
N
ew

 p
re

se
nt

at
io

n
-

se
e

H
is

to
ry

 b
ox

EUROPEAN ETS 300 325

TELECOMMUNICATION March 1994

STANDARD

Source: ETSI TC-TE Reference: DE/TE-02029

ICS: 33.080

Key words: ISDN, PCI

Integrated Services Digital Network (ISDN);
Programming Communication Interface (PCI) for Euro-ISDN

ETSI
European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1994. All rights reserved.

Page 2
ETS 300 325: March 1994

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
ETS 300 325: March 1994

Contents

Foreword ...11

Introduction..11

1 Scope ..13

2 Normative references..13

3 Definitions and abbreviations ..14
3.1 Definitions ..14
3.2 Abbreviations ...15

4 Reader's guidance and overview ..16
4.1 Reader's guide...16
4.2 How to use this ETS ..16
4.3 Overview ..17

4.3.1 Background ...17
4.3.2 Functional overview...18
4.3.3 Connection management ..18
4.3.4 The planes...18
4.3.5 Properties ..19
4.3.6 External equipment (i.e. telephony)...19
4.3.7 ISDN accesses and the multi-applications environment19
4.3.8 Exchange Mechanism...19

5 Functional model ...20
5.1 Introduction ..20
5.2 Architecture..20

5.2.1 ISDN PCI and its components...20
5.2.2 ISDN PCI architecture ...21
5.2.3 OSI location...22
5.2.4 Co-ordination cases ..23

5.3 Functionality ...25
5.3.1 Introduction..25
5.3.2 Resource management...26

5.3.2.1 Attribute sets..26
5.3.2.2 Network connection objects...26
5.3.2.3 Support of external equipment ..27
5.3.2.4 Support of security features...29
5.3.2.5 Support of manufacturer specific features...........................29

5.3.3 Connection management ..29
5.3.3.1 Connection set-up and removal...29
5.3.3.2 Support of supplementary services30

5.3.4 Data management...30
5.3.4.1 Connection via the Network layer Message Access

(NMA) ..31
5.3.4.2 Connection via the Transparent Message Access (TMA) ...31

5.4 Relating functionality to planes ..31
5.4.1 Optional features ...31
5.4.2 Administration Plane ...32
5.4.3 Control Plane...32
5.4.4 User Plane...33

5.4.4.1 The transparent access ...33
5.4.4.2 The network layer access..33

5.5 PUF NAF interactions ..34
5.6 Total interaction overview ..36
5.7 Identifiers ...38

Page 4
ETS 300 325: March 1994

5.8 Error handling.. 39
5.8.1 Overview... 39
5.8.2 Function error handling... 39
5.8.3 Message error handling .. 39

6 Description of ISDN PCI messages.. 40
6.1 Conventions .. 40

6.1.1 Address conventions .. 40
6.1.2 Provision of information .. 40
6.1.3 Message conventions ... 41
6.1.4 Parameter conventions... 41

6.1.4.1 Parameter ordering ... 41
6.1.4.2 Parameter repetition ... 41
6.1.4.3 Parameter checking .. 41

6.1.5 Default philosophy .. 41
6.2 Administration Plane messages.. 42

6.2.1 ACreateNCOReq .. 43
6.2.2 NCOType and conditional parameter specification 44
6.2.3 ACreateNCOCnf ... 45
6.2.4 ADestroyNCOReq .. 45
6.2.5 ADestroyNCOCnf ... 46
6.2.6 AErrorInd .. 46
6.2.7 AGetNCOInfoReq... 46
6.2.8 AGetNCOInfoCnf .. 47
6.2.9 ASecurityReq.. 47
6.2.10 ASecurityCnf... 48
6.2.11 AManufacturerReq.. 48
6.2.12 AManufacturerInd ... 49

6.3 Control Plane messages ... 49
6.3.1 Sequencing of Control Plane messages .. 52
6.3.2 CAlertReq ... 56
6.3.3 CAlertInd... 56
6.3.4 CConnectReq ... 57
6.3.5 CConnectInd... 58
6.3.6 CConnectRsp ... 59
6.3.7 CConnectCnf .. 60
6.3.8 CDisconnectReq... 61
6.3.9 CDisconnectInd .. 62
6.3.10 CDisconnectRsp... 63
6.3.11 CDisconnectCnf.. 63
6.3.12 CProgressInd.. 64
6.3.13 CStatusInd .. 64
6.3.14 CSetupAckInd... 64
6.3.15 CConnectInfoReq ... 65
6.3.16 CProceedingInd .. 65
6.3.17 CUserInformationReq... 66
6.3.18 CUserInformationInd .. 66
6.3.19 CCongestionControlReq... 67
6.3.20 CCongestionControlInd .. 68
6.3.21 CSuspendReq .. 69
6.3.22 CSuspendCnf ... 69
6.3.23 CResumeReq ... 70
6.3.24 CResumeCnf .. 70
6.3.25 CNotifyInd ... 71
6.3.26 CFacilityReq.. 71
6.3.27 CFacilityInd ... 72
6.3.28 CExtEquipAvailabalityInd.. 72
6.3.29 CExtEquipBlockDiallingInd ... 73
6.3.30 CExtEquipKeyPressedInd... 73
6.3.31 CExtEquipOffHookInd .. 74
6.3.32 CExtEquipOnHookInd... 74
6.3.33 User to User information exchange .. 74
6.3.34 Implementation of supplementary services .. 75

Page 5
ETS 300 325: March 1994

6.3.34.1 Multiple Subscriber Number (MSN).....................................75
6.3.34.2 Direct Dialling In (DDI) ...76
6.3.34.3 Calling Line Identification Presentation (CLIP)76
6.3.34.4 Calling Line Identification Restriction (CLIR)76
6.3.34.5 Subaddressing (SUB)..77
6.3.34.6 Advice of Charge during call (AOC-D).................................77
6.3.34.7 Advice of Charge at end of call (AOC-E).............................77
6.3.34.8 Call Waiting (CW)..78
6.3.34.9 Connected Line Identification Presentation (COLP)............78
6.3.34.10 Connected Line Identification Restriction (COLR)...............79

6.4 User Plane messages..80
6.4.1 Sequencing of User Plane messages ...83
6.4.2 Co-ordination function ...84
6.4.3 U3ConnectReq..85
6.4.4 U3ConnectInd ...86
6.4.5 U3ConnectRsp ..87
6.4.6 U3ConnectCnf...88
6.4.7 U3DisconnectReq ...89
6.4.8 U3DisconnectInd ...90
6.4.9 U3DataReq..91
6.4.10 U3DataInd ...92
6.4.11 U3ExpeditedDataReq..92
6.4.12 U3ExpeditedDataInd ...93
6.4.13 U3ResetReq..93
6.4.14 U3ResetInd ...94
6.4.15 U3ResetRsp ..94
6.4.16 U3ResetCnf...95
6.4.17 U3DataAcknowledgeReq ..95
6.4.18 U3DataAcknowledgeInd..96
6.4.19 U3ReadyToReceiveReq..96
6.4.20 U3ReadyToReceiveInd ...97
6.4.21 U3ErrorInd...98
6.4.22 U1DataReq..98
6.4.23 U1DataInd ...99
6.4.24 U1ErrorInd...99

6.5 Information presentation ..100
6.6 Message parameters ...101

6.6.1 Algorithm ...102
6.6.2 Bilateral closed user group (Bcug) ..102
6.6.3 BearerCap ...102
6.6.4 Bit_DQM..103
6.6.5 CalledDTEAddress..104
6.6.6 CalledDTEAddressExt...104
6.6.7 CalledNumber ...105
6.6.8 CalledSubaddress ...105
6.6.9 CallingDTEAddress ...106
6.6.10 CallingDTEAddressExt..106
6.6.11 CallingNumber...107
6.6.12 CallingSubaddress ..108
6.6.13 CAttributeName...108
6.6.14 CauseToNAF...108
6.6.15 CauseToPUF...109
6.6.16 CDirection..109
6.6.17 ChannelIdentification...110
6.6.18 ChargingInfo..110
6.6.19 CompletionStatus ..111
6.6.20 CongestionLevel..111
6.6.21 ConnectedNumber ..111
6.6.22 ConnectedSubaddress..112
6.6.23 DateTime...112
6.6.24 Display...112
6.6.25 ExtEquipAvailability ...113
6.6.26 ExtEquipBlockDialling ...113

Page 6
ETS 300 325: March 1994

6.6.27 ExtEquipKeypressed... 113
6.6.28 ExtEquipName.. 114
6.6.29 ExpeditedData .. 114
6.6.30 Facility... 115
6.6.31 FacilityData ... 117
6.6.32 FastSelect... 117
6.6.33 GroupID .. 118
6.6.34 High Layer Compatibility (HLC) .. 119
6.6.35 IdleFlag ... 120
6.6.36 Key.. 120
6.6.37 Keypad.. 120
6.6.38 L2ConnectionMode... 120
6.6.39 L2FrameSize .. 121
6.6.40 L2WindowSize .. 121
6.6.41 L2XID.. 121
6.6.42 L3ConnectionMode... 122
6.6.43 L3IncomingVCCount... 122
6.6.44 L3OutgoingVCCount... 122
6.6.45 L3TwoWayVCCount ... 123
6.6.46 Low Layer Compatibility (LLC).. 123
6.6.47 ManufacturerCode.. 123
6.6.48 MoreData .. 124
6.6.49 NCOID .. 124
6.6.50 NCOType.. 124
6.6.51 NotificationIndicator .. 124
6.6.52 PacketSize.. 125
6.6.53 ProgressIndicator.. 126
6.6.54 QOSParameters ... 127
6.6.55 ReadyFlag... 128
6.6.56 RequestID... 128
6.6.57 ReceiptConfirm... 129
6.6.58 RespondingDTEAddress .. 129
6.6.59 RespondingDTEAddressExt ... 129
6.6.60 SelectorID ... 129
6.6.61 TEI .. 130
6.6.62 U3Protocol .. 130
6.6.63 UAttributeName .. 130
6.6.64 UDirection ... 130
6.6.65 UserData... 131
6.6.66 UserToUserInfo .. 131
6.6.67 WindowSize .. 132
6.6.68 X213Cause ... 132
6.6.69 X213Origin.. 132
6.6.70 X25Cause ... 133
6.6.71 X25Diagnostic... 133
6.6.72 AttributeSet Parameters ... 134
6.6.73 Administration AttributeSet Parameters ... 135
6.6.74 AddressSet Parameter ... 136

6.7 Selection criteria.. 136
6.7.1 NCO selection... 136

6.7.1.1 Control Plane information elements.................................. 137
6.7.1.2 User Plane information element (layer 3) 138

6.7.1.2.1 Packet size negotiation 138
6.7.1.2.2 Window size negotiation 138
6.7.1.2.3 Effective packet size and window size

negotiation.. 138
6.7.2 Action if no NCO available.. 138

6.7.2.1 Control Plane incoming call... 138
6.7.2.2 User Plane incoming call .. 138

6.8 Error checking and codes ... 139
6.8.1 Administration Plane... 139
6.8.2 Control Plane .. 139

6.8.2.1 Invalid state for message .. 139

Page 7
ETS 300 325: March 1994

6.8.2.2 Mandatory parameters...139
6.8.2.3 Optional Parameter Content Error.....................................139

6.8.3 Errors in facility requests ...139
6.8.4 User Plane (NMA) ...139

6.8.4.1 Invalid Use of Receipt Confirmation Service139
6.8.4.2 Invalid Use of Confirmation request on U3DataReq..........140
6.8.4.3 Invalid length of U3DataReq UserData parameter140
6.8.4.4 Invalid Use of Expedited Data ...140
6.8.4.5 Invalid Issuing of messages while in Reset state140
6.8.4.6 Invalid Use of Bit_DQM (association between More and

Qualifier bits) parameters on subsequent U3DataReq
messages ..140

6.8.4.7 Other errors ...140
6.8.5 TMA User Plane ..140

6.8.5.1 Mandatory Parameters Missing...140
6.8.5.2 Mandatory Parameter Content Error140
6.8.5.3 Unrecognised Parameter...140
6.8.5.4 Overflow of Incoming Data ..140

6.8.6 Function Return Codes ...140
6.8.7 Administration Plane return code ..142
6.8.8 Control Plane causes ..144
6.8.9 User Plane causes ..147
6.8.10 TMA User Plane causes..148

7 Exchange method ...149
7.1 Registration phase...149

7.1.1 Overview..149
7.1.2 PciGetHandles ..151
7.1.3 PciGetProperty ..151
7.1.4 PciRegister ..153

7.2 Deregistration phase..153
7.2.1 PciDeregister...154

7.3 Conversation phase...154
7.3.1 Sending messages..154
7.3.2 Receiving messages ...154
7.3.3 Receiving messages using the polling method ...154
7.3.4 Receiving messages using signal method ..155
7.3.5 PCI Message Parameter Block (PciMPB)...156
7.3.6 PciPutMessage ...157
7.3.7 PciGetMessage ...158
7.3.8 PciSetSignal ..159

8 Security..160
8.1 General aspects of security in ISDN..160
8.2 Security in the ISDN PCI..160
8.3 Increasing security in the ISDN PCI...161

Annex A (informative): Bibliography..162

Annex B (normative): Mapping between ISDN PCI messages and Protocols supported164

B.1 Control Plane messages ...164

B.2 Control Plane parameters ...166

B.3 User Plane messages ...167

Annex C (normative): Telephony...168

C.1 Type 1 external equipment..168

C.2 Type 2 external equipment..168

Page 8
ETS 300 325: March 1994

C.3 Type 3 external equipment ... 168

C.4 Type 4 external equipment ... 169

C.5 Type 5 external equipment ... 169

Annex D (normative): CCITT Recommendation X.25 Usage ... 170

D.1 Parameter Values for CCITT Recommendation X.25 Use... 170

D.2 Disconnection of ISDN channel with established CCITT Recommendation X.25 Connections..... 170

Annex E (informative): NAF development guidelines ... 171

E.1 NAF SDL diagrams... 172

E.2 Information provided by the NAF.. 179

E.3 Co-ordination function - outgoing User Plane NMA call ... 180

E.4 Co-ordination function - incoming ISDN call ... 181

E.5 Suspending/resuming calls... 182

E.6 Supplementary services ... 182

E.7 Error management.. 182
E.7.1 Function return codes ... 183
E.7.2 Administration Plane ... 183
E.7.3 Control Plane... 185
E.7.4 NMA User Plane.. 189
E.7.5 TMA User Plane.. 190

E.8 NAF configuration ... 190
E.8.1 Global Configuration.. 190
E.8.2 System configuration parameters ... 190
E.8.3 Control Plane configuration ... 191
E.8.4 User Plane NMA configuration.. 192
E.8.5 User Plane TMA configuration .. 193

E.9 Buffer management .. 193

E.10 Extension of ISDN-PCI ... 194
E.10.1 Basic mechanism for extension .. 194
E.10.2 Manufacturer specific messages .. 194
E.10.3 Message coding .. 194
E.10.4 Extension of supported protocols.. 195

E.10.4.1 Support of new "CCITT Recommendation X.213" like protocols 195
E.10.4.2 Support of different type of protocols.. 195

Annex F (normative): Operation system specific implementation .. 196

F.1 DOS.. 196
F.1.1 Mechanism.. 196
F.1.2 Mapping of generic types and constants... 197
F.1.3 Description of functions... 198

F.1.3.1 PciGetHandles.. 198
F.1.3.2 PciGetProperty.. 199
F.1.3.3 PciRegister ... 200
F.1.3.4 PciDeregister .. 203
F.1.3.5 PciPutMessage... 204
F.1.3.6 PciGetMessage .. 204

Page 9
ETS 300 325: March 1994

F.1.3.7 PciSetSignal ..205

F.2 Windows..206
F.2.1 Mechanism ..206
F.2.2 Implementation of basic type ...207
F.2.3 C Function prototypes..207
F.2.4 Description of functions ...208

F.2.4.1 PciGetHandles ..208
F.2.4.2 PciGetProperty ..209
F.2.4.3 PciRegister ..209
F.2.4.4 PciDeregister...209
F.2.4.5 PciPutMessage ...209
F.2.4.6 PciGetMessage ...210
F.2.4.7 PciSetSignal ..210

F.2.4.7.1 Signal mechanism procedure ..210
F.2.4.7.2 User message mechanism procedure...............................210
F.2.4.7.3 De-activation mechanism ..211

F.3 Unix ...211
F.3.1 Mechanism ..211
F.3.2 Implementation of basic types ...211
F.3.3 Parameter passing conventions ..212
F.3.4 Definition of types, constants and function-prototypes ..212
F.3.5 Adaptation to the STREAMS kernel mechanism...213

F.3.5.1 General..213
F.3.5.2 Communication between PUF exchange functions and NAF stream driver213
F.3.5.3 Special considerations ..215

F.3.6 Description of functions ...215
F.3.6.1 PciGetHandles ..217
F.3.6.2 PciGetProperty ..218
F.3.6.3 PciRegister ..220
F.3.6.4 PciDeregister...222
F.3.6.5 PciPutMessage ...223
F.3.6.6 PciGetMessage ...224
F.3.6.7 PciSetSignal ..226

F.4 Availability of NAF's PCI_HANDLE ...228
F.4.1 DOS ...228

F.4.1.1 Declaration action..228
F.4.1.2 Extraction action..228

F.4.2 Windows ..229
F.4.2.1 Declaration action..229
F.4.2.2 Extraction action..230

F.4.3 UNIX ..230
F.4.3.1 Declaration action..230
F.4.3.2 Extraction action..230

Annex G (normative): PCI ICS Proforma...231

G.1 Copyright release for PCI ICS Proforma ...231

G.2 Introduction..231

G.3 PCI ICS Proforma cover page...231
G.3.1 Identification of PCI ICS...231
G.3.2 Identification of implementation ...231
G.3.3 Identification of the system supplier...231
G.3.4 Global statement of conformance..232

G.4 Instructions for completing the PCI ICS Proforma ..232

G.5 Exchange Mechanism...233

Page 10
ETS 300 325: March 1994

G.6 Administration Plane... 233

G.7 Control Plane .. 234

G.8 User Plane .. 234

G.9 User Plane Protocols .. 235

G.10 Miscellaneous features... 235

Annex H (normative): Static attribute content ... 236

H.1 Control plane static attribute sets ... 236
H.1.1 Generic circuit bearer service ... 236

H.1.1.1 Speech.. 236
H.1.1.2 Unrestricted digital information ... 236
H.1.1.3 Restricted digital information .. 237
H.1.1.4 3,1 Khz audio information transfer.. 237

H.1.2 Packet mode bearer service ... 237
H.1.3 Teleservices .. 238

H.2 User Plane static attribute sets... 238

Annex J (informative): Operating system implementation coding samples ... 239

J.1 Sample DOS 'C' Code .. 239

J.2 Sample Windows "C" code... 246

J.3 Sample UNIX "C" code... 252

Annex K (informative): TLV Coder/decoder sample... 263

History ... 266

Page 11
ETS 300 325: March 1994

Foreword

This European Telecommunication Standard (ETS) has been produced by the Terminal Equipment (TE)
Technical Committee of the European Telecommunications Standards Institute (ETSI).

Annexes B, C, D, F, G and H to this ETS are normative while annexes A, E, J and K are informative.

Transposition dates
Date of latest announcement of this ETS (doa): 30th June 1994

Date of latest publication of new National Standard
or endorsement of this ETS (dop/e): 31st December 1994

Date of withdrawal of any conflicting National Standard (dow): 31st December 1994

Introduction

The number of different Integrated Services Digital Network (ISDN) Programming Interfaces used by
terminal equipment has hindered the development of applications using ISDN which, in turn, has proved a
constraint to the usage of ISDN on modern terminal equipment.

This ETS defines the ETSI ISDN Application Programming Interface (API), called ISDN Programming
Communication Interface (PCI). The ISDN PCI is an application interface for accessing and administering
ISDN services.

It has been defined in order to provide a standard that terminal equipment providers should implement
instead of providing their own programming interface. Thus allowing the portability of applications that use
the ISDN PCI across a range of terminal equipment based on different operating systems.

The ISDN PCI has been defined with the Application Developer in mind and, where possible, eliminates
the need for a detailed knowledge of ISDN. It has also been defined in such a manner that extensions
provided to take advantage of future ISDN developments do not effect the operation of existing
applications.

Page 12
ETS 300 325: March 1994

Blank page

Page 13
ETS 300 325: March 1994

1 Scope

This ETS specifies the Integrated Services Digital Network Programming Communication Interface (ISDN
PCI) for the accessing and administering of the following ISDN services:

- Bearer Services (as defined in ETS 300 102-1 [2]);
- Supplementary Services (as defined in ETS 300 196);
- Virtual Circuit (VC) or Permanent Virtual Circuit (PVC) Bearer Services on the B- and D-channels.

The PCI defined in this ETS:

- covers both Basic and Primary rate ISDN access;
- is independent of operating system, hardware and programming languages. It provides language

and operating system binding for common operating system environments;
- supports concurrent applications;
- supports concurrent protocol stacks related to data exchange;
- supports application access to multiple channels on multiple ISDN accesses;
- provides the Open Systems Interconnection (OSI) connection-mode network service as defined by

CCITT Recommendation X.213 [7] using the method defined in ISO 9574;
- provides an interface for applications requiring direct control of ISDN services;

- shows the impact of security issues on the interface;
- has been defined to allow future extension of functionality.

Further standards specify the method of testing and detailed application specific requirements to
determine conformance based on this ETS.

2 Normative references

This ETS incorporates by dated and undated references, provisions from other publications. These
normative references are cited at the appropriate places in the text and the publications are listed
hereafter. For dated references, subsequent amendments to or revisions of any of these publications
apply to these ETS only when incorporated in it by amendment or revision. For undated references the
latest edition of the publication referred to applies.

[1] ETS 300 080 (1992): "Integrated Services Digital Network (ISDN); ISDN lower
layer protocols for telematic terminals".

[2] ETS 300 102-1 (1990): "Integrated Services Digital Network (ISDN); User-
network interface layer 3, Specifications for basic call control".

[3] ISO/IEC 8208 (1990): "Information technology; Data communications; X.25
Packet Layer Protocol for Data Terminal Equipment".

[4] ISO 7776 (1986): " Information Processing systems; Data communications;
High-level data link control procedures; Description of the X.25 LAPB-
compatible DTE data link procedures".

[5] ISO/IEC 9646 (1991): "Information technology - Open Systems Interconnection -
Conformance testing methodology and framework".

[6] ISO/IEC ISP 10609 (1992): "Information technology; International Standardized
Profiles TB, TC, TD and TE; Connection-mode Transport Service over
connection-mode Network Service".

[7] CCITT Recommendation X.213 (1988): "Network Service Definition for Open
Systems Interconnection for CCITT Applications".

[8] ISO CEI/9899 (1990): "Programming Language-C".

[9] ETR 018: "Integrated Services Digital Network (ISDN); Application of the BC-,
HLC-, LLC- information elements by terminals supporting ISDN services".

Page 14
ETS 300 325: March 1994

NOTE: For further references to publications, which are of interest when reading this ETS,
refer to the bibliography contained in Annex A.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this ETS, the following definitions apply:

Address Set: A set of parameters containing remote and local user layer or signalling addresses.

Administration Plane: The logical grouping of functionality for management of PCI User Facility-Network
Access Facility(PUF-NAF) dialogue as well as for access to local or network related Network Access
Facility (NAF) resources.

Attribute Set: A set of parameters driving user protocols and ISDN signalling.

B-Channel: The logical ISDN channel for the use of data transfer.

Control Plane: The logical grouping of functionality for access of ISDN signalling.

D-Channel: The logical ISDN channel used for signalling and, in some cases, for data transfer.

Euro-ISDN: ISDN offering services and interoperability in Europe as agreed upon in the "Memorandum of
Understanding on the Implementation of European ISDN Service by 1992".

Exchange Function: PUF functionality realising the Exchange Mechanism.

Exchange Mechanism: The means provided for the PUF to interchange messages with the NAF.

ISDN access: A set of ISDN channels provided by a single NAF to access ISDN services.

ISDN Programming Communication Interface (ISDN PCI): A network (ISDN) oriented software
interface providing access provisions for programming network signalling and user data exchange.

Message: A unit of information transferred through the interface between the NAF and the PCI User
Facility (PUF).

Network Access Facility (NAF): A functional unit located between the ISDN PCI and the network related
layers.

Network Connection Object (NCO): An abstract object within the NAF created by the PUF to gain
access to network signalling or data.

Network layer Message Access (NMA): A logical message access to ISDN network layer user
protocols.

NULL Layer: This describes an empty layer of the OSI reference model. Such a layer does not contain
any functionality and passes requests and responses transparently to adjourning layers.

PCI User Facility (PUF): The functional unit using the ISDN PCI to access a NAF. In fact, the local
application using the interface.

Signalling Message Access (SMA): A logical message access to signalling part of ISDN.

Transparent Message Access (TMA): A logical message access to ISDN physical layer.

Type-Length-Value coding (TLV coding): The coding scheme used for binary presentation of
Messages.

User Connection: A connection accessible through User Plane functionality.

Page 15
ETS 300 325: March 1994

User Plane: A logical grouping of functionality for access of user protocols and data.

User Protocol: The protocol running and conforming to User Plane functionality.

3.2 Abbreviations

For the purposes of this ETS, the following abbreviations apply:

AOC-D Advice of Charge during call, AOC-E Advice of Charge at end of call
API Application Programming Interface
ASP Abstract Service Primitive (i.e. OSI service primitive exchanged at a Service

Access Point (SAP))
Bcug Bilateral closed user group
CLIP Calling Line Identification Presentation
CLIR Calling Line Identification Restriction
CONS Connection Oriented Network Service
CW Call Waiting
COLP Connected Line Identification Presentation
COLR Connected Line Identification Restriction
DDI Direct Dialling In
DTMF Dual Tone Multi Frequency
ETS European Telecommunication Standard
ETSI European Telecommunications Standards Institute
EXid exchange identifier
HLC High Layer Compatibility
ICS Implementation Conformance Statement
ISDN Integrated Services Digital Network
ISPBX ISDN Private Branch eXchange
IUT Implementation Under Test (i.e. protocol layer which is subject to test)
LAP B Link Access Procedure Balanced
LAP D Link Access Procedure for D-channel
LLC Low Layer Compatibility
LT Lower Tester (i.e. tester interfaced at SAP at lower boundary of IUT)
MOU Memorandum Of Understanding of the European Community, 1989
MSB Most Significant Bit
MSN Multiple Subscriber Number
N-SAP Network layer - Service Access Point
NAF Network Access Facility
NCO Network Connection Object
NCOID NCO Identifier
NMA Network layer Message Access
PCI Programming Communication Interface
PCI-NAF PCI User Facility - Network Access Facility
PciMPB Pci Message Parameter Block
PCO Point of Control and Observation
PDU Protocol Data Unit
Ph-SAP Physical layer - Service Access Point
PUF Programming Communication Interface User Facility
SAP Service Access Point
SMA Signalling Message Access
SUB Subaddressing
SUT System Under Test (i.e. complete ISDN terminal equipment)
TCP Test Co-ordination Procedure (between Upper Tester (UT) and LT)
TLV coding Type-Length-Value coding (used for presentation of ISDN PCI messages)
TM PDU Test Management Protocol Data Unit
TMA Transparent Message Access
UT Upper Tester (i.e. tester interfaced at SAP at upper boundary of IUT)
X.25 PLP X.25 Packet Layer Protocol

Page 16
ETS 300 325: March 1994

4 Reader's guidance and overview

4.1 Reader's guide

This ETS is intended for:

- software developers and implementors of applications by providing them with the definition of a
simple, standardized and portable interface giving access to the Euro-ISDN;

- manufacturers and developers of ISDN adapters and system software with the aim of providing a
standardized programming interface to Euro-ISDN communications;

- users of ISDN based software and management personnel by providing them with background
information and selection criteria for choosing ISDN products and applications.

4.2 How to use this ETS

Readers who:

- need a quick overview over the ISDN PCI features and capabilities should read the overview
provided in subclause 4.3. More detailed information about the architecture and functional
description is provided in Clause 5. Clause 3 provides useful information on definitions of terms and
abbreviations used;

- intend to implement an application using this ISDN PCI interface ETS should first read Clauses 4, 5
and 7. Clause 3 provides useful information on the definitions of terms and abbreviations used. For
more detailed information Clause 6 and Annex F should also be inspected. Coding examples are
provided in Annex J;

- intend to build an ISDN adapter card or equipment should also first inspect Clauses 4, 5 and 7.
Clause 3 provides useful information on the definitions of terms and abbreviations used. For more
detailed information Clause 6 and Annex F should be inspected. Specific NAF information is
contained in Annex E.

Table 1 gives a descriptive list showing the full contents of this ETS.

Page 17
ETS 300 325: March 1994

Table 1: List of ETS contents

Clause
Annex contains ...

Clause 1 ... the scope of this ETS. This describes what this ETS covers.
Clause 2 ... normative references.
Clause 3 ... definitions of the terms and abbreviations used throughout this ETS.
Clause 4 ... gives an overview and reader's guidance.
Clause 5 ... the architecture, the functional description of the interface and an overview

describing the interactions between the component elements of the interface.
Clause 6 ... the conventions used to describe the messages, the set of messages used

to communicate through the interface and the parameters carried by these
messages.

Clause 7 ... the exchange mechanism, describing how messages are exchanged
between the PUF and the NAF.

Clause 8 ... a brief description of security aspects and functionality provided by this
ETS.

Annex A ... the Bibliography. Informative references useful for the understanding of this
ETS.

Annex B ... the mapping between the ISDN PCI messages and the underlying
protocols.

Annex C ... details for NAFs providing external equipment support (telephony).
Annex D ... rules for use of the X.25 protocol.
Annex E ... guidelines for NAF developers and manufacturers giving guidance for

implementation and extension of this ETS.
Annex F ... operating system dependencies and implementation rules for various

operating systems.
Annex G ... the PCI ICS proforma: a template for conformance implementation

conformance statements of the NAF developers.
Annex H ... definition of standard profile. This Annex provides the content of static

attributes.
Annex J ... sample coding in C language illustrating operating system specific

implementation of the exchange mechanism.
Annex K ... C language illustrating TLV encoding/decoding example.

4.3 Overview

4.3.1 Background

With countries of the European Community committed by their Memorandum of Understanding to
implement one standard for ISDN throughout Europe, it is a logical step forward to define an API that
provides access to this Euro-ISDN. This API is called the ISDN PCI. The goals of the ISDN PCI can be
summarised as follows:

- provide access to Euro-ISDN, while not prohibiting access to existing ISDN implementations;
- allow for standalone and distributed operation;
- provide an interface that is capable of supporting multiple applications;
- provide an interface capable of providing support for multiple ISDN accesses;
- provide an interface that supports both Basic and Primary access;
- focus on an access to several protocols for data transfer based on CCITT Recommendation X.213

[7], while allowing the use of other protocols;
- provide co-ordinated operation of ISDN and the user plane protocols to provide the ISO Network

Service interface (ISO 9574);
- provide an interface that is, as far as possible, operating system independent;
- define the ISDN PCI in sufficient detail to ensure binary compatibility between different

implementations within the same operating system on the same platform;
- allow access to supplementary services provided by the ISDN;
- provide support for physical devices such as telephones;
- good performance.

Page 18
ETS 300 325: March 1994

The ISDN PCI can be seen as satisfying these goals and providing an interface that is highly suitable to:

- ISDN adapter manufacturers;
- ISDN application writers;
- ISDN users as a procurement requirement for selecting ISDN products and applications.

4.3.2 Functional overview

The basic model of the ISDN PCI consists of two entities: a service user called the PCI User Facility
(PUF) and a service provider called the Network Access Facility (NAF). The PUF and the NAF interact by
means of messages. Using these messages, the PUF requests the NAF to perform actions and to return
the results to the PUF.

The ISDN PCI interface to the NAF, depending on the underlying protocols supported, is divided into 3
planes:

- a Control Plane which provides access to the services offered by ISDN;
- a User Plane which provides access to the protocols used to transfer the data over connections

established through the ISDN;
- an Administration Plane which provides the mechanisms that support the objects and identifiers

required by the other two planes.

Each plane groups a distinctive set of functionality which is exchanged through the ISDN PCI. The method
for exchanging the information is called an Exchange Mechanism and is defined separately. This definition
is generic in nature and may be applied to several operating systems. The adaptation of the Exchange
Mechanism to a choice of specific, popular operating systems is covered in separate Clauses.

Apart from the use of non-connection related facilities, e.g. security features and support of external
equipment, the use of the ISDN PCI is based upon the establishment of ISDN and user protocol
connections. Within the PCI the concept of a Network Connection Object (NCO) is used to control these
connections. NCOs are defined by the use of Administration Plane messages and used in both Control
and User Plane messages to establish, use and remove connections.

4.3.3 Connection management

Performing ISDN connections leads firstly to set up the protocol related information required for this
connection and then to unambiguously identify all messages attached to this connection. The specification
provides a mechanism to link the attributes - static or dynamic - to the connection based on NCO
management.

4.3.4 The planes

The Control Plane supports messages that allow the PUF to establish, control and remove connections,
and to access the services provided by the ISDN. Five classes of message are defined. The first class is
associated with the basic call set-up and shall be mandatory for the NAF to provide while the other 4
classes associated with telephony supplementary services, user-to-user signalling and adjournment of
calls are optional.

The Administration Plane is responsible for managing attribute sets, addresses and NCOs. It offers
messages that provide information concerning the state of any external equipment that the NAF controls,
such as a telephone. It also provides messages to manage the security features used on a particular
connection. Four classes of message are defined. The first, associated with the basic operation of the
NAF, is defined as mandatory for the NAF to provide while the other 3 classes, associated with security
and external equipment support and manufacturer specific features, are optional.

The User Plane provides messages that allow the use of underlying protocols. At present two sets of
messages are defined. One set allows access to User Plane protocols providing the OSI Network-layer
service interface. The other set provides a transparent interface where the application selects the protocol
to be run over the connection.

Page 19
ETS 300 325: March 1994

4.3.5 Properties

The ISDN PCI defines that each NAF provide the PUF with a list of it's static properties. These properties
define the capabilities of the NAF generally and the resources to which it has access to in a particular
configuration. It is through these sets of properties that the PUF is informed of the variety of messages the
NAF supports within each plane. As an example, these properties may refer to the types of external
equipment available or the type and number of ISDN channel(s) available.

4.3.6 External equipment (i.e. telephony)

The ISDN PCI provides support of external equipment controlled by the NAF. The types of external
equipment supported relate to various types of telephony equipment such as headsets and others. This
support is achieved by treating the external equipment as a special type of transparent access so that
when an ISDN connection is established (using the transparent protocol) the relevant ISDN channel for
that external equipment is attached - this method is preferred rather than providing the PUF with User
Plane messages. Administration Plane messages are provided to monitor the state of external equipment.

4.3.7 ISDN accesses and the multi-applications environment

The definition of the ISDN PCI supports various NAF - PUF configurations. It puts no constraints on the
NAF implementation and it allows:

- a NAF to provide either only one or more than one ISDN accesses;
- a NAF to allow access to only one or more than one PUF concurrently;
- any number of NAFs to coexist within the same terminal equipment.

4.3.8 Exchange Mechanism

The realisation of an interface, like the ISDN PCI, across several distinct platforms (operating system) is
often difficult to reconcile. Each operating system has a particular way of doing this and very often the
same interface cannot be ported from one system to another. One way of going about solving this
problem is by means of defining an Exchange Mechanism. The Exchange Mechanism abstracts the
functionality between the interacting elements by means of functions. The ISDN PCI interface defines
seven functions that allow the registration, de-registration and conversation of exchanges. During the
registration phase, a function is usable to provide a list of the available NAFs within the system.

Messages passed to the NAF are copied before control is returned to the PUF. Once the PUF regains
control, it is free to re-use any memory associated with the message. The memory allocation for data
being transferred or received is performed by pointers inside the messages, this mechanism avoids
making unnecessary copies. It is the responsibility of the PUF to provide memory for the NAF to place any
messages. In order to assist the PUF in the provision of memory space, a signalling mechanism defined
within each operating system is described; this mechanism consists of notifying the PUF when a message
is available.

Page 20
ETS 300 325: March 1994

5 Functional model

5.1 Introduction

This Clause describes the functional model for the ISDN PCI. It introduces the architecture of the ISDN
PCI and its location with respect to the OSI reference model. This Clause also describes the functionality
of the ISDN PCI, the interactions between the entities located around the ISDN PCI. Furthermore, it
describes sequencing of messages, to indicate in which way the entities may exchange information.

There is also a description of the identifiers involved in the ISDN PCI and the error mechanism it provides.

5.2 Architecture

The ISDN PCI is the specification of the communication interface inside terminal equipment which wishes
to access an ISDN. Using this interface a higher layer entity may access the services of an ISDN network
in a standardized way.

The ISDN PCI is a software interface between a service user and a service provider. As a software
interface, the ISDN PCI consists of the specification of the interface and a description of the functionality
which lies directly below the interface.

The ISDN PCI is an interface specification which is implemented in a real computer environment. This
environment imposes problems, e.g. associating the entities and exchanging information between the
entities. As a result, the ISDN PCI contains some functionality to deal with the problems of implementing it
within a computer environment.

Two entities can be distinguished around the ISDN PCI. These are the service user and the service
provider. These entities, along with the ISDN PCI and their information interchange is described in
subclause 5.2.1.

5.2.1 ISDN PCI and its components

PUF

Throughout this ETS, the term PCI User Facility (PUF) is used to refer to the service user. It refers to all
the functional layers which use the interface to access the services of the ISDN.

NAF

The term Network Access Facility (NAF) is used to refer to the ISDN PCI service provider. This service
provider refers to all elements which are necessary to provide access to the services of ISDN. These
elements can be both software and hardware. No distinction is made to this point. The NAF behaves as
representing the services of one ISDN access.

ISDN PCI

The ISDN PCI defines the interface located at the top of the NAF(s). The ISDN PCI defines a number of
functions. First, the ISDN PCI allows for the association between the PUF and the NAF. After the PUF and
NAF are associated all the operations are performed by an Information Exchange Mechanism. The
Exchange Mechanism is another part of the functionality of the ISDN PCI. Figure 1 describes how the
ISDN PCI relates to the surrounding components. The arrow indicates the information flow.

Page 21
ETS 300 325: March 1994

(Service user)
PUF

ISDN PCI

NAF
(Service provider)

Figure 1: Functional picture of ISDN PCI with surrounding components

Query Entity

The PUF is bound to the NAF in order to be able to communicate. The binding mechanism describes how
the PUF can get contact to a particular NAF within the local computer environment. The Query Entity is
defined as an instance, that provides the relevant information for binding.

Messages

Accessing the functionality described by the ISDN PCI is achieved by means of messages. The PUF and
NAF use the functionality of the Information Exchange Mechanism to exchange messages. The
messages inform the entities of the operations to perform, or the results of performed operations.

5.2.2 ISDN PCI architecture

The ISDN PCI has its own structure. This structure consists of three planes, which form the functional
separation of functionality. Each plane has its own set of messages. The ISDN PCI distinguishes the
following planes:

- Control Plane
the Control Plane is related to the signalling part of a connection, which is, via the NAF,
associated with the signalling in the ISDN D-channel. It covers the functionality provided by
the service in the D-channel, such as connection control, control of service characteristics,
supplementary services;

- User Plane
the User Plane is related to the user connection, which may either be associated with a
connection on the B-channel or a data connection on the D-channel. It is associated, via the
NAF, with the functionality provided by the data services in the D- and B-channels, which
consists of services for end-to-end data exchange;

- Administration Plane
the Administration Plane does not relate to ISDN. It covers the required functionality for
control and configuration of the Control Plane and User Plane. Furthermore, the
Administration Plane is responsible for managing special equipment accessible through the
ISDN PCI.

Page 22
ETS 300 325: March 1994

Figure 2 gives a representation of the three planes.

NAF

ISDN PCI
User planeControl plane

Administration
plane

Signalling Data
exchange

Local
manage-
ment

PUF

D

channel

B

channels

Figure 2: Relation between planes and ISDN

5.2.3 OSI location

The ISDN PCI is located at the boundary between layers 3 and 4 of the OSI reference model. The
signalling part of ISDN is defined up until layer 3. As an interface specification to ISDN, the ISDN PCI is
also located at this boundary. When locating the ISDN PCI at exactly this boundary, all the services of the
signalling part (ISDN call control) are accessible on this point.

The Control Plane provides the services as defined in ETS 300 102-1 [2] and ETS 300 196 and is,
therefore, located at the upper boundary of the D-channel protocol. ETS 300 102-1 [2] is the ETS which
defines basic call control in Euro-ISDN. ETS 300 196 is the ETS which defines the support of
supplementary services in Euro-ISDN.

The User Plane provides the services for a variety of protocols.

The User Plane provides the services defined in CCITT Recommendation X. 213 [7] and is, therefore,
located at the Network layer Service Access Point (N-SAP). The User Plane provides this access using
the User Plane protocols on a connection in the B-channel or on a data connection in the D-channel
dependent on the protocol. The User Plane also allows for access of an other Service Access Point
(SAP). For the support of transparent access to the ISDN B-channel, the User Plane provides access to
the Physical Service Access Point (Ph-SAP).

In the case of transparent access, the NAF considers layers 2 and 3 as Null layers, as shown in figure 3.

The Administration Plane is outside the scope of the OSI reference model. The Administration Plane only
has a local impact. It takes care of the management functionality required by the User Plane, Control
Plane and external equipment accessible through the ISDN PCI.

Page 23
ETS 300 325: March 1994

Figure 3 gives a view on the direction of the ISDN PCI relating to the OSI reference model.

ISDN Layer 1

ISDN PCI

ISO/IEC 8208

D-channel B-channel
Signalling NULL

Layer

LAP BLAP D

Network

Layer

Data Link

Layer

Physical
Layer

M

A

N
A

G

E
M

E

N

T

Application code

Terminal

ManagementOSI upper layer protocols and

other protocols

PUF

NAF

Adminis-

tration

Plane
User PlaneControl Plane

Other

protocols
NULL
Layer

NOTE: The reference to ISO/IEC 8208 [3] in the figure 3 is only an example of a supported
CCITT Recommendation X.213 [7] User Plane service.

Figure 3: OSI location of the ISDN PCI

5.2.4 Co-ordination cases

This ETS covers two ways to access the data exchange functionality provided by ISDN on layer 3 of the
OSI reference model. Both ways shall be provided by the NAF and may run simultaneously.

The other data exchange functionality which the ISDN PCI is providing is a transparent access on a
connection by connection, as described in subclause 5.5.4

Case 1: PUF co-ordination

The ISDN PCI provides direct access to signalling and to the user connection, associated with the D- and
B-channels of ISDN. A PUF which uses this method shall handle the establishment of a user connection
by using the basic call control provided by the Control Plane. The co-ordination between signalling and
user connection shall be handled exclusively by the PUF. Figure 4 shows the PUF provided co-ordination
function. As a result of controlling the signalling connection, the PUF can use the supplementary services.

Page 24
ETS 300 325: March 1994

NAF

ISDN PCI

Control
plane

protocol

User
plane

protocols

PUF

(including coordination function)

Administration
plan

NOTE: The co-ordination is performed either implicitly or explicitly inside the PUF. The
existence of a co-ordination function inside the PUF is outside the scope of this ETS.

Figure 4: Case 1 PUF co-ordination

Case 2: NAF co-ordination

In case 2, the ISDN PCI abstracts from the separation between signalling and user connection, as
provided in ISDN via the D- and B-channels. The PUF is offered an ISO Connection-mode Network
Service (CONS) as defined in CCITT Recommendation X.213 [7]. This abstraction is provided by a
co-ordination function, which maps the primitives of CONS in the User Plane according to the primitives of
the Control Plane and User Plane protocols. The co-ordination function can only be used with the User
Plane protocols relating to CCITT Recommendation X.213 [7]. The use of the co-ordination function with
transparent access is for further study.

The co-ordination function is provided as part of the NAF. Since the NAF manages the co-ordination
between signalling and user connection, the PUF shall not access the Control Plane. Figure 5 shows the
NAF provided co-ordination function.

Page 25
ETS 300 325: March 1994

NAF

ISDN PCI

User
plane

protocols

Control
plane

protocol

Administration
plan

co-ordination function

PUF

NOTE: The co-ordination function is only defined for User Plane protocols related to CCITT
Recommendation X.213 [7]. The use of the co-ordination function for transparent
access is for further study.

Figure 5: Case 2-NAF co-ordination

5.3 Functionality

5.3.1 Introduction

As described in subclause 5.2.2, the ISDN PCI functionality is provided by the three planes, with
associated message sets to access the functionality. How the exchange of messages between PUF and
NAF takes place is described in subclause 5.5.

In order to access ISDN signalling or data, the PUF shall create a NCO. The creation and destruction of
network connection is the main part of the functionality of the resource management which is described in
subclause 5.3.2.

After having performed this successfully, the PUF is in an "idle" state and may subsequently access ISDN
signalling (except in case 2, NAF co-ordination) or transfer data. Subclauses 5.3.3 and 5.3.4 respectively,
describe the functionality for connection management and data management.

Page 26
ETS 300 325: March 1994

5.3.2 Resource management

The first functionality which is described is resource management. This functionality is needed to be able
to use the ISDN PCI for communication. The resource management contains functionality for local
management. The functionality covers the management of:

- Network Connection Objects (NCOs);
- external equipment.

The Administration Plane of the ISDN PCI provides the functionality defined by the resource management.

The resource management revolves around the NCO, which is the object needed for subsequent
communication. An NCO refers to an abstract object containing all relevant configuration information for
one user connection. The configuration information for an NCO shall be assigned by the PUF using one of
two principle methods:

a) referencing a standardized attribute set;
b) specifying all configuration information during NCO creation.

Method a) provides a simple way for the PUF to select appropriate configuration information by
referencing a standardized attribute set identifier. However, this method is available at the cost of
flexibility, since attribute sets are standardized and may only be used in the provided manner. Annex H
gives the list of standardized attribute sets.

Method b) gives the PUF the opportunity to specify configuration information for any special needs on its
own. However, this involves a lot of details concerning D-channel and B-channel parameters and shall,
therefore, be left for the sophisticated PUF-implementor.

5.3.2.1 Attribute sets

Attribute sets are used to keep together important parameters for driving user protocols, for driving the
ISDN signalling protocol and for collecting some management information relevant to the NCOs (statistics,
cost, ...). User protocols and ISDN signalling is accessed through the functionality of the User Plane and
the Control Plane. A collection of attribute sets exists for both planes. These sets are:

- signalling attribute set (related to the Control Plane);
- user protocol attribute set (related to the User Plane);
- administration attribute set (related to the Administration Plane).

The Administration attribute set is not involved in the NCO creation but is only updated during the life of
the NCO and can be accessed at any time through the resource management. It can be seen as king of
the dashboard of the NCO.

The resource management offers functionality to reference specific attribute sets when creating an NCO.

5.3.2.2 Network connection objects

The resource management functionality covers:

- the creation of an NCO;
- the grouping of NCOs.

An NCO is an abstract object created by the NAF in response to requests by the PUF prior to the
establishment of a connection.

As a rule there is one NCO per connection, independent of which type of connection the NCO is related
to. This can be a signalling connection or a connection for data transfer.

After the successful creation of a NCO a unique identifier, the NCO Identifier (NCOID), becomes
available. This NCOID shall be supplied in subsequent operations regarding connection establishment
and data transfer.

Page 27
ETS 300 325: March 1994

At the creation time of an NCO, the PUF can indicate that the newly created NCO should be grouped to
another already existing NCO.

The purpose of the grouping is to provide the ability to share a channel when using a network layer
protocol, which allows sharing of several logical connections on one physical channel. The sharing is
reserved to one PUF.

The grouping of the NCOs is done by using the Group-ID. A unique Group-ID shall be returned on the
successful creation of an NCO. This Group-ID can subsequently be supplied at the creation of an
additional NCO, which shall then be grouped to the first NCO. If no Group-ID is supplied, the NCO shall
not be grouped. The Group-ID is only guaranteed to be unique for the interaction between the PUF and
the NAF.

As the GroupID is only unique for the PUF NAF relation, multiple PUFs which access the same NAF
cannot share the same connection.

For an incoming call, the NAF selects the appropriate NCOs and is then helped by the PUF to choose the
unique one. This is done using the SelectorID, supplied at the creation of the NCO. This gives the PUF the
opportunity to handle a list of NCOs that the NAF will exclusively deal with.

In case of a non co-ordinated NCO (C/U3), the User and Control Planes may have different directions. For
example, the User Plane may be listening, while the Control Plane is calling.

5.3.2.3 Support of external equipment

Access to external equipment, such as telephones, is provided to the PUF through the functionality of the
three planes.

As long as an NCO that specifies an external equipment in its configuration information exists, the NAF
shall generate the appropriate Control Plane messages if the state of that external equipment changes.

The connection management (see subclause 5.3.3) and data management (see subclause 5.3.4) provide
functionality to manage connections with these NCO.

