
 

 

 

 

 

 

ETSI GS QKD 014 V1.1.1 (2019-02) 

Quantum Key Distribution (QKD); 
Protocol and data format of REST-based key delivery API 

 

  

Disclaimer 

The present document has been produced and approved by the Quantum Key Distribution (QKD) ETSI Industry Specification 
Group (ISG) and represents the views of those members who participated in this ISG. 

It does not necessarily represent the views of the entire ETSI membership. 

GROUP SPECIFICATION 



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 2 

 

 

 

  

Reference 
DGS/QKD-014KeyDeliv 

Keywords 
API, protocol, quantum cryptography, Quantum 

Key Distribution 

ETSI 

650 Route des Lucioles 
F-06921 Sophia Antipolis Cedex - FRANCE 

 
Tel.: +33 4 92 94 42 00   Fax: +33 4 93 65 47 16 

 
Siret N° 348 623 562 00017 - NAF 742 C 

Association à but non lucratif enregistrée à la 
Sous-Préfecture de Grasse (06) N° 7803/88 

 

Important notice 

The present document can be downloaded from: 
http://www.etsi.org/standards-search 

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or 
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any 

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI 
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver. 

Users of the present document should be aware that the document may be subject to revision or change of status. 
Information on the current status of this and other ETSI documents is available at 

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx 

If you find errors in the present document, please send your comment to one of the following services: 
https://portal.etsi.org/People/CommiteeSupportStaff.aspx 

Copyright Notification 

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying 
and microfilm except as authorized by written permission of ETSI. 

The content of the PDF version shall not be modified without the written authorization of ETSI. 
The copyright and the foregoing restriction extend to reproduction in all media. 

 
© ETSI 2019. 

All rights reserved. 
 

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. 
3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and 

of the 3GPP Organizational Partners. 
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and 

of the oneM2M Partners. 
GSM® and the GSM logo are trademarks registered and owned by the GSM Association. 

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx


 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 3 

Contents 

Intellectual Property Rights ................................................................................................................................ 4 

Foreword ............................................................................................................................................................. 4 

Modal verbs terminology .................................................................................................................................... 4 

Executive summary ............................................................................................................................................ 4 

Introduction ........................................................................................................................................................ 4 

1 Scope ........................................................................................................................................................ 6 

2 References ................................................................................................................................................ 6 

2.1 Normative references ......................................................................................................................................... 6 

2.2 Informative references ........................................................................................................................................ 7 

3 Definition of terms, symbols and abbreviations ....................................................................................... 7 

3.1 Terms .................................................................................................................................................................. 7 

3.2 Symbols .............................................................................................................................................................. 8 

3.3 Abbreviations ..................................................................................................................................................... 8 

4 Key delivery API Specification Overview ............................................................................................... 8 

5 Protocol Specifications ........................................................................................................................... 11 

5.1 Common Specification ..................................................................................................................................... 11 

5.2 Get status .......................................................................................................................................................... 11 

5.3 Get key ............................................................................................................................................................. 12 

5.4 Get key with key IDs ........................................................................................................................................ 13 

6 Data Format Specifications .................................................................................................................... 14 

6.1 Status data format ............................................................................................................................................. 14 

6.2 Key request data format ................................................................................................................................... 14 

6.3 Key container data format ................................................................................................................................ 16 

6.4 Key IDs data format ......................................................................................................................................... 17 

6.5 Error data format .............................................................................................................................................. 18 

Annex A (informative): API function mapping to ETSI GS QKD 004 ............................................. 19 

Annex B (informative): An example of how to deliver keys to multiple SAEs ................................. 20 

Annex C (informative): Authors & contributors ................................................................................. 21 

History .............................................................................................................................................................. 22 

 

  



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 4 

Intellectual Property Rights 

Essential patents 

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (https://ipr.etsi.org/). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Trademarks 

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. 
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no 
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does 
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. 

Foreword 
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Quantum Key 
Distribution (QKD). 

Modal verbs terminology 
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and 
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of 
provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

Executive summary 
The present document describes a communication protocol and data format for a quantum key distribution (QKD) 
network to supply cryptographic keys to an application. It is intended to allow interoperability of equipment from 
different vendors. A REST (REpresentational State Transfer) API is specified as a simple, scalable, widely deployed 
approach that is familiar to a large developer community. The REST-based API specifies the format of the URIs, the 
communication protocols (HTTPS), and the JSON (JavaScript Object Notation) data format encoding of posted 
parameters and responses, including key material. 

Introduction 
QKD networks deliver cryptographic keys to applications. In order to ensure the interoperability of QKD networks, 
QKD equipment, and applications from different vendors, a specification for a key delivery API from QKD networks to 
applications is important. 

