC (ITU-T Recommendation Z.120 [3], §§ 4.7) is used to indicate that an
instance creates a new process instance. The process creation symbol is a dashed arrow that points from
the creating instance to the heading of the new instance.

process

<instance name>

Figure 70: Process creation

Rule 29: The created MSC instance shall be of type "process".

This rule is motivated by the principle of consistency: in SDL only processes can be created.

9.2.7 Condition

A condition (ITU-T Recommendation Z.120 [3], §§ 4.4]) describes either a global system state, referring to
all instances contained in the MSC, or a state referring to a subset of instances (non-global condition).

<condition name>

Figure 71: Condition

Page 58
ETS 300 414: December 1995

9.2.8 Process stop

Process stop (ITU-T Recommendation Z.120 [3], §§ 4.8) can be used to indicate that an instance (of a
process) ceases to exist. The process stop symbol is identical to the process end symbol that is used in
process diagrams.

Figure 72: Process stop

10 ASN.1 concepts

ASN.1 is a description technique that is designed to specify data types and values for these data types. By
choosing suitable encoding rules (e.g. the basic encoding rules as defined in CCITT Recommendation
X.209 [5], or other encoding rules), it can also be specified how values are encoded to bit streams in order
to transmit them to another device.

This ETS defines how ASN.1 concepts shall be used in combination with SDL diagrams. Use of ASN.1 in
combination with SDL is defined in ITU-T Recommendation Z.105 [2].

The rules presented in this clause do not apply to ETSs which use ASN.1 but do not contain SDL
diagrams. The use of SDL without using ASN.1 is permitted, and in this case SDL data types shall be
used as described in subclause 8.8.

Table 7 gives an overview of ASN.1 concepts that can be used without restrictions in combination with
SDL, concepts that can be used if the rules that restrict their use are met, and concepts that shall not be
used at all.

Table 7: Overview of selection of ASN.1 concepts to be used in combination with SDL

unrestricted use allowed restricted use allowed not allowed
ASN.1 module definition ASN.1 identifier names SET
IMPORTS, EXPORTS SEQUENCE ASN.1 macro (for
NULL SEQUENCE OF example the
BOOLEAN SET OF operation macro)
INTEGER ASN.1 tags value notation of
REAL MIN, MAX ASN.1 ANY type
ENUMERATED PLUS-INFINITY
OBJECT IDENTIFIER MINUS-INFINITY
BIT STRING, OCTET STRING ANY
the different character strings
ASN.1 comment
CHOICE
default and optional component
subtyping

Rule 30: The following ASN.1 concepts shall not be used in combination with SDL: ASN.1
SET, ASN.1 macro, value notation of ASN.1 ANY type.

The motivation for this rule can be found in annex B.

NOTE 1: The restrictions in this clause only apply when ASN.1 is used in combination with SDL.
The ASN.1 concepts that are not selected for use in combination with SDL may be
very useful if ASN.1 is used in ETSs which do not use SDL.

NOTE 2: Z.105 [2] is based on the ASN.1 version as defined in X.680 [7]. X.680 differs in some
details from ASN.1 as defined in X.208 [4]. Most of these differences have been listed
in this clause.

Page 59
ETS 300 414: December 1995

NOTE 3: Z.105 [2] imposes restrictions on the use of ASN.1 in combination with SDL. For clarity
these restrictions have been repeated in this clause.

ASN.1 concepts can occur in the following ways in an ETS:

- in separate ASN.1 modules. The definitions in these modules can be imported in an SDL diagram;

- in SDL diagrams for the definition of data types and values, for example for variables and
parameters of messages.

10.1 ASN.1 identifiers

ASN.1 identifiers, or names, can be used in SDL. In SDL, names are case insensitive. For example,
"COUNTER", "Counter", and "counter" are considered to be identical in SDL. ASN.1 names are case
sensitive. This difference motivates the following rule, which is imposed by Z.105 [2].

Rule 31: The definition of types in ASN.1, whose names only differ in the case of the
letters that compose the name shall be avoided.

It is permitted to have a value notation that only differs in the case of the letters from a type notation, or an
identifier that only differs in the case of the letters from a value or type notation, i.e. the following is allowed
in combination with SDL:

X ::= SEQUENCE { x INTEGER, y BOOLEAN }
x X ::= { x 5, y FALSE }

SDL allows the construction of names from an alphabet which includes the underscore character ("_") and
does not contain the dash character ("-"). For example, message-counter is not a valid name in SDL: it will
be interpreted as an operation "subtract value of counter from value of message". ASN.1 allows the
construction of names from an alphabet which includes the dash character ("-") and does not contain the
underscore character ("_").

This difference motivates the following rules, that are imposed by Z.105 [2].

Rule 32: Names of ASN.1 identifiers that are used in combination with SDL shall not
contain dash characters ("-").

Rule 33: Names of ASN.1 identifiers that are used in combination with SDL may contain
underscore characters ("_").

It is recommended to use underscore characters instead of dash characters to separate parts of
identifiers. For example: use pdu_definitions instead of pdu-definitions.

10.2 ASN.1 import

The ASN.1 IMPORTS concept is used to include modules that are defined elsewhere. The IMPORTS
concept can be used in the SDL text symbol in any diagram. Only the type and value notations that are
exported by the module (using EXPORTS) are imported in the SDL diagram.

/*** IMPORT OF ASN.1 MODULE IN SDL ***/

IMPORTS <ASN.1 type>, ...

FROM <ASN.1 module name><ASN.1 object identifier>

Figure 73: Importing an ASN.1 module in an SDL diagram

Rule 34: An ASN.1 module which is directly or indirectly imported into an SDL diagram
shall meet the rules stated in this ETS, with the exceptions that names of types
or values may contain dash characters.

If a name in an imported ASN.1 module contains dash characters, then in the SDL diagrams the dash
characters shall be replaced by underscore characters.

Page 60
ETS 300 414: December 1995

The motivation for the exceptions is to allow the import of existing, pure ASN.1 modules into SDL.

10.3 ASN.1 simple types

All simple types of ASN.1 can be used in SDL diagrams. These types are null, boolean, integer, real,
enumerated, bit string, octet string, the different character strings, and object identifier.

The list below shows the simple types, the value notations for these types, and the operations that are
available for these types. For every type, the operations = (is equal to) and /= (is not equal to) are
available. Both operations yield a boolean value. For ordered types the comparison operations < (is less
than), > (is greater than), <= (is less than or equal to), and >= (is greater than or equal to) are also
available.

NULL
values: NULL
operations:

... = ..., ... /= ...,
/* comparison operators */

BOOLEAN
values: TRUE, FALSE
operations:

... = ..., ... /= ...
* comparison operators */

not ... : BOOLEAN -> BOOLEAN
/* logical negation */

... and ... : BOOLEAN, BOOLEAN -> BOOLEAN
/* logical and */

... or ... : BOOLEAN, BOOLEAN -> BOOLEAN
/* logical or */

... xor ... : BOOLEAN, BOOLEAN -> BOOLEAN
/* exclusive or */

... => ... : BOOLEAN, BOOLEAN -> BOOLEAN
/* logical implication */

INTEGER
values: all whole numbers in decimal notation, for example 4, -123
operations:

... = ..., .../=..., ...<..., ...>..., ...<=..., ...>=...
/* comparison operators */

- ... : INTEGER -> INTEGER
/* unary minus */

... + ... : INTEGER, INTEGER -> INTEGER
/* addition */

... - ... : INTEGER, INTEGER -> INTEGER
/* subtraction */

... * ... : INTEGER, INTEGER -> INTEGER
/* multiplication */

... / ... : INTEGER, INTEGER -> INTEGER
/* integer division */

... mod ... : INTEGER, INTEGER -> INTEGER
/* modulo */

float(...): INTEGER -> REAL
/* integer to real conversion */

Page 61
ETS 300 414: December 1995

ENUMERATED
values: defined by the user, for example:

BasicService ::= ENUMERATED {
data (1), voice (0), videotelephony(2) }

defines values voice , data and videotelephony

operations:
... = ..., .../=..., ...<..., ...>..., ...<=..., ...>=...

/* comparison operators, based on the integer numbers that are supplied with
the definition of enumerated values, i.e. in the above example is voice <
data < videotelephony */

REAL
values: rational numbers, denoted by 3 integers (the mantissa, the base and the exponent)

between brackets, for example {1, 10, -1} (1x10-1 = 0.1). The base is either 2 or 10.
operations:

... = ..., .../=..., ...<..., ...>..., ...<=..., ...>=...
/* comparison operators, based on the rational numbers that are denoted by the

operand,
i.e. {1, 10, -1} = {10, 10, -2} */

- ...: REAL -> REAL
/* unary minus */

... - ...: REAL, REAL -> REAL
/* subtraction */

... + ...: REAL, REAL -> REAL
/* addition */

... * ...: REAL, REAL -> REAL
/* multiplication */

... / ...:REAL, REAL -> REAL
/* division */

fix (...): REAL -> INTEGER
/* conversion to INTEGER, rounded to near-lowest integer, i.e. fix ({8, 10, -1}) =

0 */

BIT STRING
values: strings of bits, denoted as:

- bit notation, for example '01011'B, '11'B
- hexadecimal notation, for example '58'H, '32C0F'H
- notation where only '1-bits' are given, for example for
SupplServices ::= BIT STRING {

callForwarding (0), callWaiting (1), threeParty (2)
}

a value is {callForwarding, threeParty} , which is the same as '101'B
operations:

... = ..., ... /= ...
/* comparison operators */

... and ...: BIT STRING, BIT STRING -> BIT STRING
/* bitwise and operation */

... or ...: BIT STRING, BIT STRING -> BIT STRING
/* bitwise or operation */

length (...): BIT STRING -> INTEGER
/* length of the bit string, i.e. length ('100'B) = 3 */

... // ...: BIT STRING, BIT STRING -> BIT STRING
/* concatenation, i.e. '10'B // '100'B = '10100'B */

octetstring (...): BIT STRING -> OCTET STRING
/* converts bitstring to octet string (padding with 0 to the right, i.e. octetstring

('1'B) = '10000000'B) */
bool (...): BIT STRING -> BOOLEAN

/* converts a bitstring of length 1 to a BOOLEAN:
'1'B to TRUE, '0'B to FALSE */

...(...) BIT STRING, INTEGER -> BIT STRING (SIZE (1))
/* returns the indexed bit, i.e. '01'B(0) gives '0'B */

Page 62
ETS 300 414: December 1995

...(...) := ... BIT STRING, INTEGER, BIT STRING (SIZE (1))
 /* changes the indexed bit in a bit string, i.e. if variable
v has value '000'B, than after v(1) := '1'B,
v has value '010'B */

mkstring (...), first (...), last (...), ... // ..., substring (..., ..., ...):
/* same operators as SEQUENCE OF (see section 10.4.3) */

OCTET STRING
values: bit notation and hexadecimal notation (see BIT STRING above)
operations:

... = ..., ... /= ...,
/* comparison operators */

bitstring (...) OCTET STRING -> BIT STRING
/* convert to bit string */

... (...) OCTET STRING, INTEGER -> OCTET STRING (SIZE (1))
/* returns the indexed octet, i.e.

