ETSI GS QKD 015 vi.1.1 02103

= _' >

GROUP SPECIFICATION

Quantum Key Distribution (QKD);
Control Interface for
Software Defined Networks

Disclaimer

The present document has been produced and approved by the Quantum Key Distribution (QKD) ETSI Industry Specification
Group (ISG) and represents the views of those members who participated in this ISG.
It does not necessarily represent the views of the entire ETSI membership.

2 ETSI GS QKD 015 V1.1.1 (2021-03)

Reference
DGS/QKD-015_ContIintSDN

Keywords
control interface, quantum cryptography,
Quantum Key Distribution, Software-Defined
Networking

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 493 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2021.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ |ogo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 ETSI GS QKD 015 V1.1.1 (2021-03)

Contents

Intellectual Property RIGNES..........oi it e e s b b e e 4
0 L= Y1V (o SRS 4
MoOdal VErDS EMINOIOQYciveiuieieieeie sttt st e e s re s re e aesbeeaaesbeereenseaaeenseseesneenseseesseensessens 4
EXECULIVE SUMIMAIYeevieeieite ettt sttt e sttt e e s te s e stesae e teeaeeseesteeaeesbesaeentesseens e teesseseeateeneentesbeensensesneentesnennes 4
1100 [Tox A o] o S 5
1 o0 0L SR 6
2 L= 1= 1= TS 6
21 NOFMBLIVE FEFEIEINCESoueeeeteite ittt sttt et b et et et se e besb e eb e bt e b e e st e e e s bese e besbeeb e e ae e s e bese e besaeebenneennentens 6
2.2 INFOrMELIVE FEFEIEINCES. ...ttt etttk b bbbt e et se e b e s bt eb e e e e s e eese e e besaeebenneeneennens 6
3 Definitions of terms, symbols and aDbreviations............coceeviveeieni e s 6
31 L1105 6
3.2 SYIMDOIS. ... ettt ettt b e st b e e e st b e s e e a e e bt sE e e bt £E e R e Rt SR e R e Rt R e e b e R e e bt nR et eb e R e e ebenre e ere s 7
33 ADDIEVIBLIONS ...ttt ettt et et e et e et e st e et e e tesaeesaeesheesaeeseeaseeaeeeaeeebe e ba e beenseenseeaeesaeesreenaeereenreans 7
4 Software-Defined Quantum Key DistribDULION.............coieiiieie e e 8
4.1 FEFOOUCTION ...ttt bt e e bt e bt e bt e st e e e b e se e eb e bt eh e eb e s Rt eb e e e e b e beae e besaeebenneennennens 8
4.2 ST | 0 N 7o L= S 8
4.3 SD-QKD NOAE CAPADITITIES........eeeeiieeiecteeiese ettt ettt e e st te e teeae s e e saeesaeeseenseenteeneeeneesneesneas 10
44 (0 D I 111 = o= SO SSRR 11
4.5 QKD KeY ASSOCIALON LINKS......ccuiiiuiitiieteiieieete ettt sttt st b e bbb et ettt nb e e 11
4.6 QKD APPHICALIONS. ...ttt ettt ettt b e et b e st h e b e bt b e se bt s b e e eb e s b et e b e s e e st ebenb et e b e st et eb e b e 13
47 N OLTICAIONS. ...ttt e e s e st e s te et e e teeaeeeaeeebe e beeabeeasesaaestaesbeesbesnsesasesaeesaeesseanseentenns 14
5 Sequence Diagrams and WOIKFIOWSccouiiiciiiiie ettt s 15
51 (T goo W 1T oo BTSSP PP USSP 15
5.2 QKD ApPpPlication REGISITEIIONcciiiieiieiee et e e ete et e st et e e esteseesaesreesreesseeseensesseasseenseenseeneesneessenssens 15
5.3 QKD Physical (DireCt) LinK CrEaLION........ccciecieeeieeesteeieeiesstesaesteesteessesesssaesseesseesseensesssessesssesssessssssssssesssees 17
54 QKD Virtual LiNK CrEALION.ccueeiieeieeiesceseeseeste e e s ee et e st et e e e e sseesseesseesteesesneesseesaeesseenseenseenseessesneessenssns 18
6 SECUNTY CONSIABIAIONS. ...ttt ettt b st b et e s e b e e e e e st e st e bt s b e b et e e e n e e enenneenennennas 19
7 ProtoCol CONSIAEIAtIONScccviiiieiicie ettt ettt e ree st e st e sbeebe s reeaa e besreestesbeensessesneesestennnens 19
Annex A (normative): SD-QKD Node YANG MOE ..ot 20
Al ETSI QKD SDN NOGE MOAUIE........ccceiitieteeeteecteecteeeee et eeteesteesteesteesaeesaseebeesteesbeesreesseesnsesnbesseessesssnnas 20
A.2 ETSI QKD SDN NOUE tyPES MOUUIE.......c.eiuiiuiiirtiiteieiee ettt 32
Annex B (informative): Bibliographycooiicecee e s 36
Annex C (informative): LO{gF= T o Tl o T o SRS 37
[1S 0] Y PSSP 38

ETSI

4 ETSI GS QKD 015 V1.1.1 (2021-03)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Group Specification (GS) has been produced by ETSI Industry Specification Group (1SG) Quantum Key
Distribution (QKD).

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" areto beinterpreted as described in clause 3.2 of the ETS| Drafting Rules (Verba forms for the expression of
provisions).

"must” and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary

The present document deals with the interface between a SDN-QKD node and a SDN controller. It describes the flow of
information between both entities, The SDN-QKD node part being embodied by an SDN-Agent that collects the local
node information. The information model isgivenin YANG [1] and [2], alanguage well suited and widely used for
these purposes. The information model is agnostic from the vendor and the implementation, permitting to control any
type of QKD systems, whilst also enabling to the centralized SDN controller to build an end-to-end view of the network
for managing and optimizing the transmission of quantum signals and also to deliver the QKD-derived keys.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

5 ETSI GS QKD 015 V1.1.1 (2021-03)

Introduction

Quantum Key Distribution relies on the creation, transmission and detection of signals at the quantum level. Thisis
difficult to achieve if the network used for the transmission is aso in use with classical signal, which are much more
powerful. On the other hand, the quantum transmission can be neither amplified nor regenerated - at least without
guantum repeaters, which are not feasible with current technology - implying alimited reach for quantum
communications and the need to resort to trusted repeaters to increase the distance. To optimize the transmission of
guantum signals together with classical communications - whether they share the same physical media or not - over a
network and manage the key relay required for longer distances, it is necessary to integrate the QKD systems such that
they can communicate with the network control and also receive commands from it. These network-aware QKD
systems have to be integrated at the physical level (e.g. to allocate spectrum for the quantum channel, dynamically
change the peer, or use a new optical path, etc.), but also logically connected to the management architectures. To
achieve this integration, the required capabilities of the QKD devices have to be described to the network controller.
YANG [1] and [2] is the major modelling language used to describe network elements. Any new elements, services or
capabilities being defined usually come together with aY ANG model for enabling a faster integration into management
systems.

The purpose of the information model presented in the present document, regardless of the protocol chosen to
implement the control channel, isto simplify the management of the QKD resources by implementing an abstraction
layer described in Y ANG. Thiswill allow to optimize the creation and usage of the QK D-derived keys by introducing a
central element through the SDN controller. Thisis a standard component of SDN networks that has a global view of
the whole network. This abstraction layer will enable the SDN controller to simultaneously manage both, the classical
and quantum parts of the network. The integration has the added benefit of using well-known mechanisms and toolsin
the classical community, which will facilitate its adoption and deployment by the telecommunications world.

ETSI

6 ETSI GS QKD 015 V1.1.1 (2021-03)

1 Scope

The present document provides a definition of management interfaces for the integration of QKD in disaggregated
network control plane architectures, in particular with Software-Defined Networking (SDN). It defines abstraction
models and workflows between a SDN-enabled QKD node and the SDN controller, including resource discovery,
capabilities dissemination and system configuration operations. Application layer interfaces and quantum-channel
interfaces are out of scope.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] IETF RFC 6020 (October 2010): "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)".
[2] IETF RFC 7950 (August 2016): "The YANG 1.1 Data Modeling Language'.
[3] IETF RFC 6241 (June 2011): "Network Configuration Protocol (NETCONF)".
[4] |ETF RFC 8040 (January 2017): "RESTCONF Protocol”.
2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI GR QKD 007: "Quantum Key Distribution (QKD); Vocabulary".
3 Definitions of terms, symbols and abbreviations
3.1 Terms

For the purposes of the present document, the following terms apply:
NOTE: Where possible, the definitions from ETSI GR QKD 007 [i.1] are used.

entity: set of hardware, software or firmware components providing specific functionalities

ETSI

https://docbox.etsi.org/Reference/

7 ETSI GS QKD 015 V1.1.1 (2021-03)

QKD application: entity consuming QK D-derived keys from the key management system

NOTE: They can be either external applications (similar to SAE, see below) or internal applications running in
the QKD system.

