Radio Equipment and Systems (RES);
Electro-Magnetic Compatibility (EMC) for
European digital cellular telecommunications system
(GSM 900 MHz and DCS 1 800 MHz)
Part 2: Base station radio and ancillary equipment
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>5</td>
</tr>
<tr>
<td>1 Scope</td>
<td>7</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>7</td>
</tr>
<tr>
<td>3 Definitions</td>
<td>8</td>
</tr>
<tr>
<td>4 General test conditions</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Test conditions</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Test conditions for immunity tests</td>
<td>9</td>
</tr>
<tr>
<td>4.3 Normal test modulation for base station equipment</td>
<td>9</td>
</tr>
<tr>
<td>4.4 Arrangements for test signals at the input of the transmitter</td>
<td>9</td>
</tr>
<tr>
<td>4.5 Arrangements for test signals at the output of the transmitter</td>
<td>10</td>
</tr>
<tr>
<td>4.6 Arrangements for test signals at the input of the receiver</td>
<td>10</td>
</tr>
<tr>
<td>4.7 Arrangements for test signals at the output of the receiver</td>
<td>10</td>
</tr>
<tr>
<td>4.8 Receiver and duplex transceiver exclusion band</td>
<td>10</td>
</tr>
<tr>
<td>4.9 Transmitter exclusion band</td>
<td>10</td>
</tr>
<tr>
<td>4.10 Narrow band responses on receivers and duplex transceivers</td>
<td>10</td>
</tr>
<tr>
<td>5 Performance assessment</td>
<td>11</td>
</tr>
<tr>
<td>5.1 General</td>
<td>11</td>
</tr>
<tr>
<td>6 Performance criteria</td>
<td>12</td>
</tr>
<tr>
<td>6.1 Performance criteria for Continuous phenomena applied to Transmitters (CT)</td>
<td>12</td>
</tr>
<tr>
<td>6.2 Performance criteria for Transient phenomena applied to Transmitters (TT)</td>
<td>12</td>
</tr>
<tr>
<td>6.3 Performance criteria for Continuous phenomena applied to Receivers (CR)</td>
<td>12</td>
</tr>
<tr>
<td>6.4 Performance criteria for Transient phenomena applied to Receivers (TR)</td>
<td>12</td>
</tr>
<tr>
<td>7 Applicability overview tables</td>
<td>13</td>
</tr>
<tr>
<td>7.1 Emission</td>
<td>13</td>
</tr>
<tr>
<td>7.2 Immunity</td>
<td>13</td>
</tr>
<tr>
<td>8 Test methods and limits for emission tests of transmitters and/or receivers and/or ancillary equipment</td>
<td>14</td>
</tr>
<tr>
<td>8.1 Test configuration</td>
<td>14</td>
</tr>
<tr>
<td>8.2 Enclosure, ancillary equipment</td>
<td>15</td>
</tr>
<tr>
<td>8.2.1 Definition</td>
<td>15</td>
</tr>
<tr>
<td>8.2.2 Test method</td>
<td>15</td>
</tr>
<tr>
<td>8.2.3 Limits</td>
<td>15</td>
</tr>
<tr>
<td>8.3 DC power input/output port</td>
<td>15</td>
</tr>
<tr>
<td>8.3.1 Definition</td>
<td>15</td>
</tr>
<tr>
<td>8.3.2 Test method</td>
<td>15</td>
</tr>
<tr>
<td>8.3.3 Limit for conducted RF signals</td>
<td>15</td>
</tr>
<tr>
<td>8.4 AC mains power input/output ports</td>
<td>16</td>
</tr>
<tr>
<td>8.4.1 Definition</td>
<td>16</td>
</tr>
<tr>
<td>8.4.2 Test method</td>
<td>16</td>
</tr>
<tr>
<td>8.4.3 Limit</td>
<td>16</td>
</tr>
<tr>
<td>8.5 Antenna port, base stations</td>
<td>16</td>
</tr>
<tr>
<td>8.5.1 Definition</td>
<td>16</td>
</tr>
<tr>
<td>8.5.2 Test method</td>
<td>16</td>
</tr>
<tr>
<td>8.5.3 Test limits</td>
<td>17</td>
</tr>
<tr>
<td>8.6 Enclosure, base stations</td>
<td>17</td>
</tr>
<tr>
<td>8.6.1 Definition</td>
<td>17</td>
</tr>
<tr>
<td>8.6.2 Test method</td>
<td>17</td>
</tr>
<tr>
<td>8.6.3 Test limits</td>
<td>18</td>
</tr>
</tbody>
</table>
9 Test methods and levels for immunity tests of transmitters and/or receivers and/or fixed ancillary equipment ... 18
9.1 Test configuration .. 18
9.2 RF electro-magnetic field (80 to 1 000 MHz) .. 19
 9.2.1 Definition .. 19
 9.2.2 Test method and level ... 19
 9.2.3 Performance criteria ... 19
9.3 Electrostatic discharge ... 19
 9.3.1 Definition .. 20
 9.3.2 Test method and levels ... 20
 9.3.3 Performance criteria ... 20
9.4 Fast transients common mode .. 20
 9.4.1 Definition .. 20
 9.4.2 Test method and levels ... 20
 9.4.3 Performance criteria ... 21
9.5 RF common mode, 0,15 MHz to 80 MHz (current clamp injection) ... 21
 9.5.1 Definition .. 21
 9.5.2 Test method and level ... 21
 9.5.3 Performance criteria ... 21
9.6 Voltage dips and interruptions ... 22
 9.6.1 Definition .. 22
 9.6.2 Test method and levels ... 22
 9.6.3 Performance criteria ... 22
9.7 Surges, common and differential mode ... 23
 9.7.1 Definition .. 23
 9.7.2 Test method and level ... 23
 9.7.3 Performance criteria ... 23
9.8 RF conducted immunity, antenna port ... 24
 9.8.1 Definition .. 24
 9.8.2 Test method ... 24
 9.8.3 Performance criteria ... 24
History ... 25
Foreword

This European Telecommunication Standard (ETS) has been prepared by the Radio Equipment and Systems (RES) Technical Committee of the European Telecommunications Standards Institute (ETSI).