Five types of external equipments are defined:

1) external equipment without telephony hook mechanism. This type of external equipment only
contains the transceivers. In this case, the PUF is responsible for the management of the
ISDN connection;

2) external equipment with telephony hook mechanism. In this case, all telephony hook
mechanism events are available at the PCI level and the PUF is responsible for the
management of the ISDN connection;

3) external equipment with telephony hook mechanism and which is able to manage the ISDN
connection. In this case all telephony hook mechanism events are available at the PCI;

4) external equipment with keypad and with or without telephony hook mechanism. In this case
all dialling events, all telephony hook mechanism events are available at the PCI and the
PUF is responsible for the management of the ISDN connection;

5) external equipment with keypad and with or without telephony hook mechanism which is able
to manage the ISDN connection. In this case, all dialling events, all telephony hook
mechanism events and informations about the status of the communication are available at
the PCI.

All these types of external equipments are connected to the NAF by the means of a proprietary connection
which is outside the scope of this ETS and provide to the PUF the availability or not of the external
equipment.

Page 28
ETS 300 325: March 1994

In the case of type 4 and 5 external equipments, two types of dialling are possible:

- blocksending: one Control Plane message containing the complete destination address is
provided to the PUF;

- overlap sending: one Control Plane message per key pressed is provided to the PUF. During
a communication, Dual Tone Multi Frequency (DTMF) codes can be sent via the keypad.

Type 3 external equipments are able to deal with incoming calls alone when the computer is off.

Type 5 external equipments are able to deal with incoming and outgoing calls when the computer is off.

Each action to the handset generates a Control Plane message to the PUF. Depending on the type of
external equipment, different level of messages are sent to the PUF:

- for type 1 external equipment:
- availability/unavailability;

- for type 2 and 3 external equipment:
- availability/unavailability;
- on-hook;
- off-hook.

- for type 4 and 5 external equipment:
- availability/unavailability;
- on hook;
- off hook;
- a code representing the key pressed on the keypad in the case of an overlap sending;
- a table of codes representing the complete destination address in the case of a block

sending.

In the case of type 2 and 3 external equipments and if the PUF has created an NCO that specifies an
external equipment in its signalling attribute set, a connection which involves this external equipment may
be established and breakdown in different ways:

- case of the outgoing calls:
- the user off-hooks the handset and the PUF issues the overlap or block dialling;
- the PUF issues the overlap or block dialling and the user off-hooks the handset;

- case of the incoming calls:
- the user off-hooks the handset and the PUF receives a Control Plane message to

inform it;
- the PUF answers to the incoming call and the user off-hooks the handset;

- case of local breakdown:
- the user on-hooks the handset and the PUF receives a Control Plane message to

inform it;
- the PUF releases the call and the user on-hooks the handset;

- case of remote breakdown:
- the PUF receives a Control Plane message and the user on-hooks the handset.

In the case of type 4 and 5 external equipments and if the PUF created an NCO that specifies an external
equipment in its signalling attribute set, a connection which involves this external equipment may be
established and breakdown in different ways:

- case of the outgoing calls:
- the user off-hooks the handset and the PUF issues the overlap or block dialling;
- the user off-hooks the handset which generates a Control Plane message to the PUF

and uses the keypad of the external equipment to issue the overlap dialling. Each key
pressed generates a Control Plane message to the PUF;

- the user off-hooks the handset which generates a Control Plane message to the PUF
and uses the keypad of the external equipment to issue the block dialling. The end of
the destination address is detected by the means of a special key. A Control Plane
message is generated to the PUF;

Page 29
ETS 300 325: March 1994

- the PUF issues the overlap or block dialling and the user off-hooks the handset;

- case of the incoming calls:
- the user off-hooks the handset and the PUF receives a Control Plane message to

inform it;
- the PUF answers to the incoming call and the user off-hooks the handset;

- case of local breakdown:
- the user on-hooks the handset and the PUF receives a Control Plane message to

inform it;
- the PUF releases the call and the user on-hooks the handset;

- case of remote breakdown:
- the PUF receives a Control Plane message and the user on-hooks the handset.

5.3.2.4 Support of security features

Access to security features below the ISDN PCI is provided to the PUF through the functionality of the
Administration Plane.

The security features provided through the ISDN PCI cover the use of security algorithms on connections.

The PUF can activate and deactivate security features on a specific connection by supplying the NCO of
the connection in Administration Plane messages.

5.3.2.5 Support of manufacturer specific features

Access to manufacturer specific features is provided to the PUF through the functionality of the
Administration Plane.

The PUF can access manufacturer specific features by using this functionality. It is a way to handle extra
functionality not provided by the ISDN PCI.

The information exchanged between PUF and NAF is dependant of the implementation of the feature and
is, therefore, not covered in this ETS.

5.3.3 Connection management

The second functionality is the connection management. It covers:

- connection set-up and removal;
- supplementary services.

The connection set-up and breakdown covers the basic functionality of the connection management. The
supplementary services provide additional functionality related to the connection management.

The Control Plane of the ISDN PCI provides the functionality defined by the connection management.

5.3.3.1 Connection set-up and removal

The only way for a PUF to achieve a connection is to enter the "idle" state by the creation of an NCO.
Subsequently, it can perform a connection request or wait for a connection indication. After the connection
is removed, the PUF returns to the "idle" state and can subsequently re-use the NCO for a new
connection. The NCO becomes invalid if it is destroyed or if the PUF deregisters from the NAF.

At the creation of an NCO, the PUF shall decide which type of connection is to be achieved. The ISDN
PCI provides for access to:

- signalling connection, running the Euro-ISDN signalling protocol;
- connection for information transfer, optionally running communication protocols.

Page 30
ETS 300 325: March 1994

For signalling connections the ISDN PCI provides functionality to set-up and breakdown connections. The
functionality is covered by one message access at the top of the layer 3 of the signalling protocol. This
message access is called Signalling Message Access (SMA).

If the PUF has created an NCO associated with external equipment, the ISDN PCI provides functionality
to set-up and breakdown connections and all user actions with the external equipment (on-hook, off-hook,
dialling) are taken into account for the signalling part. Furthermore, some external equipments are able to
manage ISDN signalling when the host is off.

In the case of telephony, additional functionality can be available, which allows the temporary breakdown
(suspend) and subsequent re-establishment of connections (resume).

As an NCO is coupled to a single PUF, connection passing between PUFs cannot be accommodated.

5.3.3.2 Support of supplementary services

The supplementary services provide additional functionality related to the connection management.

Supplementary services, as provided by the connection management of ISDN, are available to the PUF
when Case 1 of subclause 5.2.4 applies. The PUF is responsible for the handling of the connection
management and can, therefore, control the supplementary services provided via the signalling.

NOTE: The use of supplementary services, when using the co-ordination function as
described in Case 2 of subclause 5.2.4, is for further study.

In this ETS the following supplementary services are identified and described:

- Multiple Subscriber Number (MSN) (ETSs 300 050, 300 051 and 300 052);
- Direct Dialling In (DDI) (ETSs 300 062, 300 063 and 300 064);
- Calling Line Identification Presentation (CLIP) (ETSs 300 089, 300 091 and 300 092);
- Calling Line Identification Restriction (CLIR) (ETSs 300 090, 300 091 and 300 093);
- Subaddressing (SUB) (ETSs 300 059, 300 060, 300 061);
- Advice of Charge during call (AOC-D) (ETS 300 179);
- Advice of Charge at end of call (AOC-E) (ETS 300 180);
- Call Waiting (CW) (ETSs 300 056, 300 057 and 300 058);
- Connected Line Identification Presentation (COLP) (ETSs 300 094, 300 096 and 300 097);
- Connected Line Identification Restriction (COLR)(ETSs 300 095, 300 096 and 300 098).

The first four supplementary services are the supplementary services identified in the ISDN MOU as being
of priority one. This means these services shall be available in every ISDN, and are, therefore, included in
the ISDN PCI. Only Terminal Portability (TP), as a priority one service, is not included in the ISDN PCI.

The latter six supplementary services were identified as adding useful functionality to the ISDN PCI.

For all these supplementary services a special way of coding has been introduced in the ISDN PCI, to
facilitate the use of these services.

Any other supplementary services may be provided by the transparent coding of the supplementary
services. This is described in ETS 300 196 and the ETSs for supplementary services. The transparent
coding shall be provided as an optional feature.

5.3.4 Data management

The data management covers the functionality to:

- establish data connections on already established physical connections;
- exchange data.

The User Plane of the ISDN PCI provides the functionality defined by the data management.

Page 31
ETS 300 325: March 1994

For user data transfer the ISDN PCI provides two message accesses at the top of the ISDN network layer:

- Network layer Message Access (NMA);
- Transparent Message Access (TMA).

The NMA provides access to the User Plane protocols running in the ISDN network layer. Thus, it
provides access to a network layer connection.

The TMA provides access to the transparent network and link layers (NULL Layers) and thus provides
direct access to the physical layer of ISDN, providing a byte synchronized control over a B-channel. The
byte synchronized control is not restricted to the digital bearer service.

For both types of connection it is important that there exists a signalling connection before any data
access can be done. In general, establishment of that signalling connection is achieved by use of Control
Plane functionality, whereas the establishment of the data access is achieved by use of User Plane
functionality.

When using a connection on the TMA with an NCO which is associated with external equipment, the data
generated on the connection shall be sent to the external equipment rather than used to generate TMA
messages.

5.3.4.1 Connection via the Network layer Message Access (NMA)

The ISDN PCI provides co-ordination functionality for the NMA which removes the need for the PUF to
use Control Plane functionality. This co-ordination functionality, which is available to the PUF on demand,
implicitly builds a signalling connection when a user connection is requested. However, the PUF may
decide not to use the co-ordination function and to establish the signalling connection by itself through the
use of Control Plane functionality via the Signalling Management Access (SMA).

5.3.4.2 Connection via the Transparent Message Access (TMA)

Due to the nature of the TMA, which transparently accesses the physical ISDN layer, no user protocol is
running. Thus, by establishment of a signalling connection the transparent data access becomes
available. Unlike the access via the NMA, only one data connection is accessible per signalling
connection.

5.4 Relating functionality to planes

When relating the functionality as described in subclause5.3, the following relations apply:

- the Administration Plane of the ISDN PCI provides the functionality defined by the resource
management;

- the Control Plane of the ISDN PCI provides the functionality defined by the connection
management;

- the User Plane of the ISDN PCI provides the functionality defined by the data management.

Inside the planes the functionality is described using operations or operational groups.

5.4.1 Optional features

When relating the functionality to the planes, there shall be some operations or operational groups which
shall not be mandatory for a NAF to supply.

In the description of the planes there are to be indications of which operations or operation groups are
mandatory or optional.

The fact that the description allows optional features for the NAF does not mean that the ISDN PCI
contains any optional features. The ISDN PCI, as an interface specification, shall allow the exchange of
any message. Optional here refers to the availability of these features to the PUF, supplied by the NAF. If
the PUF requests a feature which is not provided by the NAF, the PUF shall be informed of this.

Page 32
ETS 300 325: March 1994

5.4.2 Administration Plane

The Administration Plane provides access to operations which facilitate management of connections e.g.
definition and management of attribute and address sets as well as management of network connection
objects. Furthermore, the following miscellaneous operations are provided via this plane:

- error report operation;
- security operation;
- manufacturer specific operation.

Table 2 provides an overview on Administration Plane operations.

Table 2: Administration Plane operations

Operation name Purpose of operation

Create NCO Create a network connection object

Destroy NCO Destroy a network connection object

GetInfo NCO Obtain information about a network connection object

Error Report non connection related error condition

Security (NOTE) Manipulate security

Manufacturer Specific (NOTE) Request manufacturer specific functionality

NOTE: These operational groups are optional for the NAF.

5.4.3 Control Plane

The Control Plane provides access to operations which handle the basic call control of the ISDN
signalling.

In the Control Plane, no clear separation of operations exists c.f. in the Administration Plane. It shall be
possible to distinguish between a number of operational groups in the Control Plane. Table 3 provides an
overview on Control Plane operational groups.

Table 3: Control Plane operations

Operational group name Purpose of operational group

Connection establishment Handling incoming and outgoing calls

Connection breakdown Handling of removal of connections or refusal of calls

User-to-user information
transfer (NOTE)

Exchanging user-to-user information and providing
control for this exchange

Adjournment of calls (NOTE) Provision of suspending and resuming calls

Facility invocation (NOTE) Handling the invocation of facilities

External equipment (NOTE) Indicate status or change of state of external equipment.

NOTE: These operational groups are optional for the NAF.

Page 33
ETS 300 325: March 1994

5.4.4 User Plane

The User Plane provides operations which facilitate establishment, data exchange and release of logical
communication channels. It uses standardized services and procedures as defined for the selected user
message access.

In the following subclauses, the different methods for message access which are supported by the
ISDN PCI are explained. Subclause 5.4.4.2 gives information on how the extendibility of the ISDN PCI
should be seen. It indicates how a new message access can be added to the ISDN PCI.

5.4.4.1 The transparent access

As stated in subclause 5.3.4, the ISDN PCI supports a Transparent Message Access (TMA).

As with any message access, this message access offers it own set of operations. Table 4 provides an
overview on User Plane operations for this message access.

Due to the nature of the TMA, only operations allowing direct byte stream access are provided for this
message access.

Table 4: User Plane operations for transparent access

Operation name Purpose of operation

Data Data transfer (byte synchronised)

Error Indicates an error has occurred

5.4.4.2 The network layer access

As stated in subclause 5.3.4, the ISDN PCI supports a Network layer Message Access (NMA).

There are different user layer protocols which can be accessed through the NMA. One of these User
Plane protocols is selectable at the creation of the NCO. The available user protocols are listed in table 6.

Independent of the user protocols, the message access offers it own set of operations. Table 5 provides
an overview on User Plane operations for this message access.

The operational set of the NMA is based on CCITT Recommendation X.213 [7]. It offers the possibility to
access ISDN data without the need for establishing a signalling connection explicitly. This can be done by
using the co-ordination function (Case 2 of subclause 5.2.4). When the co-ordination function is not used
(Case 1 of subclause 5.2.4) the functionality of the User Plane can be accessed in the same way along
with controlling the signalling connection.

Page 34
ETS 300 325: March 1994

Table 5: User Plane operations for network layer access

Operation name Purpose of operation

Connect Establish a peer-to-peer user connection

Data Exchange data over an established user connection,
hereby relying on flow control provided by underlying
protocol

Expedited data Exchange data over an established user connection
without relying on flow control provided by underlying
protocol

Data acknowledge Acknowledgement of data reception over an established
user connection

Reset Clearing of data transfer

Disconnect Disconnect connection

ReadyToReceive (NOTE) Control the normal data flow

NOTE: This operation is not based on CCITT Recommendation X.213 [7].

Table 6 lists the protocols which are supported by the NMA. The table lists whether it is mandatory (M) or
optional (O) for each protocol supported by the NAF. The two Null layers presented in table 6 are
represented in Clause 6 with only one NULL box in the protocol statements with the User Plane messages
and the User Plane parameters.

Table 6: Supported User Plane protocols

Protocol Supported by the NAF

Network layer according to ETS 300 080 [1] M

ISO/IEC 8208 [3] M

Network layer of CCITT Recommendation T.70
(NOTE)

O

Null layer 3 with access to CCITT
Recommendation X.75 on layer 2

O

Null layer 3 with transparent access to HDLC
framing

O

NOTE: In this ETS, whenever CCITT Recommendation T.70 is referenced, T.70NL is implied.

5.5 PUF NAF interactions

This subclause describes the type of functions which are available to the PUF in its interactions with a
NAF and in which order they can be used.

Page 35
ETS 300 325: March 1994

For all functions the following properties apply:

- initiated by the PUF, which means that only the PUF can initiate the association the PUF to
the NAF;

- requested by using function calls from the PUF to the NAF;
- performed in a synchronous manner.

A PUF which requests a NAF to perform a function shall regain control of the CPU from the NAF after
completion of the function call.

In the interaction between PUF and NAF the following phases can be distinguished:

- Registration Phase

Before a PUF and a NAF can interchange information, the PUF associates with the NAF. As
it is possible that within a system more than one NAF may be available, and, additionally,
these may be from different NAF manufacturers, a method is defined which allows the PUF
to discover which NAFs are accessible within a system. This phase is called the Registration
Phase. This phase allows access to a list of accessible NAFs via the PCI-Handles. Then the
PUF may discover properties of the NAF that have been selected by the PCI-Handle and
establish an association to the NAF.

- Conversation Phase

At this point PUF and NAF can exchange messages. This phase is called the Conversation
Phase. The PUF controls the exchange of messages between the NAF and itself. This
means that the PUF fills the message with relevant parameters and gives it to the NAF for
processing, or the PUF asks the NAF to receive a message by providing resources to the
NAF.

There are two methods for a PUF to discover that the NAF has a message for it. The
simplest way for the PUF to get available messages is to poll the NAF. The second method
provides a mechanism to give the NAF a fast way to notify a PUF that a message is
available. With this method the PUF explicitly allows the NAF to notify it on the availability of a
message. This method has the advantage of introducing a efficient way of operating, for
PUFs which are concerned with performance.

For example, this method shall help PUFs which have bound to multiple NAFs. However,
PUFs who use this method shall be more complex in design than those who do not.

- De-registration Phase

When a PUF does not need to exchange messages with a NAF, it disassociates from the
NAF. This phase is called the De registration Phase. This phase is important in terms of
resource management in the NAF, especially for memory resources. The PUF shall
disassociate to guarantee an efficient use of the global system.

Table 7 gives the list of functions grouped into their respective phases. The following subclauses give
more details on the functionality of the different phases.

Page 36
ETS 300 325: March 1994

Table 7: ISDN PCI functions grouped into phases

Phase Function Purpose of function

Registration PciGetHandles Provide a list of accessible NAFs and obtain
their PCI-Handles

PciGetProperty Provide detailed information on a NAF

PciRegister Associate the PUF to the NAF

Conversation PciPutMessage Transfer a message from the PUF to the
NAF

PciGetMessage Ask the NAF to receive a message, by
providing resources

PciSetSignal Establish mechanism to allow the NAF to
notify the PUF when a message is available

De registration PciDeregister Disassociate the PUF from the NAF

The functions shall be used in a certain order. Figure 6 presents a state diagram for the ISDN PCI
function calls.

NULL

REGISTERED

PciRegister PciDeregister

PciGetMessage PciPutMessage

PciSetSignal

PciGetProperty PciGetHandles

Figure 6: ISDN PCI function calls order

The messages are transferred between the PUF and the NAF by use of the PciPutMessage and
PciGetMessage functions.

5.6 Total interaction overview

As an example of the sequencing of operations, figures 7 and 8 present a chronological interaction
overview of the actions the PUF shall to perform to get a connection.

Page 37
ETS 300 325: March 1994

In these figures, the following conventions are used:

- for the complete figure, dashed lines mean optional;
- in the part of the figure on Conversation Phase, arrows from the PUF to the NAF mean

usage of PciPutMessage and arrows from the NAF to the PUF mean usage of
PciGetMessage;

- text written in small letters refers to messages as described in Clause 6 of this ETS.

PUF NAF NETWORK

ACreateNCOCnf

A

D

M

I

N

I

S

T

R

A

T

I

O

N

U

S

E

R

CConnectReq

CALL PACKET

REQUEST

CALL PACKET

CONFIRMATION
U3ConnectCnf

PciGetProperty

(optional)

PciRegister

SETUP

CONNECT

E

X

C

H

A

N

G

E

M

E

C

H

A

N

I

S

M

ACreateNCOReq

CConnectCnf

U3ConnectReq

C

O

N

T

R

O

L

ALERTCAlertInd

Conversation phase

Registration phase

CreateNCO operation

Connection establishment operation

Connect operation

PciGetHandles

(optional)

Figure 7: Sample of sequencing operations - non co-ordination case

Page 38
ETS 300 325: March 1994

PUF NAF NETWORK

ACreateNCOCnf

A

D

M

I

N

I

S

T

R

A

T

I

O

N

CALL PACKET

REQUEST

CALL PACKET

CONFIRMATION

U3ConnectCnf

PciGetProperty

(optional)

PciRegister

SETUP

CONNECT

E

X

C

H

A

N

G

E

M

E

C

H

A

N

I

S

M

ACreateNCOReq

U3ConnectReq
C

O

N

T

R

O

L

&

U

S

E

R

Conversation phase

Registration phase

.

.

.

PciGetHandles

(optional)

Figure 8: Sample of sequencing operations - co-ordination case

5.7 Identifiers

For its operations, the ISDN PCI defines identifiers. These identifiers shall be used by the PUF to identify
concrete objects or connections in an abstract manner.

This subclause summarizes the identifiers used in the ISDN PCI specification. Only the functional
description of these identifiers are given. The details are introduced in later Clauses.

For details of identifiers, see Clause 7 related to the Exchange Mechanism.

PCI-Handle This identifier is an abstract reference to a NAF. The Handle shall be used to
optionally find out information on the NAF and to register to the NAF from the
exchange mechanism function PciRegister .

ExID This identifier is the representation of the associating between a PUF and a
NAF. It is provided by the exchange mechanism function PciRegister . It is
needed in every ISDN PCI function call in relation with this associating.

Page 39
ETS 300 325: March 1994

Identifiers related to the Conversation Phase of the communication between PUF and NAF. For details of
these identifiers refer to Clause 6.

CAttributeName This identifier relates to a static attribute set of Control Plane parameters. It is
represented as a name. This identifier shall subsequently be used in creating an
NCO. The complete list of static attribute sets is defined in Annex H.

UAttributeName This identifier relates to an attribute set of User Plane parameters. It is
represented as a name. This identifier shall subsequently be used in creating an
NCO. The complete list of static attribute sets is defined in the Annex H.

ExtEquipName This identifier relates to external equipment. It is represented as a name. This
name may be obtained either implicitly or by use of the PciGetProperty function.

NCOID This identifier relates to the connection which is referred to by the PUF. It is the
way for the PUF to indicate to the NAF which connection is referred to Since a
connection always corresponds with an NCO, this identifier is a reference to this
NCO. The NCOID is provided in response to the Create NCO message.

GroupID Abstract identifier for grouping. It is only useful for the level 3 user connections.

RequestID This reference identifies the message which is exchanged between the PUF and
the NAF in the Administration Plane. Subsequent responses to this message
shall contain the same RequestID to identify the original message. It is allowed
multiple asynchronous transmissions to this plane.

SelectorID This reference identifies the NCO related to the message in case of multiple
NCOs matching, on an incoming call. The NAF shall select only one NCO in this
abstract PUF set, indicated by the same SelectorID value. This is a way for the
PUF to limit the amount of NCO selected by a NAF and then to limit the number
of messages generated by the NAF in case of an incoming call.

5.8 Error handling

5.8.1 Overview

Error information is returned to the PUF by the means of function return codes and information present
within messages. Generally, the function return codes provide error information generated by the passing
of parameters to the NAF from the PUF and the checking of those parameters data. Messages contain
error information reflecting the checking of the data referenced by the parameters, the processing of
earlier messages or events from the protocols in use.

5.8.2 Function error handling

For each function the supplied parameter values are checked, if any of them are found to be in error then
the fact shall be reported as a function return code and the action requested by the function shall not take
place.

The parameter examination that takes place (and order of checking) when a function is invoked by a PUF
depends on the function being invoked.

5.8.3 Message error handling

Error detection takes place at 2 stages during the processing of a PCI message:

1) when the message is initially examined by the NAF, to ensure that it is suitable for further
processing. This checking is administrative in nature, so any errors encountered are returned
in Administration Plane messages;

2) when the message is processed by the NAF, the way in which error information is passed to
the PUF depends on the plane that the message belongs to and the protocol underlying that
plane.

Page 40
ETS 300 325: March 1994

The initial examination that takes place (and order of checking) when the message is first received from a
PUF is as follows:

a) NAF availability is checked;
b) Message identifier is checked;

- unknown message, not defined by PCI;
- unsupported message, defined by PCI but not supported by NAF.

In the case of Administration Plane messages, any error information is returned on the corresponding
confirm message. In the case of Control and User Plane messages, error information is returned in the
Administration Plane AErrorInd message.

The error detection that takes place (and order of checking) when the message is processed by the NAF
is protocol dependant. Error information is returned by a mechanism particular to the protocol in use.
These mechanisms are described in subclause 6.8.

6 Description of ISDN PCI messages

As described in subclause 5.5, "PUF NAF Interactions", the exchange of messages is realised through 2
functions, PciPutMessage and PciGetMessage, which may be called as soon as the PUF is bound to the
NAF. Due to the nature of these functions, which may be used independent from each other, correlation of
"got messages" to "put messages" shall be performed by the PUF. For this reason, the messages of each
plane are containing identifiers allowing correlation between messages.

The following subclauses describe the messages provided by each plane of the ISDN PCI, as well as the
parameters used in conjunction with each message. The actual information presentation and coding for
the operations and parameters is described in subclause 6.5 "Information presentation".

6.1 Conventions

The description of the messages, their parameters and fields is independent of hardware and operating
systems.

6.1.1 Address conventions

When using any address in this ETS, the following conventions shall apply:

- the called address refers to the remote address if the address is used in the direction PUF to
NAF and if the address is used in the direction NAF to PUF;

- the calling address refers to the local address if the address is used in the direction PUF to
NAF and if the address is used in the direction NAF to PUF.

6.1.2 Provision of information

The provision of, or requirement of, items in the message can vary. The following conventions and
abbreviations are used:

M = (Mandatory): this item shall be supplied.

C = (Conditional): a condition determines if this item is supplied. The condition is explained as a comment
to the item.

O = (Optional): this item may or may not be supplied. For the exchange from PUF to NAF this implies that
the PUF is free to provide the item or not. For the exchange from NAF to PUF this implies that the NAF
shall only supply the item if it is available.

Information coming from the NAF reflects information provided by the Network.

Page 41
ETS 300 325: March 1994

6.1.3 Message conventions

This subclause presents conventions used in the tables for describing the messages.

Each message belongs to a class. With each message the class is indicated. Not all classes are available
for a NAF to support. A NAF provider may chose to implement only certain classes. Each plane contains
its own classes.

For each plane, a PUF can only rely on the availability of messages from class 1 (basic class). The other
messages belong to additional classes. If a NAF implements an additional class, all messages in this
class shall be provided.

The message indicates its direction of transfer in the suffix part of its name. Messages with the suffix Req
or Rsp are transferred from the PUF to the NAF. Messages with the suffix Ind and Cnf are transferred
from the NAF to the PUF. Message identifiers are provided in decimal.

6.1.4 Parameter conventions

With the description of parameters the following conventions are used:

- the name of the field shall be given;
- the type of the field shall be given in decimal;
- the entity in charge to provide the content of the field - the Direction column. The following

abbreviations are used:
P charge of the PUF;
N charge of the NAF;
B both PUF and NAF can provide the content;

- the length of the field may be given. This indicates the number of octets this field shall
occupy. The term octet does not refer to any hardware or operating system dependant
implementation. It refers to the basic information unit in all systems.

6.1.4.1 Parameter ordering

No ordering between parameters in messages is needed. The ordering of the parameters is not described
by the ordering in the tables.

The ordering of the fields within the parameters is defined in the subclause 6.5.

6.1.4.2 Parameter repetition

Parameters in a message can be repeated. In the following subclauses the parameters which can be
repeated shall be identified by a *. The star indicates any number of repetitions that can be supplied.

If a parameter is repeated in the exchange from PUF to NAF more than the allowed number of repetitions,
only the allowed number of repetitions shall be interpreted by the NAF. Any additional repetition shall be
ignored.

In the exchange from NAF to PUF only the allowed number of repetitions shall be provided.

6.1.4.3 Parameter checking

No particular checking process should be performed by the NAF for parameters coming from the Network.

6.1.5 Default philosophy

For the values of parameters and fields in parameters a default philosophy applies. This means that, if
appropriate, the value "default" is shown in the description. After this value the value implied by the default
is given.

Page 42
ETS 300 325: March 1994

The default value shall only be used in the message exchange from PUF to NAF. If a parameter is not
provided in a message, the value provided during the NCO creation operation takes place.

In the exchange from NAF to PUF only the real value shall be given.

6.2 Administration Plane messages

The Administration Plane messages may be divided into the following groups:

- management of network connection objects;
- management of connection security;
- error report message;
- NAF manufacturer messages.

For management of NCOs there are messages available for creating and destroying a connection object.
During creation of an NCO static or dynamic attribute and address sets are linked to the created NCO. On
conclusion of the creation of an NCO, an NCOID becomes available, which shall be used in subsequent
User or Control Plane operations related to the created NCO. A collection of predefined attribute sets is
presented in Annex H.

For security to be used on connections there are messages available to request security be used or
stopped on a connection. These messages are optional and may not be provided by all NAFs. Their
availability shall be indicated in the properties definition provided by the NAF.

For the reporting of error information a single message is provided by the NAF. This is used to report
general error conditions.

All request messages of the Administration Plane may contain a request identifier (RequestID). This
identifier, if assigned by a PUF on a request message, shall be returned by the NAF on the related confirm
message.

Table 8 gives an overview of Administration Plane messages. The messages themselves are described in
detail in the following subclauses.

Table 8: Administration Plane messages

Mess.

Identif

Clas
s

Message Name Purpose of Message

101 1 ACreateNCOReq Request to create a network connection object.

102 1 ACreateNCOCnf Confirmation of the "CreateNCO" operation.

103 1 ADestroyNCOReq Request to destroy a network connection object.

104 1 ADestroyNCOCnf Confirmation of "DestroyNCO" operation.

105 1 AGetNCOInfoReq Request information concerning a specific NCO.

106 1 AGetNCOInfoCnf Confirmation reporting information for the relevant NCO.

108 1 AErrorInd Indicate that a non-protocol related error has occurred.

109 2 ASecurityReq Request to engage/stop security algorithm.

110 2 ASecurityCnf Confirmation to engage/stop security algorithm.

111 3 AManufacturerReq Request for a specific manufacturer functionality.

112 3 AManufacturerInd Provide the PUF with information linked to the requested
functionality.

Page 43
ETS 300 325: March 1994

6.2.1 ACreateNCOReq

Class: 1 (Basic Class).

Description: Request message for creating a network connection object (NCO).

The PUF shall provide an NCOType which identifies the type of NCO which is to
be created. Depending on this type, there are more parameters needed
(conditional parameters). For details refer to tables 9 and 10.

The PUF can supply a unique request identifier (RequestID) which can be used
to identify the corresponding confirmation message of this operation.

Parameters:

Name Required Comment

RequestID O Request identifier, generated by the PUF.

NCOType M Specification of NCO type.

CDirection C Determines how NCO shall be used, for the Control
Plane.

UDirection C Determines how NCO shall be used, for the User
Plane.

CAttributeName C Name of static control plane attribute.

CAttribute parameters C Control Plane attribute parameters.

Exclusive with CattributeName; see table 20 for more
details.

UAttributeName C Name of static User Plane attribute.

UAttribute parameters C User Plane attribute parameters.

Exclusive with UAttributeName; see tables 21 and 22
for more details.

CAddress parameters O Control Plane address; see table 24 for more details.

UAddress parameters O User Plane address; see table 25 for more details.

GroupID C Required if NCO is to be grouped.

SelectorID O Helps the NAF to select the right NCO.

Remark: See also subclause 6.7 on usage of the NCO.

Related: ACreateNCOCnf.

Page 44
ETS 300 325: March 1994

6.2.2 NCOType and conditional parameter specification

Currently there are 5 types of NCOs defined. These types are shown in table 9.

Table 9: NCOTypes

NCOType NCO allows PUF ...

C ... signalling access only.

C/U1 ... signalling and transparent user access via TMA.

C/U3 ... signalling and network layer user access via NMA.

U3 ... network user access via NMA with NAF signalling co-ordination
(NAF co-ordination functionality).

U3G ...network user access via NMA to additional virtual circuits. This NCO
shall be grouped to an already created U3 or C/U3 type NCO.

Table 10 shows which conditional parameters shall be specified in the ACreateNCOReq message in
relation to the selected NCOType.

Table 10: Specification of conditional ACreateNCOReq message parameters

NCOType SigAttribute

Type

UsrAttribute

Type

SigAddress

Type

UsrAddress

Type

GroupID

C C Attribute C Address

C/U1 C Attribute U1 Attribute C Address

C/U3 C Attribute U3 Attribute C Address U3 Address

U3 C Attribute U3 Attribute C Address U3 Address

U3G U3 Attribute U3 Address Reference to
NCO See NOTE

NOTE: If an NCO is to be grouped - which can only be done in case of the U3G NCOType - a
reference by GroupID to an already created NCO of type U3 or C/U3 shall be provided.
Therefore, the creation of such an NCO type shall have been carried out successfully in
order to have the GroupID available.

Page 45
ETS 300 325: March 1994

6.2.3 ACreateNCOCnf

Class: 1 (Basic Class).

Description: Confirmation message of the CreateNCO operation requested previously. The
confirmation message can be correlated to the correct ACreateNCOReq
message by use of the returned RequestID.

The confirmation message may contain the NCO identifier (NCOID) which shall
be used on further requests through the User or Control Plane related to the
created NCO as well as the GroupID which shall be used for subsequent
ACreateNCOReq messages, if grouping to the created NCO is intended.

Parameters:

Name Provided Comment

RequestID C Provided if supplied on request message.

CompletionStatus M Completion status of the CreateNCO operation of the
NAF.

NCOID C NCO identifier if CompletionStatus Success else
absent.

GroupID C Group identifier, provided if NCO created was of type
C/U3 or U3 and if CompletionStatus Success.

Related: ACreateNCOReq.

6.2.4 ADestroyNCOReq

Class : 1 (Basic Class).

Description: Destroys an existing NCO created by the same PUF. The PUF can supply a
request identifier (RequestID) which can be used to identify the corresponding
confirmation message of this operation.

Parameters:

Name Required Comment

RequestID O Request identifier, generated by the PUF.

NCOID M Identifier of NCO to be destroyed.

NOTE: NCO may not be destroyed if it is in use for an established connection or a connection
that is attempting to be established. When a non-grouped NCO is destroyed, any
NCOs grouped to it become unusable except when the grouped NCO relates to an
established connection or a connection that is attempting to be established. In this
case, the NCO remains usable until the related connection is removed. An unusable
NCO can only be destroyed using the ADestroyNCOReq message.

Related: ADestroyNCOCnf.

Page 46
ETS 300 325: March 1994

6.2.5 ADestroyNCOCnf

Class : 1 (Basic Class).

Description: Confirmation message of the DestroyNCO operation previously requested. The
confirmation message can be correlated to the correct ADestroyNCOReq
message by use of the RequestID.

Parameters:

Name Provided Comment

RequestID C Provided if supplied on request message.

NCOID M Identify the NCO on which the Destroy operation was
requested.

CompletionStatus M Completion status of the DestroyNCO operation of the
NAF.

Related: ADestroyNCOReq.

6.2.6 AErrorInd

Class: 1 (Basic Class).

Description: This message is related to administrative (i.e. non-protocol related) checking of
messages.

Parameters:

Name Provided Comment

RequestID C Provided if supplied on request message.

CompletionStatus M Value indicating the error that has occurred.

Related: None.

6.2.7 AGetNCOInfoReq

Class : 1 (Basic Class).

Description: Request message for getting information about an NCO. Each NCO is
characterized by some attributes (see Administration Attribute set parameters,
subclause 6.6.73) which are accessible from the PUF thanks to this request and
its confirmation.

Parameters:

Name Required Comment

NCOID M Identifier of NCO requested on.

Related: AGetNCOInfoCnf.

Page 47
ETS 300 325: March 1994

6.2.8 AGetNCOInfoCnf

Class : 1 (Basic Class).

Description: Confirmation message sent by the NAF to the PUF for answering an
AGetNCOInfoReq. It contains the information (see Administration Attribute set
parameters, subclause 6.6.73) relevant for the requested NCO.

Parameters:

Name Provided Comment

NCOID M Identifier of NCO requested on.

CompletionStatus M Completion status of the GetNCOInfo operation of the
NAF.

AAttribute C Administration plane attribute set parameters if
CompletionStatus Success else absent.

Related: AGetNCOInfoReq.

6.2.9 ASecurityReq

Class: 2 (Additional class).

Description: This message allows the PUF to engage a security algorithm provided by the
NAF. The PUF shall provide the NCOID the connection it wants to have the
security algorithm applied to. The PUF can indicate any connection for security
to be applied to. The PUF shall be informed by the NAF with a ASecurityCnf
message if it is possible to use security on the indicated connection.

The ASecurityReq message does not state how the connection is secured, or
which type of information inside the connection shall be affected by the security
algorithm. It is up to the security algorithm to handle the securing of the
connection.

The Algorithm parameter indicates to the NAF which security algorithm shall be
used to secure the connection. The security algorithm is identified by its name.
The names of the available algorithms can be obtained using the Property
information. By using the name "nosecurity" for this parameter, the PUF can
indicate that security is no longer needed for the connection.

The optional Key parameter is used by the PUF to give relevant information for
the security algorithm to the NAF. The parameter is optional because the
security algorithm may or may not need specific information to be activated. The
kind of information to be used for the Key parameter is dependant of the security
algorithm activated.

Parameters:

Name Required Comment

RequestID O Request identifier, generated by the PUF.

NCOID M Identify the connection for which security shall be
activated.

Algorithm M The name of the security algorithm to use.

Key O Key to use for the security Algorithm.

Related: ASecurityCnf.

Page 48
ETS 300 325: March 1994

6.2.10 ASecurityCnf

Class: 2 (Additional class).

Description: Confirmation message sent to the PUF by the NAF upon completion of the
ASecurityReq. The RequestID correlates this confirmation message to the
corresponding ASecurityReq.

The CompletionStatus Success indicates that the required security algorithm
has been activated or stopped for the requested connection, otherwise the
reason for non-activation of the security algorithm is returned. The reason is
algorithm specific.

Parameters:

Name Provided Comment

RequestID C Provided if supplied on request message.

CompletionStatus M Completion status of the ASecurity operation of the NAF.

Related: ASecurityReq.

6.2.11 AManufacturerReq

Class: 3 (Additional class).

Description: This message allows the PUF to request the NAF to provide a private
manufacturer functionality.

This is the way to handle private functionality not provided by the ISDN PCI.

Parameters:

Name Required Comment

RequestID M Request Identifier.

ManufacturerCode M Identifies the manufacturer code (provided by the
manufacturer).

Remark: Information about the functionality shall be mandatory. It is not provided as a
parameter of the message but shall be contained in the data buffer.

Related: None.

Page 49
ETS 300 325: March 1994

6.2.12 AManufacturerInd

Class: 3 (Additional class).

Description: This message gives to a PUF specific information dealing with the requested
functionality. The NAF is only allowed to issue manufacturer indications, when
the PUF had earlier issued at least one manufacturer private request.

Parameters:

Name Provided Comment

RequestID M Request Identifier.

ManufacturerCode M Identifies the manufacturer code (provided by the
manufacturer).

CompletionStatus O Identifies the result which is manufacturer specific.

Remark: If information is provided, it shall not be done as a parameter of the message
but in the data buffer.

Related: AManufacturerReq.

6.3 Control Plane messages

The Control Plane messages may be divided into six classes:

1) connection establishment and connection breakdown;
2) overlap sending specific messages;
3) user-to-user information transfer;
4) adjournment of calls;
5) facility invocation;
6) external equipment.

As described in subclause 6.1.3, not all these classes may be accessible through the ISDN PCI. A NAF
may choose to implement only a number of categories from the above list. The error mechanism to
indicate to the PUF that a message is not available is described in the subclause 5.8.

A PUF can only rely on the availability of the class 1 messages. The availability of other classes of
message is NAF dependent.

Table 11 gives an overview of Control Plane messages, the class they belong to and their message
identifier.

Page 50
ETS 300 325: March 1994

Table 11: Control Plane messages

Mess.

Identif.

Class Message Name Purpose of Message

201 1 CAlertReq State the compatibility with the incoming call.

202 1 CAlertInd The called terminal states that it may handle a
call.

203 1 CConnectReq Initiate an outgoing call.

204 1 CConnectInd Present an incoming call.

205 1 CConnectRsp Accept an incoming call.

206 1 CConnectCnf Indicate acceptance of an outgoing call by the
called terminal.

207 1 CDisconnectReq Remove a connection or refuse an incoming call.

208 1 CDisconnectInd Indicate the connection has been removed or the
outgoing call has been refused.

209 1 CDisconnectRsp Confirm the end of a connection.

210 1 CDisconnectCnf Indicate the other terminal has ended the
connection.

212 1 CProgressInd Indicate a B channel is connected.

214 1 CStatusInd Indicate a protocol error.

216 2 CSetupAckInd Indicate more information is required to proceed
the outgoing call.

217 2 CConnectInfoReq Send more information to process the call.

218 2 CProceedingInd Indicate no more establishment information shall
be accepted for this call.

219 3 CUserInformationReq Send user-to-user information.

220 3 CUserInformationInd Present received user-to-user information.

(continued)

Page 51
ETS 300 325: March 1994

Table 11: Control Plane messages (concluded)

Mess.

Identif.

Class Message Name Purpose of Message

221 3 CCongestionControlReq Apply flow control operations to user-to-user
information exchange.

222 3 CCongestionControlInd Indicate flow control operation to be applied to
user-to-user information exchange.

223 4 CSuspendReq Suspend a connection.

224 4 CSuspendCnf Response to the demand for suspending a
connection.

225 4 CResumeReq Resume a suspended connection.

226 4 CResumeCnf Response to the demand for resuming a
connection.

228 4 CNotifyInd Indicate a new state for a connection.

229 5 CFacilityReq Request a facility from the network.

230 5 CFacilityInd Indicate a facility coming from the network.

232 6 CExtEquipAvailabilityInd Indicate that the external equipment is or not
connected to the NAF.

234 6 CExtEquipBlockDiallingInd Indicate that the call is completely initiated by the
external equipment (block dialling).

236 6 CExtEquipKeyPressedInd Provide to the PUF the code of a pressed key.

238 6 CExtEquipOffHookInd Indicate that the handset is off-hooked.

240 6 CEXtEquipOnHookInd Indicate that the handset is on-hooked.

Page 52
ETS 300 325: March 1994

6.3.1 Sequencing of Control Plane messages

Figures 9, 10, 11 and 12 present the state diagrams affecting the state of a PUF connection.

 0
Idle

 1
 Call
InitiatedCSetupAckInd

CAlertInd
CConnectInfoReq
CProceedingInd
CProgressInd CConnectCnf

 4
Active

CConnectInd

CConnectRsp

 3
Call

Received

CAlertReq

CConnectRsp

 11
Resume
Request

CResumeReq

CResumeCnf (fail)

CResumeCnf

CSuspendReq

CSuspendCnf (fail) 10
Suspend
Request

CCongestionControlReq
CCongestionControlInd

CNotifyInd
CUserInformationReq
CUserInformationInd

CSuspendCnf

CConnectReq

 2
 Call

 Present

NOTE: CExtEquipavailabalityInd can be used in all states. It causes a transition to state 0 if
the external equipment is unavailable.

Figure 9: State diagram of a Control Plane no external equipment or external equipment type 1

Page 53
ETS 300 325: March 1994

 0
Idle

CExtEquipOffHookInd

CSetupAckInd
CAlertInd

CConnectInfoReq
CProceedingInd
CProgressInd CConnectCnf

CConnectInd

CConnectRsp CAlertReq

CConnectRsp

CResumeReq

CResumeCnf (fail)

CResumeCnf

CSuspendReq

CSuspendCnf (fail)
CCongestionControlReq
CCongestionControlInd

CNotifyInd
CUserInformationReq
CUserInformationInd

CSuspendCnf

CConnectReq

CExtEquipOffHookInd

CSetupAckIndCConnectReq

Suspend
Request

10

Active
4

 Call
Initiated

1

Call
Received

3

 Call
Delivered

2

Resume
Request

11

handset
off-hooked

13

NOTE 1: CExtEquipOnHookInd can be used in all states except 0. It causes a transition to state
0.

NOTE 2: CExtEquipavailabalityInd can be used in all states. It causes a transition to state 0 if
the external equipment is unavailable.

Figure 10: State diagram of a Control Plane external equipment type 2 or 3

Page 54
ETS 300 325: March 1994

 0
Idle

CExtEquipOffHookInd

CSetupAckInd
CAlertInd

CConnectInfoReq
CProceedingInd
CProgressInd

CExtEquipKeyPressedInd CConnectCnf

CConnectInd

CConnectRsp

CConnectReq
CExtEquipKeyPressedInd

CExtEquipBlockDiallingInd
CSetupAckInd

CAlertReq

CConnectRsp

CResumeReq

CResumeCnf (fail)

CResumeCnf

CSuspendReq

CSuspendCnf (fail) CCongestionControlReq
CCongestionControlInd

CNotifyInd
CUserInformationReq
CUserInformationInd

CExtEquipKeyPressed

CSuspendCnf

CConnectReq
CExtEquipBlockDiallingInd
CExtEquipKeyPressedInd

CExtEquipOffHookInd

 Call
Delivered

2

Call
Received

3

 Call
Initiated

1

Active
4

Suspend
Request

10

Resume
Request

11

handset
off-hooked

13

NOTE 1: CExtEquipOnHookInd can be used in all states except 0. It causes a transition to state
0.

NOTE 2: CExtEquipavailabalityInd can be used in all states. It causes a transition to state 0 if
the external equipment is unavailable.

NOTE 3: In figures 9, 10 and 11 if the PUF reaches the Idle state (state 0) by receiving a
CSuspendCnf the connection is suspended and may be reused. The NCO however
still describes the interaction between PUF and NAF for this connection and cannot be
reused. The PUF shall use the NCO again when the connection is resumed or
disconnected.

Figure 11: State diagram of a Control Plane external equipment type 4 or 5

Page 55
ETS 300 325: March 1994

6
D isc on n ec t
I n d ica t io n

5
D is co n n e ct

R e q u es t

0
Id le

0
Id le

C D isc on n e ctR s p C D is c on n ec tC n f

Remarks: CDisconnectInd can be used in all states except 0, 5 and 6. It causes a transition to
state 6.

CDisconnectReq can be used in all states except 0, 5 and 6. It causes a transition to
state 5.

Related network messages and complementary intermediate states can be found in
Annex E, Clause E.1.

Any CStatusInd message causes a transition to state 0.

NOTE 1: Figures 9, 10, 11 and 12 do not provide any information on the user-to-user
information transfer. These messages, depending on the user-to-user service level, do
not affect the state of a call from the PUF point of view.

NOTE 2: In order to simplify the interface, a filtering functionality might be added; using this
functionality, the PUF may select the subset of messages handled. A detailed
description of this functionality is for further study.

Figure 12: State diagram of a Control Plane connection: disconnection

Page 56
ETS 300 325: March 1994

6.3.2 CAlertReq

Class : 1 (Basic class).

Description: This message allows a PUF to indicate its compatibility with an incoming call.

Parameters:

Name Required Comment

NCOID M Identifies the call.

Facility O * Supplementary services operation or information.

UserToUserInfo O Information to be exchanged between ISDN users.

Remarks: The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 6.3. for details on user-to-user information.

Related: CConnectReq, CConnectInd, CConnectRsp, CConnectCnf, CAlertInd.

6.3.3 CAlertInd

Class: 1 (Basic class).

Description: The PUF receives this message when the called terminal has indicated its
compatibility.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

ChannelIdentification O Identification of the channel used.

Facility O * Supplementary services operation or information.

Display O Information provided by the Network to be displayed.

UserToUserInfo O Information to be exchanged between ISDN users.

Remarks: The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 6.3. for details on user-to-user information.

Related: CConnectReq, CConnectInd, CConnectRsp, CConnectCnf, CAlertInd.

Page 57
ETS 300 325: March 1994

6.3.4 CConnectReq

Class: 1 (Basic class).

Description: This message is sent by the PUF to initiate an outgoing call. The call shall be
initiated to the remote address. This address may be specified in the message,
or have been specified in the address parameters used either to create the
referenced NCO.

The PUF shall specify the BearerCap parameter to indicate which type of bearer
channel is needed. This parameter shall be specified in the message, or have
been specified in the attribute parameters used to create the referenced NCO.

The PUF may specify the LLC and HLC parameters, to indicate what type of
lower layer and higher layer protocols shall be used for this call.

Parameters:

Name Required Comment

NCOID M Identifies the call. This information is provided by the
PUF.

CallingNumber O Local address (NOTE 1).

CallingSubaddress O Local subaddress (NOTE 1).

CalledNumber O Remote address (NOTES 1 and 3).

CalledSubaddress O Remote subaddress (NOTES 1 and 3).

ChannelIdentification O Used by PUF to indicate type of requested Channel.
See ChannelIdentification parameter in subclause
6.6.18 for details of supported values. If not provided
default is any channel (NOTE 2).

BearerCap O Transmission capability required from channel (NOTE
2).

LLC O Lower Layer Compatibility information element (NOTE
2).

HLC O High Layer Compatibility information element
(NOTE 2).

Keypad O Keypad facility information element.

Facility O * Supplementary services operation or information.

UserToUserInfo O Information to be exchanged between ISDN users.

NOTE 1: Can be supplied during the creation of NCO. If specified on both message and within
the NCO, then parameter specified on message is used and NCO parameter is
ignored.

NOTE 2: Can be supplied during the NCO creation. If specified on both message and within the
NCO, then parameter specified on message is used and NCO parameter is ignored.

