
EUROPEAN ETS 300 287-1

TELECOMMUNICATION November 1996

STANDARD Second Edition

Source: ETSI TC-SPS Reference: RE/SPS-02035

ICS: 33.080

Key words: ISDN, SS7, TCAP

Integrated Services Digital Network (ISDN);
Signalling System No.7;

Transaction Capabilities (TC) version 2;
Part 1: Protocol specification

[ITU-T Recommendations Q.771 to Q.775 (1993), modified]

ETSI

European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 4 92 94 42 00 - Fax: +33 4 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1996. All rights reserved.

Page 2
ETS 300 287-1: November 1996

Foreword

This second edition European Telecommunication Standard (ETS) has been produced by the Signalling
Protocols and Switching (SPS) Technical Committee of the European Telecommunications Standards
Institute (ETSI).

The second edition of ETS 300 287 covering the Signalling System No.7 Transaction Capabilities (TC)
version 2 is structured as a multi-part standard (of which this ETS forms part 1) as described below:

Part 1: "Protocol specification [ITU-T Recommendations Q.771 to Q.775 (1993), modified]";

Part 2: "Protocol Implementation Conformance Statement (PICS) proforma specification";

Part 3: "Abstract Test Suite (ATS) and partial Protocol Implementation eXtra Information for Testing
(PIXIT) proforma specification".

Transposition dates

Date of adoption 8 November 1996

Date of latest announcement of this ETS (doa): 28 February 1997

Date of latest publication of new National Standard
or endorsement of this ETS (dop/e): 31 August 1997

Date of withdrawal of any conflicting National Standard (dow): 31 August 1997

Endorsement notice

The text of ITU-T Recommendations Q.771, Q.772, Q.773, Q.774 and Q.775 (1993) was approved by
ETSI as an ETS with agreed modifications as given below.

NOTE: New or modified text is indicated using sidebars. In addition, underlining and/or strike-
out are used to highlight detailed modifications where necessary.

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
ETS 300 287-1: November 1996

Global modifications to ITU-T Recommendations Q.771 to Q.775

Insert the following two clauses (scope and normative references):

Scope

This first part of ETS 300 287 defines the Transaction Capabilities1) (TC) signalling protocol to be used in
and between networks, for non-circuit related services which use Signalling System No.7 for inter-network
dialogues. Only those parts of TC which are used by the above services need to be provided.

The support of TC by terminal equipment is outside the scope of this ETS.

This ETS covers only TC for use over a network layer consisting of Signalling System No.7 Message
Transfer Part (MTP) plus Signalling Connection Control Part (SCCP).

NOTE: This is valid for both 1988 and 1993 versions.

Normative references

This ETS incorporates by dated and undated reference, provisions from other publications. These
normative references are cited at the appropriate places in the text and the publications are listed
hereafter. For dated references, subsequent amendments to or revisions of any of these publications
apply to this ETS only when incorporated in it by amendment or revision. For undated references the latest
edition of the publication referred to applies.

[1] CCITT Recommendation X.219 (1988): "Information Technology - Open
Systems Interconnection - Association Control Service Element (ACSE)".

[2] ITU-T Recommendation X.680 (1994): "Information Technology - Abstract
Syntax Notation One (ASN.1): Specification of Basic Notation".

[3] ITU-T Recommendation X.880 (1994): "Information Technology - Remote
Operations - Concept, Model and Notation".

[4] ITU-T Recommendation X.881 (1994): "Information Technology - OSI
Realisations: Remote Operations Service Element (ROSE) Service Definition".

1) For historical reasons, the terms Transaction Capabilities (TC) and Transaction Capabilities Application Part (TCAP) are

used interchangeably.

Page 4
ETS 300 287-1: November 1996

Modifications to ITU-T Recommendation Q.771

Page 9, subclause 3.1.2.1, first bullet item

Replace the definition of "Abort Reason" with the following:

- "Abort Reason" - Indicates whether a dialogue is aborted because the received application context
name is not supported and no alternative one can be proposed (abort reason = application context
not supported), because the dialogue cannot be established for any other user reason (abort
reason = dialogue refused) or because a user abort situation has been encountered (abort
reason = user specific).

Modifications to ITU-T Recommendation Q.772

Pages 4 and 5, subclauses 3.7.2.3, 3.7.3.3 and 3.7.4.5 "mistyped parameter"

The definition of "mistyped parameter" provided in subclauses 3.7.2.3, 3.7.3.3 and 3.7.4.5 shall also cover
error conditions such as ENUMERATED error, value range error, size constraint error, value constraint
error and presence constraint error.

Page 7, subclause 4.2.5 "result source diagnostic"

Modify the first sentence of the last paragraph as follows:

The "dialogue service user" can further qualify the result with a diagnostic with values "null" or "no reason
given" (for the case where no diagnostic is offered) or "application-context-name-not-supported" (for the
case when the dialogue is refused because the application context is not supported).