Another Group Specification ETSI GS QKD 004 [i.1] defines an object-based remote function call-style API between 
applications and QKD key management layer and provides key data streams with QoS functionalities for applications. 
On the other hand, the present document defines a simpler key delivery API, which is a REST-based API using the 
HTTPS protocol and data encoded in the JSON format to deliver block keys with key IDs to applications. 

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx


 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 5 

REST-based APIs are simple and easy for developers to understand and are popular in many application domains. They 
have a large developer community and many libraries, implementations, and guidance documents are available to the 
community. REST-based APIs are lightweight and scale to the "Internet" level regarding both the number of nodes and 
the number of applications. 

It is hoped that this REST-based API specification for key delivery can encourage new entrants/developers into the 
QKD market, to promote new applications of QKD, and to develop a business ecosystem for QKD. 

  



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 6 

1 Scope 
The present document specifies a communication protocol and data format for a quantum key distribution (QKD) 
network to supply cryptographic keys to an application. 

It is in the form of an API (Application Programming Interface) that allows application developers to make simple 
method calls to a QKD network and to be delivered key material. It is intended to allow interoperability of equipment 
from different vendors. 

The QKD network can consist of a single link between a single QKD transmitter and a single QKD receiver, or it can be 
an extended network involving many such QKD links. The API defines a single interface for the delivery of key 
material to applications in both scenarios. It is beyond the scope of the present document to describe how a QKD 
network generates key material shared between distant nodes. 

A REST (REpresentational State Transfer) API is specified as a simple, scalable, widely deployed approach that is 
familiar to a large developer community. The REST API specifies the format of the URIs, the communication protocols 
(HTTPS), and the JSON (JavaScript Object Notation) data format encoding of posted parameters and responses, 
including key material. 

2 References 

2.1 Normative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

Referenced documents which are not found to be publicly available in the expected location might be found at 
https://docbox.etsi.org/Reference. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are necessary for the application of the present document. 

[1] IETF RFC 7230 (June 2014): "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and 
Routing". 

NOTE: Available at https://www.rfc-editor.org/info/rfc7230. 

[2] IETF RFC 7231 (June 2014): "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content". 

NOTE: Available at https://www.rfc-editor.org/info/rfc7231. 

[3] IETF RFC 7235 (June 2014): "Hypertext Transfer Protocol (HTTP/1.1): Authentication". 

NOTE: Available at https://www.rfc-editor.org/info/rfc7235. 

[4] IETF RFC 5246 (August 2008): "The Transport Layer Security (TLS) Protocol Version 1.2". 

NOTE: Available at https://www.rfc-editor.org/info/rfc5246. 

[5] ETSI RFC 8446 (August 2018): "The Transport Layer Security (TLS) Protocol Version 1.3". 

NOTE: Available at https://www.rfc-editor.org/info/rfc8446. 

[6] IETF RFC 8259 (December 2017): "The JavaScript Object Notation (JSON) Data Interchange 
Format". 

NOTE: Available at https://www.rfc-editor.org/info/rfc8259. 

https://docbox.etsi.org/Reference/
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8259


 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 7 

[7] IETF RFC 4648 (October 2006): "The Base16, Base32, and Base64 Data Encodings". 

NOTE: Available at https://www.rfc-editor.org/info/rfc4648. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] ETSI GS QKD 004 (V1.1.1): "Quantum Key Distribution (QKD); Application Interface". 

3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the following terms apply: 

Application Programming Interface (API): interface implemented by a software program to be able to interact with 
other software programs 

key: random digital data with an associated universally unique ID 

key container: JSON data format containing key data 

NOTE: As specified in clause 6.3. 

Key Management Entity (KME): entity that manages keys in a network in cooperation with one or more other Key 
Management Entities 

master secure application entity: Secure Application Entity that initiates a request to a Key Management Entity for 
one or more new keys that can subsequently be requested by a Slave Secure Application Entity specified in the request 

QKD Entity (QKDE): entity providing key distribution functionality including acting as an endpoint for the 
distribution of keys to at least one other QKD Entity using QKD protocols 

QKD link: link connecting a pair of QKD Entities 

QKD network: network comprised of two or more Trusted Nodes 

Quantum Key Distribution (QKD): procedure or method for generating and distributing symmetrical cryptographic 
keys with information theoretical security based on quantum information theory 

Secure Application Entity (SAE): entity that requests one or more keys from a Key Management Entity for one or 
more applications running in cooperation with one or more other Secure Application Entities 

slave secure application entity: Secure Application Entity that initiates a request to a Key Management Entity for one 
or more keys based on one or more key IDs that were previously delivered to a Master Secure Application Entity 