NOTE 3: Either a CalledNumber or a CalledSubaddress parameter - in the message or in during
the NCO creation - shall be supplied.

Remarks: The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 6.3. for details on user-to-user information.

Related: CConnectCnf, CAlertReq, CAlertInd, CConnectInfoReq.

Page 58
ETS 300 325: March 1994

6.3.5 CConnectInd

Class: 1 (Basic class).

Description: This message offers an incoming call to all appropriate PUFs (see subclause
6.7.1). At this point the call is in the establishment phase, no connection has
been established yet.

The number of the calling user may be available to the PUF. If so, it shall be
represented in the parameters CallingNumber and CallingSubaddress.

The PUF may receive the parameters BearerCap, LLC, HLC which shall
indicate:

- what type of bearer channel shall be used;
- what type of lower layer protocols shall be used for this call;
- what type of higher layer protocols shall be used for this call.

Parameters:

Name Provided Comment

NCOID M Identifies the call. This information element is provided
by the NAF.

ChannelIdentification O Identification of the channel used.

CallingNumber O * Remote address.

CallingSubaddress O Remote subaddress.

CalledNumber O Local address.

CalledSubaddress O Local subaddress.

BearerCap O Network physical resource provided.

LLC O Lower Layer Compatibility information element.

HLC O High Layer Compatibility information element.

DateTime O Date and Time.

Facility O * Supplementary services operation or information.

Display O Information provided by the Network to be displayed.

UserToUserInfo O Information to be exchanged between ISDN users.

Remark: When a PUF receives the No Channel Available information, it can clear or
suspend a call to provide a free channel if it wishes to establish a connection.

The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 6.3. for details on user-to-user information.

Related: CConnectReq, CConnectRsp, CConnectCnf, CAlertReq, CAlertInd.

Page 59
ETS 300 325: March 1994

6.3.6 CConnectRsp

Class: 1 (Basic class).

Description: This message allows a PUF to accept an incoming call. After sending this
message, the channel is considered to be established.

The PUF can supply a new value for the LLC, if it is negotiating LLC values.

Parameters:

Name Required Comment

NCOID M Identifies the call.

ChannelIdentification O Used by PUF to indicate type of requested Channel.
See ChannelIdentification parameter in subclause
6.6.17 for details of supported values. A value can be
provided if the B-channel chosen by the PUF is not the
same as those the NAF presents.

LLC O Negotiated value.

Facility O * Supplementary services operation or information.

UserToUserInfo O Information to be exchanged between ISDN users.

Remarks: The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 6.3. for details on user-to-user information.

Related: CConnectReq, CConnectInd, CConnectCnf, CAlertReq, CAlertInd.

Page 60
ETS 300 325: March 1994

6.3.7 CConnectCnf

Class : 1 (Basic class).

Description : This message is the response from the called party, indicating it accepts the
call. When the PUF receives this message, a channel is considered to be
established.

If values for LLC are being negotiated, a new value for the LLC parameter may
be supplied in this message.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

ChannelIdentification O Identification of the channel used.

LLC O Negotiated value.

DateTime O Date and Time.

Facility O * Supplementary services operation or information.

Display O Information provided by the Network to be displayed.

UserToUserInfo O Information to be exchanged between ISDN users.

ConnectedNumber O Part of the remote address.

ConnectedSubaddress O Part of the remote address.

Remarks: The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 6.3. for details on user-to-user information.

Related: CConnectReq, CConnectInd, CConnectRsp, CAlertReq, CAlertInd.

Page 61
ETS 300 325: March 1994

6.3.8 CDisconnectReq

Class: 1 (Basic class).

Description: This message allows the PUF to initiate the disconnection of a connection or
refuse a call.

This message shall be acknowledged by a CDisconnectCnf.

The PUF may indicate the reason to disconnect a connection or refuse a call by
supplying the CauseToNAF parameter.

Parameters:

Name Required Comment

NCOID M Identifies the call.

CauseToNAF O * PUF reason to disconnect the call. If not provided by
the PUF, the #16 'Normal Call Clearing' cause shall be
provided by the NAF.

Facility O * Supplementary services operation or information.

UserToUserInfo O Information to be exchanged between ISDN users.

Remarks: The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 6.3. for details on user-to-user information.

Related: CDisconnectInd, CDisconnectRsp, CDisconnectCnf.

Page 62
ETS 300 325: March 1994

6.3.9 CDisconnectInd

Class: 1 (Basic class).

Description: This message informs the PUF that the remote user has initiated the
disconnection of the connection or has refused the call.

The PUF shall acknowledge this message with a CDisconnectRsp.

The CauseToPUF parameter shall indicate the reason for disconnecting or
refusing.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

CauseToPUF M Reason why the call is being disconnected. If not
provided by the Network the NAF shall introduce the
#16 'Normal Call Clearing' cause. See also the remark.

Facility O * Supplementary services operation or information.

Display O Information provided by the Network to be displayed.

UserToUserInfo O Information to be exchanged between ISDN users.

Remarks: The network shall only transfer one cause to the NAF, so the PUF shall only
receive one cause.

The availability of UserToUserInfo depends on the user-to-user service level.
See subclause 6.3. for details on user-to-user information.

Related: CDisconnectReq, CDisconnectRsp, CDisconnectCnf.

Page 63
ETS 300 325: March 1994

6.3.10 CDisconnectRsp

Class: 1 (Basic class).

Description: With this message, the PUF acknowledges that a connection has ended or a
call has been refused. From the point of view of the PUF the channel is now
cleared, and the NCOID may be re-used by the NAF.

This message is sent by the PUF to acknowledge the CDisconnectInd.

Parameters:

Name Required Comment

NCOID M Identifies the call.

Facility O * Supplementary services operation or information.

Related: CDisconnectReq, CDisconnectInd, CDisconnectCnf.

6.3.11 CDisconnectCnf

Class: 1 (Basic class).

Description: With this message, the PUF is informed that the connection has ended or a call
been refused, and the channel has been cleared down. The NCOID may now be
reused by the NAF.

This message is the acknowledgement by the remote user or by the network of
the CDisconnectReq.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

CauseToPUF O Reason why a supplementary service request has
been rejected by the Network.

Facility O * Supplementary services operation or information.

Display O Information provided by the Network to be displayed.

Related: CDisconnectReq, CDisconnectInd, CDisconnectRsp.

Page 64
ETS 300 325: March 1994

6.3.12 CProgressInd

Class: 1 (Basic class).

Description: The PUF receives this message when information is available in the B-channel.
The channel shall be connected.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

ChannelIdentification O Identification of the channel used.

Display O Information provided by the network to be displayed.

ProgressIndicator M Details concerning call progress.

Related: CConnectReq, CConnectInd, CConnectRsp, CConnectCnf, CAlertInd.

6.3.13 CStatusInd

Class: 1 (Basic class).

Description: With this message, the PUF shall be informed that a signalling protocol error, as
defined in subclause 6.8.8, has occurred.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

CauseToPUF M Identifies the protocol error that has occurred.

Related: None.

6.3.14 CSetupAckInd

Class: 2 (Additional class).

Description: The PUF receives this message when more establishment information is
needed to perform the call, in the overlap sending case.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

ChannelIdentification O Identification of the channel used.

Display O Information provided by the network to be displayed.

ProgressIndicator O Details concerning call progress.

Related: CConnectInfoReq, CConnectReq.

Page 65
ETS 300 325: March 1994

6.3.15 CConnectInfoReq

Class: 2 (Additional Class).

Description: This message allows a PUF to use the overlap sending technique for connection
establishment. Overlap sending means that the PUF supplies the address
information in more than one step: a CConnectReq message with incomplete
address information may be followed by several CConnectInfoReq messages
until the address is complete. This mechanism is the natural reflection of dialling
on a keypad.

Parameters:

Name Required Comment

NCOID M Identifies the call.

CalledNumber M Part of the remote address (NOTE).

NOTE: With each CConnectInfoReq message the NAF accumulates the address information.
The PUF does not indicate that the address information is complete; this can implicitly
be concluded from the receipt of a CProceedingInd message.
A Subaddress can only be specified in the CConnectReq message. This is due to the
restrictions imposed by the D-channel protocol (SETUP network message).

Remarks: The PUF shall have sent a CConnectReq message with the first part of the
called number information prior to this message.

Related: CConnectReq, CProceedingInd, CSetupAckInd.

6.3.16 CProceedingInd

Class: 2 (Additional class).

Description: The PUF receives this message when no more establishment information can
be accepted, in the overlap sending case. As the Network may not provide this
message, the PUF can not rely on its reception.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

ChannelIdentification O Identification of the channel used.

Display O Information provided by the network to be displayed.

ProgressIndicator O Details concerning call progress.

Related: CConnectReq, CConnectInfoReq, CSetupAckInd.

Page 66
ETS 300 325: March 1994

6.3.17 CUserInformationReq

Class: 3 (Additional class).

Description: This message allows a PUF to request the sending of user-to-user information
on an established connection.

The call state that allows the PUF to send user-to-user Information is dependent
on the user-to-user service level provided by the Network or the subscription.
See subclause 6.3. for details on user-to-user information.

Parameters:

Name Required Comment

NCOID M Identifies the call.
MoreData O Indicates to the peer entity that another user-to-user

message shall follow.
UserToUserInfo M Information to be exchanged between ISDN users.

Remarks: This message is available only if a user-to-user service level 2 and above has
been subscribed to. See subclause 6.3. for details on user-to-user information.

Related: CUserInformationInd, CCongestionControlReq, CCongestionControlInd.

6.3.18 CUserInformationInd

Class: 3 (Additional class).

Description: This message allows a NAF to present to the PUF user-to-user information
received on an established connection.

The call state that allows the reception of user-to-user Information is dependent
on the user-to-user service level provided by the Network or the subscription.
See subclause 6.3. for details on user-to-user information.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

MoreData O If present, the peer entity indicates that another User to
User message shall follow.

UserToUserInfo M Information exchanged between ISDN users.

Remarks: This message is available only if a user-to-user service level 2 and above has
been subscribed to. See subclause 6.3. for details on user-to-user information.

Related: CUserInformationReq, CCongestionControlReq, CCongestionControlInd.

Page 67
ETS 300 325: March 1994

6.3.19 CCongestionControlReq

Class: 3 (Additional class).

Description : This message allows a PUF to apply flow control operations on the user-to-user
information provided via the CUserInformationInd message.

The flow control operation is only defined to operate on the local side of the
connection. The flow control operates using the ready/not ready mechanism.
The initial condition for user-to-user information exchange shall be ready. To set
the condition for flow control the PUF shall set the parameter CongestionLevel
to the appropriate value.

Parameters:

Name Required Comment

NCOID M Identifies the call.

CongestionLevel M Flow control value.

CauseToNAF O Include if information lost.

NOTE: This message in available only if a user-to-user service level 2 and above has been
subscribed to. See subclause 6.3. for details on user-to-user information.

Remarks : For the flow control provided by this message, ready is assumed as the initial
status. The flow control for each direction shall be operated independently.

Related: CUserInformationReq, CUserInformationInd, CCongestionControlInd.

Page 68
ETS 300 325: March 1994

6.3.20 CCongestionControlInd

Class: 3 (Additional class).

Description: This message allows a NAF to indicate to a PUF that a flow control operations
has been applied to the user-to-user information provided via the
CUserInformationReq message.

The flow control operation is only defined to operate on the local side of the
connection. The flow control operates using the ready/not ready mechanism.
The initial condition for user-to-user information exchange shall be ready. The
parameter CongestionLevel shall give the new value for the flow control on the
user-to-user information exchange to the PUF.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

CongestionLevel M Flow control value.

CauseToPUF O

(NOTE)

Include if information lost.

Display O Information provided by the Network to be displayed.

NOTE: The network shall only transfer one cause to the NAF, so the PUF shall only receive
one cause.

Remarks: This message is available only if a user-to-user service level 2 and above has
been subscribed to. See subclause 6.3. for details on user-to-user information.

For the flow control provided by this message, ready is assumed as being the
initial status.

The flow control for each direction shall be operated independently.

Related: CUserInformationReq, CUserInformationInd, CCongestionControlReq.

Page 69
ETS 300 325: March 1994

6.3.21 CSuspendReq

Class: 4 (Additional class).

Description: This message allows a PUF to suspend, but not to disconnect, a connection.

After sending this message, the PUF shall be informed if the connection is
suspended.

Parameters:

Name Required Comment

NCOID M Identifies the call.

Remarks : Using this message in conjunction with running a protocol on the connection is
the responsibility of the PUF.

When suspending a connection, it is not guaranteed that the connection can
subsequently be resumed.

Related: CSuspendCnf, CResumeReq, CResumeCnf, CNotifyInd.

6.3.22 CSuspendCnf

Class: 4 (Additional class).

Description: This message is the answer to a CSuspendReq message. The NAF provides
the PUF with the result of its suspend request.

The parameter Response shall indicate if the connection is suspended.

If the PUF receives a CSuspendCnf the connection is suspended and may be
re-used. The NCO, however, still describes the interaction between PUF and
NAF for this connection and cannot be reused. The PUF shall have to use the
NCO again when the connection is resumed or disconnected.

Parameters:

Name Provided Comment

NCOID M Identifies the call.

CompletionStatus M Indicates the state of the suspension:
- success: if the suspension is accepted;
- operationfailed: if the suspension is refused.

CauseToPUF C

(NOTE)

Mandatory if case of suspension refused, it indicates
the reason why the suspension was refused.
Absent in case of success.

Display O Information provided by the Network to be displayed.

NOTE: The network shall only transfer one cause to the NAF, so the PUF shall only receive
one cause.

Related: CSuspendReq, CResumeReq, CResumeCnf, CNotifyInd.

Page 70
ETS 300 325: March 1994

6.3.23 CResumeReq

Class: 4 (Additional class).

Description: This message allows a PUF to resume, i.e. a suspended connection is
reconnected.

After sending this message, the PUF shall be informed if the suspended
connection is reconnected.

Parameters:

Name Required Comment

NCOID M Identifies the call.

Related: CSuspendReq, CSuspendCnf, CResumeCnf, CNotifyInd.

6.3.24 CResumeCnf

Class: 4 (Additional class).

Description: This message is the answer to an CResumeReq message. The NAF provides
the PUF with the result of its resume request.

The response parameter shall indicate if the connection is resumed.

Parameters:

Name Provided Comment
NCOID M Identifies the call.
CompletionStatus M Indicates the state of the resume operation:

- Success: if the operation succeed;
- OperationFailed: if the operation failed.

CauseToPUF C
(NOTE)

Mandatory if case of operation failure, it indicates the
reason why the operation was refused.
Absent in case of success.

Display O Information provided by the Network to be displayed.
NOTE: The network shall only transfer one cause to the NAF, so the PUF shall only receive one

cause.

Remarks : The result for resuming a connection may be negative (OperationFailed) if the
NAF or the network does not have resources available, i.e. channels, to
reconnect the connection.

Related: CSuspendReq, CSuspendCnf, CResumeReq, CNotifyInd.

Page 71
ETS 300 325: March 1994

6.3.25 CNotifyInd

Class: 4 (Additional class).

Description: This message is provided by the NAF to indicate to the PUF a new state for the
connection.

As example, this message may be issued if the remote user suspends or
resumes a connection.

Parameters:

Name Provided Comment
NCOID M Identifies the call.
NotificationIndicator M New state.
Display O Information provided by the Network to be displayed.

Related: CSuspendReq, CSuspendCnf, CResumeReq, CResumeCnf.

6.3.26 CFacilityReq

Class: 5 (Additional class).

Description: This message is intended to provide to the PUF the ability to request a facility
from the Network. This facility may or may not be related to an established
connection.

For details on the use of facility messages and parameters and the coding for
the facility parameter refer to subclauses 6.3. and 6.6.30.

Parameters:

Name Required Comment
NCOID O Provided by the PUF if the facility is related to an

established connection.
Facility M Supplementary services operation or information.
NOTE: If the PUF supplies transparent coding of the facility information element, all information

following this transparent coding shall be handed back transparently.

Related: CFacilityInd.

Page 72
ETS 300 325: March 1994

6.3.27 CFacilityInd

Class: 5 (Additional class).

Description: This message provides to the PUF the facility coming from to the Network. This
facility may or may not be related to an established connection.

For details on the use of facility messages and parameters and the coding for
the facility parameter refer to subclauses 6.3. and 6.6.30.

Parameters:

Name Provided Comment
NCOID O Provided by the NAF if the facility is related to an

established connection.
Facility M (NOTE) Supplementary services operation or information.
Display O Information provided by the Network to be displayed.
NOTE: If the PUF has supplied transparent coding of the facility information element, all

information following this transparent coding shall be handed back transparently.

Related: CFacilityReq.

6.3.28 CExtEquipAvailabalityInd

Class: 6 (Additional class).

Description: With this message, the PUF is informed about the availability of the external
equipment. When a connection is active, if the external equipment becomes
unavailable the NAF is in charge to break down the communication.

Parameters:

Name Provided Comment
NCOID M Identifies the call. This information element is provided

by the NAF.
ExtEquipAvailability M Indicates the external equipment availability.

Related: None.

Page 73
ETS 300 325: March 1994

6.3.29 CExtEquipBlockDiallingInd

Class: 6 (Additional class).

Description : With this message, the PUF get the dialling information made by the user with
the keypad of the external equipment in the case of a block sending. This
message contains the complete remote address and/or the remote subaddress.

Parameters:

Name Provided Comment
NCOID M Identifies the call. This information element is provided

by the NAF.
ExtEquipBlockDialling M Provides to the PUF the remote address and/or

subaddress in the case where the external equipment
allows the block sending.

Related: None.

6.3.30 CExtEquipKeyPressedInd

Class: 6 (Additional class).

Description: With this message, the PUF get the dialling information made by the user with
the keypad of the external equipment in the case of an overlap sending. One
message is provided to the PUF for each key pressed.

Parameters:

Name Provided Comment
NCOID M Identifies the call. This information element is provided

by the NAF.
ExtEquipKeyPressed M Provides to the PUF the code of the pressed key if the

external equipment dials in the overlap sending mode.

Related: None.

Page 74
ETS 300 325: March 1994

6.3.31 CExtEquipOffHookInd

Class: 6 (Additional class).

Description: With this message, the PUF is informed that the handset of the external
equipment is off-hooked. Depending on the type of external equipment and on
the current state of the connection, this message can be interpreted according
to different ways (see figures 9, 10 and 11).

Parameters:

Name Provided Comment
NCOID M Identifies the call. This information element is provided

by the NAF.

Related: CExtEquipOnHookInd.

6.3.32 CExtEquipOnHookInd

Class: 6 (Additional class).

Description: With this message, the PUF is informed that the handset of the external
equipment is on-hooked. Following the type of external equipment and following
the current state of the connection, this message can be interpreted according
to different ways (see figures 9, 10 and 11).

Parameters:

Name Provided Comment
NCOID M Identifies the call. This information element is provided

by the NAF.

Related: CExtEquipOffHookInd.

6.3.33 User to User information exchange

The use of user-to-user information exchange is dependent on the user-to-user service level provided by
the Network or the subscription.

In ETS 300 102-1 [2] three user-to-user service levels are defined:

- service 1:
user-to-user information exchange during the set-up and clearing phase of a call;

- service 2:
user-to-user information exchange during call establishment;

- service 3:
user-to-user information exchange while a call is in the Active state.

For the PUF, the use of UserToUserInfo parameter inside messages and the UserInformation messages
is depending on the service level.

Page 75
ETS 300 325: March 1994

The following usage of UserToUserInfo parameter and UserInformation messages is defined, relating to
the service level:

- service 1:
using the UserToUserInfo parameter in:

CAlertReq;
CAlertInd;
CConnectReq;
CConnectInd;
CConnectRsp;
CConnectCnf;
CDisconnectReq;
CDisconnectInd;

- service 2:
using the CUserInformation messages between the sending/receiving of CAlertReq/Ind and
CConnectRsp/Cnf messages.

- service 3:
using CUserInformation messages in the active state of a call.

All three services may be used separately or in any combination in association with a single call.

NOTE: Services 2 and 3 are currently provided using the method described in ETS 300 102-1
[2]. An ETS describing the user-to-user Information Exchange using supplementary
services is being developed. The use of this new method is for further study.

6.3.34 Implementation of supplementary services

This subclause gives an explanation of how the supplementary services which were described in
subclause 5.3.3.2 function in relation to the ISDN PCI and which definition is provided in the ISDN PCI
description.

6.3.34.1 Multiple Subscriber Number (MSN)

Description: MSN provides the possibility to assign multiple ISDN numbers to a single ISDN
interface. The MSN can be used as a selection criteria for accepting incoming
calls. A PUF can create several NCOs. By doing this it is sensitive to several
MSN at the same time.

Operation: The destination number shall be presented to the called PUF if it has subscribed
to MSN. The PUF shall react as follows:

if the MSN digits are applicable to its identity it shall react in the predetermined
way;

if there are no MSN digits it shall react as if it is a normal call.

Implementation: The MSN of the called user shall be inserted in the CalledNumber field, the
MSN of the calling user shall be inserted in the CallingNumber field.

Relevant fields: CallingNumber (subclause 6.6.11).

CalledNumber (subclause 6.6.7).

Page 76
ETS 300 325: March 1994

6.3.34.2 Direct Dialling In (DDI)

Description: DDI enables a user to directly call another user on an Integrated Services
Private Branch eXchange (ISPBX) or other private system without intervention.

The part of the ISDN number, which is significant to the called user, is passed to
that user during the process of the call. This supplementary service is based on
the use of the ISDN number and does not include sub-addressing.

Operation: A PUF which wants to use this supplementary service shall include the correct
number in the CalledNumber field.

Relevant fields: CallingNumber (subclause 6.6.11).

6.3.34.3 Calling Line Identification Presentation (CLIP)

Description: CLIP provides the called user with the calling user's ISDN number, possibly with
sub-address information.

Operation: The PUF shall be supplied with the number of the calling user, possibly including
sub-address, at the start of the call on all incoming calls.

Implementation: The PUF shall receive the ISDN number of the calling user in the CallingNumber
field and the sub-address, if available, of the calling user in the
CallingSubaddress field.

The PUF shall get an indication that the CallingNumber is not available, if the
calling user has activated the Calling Line Identification Restriction (CLIR)
supplementary service (see subclause 6.3.34.4).

Relevant fields: CallingNumber (subclause 6.6.11);

CallingSubaddress (subclause 6.6.12).

6.3.34.4 Calling Line Identification Restriction (CLIR)

Description: CLIR allows the calling user to restrict the presentation of its ISDN number and
sub-address to the called user.

Operation: The calling PUF may indicate, either by subscription or by indication or by
default, that his ISDN number may not be supplied to the called user, if this
called user has CLIP. The PUF which has the CLIP supplementary service shall
get an indication that the ISDN number of the calling user is not available.

If subscribed to in permanent mode, CLIR is always active.

If subscribed to in per call basis mode, CLIR is activated or deactivated upon
request, depending on the default selected at subscription.

Implementation: To override the default, in a per call subscription, the calling PUF shall include
the CallingNumber field, with the subfield Presentation set to "restricted" or
"allowed".

Relevant fields: CallingNumber (subclause 6.6.11);

subfield Presentation in CallingNumber (subclause 6.6.11).

Page 77
ETS 300 325: March 1994

6.3.34.5 Subaddressing (SUB)

Description: SUB allows the called user to expand his addressing capacity beyond the
normal ISDN number capacity. To one ISDN number, several subaddresses can
be allocated to identify terminals directly. Only the called user shall define the
significance of the subaddress.

Operation: The provided subaddress shall be transported transparently by the network. A
receiving terminal can use the information for selection purposes.

Implementation: The calling PUF shall include the CalledSubaddress field in the connect
message to activate this supplementary service.

Relevant fields: CalledSubaddress (subclause 6.6.8).

6.3.34.6 Advice of Charge during call (AOC-D)

Description: This supplementary service allows the PUF to obtain charging information
during a connection.

Operation: Either at the establishment of the connection the PUF can activate the AOC-D
supplementary service, or this service is available for every connection.

During the connection the PUF shall get the subtotal for this connection, either
as currency or as charging units. At the end of the connection, the PUF shall
obtain the total charging information for the connection.

Implementation: The PUF shall activate the AOC-D supplementary service, by including the
corresponding facility field in the connect message.

After activation, the charging information shall be presented by the PUF using
the facility field. For the coding of this field see subclause 6.6.30.

Errors shall be reported by using the facility field. The PUF shall not take any
protocol action upon receiving an error.

Relevant fields: Facility (subclause 6.6.30).

6.3.34.7 Advice of Charge at end of call (AOC-E)

Description: This supplementary service allows the PUF to obtain charging information at the
end of a connection.

Operation: Either at the establishment of the connection the PUF can activate the AOC-E
supplementary service, or this service is available for every connection.

At the end of the connection, the PUF shall obtain the total charging information
for the connection either as currency or as charging units.

Implementation: The PUF shall activate the AOC-E supplementary service, by including the
corresponding facility field in the connect message.

After activation, the charging information shall be presented by the PUF using
the facility field. For the coding of this field see subclause 6.6.30.

Errors shall be reported by using the facility field. The PUF shall not take any
protocol action upon receiving an error.

Relevant fields: Facility (subclause 6.6.30).

Page 78
ETS 300 325: March 1994

6.3.34.8 Call Waiting (CW)

Description: Call Waiting is a supplementary service applicable to circuit-switched bearer
services which permits a PUF to be informed of an incoming call when the
terminal equipment is busy. The PUF has then the choice of accepting, rejecting
or ignoring the waiting call. The CW supplementary service is considered
meaningful when applied to the telephony teleservice and the speech and 3,1
kHz audio bearer services. Furthermore, it can be applied to other circuit-
switched services.

Operation: In the case of an incoming call to the busy terminal equipment, if the PUF has
control of a (circuit) information channel and is compatible with this incoming
call, it can proceed with the call, by sending an ALERTING message to the
network.

As a network option, a subscriber option may be offered to the calling user that it
shall receive notification that its call is waiting.

Implementation: In the case where no channel is available, the called PUF shall receive a
CConnectInd message with the channelIdentification field with the value
"nochannel".

Whether a channel is available or not, the PUF shall indicate that it proceeds
with the waiting call by sending a CAlertReq.

When making a call, the PUF might receive a CNotifyInd with a Notify field with
value "CallWaiting" to indicate the call is waiting call.

Relevant field: ChannelIdentification (subclause 6.6.17);

NotificationIndicator (subclause 6.6.51).

6.3.34.9 Connected Line Identification Presentation (COLP)

Description: This supplementary service is a supplementary service offered to the calling
PUF. It provides the connected PUF's ISDN number, possibly with subaddress
information to the calling PUF.

The COLP supplementary service is not a dialling check but an indication to the
calling PUF of the connected address. In a full ISDN environment, the
connected line identity shall include all the information necessary to
unambiguously identify the connected line.

The connected line identify may include the ConnectedSubaddress information
element generated by the connected PUF which shall be transparently
transported by the network. The network cannot be responsible for the content
of this ConnectedSubaddress.

Operation: If the calling PUF is provided with the COLP supplementary service, the calling
PUF shall receive a CConnectCnf message which contains the
ConnectedNumber field and optionally the ConnectedSubaddress field of the
connected PUF.

Implementation: The network invokes automatically the COLP supplementary service on each
outgoing call made by the calling PUF.

The connected line identity supplied to the calling PUF is made up of a number
of information units:

- the national ISDN number;
- the country code and possible other indications only for international calls;
- optionally subaddress information, if provided by the connected PUF.

Page 79
ETS 300 325: March 1994

Relevant fields: ConnectedNumber (subclause 6.6.21);

ConnectedSubaddress (subclause 6.6.22).

6.3.34.10 Connected Line Identification Restriction (COLR)

Description: The COLR supplementary service is a supplementary service offered to the
connected PUF to prevent presentation of the connected PUF's ISDN number
and subaddress information, (if any), to the calling PUF.

Operation: If the Calling PUF subscribes to the COLP supplementary service and the
COLR supplementary service has been invoked by the called PUF, then the
calling PUF shall receive a CConnectCnf message without the
ConnectedNumber field and the ConnectedSubaddress field due to restriction.

Implementation: Two subscription options are possible:

- permanent mode (active for all calls);
- temporary mode (specified py the called PUF per call).

Relevant fields: ConnectedNumber (subclause 6.6.21);

ConnectedSubaddress (subclause 6.6.22).

Page 80
ETS 300 325: March 1994

6.4 User Plane messages

The User Plane messages provide a CCITT Recommendation X.213-access to different protocol stacks.
Following is a list and short description of all User Plane messages. Table 12 gives an overview of NMA
messages.

Table 12: Overview of NMA messages

Mess.

Identif.

Class Message Name Purpose of Message

301 1 U3ConnectReq Request establishment of a user connection.

302 1 U3ConnectInd Indicate establishment of a user connection
has been requested.

303 1 U3ConnectRsp Indicate acceptance of user connection
establishment.

304 1 U3ConnectCnf Confirm user connection has been
established.

305 1 U3DisconnectReq Request removal of user connection.

306 1 U3DisconnectInd Indicate removal of user connection.

307 1 U3DataReq Request data transfer on an established user
connection.

308 1 U3DataInd Indicate arrival of transferred data on an
established user connection.

309 1 U3ExpeditedDataReq Request expedited data transfer on an
established user connection.

310 1 U3ExpeditedDataInd Indicate presence of transferred expedited
data on an established user connection.

311 1 U3ResetReq Request reset to initial state of an established
user connection.

312 1 U3ResetInd Indicate reset to initial state of an established
user connection.

313 1 U3ResetRsp Indicate acceptance of reset to initial state of
an established user connection.

314 1 U3ResetCnf Confirm acceptance of reset to initial state of
an established user connection.

315 1 U3DataAcknowledgeReq Request acknowledgement of data received
on an established user connection.

316 1 U3DataAcknowledgeInd Indicate acknowledgement of data
transferred on an established user
connection.

317 1 U3ReadyToReceiveReq Used to perform flow control for a user
connection.

318 1 U3ReadyToReceiveInd Used to indicate flow control status on a user
connection.

319 1 U3ErrorInd Indicate an error.

Page 81
ETS 300 325: March 1994

Not all of the above messages are used in every cases. The following table identifies the messages used
in the specific User Plane protocols. A cross placed in the protocol column indicates application of the
relevant message to the protocol.

Table 13 gives an overview of NMA messages including the protocol dependencies. The NULL column
refers to the TMA messages presented in table 14.

Table 13: Overview of NMA messages

Mess.
Identif.

Message Name ETS
300 080
[1]

ISO/IEC
8208 [3]

CCITT
Rec.
T.70

NULL
(NOTE 1)

301 U3ConnectReq X X X

302 U3ConnectInd X X X

303 U3ConnectRsp X X X

304 U3ConnectCnf X X X

305 U3DisconnectReq X X X

306 U3DisconnectInd X X X

307 U3DataReq X X X X

308 U3DataInd X X X X

309 U3ExpeditedDataReq X

310 U3ExpeditedDataInd X

311 U3ResetReq X X

312 U3ResetInd X X

313 U3ResetRsp X X

314 U3ResetCnf X X

315 U3DataAcknowledgeReq X

316 U3DataAcknowledgeInd X

317 U3ReadyToReceiveReq X X

318 U3ReadyToReceiveInd X X

319 U3ErrorInd see NOTE
2

NOTE 1: This NULL layer 3 represents several protocols on layer 2 as described in
subclause 5.4.4.2. This representation is also copied to the protocol
statements with the User Plane messages and the User Plane
parameters.

NOTE 2: Used if layer 2 does not support flow control.

Page 82
ETS 300 325: March 1994

Table 14 gives an overview of TMA messages.

Table 14: Overview of TMA messages

Mess.

Identif.

Class Message Name Purpose of Message

307 1 U1DataReq Request transfer of data.

308 1 U1DataInd Indicate arrival of transferred data.

319 1 U1ErrorInd Indicate an error.

NOTE: The same message identifiers are used in NMA and TMA, so the messages only
differ in kind of abstraction layer.

Page 83
ETS 300 325: March 1994

6.4.1 Sequencing of User Plane messages

Figure 13 shows the different states a user connection using the NMA messages can get and in which
order these messages shall be used.

1 Idle

U3Disconnect U3Disconnect

U3ConnectReq U3ConnectInd

2
Outgoing connection

pending

3
Incoming connection

pendingU3Disconnect

U3ConnectCnf U3ConnectRsp

U3Disconnect U3Disconnect
4

Data transfer
ready

U3ResetReq U3ResetInd

U3ResetCnf U3ResetRsp

5
PUF invoked
reset pending

6
Network invoked

reset pending

U3ExpeditedDataReq
U3ExpeditedDataInd
U3DataReq
U3DataInd
U3DataAcknowledgeReq
U3DataAcknowledgeInd
U3ReadyToReceiveReq
U3ReadyToReceiveInd

NOTE: Where U3Disconnect appears it can be either U3DisconnectReq or U3DisconnectInd.

Figure 13: Overview of the User Plane messages

Page 84
ETS 300 325: March 1994

6.4.2 Co-ordination function

This subclause gives an explanation of how the co-ordination function, which was described in subclause
5.2.4, can be used by a PUF. The co-ordination function provides to the PUF a Connection Oriented mode
Network Service (CONS) according to CCITT Recommendation X.213 [7]. Therefore, if the co-ordination
function is used, the layer 2 and layer 3 protocols used are the selected protocols from the NMA.

If a PUF wants to use the co-ordination function, all messages from the Administration Plane can still be
used by the PUF, since the co-ordination function does not affect this plane. For achieving a connection
which is to be NAF co-ordinated, the PUF has exchanges the following message:

ACreateNCOReq, with NCOType U3 and the relevant information.

A connection can then be requested using the U3ConnectReq. All other messages in the User Plane can
still be used by the PUF. No Control Plane messages can be used in combination with an NCO of type
U3. For interaction overview see subclause 5.6. For the State diagram, see Annex E, Clause E.3.

Page 85
ETS 300 325: March 1994

6.4.3 U3ConnectReq

Class: 1 (Basic class).

Description: This message allows a PUF to initiate the establishment of a user connection.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

CalledDTEAddress O If provided, this value supersedes the NCO value.

CalledDTEAddressExt O If provided, this value supersedes the NCO value.

CallingDTEAddress O If provided, this value supersedes the NCO value.

CallingDTEAddressExt O If provided, this value supersedes the NCO value.

ReceiptConfirm O Used to request confirmation of data receipt for this
user connection.

ExpeditedData O Used to request use of expedited data for the user
connection.

QOSParameters O Quality of Service.

UserData O Maximum length is 16, or 128 if FastSelect parameter
is used.

Bcug O Used to specify the ISO 8208 [3] Bilateral Closed User
Group facility. If specified then Called address
parameters are not allowed.

FastSelect O If used this parameter invokes the use of the Fast
Select Facility in the ISO 8208 [3] Call Request.

PacketSize O Requested value, overrides any value specified as part
of NCO creation.

WindowSize O Requested value, overrides any value specified as part
of NCO creation.

FacilityData O Used to supply ISO 8208 [3] facilities.

If present, the following facilities shall be overridden by
information found elsewhere in this message:

- BCUG;

- FastSelect;

- Called Address Extension;

- Calling Address Extension.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X X

Related: U3ConnectCnf.

Page 86
ETS 300 325: March 1994

6.4.4 U3ConnectInd

Class: 1 (Basic class).

Description: This message informs a PUF of an incoming demand to establish a user
connection.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

CalledDTEAddress O Called address.

CalledDTEAddressExt O Called Address extension.

CallingDTEAddress O Calling address.

CallingDTEAddressExt O Calling address extension.

ReceiptConfirm O Indicates if confirmation of data receipt is required on
this user connection

ExpeditedData O Indicates if use of expedited data is allowed on this
user connection.

QOSParameters O Quality of Service.

UserData O Maximum length is 16, or 128 if FastSelect parameter
is present.

Bcug O Used to pass ISO 8208 [3] Bilateral Closed User Group
facility information. If present then addressing
information shall not be present.

FastSelect O Authorisation type to transmit UserData.

PacketSize M Value to be used for this user connection.

WindowSize M Value to be used for this user connection.

FacilityData O Used to supply ISO 8208 [3] facilities.

The following facilities, if present, are presented by the
use of specific parameters:

- BCUG;

- FastSelect;

- Called Address Extension;

- Calling Address Extension.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X X

Related: U3ConnectRsp.

Page 87
ETS 300 325: March 1994

6.4.5 U3ConnectRsp

Class: 1 (Basic class).

Description: This message allows a PUF to accept the establishment of a user connection.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

CalledDTEAddress O Called address.

CalledDTEAddressExt O Called Address extension.

CallingDTEAddress O Calling address.

CallingDTEAddressExt O Calling address extension.

RespondingDTEAddress O The address used to accept the user connection. This
may be different from the original called address.

RespondingDTEAddressExt O The address extension used to accept the user
connection. This may be different from the original
called address extension.

ReceiptConfirm O Used to accept or not accept use of receipt
confirmation for data on this user connection.

ExpeditedData O Used to accept or not accept use of expedited data on
this user connection.

QOSParameters O Quality of Service.

UserData O Maximum length is 16, or 128 if FastSelect parameter
was present on U3ConnectInd.

PacketSize O Used to indicate agreed value.

WindowSize O Used to indicate agreed value.

FacilityData O Used to supply ISO 8208 [3] facilities.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X X

Related: U3ConnectInd.

Page 88
ETS 300 325: March 1994

6.4.6 U3ConnectCnf

Class: 1 (Basic class).

Description: This message informs the PUF on the establishment of a user connection.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

CalledDTEAddress O Called address.

CalledDTEAddressExt O Called Address extension.

CallingDTEAddress O Calling address.

CallingDTEAddressExt O Calling address extension.

RespondingDTEAddress O The address used to accept the user connection. This
may be different from the original called address.

RespondingDTEAddressExt O The address extension used to accept the user
connection. This may be different from the original
called address extension.

ReceiptConfirm O Indicates if receipt confirmation of data can be used on
this user connection.

ExpeditedData O Indicates if expedited data can be used on this user
connection.

QOSParameters O Quality of Service.

UserData O Maximum length is 16, or 128 if FastSelect parameter
was present on U3ConnectReq.

PacketSize M Value to be used for this user connection.

WindowSize M Value to be used for this user connection.

FacilityData O Used to supply ISO 8208 [3] facilities.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X X

Related: U3ConnectReq.

Page 89
ETS 300 325: March 1994

6.4.7 U3DisconnectReq

Class: 1 (Basic class).

Description: This message allows a PUF to remove a user connection.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

X213Cause O X.213 reason to remove the user connection.

Both X213Cause and X25Cause cannot be used on
the same message. If neither X213Cause and
X25Cause are supplied the X213Cause parameter with
the value of disconnection-normal condition shall be
used.

RespondingDTEAddress O The address used to accept the user connection. This
may be different from the original called address.

RespondingDTEAddressExt O The address extension used to accept the user
connection. This may be different from the original
called address extension.

UserData O Only allowed if FastSelect parameter was specified
during the user connection establishment.

Maximum size of 128 octets.

X25Cause O ISO 8208 [3] reason to remove the user connection.

Both X213Cause and X25Cause cannot be used on
the same message.

X25Diagnostic C Complementary information for ISO 8208 [3] reason.
Optional if X25Cause parameter supplied else not
allowed.

FacilityData O Used to supply ISO 8208 [3] facilities.

NOTE CCITT Recommendation X.213 [7] cause is exclusive with CCITT Recommendation
X.25 information. If CCITT Recommendation X.25 cause, optionally associated with the
X.25 diagnostic, is used the X.213 [7] cause shall not appear.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X X

Related: None.

Page 90
ETS 300 325: March 1994

6.4.8 U3DisconnectInd

Class: 1 (Basic class).

Description: This message informs a PUF that a user connection has been removed.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

X213Origin M Identifies the initiator of the user connection removal.

X213Cause O X.213 Reason to remove the user connection.

UserData O Only allowed if FastSelect parameter was specified
during the user connection establishment.

Maximum size of 128 octets.

RespondingDTEAddress O The address used to accept the user connection. This
may be different from the original called address
extension.

RespondingDTEAddressExt O The address extension used to accept the user
connection. This may be different from the original
called address extension.

X25Cause O ISO 8208 [3] Reason to remove the user connection.
Both X213Cause and X25Cause cannot be used on
the same message.

X25Diagnostic C Complementary information for ISO 8208 [3] Reason.
Optional if X25Cause parameter supplied else not
allowed.

FacilityData O Used to supply ISO 8208 [3] facilities.

NOTE: CCITT Recommendation X.213 [7] cause is exclusive with CCITT Recommendation
X.25 information. If CCITT Recommendation X.25 cause, optionally associated with the
CCITT Recommendation X.25 diagnostic, is used the CCITT Recommendation X.213
[7] cause shall not appear.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X X

Related: None.

Page 91
ETS 300 325: March 1994

6.4.9 U3DataReq

Class: 1 (Basic class).

Description: This message allows a PUF to send a data packet. The size of a data packet is
restricted to the data packet size negotiated during the user connection
establishment.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

Bit_DQM O Used to set the ISO 8208 Qualifier bit, the ISO 8208 [3]
More Bit and to request confirmation of receipt of data
or to set the T70 More Bit.

Remark: Data to send are mandatory. They are not provided as a parameter of the
message.

If the NCO has been created with the U3Protocol parameter set to L3Protocol
set to NULL (4) and L2Protocol set to 'Frame Oriented Transparent' (1), then
HDLC framing is issued. The FCS is inserted at the end of each data block with
the flag.

Mandatory data shall be provided in the data buffer.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X X X

Related: U3ReadyToReceiveInd.

Page 92
ETS 300 325: March 1994

6.4.10 U3DataInd

Class : 1 (Basic class).

Description: This message indicates the presence of received data to a PUF. The size of a
data packet is restricted to the data packet size negotiated during the user
connection establishment.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

Bit_DQM O Used to indicate the ISO 8208 [3] Qualifier bit value,
the ISO 8208 [3] More Bit value and the need of
confirmation of data reception or to indicate the T70
More Bit reception.

Remark: Data received are always provided, but not as a parameter of the message.

If the NCO has been created with the U3Protocol parameter set to L3Protocol
set to NULL (4) and L2Protocol set to 'Frame Oriented Transparent' (1), then
HDLC framing is issued. The FCS is extracted from the data block by the NAF
before the data block is provided to the PUF.

Data is provided in the data buffer. The buffer, in this case, shall be mandatory.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X X X

Related: U3ReadyToReceiveReq.

6.4.11 U3ExpeditedDataReq

Class: 1 (Basic class).

Description: This message allows a PUF to send expedited data. This data is not constrained
by the flow control mechanism used to control U3DataReq messages.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

UserData M Expedited data to transfer.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

Related: None.

Page 93
ETS 300 325: March 1994

6.4.12 U3ExpeditedDataInd

Class: 1 (Basic class).

Description: This message indicates to a PUF the reception of expedited data. This data was
not constrained by the flow control mechanisms used to control U3DataInd
messages.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

UserData M Expedited data received.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

Related: None.

6.4.13 U3ResetReq

Class: 1 (Basic class).

Description: This message allows the PUF to reset a user connection.

Parameters:

Name Provided Comment

NCOID M Identifies the use connection.

X213Cause O X.213 Reason to reset the user connection.

If neither X213Cause and X25Cause are supplied the
X213Cause parameter with the value of disconnection-
normal condition will be used.

X25Cause O ISO 8208 [3] Reason to reset the user connection.

X25Diagnostic C ISO 8208 [3] Complementary information. Optional only
if X25Cause supplied, else not allowed.

NOTE: X.213 cause is exclusive with X.25 information. If X.25 cause, optionally associated
with the X.25 diagnostic, is used the X.213 cause shall not appear.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Related: U3ResetCnf.

Page 94
ETS 300 325: March 1994

6.4.14 U3ResetInd

Class: 1 (Basic class).

Description: This message informs the PUF of the reset of a user connection.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

X213Origin M Identifies the initiator of the reset user connection.

X213Cause O X213 Reason to reset the user connection.

X25Cause O ISO 8208 [3] Reason to reset the user connection.

X25Diagnostic O ISO 8208 [3] Complementary information. Optional only
if X25Cause supplied, else not allowed.

NOTE: X.213 cause is exclusive with X.25 information. If X.25 cause, optionally associated
with the X.25 diagnostic, is used the X.213 cause shall not appear.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Related: U3ResetRsp.

6.4.15 U3ResetRsp

Class: 1 (Basic class).

Description: This message allows the PUF to respond to a user connection reset, indicating
that it has dealt with the reset and is ready to proceed.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Related: U3ResetInd.

Page 95
ETS 300 325: March 1994

6.4.16 U3ResetCnf

Class: 1 (Basic class).

Description: This message completes the reset operation of a user connection. The PUF is
now able to transfer data once again.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Related: U3ResetReq.

6.4.17 U3DataAcknowledgeReq

Class: 1 (Basic class).

Description: This message allows the PUF to acknowledge received Data. It should be used
when a U3DataInd message is received with the ReceiptConfirm parameter set
indicating receipt of confirmation is required.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

Related: U3DataInd.

Page 96
ETS 300 325: March 1994

6.4.18 U3DataAcknowledgeInd

Class: 1 (Basic class).

Description: This message informs the PUF of the reception of an acknowledgement for
transferred data. It acknowledges a U3DataReq message that was sent with the
ReceiptConfirm parameter requesting confirmation of data reception.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

Related: U3DataReq.

6.4.19 U3ReadyToReceiveReq

Class: 1 (Basic class).

Description: This message allows the PUF to indicate to the NAF if it can accept incoming
data (U3DataInd message). This message can only apply to an already
established user connection. Setting the ReadyFlag parameter to TRUE allows
the NAF to transfer incoming data to the PUF. Setting the ReadyFlag to FALSE
inhibits the transfer.

This flow control mechanism does not imply an end-to-end flow control.

Parameters:

Name Required Comment

NCOID M Identifies the user connection.

ReadyFlag M This flag indicates whether or not the PUF is ready to
accept incoming data.

Remarks: For a given connection, if more than one message with the same flag value is
sent, it shall be ignored by the NAF.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Related: U3DataInd.

Page 97
ETS 300 325: March 1994

6.4.20 U3ReadyToReceiveInd

Class: 1 (Basic class).

Description: This message allows the NAF to indicate to the PUF if the user connection
permits the sending of data (U3DataReq messages). This message can only
apply to an already established user connection. If the ReadyFlag parameter
value is FALSE, the NAF cannot send data. If the value is TRUE the NAF
indicates that data transfer is allowed.

This flow control mechanism does not imply an end-to-end flow control.

Parameters:

Name Provided Comment

NCOID M Identifies the user connection.

ReadyFlag M This flag indicates whether or not the NAF is ready to
receive data for transmission on a user connection.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Related: U3DataReq.

Page 98
ETS 300 325: March 1994

6.4.21 U3ErrorInd

Class: 1 (Basic class).

Description: This message indicates to a PUF that an error has occurred.

Parameters:

Name Provided Comment

NCOID M Identifies the User Plane connection.

CompletionStatus M Identifies type of error.

Protocols: This message is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

NOTE: Used if Layer 2 and Layer 3 does not support flow
control.

Related: None.

6.4.22 U1DataReq

Class: 1 (Basic class).

Description: This message allows a PUF to send transparent data on the B channel. By
default, the data is sent without any protocol as byte stream. The
synchronisation used on the B-channel is character oriented. When no more
data is available, the NAF sends the default octet provided in the Attribute Set
used for this connection.

Parameters:

Name Required Comment

NCOID M Identifies the Control Plane connection.

Remark: Data to send shall be mandatory. They are not provided as a parameter of the
message.

Mandatory data shall be provided in the data buffer.

Related: None.

Page 99
ETS 300 325: March 1994

6.4.23 U1DataInd

Class: 1 (Basic class).

Description: This message indicates to a PUF received transparent data on the B-channel.
The data is received without any protocol or control as byte stream. The byte
provided as the default padding character in the Attribute Set is not extracted
from the data received.

Parameters:

Name Provided Comment

NCOID M Identifies the Control Plane connection.

Remark: Data received is always provided, but not as a parameter of the message.

Data is provided in the data buffer. This buffer, in this case, shall be
mandatory.

Related: U1ErrorInd.

6.4.24 U1ErrorInd

Class: 1 (Basic class).

Description: This message indicates to a PUF that an error has occurred.

Parameters:

Name Provided Comment

NCOID M Identifies the Control Plane connection.

CompletionStatus M Identifies type of error.

Related: None.

Page 100
ETS 300 325: March 1994

6.5 Information presentation

In subclause 6.6, the types used shall be understood as:

- Octet referred to a byte (8 bits);
- Boolean referred to an octet with limited set of values

(0 = FALSE, else = TRUE);
- Octet-string referred to an array of octets with a variable or fixed size;
- IA5-string referred to an Octet-string composed with octets in

the IA5 alphabet.

Every parameter is encoded using TLV coding as following:

- type = 1 Octet;
- length = 1 Octet;
- value with octet boundary.

Fields included into the parameter are coded as structured information. The order inside this structured
information is defined by the order provided into the presentation of the parameter itself in subclause 6.6.
Omitted fields reduce the size of the parameter.

Values in parenthesis are decimal coded.

