
 

 

 

 

 

 

ETSI GS PDL 033 V1.1.1 (2025-06) 

Permissioned Distributed Ledger (PDL); 
Smart Contracts; 

System Architecture and Functional Specification 

 

  

Disclaimer 

The present document has been produced and approved by the Permissioned Distributed Ledger (PDL) ETSI Industry 
Specification Group (ISG) and represents the views of those members who participated in this ISG. 

It does not necessarily represent the views of the entire ETSI membership. 

GROUP SPECIFICATION 



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 2 

 

  

Reference 
DGS/PDL-0033_Smart_contract 

Keywords 
blockchain, PDL, policies, SLA, smart contract 

ETSI 

650 Route des Lucioles 
F-06921 Sophia Antipolis Cedex - FRANCE 

 
Tel.: +33 4 92 94 42 00   Fax: +33 4 93 65 47 16 

 
Siret N° 348 623 562 00017 - APE 7112B 

Association à but non lucratif enregistrée à la 
Sous-Préfecture de Grasse (06) N° w061004871 

 

Important notice 

The present document can be downloaded from the 
ETSI Search & Browse Standards application.  

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or 
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any 

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI 
deliverable is the one made publicly available in PDF format on ETSI deliver repository. 

Users should be aware that the present document may be revised or have its status changed,  
this information is available in the Milestones listing. 

If you find errors in the present document, please send your comments to 
the relevant service listed under Committee Support Staff. 

If you find a security vulnerability in the present document, please report it through our  
Coordinated Vulnerability Disclosure (CVD) program. 

Notice of disclaimer & limitation of liability 

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of 
experience to understand and interpret its content in accordance with generally accepted engineering or  

other professional standard and applicable regulations.  
No recommendation as to products and services or vendors is made or should be implied. 

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law 
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness 

for any particular purpose or against infringement of intellectual property rights. 
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages. 

 
Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not 

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property 
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages 

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use 
of or inability to use the software. 

Copyright Notification 

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and 
microfilm except as authorized by written permission of ETSI. 

The content of the PDF version shall not be modified without the written authorization of ETSI. 
The copyright and the foregoing restriction extend to reproduction in all media. 

 
© ETSI 2025. 

All rights reserved. 
 

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure


 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 3 

Contents 

Intellectual Property Rights .............................................................................................................................. 11 

Foreword ........................................................................................................................................................... 11 

Modal verbs terminology .................................................................................................................................. 11 

Executive summary .......................................................................................................................................... 11 

Introduction ...................................................................................................................................................... 12 

1 Scope ...................................................................................................................................................... 13 

2 References .............................................................................................................................................. 13 

2.1 Normative references ....................................................................................................................................... 13 

2.2 Informative references ...................................................................................................................................... 22 

3 Definition of terms, symbols and abbreviations ..................................................................................... 24 

3.1 Terms ................................................................................................................................................................ 24 

3.2 Symbols ............................................................................................................................................................ 25 

3.3 Abbreviations ................................................................................................................................................... 25 

4 Introduction to Smart Contracts ............................................................................................................. 26 

4.1 Introduction ...................................................................................................................................................... 26 

4.2 Object-Oriented Paradigm ................................................................................................................................ 27 

4.2.1 Introduction to OOP in Smart Contracts ..................................................................................................... 27 

4.2.2 Key OOP Concepts in Smart Contracts ...................................................................................................... 27 

4.2.2.1 Encapsulation ........................................................................................................................................ 27 

4.2.2.2 State and Behaviour .............................................................................................................................. 27 

4.2.2.2.1 State ................................................................................................................................................. 27 

4.2.2.2.2 Behaviour ........................................................................................................................................ 28 

4.2.2.3 Instantiation ........................................................................................................................................... 29 

4.2.2.4 Inheritance and Composition ................................................................................................................ 29 

4.2.2.5 Polymorphism ....................................................................................................................................... 30 

4.2.2.6 Visibility and Access Control ............................................................................................................... 30 

4.2.2.7 Events .................................................................................................................................................... 30 

4.2.3 Benefits of OOP in Smart Contracts ........................................................................................................... 31 

4.2.4 Considerations for OOP in Distributed Environments ................................................................................ 32 

4.2.4.1 Defining the major considerations ........................................................................................................ 32 

4.2.4.2 Gas costs ............................................................................................................................................... 32 

4.2.4.3 Public nature of blockchain data ........................................................................................................... 33 

4.2.4.4 Consensus mechanisms of the underlying distributed ledger ................................................................ 35 

4.3 Properties of Smart Contracts ........................................................................................................................... 36 

4.3.1 Immutability ............................................................................................................................................... 36 

4.3.1.1 Definition .............................................................................................................................................. 36 

4.3.1.2 Implications ........................................................................................................................................... 37 

4.3.1.3 Challenges ............................................................................................................................................. 37 

4.3.1.4 Solutions ............................................................................................................................................... 37 

4.3.2  Transparency ............................................................................................................................................... 38 

4.3.2.1 Definition .............................................................................................................................................. 38 

4.3.2.2 Key Aspects .......................................................................................................................................... 39 

4.3.2.3 Benefits ................................................................................................................................................. 39 

4.3.2.4 Challenges ............................................................................................................................................. 39 

4.3.2.5 Balancing Transparency and Privacy .................................................................................................... 40 

4.3.2.6 Considerations for Implementation ....................................................................................................... 40 

4.3.3 Determinism ............................................................................................................................................... 41 

4.3.3.1 Definition .............................................................................................................................................. 41 

4.3.3.2 Key Aspects of Determinism ................................................................................................................ 41 

4.3.3.3  Importance of Determinism .................................................................................................................. 41 

4.3.3.4 Challenges associated with Determinism .............................................................................................. 42 

4.3.3.5 Determinism Implementation Considerations ....................................................................................... 42 

4.3.3.6 Balancing Determinism and Functionality ............................................................................................ 42 



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 4 

4.3.3.7 Requirements and Recommendations ................................................................................................... 42 

4.3.4 Atomicity .................................................................................................................................................... 43 

4.3.4.1 Definition .............................................................................................................................................. 43 

4.3.4.2 Key Aspects of Atomicity ..................................................................................................................... 43 

4.3.4.3  Importance of Atomicity ....................................................................................................................... 44 

4.3.4.4 Atomicity Implementation Mechanisms ............................................................................................... 45 

4.3.4.5 Challenges of Atomicity ....................................................................................................................... 45 

4.3.4.6 Atomicity Best Practices ....................................................................................................................... 46 

4.3.4.7  Atomicity in Multi-Contract Interactions .............................................................................................. 47 

4.3.4.8 Requirements and Recommendations ................................................................................................... 47 

4.3.5 Autonomy ................................................................................................................................................... 48 

4.3.5.1 Definition .............................................................................................................................................. 48 

4.3.5.2 Key Aspects of Autonomy .................................................................................................................... 48 

4.3.5.3 Importance of Autonomy ...................................................................................................................... 49 

4.3.5.4 Autonomy Implementation Considerations ........................................................................................... 50 

4.3.5.5 Challenges Associated with Autonomy ................................................................................................ 50 

4.3.5.6  Balancing Autonomy and Control ......................................................................................................... 51 

4.3.5.7  Autonomy in Different Contexts ........................................................................................................... 52 

4.3.5.8  Best Practices for Implementing Autonomy in Smart Contracts .......................................................... 52 

4.3.5.9 Requirements and Recommendations ................................................................................................... 53 

4.3.6 Decentralization .......................................................................................................................................... 54 

4.3.6.1  Definition .............................................................................................................................................. 54 

4.3.6.2 Key Aspects of Decentralization ........................................................................................................... 54 

4.3.6.3 Importance of Decentralization ............................................................................................................. 54 

4.3.6.4 Decentralization Implementation Considerations ................................................................................. 55 

4.3.6.5 Challenges associated with Decentralization ........................................................................................ 55 

4.3.6.6 Degrees of Decentralization .................................................................................................................. 55 

4.3.6.7  Decentralization in Different Contexts .................................................................................................. 55 

4.3.6.8  Best Practices of Decentralization ......................................................................................................... 56 

4.3.6.9 Requirements and Recommendations ................................................................................................... 56 

4.3.7 State Management ...................................................................................................................................... 57 

4.3.7.1  Definition .............................................................................................................................................. 57 

4.3.7.2  Key Aspects of State Management ....................................................................................................... 57 

4.3.7.3  Importance of State Management ......................................................................................................... 57 

4.3.7.4  State Management Implementation Considerations .............................................................................. 58 

4.3.7.5  Challenges associated with State Management ..................................................................................... 58 

4.3.7.6  State Management Patterns ................................................................................................................... 58 

4.3.7.7  Advanced State Management Techniques ............................................................................................ 58 

4.3.7.8  State Management Best Practices ......................................................................................................... 59 

4.3.7.9 Requirements and Recommendations ................................................................................................... 59 

4.3.8 Interoperability ........................................................................................................................................... 60 

4.3.8.1  Definition .............................................................................................................................................. 60 

4.3.8.2  Key Aspects of Interoperability ............................................................................................................ 61 

4.3.8.3  Importance of Interoperability .............................................................................................................. 61 

4.3.8.4  Interoperability Implementation Mechanisms ....................................................................................... 62 

4.3.8.5  Challenges associated with Interoperability .......................................................................................... 62 

4.3.8.6  Interoperability Levels .......................................................................................................................... 62 

4.3.8.7  Emerging Interoperability Solutions ..................................................................................................... 62 

4.3.8.8  Best Practices when Implementing Interoperability .............................................................................. 63 

4.3.8.9 Requirements and Recommendations ................................................................................................... 63 

4.3.9 Threats and Security ................................................................................................................................... 64 

4.3.9.1 Security Aspects of Smart Contracts ..................................................................................................... 64 

4.3.9.2 Key Aspects .......................................................................................................................................... 65 

4.3.9.3 Common Vulnerabilities and Attacks ................................................................................................... 66 

4.3.9.3.1 Introduction ..................................................................................................................................... 66 

4.3.9.3.2  Internal Threats ................................................................................................................................ 67 

4.3.9.3.3  Smart Contract Programming Errors ............................................................................................... 67 

4.3.9.3.4  External Threats............................................................................................................................... 68 

4.3.9.4  Advanced Smart Contract Security ....................................................................................................... 68 

4.3.9.5 Security Best Practices and Culture in Smart Contracts........................................................................ 69 

4.3.9.6 Tools and Techniques ........................................................................................................................... 70 

4.3.9.7 Regulatory and Compliance Considerations ......................................................................................... 71 



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 5 

4.3.9.8  Emerging Security Challenges .............................................................................................................. 71 

4.3.9.9  Security by design ................................................................................................................................. 72 

4.3.9.9.1  The importance of Security in the design phase of smart contracts ................................................. 72 

4.3.9.9.2  Access Control ................................................................................................................................ 72 

4.3.9.9.3  Input Validation ............................................................................................................................... 72 

4.3.9.9.4  Reentrancy Protection ..................................................................................................................... 72 

4.3.9.9.5  Gas Limitations and Denial of Service ............................................................................................ 73 

4.3.9.9.6  Upgradability and Modularity ......................................................................................................... 73 

4.3.9.9.7  Formal Verification ......................................................................................................................... 73 

4.3.9.9.8  External Calls and Interactions ........................................................................................................ 73 

4.3.9.9.9 Error Handling ................................................................................................................................. 73 

4.3.10 Reusability .................................................................................................................................................. 73 

4.3.10.1  Definition .............................................................................................................................................. 73 

4.3.10.2  Key Aspects .......................................................................................................................................... 73 

4.3.10.3  Importance ............................................................................................................................................ 74 

4.3.10.4  Implementation Strategies ..................................................................................................................... 74 

4.3.10.5  Challenges ............................................................................................................................................. 74 

4.3.10.6  Best Practices ........................................................................................................................................ 74 

4.3.10.7  Examples of Reusable Components ...................................................................................................... 75 

4.3.10.8  Future Trends ........................................................................................................................................ 75 

4.3.10.9 Requirements and Recommendations ................................................................................................... 76 

4.3.11 Composability and Contract Interactions .................................................................................................... 77 

4.4 Storage .............................................................................................................................................................. 77 

4.4.1  Introduction................................................................................................................................................. 77 

4.4.2  Types of Storage ......................................................................................................................................... 78 

4.4.2.1 On-Chain Storage .................................................................................................................................. 78 

4.4.2.2  Off-Chain Storage ................................................................................................................................. 78 

4.4.2.3 Requirements and Recommendations ................................................................................................... 78 

4.4.3  Storage Mechanisms ................................................................................................................................... 78 

4.4.3.1  State Variables ...................................................................................................................................... 78 

4.4.3.2  Mappings ............................................................................................................................................... 79 

4.4.3.3  Arrays .................................................................................................................................................... 79 

4.4.3.4  Structs ................................................................................................................................................... 79 

4.4.3.5 Requirements and Recommendations ................................................................................................... 79 

4.4.4  Storage Optimization Techniques ............................................................................................................... 79 

4.4.4.1 General discussion ................................................................................................................................ 79 

4.4.4.2  Data Packing ......................................................................................................................................... 80 

4.4.4.3  Lazy Loading ........................................................................................................................................ 80 

4.4.4.4  Deletion and Cleanup ............................................................................................................................ 80 

4.4.4.5 Requirements and Recommendations ................................................................................................... 80 

4.4.5  Cost Considerations .................................................................................................................................... 80 

4.4.5.1  Gas Costs .............................................................................................................................................. 80 

4.4.5.2  Storage Refunds .................................................................................................................................... 81 

4.4.5.3 Requirements and Recommendations ................................................................................................... 81 

4.4.6  Storage Data Security ................................................................................................................................. 81 

4.4.6.1  Access Control ...................................................................................................................................... 81 

4.4.6.2  Data Integrity ........................................................................................................................................ 82 

4.4.6.3 Requirements and Recommendations ................................................................................................... 82 

4.4.7  Advanced Storage Patterns ......................................................................................................................... 82 

4.4.7.1 Architectural Patterns ............................................................................................................................ 82 

4.4.7.2 Eternal Storage ...................................................................................................................................... 82 

4.4.7.3 Commit-Reveal Schemes ...................................................................................................................... 83 

4.4.7.4 Merkle Trees ......................................................................................................................................... 83 

4.4.7.5 Requirements and Recommendations ................................................................................................... 83 

4.4.8 Challenges and Considerations ................................................................................................................... 83 

4.4.8.1 Scalability.............................................................................................................................................. 83 

4.4.8.2  Privacy .................................................................................................................................................. 85 

4.4.8.3  Long-Term Storage ............................................................................................................................... 85 

4.4.8.4 Requirements and recommendations..................................................................................................... 85 

4.4.9  Future Trends .............................................................................................................................................. 86 

4.4.9.1  Decentralized Storage Solutions ........................................................................................................... 86 

4.4.9.2  Layer-2 Storage Solutions ..................................................................................................................... 86 



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 6 

4.4.10  Best Practices ........................................................................................................................................ 86 

4.4.10.1 General Discussion................................................................................................................................ 86 

4.4.10.2 Requirements and Recommendations ................................................................................................... 87 

4.5 Modern Smart Contract Platforms and Languages ........................................................................................... 87 

4.5.1 Introduction................................................................................................................................................. 87 

4.5.2 Ethereum and Solidity ................................................................................................................................ 87 

4.5.3 Polkadot and Ink ......................................................................................................................................... 88 

4.5.4 Cardano and Plutus ..................................................................................................................................... 89 

4.5.5 Algorand and TEAL/PyTeal ....................................................................................................................... 89 

4.5.6 Cosmos and CosmWasm ............................................................................................................................ 90 

4.5.7 Tezos and Michelson/LIGO ........................................................................................................................ 90 

4.5.8 Emerging Trends ........................................................................................................................................ 91 

5 Smart Contracts - Lifecycle phases ........................................................................................................ 92 

5.1 Introduction ...................................................................................................................................................... 92 

5.2 Planning Phase ................................................................................................................................................. 92 

5.2.1 Description and recent research .................................................................................................................. 92 

5.2.2  Defining the contract's purpose and requirements ...................................................................................... 92 

5.2.3  Identifying Stakeholders and Their Interactions ......................................................................................... 92 

5.2.4  Outlining the Contract's Logic and State Variables .................................................................................... 93 

5.2.5  Considering Security, Scalability, and Interoperability Needs ................................................................... 93 

5.2.6  Evaluating Governance and Upgrade Models ............................................................................................ 93 

5.3 Development and Testing Phase ...................................................................................................................... 93 

5.3.1  Description and recent research .................................................................................................................. 93 

5.3.2  Writing the contract code in a suitable language ........................................................................................ 94 

5.3.3  Implementing security best practices and optimizations............................................................................. 94 

5.3.4  Conducting thorough testing ....................................................................................................................... 94 

5.3.4.1 Introduction ........................................................................................................................................... 94 

5.3.4.2  Testing Strategies .................................................................................................................................. 94 

5.3.4.3  Generalized Testing Targets.................................................................................................................. 95 

5.3.4.4  Testing Checklist ................................................................................................................................... 96 

5.3.4.5  Offline Testing ...................................................................................................................................... 96 

5.3.4.6  Online Monitoring ................................................................................................................................. 97 

5.3.4.7  Property-Based Testing Frameworks .................................................................................................... 97 

5.3.4.8  Symbolic Execution Tools .................................................................................................................... 98 

5.3.4.9  SMT Solvers for Smart Contracts ......................................................................................................... 99 

5.3.5  Performing code reviews and audits ........................................................................................................... 99 

5.4 Deployment and Execution Phase .................................................................................................................. 100 

5.4.1 Discussion and recent research ................................................................................................................. 100 

5.4.2 Compiling the contract to bytecode .......................................................................................................... 100 

5.4.3 Selecting the appropriate network for deployment ................................................................................... 100 

5.4.4 Executing the deployment transaction ...................................................................................................... 100 

5.4.5 Verifying the deployed contract's bytecode .............................................................................................. 101 

5.4.6 Monitoring the contract's execution and user interactions ........................................................................ 101 

5.5 Maintenance, Update and Upgrade Phases ..................................................................................................... 101 

5.5.1 Introduction............................................................................................................................................... 101 

5.5.2  Update Situations ...................................................................................................................................... 101 

5.5.3  Strategies of Updating .............................................................................................................................. 102 

5.5.4  Upgrading Through Versioning ................................................................................................................ 102 

5.5.5  Updating Steps .......................................................................................................................................... 102 

5.5.6  Checklist Before Redeployment ............................................................................................................... 103 

5.5.7  Securely Inactivating Old Contract ........................................................................................................... 103 

5.5.8  Governing the Upgrade of Smart Contracts .............................................................................................. 103 

5.5.8.1  Discussion and recent research ........................................................................................................... 103 

5.5.8.2 Governance and upgrade models of Smart Contracts ......................................................................... 104 

5.5.8.2.1 Similarities and Differences Between Blockchain Platform Governance and Smart Contract 
Change Governance ....................................................................................................................... 104 

5.5.8.2.2 Similarities ..................................................................................................................................... 104 

5.5.8.2.3 Differences .................................................................................................................................... 104 

5.5.8.2.4 Recommendations for Effective Smart Contract Governance ....................................................... 105 

5.5.8.2.5 Designing upgrade patterns ........................................................................................................... 106 



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 7 

5.5.8.2.6 Establishing Processes for Proposing, Voting on, and Implementing Changes in Smart 
Contract Change Management ...................................................................................................... 106 

5.5.8.2.7 Balancing upgradability with security and immutability ............................................................... 107 

5.5.8.3 Requirements and Recommendations ................................................................................................. 107 

5.6  Retirement or Deprecation Phase ................................................................................................................... 108 

5.6.1 Discussion and recent research ................................................................................................................. 108 

5.6.2 Deciding when a contract should be retired .............................................................................................. 109 

5.6.3 Implementing a graceful shutdown process .............................................................................................. 109 

5.6.4 Ensuring users are notified and given time to extract assets or data ......................................................... 109 

5.6.5 Potentially deploying a replacement contract ........................................................................................... 109 

5.7 Requirements and Recommendations ............................................................................................................ 110 

6 Requirements for Designing a Smart Contract ..................................................................................... 111 

6.1  Smart Contract Facets .................................................................................................................................... 111 

6.1.1 Categories of Facets .................................................................................................................................. 111 

6.1.2  Foundational Role ..................................................................................................................................... 111 

6.1.3  Functional Role ......................................................................................................................................... 111 

6.1.4  Governance Role ...................................................................................................................................... 111 

6.1.5  Interoperability Role ................................................................................................................................. 112 

6.2  Actors ............................................................................................................................................................. 112 

6.2.1 Distinct roles in a smart contract .............................................................................................................. 112 

6.2.2  Contract Developer ................................................................................................................................... 112 

6.2.3  Contract Owner ......................................................................................................................................... 113 

6.2.4  Contract Users .......................................................................................................................................... 113 

6.2.5 Governance Body ..................................................................................................................................... 113 

6.2.6  Auditors .................................................................................................................................................... 114 

6.2.7  Oracles ...................................................................................................................................................... 114 

6.3  Requirements During Design ......................................................................................................................... 114 

6.3.1 Key considerations .................................................................................................................................... 114 

6.3.2  Security ..................................................................................................................................................... 114 

6.3.3 Scalability ................................................................................................................................................. 115 

6.3.4 Interoperability ......................................................................................................................................... 115 

6.3.5 Auditability ............................................................................................................................................... 115 

6.3.6 Privacy ...................................................................................................................................................... 115 

6.3.7 Governance ............................................................................................................................................... 116 

6.3.8 Error Handling .......................................................................................................................................... 116 

6.4 Available technologies evaluation and selection ............................................................................................ 116 

6.4.1 Introduction............................................................................................................................................... 116 

6.4.2 Programming Languages .......................................................................................................................... 116 

6.4.3  Development Frameworks ........................................................................................................................ 117 

6.4.4  Security Analysis Tools ............................................................................................................................ 117 

6.4.5  Oracle Services ......................................................................................................................................... 117 

6.4.6  Interoperability Protocols ......................................................................................................................... 117 

6.4.7  Privacy-Enhancing Technologies ............................................................................................................. 118 

6.4.8  Scalability Solutions ................................................................................................................................. 118 

6.5  Auditability considerations ............................................................................................................................. 118 

6.5.1 Definition of Auditability ......................................................................................................................... 118 

6.5.2  Code Transparency ................................................................................................................................... 119 

6.5.3  Event Logging .......................................................................................................................................... 119 

6.5.4  Formal Verification................................................................................................................................... 119 

6.5.5  Automated Analysis Tools ........................................................................................................................ 119 

6.5.6  Version Control and Change Management ............................................................................................... 120 

6.5.7  External Audits ......................................................................................................................................... 120 

6.6 Designing and implementing Input and Output methods to Smart Contracts ................................................ 120 

6.6.1 Generalized Input/Output Requirements .................................................................................................. 120 

6.6.1.1 Introduction ......................................................................................................................................... 120 

6.6.1.2 Data Integrity and Authenticity ........................................................................................................... 121 

6.6.1.3  Data Format and Validation ................................................................................................................ 121 

6.6.1.4 Error Handling .................................................................................................................................... 121 

6.6.1.5  Rate Limiting ...................................................................................................................................... 122 

6.6.1.6  Randomness ........................................................................................................................................ 122 

6.6.1.7  Governance Inputs .............................................................................................................................. 122 



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 8 

6.6.2  Internal Data Inputs .................................................................................................................................. 123 

6.6.2.1 Introduction ......................................................................................................................................... 123 

6.6.2.2 Inter-Contract Communication ........................................................................................................... 123 

6.6.2.3  On-Chain Data Sources ....................................................................................................................... 123 

6.6.3  External Data Inputs ................................................................................................................................. 124 

6.6.3.1 Definition ............................................................................................................................................ 124 

6.6.3.2 Oracles ................................................................................................................................................ 124 

6.6.3.2.1 Definition....................................................................................................................................... 124 

6.6.3.2.2 Oracle selection ............................................................................................................................. 125 

6.6.3.2.3 Data Aggregation........................................................................................................................... 125 

6.6.3.2.4 Oracle Security .............................................................................................................................. 126 

6.6.3.3  Off-Chain Data Sources ...................................................................................................................... 126 

6.6.3.4  User Inputs .......................................................................................................................................... 126 

6.6.3.5  Time-Based Inputs .............................................................................................................................. 126 

6.6.4 Smart Contract Outputs ............................................................................................................................ 127 

6.6.4.1 Introduction ......................................................................................................................................... 127 

6.6.4.2 Event Emission ................................................................................................................................... 127 

6.6.4.3 Return Values ...................................................................................................................................... 127 

6.6.4.4 State Updates....................................................................................................................................... 127 

6.6.4.5 External Calls ...................................................................................................................................... 127 

6.6.4.6 Off-Chain Notifications ...................................................................................................................... 128 