Trusted Node (TN): node containing trusted equipment including one or more Key Management Entities and one or 
more QKD Entities situated within a security boundary 

web API: Application Programming Interface that can be accessed using HTTP or HTTPS protocols 

https://www.rfc-editor.org/info/rfc4648


 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 8 

3.2 Symbols 
Void. 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

API Application Programming Interface 
HTTP Hyper Text Transfer Protocol 
HTTPS Hypertext Transfer Protocol Secure 
IDL Interface Definition Language 
IETF International Engineering Task Force 
JSON JavaScript Object Notation 
KME Key Management Entity 
OMG Object Management Group 
QKD Quantum Key Distribution 
QKDE QKD Entity 
QoS Quality of Service 
REST REpresentational State Transfer 
SAE Secure Application Entity 
TLS Transport Layer Security 
TN Trusted Node 
URI Uniform Resource Identifier 
URL Unified Resource Locator 
UTF-8 UCS Transformation Format 8 bits 
UUID Universally Unique Identifier 

4 Key delivery API Specification Overview 
This key delivery API is a REST-based API, a simple request and response style API between a SAE and a KME. SAEs 
request KMEs to deliver keys and KMEs deliver the keys. Calls to the API on a KME are intended to be made by SAEs 
with a point of presence within the same secure site as the KME they are connecting to. The QKD network may deliver 
common shared keys to SAEs in different sites. 

Optical switches, encryption modules, and security management systems are examples of SAEs. 

Keys are generated and shared securely with QKD technology by KMEs. Key management methods used by KMEs and 
how KMEs relay keys securely in a QKD network is outside the scope of the present document. 

A QKD network can consist of a single QKD link, or it can be an extended network involving many such QKD links. 
An example of a QKD network is shown in Figure 1. Installing and configuring a QKD network, registering a new 
trusted node or QKD link into a QKD network and removing them from a QKD network are QKD network 
management issues and outside the scope of the present document. 

Each KME shall have one or multiple QKDEs to connect with other KMEs via QKD links. KMEs shall be able to 
distribute keys to other KMEs. In each Trusted Node, there shall be at least one KME. One or multiple SAEs may 
connect with a KME within a Trusted Node. It is assumed that each Trusted Node is securely operated and managed. 
Each trusted node shall be located in its site. SAEs shall be located with its connected KMEs in its site. The API 
between SAE and KME shall be used within a security boundary in each site. 

KMEs shall provide Web API server functionality to deliver keys to SAEs via HTTPS protocols. 

Each KME shall have a unique ID (KME ID). A KME ID shall be unique in a QKD network. The format and the 
assignment of KME IDs is outside the scope of the present document. 

SAEs make HTTPS requests to KMEs to get keys and status information. 

Each SAE shall have a unique ID (SAE ID). A SAE ID shall be unique in a QKD network. The format and the 
assignment of SAE IDs is outside the scope of the present document. 



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 9 

All communications between SAE and KME shall use the HTTPS protocols (with TLS version 1.2 or higher) (IETF 

RFC 7230 [1], IETF RFC 7231 [2], IETF RFC 7235 [3], IETF RFC 5246 [4], IETF RFC 8446 [5]). 

KMEs shall authenticate each request and identify the unique SAE ID of the calling SAE. 

Data in the message body of HTTPS requests from SAE to KME and HTTPS responses from KME to SAE shall be 
encoded in JSON format as per IETF RFC 8259 [6]. 

The SAE making an initial "Get key" request is referred to as the Master SAE for the key(s) returned.  An SAE making 
a subsequent "Get key with key IDs" request is called the Slave SAE for the key(s) returned. 

Applications shall communicate Key IDs between SAEs as necessary for their operations but how they do so is outside 
the scope of the present document. 

The present document makes the following security assumptions about the use of this API with a QKD network: 

• each Trusted Node is securely operated and managed; 

• this API is used between SAEs and KMEs within a secure site; 

• each SAE is secure; 

• each KME is secure. 

 

Figure 1: Example of QKD network 



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 10 

 

Figure 2: Use-case of key delivery API 

Figure 2 shows a use-case illustrating a way the key delivery API can be used. KME A and KME B are either connected 
by a direct QKD link or a QKD network comprising multiple QKD links. SAE A is connected to KME A. SAE B is 
connected to KME B. 

KME A and KME B exchange and store keys and each key delivered is assigned a universally unique ID. SAE A 
(master SAE) can initiate secure communication with SAE B (slave SAE) according to the following steps: 

• Step 1: SAE A calls the key delivery API method "Get key" with the SAE B ID of the slave SAE to get keys 
from KME A. KME A delivers to SAE A key materials with the associated key IDs that are (to be) shared with 
KME B. 