QKD-derived key: secret key derived from QKD system(s) operating QKD protocol (s) over a QKD link
QKD interface: interface that is a high-level abstraction of a QKD system

NOTE: A QKD interface defines only attributes that are relevant from the point of view of the network. These
attributes are revealed to a SDN controller to establish and manage QKD.

QKD link: set of active and/or passive components that connect a pair of QKD modules to enable them to perform
QKD and where the security of symmetric keys established does not depend on the link components under any of the
one or more QKD protocols executed

QKD module: set of hardware, software or firmware components contained within a defined cryptographic boundary
that implements part of one or more QKD protocol(s) to be capable of securely establishing symmetric keys with at
least one other QKD module

QKD network: network comprised of two or more QKD nodes
QKD node: set of QKD modulesinstalled in the same location within the same security perimeter

QKD protocol: operations on quantum and classical signals that allow two parties to agree on commonly shared bit
strings between two ends of a QKD link that remain secret

QKD system: pair of QKD modules connected by a QKD link designed to provide Quantum Key Distribution
functionality using QKD protocols

guantum channel: communication channel for transmitting quantum signals

Quantum Key Distribution (QKD): procedure involving the transport of quantum states to establish symmetric keys
between remote parties using a protocol with security based on quantum entanglement or the impossibility of perfectly
cloning the transported quantum states

SDN agent: entity that is responsible of managing one or more QKD Systems (through their respective QKD
interfaces) within a secure location, abstracting the information of QKD resources under its control and communicating
with a SDN controller for the QKD network

SD-QKD node: logical and abstracted representation of the QKD resources under the responsibility of asingle SDN
Agent

Secure Application Entity (SAE): entity that requests one or more keys from a Key Management System for one or
more applications running in cooperation with one or more other Secure Application Entities

secur e location: location assumed to be secured against access by adversaries

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ACK Acknowledgement

AP Application Programming Interface
CRUD Create, Read, Update and Delete
DoS Denial of Service

HSM Hardware Security Module

HTTP Hypertext Transfer Protocol

ID IDentifier

ETSI

8 ETSI GS QKD 015 V1.1.1 (2021-03)

IETF International Engineering Task Force

JSON JavaScript Object Notation

NBI North Bound Interface

NMS Network Management System

PHYS Physical link

QKD Quantum Key Distribution

QoS Quality of Service

RFC Request For Comments

SAE Secure Application Entity

SDN Software-Defined Networking

SD-ONC Software-Defined Optical Network Controller

SD-QKD Software-Defined Quantum Key Distribution

SD-QNC Software-Defined Quantum Network Controller

SKR Secure Key generation Rate

SSH Secure Shell

TLS Transport Layer Security

URI Uniform Resource Identifier

URL Uniform Resource Locator

UuIiD Universally Unique Identifier

XML Extensible Markup Language

YANG Y et Another Next Generation
4 Software-Defined Quantum Key Distribution
4.1 Introduction

The parametrization and modelling defined in the present document relates to the management interface of QKD
modules (one or multiple) that connects them to a SDN controller. The requirements for such an interface and the
further integration is described asa'Y ANG model and as associated workflows for the main functional use cases (see
Annex A). This architectural design permits a controller to centrally orchestrate the QKD resources to optimize the key
alocation per link based on demands and automate the creation of either direct (physically connected through an
uninterrupted quantum channel) or virtual (multi-hop-based) QKD links, where the keys are relayed from one hop
(direct QKD link) to the next in the chain connecting the initial with the final points. The workflows described in
Annex A are thought to be implemented by using any of the well-accepted network management protocols used in SDN
architectures, which are based on Y ANG information models for their internal data structures. However, it is out of the
scope of the present document to define which specific protocol, data structures or specific implementation is chosen to
carry the Y ANG-structured information defined in the present document. These specifics are |eft aside to permit some
flexibility during the system design and implementation phases.

In addition, this Y ANG model is designed to be a base or core model for the integration of QKD technologiesin
operator's management architectures, but it is not closed for experimentation and for further extensions, as YANG
provides such flexibility to easily integrate new capabilities inside a given model. Future revisions of the present
document may include additional parameters.

4.2 SD-QKD node

A Software-Defined Quantum Key Distribution (SD-QKD) node is an aggregation of one or multiple QKD modules
that interface with a SDN controller using standard protocols (i.e. it is SDN-enabled). The connection between node and
controller allows information to be retrieved from the QKD domain and dynamically and remotely configure the
behaviour of the QKD systems to create, remove or update key associations (either through a quantum channel, or via
multi-hop) between remote secure locations. A SD-QK D node shall be compliant with some specific requirements:

. A SD-QKD node shall comprise at least one QKD module, exposed to the controller as a QKD interface.
o It may comprise multiple QKD modules, creating an abstraction of a single node with multiple interfaces.
o It shall be located within a secure location.

. A single location may comprise one or multiple SD-QKD nodes.

ETSI

9 ETSI GS QKD 015 V1.1.1 (2021-03)

A SD-QKD node shall contain a key management system aggregating the key material from the different key
associations. The key management system may be implemented using multiple logica key storesto
distinguish groups of applications.

It shall provide asingle access for applications to retrieve keys from the key store viaan API.

It shall connect to (at least) one SDN controller, via standard protocols and mechanisms to enable discovery,
control and telemetry and statistics streaming.

It should expose applications information to the controller, for discovery purposes and to better optimize the
utilization of QKD keys.

It should expose QKD interface with QKD system information to the SDN controller, and allow to configure
some parameters of the systems to create the quantum channel.

It should expose information of the key associations (links) with other SD-QKD systems.

It should expose the classical channel requirements for each of the systems within the node (e.g. attenuation,
supported wavelengths, etc.).

The modelling defined in the next clauses provides an abstracted view of the QKD domain. It can abstract the QKD
systems within a secure location as interfaces of a network element. This network element, the SD-QKD node, is able to
communicate with its neighbours and with the central controller to create end-to-end services, or key associations.
When possible (enough QKD systems, reachability over the physical media), these associations are created over a direct
guantum channel. In other cases, a multi-hop link or key association is created granting a fully connected QKD

network. Also, the information exchanged across the control planeis not critical (e.g. keys are not forwarded to the
controller). Therefore, the introduction of the SDN paradigm for QKD networks, should not imply any further security
risks different from the already known in trusted node QKD networks (e.g. DoS attacks). In particular, the aim of this
abstraction model isto:

Enabl e centralized management of the QKD resources based on demands, capabilities and network (quantum
and classical) status.

Aggregate different QKD systems within a secure perimeter under a single key management, to better detect
demands and provision the necessary links or key associations.

Reduce the complexity of operating separately all the QKD modules within a secure location and handling
statistics from the QKD systems.

Abstract the complexity of managing low level parameters and behaviour of each QKD system and
technology, as each node can take the responsibility of low-level configurations.

Optimize the configuration and the distribution of QKD links in the QKD network to cope with all demands,
based on application's QoS information and generation rate statistics of each link.

Coordinate quantum and classical channels (the configuration of the optical network), whether they share the
same physical media or not, to enhance the performance of the QKD systems.

ETSI

10 ETSI GS QKD 015 V1.1.1 (2021-03)

SD-QKD network showing a set of SD-QKD nodes connected among
them (solid lines) and with a SDN controller (dashed lines)

SDN Controller
(Network Controller)

Control
Information
A ~ SD-QKD
APPS SDN Agent Node
‘ (QKD Node)
indexed Cogrol) SD-QKD
Keys, QoS Key stats s',:: oo . Node
TKEY TEGUITEMENTS onfiguration
i e ¥ Information SD-QKD
- =fty Node
Key ! i
Management 1
L
Key i SD-QKD
kextraction B Node
(SD-QKD rm e |-
_ Node Modules

NOTE: The SD-QKD Nodes are connected among them (solid lines) and with the SDN controller (dashed lines).
One of the nodes is detailed to show a typical set of components and the type of information that flows
among them. In particular the SDN Agent that connects the node with the SDN controller is shown. The
present document deals with this connection. See the text for additional information.

Figure 1: Depiction of a SD-QKD network showing a set of SD-QKD nodes

Figure 1 shows, in ahigh-level design, a SD-QKD network as a set of connected nodes under the control of the SDN
controller. One of the nodes is shown in more detail with the fundamental components which are required to build a
SD-QKD nodein order to illustrate the typical flow of information between components. Note that the figureis for
illustrative purposes and does not imply a mandatory node structure. The Applications are included as part of the node
to illustrate that they are contained in the same security perimeter. At the hardware level, the SD-QKD system shall
comprise at least one QKD module (in the example figure, there are three modules). These modules are used to
physically connect the SD-QK D node to other remote peers through a quantum link, composing a QKD system for key
generation purposes (note that the scheme can be easily extended to include other services allowed by the quantum
device, like entanglement distribution). The generated keys are pushed (or extracted) to a key management system,
which is responsible for maintaining and distributing them. The key management system registersincoming
applications and their QoS, and monitors the real demands of each of them. It also exposes the parameters needed to
monitor the utilization of the QK D-derived keys for each link. This information allows to optimize the planning of the
QKD network.