6.7 Using a universal clock .................................................................................................................................. 128 

6.7.1 The criticality of Universal Time .............................................................................................................. 128 

6.7.2 Time Representation ................................................................................................................................. 128 

6.7.3  Consensus on Time ................................................................................................................................... 128 

6.7.4  Time Drift Mitigation ............................................................................................................................... 128 

6.7.5  Time-based Triggers ................................................................................................................................. 128 

6.7.6  Time Zones and Localization.................................................................................................................... 128 

6.7.7  Time Oracles ............................................................................................................................................. 129 

6.8  Terminatability considerations ....................................................................................................................... 129 

6.8.1  Problem Definition of Terminatability ..................................................................................................... 129 

6.8.2  Self-Destruction Mechanisms ................................................................................................................... 129 

6.8.3  Graceful Shutdown ................................................................................................................................... 129 

6.8.4 Time-Based Termination .......................................................................................................................... 129 

6.8.5  Condition-Based Termination ................................................................................................................... 130 

6.8.6  Governance-Controlled Termination ........................................................................................................ 130 

6.8.7  Data Preservation and State Finalization .................................................................................................. 130 

6.9 Security aspects of smart contract design ....................................................................................................... 131 

7 Architectural requirements for Smart Contracts ................................................................................... 131 

7.1 Reusability ...................................................................................................................................................... 131 

7.1.1 Definition of Reusability .......................................................................................................................... 131 

7.1.2 Contract Templates ................................................................................................................................... 131 

7.1.3  Library Development ................................................................................................................................ 131 

7.1.4  Inheritance and Composition .................................................................................................................... 131 

7.2 Self-destruction .............................................................................................................................................. 132 

7.2.1 Definition .................................................................................................................................................. 132 

7.2.2  Controlled Termination ............................................................................................................................. 132 

7.2.3  State Cleanup ............................................................................................................................................ 132 

7.2.4  Event Emission ......................................................................................................................................... 132 

7.3 Data Ownership .............................................................................................................................................. 132 

7.3.1 Definition .................................................................................................................................................. 132 

7.3.2  Access Control Mechanisms ..................................................................................................................... 132 

7.3.3  Data Portability ......................................................................................................................................... 133 

7.3.4  Privacy-Preserving Techniques ................................................................................................................ 133 

7.4 Reference Architecture ................................................................................................................................... 133 

7.4.1 Problem statement .................................................................................................................................... 133 

7.4.2  Modular Design ........................................................................................................................................ 133 

7.4.3  Standardized Interfaces ............................................................................................................................. 134 

7.4.4  Separation of functionalities ..................................................................................................................... 134 

7.5  Scalability Solutions ....................................................................................................................................... 134 

7.5.1 Problem statement .................................................................................................................................... 134 



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 9 

7.5.2  Layer-2 Integration ................................................................................................................................... 134 

7.5.3  Sharding Compatibility ............................................................................................................................. 135 

7.5.4  Gas Optimization ...................................................................................................................................... 135 

7.6  Privacy-Preserving Smart Contracts ............................................................................................................... 135 

7.6.1 Problem statement .................................................................................................................................... 135 

7.6.2  Zero-Knowledge Proofs ............................................................................................................................ 136 

7.6.3  Secure Multi-Party Computation .............................................................................................................. 136 

7.6.4  Encrypted Data Processing ....................................................................................................................... 136 

7.7 Smart Contract Offloading ............................................................................................................................. 137 

7.7.1 Introduction............................................................................................................................................... 137 

7.7.2 Sidechain Integration ................................................................................................................................ 137 

7.7.3 Off-chain Computation ............................................................................................................................. 138 

7.8 Design Patterns ............................................................................................................................................... 138 

7.8.1 Introduction and problem statement ......................................................................................................... 138 

7.8.2  Contract Factory Pattern ........................................................................................................................... 139 

7.8.3  Oracle Integration Pattern ......................................................................................................................... 139 

7.8.4 Model-View-Controller (MVC) Pattern ................................................................................................... 139 

7.8.5 Observer Pattern ....................................................................................................................................... 139 

7.8.6 Strategy Pattern ......................................................................................................................................... 140 

7.8.7 Decorator Pattern ...................................................................................................................................... 140 

7.8.8 N-Tier Pattern ........................................................................................................................................... 140 

7.8.9 Shared Repository Pattern ........................................................................................................................ 140 

7.8.10 Broker Pattern ........................................................................................................................................... 140 

7.8.11 Pipe-Filter Pattern ..................................................................................................................................... 141 

8 Smart Contracts - Applications, Solutions, and Needs ......................................................................... 141 

8.1  Applications ................................................................................................................................................... 141 

8.1.1 Introduction............................................................................................................................................... 141 

8.1.2 Finance ...................................................................................................................................................... 141 

8.1.3 Supply Chain Management ....................................................................................................................... 141 

8.1.4 Healthcare ................................................................................................................................................. 141 

8.1.5 Real Estate ................................................................................................................................................ 141 

8.1.6 Government Services ................................................................................................................................ 142 

8.2  Solutions ......................................................................................................................................................... 142 

8.2.1 Issues to be solved .................................................................................................................................... 142 

8.2.2 Scalability ................................................................................................................................................. 142 

8.2.3 Security ..................................................................................................................................................... 142 

8.2.4 Interoperability ......................................................................................................................................... 142 

8.2.5  Smart Contracts with QoS Monitoring ..................................................................................................... 142 

8.3  Requirements for Building a Viable System using Smart Contracts .............................................................. 143 

9 Governance Role in Smart Contracts ................................................................................................... 143 

9.1 Introduction to the Role of Governance in Smart Contracts .......................................................................... 143 

9.2  Governing the Update of a Smart Contract .................................................................................................... 143 

9.3  Governing Operational Decisions .................................................................................................................. 144 

9.4  Governing the Termination of a Smart Contract ............................................................................................ 144 

9.5  General Governance Compliance Strategies for Smart Contracts .................................................................. 144 

10 Gas Optimization Techniques .............................................................................................................. 145 

10.1 Introduction to Gas optimization .................................................................................................................... 145 

10.2  Gas-Efficient Design Patterns ........................................................................................................................ 145 

10.2.1 Introduction Gas-Efficient Design Patterns .............................................................................................. 145 

10.2.2  Using Libraries for Common Functions to Avoid Code Duplication ....................................................... 145 

10.2.3  Optimizing Data Structures for Minimal Storage Costs ........................................................................... 146 

10.2.4  Employing Lazy Loading Techniques to Defer Computations Until Necessary ...................................... 146 

10.3 Managing complex operations efficiently ...................................................................................................... 146 

10.3.1 Batching .................................................................................................................................................... 146 

10.3.2  Proxy Patterns ........................................................................................................................................... 147 

10.4 Tools for Flexible Management of Gas Expenses .......................................................................................... 147 

10.4.1 Gas Tokens ............................................................................................................................................... 147 

10.4.2 Relayers .................................................................................................................................................... 148 

11 Emerging Smart Contract Standards .................................................................................................... 148 



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 10 

11.1  Intro ................................................................................................................................................................ 148 

11.2  Advanced ERC Token Standards ................................................................................................................... 148 

11.3  Non-Fungible Token Standards ...................................................................................................................... 149 

11.4  Smart Contract Wallets and Account Abstraction .......................................................................................... 149 

12 Regulatory and Environmental Considerations .................................................................................... 150 

12.1 Introduction .................................................................................................................................................... 150 

12.2  Recent Legislation on Smart Contract Enforceability .................................................................................... 150 

12.3 Regulatory Guidance from Financial Authorities ........................................................................................... 150 

12.4  Energy Consumption of Smart Contract Platforms ........................................................................................ 150 

12.5 Proof-of-Stake and Other Eco-Friendly Consensus Mechanisms .................................................................. 151 

Annex A (informative): Examples from research papers used in the present document .............. 152 

A.1 Void ...................................................................................................................................................... 152 

A.1.1 Void ................................................................................................................................................................ 152 

A.1.1.1 Examples of publications for each of the solutions listed in clause 4.3.1.4 "Solutions" ........................... 152 

A.1.1.1.1 Proxy Patterns ..................................................................................................................................... 152 

A.1.1.1.2 Data Separation ................................................................................................................................... 152 

A.1.1.1.3 Parameterization .................................................................................................................................. 152 

A.1.1.1.4 Modular Design ................................................................................................................................... 152 

A.1.1.1.5 Thorough Testing and Auditing .......................................................................................................... 153 

A.1.1.2 Examples of publications for each of the emerging interoperability solutions listed in clause 4.3.8.7..... 153 

A.1.1.2.1 Polkadot Parachains ............................................................................................................................ 153 

A.1.1.2.2 Cosmos Inter-Blockchain Communication (IBC) ............................................................................... 153 

A.1.1.2.3 Ethereum Layer-2 Solutions................................................................................................................ 153 

A.1.1.2.4 Additional relevant publications: ........................................................................................................ 153 

A.1.1.2.4.1 Cross-Chain Bridges: ..................................................................................................................... 153 

A.1.1.2.4.2 Interoperability Protocols: ............................................................................................................. 154 

A.1.1.3 Examples of publications related to the tools and techniques listed in clause 4.3.9.6 .............................. 154 

A.1.1.3.1 Static Analysis Tools........................................................................................................................... 154 

A.1.1.3.2 Dynamic Analysis ............................................................................................................................... 154 

A.1.1.3.3 Fuzzing ................................................................................................................................................ 154 

A.1.1.3.4 Formal Verification Tools ................................................................................................................... 154 

A.1.1.3.5 Security Frameworks .......................................................................................................................... 155 

A.1.1.4 Examples of solutions for storing large amounts of data on-chain, as mentioned in clause 4.4.8.1 ......... 155 

A.1.1.4.1 Layer-2 Solutions: ............................................................................................................................... 155 

A.1.1.4.2  Sharding: ............................................................................................................................................. 155 

A.1.1.4.3 Off-chain Storage with On-chain Verification: ................................................................................... 155 

A.1.1.4.4  Data Compression Techniques: ........................................................................................................... 155 

A.1.1.4.5  State Channels: .................................................................................................................................... 155 

Annex B (informative): Bibliography ................................................................................................. 156 

History ............................................................................................................................................................ 157 

 

  



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 11 

Intellectual Property Rights 

Essential patents  

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations 
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be 
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to 
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the 
ETSI IPR online database. 
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Trademarks 
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right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does 
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. 

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its 
Members. 3GPP™, LTE™ and 5G™ logo are trademarks of ETSI registered for the benefit of its Members and of the 
3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of 
the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association. 

Foreword 
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Permissioned 
Distributed Ledger (PDL). 

Modal verbs terminology 
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"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of 
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"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

Executive summary 
The present document provides a comprehensive exploration of smart contract technology within Permissioned 
Distributed Ledger (PDL) environments. It outlines the foundational principles, architectural considerations, and 
functional specifications necessary for implementing robust and efficient smart contracts. The present document 
emphasizes the importance of smart contracts in automating agreements and transactions, highlighting their key 
characteristics such as automation, transparency, immutability, efficiency, and programmability.  

Key sections include an introduction to Object-Oriented Programming (OOP) concepts in smart contracts, which 
enhance modularity and reusability while maintaining security. The present document also addresses critical properties 
of smart contracts such as immutability, transparency, determinism, atomicity, autonomy, decentralization, state 
management, interoperability, and reusability. Each property is explored in detail with definitions, key aspects, 
implementation considerations, and best practices. 

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx
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The present document further delves into the lifecycle phases of smart contracts, covering planning, development and 
testing, deployment and execution, maintenance and upgrade, and retirement or deprecation. It provides guidelines for 
designing smart contracts with considerations for security, scalability, interoperability, auditability, privacy, 
governance, and error handling. Emerging standards such as advanced ERC token standards, Non-Fungible Token 
(NFT) standards, and innovations in smart contract wallets are discussed to address evolving needs in blockchain 
ecosystems. Additionally, regulatory and environmental considerations are examined to ensure compliance with recent 
legislation on smart contract enforceability and to address energy consumption concerns through eco-friendly consensus 
mechanisms like proof-of-stake. 

Overall, the present document serves as a comprehensive guide for developers and stakeholders involved in the design, 
implementation, and management of smart contracts in permissioned distributed ledger systems. It emphasizes the need 
for careful planning, rigorous testing, ongoing monitoring, and adherence to best practices to harness the full potential 
of smart contracts while mitigating associated risks. 

Introduction 
The present document by the ETSI Industry Specification Group (ISG) provides an in-depth exploration of smart 
contract technology within Permissioned Distributed Ledger (PDL) environments. It serves as a comprehensive guide 
for developers and stakeholders involved in the design, implementation, and management of smart contracts. The 
present document emphasizes the transformative potential of smart contracts in automating agreements and 
transactions, highlighting their key characteristics such as automation, transparency, immutability, efficiency, and 
programmability. 

Smart contracts are defined as self-executing computer programs stored on a distributed ledger system, where the 
execution outcomes are recorded on the ledger. Unlike traditional contracts that rely on human interpretation and 
enforcement, smart contracts automatically execute predefined actions when specific conditions are met, eliminating the 
need for intermediaries. This automation reduces manual intervention, minimizes human error, and streamlines 
processes. 

The present document outlines the architectural considerations and functional specifications necessary for implementing 
robust and efficient smart contracts. It covers key properties such as immutability, transparency, determinism, 
atomicity, autonomy, decentralization, state management, interoperability, and reusability. Each property is explored 
with definitions, key aspects, implementation considerations, and best practices. 

Furthermore, the present document addresses emerging standards such as advanced ERC token standards and 
Non-Fungible Token (NFT) standards to meet evolving needs in blockchain ecosystems. It also examines regulatory 
and environmental considerations to ensure compliance with recent legislation on smart contract enforceability and 
address energy consumption concerns through eco-friendly consensus mechanisms like proof-of-stake. Overall, the 
present document provides valuable insights into the effective design, deployment, and management of smart contracts 
in permissioned distributed ledger systems. It emphasizes the importance of careful planning, rigorous testing, ongoing 
monitoring, and adherence to best practices to harness the full potential of smart contracts while mitigating associated 
risks. 
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1 Scope 
The present document outlines the design, implementation, and management of smart contracts within Permissioned 
Distributed Ledger (PDL) environments. It provides a comprehensive framework for understanding the architectural 
principles, functional specifications, and emerging standards necessary for developing robust and efficient smart 
contract systems. The present document is intended to guide developers, stakeholders, and policymakers involved in 
smart contract technology, ensuring that these digital agreements operate effectively within PDL ecosystems. 

In Scope 

• Smart Contract Architecture: Detailed exploration of the architectural considerations for smart contracts, 
including Object-Oriented Programming (OOP) paradigms, modularity, and interoperability. 

• Functional Specifications: Guidelines on the functional requirements for smart contracts, covering aspects 
such as automation, transparency, immutability, efficiency, and programmability. 

• Lifecycle Phases: Examination of the lifecycle phases of smart contracts from planning and development to 
deployment, maintenance, and retirement. 

• Emerging Standards: Discussion of advanced ERC token standards, Non-Fungible Token (NFT) standards, 
and innovations in smart contract wallets and account abstraction. 

• Regulatory Considerations: Analysis of recent legislation on smart contract enforceability and regulatory 
guidance from financial authorities. 

• Environmental Impact: Considerations related to the energy consumption of blockchain platforms and the 
transition to eco-friendly consensus mechanisms like proof-of-stake. 

Out of Scope in this release 

• Specific Implementation Details: The present document does not provide detailed code implementations or 
specific programming instructions for smart contracts. 

• Vendor-Specific Solutions: It does not endorse or focus on solutions provided by specific vendors or 
proprietary technologies. 

• Comprehensive Legal Analysis: While it addresses regulatory considerations, it does not provide exhaustive 
legal analysis or advice on compliance with all jurisdictional laws. 

• Exhaustive Security Protocols: The present document covers security best practices but does not delve into 
every possible security protocol or threat mitigation strategy. 

This scope ensures that the present document serves as a foundational guide for understanding and implementing smart 
contracts within PDL environments while recognizing the need for further exploration in specific technical or legal 
areas. 

2 References 

2.1 Normative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

Referenced documents which are not found to be publicly available in the expected location might be found in the 
ETSI docbox. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long-term validity. 

https://docbox.etsi.org/Reference/
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3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the following terms apply: 

atomicity: all-or-nothing principle in smart contract execution, where a transaction either completes fully or has no 
effect at all 

autonomy: ability of smart contracts to operate independently and execute predefined actions without external 
intervention 

consensus mechanism: protocol used in blockchain networks to ensure agreement on the state of the ledger among 
distributed participants 

decentralization: distribution of control and decision-making across a network of nodes, rather than relying on a 
central authority 

determinism: property of smart contracts that ensures consistent execution across all nodes in the network, given the 
same input 

gas: unit of measurement for the computational effort required to execute operations in certain blockchain networks, 
often associated with transaction fees 

immutability: property of smart contracts that ensures their code cannot be altered once deployed on the blockchain, 
enhancing trust and security 

interoperability: ability of smart contracts to communicate and interact with other contracts or systems across different 
blockchain networks 
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Layer-2: scaling solutions built on top of existing blockchain networks to improve transaction speed and reduce costs 
while leveraging the security of the underlying blockchain 

Non-Fungible Token (NFT): unique digital asset represented on a blockchain, often used for digital art, collectibles, or 
other unique items 

oracle: external service that provides real-world data to smart contracts, bridging the gap between on-chain and off-
chain information 

Permissioned Distributed Ledger (PDL): type of blockchain or distributed ledger technology where participation is 
restricted to authorized entities, as opposed to public blockchains 

Proof-of-Stake (PoS): energy-efficient consensus mechanism where validators are chosen to create new blocks based 
on the amount of cryptocurrency they hold and are willing to "stake" as collateral 

sharding: scaling solution designed to improve the capacity and transaction speed of blockchain networks 

NOTE:  Sharding in the context of smart contracts refers to a scaling solution designed to improve the capacity 
and transaction speed of blockchain networks, particularly Ethereum. It involves dividing the blockchain 
network into smaller, interconnected partitions called "shards," each capable of processing its own 
transactions and smart contracts in parallel. 

smart contract: self-executing computer program stored on a distributed ledger system that automatically executes 
predefined actions when specific conditions are met, without the need for intermediaries 

transparency: characteristic of smart contracts that allows all parties to verify the contract's code and its execution, 
promoting accountability and trust 

3.2 Symbols 
Void. 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

3GPP 3rd Generation Partnership Project 
ABI Application Binary Interface 
API Application Programming Interface 
AVM Algorand Virtual Machine 
DAO Decentralized Administered Organization 
DApps Decentralized Applications 
DeFi Decentralized Finance 
DLT Distributed Ledger Technology 
DoS Denial of Service 
DPoS Delegated Proof-of-Stake 
ERC Ethereum Request for Comments 
ETSI European Telecommunications Standards Institute 
EVM Earned Value Management 
GDPR General Data Privacy Regulation 
GS Group Specification 
HTLC Hashed Timelock Contract 
IBC Institute of Barristers' Clerks 
IDE Integrated Development Environment 
IoT Internet of Things 
IPFS InterPlanetary File System 
ISG Industry Specification Group 
MVC Model-View-Controller 
NatSpec Natural Language Specification 
NFT Non-Fungible Token 
OOP Object-Oriented Programming 
PAB Plutus Application Backend 
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PBFT Practical Bysantine Fault Tolerance 
PDL Permissioned Distributed Ledger 
PoA Proof-of-Authority 
PoS Proof-of-Stake 
QoS Quality of Service 
RBAC Role-Based Access Control 
SLA Service Level Agreement 
SMT Satisfiability Modulo Theories 
SNARK Succinct Non-Interactive Argument of Knowledge 
STARK Scalable Transparent Argument of Knowledge 
TEAL Transaction Execution Approval Language 
TEE Trusted Execution Environment 
UTXO Unspent Transaction Output 

4 Introduction to Smart Contracts 

4.1 Introduction  
Smart Contracts represent a paradigm shift in how agreements and transactions are conceptualized and executed in the 
digital age. At their core, Smart Contracts are self-executing computer programs stored on a distributed ledger system, 
wherein the outcome of any execution of the program is recorded on the distributed ledger. Unlike traditional contracts 
that rely on human interpretation and enforcement, Smart Contracts automatically execute predefined actions when 
specific conditions are met, without the need for intermediaries. 

The primary purpose of a Smart Contract is to encode and automate contractual clauses, business logic, or any set of 
rules that govern interactions between parties. When deployed on a Permissioned Distributed Ledger (PDL), these 
contracts become immutable and transparent, ensuring that all participants can trust in their execution without relying 
on a central authority. 

Key characteristics of Smart Contracts include: 

1) Automation: Smart Contracts reduce the need for manual intervention, minimizing human error and 
streamlining processes. 

2) Transparency: All parties can verify the contract's code and its execution, promoting trust and accountability. 

3) Immutability: Once deployed, the contract's code cannot be altered, ensuring consistency and reducing the 
risk of tampering. 

4) Efficiency: By removing intermediaries and automating processes, transactions can be faster and more 
cost-effective. 

5) Programmability: Smart Contracts can handle complex logic, interact with other contracts, manage digital 
assets, and even control real-world processes through IoT devices. 

While Smart Contracts offer significant advantages, it is crucial to understand that they are not a panacea. Their 
effectiveness depends on careful design, thorough testing, and appropriate use cases. The immutable nature of Smart 
Contracts means that errors in code can have significant consequences, underscoring the importance of robust 
development and auditing practices. 

Smart Contracts find applications across various industries, including finance, supply chain management, healthcare, 
and government services. They enable new business models and facilitate complex multi-party agreements in ways that 
were not previously possible. 

The present document explores the properties, architectures, and the challenges and opportunities Smart Contracts 
present in reshaping how entities conduct business and manage agreements in the digital era. The following clauses will 
provide a comprehensive overview of Smart Contract technology, its implementation in Permissioned Distributed 
Ledgers, and the considerations necessary for their effective design, deployment, and management. 
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4.2 Object-Oriented Paradigm 

4.2.1 Introduction to OOP in Smart Contracts 

Smart Contracts align closely with the principles of Object-Oriented Programming (OOP), providing a powerful 
framework for modelling complex systems and interactions. This paradigm is particularly suitable for representing 
contractual relationships and business logic in a distributed ledger environment in general and in Permissioned 
Distributed Ledger (PDL) in particular. Understanding and leveraging the object-oriented paradigm in the context of 
Smart Contracts is crucial for effective contract design, especially as contract complexity increases and as they interact 
with other contracts and external systems in the broader ecosystem of decentralized applications [148], [156]. 

[R1] Smart contracts SHALL implement key OOP concepts to enhance modularity, reusability, and 
maintainability. 

[R2] The implementation of OOP concepts SHALL NOT compromise the security or efficiency of the smart 
contract. 

[D1] Developers SHOULD follow established design patterns that leverage OOP concepts in smart contracts. 

[D2] The use of OOP concepts SHOULD not introduce unnecessary complexity or gas costs. 

[D3] Contracts SHOULD be designed with clear separation of concerns, using OOP principles to organize 
code logically. 

[D4] Developers SHOULD consider the limitations of OOP in blockchain environments (e.g. all data is 
ultimately public) when applying these concepts. 

[D5] Regular code reviews and audits SHOULD be conducted to ensure proper implementation of OOP 
concepts without introducing vulnerabilities. 

4.2.2 Key OOP Concepts in Smart Contracts 

4.2.2.1 Encapsulation 

Smart Contracts encapsulate both data (state) and behaviour (functions) into a single unit, mirroring real-world 
contracts where terms and conditions are bundled with actions and obligations. This encapsulation helps in organizing 
code and maintaining data integrity [92]. 

[D6] Smart contracts SHOULD encapsulate state variables and functions that operate on them within a single 
contract. 

[D7] Developers SHOULD use access modifiers (public, private, internal) to control the visibility of contract 
elements. 

4.2.2.2 State and Behaviour 

4.2.2.2.1 State  

Internal storage, typically in the form of key-value pairs, is analogous to object fields in OOP. This method is often used 
to represent the current condition, referred to as state, of the smart contract. The state may be represented using other 
methods too, such as state-machines. Each instantiated smart contract maintains its own state. This means that even if 
multiple instances of the same contract type are created, each instance will have its own independent set of state 
variables and data. 

[R3] The state of the contract SHALL be defined at all times. 

[D8] Contracts SHOULD clearly separate state variables from functions that modify them. 

[D9] State changes SHOULD be made through well-defined functions to maintain encapsulation. 
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[O1] A smart contract MAY be in one of the following states, from the list below: 

1) Pending: The contract has been created but not yet deployed to the blockchain. 

2) Active: The contract is deployed and operational, ready to execute its functions. 

3) Paused: The contract's core functions are temporarily suspended, often used for maintenance or 
security reasons. 