• Step 2: SAE A notifies SAE B of the key IDs. This communication between master SAE and slave SAE is 
outside the scope of the present document. 

• Step 3: SAE B calls the key delivery API method "Get key with key IDs" with the SAE A ID of the master 
SAE and the notified key IDs information to get the identical keys from KME B. KME B delivers to SAE B 
the identical key materials with the identical associated key IDs that are shared with KME A. 

 

Figure 3: Use-case illustrating multiple SAEs connecting to each KME 

Figure 3 shows another use-case illustrating how the key delivery API can be used. Multiple SAEs are connected to a 
single KME. 



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 11 

5 Protocol Specifications 

5.1 Common Specification 
The common specification is as follows. 

Table 1 

Name Description 
Communication Protocol HTTPS 
Character code UTF-8 
HTTP Content-type application/json 
 

SAE shall connect to KME using HTTPS protocols (with TLS version 1.2 or higher) (IETF RFC 7230 [1], IETF 
RFC 7231 [2], IETF RFC 7235 [3], IETF RFC 5246 [4], IETF RFC 8446 [5]). At the connection establishment, mutual 
authentication between SAE and KME shall be performed. SAE shall verify the validity of a certificate the KME 
possesses and shall confirm the KME ID of the KME it is connecting to, based on the certificate. Unless the KME ID 
has been verified in this manner the SAE shall not proceed to use this API with the KME. KME shall verify the validity 
of a certificate the SAE possesses and shall confirm the SAE ID of the connecting SAE based on the certificate. Unless 
the KME ID has been verified in this manner the KME shall reject the connection from the SAE. After the mutual 
authentication, the SAE may call API methods on the KME. The list of API methods shall be as follows. 

Table 2 

No. Method name URL Access Method 
1 Get status https://{KME_hostname}/api/v1/keys/{slave_SAE_ID}/status GET 
2 Get key https://{KME_hostname}/api/v1/keys/{slave_SAE_ID}/enc_keys POST (or GET) 
3 Get key with  

key IDs 
https://{KME_hostname}/api/v1/keys/{master_SAE_ID}/dec_keys POST (or GET) 

 

How to install or upgrade the certificate on each KME and on each SAE is outside the scope of the present document. 

5.2 Get status 
The specification of the "Get status" method shall be as follows. 

Table 3 

Name Description 
Overview Returns Status from a KME to the calling SAE. Status contains information on keys available to 

be requested by a master SAE for a specified slave SAE. 
Access method GET 
Access URL https://{KME_hostname}/api/v1/keys/{slave_SAE_ID}/status 
Parameters Name Data type Description 

{KME_hostname} String (in URL) Hostname or IP address of the KME. A port 
number may be specified separated from the 
hostname or IP address by a colon 

{slave_SAE_ID} String (in URL) URL-encoded SAE ID of slave SAE 
Request data 
model (from SAE to 
KME) 

None. 

Response data 
model (from KME 
to SAE) 

Status (see clause 6) 

Pre-condition None. 
Post-condition None. 
 



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 12 

Get status may return error responses as follows. 

Table 4 

HTTP status code Response data model Description 
400 Error Bad request format.  
401 - Unauthorized. 
503 Error Error on server side. 
 

5.3 Get key 
The specification of the "Get key" method shall be as follows. 

Table 5 

Name Description 
Overview Returns Key container data from the KME to the calling master SAE. Key container data 

contains one or more keys. The calling master SAE may supply Key request data to specify 
the requirement on Key container data. The slave SAE specified by the slave_SAE_ID 
parameter may subsequently request matching keys from a remote KME using key_ID 
identifiers from the returned Key container. 

Access method POST (or GET for specified simple requests only (see clause 6)) 
Access URL https://{KME_hostname}/api/v1/keys/{slave_SAE_ID}/enc_keys 
Parameters Name Data type Description 

{KME_hostname} String (in URL) Hostname or IP address of the KME. A port 
number may be specified separated from the 
hostname or IP address by a colon 

{slave_SAE_ID} String (in URL) URL-encoded SAE ID of slave SAE 
Request data model 
(from SAE to KME) 

Key request (POST only; see clause 6) 

Response data model 
(from KME to SAE) 

Key container (see clause 6) 

Pre-condition None. 
Post-condition Requested number of keys provided to SAE are removed from key pool stored in KME. 
 

The "Get key" method may return error responses as follows. 

Table 6 

HTTP status code Response data model Description 
400 Error Bad request format. 
401 - Unauthorized. 
503 Error Error on server side. 
 