This ETS is based upon the Generic Standards EN 50081-1 [1] and EN 50082-1 [2], ETS 300 339 [3], and other standards where appropriate, to meet the protection requirements of the Council Directive 89/336/EEC [4].

Every ETS prepared by ETSI is a voluntary standard. This ETS contains text which may be used for regulatory purposes. This text does not make this ETS mandatory in its status as a standard. However, the ETS can be referenced, wholly or in part, for mandatory application by decisions of regulatory bodies.

This ETS is produced in two (2) parts to reflect those requirements for Terminal Equipment and non-Terminal Equipment as follows:

Part 1: Mobile and portable radio and ancillary equipment;

Part 2: Base station radio and ancillary equipment.

<table>
<thead>
<tr>
<th>Proposed transposition dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of latest announcement of this ETS (doa):</td>
</tr>
<tr>
<td>Date of latest publication of new National Standard or endorsement of this ETS (dop/e):</td>
</tr>
<tr>
<td>Date of withdrawal of any conflicting National Standard (dow):</td>
</tr>
</tbody>
</table>
1 Scope

This European Telecommunication Standard (ETS) covers the assessment of radio communication and ancillary equipment in respect of Electro-Magnetic Compatibility (EMC).

This ETS specifies the applicable EMC tests, the methods of measurements, the limits and the minimum performance criteria for GSM 900 MHz and DCS 1 800 MHz digital public cellular base station radio equipment, transmitting and receiving speech and/or data, and the associated ancillary equipment.

The environment classification used in this ETS refers to the environment classification used in the Generic Standards EN 50081-1 [1] and EN 50082-1 [2].

For the purposes of this ETS, Base Transceiver Stations (BTSs), and single cabinet Base Station Systems (BSSs), are considered to be radio communications equipment.

For the purposes of this ETS the manufacturer may declare that Base Station Controllers (BSCs) and Transcoders (XC) are to be considered as ancillary equipment (see clause 3 for the definition of ancillary equipment).

Mobile services Switching Centres (MSCs) and Echo Cancellers (ECs) are not covered by this ETS.

The EMC requirements have been selected to ensure an adequate level of compatibility for apparatus at residential, commercial, and light industrial environments. The levels however, do not cover extreme cases which may occur in any location but with low probability of occurrence.

This ETS may not cover those cases where a potential source of interference which is producing individually repeated transient phenomena, or a continuous phenomena, is permanently present, e.g. a radar or broadcast site in the near vicinity. In such a case it may be necessary to use special protection applied to either the source of interference, or the interfered part, or both.

Compliance of radio equipment to the requirements of this ETS does not signify compliance to any requirement related to the use of the equipment (i.e. licensing requirements).

Compliance to this ETS does not signify compliance to any safety requirement. However, it is the responsibility of the assessor of the equipment that any observation regarding the equipment becoming dangerous or unsafe as a result of the application of the tests of this ETS, should be recorded in the test report.

2 Normative references

This ETS incorporates, by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this ETS only when incorporated in it by amendment or revision. For undated references, the latest edition of the publication referred to applies.

[5] GSM 01.04: "European digital cellular telecommunications system - Vocabulary in a GSM PLMN".
3 Definitions

For the purposes of this ETS, the following definitions apply.

ancillary equipment: Equipment (apparatus), used in connection with a receiver, transmitter or transceiver, is considered as an ancillary equipment (apparatus) if:

- the equipment is intended for use in conjunction with a receiver, transmitter or transceiver to provide additional operational and/or control features to the radio equipment (e.g. to extend control to another position or location); and
- the equipment cannot be used on a stand alone basis to provide user functions independently of a receiver, transmitter or transceiver; and
- the receiver, transmitter or transceiver to which it is connected, is capable of providing some intended operation such as transmitting and/or receiving without the ancillary equipment (i.e. it is not a sub-unit of the main equipment essential to the main equipment basic functions).

base station: A base station is a BTS or BSS as defined in GSM 01.04 [5].

integral antenna equipment: Equipment fitted with an antenna designed to be connected to the equipment without the use of an external connector and considered to be part of the equipment. An integral antenna may be fitted internally or externally to the equipment.

manufacturer: The legal entity responsible under the terms of the Council Directive, 89/336/EEC [4], for placing the product on the market.

port: A particular interface of the specified equipment (apparatus) with the electromagnetic environment.

radio communications equipment: An apparatus which includes one or more transmitters and/or receivers and/or parts thereof. This type of equipment (apparatus) can be used in a fixed, mobile or a portable application.
RXQUAL: A measure of the received signal quality, which is generated by the base station for use as a criterion in the RF power control and handover processes. For more information see GSM 05.08 [6], subclause 8.2.

4 General test conditions

4.1 Test conditions

The equipment shall be tested under normal test conditions contained in the relevant product and basic standards or in the information accompanying the equipment, which are within the manufacturers declared range of humidity, temperature, and supply voltage.

The test conditions shall be recorded in the test report.

The test configuration shall be as close to normal intended use as possible and shall be recorded in the test report.

The test set ups for transmitters and receivers are described separately for the sake of clarity. However, it is not necessarily excluded that the test of the transmitter section and receiver section of the EUT can be carried out simultaneously to reduce test time.

4.2 Test conditions for immunity tests

For the immunity tests of transmitters, the transmitter shall be operated at its maximum rated output power, up to and not exceeding a maximum of 20 W, modulated with normal test modulation (see subclauses 4.3 and 4.4). A communication link shall be established (see subclause 4.5).

For the immunity tests of receivers, the wanted input signal, coupled to the receiver, shall be modulated with normal test modulation (see subclauses 4.3 and 4.6). A communication link shall be established (see subclause 4.7).

For the immunity tests of duplex transceivers, the wanted input signal, coupled to the receiver, shall be modulated with normal test modulation (see subclauses 4.3 and 4.6). The transmitter shall be operated at its maximum rated output power, up to and not exceeding a maximum of 20 W. A communication link shall be established (see subclause 4.5).