'0AE1C'H(0) = '0A'H, '0AE1C'H(2) = 'C0'H */
... (...) := ... OCTET STRING, INTEGER, OCTET STRING (SIZE (1))

/* changes the indexed octet, i.e. if variable v has value
'0AE1C'H, then after v(2) := '1B'H, v has value
'0AE11B'H */

mkstring (...), length (...), first (...), last (...), ... // ..., substring (..., ..., ...):
/* same operators as SEQUENCE OF (see section 10.4.3)*/

NumericString, PrintableString, TeletexString, VideotexString, VisibleString, IA5String,
GraphicString, GeneralString

values: a character string enclosed by double quotes,
e.g. "A string", "@2% ♣∨∨."

operations:
... = ..., .../=...

/* comparison operators */
 ...<..., ...>..., ...<=..., ...>=... IA5String, IA5String -> BOOLEAN

/* comparison operators based on lexicographic ordering.
 Only defined for IA5String */

... (...) String, INTEGER -> String (SIZE (1))
/* returns the indexed character */

... (...) := ... String, INTEGER, String (SIZE (1))
/* changes the indexed character of a variable */

mkstring (...), length (...), first (...), last (...), ... // ..., substring (..., ..., ...):
/* same operators as SEQUENCE OF (see section 10.4.3). */

OBJECT IDENTIFIER
values: sequences of numbers between brackets, optional starting with an object identifier

(see CCITT Recommendation X.208 [4] for more detail), for example
{ ccitt identified_organisation etsi (0) 45 213 }

operations:
... = ..., ... /= ...

/* comparison operators */

ANY
values: no values for ANY are allowed (see rule 30)
operations:

... = ..., ... /= ...
/* comparison operators */

The use of MIN, MAX, MINUS_INFINITY or PLUS_INFINITY is discouraged, because their use gives rise
to infinite data structures, which complicates formal validation and test generation.

Page 63
ETS 300 414: December 1995

10.4 ASN.1 structured types

The ASN.1 structured types are types which are defined in terms of other types, called component types.
A component type can be a simple type, but it can also be a structured type. This makes it possible to
construct types of any desired complexity. The ASN.1 structured types that are allowed in SDL diagrams
are SEQUENCE, SEQUENCE OF, SET OF and CHOICE.

In ASN.1, it is possible to have recursion in structured data type definitions (e.g. TypeA ::= SEQUENCE
{ a TypeA, b BOOLEAN }). This feature shall not be used in combination with SDL.

Rule 35: Recursive ASN.1 data structures shall not be used in combination with SDL
diagrams.

10.4.1 SEQUENCE

The ASN.1 SEQUENCE construct is used to specify records that consist of fields of possibly different
types.

type notation:
<type> ::= SEQUENCE { <identifier> <type>; ... }, for example:

Subscr_data ::= SEQUENCE {
name IA5String,
number ISDN_nr }

value notation:
{ <identifier> <value>,} or { <value>, ... }, for example:

{ name "Smith", number "+46-46355240" }

operations:
... = ..., ... /= ...

/* comparison operators */
...!<identifier>: SequenceType -> ComponentType

/* component selection. The selection of an optional component that is absent
results in an error */

...!<identifier> := ...: SequenceType, ComponentType
/* modification of the specified component, for example
if v is a variable of the above defined Subscr_data that
has the value { "Smith", "+46-46355240" } :
v!name gives value "Smith" , v!number :=
"+33-92944200" changes component number */

<identifier> Present (...) SequenceType -> BOOLEAN
/* This operation is only available for components that are
OPTIONAL. The operation gives TRUE if the field is present.
I.e. for
T ::= SEQUENCE { i INTEGER, b IA5String OPTIONAL }
bPresent ({5, "text"}) = TRUE, bPresent ({37}) = FALSE */

The following rules are imposed by Z.105 [2], and motivated by the fact that Z.105 [2] is based on X.680
[7], and not on X.208 [4].

Rule 36: In a type definition, a name shall be provided for every component type of an
ASN.1 SEQUENCE type.

Rule 37: In a value definition, a name shall be provided for every component type of an
ASN.1 SEQUENCE type.

i.e. in the above defined type Subscr_data, value { "Smith", "+46-46355240" } is not permitted to
be used.

Page 64
ETS 300 414: December 1995

10.4.2 Default and optional components in SEQUENCE

Default values for components of an ASN.1 SEQUENCE type are allowed. In value notations the value of
a default component does not need to be specified, in which case, that component will have the default
value.

In ASN.1, components of SEQUENCE can also be made optional. In value notations the value of an
optional component does not need to be specified, in which case, no assumptions can be made on the
value of that component.

An example of a SEQUENCE with an optional component and a default component is given below.

PDU ::= SEQUENCE {
dataField DataField,
sequenceNr INTEGER (0..65535),
checkSum CheckSum OPTIONAL,
expedited BOOLEAN DEFAULT FALSE }

In order to access an optional component in SDL, it is first necessary to check whether the component is
present, using the operation present. Figure 74 shows a fragment of an SDL process which checks
whether the checksum is correct for the variable pdu of the above defined type PDU.

checksumPresent

pdu!checksum =

(pdu)

expected_checksum

TRUE

TRUE

FALSE

FALSE

Figure 74: A fragment of a process that accesses an optional component

10.4.3 SEQUENCE OF

The ASN.1 SEQUENCE OF construct is used to specify strings of items of the same type. By supplying a
fixed SIZE constraint, arrays can be specified.

type notation:
<type> ::= SEQUENCE OF <component type>, for example

Int_array ::= SEQUENCE SIZE (4) OF INTEGER

value notation:
{ <value>, }, for example

{ -3, 5, 0, 234 } is a value for Int_array that is defined above

operations:
... = ..., ... /= ...,

/* comparison operators */
...(...) SEQUENCE OF <type>, INTEGER -> <type>

/* Returns the indexed value (index of first element is 0) */
...(...) := ... SEQUENCE OF <type>, INTEGER, <type>

/* modification of a component, for example (suppose v is a
variable of the above defined Int_array , and has value
{-3, 5, 0, 234}): v (0) (gives value -3), v(3) := -100
(v gets value {-3, 5, 0, -100}) */

mkstring (...): <type> -> SEQUENCE OF <type> (SIZE (1))
/* makes a string from one item */

length (...): SEQUENCE OF <type> -> INTEGER
/* gives the length of a sequence */

Page 65
ETS 300 414: December 1995

first (...): SEQUENCE OF <type> -> <type>
/* gives first element of a sequence */

last (...): SEQUENCE OF <type> -> <type>
/* gives last element of a sequence */

... // ...: SEQUENCE OF <type>, SEQUENCE OF <type> ->
SEQUENCE OF <type>

/* concatenates two strings */
substring(..., ..., ...): SEQUENCE OF <type>, INTEGER, INTEGER ->

SEQUENCE OF <type>
/* substring (s, i, n) gives a sequence of length n starting from the i -th
element of s */

It is recommended that types based on SEQUENCE OF have a SIZE constraint. Infinite data types cause
state space explosion, which complicates validation and test generation.

10.4.4 SET OF

The ASN.1 SET OF construct is used to specify sets of items of the same type.

type notation:
<type> ::= SET OF <component type>, for example

Int_set ::= SET SIZE (0..6) OF INTEGER
defines a set that can contain maximally 6 elements

value notation:
{<value>, ... }, for example

{ 2, 0, 0, -5, -134 } is a value for Int_set that is defined above

operations:
... = ..., ... /= ...

/* comparison operators */
... < ..., ... <= ...

/* <: is proper subset of, i.e. {0, 1} < {0, 0, 1},
<=: is subset of */

... > ..., ... >= ...
/* >: is proper superset of, >=: is superset of */

... in ...: <type>, SET OF <type> -> BOOLEAN
/* is element of */

incl (.., ..): <type>, SET OF <type> -> SET OF <type>
/* add element to set, i.e. incl (0, {0, 1}) = {0, 0, 1} */

del (..., ...): <type>, SET OF <type> -> SET OF <type>
/* delete element from set, i.e. del (0, {0, 0}) = {0} */

NOTE: There is a difference between the ASN.1 set (SET OF) and the SDL set (PowerSet,
see ITU-T Recommendation Z.100 [1], annex D]). In ASN.1, the number of
occurrences of the same element in a set plays a role whereas, in SDL this is not the
case. For example, for a SET OF INTEGER, the values {0, 1} and {0, 0, 1} are
different ({0,1} /= {0, 0, 1}), while for a PowerSet (INTEGER) (the SDL set) these
values are equal.

It is recommended that types based on SET OF have a SIZE constraint. Infinite data types cause state
space explosion, which complicates validation and test generation.

10.4.5 CHOICE

The ASN.1 CHOICE construct is used to specify that a type can have values of one of a set of alternative
types.

type notation:
<type> ::= CHOICE { <identifier> <type>, ... },
for example
PartyNumber ::= CHOICE {

dataPartyNumber [0] DataPartyNumber,

Page 66
ETS 300 414: December 1995

telexPartyNumber [1] TelexPartyNumber,
privatePartyNumber [2] PrivatePartyNumber }

value notation:
<identifier> : <component value>, for example

dataPartyNumber : 94932665

operations:
... = ..., ... /= ...