Modifications to ITU-T Recommendation Q.773

Page 1, subclause 3.1

NOTE: This correction does not change the transfer syntax.

Replace the EXPORTS statement by:

EXPORTS OPERATION, ERROR, MessageType, Component, InvokeIdType;

Pages 2 and 4, subclause 3.1

NOTE: This correction does not change the transfer syntax.

Add a range constraint of "(0..127)" to all unconstrained INTEGERs, i.e., the following shall be modified:

P-AbortCause
GeneralProblem
InvokeProblem
ReturnResultProblem
ReturnErrorProblem

When a value, which is not assigned but is within the specified range, is received, this value should be
ignored. Values out of range may lead to a syntax error.

Pages 4 and 5, subclause 3.2

NOTE: This correction does not change the transfer syntax.

Add a size constraint of "(1..10)" to "user-information" when carried within AARQ-apdu, AARE-apdu,
RLRQ-apdu, RLRE-apdu and ABRT-apdu:

user-information [30] IMPLICIT SEQUENCE SIZE (1..10) OF EXTERNAL OPTIONAL

Page 5
ETS 300 287-1: November 1996

Page 5, subclause 3.2

NOTE: This correction does not change the transfer syntax.

Add a range constraint of "(0..127)" to all unconstrained INTEGERs, i.e., the following shall be modified:

ABRT-source
Associate-result
dialogue-service-user
dialogue-service-provider
Release-request-reason
Release-response-reason

When a value, which is not assigned but is within the specified range, is received, this value should be
ignored. Values out of range may lead to a syntax error.

Page 29, subclause 4.2.3.1, table 46/Q.773

The Result Tag shall be coded 1010 0010.

Page 32, subclause 4.2.3.1, tables 55/Q.773 and 56/Q.773

The integer element shall be “mandatory”.

Page 32, subclause 4.2.3.1, table 57/Q.773

The Dialogue Service Provider Tag shall be coded 1010 0010.

The Dialogue Service User Tag shall be coded 1010 0001.

Page 6
ETS 300 287-1: November 1996

Modifications to ITU-T Recommendation Q.774

Page 10, table 3/Q.774, note 3

Insert at the end of note 3:

or "dialogue-refused".

Page 12, subclause 3.2.1.2, "Dialogue End"

Replace the penultimate paragraph "If the ... described in 3.2.2" by:

When a TC-User has received a TC-BEGIN indication primitive including some user information it finds
unacceptable, it may issue a TC-U-ABORT request primitive with the "Abort Reason" parameter set to
"dialogue-refused". This causes a Dialogue Response (AARE) APDU to be formatted. The setting of the
values for various fields in the AARE APDU are as follows: the "application-context-name" is identical to
the received one, the result field is set to "reject-permanent", and the "result-source-diagnostic" is
"dialogue-service-user (null)" or "dialogue-service-user (no-reason-given)".

If the "Abort reason" parameter in the TC-U-ABORT request primitive is absent or has a value other than
"application-context-name-not-supported" or "dialogue-refused", this describes an abnormal termination of
the dialogue and is described in subclause 3.2.2.

Page 41, figure A.5 (sheet 6 of 11)

Insert in the second decision box before the question mark:

or "dialogue-refused"

Modifications to ITU-T Recommendation Q.775

No modifications identified.

Page 7
ETS 300 287-1: November 1996

Annex ZA (informative): Realizing the X.880 generic ROS model using TC

ZA.1 Introduction

ZA.1.1 Overview

ITU-T Recommendation X.880 [3] defines a generic model for interactive communication between
objects, where the basic interaction involves the invocation of an operation by one object (the invoker) and
its performance by another (the performer). This model comes with a set of ASN.1 information object
classes to be used by protocol designers in the specification of ROS-based applications.

ITU-T Recommendation X.880 [3] recognizes that there are multiple possible realizations of this model, as
far as communication is concerned. The purpose of this annex is to demonstrate that TC can be
considered as one of these realizations, by providing a mapping of the generic concepts onto TC services.

ZA.1.2 Notation and concept for the generic ROS model

ITU-T Recommendation X.880 [3] defines several information object classes that are useful in the
specification of ROS-based application protocols. Such classes can be used by designers of TC-User
applications, as an alternative to the methodology described in ITU-T Recommendation Q.775. These
object classes are defined using the information object specification ASN.1 notation defined in ITU-T
Recommendation X.881 [4].

The OPERATION class is used to define an operation. It is equivalent to the OPERATION MACRO
defined in CCITT Recommendation X.219 [1] and ITU-T Recommendation Q.773 as modified by this
ETS.

The ERROR class is used to define an error. It is equivalent to the ERROR MACRO defined in CCITT
Recommendation X.219 [1] and ITU-T Recommendation Q.773 as modified by this ETS.