4.3 Normal test modulation for base station equipment

A communication link shall be set up with a suitable mobile or mobile simulator (hereafter called "the test system").

The wanted RF input signal nominal frequency shall be selected by setting the Absolute Radio Frequency Channel Number (AFRCN) to an appropriate number, e.g. in the case of GSM 900 MHz this will be 60 to 65.

The following conditions shall be met:

- the EUT shall be commanded to operate at maximum transmit power, up to, and not exceeding, a maximum of 20 W;
- the uplink and downlink RXQUAL shall be monitored.

4.4 Arrangements for test signals at the input of the transmitter

A communication link shall be set up between the EUT and the test system.
4.5 **Arrangements for test signals at the output of the transmitter**

The test system shall be located outside of the test environment.

The wanted signal to establish a communication link shall be delivered from the antenna connector by a coaxial cable. Adequate measures shall be taken to minimise the effect of unwanted currents on the external conductor of the coaxial cable at the point of entry to the equipment. Adequate measures shall also be taken to avoid the effect of the unwanted signal on the measuring equipment.

4.6 **Arrangements for test signals at the input of the receiver**

The test system shall be located outside of the test environment.

The wanted signal to establish a communication link shall be presented to the antenna connector by a coaxial cable. Adequate measures shall be taken to minimise the effect of unwanted currents on the external conductor of the coaxial cable at the point of entry to the equipment. The source of the wanted input signal shall be located outside of the test environment and shall be at a nominal value of 66 dBµV emf except for the tests carried out in subclause 9.8.2, where the wanted signal level shall be in accordance with GSM 11.20 [7].

4.7 **Arrangements for test signals at the output of the receiver**

The audio frequency output of the equipment should be coupled via a non-metallic acoustic tube to a suitable audio level meter outside of the test environment.

Where it is not practical to use a non metallic tube, then other means of connecting the receiver output to a suitable audio level meter shall be provided and recorded in the test report. Precautions shall be taken to ensure that any effect on the test is minimized.

4.8 **Receiver and duplex transceiver exclusion band**

The exclusion band for receivers and the receivers of transceivers is the band of frequencies over which no radiated immunity tests are made.

The lower frequency of the exclusion band is the lower frequency of the receive band of the EUT minus 6 %.

The upper frequency of the exclusion band is the upper frequency of the receive band of the EUT plus 5 %.

4.9 **Transmitter exclusion band**

The exclusion band for transmitters extends ± 200 kHz from the nominal operating frequency of the transmitter.

4.10 **Narrow band responses on receivers and duplex transceivers**

Responses on receivers or duplex transceivers occurring during the test at discrete frequencies which are narrow band responses (spurious responses), are identified by the following method:

- if during an immunity test the RXQUAL being monitored goes outside the specified figure, it is necessary to establish whether the RXQUAL increase is due to a narrow band response or to a wide band phenomenon. Therefore, the test shall be repeated with the unwanted signal frequency increased, and then decreased by 400 kHz;

- if the RXQUAL increase disappears in either or both of the above 400 kHz offset cases, then the response is considered as a narrow band response;

- if the RXQUAL increase does not disappear, this may be due to the fact that the offset has made the frequency of the unwanted signal correspond to the frequency of another narrow band response. Under these circumstances the procedure is repeated with the increase and decrease of the frequency of the unwanted signal set to 500 kHz;
- if the RXQUAL increase still does not disappear with the increased and/or decreased frequency, the phenomena is considered wide band and therefore an EMC problem and the equipment fails the test.

Narrow band responses are disregarded.

5 Performance assessment

5.1 General

The manufacturer shall at the time of submission of the equipment for test, supply the following information which shall be recorded in the test report:

- any primary functions of the radio equipment additional to those specified in clause 6, as requested by the manufacturer, to be tested during and after the EMC testing;

- the intended functions of the EUT which shall be in accordance with the documentation accompanying the equipment;

- the user-control functions and stored data that are required for normal operation and the method to be used to assess whether these have been lost after EMC stress;

- the ancillary equipment to be combined with the radio equipment for testing;

- the ancillary equipment submitted for test on a stand alone basis, not combined with the radio equipment;

- an exhaustive list of ports, classified as either power or signal/control. Power ports shall further be classified as ac or dc power.

If the equipment is a radio equipment of a non-specialised nature or a radio equipment combined with an ancillary equipment, the test modulation, test arrangement etc. as required in clause 4 shall apply.

If the ancillary equipment is intended for use at a remote location, tests to all applicable immunity clauses and emission clauses of this ETS are mandatory.

In the case of ancillary equipment tested on a stand alone basis and/or radio equipment of a specialised nature (see clause 6) the manufacturer shall define the method of test to determine the acceptable level of performance or degradation of performance during and/or after the test. Under these circumstances the manufacturer shall also provide the following information:

- the pass/fail criteria for the EUT;

- the method of observing a degradation of performance of the equipment.

The degradation of performance assessment which shall be carried out during and/or at the conclusion of the tests, shall be simple, but at the same time give adequate proof that the essential functions of the equipment are operational.

An ancillary equipment may, at the manufacturer's discretion, be declared compliant separately from a receiver, transmitter or transceiver to all the applicable immunity and emission clauses of this ETS.

Alternatively, at the manufacturer's discretion, an ancillary equipment may be declared compliant to another harmonised EMC standard.

Either way, this compliance may enable the ancillary equipment to be used with different receivers, transmitters or transceivers.

An ancillary equipment may, at the manufacturer's discretion, be tested with it connected to a receiver, transmitter or transceiver during the tests, in which case compliance shall be demonstrated to the appropriate clauses of this ETS.
6 Performance criteria

The establishment and maintenance of a communications link, and the assessment of RXQUAL are used as the performance criteria to ensure that all the primary functions of the transmitter and receiver are evaluated during the immunity tests.

Specifically the equipment shall meet the minimum performance criteria as specified in the following subclauses as appropriate.

If an equipment is of a specialised nature, such that the performance criteria described in the following subclauses are not appropriate, then the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after testing, as required by this ETS. The performance specification shall be included in the product description and documentation. The performance criteria specified by the manufacturer shall, however, give the same degree of immunity protection as called for in the following subclauses.