The following clauses describe the different data structures (Y ANG grouping) to be handled by the SD-QKD node and
the SDN controller. The YANG data model for the SD-QKD node is divided in four main structures (groupings): SD-
QKD node capahilities, QKD applications, QKD links (or key associations) and QKD interfaces (or systems). In
addition, Y ANG noatifications are also included for server (node) to client (controller) communications.

4.3 SD-QKD node capabilities

The SD-QKD node capabilities structure contains essential parameters to expose to the SDN controller its support for
some basic functionalities. An example is the capability (or policy) of exporting statistics about the key usage, or if the
node is alowed (capable) of forwarding keys (key relay) in a multi-hop environment. Other submodules could also
include their own capabilities, while this clause just refers to the capabilities of the node as awhole.

ETSI

11 ETSI GS QKD 015 V1.1.1 (2021-03)

Table 1: SD-QKD node capabilities

Name Type Details Description
link_stats_support boolean Default: true If true, this node exposes link-related statistics
(secure key generation rate-SKR, link
consumption, status, QBER).

application_stats_support boolean Default: true If true, this node exposes application related
statistics (application consumption, alerts).
key relay mode enable boolean Default: true QKD node support for key relay mode services.

4.4 QKD Interfaces

As described in the introductory clause, QKD interfaces are an abstraction of the QKD systems which are contained
within a secure location as part of a SD-QKD nodes. This abstraction allows a SDN controller to identify all the QKD
systems within alocation and aggregate them as a single network element with multiple interfaces (e.g. asaswitch or a
router, with very different capabilities).

Due to interoperability issues, the current version of the model shall specify the QKD technology implemented by the
device and the vendor and model, as mix-matching different QKD modulesin the current state of development will lead
to inoperative links with no key generation.

The QKD interfaces within a SD-QKD node shall include the following parameters:

Table 2: Parameters of QKD interfaces

Name Type Details Description
gkdi_id ietf_yang_types:uuid None Interface id. It is described as a locally unique
(interface ID) number, which is globally unique when

combined with the SD-QKD node ID.
capabilities container None Capabilities of the QKD system (interface).
capabilities/ etsi-gkdn-types: None QKD node support for key relay mode services.
role_support QKD-ROLE-TYPES
capabilities/ etsi-gkdn-types: None Range of supported wavelengths (nm) (multiple
wavelength_range QKD-ROLE-TYPES if it contains a tunable laser).
capabilities/ uint32 None Maximum absorption supported (in dB).
max_absorption
model string None Device model (vendor/device).
type etsi-gkdn-types: None Interface type (QKD technology).
QKD-TECHNOLOGY-TYPES

att_point container None Interface attachment point to an optical switch.
att_point/ string None Unique ID of the optical switch (or passive
device component) to which the interface is connected.
att_point/ uint32 None Port ID from the device to which the interface is
port connected.

4.5 QKD Key Association Links

A QKD Key Association Link isalogical key association between two remote SD-QKD nodes. These links
associations can be of two different types: direct (also called physical), if there is a direct quantum channel through
which keys are generated i.e. a physical QKD link connecting the pair of QKD modules, or virtual if keys are forwarded
(key relay) through several SD-QKD -trusted- nodes to form an end-to-end key association. i.e. there isno direct
guantum channel connecting the end points, and a set of them have to be concatenated such that for each a secret key is
produced and then used to relay a key from the initial to the end point in a multi-hop way.

Any new key association link created in a SD-QKD node has to be tracked, labelled and isolated from other links.
Virtual links are also registered as internal applications, as they make use of QK D-derived keys from other QKD key
association links for the key transport.

ETSI

12

ETSI GS QKD 015 V1.1.1 (2021-03)

The information exported to the SDN controller should be kept minimal but sufficient to allow analysis and
optimization of the deployed links and applications, while other crucial information (e.g. the QKD-derived keys) shall
be kept within the SD-QKD node security perimeter. The parameters that define a QKD key association link within the
SD-QKD node abstraction are:

Table 3: Parameters of a QKD key association link

Name Type Details Description
link_id ietf_yang_types:uuid None Unique ID of the QKD link (key
association).
enable boolean Default true This value allows to enable of disable

the key generation process for a given
link.

local/gkd_node ietf_yang_types:uuid None Unique ID of the local SD-QKD node.
local/interface uint32 None Interface used to create the key
association link.
remote/qgkd_node ietf_yang_types:uuid None Unique ID of the remote QKD node.
This value is provided by the SDN
controller when the key association link
request arrives.
remote/interface uint32 None Interface used to create the link.
type etsi-gkdn-types: None Key Association Link type: Virtual
QKD-LINK-TYPES (multi-hop) or Direct.
state etsi-gkdn-types: None Status of the QKD key association link.
LINK-STATUS-TYPES
applications List: ietf_yang_types:uuid [None Applications which are consuming
keys from this key association link.
prev_hop ietf_yang_types:uuid (if type=VIRTUAL) Previous hop in a multihop/virtual key
association link config.
next_hop Leaf-list: (if type=VIRTUAL) Next hop(s) in a multihop/virtual key
ietf_yang_types:uuid association link config. Defined as a
list for multicast over shared sub-
paths.
bandwidth uint32 (if type=VIRTUAL) Required bandwidth (in bits per
second) for that key association link.
Used to reserve bandwidth from the
physical QKD links to support the
virtual key association link as an
internal application.
channel_att uint8 (if type=PHYS) Expected attenuation on the quantum
channel (in dB) between the
Source/gkd_node and
Destination/gkd_node.
wavelength etsi-gkdn-types: (if type=PHYS) Wavelength (in nm) to be used for the
wavelength quantum channel. If the interface is not
tunable, this configuration could be
bypassed.
gkd_role etsi-gkdn-types: (if type=PHYS) Transmitter/receiver mode for the QKD
QKD-ROLE-TYPES module. If there is no multi-role
support, this could be ignored.
Performance/ uint32 Config false Sum of all the application's bandwidth
expected_consumption (in bits per second) that are on this
particular key association link.
Performance/skr uint32 Config false Secret key rate generation (in bits per
second) of the key association link.
Performance/eskr uint32 Config false Effective secret key rate (in bits per
second) generation of the key
association link available after internal
consumption.
Performance/ list (if type=PHYS) List of physical performance
phys_perf Config false parameters.
Key "type”;
Performance/ etsi-gkdn-types: (if type=PHYS) type of the physical performance value
phys_perf/ PHYS-PERF-TYPES config false; to be exposed to the controller.
type

ETSI

13 ETSI GS QKD 015 V1.1.1 (2021-03)

Name Type Details Description
Performance/ uint32 (if type=PHYS) Numerical value for the performance
phys_perf/ config false; parameter type specified above.
value

4.6 QKD Applications

From the perspective of the SD-QKD node, a QKD application is defined as any entity requesting QK D-derived keys
from the key manager within the node. These applications might be external (e.g. an end-user application, a Hardware
Security Module (HSM), avirtual network function, an encryption card, security protocols, etc.) or internal (keys used
for authentication, to create avirtual link - for key transport, like e.g. aforwarding module, etc.). From the software
perspective, an application is a concrete running instance or process consuming keys at a given point of time. A single
instance or process may aso require to open different isolated sessions (with a different unique ID) with the SD-QKD
node.

The SDN controller takes two roles related to application management: the first one isto register any incoming
application and, more specifically, their QoS requirements to better optimize the usage of the QKD network based on
the real demands; the second is to handle the complexity of finding the remote SD-QKD peer node for QKD
applications. Forcing applications to know about the QKD network (or to exchange information about their local QKD
nodes/systems) brings an undesirable complexity to the application layer. To avoid such situations, the SDN controller
acts as a central repository where new applications are registered and where SD-QKD nodes can access to find the peer
SD-QKD node for a given application. Any application just knows where its node's key manager islocated (ip/port),
while the control plane will take care of registering and coordinating new applications (see clause 5.2).

The set of parameters that compose the QKD applications structure is as follows.

Table 4: Parameters of a QKD application

Name Type Details Description
app_id ietf_yang_types:uuid |None This value uniquely identifies a pair of
applications extracting keys from a QKD
key association link. This value is similar
to a key ID or key handle.
QoS Container None Requested Quality of Service.
QoS/max_bandwidth uint32 None Maximum bandwidth (in bits per second)
allowed for this specific application.
Exceeding this value will raise an error
from the local key store to the appl. This
value might be internally configured (or
by an admin) with a default value.
QoS/min_bandwidth uint32 None This value is an optional QoS parameter
which enables to require a minimum key
rate (in bits per second) for the
application.
QoSljitter uint32 None This value allows to specify the maximum
jitter (in msec) to be provided by the key
delivery API for applications requiring fast
rekeying. This value can be coordinated
with the other QoS to provide a wide
enough QoS definition.
QoS/tl uint32 None This value is used to specify the
maximum time (in seconds) that a key
could be kept in the key store for a given
application without being used.