The OPERATION-PACKAGE class is used to define a set of operations which may only be invoked by a
ROS-object assuming the role of "consumer", the operations which may only be invoked by a ROS-object
assuming the role of "supplier", and the operations which may be invoked by both ROS-objects. When
using the communication services of SS7 or OSI, an operation package is realized as an Application
Service Element (ASE).

The CONNECTION-PACKAGE class is used to define the bind and unbind operations used to establish
and release an association. When realized using the communication services of SS7, a connection
package is realized as the procedures that use the structured dialogue handling services of TC.
Application contexts which do not require the explicit invocation of bind and unbind operations can still be
considered as including a connection package which uses the emptyBind and emptyUnbind pre-defined
operations.

The CONTRACT class is used to define an association contract in terms of a connection package and
one or more operation packages. When specifying the contract, those packages in which either only the
association initiator assumes the role of consumer, or only the association responder assumes the role of
consumer, or either may assume the role of consumer, are identified. When using the communication
services of SS7 or OSI, a contract is realized as an application context.

The ROS-OBJECT-CLASS class is used to define a set of common capabilities of a set of ROS-objects in
terms of the (association) contracts they support as initiators and/or responders. When realized using TC
or OSI, a ROS-object maps to an application process and a contract to an application context.

Page 8
ETS 300 287-1: November 1996

ZA.1.3 Communication model

The realization of ROS involves the selection of a suitable medium to convey invocations and replies
between a pair of ROS-objects.

The possible media can be classified in two broad categories:

a) those required when the invoker and the performer are to be implemented in a single physical
equipment;

b) those required when the invoker and the performer are to be implemented in separated physical
equipment.

Category a) can be further divided into message-passing and procedure-calling facilities.

The medium in category b) depends on the type of network which interconnects the two objects and on
some Quality of Service (QoS) criteria.

ITU-T Recommendation X.880 [3] models the medium as being composed of two stub objects (one for
the invoker, one for the performer) and one information transfer object (see figure ZA.1). The information
transfer object capabilities also includes the association control functionalities which might be required to
set up an association between the application entities involved in the communication.

ROS
object

Stub Stub
ROS
object

Information
transfer

Medium

Figure ZA.1: Generic ROS communication model

The role of each stub object is merely to transform invocations and replies into protocol data units (and
vice-versa) they exchange using the information transfer object. For a given type of stub objects there are
several possible types of information transfer objects.

In the context of OSI, the stub objects are realized by the Remote Operation Service Element (ROSE)
while several information transfer realizations are available, using suitable combination of Association
Control Service Element (ACSE), Reliable Transfer Service Element (RTSE) and the presentation service.

The stub objects are realized by the Component Handling Block (CHA) of the TC Component Sub-Layer
(CSL, see ITU-T Recommendation Q.774 as modified by this ETS) together with a collection of operation-
specific ASEs (the TC-User ASEs). The CHA whose services are defined in subclause 3.1.3 of ITU-T
Recommendation Q.771 as modified by this ETS drives the generic protocol required to invoke and report
returns of arbitrary operations.

Each TC-User ASE embodies knowledge of the definitions of the specific operations involved in some
operation package. Collectively, the CSL and the TC-User ASEs have knowledge of all the operations of
the association contract.

Page 9
ETS 300 287-1: November 1996

O-ASEs
Stub

Component
sub-layer

Application Entity

ROS object

Application process

O-ASEs
Stub

Component
sub-layer

Application Entity

ROS object

Application process

Transaction sub-layer

Medium Information transfer

DHA DHA

CHA CHA

Figure ZA.2: TC realization of ROS

ZA.2 Remote operation service realization

ZA.2.1 Basic services (Stub)

The TC CSL provides the necessary services for supporting the invocation of operations and reporting
responses. It also provides additional local services for cancelling operation (TC-U-CANCEL request,
TC-L-CANCEL indication) or reporting locally detected protocol error (TC-L-REJECT indication).

NOTE: The following restrictions apply:
- whether an operation is synchronous or not is not taken into account (from a TC

point of view operations are always considered as being asynchronous.
However, the TC-User might behave in a synchronous manner);

- the set of allowed InvokeIds is restricted to the integer range (-128 to 127);
- the priority field is ignored2).

ZA.2.2 Bind and unbind operations

NOTE: In order to minimize the impact of Bind and Unbind operations on TC specifications,
this annex assumes that the TC-User constructs the bind and unbind APDUs and
transfers them to TC as if it would be ordinary user information. As a consequence, TC
is not aware that these operations are being invoked and cannot check that they are
used consistently with respect to the dialogue service and component handling service
(e.g. it cannot verify that no operation is requested after an unbind operation has been
invoked).

2) This might evolve as the studies on priority handling in SS7 will progress.