6.1 Performance criteria for Continuous phenomena applied to Transmitters (CT)

A communications link (see subclauses 4.5 and 4.6) shall be established at the start of the test, and maintained during the test.

For base stations the RXQUAL of the downlink shall not exceed three (3) measured during the test sequence.

At the conclusion of the test the EUT shall operate as intended with no loss of user control functions or stored data, and the communication link shall have been maintained.

Where the EUT is a transmitter only, tests shall be performed with the EUT in standby mode to ensure that unintentional transmission does not occur.

6.2 Performance criteria for Transient phenomena applied to Transmitters (TT)

A communications link (see subclauses 4.5 and 4.6) shall be established at the start of the test.

At the conclusion of each exposure the EUT shall operate with no user noticeable loss of the communication link.

At the conclusion of the total test comprising the series of individual exposures the EUT shall operate as intended with no loss of user control functions or stored data, as declared by the manufacturer, and the communication link shall have been maintained.

Where the EUT is a transmitter only, tests shall be performed with the EUT in standby mode to ensure that unintentional transmission does not occur.

6.3 Performance criteria for Continuous phenomena applied to Receivers (CR)

A communications link (see subclauses 4.5 and 4.6) shall be established at the start of the test, and maintained during the test.

For base stations the RXQUAL of the uplink shall not exceed three (3) measured during the test sequence.

At the conclusion of the test the EUT shall operate as intended with no loss of user control functions or stored data, and the communication link shall have been maintained.

6.4 Performance criteria for Transient phenomena applied to Receivers (TR)

A communications link (see subclauses 4.5 and 4.6) shall be established at the start of the test.

At the conclusion of each exposure the EUT shall operate with no user noticeable loss of the communication link.
At the conclusion of the total test comprising the series of individual exposures, the EUT shall operate as intended with no loss of user control functions or stored data, as declared by the manufacturer, and the communication link shall have been maintained.

7 Applicability overview tables

7.1 Emission

Table 1: Emission applicability

<table>
<thead>
<tr>
<th>Equipment test requirement</th>
<th>Reference subclause in this ETS</th>
<th>Reference document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Base station and ancillary equipment for fixed use</td>
<td></td>
</tr>
<tr>
<td>Enclosure</td>
<td>applicable to ancillary equipment not incorporated in base stations</td>
<td>8.2</td>
</tr>
<tr>
<td>DC power in/out</td>
<td>applicable</td>
<td>8.3</td>
</tr>
<tr>
<td>AC mains</td>
<td>applicable</td>
<td>8.4</td>
</tr>
<tr>
<td>Antenna port</td>
<td>applicable</td>
<td>8.5</td>
</tr>
<tr>
<td>Enclosure</td>
<td>applicable</td>
<td>8.6</td>
</tr>
</tbody>
</table>

7.2 Immunity

Table 2: Immunity applicability

<table>
<thead>
<tr>
<th>Equipment test requirement</th>
<th>Reference subclause in this ETS</th>
<th>Reference document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenomena</td>
<td>Application</td>
<td>Base station and ancillary equipment for fixed use</td>
</tr>
<tr>
<td>RF electromagnetic field (80 to 1 000 MHz)</td>
<td>Enclosure</td>
<td>applicable</td>
</tr>
</tbody>
</table>

(continued)
Table 2 (concluded): Immunity applicability

<table>
<thead>
<tr>
<th>Phenomena</th>
<th>Application</th>
<th>Equipment test requirement</th>
<th>Reference subclause in this ETS</th>
<th>Reference document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast transients common mode</td>
<td>Signal and control ports, dc and ac power ports</td>
<td>applicable</td>
<td>9.4</td>
<td>IEC 801-4 [12]</td>
</tr>
<tr>
<td>RF common mode 0.15 to 80 MHz (current clamp injection)</td>
<td>Signal and control ports, dc and ac power ports</td>
<td>applicable</td>
<td>9.5</td>
<td>ENV 50141 [13]</td>
</tr>
<tr>
<td>Voltage dips and interruptions</td>
<td>AC mains power input ports</td>
<td>applicable</td>
<td>9.6</td>
<td>IEC 1000-4-11 [14]</td>
</tr>
<tr>
<td>Surges, common and differential mode</td>
<td>AC mains power input ports</td>
<td>applicable</td>
<td>9.7</td>
<td>IEC 1000-4-5 [15]</td>
</tr>
<tr>
<td>RF conducted</td>
<td>Antenna port</td>
<td>applicable</td>
<td>9.8</td>
<td>GSM 11.20 [7]</td>
</tr>
</tbody>
</table>

8 Test methods and limits for emission tests of transmitters and/or receivers and/or ancillary equipment

8.1 Test configuration

This subclause defines the requirements for test configurations for tests in the following subclauses and are as follows:

- measurements shall be made in the operational mode producing the largest emission in the frequency band being investigated consistent with normal applications;
- the equipment shall be configured in a manner which is representative of a normal/typical operation, where practical;
- an attempt shall be made to maximise the detected radiated emission, e.g. by moving the cables of the equipment;
- if the equipment is part of a system, or can be connected to ancillary equipment, then it shall be acceptable to test the equipment while connected to the minimum representative configuration of ancillary equipment necessary to exercise the ports;
- the configuration and mode of operation during measurements shall be precisely noted in the test report;
- if the equipment has a large number of ports, then a sufficient number shall be selected to simulate actual operational conditions and to ensure that all the different types of termination are tested;
- ports which in normal operation are connected shall be connected to an ancillary equipment or to a representative piece of cable terminated to simulate the impedance of the ancillary equipment. RF input/output ports shall be correctly terminated;
- the tests shall be carried out at a point within the specified normal operating environmental range and at the rated supply voltage for the equipment.
8.2 Enclosure, ancillary equipment

This test is applicable to fixed ancillary equipment not incorporated into base stations.

This test shall be performed on a representative configuration of the ancillary equipment, or a representative configuration of the combination of radio and fixed ancillary equipment.