/* comparison operators */
...!<identifier>: ChoiceType -> ComponentType

/* extraction of value
for example: suppose v is a variable of the above defined PartyNumber,
and has value dataPartyNumber : 94932665
v!dataPartyNumber gives value 94932665.
v!telexPartyNumber gives an error. */

..!present: ChoiceType -> <identifier>
/* indicates which identifier was chosen by giving its identifier,
i.e. for the above variable v, v!present = dataPartyNumber */

<identifier>Present (...): ChoiceType -> BOOLEAN
/* gives TRUE if the component was selected, i.e. for the above variable v,

dataPartyNumberPresent(v) = TRUE,
telexPartyNumberPresent(v) = FALSE */

In order to access a value of a choice type, it is necessary to first determine, via the !present operator,
which alternative component has been given a value. The SDL fragment in figure 75 shows how values of
a choice type are accessed.

partyNr!present

dataPartyNumber

data := partyNr!

dataPartyNumber

telex := partyNr!

telexPartyNumber

private := partyNr!

privatePartyNumber

telexPartyNumber privatePartyNumber

Figure 75: A fragment of a process that accesses the components of a choice type

10.5 ASN.1 subtypes

The ASN.1 subtype mechanisms are used to limit the values of an existing type. There are several
subtype mechanisms available for simple types, and for structured types. All operators of the original type
are available for the subtype. If the result of an operation on a subtype is out of range, the future behaviour
of the system is undefined.

10.5.1 Subtyping of simple types

The following ways to restrict the possible values of a simple type are available:

Single value
subtyping

the subtype consists of the mentioned values alone, e.g.

 SignType ::= INTEGER (-1 | 0 | 1)

Contained
subtyping

the subtype consists of all values of another (sub)type, together with possibly
some other values, e.g.

 ExtendedSignType ::= INTEGER (INCLUDES SignType | -2 | 2)

The values of ExtendedSignType are -2, -1, 0, 1 and 2.

Page 67
ETS 300 414: December 1995

Value range
subtyping

to define a sub range of another type, e.g.

 ShortInt ::= INTEGER (-32768..32767)

Size range
subtyping

the type is restricted to values with a limited size, e.g.

 Signal_Unit ::= BIT STRING (SIZE (1..28))

Values of the above defined Signal_Unit shall be between 1 and 28 bits long.

Alphabet
limitation
subtyping

the values of a character string are limited to a defined subset of characters, e.g.

 FileName ::= PrintableString (SIZE (12)) (FROM
 ("A"|"B"|"C"|"D"|"E"|"F"|"G"|"H"|"I"|"J"|"K"|"L"|"M"|
 "N"|"O"|"P"|"Q"|"R"|"S"|"T"|"U"|"V"|"W"|"X"|"Y"|"Z"|
 "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"|"."))

This example shows a combination of a size range and an alphabet limitation.

It is recommended to use subtyping as much as possible to restrict the size of data types. For example,
the use of INTEGER, other than in combination with a finite value range subtype is discouraged. BIT
STRING, OCTET STRING, and all ASN.1 character string types are recommended to always have a size
constraint.

The use of infinite size data types gives rise to state space explosion which complicates validation and
test generation. Furthermore, if infinite data types are used for variables and finite data types are used for
signal parameters, the use of conversion operators is required in assignments of variable values to signal
parameters. This may have a negative effect on readability of the standard.

If the maximum value or size of a data type is not known, an external synonym can be specified as a place
holder for this value. The ICS proforma should contain an entry that asks for the maximum value
supported by a product.

10.5.2 Subtyping of structured types

Subtyping of structured types, called inner subtyping (CCITT Recommendation X.208 [4]), can be used to
subtype some or all of the component types of a SEQUENCE. Also constraints can be imposed on the
presence or absence of optional components. Inner subtyping is useful in the definition of messages
where the contents or presence of some fields is dependent on whether some option in the specification
has been chosen or not.

The presence constraint ABSENT means that the corresponding component is never present in values of
the inner subtype. The presence constraint PRESENT means that the corresponding component shall
always be present in values of the inner subtype. Presence constraint OPTIONAL means that the
component may or may not be present in values of the inner subtype.

Both the full specification style and partial specification style for inner subtyping are allowed (see CCITT
Recommendation X.208 [4]).

An example of inner subtyping using the full specification style is given below.

PDU ::= SEQUENCE {
dataField [0] DataField,
sequenceNr [1] INTEGER (0..65535),
checkSum [2] CheckSum OPTIONAL }

/*
* Class0_PDU is a PDU with a smaller sequence number,
* and in which there is no checksum present
*/
Class0_PDU ::= PDU (

WITH COMPONENTS {
dataField,
sequenceNr (0..255),

Page 68
ETS 300 414: December 1995

checkSum ABSENT }
}

10.6 ASN.1 tags

Tags are used in ASN.1 in order to distinguish types. When used in SDL, they only have a meaning in
choice types in order to distinguish which alternative component has been assigned a value. In other
ASN.1 constructs their use is allowed, but they have no meaning and are ignored. Tags are not necessary
because the encoding is outside of scope of the SDL formalism.

10.7 ASN.1 useful types

ASN.1 provides a small set of so-called "useful types". Examples are types for denoting time, and a type
that can have externally defined values. These types are defined in terms of other ASN.1 types. They can
also be used in combination with SDL. The values and operations on these types can be directly derived
from the way they are defined.

Page 69
ETS 300 414: December 1995

Annex A (normative): Summary of use of ITU SDL 1992 in European
Telecommunication Standards

A.1 Selection of SDL concepts

Table A.1: Use of SDL concepts

Concept Full use
allowed

Restricted use
allowed

Use prohibited

Abstract data types allowed, but use
of axioms is
discouraged

Asterisk input full use allowed
Asterisk save full use allowed
Asterisk state full use allowed
Block diagram use restricted by

rules 5, 12 and 13
Block partitioning use restricted by rule

6
Channel with delay use restricted by

rules 7 and 8
Channel without delay use restricted by

rules 8
Channel partitioning use prohibited
Comment full use allowed
Connection full use allowed
Continuous signal use restricted by rule

15
Create full use allowed
Dash nextstate full use allowed
Data definition
constructs

use restricted by
rules 9 and 10

Data type definitions use restricted by
rules 9 and 10

Decision use restricted by
rules 20 and 21

Enabling condition use prohibited
Expressions use restricted by rule

15
External synonym full use allowed
Imported and exported
value

use prohibited

Input full use allowed
Internal input and output use prohibited
Implicit transition full use allowed
Join full use allowed
Label full use allowed
Macro call allowed, but use

is discouraged
Macro definition allowed, but use

is discouraged
Nextstate full use allowed
Optional definition use restricted by rule

11
Optional transition use restricted by rule

18
Output use restricted by rule

22
Package full use allowed

Page 70
ETS 300 414: December 1995

Table A.1: Use of SDL concepts (concluded)

Concept Full use
allowed

Restricted use
allowed

Use prohibited

Predefined data use restricted by rule
10

Priority input full use allowed
Procedure full use allowed
Procedure call full use allowed
Process symbol use restricted by rule

19
Process diagram full use allowed
Referenced definition full use allowed
Refinement use prohibited
Remote procedures full use allowed
Return full use allowed
Save full use allowed
Select use restricted by rule

11
Service use prohibited
Signal use restricted by

rules 9, 10, 27
Signal list definition full use allowed
Signal route full use allowed
Simple expression full use allowed
Spontaneous transition use restricted by rule

14
Start full use allowed
State full use allowed
Stop full use allowed
System diagram use required, and

restricted by rule 3
and 4

Task use restricted by rule
19

Text extension full use allowed
Text symbol full use allowed
Timer use restricted by

rules 16 and 17
Values and literals use restricted by rule

2
Variable full use allowed

A.2 List of rules

Rule 1: In the printed version of an ETS only the graphical representation of SDL shall
be used.

Rule 2: The following SDL symbols shall not be used in ETSs: channel partitioning,
signal refinement, enabling condition, internal input and output, view and reveal,
import and export, service, and name class literals.

Rule 3: A system diagram shall be used to describe how the system is composed of
functional units (modelled with blocks).

Rule 4: In a system diagram, the blocks, channels shall appear on page 1. Signal
definitions shall come before the data definitions.

Page 71
ETS 300 414: December 1995

Rule 5: Block diagrams shall be used to describe how the functional units are composed
of processes or blocks.

Rule 6: A block diagram in the normative part of a specification shall not have
alternative sub-block definitions, i.e. the feature of SDL (ITU-T Recommendation
Z.100 [1], §§ 3.2.2) to describe the decomposition of a block in blocks as well as
in processes is not allowed.

Rule 7: Implicit non-determinism arising as an effect of using channels with delay shall
be avoided.

Rule 8: To every normative channel of the standardised system a comment "normative"
shall be attached.

Rule 9: The data types of all parameters of all signals relevant to the system and
conveyed over normative channels shall be specified.

Rule 10: The data types of parameters of signals that are conveyed over normative
channels shall have a finite size.

Rule 11: The selection expression in a select symbol shall depend on implementation
options.

Rule 12: If the process diagram contains a create symbol, this shall be shown in the block
diagram by using the create line symbol.

Rule 13: In the normative part of a specification, the maximum number of instances of a
process shall be limited.

Rule 14: A comment shall be attached to a spontaneous transition that explains the
condition for the transition to fire.

Rule 15: The Boolean expression in a continuous signal shall not contain NOW, ANY, or
remote procedure calls.

Rule 16: The basic real time associated with a unit of a timer shall be one second.

Rule 17: A timer shall be started as "set(now + <Duration>, <TimerName>)", or if a
default timer value is specified: set(<TimerName>).

Rule 18: The condition of the option symbol shall depend on implementation options.

Rule 19: Task symbols with informal text shall not occur in the normative part of a
standard.

Rule 20: Decisions with informal text shall not occur in the normative part of the final
version of a standard.

Rule 21: Whenever any is used, a comment shall be given explaining how the value is
determined.

Rule 22: The receiving process instance shall always be uniquely identified in order to
avoid non-deterministic behaviour.

Rule 23: The following MSC symbols shall not be used in ETSs: co-region, sub-MSC.