Page 10
ETS 300 287-1: November 1996

ZA.2.2.1 Bind operation

When an application context definition includes a connection package, the initiating TC-User invokes a
bind operation to be executed as part of the dialogue establishment procedure, prior to the execution of
any other operation. Failure of the execution of this operation leads to the rejection of the dialogue.

If the TC-User does not really need to invoke an explicit bind operation, it is assumed that it uses the
emptyBind pre-defined operation.

ZA.2.2.1.1 Invoking a bind operation

The TC-User can invoke a bind operation using the TC-BEGIN request primitive. If the definition of the
bind operation includes an &ArgumentType field, the TC-User constructs a bind-invoke PDU from this
information and transfers it as the first (or only part) of the user-information parameter of the TC-BEGIN
request primitive. Otherwise no bind-invoke PDU is sent.

NOTE: This should ensure that the bind-request PDU will be included in the first external field
of the user-information element of the Dialogue Request APDU (AARQ).

ZA.2.2.1.2 Responding to a bind operation

The TC-User reports the outcome a bind operation using the first dialogue handling primitive it issues.

Successful execution of the bind operation is reported using a TC-CONTINUE request primitive or a
TC-END request primitive if there is no need to continue the dialogue. In the latter case it needs also to
invoke an unbind operation.

NOTE: Use of the TC-END request primitive at this stage places restriction of the use of
unbind operations. It implies that only the responder can unbind and that the unbind
operation definition does not include an &ResultType field and that the definition of its
associated error does not include an &ParameterType field (e.g. as the emptyUnbind
operation).

If the bind operation definition includes an &ResultType field, the TC-User constructs a bind-result PDU
from this information and transfers it as the first (or only part) of the user-information parameter of the
TC-CONTINUE request primitive or TC-END request primitive. Otherwise no bind-result PDU is sent.

The TC-User reports unsuccessful execution of a bind operation using a TC-U-ABORT request primitive
issued as an immediate response to the TC-BEGIN indication. The abort reason parameter takes the
value "dialogue-refused".

If the definition of the associated error includes an &ParameterType field, the TC-User constructs a bind-
error PDU from this information and transfers it as the first (or only part) of the user-information parameter
of the TC-CONTINUE request primitive or TC-END request primitive. Otherwise no bind-error PDU is
sent.

The emptyBind operation and the bind-invoke, bind-result and bind-error PDUs are defined in ITU-T
Recommendation X.880 [3]. For convenience, their ASN.1 definitions are reproduced below:

Bind {OPERATION:operation) ::= CHOICE
{

bind-invoke [16] OPERATION.&ArgumentType (operation),
bind-result [17] OPERATION.&ResultType (operation),
bind-error [18] OPERATION.&Errors.&ParameterType (operation)

}

emptyBind OPERATION ::= {ERRORS {refuse} SYNCHRONOUS TRUE}

Where operation refers to the bind operation.

Page 11
ETS 300 287-1: November 1996

ZA.2.2.2 Unbind operation

ZA.2.2.1.1 Invoking an unbind operation

If the application-context definition includes a connection package, the TC-User invokes an unbind
operation as part of the dialogue termination procedure.

The mapping on to TC services depends on the type of this unbind operation:

a) if the unbind operation definition does not include an &ResultType field and the definition of its
associated error does not include an &ParameterType field, the operation can be invoked using the
TC-END request primitive;

b) if the unbind operation definition includes an &ResultType field or the definition of its associated
error includes an &ParameterType field, the operation needs to be invoked using the last
TC-CONTINUE request primitive issued by the unbind requestor.

In both cases, if the unbind operation definition includes an &ArgumentType field, the TC-User constructs
an unbind-request APDU which is transferred as the last (or only) part of the user-information parameter
of a TC-END request primitive. Otherwise no unbind-request APDU is sent.

ZA.2.2.1.2 Responding to an unbind operation

When accepting an unbind operation, the TC-User issues a TC-END request primitive. If the unbind
operation definition includes an &ResultType field, the TC-User constructs an unbind-result APDU which
is transferred in the last (or only) part of the user-information parameter of a TC-END request primitive.
Otherwise no unbind-result APDU is sent.

When refusing an unbind operation, the TC-User issues a TC-CONTINUE request primitive. If the
definition of the associated error includes an &ParameterType field, the TC-User constructs an unbind-
error APDU which is transferred in the last (or only) part of the user-information parameter of a TC-END
request primitive. Otherwise no unbind-result APDU is sent.

NOTE: This should ensure that the unbind-result PDU will be included in the last external field
of the user-information element of the Dialogue Response APDU (AARE) when the
TC-END request primitive is issued as an immediate response to the TC-BEGIN
indication primitive, or otherwise in the single EXTERNAL field of the DialoguePortion.

If the association contract includes a connection package but the TC-User does not need to explicitly
invoke an unbind operation, it is assumed that the emptyUnbind operation is used. This operation is
conceptually mapped onto the TC-END request primitive, however, no unbind PDU is sent.

