

ETSI GS QKD 004 V2.1.1 (2020-08)

Quantum Key Distribution (QKD);
Application Interface

Disclaimer

The present document has been produced and approved by the Quantum Key Distribution (QKD) ETSI Industry Specification
Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 2

Reference
RGS/QKD-004ed2_ApplIntf

Keywords
API, quantum cryptography, quantum key

distribution, security, use case

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.

All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and

of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 3

Contents

Intellectual Property Rights .. 4

Foreword ... 4

Modal verbs terminology .. 4

1 Scope .. 5

2 References .. 5

2.1 Normative references ... 5

2.2 Informative references .. 5

3 Definition of terms, symbols and abbreviations ... 5

3.1 Terms .. 5

3.2 Symbols .. 6

3.3 Abbreviations ... 6

4 Introduction .. 7

5 QKD Application Interface Specification Description ... 7

6 QKD Application Interface API Specification ... 9

6.1 General ... 9

6.2 Sequence diagrams for QKD Application Interface ... 12

6.2.1 General .. 12

6.2.2 Case 1: Undefined KSID in a single link scenario .. 13

6.2.3 Case 2: Undefined KSID and failed get key call in a single link scenario .. 13

6.2.4 Case 3: Predefined KSID in a single link scenario ... 14

6.2.5 Case 4: Predefined KSID and failed get key call in a single link scenario ... 15

6.2.6 Case 5: Application discovery in a QKD network .. 15

Annex A: Void ... 17

Annex B (informative): Conventional Key Management Systems ... 18

Annex C (informative): Relationship of this API to ETSI GS QKD 014 "Protocol and Data
Format of REST-based Key Delivery API" .. 19

Annex D (informative): Bibliography ... 20

Annex E (informative): Change History .. 21

History .. 22

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 4

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Quantum Key
Distribution (QKD).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 5

1 Scope
The present document is intended to specify an Application Programming Interface (API) between a QKD key manager
and applications. The function of a QKD key manager is to manage the secure keys produced by an implementation of a
QKD protocol and to deliver the identical set of keys, via this API, to the associated applications at the communication
end points.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] IANA Media Type registry list of Directories of Content Types and Subtypes.

NOTE: Available at http://www.iana.org/assignments/media-types/.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] OASIS Standard (22 November 2017): "Key Management Interoperability Protocol Specification
Version 1.4". Editor by Tony Cox.

NOTE: Available at http://docs.oasis-open.org/kmip/spec/v1.4/os/kmip-spec-v1.4-os.html.

[i.2] ETSI GS QKD 014 (V1.1.1): "Quantum Key Distribution (QKD); Protocol and data format of
REST-based key delivery API".

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

Application Programming Interface (API): interface implemented by a software program to be able to interact with
other software programs

https://docbox.etsi.org/Reference/
http://www.iana.org/assignments/media-types/
http://docs.oasis-open.org/kmip/spec/v1.4/os/kmip-spec-v1.4-os.html

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 6

Key Management Interoperability Protocol (KMIP): protocol for the communication between enterprise key
management systems and encryption system

NOTE: The KMIP is directed by the OASIS initiative.

key management layer: abstraction in a layered model including physically distributed key managers in two or more
network nodes

NOTE: The key management layer sits between QKD modules and various applications. It manages the
synchronization and deletion of keys, etc. as well as key delivery to applications.

link encryptor: device performing link encryption, i.e. the communication security process of encrypting / decrypting
information between two peers on the data link level

Organization for the Advancement of Structured Information Standards (OASIS): global consortium that drives
the development, convergence and adoption of e-business and web service standards, including KMIP

QKD application interface: interface between a QKD key manager and one or more application

QKD link: set of active and/or passive components that connect a pair of QKD modules to enable them to perform
QKD and where the security of symmetric keys established does not depend on the link components under any of the
one or more QKD protocols executed

QKD module: set of hardware and software and/or firmware components contained within a defined cryptographic
boundary that implements part of one or more QKD protocol(s) to be capable of securely establishing symmetric keys
with at least one other QKD module

QKD protocol: list of steps including the transport of quantum states that have to be performed by QKD modules to
establish symmetric keys between remote parties with security based on quantum entanglement or the impossibility of
perfectly cloning the transported quantum states

Quality of Service (QoS): description or measure of the overall performance of a service provided to an application
after any management policies for prioritizing different applications or users have been applied

synchronization: function to ensure that symmetric keys in two key managers are identical

Transport Layer Security (TLS): cryptographic protocols used to encrypt the segments of network connections above
the Transport Layer, using symmetric cryptography for privacy and a keyed message authentication code for message
reliability