Rule 24: Message sequence charts shall be used to give at least one example of
message exchange for each required system function. The message sequence
charts shall also give examples of message exchange in exceptional situations.

Page 72
ETS 300 414: December 1995

Rule 25: Message sequences shown in MSCs shall be in accordance with the allowed
behaviour of instances specified in the related SDL diagrams.

Rule 26: The instances shown in MSCs shall be related to system, blocks, processes or
parts of the environment (related to channels connected with the environment)
in the related SDL specification.

Rule 27: Every message in an MSC shall be defined in a signal definition in the related
SDL system or block diagram, and as an input and/or output in the related SDL
process diagram.

Rule 28: A timer in an MSC shall be defined as a timer in a process that occurs in the
SDL diagram that is related to the MSC instance.

Rule 29: The created MSC instance shall be of type "process".

Rule 30: The following ASN.1 concepts shall not be used in combination with SDL: ASN.1
SET, ASN.1 macro, value notation of ASN.1 ANY type.

Rule 31: The definition of types in ASN.1, whose names only differ in the case of the
letters that compose the name shall be avoided.

Rule 32: Names of ASN.1 identifiers that are used in combination with SDL shall not
contain the dash character ("-").

Rule 33: Names of ASN.1 identifiers that are used in combination with SDL may contain
underscore characters ("_").

Rule 34: An ASN.1 module which is directly or indirectly imported in an SDL diagram shall
meet the rules stated in this ETS, with the exceptions that names of types or
values are allowed to contain dashes.

Rule 35: Recursive ASN.1 data structures shall not be used in combination with SDL
diagrams.

Rule 36: In a type definition, a name shall be provided for every component type of an
ASN.1 SEQUENCE type.

Rule 37: In a value definition, a name shall be provided for every component type of an
ASN.1 SEQUENCE type.

Page 73
ETS 300 414: December 1995

Annex B (informative): Motivation for exclusion of SDL, MSC and ASN.1
concepts

This annex provides a motivation for why some SDL, MSC, and ASN.1 concepts are prohibited for use in
ETSs.

B.1 Motivation for exclusion of SDL concepts

B.1.1 Channel partitioning

Channel partitioning (ITU-T Recommendation Z.100 [1], §§ 3.2.3) is an alternative for the normal way of
sub structuring in which a block is partitioned into lower level blocks or processes. It introduces
consistency requirements, for example that the substructured channel and the block have the same signal
sets. The construct is forbidden because of the consistency principle of clause 6.

Channel partitioning can be easily replaced by putting the channel substructure as a block, and replace
the substructure by two channels leading to the block.

B.1.2 SDL signal refinement

Signal refinement (ITU-T Recommendation Z.100 [1], §§ 3.3) provides a way to hide low-level signals on
higher levels of abstraction (for example at system level). Signal refinement is prohibited for use because
of the principle of having one level of abstraction.

The signal refinement can be replaced by putting the low-level signals at the channel definitions, instead
of the abstract signals.

B.1.3 SDL service

The SDL service interaction diagram (ITU-T Recommendation Z.100 [1], §§ 2.4.5) is related to a process
definition, with some exceptions, for example that the services associated with one process share the
same input port, and they execute interleaved. The SDL service diagram shall not be used because it has
a complicated formal SDL semantics, which makes it hard to understand (clarity principle), especially
when there are several services associated with the same process. Also the name service is confusing,
since the term service as it is used in telecommunication (telecommunication service, teleservice, bearer
service, OSI service) has a different meaning than the SDL service.

There exist several alternatives for the SDL service diagram, for example:

- replace the corresponding process diagram of the service by a block diagram, and the attached
service diagrams by process diagrams;

- use several processes instead of just one. A difference is that the processes have no access to
each other's variables, while services have access to the variables of their process;

- use procedures.

B.1.4 Revealed and viewed variable

The value of a revealed variable is visible for other processes in the same block, that have defined this
variable as being VIEWED. A revealed and viewed variable is essentially a shared piece of memory. This
is a dangerous notion, since it cannot be controlled when another process views a variable that is being
changed. Unpredictable behaviour of the system may result, as is shown in figure B.1, where viewed
variable x is not 0 at the time that the decision is made. However the process that reveals x may set x to 0
after the decision and before the task. This has the result that in the task, 1 is divided by 0, and a runtime
error results.

From the perspective of testability it is not acceptable that the behaviour of the specification is
unpredictable (implicit non-determinism principle). Hence, the use of viewed/revealed variables are
prohibited.

Page 74
ETS 300 414: December 1995

value of x could have changed
to 0 between the decision and
the task by the revealing process!

suppose at time
of the decision
x is not 0

y = 1/x

x = 0DCL VIEW x Real,
 y Real;

FALSE

Figure B.1: Danger of view/reveal

Viewed and revealed variables can be replaced by explicit signal exchange to get the value of a variable in
another process, or by introducing a remote procedure call for this purpose.

B.1.5 Imported and exported variable

The imported/exported variable mechanism (ITU-T Recommendation Z.100 [1], §§ 4.13) is used for
importing the value of a variable that is defined in another process. To use the import/export mechanism
on a variable it can be defined as remote . The remote definition needs to be given in the block diagram if
the importing/exporting processes are located in the same block, or on the system level if the processes
are located in different blocks.

<variable> gets the
value of the last export
of <importvariable>

<variable> :=
IMPORT

 (<importvariable>)

value is
exported

EXPORT
(<variable>)

/* declaration of an imported variable */
DCL
IMPORTED <importvariable> <type>;

/* declaration of an exported variable */
DCL
EXPORTED <variable> <type>;

Figure B.2: Declarations and operations to export and import values of variables

The motivation to prohibit imported/exported variables is given by the principle of clarity.

Imported and exported variables can be replaced by explicit signal exchange to get the value of a variable
in another process, or by introducing a remote procedure call for this purpose.

B.1.6 SDL internal input and output

SDL internal input and output (ITU-T Recommendation Z.100 [1], §§ 2.9) are outdated concepts, that are
only in Z.100 [1] for reasons of upward compatibility. In ITU-T Recommendation Z.100 [1] their future use
is discouraged. For this reason these concepts are prohibited for use in ETSs. Normal input and output
can be used instead.

B.1.7 SDL enabling condition

An enabling condition can be used in a process graph, directly following an input symbol (ITU-T
Recommendation Z.100 [1], §§ 4.12). The branch that contains the condition can only be entered if the
expression in the condition evaluates to true. If this is not the case, the input signal is saved.

<expression>

Figure B.3: Enabling condition symbol

The interpretation of enabling condition relies on a complicated semantics of queue contexts, which
makes it hard to understand (clarity principle).

Page 75
ETS 300 414: December 1995

Instead, the state to which the enabling condition is attached can be mapped on two states: one in which
input symbol is present (the expression in the enabling condition is true), another one in which the input
symbol is not present (the expression in the enabling condition is false). Nextstate symbols to that state
can be replaced by a decision symbol containing the expression of the enabling condition, with the true -
branch leading to the state with the input present, and the false -branch leading to the state with the input
missing.

B.1.8 Name class literals

Name class literals (ITU-T Recommendation Z.100 [1], §§ 5.3.14) provide a means to define a (possibly
infinite) number of values for a data type by means of regular expressions.

For example nameclass ('x' or 'y') +

defines values x, y, xx, xy, yx, yy, xxx, etc.

The motivation to prohibit name class literals are given by the principles of correct use of formalisms: the
name class literals construct is very difficult to implement in tools.

B.2 Motivation for exclusion of MSC concepts in combination with SDL

B.2.1 MSC co-regions

A co-region in a message sequence chart (ITU-T Recommendation Z.120 [3], §§ 6.9) can be used to
indicate that the signals attached to the co-region can arrive in any order, although the MSC depicts only a
specific order.

instance1 instance2

message1

message2

m1_m2_received

msc coregionexample /* coregion in instance1

indicates that order of

incoming of message 1 and 2

is not important */

Figure B.4: Co-region symbol

The semantics of the co-region concept is questionable. For example, it is not clear what the co-region
means for sending of signals. For this reason the co-region is not used.

An MSC containing a co-region can be replaced by several MSCs, each showing a different order of
signal exchange.

B.2.2 MSC sub message sequence charts

A sub message sequence chart (ITU-T Recommendation Z.120 [3], §§ 6.10) gives a more detailed view of
one instance of another MSC. This introduces a consistency problem: the sub MSC needs to be
consistent with the more abstract MSC.

If MSCs are used in combination with SDL, the sub MSC is not needed, because it is possible to replace
the sub MSC by a normal MSC, showing exactly the same behaviour. The consistency is then implicitly
guaranteed because the more abstract MSC and the more detailed MSC will both be consistent with the
SDL diagrams.

Page 76
ETS 300 414: December 1995

B.3 Motivation for exclusion of ASN.1 concepts in combination with SDL

This clause contains a rationale why some ASN.1 concepts are not allowed for use in combination with
SDL. Some concepts have not been selected because they have a harmful effect on the testability of the
specification, or complicate validation. Some others are not included in SDL (for example the macro),
because they are too difficult to handle by tools.

B.3.1 ASN.1 comment

ASN.1 comments start with "--", and end at the end of line, or the next "--" . Use of ASN.1 comment would
introduce difficulties in the definition of the SDL grammar, since line feeds have no meaning in SDL. The
SDL comment symbol can be used instead.

B.3.2 Set

The ASN.1 SET construct is very similar to the SEQUENCE construct. The order in which the component
values appear in a value notation of a SET can be in any order, whereas in a SEQUENCE value notation
this order is fixed. SET types are mainly in ASN.1 for historic reasons. Their use leads to less efficient
implementations. Instead of a SET type, a SEQUENCE type with exactly the same components can be
used.

B.3.3 Macro mechanism

The ASN.1 macro mechanism is excluded from use. The reason is that macros are too complex to
handle, and at ETSI they are mainly used to specify remote operations (see CCITT Recommendation
X.229 [6]). These remote operations are, in fact, nothing but syntactic suggestion of specification of
communication in ASN.1. A remote operation does not have any "real" semantics in ASN.1 (no
communication is suggested by the ASN.1 semantics). Therefore, the SDL facilities to specify
communication are preferred. In annex C, an example can be found on how to specify remote operations
in SDL.