The emptyUnbind operation, the unbind-invoke, unbind-result and unbind-error PDUs are defined in ITU-T
Recommendation X.880 [3]. For convenience, they are reproduced below:

Unbind {OPERATION:operation} ::= CHOICE
{

unbind-invoke [19] OPERATION.&ArgumentType (operation),
unbind-result [20] OPERATION.&ResultType (operation),
unbind-error [21] OPERATION.&Errors.&ParameterType (operation)

}

emptyUnbind OPERATION ::= {SYNCHRONOUS TRUE}

Where operation refers to the unbind operation.

ZA.3 Information transfer

ZA.3.1 Association realizations

TC provides two association realizations through its dialogue handling function: the structured mode and
the unstructured mode which are defined in ITU-T Recommendation Q.771 as modified by this ETS.

Page 12
ETS 300 287-1: November 1996

ZA.3.2 Transfer realization

As far as Remote Operations are concerned, TC provides the following information transfer capabilities to
its user:

- bind and unbind PDUs are transferred in as user-information in the DialoguePortion;

- basic ROS PDUs (plus the return result not last) are transferred in the component portion of any
message.

TC provides only one type of transfer realization, irrespective of the type of association realization chosen.
However, from a sender's point of view, this realization offers some flexibility to the TC-Users as far as
PDU concatenation is concerned.

The Remote Operations TC also provides means to transfer any kind of user information through the use
of dialogue handling service primitives.

ZA.4 ROS-based application context

The static aspects of a TC-based application context definition realizing some particular association
contract can be described as an information object of class APPLICATION-CONTEXT, which is specified
as follows:

APPLICATION-CONTEXT ::= CLASS
{

&associationContract CONTRACT,
&dialogueMode DialogueMode,
&termination Termination OPTIONAL,
&componentGrouping BOOLEAN DEFAULT TRUE,
&dialogueAndComponentGrouping BOOLEAN DEFAULT TRUE,
&AbstractSyntaxes ABSTRACT-SYNTAX,
&applicationContextName OBJECT IDENTIFIER UNIQUE

}

WITH SYNTAX
{

CONTRACT &associationContract
DIALOGUE MODE &dialogueMode
[TERMINATION &termination]
[COMPONENT GROUPING ALLOWED &componentGrouping]
[DIALOGUE WITH COMPONENTS ALLOWED &dialogueAndComponentGrouping]
ABSTRACT SYNTAXES &AbstractSyntaxes
APPLICATION CONTEXT NAME &applicationContextName

}

DialogueMode ::= ENUMERATED {structured(1), unstructured(2)}

Termination ::= ENUMERATED {basic(1), pre-arranged(2)}

The &associationContract field identifies the association contract which this application context realizes.

The &dialogueMode field indicates whether this application context makes use of the dialogue structured
mode facilities or the dialogue unstructured mode facilities. If the association contract definition includes a
connection package, the &dialogueMode field indicates "structured".

The &termination field indicates whether basic or pre-arranged termination is used to end the dialogue. If
this field is absent, the application-context definition does not place any constraint on which end method is
used.

The &componentGrouping field indicates whether components might be grouped in a single message. If
this field is absent, the application-context definition does not place any restrictions on this issue.

The &dialogueAndComponentGrouping field indicates whether bind and unbind PDUs can be sent in
messages which also contain components. If this field is absent, the application-context definition does
not place any restrictions on this issue.

Page 13
ETS 300 287-1: November 1996

The &AbstractSyntaxes filed contains the abstract syntaxes which are required for the conveyance of
information between the objects, including the PDUs for invoking and reporting on the operations in the
contract.

The &applicationContextName field contains the value which needs to be provided to TC to identify the
application context.

ZA.5 Abstract syntaxes

ZA.5.1 Dialogue control

The &AbstractSyntaxes field of an application context definition needs to include the following abstract
syntax if the &dialogueMode field indicates "structured".

dialogue-abstract-syntax ABSTRACT-SYNTAX ::=
{

DialoguePDU IDENTIFIED BY dialogue-as-id
}

The &AbstractSyntaxes field of an application context definition needs to include the following abstract
syntax if the &dialogueMode field indicates "unstructured".

uniDialogue-abstract-syntax ABSTRACT-SYNTAX ::=
{

UniDialoguePDU IDENTIFIED BY uniDialogue-as-id
}

ZA.5.2 User defined syntaxes

ZA.5.2.1 General

The &AbstractSyntaxes field of an application-context definition needs to include one or more abstract
syntaxes to represent the TC messages (including the components) and the bind and unbind PDUs. Such
abstract syntaxes need to be defined by the application designer.

TC messages are defined in ITU-T Recommendation Q.773 as modified by this ETS, while bind and
unbind PDUs are defined in ITU-T Recommendation X.880 [3].