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AAA Authentication, Authorization and Accounting
API Application Programming Interface
APPA Application at host A
APPB Application at host B
APPZ Application at host Z
CORBA Common Object Request Broker Architecture
HTTPS Hypertext Transfer Protocol Secure
IANA Internet Assigned Numbers Authority
ITS Information Theoretical Secure
JSON JavaScript Object Notation
KIMP Key Management Interoperability Protocol
KM Key Manager
KMIP Key Management Interoperability Protocol
KSID Key stream ID

OASIS Organization for the Advancement of Structured Information Standards

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 7

PAP Password Authentication Protocol
QKD Quantum Key Distribution
QKDA QKD key management layer peer at host A
QKDB QKD key management layer peer at host B
QoS Quality of Service
REST Representational State Transfer
SDN Software Defined Networking
SSL Secure Socket Layer
TLS Transport Layer Security
TTL Time To Live
URI Uniform Resource Identifier

4 Introduction
The present document is intended to specify an Application Programming Interface (API) between QKD Key Managers
(KMs) and applications. The function of a QKD KM is to manage secure keys produced by an implementation of a
QKD protocol and to deliver, on demand, identical sets of keys, via this API, to peer applications at the communication
end points. It should be noted that there may be multiple levels of key managers (e.g. one at the QKD link level and
another one at the QKD network level) and the API specified in the following clauses may be implemented in every
QKD key manager level and that such key interchange is accomplished within the user's local security perimeter.

Manufacturers may implement this API wherever a QKD key manager is provided. Manufacturers may provide
additional APIs and expanded functionality as they deem fit, realizing that these additions may be incompatible with
versions provided by other vendors. Also, ther high level APIs can be built on top of this primary API, such as the
REST API specified in ETSI GS QKD 014 [i.2].

5 QKD Application Interface Specification Description
The present document encompasses the ability to have multiple levels of key managers (e.g. one at the QKD link level
and another one at the QKD network level), see figure 1 and figure 2, and the API specified in the following clauses
may apply to every QKD key manager level and that this interchange is accomplished within the user's local security
perimeter, referred to as sites. The methods by which a key manager accomplishes these functions is beyond the scope
of the present document, but it is expected that external communication between key managers at different sites will be
necessary. In addition, some communication between the peer applications may also be necessary to communicate a
common key association.

The simplest example, figure 1, shows a single QKD link, with end points at Site A and Site B. Each site has a single
application (shaded in yellow) and a single QKD module, enclosed by a blue box, which implements its part in a QKD
protocol (shaded in red) to produce QKD keys that are managed by a QKD key manager peer (shaded in green). The
single peer application in this case, uses the QKD application interface to acquire identical sets of secure keys in the two
sites on demand.

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 8

Figure 1: QKD Application Interface and peer relationships
Sites A and B represent security perimeters at each site

A more general example of two sites in a QKD network is shown in figure 2. Here two Sites of many in the network
that contain a number of applications are shown. Site A and Site B are connected via a single QKD link between QKD
Module A3 and QKD Module B1. The end points of the other QKD modules are not shown. In addition, network layer
key managers, referred to as a QKD key servers are also depicted. The function of the QKD key servers is to manage
keys between end points and deliver identical sets of keys to the applications at these end points. Note that the QKD
application interface specified in the present document may be used to deliver keys from the QKD key management
peers to the QKD key servers as well as to deliver keys from the QKD key servers to applications.

Figure 2: QKD Application Interface at two levels and peer relationships for
Sites within a QKD Network. Sites A and B represent security perimeters at each location

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 9

6 QKD Application Interface API Specification

6.1 General
A QKD key manager implementing this application interface shall provide the following API functions.

Table 1

Name Description
OPEN_CONNECT Reserve an association (Key_stream_ID) for a set of future keys at both ends of the QKD link

through this distributed QKD key management layer and establish a set of parameters that
define the expected levels of key service. This function shall block until the peers are
connected or until the Timeout value in the QoS parameter is exceeded.

CLOSE Terminate the association established for this Key_stream_ID. No further keys shall be
allocated for this Key_stream_ID after the association has been closed. Due to timing
differences at the other end of the link this peer operation will happen at some other time and
any unused keys shall be held until that occurs and then discarded or the TTL (Time To Live
QoS parameter) has expired.