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 13 

5.4 Get key with key IDs 
The specification of the "Get key with key IDs" method shall be as follows. 

Table 7 

Name Description 
Overview Returns Key container from the KME to the calling slave SAE. Key container contains keys 

matching those previously delivered to a remote master SAE based on the Key IDs supplied 
from the remote master SAE in response to its call to Get key. 
The KME shall reject the request with a 401 HTTP status code if the SAE ID of the requestor 
was not an SAE ID supplied to the "Get key" method each time it was called resulting in the 
return of any of the Key IDs being requested. 

Access method POST (or GET for specified simple requests only (see clause 6)) 
Access URL https://{KME_hostname}/api/v1/keys/{master_SAE_ID}/dec_keys 
Parameters Name Data type Description 

{KME_hostname} String (in URL) Hostname or IP address of the KME. A port 
number may be specified separated from the 
hostname or IP address by a colon 

{master_SAE_ID} String (in URL) URL-encoded SAE ID of master SAE 
Request data model 
(from SAE to KME) 

Key IDs (POST only; see clause 6) 

Response data 
model (from KME to 
SAE) 

Key container (see clause 6) 

Pre-condition None. 
Post-condition Specified keys by Key IDs provided to SAE are removed from key pool stored in KME. 
 

The "Get key with key IDs" method may return error responses as follows. 

Table 8 

HTTP status code Response data model Description 
400 Error Bad request format. 
401 - Unauthorized. 
503 Error Error on server side. 
 



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 14 

6 Data Format Specifications 

6.1 Status data format 
Status data format is used for a response data model of API "Get status" method. JSON data format of Status shall be as 
follows. 

Table 9 

Items Data type Description 
source_KME_ID string KME ID of the KME 
target_KME_ID string KME ID of the target KME 
master_SAE_ID string SAE ID of the calling master SAE 
slave_SAE_ID string SAE ID of the specified slave SAE 
key_size integer Default size of key the KME can deliver to the SAE (in bit) 
stored_key_count integer Number of stored keys KME can deliver to the SAE 
max_key_count integer Maximum number of stored_key_count 
max_key_per_request integer Maximum number of keys per request 
max_key_size integer Maximum size of key the KME can deliver to the SAE  (in bit)  
min_key_size integer Minimum size of key the KME can deliver to the SAE  (in bit) 
max_SAE_ID_count integer Maximum number of additional_slave_SAE_IDs the KME allows. "0" when the 

KME does not support key multicast 
status_extension object (Option) for future use 
 

An example of Status data format is as follows. 

6.2 Key request data format 
Key request data format is used for a request data model of API "Get key" method. JSON data format of Key request 
shall be as follows. 

Table 10 

Items Data type Description 
number integer (Option) Number of keys requested, default value is 1. 
size integer (Option) Size of each key in bits, default value is defined as key_size in 

Status data format. 
additional_slave_SAE_IDs array of 

strings 
(Option) Array of IDs of slave SAEs. It is used for specifying two or 
more slave SAEs to share identical keys. The maximum number of IDs 
is defined as max_SAE_ID_count in Status data format. 

extension_mandatory array of 
objects 

(Option) Array of extension parameters specified as name/value pairs 
that KME shall handle or return an error. Parameter values may be of 
any type, including objects. 

extension_optional array of 
objects 

(Option) Array of extension parameters specified as name/value pairs 
that KME may ignore. Parameter values may be of any type, including 
objects. 

 

{ 
    "source_KME_ID": "AAAABBBBCCCCDDDD", 
    "target_KME_ID": "EEEEFFFFGGGGHHHH", 
    "master_SAE_ID": "IIIIJJJJKKKKLLLL", 
    "slave_SAE_ID": "MMMMNNNNOOOOPPPP", 
    "key_size": 352, 
    "stored_key_count": 25000, 
    "max_key_count": 100000, 
    "max_key_per_request": 128, 
    "max_key_size": 1024, 
    "min_key_size": 64, 
    "max_SAE_ID_count": 0 
} 



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 15 

Examples of Key request data format follow: 

All items in the Key request data format are optional and the JSON data format of Key request may be empty. 

When Key request would be empty, an SAE may submit the request using the GET access method with no message 
body. 

Where "number" and/or "size" are the only items in the Key request data format, the SAE may submit the request using 
the GET access method by specifying "number" and/or "size" as request URI parameters as string data. 

EXAMPLE 1: An example URL for such a request using the GET access method is as follows: 

 https://{KME_hostname}/api/v1/keys/{slave_SAE_ID}/enc_keys?number=3&size=1024 

In all other cases, the SAE shall submit the request using the POST access method. 

A KME may return keys in response to requests where key size is not a multiple of 8.  Where a KME only supports key 
size being a multiple of 8, it shall respond to requests for key request data where the size parameter is not such a 
multiple with a 400 error response with the message "size shall be a multiple of 8". 