8.2.1 Definition

This test assesses the ability of ancillary equipment to limit any spurious radiation from its enclosure.

8.2.2 Test method

The test method shall be in accordance with EN 55022 [8].

8.2.3 Limits

Class B limits shall be according to EN 55022 [8] shown in table 3 (10 m measuring distance).

Table 3: Limits for spurious radiation (Class B)

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Limit (quasi-peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 to 230 MHz</td>
<td>30 dBµV/m</td>
</tr>
<tr>
<td>> 230 to 1 000 MHz</td>
<td>37 dBµV/m</td>
</tr>
</tbody>
</table>

8.3 DC power input/output port

This test is applicable for base station and fixed ancillary equipment which may have dc cables longer than three (3) metres.

This test shall be performed on a representative configuration of the radio equipment or a representative configuration of the combination of radio and fixed ancillary equipment.

8.3.1 Definition

This test assesses the ability of transmitters, receivers, transceivers and fixed ancillary equipment to limit its internal noise from being present on the dc power input/output ports.

8.3.2 Test method

The dc power input ports shall be connected via a 5 µH Line Impedance Stabilising Networks (LISNs), with 50 Ω impedance measurement ports to a dc power source. The LISNs shall be in accordance with the requirements of CISPR Publication No. 16-1 [9].

The equipment shall be installed with a ground plane as defined in EN 55022 [8] subclause 9.3. The reference earth point of the LISNs shall be connected to the reference ground plane with a conductor as short as possible.

The measurement receiver shall be in accordance with the requirements of CISPR Publication No. 16-1 [9].

A measuring receiver shall be connected to each LISN measurement port in turn and the conducted emission levels recorded. The LISN measurement ports not being used for measurement shall be terminated with a 50 Ω load.

8.3.3 Limit for conducted RF signals

The equipment shall meet the limits in table 4 (including the average limit and the quasi-peak limit) when using, respectively, an average detector receiver and a quasi-peak detector receiver and measured in accordance with the method described in subclause 8.3.2. If the average limit is met when using a quasi-
peak detector, the equipment shall be deemed to meet both limits and measurement with the average
detector receiver is unnecessary.

Table 4: Limits for conducted RF signals

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Quasi-peak</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15 to 0.5 MHz</td>
<td>79 dBµV</td>
<td>66 dBµV</td>
</tr>
<tr>
<td>> 0.5 to 30 MHz</td>
<td>73 dBµV</td>
<td>60 dBµV</td>
</tr>
</tbody>
</table>

8.4 AC mains power input/output ports

This test is applicable for base station and fixed ancillary equipment powered by ac mains.

This test shall be performed on a representative configuration of the radio equipment or a representative
configuration of the combination of radio and fixed ancillary equipment.

8.4.1 Definition

This test assesses the ability of transmitters, receivers, transceivers and fixed ancillary equipment to limit
its internal noise from being present on the ac mains power input/output ports.

8.4.2 Test method

The test method shall be in accordance with EN 55022 [8].

8.4.3 Limit

The limits shall be Class B according to EN 55022 [8] shown in table 5.

Table 5: Limits for conducted RF signals (Class B)

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Quasi-peak</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15 to 0.5 MHz</td>
<td>66 - 56 dBµV</td>
<td>56 - 46 dBµV</td>
</tr>
<tr>
<td>> 0.5 to 5 MHz</td>
<td>56 dBµV</td>
<td>46 dBµV</td>
</tr>
<tr>
<td>> 5 to 30 MHz</td>
<td>60 dBµV</td>
<td>50 dBµV</td>
</tr>
</tbody>
</table>

NOTE: The limit decreases linearly with the logarithm of frequency in the range 0,15 MHz to
0,50 MHz.

8.5 Antenna port, base stations

This test is applicable for base stations having an external antenna connector.

This test shall be performed on a representative configuration of the radio equipment or a representative
configuration of the combination of radio and fixed ancillary equipment.

8.5.1 Definition

This test assesses the ability of base stations to limit its internal noise from being conducted to the
antenna as spurious emissions.

8.5.2 Test method

The test method for emissions from transmitters shall be in accordance with GSM 11.20 [7].

The test method for emissions from receivers shall be in accordance with GSM 11.20 [7].

The conducted spurious emissions to the antenna shall be measured in terms of peak output power level
of radio signals at the antenna port of the EUT, when terminated with a 50 Ω load.
The wanted radio frequency signals necessary to radiate the corresponding information are excluded from this test.

Adequate measures shall be taken to protect the measuring equipment from the effect of being overloaded by the wanted radio frequency signal.

The bandwidths shall be selected as given in table 6.

Table 6: Bandwidths for spurious emissions measurement

<table>
<thead>
<tr>
<th>Frequency band</th>
<th>Frequency offset</th>
<th>Resolution bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSS TX band (offset from carrier)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>= 600 kHz</td>
<td></td>
<td>10 kHz</td>
</tr>
<tr>
<td>>= 1,8 MHz</td>
<td></td>
<td>30 kHz</td>
</tr>
<tr>
<td>>= 6,0 MHz</td>
<td></td>
<td>100 kHz</td>
</tr>
<tr>
<td>890 MHz to 915 MHz</td>
<td>all</td>
<td>30 kHz</td>
</tr>
<tr>
<td>Outside BSS TX and RX bands</td>
<td>(offset from BSS Tx band)</td>
<td></td>
</tr>
<tr>
<td>>= 2 MHz</td>
<td></td>
<td>30 kHz</td>
</tr>
<tr>
<td>>= 5 MHz</td>
<td></td>
<td>100 kHz</td>
</tr>
<tr>
<td>>= 10 MHz</td>
<td></td>
<td>300 kHz</td>
</tr>
<tr>
<td>>= 20 MHz</td>
<td></td>
<td>1.0 MHz</td>
</tr>
<tr>
<td>>= 30 MHz</td>
<td></td>
<td>3 MHz</td>
</tr>
</tbody>
</table>

NOTE: For low frequencies, the resolution bandwidth shall be lower than the search frequency. In the frequency range 9 kHz to 100 kHz, the resolution bandwidth shall be 1 kHz, and in the range 100 kHz to 10 MHz it shall be 10 kHz.