QoS/ boolean Default false If true, multiple clients for this application

clients_shared_path_enable might share keys to reduce service
impact (consumption).

QoS/ boolean Default false If true, multiple clients for this application

clients_shared_keys_required might share keys to reduce service

impact (consumption).

ETSI

consumed_bits

14 ETSI GS QKD 015 V1.1.1 (2021-03)
Name Type Details Description
type etsi-gkdn-types: None Type of the registered application. These
QKD-APP-TYPES values, defined within the types module,

can be client (if an external application is
requesting keys) or internal (if the
application is defined to maintain the
QKD - e.g. multi-hop, authentication or
other encryption operations).

server_app_id inet:URI None ID of the server application connecting to
the local key server.

client_app_id inet:URI None ID of the client application connecting to
the local key server of the peer SD-QKD
node.

backing_link_id Leaf-list: None Unique ID of the key association link

ietf_yang_types:uuid which is providing QKD keys to these

applications.

local_gkdn_id ietf_yang_types:uuid |None Unique ID of the local SD-QKD node
which is providing QKD keys to the local
application.

remote_qgkdn_id ietf_yang_types:uuid |None Unigue ID of the remote SD-QKD node
which is providing QKD keys to the
remote application. While unknown, the
local SD-QKD will not be able to provide
keys to the local application.

priority uint32 default O Priority of the association/application this
might be defined by the user, but usually
handled by a network administrator.

creation_time date-and-time Config false Date and time of the service creation.

expiration_time date-and-time None Date and time of the service expiration.

Statistics/statistic Container/list None

Statistics/statistic date-and-time Config false End time for the statistic period.

end_time

Statistics/statistic date-and-time Config false Start time for the statistic period.

start_time

Statistics/statistic uint32 Config false Consumed secret key amount (in bits) for

a given period of time.

4.7 Notifications

Y ANG noatifications are used to allow device to controller communications, usually to expose information based on
changes or by-time subscriptions. Within Y ANG notifications, two ways of exposing data have been identified: the first
one, based on ad-hoc and very specific notifications, which have to be appropriately modelled using Y ANG constructs;
and the second one, where notifications are generically structured and then exposed as topic-based subscriptions. The
approach described in the present document specifies a minimal set of base notifications for application, interface and
link management while, with the purpose of providing a structure for new eventsto be integrated, a generic structure for
events and alarmsis also included. Such generic structure is divided in three main categories of elements within the
model: applications, links and interfaces.

The specific notifications considered so far have also being structured by applications, links and interfaces. The list of
defined notificationsis as follows:

Applications:

. sdgkdn_application_new: Defined for the controller to detect new applications requesting keys from a QKD
node. This maps with the workflow shown in clause 5.2 "QKD Application Registration”. Parameters such as
client and server app IDs, local QKD node identifier, priority and QoS are sent in the notification.

. sdgkdn_application_qgos_update: Notification that includes information about priority or QoS changes on an
existing and already registered application.

. sdgkdn_application_disconnected: Includes the application identifier to inform that the application is no longer
registered and active in the QKD node.

ETSI

15 ETSI GS QKD 015 V1.1.1 (2021-03)

Interfaces:

. sdgkdn_interface_new: Includes al the information about the new QKD system installed in the secure location
of agiven QKD node.

. sdgkdn_interface_down: Identifies an interface within a QKD node which is not working as expected,
allowing additional information to be included in a"reason" string field.

. sdgkdn_interface out: Containsthe ID of an interface which is switch off and uninstall from a QKD node.
This information can be gathered from this notification or from regular polling from the controller's side.

Links:

. sgdkdn_link_down: Asin the interface down event, this notification contains the identifier of agiven link
which has gone down unexpectedly. In addition, further information can be sent in the "reason" field.

. sgdkdn_link _perf _update: This notification allows to inform of any mayor modification in the performance of
an active link. The identifier of the link is sent together with the performance parameters of the link.

. sqdkdn_link_overloaded: This notification is sent when the link cannot cope with the demand. The link
identifier is sent with the expected consumption and general performance parameters.

In addition to the specific and generic notifications described above, most popular network protocols based on YANG
allow to subscribe to any information within the node's datastore. In this sense, any of the parameters subject to
configuration or operational changes can be informed in real time, if the selected protocol used together with the YANG
model has this capability. Clause 6 describes the most popular management protocols used in the networking area.

5 Sequence Diagrams and Workflows

5.1 Introduction

This clause provides an overview of some fundamental use cases that are meant to be handled by a SD-QKD network.
For each use case, this clause includes the workflow (shown as a sequence diagram) to show the interactions and
exchange of information between the SD-QKD node and the SDN controller (SD-QNC). The base use cases identified
relate to the management of incoming requests (new applications requesting keys) from the network perspective and the
creation of new key associations, either virtua or physical.

5.2 QKD Application Registration

New applications requesting QK D-derived keys from the SD-QKD node's key manager shall be registered in both, the
local node and the SDN controller. This allows the SDN controller to keep track of the real-time key consumption as
well asto have an estimate of the maximum key rate reserved for each link at atime. These values are then used to
appropriately plan new links in the SD-QKD network.

Similarly, applications aiming to use QKD-derived keys shall know about their node's key manager endpoint (ip/port),
but they should not be required to know about any other node within the QKD network (not even the ID of the SD-
QKD node within the domain of the peer application). For that reason, this clause provides a detailed sequence diagram
and workflow description on how to register incoming applications within the context of a SD-QKD network.

ETSI

16 ETSI GS QKD 015 V1.1.1 (2021-03)

App A Node A SDQNC Node B App B
1 T
=0pen Key Session :
I(Src, Dst, QoS) |

T
1
1
1
INew app (src, Dst,:
1QoS, Node A) 1

|
| Find peer?
: No peer Not found
Waiting for 1 registered 1
response 1 :Open Key Session 1
< I New app (Dst, Srci (Src, Dst, QoS) I
: QOS, Node B) I“—'
Find peer?
Node A found

Register app I Register app
(Src, Dst, QoS, : (Src, Dst, QoS,
Node A, Node B)I Node A, Node B) I

L |

g —————————

Key Stream ID I Key Stream ID
—_—

Figure 2. Sequence diagram of the applications registration in a SD-QKD network

Figure 2 shows the exchange of messages between application and their local SD-QKD nodes, as well as the SD-QKD
nodes with the SDN controller. The workflow is as follows:

o Initially, an application within the security domain A connects to the local SD-QKD node (key manager) via
key delivery API. In this connection request, the application sends its own unique 1D, the unique I D of the peer
application and some QoS requirements.

e The SD-QKD node, asit does not have information about the peer application or its SD-QKD node (remote), it
informs the SDN controller of this new request, forwarding the same information as in the application request,
including the local SD-QKD node ID.

. If this pair of applications are not yet registered in the SDN controller, the controller sends back an
acknowledgement, but without further information of the peer SD-QKD node.

. In the security domain B, the peer application connects to the SD-QKD node's key manager to start gathering
QKD-derived keys.

e The SD-QKD node at B does not have information of the peer application or SD-QKD node, so it informsthe
SDN controller of the incoming application and its requirements.

. The SDN controller detects the application aready registered, creates a unique ID for the service (key ID), and
it sends to both SD-QKD nodes (A and B) all the necessary information to configure the application at each
endpoint (applications and nodes | Ds, the unique key 1D and the QoS requirements).

e Thenodes are now capable of sending the unique key 1D to the applications and reserve keys for this
application. Applications will use this unique ID to further request keys from their local key stores.

ETSI

17 ETSI GS QKD 015 V1.1.1 (2021-03)

5.3 QKD Physical (Direct) Link creation

The integration of existing QKD systems in communications networks is currently a complex task. New QKD systems
require to be manually installed, usually over an exclusive use dark fibre in the shape of a fixed QKD link connecting
two sites. Network operators have aready started to analyse different integration strategies for the QKD resources.
Some of these strategies directly study the costs of deploying a completely parallel and isolated QKD network. On the
other hand, the advent of disaggregation for optical networks and the already well-studied (and partially adopted by
operators) software-defined optical network architectures are key technologies that enable high configurability in the
optical domain. These technologies are the base to bring coexistence of classical and quantum signals and dynamically
manage the creation of classical and quantum channels integrated in the same network and even sharing the same
physical media.

I (attach. points)
I——l]

Path
Computation

ACK I

Optical

SDQNC SDONC Node A Node B N k
T 1 T
New_ I i
Service 1 i 1
Trigger |1 1 1
—_— 1 1
Find Interface 1| 1
Availability and : =
Compatibility i
: Create lightpath : :
1 1
1
|
1
1
1
!