"additional_slave_SAE_IDs" is used for specifying multiple SAEs. In the case where "additional_slave_SAE_IDs" lists 
at least one SAE ID, the identical key material shall be shared not only between master SAE and slave SAE, but also 
shared with other slave SAE(s) specified in "additional_slave_SAE_IDs". How to handle the 
additional_slave_SAE_IDs is up to KME, but Annex B shows an example. 

Key request data format defines two types of extension fields: "extension_mandatory" and "extension_optional". Both 
may be used for introducing new parameters / vendor specific parameters to Key request data format for future use. 

"extension_mandatory" is used for defining a list of extension parameters that a KME shall handle to be permitted to 
return keys in response to the request. If a KME does not support one or more of the extension parameters supplied in 
"extension_mandatory" the KME shall return a 400 error response with the message "not all extension_mandatory 
parameters are supported". If a KME supports all the extension parameters within "extension_mandatory" but is unable 
to deliver the requested keys meeting all of the requirements they specify the KME shall return a 400 error response 
with the message "not all extension_mandatory request options could be met". 

{ 
    "number": 3, 
    "size": 1024 
} 
 
 
{ 
    "number": 1, 
    "size": 4096, 
    "additional_slave_SAE_IDs": [ 
        "ABCDEFG", 
        "HIJKLMN" 
    ] 
} 
 
 
{ 
    "number": 20, 
    "size": 512, 
    "extension_mandatory": [ 
        { 
            "abc_route_type": "direct" 
        }, 
        { 
            "abc_transfer_method": "qkd" 
        } 
    ], 
    "extension_optional": [ 
        { 
            "abc_max_age": 30000 
        } 
    ] 
} 



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 16 

"extension_optional" is used for defining extension parameters that may be ignored by KME. KME may handle all 
optional parameters defined in "extension_optional" or it may ignore one or more optional extension parameters. If a 
KME ignores one or more of the optional extensions parameters within "extension_optional" KME may return any 
response it would otherwise have given (including a 200 OK response including Key container data format if 
appropriate) or it may return a 400 error response with message "not all extension_optional request options handled". 

"extension_mandatory" and "extension_optional" may convey any kind of information from SAE to KME. 

EXAMPLE 2: The type of key required or information about the future desired quality of service. 

"extension_mandatory" and "extension_optional" may be used to pass named parameters of any type with any name as 
long as it is specified as valid JSON. 

Future versions of the present document may specify reserved parameter names for parameters within 
"extension_mandatory" and "extension_optional" and their usage. To reduce the risk of conflict between extension 
parameter names vendor specific prefixes ending with an underscore should be used for extension parameter names 
until they have been added to the present document. A group of vendors may choose to adopt a common prefix ending 
with an underscore where they have agreed to share one or more common extension parameters. 

EXAMPLE 3: Company "Abcdefg" can choose to introduce vendor specific extension parameters named like 
"abc_xxxxx" and "abc_yyyy". 

EXAMPLE 4: SAE can request a specific type of key to KME. In some use-cases the type of route used can be 
important. A abc_route_type of "direct" could be defined by a vendor using the prefix "abc_" to 
request keys shared between adjacent Trusted Nodes connected by a single QKD link and a 
abc_route_type of "indirect" defined to request keys that are relayed using more than one QKD 
link via at least one Trusted Node other than those to which the SAEs connect using this API. SAE 
can request "direct" abc_route_type keys as an "extension_mandatory" parameter if "indirect" 
abc_route_type keys are not acceptable for the application. If SAE prefers "direct" abc_route_type 
keys but "indirect" abc_route_type keys are also acceptable, SAE can call specify "direct" 
abc_route_type within "extension_optional". 

6.3 Key container data format 
Key container data format is used for a response data model of API "Get key" method and "Get key with key IDs" 
method. JSON data format of Key container shall be as follows. 

Table 11 

Items Data type Description 
Keys array of 

objects 
Array of keys. The number of keys is specified by the 
"number" parameter in "Get key". If not specified, the default 
number of keys is 1. 

 key_ID string ID of the key: UUID format (example: "550e8400-e29b-41d4-
a716-446655440000"). 

 key_ID_extension object (Option) for future use 
 key string Key data encoded by base64 [7]. The key size is specified by 

the "size" parameter in "Get key". If not specified, the 
"key_size" value in Status data model is used as the default 
size. 

 key_extension object (Option) for future use. 
key_container_extension object (Option) for future use. 
 



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 17 

An example of Key container data format is as follows. 