GET_KEY Obtain the required amount of key material requested for this Key_stream_ID. Each call shall
return the fixed amount of requested key, in the key_buffer parameter, or an error message
indicating why it failed. Together with the requested key, the QKD key manager peer shall
return an index value, or allow the application to specify the position of the key to be retrieved
for synchronization purposes via the index parameter. The key position will be the result of
multiplying the index value by the Key_chunk_size value within the QoS parameters. The call
will return information about the chunk of key in the Metadata_buffer parameter, if the
Metadata_size parameter is not zero. If it is zero, no Metadata will be returned. If the
Metadata_size is not zero and this information cannot fit into the buffer provided, the call will
fail without providing any key, but will return the needed buffer size in the Metadata_size
parameter and will set a flag in the status parameter. Thus, the application can reissue the
call with the buffer size set correctly or to zero, without loss of key. This function may be
called as often as desired, but the QKD key manager only needs to respond at the bit rate
requested through the QoS parameters, or at the best rate the system can manage. The QKD
key manager is responsible for reserving and synchronizing the keys at the two ends of the
QKD link through communication with its peers. This function always returns with the status
parameter indicating success or failure, depending on the request made via the
OPEN_CONNECT function. The Timeout value for this function is specified in the
OPEN_CONNECT() function.

The syntax of these functions are as follows:

NOTE: The parameter "Key_stream_ID" is an output parameter when the caller is initially opening the
connection and the value passed in is "NULL". If the value is not "NULL" the value is assumed to be
either a "Key_stream_ID" recently established by the peer end or a specifically desired/predefined
"Key_stream_ID". For use in all other functions "Key_stream_ID" is an input. If the "Key_stream_ID" is
already in use by some other application, the OPEN_CONNECT function will return with an error. On
return, the structure QoS is the closest QoS that the system can provide (best effort). If on input QoS is
"NULL" on a certain field of the structure, the system is free to provide the one that it considers most
appropriate. In particular, if a KSID has been already registered, the QoS structure will be filled with the
QoS values previously assigned to that KSID, independently of any value of the QoS in the
OPEN_CONNECT call.

The function parameters are described in table 2.

Interface QKD{

 OPEN_CONNECT (in source, in destination, inout QOS, inout Key_stream_ID, out status);

 GET_KEY (in Key_stream_ID, inout index, out Key_buffer, inout Metadata, out status);

 CLOSE (in Key_stream_ID, out status);

}

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 10

Table 2: Description of API function parameters

Name Description Type Comments
Key_stream_ID (KSID) A unique identifier for

the group of
synchronized bits
provided by the QKD
Key Manager to the
application

UUID_v4
16 bytes
(128 bits)

It contains a reference to the necessary information
to locate a key, but does not contain any key
material. Key material cannot be derived from the
Key_stream_ID.
It shall be represented as a character array
(char *), with the high order octet being the lowest
significant octet.
It may be passed to and stored in other applications
at other sites.
It shall be unique and both peers will use that same
value to reference their application key stream.
It can be previously agreed upon between the peer
applications or sent between them by a public
channel.

Key_buffer Buffer containing the
current stream of
keys.

Array of
bytes
(octets)

Key buffer is an array of bits packed into octets
(char*) ordered such that bit[0] of octet[0] is the 1st
bit and bit[7] of octet[n] is the 8*n+8th bit.

Index Position of the key to
be accessed within
the reserved key
store for the
application

32 bit
unsigned
integer

For client/server synchronization purposes, the index
value allows one to specify which position within the
reserved key stored is to be accessed. The actual
position will be calculated as the multiplication of the
index value by Key_chunk_size from the QoS
parameters.

Source Source identifier
defined as a uniform
resource identifier

URI Identifier of the source application connecting to the
QKD key management layer. The identifier is
structured as a URI. If a client/server scheme is
defined, the source will integrate the URI of the
server.

Destination Destination identifier
defined as a uniform
resource identifier

URI Identifier of the destination application connecting to
the QKD key management layer. The identifier is
structured as a URI. If a client/server scheme is
defined, the source will integrate the URI of the
client.

QoS Structure describing the characteristics of the requested key source
Key_chunk_size Length of the key

buffer, in Bytes,
requested by the
application

32 bit
unsigned
integer

If the requested key amount cannot be provided, an
error shall be returned in the status parameter.

Max_bps Maximum key
rate, in bps,
requested by the
application

32 bit
unsigned
integer

This is intended to provide guidance to the key
management layer on expected maximum demand.
If the peer cannot meet the requested rate, it may
choose to do its best, which may be lower than the
requested rate, or reject the request.

Min_bps Minimum key
rate, in bps,
required by the
application

32 bit
unsigned
integer

This is intended to provide an estimation of the
minimum key rate needed by the application to the
QKD key management layer, so that an application
could maintain its security channels. If the peer
cannot meet the requested rate, it may reject the
request.

Jitter Maximum
expected
deviation, in bps,
for key delivery

32 bit
unsigned
integer

This value allows applications to specify flow
variation of key bits with a minimum deviation for the
delivery rate.