8.5.3 Test limits

Table 7: Maximum level of antenna port transmitter conducted spurious emissions

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Maximum level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 kHz to 1 000 MHz</td>
<td>- 36 dBm</td>
</tr>
<tr>
<td>> 1 000 MHz to 12,75 GHz</td>
<td>- 30 dBm</td>
</tr>
</tbody>
</table>

Table 8: Maximum level of antenna port receiver conducted spurious emissions

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Maximum level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 kHz to 1 000 MHz</td>
<td>- 57 dBm</td>
</tr>
<tr>
<td>> 1 000 MHz to 12,75 GHz</td>
<td>- 47 dBm</td>
</tr>
</tbody>
</table>

8.6 Enclosure, base stations

This test is applicable for base stations.

This test shall be performed on a representative configuration of the radio equipment or a representative configuration of the combination of radio and fixed ancillary equipment.

8.6.1 Definition

This test assesses the ability of base stations to limit any spurious radiation from the enclosure.

8.6.2 Test method

The test method for emissions from transmitters shall be in accordance with GSM 11.20 [7].

The test method for emissions from receivers shall be in accordance with GSM 11.20 [7].

The radiated spurious emissions from the cabinet, using the substitution method, shall be measured in terms of peak output power level.
The wanted radio frequency signals necessary to radiate the corresponding information are excluded from this test.

Adequate measures shall be taken to protect the measuring equipment from the effect of being overloaded by the wanted radio frequency signal.

The bandwidths shall be selected as given in Table 9.

Table 9: Bandwidths for spurious emissions measurement

<table>
<thead>
<tr>
<th>Frequency band</th>
<th>Frequency offset (offset from carrier)</th>
<th>Resolution bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSS TX band</td>
<td>>= 600 kHz</td>
<td>10 kHz</td>
</tr>
<tr>
<td></td>
<td>>= 1.8 MHz</td>
<td>30 kHz</td>
</tr>
<tr>
<td></td>
<td>>= 6.0 MHz</td>
<td>100 kHz</td>
</tr>
<tr>
<td>890 MHz to 915 MHz</td>
<td>all</td>
<td>30 kHz</td>
</tr>
<tr>
<td>Outside the BSS TX and RX bands</td>
<td>(offset from BSS Tx band)</td>
<td>30 kHz</td>
</tr>
<tr>
<td></td>
<td>>= 2 MHz</td>
<td>30 kHz</td>
</tr>
<tr>
<td></td>
<td>>= 5 MHz</td>
<td>100 kHz</td>
</tr>
<tr>
<td></td>
<td>>= 10 MHz</td>
<td>300 kHz</td>
</tr>
<tr>
<td></td>
<td>>= 20 MHz</td>
<td>1 MHz</td>
</tr>
<tr>
<td></td>
<td>>= 30 MHz</td>
<td>3 MHz</td>
</tr>
</tbody>
</table>

NOTE: For low frequencies, the resolution bandwidth shall be lower than the search frequency. In the frequency range 9 kHz to 100 kHz, the resolution bandwidth shall be 1 kHz, and in the range 100 kHz to 10 MHz it shall be 10 kHz.

8.6.3 Test limits

Table 10: Maximum level of enclosure transmitter radiated spurious emissions

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Maximum level</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 MHz to 1 000 MHz</td>
<td>- 36 dBm</td>
</tr>
<tr>
<td>> 1 000 MHz to 4 GHz</td>
<td>- 30 dBm</td>
</tr>
</tbody>
</table>

Table 11: Maximum level of enclosure receiver radiated spurious emissions

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Maximum level</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 MHz to 1 000 MHz</td>
<td>- 57 dBm</td>
</tr>
<tr>
<td>> 1 000 MHz to 4 GHz</td>
<td>- 47 dBm</td>
</tr>
</tbody>
</table>

9 Test methods and levels for immunity tests of transmitters and/or receivers and/or fixed ancillary equipment

9.1 Test configuration

This subclause defines the requirements for test configurations for tests in the following subclauses and are as follows:

- the measurement shall be made in the operational mode as required in subclause 4.1;
- if the equipment is part of a system, or can be connected to fixed ancillary equipment, then it shall be acceptable to test the equipment connected to the minimum representative configuration of fixed ancillary equipment necessary to exercise the ports;
- for the immunity tests of fixed ancillary equipment, without a separate pass/fail criteria, the receiver, transmitter or transceiver coupled to the fixed ancillary equipment shall be used to judge whether the fixed ancillary equipment passes or fails;
- the configuration and mode of operation during measurements shall be precisely noted in the test report;
- if the equipment has a large number of ports, then a sufficient number shall be selected to simulate actual operational conditions and to ensure that all the different types of termination are covered;
- ports which in normal operation are connected, shall be connected to an fixed ancillary equipment or to a representative piece of cable terminated to simulate the impedance of the fixed ancillary equipment. RF input/output ports shall be correctly terminated;
- the tests shall be carried out at a point within the specified normal operating environmental range and at the rated supply voltage for the equipment.

9.2 RF electro-magnetic field (80 to 1 000 MHz)

This test is applicable for base station and fixed ancillary equipment.

This test shall be performed on a representative configuration of the radio equipment or a representative configuration of the combination of radio and fixed ancillary equipment.

9.2.1 Definition

This test assesses the ability of transmitters, receivers, transceivers and fixed ancillary equipment to operate as intended in the presence of a radio frequency electromagnetic field disturbance.

9.2.2 Test method and level

The test method shall be in accordance with ENV 50140 [10] except that the following requirements and evaluation of test results shall apply:

- the test level shall be 3 V/m amplitude modulated to a depth of 80 % by a sinusoidal audio signal of 1 kHz;
- for receivers and transmitters, the stepped frequency increments shall be 1 % of the momentary frequency;
- for transmitters in transceivers the stepped frequency increments shall be 10 % of the momentary frequency;
- the test shall be performed over the frequency range 80 to 1 000 MHz with the exception of an exclusion band for transmitters, (see subclause 4.9), and for receivers and receivers of transceivers, (see subclause 4.8);
- responses of receivers and receivers of transceivers occurring at discrete frequencies which are narrow band responses, shall be disregarded from the test, (see subclause 4.10);
- the frequencies selected during the test shall be recorded in the test report.