How many abstract syntaxes are defined to support a particular application context is up to the application
designer. However, the following rules should be followed.

a) If the application context realizes an association contract which includes a connection package, the
values of the data types:

Bind {ac.&associationContract.&connection.&bind}
Unbind {ac.&associationContract.&connection.&unbind}

need to appear in at least one of these abstract syntaxes.

b) For each operation op involved in the set of operation packages used by the application context,
there need to be at least one of the abstract syntaxes which include the values of the following
types:

Invoke {TCInvokeIds, OPERATION: op}
ReturnResult {OPERATION: op}

c) For each error err involved in the set of operation packages used by the application context, there
need to be at least one of the abstract syntaxes which include the values of the following types:

ReturnError {ERROR: err}

d) At least one of the abstract syntaxes needs to include:

Reject

Page 14
ETS 300 287-1: November 1996

ZA.5.2.2 Defining the abstract syntaxes

Given an operation package, a single abstract syntax which allows the exchange of TC messages
carrying invocation and reporting for all of its operations can be defined using the following data type:

TCSingleAS {OPERATION-PACKAGE: package} ::=
TCMessage {{AllOperations {package}}, {AllOperations {package}}}

Or, alternatively, a pair of abstract syntaxes can be defined based upon the pair of types:

TCConsumerAS {OPERATION-PACKAGE: package} ::=
TCMessage {{ConsumerPerforms {package}}, {ConsumerPerforms {package}}}

TCSupplierAS{OPERATION-PACKAGE: package} ::=
TCMessage {{SupplierPerforms {package}}, {SupplierPerforms {package}}}

A single abstract syntax may accommodate a set of packages, provided that the operation and error
codes are unique. For example, the following data type can be used as the basis of a single abstract
syntax to accommodate all the operation packages involved in an association contract:

AllPackagesAS {APPLICATION-CONTEXT: ac} ::=
TCSingleAS

{
combine

{
{
 ac.&associationContract.&OperationsOf
| ac.&associationContract.&InitiatorConsumerOf
| ac.&associationContract.&InitiatorSupplierOf
},
{},
{}

}
}

An independent abstract syntax can be defined to represent values of bind and unbind PDUs, based on
the following type:

ConnectionAS {APPLICATION-CONTEXT: ac} ::= CHOICE
{

bind Bind {ac.&associationContract.&connection.&bind},
unbind Unbind {ac.&associationContract.&connection.&unbind}

}

The value of the corresponding &abstract-syntax-name field is intended to serve as a direct reference
when values of these PDUs are conveyed in the user-information parameter of Dialogue Control PDUs, or
directly as value of the DialoguePortion.

ZA.6 ASN.1 module

TC-Notation-Extensions {ccitt recommendation q 775 modules(2) notation-extension(4) version 1(1)}

DEFINITIONS ::=

BEGIN

IMPORTS

TCMessage{}
FROM TCAPMessages
{ccitt recommendation q 773 modules(2) messages(1) version3(3)}

Bind, Unbind
FROM Remote-Operations-Generic-ROS-PDUs
{joint-iso-ccitt remote-operations(4) generic-ROS-PDUs(6) version1(0)}

combine{}, AllOperations{}, ConsumerPerforms{}, SupplierPerforms{}
FROM Remote-Operations-Useful-Definitions
{joint-iso-ccitt remote-operations(4) useful-definitions(7) version1(0)}

CONTRACT, OPERATION-PACKAGE
FROM Remote-Operations-Information-Objects
{joint-iso-ccitt remote-operations(4) informationObjects(5) version1(0)}

Page 15
ETS 300 287-1: November 1996

UniDialoguePDU, uniDialogue-as-id
FROM UnidialoguePDUs
{ccitt recommendation q 773 modules(2) unidialoguePDUs(3) version1(1)}

DialoguePDU, dialogue-as-id
FROM DialoguePDUs
{ccitt recommendation q 773 modules(2) dialoguePDUs(2) version1(1)}

;

APPLICATION-CONTEXT ::= CLASS
{

&associationContract CONTRACT,
&dialogueMode DialogueMode,
&termination Termination OPTIONAL,
&componentGrouping BOOLEAN DEFAULT TRUE,
&dialogueAndComponentGrouping BOOLEAN DEFAULT TRUE,
&AbstractSyntaxes ABSTRACT-SYNTAX,
&applicationContextName OBJECT IDENTIFIER UNIQUE

}

WITH SYNTAX
{

CONTRACT &associationContract
DIALOGUE MODE &dialogueMode
[TERMINATION &termination]
[COMPONENT GROUPING ALLOWED &componentGrouping]
[DIALOGUE WITH COMPONENTS ALLOWED &dialogueAndComponentGrouping]
ABSTRACT SYNTAXES &AbstractSyntaxes
APPLICATION CONTEXT NAME &applicationContextName