Priority Priority of the
request

32 bit
unsigned
integer

This is intended to provide guidance to the QKD Key
Management layer about the priority level of the
request. The handling of this information is left to the
specific implementation.

Timeout Time, in msec,
after which the
call will be
aborted, returning
an error.

32 bit
unsigned
integer

If this much time has passed and the one of the API
functions has not completed, the function will return
a TIMEOUT_ERROR in the status parameter
This value shall be expressed in milliseconds.

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 11

Name Description Type Comments
QoS Structure describing the characteristics of the requested key source

Time to Live
(TTL)

Time, in seconds,
after which the
keys for this KSID
shall be erased
from the
application's
dedicated key
store, for security
reasons.

32 bit
unsigned
integer

This value sets the life-time of keys reserved for a
given KSID. This is meant as a clean-up operation if
for any reason the application crashes or leaves
unused key behind.

Metadata
mimetype

The mimetype of
the metadata to
be delivered by
the KM on each
GET call.

char array
of size 256

This field defines the format of the metadata on each
subsequent GET_KEY call. The mimetype value
shall be one of the Media Types defined in the
Internet Assigned Numbers Authority (IANA) Media
Type registry [1].
Any KM claiming conformance to the present
document shall support the metadata mimetype
"application/json". Any KM may implement additional
mimetypes.
If no mimetype is defined, i.e. the first byte of the
metadata mimetype is 0, then the KM shall not report
metadata in the GET_KEY call associated with this
key stream.
If a mimetype is specified, but the current KM
implementation does not support this particular
mimetype then OPEN_CONNECT shall fail but the
metadata mimetype field shall return with the KM's
preferred mimetype.
Any KM compliant to the present document shall not
reject "application/json" mimetype even if it is not the
KM's preferred mimetype.

Metadata A Structure containing a 32 bit unsigned integer and a character array. The integer specifies the size of
the character array.
Metadata_size Size of buffer 32 bit

unsigned
integer

Size of metadata buffer in characters

Metadata_buffer Data buffer Array of
bytes
(octets)

Buffer for returned metadata

Status Success/Failure
of the request

32 bit
unsigned
integer

Status values shall have the following meanings:
0  Successful.
1  Successful connection, but peer not

connected.
2  GET_KEY failed because insufficient key

available.
3  GET_KEY failed because peer application is

not yet connected.
4  No QKD connection available.
5  OPEN_CONNECT failed because the "KSID"

is already in use.
6  TIMEOUT_ERROR The call failed because

the specified TIMEOUT.
7  OPEN failed because requested QoS settings

could not be met, counter proposal included
in returnhas occurred.

8  GET_KEY failed because metadata field size
insufficient. Returned Metadata_size value
holds minimum needed size of metadata.

Other values can be added in the future if needed.

Important considerations:

1) An application may manage several independent key streams through different "key stream IDs" (e.g. one set
of keys for output messages and another for input messages, where each set is identified by a separate
"Key_stream_ID"). There is no limit on the number of "Key_stream_IDs" that one application can request.

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 12

2) The Key_stream_ID shall be generated in such a way that uniquely identifies the key material and that key
material cannot be derived from it.

3) It has not been considered how the internal operation of this QKD KM service is to be accomplished, except
for error messages back to the application through the status parameter. This will be left to the implementer.

4) It has not been considered how the QoS priority parameter shall be handled by the internal operation of this
QKD KM service. This shall be left to the implementer.

5) The lifetime of the keys in the QKD bit pool that is managed by this layer is not specified nor is any action
specified at that time. This shall be left to the implementer.

6) It is mandatory that the API shall implement the source/destination pair as URIs, however, for the sake of
compatibility with other APIs, it may also interpret other types of data.

7) Note that this API may manage Authentication, Authorization and Accounting (AAA) by integrating some
information into the URI (e.g. an OAuth token), however, the API is not required to process this information,
but it can pass it to the subsystem in charge of processing AAA information.

8) The metadata field is designed to provide information to help with the key management duties. The API does
not deal with key management.

9) The metadata QoS consists of a Metadata_size value and a character block provided by and under the authority
of the client calling the KM. The client is responsible for allocating and freeing this memory block. The KM
shall check the size of this memory block on each GET_KEY call and if this value is insufficient, then place
the current minimum value instead into the size field on return. The call itself is then returned with an error
value and the key shall not be delivered to the client.

Table 3

"age" Time since the chunk of key was
made available to be delivered.

32 bit unsigned integer Measured in msec.

"hops" Number of trusted nodes visited
to deliver the chunk of key

32 bit unsigned integer 0 = direct connection (no trusted nodes in
between).