4) Expired: The contract has reached its predetermined end date or condition. 

5) Completed: All required actions or conditions of the contract have been fulfilled. 

6) Terminated: The contract has been deliberately ended before its natural completion, possibly due 
to agreed-upon conditions or external factors. 

7) Locked: Certain functions or funds within the contract are temporarily inaccessible. 

8) Unlocked: Previously locked functions or funds become accessible again. 

9) In Dispute: There is a disagreement about the contract's execution, and it may be under review or 
arbitration. 

10) Upgraded: The contract has been updated to a new version, often with improved functionality or 
security. 

11) Deprecated: The contract is no longer recommended for use but may still be functional. 

12) Frozen: All activities of the contract are halted, usually due to a critical issue or regulatory 
requirement. 

13) In Execution: The contract is actively processing a transaction or function call. 

14) Awaiting Input: The contract is waiting for specific data or action from participants to proceed. 

15) Failed: The contract encountered an error and could not complete its intended function. 

These states can vary widely depending on the specific implementation and purpose of the smart contract.  

[O2] Developers MAY define custom states tailored to their particular use case. 

4.2.2.2.2 Behaviour  

The behaviour of a smart contract is defined through functions that specify the set of actions allowed for the given 
Smart Contract, with appropriate scope modifiers, similar to object methods in OOP. 

The set of actions allowed for a given smart contract depends on its specific design and purpose.  

[O3] A general list of common actions that MAY be implemented in various smart contracts follows: 

1) Deploy: Initialize and publish the contract on the blockchain. 

2) Execute: Trigger a specific function within the contract. 

3) Read: Access and view contract data without modifying it. 

4) Write: Modify contract data or state. 

5) Transfer: Send tokens or assets from one address to another. 

6) Approve: Grant permission for another address to interact with the contract on behalf of the 
approver. 

7) Mint: Create new tokens or assets within the contract. 

8) Burn: Destroy or remove tokens or assets from circulation. 

9) Stake: Lock up tokens for a specific period, often for rewards or voting rights. 
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10) Unstake: Withdraw previously staked tokens. 

11) Claim: Collect rewards, dividends, or other benefits from the contract. 

12) Vote: Participate in governance decisions related to the contract. 

13) Propose: Submit new proposals for contract changes or decisions. 

14) Upgrade: Update the contract to a new version with improved functionality. 

15) Pause: Temporarily suspend specific contract functions. 

16) Unpause: Resume previously paused functions. 

17) Withdraw: Remove funds or assets from the contract. 

18) Deposit: Add funds or assets to the contract. 

19) Set Parameters: Adjust configurable aspects of the contract. 

20) Terminate: End the contract's operation permanently. 

The actual set of actions for any given smart contract would be determined by its specific implementation and use case. 
Some contracts might have only a few of these actions, while others could have additional, more specialized functions. 

[O4] Developers MAY define custom functions tailored to their particular use case. 

4.2.2.3 Instantiation 

Instantiation refers to the process of creating a specific instance or occurrence of a smart contract from its definition or 
template. Similar to objects in OOP, Smart Contracts are instantiated from a contract definition (akin to a class). When 
a smart contract is instantiated, it receives a unique identifier. This identifier distinguishes this particular instance of the 
contract from other instances of the same contract type. This instantiation process allows for the creation of multiple, 
independent instances of a smart contract, each with its own identity and state, while all instances share the same 
underlying code structure defined in the contract [177]. 

[R4] Smart contracts SHALL have a clear instantiation process, typically through a constructor function. 

[R5] Once instantiated, each Smart Contract SHALL hold a unique identifier and maintain its own state. 

4.2.2.4 Inheritance and Composition 

Inheritance is a mechanism that allows a smart contract to inherit properties and methods from another contract. This 
enables the creation of more complex contracts built upon simpler ones. Many Smart Contract platforms support 
inheritance, allowing contracts to extend or inherit from other contracts. This facilitates code reuse, and the creation of 
more complex contracts built upon simpler ones. 

Composition involves building complex objects or structures by combining simpler ones. It allows for the creation of 
contracts that contain or use other contracts as part of their functionality. A contract can include instances of other 
contracts and delegate certain tasks to them. While these are powerful and useful concepts, their implementation is not 
mandatory for all smart contract platforms but is recommended when possible and appropriate. 

[D10] Developers SHOULD use inheritance to create hierarchies of contracts with shared functionality. 

[D11] Composition SHOULD be used when a contract needs to use functionality from another contract without 
inheriting all its properties. 

[D12] Multiple inheritance SHOULD be used cautiously to avoid complexity and potential conflicts. 

[O5] Smart contract platforms MAY support Inheritance and Composition. 
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4.2.2.5 Polymorphism 

Polymorphism in smart contracts refers to the ability to use a uniform interface to interact with different contract types. 
This allows different smart contracts to be treated in a similar way if they implement the same interface, even if their 
internal implementations differ. Through interfaces and abstract contracts, Smart Contracts can implement 
polymorphism, enabling uniform treatment of different contracts adhering to the same interface. This concept, borrowed 
from object-oriented programming, enhances the modularity and reusability of smart contract code [i.32]. 

[D13] Contracts SHOULD use interfaces to define common behaviour that can be implemented by multiple 
contracts. 

[D14] Developers SHOULD leverage polymorphism to create more flexible and extensible contract systems. 

[O6] Smart contracts MAY support Polymorphism. 

4.2.2.6 Visibility and Access Control 

Visibility and Access Control in smart contracts refers to mechanisms used to control the accessibility and modifiability 
of functions and state variables within the contract. Smart Contracts use access modifiers to control the visibility and 
accessibility of functions and state variables, similar to public, private, and protected keywords in OOP languages 
[175]. 

Common visibility modifiers in smart contracts typically include: 

1) Public: Accessible from within and outside the contract. 

2) Private: Only accessible within the contract. 

3) Internal: Accessible within the contract and by derived contracts. 

4) External: Only accessible from outside the contract. 

These modifiers allow developers to fine-tune the level of access to different parts of the contract, enhancing security 
and controlling how the contract interacts with other contracts or external entities. This capability is crucial for creating 
secure and well-structured smart contracts. 

[R6] Smart contracts SHALL implement appropriate visibility modifiers for all functions and state variables. 

[D15] Access control mechanisms SHOULD be implemented to restrict function calls based on roles or 
conditions. 

[D16] Developers SHOULD use Visibility and Access Control to control how smart contracts interact with 
other contracts or external entities. 

4.2.2.7 Events 

Events in smart contracts are mechanisms for logging and notifying external entities about specific occurrences or state 
changes within the contract. Events provide a way for smart contracts to communicate with the outside world, triggering 
notifications that can be picked up by external systems or user interfaces. They thus serve as a crucial bridge between 
the on-chain logic and off-chain systems or users. Many smart contract languages support the concept of events, similar 
to the observer pattern in OOP, allowing external entities to react to changes in the contract's state [39]. 

[R7] Contracts SHALL emit events for significant state changes or important actions. 

[D17] Smart contract languages SHOULD support events. 

[D18] Events SHOULD be used to provide an audit trail of contract activities. 

[D19] Event parameters SHOULD be carefully chosen to balance between providing necessary information and 
maintaining efficiency and memory used. 
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4.2.3 Benefits of OOP in Smart Contracts 

Some of the benefits of using OOP when developing smart contracts are listed below. It is thus recommended, though 
not mandatory, that smart contracts are developed accordingly [94], [86], [72]. 

• Modularity: Contracts can be designed as self-contained modules, enhancing readability and maintainability. 

• Reusability: Common patterns and functionalities can be abstracted into base contracts and reused across 
multiple implementations. 

• Flexibility: The ability to compose contracts from smaller, specialized contracts allows for flexible and 
adaptable designs. 

[R8] Smart contracts with business/operational roles SHALL incorporate both foundational and functional 
attributes as needed. 

[R9] Smart contracts SHALL be designed to leverage OOP principles to enhance modularity, reusability, and 
maintainability. 

[R10] The implementation of OOP concepts in smart contracts SHALL NOT compromise the security, 
efficiency, or gas optimization of the contract. 

[D20] Developers SHOULD use OOP principles to create modular smart contracts that can be easily 
understood, maintained, and upgraded. 

[D21] Smart contracts SHOULD be designed with clear separation of concerns, using OOP concepts to 
organize code logically and enhance readability.  

[D22] Inheritance SHOULD be used to create hierarchies of contracts with shared functionality, promoting 
code reuse and reducing redundancy.  

[D23] Developers SHOULD leverage interfaces and abstract contracts to define common behaviour that can be 
implemented by multiple contracts, enhancing flexibility and interoperability. 

[D24] Encapsulation SHOULD be employed to group related data and functions together, improving data 
integrity and reducing the risk of unintended interactions. 

[D25] Smart contracts SHOULD use composition to combine simpler contracts into more complex systems, 
allowing for greater flexibility in contract design. 

[D26] Polymorphism SHOULD be utilized to create more adaptable and extensible contract systems, 
particularly when dealing with upgradeable contracts or systems with multiple implementations. 

[D27] Developers SHOULD implement proper access control mechanisms using OOP principles to restrict 
function calls and state modifications to authorized parties only. 

[D28] Event emission SHOULD be used consistently to provide a clear audit trail of contract activities and state 
changes, leveraging OOP principles for structured event handling.  

[D29] Smart contracts SHOULD be designed with modularity in mind, allowing for easier testing, auditing, and 
potential upgrades of specific components.  

[D30] Developers SHOULD consider creating libraries or base contracts for commonly used functionalities, 
promoting code reuse across multiple contracts or projects.  

[D31] The use of design patterns that leverage OOP concepts (such as factory patterns, proxy patterns, or state 
machines) SHOULD be considered to solve common smart contract design challenges.  

[D32] Developers SHOULD balance the benefits of OOP with the unique constraints of blockchain 
environments, such as gas costs and the public nature of all contract data.  

[D33] Regular code reviews and audits SHOULD be conducted to ensure that OOP principles are applied 
effectively and do not introduce unexpected vulnerabilities or inefficiencies.  

[D34] Smart contracts SHOULD be designed with flexibility to adapt to changing business needs, using OOP 
principles to facilitate easier updates and extensions.  
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[D35] Documentation SHOULD clearly explain the OOP structure of the smart contract system, including class 
hierarchies, interfaces, and design patterns used.  

4.2.4 Considerations for OOP in Distributed Environments 

4.2.4.1 Defining the major considerations 

While Smart Contracts follow OOP principles, they operate in a distributed environment with unique constraints [71]. 

[R11] Developers SHALL consider the unique characteristics of distributed blockchain environments when 
applying OOP principles to smart contract design. 

[R12] The implementation of OOP concepts SHALL NOT compromise the security, efficiency, or 
decentralized nature of the smart contract system. 

[D36] Developers SHOULD consider the following factors and develop smart contract accordingly: 

 Gas costs (in blockchain systems where such concept exists). (See clause 4.2.4.2 herewith). 

 Immutability after deployment. (See clause 4.3.1 herewith). 

 Public nature of blockchain data. (See clause 4.2.4.3 herewith). 

 Consensus mechanisms of the underlying distributed ledger. (See clause 4.2.4.4 herewith). 

[D37] Developers SHOULD balance the benefits of OOP design with the constraints and characteristics of 
distributed blockchain environments. 

[D38] Contracts SHOULD be designed with modularity and upgradeability in mind, using patterns like proxy 
contracts to allow for future improvements. 

[D39] Developers SHOULD thoroughly test smart contracts in environments that simulate the distributed nature 
of blockchains, including potential network latencies and state inconsistencies. 

[D40] The use of formal verification techniques SHOULD be considered to prove the correctness of critical 
contract functions in a distributed setting. 

[D41] Developers SHOULD stay informed about the latest developments in blockchain technology and adjust 
their OOP approaches accordingly. 

[D42] Regular security audits SHOULD be conducted to ensure that the application of OOP principles does not 
introduce vulnerabilities in the distributed environment. 

[D43] Contracts SHOULD implement robust error handling and fallback mechanisms to maintain system 
integrity in the face of unexpected conditions in the distributed network. 

4.2.4.2 Gas costs 

In blockchain environments like Ethereum, every operation has an associated gas cost. This includes not just data 
storage, but also computation. OOP features can sometimes lead to more complex computations, which in turn can 
increase gas costs. While OOP principles can bring many benefits to smart contract development in terms of code 
organization, reusability, and maintainability, their implementation in a distributed, gas-cost environment requires 
careful consideration. Developers need to balance the advantages of OOP with the unique constraints and costs 
associated with blockchain environments, often leading to a hybrid approach that adapts OOP principles to the specific 
needs of smart contract development [31]. 

[R13] Smart contracts SHALL be designed with gas optimization in mind, balancing OOP principles with 
efficiency. 

[D44] Developers SHOULD carefully consider the gas costs of inheritance hierarchies and avoid deep 
inheritance chains that could lead to expensive contract deployments or function calls. 

[D45] Contracts SHOULD use libraries for common functions to reduce deployment costs and promote code 
reuse. 
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[D46] Developers SHOULD optimize data structures and algorithms to minimize gas consumption, even if it 
means deviating from traditional OOP patterns. 

[D47] The following aspects SHOULD be considered: 

1) Inheritance 

 Pros: Inheritance can reduce code duplication, potentially leading to smaller contract sizes and 
lower deployment costs. 

 Cons: Deep inheritance hierarchies can increase the complexity of function calls, potentially 
leading to higher gas costs for each transaction. 

2) Polymorphism 

 Pros: Can lead to more flexible and modular code, potentially reducing the need for multiple 
similar contracts. 

 Cons: Dynamic dispatch (resolving which function to call at runtime) can increase gas costs 
compared to direct  

3) Encapsulation 

 Pros: Can help in organizing code and data, potentially leading to more efficient storage layouts. 

 Cons: Strict encapsulation might require additional function calls to access data, increasing gas 
costs. 

4) Composition 

 Pros: Can lead to more modular and reusable code, potentially reducing overall contract size. 

 Cons: Interactions between multiple contracts (if composition is implemented across contracts) can 
increase gas costs due to additional contract calls. 

5) State Variables: The use of numerous state variables, common in OOP, can lead to higher storage costs in a 
blockchain environment. 

6) Function Calls: In OOP, it is common to have many small, specialized functions. In a gas-cost environment, 
this can lead to higher costs due to the overhead of multiple function calls. 

7) Optimization Challenges: Some OOP patterns that are efficient in traditional environments may not be gas-
efficient in a blockchain context, requiring developers to balance OOP principles with gas optimization. 

8) Contract Size: Complex OOP structures can lead to larger contract sizes, which have higher deployment costs 
and may hit contract size limits on some platforms. 

9) Readability vs. Efficiency: While OOP can improve code readability and maintainability, these benefits 
should be balanced against the need for gas efficiency in smart contracts. 

10) Testing and Verification: OOP structures can make formal verification of smart contracts more complex, 
which is crucial for ensuring contract security. 

4.2.4.3 Public nature of blockchain data 

While OOP principles can still be valuable in smart contract development, the public nature of blockchain data 
fundamentally changes how these principles are applied. Developers should constantly balance the benefits of OOP 
design with the unique transparency and security requirements of blockchain environments. This often leads to new 
patterns and practices that adapt OOP concepts to the realities of public, immutable, and transparent distributed ledgers 
[108]. 

[R14] Developers SHALL be aware that all contract data is publicly visible, even if marked as "private" in the 
contract code. 

[D48] Sensitive information SHOULD NOT be stored directly on the blockchain, even in private variables. 
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[D49] Contracts SHOULD use cryptographic techniques (e.g. hashing, encryption) when dealing with sensitive 
data that has to be referenced on-chain. 

[D50] Developers SHOULD design contracts with the understanding that encapsulation does not provide data 
hiding in the traditional OOP sense on a blockchain. 

[R15] Developers SHALL be extra cautious about what data is stored, even in "private" variables. 

[R16] Interfaces SHALL be designed with consideration for security and potential misuse. 

[D51] The following aspects SHOULD be considered: 

1) Data Visibility: In traditional OOP, private data members are truly private. However, in blockchain 
environments, all data is publicly visible, even if it is marked as "private" in the contract code. This 
fundamental difference means that OOP encapsulation does not provide data hiding in the traditional sense on 
a blockchain. 

2) Encapsulation Redefined: While data cannot be hidden, encapsulation in smart contracts is more about 
access control than information hiding. It defines who can modify the data, not who can see it. 

3) Sensitive Information: OOP often encourages grouping related data, but this might lead to storing sensitive 
information on-chain if not carefully managed. 

4) State Transparency: The entire state of an object (smart contract) is publicly visible and auditable. This 
transparency can be beneficial for auditing and verification but challenges traditional OOP notions of 
information hiding. 

5) Privacy Patterns: New patterns emerge to handle privacy concerns, such as storing only hashes on-chain and 
keeping the actual data off-chain. These patterns often do not align with traditional OOP practices and require 
a different approach to data management. 

6) Public Interfaces: In OOP, interfaces are usually seen as contracts between objects. In blockchain, they 
become contracts between the smart contract and the entire network. This public nature means interface design 
requires extra consideration for security and potential misuse. 

7) Inheritance and Public Scrutiny: Inherited functions and state variables are all publicly visible, which means 
vulnerabilities in parent contracts are exposed to public scrutiny. This visibility can aid in security audits but 
also exposes potential attack vectors. 

8) Composition and Contract Interactions: When using composition (contracts interacting with other 
contracts), all these interactions are public. This transparency can be beneficial for auditing but requires careful 
design to prevent front-running or other exploitation. 

9) Versioning and Upgrades: In OOP, objects can be easily updated. In blockchain, contract upgrades are 
complex and all versions remain publicly visible. This persistence of old versions challenges traditional OOP 
upgrade patterns. 

10) Data Structuring: OOP encourages grouping related data, but in a public blockchain, this might inadvertently 
reveal relationships that were meant to be obfuscated. 

11) Event Logging: While events in OOP are typically internal, blockchain events are public logs that anyone can 
subscribe to and analyse. This changes how events are used and what information they should contain. 

12) Testing and Verification: The public nature of the code and data means that testing and formal verification 
become even more critical. Every aspect of the contract, including inherited code and composed contracts, is 
open to public scrutiny and potential exploitation. 

13) Documentation Practices: With all code being public, inline comments and documentation practices become 
part of the public interface of the contract. This requires a shift in how developers approach code 
documentation. 
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4.2.4.4 Consensus mechanisms of the underlying distributed ledger 

The application of Object-Oriented Programming (OOP) principles in a distributed blockchain environment interacts in 
complex ways with the consensus mechanisms of the underlying distributed ledger. While OOP principles can provide 
valuable structure and organization to smart contract code, their implementation has to be carefully adapted to the 
realities of distributed consensus. Developers need to consider not just the logical structure of their code, but how that 
structure interacts with the consensus mechanism to ensure reliable, deterministic execution across a distributed 
network. This often leads to a hybrid approach that respects OOP principles while adapting them to the unique 
constraints of distributed ledger environments [156]. 

[R17] Smart contracts SHALL be designed to operate deterministically to ensure consistent execution across all 
nodes in the network. 

[D52] Developers SHOULD avoid using non-deterministic operations or external calls that could lead to 
inconsistent contract states across nodes. 

[D53] Contracts SHOULD be designed to handle potential state reversions due to blockchain reorganizations or 
consensus failures. 

[D54] Developers SHOULD consider the impact of the consensus mechanism on contract execution time and 
design contracts accordingly. 

[D55] The following points SHOULD be considered: 

1) State Changes and Consensus: In OOP, object state changes are typically immediate and localized. In a 
distributed ledger, every state change (object modification) has to go through consensus. This means that what 
appears to be a simple operation in OOP terms (like changing an object's property) becomes a network-wide 
agreement process. 

2) Transactional Nature of Operations: OOP methods that modify state has to be designed with the 
understanding that they are essentially database transactions that need to be agreed upon by the network. This 
can lead to race conditions and concurrency issues not typically considered in traditional OOP. 

3) Determinism Requirements: Consensus mechanisms require that contract execution be deterministic - given 
the same input, all nodes have to arrive at the same state. This constrains the use of certain OOP features like 
random number generation or time-dependent operations, which should be carefully implemented to maintain 
determinism. 

4) Execution Order: In OOP, method execution order is typically controlled by the programmer. In a distributed 
ledger, the order of transaction execution can be influenced by network factors and miner/validator decisions. 
This can affect how OOP principles, like inheritance and polymorphism behave in practice. 

5) Atomicity of Operations: While OOP often assumes that method calls are atomic, in a distributed ledger, 
operations can be interrupted by consensus failures or network issues. This requires careful design of contract 
methods to handle partial execution scenarios. 

6) State Rollbacks: Consensus mechanisms may require state rollbacks if a transaction is ultimately rejected. 
OOP designs need to account for the possibility that any state change might be reverted, which is not a 
common consideration in traditional OOP. 

7) Gas Costs and Consensus: Different consensus mechanisms may have different cost models (like gas in 
Ethereum). OOP designs need to be optimized not just for logical efficiency, but for efficiency within the 
specific consensus cost model. 

8) Finality Considerations: Different consensus mechanisms offer different levels of finality (how quickly a 
transaction becomes irreversible). OOP designs need to account for the possibility of state changes being 
considered "probable" rather than "definite" for some period. 

9) Sharding and OOP: Some consensus mechanisms use sharding for scalability. This can complicate OOP 
designs, especially when objects (contracts) need to interact across shards. Sharding is defined in the note 
below. 

10) Smart Contract Upgrades: Consensus mechanisms often make upgrading contracts complex. This challenges 
traditional OOP notions of class evolution and versioning. 
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11) Event Propagation: In OOP, events are often used for immediate responses. In a distributed ledger, event 
propagation is subject to consensus timing, which can introduce delays. 

12) Inheritance in a Distributed Context: Inherited functions in smart contracts have to be compatible with the 
consensus mechanism, potentially limiting the flexibility of inheritance hierarchies. 

13) Polymorphism and Network Agreement: Dynamic dispatch in polymorphism has to be implemented in a 
way that all nodes can agree on which method is being called, potentially limiting its use. 

14) Encapsulation and Network Validation: While encapsulation in OOP is about information hiding, in a 
distributed ledger it is more about access control that the entire network can validate and agree upon. 

15) Composition and Cross-Contract Calls: In a distributed environment, composition often involves cross-
contract calls, which are subject to consensus rules and can have different execution guarantees than intra-
contract method calls. 

4.3 Properties of Smart Contracts  

4.3.1 Immutability  

4.3.1.1 Definition 

Immutability in the context of smart contracts refers to the property that once a smart contract is deployed on a 
Permissioned Distributed Ledger (PDL), its code cannot be altered or changed.  

Immutability is a fundamental property of smart contracts that provides trust and security but also requires careful 
planning and design to manage its limitations and challenges [108]. 

This means: 

1) Code Permanence: The executable code of the smart contract, once accepted through consensus and added to the 
ledger, remains fixed and unchangeable. 

2) Persistent State: While the internal state (data) of the contract can change according to its predefined rules, the logic 
governing these changes (i.e. the code itself) remains constant. 

3) Irreversible Deployment: After deployment, the contract's bytecode becomes a permanent part of the ledger's history. 

[R18] Smart contracts SHALL adhere to the principle of immutability once deployed on the blockchain. 

[R19] Developers SHALL understand and respect the immutable nature of smart contract code after 
deployment. 

[R20] The contract's bytecode SHALL become a permanent part of the ledger's history upon deployment. 

[D56] Smart contracts SHOULD include clear version identifiers to manage different iterations of contract 
logic. 

[D57] Developers SHOULD maintain comprehensive documentation of the contract's design, including any 
upgrade mechanisms or parameterization. 

[D58] Contracts SHOULD implement a time-delay mechanism for critical operations or upgrades to allow for 
community review and potential reversion. 

[D59] Developers SHOULD consider using formal verification techniques to prove the correctness of 
immutable contract logic. 

[D60] Smart contracts SHOULD include mechanisms for data migration or state transfer when upgrades are 
necessary. 

[D61] Developers SHOULD educate users and stakeholders about the immutable nature of the contract and any 
upgrade mechanisms in place. 
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[D62] Contracts SHOULD implement event emission for any operations that modify upgradeable components 
or parameters. 

[D63] Developers SHOULD consider implementing a simulation or "dry run" functionality for complex 
operations to allow users to verify outcomes before executing irreversible transactions. 

4.3.1.2 Implications 

The immutable nature of Smart Contracts has several important implications [59]: 

1) Trust and Transparency: Participants can trust that the rules of the contract will not change unexpectedly, as 
they can verify the immutable code at any time. 

2) Auditability: The unchanging nature of the code allows for thorough auditing and long-term analysis of 
contract behaviour. 

3) Predictability: Users can rely on consistent contract behaviour over time, which is crucial for long-term 
planning and interaction. 

4) Security: Immutability prevents malicious alterations of the contract code after deployment, enhancing overall 
security. 