}

DialogueMode ::= ENUMERATED {structured(1), unstructured(2)}

Termination ::= ENUMERATED {basic(1), pre-arranged(2)}

dialogue-abstract-syntax ABSTRACT-SYNTAX ::=
{

DialoguePDU IDENTIFIED BY dialogue-as-id
}

uniDialogue-abstract-syntax ABSTRACT-SYNTAX ::=
{

UniDialoguePDU IDENTIFIED BY uniDialogue-as-id
}

TCSingleAS {OPERATION-PACKAGE: package} ::=
TCMessage {{AllOperations {package}}, {AllOperations {package}}}

TCConsumerAS {OPERATION-PACKAGE: package} ::=
TCMessage {{ConsumerPerforms {package}}, {ConsumerPerforms {package}}}

TCSupplierAS{OPERATION-PACKAGE: package} ::=
TCMessage {{SupplierPerforms {package}}, {SupplierPerforms {package}}}

AllPackagesAS {APPLICATION-CONTEXT: ac} ::=
TCSingleAS

{
combine

{
{
 ac.&associationContract.&OperationsOf
| ac.&associationContract.&InitiatorConsumerOf
| ac.&associationContract.&InitiatorSupplierOf
},
{},
{}

}
}

ConnectionAS {APPLICATION-CONTEXT: ac} ::= CHOICE
{

bind Bind {ac.&associationContract.&connection.&bind},
unbind Unbind {ac.&associationContract.&connection.&unbind}

}

END -- TC-Notation-Extensions

Page 16
ETS 300 287-1: November 1996

Annex ZB (informative): TCAPMessage module using 1994 ASN.1 notation

The following module has been written using the version of ASN.1 as defined in ITU-T Recommendation
X.680 [2]. This module defines the parameterized type TCMessage which provides a basis for the
definition of an abstract syntax containing TCAP messages. This type is parameterized in that the values
conveyed in the component portion depend on the set of operations which can be invoked and the set of
operations for which a response may be generated.

TCAPMessages {ccitt recommendation q 773 modules(2) messages(1) version3(3)}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN
-- EXPORTS everything

-- Transaction Portion fields.

IMPORTS

ROS{}
FROM Remote-Operations-Generic-ROS-PDUs
{joint-iso-ccitt remote-operations(4) generic-ROS-PDUs(6) version1(0)}

OPERATION
FROM Remote-Operations-Information-Objects
{joint-iso-ccitt remote-operations(4) informationObjects(5) version1(0)}

;

TCMessage {OPERATION: Invokable, OPERATION: Returnable} ::= CHOICE
{

unidirectional [APPLICATION 1] Unidirectional {{Invokable}, {Returnable}},
begin [APPLICATION 2] Begin {{Invokable}, {Returnable}},
end [APPLICATION 4] End {{Invokable}, {Returnable}},
continue [APPLICATION 5] Continue {{Invokable}, {Returnable}},
abort [APPLICATION 7] Abort

}

Unidirectional {OPERATION: Invokable, OPERATION: Returnable} ::= SEQUENCE
{

dialoguePortion DialoguePortion OPTIONAL,
components ComponentPortion {{Invokable}, {Returnable}}

}

Begin {OPERATION: Invokable, OPERATION: Returnable} ::= SEQUENCE
{

otid OrigTransactionID,
dialoguePortion DialoguePortion OPTIONAL,
components ComponentPortion {{Invokable}, {Returnable}} OPTIONAL

}

End {OPERATION: Invokable, OPERATION: Returnable}::= SEQUENCE
{

dtid DestTransactionID,
dialoguePortion DialoguePortion OPTIONAL,
components ComponentPortion {{Invokable}, {Returnable}} OPTIONAL

}

Continue {OPERATION: Invokable, OPERATION: Returnable} ::= SEQUENCE
{

otid OrigTransactionID,
dtid DestTransactionID,
dialoguePortion DialoguePortion OPTIONAL,
components ComponentPortion {{Invokable}, {Returnable}} OPTIONAL

}

Abort ::= SEQUENCE
{

dtid DestTransactionID,
reason CHOICE
{

p-abortCause P-AbortCause,
dialoguePortion DialoguePortion

} OPTIONAL
}

-- NOTE: When the Abort Message is generated by the Transaction sublayer, a p-Abort Cause
-- needs to be present.

Page 17
ETS 300 287-1: November 1996

DialoguePortion ::= [APPLICATION 11] EXPLICIT EXTERNAL

-- The dialogue portion carries the dialogue control PDUs as value of the external data type. The
-- direct reference should be set to:
-- {ccitt recommendation q 773 as(1) dialogue-as(1) version1(1)}
-- if structured dialogue is used,
-- and to:
-- {ccitt recommendation q 773 as(1) unidialogue-as(2) version1(1)}
-- if unstructured dialogue is used.