10) Some examples of metadata that may be returned from the KM are:

- Every KM vendor may add additional values as desired, respecting the format of the specified mimetype.

6.2 Sequence diagrams for QKD Application Interface

6.2.1 General

In all sequences, there are five actors:

1) Application at host A, APPA.

2) Application at host B, APPB and at host Z, APPZ.

3) QKD key manager at host A (in Module A of the QKD system connecting Site A to Site B), QKDA.

4) QKD key management layer peer at host B (in module B of the QKD system connecting Site A to Site B),
QKDB.

5) QKD key manager in a QKD network at host A (in module A), QKD_SERVA and at host Z (in module Z),
QKD_SERVZ.

Five different sequences are shown:

1) APPA and APPB do not have a predefined key stream ID and execute successfully in a single link scenario.

2) APPA and APPB do not have a predefined key stream ID and timeout on the GET_KEY() call in a single link
scenario.

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 13

3) APPA and APPB both know the predefined key stream ID that they will use for the key association and
execute successfully in a single link scenario.

4) APPA and APPB both know the predefined key stream ID that they will use for the key association and
timeout on the GET_KEY() call in a single link scenario.

5) APPA and APPZ do not have a predefined key stream ID and execute successfully over a QKD network.

For the scenarios covered in this clause, one may assume that the communication between local applications and the
QKD key manager is accomplished within the user's local security perimeter.

6.2.2 Case 1: Undefined KSID in a single link scenario

In this case, APPA starts the sequence with a call to OPEN_CONNECT() indicating application source, destination and
the desired QoS (and a NULL value in the Key_stream_ID parameter). As this is a single link scenario and QKD
systems do not need to discover their peers, OPEN_CONNECT() directly returns a Key_stream_ID value and status
information indicating success. APPA sends this Key_stream_ID value to APPB on the public channel and then starts
gathering keys or waits for APPB to also connect. APPB is waiting on the public channel from APPA for a message
with the KSID that they will share. Once APPB gets the KSID it shall call OPEN_CONNECT() to register its
Key_stream_ID but it does not need to repeat the level of services (QoS) desired as long as APPA has already done so.
APPB shall check the status parameter returned by OPEN_CONNECT for success and rendezvous with APPA. At this
point the key association has been verified and established and if the QKD system is operational the status shall be
returned as successful. After that, both APPA and APPB start making calls to GET_KEY() until they have no more
need for secure keys and call the CLOSE() function in order to terminate the Key_stream_ID association in a timely
manner.

NOTE: SEND_KSID() or New APP are not in the scope of the QKD Application Interface. They are included to
illustrate the functionality of the case.

Figure 3: Case 1 - Undefined KSID

6.2.3 Case 2: Undefined KSID and failed get key call in a single link
scenario

This is the same as in case 1, except for some reason QKDA cannot exchange the necessary Key information with
QKDB in the time specified by the TIMEOUT parameter of OPEN_CONNECT (). Both APPA and APPB receive a
TIMEOUT ERROR in the status parameter from their calls to GET_KEY().

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 14

NOTE: SEND_KSID() or New App are not in the scope of the QKD Application Interface. They are included to
illustrate the functionality of the case.

Figure 4: Case 2 - Undefined KSID and failed get key call

6.2.4 Case 3: Predefined KSID in a single link scenario

In this case, it is irrelevant who starts the sequence. Both APPA and APPB call OPEN_CONNECT() indicating the
level of service desired and a predefined (first interaction) value in the Key_stream_ID parameter. OPEN_CONNECT()
verifies that the specified Key_stream_ID is not already in use and returns status information indicating success. No
Key_stream_ID information needs to be sent between APPA and APPB after the OPEN_CONNECT call. QKDA and
QKDB might exchange the information within the OPEN_CONNECT call for synchronization and verification
purposes. At this point the key association has been verified and established between QKDA and QKDB, and if the
QKD system is operational the status will be returned as successful. After that, both APPA and APPB start making calls
to GET_KEY() until they have no more need for secure key and call the CLOSE() function that terminates the
Key_stream_ID association in a timely manner.

Figure 5: Case 3 - Predefined KSID and get key call

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 15

6.2.5 Case 4: Predefined KSID and failed get key call in a single link
scenario

This is the same as case 3, except for some reason QKDA cannot exchange the needed information with QKDB in the
time specified by the TIMEOUT parameter of OPEN_CONNECT (). Both APPA and APPB receive a TIMEOUT
ERROR in the status parameter from their calls to GET_KEY().