Lightpath !configuration

v

ACK

|

Iface Config: : (Mode, Att, Peer,:Wavelength)
T ”1

Iface Config: : (Mode, Att, Peer, :Wavelength)
1 1

v

Figure 3: Sequence diagram for the dynamic creation of a physical QKD link

The workflow description associated with the physical QKD link creation sequence diagram is as follows:

. Initialy, the software-defined QKD network controller (SD-QNC) receives atrigger, either from the detection
of key demands from the nodes, or from the controller's North Bound Interface (NBI).

e The SD-QNC finds from the two locations two available and compatible interfaces to be the endpoints of the
guantum channel.

. After that, the SD-QNC sends arequest for light-path creation to the software-defined optical network
controller (SD-ONC), with the specific constraints of the quantum channel. If both controllers are integrated in
one, this operation isinternally handled.

. If the path computation succeeds, the SD-ONC proceeds to configure the optical devices and creates the light-
path.

e Whenthe SD-QNC receives an ACK for the light-path creation, it connects to both SD-QKD nodes to
configure each involved interface, including the characteristics of the optical channel.

ETSI

5.4

18

QKD Virtual Link creation

A virtual link is defined as a key association between two SD-QKD nodes which are connected through multiple SD-
QKD nodes in relay mode and multiple physical QKD links (multi-hop). This key association acts as an internal
application which consumes QK D-derived keys for the end-to-end key transport operations, as well as a new link
providing keys for the two remote endpoints. If thistype of operationsis not managed appropriately, the QKD network
will not perform optimally and virtual links could potentially end up causing congestion over other physical
connections.

ETSI GS QKD 015 V1.1.1 (2021-03)

A SDN controller collecting performance information of the QKD network can help mitigating thisissue, asit hasa
view of the QKD network as a whole, keeping track of consumption demands, key store availability and generation
rates. When a new trigger or demand is received by the controller (asin the previous clause) it is the responsibility of
the SDN controller to allocate the new optimal path over existing links to reduce the impact over other running
applications and key associations.

The workflow associated to the creation of avirtual QKD link is as follows:

SDQNC

Node A

Node B

Intermediate
Nodes

| |
New I

Service |
Trigger |
ﬁl

Resource

Fails

| el

Path

— Find Physical

Availability

QKD Network

Computation

Intermediate no

config. (prev., ne

Ds

t, AppID, Bwdth)

Source Node
Configuration

——-..&——————————————-

Destination node: config.

I---v----l

Figure 4: Sequence diagram for the dynamic creation of a virtual (multi hop) link

Initialy, the SDN controller will receive atrigger (initiated by a network administrator or based on the

demands).

The SD-QNC fails on finding available resources, either from the SD-QKD node side (not available and
compatible interfaces) or from the optical network side (thereis not an available light-path fulfilling the

guantum channel requirements).

The SD-QNC computes a path over the existing QKD network e.g. based on a weighted graph built using the

key availability, key generation rates and consumption for each link.

If succeed, the SD-QNC sends the configuration to each intermediate node in key relay mode informing of the
previous and next nodes in the path. If there are multiple links, the controller could also specify the link to be

used for therelay.

The controller finally configures the endpoints of the virtual link/key association, notifying the previous or

next hop, the bandwidth to be provided and other optional information.

ETSI

19 ETSI GS QKD 015 V1.1.1 (2021-03)

Note that in figure 4 some messages, such as acknowledgements, are not displayed to improve readability and to have a
clearer image.

6 Security considerations

The process of installing new QKD systems, regardless of having a SDN management layer or not, requires someinitial
steps to be taken for authenticating and have initial security schemes guaranteeing that the introduction of the new
systems does not break the security (e.g. atrusted identity, pre-shared secret key, used for a short period of time and just
during installation, etc.). These schemes should follow the standard security procedures used in this type of installation.
After this process, any further communication can then be secured using the QK D-derived keys.

Assuming that the SDN controller for the QKD network is within a secure location, the installation of a new QKD
system (from the abstraction perspective, a new interface) will have to follow a similar procedure. In this sense, two
different situations are possible:

e A new system being installed in an existing secured area: this case is simple, as any channel between
controller and systems can be secured using QK D-derived keys from other existing links.

. A new secure location isintegrated in the SDN network: this procedure will need a security scheme to present
the new local SDN Agent to the SDN controller such that the rest of the network would trust init. As
mentioned previoudly, there exist mechanismsin conventional security to perform thistask. Once a first
authentication has been performed QK D-derived keys can be used for further authentication and encryption.

Despite of the considerations described above, the description of any particular security implication and the associated
solution for each one is out of the scope of the present document. This clause aims to clarify that any security scheme
valid for the installation of QKD systemsin any network or as a standalone pair is also valid for a software-defined
guantum key distribution network.

7 Protocol Considerations

The goal of using YANG for data modelling is double: firstly, it is positioned as the main modelling language for
network elements, systems and services while the main network control plane protocols aready use it to structure their
internal data; secondly, it is easy to define, read and extend base on the needs from new technologies and services. The
Y ANG modulesin the present document (Annex A) use YANG version 1.0 [1] and are checked for compatibility with
version 1.1 [2].

The main two protocols being used for network management that are based on YANG are:

o RESTCONF (IETF RFC 8040) [4]: usually used at the SDN controller and other platforms northbound
interface (NBI), it isbased on HTTP in order to implement CRUD operations (create, read, update and del ete)
over datadefined in YANG. Any call to thisinterface requires, among other parameters or headers, an URL
and a body (usually encoded in JSON or XML).

o NETCONF (IETF RFC 6241) [3]: in this case, it is usually implemented between a network element and a
SDN controller or Network Management System (NMS). Its encoding isusually XML (it also accepts JSON)
and the protocol is based on transactions, while the transport is usually over secure protocols, such as SSH or
TLS.

The current definition of each of these protocols allows to manipulate the data defined via Y ANG and stored in the
devices' datastore in different ways. Also, additional capabilities of these protocols (e.g. subscription not just to
notifications but to any modification on configuration or operational data within the datastore) are being revised and
developed as standards within the IETF.

ETSI

20 ETSI GS QKD 015 V1.1.1 (2021-03)

Annex A (normative):
SD-QKD node YANG Model

A.1 ETSI QKD SDN node module

A file containing the Y ANG module in this clause is also available at the following URL.:
https.//forge.etsi.org/rep/gkd/gs015-ctrl-int-sdn/blob/v1.1.1/etsi-gkd-sdn-node.yang.

/* Copyright 2021 ETSI
Li censed under the BSD-3 Cl ause (https://forge.etsi.org/legal-matters) */

nodul e et si - gkd- sdn- node {
yang-version "1";
namespace "urn:etsi: gkd: yang: et si - gkd- node"
prefix "etsi-qgkdn";
import ietf-yang-types { prefix "yang"; }

inmport ietf-inet-types { prefix "inet"; }
i nport etsi-qgkd-node-types { prefix "etsi-gkdn-types"; }

/'l meta
organi zation "ETSI |SG QKD';

cont act
"https://ww. etsi.org/conm ttee/gkd
vicente@i.upmes";

description
"This nodul e contains the groupi ngs and contai ners conposi ng
the software-defined QKD node i nfornmation nodels
specified in ETSI GS (KD 015 V1.1.1";

revision "2020-09-30" {
description
"First definition based on initial requirenent analysis."

}

cont ai ner sdgkd_node {
description
"Top nodul e describing a software-defined QKD node (SD- QKD node).";

| eaf node_id {
type yang: uui d;
mandat ory true
description
"This value reflects the unique ID of the SD- QKD node."
}

| eaf location_id {
type string
default "";
description
"This val ue enables the | ocation of the secure
area that contains the SD- QKD node to be specified."

}

contai ner gkd_capabilities {

uses gkd_capabilities_top

description "Capabilities of the SD- QKD node.";
}

cont ai ner gkd_applications {
uses gkd_applications_top
description "List of applications that are currently registered
in the SD-QKD node. Any entity consum ng QKD-derived keys (either
for internal or external purposes) is considered an application.”