5) Challenges in Upgradeability: It complicates the process of fixing bugs or updating functionality, as the 
original contract cannot be directly modified. 

[R21] Smart contracts SHALL be designed with the understanding that their core logic cannot be altered after 
deployment. 

[D64] Developers SHOULD leverage immutability to build trust and predictability into their smart contract 
systems. 

[D65] Contracts SHOULD emit events for significant state changes to provide an immutable audit trail. 

4.3.1.3 Challenges 

While immutability is a key feature, it also presents challenges [177]: 

1) Error Permanence: Bugs or oversights in the contract become permanent, potentially leading to 
vulnerabilities or unintended behaviours. 

2) Adaptability Issues: Changing business requirements or regulations can be difficult to accommodate in 
immutable contracts. 

3) Gas and Storage Considerations: Immutable contracts contribute to the ever-growing size of the ledger, 
which has implications for storage and processing requirements. 

[R22] Developers SHALL plan for potential bugs or oversights, as they cannot be directly fixed in deployed 
contracts. 

[D66] Smart contracts SHOULD include mechanisms to pause or disable critical functions in case of discovered 
vulnerabilities. 

[D67] Developers SHOULD implement thorough testing and auditing processes before deployment to minimize 
the risk of errors in immutable code. 

4.3.1.4 Solutions 

To address these challenges, developers have created patterns that allow for some degree of upgradeability while 
maintaining the integrity of the original contract [112], [160]: 

1) Proxy Patterns: Using upgradeable proxy contracts that point to the latest version of the logic contract. This 
method allows installing new versions of smart contracts using a proxy without changing the original proxy 
code.  
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2) Data Separation: Storing mutable data separately from immutable code. 

3) Parameterization: Designing contracts with configurable parameters that can be adjusted without changing 
the core code. 

4) Modular Design: Creating systems of interconnected contracts that can be individually replaced or upgraded. 

5) Thorough Testing and Auditing: Implementing rigorous testing procedures and external audits before 
deployment to minimize the risk of errors. 

[D68] Smart contracts SHOULD implement upgradeability patterns (e.g. proxy patterns) when future 
modifications might be necessary. 

[D69] Developers SHOULD use parameterization to allow for adjustments in contract behaviour without 
changing the core code. 

[D70] Contracts SHOULD be designed with modularity in mind, allowing for the replacement of specific 
components without affecting the entire system. 

[D71] Developers SHOULD implement governance mechanisms for managing upgrades or parameter changes 
in a decentralized manner. 

Examples of such solutions are detailed in clause A.1.1.1 herewith. 

Additional methods exist, and a detailed discussion of the same is beyond the scope of the present document. 

4.3.2  Transparency  

4.3.2.1 Definition 

Transparency in smart contracts refers to the property that allows all authorized participants to inspect and verify the 
contract's code, current state, and execution history. This property is inherent to the distributed nature of the underlying 
ledger technology.  

Transparency is a powerful feature of smart contracts that enhances trust and accountability. However, it should be 
carefully balanced with privacy considerations to create robust and appropriate solutions for different use cases. 

[R23] Smart contracts SHALL be designed to provide transparency in their code, execution, and state changes. 

[R24] Transparency mechanisms SHALL NOT compromise the security or privacy of sensitive information. 

[R25] Smart contract code and all associated libraries SHALL be available for auditing purposes. 

[D72] Developers SHOULD use zero-knowledge proofs where possible to verify computations without 
revealing underlying data. 

[D73] Smart contracts SHOULD implement role-based access control to limit visibility of sensitive data to 
authorized parties only. 

[D74] Contracts SHOULD use off-chain storage solutions for sensitive data, with only hashes or references 
stored on-chain. 

[D75] Developers SHOULD consider implementing encrypted data fields for storing sensitive information 
on-chain. 

[D76] Smart contracts SHOULD emit events for significant state changes, but these events SHOULD NOT 
contain sensitive data. 

[D77] When dealing with financial transactions, contracts SHOULD use techniques like confidential 
transactions to hide transaction amounts while proving their validity. 

[D78] Developers SHOULD consider using secure multi-party computation techniques for collaborative 
operations on private data. 
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[D79] Smart contracts SHOULD implement time-locked encryption for data that needs to be kept private for a 
certain period. 

[D80] Where applicable, contracts SHOULD use homomorphic encryption to perform computations on 
encrypted data. 

[D81] Developers SHOULD regularly audit their smart contracts to ensure that privacy measures do not 
inadvertently create security vulnerabilities. 

[D82] Contracts SHOULD provide a clear and accessible interface for users to understand what information is 
public and what is protected. 

[D83] Developers SHOULD implement a tiered transparency model, where different levels of information are 
accessible to different stakeholders based on their roles and permissions. 

4.3.2.2 Key Aspects 

Achieving transparency requires several factors to be considered [169]: 

1) Code Visibility: The code of smart contracts is typically visible to all authorized participants, allowing for 
auditing and verification of the contract's behaviour. 

2) Transaction Traceability: All interactions with a smart contract are recorded on the PDL, creating a 
transparent and auditable trail of contract execution. 

3) State Visibility: The current state of the contract, including its variables and data, is accessible to authorized 
parties. 

[R26] Smart contract developers SHALL implement Transaction Traceability and State Visibility. 

[D84] Smart contract developers SHOULD implement Code Visibility, allowing for public verification of 
contract logic. 

[D85] Contracts SHOULD emit events for all significant state changes and important function calls to enhance 
traceability. 

4.3.2.3 Benefits 

Transparency offers several advantages in smart contract systems including [148]: 

1) Trust Enhancement: Participants can verify the contract's logic and execution, fostering trust in the system. 

2) Auditability: Enables thorough auditing of contract behaviour and transaction history. 

3) Bug Detection: Allows for community-driven identification of potential bugs or vulnerabilities. 

4) Accountability: Creates a clear record of all interactions, promoting accountability among participants. 

[D86] Developers SHOULD leverage transparency to build trust among users and stakeholders. 

[D87] Contracts SHOULD provide clear mechanisms for users to verify the current state and historical 
transactions. 

4.3.2.4 Challenges 

While transparency is generally beneficial, it also presents certain challenges [156]: 

1) Privacy Concerns: In some cases, complete transparency may not be desirable, especially when dealing with 
sensitive business logic or personal data. 

2) Competitive Advantage: Visible code may reveal proprietary algorithms or business strategies. 

3) Front-Running: In some scenarios, transparent pending transactions could be exploited by malicious actors. 
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[D88] Smart contract developers SHOULD write code that addresses privacy concerns, does not reveal 
proprietary algorithms and can not be exploited by malicious users. 

[D89] Developers SHOULD implement mechanisms to prevent front-running attacks in transparent systems.  

4.3.2.5 Balancing Transparency and Privacy 

To address these challenges, PDL systems often provide mechanisms to balance transparency with privacy needs [83], 
[15]: 

1) Zero-Knowledge Proofs: Allow verification of computations without revealing the underlying data. 

2) Private Data Collections: Enable storing sensitive data off-chain while maintaining a hash of the data on-
chain. 

3) Access Control: Implement granular access controls to limit visibility to authorized parties only (which, in a 
sense, is the essence of PDL compared to permissionless systems). 

4) Encryption: Use encryption techniques to protect sensitive data while maintaining overall system 
transparency. 

[R27] Smart contracts SHALL implement mechanisms to protect sensitive data while maintaining overall 
system transparency. 

[R28] Any privacy-preserving technique used in smart contracts SHALL NOT compromise the integrity or 
auditability of the blockchain. 

[R29] Smart contracts handling personal data SHALL comply with relevant data protection regulations 
(e.g. GDPR). 

4.3.2.6 Considerations for Implementation 

When designing smart contract systems, developers should consider [93], [13]: 

1) Regulatory Compliance: Ensure that transparency features align with relevant data protection regulations. 

2) User Education: Inform users about what information will be visible and to whom. 

3) Transparency Levels: Design systems with appropriate levels of transparency for different types of data and 
operations. 

4) Audit Trails: Implement comprehensive logging to maintain transparency of system operations. 

[R30] Smart contracts SHALL implement logging mechanisms to record all significant state changes and 
important operations. 

[R31] Access control mechanisms SHALL be implemented to ensure that only authorized parties can view or 
modify sensitive data. 

[R32] Smart contracts SHALL include functions to allow authorized parties to verify the contract's current 
state. 

[R33] Any external data sources or oracles used by the smart contract SHALL be clearly documented and their 
roles in the contract's operation SHALL be transparent. 

[D90] Developers SHOULD use standardized patterns and libraries (e.g. OpenZeppelin) to implement common 
functionalities, enhancing readability and reducing the risk of errors. 

[D91] Smart contracts SHOULD implement a tiered transparency model, where different levels of information 
are accessible to different stakeholders. 

[D92] Contracts SHOULD include mechanisms for gradual disclosure of information, such as commit-reveal 
schemes, where appropriate. 
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[D93] Developers SHOULD consider implementing upgradeable contract patterns to allow for future 
improvements while maintaining transparency of changes. 

[D94] Smart contracts SHOULD emit events for all significant actions, providing a clear audit trail. 

[D95] Where possible, contracts SHOULD use zero-knowledge proofs to prove the correctness of computations 
without revealing the underlying data. 

[D96] Developers SHOULD implement clear error messages that provide enough information for debugging 
without exposing sensitive data. 

[D97] Smart contracts SHOULD include functions that allow users to query their own data or permissions 
without accessing others' information. 

[D98] Where applicable, contracts SHOULD implement time-locked transparency, where certain information 
becomes public after a predetermined period. 

[D99] Developers SHOULD consider implementing a transparency dashboard or interface that provides an 
easy-to-understand overview of the contract's current state and history. 

[D100] Smart contracts SHOULD include mechanisms for authorized parties to flag or challenge potentially 
incorrect or fraudulent data. 

[D101] Developers SHOULD implement rate limiting on data queries to prevent potential denial-of-service 
attacks or data scraping. 

[D102] Where privacy is a concern, contracts SHOULD use techniques like ring signatures or stealth addresses 
to obscure transaction participants while maintaining verifiability. 

[D103] Developers SHOULD carefully balance the level of detail in publicly emitted events to provide necessary 
transparency without compromising privacy or security. 

[D104] Smart contracts SHOULD implement versioning mechanisms to track and communicate changes in 
contract logic or data structures over time. 

[D105] Developers SHOULD consider implementing a simulation mode that allows users to preview the effects 
of their actions before committing them to the blockchain. 

4.3.3 Determinism  

4.3.3.1 Definition 

Determinism in smart contracts refers to the property that ensures identical inputs and state will always produce the 
same output, regardless of when or where the contract is executed. Determinism is a fundamental property of smart 
contracts that ensures reliability and consistency in distributed systems. It plays a vital role in maintaining the integrity 
of the blockchain and the trust of its users. Developers should prioritize deterministic behaviour in their smart contract 
design and implementation to ensure robust and reliable decentralized applications [156], [169], [120], [173]. 

4.3.3.2 Key Aspects of Determinism 

The key aspects of determinism in smart contracts are: 

1) Consistent Execution: Given the same input and state, a smart contract will always produce the same output 
across all nodes. 

2) Predictability: Users and developers can reliably predict the outcome of contract execution based on inputs. 

3) Network Consensus: Determinism enables nodes to agree on the state of the blockchain without central 
coordination. 

4.3.3.3  Importance of Determinism 

Determinism is important for the following reasons: 
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1) Consensus: Determinism is crucial for achieving consensus in distributed systems. All nodes arrive at the 
same state after executing a transaction. 

2) Reliability: Users can trust that contract outcomes are consistent and not subject to external variables. 

3) Auditability: Deterministic behaviour allows for easier verification and auditing of contract executions. 

4) Security: Predictable execution helps prevent certain types of attacks and vulnerabilities. 

4.3.3.4 Challenges associated with Determinism 

Determinism poses several challenges when developing smart contracts: 

1) External Data: Integrating external data (e.g. through oracles) while maintaining determinism can be 
challenging. 

2) Time-Dependent Operations: Operations that depend on time or randomness require careful implementation 
to remain deterministic. 

3) Floating-Point Arithmetic: Non-deterministic behaviour in floating-point operations across different 
hardware/OS can lead to inconsistencies. 

4) Randomness: Generating random numbers in a deterministic environment. 

4.3.3.5 Determinism Implementation Considerations 

When developing smart contracts the following details related to determinism should be considered: 

1) Avoidance of Non-Deterministic Operations: Steering clear of functions that may produce different results 
(e.g. random number generation, system time). 

2) Standardized Data Formats: Using standardized data formats and encodings to ensure consistent 
interpretation across all nodes. 

3) Versioning: Clearly defining and managing contract versions to ensure all nodes are executing the same code. 

4) Careful Oracle Design: When using external data sources, mechanisms to ensure consistent data across all 
nodes should be implemented. 

5) Fixed-Point Arithmetic: Fixed-point math should be preferred over floating-point to avoid precision and 
rounding issues. 

6) Testing: Rigorous testing across different environments is essential to verify deterministic behaviour. 

7) Gas Considerations: Gas costs can affect determinism if not properly managed. 

4.3.3.6 Balancing Determinism and Functionality 

While determinism is crucial, it can limit certain functionalities. Smart contract designers should carefully balance the 
need for determinism with the desired features of their application. In some cases, hybrid approaches using off-chain 
computation with on-chain verification can provide a solution. 

4.3.3.7 Requirements and Recommendations 

[R34] Smart contracts SHALL produce the same output for a given input and state, regardless of when or where 
they are executed. 

[R35] The execution environment for smart contracts SHALL ensure consistent behaviour across all nodes in 
the network. 

[R36] Smart contracts SHALL NOT rely on non-deterministic functions or external data sources that could lead 
to inconsistent results. 
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[R37] Any use of time-dependent operations in smart contracts SHALL be based on block numbers or 
timestamps provided by the blockchain, not system time. 

[D106] Developers SHOULD avoid using floating-point arithmetic in smart contracts due to potential 
inconsistencies across different hardware. 

[D107] Smart contracts SHOULD use deterministic random number generation techniques when randomness is 
required. 

[D108] Developers SHOULD implement comprehensive unit tests to verify deterministic behaviour under 
various conditions. 

[D109] When interacting with external systems, smart contracts SHOULD use a commit-reveal scheme or 
similar mechanism to ensure determinism. 

[D110] Smart contracts SHOULD include explicit error handling for all possible execution paths to ensure 
consistent behaviour even in error scenarios. 

[D111] Developers SHOULD use formal verification techniques where possible to mathematically prove the 
deterministic behaviour of critical contract functions. 

[D112] When implementing complex algorithms, contracts SHOULD break them down into smaller, 
deterministic steps that can be easily verified. 

[D113] Smart contracts SHOULD use standardized data formats and encodings to ensure consistent 
interpretation of data across all nodes. 

[D114] Developers SHOULD carefully manage contract versioning to ensure all nodes are executing the same 
code. 

[D115] When using oracles or external data sources, contracts SHOULD implement a consensus mechanism 
among multiple sources to enhance determinism. 

[O7] In order to ensure deterministic behaviour developers MAY consider the following:  

1) Instead of using the current timestamp directly, use block numbers as a proxy for time. 

2) For randomness, use verifiable random functions or commit-reveal schemes. 

3) When integrating external data, use a decentralized oracle network with a consensus mechanism. 

4.3.4 Atomicity  

4.3.4.1 Definition 

Atomicity in smart contracts refers to the property that ensures a transaction or operation is treated as a single, 
indivisible unit. This means that the execution of a smart contract function either completes entirely or not at all, with 
no intermediate states. 

Atomicity is a critical property of smart contracts that contributes to their reliability and predictability. It simplifies 
reasoning about contract behaviour and helps prevent many classes of errors and vulnerabilities. Developers should 
strive to maintain atomicity in their smart contract designs to ensure robust and trustworthy decentralized applications 
[156], [177], [173], [128]. 

4.3.4.2 Key Aspects of Atomicity 

Atomicity in smart contracts ensures that a transaction is treated as a single, indivisible unit of work. This means that all 
operations within a transaction have to either complete successfully or have no effect at all. Understanding the key 
aspects of atomicity is crucial for developing robust and reliable smart contracts that can maintain data consistency even 
in the face of failures or interruptions. 

1) All-or-Nothing Execution: 

- In smart contracts, a transaction either completes fully or is entirely reverted. 
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- No partial changes are left on the blockchain. 

EXAMPLE:  A token swap in a decentralized exchange either completes with both parties receiving their 
respective tokens, or the entire transaction is reverted. 

2) State Consistency: 

- The contract's state remains consistent before and after the transaction. 

- There is no possibility of an in-between or inconsistent state. 

- Critical for maintaining the integrity of complex financial operations or multi-step processes within a 
single transaction. 

3) Error Handling: 

- If any part of the transaction fails, the entire operation is rolled back to its initial state. 

- Utilizes blockchain's built-in mechanisms like Ethereum's revert function to ensure atomicity (see 
clause 4.3.4.4 below). 

- Prevents partial execution that could lead to fund loss or inconsistent contract states. 

4) Transactional Boundaries: 

- Clearly defines the scope of atomic operations within smart contract functions. 

- Ensures that related state changes are grouped together and executed as a single unit. 

4.3.4.3  Importance of Atomicity 

Understanding the importance of atomicity is crucial for developers and stakeholders to build robust, reliable, and 
secure smart contract systems that can maintain data consistency even in the face of failures or interruptions. 

1) Data Integrity: 

- Prevents inconsistent or partial updates to the contract's state. 

- Crucial for financial applications where partial transactions could lead to loss of funds or incorrect 
balances. 

- Maintains the reliability of contract data, which is essential for building trust in decentralized systems. 

2) Predictability: 

- Users can rely on transactions being fully completed or fully reverted. 

- Simplifies error handling and recovery processes in DApp development. 

- Enhances user experience by providing clear transaction outcomes. 

3) Security: 

- Atomic operations help prevent vulnerabilities that could arise from partially completed transactions. 

- Mitigates risks associated with race conditions and timing attacks. 

- Crucial for preventing exploitation in high-value transactions or complex DeFi protocols. 

4) Consistency in Multi-Step Operations: 

- Ensures that complex operations involving multiple state changes maintain overall consistency. 

- Critical for DeFi applications like atomic swaps, lending protocols, or governance systems. 
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4.3.4.4 Atomicity Implementation Mechanisms 

This clause explores the various mechanisms and techniques used to achieve atomicity in smart contract execution. 

1) Transaction Rollback: 

- If any part of a transaction fails, all changes are automatically reverted. 

- Utilizes blockchain's native mechanisms.  

EXAMPLE 1:  Ethereum's EVM rollback feature. 

- Ensures no trace of the failed transaction remains in the contract's state. 

2) Exception Handling: 

- Proper use of try-catch mechanisms and error handling to manage failures. 

EXAMPLE 2:  In Solidity, using require(), assert(), and revert() statements to enforce conditions and handle 
errors. 

- Custom error messages can be used to provide more context about the failure. 

3) Gas Limits: 

- In Ethereum and similar systems, gas limits ensure that a transaction either completes within the 
allocated resources or is entirely reverted. 

- Prevents partial execution due to out-of-gas errors, maintaining atomicity. 

- Developers have to carefully estimate gas costs to ensure complex operations can complete within block 
gas limits. 

4) Check-Effects-Interactions Pattern: 

- Implementing a specific order of operations: checks, then effects on the contract's state, and finally 
external interactions. 

- Helps maintain atomicity by reducing the risk of reentrancy and other related vulnerabilities. 

4.3.4.5 Challenges of Atomicity 

Implementing atomicity in smart contracts presents several unique challenges that developers should carefully navigate. 
These challenges arise from the distributed nature of blockchain systems, the limitations of smart contract platforms, 
and the complexities of ensuring all-or-nothing transaction execution.  

1) Complex Operations: 

- Ensuring atomicity in complex, multi-step operations can be challenging and requires careful design. 

EXAMPLE:  In a complex DeFi protocol, ensuring that all steps of a leveraged position creation are atomic. 

[O8] Solutions MAY involve breaking down complex operations into smaller, manageable atomic units. 

2) External Calls: 

- Interactions with external contracts or services may introduce risks to atomicity if not properly managed. 

- The calling contract may not have control over the execution of external contracts. 

[O9] Techniques like the pull payment pattern CAN be used to maintain atomicity in cross-contract 
interactions. 

3) Performance Considerations: 

- Atomic operations may sometimes impact performance, especially in complex scenarios. 



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 46 

- Large atomic operations might consume significant gas, potentially hitting block gas limits. 

- Balancing atomicity with gas efficiency is crucial for contract optimization. 

4) Cross-Chain Atomicity: 

- Achieving atomicity across different blockchain networks presents significant challenges. 

- Requires advanced techniques like Hash Time Locked Contracts (HTLCs) or relay networks. 

4.3.4.6 Atomicity Best Practices 

Implementing atomicity in smart contracts is crucial for ensuring the integrity and consistency of transactions, but it 
requires careful consideration and adherence to best practices. This clause outlines key strategies and techniques for 
effectively implementing atomicity in smart contract design. By following these best practices, developers can create 
more robust and reliable smart contracts that maintain data consistency and transaction integrity, even in complex 
blockchain environments. 

1) Single-Function Atomic Operations: 

[D116] Developers SHOULD: 

 design functions to perform atomic operations whenever possible. 

 Encapsulate related state changes within a single function to leverage built-in transaction atomicity. 

EXAMPLE:  A function that updates user balances and emits events should be contained in one atomic 
operation. 

2) Checks-Effects-Interactions Pattern: 

- Crucial for functions that interact with other contracts or transfer tokens. 

[D117] Developers SHOULD: 

 Implement this pattern to minimize the risk of reentrancy attacks while maintaining atomicity. 

 Perform all checks at the beginning of the function, followed by state changes, and external calls 
last. 

3) Proper State Management: 

[D118] Developers SHOULD: 

 Ensure that all state changes within a function are consistent and atomic. 

 Use temporary variables or structures to manage complex state changes before committing them. 

 Consider using a state machine pattern for complex, multi-step processes to ensure atomicity at 
each stage. 

4) Thorough Testing: 

[D119] Developers SHOULD: 

 Implement comprehensive testing, including failure scenarios, to verify atomic behaviour. 

 Use tools like Hardhat or Truffle for writing and running extensive test suites. 

 Simulate various error conditions to ensure proper rollback and state consistency. 

5) Gas Estimation and Management: 

[D120] Developers SHOULD: 

 Carefully estimate gas costs for atomic operations to prevent out-of-gas errors. 
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 Consider breaking very large operations into smaller, manageable atomic transactions if necessary. 

 Use gas-efficient coding practices to maximize the complexity of atomic operations within gas 
limits. 

6) Event Emission: 

[D121] Developers SHOULD: 

 Develop smart contracts that emit events at the end of atomic operations to provide transparency 
and facilitate off-chain tracking. 

 Ensure that events are only emitted after all state changes have been successfully made. 

4.3.4.7  Atomicity in Multi-Contract Interactions 

When dealing with interactions across multiple contracts, maintaining atomicity becomes more complex. Several 
techniques are listed below: 

1) Two-Phase Commit Protocols: 

- Useful for coordinating atomic operations that span multiple contracts. 

[D122] Developers SHOULD Implement a preparation phase and a commit phase across contracts. 

EXAMPLE:  In a complex DeFi operation involving multiple protocols, use a coordinator contract to manage 
the two-phase commit. 

2) Intermediate States with Final Confirmation: 

- Provides a way to handle atomicity across asynchronous operations or multiple transactions. 

[D123] Developers SHOULD use intermediate states to track the progress of multi-contract operations. 

[D124] Developers SHOULD implement a final confirmation step to ensure all parts of the operation were 
successful before considering it complete. 

3) Proxy Contracts and Upgradability: 

- Allows for upgrading interaction logic while maintaining a consistent interface for atomicity. 

[D125] Developers SHOULD utilize proxy patterns to encapsulate complex multi-contract interactions. 

4) Batched Transactions: 

- Increases gas efficiency and ensures atomicity across related operations. 

[D126] Developers SHOULD use contract methods that can handle multiple operations in a single transaction. 

5) Failure Handling and Rollback Mechanisms: 

[D127] Developers SHOULD implement robust failure handling for multi-contract interactions. 

[D128] Developers SHOULD design rollback mechanisms that can revert changes across multiple contracts if 
any part of the operation fails. 

4.3.4.8 Requirements and Recommendations 

[R38] Smart contract transactions SHALL be executed entirely or not at all, with no partial execution states. 

[R39] The contract state SHALL remain consistent before and after each transaction, with no possibility of an 
intermediate state. 

[R40] If any part of a transaction fails, the entire operation SHALL be rolled back to its initial state. 
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[R41] Smart contracts SHALL implement proper error handling to ensure atomicity in case of exceptions or 
failures. 