"key_ID_extension", "key_extension", and "key_container_extension" are used to return additional information about 
the key ID, key, and key container respectively. Sometimes, these extension values may be used to convey information 
relating to extension parameters supplied within "extension_mandatory" and/or "extension_optional" in the Key request 
data supplied in a call to the "Get key" method. 

6.4 Key IDs data format 
Key IDs data format is used for a request data model of API "Get key with key IDs" method. JSON data format of Key 
IDs shall be as follows. 

Table 12 

Items Data type Description 
key_IDs array of objects Array of key IDs 
 key_ID string ID of the key: UUID format (example: "550e8400-e29b-

41d4-a716-446655440000") 
 key_ID_extension object (Option) for future use 

key_IDs_extension object (Option) for future use 
 

An example of Key IDs data format is as follows. 

In the case where a single key ID is specified and no extension is specified, SAE may make the request using a GET 
access method with no body message. Otherwise the SAE shall use the POST access method with Key IDs data format 
for Get key with key IDs API. 

{ 
    "keys": [ 
        { 
            "key_ID": "bc490419-7d60-487f-adc1-4ddcc177c139", 
            "key": "wHHVxRwDJs3/bXd38GHP3oe4svTuRpZS0yCC7x4Ly+s=" 
        }, 
        { 
            "key_ID": "0a782fb5-3434-48fe-aa4d-14f41d46cf92", 
            "key": "OeGMPxh1+2RpJpNCYixWHFLYRubpOKCw94FcCI7VdJA=" 
        }, 
        { 
            "key_ID": "64a7e9a2-269c-4b2c-832c-5351f3ac5adb", 
            "key": "479G1Osfljpmfa5vn24tdzE5zqv5CafkGxYrLCk8384=" 
        }, 
        { 
            "key_ID": "550e8400-e29b-41d4-a716-446655440000", 
            "key": "csEMV9KkmjgOPF90uc54+hykhg6iI5GTPHlP9PjgLVU=" 
        } 
    ] 
} 

{ 
    "key_IDs": [ 
        { 
            "key_ID": "bc490419-7d60-487f-adc1-4ddcc177c139" 
        }, 
        { 
            "key_ID": "0a782fb5-3434-48fe-aa4d-14f41d46cf92" 
        }, 
        { 
            "key_ID": "64a7e9a2-269c-4b2c-832c-5351f3ac5adb" 
        }, 
        { 
            "key_ID": "550e8400-e29b-41d4-a716-446655440000" 
        } 
    ] 
} 



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 18 

EXAMPLE: An example of an access URL using the GET access method for Get key with key IDs API is as 
follows: 

 https://{KME_hostname}/api/v1/keys/{slave_SAE_ID}/dec_keys?key_ID=bc490419-7d60-487f-
adc1-4ddcc177c139 

In the case where two or more key IDs are specified the POST access method shall be used. The POST access method is 
used to support multiple key IDs or extension field defined in Key ID data format in Get key with IDs method. 

If a KME is not able to return one or more keys specified in key IDs data format, the KME shall return a 400 error 
response with the message "one or more keys specified are not found on KME". 

6.5 Error data format 
Error data format is used for an error response data model of API "Get status" method, "Get key" method, and "Get key 
with key IDs" method. JSON data format of Error shall be as follows. 

Table 13 

Items Data type Description 
message string Error message 
details array of objects (Option) Array to supply additional detailed error information specified as 

name/value pairs. Values may be of any type, including objects. 
 

Examples of Error data format follow. 

  

{ 
    "message": "key data access error" 
} 
 
 
{ 
    "message": "not all extension_mandatory parameters are supported", 
    "details": [ 
        { 
            "extension_mandatory_unsupported": "abc_route_type is not supported" 
        } 
    ] 
} 



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 19 

Annex A (informative): 
API function mapping to ETSI GS QKD 004 
The present document is a REST-based key delivery API. It is a request-response style API comprising of HTTPS 
protocols and JSON data format. It provides three methods: Get status, Get key, and Get key with IDs. By calling Get 
key, an application (master SAE) gets block key materials with key IDs. The key IDs are sent to an application (slave 
SAE) that can be connected to a different KME. The application (slave SAE) calls Get key with key IDs and obtains 
identical block key materials. 

On the other hand, ETSI GS QKD 004 [i.1] defines an OMG IDL remote function call-based application interface. It 
provides three primitives for applications: QKD_OPEN, QKD_GET_KEY, and QKD_CLOSE. By calling QKD_OPEN 
API, an application creates a session and gets a key stream ID. Then by calling QKD_GET_KEY with the key stream 
ID, the application gets a key from the data stream. The key stream ID is sent to an application on the other side. The 
key stream ID is used to get identical key from the identical key stream by the application on the other side. By calling 
QKD_CLOSE API, the application destroys the session. 