9.2.3 Performance criteria

For transmitters the performance criteria CT (see subclause 6.1) shall apply.

For receivers and receivers of transceivers, the performance criteria CR (see subclause 6.3) shall apply.

For fixed ancillary equipment the pass/fail criteria supplied by the manufacturer shall apply, unless the fixed ancillary equipment is tested in connection with receivers, transmitters or transceivers in which case the corresponding performance criteria above shall apply.

9.3 Electrostatic discharge

This test is applicable for base station and fixed ancillary equipment.

This test shall be performed on a representative configuration of the radio equipment or a representative configuration of the combination of radio and fixed ancillary equipment.
9.3.1 Definition

This test assesses the ability of transmitters, receivers, transceivers and fixed ancillary equipment to operate as intended in the event of an electrostatic discharge.

9.3.2 Test method and levels

The test method shall be in accordance with IEC 801-2 [11].

For transmitters, receivers, transceivers and fixed ancillary equipment the following requirements shall apply:

- for contact discharge, the equipment shall pass at ± 2 kV and ± 4 kV; for air discharge shall pass at ± 2 kV, ± 4 kV and ± 8 kV, (see IEC 801-2 [11], clause 5);
- electrostatic discharges shall be applied to all exposed surfaces of the EUT except where the user documentation specifically indicates a requirement for appropriate protective measures (IEC 801-2 [11], subclause 8.3.1).

9.3.3 Performance criteria

For transmitters the performance criteria TT (see subclause 6.2) shall apply.

For stand alone receivers or receivers which are part of transceivers the performance criteria TR (see subclause 6.4) shall apply.

For fixed ancillary equipment the pass/fail criteria supplied by the manufacturer shall apply, unless the fixed ancillary equipment is tested in connection with receivers, transmitters or transceivers in which case the corresponding performance criteria above shall apply.

9.4 Fast transients common mode

This test is applicable for base station and fixed ancillary equipment.

This test shall be performed on ac mains power input ports.

This test shall be performed on signal ports, control ports and dc power input/output ports if the cables may be longer than three (3) metres.

Where this test is not carried out on any ports because the manufacturer declares that it is not intended to be used with cables longer than three (3) metres, a list of ports which were not tested for this reason shall be included in the test report.

This test shall be performed on a representative configuration of the radio equipment or a representative configuration of the combination of radio and fixed ancillary equipment.

9.4.1 Definition

This test assesses the ability of transmitters, receivers, transceivers and fixed ancillary equipment to operate as intended in the event of fast transients present on one of the input/output ports.

9.4.2 Test method and levels

The test method shall be in accordance with IEC 801-4 [12] except that the following requirements shall apply.

For transmitters, receivers, transceivers and fixed ancillary equipment, which have cables longer than three (3) metres, or are connected to the ac mains:

- the test level for signal and control ports shall be severity level 2 corresponding to 0.5 kV open circuit voltage as given in paragraph 5 of IEC 801-4 [12];
- the test level for dc power input/output ports shall be severity level 2 corresponding to 1 kV open circuit voltage as given in paragraph 5 of IEC 801-4 [12];

- the test level for ac mains power input ports shall be severity level 3 corresponding to 2 kV open circuit voltage as given in paragraph 5 of IEC 801-4 [12].

For ac power input and dc power input/output ports the transients shall be applied (in parallel) to all the wires in the cable with reference to the cabinet reference ground, i.e. line-to-ground, (true common mode), with a source impedance of 50 Ω.

9.4.3 Performance criteria

For transmitters the performance criteria TT (see subclause 6.2) shall apply.

For stand alone receivers or receivers which are part of transceivers the performance criteria TR (see subclause 6.4) shall apply.

For fixed ancillary equipment the pass/fail criteria supplied by the manufacturer shall apply, unless the fixed ancillary equipment is tested in connection with receivers, transmitters or transceivers in which case the corresponding performance criteria shall apply.

9.5 RF common mode, 0,15 MHz to 80 MHz (current clamp injection)

This test is applicable for base station and fixed ancillary equipment.

This test shall be performed on signal, control, dc power and ac mains power input/output ports of base station and fixed ancillary equipment, which may have cables longer than one (1) metre.

Where this test is not carried out on any ports because the manufacturer declares that it is not intended to be used with cables longer than one (1) metre, a list of ports which were not tested shall be included in the test report.

This test shall be performed on a representative configuration of the radio equipment or a representative configuration of the combination of radio and fixed ancillary equipment.

9.5.1 Definition

This test assesses the ability of transmitters, receivers, transceivers and fixed ancillary equipment to operate as intended in the presence of a radio frequency electromagnetic disturbance on the input/output ports.

9.5.2 Test method and level

The test method shall be the current clamp injection method in accordance with ENV 50141 [13] except that the following requirements shall apply:

- the test signal shall be amplitude modulated to a depth of 80 % by a sinusoidal audio signal of 1 kHz;

- for receivers and transmitters the stepped frequency increments shall be 50 kHz in the frequency range 150 kHz to 5 MHz and 1 % frequency increment of the momentary frequency in the frequency range 5 MHz to 80 MHz;

- the test level shall be severity level 2 as given in ENV 50141 [13] corresponding to 3 V rms, at a transfer impedance of 150 Ω;

- no intrusive or direct connection shall be made to any of the lines of any input/output port, therefore the current clamp injection method shall be used;

- the test shall be performed over the frequency range 150 kHz to 80 MHz with the exception of an exclusion band for transmitters, (see subclause 4.9), and for stand alone receivers or receivers which are part of transceivers, (see subclause 4.8);
- responses in stand alone receivers or receivers which are part of transceivers occurring at discrete frequencies which are narrow band responses, shall be disregarded, (see subclause 4.10);

- the frequencies selected during the test shall be recorded in the test report.