OrigTransactionID ::= [APPLICATION 8] OCTET STRING(SIZE(1..4))

DestTransactionID ::= [APPLICATION 9] OCTET STRING(SIZE(1..4))

P-AbortCause ::= [APPLICATION 10] INTEGER {
unrecognizedMessageType (0),
unrecognizedTransactionID (1),
badlyFormattedTransactionPortion (2),
incorrectTransactionPortion (3),
resourceLimitation (4)

} (0..127)

-- COMPONENT PORTION. The last field in the transaction portion of the TCAP message is the
-- component portion. The component portion may be absent.

ComponentPortion {OPERATION: Invokable, OPERATION: Returnable} ::=
[APPLICATION 12] SEQUENCE SIZE (1..MAX) OF Component {{Invokable}, {Returnable}}

-- Component Portion fields

-- COMPONENT TYPE. Recommendation X.880 defines four APDUs for invoking operations, returning
-- results or error, and for the rejection of invalid PDUs. TCAP adds returnResultNotLast to
-- allow for the segmentation of a result.

Component {OPERATION: Invokable, OPERATION: Returnable} ::= CHOICE
{

basicROS ROS {TCInvokeIdSet, {Invokable}, {Returnable}},
returnResultNotLast [7] returnResult < ROS {TCInvokeIdSet, {Invokable}, {Returnable}}

}

TCInvokeIdSet INTEGER ::= {-128..127}

END -- TCAPMessages

NOTE 1: The parameterized type ROS{} defined in ITU-T Recommendation X.880 [3]
represents the four basic ROS PDUs: invoke, return result, return error and reject.

NOTE 2: The information object class OPERATION defined in ITU-T Recommendation
X.880 [3] is the replacement for the OPERATION MACRO.

NOTE 3: Invokable and Returnable are two set of operations.

Page 18
ETS 300 287-1: November 1996

History

Document history

October 1993 First Edition of ETS 300 287

September 1995 Public Enquiry PE 92: 1995-09-25 to 1996-01-19

September 1996 Vote V 110: 1996-09-09 to 1996-11-01

November 1996 Second Edition

ISBN 2-7437-1154-X - Edition complète - Edition 2
ISBN 2-7437-1155-8 - Partie 1 - Edition 2
(ISBN 2-7437-1153-1 - Edition 1)
Dépôt légal : Novembre 1996

	Foreword
	Endorsement notice
	Global modifications to ITU-T Recommendations Q.771 to Q.775
	Scope
	Normative references
	Modifications to ITU-T Recommendation Q.771
	Page 9, subclause 3.1.2.1, first bullet item

	Modifications to ITU-T Recommendation Q.772
	Pages 4 and 5, subclauses 3.7.2.3, 3.7.3.3 and 3.7.4.5 "mistyped parameter"
	Page 7, subclause 4.2.5 "result source diagnostic"

	Modifications to ITU-T Recommendation Q.773
	Page 1, subclause 3.1
	Pages 2 and 4, subclause 3.1
	Pages 4 and 5, subclause 3.2
	Page 5, subclause 3.2
	Page 29, subclause 4.2.3.1, table 46/Q.773
	Page 32, subclause 4.2.3.1, tables 55/Q.773 and 56/Q.773
	Page 32, subclause 4.2.3.1, table 57/Q.773

	Modifications to ITU-T Recommendation Q.774
	Page 10, table 3/Q.774, note 3
	Page 12, subclause 3.2.1.2, "Dialogue End"
	Page 41, figure A.5 (sheet 6 of 11)

	Modifications to ITU-T Recommendation Q.775
	Annex ZA (informative):	Realizing the X.880 generic ROS model using TC
	ZA.1	Introduction
	ZA.1.1	Overview
	ZA.1.2	Notation and concept for the generic ROS model
	ZA.1.3	Communication model

	ZA.2	Remote operation service realization
	ZA.2.1	Basic services (Stub)
	ZA.2.2	Bind and unbind operations
	ZA.2.2.1	Bind operation
	ZA.2.2.1.1	Invoking a bind operation
	ZA.2.2.1.2	Responding to a bind operation

	ZA.2.2.2	Unbind operation
	ZA.2.2.1.1	Invoking an unbind operation
	ZA.2.2.1.2	Responding to an unbind operation

	ZA.3	Information transfer
	ZA.3.1	Association realizations
	ZA.3.2	Transfer realization

	ZA.4	ROS-based application context
	ZA.5	Abstract syntaxes
	ZA.5.1	Dialogue control
	ZA.5.2	User defined syntaxes
	ZA.5.2.1	General
	ZA.5.2.2	Defining the abstract syntaxes

	ZA.6	ASN.1 module

	Annex ZB (informative):	TCAPMessage module using 1994 ASN.1 notation
	History