ETSI

https://forge.etsi.org/rep/qkd/gs015-ctrl-int-sdn/blob/v1.1.1/etsi-qkd-sdn-node.yang

21 ETSI GS QKD 015 V1.1.1 (2021-03)

}

contai ner gkd_interfaces {
uses gkd_interfaces_top;
description "List of physical QKD nodules in a secure |ocation,
abstracted as interfaces of the SD-QKD node.";
}

contai ner gkd_links {
uses gkd_links_top;
description "List of (key association) links to other SD- QXD nodes in the network.
The links can be physical (direct quantum channel) or virtual multi-hop
connection doi ng key-relay through several nodes.";

}
}

groupi ng gkd_capabilities_top {

| eaf link_stats_support {
type bool ean;
defaul t true;
description
"I'f true, this SD- QXD node exposes link-related statistics (key
generation rate, link consunption, status).";

}

| eaf application_stats_support {
type bool ean;
defaul t true;
description
"I'f true, the SD- QKD node exposes application rel ated
statistics (application consunption, alerts).";

}

| eaf key_rel ay_node_enabl e {
type bool ean;
defaul t true;
description
"If true, the SD- QXD node supports key relay (multi-hop) node services.";

}
groupi ng gkd_applications_top{

|'ist gkd_application {
key "app_id";

| eaf app_id {
type yang: uui d;
description
"This value uniquely identifies a pair of applications
extracting keys froma QKD key association link. This value is simlar
to a key ID or key handle.";

}

contai ner gos {

| eaf max_bandwi dth {

type uint32;
description "Maxi mum bandwi dth (bps) allowed for this specific
application. Exceeding this value will raise an error

fromthe |l ocal key store to the application. This value m ght
be internally configured (or by an adm nistrator).";

}
| eaf m n_bandwi dth {
type uint32;
description "This value is an optional QoS paraneter
indicating the mninmumkey rate that the application is expected
to request (in bits per second).";
}
leaf jitter {

type uint32;

description "This value allows a maxi numtine
jitter (nsec) of keys provided by the key delivery APl to be specified, for
applications requiring fast rekeying. This value can

ETSI

22 ETSI GS QKD 015 V1.1.1 (2021-03)

be coordinated with the other QS to provide a w de
enough QoS definition.";

leaf ttl {
type uint32;
description "Tinme To Live (sec) specifies the maxi num
time a key can have been stored before delivery to
an application.";

| eaf clients_shared_path_enable {
type bool ean;
defaul t fal se;
description "If true, multiple clients for this application
m ght share paths across the network (rather than having
di sjoint paths) to reduce service inpact (consunption).";

}

| eaf clients_shared_keys_required {
type bool ean;
defaul t fal se;
description "If true, nultiple clients for this application
m ght share keys to reduce service inpact (consunption).";

}

| eaf type {

type identityref {
base etsi-qgkdn-types: QKD- APP- TYPES;

}

description "Type of the registered application. These
val ues, defined within the types nodul e, can be client
(external applications requesting keys)
or internal (application is defined to maintain
the QKD network - e.g. multi-hop, authentication or
ot her encryption operations).";

}

| eaf server_app_id {
type inet:uri;
description "I D of the server application connecting to
the key store.";
}

leaf-list client_app_id {
type inet:uri;
description "ID of the client application connecting to
the key server of the peer SD-(KD node. It is considered
as the client fromthe security perspective.";

}

| eaf-1ist backing_link_ids {
type yang: uui d;
description "Universally Unique I Ds of the (key association) |inks providing
KD keys to these applications.";

| eaf local _gkdn_id {
type yang: uui d;
description "Universally Unique ID of the Iocal SD QKD node t hat
is providing QKD keys to the |local application.";
}

| eaf renpte_gkdn_id {
type yang: uui d;
description "Universally Unique ID of the renbte SD- QKD node t hat
is providing QKD keys to the renote application. Wile
unknown, the local SD-QKD will not be able to provide
keys to the local application."”;

}

leaf priority {
type uint32;
default O;
description "Priority of the association/application.
Hi gh value indicate high priority. This might be defined by

ETSI

23 ETSI GS QKD 015 V1.1.1 (2021-03)

the user, but will usually assigned by a network adm nistrator.";

}

| eaf creation_tine {
config fal se;
type yang: date-and-time;
description "Date and tinme of the service creation.";

}

| eaf expiration_tine {
type yang: date-and-ti me;
description "Date and tinme of the service expiration."”;

}
contai ner statistics {

description "Statistical information relating to a
specific statistic period of tinme.";

list statistic {

key "end_tine";
config fal se;

| eaf end_tine {
type yang: date-and-ti me;
config fal se;
description "End time for the statistics collection period.";

}

| eaf start_tine {
type yang: dat e-and-ti ne;
config fal se;
description "Start tine for the statistics collection period.";

}
| eaf consuned_bits {
type uint32;
config fal se;
description "Consuned secret key anount (bits)
for a statistics collection period of tine.";
}

}

groupi ng gkd_i nterfaces_top {
|ist gkd_interface {
key "qgkdi _id";
description "QKD Interface ID.";

uses gkd_i nterface_conmmon;

}
groupi ng gkd_i nterface_common {

| eaf gkdi_id {
type uint32;
description "Interface ID. A locally unique nunber, which
is globally unique when conbined with the SD-QXD node ID.";
}

contai ner capabilities {
description "Capabilities of the QKD system (interface).";

| eaf role_support {
type identityref {
base etsi-qgkdn-types: QKD- ROLE- TYPES;
}

description "Support for transmt, receive or both.";

}

| eaf wavel engt h_range {

ETSI

24 ETSI GS QKD 015 V1.1.1 (2021-03)

type etsi-qgkdn-types: wavel engt h-range-type;
description "Range of supported wavel engths (nm (nultiple
if it contains a tunable laser).";

}

| eaf max_absorption {
type uint32;
descri ption "Maxi num absorption supported (dB).";
}
}

| eaf nodel {
type string;
description "Device nodel (vendor/device).";

}

| eaf type {
type identityref {
base etsi-qgkdn-types: KD- TECHNOLOGY- TYPES;
}

description "Interface type (XD technology).";
}

contai ner att_point {
description "Interface attachnent point to an optical switch.";

| eaf device {
type string;
description "Unique ID of the optical switch (or
passi ve conponent) to which the interface is connected."”;

}

| eaf port {
type uint32;
description "Port I D of the device to which the interface
is connected.";
}
}
}

groupi ng gkd_links_top {

l'ist gkd_link {
key "link_id";

leaf link_id{

type yang: uui d;

description "Universally Unique ID of the QKD |ink (key association).";
}

| eaf enable {
type bool ean;
default true;
description "This value allows the key generation process for a
given link to be enabled or disabled. If true, the key generation
process is enabled.";

}

cont ai ner local {
description "Source (local) node of the QKD link.";

| eaf gkd_node {

type yang: uui d;

description "Universally Unique ID of the |ocal gkd-node.";
}

| eaf interface {
type uint32;
description "Interface used to create the key association link.";
}
}

container remte {
description "Destination (renote) unique QKD node ID.";

| eaf qkd_node {
type yang: uui d;
description "Universally Unique ID of the renpte QKD node.

ETSI

25 ETSI GS QKD 015 V1.1.1 (2021-03)

This value is provided by the SDN controller as part
of the request to establish the key association link.";

}

| eaf interface {
type uint32;
description "Interface used to create the key association link.";
}
}

| eaf type {
type identityref {
base etsi-qgkdn-types: QKD- LI NK- TYPES;
}
description "Link type: Virtual (multi-hop) or physical.";
}

| eaf state {
type identityref {
base etsi-qgkdn-types: LI NK- STATUS- TYPES;
}

description "Status of the QKD key association link.";

}

| eaf-1ist applications {
type yang: uui d;
description "Universally Unique | Ds of Applications which
are consum ng keys fromthe QKD key association link.";

}
uses virtual _|ink_spec {
when "../type = "VIRT' " {
description "Virtual key association |link specific configuration.";
}
}
uses physical _|ink_spec {
when "../type = 'PHYS " {
description "Physical key association |link specific configuration.";
}
}

cont ai ner performance {

uses conmon_per f or mance;

uses physical _|ink_perf {
when "../../type = 'PHYS " {
description "Performance of the specific physical link.";
}
}

groupi ng common_per f or mance {

| eaf expected_consunption {
type uint32;
description "Sum of the bandw dths (bps) of the application's that are
consum ng keys fromthe key association link.";

}

| eaf skr {
type uint32;
description "Total secret key rate (bps) generation of the key association
link.";
}

| eaf eskr {
type uint32;
description "Effective secret key rate (bps) generated by the key association
link. i.e. the available rate to the applications after internal
consunption.";

ETSI

26 ETSI GS QKD 015 V1.1.1 (2021-03)

groupi ng physical _link_perf {

|'ist phys_perf {
key "type";

| eaf type {
type identityref {
base "etsi-qgkdn-types: PHYS- PERF- TYPES";
}
description "Type of the physical performance value to be
exposed to the controller.";

}
| eaf value {
type uint32;
description "Nunerical value for the performance paraneter."”;
}
}
}
groupi ng virtual _link_spec {
| eaf prev_hop {
type yang: uui d;
description "Universally Unique |ID of the previous hop in
a multi-hop/virtual link configuration.";
}
| eaf-1ist next_hop {
type yang: uui d;
description "Universally Unique I Ds of the Next hop(s) in
a nulti-hop/virtual key association |ink configuration. List wll
contain nultiple entries for nulticast over shared sub-paths.";
}
| eaf bandwi dth {
type uint32;
description "Required bandw dth (bps)for the key association link. Used to
reserve bandwi dth fromthe physical link to support the virtual |ink
as an internal application.";
}
}

groupi ng physical _Iink_spec {

| eaf channel _att {
type uint8;
description "Expected attenuation on the quantum channel (dB).";