[D129] Developers SHOULD use the checks-effects-interactions pattern to maintain atomicity and prevent 
reentrancy attacks. 

[D130] Smart contracts SHOULD implement a transactional model for complex operations involving multiple 
state changes. 

[D131] When interacting with external contracts, developers SHOULD use a two-phase commit protocol to 
ensure atomicity across contract boundaries. 

[D132] Contracts SHOULD include explicit checks at the beginning of functions to validate preconditions before 
making any state changes. 

[D133] Developers SHOULD use modifiers to encapsulate common check-and-revert patterns, enhancing code 
reusability and atomicity. 

[D134] For operations involving multiple participants, contracts SHOULD implement an all-or-nothing 
execution model, such as atomic swaps. 

[D135] Smart contracts SHOULD emit events at the end of successful atomic operations to provide clear audit 
trails. 

[D136] Developers SHOULD use formal verification techniques to prove the atomicity of critical contract 
functions. 

[D137] When implementing upgradeable contracts, the upgrade process SHOULD be atomic to prevent 
inconsistent contract states. 

[D138] For operations that cannot be made atomic within a single transaction, contracts SHOULD implement a 
state machine pattern with clearly defined and verifiable state transitions. 

[D139] Developers SHOULD thoroughly test contract behaviour under various failure scenarios to ensure proper 
rollback and state consistency. 

[D140] When dealing with large datasets, contracts SHOULD use techniques like Merkle trees to maintain 
atomicity while minimizing on-chain storage. 

4.3.5 Autonomy  

4.3.5.1 Definition 

Autonomy in smart contracts refers to their ability to self-execute and self-enforce without the need for intermediaries 
or external control once deployed. This property enables smart contracts to operate independently based on their 
predefined rules and conditions. Autonomy is a fundamental characteristic that sets smart contracts apart from 
traditional agreements and software. It enables trustless, efficient, and consistent execution of complex agreements and 
processes. However, it also requires careful design and consideration to balance the benefits of autonomous operation 
with the need for safety, upgradability, and handling of unforeseen circumstances. When implemented effectively, 
autonomous smart contracts can significantly enhance the efficiency and reliability of various systems and processes 
across multiple industries [148], [169], [95]. 

4.3.5.2 Key Aspects of Autonomy 

This clause explores the key aspects of autonomy in smart contracts, highlighting how this feature contributes to their 
efficiency, reliability, and trustworthiness in decentralized systems. Understanding these aspects is crucial for 
developers and stakeholders to fully leverage the potential of autonomous smart contracts while being aware of their 
limitations and implications. 

1) Self-Execution: 

- Smart contracts automatically execute when predefined conditions are met. 

- No manual intervention is required, reducing human error and delays. 
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EXAMPLE:  A decentralized SLA contract automatically pays out penalty when specific criteria are met. 

2) Independence: 

- Once deployed, smart contracts operate independently of their creators or any central authority. 

- The contract's behaviour is determined solely by its code and the blockchain's state. 

- This independence ensures impartiality and resistance to tampering. 

3) Rule-Based Behaviour: 

- Contract actions are determined by coded rules, not by discretionary decisions of external parties. 

- All logic is transparent and verifiable in the contract's code. 

- Ensures predictable outcomes based on input conditions. 

4) Immutability: 

- Once deployed, the core logic of a smart contract typically cannot be altered. 

- Enhances trust as users can be certain of the contract's behaviour. 

- Challenges arise when upgrades or modifications are necessary. 

5) Deterministic Execution: 

- Given the same input and blockchain state, a smart contract will always produce the same output. 

- Critical for maintaining consensus across a decentralized network. 

4.3.5.3 Importance of Autonomy 

This clause explores the critical importance of autonomy in smart contract systems, highlighting how this feature 
contributes to their efficiency, reliability, and trustworthiness.  

1) Trustlessness: 

- Autonomy reduces the need to trust intermediaries or central authorities. 

- The contract's behaviour is determined by its code, which is visible and verifiable. 

- Enhances transparency and reduces the risk of manipulation or fraud. 

2) Efficiency: 

- Automated, autonomous execution can significantly reduce transaction times and costs. 

- Eliminates the need for manual processing and intermediaries. 

- Enables 24/7 operation without human intervention. 

3) Consistency: 

- Autonomous operation ensures consistent application of rules and conditions across all interactions. 

- Reduces errors and discrepancies that can occur with manual processes. 

- Particularly valuable in complex, multi-party agreements. 

4) Decentralization: 

- Autonomy is a key enabler of decentralized systems and applications. 

- Allows the creation of trustless, peer-to-peer networks and marketplaces. 

5) Programmable Money: 
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- Enables the creation of sophisticated financial instruments and protocols. 

- Facilitates complex, condition-based transactions that were previously impractical. 

4.3.5.4 Autonomy Implementation Considerations 

Implementing autonomy in smart contracts requires careful consideration of various technical and design factors to 
ensure the contract can operate independently and securely. This clause explores the key considerations developers 
should address when implementing autonomous functionality in smart contracts.  

1) Trigger Mechanisms: 

[R42] Developers SHALL design contracts with clear trigger conditions that initiate autonomous actions. 

[D141] Developers SHOULD consider various types of triggers: time-based, event-based, or state-based. 

EXAMPLE:  An automated market maker contract that rebalances based on price changes. 

2) State Management: 

[R43] Developers SHALL ensure the contract can autonomously manage and update its state based on 
interactions and conditions. 

[D142] Developers SHOULD implement robust data structures to track relevant information. 

[D143] Developers SHOULD use storage efficiently to minimize gas costs while maintaining necessary state. 

3) External Data Handling: 

[D144] Developers SHOULD consider how the contract will autonomously interact with external data sources 
(oracles) when necessary. 

[D145] Developers SHOULD implement mechanisms to verify and validate external data to maintain trust. 

[D146] Developers SHOULD design fallback mechanisms in case of oracle failures or data inconsistencies. 

4) Gas Considerations: 

[D147] Developers SHOULD optimize contract logic to minimize gas costs for autonomous operations. 

[D148] Developers SHOULD consider implementing gas price strategies for time-sensitive autonomous actions. 

5) Interaction with Other Contracts: 

[D149] Developers SHOULD design patterns for autonomous interactions between multiple contracts. 

[D150] Developers SHOULD implement safeguards to handle potential failures in inter-contract 
communications. 

4.3.5.5 Challenges Associated with Autonomy 

While autonomy is a fundamental feature of smart contracts, it also presents several challenges that developers and 
stakeholders have to carefully consider. This clause explores the key challenges associated with implementing and 
maintaining autonomous smart contracts in distributed ledger environments. Understanding these challenges is crucial 
for creating robust, secure, and effective smart contract systems that can operate independently while mitigating 
potential risks and unintended consequences. 

1) Complexity: 

- Autonomous systems can become complex, making them difficult to design, test, and maintain. 

- Increased complexity can lead to higher risks of bugs or vulnerabilities. 

- Requires sophisticated testing and simulation environments. 

2) Unforeseen Scenarios: 
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- It is challenging to anticipate and code for all possible scenarios, which can lead to unexpected 
behaviours. 

- Edge cases may emerge that were not considered during development. 

- Market manipulations or extreme conditions can expose vulnerabilities. 

3) Upgradability: 

- Fully autonomous contracts may be difficult to upgrade or modify once deployed, potentially limiting 
flexibility. 

- Balancing immutability with the need for upgrades is a significant challenge. 

- Requires careful consideration of upgrade patterns and governance mechanisms. 

4) Regulatory Compliance: 

- Autonomous execution may conflict with regulatory requirements in certain jurisdictions. 

- Challenges in implementing KYC/AML procedures in fully autonomous systems. 

5) User Understanding and Trust: 

- Users may find it difficult to trust or understand fully autonomous systems. 

- Lack of human oversight can be concerning for high-value transactions. 

4.3.5.6  Balancing Autonomy and Control 

While autonomy is a key feature of smart contracts, there may be scenarios where some level of external control is 
desirable.  

[O10] Developers MAY follow these guidelines: 

1) Emergency Stops: 

- Implementing mechanisms to pause or stop a contract in case of critical issues. 

- Often referred to as "circuit breakers" or "pause functions". 

- Should be used judiciously to maintain trust in the system's autonomy. 

2) Governance Mechanisms: 

- Allowing for community-driven decisions to modify certain parameters or behaviours of the contract. 

- Can be implemented through voting systems or Decentralized Autonomous Organizations (DAOs). 

- Balances autonomy with adaptability and community control. 

3) Upgradeable Patterns: 

- Using proxy patterns or other techniques to allow for upgrades while maintaining a degree of autonomy. 

- Enables bug fixes and feature improvements without compromising core autonomous behaviours. 

- Requires careful design to prevent centralization or unauthorized changes. 

4) Parameterization: 

- Allowing certain contract parameters to be adjusted without changing core logic. 

- Enables fine-tuning of contract behaviour without compromising autonomy. 

5) Modular Design: 

- Breaking down complex systems into smaller, autonomous modules. 
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- Allows for upgrading or replacing individual components while maintaining overall system autonomy. 

4.3.5.7  Autonomy in Different Contexts 

Autonomy can be realized in multiple contexts, each with its unique characteristics and influence on the behaviour of 
smart contracts: 

1) Financial Contracts: 

- Autonomous execution of trades, loans, or insurance payouts based on predefined conditions. 

EXAMPLES:  Automated market makers, yield farming protocols, decentralized insurance. 

CHALLENGES: Handling market volatility, ensuring fairness in autonomous trades. 

2) Supply Chain: 

- Automatic tracking and verification of goods movement and ownership transfers. 

- IoT integration for real-time, autonomous updates of supply chain status. 

CHALLENGES: Integrating with physical world events, handling disputes autonomously. 

3) Governance: 

- Autonomous execution of voting results or organizational rules in Decentralized Autonomous 
Organizations (DAOs). 

- Implementing complex governance structures with multiple stakeholders. 

CHALLENGES: Balancing automation with the need for human judgment in complex decisions. 

4) Identity and Access Management: 

- Autonomous verification of credentials and granting of access rights. 

- Self-sovereign identity systems with autonomous data sharing and verification. 

CHALLENGES: Ensuring privacy and compliance with data protection regulations. 

5) Gaming and Virtual Worlds: 

- Autonomous management of in-game economies and asset ownership. 

- Implementing complex game mechanics through autonomous smart contracts. 

CHALLENGES: Balancing fairness, preventing exploits in autonomous systems. 

4.3.5.8  Best Practices for Implementing Autonomy in Smart Contracts 

[D151] The following best practices SHOULD be followed to ensure the integrity of autonomous smart 
contracts: 

1) Thorough Testing: 

- Rigorously test autonomous behaviours under various scenarios to ensure reliability. 

- Utilize formal verification techniques where possible to mathematically prove contract behaviours. 

- Implement comprehensive unit tests, integration tests, and simulation of edge cases. 

2) Clear Documentation: 

- Provide comprehensive documentation of the autonomous behaviours for users and auditors. 

- Clearly explain trigger conditions, state changes, and potential outcomes of autonomous actions. 
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- Use natspec comments in code to enhance readability and auto-generate documentation. 

3) Fail-Safe Mechanisms: 

- Implement safeguards to handle unexpected situations without compromising the system's integrity. 

- Design graceful failure modes that prioritize fund safety and system stability. 

- Consider implementing rate limiting or circuit breakers for extreme scenarios. 

4) Transparent Monitoring: 

- Implement event emission for all significant autonomous actions. 

- Provide dashboards or interfaces for users to monitor contract state and autonomous behaviours. 

- Consider off-chain monitoring solutions to alert stakeholders of unusual activities. 

5) Gradual Rollout: 

- Start with limited autonomy and gradually increase as the system proves reliable. 

- Use feature flags or tiered autonomy levels to control the extent of autonomous behaviour. 

6) Regular Audits: 

- Conduct thorough third-party audits of autonomous contract systems. 

- Implement a bug bounty program to incentivize discovery of vulnerabilities. 

7) Gas Efficiency: 

- Optimize autonomous functions for gas efficiency to ensure reliable execution. 

- Consider implementing dynamic gas price strategies for time-sensitive autonomous actions. 

8) Upgradability Planning: 

- Design with future upgradability in mind, even if immediate upgrades are not planned. 

- Implement clear upgrade processes that maintain trust and decentralization. 

4.3.5.9 Requirements and Recommendations 

[R44] Smart contracts SHALL execute automatically when predefined conditions are met, without requiring 
manual intervention. 

[R45] Once deployed, smart contracts SHALL operate independently of their creators or any central authority. 

[R46] Smart contracts SHALL be self-enforcing, automatically executing the coded rules and conditions. 

[R47] The execution of smart contract functions SHALL be determined solely by the contract's code and the 
current blockchain state. 

[D152] Developers SHOULD implement clear and comprehensive trigger conditions for autonomous contract 
execution. 

[D153] Smart contracts SHOULD include mechanisms for self-management of their state and resources. 

[D154] Contracts SHOULD implement safeguards and circuit breakers to handle unexpected scenarios 
autonomously. 

[D155] Developers SHOULD design contracts with clear separation between autonomous operations and 
functions requiring human intervention. 

[D156] Smart contracts SHOULD emit events for significant autonomous actions to provide transparency and 
auditability. 
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[D157] Contracts SHOULD include mechanisms for autonomous interaction with other contracts and external 
systems (e.g. oracles) when necessary. 

[D158] Developers SHOULD implement tiered autonomy, where certain high-impact actions require multi-
signature approval or time locks. 

[D159] Smart contracts SHOULD include self-diagnostic capabilities to monitor their own state and 
performance. 

[D160] Contracts SHOULD be designed with modular architecture to allow for autonomous upgrades of specific 
components. 

[D161] Developers SHOULD implement mechanisms for contracts to autonomously manage and optimize their 
resource usage (e.g. gas costs in Ethereum). 

[D162] Smart contracts SHOULD include fallback mechanisms to ensure continued operation in case of failures 
in external dependencies. 

[D163] Contracts designed for long-term operation SHOULD include mechanisms for autonomous adaptation to 
changing network conditions or regulations. 

4.3.6 Decentralization  

4.3.6.1  Definition 

Decentralization in the context of smart contracts refers to the distribution of contract execution, validation, and storage 
across multiple nodes in a network, rather than relying on a single central authority. This property is fundamental to the 
trustless and resilient nature of blockchain-based smart contract systems. Decentralization is a core principle of 
blockchain-based smart contract systems, offering unique advantages in terms of trust, resilience, and censorship 
resistance. However, it also introduces complexities and trade-offs that should be carefully considered in system design 
and implementation. The appropriate level and form of decentralization can vary depending on the specific 
requirements and constraints of each use case. As the field evolves, new approaches to balancing the benefits of 
decentralization with practical considerations continue to emerge, shaping the future of smart contract systems [169], 
[156], [177], [173]. 

4.3.6.2 Key Aspects of Decentralization 

1) Distributed Execution: Smart contracts are executed independently by multiple nodes in the network, 
ensuring that no single point of failure can disrupt the entire system. This distributed execution is facilitated by 
the blockchain's decentralized architecture, where each node has a copy of the contract code and state. 

2) Consensus Mechanisms: Agreement on the state and outcomes of smart contract executions is achieved 
through consensus among network participants. This consensus mechanism ensures that all nodes agree on the 
validity of transactions and the state of the contract, maintaining the integrity of the system. 

3) Redundancy: Contract code and state are replicated across multiple nodes, enhancing resilience and 
availability. This redundancy ensures that even if some nodes fail or behave maliciously, the system can 
continue to function without interruption. 

4.3.6.3 Importance of Decentralization 

1) Trust Minimization: Decentralization reduces the need to trust any single entity, as the integrity of the system 
is maintained collectively by the network participants. This trust minimization is crucial in ensuring the 
security and reliability of smart contracts. 

2) Resilience: The system can continue to function even if some nodes fail or behave maliciously. This resilience 
is a direct result of the decentralized architecture, where multiple nodes can execute and validate contracts 
independently. 

3) Censorship Resistance: It becomes difficult for any single entity to censor or manipulate contract executions. 
This censorship resistance is a key benefit of decentralization, ensuring that transactions are executed fairly 
and transparently. 
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4) Transparency: Decentralized systems often provide greater transparency, as multiple parties can verify 
contract executions. This transparency fosters trust among participants and ensures the accuracy and integrity 
of the data stored on the blockchain. 

4.3.6.4 Decentralization Implementation Considerations 

1) Consensus Algorithms: Choice of consensus mechanism (e.g. Proof of Work, Proof-of-Stake, or 
Permissioned consensus) affects the degree and nature of decentralization. The choice of consensus algorithm 
is critical in determining the level of decentralization and the security of the system. 

2) Network Architecture: The structure of the network (public, private, or consortium) influences the level of 
decentralization. Public blockchains are fully decentralized, while private and consortium blockchains may 
have a more centralized architecture. 

3) Data Distribution: Strategies for distributing and synchronizing contract data across the network are crucial 
in maintaining the integrity and availability of the system. This includes ensuring that all nodes have a 
consistent view of the contract state and data. 

4.3.6.5 Challenges associated with Decentralization 

1) Performance Trade-offs: Decentralized execution can be slower and less efficient compared to centralized 
systems. This is due to the need for consensus among multiple nodes, which can introduce latency and reduce 
throughput. 

2) Scalability: Maintaining decentralization while scaling the system can be challenging. As the number of nodes 
increases, the complexity of achieving consensus and maintaining data consistency also increases. 

3) Governance: Decentralized decision-making for system upgrades or changes can be complex. This includes 
ensuring that all stakeholders are involved in the decision-making process and that changes are implemented in 
a transparent and secure manner. 

4) Regulatory Compliance: Decentralized systems may face challenges in complying with regulatory 
requirements designed for centralized systems. This includes ensuring that the system meets requirements for 
data protection, anti-money laundering, and know-your-customer regulations. 

4.3.6.6 Degrees of Decentralization 

Decentralization in smart contracts is not a binary concept but rather exists on a spectrum. This clause explores the 
various degrees of decentralization that can be implemented in smart contract systems. By examining the nuances of 
different levels of decentralization, developers can better tailor smart contract architectures to specific use cases and 
regulatory environments. 

1) Fully Decentralized: Public blockchain networks where anyone can participate in contract execution and 
validation. These networks are fully decentralized, with no central authority controlling the system. 

2) Partially Decentralized: Consortium or permissioned networks where a select group of participants manage 
the system. These networks are partially decentralized, with a central authority controlling access to the system 

3) Hybrid Models: Systems that combine elements of centralized and decentralized architectures for different 
aspects of operation. These hybrid models can offer a balance between security, performance, and regulatory 
requirements. 

4.3.6.7  Decentralization in Different Contexts 

Decentralization is a fundamental principle of blockchain technology, but its implementation and implications can vary 
significantly across different contexts and use cases. This clause explores the different contexts of decentralization. 

1) Execution Decentralization: Distribution of contract execution across multiple nodes. This ensures that no 
single point of failure can disrupt the entire system. 

2) Storage Decentralization: Distribution of contract code and state across the network. This ensures that all 
nodes have a consistent view of the contract state and data. 
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3) Governance Decentralization: Distribution of decision-making power for system changes and upgrades. This 
ensures that all stakeholders are involved in the decision-making process and that changes are implemented in 
a transparent and secure manner. 

4.3.6.8  Best Practices of Decentralization 

Decentralization is a core principle of blockchain technology, but implementing it effectively in smart contracts requires 
careful consideration and adherence to best practices. This clause outlines key strategies and approaches for maximizing 
the benefits of decentralization in smart contract design and implementation. By following these best practices, 
developers can create more robust, transparent, and truly decentralized systems that align with the fundamental ethos of 
blockchain technology while addressing practical challenges and limitations. 

1) Appropriate Level of Decentralization:  

[D164] Developers SHOULD Choose a level of decentralization that balances security, performance, and 
regulatory requirements for the specific use case. This includes considering the trade-offs between 
decentralization and performance. 

2) Transparency:  

[D165] Developers SHOULD Provide clear information about the degree of decentralization in the system. This 
includes ensuring that all stakeholders understand the level of decentralization and the benefits and risks 
associated with it. 

3) Incentive Alignment:  

[D166] Developers SHOULD Design systems where participants are incentivized to maintain the decentralized 
nature of the network. This includes ensuring that participants are rewarded for contributing to the system 
and that malicious behaviour is discouraged. 

4) Regular Audits:  

[D167] Developers SHOULD Conduct audits to ensure the system maintains its intended level of 
decentralization over time. This includes regularly reviewing the system's architecture and ensuring that it 
remains secure and resilient. 

4.3.6.9 Requirements and Recommendations 

[R48] Smart contracts SHALL be designed to operate in a decentralized manner, without reliance on a single 
central authority. 

[R49] The execution and validation of smart contracts SHALL be distributed across multiple nodes in the 
network. 

[R50] Smart contracts SHALL use consensus mechanisms that align with the decentralized nature of the 
underlying blockchain. 

[R51] The design of smart contracts SHALL NOT introduce centralization points that could compromise the 
overall decentralized architecture. 

[D168] Developers SHOULD implement decentralized governance mechanisms for critical contract decisions or 
upgrades. 

[D169] Smart contracts SHOULD use decentralized oracle solutions to fetch external data, avoiding reliance on a 
single data source. 

[D170] Contracts SHOULD implement mechanisms for distributed key management and multi-signature 
approvals for high-value transactions. 

[D171] Developers SHOULD consider using decentralized storage solutions (e.g. IPFS) for large data sets 
associated with smart contracts. 

[D172] Smart contracts SHOULD be designed to operate effectively across different nodes with potentially 
varying computational capabilities. 
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[D173] Developers SHOULD implement mechanisms to incentivize node participation and maintain a healthy 
level of decentralization. 

[D174] Contracts SHOULD include fallback mechanisms to ensure continued operation in case of node failures 
or network partitions. 

[D175] Developers SHOULD consider implementing sharding or layer-2 solutions to enhance scalability while 
maintaining decentralization. 

[D176] Smart contracts SHOULD use decentralized identity solutions where user authentication is required. 

[D177] Developers SHOULD implement transparent and decentralized upgrade mechanisms when contract 
upgradability is necessary. 

[D178] Contracts SHOULD use decentralized randomness sources when random number generation is required. 

[D179] Developers SHOULD consider the trade-offs between decentralization and performance when designing 
smart contract systems. 

[D180] Smart contracts SHOULD implement decentralized dispute resolution mechanisms where applicable. 

[D181] Developers SHOULD use formal verification techniques to ensure that decentralized execution produces 
consistent results across all nodes. 

[D182] Contracts SHOULD be designed with modularity to allow for easier upgrades and maintenance in a 
decentralized environment. 

4.3.7 State Management  

4.3.7.1  Definition 

State management in smart contracts refers to the process of storing, accessing, and modifying the contract's data over 
time. The state represents the current condition of the contract, including all its variables and data structures, which can 
change as a result of transactions or interactions. State management is a critical aspect of smart contract design and 
implementation. It directly impacts the contract's functionality, performance, and cost-effectiveness. Effective state 
management requires careful consideration of data structures, access patterns, and the specific requirements of the 
contract's use case. As smart contract platforms evolve, new techniques and best practices for state management 
continue to emerge, offering improved solutions for scalability, efficiency, and security [169], [156], [177], [173]. 

4.3.7.2  Key Aspects of State Management 

State management is a critical aspect of smart contract development, as it ensures that the contract's data is accurately 
stored, updated, and retrieved. Effective state management is essential for maintaining the integrity and reliability of the 
contract. 

1) State Variables: Data stored within the contract that persists between function calls and transactions. State 
variables are used to store critical information, such as user balances, contract settings, and other relevant data. 

2) State Transitions: Changes to the contract's state as a result of function executions or external interactions. 
State transitions are triggered by transactions, events, or other contract interactions, and they update the 
contract's state accordingly. 

3) State Consistency: Ensuring that the contract's state remains valid and consistent across all nodes in the 
network. State consistency is crucial for maintaining the integrity of the contract and preventing errors or 
inconsistencies. 

4.3.7.3  Importance of State Management 

State management is essential for ensuring the accuracy, reliability, and integrity of smart contracts. Proper state 
management is critical for maintaining the contract's data and ensuring that it functions as intended. 

1) Data Integrity: Proper state management ensures the accuracy and reliability of the contract's data. This 
includes ensuring that data is correctly stored, updated, and retrieved. 
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2) Transaction Processing: The current state determines how new transactions are processed and what outcomes 
they produce. Accurate state management is essential for ensuring that transactions are processed correctly. 

3) Business Logic: The state often represents critical business information and rules encoded in the contract. 
Effective state management is essential for ensuring that the contract's business logic is executed correctly. 

4) Auditability: A well-managed state allows for easier tracking and auditing of the contract's history and current 
condition. This includes ensuring that all state changes are properly recorded and tracked. 