EXAMPLE: This example describes parameters of a CDisconnectInd message coming from
the NAF.

The CDisconnectInd message identifier is provided by the NAF in the
MessageID field of the PCIMPB structure as describe in the subclause 7.3.
Parameters are placed into fill the Message parameter of the PciGetMessage
function (see subclause 7.3.8). The MessageActualUsedSize field of the
PCIMPB structure is filled with the 12 value.

The cause content is the "Normal call clearing" #16 cause, the diagnostic
optional parameter is not provided. The NCOID value is 3. Values are given
using the decimal format.

Total parameter length 12

NCOID type 49
NCOID length 4
NCOID value 3 (03 00 00 00)
Cause type 15 (CauseToPUF)
Cause length 4
Cause value 16
Cause Standard 1 (CCITT)
Cause location 1 (user)
Cause Recommendation 1 (Q.931)

In a byte oriented representation (in decimal), the content of the buffer results as
follow:

49, 04, 03, 00, 00, 00, (NCOID)
15, 4, 16, 01, 01, 01, 01 (CauseToPUF)

Page 101
ETS 300 325: March 1994

6.6 Message parameters

This subclause describes parameters for each plane presented. They are alphabetically ordered. The
following table only gives an overview of message parameters being User Plane protocol dependent. The
NULL column refers to the TMA set of messages.

Table 15: User Plane protocol dependent message parameters

Sub

clause

Message Parameter Name ETS

300 080 [1]

ISO

8208 [3]

CCITT

T.70 NULL

6.6.1 Algorithm X

6.6.2 Bcug X X

6.6.4 Bit_DQM see NOTE X X

6.6.5 CalledDTEAddress X X

6.6.6 CalledDTEAddressExt X X

6.6.9 CallingDTEAddress X X

6.6.10 CallingDTEAddressExt X X

6.6.29 ExpeditedData X

6.6.31 FacilityData see NOTE X

6.6.32 FastSelect see NOTE X

6.6.33 GroupID X X

6.6.42 L3ConnectionMode X

6.6.43 L3InComingVCCount X

6.6.44 L3OutgoingVCCount X

6.6.45 L3TwoWayVCCount X X

6.6.52 PacketSize see NOTE X

6.6.54 QOSParameter see NOTE X

6.6.55 ReadyFlag X X

6.6.58 RespondingDTEAddress X X

6.6.59 RespondingDTEAddressExt X X

6.6.67 WindowSize see NOTE X

6.6.70 X25Cause X X

6.6.71 X25Diagnostics X X

NOTE: This parameter shall be used in accordance with the rules of ETS 300 080 [1].

Page 102
ETS 300 325: March 1994

6.6.1 Algorithm

Description: This parameter is used to pass the name of the security algorithm to be used to
the NAF.

Type: 1.

Fields Field type Direction Required Comment

Algorithm IA5-string P M The security algorithm is identified by
its name. The names of the available
algorithms can be obtained using the
Property information.

"nosecurity": this value for this
parameter indicates that security is no
longer needed for the connection.

16 is maximum length.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

6.6.2 Bilateral closed user group (Bcug)

Description: This parameter is used to pass ISO 8208 [3] bilateral closed user group
information to/from the PUF.

Type: 2.

Fields Field type Direction Required Comment

Bcug Octet-string B M Index to bilateral closed user group
selected for user connection.

4 is the fixed length.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

6.6.3 BearerCap

Description: This parameter is used to pass bearer capability to/from the PUF.

Type: 3.

Fields Field type Direction Required Comment

BearerCap Octet-string B M Bearer capability information element.

Maximum length is 12.

NOTE: Values for this field are defined in the ETS 300 102-1 [2].

Page 103
ETS 300 325: March 1994

6.6.4 Bit_DQM

Description: This parameter is used to pass to/from the PUF:

- need for receipt of data (bit 1). This bit is equivalent to the X.25 D bit;
- ISO/IEC 8208 [3] Qualifier bit value (bit 2);
- ISO/IEC 8208 [3] More Data bit value (bit 3).

Each information use a binary position. The Most Significant Bit (MSB) if the bit
8 and the Least Significant Bit is the bit 1. Bit 1 is for value 1, bit 2 for value 2
and bit 3 for value 4. The result value applying to this parameter is a the sum of
the value for each bit (logical OR).

Type: 4.

Fields Field type Direction Required Comment

DQM Octet B M Bit 1:
1 - Confirmation of data reception is
allowed or required.
0 - Confirmation of data reception is
not allowed or not required.
Bit 2:
1 - Set ISO 8208 [3] Qualifier bit.
0 - Reset ISO 8208 [3] Qualifier bit
Bit 3:
1 - Set ISO 8208 [3] More bit.
0 - Reset ISO 8208 [3] More bit

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
see NOTE X X
NOTE: This parameters shall be used in accordance with ETS

300 080 [1].

Remarks: Invalid use of the More bit with the Qualifier bit shall result in the user connection
being reset.

Page 104
ETS 300 325: March 1994

6.6.5 CalledDTEAddress

Description: This parameter is used to pass remote DTE address information to/from the
PUF.

Type: 5.

Fields Field type Direction Required Comment

Address IA5-string B M 15 octets is the maximum length

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Remark: The BCD translation is provided by the NAF.

In the message exchange from PUF to NAF this parameter shall either be supplied in the NCO or in the
appropriate message.

6.6.6 CalledDTEAddressExt

Description: This parameter is used to pass remote DTE address extension information
to/from the PUF.

Type: 6.

Fields Field type Direction Required Comment

AddressExt IA5-string B M 40 octets is the maximum length.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Remark: The BCD translation is provided by the NAF.

Page 105
ETS 300 325: March 1994

6.6.7 CalledNumber

Description: This parameter is used to pass details concerning the called address to/from the
PUF.

Type: 7.

Fields Field type Direction Required Comment

NumberType Octet B M Default (255) - default is unknown

unknown (0)

international (1)

national specific (2)

network (3)

subscriber (4)

abbreviated (6)

NumberPlan Octet N M Default (255) - default is unknown

unknown (0)

isdn (1)

data (3)

telex (4)

national (8)

private (9)

Number IA5-string B M 20 is maximum length

NOTE: In the message exchange from PUF to NAF this parameter shall either be supplied in the
NCO or in the appropriate message.

6.6.8 CalledSubaddress

Description: This parameter is used to pass the Called Subaddress to/from the PUF.

Type: 8.

Fields Field type Direction Required Comment

NumberType Octet B M nsap (0)

user (2)

Indicator Octet B M even (0)

odd (1)

This field is only meaningful if
NumberType is set to user. It indicates
if the number contains an odd or even
number of BCD digits.

Number IA5-string B M 20 is maximum length.

Page 106
ETS 300 325: March 1994

6.6.9 CallingDTEAddress

Description: This parameter is used to pass local DTE address information to/from the PUF.

Type: 9.

Fields Field type Direction Required Comment

Address IA5-string B M 15 octets is the maximum length.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Remark: The BCD translation is provided by the NAF.

6.6.10 CallingDTEAddressExt

Description: This parameter is used to pass local DTE address extension information to/from
the PUF.

Type: 10.

Fields Field type Direction Required Comment

AddressExt IA5-string B M 40 octets is the maximum length

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Remark: The BCD translation is provided by the NAF.

Page 107
ETS 300 325: March 1994

6.6.11 CallingNumber

Description: This parameter is used to pass details concerning the calling address to/from
the PUF.

Type: 11.

Fields Field type Direction Required Comment

NumberType Octet B M Default (255) - default is unknown

unknown (0)

international (1)

national specific (2)

network (3)

subscriber (4)

abbreviated (6)

NumberPlan Octet B M Default (255) - default is unknown

unknown (0)

isdn (1)

data (3)

telex (4)

national (8)

private (9)

Presentation Octet B M Default (255) - default is allowed

allowed (0)

restricted (1)

not available (2)

Indicates whether the Number should
be provided to the called user

Screening Octet B M Default (255) - default is
usernotscreened

usernotscreened (0)

userverified (1)

networkprovided (3)

Indicates any checking that has been
applied to the Number

Number IA5-string B M 20 is maximum length

NOTE: Only "ISDN/telephony numbering plan" and "unknown" shall be allowed for the PUF as
number plan identifier within the calling party number information element, when using
CLIP.
Only "subscriber number", "national number" and "international number" shall be allowed
for the PUF as type of number within the calling party number information element, when
using CLIP and specifying a complete number.
Only "unknown" shall be allowed for the PUF as type of number within the calling party
number information element, when using CLIP and specifying an incomplete number for
DDI.

Page 108
ETS 300 325: March 1994

6.6.12 CallingSubaddress

Description: This parameter is used to pass Calling Subaddress details to/from the PUF.

Type: 12.

Fields Field type Direction Required Comment

NumberType Octet B M nsap (0)

user (2)

Indicator Octet B M even (0)

odd (1)

This field is only meaningful if
NumberType is set to user. It indicates
if the number contains an odd or even
number of BCD digits.

Number IA5-string B M 20 is maximum length

6.6.13 CAttributeName

Description : This parameter is used to pass the name of a static set of Control Plane
attributes from the PUF.

Type: 13.

Fields Field type Direction Required Comment

AttributeName IA5-string P M 16 is maximum length.

6.6.14 CauseToNAF

Description: This parameter is used to pass Cause Information from the PUF to the NAF.

Type: 14.

Fields Field type Direction Required Comment

Cause Octet P M Cause value.

Page 109
ETS 300 325: March 1994

6.6.15 CauseToPUF

Description: This parameter is used to pass Cause Information from the NAF to the PUF.

Type: 15.

Fields Field type Direction Required Comment

Cause Octet N M Cause value

Standard Octet N M Default (255) - default is ccitt

ccitt (0)

international (1)

national (2)

network (3)

Location Octet N M Default (255) - default is user

user (0)

privatelocal (1)

publiclocal (2)

transit (3)

publicremote (4)

privateremote (5)

international (7)

networkbeyond (10)

Recommendation Octet N M Default (255) - default is Q931

Q931 (0)

X21 (3)

X25 (4)

Diagnostics Octet-string N C Depends on the cause value.

Length is fixed to 2.

The lower octet contents least
significant byte.

6.6.16 CDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the Control Plane part.

Type: 16.

Fields Field type Direction Required Comment

Direction Octet P M listen (1)

call (2)

both (3)

Page 110
ETS 300 325: March 1994

6.6.17 ChannelIdentification

Description: This parameter is used to pass Channel Information from/to the PUF.

Type: 17.

Fields Field type Direction Required Comment

Selection Octet B M nochannel (0) - no channel is available

Bchannel (1)

anychannel (3) - use any available
channel

Dchannel (4)

Number Octet B O This optional parameter is used by the
PUF to select a particular B channel. A
value of 255 means select the first
available B channel.

Remarks: For CConnectReq message all values of Selection except nochannel and
D-Channel are supported.

The number field can be used on the CAttribute set parameter structure or with
CConnectReq message to select a particular permanent connected B-channel,
or D-channel in the case where multiple TEI's are supported.

6.6.18 ChargingInfo

Description: This parameter is used to Transmit the charging information, if any, relevant to
an NCO, in the Administration Attribut Set Parameter.

Type: 18.

Fields Field type Direction Required Comment

Tag Octet N M charginginfo (3)

chargingerror (4)

(See subclause 6.6.30 : coding of
FacilityTag)

Value Octet-string N C Length and content depend on the
Tag. Absent if Tag is chargingerror.

(See subclause 6.6.30 : coding of
FacilityValue)

Page 111
ETS 300 325: March 1994

6.6.19 CompletionStatus

Description: This parameter is used to pass completion information to the PUF.

Type: 19.

Fields Field type Direction Required Comment

Status Octet N M Completion report value.

ErrorSpecific Octet-string N C Presence depends on value of Status
field. See subclause 6.8.7 for more
details. Length shall be in the range 0
to 16 octets.

6.6.20 CongestionLevel

Description: This parameter is used to pass congestion level details to/from the PUF.

Type: 20.

Fields Field type Direction Required Comment

Level Octet B M ready (1)

notready (15)

6.6.21 ConnectedNumber

Description: This parameter is used to pass details concerning the connected number to the
PUF.

Type: 21.

Fields Field type Direction Required Comment

NumberType Octet N M default (255) - default is unknown

unknown (0)

international (1)

national (2)

network (3)

subscriber (4)

abbreviated (6)

NumberPlan Octet N M default (255) - default is unknown

unknown (0)

isdn (1)

data (3)

telex (4)

national (8)

private (9)

Number IA5-string N M 20 is maximum length

Page 112
ETS 300 325: March 1994

6.6.22 ConnectedSubaddress

Description: This parameter is used to pass the Connected Subaddress to the PUF.

Type: 22.

Fields Field type Direction Required Comment

NumberType Octet N M nsap (0)

user (1)

Indicator Octet N M even(0)

odd (1)

This field is only meaningful if
NumberType is set to user. It indicates
if the number contains an odd or even
number of BCD digits

Number IA5-string N M 20 is maximum length

6.6.23 DateTime

Description: This parameter is used to pass date and time information to the PUF. This
information is provided by the Network.

Type: 23.

Fields Field type Direction Required Comment

Year Octet N M 0 to 99

Month Octet N M 1 to 12

Day Octet N M 1 to 31

Hour Octet N M 0 to 23

Minute Octet N M 0 to 59

6.6.24 Display

Description: This parameter is used to pass display information to the PUF.

Type: 24.

Fields Field type Direction Required Comment

Information IA5-string N M 32 is maximum length

Page 113
ETS 300 325: March 1994

6.6.25 ExtEquipAvailability

Description: This parameter is used to pass the information related the availability of the
external equipment.

Type: 25.

Fields Field type Direction Required Comment

Availability Boolean N M State of the external equipment
TRUE - equipment available
FALSE - equipment unavailable

6.6.26 ExtEquipBlockDialling

Description: This parameter is used to pass the information related the block dialling made
with the keypad of the external equipment.

Type: 26.

Fields Field type Direction Required Comment

BlockDialling IA5-string N M Remote address and/or subaddress
typed on the keypad of the external
equipment.
A star ('*') separates address and
subaddress fields.
41 is the maximum length.

6.6.27 ExtEquipKeypressed

Description: This parameter is used to pass the information related the pressed keys on the
keypad of the external equipment.

Type: 27.

Fields Field type Direction Required Comment

Keypressed Octet N M Keypad information
(0 to 9) Numeric key.
(10) '*' key.
(11) '#' key
(12) 'R.' key
(13) 'Bis' key

Page 114
ETS 300 325: March 1994

6.6.28 ExtEquipName

Description: This parameter is used to pass the name that identifies an item of external
equipment.

Type: 28.

Fields Field type Direction Required Comment

Type Octet P M type1 (1) - external equipment is of
type 1.
type2 (2) - external equipment is of
type 2.
type3 (3) - external equipment is of
type 3.
type4 (4) - external equipment is of
type 4.
type5 (5) - external equipment is of
type 5.
External equipment type are described
in Annex C.

Name IA5-string P M maximum length is 16
"DEFAULT" - use first defined external
equipment of specified type

6.6.29 ExpeditedData

Description: This parameter is used to pass use of expedited data information to/from the
PUF.

Type: 29.

Fields Field type Direction Required Comment

Usage Boolean B M TRUE - Use of expedited data is
required or supported.

FALSE - Use of expedited data is not
required or not supported.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

Page 115
ETS 300 325: March 1994

6.6.30 Facility

Description: This parameter is used to pass Facility information to/from the PUF. If another
facility information than that defined in the FacilityTag 1 to 4 values is expected,
the transparent (5) value should be used.

Type: 30.

Fields Field type Direction Required Comment

FacilityTag Octet B M chargingduring (1) - This value is used
to request charging information during
the connection. This tag is used in the
direction from the PUF to the NAF.
During the connection the NAF shall
send subtotals of the charging
information to the PUF. At the end of
the connection the NAF shall provide
the total charging information.

chargingend (2) - This value is used to
request charging information at the end
of a connection. This tag is used in the
direction from the PUF to the NAF. At
the end of the connection the NAF
shall provide the total charging
information to the PUF.

charginginfo (3) - This value is used to
indicate that the Contents field contains
charging related information. This
value is used in the direction from NAF
to PUF.

chargingerror (4) - This value is used
to indicate that the Contents field
contains Error information related to
the charging supplementary service.
This value is used in the direction from
NAF to PUF.

transparent (5) - Allows the PUF or the
NAF to send/receive facility information
coded in format used by the Network.

FacilityValue Octet-string C Length and contents depend on value
of FacilityTag field. Contents field is not
allowed when FacilityTag field value is
chargingduring or chargingend.

The coding of the FacilityValue field in the case when the FacilityTag field value is charginginfo, is defined
in table 16.

NOTE: For transparent coding, the size of the contents is the size of the facility parameter
minus 1.

Page 116
ETS 300 325: March 1994

Table16: Coding of the FacilityValue field in the case of ChargingInfo

Subfield Field
type

Value Comment

TypeOfTotal Octet subtotal (1) Indicates whether the charging information
is a total or a subtotal.

total (2)

TypeOfCharge Octet currencyinfo (2) The charging information is represented
as currency information.

unitInfo (3) The charging information is represented
as charging units.

freeofcharge (4) The connection is free of charge.

unknown (1) The type of the charging information
cannot be determined.

Value Octet value after decimal
point. The value
represents n x 1/256.

Value of the charging information in fixed
point notation. If the octet 2 indicates
freeofcharge, all three octets shall contain
zero (0) to indicate a value of 00,0.

Octet least significant octet
before decimal point

Octet most significant octet
before decimal point

The coding of the Contents field in the case when the Tag field value is ChargingError, is defined in the
table 17.

Table 17: Coding of the FacilityValue field in the case of ChargingError

Subfield Field
type

Value Comment

ChargingError-
Cause

Octet notsubscribed (50) The user has not subscribed to the advice
of charge (AOC) supplementary service.

notavailable (63) The advice of charge (AOC)
supplementary service is not available.

notimplemented (69) The advice of charge (AOC)
supplementary service is not
implemented.

InvalidCallState (101) The advice of charge (AOC)
supplementary service is invoked in an
invalid call state. The supplementary
service can be only be invoked in the
CConnectReq.

NoChargingInfoAvailab
le (128)

There is no charging information available.

Page 117
ETS 300 325: March 1994

6.6.31 FacilityData

Description: This parameter is used to pass ISO/IEC 8208 [3] Facility information to/from the
PUF.

Type: 31.

Fields Field type Direction Required Comment

FacilityData Octet string B M Encoded as facility information defined
in ISO 8208 [3].

109 octets is the maximum length.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
see NOTE X
NOTE: These parameters shall be used in accordance with

ETS 300 080 [1].

6.6.32 FastSelect

Description: This parameter is used to pass ISO/IEC 8208 [3] Fast Select Facility information
to/from the PUF.

Type: 32.

Fields Field type Direction Required Comment

FastSelect Octet B M norestriction (1) - Called DTE is not
required to remove the user connection
before establishment is complete.

restricted (2) - Called DTE is required
to remove the user connection before
establishment is complete.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Page 118
ETS 300 325: March 1994

Remarks: When specified on a U3ConnectReq message this parameter allows the
UserData parameter to have a maximum length of 128 octets. If the restricted
option is selected it indicates that the user connection cannot be established and
that a U3DisconnectInd should be expected with a maximum UserData
parameter of 128 octets. If the nonrestricted option is specified then the user
connection can be established and the subsequent U3ConnectCnf can have a
maximum UserData parameter of 128 octets. Subsequent to this both the
U3DisconnectInd and U3DisconnectReq fields may also have maximum
UserData parameters of 128 octets.

When received on a U3ConnectInd message this parameter indicates that the
UserData parameter with the message can have a maximum length of 128
octets. If the restricted option is selected it indicates that the user connection
cannot be established and that the PUF must respond with U3DisconnectReq.
The UserData parameter with this message can have a maximum length of 128
octets. If the nonrestricted option is selected, the PUF can respond with
U3ConnectRsp with a maximum UserData parameter of 128 octets Subsequent
to this both the U3DisconnectInd and U3DisconnectReq fields may also have
maximum UserData parameters of 128 octets.

6.6.33 GroupID

Description: This parameter is used to pass the group identifier to/from the PUF.

Type: 33.

Fields Field type Direction Required Comment

GroupID Octet string B M The value is unique for a PUF/NAF
relation.

4 is the fixed length.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Page 119
ETS 300 325: March 1994

6.6.34 High Layer Compatibility (HLC)

Description: This parameter is used to pass High Layer Compatibility (HLC) information
to/from the PUF.

Type: 34.

Fields Field type Direction Required Comment

Standard Octet B M Default (255) - default is ccitt

ccitt (0)

international (1)

national (2)

network (3)

Identification Octet B M telephony (1)

faxG4C1 (33)

teletexF184 (36)

teletexF220 (40)

teletexF200 (49)

videotext (50)

telex (53)

mhsx400 (56)

osix200 (65)

maintenance (94)

management (95)

ExtIdentification Octet B O telephony (1)

faxG4C1 (33)

teletexF184 (36)

teletexF220 (40)

teletexF200 (49)

videotext (50)

telex (53)

mhsx400 (56)

osix200 (65)

Page 120
ETS 300 325: March 1994

6.6.35 IdleFlag

Description: Flag byte to be sent by the NAF when TMA is idle.

Type: 35.

Fields Field type Direction Required Comment

IdleFlag Octet P M Flag byte.

6.6.36 Key

Description: Key to be used for the security algorithm.

Type: 36.

Fields Field type Direction Required Comment

Key Octet-string P M The Key parameter is used by the PUF
to give relevant information for the
security algorithm to the NAF.

Maximum length is 255.

6.6.37 Keypad

Description: This parameter is used to pass keypad facility information to the NAF.

Type: 37.

Fields Field type Direction Required Comment

Keypad Octet-string P M AI5 characters to convey.

Maximum length is 32.

6.6.38 L2ConnectionMode

Description : This parameter is used to pass details of the layer connection mode to the NAF.

Type: 38.

Fields Field type Direction Required Comment

Value Octet P M dte (1) - Act as DTE as defined in ISO
7776 [4]

dce (2) - Act as DCE as defined in ISO
7776 [4]

auto (3) - When calling act as DTE,
when called act as DCE

Protocols : This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

Page 121
ETS 300 325: March 1994

6.6.39 L2FrameSize

Description: This is used to pass details of the layer 2 frame size to the NAF.

Type: 39.

Fields Field type Direction Required Comment

Value Octet string P M Frame size (in octets).

Length is fixed to 2.

The first octet contains the most
significant byte.

6.6.40 L2WindowSize

Description: This is used to pass details of the layer 2 window size to the NAF.

Type: 40.

Fields Field type Direction Required Comment

Value Octet P M Window size

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

6.6.41 L2XID

Description: This is used to pass details of the layer 2 XID value and its use.

Type: 41.

Fields Field type Direction Required Comment

Use Octet P M send (1) - send XID.

match (2) - match XID with XID
received. IF XID does not match,
connection shall not be established.

Value Octet-string P M XID value [Identifier and signature].

Maximum length is 64.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

Page 122
ETS 300 325: March 1994

6.6.42 L3ConnectionMode

Description: This parameter is used to pass details of the layer connection mode to the NAF.

Type: 42.

Fields Field type Direction Required Comment

Value Octet P M dte (1) - act as DTE.

dce (2)- act as DCE.

auto (3)- act as DTE when calling, act
as DCE when called.

dxe (4)- use Restart Packet to
determine DTE or DCE role as in ISO
8208auto.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

NOTE: When using the User Plane protocol ETS 300 080 [1] ,
dxe(4) shall always be used.

6.6.43 L3IncomingVCCount

Description: This parameter is used to pass the number of connections that may be
established at any instant by incoming call establishment requests.

Type: 43.

Fields Field type Direction Required Comment

Value Octet-string P M Number of connections. Maximum
value is 4095.

Length is fixed to 2.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

6.6.44 L3OutgoingVCCount

Description: This parameter is used to pass the number of connections that may be
established at any instant by outgoing call establishment requests.

Type: 44.

Fields Field type Direction Required Comment

Value Octet-string P M Number of connections. Maximum
value is 4095.

Length is fixed to 2.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

Page 123
ETS 300 325: March 1994

6.6.45 L3TwoWayVCCount

Description: This parameter is used to pass the number of connections that may be
established at any instant by outgoing or incoming connection establishment
requests.

Type: 45.

Fields Field type Direction Required Comment

Value Octet-string P M Number of connections. Maximum
value is 4095.

Length is fixed to 2.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

6.6.46 Low Layer Compatibility (LLC)

Description: This parameter is used to pass Low Layer Compatibility (LLC) information
to/from the PUF. Information concerning layer 1 details shall be taken from the
BearerCap parameter when an CConnectReq message is issued with an LLC
parameter.

Type: 46.

Fields Field type Required Comment

Negotiation Boolean M TRUE - negotiation is allowed

FALSE - negotiation is not allowed

Layer2protocol Octet M 0 - 31

255 = unspecified

layer2optional Octet M 0 - 127

255 = unspecified

Layer3protocol Octet M 0 - 31

255 = unspecified

layer3optional Octet M 0 - 127

255 = unspecified

6.6.47 ManufacturerCode

Description: This parameter identifies the manufacturer. It is provided by the manufacturer
itself.

Type: 47.

Fields Field type Direction Required Comment

Value Octet-string B M Manufacturer identification.

Maximum length is 255.

Page 124
ETS 300 325: March 1994

6.6.48 MoreData

Description: This parameter is used to indicate that an other user-to-user information
message will follow, belonging to the same block.

Type: 48.

Fields Field type Direction Required Comment

Value Octet B M Fixed value: TRUE

6.6.49 NCOID

Description: This parameter is used to pass the connection object identifier to/from the PUF.

Type: 49.

Fields Field type Direction Required Comment

Value Octet-string M This value is unique for a PUF/NAF
relation.

Length is fixed to 4.

6.6.50 NCOType

Description: This parameter is used to pass the connection object type to the NAF.

Type: 50.

Fields Field type Direction Required Comment

Identifier Octet M cset (1) - signalling access only.

u3set (2) - network user access via
NMA with NAF signalling co-ordination
(NAF co-ordination functionality).

s1u1set (4) - signalling and transparent
user access via TMA.

s1u3set (5) - signalling and network
layer user access via NMA.

u3group (6) - network user access via
NMA to additional virtual circuits. This
NCO must be grouped to an already
created U3 or C/U3 type NCO.

6.6.51 NotificationIndicator

Description: This parameter is used to pass notification of network event to the PUF. It may
be a suspended or resumed operation.

Type: 51.

Fields Field type Direction Required Comment

Value Octet N M suspended (1)

resumed (2)

callwaiting (3)

Page 125
ETS 300 325: March 1994

6.6.52 PacketSize

Description: This parameter is used to pass ISO/IEC 8208 [3] packet size information to/from
the PUF.

Type: 52.

Fields Field type Direction Required Comment

Negotiation Boolean B M Used to indicate if negotiation of
packet size is possible.

TRUE - negotiation possible.

FALSE - negotiation not possible.

Invalue Octet B M Inbound maximum user data length
(see table 18).

Maximum size of data that can be
received with U3DataInd.

Outvalue Octet B M Outbound maximum user data length
(see table 18).

Maximum size of data that can be
passed with U3DataReq.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X

Remarks: This parameter is used to determine the maximum size of data buffers that can
be passed with the U3DataReq and U3DataInd messages. It is used as follows:

- on U3ConnectReq the PUF may specify the values it wishes to use;
- on U3ConnectCnf the NAF shall always specify the values to be used for the

user connection;
- on U3ConnectInd the NAF shall always indicate the values to be used for the

user connection. It also indicates if it is possible for the PUF to negotiate these
values;

- on U3ConnectRsp the PUF can specify values if the U3ConnectInd indicated
that negotiation was possible.

Table 18: Precoded packet size values

Precoded value Packet size (octet) Precoded value Packet size (octet)

4 16 9 512

5 32 10 1 024

6 64 11 2 048

7 128 12 4 096

8 256

Page 126
ETS 300 325: March 1994

6.6.53 ProgressIndicator

Description: This parameter is used to pass information concerning the progress of a
telephony call to the PUF.

Type: 53.

Fields Field type Direction Required Comment

Standard Octet N M ccitt (0)

international (1)

national (2)

network (3)

Location Octet N M user (0)

privatelocal (1)

publiclocal (2)

transit (3)

publicremote (4)

privateremote (5)

international (7)

networkbeyond (10)

Value Octet N M notISDN (1) - call is not end to end
ISDN, further information may be
available in-band.

destinationnotISDN (2) - Destination
address is not ISDN.

originationnotISDN (3) - Origination
address is not ISDN.

returnedtoISDN (4) - Call has returned
to ISDN.

inbandinformation (8) - In-band
information or appropriate pattern now
available.

Page 127
ETS 300 325: March 1994

6.6.54 QOSParameters

Description: This parameter is used to pass Quality of Service information to/from the PUF.

Type: 54.

Fields Field type Directio
n

Required Comment

Throughput Usage Boolean B M Indicates if following values are
included.

InTarget Octet B C Values provided in the table
19.

InLowest Octet B C Values provided in the table
19.

InAvailable Octet B C Values provided in the table
19.

InSelected Octet B C Values provided in the table
19.

OutTarget Octet B C Values provided in the table
19.

OutLowest Octet B C Values provided in the table
19.

OutAvailable Octet B C Values provided in the table
19.

OutSelected Octet B C Values provided in the table
19.

NCPriority Usage Boolean B M Indicates if following values are
included.

Target Octet B C (NOTE 1).

Lowest Octet B C (NOTE 1).

Available Octet B C (NOTE 1).

Selected Octet B C (NOTE 1).

TransitDelay Usage Boolean B M Indicates if following values are
included.

Selected Octet-string B C (NOTE 2).

Target Octet-string B C (NOTE 2).

Maximum Octet-string B C (NOTE 2). Conditional if Target
- previous one - used else
absent.

End to End
Transit Delay

Usage Boolean B M Indicates if following values are
included.

Selected Octet-string B C (NOTE 2).

Target Octet-string B C (NOTE 2).

Maximum Octet-string B C (NOTE 2). Conditional if Target
- previous one - used else
absent.

Page 128
ETS 300 325: March 1994

NOTE 1: The NCPriority fields can take any value from 1 (highest priority) to 10 (lowest priority). If not
used, the field shall be filled with the value 0. If unspecified, the field shall be filled with the
value 11.

NOTE 2: Length is fixed to 2. The lower octet contains least significant byte. 65535 means not used.
Delay expressed in milliseconds.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Table 19: Throughput precoding value

Precoding value Throughput class Precoding value Throughput class

3 75 9 4 800

4 150 10 9 600

5 300 11 19 200

6 600 12 48 000

7 1 200 13 64 000

8 2 400 0 unused

6.6.55 ReadyFlag

Description: This parameter is used to request and indicate flow control status on a user
connection.

Type: 55.

Fields Field type Direction Required Comment

Usage Boolean B M TRUE - Data transfer is possible.

FALSE - Data transfer is not possible.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

6.6.56 RequestID

Description: This parameter is used to pass an identifier to the NAF on a request message. It
is returned by the NAF on the associated confirm message.

Type: 56.

Fields Field type Direction Required Comment

Identifier Octet-string B M Internal ID provided by the PUF.

Length is fixed to 4.

Page 129
ETS 300 325: March 1994

6.6.57 ReceiptConfirm

Description: This parameter is used to request confirmation of data receipt for a User Plane
connexion.

Type: 57.

Fields Field type Direction Required Comment

Value Boolean B M TRUE - Confirmation requested

FALSE - Confirmation not requested

6.6.58 RespondingDTEAddress

Description: This parameter is used to pass responding DTE address information to/from the
PUF.

Type: 58.

Fields Field type Direction Required Comment

Address IA5-string M 16 octets is the maximum length.

6.6.59 RespondingDTEAddressExt

Description: This parameter is used to pass responding DTE address extension information
from/to the PUF.

Type: 59.

Fields Field type Direction Required Comment

AddressExt IA5-string B M 40 octets is the maximum length

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

6.6.60 SelectorID

Description: This parameter is used by the PUF to select the right NCO on an incoming call
(second step of the selection). Also the PUF uses the SelectorID to give the
NAF a list of NCOs that should be exclusively dealt with.

Type: 60.

Fields Field type Direction Required Comment

Identifier Octet-string B M Internal ID provided by the PUF.

Length is fixed to 4.

Page 130
ETS 300 325: March 1994

6.6.61 TEI

Description: This parameter is used to access a permanent link to a data packet switch
(packet connection in D-Channel).

Type: 61.

Fields Field type Direction Required Comment

Value Octet B M

6.6.62 U3Protocol

Description: This is used to select the User Plane protocol.

Type: 62.

Fields Field type Direction Required Comment

L3Protocol Octet P M Default (255) - ETS 300 080 [1]

ETS 300 080 (1)

ISO 8208 (2)

T.70 NL (3)

NULL (4)

L2Protocol Octet P C Only allowed if L3Protocol is NULL(4).

Default (255) - X.75

X.75 (0)

frame oriented transparent (1)

6.6.63 UAttributeName

Description : This parameter is used to pass the name of a static set of user plane attributes
from the PUF.

Type: 63.

Fields Field type Direction Required Comment

AttributeName IA5-string P M 16 is maximum length.

6.6.64 UDirection

Description: This parameter is used to pass information concerning the usage of a particular
NCO to the NAF, for the User Plane.

Type: 64.

Fields Field type Direction Required Comment

Direction Octet P M listen (1)

call (2)

both (3)

Page 131
ETS 300 325: March 1994

6.6.65 UserData

Description: This parameter is used to pass Data that is limited in size to/from the PUF.

Type: 65.

Fields Field type Direction Required Comment

Data Octet-string B M 128 octets is the maximum size.

The maximum length allowed varies
from message to message and is also
different dependent on the use of the
FastSelect parameter.

Protocols: This parameter is used in following user plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

6.6.66 UserToUserInfo

Description: This parameter is used to pass user-to-user information to/from the PUF.

Type: 66.

Fields Field type Direction Required Comment

Discriminator Octet B M userspecific (0) - contents of
information field is in user specific
format.

ia5chars (4) - contents of information
field is IA5 characters.

Information Octet-string B M 128 is maximum size.

Remarks: The Discriminator field is used to indicate the format of the data in the Information
field. Values from 0 to 256 are possible but may be restricted by the ISDN being
accessed. The values defined are supported by all NAFs.

Page 132
ETS 300 325: March 1994

6.6.67 WindowSize

Description: This parameter is used to pass ISO/IEC 8208 [3] window size information
to/from the PUF.

Type: 67.

Fields Field type Direction Required Comment

Negotiation Boolean B M Used to indicate if negotiation of
window size is possible.

TRUE - negotiation possible.

FALSE - negotiation not possible.

Invalue Octet B M Inbound window size.

Outvalue Octet B M Outbound window size.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Remarks: This parameter is used to determine the window sizes to be used for a user
connection.

- On U3ConnectReq, the PUF may specify the values it wishes to use.
- On U3ConnectCnf, the NAF shall always specify the values to be used for the

user connection.
- On U3ConnectInd the NAF shall always indicate the values to be used for the

user connection. It also indicates if it is possible for the PUF to negotiate these
values.

- On U3ConnectRsp the PUF can specify values if the U3ConnectInd indicated
that negotiation was possible.

6.6.68 X213Cause

Description: This parameter is used to pass X213 Cause information to/from the PUF.

Type: 68.

Fields Field type Direction Required Comment

Value Octet B M See User Plane return code values in
subclause 6.8.9.

6.6.69 X213Origin

Description: This parameter is used to pass X213 origin information to/from the PUF.

Type: 69.

Fields Field type Direction Required Comment

Value Octet B M undefined (1)

NAF Provider (2)

PUF User (3)

Page 133
ETS 300 325: March 1994

6.6.70 X25Cause

Description: This parameter is used to pass X25 Cause information to/from the PUF.

Type: 70.

Fields Field type Direction Required Comment

Value Octet B M See ISO 8208 [3] cause code values.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

6.6.71 X25Diagnostic

Description: This parameter is used to pass X25 Diagnostic information to/from the PUF.

Type: 71.

Fields Field type Direction Required Comment

Value Octet B M See ISO 8208 diagnostic values.

Protocols: This parameter is used in following User Plane protocols:

ETS 300 080 [1] ISO 8208 [3] T.70 NULL
X X

Page 134
ETS 300 325: March 1994

6.6.72 AttributeSet Parameters

AttributeSet parameters depend on the type of parameters to provide with the ACreateNCO request.
Tables 20, 21 and 22 show the content of such parameters.

Table 20: Signalling Attribute Set (CAttributeSet) Parameters

Parameters Required Comment

ChannelIdentification O* See subclause 6.6.17.

HLC O See subclause 6.6.34.

LLC O See subclause 6.6.46.

BearerCap O See subclause 6.6.3.

Table 21: TMA related User Plane Attribute Set (UAttributeSet) Parameters

Parameters Required Comment

IdleFlag C Flag byte to be sent while idle. See subclause 6.6.35.

ExtEquipName O Name of external equipment to be used. If provided
connection shall be established to identified external
equipment and TMA messages shall not be provided.
See subclause 6.6.28.

Remark: IdleFlag parameter is not allowed if ExtEquipName parameter is provided.

Table 22: NMA related User Plane Attribute Set (UAttributeSet) Parameters

Parameters Required Comment

WindowSize O Layer 3 window size. See subclause 6.6.67.

PacketSize O Layer 3 packet size. See subclause 6.6.52.

FastSelect O Fast select facility. See subclause 6.6.32.

QOSParameters O Quality of service. See subclause 6.6.54.

U3Protocol O See remark. See also subclause 6.6.62.

L3ConnectionMode O See remark. See also subclause 6.6.42.

L3TwoWayVCCount O See remark. See also subclause 6.6.45.

L3IncomingVCCount O See remark. See also subclause 6.6.43.

L3OutgoingVCCount O See remark. See also subclause 6.6.44.

TEI O See remark. See also subclause 6.6.61.

L2ConnectionMode O See remark. See also subclause 6.6.38.

L2WindowSize O See remark. See also subclause 6.6.40.

L2FrameSize O See remark. See also subclause 6.6.39.

L2XID O See remark. See also subclause 6.6.41.

Page 135
ETS 300 325: March 1994

Remark: It is only possible to use these parameters during NCO creation containing
Control plane information. NCOs that are to be associated by the use of a
GroupID may not specify these parameters. Refer to subclause 6.2.1 -
ACreateNCO operation - for details.

If parameters are omitted defaults shall be used. The default values are User
Plane protocol dependent. The NAF shall supply the correct value depending on
the protocol. In the case of ISO/IEC 8208 [3], local configuration as described in
Annex E, Clause E.8 may be used.

6.6.73 Administration AttributeSet Parameters

Administration AttributeSet parameters are used to collect some management information about each
NCO and are accessible at any time through the GetNCOInfo operation. Table 23 shows the content of
this parameter.

Table 23: Administration Attribute Set Parameters

Parameters Required Comment

NCOType O See subclause 6.6.50.

CDirection O See subclause 6.6.16.

CAttributeName O See subclause 6.6.13.

CAttribute parameter O See table 20.

UDirection O See subclause 6.6.64.

UAttributeName O See subclause 6.6.63.

UAttribute parameter O See table 22.

CAddress parameters O See table 24.

UAddress parameters O See table 25.

GroupID O Providing at the NCO creation time. See subclause
6.6.33.

SelectorID O See subclause 6.6.60.

ChargingInfo O See subclause 6.6.18.

DateTime O Date and Time of the NCO creation. See subclause
6.6.23.

CauseToPUF O See subclause 6.6.15.

Page 136
ETS 300 325: March 1994

6.6.74 AddressSet Parameter

Tables 24 and 25 show the structures of the Address.

Table 24: Signalling Address Set (CAddressSet) Parameters

Parameters Required Comment

CalledNumber O See subclause 6.6.7 for parameter definition.

CalledSubaddress O See subclause 6.6.8 for parameter definition.

CallingNumber O See subclause 6.6.11 for parameter definition.

CallingSubaddress O See subclause 6.6.12 for parameter definition.

Table 25: NMA related User Plane Address Set (UAddressSet) Parameters

Parameters Required Comment

CalledDTEAddress O See subclause 6.6.5 for parameter definition.

CalledDTEAddressExt O See subclause 6.6.5 for parameter definition.

CallingDTEAddress O See subclause 6.6.9 for parameter definition.

CallingDTEAddressExt O See subclause 6.6.10 for parameter definition.

6.7 Selection criteria

6.7.1 NCO selection

In order to apply the right NCO on an incoming call, the following considerations have to be taken into
account by the NAF.

Only the NCOs with UDirection or CDirection set to incoming or both directions are dealt with in this case.
The best NCO shall contain an explicit definition for each value used for the checking. The "match" level
shall be put on values checked rather than on values assumed. If an information element used as criteria
is not provided by the network this criteria shall be ignored by the NAF during the matching operation.
Table 26 summarises the matching operation.

Table 26: Matching operation for the NCO selection

Network NCO Operation Result

Provided Provided Equal Match

Provided Provided Not equal No match

Provided Not provided (no operation) Match

Not provided Provided (no operation) No match

Not provided Provided (no operation) No match

Not provided Not provided (no operation) Match

The NAF shall broadcast an incoming call to all PUFs, which have indicated compatibility within an NCO.
The incoming call shall then be finally assigned to the PUF which first accepts the call with the appropriate
message. All other PUFs shall receive a disconnect indication. Using this procedure also implies that NAF
co-ordinated NCOs have a higher priority than PUF co-ordinated NCOs, since the NAF may respond
immediately to an incoming call without involving any PUF. In such a case, the call is not seen from non-
co-ordinated NCOs.

Page 137
ETS 300 325: March 1994

If CAlertReq message is sent by a PUF, only the first shall be sent to the Network. All others shall be
ignored. When a CDisconnectReq message is sent by a PUF, it shall not disconnect the call except if no
other NCO has been assigned to this call. This mechanism gives the opportunity to make connection with
a delayed NCO.

Sequence PUF NAF Network

1

2

3

4

5

SETUP

CONNECT

CONNECT_AC

USER PLANE
CALL PACKET

NCO list

NCO1 - U3
NCO2 - C/U3
NCO3 - U3

NCO1 and NCO3 "match"

NCO1
NCO3

The PUF chooses
the NCO upon its

own criterias

Figure 14: NCO selection procedure for incoming call

For more information on selection, refer to ETR 018 [9].

6.7.1.1 Control Plane information elements

1) Called Address (correct or absent);
2) Called Subaddress (correct or absent);
3) Bearer capabilities (correct);
4) LLC (see note) (correct or absent);
5) HLC (correct or absent).

These five information elements shall match the NCO values to make an NCO eligible. At the end of the
selection process, if more than one NCO are eligible, the second step selection shall apply. First the
check function, associated with the order of the information elements, shall be used to select an NCO.
The latest selection criteria shall be the time. The latest NCO created by the NAF shall be selected first.

EXAMPLE: In the case presented in the table 27, the NCO2 shall be chosen because the
NCO2 address information element matches exactly the address information
element provided in the incoming call.

Page 138
ETS 300 325: March 1994

Table 27: Matching NCO on an incoming call

Field Incoming call NCO1 NCO2

Called address 123456789 not provided 123456789

Called sub address 1002 1002 1002

Bearer capability speech speech speech

LLC no outband
negotiation

not provided not provided

HLC telephony telephony telephony

6.7.1.2 User Plane information element (layer 3)

To select an NCO, the NAF uses the following parameters:

- packet size negotiation;
- window size negotiation.

6.7.1.2.1 Packet size negotiation

In the INCOMING CALL packet, if the packet size is not provided, the default value, i.e. 128 shall be
assumed.

The NCO packet size is correct if one of the following cases is relevant:

- the packet size - provided in the U3AttributeSet - is equal to the packet size provided in the
INCOMING CALL packet or assumed;

- if there is no packet size provided in the U3AttributeSet.

6.7.1.2.2 Window size negotiation

In the INCOMING CALL packet, if the Window size is not provided, the default value, i.e. 2 shall be
assumed.

The NCO window size is correct if one of the following cases is relevant:

- the window size - provided in the U3AttributeSet - is equal to the window size provided in the
INCOMING CALL packet or assumed;

- if there is no window size provided in the U3AttributeSet.

6.7.1.2.3 Effective packet size and window size negotiation

In the U3ConnectRsp, if packet size is not provided, the packet size provided in the incoming call - i.e.
U3ConnectInd - shall be accepted by the PUF. The same rules apply to the window size.

In the U3ConnectCnf, if the packet size/window size is not provided, the packet size/window size provided
during the outgoing call - i.e. U3ConnectReq - shall be approved for use by the PUF.

6.7.2 Action if no NCO available

6.7.2.1 Control Plane incoming call

A disconnection cause #88 "incompatible destination" shall be issued by the NAF.

6.7.2.2 User Plane incoming call

A disconnect with the X213reason "Connection rejection - reason unspecified transient" shall be issued by
the NAF.

Page 139
ETS 300 325: March 1994

6.8 Error checking and codes

This subclause deals with the error checking provided by the ISDN PCI. Initially, the error checking
methods employed by each plane are described. Then the function return codes and error return codes
for each plane are defined and described.

6.8.1 Administration Plane

For Administration Plane messages, almost all messages operate in Request/Confirm pairs; there are no
Indicate/Response messages. Any error detected in a request message shall be notified in the related
confirm message.

For Administration Plane messages any error detected shall prevent an operation being performed and
hence prevent a change of state.

Within the Administration Plane the AErrorInd message is used to indicate errors which are not covered
by the protocols which support the Control Plane and User Plane messages. For example, this message
is used to inform the PUF that an invalid NCOID has been specified on a message.

6.8.2 Control Plane

When Mandatory parameters are missing, or a content error occurs in a mandatory parameter, or a
parameter is unrecognised, the NAF indicates the error to the PUF as given in subclauses 6.8.2.1 to
6.8.2.3.

6.8.2.1 Invalid state for message

CStatusInd, no change of state for connection.

6.8.2.2 Mandatory parameters

In case of mandatory parameters missing, mandatory parameters content error or unrecognised
parameter, the NAF shall indicate this error to the PUF as follows:

- for CConnectReq the PUF is sent an CDisconnectInd;
- for CDisconnectReq the PUF is sent an CDisconnectCnf;
- for any other message the PUF is sent CStatusInd, no operation is performed, and no

change of state occurs.

6.8.2.3 Optional Parameter Content Error

The message shall be processed as if the parameter were not present, CStatusInd is sent to the PUF
indicating the parameter in error.

6.8.3 Errors in facility requests

Errors related to facility requests depend on the facility being requested. In the case of the Advice of
Charge supplementary service, errors are indicated by the use of a CFacilityInd message. The message
that generated this error is processed as if there were no facility information present. Specific errors are
defined in subclause 6.6.30.

When a PUF uses facilities in the transparent form, it shall be up to the PUF to understand how errors
shall be reported and what processing may have occurred within the network.

6.8.4 User Plane (NMA)

Errors are dealt with in the following manner:

6.8.4.1 Invalid Use of Receipt Confirmation Service

- PUF is sent U3DisconnectInd.

Page 140
ETS 300 325: March 1994

6.8.4.2 Invalid Use of Confirmation request on U3DataReq

- PUF is sent U3DisconnectInd.

6.8.4.3 Invalid length of U3DataReq UserData parameter

- PUF is sent U3DisconnectInd.

6.8.4.4 Invalid Use of Expedited Data

- PUF is sent U3DisconnectInd.

6.8.4.5 Invalid Issuing of messages while in Reset state

- PUF is sent U3DisconnectInd.

6.8.4.6 Invalid Use of Bit_DQM (association between More and Qualifier bits) parameters
on subsequent U3DataReq messages

- PUF is sent U3ResetInd.

6.8.4.7 Other errors

In case of:

- Mandatory Parameters Missing;
- Mandatory Parameter Content Error;
- Invalid NCO state;
- Unrecognised Parameter;
- Optional Parameter Content Error.

action is:

- for U3ConnectReq, PUF is sent U3DisconnectInd;
- for U3ConnectRsp, PUF is sent U3DisconnectInd;
- for U3DisconnectReq, disconnect virtual circuit, PUF is sent U3DisconnectInd;
- for other Request/Response Messages, PUF is sent U3DisconnectInd.

6.8.5 TMA User Plane

Errors are dealt withas given in subclauses 6.8.5.1 to 6.8.5.4.

6.8.5.1 Mandatory Parameters Missing

- U1ErrorInd with CompletionStatus, MissingParameter.
6.8.5.2 Mandatory Parameter Content Error

- Only mandatory parameter is NCOID, if parameter length is incorrect then U1ErrorInd with
cause InvalidParameterLength, if NCOID is invalid then U1ErrorInd with cause InvalidNCOID.

6.8.5.3 Unrecognised Parameter

- U1ErrorInd with CompletionStatus, InvalidParameter.

6.8.5.4 Overflow of Incoming Data

- U1ErrorInd with CompletionStatus, Overflow.

6.8.6 Function Return Codes

Table 28 defines function return codes:

Page 141
ETS 300 325: March 1994

Table 28: Function return codes

Return Code Meaning

Success 0 Function completed successfully.