NOTE: If SDL is used as shown in the example, an operation code is not part of the
specification. It needs to be specified separately in the encoding part of the standard.

B.3.4 Value notation for ASN.1 type ANY

The motivation for exclusion of values of type ANY is given by the principles of correct use of formalisms,
and clarity the ASN.1 ANY construct is sometimes used to indicate that a parameter of a message is
reserved for implementation specific purposes (allows implementation freedom). In that case, the
specification should not specify specific values for that parameter. The other application of ASN.1 ANY is
to indicate in a preliminary version of the specification that the exact type is not yet known. In the final
version of an ETS, such use of ANY is not permitted.

This means that the only way to use ANY in combination with SDL is to receive parameters of type ANY in
signals coming from the environment. These parameters can then be dropped, or forwarded to other
processes. They cannot be modified.

B.3.5 ASN.1 encoding rules

There are no encoding rules specified for SDL data. Because the meaning of ASN.1 data is given in terms
of SDL data (see annex D), there is no encoding imposed on ASN.1 in SDL diagrams either. It is possible
to specify that certain encoding rules apply, for example the basic encoding rules for ASN.1 as defined in
CCITT Recommendation X.209 [5]. However this is outside the scope of the SDL specification. Therefore,
no assumptions on the specified ASN.1 encoding rules can be made in the SDL specification.

Page 77
ETS 300 414: December 1995

Annex C (informative): Examples

C.1 Addressing in SDL

An address in the sense of OSI is different from an address in the sense of SDL. In SDL, processes are
addressed by a PId value. A process instance PId value is not known before the specification is
interpreted, the PId value is assigned at the creation of a process instance. Hence, to model OSI
addressing in SDL, a conversion of OSI addresses to PId values needs to be made.

This example presents one approach to model addressing using SDL. Basis for the example is the
enclosed SDL system OSI_Addressing. The system consists of two blocks: Users and ServiceProvider.
The block Users models the users of the provided service, and the block ServiceProvider models the
network offering the service.

NOTE: The example is not complete, only the main principles of the modelling of addresses
are shown.

In the block network there is one instance of a process "Manager" that maintains a data structure
containing a mapping OSI addresses -> PId values. This data structure is modelled as an array of PId
values indexed with OSI addresses. Each time a new user is created in the environment of the network,
the array is updated with the created user's PId value.

A connection is modelled by an instance of the process Connection. There is one instance of this process
for each established connection. The instances are dynamically created by the Manager process upon
receipt of a connect request from a user. The PId value of each such instance is noted by the Manager
process, and every subsequent communication on the established connection is routed through the
Manager process. Every service primitive received from a user is directed to the correct process instance
by retrieving the PId value from the OSI address.

By using this approach, the information about the structure of the network (addresses of connections) is
located within the network. The only address information residing at the user side is the OSI addresses of
other users.

System OSI_addressing 1(1)

/*
 * System that can route messages to the correct destination,
 * by taking care of translating OSI addresses to SDL process
 * instance identifiers.
 *
 * Probably more usefull in a validation model than in a
 * requirements specification.
 */

/*** IMPLEMENTATION OPTIONS ***/
SYNONYM
N Natural = EXTERNAL; /* maximum number of subscribers */

/*** GLOBAL DATA TYPES ***/

SYNTYPE OSI_address = Natural
 CONSTANTS 1:N
ENDSYNTYPE OSI_address;

SYNTYPE ConnectionNumber = Natural
 CONSTANTS 0:(N*N)
ENDSYNTYPE ConnectionNumber;

SYNTYPE UserData = Charstring
 CONSTANTS 1:N
ENDSYNTYPE UserData;

/*** SIGNALS ***/
SIGNAL
 ConnReq(OSI_address, OSI_address),
 ConnInd(OSI_address, OSI_address),
 ConnResp(OSI_address, OSI_address, Boolean),
 ConnConf(OSI_address, OSI_address, ConnectionNumber),
 DataReq(ConnectionNr, User_data),
 DataInd(ConnectionNr, User_data),
 DiscReq(ConnectionNr),
 DiscInd(ConnectionNr),
 NewUser(OSI_address, Pid);

/*** SIGNAL LISTS ***/
SIGNALLIST
Responses =
 ConnConf, DataInd, DiscInd, ConnInd, DataInd, DiscInd;
SIGNALLIST
Requests =
 ConnReq, DataReq, DiscReq, ConnResp, DataReq, DiscReq;

Users

ServiceProvider

OperatorInterface

NewUser

SAP

(Requests)

(Responses)

Figure C.1: Addressing example, system OSI_addressing

Page 78
ETS 300 414: December 1995

Block Users 1(1)

CONNECT
OperatorRoute AND OperatorInterface;
CONNECT
Subscriber_Route AND SAP;

NetworkOperator

(1,1)

Subscriber

(0,N)

SubscriberRoute

(Requests)

(Responses)

OperatorRoute
NewUser

Figure C.2: Addressing example, block Users

Process NetworkOperator 1(1)

/* Process registers new subscribers
 * and assigns an OSI address.
 */

/*** VARIABLES ***/
DCL
address OSI_address;

Idle

NONE

Subscriber(address)

NewSubscriber
(address,
OFFSPRING)

Announce new subscriber to
the Service Provider

address :=
address + 1

Idle

(non-deterministic) request
to install a new subscriberaddress := 1

Idle

Figure C.3: Addressing example, process NetworkOperator

Page 79
ETS 300 414: December 1995

Process Subscriber 1(2)

;FPAR
my_address OSI_address;

/*** VARIABLES ***/
DCL
calling, called OSI_address,
conn_nr ConnectionNumber,
message UserData;

conn_nr := 0

Idle

Idle

ConnInd
(called, calling)

ANY

The subscriber decides to
accept the connection or
not.

ConnResp
(called, calling, false)

ConnectionPending

ConnResp
(called, calling, true)

NONE

ConnReq
(ANY(OSI_address),
my_address)

... with an arbitrary
other subscriber

The subscriber
decides to
establish a
connection ...

ConnectionPending

DataInd(conn_nr, message)

DataTransfer

ConnConf
(called, calling, con_nr)

conn_nr > 0
connection number 0
means that no
connection can be made

Idle

false
true

false
true

Figure C.4 (sheet 1 of 2): Addressing example, process Subscriber

Page 80
ETS 300 414: December 1995

Process Subscriber 2(2)

;FPAR
my_address OSI_address;

DataTransfer

NONESubscriber decides
to send a message.

DataReq(conn_nr,
ANY(UserData))

DataTransfer

NONE

DiscReq(conn_nr)

conn_nr
:= 0

Idle

DiscInd(conn_nr)DataInd(conn_nr,
message)

Figure C.4 (sheet 2 of 2): Addressing example, process Subscriber

Block ServiceProvider 1(1)

CONNECT
SAP AND SAP;

ConnectionManager

SAP
(Responses)

NewUser,
(Requests)

Figure C.5: Addressing example, block ServiceProvider

Page 81
ETS 300 414: December 1995

Process ConnectionManager 1(2)

/* Process stores routing data of registered subscribers
 * and uses this information to redirect messages to the
 * correct destination.
 */

/*** VARIABLES ***/
DCL
message UserData,
conn_nr ConnectionNumber,
answer Boolean,
called, calling OSI_address,
CalledId, CallingId Pid,

RT RoutingTable,
RT_entry Route,
RT_count integer,

CT ConnectingTable,
CT_entry Connection,
CT_count integer;

/*** DATA TYPES ***/
NEWTYPE
Route STRUCT
 address OSI_address;
 identifier Pid;
ENDNEWTYPE Route;

NEWTYPE
Connection STRUCT
 initiator Pid;
 responder Pid;
ENDNEWTYPE Connection;

NEWTYPE
RoutingTable ARRAY(Natural, Route)
ENDNEWTYPE RoutingTable;

NEWTYPE
ConnectiingTable ARRAY(ConnectionNumber, Connection)
ENDNEWTYPE ConnectingTable;

Lookup_CTLookup_RT

RT_count := 0,
CT_count := 0

Idle

Idle

ConnResp
(called, calling, answer)

CallingId := CALL
Lookup_RT(calling)

answer

CalledId := CALL
Lookup_RT(called)

CT_count :=
CT_count +1

CT(CT_count)!initiator := CalledId,
CT(CT_count)!responder := CallingId

Update
Connecting
Table

Idle

ConnRej
(called, calling)
TO CallingId

ConnReq
(called, calling)

CalledId := CALL
Lookup_RT(called)

ConnInd
(called, calling)
TO CalledId

Idle

NewUser
(address, identifier)

RT_count :=
RT_count + 1

RT(RT_count)!address := address,
RT(RT_count)!identifier := identifier

Update
Routing
Table

Idle

true

false

Figure C.6 (sheet 1 of 2): Addressing example, process ConnectionManager

Page 82
ETS 300 414: December 1995

Process ConnectionManager 2(2)

Idle

DataReq
(conn_nr, data)

Exists_CT(conn_nr)

Idle

CalledId := CALL
Lookup_CT(conn_nr)

DataInd(called, data)
TO CalledId

DiscReq(conn_nr)

Exists_CT(conn_nr)

Idle

Update_CT
(called, calling, false)

DiscInd(called,calling)
TO CalledId

DiscInd(called,calling)
TO CallingId

falsetrue

false
true

Figure C.6 (sheet 2 of 2): Addressing example, process ConnectionManager

Procedure Lookup_CT 1(1)

;FPAR
 conn_nr integer,
 party PId;
returns PId;

/* Procedure receives a connection number and the identifier
 * of one party. It returns the identifier of the other party of the
 * route with that number.
*/

party = CT(conn_nr)!initiator

CT(conn_nr)!initiator
CT(conn_nr)!responder

false

true

Figure C.7: Addressing example, procedure Lookup_CT

Page 83
ETS 300 414: December 1995

Procedure Lookup_RT 1(1)

;FPAR
address OSI_address;
returns PId;

/* Procedure receives an OSI address. It returns the process
 * instance identifier of that address.
*/

/*** VARIABLES ***/
DCL
i integer;

i := 0

i < RT_count

null
i := i + 1

RT(i)!address = address

 RT(i)!field2

false

true

false

true

Figure C.8: Addressing example, procedure Lookup_RT

C.2 Remote operations

The ASN.1 operation macro is not allowed in the selected subset of ASN.1. The operation macro is
heavily used in higher layer application protocols, for example in protocols built on Remote Operations
Service Element (ROSE) or Transaction Capability Application Part (TCAP). This example shows what
can be done instead, using SDL. The idea is that a remote operation is specified in SDL using several
signals:

- one for the invocation of the operation;
- one for returning the result of the operation (if applicable);
- one for returning an error in case the operation fails (if applicable);
- one for the rejection of an operation (if applicable).