Figure 6: Case 4 - Predefined KSID and failed get key call

6.2.6 Case 5: Application discovery in a QKD network

The integration with network applications follow a workflow outlined below that is similar to the ones described above,
where applications shall connect to the QKD Key Server via OPEN_CONNECT(). Additionally, there is an
intermediate step for the QKD Key Servers to find its end-to-end peer for the requested session. This is out of the scope
of the present document and may happen in different manners: signalling among QKD sites for application discovery or
notifying an intermediate central repository or management application (e.g. a central key management system or a
software-defined networking -SDN- controller). Also, for key relay purposes, Information Theoretical Secure (ITS)
mechanisms shall be integrated in any communication channel between QKD Key Servers, but it is out of the scope of
the present document to define any of these security mechanisms.

This case is defined when a QKD network (rather than a single point-to-point QKD link) is in place. An application
APPA wants to obtain a series of shared secret bits with an application APPZ. Therefore, as there is no direct link
between QKD modules at locations A and Z, some support facility needs to be provided by the system to identify the
QKD endpoints of APPZ on demand. In figure 7 these facilities are depicted as QKD_SERVA and QKD_SERVZ.
When APPA sends an OPEN_CONNECT() to QKD_SERVA, QKD_SERVA likewise does not know to which QKD
endpoint APPZ is connected. The first operation to be done, is the generation of a KSID for the session that APPA
wants to create. Then, QKD_SERVA needs to advertise this new application request, indicating source (APPA),
destination (APPZ), the generated KSID, the local QKD module (QKDA or QKD_SERVA) and QoS information. This
advertisement process could be performed using traditional routing schemes, where this new application and its
requirements are broadcasted over the QKD network, or via a centralized management system that takes care of these
notifications and provides the QKD module peers with the appropriate information. When this information is
forwarded, QKD_SERVA sends to APPA the generated KSID. APPA shall then inform its peer, APPZ, of the KSID
return by the QKD_SERVA. When APPZ connects to its QKD endpoint (QKD_SERVZ), the same situation happens,
with the difference that (in this implementation) QKD_SERVZ already knows about the application connected to
QKD_SERVA (because of the intermediate advertisement procedure) and that APPZ knows the valid KSID, previously
shared by APPA. Note that this workflow is an example for a given implementation and may vary based on
architectural decisions (e.g. if a centralized management system is in place).

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 16

Figure 7: Case 5 - Workflow for Application Discovery in a QKD network

Applications may or may not predefine the KSID to be used, as long as it is globally unique. Any issue with connection
timeouts will be locally managed and treated as an error, similar to cases 2 and 4 in clauses 6.2.3 and 6.2.5 respectively.

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 17

Annex A:
Void

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 18

Annex B (informative):
Conventional Key Management Systems
Conventional key management systems were investigated for use within QKD systems. One such protocol, the KMIP
initiative within the OASIS open standards consortium https://www.oasis-open.org was considered. It specifies a
protocol and interface for communication between clients and a key server. QKD instead operates under a distributed
paradigm, where the keys are already distributed to the QKD end points (QKD Modules) but demultiplexing them into
independent synchronized streams and distributing them to various applications, at those communication end points, as
needed.

Some thought was given to adopting the KMIP framework for QKD systems as well as using QKD to strengthen the
KMIP as follows:

1) To enhance security of KMIP authentication protocols. KMIP does not specify, as part of the protocol, the
mechanisms by which key management systems and cryptographic clients identify themselves to each other.
Rather, KMIP relies on existing standards for mutual authentication that specify how this identification is to be
established. KMIP currently defines two authentication profiles, the first based on TLS, the second on HTTPS.
In both profiles, digital certificates are used by the client and the server to identify themselves as participants
in KMIP requests and responses. Registration mechanisms by which the enterprise key manager learns the
identity of cryptographic clients are not defined in KMIP. The credentials used by the cryptographic client to
identify itself can be included in the protocol as part of a request message, to simplify processing of the request
by the key management system. However, the credential element is not guaranteed to be authenticated and is
therefore not intended for use in authentication. Message integrity for KMIP exchanges, as well as entity
authentication, is provided by TLS. Other mechanisms (for example with the inclusion of QKD inside TLS or
HTTPS key exchange process) that could also be used for enhanced security of KMIP messages are not
currently defined for KMIP.

2) To enhance security of a Key Management system using QKD one-time-pad tunnels for the interchange of
KMIP messages.

To include QKD keys as a third party source of keys for KMIP servers.