QueryEntityNotAvailable 128 The Query entity is not available or an error occurs during dialogue
between the PUF and the Query entity.

InvalidSignalNumber 129 The signal number specified is invalid.

InvalidPCIHandle 130 Handle does not identify a NAF.

NAFnotAvailable 255 NAF is no longer available. The NAF has terminated due to error.
This is a permanent condition.

NAFBusy 132 NAF is unable, currently, to process this request (lack of resource or
other reason). The function may work correctly if re-used at a later
time. This is a temporary condition.

MaxPUFsExceeded 133 NAF can support no more PUFs.

InvalidPUFType 134 Invalid or unsupported type of PUF. NAF does not support this type of
PUF.

InvalidPCIVersion 135 Invalid or unsupported version of PCI. NAF does not support this
version of PCI.

InvalidExID 136 NAF does not recognise Exchange identifier.

InvalidPCIMPB 137 PCI Message Parameter Block address is incorrect.

InvalidMessageBuffer 138 Message Buffer address is invalid.

InvalidDataBuffer 139 Data Buffer address is invalid.

PCIMPBBufferTooSmall 140 PCIMPB Buffer is too small.

Provided for operating systems that can check length of available
memory.

MessageBufferTooSmall 141 Message Buffer is too small.

Message Buffer does not meet message identifier requirements or
actual buffer size in PCIMPB is greater than maximum size. On some
operating systems this may also indicate that maximum size of data
buffer exceeds memory limitations.

DataBufferRequired 142 Data Buffer is required for message.

(continued)

Table 28: Function return codes (concluded)

Return Code Meaning

DataBufferTooSmall 143 Data Buffer provided for message is too small.

Data Buffer does not meet message identifier requirements or actual
buffer size in PCIMPB is greater than maximum size. On some
operating systems this may also indicate that maximum size of data
buffer exceeds memory limitations.

PropertyBufferTooSmall 144 The buffer provided with the property information structure(s) is too
small.

MessageTooLarge 145 There is no upper bound to the message size because of repetitions
of parameters. If the message size exceeds the maximum size
possible with an implementation this value is returned.

InvalidHandlesBuffer 146 The PCIHandles buffer address is invalid.

Page 142
ETS 300 325: March 1994

HandlesBufferTooSmall 147 The size of the buffer for PCIHandles is too small to contain all
available PCI_HANDLEs.

BufferTooSmall 148 The size of the buffer provided by the PUF is too small to answer the
NAF needs (Operating System specific return code).

InvalidRegisterInfoStructu
re

149 At least one parameter contained in the PCIRegisterInfo structure is
invalid (Operating System specific return code).

InvalidOpSysInfoStructur
e

150 At least one parameter contained in the PCIOpSysInfo structure is
invalid (Operating System specific return code).

6.8.7 Administration Plane return code

The following values are returned in the CompletionStatus parameter The ErrorSpecific information
column indicates what, if any, information shall be in the ErrorSpecific field:

Table 29: Administration plan return code

Return Code Meaning ErrorSpecific
Information

Success 0 Operation completed successfully. Not present

NAFnotAvailable 255 NAF is no longer available. The NAF has
terminated due to error. This is a permanent
condition.

Not present

RessourceNotAvailable 47 Used with the NCO creation request
message to indicate the lack of a ressource
(e.g. memory).

Not present

UndefinedMsgType 95 This message identifier is not defined by the
ISDN PCI.

Message Identifier

UnsupportedMsgType 97 This message identifier is defined by the
ISDN PCI but not supported by this NAF.

Message Identifier

InvalidParameter 99 A parameter is not recognised or is not
supported by a message.

Parameter Type

(continued)

Page 143
ETS 300 325: March 1994

Table 29: Administration plan return code (concluded)

Return Code Meaning ErrorSpecific
Information

MissingParameter 96 A mandatory parameter is missing from a
message.

Parameter Type

InvalidParameterLength 182 A parameter's length is outside the allowed
range for the parameter.

Parameter Type

InvalidContents 100 A parameter's content is invalid. Used with
the NCO creation confirm message to
report errors within parameters used to
define the NCO.

Parameter Type

InvalidNCOID 81 A message has been passed to the NAF
with an invalid NCOID.

NCOID value

NCOIDinUse 183 An NCOID that is in use for an
established/establishing connection cannot
be used on this message.

NCOID value

InvalidNCOType 184 A message has been passed to the NAF
with an invalid NCOType value.

NCOType value

InvalidDirectionType 185 A message has been passed to the NAF
with an invalid Direction value.

Not present

AttributeNameError 186 Invalid use of Attribute name. Name is not
known, already defined or identifies an
attribute set of the wrong type.

Attribute name

ExtraSetError 189 Message contains attribute set name that is
not required.

Attribute name

SecurityNotActivated 190 Requested security algorithm has not been
activated.

Security algorithm
specific value

InvalidCoordValue 191 Invalid value in NAFCoordination
parameter.

Not present

InvalidGroupID 192 GroupID value is not recognised by the
NAF.

GroupID value

GroupIDError 193 Message is either missing or requires a
GroupID.

Not present

InvalidExtEquipName 194 External Equipment name is not known to
NAF.

Not present

InvalidExtEquipType 195 Invalid value specified for External
Equipment type.

Not present

OperationFailed 196 Requested operation failed. Not present

ManufacturerCodeError 197 Error in the manufacturer code. Specific
manufacturer
complement

FunctionalityNotProvided 198 Functionality not Provided by the NAF. Not present

Page 144
ETS 300 325: March 1994

6.8.8 Control Plane causes

These values are returned in the CauseToPUF parameter inside the "Cause" field when the parameter is
part of a message passed from NAF to PUF.

NOTE: N/A means Not Applicable.

Table 30: Control Plane causes

Value ETS 300 102-1 [2] Meaning ISDN PCI Meaning Generated

by

NAF

provided

Diagnostics

1 Unallocated (unassigned)
number

ISDN N/A

3 No route to destination ISDN N/A

7 Call placed on an already
established channel

ISDN N/A

16 Normal call clearing ISDN N/A

17 User busy ISDN N/A

18 No user responding ISDN N/A

19 No answer from user (user
alerted)

ISDN N/A

21 Call Rejected ISDN N/A

22 Address changed ISDN N/A

26 Non selected user clearing ISDN N/A

27 Destination out of order ISDN N/A

28 Invalid address format Parameter has invalid address
format.

NAF, ISDN Not present

29 Facility rejected Facility is not provided by this
NAF.

NAF, ISDN Not present

30 Response to STATUS
ENQUIRY

ISDN N/A

31 Normal unspecified ISDN N/A

34 No circuit/channel available Temporarily no channel of
requested type is available
from this NAF.

NAF, ISDN Not present

42 Switching equipment
congestion

ISDN N/A

43 Access information discarded Parameter(s) information
discarded.

NAF, ISDN Parameter

Types

44 Requested channel/circuit not
available

No channel of requested type
is available from this NAF.

NAF, ISDN Not present

(continued)

Page 145
ETS 300 325: March 1994

Table 30: Control Plane causes (continued)

Value ETS 300 102-1 [2] Meaning ISDN PCI Meaning Generated

by

NAF

provided

Diagnostics

47 Resource unavailable,
unspecified

Requested external
equipment is not available.

NAF, ISDN Not present

49 Quality of service unavailable ISDN N/A

50 Facility requested on Facility
parameter is not subscribed

ISDN N/A

57 Bearer Capability not
authorised

ISDN N/A

58 Bearer Capability not
presently available

ISDN N/A

63 Service or option not
available, unspecified

ISDN N/A

65 Service requested by Bearer
Capability is not implemented

ISDN N/A

66 Channel Type not
implemented

NAF does not support this
type of channel.

NAF, ISDN Not present

69 Facility requested is not
implemented

NAF does not support this
facility.

NAF, ISDN Not present

79 Service or option not
implemented, unspecified

ISDN N/A

81 Invalid call reference Invalid NCOID. NAF Not present

82 Identified channel does not
exist

Identified permanent channel
is not defined.

NAF Not present

85 No call suspended NCOID does not identify a
suspended connection.

NAF Not present

88 Incompatible destination ISDN N/A

96 Mandatory parameter is
missing

Mandatory parameter is
missing.

NAF Parameter

Type

97 Message Identifier non-
existent or not implemented
on this network

Message Identifier non-
existent or not implemented
on this NAF.

NAF Message

Identifier

98 Message not compatible with
call state or Message
Identifier non-existent or not
implemented.

Message not compatible with
NCO state or Message
Identifier non-existent or not
implemented.

NAF Message

Identifier

99 Invalid parameter Invalid parameter. NAF Parameter

Type

(continued)

Page 146
ETS 300 325: March 1994

Table 30: Control Plane causes (concluded)

Value ETS 300 102-1 [2] Meaning ISDN PCI Meaning Generated

by

NAF

provided

Diagnostics

100 Invalid parameter contents Invalid parameter contents. NAF Parameter

Type

101 Message not compatible with
current state

Message not compatible with
current state.

NAF Message

Identifier

127 Inter working, unspecified ISDN N/A

These values are valid in the CauseToNAF parameter "Cause" field when the parameter is part of a
message passed from PUF to NAF. If an invalid value is used it shall be ignored and a value of 16,
Normal call clearing, used in its place.

Table 31: Content of the CauseToNAF parameter

Value Meaning

16 Normal call clearing.

21 Call rejected.

31 Normal unspecified.

88 Incompatible destination.

Page 147
ETS 300 325: March 1994

6.8.9 User Plane causes

These values can be specified and are returned in the X213Cause parameter.

Table 32: X213Cause parameter value

Return Code Meaning ErrorSpecific
Information

Undefined 220 Undefined error situation. Not present

DiscPerm 226 Disconnection - permanent condition. Not present

DiscTrans 225 Disconnection - transient condition. Not present

NSAPunknown 232 Connection Rejection - NSAP address unknown
(permanent condition).

Not present

NSAPunreachableTrans 231 Connection Rejection - NSAP
unreachable/transient condition.

Not present

NSAPunreachablePerm 221 Connection Rejection - NSAP
unreachable/permanent condition.

Not present

QOSnotavailPerm 230 Connection Rejection - QOS not
available/permanent condition.

Not present

QOSnotavailTrans 229 Connection Rejection - QOS not
available/transient condition.

Not present

NoReasonPerm 228 Connection Rejection - reason
unspecified/permanent condition.

Not present

NoReasonTrans 227 Connection Rejection - reason
unspecified/transient condition.

Not present

DiscNorm 241 Disconnection - normal condition. Not present

DiscAbnorm 242 Disconnection - abnormal condition. Not present

ConRejectPerm 245 Connection rejection - permanent condition. Not present

ConRejectTrans 244 Connection rejection - transient condition. Not present

ConRejectUserData 248 Connection rejection - incompatible information
in Userdata parameter.

Not present

Page 148
ETS 300 325: March 1994

These values can be used and are returned in the CompletionStatus parameter.

Table 33: Other NMA UserPlane error values

Return Code Meaning ErrorSpecific
Information

InvalidNCOID 81 Message contains an invalid NCOID. Not present

MissingParameter 96 A mandatory parameter is missing from a
message.

Parameter
Type

InvalidParameter 99 A parameter is not recognised or not supported
by a message.

Parameter
Type

InvalidParameterLength 182 A parameter's length is outside the allowed
range for the parameter.

Parameter
Type

Overflow 210 Incoming data has been lost. Not present

6.8.10 TMA User Plane causes

These values can be used and are returned in the CompletionStatus parameter.

Table 34: TMA UserPlane error values

Return Code Meaning ErrorSpecific
Information

InvalidNCOID 81 Message contains an invalid NCOID. Not present

MissingParameter 96 A mandatory parameter is missing from a
message.

Parameter
Type

InvalidParameter 99 A parameter is not recognised or not supported
by a message.

Parameter
Type

InvalidParameterLength 182 A parameter's length is outside the allowed
range for the parameter.

Parameter
Type

Overflow 210 Incoming data has been lost. Not present

Page 149
ETS 300 325: March 1994

7 Exchange method

This Clause describes the exchange method and the exchange functions which are used to achieve the
local exchange of information between a PUF and a NAF. Since the implementation of the exchange
functions is operating system dependent, they are described in a generic way.

The rules for the NAF-sided implementation of this generic exchange functions are defined in Annex F on
a per operating system basis.

Since the NAF-sided implementation of the exchange functions depends on the underlying operating
system, the PUF code calling these functions is operating system dependent as well. To be source code
portable between different operating systems, the PUF may want to encapsulate the code calling the NAF
by a functional interface, which resembles the generic exchange functions described in this Clause. An
example for such an encapsulation is given in Annex J.

The exchange functions are passing and returning parameter values. These values are based on the
generic types shown in table 35.

Table 35: Generic types of exchange method

Generic Type Explanation

PCI_INTEGER Binary represented signed integer value, covering in the minimum the range
of - 2 15 +1 .. + 2 15.

PCI_BYTEARRAY Array of binary represented byte values, used to present characters. The
sign extension on the byte value is undefined. No arithmetic shall be
performed on it.

PCI_EXID Implementation dependent type for presenting the PCI Exchange-ID.

PCI_HANDLE Operating system dependent type for presenting the PCI-Handle
information.

PCI_PROCEDURE Operating system dependent type for presentation of procedure addresses.

For the implementation (binary representation) of these types refer to Annex F.

Dependent of the operating system, the parameters are passed either by value or by reference. The way
parameters are passed is defined in Annex F.

General conventions:

- the function name is prefixed by the letters "Pci".
- each function returns a completion code. Any other value than Success (0) for the completion code

indicates an error.

7.1 Registration phase

7.1.1 Overview

Before a PUF and a NAF can interchange information the PUF shall associate with the NAF. For this
association, the PUF shall specify the PCI-Handle of the NAF it wants to associate with.

To support many NAF implementations, possibly from different manufacturers, a method is defined which
allows the PUF to discover which NAFs are accessible from within a system. For this the optional1)

function PciGetHandles allows the PUF to get a list of accessible PCI-Handles. Subsequently the PUF
can extract a PCI-Handle from the list. The presentation of PCI-Handle is described in the operating
system specific Annex F.

1) The use of this function is optional for the PUF, but it's implementation (provision) is mandatory for the NAF.

Page 150
ETS 300 325: March 1994

If used, the PciGetHandles function should be the very first function called by a PUF since it makes all
PCI-Handles available. The interworking with other exchange functions is shown in figure 15.

Another optional1) function available in the registration phase is the PciGetProperty function. It allows the
PUF to learn the properties of the NAF. On call the PUF gives the PCI-Handle of the NAF of interest. As a
result the PUF obtains a list of the static properties of the NAF.

Since the obtained properties contain information about special NAF features, the PUF can use this
information to select the NAF(s) it wants to register with. Examples of these special features are a
handset or security features.

The only non-optional function of the registration phase is the PciRegister function. It allows the PUF to
associate with the NAF. The PUF shall provide the PCI-Handle of the NAF it wants to associate with. As a
result, an identifier for the association between the PUF and the NAF becomes available. This identifier
shall be given in subsequent exchange function calls of this association during the conversation and
deregistration phase.

The following terms are used in conjunction with the registration phase:

NAF-Property: Structured information describing the characteristics (properties) of a NAF. The
NAF-Property is implemented system independent using TLV coding (see
subclause 6.5). Hence it shall be encoded using the same algorithm as used for
encoding of messages. In a multiple NAF environment, a PUF can use this
information to select a specific NAF.

PCI-Handle: NAF access information. This information shall be supplied to the functions of the
registration phase in order to find and access a NAF. Implementation of the PCI-
Handle is operating system dependent. For example the PCI-Handle may be a
name, a file-path or a function address.

NULL

REGISTERED

PciRegister PciDeregister

PciGetMessage PciPutMessage

PciSetSignal

PciGetProperty PciGetHandles

Figure 15: ISDN PCI exchange function calls order including the optional registration phase
functions

NOTE: In a many NAF environments a PUF may use the optional functions PciGetHandles
and PciGetProperty as described above to select the NAF which suits best to its
needs. For more details on the PciGetProperty function refer to subclause 7.1.3.

1) The use of this function is optional for the PUF, but it's implementation (provision) is mandatory for the NAF.

Page 151
ETS 300 325: March 1994

7.1.2 PciGetHandles

This function allows a PUF to ask how many NAFs are accessible and to obtain their PCI-Handles. Using
the PCI-Handle, the PUF can subsequently get the NAF-Property or register with this NAF.

Function Name: PciGetHandles

Function Return Value: Errorcode (PCI_INTEGER)

 Success
 QueryEntityNotAvailable
 InvalidHandlesBuffer
 HandlesBufferTooSmall

Parameters
Name Generic Type Call or Return

Value
Comment

MaxHandles PCI_INTEGER Call Value Maximum number of PCI-Handles that
can be received.

PCIHandles Array of
PCI_HANDLE

Call Value a buffer, big enough to receive the
requested maximum amount
(MaxHandles) of PCI-Handles.

ActualHandles PCI_INTEGER Return Value Actual number of PCI-Handles
returned in the given buffer.

The PUF shall give a buffer and it's size to get the list of available PCI-Handles.

The PUF receives the actual number of PCI-Handles copied into the buffer. If this number is greater than
the size of the buffer allows, the buffer is not filled and the HandlesBufferTooSmall error is returned. In this
case the PUF shall provide another, bigger buffer to get the complete list of PCI-Handles.

7.1.3 PciGetProperty

This function allows a PUF to obtain the NAF-Property. The PUF shall supply a PCI-Handle as call value.
A PUF can obtain a PCI-Handle either by the use of the optional PciGetHandles function or by use of
other means (e.g. local knowledge).

Function Name: PciGetProperty

Function Return Value: Errorcode (PCI_INTEGER)

 Success
 InvalidPCIHandle
 NAFnotAvailable
 NAFBusy
 PropertyBufferTooSmall

Parameters

Name Generic Type Call or Return
Value

Comment

PCIHandle PCI_HANDLE Call Value PCI-Handle presentation and values
are operating system dependent.

MaximumSize PCI_INTEGER Call Value Maximum size of property allowed on
return.

NAFProperty PCI_BYTEARRAY Return Value Property returned. Property is TLV
coded, hence not system dependent
(see table 35).

ActualSize PCI_INTEGER Return Value Actual size of property returned.

The parameters of NAF-Property are shown in table 36.

Page 152
ETS 300 325: March 1994

Table 36: TLV coded NAF-Property parameter

Parameter Provided TLV Coding Comment and values
TypeID Length Value

Product M 1 1..32 Octet Octet string indicating NAF Product
Manufacturer M 2 1..32 Octet Octet string indicating NAF Manufacturer
AccessClass M 3 1 Octet Basic Rate (1) or Primary Rate (2)
UserProtocolL3* M 4 1..4 Octet Give the supported layer 3 protocols. May

be a NAF selection criteria. For defined
value see subclause 6.6.62

UserProtocolL2* M 5 1..2 Octet Give the supported layer 2 protocols. May
be a NAF selection criteria. For defined
value see subclause 6.6.62

BChannels M 6 1 Octet Number of B-Channels
BPermanent O 7 1 Octet Number of Permanent B-Channels
DPermanent O 8 1 Octet Number of Permanent D-Channels
APlaneClass* O 9 1 Octet Additional Administration Plane functions

supported. identified by class. Valid
value: 2..3

CPlaneClass* O 10 1 Octet Additional Control Plane functions
supported identified by class: Valid values
are in range 2..6

SuppService* O 11 1..16 Octet Specification of supplementary services.
For defined values see table 37 below

ExtEquipName* O 12 2..17 Octet In order, type and name of external
equipment. See subclause 6.6.29

AdditionalUser-
Protocol*

O 13 1..16 Octet Additional User Plane protocols. For
further extension

PCIVersion* O 15 1 Octet PCI version supported

* Parameter may be repeated.

Table 37: List of supplementary service identifiers (SuppService)

Identifier Supplementary service

'CLIR' Calling Line Identification Restriction

'CLIP' Calling Line Identification Presentation

'AOC-D' Advice Of Charge During call

'AOC-E' Advice Of Charge at End of Call

'CW' Call Waiting
'SUB' Subaddressing

'MSN' Multiple Subscriber Number

'COLP' Connected Line Identification Presentation

'COLR' Connected Line Identification Restriction

'DDI' Direct Dialling In

NOTE: The complete reference to this supplementary services is provided
in subclause 5.3.3.2.

Page 153
ETS 300 325: March 1994

7.1.4 PciRegister

This function allows a PUF to be associated to a NAF.
As a calling parameter, the PUF provides the PCI-Handle of the NAF it wants to register with.
Furthermore, two structures are passed on the function stack:

- the PCIRegisterInfo structure; and
- the PCIOpSysInfo structure.

The PCIRegisterInfo structure contains PUF and NAF specific parameters which shall be passed between
the two entities to ensure proper co-operation. The PCIRegisterInfo structure is shown in table 38 below.

The PCIOpSysInfo structure contains operating system dependent information to be exchanged between
PUF and NAF. For details refer to Annex F.

Table 38: Structure of the PCIRegisterInfo structure

Structure Field Generic Type Call or Return Value Explanation
PUFVersion PCI_INTEGER Call Value The version of the ISDN PCI the PUF wants to

use. Can be set to 0 in any case (Default).
PUFType PCI_INTEGER Call Value The type of PUF. This parameter is for future

extensions (e.g. allow specific type of PUFs
like network management PUFs) Currently this
value shall be set to 0!

MaxMsgSize PCI_INTEGER Return Value Maximum size of a message the NAF
guarantees to deal with: NAF shall neither
deliver messages bigger in size nor does it
guarantee to accept bigger ones from PUF!

NOTE: The PUVersion number equals the major revision number of this ETS and has currently
the value 1. The PUFType value is for further extensions and is currently assigned to 0.

As a return value the exchange identifier (ExID) becomes available, which identifies the exchange link
between PUF and NAF. The ExID shall be provided to other exchange functions interface during the
conversation and the deregistration phase.

Function Name: PciRegister
Function Return Value: Errorcode (PCI_INTEGER)

 Success
 InvalidPCIHandle
 NAFnotAvailable
 NAFBusy
 MaxPUFsExceeded
 InvalidPUFType
 InvalidPUFVersion
 InvalidRegisterInfoStructure
 InvalidOpSysInfoStructure1)

Parameters
Name Generic Type Call or Return

Value
Comment

PCIHandle PCI_HANDLE Call Value PCI-Handle presentation and values are
operating system dependent.

PCIRegisterInfo PCIRegisterInfo
structure

Call Value Contains PUF-NAF interaction specific
information like PUFVersion and
PUFType (see table 38)

PCIOpSysInfo PCIOpSysInfo
structure

Call Value Contains Operating system dependent
information. For details refer to Annex F.

ExID PCI_EXID Return Value Exchange-ID.

1) For more (operating system specific) error codes refer to Annex F.

7.2 Deregistration phase

This phase is the last phase in the information exchange between PUF and NAF. When a PUF wants to
disassociate from the NAF it shall invoke the PciDeregister function. The use of the PciDeregister
function shall be mandatory prior to PUF termination.

Page 154
ETS 300 325: March 1994

When the PUF disassociates using this function the NAF frees any resources allocated for this PUF, such
as clearing already existing connections.

7.2.1 PciDeregister

This function disassociates a PUF from a NAF. The association between the PUF and NAF is identified by
the ExID.

Function Name: PciDeregister

Function Return Value: Errorcode (PCI_INTEGER)

 Success
 InvalidExID
 NAFnotAvalaible
 NAFBusy

Parameters

Name Generic Type Call or Return
Value

Comment

ExID PCI_EXID Call Value Exchange-ID as received as result of
previous PciRegister function.

On return the ExID used becomes invalid, even if the error code returned indicates an error during
deregistering. No further access to the NAF shall be possible using this ExID.

7.3 Conversation phase

In the conversation phase, the interaction between the PUF and the NAF consists of message and data
exchange. This exchange is carried out by the generic exchange functions PciPutMessage and
PciGetMessage respectively. Messages are provided, in both directions, one by one and entirely.
Message and data are associated. The PCI Message Parameter Block (PCIMPB) structure contains
information on message and data pointers.

Messages are processed by the NAF in an asynchronous way, but the execution of the exchange
functions is synchronous. As the PUF controls the exchange of messages, messages are transmitted or
received only when the PUF wishes.

7.3.1 Sending messages

The PciPutMessage function is provided for the PUF to send messages to the NAF. Before using this
function the PUF shall fill the Pci Message Parameter Block (PciMPB) with the appropriate values and
shall provide the addresses of the message and the data buffer. The latter only in case the PUF sends
data associated with the message. The PciMPB contains the Message Identifier and details concerning
the usage of the message and data buffers.

7.3.2 Receiving messages

To get a message the PUF simply issues a PciGetMessage function call. The PUF can use this function
to poll for message availability. On function return it is indicated whether there was a message transfer or
not. To avoid polling, the PUF may choose to be informed via a signal-like mechanism as soon as a
message is available. The NAF shall inform the PUF for each event of message availability. This mode of
operation improves the global performance of the system. However, in any case, the PUF shall obtain the
message itself via a PciGetMessage function call.

7.3.3 Receiving messages using the polling method

To receive a message using this method, the PUF shall poll the NAF repeatedly to check if a message is
available. If no message is available, this shall be indicated in a special way.

Page 155
ETS 300 325: March 1994

To be able to receive a message the PUF provides the NAF with a correctly set-up PciMPB, which shall
contain the addresses of a message and a data buffer respectively. The size of the message and data
buffers shall be big enough to receive the expected message. However, provision of a data buffer is
optional, as data is not provided with all messages. It is up to local knowledge (see also Annex E, Clause
E.9) in the PUF to determine the necessity of this buffer. The NAF indicates the total length used for each
buffer. If no data is available with the message, this shall be indicated by the value zero for the length
used. The absence of a message shall be indicated by the NOMESSAGE (0) type in the MessageID field
of the PciMPB.

7.3.4 Receiving messages using signal method

To receive a message using this method, first, the PUF shall establish a mechanism for the NAF to notify
the PUF when a message is available. This is accomplished using the PciSetSignal function.

This method allows a NAF to indicate that a message is available for the PUF without waiting for the PUF
to use the PciGetMessage function. The indication does not involve transfer of the message from the
PUF to the NAF.

The NAF notifies the PUF each time a new message is available. It shall do so until the PciSetSignal
function is used to remove the notification mechanism.

To receive the message from the NAF, the PUF shall use the PciGetMessage function as described in
the previous subclause.

The function calls the PUF is allowed to invoke while processing the notification may be restricted. Since
these restrictions are depending on the operating system, they are defined in Annex F.

Page 156
ETS 300 325: March 1994

7.3.5 PCI Message Parameter Block (PciMPB)

Table 39 shows the structure of the PCI Message Parameter Block (PciMPB).

Table 39: Structure of the PCI Message Parameter Block (PciMPB)

Structure Field Generic Type Explanation
MessageID PCI_INTEGER Message identifier. Shall be provided by PUF on

invocation of PciPutMessage, available for PUF on
return of PciGetMessage.

MessageMaximumSize PCI_INTEGER Maximum size of message. To be provided on calls to
PciGetMessage.

MessageActualUsedSize PCI_INTEGER Actual used size of message. Shall be provided by
PUF on calls to PciPutMessage, will be available to
PUF on return of PciGetMessage.

DataMaximumSize PCI_INTEGER Maximum size of data buffer. To be provided on calls
to PciGetMessage.

DataActualUsedSize PCI_INTEGER Actual used size of data buffer. Shall be provided by
PUF on calls to PciPutMessage, will be available to
PUF on return of PciGetMessage.

Figure 16 presents how messages are sent or received.

PUF NAF Network

PciPutMessage()

Minimal parameter
check operation followed
by IMMEDIATE
return

P U F p r o c ess c o n t i n u i n g

Network
exchanges

PciGetMessage()

No message

Network
exchanges

PciGetMessage()

Message

Complete message
process

Event
P U F p r o c ess c o n t i n u i n g

Figure 16: Process to send or to receive messages

Page 157
ETS 300 325: March 1994

7.3.6 PciPutMessage

This function allows a PUF to transmit a message to a NAF.

Function Name: PciPutMessage

Function Return Value: Errorcode (PCI_INTEGER)

 Success
 InvalidExID
 NAFnotAvailable
 NAFBusy
 InvalidPCIMPB
 InvalidMessageBuffer
 PCIMPBTooSmall
 MessageBufferTooSmall
 DataBufferTooSmall
 MessageTooLarge
 DataBufferRequired

Parameters

Name Generic Type Call or Return
Value

Comment

ExID PCI_EXID Call Value Exchange-ID as received as result of
previous PciRegister function.

PCIMPB PCIMPB structure Call Value PCI Message Parameter Block.
Message PCI_BYTEARRAY Call Value Message to be sent to NAF.
Data PCI_BYTEARRAY Call Value Data associated with the message.

The PUF indicates the type of the message in the MessageID field of the PCIMPB.

The PUF indicates the size of the buffer(s) in the ActualUsedSize field of the PCIMPB for the respective
buffers, i.e. MessageActualUsedSize for the message buffer and DataActualUsedSize for the data buffer.

It is allowed to provide only a message buffer without a data buffer or a data buffer without message
buffer. However the PciMPB structure is always required. To indicate absence of a buffer, the PUF may
specify no buffer address instead by supplying a NULL (0) value.

Page 158
ETS 300 325: March 1994

7.3.7 PciGetMessage

This function allows a PUF to get a message from a NAF.

Function Name: PciGetMessage

Function Return Value: Error code (PCI_INTEGER)

 Success
 InvalidExID
 NAFnotAvailable
 NAFBusy
 InvalidPCIMPB
 InvalidMessageBuffer
 PCIMPBTooSmall
 MessageBufferTooSmall
 DataBufferTooSmall
 MessageTooLarge

Parameters

Name Generic Type Call or Return
Value

Comment

ExID PCI_EXID Call Value Exchange-ID as received as result of
previous PciRegister function.

PCIMPB PCIMPB structure Call Value and
Return Value

PCI Message Parameter Block.

Message PCI_BYTEARRAY Return Value Message received from NAF.
Data PCI_BYTEARRAY Return Value Data associated with the message.

The PUF is in charge to provide buffers. If a buffer is too small to receive the message or data provided by
the NAF, the NAF returns an error.

The PUF indicates the maximum size of the buffer(s) in the MaximumSize fields of the PciMPB for the
respective buffers, i.e. MessageMaximumSize for the message buffer and DataMaximumSize for the data
buffer.

On return, the NAF indicates the size of the buffer(s) in the ActualUsedSize field of the PciMPB for the
respective buffers used.

To indicate no message, the NAF fills the MessageID field in the PCIMPB with NOMESSAGE (0).

Page 159
ETS 300 325: March 1994

7.3.8 PciSetSignal

This function allows a PUF to ask for notification when an event occurs. An event is any incoming
message from the Network or from the NAF. The signal mechanism shall stay in effect until the PUF
disassociates from the NAF or explicitly shuts-down the notification action (see below).

Function Name: PciSetSignal

Function Return Value: Errorcode (PCI_INTEGER)

 Success
 InvaldExID
 NAFnotAvailable
 NAFBusy
 InvalidSignalNumber

Parameters

Name Generic Type Call or Return
Value

Comment

ExID PCI_EXID Call Value Exchange-ID as received as result of
previous PciRegister function.

Signal PCI_INTEGER Call Value Value is operating system dependent.
SignalProcedure PCI_PROCEDURE Call Value Value and presentation is operating

system dependent.

The real signal mechanism used is operating system dependent. Details, per operating system, can be
found in Annex F.

Any new PciSetSignal call shall overwrite the previous one.

The signal mechanism can be stopped by supplying a NULL(0) value instead of Signal and
SignalProcedure values during call.

Page 160
ETS 300 325: March 1994

8 Security

This Clause addresses communication security using the ISDN PCI.

8.1 General aspects of security in ISDN

ISDN digital nature facilitates adding security, but ISDN has been developed with little thought to security.
The deployment of ISDN in the public network is well under way and this constrains how security features
may be added. The current specifications for the lower layers of ISDN do not contain specific features for
security.

From the point of view of applications, the following needs for security can be seen:

- protecting information confidentiality;
- identifying the parties in communications (authentication);
- assuring the integrity of communicated information;
- controlling access to network services and customer equipment and data;
- being able to prove to a third party the fact that a communication occurred, the contents and

the identities of the parties involved (non-repudiation).

From a security perspective, ISDN is more than a lower-layer communication service. Within the ISDN
there has to be some concern for the applications, and especially the security requirements of these
applications.

A foundation of common security standards for ISDN, particularly for authentication, confidentiality and
integrity can provide the needed platform upon which the specific security needed by various ISDN
applications can be built. The needed technology exists; it remains only to adopt it to ISDN and
incorporate it in standards.

8.2 Security in the ISDN PCI

Although there are no security standards available, the ISDN PCI offers some access to security
functionalities which may be available in the NAF. This access provided a first approach for using security
on ISDN.

The PUF can access the security functionality of the NAF in the following ways:

- using the supplementary service Calling Line Identification Presentation (CLIP);

The CLIP supplementary service provides the PUF with the calling user's ISDN number, possibly
with sub-address information. The ISDN number and sub-address information shall be provided by
the network, and are, therefore, more dependable to be used for identifying the calling user. This
supplementary service provides the PUF with a method to identify the other party. See subclause
6.3. for information on the use of this supplementary service.

- Using the security messages in the Administration Plane:

- ASecurityReq;
- ASecurityCnf.

This security access provides the PUF access to encryption and security features which can be
provided by the NAF. These messages provide a way to exchange the information needed for using
the security features of the NAF. This security access provides a method for protecting information
confidentiality. See subclauses 6.2.9 and 6.2.10 for information on the use of these Administration
Plane messages.

Page 161
ETS 300 325: March 1994

8.3 Increasing security in the ISDN PCI

As no standards exist for security in ISDN, only limited features for security can be added in the ISDN PCI.
These security features are described in subclause 8.2.

Although the standards do not exist, the impact of introducing security in the ISDN PCI can be estimated.
There can be seen three levels of introducing security:

1) Security features as supplementary services

There should be little impact on the ISDN PCI or PUFs. These supplementary services should be
handled in the same way as the normal ones.

2) Security as one specific protocol in the NAF

If a secure protocol is operating on one of the lower layers, the PUF may only have to supply this
protocol with the necessary security information. This can be achieved by extending the
Administration Plane to allow the transfer of the information. There are several ways for extension:

- adding a message;
- extending the attribute sets to contain the security information;
- NCOs to contain the security information.

3) Definition of a new secure protocol stack for ISDN

If new secure protocols are to be established, the ISDN PCI shall be altered. New User Plane and
Control Plane protocols might have to be established. The extension mechanism provided by the
ISDN PCI can be used to supply these new protocols.

Although the impact of introducing security in the ISDN PCI can be estimated, the actual introduction of
additional security features in the ISDN PCI is for further study.

Page 162
ETS 300 325: March 1994

Annex A (informative): Bibliography

This bibliography contains references to documents which are of importance to the PUF and NAF
developers. The documents can be useful when reading or implementing this ETS.

Directive 86/659/EEC: "Council recommendation of 22 December 1986 on the co-ordinated introduction of
the integrated services digital network (ISDN) in the European Community".

ETS 300 102-2 (1990): "Integrated Services Digital Network (ISDN); User-network interface layer 3,
Specification for basic call control, Specification Description Language (SDL) diagrams".

ETS 300 196 (1991): "Integrated Services Digital Network (ISDN); Generic functional protocol for the
support of supplementary services, Digital Subscriber Signalling System No. one (DSS1) protocol".

ISO/IEC 9574 (1989): "Information technology - Telecommunications and information exchange between
systems - Provision of the OSI connection-mode network service by packet mode terminal equipment
connected to an integrated services digital network (ISDN)".

ETS 300 050 (1991): "Integrated Services Digital Network (ISDN); Multiple Subscriber Number (MSN)
supplementary service, Service description".

ETS 300 051 (1991): "Integrated Services Digital Network (ISDN); Multiple Subscriber Number (MSN)
supplementary service, Functional capabilities and information flows".

ETS 300 052 (1991): "Integrated Services Digital Network (ISDN); Multiple Subscriber Number (MSN)
supplementary service, Digital Subscriber Signalling System No. one (DSS1) protocol".

ETS 300 059 (1991): "Integrated Services Digital Network (ISDN); Subaddressing (SUB) supplementary
service, Service description".

ETS 300 060 (1991): "Integrated Services Digital Network (ISDN); Subaddressing (SUB) supplementary
service, Functional capabilities and information flows".

ETS 300 061 (1991): "Integrated Services Digital Network (ISDN); Subaddressing (SUB) supplementary
service, Digital Subscriber Signalling System No. one (DSS1) protocol".

ETS 300 062 (1991): "Integrated Services Digital Network (ISDN); Direct Dialling In (DDI) supplementary
service, Service description".

ETS 300 063 (1991): "Integrated Services Digital Network (ISDN); Direct Dialling In (DDI) supplementary
service, Functional capabilities and information flows".

ETS 300 064 (1991): "Integrated Services Digital Network (ISDN); Direct Dialling In (DDI) supplementary
service, Digital Subscriber Signalling System No. one (DSS1) protocol".

ETS 300 053 (1991): "Integrated Services Digital Network (ISDN); Terminal Portability (TP)
supplementary service, Service description".

ETS 300 054 (1991): "Integrated Services Digital Network (ISDN); Terminal Portability (TP)
supplementary service, Functional capabilities and information flows".

ETS 300 055 (1991): "Integrated Services Digital Network (ISDN); Terminal Portability (TP)
supplementary service, Digital Subscriber Signalling System No. one (DSS1) protocol".

ETS 300 089 (1992): "Integrated Services Digital Network (ISDN); Calling Line Identification Presentation
(CLIP) supplementary service, Service description".

ETS 300 091 (1992): "Integrated Services Digital Network (ISDN); Calling Line Identification Presentation
(CLIP) and Calling Line Identification Restriction (CLIR) supplementary services, Functional capabilities
and information flows".

Page 163
ETS 300 325: March 1994

ETS 300 092 (1992): "Integrated Services Digital Network (ISDN); Calling Line Identification Presentation
(CLIP) supplementary service, Digital Subscriber Signalling System No. one (DSS1) protocol".

ETS 300 090 (1992): "Integrated Services Digital Network (ISDN); Calling Line Identification Restriction
(CLIR), supplementary service Service description".

ETS 300 093 (1992): "Integrated Services Digital Network (ISDN); Calling Line Identification Restriction
(CLIR) supplementary service, Digital Subscriber Signalling System No. one (DSS1) protocol".

ETS 300 056 (1991): "Integrated Services Digital Network (ISDN); Call Waiting (CW) supplementary
service, Service Description".

ETS 300 057 (1992): "Integrated Services Digital Network (ISDN); Call Waiting (CW) supplementary
service, Functional capabilities and information flows".

ETS 300 058 (1991): "Integrated Services Digital Network (ISDN); Call Waiting (CW) supplementary
service Digital Subscriber Signalling System No. one (DSS1) protocol".

ETS 300 179 (1992): "Integrated Services Digital Network (ISDN); Advice of Charge: charging information
during the call (AOC-D) supplementary service, Service description".

ETS 300 181 (1993): "Integrated Services Digital Network (ISDN); Advice of Charge (AOC)
supplementary service, Functional capabilities and information flows".

ETS 300 182 (1993): "Integrated Services Digital Network (ISDN); Advice of Charge (AOC),
supplementary service, Digital Subscriber Signalling System No. one (DSS1) protocol".

ETS 300 180 (1992): "Integrated Services Digital Network (ISDN); Advice of Charge: charging information
at the end of the call (AOC-E) supplementary service, Service description".

ETS 300 094 (1991): "Integrated Services Digital Network (ISDN); Connected Line Identification
Presentation (COLP) supplementary service, Service description".

ETS 300 095 (1991): "Integrated Services Digital Network (ISDN); Connected Line Identification
Restriction (COLR) supplementary service, Service description".

ETS 300 096 (1991): "Integrated Services Digital Network (ISDN); Connected Line Identification
Presentation (COLP) and Connected Line Identification Restriction (COLR) supplementary services,
Functional capabilities and information flows".

ETS 300 097 (1991): "Integrated Services Digital Network (ISDN); Connected Line Identification
Presentation (COLP) supplementary service, Digital Subscriber Signalling System No. one (DSS1)
protocol".

ETS 300 098 (1991): "Integrated Services Digital Network (ISDN); Connected Line Identification
Restriction (COLR) supplementary service, Digital Subscriber Signalling System No. one (DSS1)
protocol".

ETS 300 102-2 (1990): "Integrated Services Digital Network (ISDN); User-network interface layer 3,
Specifications for basic call control, Specification Description Language (SDL) diagrams".

ISO 8878 (1990): "Information processing systems - Data communications - Use of X.25 to provide the
OSI connection-mode network service".

CCITT Recommendation Z.100 (1988): "Functional specification and description language (SDL)".

CCITT Recommendation X.211 (1988): "Physical service definition of open systems interconnection for
CCITT applications".

Page 164
ETS 300 325: March 1994

Annex B (normative): Mapping between ISDN PCI messages and Protocols
supported

This annex provides the mapping between protocols used and the ISDN PCI messages.

B.1 Control Plane messages

Table B.1 shows the mapping of the Control Plane.

Table B.1: Control Plane message to ETS 300 102-1 [2] mapping

PCI Message ETS 300 102-1 [2]
Message

Direction NOTES

CAlertReq Alerting user to network

CAlertInd Alerting network to user

CConnectReq Setup user to network

CConnectInd Setup network to user

CConnectRsp Connect user to network

CConnectCnf Connect network to user

CDisconnectReq Disconnect, Release,
Release Complete

user to network NOTE 1

CDisconnectInd Disconnect, Release,
Release Complete

network to user NOTE 1

CDisconnectRsp Release user to network NOTE 1

CDisconnectCnf Release, Release
Complete

network to user NOTE 1

CProgressInd Progress network to user

CStatusInd Status network to user NOTE 2

CProceedingInd Call proceeding network to user

CSetupAckInd Setup acknowledge network to user

CConnectInfoReq Information user to network

CUserInformationReq User Information user to network

CUserInformationInd User Information network to user

CCongestionControlReq Congestion Control user to network

(continued)

Page 165
ETS 300 325: March 1994

Table B.1: Control Plane message to ETS 300 102-1 [2] mapping (concluded)

PCI Message ETS 300 102-1 [2]
Message

Direction NOTES

CCongestionControlInd Congestion Control network to user

CSuspendReq Suspend user to network

CSuspendCnf Suspend acknowledge
Suspend reject

network to user

CResumeReq Resume user to network

CResumeCnf Resume acknowledge
Resume reject

network to user

CNotifyInd Notify network to user

CFacilityReq Facility user to network

CFacilityInd Facility network to user

NOTE 1: In the case of the PCI CDisconnect* messages the specific message
received or sent to the ISDN depends upon the state of the call when the
CDisconnect* message is received from, or sent to the PUF. Depending on
the ISDN message that caused the CDisconnectInd, CDisconnectRsp may
or may not cause a message to be sent to the ISDN. CDisconnectCnf shall
not be mapped from a message from the ISDN when CDisconnectReq is
used to respond to CConnectInd.

NOTE 2: This PCI message may be generated by a protocol error detected by the
NAF or by a protocol error indicated by a Status message received from the
ISDN.

NOTE 3: External equipment messages are not included in this table.

Page 166
ETS 300 325: March 1994

B.2 Control Plane parameters

The mapping of Control Plane parameters to ETS 300 102-1 [2] information elements is defined in table
B.2.

Table B.2: Control Plane parameters

Control Plane parameter ETS 300 102-1 [2]
Information Element

BearerCap Bearer Capability

CalledNumber Called party number

CalledSubaddress Called party subaddress

CallingNumber Calling party number

CallingSubaddress Calling party subaddress

CauseToPUF Cause

CauseToNAF Cause

ChannelIdentification Channel Identification

CongestionLevel Congestion level

ConnectedNumber Called party number

ConnectedSubaddress Called party subaddress

DateTime Date/time

Display Display

Facility Facility

HLC High layer compatibility

Keypad Keypad facility

LLC Low layer compatibility

NotificationIndicator Notification Indicator

ProgressIndicator Progress Indicator

UserToUserInfo User-user

Page 167
ETS 300 325: March 1994

B.3 User Plane messages

The mapping of User Plane messages to protocol messages depends on whether the NAF is providing
the co-ordination function for a particular Control Plane connection.

When the NAF is providing the co-ordination function, the mapping of X.213 service primitives to ETS 300
102-1 [2] messages and X.25 packets is explained in ISO/IEC 9574 and ISO/IEC 8878.

When the NAF is not providing the co-ordination function the mapping of X.213 service primitives to X.25
packets is explained in ISO/IEC 8878.

Table B.3 shows the mapping of User Plane messages to X.213 service primitives.

Table B.3: UserPlane message

PCI Message X.213 Primitive

U3ConnectReq N-CONNECT request

U3ConnectInd N-CONNECT indication

U3ConnectRsp N-CONNECT response

U3ConnectCnf N-CONNECT confirm

U3DisconnectReq N-DISCONNECT request

U3DisconnectInd N-DISCONNECT indication

U3DataReq N-DATA request

U3DataInd N-DATA indication

U3ExpeditedDataReq N-EXPEDITED-DATA request

U3ExpeditedDataInd N-EXPEDITED-DATA indication

U3ResetReq N-RESET request

U3ResetInd N-RESET indication

U3ResetRsp N-RESET response

U3ResetCnf N-RESET confirm

U3DataAcknowledgeReq N-DATA-ACKNOWLEDGE request

U3DataAcknowledgeInd N-DATA-ACKNOWLEDGE indication

U3ReadyToReceiveReq Not equivalent to an X.213 primitive

U3ReadyToReceiveInd Not equivalent to an X.213 primitive

Page 168
ETS 300 325: March 1994

Annex C (normative): Telephony

This annex presents different types of external equipment handled in this ETS

C.1 Type 1 external equipment

This external equipment is the simplest form of telephony equipment. It does not contain a hook
mechanism or a dialling mechanism. It only contains the transceivers and does not manage the ISDN
signalling. It is totally under the control of the NAF. A Control Plane message is defined to indicate to the
PUF the availability or not of the external equipment (external equipment connected or not connected to
the NAF).

It shall be is the responsibility of the NAF to connect a channel to this type of external equipment when the
channel becomes active.

If the external equipment is in use, a CConnectReq that attempts to use the external equipment should be
rejected with an CDisconnectInd with Cause value 47 (Resource unavailable).

If the external equipment is in use, and an incoming call arrives that attempts to use the external
equipment, the NAF should pass a CConnectInd to the relevant PUF. The PUF is then in control to make
the external equipment available for use. If it does not, an attempt to connect shall be denied with
CDisconnectInd with Cause value 47 (resource unavailable).

C.2 Type 2 external equipment

This external equipment contains a hook mechanism but not a dialling mechanism. This external
equipment does not manage ISDN signalling. It can provide some information to the PUF about the state
of the handset by the means of two Control Plane messages. Therefore, this external equipment can
cause state transition in the PUF automat for the incoming calls and the outgoing calls.

A Control Plane message is defined to indicate to the PUF the availability or non-availability of the external
equipment (external equipment connected or not connected to the NAF).

It is the responsibility of the NAF to connect a channel to this type of external equipment when the channel
becomes active. It shall be the responsibility of the PUF to ensure that the hook mechanism is in the
required state when the channel becomes active.

If the equipment is in use, and an incoming call arrives that attempts to use the equipment, the NAF
should pass an CConnectInd to the relevant PUF. The PUF is then in control to make the external
equipment available for use. If it does not, an attempt to connect shall be denied with CDisconnectInd with
Cause value 47 (Resource unavailable).

C.3 Type 3 external equipment

This external equipment contains a hook mechanism but not a dialling mechanism. This external
equipment is connected to the ISDN network; therefore, it is able to manage ISDN signalling when an
incoming call arrives in the case where the host is off.

It can provide some information to the PUF about the state of the handset by the means of two Control
Plane messages. Therefore, this external equipment can cause state transition in the PUF automat for the
incoming calls and the outgoing calls.

A Control Plane message is defined to indicate to the PUF the availability or non-availability of the external
equipment (external equipment connected or not connected to the NAF).

If the external equipment is in use, and an incoming call arrives that attempts to use the equipment, the
NAF should pass a CConnectInd to the relevant PUF. The PUF is then in control to make the external
equipment available for use. If it does not, an attempt to connect shall be denied with CDisconnectInd with
Cause value 47 (Resource unavailable).

Page 169
ETS 300 325: March 1994

C.4 Type 4 external equipment

This external equipment contains a dialling mechanism and/or not a hook mechanism. This external
equipment does not manage ISDN signalling. This kind of external equipment can allow dialling with block
sending or overlap sending. In the case of an overlap sending, a Control Plane message containing the
code of the key pressed on the keypad per key pressed is provided to the PUF. In the case of a block
sending, a single Control Plane message containing the complete remote address and/or subaddress is
provided to the PUF.

If this external equipment contains a hook mechanism, it can provide some information to the PUF about
the state of the handset by the means of two Control Plane messages.

A Control Plane message is defined to indicate to the PUF the availability or not of the external equipment
(external equipment connected or not connected to the NAF).