This example shows a way how to model in SDL the part of the signalling protocol needed for the
activation of the call forwarding supplementary service. It is inspired by ECMA-QSIG-CF (see annex E).
The remote operation "ActivateDiversion" is used to activate the call forwarding. This operation is defined
in the following ASN.1 module:

Call-Forwarding-Operations
-- Example of a module that defines activation operation.

DEFINITIONS ::=
BEGIN
EXPORTS ActivateDiversion,

ActivateDiversionInvArg,

Page 84
ETS 300 414: December 1995

ActivateDiversionResArg,
ActivateDiversionErrors;

ActivateDiversion OPERATION
ARGUMENT ActivateDiversionInvArg
RESULT ActivateDiversionResArg
ERRORS ActivateDiversionErrors

ActivateDiversionInvArg ::= SEQUENCE {
procedure ENUMERATED { unconditional (0), on_busy (1),

 no_reply (2)},
divertedToAddress Address,
servedUserNr PartyNumber,
activatingUserNr PartyNumber }

ActivateDiversionResArg ::= NULL

ActivateDiversionErrors ::= ENUMERATED {
notSubscribed (0), invalidServedUserNr (1),
invalidDivertedNr (2), notAuthorized (3), unspecified (4) }

END

The call forwarding is activated with the protocol given below. The exchange serving the user that
activates the call forwarding service is abbreviated as Activating X. The exchange serving the served user
(= the user whose incoming phone calls are diverted) is abbreviated as Served User X. The setting up and
clearing down of signalling connections is for simplicity reasons not taken into account.

C.2.1 Actions at the Activating X

On the receipt of an activation request from the user, the Activating X shall send an activateDiversionQ
invoke Application Protocol Data Unit (APDU) to the Served User X. The Activating X starts timer T1. On
receipt of the activateDiversion return result APDU, the Activating X shall convey the return result back to
the activating user. On receipt of the activateDiversion return error or reject APDU from the served user,
or on expiration of timer T1, rejection shall be indicated to the activating user.

C.2.2 Actions at the Served User X

On receipt of an activateDiversionQ invoke APDU, the Served User X shall verify that remote activation is
supported and enabled. The Served User X may use any techniques for verifying, as far as possible, that
the diverted-to user's number is valid.

If the activation request is acceptable, the Served User X shall activate diversion of the type indicated by
the element procedure, answer with a return result APDU, store the received diverted-to number, and
optionally convey an appropriate notification to the served user. If the diverted-to user's number is
detected as an invalid number, or if the activation request can not be accepted for other reasons, the
Served User X shall send back a return error APDU with an appropriate value.

C.2.3 Timer values

The timer T1 shall have a value of 5 seconds.

C.2.4 Message sequence chart

The following MSC shows the working of the protocol for the successful activation of call forwarding.

Page 85
ETS 300 414: December 1995

activateReq

activateDiversion_inv

activateDiversion_res

accept

Activating User Activating X Served User X Served User

notifyActivation

Figure C.9: MSC for the successful activation of call forwarding

C.2.5 SDL diagrams

For the specification of the protocol in SDL, it is impossible to use the ASN.1 module as it is, because
there is a remote operation in it. But the module can be easily changed, so that only the argument, result
and errors are defined. These types will be imported in the SDL part. The changed ASN.1 module is given
below.

Call-Forwarding-Operations
-- Example of a module that defines activation operation.
-- (made suitable for inclusion in SDL by removing the operation itself,
-- only keeping the argument, result and error types)

DEFINITIONS ::=
BEGIN
EXPORTS ActivateDiversionInvArg,

ActivateDiversionResArg,
ActivateDiversionErrors;

ActivateDiversionInvArg ::= SEQUENCE {
procedure ENUMERATED { unconditional (0), on_busy (1),

 no_reply (2)},
divertedToAddress Address,
servedUserNr PartyNumber,
activatingUserNr PartyNumber }

ActivateDiversionResArg ::= NULL

ActivateDiversionErrors ::= ENUMERATED {
notSubscribed (0), invalidServedUserNr (1),
invalidDivertedNr (2), notAuthorized (3), unspecified (4) }

END

The following SDL diagrams show the detailed protocol. The remote operation ActivateDiversion is
mapped on four SDL signals: one for the invocation, going from Activated X to Served User X, and three
for the possible responses (result, error, or reject), going from Served User X to Activated X.

The ASN.1 definitions of the remote operation argument, result and errors are imported at the system
diagram using the IMPORTS construct (see section ..). Note that the operation ActivateDiversion itself is
not imported: remote operations shall not be used in SDL.

The procedures that are called in the process ServedUserProc are not presented to limit the space.

Page 86
ETS 300 414: December 1995

System RemoteOperations 1(1)

/* signalling protocol for the activation
 * of call forwarding supplementary
 * services
 */

/*** Definitions of data types for the operation ***/

/* (Note that the ASN.1 remote operation itself is not
 * imported, only ASN.1 data types and values can be
 * in combination with SDL.)
 */
IMPORTS
 ActivateDiversionArg,
 ActivateDiversionResArg,
 ActivateDiversionErrors
FROM Call_Forwarding_Operations

/*** Definitions of remote operation signal parameters ***/

SIGNAL /* These signals are NORMATIVE */
 ActivateDiversion_Inv(ActivateDiversionInvArg),
 ActivateDiversion_Res(ActivateDiversionResArg),
 ActivateDiversion_Err(ActivateDiversionErrors),
 ActivateDiversion_Rej;

SIGNAL /* These signals are INFORMATIVE */
 activateReq(ActivateDiversionInvArg),
 accept,
 reject,
 notifyActivation;

ActivatingX ServedUserX

INFORMATIVE
INFORMATIVE

NORMATIVE

ActivateChan

activateReq

accept,
reject

SigChan

ActivateDiversion_Inv
ActivateDiversion_Res,
ActivateDiversion_Err,
ActivateDiversion_Rej

ServedChan

notifyActivation

Figure C.10: Remote operations example, system RemoteOperations

Block ActivatingX 1(1)

/* The exchange to which
 * the activating user is connected.
 */

CONNECT
ActivateRoute AND ActivateChan;

CONNECT
SigRoute AND SigChan;

Activate

(1,1) SigRoute

ActivateDiversion_InvActivateDiversion_Res,
ActivateDiversion_Err,
ActivateDiversion_Rej

ActivateRoute

accept,
reject

activateReq

Figure C.11: Remote operations example, block ActivatingX

Page 87
ETS 300 414: December 1995

Process Activate 1(1)

/* This process takes care of
 * activation af call forwarding
 * in the activating Exchange
 */

/*** VARIABLES ***?
DCL
activateArg ActivateDiversionInvArg,
res ActivateDiversionResArg,
err ActivateDiversionErrors;

/*** TIMER ***/
TIMER
T1 := 5; /* default value 5 seconds */

CFA_Idle

CFA_Idle

activateReq
(activateArg)

ActivateDiversion_Inv
(activateArg)

SET(T1)

CFA_Wait

*
Save new
incoming requests
for activation

T1

reject

CFA_Idle

ActivateDiversion_Err(err),
ActivateDiversion_Rej

RESET(T1)

ActivateDiversion_Res
(res)

RESET(T1)

accept

Figure C.12: Remote operations example, process Activate

Page 88
ETS 300 414: December 1995

Block ServedUserX 1(1)

/* The exchange to which
 * the served user is connected
 */

CONNECT
SigRoute AND SigChan;

CONNECT
ServedRoute AND ServedChan;

ServedUserProc

(1,1)
SigRoute

ActivateDiversion_Res,
ActivateDiversion_Err,
ActivateDiversion_Rej

ActivateDiversion_Inv

ServedRoute

notifyActivation

Figure C.13: Remote operations example, block ServedUserX

Page 89
ETS 300 414: December 1995

Process ServedUserProc 1(1)

/* This process takes care of
 * the actual activation of
 * call forwarding, if appropriate.

/*** VARIABLES ***/
DCL
activateArg ActivateDiversionInv,
correct, possible BOOLEAN,
err ActivateDiversionErrors;

CFS_Act_Idle

CFS_Act_Idle

ActivateDiversion_Inv
(activateArg)

CheckArg
(activateArg, correct, err)

correct

ActivateDiversion_Err
(err)

-

CheckActivation
(activateArg, possible, reason)

checks whether activation
can be performed. If not, a
reason code is returned.

possible

ActivateDiversion_Rej
(reason)

-

ActivateDiversion_Res
(NULL)

StoreActData
(activateArg)

Notify_
ServedUser

notifyActivation

--

IMPLEMENTATION OPTION
see ICS entry <reference>

save diversion data
for later invocation
of call forwarding

checks whether the
parameters of the
operation are correct

false

true

false true

truefalse

Figure C.14: Remote operations example, process ServedUserProc

C.3 Specification of implementation options

Two examples of implementation options (taken from the DECT standard, ETS 300 175 [11]) are:

a) an implementation of the DECT portable handset does not have to support the capability "incoming
calls". In that case the mobile phone can only be used for initiating a telephone call, not for receiving
calls;

b) when an unexpected message, other than CC_RELEASE or CC_RELEASE_COMPLETE is
received, or an unrecognised message is received in any state, the message should be ignored.
Alternatively, a release procedure may be initiated by sending a CC_RELEASE_COMPLETE
message, indicating the release reason as "unexpected message".

If an SDL specification is parameterized with the possible choices between implementation options, it is
possible to specify how the system behaviour depends on these choices. Furthermore it is possible to use

Page 90
ETS 300 414: December 1995

information in an Implementation Conformance Statement, as actual parameters of the specification. This
results in a specification that closely describes the system under test.