9.5.3 Performance criteria

For transmitters the performance criteria CT (see subclause 6.1) shall apply.

For stand alone receivers or receivers which are part of transceivers, the performance criteria CR (see subclause 6.3) shall apply.

For fixed ancillary equipment the pass/fail criteria supplied by the manufacturer shall apply, unless the fixed ancillary equipment is tested in connection with receivers, transmitters or transceivers in which case the corresponding performance criteria above shall apply.

9.6 Voltage dips and interruptions

These tests are applicable for base station and fixed ancillary equipment, powered by the ac mains.

These tests shall be performed on ac mains power input ports.

These tests shall be performed on a representative configuration of the radio equipment or a representative configuration of the combination of radio and fixed ancillary equipment.

9.6.1 Definition

These tests assess the ability of transmitters, receivers, transceivers and fixed ancillary equipment to operate as intended in the event of voltage dips and interruptions present on the ac mains power input ports.

9.6.2 Test method and levels

The following requirements shall apply.

The test method shall be in accordance with IEC 1000-4-11 [14].

The test levels shall be:

- a voltage dip corresponding to a reduction of the supply voltage of 30 % for 10 ms;
- a voltage dip corresponding to a reduction of the supply voltage of 60 % for 100 ms;
- a voltage interruption corresponding to a reduction of the supply voltage of > 95 % for 5 000 ms.

9.6.3 Performance criteria

For a voltage dip corresponding to a reduction of the supply voltage of 30 % for 10 ms the following performance criteria shall apply:

- for transmitters the performance criteria CT (see subclause 6.1);
- for stand alone receivers or receivers which are part of transceivers the performance criteria CR (see subclause 6.3);
- for fixed ancillary equipment the pass/fail criteria supplied by the manufacturer shall apply, unless the fixed ancillary equipment is tested in connection with receivers, transmitters or transceivers in which case the corresponding performance criteria above shall apply.
For a voltage dip corresponding to a reduction of the supply voltage of 60 % for 100 ms the following performance criteria shall apply:

- for transmitters the performance criteria TT (see subclause 6.2);
- for stand alone receivers or receivers which are part of transceivers the performance criteria TR (see subclause 6.4);
- for fixed ancillary equipment the pass/fail criteria supplied by the manufacturer shall apply, unless the fixed ancillary equipment is tested in connection with receivers, transmitters or transceivers in which case the corresponding performance criteria above shall apply.

For a voltage dip corresponding to a reduction of the supply voltage of 60 % for 100 ms and/or a voltage interruption corresponding to a reduction of the supply voltage of > 95 % for 5 000 ms the following performance criteria shall apply:

- in the case where the equipment is fitted with or connected to a battery back-up the performance criteria TT (see subclause 6.2) or TR (see subclause 6.4) apply as appropriate;
- in the case where the equipment is powered solely from the ac mains supply (without the use of a parallel battery back-up) the communications link need not be maintained and may have to be re-established and volatile user data may have been lost.

In the event of loss of the communications link or in the event of loss of user data, this fact shall be recorded in the test report, the product description and the user documentation.

9.7 **Surges, common and differential mode**

These tests are applicable for base station and fixed ancillary equipment.

These tests shall be performed on ac mains power input ports.

These tests shall be performed on a representative configuration of the radio equipment or a representative configuration of the combination of radio and fixed ancillary equipment.

9.7.1 Definition

These tests assess the ability of transmitters, receivers, transceivers and fixed ancillary equipment to operate as intended in the event of surges present at the ac mains power input ports.

9.7.2 Test method and level

The following requirements shall apply.

The test method shall be in accordance with IEC 1000-4-5 [15]:

- the test level shall be severity level 2 corresponding to 1 kV open circuit voltage for line-to-ground and severity level 2 corresponding to 0,5 kV open circuit voltage for line-to-line;
- the transients shall be applied (in parallel) to all the wires in the cable with reference to the cabinet reference ground, for line-to-ground tests, i.e. true common mode, with a series resistance of 10 Ω.

9.7.3 Performance criteria

For transmitters the performance criteria TT (see subclause 6.2) shall apply.

For stand alone receivers or receivers which are part of transceivers the performance criteria TR (see subclause 6.4) shall apply.

For fixed ancillary equipment the pass/fail criteria supplied by the manufacturer shall apply, unless the fixed ancillary equipment is tested in connection with receivers, transmitters or transceivers in which case the corresponding performance criteria above shall apply.
9.8 RF conducted immunity, antenna port

This test is applicable for the receivers of base stations.

This test shall be performed on the receiver antenna port.

This test shall be performed on a representative configuration of the radio equipment or a representative configuration of the combination of radio and fixed ancillary equipment.

9.8.1 Definition

This test assesses the ability of a base station to receive a wanted GSM modulated signal in the presence of an interfering signal.

9.8.2 Test method

The test method, frequencies and levels shall be in accordance with GSM 11.20 [7] subclause 2.1.7.6.

9.8.3 Performance criteria

For GSM 900 the frequencies at which blocking is recorded shall meet all of the following requirements:

1) for measurement frequencies which are 45 MHz or less from the wanted signal, the total number shall not exceed six (6);

2) for measurement frequencies which are 45 MHz or less from the wanted signal, no more than three (3) shall be consecutive;

3) for measurement frequencies which are more than 45 MHz from the wanted signal, the total number shall not exceed 24;

4) for measurement frequencies which are more than 45 MHz below the wanted signal, no more than three (3) shall be consecutive.

For DCS 1800 the frequencies at which blocking is recorded shall meet all of the following requirements:

1) for measurement frequencies which are 95 MHz or less from the wanted signal, the total number shall not exceed 12;

2) for measurement frequencies which are 95 MHz or less from the wanted signal, no more than three (3) shall be consecutive;

3) for measurement frequencies which are more than 95 MHz from the wanted signal, the total number shall not exceed 24;

4) for measurement frequencies which are more than 95 MHz below the wanted signal, no more than three (3) shall be consecutive.
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 1994</td>
</tr>
<tr>
<td>January 1996</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>