All dialling actions and handset actions (if available) realised on this external equipment can cause state
transition in the PUF automat for the incoming calls and the outgoing calls.

It is the responsibility of the NAF to connect a channel to this type of external equipment when the channel
becomes active.

If the equipment is in use, and an incoming call arrives that attempts to use the equipment, the NAF
should pass a CConnectInd to the relevant PUF. The PUF is then in control to make the external
equipment available for use. If it does not, an attempt to connect shall be denied with CDisconnectInd with
Cause value 47 (Resource unavailable).

C.5 Type 5 external equipment

This external equipment contains a dialling mechanism and/or not a hook mechanism. This external
equipment is connected to the ISDN network; therefore, it is able to manage ISDN signalling in the case
where the personal computer is off: it allows to make an outgoing call from it and to answer to an
incoming call.

This kind of external equipment can allow dialling with block sending or overlap sending. In the case of an
overlap sending, a Control Plane message containing the code of the key pressed on the keypad per key
pressed is provided to the PUF. In the case of a block sending, a single Control Plane message
containing the complete remote address and/or subaddress shall be provided to the PUF.

If this external equipment contains a hook mechanism, it can provide some information to the PUF about
the state of the handset by the means of two Control Plane messages.

A Control Plane message is defined to indicate to the PUF the availability or not of the external equipment
(external equipment connected or not connected to the NAF).

All dialling actions and handset actions (if available) realised on this external equipment can cause state
transition in the PUF automat for the incoming calls and the outgoing calls.

It is the responsibility of the NAF to connect a channel to this type of external equipment when the channel
becomes active.

If the equipment is in use, and an incoming call arrives that attempts to use the equipment, the NAF
should pass a CConnectInd to the relevant PUF. The PUF is then in control to make the external
equipment available for use. If it does not, an attempt to connect shall be denied with CDisconnectInd with
Cause value 47 (Resource unavailable).

Page 170
ETS 300 325: March 1994

Annex D (normative): CCITT Recommendation X.25 Usage

D.1 Parameter Values for CCITT Recommendation X.25 Use

Table D.1 shows the required setting of parameters to achieve different types of CCITT Recommendation
X.31 operation.

Table D.1: Types of CCITT Recommendation X.31 operation

Type of X.31 Operation BearerCap Channel
Selection

Channel
Number

Called Number

X.31 Case A Switched 64 KHZ Not Required Not Required Required

X.31 Case A Permanent 64 KHZ B-channel Required Not Required

X.31 Case B, B-channel
switched

X25 Not Required Not Required Not Required

X.31 Case B, B-channel
permanent

X25 B-channel Required Not Required

X.31 Case B, D-channel X25 D-channel Required Not Required

D.2 Disconnection of ISDN channel with established CCITT Recommendation
X.25 Connections

In the co-ordination case, this is covered by ISO 9574.

In the non co-ordination case, the following should be provided to the PUF:

- CDisconnectInd message with cause for channel disconnection;
- For each established CCITT Recommendation X.25 Connection:

- U3DisconnectInd message with X213Cause and X213Origin as defined by ISO 9574
and X25Cause.

- For each CCITT Recommendation X.25 Connection in the process of being established:
- U3DisconnectInd message with X213Cause and X213Origin as defined by ISO 9574

and X25Cause.

Page 171
ETS 300 325: March 1994

Annex E (informative): NAF development guidelines

The main body of this ETS contains the description of the ISDN PCI from the PUF point of view. Following
this approach, certain points, not directly related to the PUF, which have an impact on the development of
the NAF are not described. These points may be of interest for the NAF development and are, therefore,
described in this annex. It gives guidelines for the development of the NAF in accordance with the main
body of the ETS.

An example of a point which is not covered in the main body is the mapping between the coding for the
AOC supplementary service and the special coding used in the ISDN PCI.

There are three basic assumptions for understanding the points described in this annex:

- this annex gives additional points. The NAF should be developed using this ETS. It should
implement the ISDN PCI in such a way that the functionality described is offered;

- the main body of this ETS should be given priority if there is anything not clear in this annex
or the interpretation between the main body of this ETS and this annex is different;

- this annex does not try to impose any constraints on the implementation of the NAF. The
objective is to give guidelines as to how the NAF can be developed to be in line with this ETS.

Page 172
ETS 300 325: March 1994

E.1 NAF SDL diagrams

The following SDL diagrams show the internal states of the call control section of the NAF.

This part of the NAF is treated as a Call Control Block as defined in ETS 300 102-2, subclause 6.2. The
primitives shown in upper case are those defined in table 6 of ETS 300 102-2. The complete operation of
the NAF is defined by the following SDL diagrams and the SDL diagrams defined in ETS 300 102-2,
subclause 7.2.

The following symbols are used within this description. A full description of the symbols and their meaning
is given in CCITT Recommendation Z.100.

State Symbol

Input (from Network) Input (from PUF)

Output (to Network) Output (to PUF)

Decision Symbol

Page 173
ETS 300 325: March 1994

0

IDLE

SETUP

NCO Matching

operation

KOOK

RELEASE

COMPLETE

0CConnectInd

2

CResumeReq

RESUME

11

CConnectReq

SETUP

1

CFaciltyReq

FACILITY

0

FACILITY

0

CFacilityInd

Figure E.1: IDLE

Page 174
ETS 300 325: March 1994

1

CALL INITIATED

CDisconnectReq

DISCONNECT

5

CConnectInfoReq

INFO

1

CONNECT

CConnectCnf

4

ALERTING

CAlertInd

1

RELEASE
COMPLETE

CDisconnectInd

8

RELEASE

6

CSetupAckInd

1

CALL

CProceedingInd

1

PROGRESS

CProgressInd

1

DISCONNECT

9

CUserInforma-

INFORMATION

USER

1

INFORMATION

CUserInformationInd

1

CDisconnectInd CDisconnectInd

SETUP ACK
PROCEEDING

tionReq

USER

After ALERTING

Figure E.2: CALL INITIATED

Page 175
ETS 300 325: March 1994

2

CALL

 PRESENT

CAlertReq

ALERTING

3

CDisconnectReq

RELEASE

COMPLETE

CDisconnectCnf

0

CConnectRsp

CONNECT

4

DISCONNECT

CDisconnectInd

9

RELEASE

CDisconnectInd

6

RELEASE

COMPLETE

8

CDisconnectInd

Figure E.3: CALL PRESENT

3

CALL RECEIVED

6

CDisconnectReq

DISCONNECT

5

CConnectRsp

CONNECT

4

RELEASE

9 8

CUserInforma-

INFORMATION

USER

3

INFORMATION

3

tionReq

USER

CUserInformationInd

DISCONNECT

CDisconnectInd CDisconnectInd CDisconnectInd

RELEASE

COMPLETE

Figure E.4: CALL RECEIVED

Page 176
ETS 300 325: March 1994

4

ACTIVE

CSuspendReq

SUSPEND

CDisconnectReq

DISCONNECT

CONNECT ACK

10 5 4 96

CDisconnectInd

8

RELEASE

COMPLETE

4

INFO

CInformationInd

FACILITY

4

CFacilityReq

4

CNotifyInd

NOTIFY

4

CFacilityInd

FACILITY

DISCONNECT

CDisconnectInd

RELEASE

CDisconnectInd

NOTE: In order to simplify the state diagrams, the ACTIVE connection state in this ETS, is not
strictly equal to the state describes in the ETS 300 102-2.

Figure E.5: ACTIVE connection

5

DISCONNECT

RELEASE

CDisconnectCnf

0

0

STATUS

5

DISCONNECT

0

INFO

CInformationInd

5RELEASEFIN DE

LIBERATION

REQUEST

CDisconnectCnf

RELEASE

COMPLETE

CStatusInd CDisconnectCnf

Figure E.6: DISCONNECT request

Page 177
ETS 300 325: March 1994

6

INDICATION
DISCONNECT

9 8 FACILITY

12

CDisconnectRsp

RELEASE

7

CFacilityReqINFO

CInformationInd

6

RELEASE
RELEASE

COMPLETE

Figure E.7: DISCONNECT indication

7

DISCONNECT

PENDING

RELEASE

COMPLETE

0

STATUS

7

Figure E.8: DISCONNECT pending

8

RESPONSE
DISCONNECT

CDisconnectRsp

0

Figure E.9: DISCONNECT response

Page 178
ETS 300 325: March 1994

9

RELEASE

RESPONSE

CDisconnectRsp

0

RELEASE

COMPLETE

Figure E.10: RELEASE response

10

REQUEST
SUSPEND

0 4

DISCONNECT

CDisconnectInd

6

RELEASE

9 8

INFO

CInformationInd

10

CDisconnectInd CDisconnectInd

RELEASE

COMPLETE

SUSPEND

ACKNOWLEDGE

SUSPEND

REJECT

CSuspendCnf CSuspendCnf

Figure E.11: SUSPEND request

Page 179
ETS 300 325: March 1994

11

RESUME

REQUEST

804

RELEASE

CDisconnectInd

9

DISCONNECT

6

CDisconnectInd CDisconnectInd

RESUME

ACKNOWLEDGE

RESUME

REJECT

RELEASE

COMPLETE

CResumeCnf

CResumeCnf

(CauseToPUF)

Figure E.12: RESUME request

12

REQUEST

FACILITY

66

FACILITY

ACKNOWLEDGE

CFacilityInd CFacilityInd

FACILITY

REJECT

Figure E.13

E.2 Information provided by the NAF

The provision of items in messages can vary. The following conventions apply for the provision of
elements by the NAF to the PUF:

- Mandatory parameters
These items shall be provided.

- Conditional parameters
The condition determines if they shall be provided.

- Optional parameters
These items may or may not be provided depending if they are available to the NAF.

Page 180
ETS 300 325: March 1994

E.3 Co-ordination function - outgoing User Plane NMA call

The following state diagram shows the establishment of the Control Plane connection. The states
indicated are internal to the NAF.

Null

Connect
Requested

Call
terminated

Call
Initiated

Disconnect
Requested

Active

ALERTING
INDICATION
PROCEEDING
INDICATION

U3DisconnectReq

DISCONNECT
INDICATION
RELEASE
INDICATION

SETUP
CONFIRM.

U3DisconnectReq
or Time out (NOTE)

RELEASE
INDICATE
REJECT
INDICATE

(B channel
already
established)

SETUP
REQUEST

U3ConnectReq

U3DisconnectReq

DISCONNECT
REQUEST

U3DisconnectInd

Figure E.14: Co-ordination function - NMA outgoing call and channel establishment

Remarks:
- events in upper case are primitives described in ETS 300 102-2;
- events in mixed case are PCI User Plane messages;
- the states shown are internal to the NAF.

NOTE: Whether the NAF disconnects the ISDN connection following the disconnection of the
last User Plane connection on the ISDN connection or sets a time-out is a NAF design
consideration.

Page 181
ETS 300 325: March 1994

E.4 Co-ordination function - incoming ISDN call

The following state diagram (figure E.15) shows the establishment of the Control Plane connection. The
states indicated are internal to the NAF.

Null

Call
Present

Connect
Request

Disconnect
Requested

Active

SETUP
INDICATION

REJECT
REQUEST
(NOTE 2)

SETUP
COMPLETE
INDICATION

RELEASE
INDICATION

Cause 7
(established
B channel)

DISCONNECT
INDICATION
RELEASE
INDICATION

SETUP
RESPONSE

DISCONNECT
INDICATION
RELEASE
INDICATION

Timeout (NOTE 1)

DISCONNECT
INDICATION
RELEASE
INDICATION

DISCONNECT
REQUEST

Remarks:
- events in upper case are primitives described in ETS 300 102-2;
- the states shown are internal to the NAF.

Page 182
ETS 300 325: March 1994

NOTE 1: Whether the NAF disconnects the ISDN connection following the disconnection of the
last User Plane connection on the ISDN connection or sets a time-out is a NAF design
consideration.

NOTE 2: The NAF may reject the ISDN connection request.

Figure E.15: ISDN incoming call and coordination function

E.5 Suspending/resuming calls

The NAF is required to manage the mapping of NCOID to the call identity which is required by the network
when resuming a call. Once the connection is resumed the NAF should ensure the mapping of the NCOID
to the Call reference, which may have changed, on the network side.

E.6 Supplementary services

Advice Of Charge (AOC)

If the network supplies AOC without activation by the PUF, the NAF supplies both the transparent coding
and the special coding for AOC. For this two facility information elements are sent to the PUF.

In the case of special AOC coding:

- if the PUF asks for AOC, the network may send a return result component in a facility information
element specifying that charging information follows. The NAF handles this return result component. It
is not handed back to the PUF;

- the NAF handles the different billing identifications. The PUF is not informed of the identification of the
charging information;

- currency information can be mapped by using the amount specified in the facility information element
coming from the network. The actual value for the value subfield can be calculated by multiplying
CurrencyAmount and Multiplier and making the defined fixed point number from the result.

The Currency is not interpreted. This information should be local knowledge between PUF and NAF;

- unit information can be mapped by using the NumberOfUnits specified in the facility information
element coming from the network. The value should be converted to a fixed point number and put in
the value subfield;

- if multiple charging information is available within one facility information element, the NAF can map
these to several facility information elements, each containing the information for one type of charging.
So, if different types of charging units apply, the recorded number of charging units for each type is
mapped to a facility information element.

Which types are available and what relation they have is a local arrangement. The NAF can use any
possible local knowledge it has to normalise the units before presenting them to the PUF;

- if the NAF cannot map the AOC information completely because the local knowledge is insufficient, it
can indicate this by using "unknown" for the TypeOfCharge subfield. The corresponding value can be
mapped using the previous described mappings. So if the NAF cannot normalise the units for different
types of charging units, the NAF may indicate this using the "unknown" value.

E.7 Error management

The error indication provided to the PUF only contains sufficient information for the PUF to judge if it is
worth continuing with a particular action or not. It is envisaged that more detailed information concerning a
particular error will be reported by the NAF, in a NAF specific manner. For example, a NAF may choose to
implement an error log in the form of a file where it records detailed information concerning a particular
error which provides the information required to debug a PUF which is under development.

Page 183
ETS 300 325: March 1994

The following subclauses provide guidance as to under which conditions the NAF should return a
particular error to the PUF.

For messages, in the case of parameters that are repeated where repetition is not allowed, only the first
valid number of repetitions of the parameter are processed, further repetitions are ignored.

If an optional parameter is given by the network, the NAF is in charge to provide it to the PUF in the
relevant message.

E.7.1 Function return codes

The description of under which conditions these should be issued is described in subclause 6.8.6.

E.7.2 Administration Plane

The description of under which conditions these should be issued is described in subclause 6.8.7. For the
ACreateNCOReq the number of possible parameter combinations makes checking complex. It should be
approached in the order shown in table E.1.

Table E.1: Checking of ACreateNCOReq message

Parameter Test Action

All parameters Not allowed InvalidParameter error

All valid Continue

NCOType missing MissingParameter error

invalid length InvalidParameterLength error

Invalid value InvalidNCOType error

Valid value Continue

Direction missing MissingParameter error

invalid length InvalidParameterLength error

Invalid value InvalidDirectionType error

Valid value Continue

AttributeName missing AttributeNameMissing error

invalid length InvalidParameterLength error

invalid AttributeNameError error

correct Continue

Attribute or address content missing MissingParameter error

invalid length InvalidParameterLength error

invalid InvalidContent error

correct Continue

NafCoordination present but not
required

InvalidParameter error

invalid length InvalidParameterLength error

invalid value InvalidCoordValue error

correct Continue

(continued)

Page 184
ETS 300 325: March 1994

Table E.1: Checking of ACreateNCOReq message (concluded)

Parameter Test Action

GroupID present but not
required

GroupIDError error

missing GroupIDError error

invalid length InvalidParameterLength error

invalid value InvalidGroupID error

correct Continue

RequestID (if present) invalid length InvalidParameterLength error

present Process message

Page 185
ETS 300 325: March 1994

E.7.3 Control Plane

The errors returned in the Cause parameter match those in the ETS 300 102-1 [3] Cause information
element. This allows the NAF to pass information from the Cause information element into the Cause
parameter. If this is done the NAF should map any information element values to parameter values as
defined in Annex B.

The following errors should be generated by the NAF as a result of checking parameters on messages
passed from PUF to NAF.

Table E.2

Value ETS 300 102-1 [2] Meaning PCI Meaning Generated by When received
from ISDN
Processed by

1 Unallocated (unassigned)
number

ISDN PUF

2 No route to specified transit
network

ISDN NAF (NOTE 1)

3 No route to destination ISDN PUF

6 Channel not acceptable ISDN NAF (NOTE 1)

7 Call placed on an already
established channel

ISDN PUF

16 Normal call clearing ISDN PUF

17 User busy ISDN PUF

18 No user responding ISDN PUF

19 No answer from user (user
alerted)

ISDN PUF

21 Call Rejected ISDN PUF

22 Address changed ISDN PUF

26 Non selected user clearing ISDN PUF

27 Destination out of order ISDN PUF

28 Invalid address format Parameter has invalid
address format

NAF, ISDN PUF

29 Facility rejected Facility is not provided by this
NAF

NAF, ISDN PUF

30 Response to STATUS
ENQUIRY

ISDN NAF

31 Normal unspecified ISDN PUF

34 No circuit/channel available Temporarily no channel of
requested type is available
from this NAF

NAF, ISDN PUF

38 Network out of order ISDN NAF (NOTE 1)

41 Temporary failure ISDN NAF (NOTE 1)

(continued)

Page 186
ETS 300 325: March 1994

Table E.2 (continued)

Value ETS 300 102-1 [2] Meaning PCI Meaning Generated by When received
from ISDN
Processed by

42 Switching equipment
congestion

ISDN PUF

43 Access information discarded NAF, ISDN PUF (NOTE 3)

44 Requested channel/circuit
not available

No channel of requested type
is available from this NAF

NAF, ISDN PUF

47 Resource unavailable,
unspecified

Requested external
equipment is not available

NAF, ISDN PUF

49 Quality of service unavailable ISDN PUF

50 Facility requested on Facility
parameter is not subscribed

ISDN PUF

57 Bearer Capability not
authorised

ISDN PUF

58 Bearer Capability not
presently available

Service requested by
BearerCap is not available. In
use by another PUF

NAF, ISDN PUF

63 Service or option not
available, unspecified

ISDN PUF

65 Service requested by Bearer
Capability is not implemented

Service requested by
BearerCap Parameter is not
provided by NAF

NAF, ISDN PUF

66 Channel Type not
implemented

NAF does not support this
type of channel

NAF, ISDN PUF

69 Facility requested is not
implemented

NAF does not support this
facility

NAF, ISDN PUF

70 Only restricted digital
information bearer capability
is available

ISDN NAF (NOTE 1)

79 Service or option not
implemented, unspecified

ISDN PUF

81 Invalid call reference Invalid NCOID NAF, ISDN NAF (NOTE 1)

82 Identified channel does not
exist

Identified permanent channel
is not defined

NAF, ISDN NAF (NOTE 1)

83 A suspended call exists but
this call identity does not

ISDN NAF (NOTE 1)

85 No call suspended NCOID does not identify a
suspended connection

NAF, ISDN NAF (NOTE 1)

(continued)

Page 187
ETS 300 325: March 1994

Table E.2 (concluded)

Value ETS 300 102-1 [2] Meaning PCI Meaning Generated by When received
from ISDN
Processed by

86 Call having requested call
identity has been cleared

ISDN NAF (NOTE 1)

88 Incompatible destination ISDN PUF

91 Invalid transit network
selection

ISDN NAF (NOTE 1)

95 Invalid message, unspecified ISDN NAF (NOTE 1)

96 Mandatory parameter is
missing

Mandatory parameter is
missing

NAF, ISDN NAF (NOTE 1)

97 Message Identifier non-
existent or not implemented
on this network

Message Identifier non-
existent or not implemented
on this NAF

NAF, ISDN NAF (NOTE 1)

98 Message not compatible with
call state or message
identifier non-existent or not
implemented.

Message not compatible with
NCO state or message
identifier non-existent or not
implemented.

NAF, ISDN NAF (NOTE 1)

99 Invalid parameter Invalid parameter NAF, ISDN NAF (NOTE 1)

100 Invalid parameter contents Invalid parameter contents NAF, ISDN NAF (NOTE 1)

101 Message not compatible with
current state

Message not compatible with
current state

NAF, ISDN NAF (NOTE 1)

102 Recovery on timer expiry ISDN NAF (NOTE 2)

111 Protocol Error, unspecified ISDN NAF (NOTE 1)

127 Interworking, unspecified ISDN PUF

NOTE 1: Where cause values are processed by the NAF. The NAF should attempt to error recovery. If
it fails to recover it should indicate to registered PUFs that it is no longer available by the use
of the NAFNotAvailable error code.

NOTE 2: NAF should take appropriate action.
NOTE 3: In the case of ISDN generating this cause, it is the responsibility of the NAF to map

information element to parameter types in any diagnostic information supplied to PUF.

Page 188
ETS 300 325: March 1994

Table E.3 shows the order of checking for CConnectReq. Information is taken from the CConnectReq
message plus the attribute and address sets associated with the mandatory network connection identifier.
The table assumes that the initial checking of the message has taken place.

Table E.3: Checking of CConnectReq message

Parameter Test Action

NCOID invalid CStatusInd

Cause parameter value = 81

valid Continue

Message state invalid CStatusInd

Cause parameter value = 101

Diagnostics = MessageID

valid Combine parameters from attribute
set, address set and CConnectReq
message, continue

Mandatory Parameters BearerCap missing CDisconnectInd

Cause parameter value = 96

Diagnostics = BearerCap

BearerCap Service is
not X25 and
CalledNumber missing

CDisconnectInd

Cause parameter value = 96

Diagnostics = CalledNumber

All present Continue

BearerCap Parameter
Content

Invalid contents CDisconnectInd

Cause parameter value = 100

Diagnostics = BearerCap

Service not available
from NAF

CDisconnectInd

Cause parameter value = 65

correct Continue

CalledNumber Parameter
Content (if present)

invalid contents CDisconnectInd

Cause parameter value = 100

Diagnostics = CalledNumber

correct Continue

Unrecognised Parameters present CDisconnectInd

Cause parameter value = 99

Diagnostics = Parameter Type of
unrecognised parameter

not present Continue

(continued)

Page 189
ETS 300 325: March 1994

Table E.3: Checking of CConnectReq message (concluded)

Parameter Test Action

Optional Parameter Content
Error

present CStatusInd

Cause parameter value = 100

Diagnostics = Parameter Type of
parameter in error

Continue (ignore parameter)

not present Process Message

E.7.4 NMA User Plane

The error processing for this plane is defined in ISO 9574.

For the U3ConnectReq in the case of the NAF not providing the co-ordination function the checking
shown in table E.4 should be performed once parameters from the NCO and message have been
combined.

Table E.4: Checking of U3ConnectReq message

Parameter Test Action

NCOID missing U3DisconnectInd

invalid parameter
length

U3DisconnectInd

invalid NCOID U3DisconnectInd

valid Continue

Mandatory Parameters Both BCUG and
CalledDTEAddress
missing

U3DisconnectInd

Both BCUG and
CalledDTEAddress
present

U3DisconnectInd

 BCUG or
CalledDTEAddress
present

Continue

If CalledDTEAddress present Content error U3DisconnectInd

valid Continue

If BCUG present Content error U3DisconnectInd

valid Continue

Other Parameters Unrecognised U3DisconnectInd

Invalid Contents U3DisconnectInd

valid Process Message

Page 190
ETS 300 325: March 1994

E.7.5 TMA User Plane

The error processing for this plane is relatively simple due to the number of messages and parameters
supported.

For the U1DataReq message the processing is defined in table E.5.

Table E.5: Checking of U1DataReq message

Parameter Test Action

NCOID missing U1ErrorInd, error =
MissingParameter

invalid parameter
length

U1ErrorInd, error =
InvalidParameterLength

invalid NCOID U1ErrorInd, error = InvalidNCOID

valid Continue

Other Parameters present U1ErrorInd, error =
MissingParameter

not present Process Message

E.8 NAF configuration

The following subclause contains information concerning NAF configuration. This subclause is provided to
assist NAF developers and is not intended to be a comprehensive list of configurable items.

E.8.1 Global Configuration

Table E.6: Global Configuration

Parameter Suggested
Default

Comment

Number of PUFs supported 8

E.8.2 System configuration parameters

Table E.7: System configuration parameters

Parameter Suggested
Default

Comment

DMA DMA number used by the adapter
I/O address I/O address used by the adapter
IRQ IRQ used by the adapter
DRAM Double RAM access address shared

between the adapter and the host
environment.
This parameter may also contain the size of
the frame to be used by the adapter

Page 191
ETS 300 325: March 1994

E.8.3 Control Plane configuration

Table E.8: Control Plane configuration

Parameter Suggested
Default

Comment

Number of D-Channels 1
D-Channel definitions
 - type of network
 - automatic
 - fixed + number
 - frame window size (K)
 - N200
 - N201
 - N 202
Timers,
 - T200
 - T201
 - T202
 - T203

1

Number of B-channels 2
Number of Permanent
B-channels

0

List of permanent B-channel
identifiers

1..256

Number of permanent (SAPI
16) D-Channels
For each D-channel
 - automatic
- fixed + number
- same as signalling

0

Page 192
ETS 300 325: March 1994

E.8.4 User Plane NMA configuration

Table E.9: User Plane NMA configuration

Parameter Suggested
Default

Comment

X25 Network Type 0 Allows NAF to adapt for different country
implementations of X.25.

X25 Recommendation CCITT88 Level of X.25 Recommendation supported.

Layer 3 sequence numbering 8

Layer 3 Maximum Window
Size

7

Layer 3 Default Window Size 3

Layer 3 Maximum Packet
Size

4096

Layer 3 Default Packet Size 128

Layer 3 Default Connection
Mode

Auto Auto - Act as DTE when calling, act as DCE
when called.

DXE - use Restart Packet to determine
DTE or DCE role as in ISO 8208 [3].

DTE - Act as DTE.

DCE - Act as DCE.

Lowest number of Incoming
SVC (LIC)

1

Highest number of incoming
SVC (HIC)

1

Lowest number of Two way
SVC (LTC)

0

Highest number of Two way
SVC (HTC)

0

Lowest number of outgoing
SVC (LOC)

0

Highest number of outgoing
SVC (HOC)

0

Layer 3 Timers NAF may wish to provide PUF user the
ability to configure timers.

Layer 2 Default Connection
Mode

Auto Auto - When calling act as DTE, when
called act as DCE.

DTE as defined in ISO 7776 [4].

DCE as defined in ISO 7776 [4].

Layer 2 B channel modulus 8 NOTE shall be 128 for X.25 on D-channel.

(continued)

Page 193
ETS 300 325: March 1994

Table E.9: User Plane NMA configuration (concluded)

Parameter Suggested
Default

Comment

Layer 2 Window Size 7

Layer 2 Frame Size 128

Layer 2 activation type Case 1 Case1 - send SABM/SABME when calling,
do not send when called.

Case2 - send SABM/SABME when called,
do not send when calling.

Passive - do not send SABM/SABME when
initiated.

Active - send SABM/SABME when initiated.

Layer 2 Timers

- T1 5 Expressed in second.

- T2 1 Expressed in second.

- N2 5 Maximum number of unsuccessful
retransmission.

E.8.5 User Plane TMA configuration

Table E.10: User Plane TMA configuration

Parameter Suggested
Default

Comment

Idle Flag default value 0xFF

E.9 Buffer management

Buffers passed by the PUF to the NAF are copied by the NAF into internal space as soon as provided. So,
the buffers may be reused by the PUF immediately after the function returns.

The exact instant when the message is processed is dependent on the NAF and is outside the scope of
this ETS.

In the PUF to NAF direction, the message and the data associated with, if any, are provided together, in
one step. If one of the message or the data buffers is too small to contain, respectively, a complete
message or the data information, the NAF returns an error and the message is not be provided to the
PUF. To help the PUF, the size of the biggest message is established during the registration phase. The
size of a data buffer is closely dependent of the type of connection and its protocol. The PUF refers to the
protocol initialisation to get the correct value of the biggest data packet.

If a NAF needs to make internal buffering action, it is in charge to get buffers by itself. This can be
achieved via a configuration operation, provided by the NAF manufacturer, which is outside the scope of
this ETS. The NAF manufacturer may describe how the operation can be realised and which
consequences are expected.

Page 194
ETS 300 325: March 1994

E.10 Extension of ISDN-PCI

This Clause describes how the ISDN PCI can be extended. It will indicate which possibilities for extension
are available throughout the ISDN PCI. The major part of the description is concerned with the extension
of the protocols supported by the ISDN PCI.

E.10.1 Basic mechanism for extension

This subclause identifies the basic mechanisms for extension provided in the ISDN PCI. The following
mechanisms are available in the ISDN PCI for extension:

- use of Manufacturer specific messages;
- use of message coding;
- incorporation of new protocols.

The first two mechanisms are provided within the ISDN PCI and provides for minor extension of the
functionality of the ISDN PCI. The last mechanism provides a way to extend the functionality of the ISDN
PCI to new protocols, not yet covered in this version of the ISDN PCI.

The following subclauses cover the mechanisms in more detail.

E.10.2 Manufacturer specific messages

The Manufacturer specific messages, provided in the Administration Plane of the ISDN PCI provide the
basic mechanism for making small extensions. The Manufacturer specific messages can be found in
subclauses 6.2.12 and 6.2.13. The extension by Manufacturer specific messages is completely within the
scope of the ISDN PCI and implementations using this mechanism conform to this ETS.

By implementing these messages a NAF manufacturer can extend the ISDN PCI to give the PUF access
to specific functionality provided by the NAF manufacturer below the ISDN PCI. In this way a NAF
manufacturer can give, for example, a PUF access to special hardware connected to the ISDN interface
board.

Although the main purpose of the Manufacturer specific messages is to provide a mechanism to
incorporate specific local management, there is no limit to the use of the Manufacturer specific messages.

E.10.3 Message coding

The message coding provides for a second mechanism to extend the ISDN PCI. Care should be taken in
using this mechanism because it is outside the scope of the ISDN PCI. Implementations using the
mechanism do not conform to this ETS.

The ISDN PCI is intended to be an open interface. This is reflected in the definition of the messages. All
possible care has been taken to give access to all the important information elements provided with
EuroISDN and the supported User Plane protocols.

If additional access to information elements is needed an additional parameter can be added. The coding
mechanism provided within the ISDN PCI can be used for this extension.

Within the ISDN PCI all parameters are coded using Type Length and Value (TLV). Please refer to
subclause 6.5 for information on the TLV coding. By defining a new TLV coded parameter and adding this
to the message, the necessary information can be transported by the PUF to the NAF. The exchange
mechanism of the ISDN PCI has no notion of the information it transports and will, therefore, also
transport the new parameter provided in the message buffer.

When using this mechanism to extend the ISDN PCI the possibility to port the PUF to a different NAF may
be lost. The error mechanism of the ISDN PCI is defined to return an error on invalid parameters and the
PUF which sends a newly defined parameter may, therefore, receive an error when running on NAF which
does not support this parameter.

Page 195
ETS 300 325: March 1994

E.10.4 Extension of supported protocols

The ISDN PCI is intended to provide access to the data functionality in the ISDN D- and B-channels. For
this, an interface to several protocols has been identified and has been incorporated in the ISDN PCI. The
protocols described in the ISDN PCI are all related to CCITT Recommendation X.213 [7].

The ISDN PCI does not contain a specific mechanism for extending the functionality of the ISDN PCI with
additional protocols. Therefore, extending the ISDN PCI with additional protocols should be regarded as
revising the ETS.

The actual extension of an implementation of the ISDN PCI in this way is straightforward. Some of the
new protocols may even be incorporated transparently into the ISDN PCI. The same mechanism, as
described in subclause E.10.3, can be used for doing the actual extension. New parameters and even
new messages can be added to an implementation of the ISDN PCI. When extending the ISDN PCI in this
way a distinction should be made between "CCITT Recommendation X.213 [7]" like and non-"CCITT
Recommendation X.213 [7]" like protocols. In the next two subclauses these two types of protocols are
covered in greater detail.

E.10.4.1 Support of new "CCITT Recommendation X.213" like protocols

The basic operation on the User plane is based upon an "CCITT Recommendation X.213 [7]" like
interface to the protocols. By mapping the different protocols to the "CCITT Recommendation X.213 [7]"
like interface, these protocols can be supported. Within the definition of the User Plane messages and
parameters it is indicated how this mapping has been performed for the different protocols.

When extending the ISDN PCI with another protocol which can be mapped to the "CCITT
Recommendation X.213 [7]" like interface the same exercise needs to be repeated. It should be made
clear which messages and parameters are applicable for the new "CCITT Recommendation X.213 [7]"
like protocol.

If this mapping can be performed without changing the described messages and parameters, the new
protocol can even be supported transparently.

E.10.4.2 Support of different type of protocols

For protocols which cannot be mapped to a "CCITT Recommendation X.213 [7]" like interface the
extension will be more complicated.

Currently two types of User Plane accesses have been identified. The first is based on transparent access
to the ISDN B-channel and is called the TMA. See subclauses 5.3.4.2 and 6.4 for more information. The
second access is based on the "CCITT Recommendation X.213 [7]" like interface and is called NMA. See
subclauses 5.3.4.1 and 6.4 for more information.

When a non-"CCITT Recommendation X.213 [7]" like protocol has to be supported a new access has to
be defined to cover this protocol. Such an extension will be a major revision of the ISDN PCI.

When making the definition of this new access, several kinds of information need to be provided:

- messages in the User Plane;
- parameters for these messages;
- a description of the sequencing of the new messages like provided in clause 6.4.1 for the NMA;
- attributes for this protocol in the ACreateNCOReq (subclause 6.2.1);
- return values and error applicable for the new protocol;
- static attribute sets.

The implementation of a new protocol within the ISDN PCI is the same mechanism, as described in
subclause E.10.3 which can be used for doing the actual extension. New parameters and new messages
can be added to an implementation of the ISDN PCI. The exchange mechanism allows the exchange of
the new information between the PUF and NAF.

Page 196
ETS 300 325: March 1994

Annex F (normative): Operation system specific implementation

This annex describes the operating system specific implementation. The operating systems addressed
are:

DOS stands for operating systems compatible to the MS-DOS1) operating system. The base
MS-DOS version is the version number 3.1.

UNIX stands for the UNIX2) operating system. The based version is the version number:
System V, Release 3.

Windows stands for the Windows3) operating system. The based version is the version number
3.0.

F.1 DOS

A NAF implementation under DOS shall offer the functionality of the exchange functions described in a
generic way in Clause 7.

In this annex, the mapping and implementation of these functions is described on a function per function
basis. For each function, a coding example in C language is given. Since the implementation of the
functions is DOS system dependent, the C language used is based on Microsoft C Version 5.x or higher.

F.1.1 Mechanism

Except for the function PciGetHandles , the implementation of the exchange method for DOS is based on
a direct access mechanism. The access point is a far function address provided by the NAF. This function
address is mapped to the generic type PCI_HANDLE.

To make sure that the function address provided by the NAF is correct, the PUF shall check a signature
located in front of the function address before calling the NAF.

To perform this check, the PUF shall examine the memory area located just in front of the function
address. The signature is located there which shall contain the eight character constant "ISDN PCI". If this
signature is available, the PUF can assume the NAF function address is correct.

Only one access point shall be provided by the NAF. A supplied parameter shall indicate the function to be
invoked. This parameter is named function code .

Parameters are passed from the PUF to the NAF using the stack. The PUF shall ensure a minimum stack
space of 128 bytes on call. When the NAF receives the control of the CPU, the first parameter on the
stack is the function code, followed by parameters based on the particular function.

The function code is passed as a 2 byte integer value.

The NAF shall place the return code in the AX register. The NAF procedure is not in charge of cleaning
the stack on return. The C call convention is used: the calling PUF pushes parameters right to left and
restores the stack on return.

The alignment of the PCIMPB generic structure is byte .

1) MS-DOS is a trademark of the Microsoft Corporation.
2) UNIX is a trademark of AT&T.
3) Windows is a trademark of the Microsoft Corporation.

Page 197
ETS 300 325: March 1994

F.1.2 Mapping of generic types and constants

Under DOS, the following mapping shall be used for the generic types described in Clause 7:

Generic Type DOS Mapping
PCI_INTEGER 2 byte integer (a word)
PCI_BYTEARRAY far pointer (segment :offset address)
PCI_EXID Unique identifier provided by NAF (2 byte integer)
PCI_HANDLE far function address (segment : offset address)
PCI_PROCEDURE far function address (segment : offset address)

As usual for DOS, all values are in little endian (low byte - high byte) order.

The function code , used to invoke the exchange functions, shall be assigned as follows:

Function Function code
value

PciGetProperty 1
PciRegister 2
PciDeregister 3
PciPutMessage 4
PciGetMessage 5
PciSetSignal 6

C presentation of these definitions looks as follows:

/*
 * Generic type mappings
 */
typedef short int PCI_INTEGER;
typedef char far * PCI_BYTEARRAY;
typedef short int PCI_EXID;
typedef short int (far * PCI_HANDLE) ();
typedef void (far * PCI_PROCEDURE) ();

/*
 * Function code constants
 */
#define PCIGETPROPERTY 1
#define PCIREGISTER 2
#define PCIDEREGISTER 3
#define PCIPUTMESSAGE 4
#define PCIGETMESSAGE 5
#define PCISETSIGNAL 6

/*
 * Signature
 */
#define PCISIGNATURE 'ISDN PCI' /* multi characters constant */

Page 198
ETS 300 325: March 1994

F.1.3 Description of functions

The PUF is in charge to provide a minimal stack during a function call. The minimal stack size is 128
bytes.

In the description, the access to one is describe for simplicity in the coding examples. However the access
of a PUF to multiple NAFs is not excluded. How access to multiple NAFs can be achieved is shown in
Annex J.

F.1.3.1 PciGetHandles

Under DOS, the implementation of the PciGetHandles function shall use a character device driver named
"PCIDD$" to retrieve the available PCI-Handles. This function call is the exception on the basic principle -
direct access - under DOS.

The maximum theoretical amount of PCI-Handles which can be retrieved is 4 096. However, the
implemented device driver will probably have a practical limit which lies far below and depends on the
implementation of the device driver itself.

The following operation shall be performed by the PUF, in order:

- open the "PCIDD$" character device driver;
- prepare a buffer in memory, big enough to hold the maximum amount of PCI-Handles to be

retrieved;
- issue a IOCTL system read call: Receive Control Data from Character Device;

- BX shall contain the dos handle of the device driver;
- CX shall contain the length of the memory buffer prepared above;
- DS:DX shall point to the memory buffer;

- check the success of the operation (check carry flag);
- in case of error, optionally issue a DOS Get Extended Error function call to receive a more

comprehensive error code;
- on successful return, AX contains the number of bytes provided by the device driver, the

buffer contains the available PCI-Handles in a row. The number of available PCI-Handles is
calculated by dividing the AX value by 4, the size of a far address function pointer;

- close the device driver.

C coding example:

...
#include <dos.h> /* declarations for IOCTL call */
#include <fcntl.h> /* declarations for open mode */
...
#define SUCCESS 0 /* No error */
#define MAXHANDLES 64 /* max amount of handles to be read */
...
PCI_HANDLE PCIHandles[MAXHANDLES] /* buffer for receiving PCI-Handles */
...
PCI_INTEGER MaxHandles; /* max amount of handles to be read */
PCI_HANDLE far * PCIHandles; /* far pointer to buffer of PCI-Handles */
PCI_INTEGER far * ActualHandles; /* far ptr to amount of PCI-Handles received */
{
int fildes; /* file descriptor */
int error;
union _REGS regs;
struct _SREGS segregs;
struct _DOSERROR errorinfo;

Page 199
ETS 300 325: March 1994

/* open the driver */
if (_dos_open ("PCIDD$", _O_RDWR, &fildes) != SUCCESS)

{
/* device driver not accessible; perform error processing */

error = ...
}

else
{

/* prepare IOCTL read from device driver */
_segread (&segregs);
segregs.ds = FP_SEG (PCIHandles); /* set-up segment address */
regs.x.dx = FP_OFF (PCIHandles); /* and offset */
regs.x.cx = MaxHandles * sizeof(PCI_HANDLE);
regs.x.bx = fildes; /* set dos file handle */
regs.x.ax = 0x4402; /* IOCTL read from character device */

/* issue IOCTL read from device driver */
_intdosx (®s, ®s, &segregs);

/* close the driver */
_dos_close (fildes);

/* check for error */
if (regs.x.cflag & 1) /* check processors carry flag */

{
/* error has occurred; perform error processing */

_dosexterr (&errorinfo);
error = doserror.exterror;
...
}

else
{
/* successful operation; set count of handles received */
ActualHandles = regs.x.ax / sizeof(PCI_HANDLE);
error = SUCCESS;
}

...

F.1.3.2 PciGetProperty

This function is in charge to retrieve the NAF-Property from the NAF. To issue the function call, the PUF
shall possess the PCI-Handle of the NAF it wants to access. Before accessing the NAF, the PUF shall
check, if the PCI-Handle it uses is valid by checking the signature of the access point the PCI-Handle is
pointing to.

The following operation shall be carried out by the PUF, in order:

- examine memory area pointed to by the PCIHandle to find out if NAF is loaded. Check the
signature for the character constant "ISDN PCI";

- call the address with the PciGetProperty function code and the parameters provided by the
PUF;

- check return code.

Page 200
ETS 300 325: March 1994

C coding example:

...
#include <memory.h> /* memory compare func declarations */
...
#define SUCCESS 0 /* No error */
#define PCIGETPROPERTY 1
#define PCISIGNATURE 'ISDN PCI'
#define SIGNATURESIZE 8
...
PCI_HANDLE PCIHandle;
PCI_INTEGER MaximumSize;
PCI_BYTEARRAY Property;
PCI_INTEGER far * ActualSize;
{
PCI_INTEGER error;
char far * signature;

signature = (char far *) PCIHandle - SIGNATURESIZE;
if (_fmemcmp (signature,PCISIGNATURE,SIGNATURESIZE) == SUCCESS)

{
/* signature is correct; call the entry point */
error = (*PCIHandle) (PCIGETPROPERTY, MaximumSize, Property, ActualSize);
...
}

else
{
/* signature wrong; process error */
error = ...

...

F.1.3.3 PciRegister

This function is in charge to provide an association between a PUF and a NAF. To issue the function call,
the PUF shall possess the PCI-Handle of the NAF it wants to access Before accessing the NAF, the PUF
shall check, if the PCI-Handle it uses is valid by checking the signature of the access point the PCI-Handle
is pointing to.

For this function call, 2 structures shall be prepared by the PUF and shall be passed on the function stack.
The first structure is the PCIRegisterInfo structure as declared in Clause 7. The second is the operating
system dependent PCIOpSysInfo structure, which, for DOS, has the following layout:

Page 201
ETS 300 325: March 1994

Structure Element
Name

Type Valid on Call
or Return

Explanation

MaxNCOCount 2 byte integer call Shall be set to the maximum amount of
NCOs the PUF intends to create during the
association.

MaxPacketSize 2 byte integer call Shall be set to the maximum size of a data
packet the NAF shall accept on a user
connection.

MaxPacketCount 2 byte integer call Shall be set to the maximum amount of
packets of the above size the NAF shall
buffer per user connection.

AddBufferSize 4 byte integer call If the PUF wants to provide buffer space to
the NAF, it shall set this value to the size of
the buffer space it donates. Otherwise the
value shall be set to zero (0).

AddBufferSpace far address
(segment : offset)

call If the structure element AddBufferSize is
non-zero, this element shall point (far) to the
donated, additional buffer space.

BufferNeeded 4 byte integer return In case the NAF does not have enough
buffer space available to guarantee the
requested connection characteristics, the
amount of additional buffer needed is
returned into this element by the NAF.

The information provided with this structure helps the NAF to optimize its internal resources. Therefore the
information given by the PUF shall be carefully weighted. This is especially true in an environment, where
a NAF serves several PUFs at the same time.

In the case where a NAF does not have available enough memory resources to fulfil the requested
characteristics, the PciRegister function shall fail and return a OutOfBuffers error code. In this case, the
amount of buffer missing can be taken from the BufferNeeded element of the above structure.

On successful return of the PciRegister function, the Exchange-ID becomes available, which shall be used
as a parameter on subsequent exchange mechanism function calls.

The following operation shall be carried out by the PUF, in order:

- examine memory area pointed to by the PCIHandle to find out if NAF is loaded. Check the
signature for characters "ISDN PCI";

- allocate and set-up the two structures: PCIRegisterInfo and PCIOpSysInfo. The
PCIOpSysInfo structure may, optionally, contain a pointer to additional buffer space which
shall be donated to the NAF;

- call the exchange function with the PciRegister function code and the parameters provided
by the PUF;

- check return code. If the return code indicates OutOfBuffers then the call may be repeated
with correct adjusted buffer space to be donated to the NAF;

- keep the returned Exchange-ID for later calling.

Page 202
ETS 300 325: March 1994

C coding example:

...
#include <memory.h> /* memory compare func declarations */
#include <malloc.h> /* memory allocation functions */
...
#define SUCCESS 0 /* No error */
#define PCIREGISTER 2
#define PCISIGNATURE 'ISDN PCI'
#define SIGNATURESIZE 8
#define E_OUT_OF_BUFFERS 128 /* OutOfBuffers error code */
...
struct pci_register { /* structure containing registering info */

PCI_INTEGER PUFVersion; /* optional: give PUF version */
PCI_INTEGER PUFType; /* optional: give PUF type */
PCI_INTEGER MaxMsgSize; /* return: max size of a message */

};

struct pci_opsys { /* structure containing registering info */
short intMaxNCOCount; /* optional: give max count of NCOs */
short intMaxPacketSize;/* optional: give expected max size and */
short intMaxPacketCount; /* max count of packets to buffer */
long int AddBufferSize; /* optional: give to NAF size and */
void far * AddBufferSpace; /* pointer to additional buffer */
long int BufferNeeded; /* return: amount of add buffer needed */

};
...

/*
 * before calling the PCIRegister function further down, allocate and prepare the structures
 * requested by this function call
 */

struct pci_register PCIRegisterInfo {
1, /* Set PUF version to 1, equalling current ETS Version*/
0, /* Set PUF type to 0 as indicated in clause 7 */
0 /* Initialise (expected) return value of MaxMsgSize */

};

struct pci_opsys PCIOpSysInfo {
2, /* Set max amount NCOs PUF intends to create */
1024, /* Set max size of data packets NAF shall accept */
8, /* Set max count of packets NAF shall buffer per NCO */
0, /* Set size of memory PUF wants to donate to NAF */
(void far *) NULL, /* Set pointer to (donated) buffer space */
0 /* Initialise (expected) return value of BufferNeeded */

};
...
PCI_HANDLE PCIHandle;
struct pci_register far * RegisterStruct;;
PCI_EXID far * ExchangeID
{
PCI_INTEGER error;
char far * signature;
void far * buffer;

Page 203
ETS 300 325: March 1994

signature = (char far *) PCIHandle - SIGNATURESIZE;
if (_fmemcmp (signature,PCISIGNATURE,SIGNATURESIZE) != SUCCESS)

{
/* signature wrong. process error */
error = ...
}

else
{
/* signature is correct. call the entry point */
error = (*PCIHandle) (PCIREGISTER, &PCIRegisterInfo, &PCIOpSysInfo, ExchangeID);
if (error == E_OUT_OF_BUFFERS)

{
/* NAF needs more buffer space; try to allocate */
buffer = _fmalloc ((size_t) PCIOpSysInfo.BufferNeeded);
if (buffer)

{
/* there is buffer, so it is worth another try; adjust PCIOpSysInfo structure */
PCIOpSysInfo.AddBufferSize = PCIOpSysInfo.BufferNeeded;
PCIOpSysInfo.AddBufferSpace = buffer;
PCIOpSysInfo.BufferNeeded = 0;
/* call PciRegister again ... */
}

}
error=(*PCIHandle)(PCIREGISTER,&PCIRegisterInfo,&PCIOpSysInfo,ExchangeID);
if (error)

{
/* Process error */
...

...

F.1.3.4 PciDeregister

This function is in charge to disassociate a PUF and a NAF.

The following operation shall be carried out by the PUF, in order:

- Call the address with the PciDeregister function code and the Exchange-ID related to the
current association.

- Check return code

C coding example:

...
#define PCIDEREGISTER 3
...
PCI_HANDLE PCIHandle;
PCI_EXID ExchangeID;
{
PCI_INTEGER error;

/* call the entry point */
error = (*PCIHandle) (PCIDEREGISTER, ExchangeID);
...

Page 204
ETS 300 325: March 1994

F.1.3.5 PciPutMessage

This function is in charge to provide a message from a PUF to a NAF. Parameters shall be provided in the
same order as indicated in the generic description of the PciPutMessage function.

The following operation shall be carried out by the PUF, in order:

- call the address with the PciPutMessage function code and the Exchange-ID related to the
current association as well as the correct set-up PCI Message Parameter Block and the
associated buffers;

- check return code.