4.3.7.4  State Management Implementation Considerations 

Implementing effective state management requires careful consideration of several factors, including storage 
optimization, access control, state synchronization, and versioning. 

1) Storage Optimization: Efficiently managing state to minimize storage costs and improve performance. This 
includes using efficient data structures and minimizing the amount of data stored on-chain. 

2) Access Control: Implementing proper controls on who can read or modify different aspects of the state. This 
includes using access control mechanisms, such as permissions and roles. 

3) State Synchronization: Ensuring all nodes in the network maintain a consistent view of the contract's state. 
This includes using synchronization mechanisms, such as consensus algorithms. 

4) Versioning: Managing state changes across different versions of the contract, especially during upgrades. This 
includes ensuring that state changes are properly tracked and updated. 

4.3.7.5  Challenges associated with State Management 

State management can be challenging, especially in complex contracts or distributed environments. Several challenges 
are associated with state management, including scalability, complexity, concurrency, and state bloat. 

1) Scalability: As the state grows, it can impact the performance and cost of contract operations. This includes 
ensuring that the contract's state is efficiently managed and scaled. 

2) Complexity: Managing complex state structures and relationships can be challenging, especially in large 
contracts. This includes ensuring that the contract's state is properly organized and managed. 

3) Concurrency: Handling multiple simultaneous state changes in a distributed environment. This includes 
ensuring that state changes are properly synchronized and updated. 

4) State Bloat: Over time, accumulated state data can lead to bloated contracts and increased costs. This includes 
ensuring that the contract's state is properly managed and cleaned up. 

4.3.7.6  State Management Patterns 

Several patterns can be used to manage state in smart contracts, including CRUD operations, mapping structures, 
hierarchical state, and event logging. 

1) CRUD Operations: Implementing Create, Read, Update, and Delete operations for state management. This 
includes using CRUD operations to manage the contract's state. 

2) Mapping Structures: Using key-value mappings for efficient state storage and retrieval. This includes using 
mapping structures to store and retrieve state data. 

3) Hierarchical State: Organizing state in hierarchical structures for complex data relationships. This includes 
using hierarchical structures to manage complex state relationships. 

4) Event Logging: Using events to track state changes and provide an audit trail. This includes using events to 
track and record state changes. 

4.3.7.7  Advanced State Management Techniques 

Several advanced techniques can be used to manage state in smart contracts, including state channels, commit-reveal 
schemes, and Merkle trees. 
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1) State Channels: Off-chain state management with periodic on-chain settlement for improved scalability. This 
includes using state channels to manage state off-chain. 

2) Commit-Reveal Schemes: Two-step processes for managing state changes in scenarios requiring privacy or 
preventing front-running. This includes using commit-reveal schemes to manage state changes. 

3) Merkle Trees: Efficient data structures for managing and verifying large sets of data. This includes using 
Merkle trees to manage and verify state data. 

4.3.7.8  State Management Best Practices 

Several best practices can be used to manage state in smart contracts, including minimizing state, state validation, gas 
optimization, clear state documentation, and state cleanup. 

1) Minimize State:  

[D183] Developers SHOULD store only essential data on-chain to reduce costs and improve performance. This 
includes minimizing the amount of data stored on-chain. 

2) State Validation:  

[D184] Developers SHOULD implement robust checks to ensure state changes maintain the contract's invariants. 
This includes validating state changes to ensure they are correct. 

3) Gas Optimization:  

[D185] Developers SHOULD design state operations with gas costs in mind, especially for frequently used 
functions. This includes optimizing state operations to minimize gas costs. 

4) Clear State Documentation:  

[D186] Developers SHOULD provide comprehensive documentation of the contract's state structure and 
management processes. This includes documenting the contract's state structure and management 
processes. 

5) State Cleanup:  

[D187] Developers SHOULD implement mechanisms to clean up or archive old or unused state data when 
possible. This includes cleaning up or archiving old or unused state data to reduce costs and improve 
performance. 

6) State Cleanup: Implement mechanisms to clean up or archive old or unused state data when possible. 

4.3.7.9 Requirements and Recommendations 

[R52] Smart contracts SHALL maintain a consistent and valid state across all nodes in the network. 

[R53] State variables in smart contracts SHALL be clearly defined and properly encapsulated. 

[R54] Smart contracts SHALL implement secure mechanisms for state transitions and updates. 

[R55] The contract state SHALL be verifiable by authorized parties at any given time. 

[D188] Developers SHOULD use appropriate data structures (e.g. mappings, arrays) to efficiently manage 
contract state. 

[D189] Smart contracts SHOULD implement access control mechanisms to restrict state modifications to 
authorized parties only. 

[D190] Contracts SHOULD emit events for all significant state changes to provide an audit trail. 

[D191] Developers SHOULD implement state validation checks to ensure the integrity of the contract's state 
after each transaction. 

[D192] Smart contracts SHOULD use gas-efficient patterns for state management to optimize transaction costs. 
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[D193] Contracts SHOULD implement mechanisms to handle potential state inconsistencies due to network 
partitions or consensus failures. 

[D194] Developers SHOULD consider using commit-reveal schemes for managing state updates that involve 
time-sensitive or confidential information. 

[D195] Smart contracts SHOULD implement state migration strategies for upgradeable contracts to ensure 
seamless transitions. 

[D196] Contracts SHOULD use appropriate data types and structures to minimize storage costs while 
maintaining necessary precision. 

[D197] Developers SHOULD implement mechanisms to archive or prune historical state data to manage contract 
size over time. 

[D198] Smart contracts SHOULD use modifiers to enforce state-dependent conditions on function execution. 

[D199] Developers SHOULD consider implementing state channels or layer-2 solutions for high-frequency state 
updates to improve scalability. 

[D200] Contracts SHOULD include functions to allow users to query their own state without exposing sensitive 
information about other users. 

[D201] Developers SHOULD implement proper error handling and revert mechanisms to maintain state 
consistency in case of failed transactions. 

[D202] Smart contracts SHOULD use the checks-effects-interactions pattern to prevent reentrancy attacks when 
updating state. 

[D203] Developers SHOULD consider using formal verification techniques to prove the correctness of critical 
state transition logic. 

[D204] Contracts SHOULD implement mechanisms to handle potential state rollbacks due to blockchain 
reorganizations. 

[D205] Developers SHOULD use constant and immutable variables where appropriate to optimize gas costs and 
improve code readability. 

[D206] Smart contracts SHOULD implement a clear separation between mutable and immutable state to enhance 
security and auditability. 

[D207] Developers SHOULD consider implementing state checkpoints for complex contracts to allow easier 
debugging and state verification. 

4.3.8 Interoperability 

4.3.8.1  Definition 

The rapid growth and diversification of blockchain networks and smart contract platforms have created a critical need 
for interoperability in decentralized systems. Currently, many smart contracts and blockchain applications operate in 
isolated environments, unable to communicate or share data effectively across different platforms or with off-chain 
systems. This lack of interoperability limits the potential of blockchain technology and hinders the development of more 
complex, powerful, and user-friendly decentralized applications. 

Key challenges include: 

1) Standardization: The absence of universally accepted protocols for cross-chain communication and data 
exchange. 

2) Security: Ensuring the integrity and confidentiality of data as it moves between different blockchain 
environments and off-chain systems. 

3) Scalability: Managing the increased complexity and potential performance bottlenecks introduced by 
cross-chain interactions. 
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4) Platform Diversity: Designing smart contracts that can operate seamlessly across multiple blockchain 
platforms with varying architectures and consensus mechanisms. 

5) Data Verification: Implementing reliable methods for verifying and processing data from external sources, 
such as oracles or other blockchains. 

6) Complexity Management: Balancing the need for advanced interoperability features (e.g. atomic swaps, 
cross-chain asset transfers) with the requirement for simplicity and ease of use. 

7) Regulatory Compliance: Ensuring that interoperable systems adhere to diverse regulatory requirements 
across different jurisdictions. 

Addressing these challenges is crucial for the continued evolution of blockchain technology and the broader adoption of 
decentralized applications. Successful solutions will need to balance technical innovation with practical considerations 
of security, usability, and regulatory compliance, ultimately enabling the creation of a more interconnected and efficient 
blockchain ecosystem. 

Interoperability in smart contracts refers to the ability of different contracts, platforms, or blockchain networks to 
communicate, share data, and work together seamlessly. By prioritizing interoperability in smart contract architecture, 
developers can create more versatile and future-proof applications that can leverage the strengths of different 
blockchain networks and seamlessly integrate with existing systems, thereby driving broader adoption and functionality 
in the decentralized ecosystem [14], [131], [161], [94]. 

4.3.8.2  Key Aspects of Interoperability 

Interoperability in smart contracts refers to the capability of different contracts and blockchain systems to communicate 
and work together seamlessly. This is crucial for building a cohesive ecosystem of decentralized applications. 

1) Cross-Contract Communication: The ability for smart contracts to call functions and exchange data with 
other contracts is fundamental for creating complex, interconnected decentralized applications. This 
communication enables contracts to leverage functionalities from one another, enhancing their capabilities. 

2) Cross-Chain Interactions: Mechanisms for contracts on different blockchain networks to interact and share 
information are essential for expanding the reach and functionality of decentralized applications across 
multiple platforms. 

3) Standardization: Common interfaces and protocols facilitate interaction between different contracts and 
systems, ensuring that they can communicate effectively without compatibility issues. Standards like 
ERC-20 [46] for tokens on Ethereum are examples of such standardization efforts. 

4) Data Compatibility: Ensuring data formats and structures are compatible across different platforms and 
contracts is vital for seamless data exchange and integration, preventing errors or misinterpretations during 
interactions. 

4.3.8.3  Importance of Interoperability 

Interoperability is crucial for the growth and functionality of blockchain ecosystems, enabling diverse applications to 
work together harmoniously. 

1) Ecosystem Development: Interoperability fosters a more connected and robust ecosystem of decentralized 
applications by allowing them to interact and build upon each other's functionalities, leading to innovation and 
growth. 

2) Functionality Extension: Allows contracts to leverage functionalities and data from other contracts or 
systems, enhancing their own capabilities without needing to implement everything from scratch. 

3) Asset Portability: Enables the transfer and use of digital assets across different platforms or networks, 
increasing their utility and value by making them accessible in various contexts. 

4) Scalability Solutions: Facilitates layer-2 solutions and sidechains that can interact with main networks, 
providing scalability improvements while maintaining connectivity with the primary blockchain. 
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4.3.8.4  Interoperability Implementation Mechanisms 

Implementing interoperability requires specific mechanisms that enable seamless communication and interaction 
between different blockchain entities. 

1) Standardized Interfaces: Implementing common interfaces (e.g. ERC standards in Ethereum) ensures 
consistent interaction patterns between contracts, simplifying integration and reducing errors. 

2) Oracles: Using oracle services facilitates communication between smart contracts and external systems, 
allowing them to access real-world data or interact with off-chain services securely. 

3) Cross-Chain Bridges: Mechanisms for transferring assets and information between different blockchain 
networks are crucial for enabling cross-chain interactions, expanding the functionality of decentralized 
applications across platforms. 

4) Atomic Swaps: Enabling trustless exchanges of assets between different blockchain networks without 
intermediaries, ensuring secure and efficient cross-chain transactions. 

4.3.8.5  Challenges associated with Interoperability 

While interoperability offers significant benefits, it also introduces challenges that need to be addressed to ensure secure 
and efficient interactions. 

1) Security Risks: Interoperability can introduce new attack vectors, especially in cross-chain interactions where 
vulnerabilities in one system might be exploited through another. 

2) Complexity: Managing interactions between multiple contracts or systems increases complexity, requiring 
careful design and coordination to ensure smooth operation. 

3) Performance Overhead: Cross-chain or external interactions may introduce latency and additional costs due 
to the need for extra verification steps or communication protocols. 

4) Governance Issues: Coordinating upgrades and changes across interoperable systems can be challenging, as it 
requires alignment among multiple stakeholders with potentially differing priorities. 

4.3.8.6  Interoperability Levels 

Different levels of interoperability address various aspects of interaction between blockchain systems, from basic data 
exchange to full ecosystem integration. 

1) Syntactic Interoperability: Ensuring data formats and communication protocols are compatible so that 
systems can exchange information without errors or misinterpretations. 

2) Semantic Interoperability: Ensuring that the meaning of exchanged information is understood across 
different systems, allowing them to interpret data correctly in their specific contexts. 

3) Cross-Platform Interoperability: Allowing interaction between contracts on different blockchain platforms, 
enabling broader functionality and asset transfer across ecosystems. 

4) Ecosystem Interoperability: Enabling seamless interaction between various DApps, wallets, and services 
within a blockchain ecosystem, fostering a cohesive user experience. 

4.3.8.7  Emerging Interoperability Solutions 

Several innovative solutions are emerging to enhance interoperability across blockchain networks, addressing existing 
limitations and expanding possibilities. 

1) Polkadot Parachains: A network of interconnected blockchain "parachains" that can easily interact with each 
other, providing a scalable solution for cross-chain communication within the Polkadot ecosystem. Polkadot is 
discussed in greater depth in clause 4.5.3 herewith. 

2) Cosmos Inter-Blockchain Communication (IBC): A protocol for secure communication between 
independent blockchains, facilitating interoperability while maintaining sovereignty over their own operations. 
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3) Ethereum Layer-2 Solutions: Mechanisms like Optimistic Rollups and ZK-Rollups that interact with the 
main Ethereum network to improve scalability while maintaining security through periodic settlements on the 
main chain. Layer-2 solutions are discussed in greater depth in clause 4.4.9.2 herewith. 

Examples of such solutions are listed in clause A.1.1.2 herewith. 

4.3.8.8  Best Practices when Implementing Interoperability 

Implementing interoperability effectively requires adherence to best practices that ensure compatibility, security, and 
efficiency in cross-system interactions. 

1) Use Established Standards:  

[D208] Developers SHOULD implement widely-accepted standards and interfaces to ensure compatibility across 
different systems, reducing integration complexity and potential errors. 

2) Modular Design:  

[D209] Developers SHOULD create modular contracts that can easily interact with other components, allowing 
flexibility in integrating new functionalities or adapting to changes in the ecosystem. 

3) Thorough Testing:  

[D210] Developers SHOULD Rigorously test interoperability features, especially for cross-chain interactions 
where unexpected issues may arise due to differing protocols or implementations. 

4) Clear Documentation:  

[D211] Developers SHOULD provide comprehensive documentation on how to interact with your contract from 
other contracts or systems, facilitating easier integration by developers from other projects. 

5) Security Considerations:  

[D212] Developers SHOULD implement robust security measures, especially when dealing with external calls or 
cross-chain transactions, to protect against potential vulnerabilities introduced by interoperability 
features. 

4.3.8.9 Requirements and Recommendations 

[R56] Smart contracts SHALL implement standardized interfaces to ensure interoperability within the PDL 
ecosystem. 

[R57] Cross-chain communication protocols SHALL be implemented securely to facilitate interoperability 
between different blockchain networks. 

[R58] Smart contracts SHALL use standardized data formats for input and output to ensure compatibility with 
other systems. 

[R59] Interoperability mechanisms SHALL NOT compromise the security or integrity of the smart contract or 
its underlying blockchain. 

[D213] Smart contracts SHOULD implement modular designs to facilitate easier integration with other systems. 

[D214] Contracts SHOULD use oracles or bridge protocols for secure cross-chain data transfer and verification. 

[D215] Developers SHOULD implement versioning mechanisms to manage compatibility across different 
contract versions. 

[D216] Smart contracts SHOULD use standardized event emission formats to enable consistent off-chain 
monitoring and integration. 

[D217] Contracts SHOULD implement fallback mechanisms to handle interactions with non-compliant or 
outdated systems. 

[D218] Developers SHOULD consider implementing atomic swap protocols for cross-chain asset transfers. 
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[D219] Smart contracts SHOULD use standardized identity and authentication protocols to ensure 
interoperability of user credentials across systems. 

[D220] Contracts SHOULD implement clear error handling and status codes to facilitate troubleshooting in 
cross-system interactions. 

[D221] Developers SHOULD consider implementing proxy patterns to allow for contract upgrades without 
breaking existing integrations. 

[D222] Smart contracts SHOULD use standardized metadata formats to provide self-descriptive interfaces for 
automated discovery and integration. 

[D223] Contracts SHOULD implement mechanisms to handle potential differences in consensus finality across 
interacting blockchain systems. 

[D224] Developers SHOULD consider implementing state channels or layer-2 solutions that are compatible 
across multiple blockchain platforms. 

[D225] Smart contracts SHOULD use standardized cryptographic primitives to ensure compatibility of security 
mechanisms across systems. 

[D226] Smart Contracts SHOULD implement mechanisms to handle potential differences in transaction speed 
and cost across interacting systems. 

[D227] Developers SHOULD consider implementing cross-chain governance mechanisms for contracts that 
operate across multiple networks. 

[D228] Smart contracts SHOULD use standardized time representations to ensure consistent temporal logic 
across different systems. 

[D229] Smart Contracts SHOULD implement mechanisms to handle potential differences in data privacy 
regulations across interacting jurisdictions. 

[D230] Developers SHOULD consider implementing interoperable storage solutions for managing large datasets 
across multiple systems. 

[D231] Smart contracts SHOULD provide clear documentation of their interoperability features and 
requirements to facilitate integration efforts. 

4.3.9 Threats and Security  

4.3.9.1 Security Aspects of Smart Contracts 

Security in smart contracts involves implementing measures to protect contracts, their assets, and users from 
vulnerabilities, attacks, and unintended behaviours, ensuring they operate safely and reliably in potentially adversarial 
environments. Given their immutable and financial nature, security vulnerabilities in smart contracts can have severe 
consequences, necessitating a multi-layered approach combining rigorous development practices, advanced tools, and 
ongoing vigilance. As technology evolves, so does the need for continual advancement in security measures. Smart 
contracts face security-related limitations due to blockchain characteristics and programming complexities. 
Immutability ensures security against unauthorized changes but bugs are permanent once deployed, requiring rigorous 
testing and auditing beforehand. Their deterministic nature restricts interactions with external systems without oracles, 
introducing risks if compromised. Common vulnerabilities include reentrancy attacks, integer overflows/underflows, 
and access control issues from programming errors or inadequate understanding of blockchain requirements. 
Additionally, the public nature of blockchain data poses privacy challenges; transparency can expose sensitive 
information if not managed properly. Developers should balance transparency with privacy by implementing 
cryptographic techniques and off-chain storage solutions where necessary. By understanding these limitations and 
implementing robust security practices, developers can enhance the resilience of smart contracts against common 
threats while leveraging their benefits for decentralized applications [111], [28], [2]. 

Requirements: 

[R60] Smart contracts SHALL undergo thorough testing and auditing before deployment to identify and 
mitigate potential vulnerabilities. 
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[R61] Smart Contracts SHALL implement secure mechanisms for handling external data inputs through 
decentralized oracle networks. 

[R62] Developers SHALL use safe math libraries or Solidity 0.8.0+ to prevent integer overflow and underflow 
vulnerabilities. 

Recommendations: 

[D232] Developers SHOULD implement formal verification techniques to mathematically prove the correctness 
of critical contract functions. 

[D233] Smart contracts SHOULD use proxy patterns or modular designs to allow for upgrades without 
compromising security. 

[D234] Smart Contracts SHOULD employ privacy-preserving techniques such as zero-knowledge proofs to 
protect sensitive data while maintaining transparency. 

4.3.9.2 Key Aspects 

Some of the Key Aspects that smart contract developers should consider to ensure robust security are listed herewith. 
These key aspects include code integrity to prevent vulnerabilities and logical errors, access control to restrict function 
execution and data modification to authorized parties only, data protection to safeguard sensitive information, asset 
safety to protect digital assets managed by the contract from unauthorized access or theft, and execution integrity to 
ensure the contract performs as intended even in the presence of malicious actors. These aspects collectively form a 
comprehensive security framework for smart contracts, addressing potential vulnerabilities at various levels of contract 
design and operation [111], [122], [169]. 

Requirements: 

[R63] Smart contracts SHALL implement robust mechanisms to ensure code integrity throughout their 
lifecycle. 

[R64] Access control measures SHALL be implemented to restrict function calls and state modifications to 
authorized parties only. 

[R65] Smart Contracts SHALL implement secure data protection mechanisms for handling sensitive 
information. 

[R66] Smart contracts SHALL include measures to protect digital assets from unauthorized access or theft. 

[R67] Execution integrity SHALL be maintained to ensure the contract performs as intended, even under 
adversarial conditions. 

Recommendations: 

[D235] Developers SHOULD use formal verification techniques to mathematically prove the correctness of 
critical contract functions. 

[D236] Smart contracts SHOULD implement Role-Based Access Control (RBAC) for fine-grained permissions 
management. 

[D237] Smart Contracts SHOULD use encryption or off-chain storage solutions for sensitive data that is not to 
be publicly visible. 

[D238] Developers SHOULD implement multi-signature or time-lock mechanisms for high-value transactions or 
critical state changes. 

[D239] Smart contracts SHOULD include circuit breaker mechanisms to pause operations in case of detected 
anomalies. 

[D240] Smart Contracts SHOULD emit events for all significant actions to create an auditable trail of operations. 

[D241] Developers SHOULD conduct regular security audits and penetration testing on smart contracts. 

[D242] Smart contracts SHOULD implement secure random number generation techniques when randomness is 
required. 



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 66 

[D243] Smart Contracts SHOULD use established libraries and patterns (e.g. OpenZeppelin) for common 
security functions. 

[D244] Developers SHOULD implement comprehensive input validation to prevent injection attacks or 
unexpected inputs. 

4.3.9.3 Common Vulnerabilities and Attacks 

4.3.9.3.1 Introduction 

Most smart contracts suffer common vulnerabilities and experience common attacks. These include reentrancy attacks, 
where a malicious contract can repeatedly call back into the vulnerable contract before the first invocation is completed; 
integer overflow/underflow, which can lead to unexpected arithmetic results; front-running, where attackers exploit the 
public nature of transactions for their benefit; access control issues resulting from improperly implemented permissions; 
oracle manipulation, where external data sources are compromised; and Denial of Service (DoS) attacks that prevent the 
contract from functioning by manipulating gas costs or exploiting logic flaws. Understanding these common 
vulnerabilities is crucial for developers to implement effective countermeasures and create more secure smart contracts. 

The following clauses discuss Internal Threats, with emphasis on threats caused by programming errors, and External 
Threats [28], [123], [111]. 

Requirements: 

[R68] Smart contracts SHALL implement protection against reentrancy attacks using established patterns such 
as checks-effects-interactions. 

[R69] Smart Contracts SHALL use safe math libraries or solidity 0.8.0+ to prevent integer overflow and 
underflow vulnerabilities. 

[R70] Smart contracts SHALL implement access control mechanisms to prevent unauthorized access to 
sensitive functions and data. 

[R71] Smart Contracts interacting with oracles SHALL use decentralized oracle networks or implement oracle 
result validation mechanisms. 

Recommendations: 

[D245] Developers SHOULD implement transaction ordering dependencies (e.g. commit-reveal schemes) to 
mitigate front-running attacks. 

[D246] Smart contracts SHOULD include rate limiting and gas limiting mechanisms to prevent DoS attacks. 

[D247] Developers SHOULD use static analysis tools to identify potential vulnerabilities before deployment. 

[D248] Smart Contracts SHOULD implement event monitoring for detecting and responding to suspicious 
activities. 

[D249] Developers SHOULD conduct thorough testing, including fuzzing and symbolic execution, to identify 
potential vulnerabilities. 

[D250] Smart contracts SHOULD use the latest compiler version and enable all relevant security checks. 

[D251] Developers SHOULD implement secure randomness generation techniques when randomness is required 
in the contract. 

[D252] Smart Contracts SHOULD use standardized and audited libraries for common functionalities to reduce 
the risk of vulnerabilities. 

[D253] Developers SHOULD implement proper error handling and revert mechanisms to maintain contract 
integrity during exceptional conditions. 

[D254] Smart contracts SHOULD undergo regular security audits by reputable third-party firms. 
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4.3.9.3.2  Internal Threats  

Internal threats to smart contract security refer to vulnerabilities and risks that originate from within the blockchain 
environment itself, as opposed to external actors or systems. These threats can arise from errors in the smart contract 
code, inadequate access controls, or flaws in the underlying blockchain platform. Common internal threats include 
reentrancy attacks, where a function can be repeatedly called before its previous execution is completed, leading to 
unexpected behaviour or exploitation. Another significant threat is improper handling of integer overflows and 
underflows, which can result in incorrect calculations and potential financial losses. Additionally, inadequate access 
control mechanisms can allow unauthorized users to execute sensitive functions or modify critical data within the 
contract. To mitigate these internal threats, developers should implement rigorous coding standards, conduct thorough 
testing and audits, and use established security patterns such as the checks-effects-interactions pattern to prevent 
reentrancy issues. These measures help ensure that smart contracts are resilient against internal threats by enhancing 
their security posture through careful design and proactive risk management practices [111], [28], [123]. 