One can consider that the present document is an easy implementation of ETSI GS QKD 004 [i.1]. It is possible to map 
API defined in the present document into the ETSI GS QKD 004 [i.1] application interface model, as follows. 

Table A.1 

ETSI GS QKD 014 (the present document) ETSI GS QKD 004 [i.1] 
 API Description  Method  Description 
１ Get key API To get block key materials with 

associated key IDs 
1 QKD_OPEN To create a session and to get key 

stream ID 
2 QKD_GET_KEY To get key material from the 

specified key stream ID 
3 QKD_CLOSE To destroy the session 

2 Key ID 
notification 

Outside the scope 4 Key stream ID 
notification 

Outside the scope 

3 Get key with 
key IDs API 

To get block key materials 
corresponding to the specified 
key IDs 

5 QKD_OPEN To open the session corresponding 
to the specified key stream ID 

6 QKD_GET_KEY To get key material from the 
specified key stream ID 

7 QKD_CLOSE To destroy the session 
 

In this mapping, the key stream ID (in ETSI GS QKD 004 [i.1]) is used as the key ID (in the present document). 

  



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 20 

Annex B (informative): 
An example of how to deliver keys to multiple SAEs 
The present document provides an optional parameter for Get key API to specify multiple SAEs (see clause 6.2). With 
the optional parameter, master SAE can specify one or more additional slave SAEs that are also authorized to retrieve 
identical copies of the requested key(s). The implementation of this functionality is optional for a KME. The way in 
which the underlying QKD network and KME deliver keys to multiple SAEs is outside the scope of the present 
document. However, the following is a simple example of how keys might be delivered to multiple SAEs.  

SAE A (master SAE) can initiate secure communication with SAE B (slave SAE) and SAE C (slave SAE) according to 
the following steps: 

• Step 1: SAE A calls the key delivery API "Get key" with the SAE B ID and the SAE C ID of the slave SAEs 
using additional_slave_SAE_IDs option field to get keys from KME A. KME A generates key materials with 
the associated key IDs and delivers the key materials to SAE A that are (to be) shared with KME B and 
KME C. 

• Step 2: KME A securely transfers the generated key materials to KME B using QKD keys shared via QKD 
link #1 between KME A and KME B. Then, KME B securely transfers the received key materials to KME C 
using QKD keys shared via QKD link #2 between KME B and KME C. 

• Step 3: SAE A notifies SAE B and SAE C of the key IDs. 

• Step 4: SAE B calls the key delivery API "Get key with key IDs" with the SAE A ID of the master SAE and 
the notified key IDs information to get the identical keys from KME B. KME B delivers to SAE B the 
identical key materials when requested with key IDs matching those notified by KME A. 

• Step 5: SAE C calls the key delivery API "Get key with key IDs" with the SAE A ID of the master SAE and 
the notified key IDs information to get the identical keys from KME C. KME C delivers to SAE C the 
identical key materials when requested with key IDs matching those notified by KME A. 

 

Figure B.1: Example of how to deliver keys to multiple SAEs 

  



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 21 

Annex C (informative): 
Authors & contributors 
The following people have contributed to the present document: 

Rapporteur: 

Yoshimichi Tanizawa, Toshiba 

Other contributors: 

Martin Ward, Toshiba 

Hideaki Sato, Toshiba 

Vicente Martin Ayuso, Facultad de Informatica, Universidad Politécnica de Madrid 

Alejandro Aguado, Facultad de Informatica, Universidad Politécnica de Madrid 

Oliver Maurhart,  Austrian Institute of Technology GmbH 

Alan Mink, Applied Communication Sciences - Vencore Labs, Inc. 

Norbert Lutkenhaus, University of Waterloo 

Momtchil Peev, Huawei Technologies Duesseldorf GmbH 

Bruno Huttner, ID Quantique SA 

Catherine White, British Telecommunications plc 

Graham Wallace, Senetas Europe Limited 

Joo Cho, ADVA Optical Networking SE 

  



 

ETSI 

ETSI GS QKD 014 V1.1.1 (2019-02) 22 

History 

Document history 

V1.1.1 February 2019 Publication 

   

   

   

   

 


	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Key delivery API Specification Overview
	5 Protocol Specifications
	5.1 Common Specification
	5.2 Get status
	5.3 Get key
	5.4 Get key with key IDs

	6 Data Format Specifications
	6.1 Status data format
	6.2 Key request data format
	6.3 Key container data format
	6.4 Key IDs data format
	6.5 Error data format

	Annex A (informative): API function mapping to ETSI GS QKD 004
	Annex B (informative): An example of how to deliver keys to multiple SAEs
	Annex C (informative): Authors & contributors
	History