C coding example:

...
#define PCIPUTMESSAGE 4
...
struct pci_mpb {

PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};
...
PCI_HANDLE PCIHandle;
PCI_EXID ExchangeID;
struct pci_mbp far * PCIMbp;
PCI_BYTEARRAY Message;
PCI_BYTEARRAY Data;
{
PCI_INTEGER error;

/* call the entry point */
error = (*PCIHandle) (PCIPUTMESSAGE, ExchangeID, PCIMbp, Message, Data);
...

F.1.3.6 PciGetMessage

This function is in charge to provide the PUF with a message coming from the NAF. Parameters shall be
provided in the same order as indicated in the generic description of the PciGetMessage function.

The following operation shall be carried out by the PUF, in order:

- call the address with the PciGetMessage function code and the Exchange-ID related to the
current association as well as the correct set-up PCI Message Parameter Block and the
associated buffers;

- check return code.

Page 205
ETS 300 325: March 1994

C coding example:

...
#define PCIGETMESSAGE 5
...
struct pci_mpb {

PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};
...
PCI_HANDLE PCIHandle;
PCI_EXID ExchangeID;
struct pci_mbp far * PCIMbp;
PCI_BYTEARRAY Message;
PCI_BYTEARRAY Data;
{
PCI_INTEGER error;

/* call the entry point */
error = (*PCIHandle) (PCIGETMESSAGE, ExchangeID, PCIMbp, Message, Data);
...

F.1.3.7 PciSetSignal

This function is in charge to provide the NAF with the address of a function located inside the PUF, which
shall be called-back if a message becomes available for the PUF.

The following operation shall be carried out by the PUF, in order:

- call the address with the PciSetSignal function code and the Exchange-ID related to the
current association as well as the correct set-up function address of the call-back routine;

- check return code.

C coding example:

...
#define PCISETSIGNAL 6

/*
 * CallBack function called in interrupt context
 */

void far CallBackFunc ()
{
...
return;
}

Page 206
ETS 300 325: March 1994

/*
 * Code to set up the notification process
 */
...
PCI_HANDLE PCIHandle;
PCI_EXID ExchangeID;
{
PCI_INTEGER error;

/* call the entry point */
error = (*PCIHandle) (PCISETSIGNAL, ExchangeID, &CallBackFunc);
...

The NAF calls-back the PUF with the following conventions applying:

- the NAF provides a minimal stack size of 128 bytes;
- the values of the DS and ES segments are undefined;
- interrupts are disabled.

Gained control, the PUF:

- may or may not enable interrupts;
- is allowed call the NAF via the PciGetMessage or the PciPutMessage function;
- shall not invoke other exchange function calls besides the PciGetMessage and the

PciPutMessage functions;
- shall not issue MS-DOS system calls;
- shall not let interrupts disabled over an extended period of time and shall return from the call-

back function as quick as possible.

The NAF called via the PCIGetMessage or the PciPutMessage function may enable interrupts. However,
the NAF shall not call the call-back routine again, until the call-back routine has returned normally.

At the end of the call-back routine the PUF shall return to the NAF. Only the SS:SP register pair shall be
preserved by the PUF.

F.2 Windows

F.2.1 Mechanism

Except for the PciGetHandles function call, the DLL mechanism is the basic mechanism used to support
the ISDN PCI exchange method under Windows. Every NAF have to be DLL and have to export an entry
point per ISDN PCI function using the same name (PciGetProperty, PciRegister, PciGetMessage,
PciPutMessage, PciSetSignal, PciDeregister).

NOTE: Function name exported by the NAF is the same as the description made in Clause 7
but parameters are different.

PciGetHandles needs an access to the PCI.INI file.

PciRegister and PciGetProperty check if the DLL, accessible by its name, is available.

To access a NAF the only need for a PUF is to know the name of the DLL. The address access to the
DLL may be provided transparently to the PUF inside the Pci's exchange mechanism functions as
described in the Annex J.

The PciRegister function dynamically loads the NAF. It needs to keep trace of the handle of the NAF as a
DLL, so this handle is part of the Exchange Identifier. The NAF also needs to keep trace of the PUF, so it
assigns an Identifier to the PUF at registration time, this NAF-provided Identifier is the other part of the
Exchange Identifier.

Page 207
ETS 300 325: March 1994

The common calling conventions to provide parameter to a DLL is the PASCAL calling convention. This
convention is also used by the ISDN PCI exchange method under Windows.

Pointer parameters are far. The PCIMPB structure is always passed via a pointer. The Exchange Identifier
structure is always passed via a pointer.

The structure alignment is byte .

F.2.2 Implementation of basic type

Under Windows, the following values shall be used:

PCI_HANDLE name of the DLL
PCI_EXID Structure contents

handle provided by Windows when the DLL is loaded (hInstance)
Unique Identifier provided by NAF to identify the PUF

PCI_PROCEDURE exported function address (FARPROC) provided by the PUF
PCI_INTEGER 2 bytes
PCI_BYTEARRAY far pointer

F.2.3 C Function prototypes

/*
 * Basic types
 */
typedef SHORT PCI_INTEGER;
typedef LPSTR PCI_BYTEARRAY;
typedef LPSTR PCI_HANDLE;
typedef struct {

HINSTANCE DLLInstance;
PCI_INTEGER Exchange_Id;
} PCI_EXID;

typedef void (far pascal *PCI_PROCEDURE)(void);

/*
 * Structures
 */
struct pci_mpb {

PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};

struct pci_register { /* structure containing registering info */
PCI_INTEGER PUFVersion; /* optional: give PUF version */
PCI_INTEGER PUFType; /* optional: give PUF type */
PCI_INTEGER MaxMsgSize; /* return: max size of a message */

};
struct pci_opsys { /* structure containing specific operating system info */

int DummyParameter; /* No specific requirement for WINDOWS */
};

/*
 * Exchange functions prototypes
 */

Page 208
ETS 300 325: March 1994

PCI_INTEGER far PASCAL PciGetHandles (PCI_INTEGER MaxHandles,
PCI_BYTEARRAY PCIHandles,
PCI_INTEGER far * ActualHandles

);

PCI_INTEGER far PASCAL PciGetProperty (PCI_HANDLE PCIHandle,
PCI_INTEGER MaximumSize,
PCI_BYTEARRAY Property,
PCI_INTEGER far * ActualSize

);

PCI_INTEGER far PASCAL PciRegister (PCI_HANDLE PCIHandle,
struct pci_register * PCIRegisterInfo,
struct pci_opsys * PCIOpSysInfo,
PCI_EXID far *ExID

);

PCI_INTEGER far PASCAL PciDeregister (PCI_EXID far *ExID
);

PCI_INTEGER far PASCAL PciPutMessage (PCI_EXID far *ExID,
struct pci_mpb far *PCIMBP,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data

);

PCI_INTEGER far PASCAL PciGetMessage (PCI_EXID far *ExID,
struct pci_mpb far *PCIMBP,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data

);

PCI_INTEGER far PASCAL PciSetSignal (PCI_EXID far *ExID,
PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure

);

F.2.4 Description of functions

This subclause describes the implementation, under Windows, of the ISDN PCI exchange method
functions. During a PUF to NAF call, the size of the stack shall be at least 1 024 bytes deep.

F.2.4.1 PciGetHandles

Under WINDOWS, the PciGetHandles uses a PCI.INI file in the WINDOWS directory to get available
PCI_HANDLEs.

The section [Drivers] in the PCI.INI file contains all entries of installed NAFs. Each entry has the format:

pciDriver<number>= DLLName (number=1..32)

The following operations shall get all names of installed NAF drivers:

- loops from 1 to 32
- constructs of the keyName "pciDriver" associated to the current loop value;
- issue a GetPrivateProfileString using:

sectionKey = "DRIVERS",
the keyName contructs before,
no default value,
a maximum size equal to 128,
FileName = "PCI.INI".

Page 209
ETS 300 325: March 1994

F.2.4.2 PciGetProperty

This function is in charge of providing to the PUF the PROPERTY of the NAF. Implicitly, it checks if the
NAF is available - loading the library via the LoadLibrary function.

The following operations shall take place, in order:

- load the DLL;
- get the address of the PciGetProperty function exported by the NAF;
- call to this address with the parameters provided by the PUF;
- free the loaded library.

F.2.4.3 PciRegister

This function is in charge of providing an association between a PUF and a NAF. The NAF is loaded and
the DLLInstance part of the Exchange Identifier is provided. The availability of the chosen NAF is checked
during the load of the library. The library is identified by its name. Parameters for the registration operation
are brought together a structure:

- PUFType (PCI_INTEGER);
- PUFVersion (PCI_INTERGER);
- MaxMsgSize (PCI_INTEGER) where the NAF will give the maximum size for a message.

The following operations shall take place, in order:

- load the DLL;
- provide the DLLInstance part of the Exchange Identifier with the DLL Instance;
- get the address of the PciRegister function exported by the NAF;
- call to this address to inform the NAF of a new PUF. The address of the registration

parameters structure and the address of the Exchange Identifier structure are passed to the
NAF as parameters;

- on return from the NAF, the Exchange_Id part of the Exchange Identifier and the maximum
message size parameter of the registration parameter structure have been provided by the
NAF;

- return to the PUF with the return code from the NAF.

F.2.4.4 PciDeregister

This function is charged of disassociating a PUF and a NAF. The DLL usage number shall be
decremented by Windows but the DLL is not freed from the memory each time a PUF deregisters a NAF.

The following operations shall take place, in order:

- get the address of the PciDeregister function exported by the NAF;
- call to this address to inform the NAF of the end of the association. The PCI_EXID is passed

to the NAF by address;
- free the DLL.

F.2.4.5 PciPutMessage

This function is in charge to provide a message, and associated data if any, from a PUF to a NAF.
Parameters are provided in the same order as in the description of the PciGetMessage.

The following operations shall take place, in order:

- get the address of the PciPutMessage function exported by the NAF;
- call this address to pass parameter to the NAF (including the address of the PCI_EXID).

Page 210
ETS 300 325: March 1994

F.2.4.6 PciGetMessage

This function is in charge of providing a message, and associated data if any, from a PUF to a NAF.
Parameters are provided in the same order as in the description of the PciGetMessage. Buffers provided
by the PUF are directly used by the NAF.

The following operations shall take place, in order:

- get the address of the PciGetMessage function exported by the NAF;
- call this address to pass parameter to the NAF (including the address of the PCI_EXID).

F.2.4.7 PciSetSignal

This function allows a PUF to provide a direct information mechanism to be used by the NAF in case of
incoming event. Two mutually exclusive mechanism are offered under Windows:

- a signal procedure mechanism;
- a user message mechanism.

Once a mechanism is chosen by the PUF, the other is de-activated by the NAF for that particular PUF.
Both mechanism have to be supported by a NAF.

The first mechanism does not used the Signal parameter. This parameter shall be set to 0.

The second mechanism used the Signal parameter to identify the value associated with the WM_USER
WINDOWS message. In that case, the Signal parameter shall not be equal to 0.

F.2.4.7.1 Signal mechanism procedure

The routine address, provided by the PUF in the SignalProcedure parameter, is used directly by the NAF.
It shall to be made accessible to the NAF before it is provided by the PUF. The routine is called without
any parameters.

In that case, the Signal parameter is not used but the parameter shall be passed to the NAF with the 0
value.

The stack used during the call to the SignalProcedure is not that of the PUF. The SignaProcedure shall be
compiled without assuming SS=DS, like a DLL.

The NAF is allowed to call the PUF to reissue a signal call. To avoid big stack requirement, the NAF shall
wait the return from the PUF signal procedure before reissuing the next signal call.

The PUF call back to the NAF during the signal procedure treatment shall not be allowed. The stack size
is not guaranteed when the NAF calls the PUF. Consequently, the stack requirements for the PUF
treatment shall be as small as possible.

F.2.4.7.2 User message mechanism procedure

The Signal parameter contains a PUF value to be added to the WM_USER WINDOWS message
constant. This message is sent to a PUF Window. The HANDLE for this Window is provided by the PUF
in the low word of the SignalProcedure parameter of the PciSetSignal function. It shall be a valid HANDLE
WINDOW (HWND).

When the NAF issues the WM_USER + Signal message to the PUF, it uses a WINDOWS API
PostMessage call. The PUF will find as third parameter (known as wParam) the type of the message
received. In the fourth parameter (lParam), the PUF will find, as high word, the size of the Message
associated to this message and as low word, the size of the Data associated. The call will look like:

Page 211
ETS 300 325: March 1994

PostMessage(LOWORD(SignalProcedure),
WM_USER+Signal,
MessageID,
(DWORD) (MessageSize << 16) | (DataSize));

As the PostMessage WINDOWS API is used, the PUF is allowed to call back the NAF during the
message treatment.

This mechanism is simple to be implemented but an important constraint has to be given:

under WINDOWS, a PostMessage call can fail due to a lack of room available in the
message queue. The PUF is in charge to treat fast enough messages to insure that no NAF
message will be lost. The PUF cannot rely on a failed message to be reissued by the NAF.

F.2.4.7.3 De-activation mechanism

To deactivate any signal mechanism the PciSetSignal function Signal and SignalProcedure parameters
shall be NULL. Once deactivated, the previous mechanism shall no longer be used by the NAF to call the
PUF.

F.3 Unix

F.3.1 Mechanism

The binary compatible interface to a NAF running under the UNIX.operating system shall be implemented
using the STREAMS kernel mechanism.

The PCI exchange functions, described in Clause 7, shall be mapped to appropriate functions supplied by
the UNIX STREAMS kernel mechanism.

Since "C" is the natural language in the UNIX environment, descriptions should preferably be made using
"C" language.

F.3.2 Implementation of basic types

Table F.1 shows the mapping of the basic types of the exchange method to "C" language types:

Table F.1

Basis type Mapping and usage

PCI_INTEGER Can be implemented as 2 or 4 byte signed integer, whatever is
defined within the underlying UNIX system as system constant for the
'int' type.

PCI_BYTEARRAY Implemented as pointer to 'char' type.

PCI_EXID Implemented as 'int' type. Since the exchange method is
implemented using STREAMS, the Exchange-ID has the same value
and type as the UNIX file descriptor provided by the STREAMS kernel
mechanism.

PCI_HANDLE Implemented as pointer to 'char' type, in fact a UNIX character-string.
The string shall to contain the name of the STREAMS device the NAF
is implemented in.

PCI_PROCEDURE Implemented as address of a function returning 'void' type, as defined
by UNIX signal () system call.

Page 212
ETS 300 325: March 1994

F.3.3 Parameter passing conventions

For parameter passing the usual 'C' conventions are applying:

- call values are either passed by value (e.g. PCI_INTEGER, PCI_EXID) , or by usage of a
pointer (e.g. PCI_BYTEARRAY, PCI_HANDLE);

- return values are passed by giving a pointer for filling in the value (passing by reference).

Errors occurring inside the NAF driver are returned as positive integers (PCI_INTEGER). Their values are
defined in Clause 5. As defined there, a value of 0 stands for "no error" (Success).

Errors occurred inside of the PCI exchange functions should be returned as negative integers
(PCI_INTEGER). Their values are not defined. They are NAF implementation dependent.

F.3.4 Definition of types, constants and function-prototypes

The types, constants and function prototypes are presented using 'C' language.

If alignment is necessary on the UNIX target system, the size of the int type is employed.

/*
 * Basic types
 */

typedef int PCI_INTEGER;
typedef char * PCI_BYTEARRAY;
typedef int PCI_EXID;
typedef char * PCI_HANDLE;
typedef void (* PCI_PROCEDURE) ();

/*
 * Structures
 */

struct pci_mpb {
PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};

/*
 * Exchange functions prototypes
 */

PCI_INTEGER PciGetHandles (PCI_INTEGER MaxHandles,
PCI_BYTEARRAY PCIHandles,
PCI_INTEGER * ActualHandles

);

PCI_INTEGER PciGetProperty (PCI_HANDLE PCIHandle,
PCI_INTEGER MaximumSize,
PCI_BYTEARRAY Property,
PCI_INTEGER * ActualSize

);

Page 213
ETS 300 325: March 1994

PCI_INTEGER PciRegister (PCI_HANDLE PCIHandle,
PCI_INTEGER PUFVersion,
PCI_INTEGER PUFType,
PCI_EXID * ExID,
PCI_INTEGER * MaxMsgSize

);

PCI_INTEGER PciDeregister (PCI_EXID ExID
);

PCI_INTEGER PciPutMessage (PCI_EXID ExID,
struct pci_mpb * PCIMBP,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data

);

PCI_INTEGER PciGetMessage (PCI_EXID ExID,
struct pci_mpb * PCIMBP,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data

);

PCI_INTEGER PciSetSignal (PCI_EXID ExID,
PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure

);

F.3.5 Adaptation to the STREAMS kernel mechanism

F.3.5.1 General

A NAF implemented into the UNIX kernel shall oppose its ISDN PCI interface via the STREAMS kernel
mechanism. For each implemented NAF one STREAMS access shall be provided, independent of the
amount of ISDN accesses the NAF provides. Such a STREAMS access can in principle, if implemented
by the NAF, be used by several PUFs. Furthermore, as a consequence of the UNIX architecture, one PUF
can access several STREAMS and thus several NAFs simultaneously. NAFs shall be defined as CLONE
Streams.

The UNIX STREAMS kernel mechanism provides two queues, a write queue and a read queue.
Information sent by the exchange functions to the stream driver (downstream information) are placed into
the write queue by a STREAMS component called the stream head. Stimulating the stream head to do so
is achieved by issuing the STREAMS putmsg() system call.

The stream driver can access the information of the write queue, processes it and places resulting
information into the read queue. The content of the read queue (upstream information) is available to the
exchange functions by use of the STREAMS getmsg() system call.

F.3.5.2 Communication between PUF exchange functions and NAF stream driver

The communication between an exchange function and the NAF stream driver is carried out by the
exchange function by means of getmsg() or putmsg() in the case of PciGetMessage() and
PciPutMessage(), and ioctl() in the case of all other functions.

The information transported through this stream is called a STREAMS message. STREAMS messages
should not be confused with the messages defined in the ISDN PCI.

Page 214
ETS 300 325: March 1994

The STREAMS mechanism divides the PCI message into two parts: a control part and a data part. For
messages exchanged via PciGetMessage() and PciPutMessage(), the control part of the STREAMS
message contains the PCI message and the data part will contain the data part of the PCI message. The
NAF driver receives the lengths of the individual parts of the PCI message by means of the standard UNIX
getmsg() and putmsg() mechanism.

For all other messages, the individual command is passed to the NAF driver in the ioc_cmd field of the
struct iocblk structure. The data part associated with this command is passed to the NAF driver in the data
blocks of the M_IOCTL message.

Definitions of terms:

mp is of type mblkt_t * (see /usr/include/sys/stream.h)

struct iocblk type defined in /usr/include/sys/stream.h

The NAF STREAMS driver can obtain the information necessary for its operation by using the following
mechanisms:

1. PCI Messages exchanged via PciPutMessage()

Information Availability
Length of control part mp->b_wptr - mp->b_rptr

Contents of control part mp->b_rptr

Presence of a data part mp->b_cont != NULL

Length of data part msdgsize(mp)

Contents of data part mp->b_cont->b_rptr

2. PCI Messages exchanged via the ioctl() mechanism

Information Availability

Requested function ((struct iocblk *)mp->b_rptr)->ioc_cmd

Length of control part ((struct iocblk *)mp->b_rptr)->ioc_count

Contents of control part mp->b_cont->b_rptr

Room for returned data mp->b_cont->b_rptr

((struct iocblk *)mp->b_rptr)->ioc_rval

Page 215
ETS 300 325: March 1994

The requested function shall be defined as follows:

#define PCI_PROPERTY (('Z' << 8) | 1)

#define PCI_REGISTER (('Z' << 8) | 2)

#define PCI_DEREGISTER (('Z' << 8) | 3)

#define PCI_SETSIGNAL (('Z' << 8) | 4)

F.3.5.3 Special considerations

Several NAF implementation aspects shall be considered by the PUF implementing the exchange
functions:

- the PUF grants the NAF the permission to put incoming PCI messages on the read-side
queue, thereby using this queue for buffering. Flow control is achieved by the standard UNIX
highwater-lowwater mark mechanism which allows the NAF STREAMS driver to handle flow
control transparently on the driver level;

- the size of a stream queue element is limited. A NAF stream driver shall be able to provide 4
096 bytes as data part of the stream message on the PUF's request, but it shall also
guarantee this amount as the maximum delivered value; However, data block sizes of more
than 4 096 bytes can be supported if the stream is put into "message non-discard mode"
(see streamio(7)). Should a message with a data block size of more than 4 096 bytes arrive
at the stream head, a call to PciGetMessage shall return the first 4 096 bytes of the data
block and successive calls to PciGetMessage shall return the additional data blocks. Each of
the additional calls to PciGetMessage shall return a message whose control part length will
be zero;

- only the UNIX SIGPOLL signal shall be issued by the NAF implementation.

F.3.6 Description of functions

This subclause describes the implementation of the PCI exchange functions using the UNIX STREAMS
mechanism. The description of each function is divided into 3 parts:

1) Function body: function body description, including general description of the
function behaviour

;
2) STREAMS putmsg(): Structure set-up for call to putmsg()

;
3) STREAMS getmsg(): Structure contents after return from getmsg()

.

Page 216
ETS 300 325: March 1994

The prototypes of putmsg () and getmsg () functions are:

int putmsg (fd, ctlptr, dataptr, flags)

int fd; /* File descriptor */

struct strbuf *ctlptr; /* Control part of the message */

struct strbuf *dataptr; /* Data part of the message */

int flags; /* Message priority. */

int getmsg (fd, ctlptr, dataptr, flags)

int fd; /* File descriptor */

struct strbuf *ctlptr; /* Control part of the message */

struct strbuf *dataptr; /* Data part of the message */

int *flags; /* Message priority. */

with

struct strbuf

{

int maxlen /*Maximum buffer length */

int len /* Length of data */

char *buf /* Pointer to buffer */

}

Alternatively, for PCI exchange functions which use the ioctl() mechanism the description of each function
is divided into 2 parts:

1) Function body: function body description, including general description of the
function behaviour;

2) ioctl(): Structure set-up for call to ioctl()
.

Page 217
ETS 300 325: March 1994

The prototype of ioctl () is:

int ioctl (fd, command, arg)

int fd; /* File descriptor */

int command; /* ioctl command as defined in streamio(7) */

char *arg; /* command specific argument */

Whenever command is I_STR arg should point to a structure of type strioctl, where strioctl is defined as:

struct strioctl

{

int ic_cmd; /* User-defined command */

int ic_timeout; /* Timeout for command */

int ic_len; /* Length of data part to follow */

char *ic_dp; /* Command-specific arguments */

}

F.3.6.1 PciGetHandles

Function body:

PCI_INTEGER PciGetHandles (PCI_INTEGER MaxHandles,
PCI_BYTEARRAY PCIHandles,
PCI_INTEGER *ActualHandles)

{

...

}

MaxHandle contains the maximum number of PCI_HANDLE the PCIHandles parameter can receive. On
return, ActualHandles, which is a pointer to an integer value, shall contain the number of PCI_HANDLE
copied into the PCIHandles parameter.

Page 218
ETS 300 325: March 1994

This function shall:

- examine the directory /etc/pcidd to get the number and the PCI_HANDLEs available;

- update the PCIHandles and the ActualHandles parameters;

- return appropriate error code.

F.3.6.2 PciGetProperty

Function body:

PCI_INTEGER PciGetProperty (PCI_HANDLE PCIHandle,

PCI_INTEGER MaximumSize,

PCI_BYTEARRAY NAFProperty,

PCI_INTEGER *ActualSize)

{

struct strioctl strioctl;

extern int errno;

int filedes;

}

PCIHandle points to the path name of the STREAMS device, MaximumSize is the size of the buffer to
hold the properties. NAFProperty is the pointer to this buffer and ActualSize is a pointer to a integer value
receiving the actual size of the property information in the NAF on return.

This function shall:

- open the STREAMS device using PCIHandle;

- issue the ioctl() call;

- retrieve the value of ActualSize and the error code;

- close the STREAMS device;

- return appropriate error code.

Page 219
ETS 300 325: March 1994

STREAMS ioctl():

The ic_cmd component shall be set to PCI_PROPERTY, the ic_len component shall be set to
MaximumSize and the ic_dp component shall be set to point to the NAFProperty buffer.

Upon return from the ioctl() call the return value shall be checked against 0 which will indicate success.
Any other return value indicates an error condition, which indicates that the errno variable contains the
error condition. The ic_len component of the strioctl structure contains the number of bytes returned by
the ioctl call. The ic_dp component points to the property returned.

NOTE: The size returned is always the size of the property inside the NAF.

strioctl.ic_cmd = PCI_PROPERTY;

strioctl.ic_timout = 0;

strioctl.ic_len = MaximumSize;

strioctl.ic_dp = (char *) NAFProperty;

if (ioctl (filedes, I_STR, &strioctl) == 0) {

*ActualSize = strioctl.ic_len;

return 0;

}

else {

*ActualSize = 0;

return errno;

}

Page 220
ETS 300 325: March 1994

F.3.6.3 PciRegister

Function body:

PCI_INTEGER PciRegister (PCI_HANDLE PCIHandle,

 PCI_INTEGER PUFVersion,

 PCI_INTEGER PUFType,

 PCI_EXID *ExID,

 PCI_INTEGER *MaxMsgSize)

{

struct strioctl strioctl;

struct pci_register_t pci_register;

extern int errno;

}

PCIHandle points to the path name of the STREAMS device. PUFVersion and PUFType are integers and
set as indicated in Clause 7. ExID is a pointer to an integer receiving the returned Exchange-ID, which
shall be equal to the UNIX file descriptor returned by the open() system call. MaxMsgSize is an integer
receiving the message size of the NAF as described in Clause 7.

This function shall:

- open the STREAMS device using PCIHandle;

- issue the ioctl() call;

- retrieve the return values from the pci_control structure;

- leave the STREAMS device open. Assign file descriptor of open() call to ExID;

- return appropriate error code.

Page 221
ETS 300 325: March 1994

STREAMS ioctl():

The ic_cmd component shall be set to PCI_REGISTER, the ic_len component shall be set to the size of
the pci_register structure and the ic_dp component shall be set to point to the pci_register structure which
is set up with the values of PUFVersion and PUFType. Upon return from the ioctl() call the return value
shall be checked against -1 which will indicate an error condition. The external variable errno will be set to
indicate the specific error condition. Any other return value indicates success, and the return value of the
ioctl call shall indicate the maximum PCI message size the NAF supports.

struct pci_register_t {

int puf_version;

int puf_type;

} pci_register;

pci_register.puf_version = PUFVersion;

pci_register.puf_type = PUFType;

strioctl.ic_cmd = PCI_REGISTER;

strioctl.ic_timout = 0;

strioctl.ic_len = sizeof (pci_register);

strioctl.ic_dp = (char *) &pci_register;

if ((*ExID = open (PCI_HANDLE, O_RDWR)) == -1) {

*ExID = 0;

return <cant_open_device : errno provides more information>;

}

if ((*MaxMsgSize = ioctl (*ExID, I_STR, &strioctl)) < 0) {

*MaxMsgSize = 0;

return errno;

}

else {

return 0;

}

Page 222
ETS 300 325: March 1994

F.3.6.4 PciDeregister

Function body:

PCI_INTEGER PciDeregister (PCI_EXID *ExID)

{

struct strioctl strioctl;

extern int errno;

}

ExID identifies the open STREAMS device. It is identical with the file descriptor returned by the open()
system call.

This function shall:

- issue the ioctl() call;

- retrieve the error return code;

- close the STREAMS device;

- return appropriate error code.

Page 223
ETS 300 325: March 1994

STREAMS ioctl():

The ic_cmd component shall be set to PCI_DEREGISTER, the ic_len component shall be set to zero; the
ic_dp component shall be set to NULL. Upon return from the ioctl() call, the return value shall be checked
against -1 which will indicate an error condition. The external variable errno shall be set to indicate the
specific error condition. Any other return value indicates success.

strioctl.ic_cmd = PCI_DEREGISTER;

strioctl.ic_timout = 0;

strioctl.ic_len = 0;

strioctl.ic_dp = (char *) NULL;

if (ioctl (*ExID, I_STR, &strioctl) == -1) {

return errno;

}

else {

close (*ExID);

return 0;

}

F.3.6.5 PciPutMessage

Function body:

PCI_INTEGER PciPutMessage (PCI_EXID ExID,
struct pci_mbp *PCIMBP,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data)

struct strbuf ctlbuf; /* stream message control part pointer */
struct strbuf databuf; /* stream message data part pointer */

ExID identifies the STREAMS device. PCIMPB is a pointer to the PCI Message Parameter Block.
Message and Data are the part of the PCI message to be sent to the NAF driver. Either Message or Data
might be optional. In this case they are specified as NULL. In order to be more efficient (see STREAMS
putmsg hereafter), it is recommended that the PCIMBP be stored contiguously before the Message, this
allows to avoid a copy in memory.

This function shall:

- prepare the ctlbuf and databuf structures;
- issue the putmsg() call;
- retrieve the error return;
- return appropriate error code.

Page 224
ETS 300 325: March 1994

STREAMS putmsg():

/* The general idea is to pass in ctlbuf a buffer containing the PCIMBP followed by the content of
Message, and in databuf the content of Data */

if (Message && ((char *)Message != (char *)PCIMBP + sizeof(pci_mbp))) {
/* there is a Message not NULL, and PCIMBP and Message are not contiguous in memory,Have to
build a buffer where PCIMBP is followed by the Message content */
char *buffer;
/* pointer to a buffer,large enough to receive PCIMBP and the Message content */

...
/* Here a memory allocation process may take place */
...
memcpy (buffer, PCIMBP, sizeof(pci_mbp));
memcpy ((buffer + sizeof(pci_mbp), Message, PCIMB->MessageActualUsedSize);
ctlbuf->buf = buffer;
ctlbuf->len = PCIMB->MessageActualUsedSize + sizeof(pci_mbp);

}
else {

/* either there is no Message, or the PCIMPB and the Message are contiguous in memory */
ctlbuf->buf = PCIMBP;
ctlbuf->len = Message ? PCIMB->MessageActualUsedSize + sizeof(pci_mbp) :
sizeof(pci_mbp);

}

databuf->buf = Data;
databuf->len = Data ? PCIMB->DataActualUsedSize : 0;

if (putmsg (ExID, &ctlbuf, &databuf, flags) != 0) {
/* Error condition, errno will be set */
....

}
else {

/* Operation OK */
....

}

F.3.6.6 PciGetMessage

Function body:

PCI_INTEGER PciGetMessage (PCI_EXID ExID,
struct pci_mbp *PCIMPB,
PCI_BYTEARRAY *Message,
PCI_BYTEARRAY *Data)

struct strbuf ctlbuf; /* stream message control part pointer */
struct strbuf databuf; /* stream message data part pointer */

ExID identifies the STREAMS device. PCIMPB is a pointer to the PCI Message Parameter Block.
Message and Data are the part of the PCI message to be received from the NAF driver. Either Message
or Data may be optional. In this case they are specified as NULL. In order to be more efficient (see
STREAMS getmsg hereafter), the PCIMBP should be stored contiguously before the Message, this allows
to avoid a copy in memory.

This function shall:

- prepare the ctlbuf and databufstructures;
- issue the getmsg () call;
- retrieve the return values from the ctlbuf and databuf structures;
- return appropriate error code.

Page 225
ETS 300 325: March 1994

STREAMS getmsg():

/* The general idea is to pass in ctlbuf a buffer large enough for containing the PCIMBP followed by the
content of Message , and in databuf the content of Data. The error code of the NAF is available in the
errno variable. */

if (Message && ((char *)Message != (char *)PCIMBP + sizeof(pci_mbp))) {
/* there is a Message not NULL and, PCIMBP and Message are not contiguous in memory,
have to reserve a buffer where PCIMBP can be followed by the Message content */
char *buffer; /* pointer to a buffer,large enough to receive PCIMBP and the Message content

*/
/* Here a memory allocation process may take place */
ctlbuf->buf = buffer;

}
else {

/* either there is no Message, or the PCIMPB and the Message are contiguous in memory
*/
ctlbuf->buf = PCIMPB;

}
ctlbuf->maxlen = Message ? PCIMB->MessageMaximumSize

 +sizeof(pci_mbp):sizeof(pci_mbp);
databuf->buf = Data;
databuf->maxlen = Data ? PCIMPB->DataMaximumSize : 0;

if (getmsg (ExID, &ctlbuf, &databuf, flags) != 0) {
/* Error condition, errno will be set */
PCIMPB->c_error = errno;
....

}
else { /* Operation OK */

if (ctlbuf->len != -1 && ctlbuf->len >= sizeof(pci_mbp)) {
/* Message, possibly of size 0 is present */
PCIMPB->MessageActualUsedSize = ctlbuf->len - sizeof(pci_mbp);
if (Message && ((char *)Message != (char *)PCIMBP + sizeof(pci_mbp)))

{
/* there is a Message not NULL and, PCIMBP and Message are not
contiguous in memory, a buffer where PCIMBP can be followed
by the Message content, has been used */
memcpy (PCIMBP, buffer, sizeof(pci_mbp));
memcpy (Message,(buffer + sizeof(pci_mbp)),

 (ctlbuf->len - sizeof(pci_mbp)));
}
else {

/* the PCIMPB and the Message are contiguous in memory,
 no additional buffer used */

Message = PCIMPB + sizeof(pci_mbp);
}

}
else {
/* No Message present or too small message: error at least PCIMPB should be there */
..............
}

if (databuf->len != -1) {
/* Data block, possibly of size 0 is present */
PCIMPB->DataActualUsedSize = databuf->len;

}
else {

/* No Data present */
PCIMPB->DataActualUsedSize = 0;

}
}

Page 226
ETS 300 325: March 1994

F.3.6.7 PciSetSignal

Function body:

PCI_INTEGER PciSetSignal(PCI_EXID *ExID,

PCI_INTEGER Signal,

PCI_PROCEDURE SignalProcedure)

{

extern int errno;

}

ExID identifies the STREAMS device, Signal the UNIX signal number. SignalProcedure is the address of
the signal handler ('C' function) inside of the PUF. Only the UNIX SIGPOLL signal shall be issued by the
NAF implementation. Consequently, any non-zero value in Signal shall turn on emission of UNIX
SIGPOLL signals, a zero value shall turn emission off.

The SignalProcedure defined by the PUF shall re-issue the signal via the signal() system call - see below.
This mechanism shall be mandatory otherwise the next signal provided by the NAF shall kill the PUF.

More than one signal can be sent by a NAF to a PUF before the PUF accesses the NAF. An access to the
NAF by the PUF during signal procedure treatment is not recommended.

This function shall:

- issue the ioctl() call;

- retrieve the error code;

- register UNIX SIGPOLL signalling with the stream head using: ioctl (..., I_SETSIG, S_MSG)
system call;

- register UNIX SIGPOLL signalling with the operating system using: signal (SIGPOLL,
SignalProcedure) system call;

- return appropriate error code.

Page 227
ETS 300 325: March 1994

STREAMS ioctl():

The function shall check the Signal parameter and shall, if Signal equals zero, set up the Signal_options
variable to zero to turn off signalling. Furthermore, the signal function shall be de-registered by issuing the
appropriate signal() call.

If Signal is non-zero, Signal_options shall be set to enable SIGPOLL signalling and any other options
mandated by the implementation (see sigaction()). Furthermore, the signal function shall be registered
using the signal() system call.

if (Signal == 0) {

Signal_options = 0;

if (ioctl (ExID, I_SETSIG, &Signal_options) == -1)

return errno;

signal (SIGPOLL, SIG_DFL);

return 0;

}

else {

Signal_options = <SETSIG options>

if (ioctl (ExID, I_SETSIG, &Signal_options) == -1)

return errno;

signal (SIGPOLL, SignalProcedure);

return 0;

}

Page 228
ETS 300 325: March 1994

F.4 Availability of NAF's PCI_HANDLE

To be accessible via the PciGetHandles function call, a NAF shall issue a declaration action. The inverse
action - extraction from the list of available NAFs - is described too. These actions are operating system
specific.

F.4.1 DOS

F.4.1.1 Declaration action

The NAF uses the PCIDD$ Device Driver to declare itself, issuing an IOCTL write command, passing a
structure containing the action code (Declare) and the handle of the NAF.

The maximum number of NAF than the 'PCIDD$' Device Driver can register is 32.

The following operation takes place in order:

- open the 'PCIDD$' driver;
- prepare the following structure:

- one word: command code, 0x4544 (characters 'DE', DEclaration);
- one double-word: address of the NAF entry point;

- issue a IOCTL system call write command:
- CX contains the size of the declaration structure (6);
- DS:DX point to the structure;

- check the success of the operation (check CARRY FLAG);
- in case of error, issue a Get Extended Error function call to get a more comprehensive error

code;
- close the driver.

The command shall end successfully even if the NAF is already declared. In this case, no action takes
place.

The command gives an error on the following cases. In these cases, no action takes place.

- Standard DOS errors (Invalid handle, Invalid function number, etc...).
- The length of the buffer passed (register CX) is not correct (extended error 24, Bad request

structure length).
- The command code is invalid (extended error 31, General failure).
- Already 32 NAF are declared and the NAF to be declared is not already declared (extended

error 29, Write fault).

F.4.1.2 Extraction action

The NAF uses the PCIDD$ Device Driver to extract itself, issuing an IOCTL write command, passing a
structure containing the action code (Extract) and the handle of the NAF.

The following operation takes place in order:

- open the 'PCIDD$' driver;
- prepare the following structure:

- one word: command code, 0x5845 (characters 'EX', EXtraction);
- one double-word: address of the NAF entry point;

- issue a IOCTL system call write command;
- CX contains the size of the extraction structure (6);
- DS:DX point to the structure;

- check the success of the operation (check CARRY FLAG);
- in case of error, issue a Get Extended Error function call to get a more comprehensive error

code;
- close the driver.

The command shall be successful even if the NAF has not already been declared. In this case, no action
takes place.

Page 229
ETS 300 325: March 1994

The command gives an error on the following cases. In these cases, no action takes place.

- Standard DOS errors (Invalid handle, Invalid function number, etc...).
- The length of the buffer passed (register CX) is not correct (extended error 24, Bad request

structure length).
- The command code is invalid (extended error 31, General failure).

F.4.2 Windows

F.4.2.1 Declaration action

First, the NAF may get the list of available PCI_HANDLEs to check if not already declared. The
mechanism the NAF uses is the same as any PUF to get available NAF: PciGetHandles (see subclause
F.2.4.1).

If not yet declared, the NAF includes its own PCI_HANDLE into the list.

PCI_BYTEARRAY ownDLLName = "xxx";
PCI_BYTE driverName[128];
WORD index;
char keyName[20];

/* Check if NAF not already installed */
for (index = 1; index <= 32; index++)

{
sprintf(keyName, "pciDriver%d", index);
if (GetPrivateProfileString("DRIVERS", /* Section name */

keyName, /* "pciDriver"+1..n */
NULL, /* No default needed */
driverName,
sizeof(driverName),
"PCI.INI") > 0)

{
if (strcmpi(driverName, ownDLLName) == 0) return; /* NAFinstalled, OK return */
}

}

/* Search a free pciDriver position */
for (index = 1, index <= 32; index++)

{
sprintf(keyName, "pciDriver%d", index);
if (GetPrivateProfileString("DRIVERS", /* Section name */

keyName, /* "pciDriver"+1..n */
NULL, /* No default needed */
driverName,
sizeof(driverName),
"PCI.INI") == 0)

{
/* Entry does not exist, add own NAF Driver name */
WritePrivateProfileString("DRIVERS", keyName, ownDLLName, "PCI.INI");
return;
}

}

Maximum number of NAF than can register is 32.

Page 230
ETS 300 325: March 1994

F.4.2.2 Extraction action

First, the NAF gets the list of available PCI_HANDLEs to check if it is declared. If so, the NAF removes its
own PCI_HANDLE from the driver list in "PCI.INI".

PCI_BYTEARRAY ownDLLName = "xxx";
PCI_BYTE driverName[128];
WORD index;
char keyName[20];

for (index = 1, index <= 32; index++)
{
sprintf(keyName, "pciDriver%d", index);
if (GetPrivateProfileString("DRIVERS", /* Section name */

keyName, /* "pciDriver"+1..n
NULL, /* No default needed */
driverName,
sizeof(driverName),
"PCI.INI") > 0)

{
/* Check for own name */
if (strcmpi(driverName, ownDLLName) == 0)

{
/* Remove the name of the Driver */
WritePrivateProfileString("DRIVERS", keyName, "", "PCI.INI");
}

}
}

F.4.3 UNIX

F.4.3.1 Declaration action

During the installation script of the STREAM driver, the directory /etc/pcidd is updated by a dummy file
which is the name of the new NAF. The installation script may check the availability of the NAF before the
creation of the new dummy file.

F.4.3.2 Extraction action

During the de-installation script of the STREAM driver, the directory /etc/pcidd is updated by removing the
dummy file name of the NAF.

Page 231
ETS 300 325: March 1994

Annex G (normative): PCI ICS Proforma

G.1 Copyright release for PCI ICS Proforma

Notwithstanding the provisions of the copyright Clause related to the text of the present ETS, ETSI grants
users of this ETS to freely reproduce the PCI Implementation Conformance Statement (ICS) Proforma in
this annex so that it can be used for its intended purposes and may further publish the completed ICS.

G.2 Introduction

This annex contains the PCI ICS Proforma. The PCI ICS Proforma lists all mandatory, conditional and
optional items of the ISDN PCI specification relating to the exchange mechanism and the supported
messages. It shall be used in the process of evaluating a particular implementation when claiming
conformance to, or support of, the ISDN PCI specification. The implementation which claims conformance
can either be a PUF or a NAF. For the PUF the PCI ICS Proforma indicates if it uses the item. For the
NAF, this is indicated if the item is supported.

To evaluate conformance of a particular implementation, it shall be necessary to have a statement of
which capabilities and options have been implemented. This annex contains such a statement.

The supplier of an implementation which is conforming to this ETS shall complete a copy of the PCI ICS
Proforma and shall provide information necessary to identify both the supplier and the implementation.

G.3 PCI ICS Proforma cover page

G.3.1 Identification of PCI ICS

PCI ICS serial no :

Date :

G.3.2 Identification of implementation

Name :

Version :

Special configuration :

Other information :

G.3.3 Identification of the system supplier

Name : Contact :

Street : Phone no :

City : Telex no :

Country : Fax no :

Page 232
ETS 300 325: March 1994

G.3.4 Global statement of conformance

Are all mandatory features implemented? (Yes or No) :

Answering "No" to this question indicates non-conformance to the ISDN-PCI interface specification. Non-
supported mandatory capabilities are to be indicated in the PCI ICS, with an explanation of why the
implementation is non-conforming.

G.4 Instructions for completing the PCI ICS Proforma

Each line within the PCI ICS Proforma which requires implementation details to be entered is numbered at
the left hand edge of the line. This numbering is included as a means of uniquely identifying all possible
implementation details within the PCI ICS Proforma.

The N/P column in this annex separates the capabilities for the Network Access Facility (NAF) and the
PCI User Facility (PUF).

N Network Access Facility (NAF);

P PCI User Facility (PUF).

The D column in this annex reflects the definition of the items in this ETS. Each entry in this column is
chosen from the following list:

M Mandatory support is required;

O Optional support is permitted. If implemented, it shall conform to this ETS;

C Conditional support. The support of this element is subject to a condition
which is described in the note column.

The I column in this annex describes the actual capabilities of the implementation and shall be completed
by the supplier using a symbol chosen from the following list:

Y item is implemented (subject to stated constraints);

N item is not implemented;

- item is not applicable.

The ref./note column in this annex contains the references to the location in the main body of this ETS
where the items are described or a note explaining why the item is conditional.

The following abbreviations are used in the headings of this PCI ICS Proforma:

P/N PCI User Facility (PUF)/Network Access Facility (NAF);

D Defined;

I Implemented;

ref. reference.

Page 233
ETS 300 325: March 1994

G.5 Exchange Mechanism

Item of ISDN PCI N/P D I ref./note

1 PciGetHandles N M [] 7.1.2

P O [] 7.1.2

2 PciGetProperty N M [] 7.1.3

P O [] 7.1.3

3 PciRegister N M [] Error! Not a valid
result for table.

P M [] Error! Not a valid
result for table.

4 PciPutMessage N M [] 7.3.6

P M [] 7.3.6

5 PciGetMessage N M [] 7.3.7

P M [] 7.3.7

6 PciSetSignal N M [] 7.3.8

P O [] 7.3.8

7 PciDeRegister N M [] 7.2.1

P M [] 7.2.1

G.6 Administration Plane

Item of ISDN PCI N/P D I ref./note

8 Administration Plane message
class 1

N M [] 6.2

Basic class P M [] 6.2

9 Administration Plane message
class 2

N O [] 6.2

Security features P O [] 6.2

10 Administration Plane message
class 3

N O [] 6.2

Manufacturer specific features P O [] 6.2

Page 234
ETS 300 325: March 1994

G.7 Control Plane

Item of ISDN PCI N/P D I ref./note

11 Control Plane message class 1 N M [] 6.3

Basic class P C [] 6.3 Use of co-ordination
function

10 Control Plane message class 2 N O [] 6.3

Overlap sending P O [] 6.3

13 Control Plane message class 3 N O [] 6.3

User-to-user information transfer P O [] 6.3

14 Control Plane message class 4 N O [] 6.3

Call adjournment for telephony P O [] 6.3

15 Control Plane message class 5 N O [] 6.3

Facility invocation P O [] 6.3

11 Control Plane message class 6 N O [] 6.3

External Equipment handling P O [] 6.3

G.8 User Plane

Item of ISDN PCI N/P D I ref./note

12 User Plane message class 1 N M [] 6.4

Basic class P M [] 6.4

Page 235
ETS 300 325: March 1994

G.9 User Plane Protocols

Item of ISDN PCI N/P D I ref./note

13 Network layer protocol according to
ETS 300 080 [2]

N M []

P O []

14 Network layer protocol according to
ISO/IEC 8208

N M []

P O []

15 Transparent User Plane protocol N M []

P O []

16 Network layer protocol according to
network layer of T.70

N O []

P O []

17 Network layer protocol using Null
layer 3 with access to X.75 on layer
2

N O []

P O []

18 Network layer protocol using Null
layer 3 with transparent access to
HDLC framing

N O []

P O []

G.10 Miscellaneous features

Item of ISDN PCI N/P D I ref./note

19 Transparent coding of facility
information element.

N O [] 5.3.3.2,

P O [] 5.3.3.2,

Page 236
ETS 300 325: March 1994

Annex H (normative): Static attribute content

This annex contains a complete description of the static attribute that a NAF shall provide. Rules to
establish these attributes are in relation with:

- protocol requirement;
- services.

H.1 Control plane static attribute sets

The basic document used for this annex is ETR 018 [9].

The attribute sets described below use following conventions:

Name: to be used with the ANcoCreateReq message;

BC: content of the BearerCap parameter, in hexadecimal octet;

LLC content of the LLC parameter, in hexadecimal octet - decimal in parenthesis;

HLC: content of the HLC parameter - decimal in parenthesis.

H.1.1 Generic circuit bearer service

H.1.1.1 Speech

Name : "SPEECH_A-LAW"

BearerCap : 80 90 A3

LLC : Not used

HLC : Not used

Name : 'SPEECH_µ-LAW'

BearerCap : 80 90 A2

LLC : Not used

HLC : Not used

H.1.1.2 Unrestricted digital information

Name : 'UNRESTRICTED'

BearerCap : 88 90

LLC : Not used

HLC : Not used

Page 237
ETS 300 325: March 1994

H.1.1.3 Restricted digital information

Name : 'UNRESTRICTED/56'

BearerCap : 88 90 01 8F

LLC : Not used

HLC : Not used

H.1.1.4 3,1 Khz audio information transfer

Name : 'AUDIO_A-LAW'

BearerCap : 90 90 A3

LLC : Not used

HLC : Not used

Name : 'AUDIO_µ-LAW'

BearerCap : 90 90 A2

LLC : Not used

HLC : Not used

H.1.2 Packet mode bearer service

Name : 'D_CHANNEL_HDL'

BearerCap : 88 C0 C6 E6

LLC : Not used

HLC : Not used

Page 238
ETS 300 325: March 1994

H.1.3 Teleservices

Name : 'TELEPHONYA_LAW'

BearerCap : 80 90 A3

LLC : Not used

HLC : Standard = 0
 Identification = 1

Name : 'TELEPHONYµ_LAW'

BearerCap : 80 90 A2

LLC : Not used

HLC : Standard = 0
 Identification = 1

Name : 'TELEFAX_G4'

BearerCap : 88 90

LLC : Depending on Terminal Equipment: octet 3a. Not used: octet 4 and 5.
Octet 6 (layer 2) = 0D (13)
Octet 7 (layer 3) = 07

HLC : Standard = 0
 Identification = 21 (33)

H.2 User Plane static attribute sets

The attribute sets described below use following conventions:

- Name shall be used with the ANcoCreateReq message;
- all numeric values are in decimal.