Requirements: 

[R72] Smart contracts SHALL implement robust access control mechanisms to restrict function execution and 
data modification to authorized parties only. 

[R73] Developers SHALL use safe math libraries (such as Solidity 0.8.0+) to prevent integer overflow and 
underflow vulnerabilities. 

Recommendations: 

[D255] Developers SHOULD use static analysis tools to identify potential vulnerabilities in the code before 
deployment. 

[D256] Smart contracts SHOULD implement the checks-effects-interactions pattern to prevent reentrancy 
attacks. 

[D257] Regular security audits SHOULD be conducted to identify and address any internal threats or 
vulnerabilities. 

4.3.9.3.3  Smart Contract Programming Errors  

Smart contract programming errors are a significant source of internal vulnerabilities that can lead to various attacks 
and unintended behaviours. These errors often arise from the complexity of smart contract languages, inadequate 
testing, or misunderstanding of blockchain-specific programming paradigms. Common programming errors include 
reentrancy vulnerabilities, where a function can be repeatedly called before its initial execution is completed, leading to 
potential exploits. Integer overflow and underflow errors occur when arithmetic operations exceed the maximum or 
minimum values that can be stored, resulting in incorrect calculations and potential financial losses. Another frequent 
issue is improper access control, allowing unauthorized users to execute sensitive functions or modify critical data 
within the contract. To mitigate these risks, developers should implement rigorous testing protocols, use established 
security patterns such as checks-effects-interactions, and employ static analysis tools to identify potential vulnerabilities 
before deployment. By addressing these programming errors through careful design and robust security practices, 
developers can significantly enhance the security and reliability of smart contracts in blockchain ecosystems [123], 
[111], [28]. 

Requirements: 

[R74] Smart contracts SHALL implement safe math libraries (such as Solidity 0.8.0+) to prevent integer 
overflow and underflow. 

[R75] Contracts SHALL include comprehensive input validation to prevent injection attacks and unexpected 
inputs. 

Recommendations: 

[D258] Developers SHOULD conduct thorough testing, including fuzzing and symbolic execution, to uncover 
potential vulnerabilities. 

[D259] Smart contracts SHOULD use static analysis tools to identify common programming errors before 
deployment. 
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[D260] Regular code reviews and security audits SHOULD be performed to ensure adherence to best practices 
and identify potential issues. 

4.3.9.3.4  External Threats  

External threats to smart contracts arise from interactions with entities outside the blockchain environment, including 
users, oracles, and other external systems. These threats can exploit vulnerabilities in how smart contracts handle 
external inputs or interact with off-chain data sources. One common external threat is oracle manipulation, where 
attackers compromise the data provided by oracles to influence the behaviour of smart contracts. Another significant 
threat is phishing attacks, where malicious actors deceive users into interacting with fraudulent smart contracts. 
Additionally, Denial of Service (DoS) attacks can be executed by overwhelming a contract with transactions, potentially 
leading to increased gas costs or service disruption. To mitigate these external threats, developers should implement 
secure oracle solutions, conduct regular audits of external interactions, and employ robust authentication mechanisms 
for user interactions [2], [28], [161]. 

Requirements: 

[R76] Smart contracts SHALL implement secure mechanisms for handling data from external sources, such as 
decentralized oracle networks. 

[R77] Contracts SHALL include input validation and authentication processes to verify the integrity and 
authenticity of external interactions. 

Recommendations: 

[D261] Developers SHOULD use multi-source oracle solutions to prevent single points of failure and reduce the 
risk of data manipulation. 

[D262] Smart contracts SHOULD implement rate limiting and other protective measures to mitigate the impact 
of potential DoS attacks. 

[D263] Regular security audits SHOULD be conducted to assess vulnerabilities related to external interactions 
and inputs. 

By addressing these requirements and recommendations, smart contract developers can enhance the security posture of 
their contracts against external threats while maintaining robust functionality and user trust. 

4.3.9.4  Advanced Smart Contract Security  

Advanced smart contract security involves implementing sophisticated techniques and methodologies to protect 
contracts from emerging threats and vulnerabilities. As the complexity and adoption of smart contracts grow, so do the 
potential attack vectors. Advanced security measures include formal verification, which uses mathematical proofs to 
ensure the correctness of contract logic, thus preventing common vulnerabilities like reentrancy and integer overflows. 
Another critical aspect is the use of decentralized oracle networks to securely handle external data inputs, reducing the 
risk of data manipulation. Additionally, employing multi-signature wallets and time-lock mechanisms can enhance 
security by requiring multiple approvals for critical transactions, thereby mitigating risks associated with single points 
of failure. As quantum computing advances, integrating quantum-resistant cryptographic algorithms becomes 
increasingly important to protect against future threats. Regular security audits and penetration testing are essential to 
identify and address vulnerabilities proactively. By implementing these advanced security measures, developers can 
significantly enhance the resilience of smart contracts against both current and future threats in an ever-evolving digital 
landscape [159], [72], [2]. 

Requirements: 

[R78] Smart contracts SHALL implement formal verification for critical functions to mathematically prove 
their correctness. 

[R79] Contracts SHALL use decentralized oracle networks for secure handling of external data inputs. 

[R80] Quantum-resistant cryptographic algorithms CAN be integrated when available and appropriate. 
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Recommendations: 

[D264] Developers SHOULD employ multi-signature wallets and time-lock mechanisms for high-value 
transactions. 

[D265] Regular security audits and penetration testing SHOULD be conducted to identify potential 
vulnerabilities. 

[D266] Smart contracts SHOULD use secure random number generation techniques when randomness is 
required. 

4.3.9.5 Security Best Practices and Culture in Smart Contracts 

Security in smart contracts is paramount due to their immutable nature and financial implications, which make 
vulnerabilities potentially severe and irreversible. A robust security framework combines best practices with a strong 
security culture to protect contracts, assets, and users from vulnerabilities and attacks. Implementing security best 
practices involves using proven techniques and methodologies to enhance the robustness of smart contracts. Key 
practices include formal verification, comprehensive testing strategies, rigorous code reviews, and third-party audits. 
Developers should apply the principle of least privilege in access control, design fail-safe defaults for unexpected 
scenarios, implement rate limiting to prevent abuse, use secure upgrade patterns for contract evolution, and maintain 
comprehensive event monitoring for auditing purposes. By adhering to these practices, developers can significantly 
reduce vulnerabilities and create secure smart contracts. Fostering a strong security culture involves continuous learning 
about the latest threats and best practices, implementing bug bounty programs for vulnerability disclosure, developing 
incident response plans, and conducting regular security assessments. This culture ensures that teams are proactive in 
identifying and mitigating risks. Continuous learning programs should be established for team members to stay updated 
on security trends. Bug bounty programs encourage responsible vulnerability disclosure, while incident response plans 
prepare teams for potential breaches. Regular assessments help maintain a high-security posture [72], [101], [151]. 

Requirements: 

[R81] Smart contracts SHALL undergo formal verification for critical functions to mathematically prove their 
correctness. 

[R82] Comprehensive testing suites SHALL be implemented, covering unit, integration, and scenario-based 
tests. 

[R83] Smart contracts SHALL be subject to both internal code reviews and external security audits before 
deployment. 

[R84] The principle of least privilege SHALL be applied in designing access control mechanisms for smart 
contracts. 

[R85] Development teams SHALL establish and maintain a continuous learning program focused on smart 
contract security. 

[R86] Smart contract projects SHALL implement and maintain an incident response plan for security breaches. 

[R87] Regular security assessments and penetration testing SHALL be conducted on all deployed smart 
contracts. 

Recommendations: 

[D267] Organizations SHOULD implement bug bounty programs to encourage the responsible disclosure of 
vulnerabilities in their smart contracts. 

[D268] Developers SHOULD participate in security-focused workshops, conferences, and training programs to 
stay updated on the latest security threats and mitigation techniques. 

[D269] Smart contract teams SHOULD conduct regular security drills to test and improve their incident response 
capabilities. 

[D270] Organizations SHOULD foster a culture of security awareness among all team members involved in 
smart contract development and management. 
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[D271] Development teams SHOULD implement a secure code review process, including peer reviews and 
automated security analysis tools. 

[D272] Smart contract projects SHOULD maintain comprehensive documentation of security practices, incident 
response procedures, and lessons learned from past security incidents. 

[D273] Organizations SHOULD consider engaging external security auditors for regular third-party assessments 
of their smart contract systems. 

[D274] Developers SHOULD implement fail-safe defaults to ensure graceful handling of unexpected scenarios. 

[D275] Smart contracts SHOULD include rate limiting mechanisms to prevent abuse and potential DoS attacks. 

[D276] Upgradeable contracts SHOULD use secure upgrade patterns, such as proxy patterns, to allow for future 
improvements. 

[D277] Comprehensive event monitoring SHOULD be implemented for all significant contract actions to 
facilitate security auditing. 

[D278] Developers SHOULD use automated analysis tools to identify potential vulnerabilities during the 
development process. 

[D279] Smart contracts SHOULD implement input validation for all external data to prevent injection attacks. 

[D280] Developers SHOULD follow the checks-effects-interactions pattern to prevent reentrancy vulnerabilities. 

[D281] Smart Contracts SHOULD use standardized and audited libraries (e.g. OpenZeppelin) for common 
functionalities. 

[D282] Developers SHOULD implement secure random number generation techniques when randomness is 
required. 

[D283] Smart Contracts SHOULD undergo regular security assessments and penetration testing throughout their 
lifecycle. 

4.3.9.6 Tools and Techniques 

The Tools and Techniques listed herewith focus on the various software tools and methodologies used to enhance the 
security of smart contracts throughout their lifecycle. These include static analysis tools that scan code for known 
vulnerabilities and patterns, dynamic analysis tools that test contracts in simulated environments, fuzzing techniques 
that use invalid or random data as inputs to uncover potential issues, formal verification tools for mathematically 
proving contract properties, and specialized security frameworks designed for smart contracts. These tools and 
techniques collectively provide a comprehensive approach to identifying vulnerabilities, ensuring correct behaviour, 
and strengthening the overall security posture of smart contracts [37], [52], [111]. Examples of such tools and 
techniques are described in clause A.1.1.3. 

Requirements: 

[R88] Smart contract developers SHALL use static analysis tools to identify potential vulnerabilities before 
deployment. 

[R89] Dynamic analysis SHALL be performed on smart contracts to identify runtime issues in simulated 
environments. 

[R90] Formal verification tools SHALL be used for critical smart contract functions to mathematically prove 
their correctness. 

Recommendations: 

[D284] Developers SHOULD use fuzzing techniques to test smart contracts with unexpected or random inputs. 

[D285] Smart contract security frameworks SHOULD be utilized to implement standardized security patterns 
and best practices. 

[D286] Continuous integration pipelines SHOULD include automated security checks using various analysis 
tools. 
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[D287] Developers SHOULD use symbolic execution tools to explore multiple execution paths in smart 
contracts. 

[D288] Smart contracts SHOULD undergo regular security audits using a combination of automated tools and 
manual expert review. 

[D289] Developers SHOULD use gas analysis tools to optimize contract efficiency and prevent potential DoS 
vulnerabilities. 

[D290] Mutation testing SHOULD be employed to evaluate the effectiveness of the contract's test suite. 

[D291] Smart contracts SHOULD be tested on testnets that closely mimic mainnet conditions before final 
deployment. 

[D292] Developers SHOULD use tools that analyse contract dependencies and their potential security 
implications. 

[D293] Version control systems SHOULD be used in conjunction with security tools to track and manage 
security-related changes over time. 

4.3.9.7 Regulatory and Compliance Considerations 

To emphasize the importance of adherence to relevant regulations, such as data protection laws (e.g. GDPR) and 
financial regulations for contracts dealing with assets or financial services. This clause highlights the need to maintain 
comprehensive and tamper-proof audit logs for regulatory compliance. Recent research underscores the growing 
importance of regulatory compliance in smart contract development, particularly in areas like privacy preservation and 
financial services integration [3], [21], [140]. 

Requirements: 

[R91] Smart contract developers SHALL ensure adherence and compliance with relevant regulations and 
maintain appropriate audit trails. 

Recommendations: 

[D294] Developers SHOULD implement privacy-preserving techniques such as zero-knowledge proofs for 
sensitive data when required. 

[D295] Smart contracts SHOULD be designed to minimize the storage of personally identifiable information on-
chain. 

[D296] Contracts SHOULD implement comprehensive event logging to facilitate thorough auditing. 

4.3.9.8  Emerging Security Challenges 

Today's emerging security challenges in smart contracts include: quantum computing threats, cross-chain security, and 
privacy-preserving techniques. Smart Contract developers need to prepare for potential vulnerabilities introduced by 
quantum computing advancements, address security challenges in cross-chain interactions and interoperability 
scenarios, and implement advanced privacy technologies such as zero-knowledge proofs in a secure manner. These 
emerging challenges, and additional ones that may arise, require ongoing research and development of new security 
paradigms to ensure the long-term viability and security of smart contract systems in an evolving technological 
landscape [83], [159], [161]. 

Requirements: 

[R92] Smart contracts SHALL implement quantum-resistant cryptographic algorithms when available and 
appropriate. 

[R93] Cross-chain interactions SHALL be secured using robust verification mechanisms and protocols. 

[R94] Privacy-preserving techniques SHALL be implemented in compliance with relevant data protection 
regulations. 
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Recommendations: 

[D297] Developers SHOULD stay informed about advancements in post-quantum cryptography and plan for 
future integration. 

[D298] Smart contracts SHOULD implement modular designs to facilitate easier upgrades of cryptographic 
components. 

[D299] Cross-chain communication protocols SHOULD be regularly audited and updated to address new 
security vulnerabilities. 

[D300] Contracts SHOULD use zero-knowledge proofs or secure multi-party computation when handling 
sensitive data across multiple chains. 

[D301] Developers SHOULD implement and regularly update privacy-enhancing technologies to protect user 
data in smart contracts. 

[D302] Smart contracts SHOULD include mechanisms for graceful degradation or shutdown in case of critical 
vulnerabilities discovered in underlying cryptographic primitives. 

4.3.9.9  Security by design 

4.3.9.9.1  The importance of Security in the design phase of smart contracts 

Security is paramount in smart contract design, as vulnerabilities can lead to significant financial losses and 
compromise the integrity of the entire system. Implementing robust security measures is essential to protect against 
various attack vectors and ensure the contract's reliable operation. The topic of security is discussed in depth earlier in 
the present document in clause 4.3.9. The following text provides a summary and lists requirements and 
recommendations with the context of smart contract design practices. 

4.3.9.9.2  Access Control 

Implementing proper access control mechanisms is crucial to ensure that only authorized parties can execute sensitive 
functions or modify critical state variables. Role-Based Access Control (RBAC) and capability-based systems can 
provide fine-grained control over contract interactions, minimizing the risk of unauthorized access [175]. 

[R95] Smart contracts SHALL implement robust access control mechanisms. 

[D303] Role-Based Access Control (RBAC) SHOULD be used for fine-grained permissions management. 

4.3.9.9.3  Input Validation 

Thorough input validation is essential to prevent malicious or erroneous inputs from compromising the contract's 
integrity. This includes checking for expected data types, ranges, and formats, as well as implementing safeguards 
against common attack vectors like integer overflow/underflow [72]. 

[R96] All inputs to smart contracts SHALL be thoroughly validated. 

[D304] Contracts SHOULD implement checks for expected data types, ranges, and formats. 

4.3.9.9.4  Reentrancy Protection 

Reentrancy attacks are a type of vulnerability in smart contracts where an external malicious contract can repeatedly 
call back into the vulnerable contract before the first invocation is completed, potentially draining funds or manipulating 
the contract's state in unintended ways. This occurs when the contract sends funds or control to an external address 
before updating its own state, allowing the attacker to re-enter the contract and exploit the inconsistent state. Reentrancy 
attacks gained notoriety after the 2016 DAO hack on the Ethereum network and remain a significant security concern in 
smart contract development, necessitating careful design patterns and safeguards to prevent such vulnerabilities. 
Implementing the checks-effects-interactions pattern and using reentrancy guards can help prevent these vulnerabilities 
[119]. 

[D305] Developers SHOULD be particularly cautious when interacting with external contracts or transferring 
funds. 
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4.3.9.9.5  Gas Limitations and Denial of Service 

[D306] Smart contracts SHOULD be designed to operate within gas limits to prevent denial of service attacks.  

This includes avoiding unbounded loops, implementing efficient data structures, and considering the gas costs of all 
operations. Proper error handling for out-of-gas scenarios is also crucial [31]. 

4.3.9.9.6  Upgradability and Modularity 

Implementing upgradable patterns and modular design can enhance security by allowing for bug fixes and 
improvements without compromising the entire system.  

[R97] Upgradability mechanisms SHALL be carefully secured to prevent unauthorized modifications [93]. 

4.3.9.9.7  Formal Verification 

Formal verification techniques can provide mathematical proof of a contract's correctness and security properties. While 
complex, these methods offer a high degree of assurance and can catch subtle vulnerabilities that might be missed by 
traditional testing approaches [102]. 

4.3.9.9.8  External Calls and Interactions 

[R98] When interacting with external contracts or oracles, developers SHALL consider potential malicious 
behaviour or failures.  

Implementing proper checks before and after external calls, using pull payment patterns, and carefully managing trust 
assumptions are essential for secure inter-contract communications [111]. 

4.3.9.9.9 Error Handling 

[R99] Smart contracts SHALL implement comprehensive error handling mechanisms. 

[D307] Contracts SHOULD gracefully handle exceptions and provide clear error messages. 

4.3.10 Reusability  

4.3.10.1  Definition 

Reusability in smart contracts refers to the property that allows contract code, or parts of it, to be used multiple times in 
different contexts or applications. This concept promotes efficiency, consistency, and reliability in smart contract 
development. Reusability is a powerful concept in smart contract development that can significantly enhance efficiency, 
reliability, and standardization. By creating modular, well-designed, and thoroughly tested components, developers can 
build more robust and cost-effective smart contract systems. As the field matures, the importance of reusability is likely 
to grow, with increasing emphasis on creating and maintaining high-quality, reusable smart contract components and 
libraries. This trend will contribute to the overall maturation and professionalization of smart contract development 
practices [93]. 

4.3.10.2  Key Aspects 

Key aspects of reusability include modularity, standardization, parameterization, and libraries. These aspects contribute 
to security by allowing focused security audits on individual components and promoting the use of well-tested, 
standardized code [177]. 

1) Modularity: Designing contracts as composable modules that can be easily integrated into various systems. 

2) Standardization: Adhering to common interfaces and patterns to ensure compatibility and ease of integration. 

3) Parameterization: Creating flexible contracts that can be customized through parameters without changing 
the core code. 

4) Libraries: Developing and utilizing reusable libraries of common functionalities. 
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4.3.10.3  Importance 

Reusability is important for development efficiency, code quality, consistency, and cost-effectiveness. From a security 
perspective, reusable components that have undergone thorough security testing can help reduce the overall attack 
surface [i.32]. 

1) Development Efficiency: Reduces development time and effort by leveraging pre-existing, tested code. 

2) Code Quality: Reusable components tend to be more thoroughly tested and refined over time. 

3) Consistency: Promotes consistent implementation of common functionalities across different projects. 

4) Cost-Effectiveness: Reduces deployment costs by sharing common code across multiple contracts. 

4.3.10.4  Implementation Strategies 

Implementation strategies include contract templates, inheritance, library contracts, and factory patterns. These 
strategies can enhance security by promoting the use of well-tested code structures and patterns [175]. 

1) Contract Templates: Creating generalized contract structures that can be customized for specific use cases. 

2) Inheritance: Utilizing contract inheritance to extend and customize base contracts. 

3) Library Contracts: Developing separate library contracts that contain reusable functions. 

4) Factory Patterns: Implementing factory contracts to create and deploy customized instances of contracts. 

4.3.10.5  Challenges 

Challenges in reusability include complexity management, version control, security considerations, and gas 
optimization. These challenges can impact security if not properly addressed, potentially introducing vulnerabilities or 
inefficiencies [31]. 

1) Complexity Management: Balancing generalization and specificity to maintain usability across different 
contexts. 

2) Version Control: Managing different versions of reusable components and ensuring compatibility. 

3) Security Considerations: Ensuring that reusable components are secure across various implementation 
contexts. 

4) Gas Optimization: Balancing reusability with gas efficiency, especially for frequently used functions. 

4.3.10.6  Best Practices 

Best practices include clear documentation, extensive testing, semantic versioning, and using design patterns. These 
practices contribute to security by ensuring that reusable components are well-understood, thoroughly tested, and 
properly maintained [72]. 

1) Clear Documentation: Providing comprehensive documentation for reusable components, including usage 
guidelines and limitations. 

2) Extensive Testing: Thoroughly testing reusable components across various scenarios and use cases. 

3) Semantic Versioning: Implementing clear versioning strategies for reusable contracts and libraries. 

4) Design Patterns: Utilizing established design patterns that promote reusability, such as the proxy pattern for 
upgradeable contracts. 

5) Community Standards: Adhering to community-developed standards (e.g. ERC standards in Ethereum) to 
enhance interoperability and reusability. 
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4.3.10.7  Examples of Reusable Components 

Examples of Reusability include token standards, access control modules, math libraries, and governance modules. 
These components can enhance security by providing standardized, well-tested implementations of common 
functionalities [148]. This below list of references provides insights into the implementation, benefits, and challenges of 
using reusable components in smart contract development: 

1) Token Standards: Liu, Y., Lu, Q., Xu, X., Zhu, L., & Yao, H. discuss various design patterns in smart 
contracts, including the implementation of token standards like ERC-20 [46] and ERC-721 [44] as reusable 
components [93]. 

2) Access Control Modules: Zhu, Y., Qin, Y., Zhou, Z., Song, X., Liu, G., & Chu, W. C. C. present a 
framework for digital asset management using blockchain, featuring reusable access control modules based on 
attribute-based access control [175]. 

3) Math Libraries: An article written by Chen, T., Li, X., Luo, X., & Zhang, X. primarily focused on 
optimization, discusses the importance of efficient math libraries in smart contracts and their impact on gas 
costs [31]. 

4) Governance Modules: Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., & Wang, F. Y. wrote a 
comprehensive review that includes discussion on governance modules as reusable components in smart 
contract ecosystems [148]. 

5) Standard Interfaces: Groce, A., Zhang, Y., & Dziuban, S. introduce the concept of polymorphic smart 
contracts, which rely heavily on standard interfaces as reusable components [i.32]. 

6) Utility Functions: Zou, W., Lo, D., Kochhar, P. S., Le, X. B. D., Xia, X., Feng, Y., ... & Xu, B. conducted a 
comprehensive survey where they discuss various aspects of smart contract development, including the use of 
utility functions as reusable components [177]. 

7) Security Patterns: Huang, Y., Bian, Y., Li, R., Zhao, J. L., & Shi, P. wrote a paper presenting a lifecycle 
approach to smart contract security, discussing various security patterns that can be implemented as reusable 
components [72]. 

8) Oracle Interfaces: Al-Breiki, H., Rehman, M. H. U., Salah, K., & Svetinovic, D. discuss blockchain oracles, 
including standardized interfaces for oracle integration as reusable components in smart contracts [2].  

4.3.10.8  Future Trends 

Future trends in Reusability include cross-platform reusability, AI-assisted reusability, and ecosystem-specific libraries. 
These trends may impact security by introducing new ways to create and verify reusable components across different 
blockchain environments. 

Included here are research papers discussing such future trends. 

1) Cross-Platform Reusability: Belchior, R., Vasconcelos, A., Guerreiro, S., & Correia, M. conducted a 
comprehensive survey discussing blockchain interoperability, including the development of cross-platform 
smart contracts and reusable components that can operate across different blockchain environments [14]. 

2) AI-Assisted Reusability: ETSI GS PDL 032 [i.30] explores the integration of AI with blockchain technology, 
including the potential for AI to assist in creating and optimizing reusable smart contract components. 

3) Ecosystem-Specific Libraries: Zheng, Z., Xie, S., Dai, H. N., Chen, W., Chen, X., Weng, J., & Imran, M. 
discuss the development of specialized smart contract platforms and the potential for ecosystem-specific 
component libraries [169]. 

4) Automated Code Generation: Chakraborty, P., Shahriyar, R., Iqbal, A., & Bosu, A. discuss emerging 
practices in blockchain software development, including the potential for automated code generation of 
reusable components [25]. 

5) Formal Verification for Reusable Components: Grishchenko, I., Maffei, M., & Schneidewind, C. discuss 
advanced static analysis techniques for smart contracts, which could be applied to ensure the correctness and 
security of reusable components [52]. 
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6) Dynamic Component Composition: Liu, Y., Lu, Q., Xu, X., Zhu, L., & Yao, H. focused on current design 
patterns, however this paper also touches on future trends in smart contract composition, including more 
dynamic approaches to combining reusable components [93]. 