Key Management Interoperability Protocol Specification Version 1.4 is an OASIS Standard [i.1].

https://www.oasis-open.org/

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 19

Annex C (informative):
Relationship of this API to ETSI GS QKD 014 "Protocol and
Data Format of REST-based Key Delivery API"
This API is designed to be as small as possible while being highly flexible. The underlying design is to have an API
able to create a continuous stream of keys from two (or more) connected remote applications in order to maximize key
throughput with a minimal overhead. This also means that the interface is able to provide sessions to which a given
Quality of Service (QoS) can be associated and negotiated between the application and the underlying QKD Networks.
Based on QoS requests, the network can organize all the requests to maximize the use of the QKD based services, for
example, assigning priorities and organizing the key provisioning and reservation for future requests. Together with the
QoS the present document introduces the management of network metadata, that it is useful to extract knowledge of the
network, for example to have network statistics or debug information about QKD devices.

This API is also implementation agnostic. It is independent of the programming language, libraries, or other tools
required for its implementation, leaving its choice to the implementer to better satisfy the service requirements. This
means that the protocol stack may be chosen to suit the needs of the concrete implementation. i.e. a small stack without
much footprint for resource-limited devices, a protocol which provides easy parsing and checking for an (usually small)
implementation that is easier to evaluate and certify for security or a complex protocol stack (like Corba, REST over
HTTP(S)) which eases integration into other applications. It is possible to use this API from simple raw sockets to more
secure communications methods like SSL/TLS tunnels or ZeroMQ/Protobuf, etc.

The use of URIs also makes possible the use of different protocols of Authentication (e.g. PAP, Kerberos, OAuth, etc.),
Authorization and Accounting (AAA). URIs also makes possible the use of different routing protocols from any pair of
applications, including multi-hop (with key relay) connections.

In contrast, the 014 Key Delivery API follows a completely different design principle (Additional information on the
relationship between the 014 and 004 API can be found in ETSI GS QKD 014 [i.2], annex A). ETSI GS QKD 014 [i.2]
is conceived as a single key request API, where applications always need to ask for keys using REST request,
individually, not as a key stream and are responsible for transmission and handling of the key identifier on their own.
Also, it does not have the concept of sessions.

ETSI GS QKD 014 [i.2] API specifies the use of the HTTPS protocol and the JSON data formats, this eases the
implementation but also presents some constraints, since HTTPS and JSON require high level libraries or frameworks
for implementation. In contrast, the 004 API can be implemented without any libraries, in a very compact way and
completely in standard C language, simplifying the security analysis.

ETSI GS QKD 014 [i.2] API can be seen as a simplification, built with high level tools (web based) and without the
QoS of the 004 API. ETSI GS QKD 014 [i.2] API can be implemented on top of the present document API, although
the QoS needs to be set to a default constant. The basic approach is the webserver processing the REST requests to
issue the present document API OPEN_CONNECT() call on startup and the corresponding API CLOSE() call when it
stops. For each REST request related to keys, a simple (the present document) API GET_KEY() call is needed. This
approximation leaves all the high-level processing to the Web side and all the Key management to the present document
API. The other way around is not always possible (without additional synchronization), because the session concept of
the present document allows the users of the API to get multiple corresponding keys by simple requests with only a
counter as input, whereas with ETSI GS QKD 014 [i.2] each key gets a new unique key identifier which has to be
transferred by the user.

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 20

Annex D (informative):
Bibliography

• C.H. Bennett and G. Brassard: "Quantum Cryptography: Public Key Distribution and Coin Tossing",
Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore India,
December 1984, pp 175-179.

NOTE: Available at http://www.research.ibm.com/people/b/bennetc/bennettc198469790513.pdf.

• Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel and Hugo Zbinden: "Quantum cryptography, Reviews of
Modern Physics", vol 74, 145-195 (2002).

• Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas J. Cerf, Miloslav Dušek, Norbert Lütkenhaus and
Momtchil Peev: "The security of practical quantum key distribution", vol. 81, 1301-1351 (2009).

NOTE: Available at http://arxiv.org/abs/0802.4155.

• D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill: "Security of quantum key distribution with imperfect
devices", vol. 5, 325-360) (2004).

NOTE: Available at http://arxiv.org/abs/quant-ph/0212066.

• "White Paper on Quantum Key Distribution and Cryptography", Preprint arXiv:quant-ph/0701168,
Alléaume R, Bouda J, Branciard C, Debuisschert T, Dianati M, Gisin N, Godfrey M, Grangier Ph, Länger T,
Leverrier A, Lütkenhaus N, Painchault P, Peev M, Poppe A, Pornin Th, Rarity J, Renner R, Ribordy G,
Riguidel M, Salvail L, Shields A, Weinfurter H, Zeilinge, A, 2006 SECOQC.