SYSTEM DECT_PAP

/*
External information from portable terminal PICS
*/
synonym cap_inc_call Boolean = external ;
synonym cap_call_hold Boolean = external;
synonym cap_paging ...
/*
External information from fixed terminal PICS
*/
synonym nr_of_frequencies Number = external;
...

/*
specification of the
Public Access Profile
of Digital European
Cordless Telecommunication
*/

FixedTerminal
PT(nr_of_frequencies)
: PortableTerminal <
 cap_inc_call,
 cap_call_hold,
 cap_paging,
...
 >

ft_to_pt

SETUPresponse,
...

pt_to_ft

SETUPrequest,
...

Figure C.15: System diagram with declaration of external synonyms

Figure C.15 shows a system diagram that uses external synonyms to model basic implementation
options. The constant cap_inc_call has an unknown value, that has to be provided externally. Still the
synonym can be used within the specification, as will be shown in the sequel.

C.4 Optional functionality

When a complete function of the system is optional to implement, it is possible to describe this function in
a separate process and make the presence of this process dependant on the choice between
implementation options.

Figure C.16 shows how the option a) can be specified in SDL. The dashed rectangle with a condition is
named the SELECT symbol. This symbol indicates that the part of the specification within the dashed
rectangle shall be considered to be non-existent if the condition evaluates to False. If the condition
evaluates to True, the part of the specification within the dashed rectangle is valid, with all requirements
that are imposed by it.

Page 91
ETS 300 414: December 1995

BLOCK CallControl

kernel

(1,1)

incoming_call

(0,1)

call_hold

(0,1)

CC_ALERTING,
CC_CONNECT,
...

HOLD,
HOLD_ACKNOWLEDGE,
HOLD_REJECT,
RETRIEVE,
RETRIEVE_ACKNOWLEDGE,
RETRIEVE_REJECT

(FWD)

SELECT IF (cap_inc_call)

SELECT IF (cap_call_hold)

BasicCall

(1,1)

Figure C.16: Block diagram of DECT Call Control, with optional processes

C.5 Alternative behaviour

If the implementation option deals with alternative behaviour, the optional transition symbol can be used.
Figure C.17 shows a part of a process diagram that uses the Optional transition symbol (the triangle). In
this triangle the transition splits in two possible paths. An implementer has to choose which of the two
possibilities will be supported in his product.

PROCESS CallHandling (12/12)

*

 *

ignore OR abnormal_release
/* PICS question 81.9 */

CC_RELEASE_COMPLETE
(..., "unexpected message", ...)

 -

abnormal_release
ignore

Figure C.17: Options for dealing with unexpected messages

Page 92
ETS 300 414: December 1995

C.6 Optional fields in a message

Cannot be dealt with in SDL. If ASN.1 is used for definition of data types, the optional fields can be
indicated with the keyword OPTIONAL.

C.7 Shared data between processes

This example shows how small databases can be modelled in SDL.

SDL does not have the concepts of global variables: a variable is always local to a process, and can not
be viewed or changed by another process. However, often it is necessary to have access to variables in
other processes.

For example supplementary services in ISDN need to access information on subscribers, and their
preferences regarding the provision of services. The Call Forwarding supplementary service, for example,
needs to know whether the served user wants to be notified when a call is being forwarded.

Several processes may want to access this information. It is possible to specify this by introducing a data
manager process. Other processes can get access to the information by means of signal exchange.

For example, on the following pages a block diagram is shown for call control. The processes
BasicCallControl and SupplementaryServices both need access to subscriber data: they need to know
which supplementary services are subscribed to. Process Management can update subscriber data: it can
add new subscribers, or can add new supplementary services for a given subscriber.

These subscriber data are maintained by process DataManager. This process maintains information
about the supplementary services that each subscriber subscribes to. A subscriber is represented in the
data base as its address, which in this case is an ASN.1 OCTET STRING. The services that are
subscribed to are represented by an ASN.1 BIT STRING. These data are defined in the following ASN.1
module:

SubscriberData
 {ccitt identified_organisation etsi(0) standards(0) 98 2} DEFINITIONS ::=
BEGIN
EXPORTS Address,

Services,
SubscrData;

Address ::= OCTET STRING (SIZE (1..20))

Services ::= BIT STRING {
CallForwardUnconditional(0),
CallForwardNoReply(1),
CallWaiting(2),
ThreeParty(3),
CallingLinePresentation(4) }

SubscrData ::= SEQUENCE {
address Address,
subscrTo Services }
END -- of subscriber data definitions

By sending signals to DataManager, data can be updated and retrieved. As the block diagram shows,
process Management can update the data base by sending signal AddAddress to add a subscriber, and
by sending signal AddServices to add subscribed services for a given subscriber. e.g. "OUTPUT
AddServices ('1234'H, {CallWaiting, ThreeParty})" would add Call Waiting and Three Party as subscribed
services for subscriber with address '1234'H.

For simplicity reasons, signals to remove services and subscribers have been left out from the example.

Processes BasicCallControl and SupplementaryServices can retrieve which services a client subscribes.
This can be done by sending signal SubscrInfReq with the clients address. DataManager will reply with
SubscrInfResp, with the subscribed services as parameter.

Page 93
ETS 300 414: December 1995

The process diagram of Datamanager makes use of a value returning procedure FindAddress, that takes
as parameter an address, and returns the index in the data base where this address occurs. This index
can than be used to update or retrieve the supplementary services that are subscribed to.

Block TelephoneService 1(1)

/*********** import of an ASN.1 module in SDL **********/

IMPORTS
Address, Services, SubscrData
FROM SubscriberData
 { ccitt identified_organisation etsi(0) standards(0) 98 2 };/* Telephony service */

SIGNAL
/* the below signals have parameters
 defined in the ASN.1 module */
AddAddress (Address),
AddServices (Address, Services),
SubscrInfReq (Address),
SubscrInfResp (Services);

Management

(1, 1)

DataManager

(1, 1)

Basic_
CallControl

(1, 1)

Supplementary_
Services

(1, 1)

Mgt_SAP

(MgtReqs)

Mgt_Data

AddAddress,
AddServices

BCC_SAP

(BasicCallResps) (BasicCallReqs)

BCall_Services

(InvokeList)

(EndInvokeList)

SS_SAP

(SupplServResps) (SupplServReqs)

Services_Data

SubscrInfReq

SubscrInfResp

BasicCall_Data

SubscrInfReq

SubscrInfResp

Figure C.18: Shared data example, block TelephoneService

Page 94
ETS 300 414: December 1995

Process DataManager 1(1)

/* DataManager maintains
 * a database of
 * subscriber information
 * (address + subscribed
 * suppl. services)
 */

/**** ASN.1 type definition in SDL ***/
SubscrDbase ::=
 SEQUENCE OF SubscrData;

/* declaration of variables */
DCL
i INTEGER,
addr Address, serv Services,
dbase SubscrDbase;

dbase := {}

idle

AddAdress
(addr)

dbase :=
Mkstring ({Addr, {} })

// dbase

operators
MkString and
// on ASN.1
SEQUENCE
OF type

idle

SubscrInfReq
(addr)

i:=call FindAddr
(addr,dbase)

i >= 0

SubscrInfRes
(dbase(i)!subscrTo)
TO Sender

idle

SubscrInfRes({})
TO Sender

idle

AddServices
(addr, serv)

i:=call FindAddr
(addr, dbase)

i >= 0

dbase(i)!subscrTo
:=dbase(i)!subscrTo

OR serv

operator OR for
bitwise OR
on BIT STRING.
dbase(i) indexes
one element in a
SEQUENCE OF

idle

ASN.1
empty list

FindAddr

TRUE FALSE
TRUE FALSE

Figure C.19: Shared data example, process DataManager

Page 95
ETS 300 414: December 1995

Procedure FindAddr 1(1)

;FPAR a Address, d SubscrDbase
RETURNS INTEGER;

DCL
i INTEGER,
found BOOLEAN;

/* Returns the index
 * in d that has
 * address a. If
 * a does not occur
 * as address in d,
 * -1 is returned.
 */

i:=-1,
found:=FALSE

i<Length(d)-1
AND NOT found

Length operator
on SEQUENCE
OF

i := i+1

found:=
d(i)!address=a

! accesses
a component of
a SEQUENCE

found

 i
/* return index */

-1
/* address not found */

TRUE

FALSE

TRUEFALSE

Figure C.20: Shared data example, procedure FindAddr

C.8 Informative parts of a specification

Informative parts may be present in a specification. For example, to model the environment of a system.
In that case, it is desirable to model only those aspects of the environment that are relevant to the
specified system, and abstract from the others.

SDL has several concepts to abstract from:

- the precise cause of an event NONE input;

- the precise reason for a decision ANY decision;

- the precise assignment of a value a := ANY Integer;

- the data type of a signal parameter ASN.1 type ANY;

- the detailed composition of a signal (..., parameter, ...).

Example models a packet switching network, that may loose packets, and does not guarantee that the
order in which the packets are delivered is the same as the order in which they were submitted to the
network.

Page 96
ETS 300 414: December 1995

Annex D (informative): Bibliography

The following references are given for informative purposes.

Tutorials

1) F. Belina, D. Hogrefe, A. Sarma (Prentice Hall, 1991): "SDL with applications
from protocol specification".

2) R. Braek, O. Haugen, (Simon & Schuster international, 1993): "Engineering Real
Time Systems".

3) O. Faergemand, A. Olsen (Forte conference, 1992): "New features in SDL
1992".

4) R. Saracco, J.R.W. Smith, R. Reed (North Holland, 1989): "Telecommunications
systems engineering using SDL".

5) D. Steedman (Technology Appraisals Ltd., UK, 1990): "Abstract Syntax Notation
One (ASN.1) - The Tutorial and Reference".

6) K.J. Turner (editor), (Wiley and sons, Sussex England 1993): "Using Formal
Description Techniques (an introduction to LOTOS, Estelle and SDL)".

Background on specification, testing, and validation techniques

7) A. Ek, J. Ellsberger (Proceedings Fifth SDL Forum: Evolving Methods, North
Holland, 1991): "A Dynamic Analysis Tool for SDL".

8) ETR 060 (1992): "Signalling Protocols and Switching (SPS); Guidelines for using
Abstract Syntax Notation One (ASN.1) in telecommunication application
protocols".