}

| eaf wavel ength {
type etsi-qgkdn-types:wavel ength;
description "Wavel ength (nm to be used for the quantum channel. |f
the interface is not tunable, this paraneter can by bypassed.";

}

| eaf gkd_role {
type identityref {
base "etsi-qgkdn-types: QKD- ROLE- TYPES";
}
description "Transmitter/receiver node for the QKD system |f
there is no multi-role support, this could be ignored.";

}
notification sdgkdn_application_new {
cont ai ner gkd_application {
| eaf seyver_app_i d {
type inet:uri;

description "I D of the server application connecting to
the key store.";

ETSI

27 ETSI GS QKD 015 V1.1.1 (2021-03)

leaf-1ist client_app_id {
type inet:uri;
description "ID of the client application connecting to
the key server of the peer SD-QKD node. It is considered
as the client fromthe security perspective.";

}

| eaf local _gkdn_id {
type yang: uui d;
description "Universally Unique ID of the | ocal SD QKD node whi ch
is providing QKD keys to the |local application.";

}
leaf priority {
type uint32;
default O;
description "Priority of the association/application.
H gher val ues indicate higher priority. This mght be
defined by the user, but usually handl ed
by a network adm nistrator.";
}

contai ner gos {

| eaf max_bandwi dth {
type uint32;
description "Maxi mum bandwi dth (bps) allowed for this specific
application. Exceeding this value will raise an error
fromthe local key store to the application. This val ue
m ght be internally configured (or by an administrator).";

}

| eaf m n_bandwi dth {
type uint32;
description "This value is an optional QoS paraneter
that enables an application to request a m ni mum key
rate (in bits per second).";

}

leaf jitter {
type uint32;
description "This value allows to specify the maxi mum
jitter (nsec) of keys provided by the key delivery AP, for
applications requiring fast rekeying. This value can
be coordinated with the other QoS paraneters to provide a w de
enough QoS definition.";
}

leaf ttl {
type uint32;
description "Tine To Live specifies the maxi mum
time (secs) a key can have been stored delivery to
and application.";

| eaf clients_shared_path_enable {
type bool ean;
default fal se;
description "If true, multiple clients for this application
m ght share paths to reduce service inpact (consunption).";
}

| eaf clients_shared_keys_required {
type bool ean;
defaul t fal se;
description "If true, nultiple clients for this application
m ght share keys to reduce service inpact (consunption).";

}

| eaf type {
type identityref {
base etsi-qgkdn-types: QKD- APP- TYPES;
}
description "Type of the registered application. These
val ues, defined within the types nodule, can be client
(if an external application is requesting keys)

ETSI

28 ETSI GS QKD 015 V1.1.1 (2021-03)

or internal (if the application is defined to naintain
the QKD network - e.g. multi-hop, authentication or
ot her encryption operations).";
}
}
}

notification sdgkdn_application_gos_update {
cont ali ner gkd_application {

| eaf app_id {
type yang: uui d;
description
"This value uniquely identifies a pair of applications
extracting keys froma QKD link. This value is sinmlar
to a key ID or key handle.";
}

container gos {

| eaf max_bandwi dth {
type uint32
description "Maxi mum bandw dth (bps) allowed for this specific
application. Exceeding this value will raise an error
fromthe |l ocal key store to the appl. This val ue m ght
be internally configured (or by an admin).";

}

| eaf m n_bandwi dth {
type uint32
description "This value is an optional QoS paraneter
whi ch enables to require a mnimumkey rate (bps)
for the application.";

}

leaf jitter {
type uint32
description "This value allows to specify the maxi mum
jitter (msec) to be provided by the key delivery APl for
applications requiring fast rekeying. This value can
be coordinated with the other QS to provide a w de
enough QoS definition.";

leaf ttl {
type uint32
description "This value is used to specify the maxi mum
time that a key could be kept in the key store (sec) for a
gi ven application w thout being used.";

}

| eaf clients_shared_path_enable {
type bool ean
default fal se
description "If true, multiple clients for this application
m ght share keys to reduce service inpact (consunption).";
}

| eaf clients_shared_keys_required {
type bool ean
default fal se
description "If true, multiple clients for this application
m ght share keys to reduce service inpact (consunption).";

}
}
leaf priority {
type uint32
default O;
description "Priority of the association/application. H gher nunbers
nmean higher priority. It might be defined by the user, but usually handl ed
by a network admi nistrator.";
}

}
}

notification sdgkdn_application_di sconnected {

ETSI

29 ETSI GS QKD 015 V1.1.1 (2021-03)

cont ai ner gkd_application {

| eaf app_id {
type yang: uui d;
description
"This value uniquely identifies a pair of applications

extracting keys froma QKD key association link. This value is simlar
to a key ID or key handle.";

}
}
}

notification sdgkdn_interface_new {

contai ner gkd_interface{
uses gkd_i nterface_conmon

}

}

notification sdgkdn_interface_down {
contai ner gkd_interface {

| eaf gkdi_id {
type uint32
description "Interface id. It is described as a locally

uni que nunber, which is globally unique when conbi ned
with the SD-QKD node ID.";

}

| eaf reason {
type string
description "Auxiliary paraneter to include additional
informati on about the reason for interface failure."
}

}
}

notification sdgkdn_interface_out {
contai ner gkd_interface {

leaf gkdi_id {
type uint32
description "Interface id. It is described as a locally

uni que nunber, which is globally unique when conbi ned
with the SD-QKD node ID.";

}
}
}

notification sqdkdn_|ink_down {
contai ner gkd_link {

leaf link_id {

type yang: uui d;

description "Unique ID of the QKD |ink (key association).";
}

| eaf reason {
type string
description "Auxiliary parameter to include additiona
informati on about the reason for link failure."
}
}
}

notification sqdkdn_link_perf_update {
container qkd_link {
leaf 1ink_id{
type yang: uui d;
description "Unique |ID of the key association QKD Iink."

}

ETSI

30 ETSI GS QKD 015 V1.1.1 (2021-03)

contai ner performance {
uses common_per f or mance;
uses physical _|ink_perf;

}
}
}

notification sqdkdn_|ink_overl| oaded {
contai ner gkd_link {
leaf link_id{
type yang: uui d;

description "Unique ID of the key association QKD |ink.";

}
contai ner performance {

uses corrm)n_perf or mance;

}
}
}

notification alarm {
container link {

leaf link_id {
type yang: uui d;
description "Placeholder for link_id of an Alarm";

}

| eaf status {
type identityref {
base "etsi-qgkdn-types: LI NK- STATUS- TYPES";

}

description "Placehol der for status of an Alarm";
}
| eaf nessage {

type string;

description "Placehol der for nessage of an Alarm";
}

| eaf severity {
type identityref {
base "etsi-qgkdn-types: SEVERI TY- TYPES";
}
description "Placehol der for the severity of an Alarm";
}
}

container interface {

| eaf gkdi_id {
type uint32;
description "Placehol der for a new interface.";

}

| eaf status {
type identityref {
base "etsi-qgkdn-types: | FACE- STATUS- TYPES";

}

description "Placehol der for the status of the new interface.";
}
| eaf nessage {

type string;

description "Placehol der for the nmessage."”;
}

| eaf severity {
type identityref {

ETSI

31 ETSI GS QKD 015 V1.1.1 (2021-03)

base "etsi-qgkdn-types: SEVERI TY- TYPES";
}
description "Placehol der for the severity.";
}
}

container application {

| eaf app_id {
type yang: uui d;
description "Placehol der for the description of the new App.";

}

| eaf status {
type identityref {
base "etsi-qgkdn-types: APP- STATUS- TYPES";

}

description "Placehol der for the status of the new App.";
}
| eaf nessage {

type string;

description "Placehol der for the message associated to the new App.";
}

| eaf severity {
type identityref {
base "etsi-qgkdn-types: SEVERI TY- TYPES";
}

description "Placehol der for the severity.";

}

}

notification event {
container link {

leaf link_id {
type yang: uui d;
description "Placehol der for the description of the new event.";

}

| eaf status {
type identityref {
base "etsi-qgkdn-types: LI NK- STATUS- TYPES";

}

description "Placehol der for the status.";
}
| eaf nessage {

type string;

description "Placehol der for the nmessage.";
}

| eaf severity {
type identityref {
base "etsi-qgkdn-types: SEVERI TY- TYPES";
}
description "Placehol der for the severity.";
}
}

container interface {

| eaf gkdi_id {

type uint32;

description "Placehol der for the QKD ID.";
}

| eaf status {
type identityref {
base "etsi-qgkdn-types: | FACE- STATUS- TYPES";
}
description "Placehol der for the status.";

}

ETSI

32 ETSI GS QKD 015 V1.1.1 (2021-03)

| eaf nessage {
type string;
description "Placehol der for the nmessage."”;

}

| eaf severity {
type identityref {
base "etsi-qgkdn-types: SEVERI TY- TYPES";
}

description "Placehol der for the severity."