Name : U_TELEMATIC_TERM
WindowSize : 2
PacketSIze : 128 (byte)
U3Protocol : ETS 300 080
L3ConnectionMode : DXE
L3TwoWayVCCount : local arrangement
L3IncomingVCCount : 0
L3OutgoingVCCount : 0
L2ConnectionMode : Auto
L2WindowSize : 7
L2FrameSize : 128 (byte)
L2XID : none

Page 239
ETS 300 325: March 1994

Annex J (informative): Operating system implementation coding samples

These samples present a way to implement the exchange mechanism function call from the PUF point of
view.

J.1 Sample DOS 'C' Code

/**
This library code may be linked to a PUF to allow uniform access to multiple NAFs. The access to the
different NAFs by use of an unique ExID is achieved by the use of a local table, which allows MAX_EXID
entries.
***/
/*
 * Include files
 */
#include <dos.h>
#include <fcntl.h>
#include <memory.h>
#include <malloc.h>
#include <stdio.h>

/*
 * General typedefs
 */
typedef void (* PFRV) (); /* Pointer to Function Returning Void */
typedef short int (far * FPFRS) (); /* Far Pointer to Function Returning Short */
typedef void (far * FPFRV) (); /* Far Pointer to Function Returning Void*/
typedef int (far * FPFRI) (); /* Far Pointer to Function Returning Int */

/*
 * Mapping of generic type definitions
 */

typedef short int PCI_INTEGER;
typedef char far * PCI_BYTEARRAY;
typedef short int PCI_EXID;
typedef FPFRI PCI_HANDLE;
typedef FPFRV PCI_PROCEDURE;

/*
* Definition of function codes
*/

#define PCIGETPROPERTY (short) (1)
#define PCIREGISTER (short) (2)
#define PCIDEREGISTER (short) (3)
#define PCIPUTMESSAGE (short) (4)
#define PCIGETMESSAGE (short) (5)
#define PCISETSIGNAL (short) (6)

/*
 * Error definitions
 */

#define E_DEVICE_DRIVER_NOT_FOUND 128
#define E_DEVICE_DRIVER_CONTROL 128
#define E_NAF_NOT_FOUND 130
#define E_NAF_INVALID_ADDRESS 130
#define E_TOO_MANY_ASSOCIATIONS 133
#define E_INVALID_EXCHANGE_ID 136

Page 240
ETS 300 325: March 1994

/*
 * Other definitions
 */

#define SUCCESS 0
#define MAX_EXID 32 /* allow 32 PUF_NAF associations */

/*
 * Structures
 */

struct pci_mpb {
PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;

};

struct pci_register { /* structure containing registering info */
PCI_INTEGER PUFVersion; /* optional: give PUF version */
PCI_INTEGER PUFType; /* optional: give PUF type */
PCI_INTEGER MaxMsgSize; /* return: max size of a message */

};

struct pci_opsys { /* structure containing registering info */
short intMaxNCOCount; /* optional: give max count of NCOs */
short intMaxPacketSize;/* optional: give expected max size and */
short intMaxPacketCount; /* max count of packets to buffer */
long int AddBufferSize; /* optional: give to NAF size and */
void far * AddBufferSpace; /* pointer to additional buffer */
long int BufferNeeded; /* return: amount of add buffer needed */

};

struct loc_exid_map { /* locally used structure for ExIDs */
PCI_HANDLE pci_handle;
PCI_EXID exchange_id;

};

/*
* Functional constants
*/
const char PCIsign[8]="ISDN PCI";

/*
 * Local variables
 */
static struct loc_exid_map _exid_map[MAX_EXID]; /* table holding MAX_EXID ExID entries */
static short int _exid_cnt = MAX_EXID; /* count of free places inside ExID table */

Page 241
ETS 300 325: March 1994

/***
PciGetHandles : Asks the "PCIDD$" device driver for a list of available

PCI-Handles (NAF entry points).
Returns available PCI-Handles into the given PCIHandles buffer.
The maximum amount of PCI-Handles requested is given in MaxHandles.
Function will fail, if MaxHandles is less than the Handles available in the driver.

***/
short int PciGetHandles (short int MaxHandles,

FPFRI * PCIHandles,
short int * ActualHandles)

{
short int fildes; /* file descripror */
union _REGS regs;
struct _SREGS segregs;

/* open the driver */
if (_dos_open ("PCIDD$", _O_RDWR, &fildes) != SUCCESS)

return E_DEVICE_DRIVER_NOT_FOUND; /* device driver not accessible; return error */

/* prepare IOCTL read from device driver */
_segread (&segregs);
segregs.ds = FP_SEG (PCIHandles); /* set-up segment address */
regs.x.dx = FP_OFF (PCIHandles); /* and offset */
regs.x.cx = MaxHandles * sizeof(PCI_HANDLE);
regs.x.bx = fildes; /* set dos file handle */
regs.x.ax = 0x4402; /* IOCTL read from character device */

/* issue IOCTL read from device driver */
_intdosx (®s, ®s, &segregs);

/* close the driver */
_dos_close (fildes);

/* check for error */
if (regs.x.cflag & 1) /* check processors carry flag */

return E_DEVICE_DRIVER_CONTROL; /* error has occurred; return error */

/* Successful operation. Compute count of PCI-Handles received */
*ActualHandles = regs.x.ax / sizeof(PCI_HANDLE);

return SUCCESS;
} /* End of PciGetHandles() */

Page 242
ETS 300 325: March 1994

/***
PciGetProperty : Asks the NAF for it's properties, which is a list of TLV coded topics.

Returns the properties into the given Property buffer.
The maximum size of the Property buffer is given in MaximumSize.
Function will fail, if MaximumSize is less than the size of the Property the
NAF can deliver.

***/

short int PciGetProperty (FPFRI PCIHandle,
short int MaximumSize,
char * Property,
short int * ActualSize)

{
register short int error;
unsigned char far * signature;

/* Check if NAF is available */
if (PCIHandle == NULL)

return E_NAF_INVALID_ADDRESS; /* NAF inaccessible, invalid address */

/* compute address of signature and check it */
signature = (unsigned char far *) PCIHandle - sizeof(PCIsign);
if (_fmemcmp (PCIsign, signature, sizeof(PCIsign) != SUCCESS))

return E_NAF_NOT_FOUND; /* NAF inaccessible invalid signature */

/* Call the NAF to obtain the property information */
error = (*PCIHandle) (PCIGETPROPERTY,

MaximumSize,
(char far *) Property,
(short int far *) ActualSize);

return error;
} /* End of PciGetProperty() */

/***
PciRegister : Tries to associate calling PUF with selected NAF.

Delivers the ExID, which has to be used in subsequent calls.
Two structures have to be provided by the calling PUF:
- The PCIRegisterInfo and
- the PCIOpSysInfo structure.

***/

short int PciRegister (FPFRI PCIHandle,
struct pci_register * PCIRegisterInfo,
struct pci_opsys * PCIOpSysInfo,
short int * ExID)

{
register short int error;
register short int exchange_id;
unsigned char far * signature;
struct loc_exid_map *exid_map; /* dynamic pointer to local _exid_map tab */

/* Check if NAF is available */
if (PCIHandle == NULL)

return E_NAF_INVALID_ADDRESS; /* NAF inaccessible, invalid address */

/* compute address of signature and check it */
signature = (unsigned char far *) PCIHandle - sizeof(PCIsign);
if (_fmemcmp (PCIsign, signature, sizeof(PCIsign) != SUCCESS))

return E_NAF_NOT_FOUND; /* NAF inaccessible invalid signature */

Page 243
ETS 300 325: March 1994

/* check if there is still room in our local _exid_map table */
if (! _exid_cnt)

return E_TOO_MANY_ASSOCIATIONS; /* Indicate table exhausted */

/* Call the NAF to inform it of a new association PUF */
error = (*PCIHandle) (PCIREGISTER,

(struct pci_register far *) PCIRegisterInfo,
(struct pci_opsys far *) PCIOpSysInfo,
(short int far *) ExID);

if (! error)
{
/* Association was successful; record it in local table */
exchange_id = 0;
exid_map = &_exid_map[0]; /* setup pointer into local _exid_map table */
while (exid_map->pci_handle)

{
exid_map++;
exchange_id += 1;
}

exid_map->exchange_id = *ExID;
exid_map->pci_handle = PCIHandle;
ExID = exchange_id; / compute and set Exchange-ID */
_exid_cnt -= 1;
}

return error;
} /* End of PciRegister() */

/***
PciDeregister : Terminates an existing association wit a NAF.

The ExID of an existing association has to be provided.
***/

short int PciDeregister (PCI_EXID ExID)
{
register short int error;
struct loc_exid_map *exid_map; /* dynamic pointer to local _exid_map tab */

/* Check if ExID is valid and setup pointer into local _exid_map table */
exid_map = &_exid_map[ExID];
if (ExID < 0 || ExID >= MAX_EXID || ! exid_map->pci_handle)

return E_INVALID_EXCHANGE_ID;

/* Call the NAF to inform it of the end of the association */
error = (*exid_map->pci_handle) (PCIDEREGISTER,

exid_map->exchange_id);

/* delete association from local table */
exid_map->pci_handle = NULL;
_exid_cnt += 1;

return error;
} /* End of PciDeregister() */

Page 244
ETS 300 325: March 1994

/***
PciPutMessage : Transfers a Message and associated Data to the NAF.
***/

short int PciPutMessage (short int ExID,
struct pci_mpb * PCIMBP,
char * Message,
char * Data)

{
register short int error;
struct loc_exid_map *exid_map; /* dynamic pointer to local _exid_map tab */

/* Check if ExID is valid and setup pointer into local _exid_map table */
exid_map = &_exid_map[ExID];
if (ExID < 0 || ExID >= MAX_EXID || ! exid_map->pci_handle)

return E_INVALID_EXCHANGE_ID;
/* Call the NAF and provide the message */
error = (*exid_map->pci_handle) (PCIPUTMESSAGE,

exid_map->exchange_id,
(struct pci_mbp far *) PCIMBP,
(char far *) Message,
(char far *) Data);

return error;
} /* End of PciPutMessage() */
/***
PciGetMessage : Receives a Message and associated Data from the NAF.
***/

short int PciGetMessage (short int ExID,
struct pci_mpb * PCIMBP,
char * Message,
char * Data)

{
register short int error;
struct loc_exid_map *exid_map; /* dynamic pointer to local _exid_map tab */

/* Check if ExID is valid and setup pointer into local _exid_map table */
exid_map = &_exid_map[ExID];
if (ExID < 0 || ExID >= MAX_EXID || ! exid_map->pci_handle)

return E_INVALID_EXCHANGE_ID;

/* Call the NAF and receive the message */
error = (*exid_map->pci_handle) (PCIGETMESSAGE,

exid_map->exchange_id,
(struct pci_mbp far *) PCIMBP,
(char far *) Message,
(char far *) Data);

return error;
} /* End of PciGetMessage() */

Page 245
ETS 300 325: March 1994

/***
PciSetSignal : Hands the address of a SignalProcedure to the NAF.

The SignalProcedure then will receive notification on communication
events (i.e. Message available for retrieval)

***/

short int PciSetSignal (short int ExID,
short int Signal,
PFRV SignalProcedure)

{
register short int error;
struct loc_exid_map *exid_map; /* dynamic pointer to local _exid_map tab */

/* Check if ExID is valid and setup pointer into local _exid_map table */
exid_map = &_exid_map[ExID];
if (ExID < 0 || ExID >= MAX_EXID || ! exid_map->pci_handle)

return E_INVALID_EXCHANGE_ID;

/* Call the NAF to set the signal function */
error = (*exid_map->pci_handle) (PCISETSIGNAL,

exid_map->exchange_id,
(FPFRV) SignalProcedure);

return error;
} /* End of PciSetSignal() */

Page 246
ETS 300 325: March 1994

J.2 Sample Windows "C" code

The following code shows a sample implementation of PUF exchange functions for the Windows
environment. The sample is illustrated using "C" language:

/*

 * standard includes
 */
#include <windows.h>

/*
 * Basic types
 */
typedef short PCI_INTEGER;
typedef LPSTR PCI_BYTEARRAY;
typedef LPSTR PCI_HANDLE;
typedef struct {

HINSTANCE hDLLInstance;
PCI_INTEGER Exchange_Id;
} PCI_EXID;

typedef void (far pascal *PCI_PROCEDURE)();

/*
 * PCI Structures
 */
struct pci_mpb {

PCI_INTEGER MessageID;
PCI_INTEGER MessageMaximumSize;
PCI_INTEGER MessageActualUsedSize;
PCI_INTEGER DataMaximumSize;
PCI_INTEGER DataActualUsedSize;
};

typedef struct pci_mpb PCI_MPB;

struct pci_register { /* structure containing registering info */
PCI_INTEGER PUFVersion; /* optional: give PUF version */
PCI_INTEGER PUFType; /* optional: give PUF type */
PCI_INTEGER MaxMsgSize; /* return: max size of a message */

};

struct pci_opsys { /* structure containing registering info */
int DummyParameter; /* No specific requirement for WINDOWS */

};

/*
 * PCI defines
 */
#define PCI_HANDLE_LENGTH 128/* size of each handle in the buffer from PciGetHandles*/
#define PCI_E_SUCCESS 0
#define PCI_E_QUERY_ENTITY_NOT_AVAILABLE 128
#define PCI_E_INVALID_PCI_HANDLE 130
#define PCI_E_NAF_NOT_AVAILABLE 255

Page 247
ETS 300 325: March 1994

/*
//
/// PciGetHandles()
*/
PCI_INTEGER far PASCAL PciGetHandles (PCI_INTEGER MaxHandles,

PCI_HANDLE PCIHandles,
PCI_INTEGER far * ActualHandles)

{
int nafNumber;
int nafFound;
int size;
char keyName[20];
PCI_BYTEARRAY buffer;

buffer = PCIHandles;
for (nafNumber = 1, nafFound = 0; nafNumber <= MaxHandles; nafNumber++)

{
wsprintf(keyName, "pciDriver%d", nafNumber);
size = GetPrivateProfileString("DRIVERS", /* Section name*/

keyName, /* 'pciDriver'+1..n */
NULL, /* No default string needed */
buffer, /* Address where to put the result */
128, /* Maxi. size for the result */
"PCI.INI"); /* INI FileName */

if (size > 0)
{
nafFound++; /* One more NAF found */
buffer += 128;/* Next location for a PCIHandle (128 octets fixed size) */
}

}
*ActualHandles = nafFound;
}

Page 248
ETS 300 325: March 1994

/*
///
/// PciGetProperty()
*/
PCI_INTEGER far PASCAL PciGetProperty (PCI_HANDLE PCIHandle,

PCI_INTEGER MaximumSize,
PCI_BYTEARRAY Property,
PCI_INTEGER far * ActualSize)

{
PCI_INTEGER iReturnCode;
HINSTANCE hDLLInstance;
FARPROC lpfnGetProperty;

/* load the NAF's DLL */
hDLLInstance = LoadLibrary(PCIHandle);
if (hDLLInstance < HINSTANCE_ERROR)

return PCI_E_INVALID_PCI_HANDLE; /* error in LoadLibrary */

/* get the "PciGetProperty" entry point of the dll */
lpfnGetProperty = GetProcAddress(hDLLInstance, "PciGetProperty");
if (lpfnGetProperty == NULL)

{
FreeLibrary(hDLLInstance);
return PCI_E_NAF_NOT_AVAILABLE; /* error in GetProcAddress */
}

/* call the "PciGetProperty" entry point of the dll */
iReturnCode = lpfnGetProperty(PCIHandle, MaximumSize, Property, ActualSize);

/* free the DLL in any case */
FreeLibrary(hDLLInstance);

/* return with the DLL's return code */
return iReturnCode;
}

Page 249
ETS 300 325: March 1994

/*
///
/// PciRegister()
/// The PCIOpSysInfo is kept for compatibility only
*/
PCI_INTEGER far PASCAL PciRegister (PCI_HANDLE PCIHandle,

struct pci_register * PCIRegisterInfo,
struct pci_opsys * PCIOpSysInfo,
PCI_EXID far *ExID)

{
PCI_INTEGER iReturnCode;
FARPROC lpfnRegister;
HINSTANCE hDLLInstance;

/* load the NAF's DLL */
hDLLInstance = LoadLibrary(PCIHandle);
if (hDLLInstance < HINSTANCE_ERROR)

return PCI_E_INVALID_PCI_HANDLE; /* error in LoadLibrary */

/* put the DLL instance in ExID */
ExID->hDLLInstance = hDLLInstance;

/* get the "PciRegister" entry point of the dll */
lpfnRegister = GetProcAddress(hDLLInstance, "PciRegister");
if (lpfnRegister == NULL)

{ /* error in GetProcAddress */
FreeLibrary(hDLLInstance);
return PCI_E_NAF_NOT_AVAILABLE;
}

/* call the "PciRegister" entry point of the dll */
iReturnCode = lpfnRegister(PCIRegisterInfo, ExID);

if (iReturnCode != 0)
{ /* error in PciRegister : free the DLL */
FreeLibrary(hDLLInstance);
}

/* return with the DLL's return code */
return iReturnCode;
}

Page 250
ETS 300 325: March 1994

/*
///
/// PciDeRegister()
*/
PCI_INTEGER far PASCAL PciDeregister(PCI_EXID far *ExID)

{
PCI_INTEGER iReturnCode;
FARPROC lpfnDeregister;

/* get the "PciDeregister" entry point of the dll */
lpfnDeregister = GetProcAddress(ExID->hDLLInstance, "PciDeregister");
if (lpfnDeregister == NULL) /* error in GetProcAddress */

return PCI_E_NAF_NOT_AVAILABLE;

/* call the "PciDeRegister" entry point of the dll */

iReturnCode = lpfnDeregister(ExID);

/* free the DLL in any case */
FreeLibrary(ExID->hDLLInstance);

/* return with the DLL's return code */
return iReturnCode;
}

/*
///
/// PciPutMessage()
*/
PCI_INTEGER far PASCAL PciPutMessage(PCI_EXID far *ExID,

PCI_MPB far *PCIMBP,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data)

{
FARPROC lpfnPutMessage;

/* get the "PciPutMessage" entry point of the dll */
lpfnPutMessage = GetProcAddress(ExID->hDLLInstance, "PciPutMessage");
if (lpfnPutMessage == NULL) /* error in GetProcAddress */

return PCI_E_NAF_NOT_AVAILABLE;

/* call the "PciPutMessage" entry point of the dll */
/* and return with the DLL's return code */

return lpfnPutMessage(ExID, PCIMBP, Message, Data);
}

Page 251
ETS 300 325: March 1994

/*
///
/// PciGetMessage()
*/
PCI_INTEGER far PASCAL PciGetMessage(PCI_EXID far *ExID,

PCI_MPB far *PCIMBP,
PCI_BYTEARRAY Message,
PCI_BYTEARRAY Data)

{
FARPROC lpfnGetMessage;
/* get the "PciGetMessage" entry point of the dll */

lpfnGetMessage = GetProcAddress(ExID->hDLLInstance, "PciGetMessage");
if (lpfnGetMessage == NULL) /* error in GetProcAddress */

return PCI_E_NAF_NOT_AVAILABLE;

/* call the "PciGetMessage" entry point of the dll */
/* and return with the DLL's return code */

return lpfnGetMessage(ExID, PCIMBP, Message, Data);
}

/*
///
/// PciSetSignal()
*/
PCI_INTEGER far PASCAL PciSetSignal(PCI_EXID far *ExID,

PCI_INTEGER Signal,
PCI_PROCEDURE SignalProcedure)

{
FARPROC lpfnSetSignal;

/* get the "PciSetSignal" entry point of the dll */
lpfnSetSignal = GetProcAddress(ExID->hDLLInstance, "PciSetSignal");
if (lpfnSetSignal == NULL) /* error in GetProcAddress */

return PCI_E_NAF_NOT_AVAILABLE;

/* call the "PciSetSignal" entry point of the dll */
/* and return with the DLL's return code */

return lpfnSetSignal(ExID, Signal, SignalProcedure);
}

Page 252
ETS 300 325: March 1994

J.3 Sample UNIX "C" code

The PciGetHandles function call is not presented.

/*

 * Include files and basic definitions

 */

#include <stddef.h>

#include <fcntl.h>

#include <signal.h>

#include <stropts.h>

#include <errno.h>

#include <stdlib.h>

#define ERROR (-1) /* Error value */

#define Success (0) /* Success value */

/*

 * Basic types

 */

typedef int PCI_INTEGER;

typedef char * PCI_BYTEARRAY;

typedef int PCI_EXID;

typedef char * PCI_HANDLE;

typedef void (* PCI_PROCEDURE)();

Page 253
ETS 300 325: March 1994

/*

 * Structures

 */

struct pci_mpb {

PCI_INTEGER MessageID;

PCI_INTEGER MessageMaximumSize;

PCI_INTEGER MessageActualUsedSize;

PCI_INTEGER DataMaximumSize;

PCI_INTEGER DataActualUsedSize;

};

struct pci_register { /* structure containing registering info */
PCI_INTEGER PUFVersion; /* optional: give PUF version */
PCI_INTEGER PUFType; /* optional: give PUF type */
PCI_INTEGER MaxMsgSize; /* return: max size of a message */

};

struct pci_opsys { /* structure containing registering info */
int DummyParameter; /* No specific requirement for WINDOWS */

};

/*

 * Function definitions

 */

#define PCI_PROPERTY (('Z' << 8) | 1)

#define PCI_REGISTER (('Z' << 8) | 2)

#define PCI_DEREGISTER (('Z' << 8) | 3)

#define PCI_SETSIGNAL (('Z' << 8) | 4)

Page 254
ETS 300 325: March 1994

/***

 *** Functions

 ***/

/*
 * PciGetProperty function
 */

PCI_INTEGER PciGetProperty (PCIHandle, MaximumSize, NAFProperty, ActualSize)

PCI_HANDLE PCIHandle; /* char **/

PCI_INTEGER MaximumSize; /* int */

PCI_BYTEARRAY NAFProperty; /* char **/

PCI_INTEGER * ActualSize; /* int * */

{

register int filedes; /* filedescriptor */

struct strioctl strioct; /* stream message control part pointer */

ActualSize = ERROR; / preset with error value */

if ((filedes = open (PCIHandle, O_RDWR)) < Success)

return ERROR;

strioct.ic_cmd = PCI_PROPERTY;

strioct.ic_timout = 0;

strioct.ic_len = MaximumSize;

strioct.ic_dp = (char *) NAFProperty;

Page 255
ETS 300 325: March 1994

if (ioctl (filedes, I_STR, &strioct) == 0)

 {

*ActualSize = strioct.ic_len;

close (filedes);

return 0;

}

else

{

*ActualSize = 0;

close (filedes);

return errno;

}

}

Page 256
ETS 300 325: March 1994

/*
 * PciRegister function
 */

PCI_INTEGER PciRegister (PCIHandle, pci_register, pcidummy, ExID)

PCI_HANDLE PCIHandle; /* char **/

struct pci_register pciregister;

struct pci_opsys pcidummy;

PCI_EXID * ExID; /* int * */

{

struct strioctl strioctl;

struct pci_register_t {

int puf_version;

int puf_type;

} pci_reg;

pci_reg.puf_version = pciregister.PUFVersion;

pci_reg.puf_type = pciregister.PUFType;

strioctl.ic_cmd = PCI_REGISTER;

strioctl.ic_timout= 0;

strioctl.ic_len = sizeof (pci_reg);

strioctl.ic_dp = (char *) &pci_reg;

if ((*ExID = open (PCIHandle, O_RDWR)) == -1)

{

*ExID = 0;

return errno;

}

Page 257
ETS 300 325: March 1994

if ((pciregister.MaxMsgSize = ioctl (*ExID, I_STR, &strioctl)) < 0)

{

pciregister.MaxMsgSize = 0;

return errno;

}

else

{
return 0;

}

}

/*
 * PciDeregister function
 */

PCI_INTEGER PciDeregister (ExID)

PCI_EXID ExID; /* int */

{

struct strioctl strioctl;

strioctl.ic_cmd = PCI_DEREGISTER;

strioctl.ic_timout = 0;

strioctl.ic_len = 0;

strioctl.ic_dp = (char *) NULL;

if (ioctl (ExID, I_STR, &strioctl) == -1)

{

return errno;

}

else

{

close (ExID);

return 0;

}

}

Page 258
ETS 300 325: March 1994

/*
 * PciPutMessage function
 */

PCI_INTEGER PciPutMessage (ExID, PCIMPB, Message, Data)

PCI_EXID ExID; /* int */

struct pci_mpb * PCIMPB;

PCI_BYTEARRAY Message; /* char **/

PCI_BYTEARRAY Data; /* char **/

{

struct strbuf ctlbuf;

struct strbuf databuf;

char *buffer = NULL; /* pointer to a buffer, large enough to receive PCIMBP and Message
contents */

int nErr;

if (Message && ((char *)Message != (char *)PCIMPB + sizeof(struct pci_mpb)))

{

/* there is a Message not NULL, and PCIMPB Band Message are not contiguous
 in memory,Have to build a buffer where PCIMPB is followed by the Message content */

/* Here a memory allocation process may take place */

buffer = (char *) (malloc(sizeof(struct pci_mpb) + PCIMPB->MessageActualUsedSize));

memcpy (buffer, PCIMPB, sizeof(struct pci_mpb));

memcpy (buffer + sizeof(struct pci_mpb), Message, PCIMPB->MessageActualUsedSize);

ctlbuf.buf = buffer;

ctlbuf.len = PCIMPB->MessageActualUsedSize + sizeof(struct pci_mpb);

}

else

{

/* either there is no Message, or the PCIMPB and the Message are contiguous in memory */

ctlbuf.buf = (char *)PCIMPB;

ctlbuf.len = Message ? PCIMPB->MessageActualUsedSize + sizeof(struct pci_mpb)
: sizeof(struct pci_mpb);

}

Page 259
ETS 300 325: March 1994

databuf.buf = Data;

databuf.len = Data ? PCIMPB->DataActualUsedSize : 0;

if (putmsg (ExID, &ctlbuf, &databuf, 0) != 0)

{

nErr = errno; /* errno contents the error code
 */

}

else

{

 nErr = 0;

}

if (buffer != NULL) free(buffer);

return nErr;

}

/*
 * PciGetMessage function
 */

PCI_INTEGER PciGetMessage (ExID, PCIMPB, Message, Data)

PCI_EXID ExID; /* int */

struct pci_mpb * PCIMPB;

PCI_BYTEARRAY Message; /* char **/

PCI_BYTEARRAY Data; /* char **/

{

struct strbuf ctlbuf;

int flags;

struct strbuf databuf;

char *buffer = NULL; /* pointer to a buffer,large enough to receive PCIMBP and the Message
content */

int nErr = 0;

Page 260
ETS 300 325: March 1994

if (Message && ((char *)Message != (char *)PCIMPB + sizeof(struct pci_mpb)))

{

/* there is a Message not NULL and, PCIMPB and Message are not contiguous in memory,

have to reserve a buffer where PCIMBP can be followed by the Message content */

/* Here a memory allocation process may take place */

buffer = (char *) (malloc(sizeof(struct pci_mpb) + PCIMPB->MessageMaximumSize));

ctlbuf.buf = buffer;

}

else {

/* either there is no Message, or the PCIMPB and the Message are contiguous in memory */

ctlbuf.buf = (char *)PCIMPB;

}

ctlbuf.maxlen = Message ? PCIMPB->MessageMaximumSize + sizeof(struct
pci_mpb):sizeof(struct pci_mpb);

databuf.buf = Data;

databuf.maxlen = Data ? PCIMPB->DataMaximumSize : 0;

if (getmsg (ExID, &ctlbuf, &databuf, &flags) != 0)

{

/* Error condition, errno will be set */

nErr = errno;

}

else {

/* Operation OK */

if (ctlbuf.len != -1 && ctlbuf.len >= sizeof(struct pci_mpb)) {

/* Message, possibly of size 0 is present */

PCIMPB->MessageActualUsedSize = ctlbuf.len - sizeof(struct pci_mpb);

if (Message && ((char *)Message != (char *)PCIMPB + sizeof(struct pci_mpb)))

{

/* there is a Message not NULL and, PCIMPB and Message are not
contiguous in memory, a buffer where PCIMPB can be followed
by the Message content, has been used */

memcpy (PCIMPB, buffer, sizeof(struct pci_mpb));

Page 261
ETS 300 325: March 1994

memcpy (Message,(buffer + sizeof(struct pci_mpb)), (ctlbuf.len -
sizeof(struct pci_mpb)));

}

else

{

/* PCIMPB and Message are contiguous in memory, no more buffer used */

Message = (char *) (PCIMPB + sizeof(struct pci_mpb));

}

}

else

{

/* No Message present or too small message: error at least PCIMPB
should be there */

PCIMPB->MessageID = 0;

PCIMPB->MessageActualUsedSize = 0;

}

if (databuf.len != -1)

{

/* Data block, possibly of size 0 is present */

PCIMPB->DataActualUsedSize = databuf.len;

}

else

{

/* No Data present */

PCIMPB->DataActualUsedSize = 0;

}

}

if (buffer != NULL) free(buffer);

return nErr;

}

Page 262
ETS 300 325: March 1994

/*
 * PciSetSignal function
 */

PCI_INTEGER PciSetSignal (ExID, Signal, SignalProcedure)

PCI_EXID ExID; /* int */

PCI_INTEGER Signal; /* int */

PCI_PROCEDURE SignalProcedure; /* void (*) () */

{

int Signal_options;

if (Signal == 0)

{

Signal_options = 0;

if (ioctl (ExID, I_SETSIG, &Signal_options) == -1)

return errno;

signal (SIGPOLL, SIG_DFL);

return 0;

}

else

{

Signal_options = S_MSG;

if (ioctl (ExID, I_SETSIG, &Signal_options) == -1)

return errno;

signal (SIGPOLL, SignalProcedure);

return 0;

}

}

Page 263
ETS 300 325: March 1994

Annex K (informative): TLV Coder/decoder sample

/*
///
///
/// SAMPLES
///
/// TLV coder and decoder
///
///
*/

#include <memory.h>
#include <stdarg.h>

/*
 * Definition of Types
 */
typedef int BOOL;
#define FALSE 0
#define TRUE 1

#define LG_MAX_MESSAGE 128

/* Definition of structures */
struct sParameter /* Intermediate structure which receive the parameter to be added */

{
int iMessageLength;
char scMessage[LG_MAX_MESSAGE];
};

/*
//
///
/// Function : AddOctetParameter
///
/// Rule : Add an octet parameter in a message
///
/// Parameters :
/// structure sParameter pointer
/// parameter type
/// parameter value
///
/// Return :
/// TRUE : Success
/// FALSE : Error during processing
///
//
*/
BOOL AddOctetParameter(struct sParameter *pMessage,

unsigned char cType,
unsigned char cValue)

{
if (pMessage->iMessageLength + 3 > LG_MAX_MESSAGE) /* Buffer is too small */

{
/* Process message size error */
return FALSE;
}/* if */

Page 264
ETS 300 325: March 1994

/* TLV coding */
pMessage->scMessage[pMessage->iMessageLength++] = cType;
pMessage->scMessage[pMessage->iMessageLength++] = 1; /* length = 1 for octet */
pMessage->scMessage[pMessage->iMessageLength++] = cValue; /* content */

/* Success */
return TRUE;
}/* AddOctetParameter */

/*
//
///
/// Function : AddStringParameter
///
/// Rule : Add a string (octet-string) parameter in a message
///
/// Parameters :
/// structure sParameter pointer
/// parameter type
/// parameter length
/// parameter value (pointer)
///
/// Return :
/// TRUE : Success
/// FALSE : Error during processing
///
//
*/
BOOL AddStringParameter(struct sParameter *pMessage,

unsigned char cType,
int iLg,
unsigned char *lpValue)

{
if (iLg == 0) return FALSE;

if (pMessage->iMessageLength + iLg + 2 > LG_MAX_MESSAGE) /* Buffer is too small */
{
/* Process message size error */
return FALSE;
}/* if */

/* TLV coding */
pMessage->scMessage[pMessage->iMessageLength++] = cType; /* Add the type */
pMessage->scMessage[pMessage->iMessageLength++] = iLg; /* Length */
memcpy(pMessage->scMessage+pMessage->iMessageLength, lpValue, iLg);/* Value */
pMessage->iMessageLength += iLg;

/* Success */
return TRUE;
}/* AddStringParameter */

Page 265
ETS 300 325: March 1994

/*
//
///
/// Function : ExtractParameter
///
/// Rule : Find a specific parameter and provide its location
///
/// Parameters :
/// address to the message
/// current message length
/// parameter type we are looking for
/// pointer of pointer where to find value
/// pointer of an integer where to find the length of the parameter
///
/// Return :
/// TRUE : Success
/// FALSE : Error during processing
///
//
*/
BOOL ExtractParameter(unsigned char *lpMessage,

unsigned int iLgMessage, unsigned char cType,
unsigned char * *lplpValue, unsigned int *lpiLgValue)

{
while (iLgMessage > 0) /* for all message parameters */

{
if (*lpMessage != cType)

{
/* process the next parameter */
iLgMessage -= lpMessage[1] + 2;
lpMessage += lpMessage[1] + 2;
continue;
}/* if */

/* the parameter type is found update information for the caller */
*lplpValue = lpMessage + 2;
*lpiLgValue = lpMessage[1];

/* Success */
return TRUE;
}/* while */

return FALSE;
}/* ExtractParameter */

Page 266
ETS 300 325: March 1994

History

Document history

March 1994 First Edition

February 1996 Converted into Adobe Acrobat Portable Document Format (PDF)

	Foreword
	Introduction
	1	Scope
	2	Normative references
	3	Definitions and abbreviations
	3.1	Definitions
	3.2	Abbreviations

	4	Reader's guidance and overview
	4.1	Reader's guide
	4.2	How to use this ETS
	4.3	Overview
	4.3.1	Background
	4.3.2	Functional overview
	4.3.3	Connection management
	4.3.4	The planes
	4.3.5	Properties
	4.3.6	External equipment (i.e. telephony)
	4.3.7	ISDN accesses and the multi-applications environment
	4.3.8	Exchange Mechanism

	5	Functional model
	5.1	Introduction
	5.2	Architecture
	5.2.1	ISDN PCI and its components
	5.2.2	ISDN PCI architecture
	5.2.3	OSI location
	5.2.4	Co-ordination cases

	5.3	Functionality
	5.3.1	Introduction
	5.3.2	Resource management
	5.3.2.1	Attribute sets
	5.3.2.2	Network connection objects
	5.3.2.3	Support of external equipment
	5.3.2.4	Support of security features
	5.3.2.5	Support of manufacturer specific features

	5.3.3	Connection management
	5.3.3.1	Connection set-up and removal
	5.3.3.2	Support of supplementary services

	5.3.4	Data management
	5.3.4.1	Connection via the Network layer Message Access (NMA)
	5.3.4.2	Connection via the Transparent Message Access (TMA)

	5.4	Relating functionality to planes
	5.4.1	Optional features
	5.4.2	Administration Plane
	5.4.3	Control Plane
	5.4.4	User Plane
	5.4.4.1	The transparent access
	5.4.4.2	The network layer access

	5.5	PUF NAF interactions
	5.6	Total interaction overview
	5.7	Identifiers
	5.8	Error handling
	5.8.1	Overview
	5.8.2	Function error handling
	5.8.3	Message error handling

	6	Description of ISDN PCI messages
	6.1	Conventions
	6.1.1	Address conventions
	6.1.2	Provision of information
	6.1.3	Message conventions
	6.1.4	Parameter conventions
	6.1.4.1	Parameter ordering
	6.1.4.2	Parameter repetition
	6.1.4.3	Parameter checking

	6.1.5	Default philosophy

	6.2	Administration Plane messages
	6.2.1	ACreateNCOReq
	6.2.2	NCOType and conditional parameter specification
	6.2.3	ACreateNCOCnf
	6.2.4	ADestroyNCOReq
	6.2.5	ADestroyNCOCnf
	6.2.6	AErrorInd
	6.2.7	AGetNCOInfoReq
	6.2.8	AGetNCOInfoCnf
	6.2.9	ASecurityReq
	6.2.10	ASecurityCnf
	6.2.11	AManufacturerReq
	6.2.12	AManufacturerInd

	6.3	Control Plane messages
	6.3.1	Sequencing of Control Plane messages
	6.3.2	CAlertReq
	6.3.3	CAlertInd
	6.3.4	CConnectReq
	6.3.5	CConnectInd
	6.3.6	CConnectRsp
	6.3.7	CConnectCnf
	6.3.8	CDisconnectReq
	6.3.9	CDisconnectInd
	6.3.10	CDisconnectRsp
	6.3.11	CDisconnectCnf
	6.3.12	CProgressInd
	6.3.13	CStatusInd
	6.3.14	CSetupAckInd
	6.3.15	CConnectInfoReq
	6.3.16	CProceedingInd
	6.3.17	CUserInformationReq
	6.3.18	CUserInformationInd
	6.3.19	CCongestionControlReq
	6.3.20	CCongestionControlInd
	6.3.21	CSuspendReq
	6.3.22	CSuspendCnf
	6.3.23	CResumeReq
	6.3.24	CResumeCnf
	6.3.25	CNotifyInd
	6.3.26	CFacilityReq
	6.3.27	CFacilityInd
	6.3.28	CExtEquipAvailabalityInd
	6.3.29	CExtEquipBlockDiallingInd
	6.3.30	CExtEquipKeyPressedInd
	6.3.31	CExtEquipOffHookInd
	6.3.32	CExtEquipOnHookInd
	6.3.33	User to User information exchange
	6.3.34	Implementation of supplementary services
	6.3.34.1	Multiple Subscriber Number (MSN)
	6.3.34.2	Direct Dialling In (DDI)
	6.3.34.3	Calling Line Identification Presentation (CLIP)
	6.3.34.4	Calling Line Identification Restriction (CLIR)
	6.3.34.5	Subaddressing (SUB)
	6.3.34.6	Advice of Charge during call (AOC-D)
	6.3.34.7	Advice of Charge at end of call (AOC-E)
	6.3.34.8	Call Waiting (CW)
	6.3.34.9	Connected Line Identification Presentation (COLP)
	6.3.34.10	Connected Line Identification Restriction (COLR)

	6.4	User Plane messages
	6.4.1	Sequencing of User Plane messages
	6.4.2	Co-ordination function
	6.4.3	U3ConnectReq
	6.4.4	U3ConnectInd
	6.4.5	U3ConnectRsp
	6.4.6	U3ConnectCnf
	6.4.7	U3DisconnectReq
	6.4.8	U3DisconnectInd
	6.4.9	U3DataReq
	6.4.10	U3DataInd
	6.4.11	U3ExpeditedDataReq
	6.4.12	U3ExpeditedDataInd
	6.4.13	U3ResetReq
	6.4.14	U3ResetInd
	6.4.15	U3ResetRsp
	6.4.16	U3ResetCnf
	6.4.17	U3DataAcknowledgeReq
	6.4.18	U3DataAcknowledgeInd
	6.4.19	U3ReadyToReceiveReq
	6.4.20	U3ReadyToReceiveInd
	6.4.21	U3ErrorInd
	6.4.22	U1DataReq
	6.4.23	U1DataInd
	6.4.24	U1ErrorInd

	6.5	Information presentation
	6.6	Message parameters
	6.6.1	Algorithm
	6.6.2	Bilateral closed user group (Bcug)
	6.6.3	BearerCap
	6.6.4	Bit_DQM
	6.6.5	CalledDTEAddress
	6.6.6	CalledDTEAddressExt
	6.6.7	CalledNumber
	6.6.8	CalledSubaddress
	6.6.9	CallingDTEAddress
	6.6.10	CallingDTEAddressExt
	6.6.11	CallingNumber
	6.6.12	CallingSubaddress
	6.6.13	CAttributeName
	6.6.14	CauseToNAF
	6.6.15	CauseToPUF
	6.6.16	CDirection
	6.6.17	ChannelIdentification
	6.6.18	ChargingInfo
	6.6.19	CompletionStatus
	6.6.20	CongestionLevel
	6.6.21	ConnectedNumber
	6.6.22	ConnectedSubaddress
	6.6.23	DateTime
	6.6.24	Display
	6.6.25	ExtEquipAvailability
	6.6.26	ExtEquipBlockDialling
	6.6.27	ExtEquipKeypressed
	6.6.28	ExtEquipName
	6.6.29	ExpeditedData
	6.6.30	Facility
	6.6.31	FacilityData
	6.6.32	FastSelect
	6.6.33	GroupID
	6.6.34	High Layer Compatibility (HLC)
	6.6.35	IdleFlag
	6.6.36	Key
	6.6.37	Keypad
	6.6.38	L2ConnectionMode
	6.6.39	L2FrameSize
	6.6.40	L2WindowSize
	6.6.41	L2XID
	6.6.42	L3ConnectionMode
	6.6.43	L3IncomingVCCount
	6.6.44	L3OutgoingVCCount
	6.6.45	L3TwoWayVCCount
	6.6.46	Low Layer Compatibility (LLC)
	6.6.47	ManufacturerCode
	6.6.48	MoreData
	6.6.49	NCOID
	6.6.50	NCOType
	6.6.51	NotificationIndicator
	6.6.52	PacketSize
	6.6.53	ProgressIndicator
	6.6.54	QOSParameters
	6.6.55	ReadyFlag
	6.6.56	RequestID
	6.6.57	ReceiptConfirm
	6.6.58	RespondingDTEAddress
	6.6.59	RespondingDTEAddressExt
	6.6.60	SelectorID
	6.6.61	TEI
	6.6.62	U3Protocol
	6.6.63	UAttributeName
	6.6.64	UDirection
	6.6.65	UserData
	6.6.66	UserToUserInfo
	6.6.67	WindowSize
	6.6.68	X213Cause
	6.6.69	X213Origin
	6.6.70	X25Cause
	6.6.71	X25Diagnostic
	6.6.72	AttributeSet Parameters
	6.6.73	Administration AttributeSet Parameters
	6.6.74	AddressSet Parameter

	6.7	Selection criteria
	6.7.1	NCO selection
	6.7.1.1	Control Plane information elements
	6.7.1.2	User Plane information element (layer 3)
	6.7.1.2.1	Packet size negotiation
	6.7.1.2.2	Window size negotiation
	6.7.1.2.3	Effective packet size and window size negotiation

	6.7.2	Action if no NCO available
	6.7.2.1	Control Plane incoming call
	6.7.2.2	User Plane incoming call

	6.8	Error checking and codes
	6.8.1	Administration Plane
	6.8.2	Control Plane
	6.8.2.1	Invalid state for message
	6.8.2.2	Mandatory parameters
	6.8.2.3	Optional Parameter Content Error

	6.8.3	Errors in facility requests
	6.8.4	User Plane (NMA)
	6.8.4.1	Invalid Use of Receipt Confirmation Service
	6.8.4.2	Invalid Use of Confirmation request on U3DataReq
	6.8.4.3	Invalid length of U3DataReq UserData parameter
	6.8.4.4	Invalid Use of Expedited Data
	6.8.4.5	Invalid Issuing of messages while in Reset state
	6.8.4.6	Invalid Use of Bit_DQM (association between More and Qualifier bits) parameters on subsequent U3DataReq messages
	6.8.4.7	Other errors

	6.8.5	TMA User Plane
	6.8.5.1	Mandatory Parameters Missing
	6.8.5.2	Mandatory Parameter Content Error
	6.8.5.3	Unrecognised Parameter
	6.8.5.4	Overflow of Incoming Data

	6.8.6	Function Return Codes
	6.8.7	Administration Plane return code
	6.8.8	Control Plane causes
	6.8.9	User Plane causes
	6.8.10	TMA User Plane causes

	7	Exchange method
	7.1	Registration phase
	7.1.1	Overview
	7.1.2	PciGetHandles
	7.1.3	PciGetProperty
	7.1.4	PciRegister

	7.2	Deregistration phase
	7.2.1	PciDeregister

	7.3	Conversation phase
	7.3.1	Sending messages
	7.3.2	Receiving messages
	7.3.3	Receiving messages using the polling method
	7.3.4	Receiving messages using signal method
	7.3.5	PCI Message Parameter Block (PciMPB)
	7.3.6	PciPutMessage
	7.3.7	PciGetMessage
	7.3.8	PciSetSignal

	8	Security
	8.1	General aspects of security in ISDN
	8.2	Security in the ISDN€PCI
	8.3	Increasing security in the ISDN€PCI

	Annex A (informative):	Bibliography
	Annex B (normative):	Mapping between ISDN PCI messages and Protocols supported
	B.1	Control Plane messages
	B.2	Control Plane parameters
	B.3	User Plane messages

	Annex C (normative):	Telephony
	C.1	Type 1 external equipment
	C.2	Type 2 external equipment
	C.3	Type 3 external equipment
	C.4	Type 4 external equipment
	C.5	Type 5 external equipment

	Annex D (normative):	CCITT Recommendation X.25 Usage
	D.1	Parameter Values for CCITT Recommendation X.25 Use
	D.2	Disconnection of ISDN channel with established CCITT Recommendation X.25 Connections

	Annex E (informative):	NAF development guidelines
	E.1	NAF SDL diagrams
	E.2	Information provided by the NAF
	E.3	Co-ordination function - outgoing User Plane NMA call
	E.4	Co-ordination function - incoming ISDN call
	E.5	Suspending/resuming calls
	E.6	Supplementary services
	E.7	Error management
	E.7.1	Function return codes
	E.7.2	Administration Plane
	
	E.7.3	Control Plane
	E.7.4	NMA User Plane
	E.7.5	TMA User Plane

	E.8	NAF configuration
	E.8.1	Global Configuration
	E.8.2	System configuration parameters
	E.8.3	Control Plane configuration
	E.8.4	User Plane NMA configuration
	E.8.5	User Plane TMA configuration

	E.9	Buffer management
	E.10	Extension of ISDN-PCI
	E.10.1	Basic mechanism for extension
	E.10.2	Manufacturer specific messages
	E.10.3	Message coding
	E.10.4	Extension of supported protocols
	E.10.4.1	Support of new "CCITT Recommendation X.213" like protocols
	E.10.4.2	Support of different type of protocols

	Annex F (normative):	Operation system specific implementation
	F.1	DOS
	F.1.1	Mechanism
	F.1.2	Mapping of generic types and constants
	F.1.3	Description of functions
	F.1.3.1	PciGetHandles
	F.1.3.2	PciGetProperty
	F.1.3.3	PciRegister
	F.1.3.4	PciDeregister
	F.1.3.5	PciPutMessage
	F.1.3.6	PciGetMessage
	F.1.3.7	PciSetSignal

	F.2	Windows
	F.2.1	Mechanism
	F.2.2	Implementation of basic type
	F.2.3	C Function prototypes
	F.2.4	Description of functions
	F.2.4.1	PciGetHandles
	F.2.4.2	PciGetProperty
	F.2.4.3	PciRegister
	F.2.4.4	PciDeregister
	F.2.4.5	PciPutMessage
	F.2.4.6	PciGetMessage
	F.2.4.7	PciSetSignal
	F.2.4.7.1	Signal mechanism procedure
	F.2.4.7.2	User message mechanism procedure
	F.2.4.7.3	De-activation mechanism

	F.3	Unix
	F.3.1	Mechanism
	F.3.2	Implementation of basic types
	F.3.3	Parameter passing conventions
	F.3.4	Definition of types, constants and function-prototypes
	F.3.5	Adaptation to the STREAMS kernel mechanism
	F.3.5.1	General
	F.3.5.2	Communication between PUF exchange functions and NAF stream driver
	F.3.5.3	Special considerations

	F.3.6	Description of functions
	F.3.6.1	PciGetHandles
	F.3.6.2	PciGetProperty
	F.3.6.3	PciRegister
	F.3.6.4	PciDeregister
	F.3.6.5	PciPutMessage
	F.3.6.6	PciGetMessage
	F.3.6.7	PciSetSignal

	F.4	Availability of NAF's PCI_HANDLE
	F.4.1	DOS
	F.4.1.1	Declaration action
	F.4.1.2	Extraction action

	F.4.2	Windows
	F.4.2.1	Declaration action
	F.4.2.2	Extraction action

	F.4.3	UNIX
	F.4.3.1	Declaration action
	F.4.3.2	Extraction action

	Annex G (normative):	PCI ICS Proforma
	G.1	Copyright release for PCI ICS Proforma
	G.2	Introduction
	G.3	PCI ICS Proforma cover page
	G.3.1	Identification of PCI ICS
	G.3.2	Identification of implementation
	G.3.3	Identification of the system supplier
	G.3.4	Global statement of conformance

	G.4	Instructions for completing the PCI ICS Proforma
	G.5	Exchange Mechanism
	G.6	Administration Plane
	G.7	Control Plane
	G.8	User Plane
	G.9	User Plane Protocols
	G.10	Miscellaneous features

	Annex H (normative):	Static attribute content
	H.1	Control plane static attribute sets
	H.1.1	Generic circuit bearer service
	H.1.1.1	Speech
	H.1.1.2	Unrestricted digital information
	H.1.1.3	Restricted digital information
	H.1.1.4	3,1 Khz audio information transfer

	H.1.2	Packet mode bearer service
	H.1.3	Teleservices

	H.2	User Plane static attribute sets

	Annex J (informative):	Operating system implementation coding samples
	J.1	Sample DOS 'C' Code
	J.2	Sample Windows "C" code
	J.3	Sample UNIX "C" code

	Annex K (informative):	TLV Coder/decoder sample
	History