9) ETR 071 (1993): "Methods for Testing and Specification (MTS); Semantic
relationship between SDL and TTCN. A common semantics representation".

10) ETSI92: ETSI 15th Technical Assembly, "TC ATM Reflections on standards
validation", Temporary Document 29, July 1992.

11) J. Fischer, R. Schröder, "Combined Specification using SDL and ASN.1"

12) G.J. Holzmann, "Design and Validation of Computer Protocols", Prentice Hall,
1991.

13) Institution of Electrical Engineers (IEE guidelines, London 1988): "Guidelines
assuring testability".

14) C. H. West (Computer networks and ISDN systems 24, p. 219-242, North
Holland 1992): "Protocol validation - principles and applications".

Other

15) ECMA-QSIG-CF (1992): "Private Telecommunication Networks - Inter-exchange
signalling protocol - Diversion supplementary services".

Page 97
ETS 300 414: December 1995

Annex E (informative): Index

E.1 Textual index

A
abstract data type, 53
any, 43
array , 52
ASN.1

comment, 76
encoding rules, 76
macro, 76
SET, 76

B
boolean , 49

C
channel partitioning, 73
channel without delay, 57
character , 49
clarity principle , 19
conformance requirement, 17
conformance testing, 14
consistency principle , 19
correctness principle , 19

D
delay, 57
duration , 51

E
enabling condition, 74

F
formal validation, 12

I
implementation option
principle , 19
implementation options, 16
integer , 50
internal input, 74
internal output, 74
invalid input, 18

L
level of abstraction principle ,
20
levels of abstraction, 18

M
message sequence charts, 53
MSC

action, 57
comment, 56
condition, 57
coregion, 75
instance, 55

message, 56
process creation, 57
process stop, 58
sub MSC, 75
timer, 56

N
natural , 50
normative interface, 15
normative parts principle , 20

P
pid , 50
powerset , 53

R
real , 50
reset, 42
revealed variable, 73

S
SDL

block diagram, 25
block symbol, 31
channel, 31
connect, 37
connection of channels and
signal routes, 37
continuous signal, 41
decision, 43
exported variable, 74
imported/exported variable,
74
input, 39
join, 46
macro, 31
macro call, 35
macro definition, 31
macro inlet, 48
macro outlet, 48
nextstate, 46
optional transition, 42
output, 45
output to , 45
output via , 45
output via all, 45
Predefined data, 48
priority input, 40
procedure, 29
procedure call, 44
procedure return, 47
procedure start, 47
procedure symbol, 34
process create line, 37
process creation, 44
process diagram, 27
process start, 38

process stop, 46
process symbol, 36
remote procedure, 34
remote procedure call, 45
save, 40
select symbol, 33
signal definition, 33
signal route, 36
signallist, 33
spontaneous transition, 40
state, 38
synonym, 35
system diagram, 24
task, 42
text extension, 34
text symbol, 34
timer (SDL), 41
transition, 28
user defined data types, 51
variable, 37

service, 73
set, 42
signal refinement, 73
state space explosion
principle , 19
string , 52
struct , 52
syntype, 51

T
time , 51
time unit, 41

V
validation, 11
value returning procedures, 53
viewed variable, 73

Page 98
ETS 300 414: December 1995

E.2 Graphical index

symbol name of the symbol +
reference

symbol name of the symbol + reference

Join (layout mechanism to
connect two lines)
subclause 8.5.21

Procedure call
subclause 8.5.16

Macro outlet (end of macro)
subclause 8.7.1

Process creation
subclause 8.5.15

Procedure return
subclause 8.6.2

Save (prevents inputs from being
thrown away)
subclause 8.5.8

Process start
subclause 8.5.4

Input or timer expiry
subclauses 8.5.6, 8.5.11

Macro connection
subclause 8.7.1

Decision
subclause 8.5.14

Procedure start
subclause 8.6.1

Optional transition (option
depending on PICS)
subclause 8.5.12

Process symbol
subclause 8.4.1

Text extension
subclause 8.3.7

Procedure symbol
subclause 8.3.9

Comment
subclause 8.3.8

State
subclause 8.5.5

Continuous signal (transition
triggered by a condition)
subclause 8.5.10

Output
subclause 8.5.18

Process stop
subclause 8.5.20

Text symbol
subclause 8.3.6

Channel without delay or signal
route
subclauses 8.3.2, 8.4.2

Block, task symbol, timer set or
timer reset
subclauses 8.3.1, 8.5.13,
8.5.11

Channel with delay
subclause 8.3.2

Macro call
subclause 8.3.10

Create line
subclause 8.4.3

Page 99
Final draft prETS 300 414: August 1995

History

Document history

May 1995 Public Enquiry PE 62: 1994-05-09 to 1994-09-02

August 1995 Vote 86: 1995-08-21 to 1995-10-13
extended: 1995-08-21 to 1995-10-27

December 1995 First Edition

February 1996 Converted into Adobe Acrobat Portable Document Format (PDF)

ISBN 2-7437-0405-5
Dépôt légal : Décembre 1995

	Foreword
	Introduction
	1	Scope
	2	Normative references
	3	Definitions
	4	Symbols and abbreviations
	5	Conformance to this ETS
	6	Testing and validation
	6.1	Validation of specifications
	6.1.1	Formal validation
	6.1.2	Important aspects of a specification from a validation perspective

	6.2	Testing of telecommunication products
	6.2.1	Conformance testing
	6.2.2	Important aspects of a specification from a testing perspective
	6.2.2.1	Normative interfaces
	6.2.2.2	Implementation options
	6.2.2.3	Conformance requirements
	6.2.2.4	Handling of invalid inputs

	6.3	Specification principles to enable validation and testing

	7	SDL in European Telecommunication Standards
	7.1	Introduction
	7.2	Structure and contents of an ETS containing SDL

	8	Specification and description language concepts
	8.1	Introduction
	8.2	SDL diagrams
	8.2.1 System diagram
	8.2.2	Block diagram
	8.2.3	Process diagram
	8.2.4	Procedure diagram
	8.2.5	Macro diagram

	8.3	Symbols used in system diagrams
	8.3.1	Block
	8.3.2	Channel
	8.3.3	Signal definition
	8.3.4	Signallist
	8.3.5	Select symbol
	8.3.6	Text symbol
	8.3.7	Text extension
	8.3.8	Comment
	8.3.9	Procedure symbol
	8.3.10	Macro call
	8.3.11	Synonyms

	8.4	Symbols used in block diagrams
	8.4.1	Process symbol
	8.4.2	Signal route
	8.4.3	Create line
	8.4.4	Connection between channels and signal routes

	8.5	Symbols used in process diagrams
	8.5.1	Variable
	8.5.2	Process start
	8.5.3	State
	8.5.4	Input
	8.5.5	Priority input
	8.5.6	Save symbol
	8.5.7	Spontaneous transition
	8.5.8	Continuous signal
	8.5.9	Timer
	8.5.10	Optional transition
	8.5.11	Task
	8.5.12	Decision
	8.5.13	Process creation
	8.5.14	Procedure call
	8.5.15	Remote procedure call
	8.5.16	Output
	8.5.17	Nextstate
	8.5.18	Process stop
	8.5.19	Join

	8.6	Symbols used in procedure diagrams
	8.6.1	Procedure start
	8.6.2	Procedure return

	8.7	Symbols used in macro diagrams
	8.7.1	Macro connections

	8.8	Data types
	8.8.1	Predefined data
	8.8.2	User defined data types
	8.8.2.1	Subrange of a predefined data type
	8.8.2.2	Construction of data types
	8.8.2.3	Abstract data types
	8.8.2.4	User defined operations

	9	Message sequence charts concepts
	9.1	Introduction
	9.2	Symbols used in message sequence charts
	9.2.1	Instance
	9.2.2	Message
	9.2.3	Comment
	9.2.4	Timer
	9.2.5	Action
	9.2.6	Process creation
	9.2.7	Condition
	9.2.8	Process stop

	10	ASN.1 concepts
	10.1	ASN.1 identifiers
	10.2	ASN.1 import
	10.3	ASN.1 simple types
	10.4	ASN.1 structured types
	10.4.1	SEQUENCE
	10.4.2	Default and optional components in SEQUENCE
	10.4.3	SEQUENCE OF
	10.4.4	SET OF
	10.4.5	CHOICE

	10.5	ASN.1 subtypes
	10.5.1	Subtyping of simple types
	10.5.2	Subtyping of structured types

	10.6	ASN.1 tags
	10.7	ASN.1 useful types

	Annex A (normative):	Summary of use of ITU SDL 1992 in European Telecommunication Standards
	A.1	Selection of SDL concepts
	A.2	List of rules

	Annex B (informative):	Motivation for exclusion of SDL, MSC and ASN.1 concepts
	B.1	Motivation for exclusion of SDL concepts
	B.1.1	Channel partitioning
	B.1.2	SDL signal refinement
	B.1.3	SDL service
	B.1.4	Revealed and viewed variable
	B.1.5	Imported and exported variable
	B.1.6	SDL internal input and output
	B.1.7	SDL enabling condition
	B.1.8	Name class literals

	B.2	Motivation for exclusion of MSC concepts in combination with SDL
	B.2.1	MSC co-regions
	B.2.2	MSC sub message sequence charts

	B.3	Motivation for exclusion of ASN.1 concepts in combination with SDL
	B.3.1	ASN.1 comment
	B.3.2	Set
	B.3.3	Macro mechanism
	B.3.4	Value notation for ASN.1 type ANY
	B.3.5	ASN.1 encoding rules

	Annex C (informative):	Examples
	C.1	Addressing in SDL
	C.2	Remote operations
	C.2.1	Actions at the Activating X
	C.2.2	Actions at the Served User X
	C.2.3	Timer values
	C.2.4	Message sequence chart
	C.2.5	SDL diagrams

	C.3	Specification of implementation options
	C.4	Optional functionality
	C.5	Alternative behaviour
	C.6	Optional fields in a message
	C.7	Shared data between processes
	C.8	Informative parts of a specification

	Annex D (informative):	Bibliography
	Annex E (informative):	Index
	E.1	Textual index
	E.2	Graphical index

	History