}
}

contai ner application {

| eaf app_id {
type yang: uui d;
description "Placehol der for the app_id.";

}

| eaf status {
type identityref {
base "etsi-qgkdn-types: APP- STATUS- TYPES";

}

description "Placehol der for the status.";
}
| eaf nessage {

type string;

description "Placehol der for the nmessage.";
}

| eaf severity {
type identityref {
base "etsi-qgkdn-types: SEVERI TY- TYPES";
}

description "Placehol der for the severity.";

}

A.2 ETSI QKD SDN node types module

A file containing the Y ANG modulein this clauseis also available at the following URL:
https.//forge.etsi.org/rep/gkd/gs015-ctrl-int-sdn/blob/v1.1.1/etsi-gkd-node-types.yang.

/* Copyright 2021 ETSI
Licensed under the BSD-3 Cl ause (https://forge.etsi.org/legal-matters) */

nodul e et si - gkd- node-types {

yang-version "1";

namespace "urn:etsi:gkd: yang: et si - gkd- node-types";

prefix "etsi-qgkdn-types";

organi zation "ETSI |SG QKD';

cont act
"https://ww. etsi.org/conmmttee/gkd
vicente@i.upm es";

description
"This nmodul e contains the base types created for
the software-defined QKD node i nfornmation nodels

specified in ETSI GS (KD 015 Vv1.1.1
- KD LI NK- TYPES

ETSI

https://forge.etsi.org/rep/qkd/gs015-ctrl-int-sdn/blob/v1.1.1/etsi-qkd-node-types.yang

33 ETSI GS QKD 015 V1.1.1 (2021-03)

- (KD TECHNOLOGY- TYPES
- KD ROLE- TYPES

- XD APP- TYPES

- \Wavel ength

revision "2020-09-30" {
description
"First definition based on initial requirenent analysis.";
}

identity QKD TECHNOLOGY- TYPES {
description "Quantum Key Distribution System base technol ogy types.";

}

identity CV-QKD {
base QKD- TECHNOLOGY- TYPES;
description "Continuous Variabl e base technol ogy.";

}

identity DV-QKD {
base QKD- TECHNOLOGY- TYPES;
description "Discrete Variable base technol ogy.";

}

identity DV-QKD COW {
base QKD TECHNOLOGY- TYPES;
description "CONbase technol ogy.";

}

identity DV-QKD 2W {
base QKD- TECHNOLOGY- TYPES;
description "2-Ways base technol ogy.";

}

identity QKD LINK-TYPES {
description "QKD key association link types.";

}

identity VIRT {
base QKD- LI NK- TYPES;
description "Virtual Link.";

}

identity PHYS {
base QKD- LI NK- TYPES;
description "Physical Link.";

}

i dentity QKD ROLE- TYPES {
description "QKD Rol e Type.";
}

i dentity TRANSM TTER {
base QKD- ROLE- TYPES;
description "QKD nodul e working as transmtter.";

}

identity RECElVER {
base QKD- ROLE- TYPES;
description "QKD nodul e working as receiver.";

}

identity TRANSDUCER {
base QKD- ROLE- TYPES;
description "QKD Systemthat can work as a transmitter or receiver.";

}

identity QKD-APP-TYPES {
description "Application types.";

}

identity CLIENT {
base QKD- APP- TYPES;
description "Application working as client.";

}
identity | NTERNAL {

ETSI

34 ETSI GS QKD 015 V1.1.1 (2021-03)

base QKD- APP- TYPES;
description "Internal QKD node application.";

}

identity PHYS-PERF-TYPES {
description "Physical perfornance types.";

}

identity QBER {
base PHYS- PERF- TYPES;
description "QuantumBit Error Rate.";

}

identity SNR {

base PHYS- PERF- TYPES;

description "Signal to Noise Ratio.";
}

identity LINK-STATUS- TYPES {
description "Status of the key association QKD |ink (physical and virtual).";

}

identity ACTIVE {
base LI NK- STATUS- TYPES;
description "Link actively generating keys.";

}

identity PASSIVE {
base LI NK- STATUS- TYPES;
description "No key generation on key association QKD |ink but a pool of keys
are still available."”;

}

identity PENDI NG {
base LI NK- STATUS- TYPES;
description "Waiting for activation and no keys are avail able.";

}

identity OFF {
base LI NK- STATUS- TYPES,
description "No key generation and no keys are available.";

}
111

identity I FACE- STATUS- TYPES {
description "Interface Status.";

}

identity UP {
base | FACE- STATUS- TYPES;
description "The interfaces is up.";

}

identity DOM {
base | FACE- STATUS- TYPES;
description "The interfaces is down.";

}

identity FAILURE {
base | FACE- STATUS- TYPES;
description "The interfaces has failed.";

}

identity APP-STATUS- TYPES {
description "Application types.";
}

identity ON {
base APP- STATUS- TYPES;
description "The application is on.";

}

identity DI SCONNECTED {
base APP- STATUS- TYPES;
description "The application is disconnected.";

}

ETSI

35

ETSI GS QKD 015 V1.1.1 (2021-03)

identity OUT-OF-TIME {
base APP- STATUS- TYPES;
description "The application is out of time.";

}

identity ZOWBI E {
base APP- STATUS- TYPES;
description "The application is in a zonbie state.";

}

identity SEVERI TY-TYPES {
description "Error/Failure severity levels.";
}

identity MAJOR {
base SEVERI TY- TYPES,
description "Major error/failure.”;

}

identity MNOR {
base SEVERI TY- TYPES,
description "M nor error/failure.";

}

typedef wavel ength {

type string {
pattern "([1-9][0-9]1{0,3})";
}

description
"A VDM channel nunber (starting at 1). For exanple:

}

//Pattern from"A Yang Data Model for WSON Optical Networks".
typedef wavel engt h-range-type {
type string {
pattern "([1-9][0-9]{0,3}(-[1-9][0-9]{0,3})?" +
) "(,[1-9]110-91{0, 3} (-[1-9][0-9]{0,3})?)*)";
description
"Alist of WDM channel nunbers (starting at 1)
in ascending order. For exanple: 1,12-20,40,50-80";

20";

ETSI

36 ETSI GS QKD 015 V1.1.1 (2021-03)

Annex B (informative):
Bibliography

IETF RFC 7951 (August 2016): "JSON Encoding of Data Modeled with Y ANG".
IETF DRAFT 9 (November 2017): "A Y ang Data Model for WSON Optical Networks".
ETSI GS QKD 004 (V2.1.1): "Quantum Key Distribution (QKD); Application Interface".

ETSI GS QKD 014 (V1.1.1): "Quantum Key Distribution (QKD); Protocol and data format of REST-based
key delivery API".

ETSI GS QKD 007 (V1.2.1): "Quantum Key Distribution (QKD); Vocabulary".

ETSI

37 ETSI GS QKD 015 V1.1.1 (2021-03)

Annex C (informative):

Change History

Date Version Information about changes

May 2018 0.0.1 |Early dratft.

May 2018 0.0.2 [Minor corrections over 0.0.1 (correct numbering and contributors).

November 2018 0.0.3 |Updates on notifications and security and protocol considerations. Other minor fixes.

March 2019 0.0.4 |Minor fixes. Typos corrections.

May 2019 0.0.5 [Changes in the Introduction, Executive Summary, Terms and References.
Refinement of initial definitions. Fix some typos. SD-QKD node YANG Model minor

May 2020 0.0.6 changes. Bibliography. P 0

May 2020 0.0.7 |Inclusion of YANG basic types.

September 2020 0.0.10 [Clarified text to avoid misunderstanding with QKD Link. YANG revised.
Clarified text multi-hop/key relay. YANG descriptions further clarified for key association

November 2020 0.0.12 [QKD link. Incorrect example for local/interface and remote/interface in QKD key
association link parameters removed.

ETSI

38

ETSI GS QKD 015 V1.1.1 (2021-03)

History

Document history

V111

March 2021

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Software-Defined Quantum Key Distribution
	4.1 Introduction
	4.2 SD-QKD node
	4.3 SD-QKD node capabilities
	4.4 QKD Interfaces
	4.5 QKD Key Association Links
	4.6 QKD Applications
	4.7 Notifications

	5 Sequence Diagrams and Workflows
	5.1 Introduction
	5.2 QKD Application Registration
	5.3 QKD Physical (Direct) Link creation
	5.4 QKD Virtual Link creation

	6 Security considerations
	7 Protocol Considerations
	Annex A (normative): SD-QKD node YANG Model
	A.1 ETSI QKD SDN node module
	A.2 ETSI QKD SDN node types module

	Annex B (informative): Bibliography
	Annex C (informative): Change History
	History