• UQC Report: "Updating Quantum Cryptography", Quantum Physics (quant-ph); Cyptography and Security.
Donna Dodson, Mikio Fujiwara, Philippe Grangier, Masahito Hayashi, Kentaro Imafuku, Ken-ichi Kitayama,
Prem Kumar, Christian Kurtsiefer, Gaby Lenhart, Norbert Luetkenhaus, Tsutomu Matsumoto, William J.
Munro, Tsuyoshi Nishioka, Momtchil Peev, Masahide Sasaki, Yutaka Sata, Atsushi Takada, Masahiro
Takeoka, Kiyoshi Tamaki, Hidema Tanaka, Yasuhiro Tokura, Akihisa Tomita, Morio Toyoshima, Rodney van
Meter, Atsuhiro Yamagishi, Yoshihisa Yamamoto and Akihiro Yamamura, 2009.

NOTE: Available at http://arxiv.org/abs/0905.4325.

• "Introduction to Quantum Key distribution", V. Martin, J. Martínez-Mateo and M. Peev, Wiley Encyclopedia
of Electrical and Electronics Engineering, 2017.

NOTE: Available at 10.1002/047134608X.W8354.

• Menezes A. J., van Oorschot P. C. and Vanstone S. A.: "Handbook of Applied Cryptography", (Boca Raton:
CRC Press) 1997.

• Schneier B.: "Applied Cryptography", 1996, (New York: John Wiley).

• NIST Special Publication 800-53 Revision 4 "Security and Privacy Controls for Federal Information Systems
and Organizations", Joint Task Force transformati:on initiative.

NOTE: Available at http://dx.doi.org/10.6028/NIST.SP.800-53r4 April 2013.

• OMG IDL Syntax and Semantics, Object Management Group Inc., formal/02-06-39 (CORBA 3.0 - OMG IDL
Syntax and Semantics chapter).

NOTE: Available at http://www.omg.org/cgi-bin/doc?formal/02-06-39.

http://www.research.ibm.com/people/b/bennetc/bennettc198469790513.pdf
http://arxiv.org/abs/0802.4155
http://arxiv.org/abs/quant-ph/0212066
http://arxiv.org/abs/0905.4325
https://doi.org/10.1002/047134608X.W8354
http://dx.doi.org/10.6028/NIST.SP.800-53r4%20April%202013
http://www.omg.org/cgi-bin/doc?formal/02-06-39

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 21

Annex E (informative):
Change History

Date Version Information about changes
December 2010 1.1.1 Publication.
May 2018 1.2.0 Streamlined interface, QoS added, URI addressing, UUID identifiers for key streams.

May 2018 1.2.1 Minor corrections over 1.2.0 (updated version number, history description, contributors
addressing and formatting).

January 2019 1.2.2 Additional minor corrections. Annex C clarification and deletion of old figure.

January 2019 1.2.3 Clarification of the terminology throughout the text, including in figures 1 and C.1.
Revised annex B and annex D.

February 2019 1.2.4
Additional clarifications. Consistent naming convention of calls following Clean Code
rules. Corrected bugs in the naming of figures. Discussed and rewritten Case 5,
modified figure 6 and minor corrections.

September 2019 1.2.5
Correct mistakes in figures 2 and 3. Clarifications in the text. Define QoS as an inout
argument, clarify its working and correct workflow figures to take this into account. Error
codes added.

November 2019 1.2.9 Comments on accepted extensions beyond URIs. Structure to add metadata to keys.

January 2020 1.3.1 Reduced discussion on Key Management. Network case moved from appendix to main
text. Minor mistakes corrected. Modified metadata types.

February 2020 1.3.3 Corrections and cleaning the metadata fields.
March 2020 1.3.4 Annex C.
May 2020 1.3.5 Collected discussions on Annex C. Definitions of Terms section revised.
May 2020 1.3.6 Added missing abbreviations. Corrected mistake in web address.

ETSI

ETSI GS QKD 004 V2.1.1 (2020-08) 22

History

Document history

V1.1.1 December 2010 Publication

V2.1.1 August 2020 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Introduction
	5 QKD Application Interface Specification Description
	6 QKD Application Interface API Specification
	6.1 General
	6.2 Sequence diagrams for QKD Application Interface
	6.2.1 General
	6.2.2 Case 1: Undefined KSID in a single link scenario
	6.2.3 Case 2: Undefined KSID and failed get key call in a single link scenario
	6.2.4 Case 3: Predefined KSID in a single link scenario
	6.2.5 Case 4: Predefined KSID and failed get key call in a single link scenario
	6.2.6 Case 5: Application discovery in a QKD network

	Annex A: Void
	Annex B (informative): Conventional Key Management Systems
	Annex C (informative): Relationship of this API to ETSI GS QKD 014 "Protocol and Data Format of REST-based Key Delivery API"
	Annex D (informative): Bibliography
	Annex E (informative): Change History
	History