7) Self-Evolving Smart Contracts: Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., ... & Rimba, P. 
discuss the potential for self-adaptive and self-evolving smart contracts, which could lead to new paradigms in 
reusable component design [156]. 

These papers provide insights into emerging trends and future directions in smart contract reusability, covering various 
aspects of technological advancement and cross-platform integration [95]. 

4.3.10.9 Requirements and Recommendations 

[R100] Smart contracts SHALL implement standardized interfaces for common functionalities to ensure 
interoperability and reusability. 

[R101] Reusable components SHALL undergo thorough security audits before being approved for widespread 
use. 

[R102] Version control systems SHALL be used to manage different versions of reusable components. 

[R103] Smart contracts SHALL include clear documentation for all reusable components, including usage 
guidelines and limitations. 

[R104] Reusable components SHALL adhere to established coding standards and best practices within the 
specific blockchain ecosystem. 

[D308] Developers SHOULD use established libraries and design patterns for common functionalities to reduce 
the risk of security vulnerabilities and improve reusability. 

[D309] Smart contract systems SHOULD implement a modular architecture to enhance maintainability, 
reusability, and security. 

[D310] Organizations SHOULD maintain a curated library of secure, reusable components specific to their 
ecosystem. 

[D311] Developers SHOULD implement comprehensive unit tests for all reusable components to ensure their 
security and functionality. 

[D312] Smart contracts SHOULD use inheritance and composition patterns to promote code reuse while 
maintaining security. 

[D313] Development teams SHOULD regularly review and update reusable components to address newly 
discovered vulnerabilities or improvements in best practices. 

[D314] Organizations SHOULD establish a process for vetting and approving third-party libraries and 
components before integration into smart contracts. 

[D315] Developers SHOULD consider implementing parameterized designs for reusable components to enhance 
their flexibility and applicability across different contexts. 

[D316] Smart contract platforms SHOULD provide tools and frameworks that facilitate the creation and 
management of reusable components. 

[D317] Developers SHOULD implement clear error handling and fallback mechanisms in reusable components 
to ensure robustness in various usage scenarios. 

[D318] Organizations SHOULD encourage knowledge sharing and documentation of best practices for creating 
and using reusable components. 

[D319] Developers SHOULD consider cross-platform compatibility when designing reusable components to 
enhance their utility across different blockchain environments. 

[D320] Smart contract auditors SHOULD pay special attention to the integration and usage of reusable 
components during security reviews. 
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[D321] Development teams SHOULD stay informed about emerging trends in smart contract reusability, such as 
AI-assisted development and dynamic composition techniques. 

[D322] Organizations SHOULD implement governance processes for managing the lifecycle of reusable 
components, including deprecation and replacement strategies. 

4.3.11 Composability and Contract Interactions 

Composability in smart contracts refers to the ability to combine various contract components and functionalities to 
create more complex and integrated Decentralized Applications (DApps). This property is essential for building 
sophisticated blockchain systems where multiple contracts can interact seamlessly, allowing developers to leverage 
existing functionalities and create new applications without starting from scratch. Composability enhances the 
modularity and reusability of smart contracts, enabling developers to build on top of existing protocols and integrate 
with other services. This capability is crucial for the growth of Decentralized Finance (DeFi) and other blockchain 
ecosystems, where different protocols need to interact efficiently. However, composability also introduces challenges 
related to security, interoperability, and dependency management, as interactions between contracts can create 
vulnerabilities if not properly managed [14], [161]. 

Requirements: 

[R105] Smart contracts SHALL implement standardized interfaces to ensure compatibility and interoperability 
with other contracts. 

[R106] Cross-contract interactions SHALL be designed to maintain security and prevent vulnerabilities such as 
reentrancy attacks. 

[R107] Contracts SHALL include mechanisms for managing dependencies and ensuring consistent execution 
across interactions. 

Recommendations: 

[D323] Developers SHOULD use modular design patterns to facilitate composability and ease of integration with 
other contracts. 

[D324] Smart contracts SHOULD implement thorough testing for all interaction pathways to identify potential 
vulnerabilities or failures. 

[D325] Developers SHOULD leverage existing libraries and frameworks that provide secure composability 
features to enhance reliability. 

[D326] Contracts SHOULD emit events for significant interactions to provide an audit trail and facilitate 
monitoring of contract activities. 

[D327] Developers SHOULD consider implementing fallback mechanisms to handle failures in cross-contract 
interactions gracefully. 

4.4 Storage  

4.4.1  Introduction 

Storage in smart contracts refers to the mechanism by which contract data is persistently stored on the blockchain. 
Efficient storage management is crucial for the performance, cost-effectiveness, and scalability of smart contracts. 
Effective storage management is crucial for creating efficient, cost-effective, and scalable smart contracts. Developers 
should carefully consider storage strategies, balancing factors such as cost, performance, security, and scalability based 
on the specific requirements of their application. 
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4.4.2  Types of Storage 

4.4.2.1 On-Chain Storage 

On-Chain Storage refers to the method of storing data directly on the blockchain as part of the smart contract's state. 
This data is distributed across all nodes in the network, ensuring high levels of security, immutability, and transparency. 
Every piece of information stored on-chain is subject to consensus mechanisms and is permanently recorded in the 
blockchain's history. While on-chain storage provides the highest level of trust and data integrity, it comes with 
significant trade-offs. It is typically more expensive in terms of transaction costs (gas fees in systems like Ethereum), 
has limited capacity due to block size restrictions, and can lead to scalability issues as the blockchain grows. On-chain 
storage is best suited for critical data that requires the full security and transparency guarantees of the blockchain, such 
as ownership records, token balances, or crucial contract parameters. Developers should carefully consider the balance 
between the benefits of on-chain storage and its associated costs and limitations when designing smart contracts. Wang, 
S., Ouyang, L., Yuan, Y., Ni, X., Han, X., & Wang, F. Y. provide a comprehensive overview of smart contract 
architectures, including different storage types. The papers discuss the distinctions between on-chain and off-chain 
storage, their respective use cases, and the trade-offs involved [148]. 

4.4.2.2  Off-Chain Storage 

Off-Chain Storage in smart contracts refers to the practice of storing data externally to the blockchain, with only 
references or cryptographic hashes of the data stored on-chain. This approach addresses the limitations of on-chain 
storage by offering lower costs, higher capacity, and improved scalability. Off-chain storage also addresses the issue of 
storing confidential data on a public ledger. Off-chain storage can utilize various external systems, such as distributed 
file systems (e.g. IPFS), traditional databases, or specialized off-chain storage solutions. While it provides greater 
flexibility and efficiency, especially for large datasets or frequently changing information, off-chain storage introduces 
additional complexity and potential security considerations. It requires careful design to maintain data integrity and 
availability, often involving mechanisms to verify the off-chain data's authenticity using the on-chain references [157]. 

4.4.2.3 Requirements and Recommendations 

[R108] Smart contracts SHALL clearly distinguish between on-chain and off-chain storage mechanisms. 

[D328] Developers SHOULD carefully consider the trade-offs between on-chain and off-chain storage based on 
the specific needs of their application. 

[D329] Contracts SHOULD use on-chain storage for critical data that requires immediate availability and 
consensus. 

[D330] Off-chain storage SHOULD be considered for large datasets or frequently changing information. 

4.4.3  Storage Mechanisms 

4.4.3.1  State Variables 

State variables in smart contracts are permanent storage variables declared within the contract that persist across 
multiple function calls and transactions. These variables represent the contract's state and are stored directly on the 
blockchain, making them accessible to all contract functions. State variables can be of various data types, including 
primitives (like integers, booleans, addresses) and more complex types (such as structs, arrays, or mappings). They are 
typically used to store critical contract data, such as ownership information, token balances, or configuration 
parameters. Each state variable occupies one or more storage slots, depending on its size, and writing to these variables 
incurs gas costs. Efficient use of state variables is crucial for optimizing contract performance and minimizing 
transaction costs, as their values are maintained throughout the contract's lifetime and are subject to consensus 
mechanisms of the blockchain network. 
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4.4.3.2  Mappings 

Mappings in smart contracts are key-value pair data structures that provide efficient storage and retrieval of data. They 
function similarly to hash tables, allowing for quick lookups based on a unique key. Mappings are particularly useful 
for associating addresses (keys) with balances (of currency, tokens or other assets), storing user data, or managing 
relationships between different entities within the contract. Unlike arrays, mappings do not have a length or concept of 
iteration over all elements, and they automatically initialize all possible keys with default values. This makes mappings 
gas-efficient for large sets of data where not all keys are used. However, developers should be mindful that mapping 
data is not iterable by default and requires additional structures if enumeration is needed. Mappings are a fundamental 
tool for organizing and accessing data in smart contracts, offering a balance between efficiency and functionality. Zhu, 
Y., Qin, Y., Zhou, Z., Song, X., Liu, G., & Chu, W. C. C. explore various storage mechanisms in the context of digital 
asset management on blockchain [175]. The papers discuss different data structures like mappings and arrays, which are 
key components of the storage mechanisms mentioned in this clause. 

4.4.3.3  Arrays 

Arrays in smart contracts are ordered collections of data elements of the same type, providing a way to store and 
manage multiple values under a single variable name. They can be fixed-size or dynamic, allowing for flexibility in data 
storage. Arrays are useful for maintaining lists, such as user addresses, transaction records, or any sequence of related 
data. Unlike mappings, arrays have a defined length and support iteration, making them suitable for scenarios requiring 
ordered data or when the need to loop through all elements is important. However, arrays can be less gas-efficient than 
mappings for large datasets, especially when elements are frequently added or removed, as these operations can be 
costly in terms of gas consumption. Developers should carefully consider the trade-offs between arrays and other data 
structures based on their specific use case, particularly in terms of gas costs and required functionality. 

4.4.3.4  Structs 

Structs in smart contracts are custom data types that allow developers to group related data elements together, creating 
more complex and organized data structures. They provide a way to encapsulate multiple variables of different types 
into a single unit, making it easier to manage and manipulate related information as a cohesive entity. Structs are 
particularly useful for representing complex objects or entities within a contract, such as user profiles, voting records, or 
financial instruments. They enhance code readability and maintainability by logically organizing related data fields. 
Structs can be used as standalone variables, as elements in arrays, or as values in mappings, offering flexibility in how 
data is structured and accessed within the contract. While structs provide powerful organizational capabilities, 
developers should be mindful of gas costs when working with large or nested struct data, especially in storage 
operations. 

4.4.3.5 Requirements and Recommendations 

[R109] Smart contracts SHALL implement appropriate storage mechanisms (state variables, mappings, arrays, 
structs) based on the data structure and access patterns required. 

[D331] Developers SHOULD use mappings for key-value pairs with quick lookups. 

[D332] Arrays SHOULD be used for ordered lists that require iteration. 

[D333] Structs SHOULD be used for grouping related data. 

[D334] Developers SHOULD consider gas costs when choosing between different storage mechanisms. 

4.4.4  Storage Optimization Techniques 

4.4.4.1 General discussion 

A paper by Chen, T., Li, X., Luo, X., & Zhang, X. focuses on the optimization of smart contracts, including storage 
optimization techniques. It discusses the impact of poorly optimized storage on gas costs [31]. 
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4.4.4.2  Data Packing 

Data Packing in smart contracts refers to the technique of combining multiple smaller variables into a single storage slot 
to optimize storage usage and reduce gas costs. This method takes advantage of the fact that storage in blockchain 
systems like Ethereum is organized in 32-byte slots. By carefully arranging and packing multiple variables that 
collectively fit within 32 bytes into a single slot, developers can significantly reduce the number of storage operations 
and, consequently, the gas costs associated with storing and retrieving data. This technique is particularly effective for 
variables that are frequently used together or for storing multiple small-sized pieces of information efficiently. 

4.4.4.3  Lazy Loading 

Lazy Loading in smart contracts is a storage optimization technique that involves loading data only when it is needed, 
rather than pre-emptively storing or retrieving all data. This approach reduces unnecessary storage operations and 
associated gas costs. By deferring the loading of data until it is required for execution, lazy loading can significantly 
improve contract efficiency, especially when dealing with large datasets or complex data structures. This technique is 
particularly useful in scenarios where certain data may not be accessed in every transaction, allowing for more 
cost-effective and performant smart contract operations. 

4.4.4.4  Deletion and Cleanup 

Deletion and Cleanup in smart contracts refers to the process of managing obsolete or unnecessary data to optimize 
storage usage and reduce costs. However, this concept presents a challenge when considering PDL data immutability. 
True deletion is not possible on most DLT/PDL systems, as historical data remains part of the immutable ledger. 
Instead, smart contracts implement "logical deletion" where data is marked as deleted or archived but remains on the 
ledger. This approach allows applications to treat the data as if it were deleted while preserving the blockchain's 
integrity. Developers can implement mechanisms to identify and logically remove unnecessary data, potentially earning 
gas refunds in some DLT/PDL systems. Care should be taken to ensure that critical historical data is not lost and that 
the cleanup process itself is gas efficient. Balancing the need for data management with the principle of immutability 
requires careful design and consideration of the specific use case and regulatory requirements. 

4.4.4.5 Requirements and Recommendations 

Requirements: 

[R110] Smart contracts SHALL implement storage optimization techniques to minimize gas costs and improve 
efficiency. 

Recommendations: 

[D335] Developers SHOULD use data packing techniques to combine multiple smaller variables into a single 
storage slot. 

[D336] Lazy loading SHOULD be implemented for data that is not always needed. 

[D337] Contracts SHOULD include mechanisms for data cleanup and deletion when information is no longer 
needed. 

4.4.5  Cost Considerations 

4.4.5.1  Gas Costs 

Gas costs in smart contracts refer to the computational expenses associated with executing operations, particularly those 
involving storage. Understanding and optimizing these costs is crucial for efficient contract design. Storage operations, 
such as writing or modifying state variables, are among the most expensive in terms of gas consumption. Developers 
should carefully consider the frequency and necessity of storage operations, using techniques like data packing, lazy 
loading, and efficient data structures to minimize gas usage. Optimizing gas costs not only reduces transaction fees for 
users but also improves the overall efficiency and scalability of the contract. It is essential to balance the need for data 
persistence with the economic implications of frequent storage updates. This topic is discussed in greater depth in 
clause 10 herewith. 
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4.4.5.2  Storage Refunds 

Storage Refunds in some blockchain systems refer to a mechanism that incentivizes the freeing up of storage space by 
offering a partial refund of gas costs. However, this concept needs to be understood within the context of blockchain 
data immutability. In blockchain systems, true deletion of data is not possible due to the immutable nature of the ledger. 
Instead, when a smart contract "frees up" storage: 

• The data is not actually deleted from the blockchain's history. 

• The storage slot is marked as available for future use, potentially by overwriting it with new data in a manner 
that does not break the consistency of the ledger (the topic of redaction is discussed in ETSI 
GR PDL 018 [i.20]. 

• The current state of the blockchain reflects this change, but the historical data remains accessible through past 
blocks. 

When a transaction frees up storage in this manner, the system provides a refund to the transaction sender. This refund 
is calculated based on the amount of storage freed and is typically capped at a certain percentage of the total gas used in 
the transaction. The purpose of this mechanism is to encourage developers and users to efficiently manage contract 
storage, helping to control the growth of the blockchain's state size. However, it is important to note that: 

• Storage refunds are subject to specific rules and limitations that can vary between different blockchain systems 
or protocol upgrades. 

• The refund does not imply deletion of historical data, which remains part of the immutable blockchain. 

• Developers should consider storage refunds as part of their overall gas optimization strategy, but should not 
rely on them as a primary means of cost reduction. 

• When designing contracts that may need to "remove" data, developers should implement logical deletion 
patterns that mark data as inactive rather than attempting to truly delete it. 

In summary, while storage refunds provide an economic incentive for efficient storage management, they operate within 
the constraints of blockchain immutability and should be approached with a clear understanding of their limitations and 
implications. 

4.4.5.3 Requirements and Recommendations 

[R111] Smart contract developers SHALL consider gas costs in their storage design and implementation. 

[D338] Developers SHOULD optimize storage operations to minimize gas costs. 

[D339] Contracts SHOULD implement storage refund mechanisms where appropriate to incentivize state 
cleanup. 

4.4.6  Storage Data Security 

4.4.6.1  Access Control 

Implementing proper access controls for storage variables is a critical aspect of smart contract security and functionality 
[111]. Access control mechanisms ensure that only authorized entities can read from or write to specific storage 
variables within a contract. This is typically achieved using modifiers, function-level restrictions, and role-based access 
control patterns. Developers should carefully define and enforce permissions for each storage variable, considering who 
should be able to modify the data and under what circumstances. This may involve using ownership patterns, 
multi-signature schemes, or more complex governance models for critical variables. Proper access control helps prevent 
unauthorized modifications, protects sensitive data, and maintains the integrity of the contract's state. It is important to 
note that while access controls can restrict direct modifications to storage variables, the data itself remains visible on the 
blockchain due to its transparent nature. Therefore, access control should be complemented with other security 
measures, such as encryption or off-chain storage solutions, for truly sensitive information. Regular audits and testing of 
access control mechanisms are essential to ensure they continue to meet the contract's security requirements as the 
system evolves. The topic of smart contract security is covered in depth in clause 4.3.9 herewith. 
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A paper by Praitheeshan, P., Pan, L., Yu, J., Liu, J., & Doss, R. surveys [72] various security aspects of smart contracts, 
including those related to storage. It discusses access control and data integrity. 

4.4.6.2  Data Integrity 

Data Integrity in smart contracts refers to the measures and techniques implemented to ensure that stored data remains 
accurate, consistent, and unaltered throughout its lifecycle. This is crucial for maintaining the reliability and 
trustworthiness of the contract's operations. Key aspects of data integrity include input validation to prevent invalid or 
malicious data from being stored, access control to restrict unauthorized modifications, and the use of cryptographic 
techniques such as hashing to verify data has not been tampered with. Smart contracts should also implement checks 
and balances to maintain consistency across related data points, especially when multiple storage variables are 
interdependent. In some cases, using events to log state changes can provide an additional layer of verification. 
Developers should also consider the implications of contract upgrades on data integrity, ensuring that any changes to 
the contract's logic do not inadvertently compromise existing data. Regular audits and thorough testing of data 
manipulation functions are essential to maintain high standards of data integrity in smart contract systems. 

4.4.6.3 Requirements and Recommendations 

[R112] Smart contracts SHALL implement robust access control mechanisms for storage variables. 

[R113] Contracts SHALL ensure data integrity for all stored information. 

[D340] Developers SHOULD use role-based access control for managing storage permissions. 

[D341] Contracts SHOULD implement checks and balances to maintain consistency across related data points. 

[D342] Event logging SHOULD be used to track significant state changes. 

4.4.7  Advanced Storage Patterns 

4.4.7.1 Architectural Patterns 

A paper by Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., ... & Rimba, P. presents a taxonomy of 
blockchain-based systems, including advanced architectural patterns [156]. Some of these patterns relate to storage, 
such as off-chain storage solutions and data structures like Merkle trees. 

4.4.7.2 Eternal Storage 

Eternal Storage is an advanced storage pattern that separates the storage logic from the main contract logic, enhancing 
upgradeability and data persistence in smart contract systems. This pattern involves creating a dedicated storage 
contract that holds all state variables, while the main logic contract interacts with this storage contract through carefully 
designed interfaces. By decoupling storage from logic, developers can upgrade the contract's functionality without 
risking data loss or corruption. The storage contract remains constant, preserving the state, while new versions of the 
logic contract can be deployed and linked to the existing storage. This approach offers several advantages: it simplifies 
contract upgrades, reduces the risk of data loss during upgrades, and allows for more flexible contract evolution over 
time. However, implementing Eternal Storage requires careful design of the storage interface and access controls to 
ensure data integrity and security. Despite its complexity, this pattern is particularly valuable for long-lived contracts 
that may require frequent updates or those managing critical data that requires persistence across multiple contract 
versions. 
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4.4.7.3 Commit-Reveal Schemes 

Commit-Reveal Schemes are advanced storage patterns used in smart contracts to manage sensitive data through a 
two-step process. In this approach, participants first submit a cryptographic hash (the "commit") of their data, followed 
by a later revelation of the actual data (the "reveal"). This pattern is particularly useful for scenarios requiring privacy or 
preventing front-running in competitive situations. The commit phase allows users to stake their claim or input without 
revealing the actual content, while the reveal phase verifies the original commitment and processes the revealed data. 
This technique ensures fairness and prevents manipulation in various applications such as blind auctions, voting 
systems, or random number generation. By separating the submission of data into two distinct steps, Commit-Reveal 
Schemes provide a layer of security and fairness, especially in time-sensitive or competitive smart contract interactions. 
However, implementing this pattern requires careful consideration of timing mechanisms and proper handling of both 
phases to ensure the integrity and effectiveness of the process. 

4.4.7.4 Merkle Trees 

Merkle Trees are advanced data structures used in smart contracts for efficiently managing and verifying large datasets. 
In this pattern, data is organized in a tree-like structure where each non-leaf node is a hash of its child nodes, and leaf 
nodes contain the actual data or its hash. This hierarchical hashing allows for efficient proof of inclusion or exclusion of 
specific data points without needing to store or transmit the entire dataset on-chain. Smart contracts can store only the 
root hash of the Merkle Tree on-chain, while keeping the bulk of the data off-chain. When specific data needs to be 
verified, only the relevant branch of the tree (known as a Merkle proof) needs to be provided, significantly reducing 
storage and computational costs. This makes Merkle Trees particularly useful for applications involving large datasets, 
such as token distributions, voting systems, or complex state management, where they enable scalable and gas-efficient 
operations while maintaining data integrity and verifiability. The use of Merkle Trees in smart contracts exemplifies a 
powerful synergy between off-chain data management and on-chain verification, addressing key challenges in 
blockchain scalability and efficiency. 

4.4.7.5 Requirements and Recommendations 

[R114] Smart contracts implementing advanced storage patterns SHALL ensure that these patterns do not 
introduce new vulnerabilities. 

[D343] Developers SHOULD consider using eternal storage patterns for upgradeable contracts. 

[D344] Commit-reveal schemes SHOULD be used for scenarios requiring privacy or preventing front-running. 

[D345] Merkle trees SHOULD be considered for efficient verification of large datasets. 

4.4.8 Challenges and Considerations 

4.4.8.1 Scalability 

The rapid growth and increasing complexity of blockchain networks and smart contract applications have exposed 
significant scalability challenges, particularly in the realm of data storage and management. As these systems expand, 
they face mounting difficulties in efficiently handling large volumes of data while maintaining performance, 
cost-effectiveness, and the core principles of blockchain technology. 

Key issues include: 

1) Data Volume: The exponential growth of on-chain data as smart contracts handles more complex operations 
and user bases expand, leading to potential network congestion and performance degradation. 

2) Storage Costs: Increasing expenses associated with storing large amounts of data on-chain, which can make 
certain applications economically unfeasible. 

3) Network Performance: Potential slowdowns in transaction processing and contract execution due to the 
burden of managing and accessing large datasets. 

4) Data Integrity: Balancing the need for data availability and verification with the practical limitations of 
on-chain storage. 
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5) Decentralization: Maintaining the decentralized nature of blockchain systems while implementing scalable 
storage solutions. 

6) Architectural Complexity: Designing smart contracts and blockchain systems that can efficiently handle 
growing data requirements without compromising security or functionality. 

7) Cross-chain Compatibility: Ensuring that scalability solutions are compatible across different blockchain 
platforms and can support interoperability. 

8) Regulatory Compliance: Adhering to data protection and privacy regulations while implementing scalable 
storage solutions. 

Addressing these challenges requires innovative approaches that balance on-chain and off-chain storage, optimize data 
structures, and leverage emerging technologies like sharding and layer-2 solutions. The development of effective 
scalability solutions is crucial for the continued growth and adoption of blockchain technology, enabling smart contracts 
to handle increasing data loads without sacrificing performance, security, or decentralization. Successful strategies 
should not only solve current scalability issues but also anticipate future growth and technological advancements in the 
blockchain ecosystem [154], [103], [158], [19], [108] and [14]. 

Scalability can be addressed through architectural and functional modelling as described herewith. 

1) Layered Architecture: Implementing a layered architecture can separate concerns and distribute workloads 
more effectively. This approach allows for the integration of Layer-2 solutions, such as state channels and 
rollups, which can handle transactions off-chain and only settle on-chain when necessary, significantly 
improving scalability. 

2) Sharding: Sharding divides the blockchain into smaller, manageable pieces called shards, each capable of 
processing transactions independently. This architectural approach enhances scalability by allowing parallel 
processing of transactions across different shards. 

3) Modular Design: A modular architecture enables components to be developed, tested, and deployed 
independently. This flexibility can improve scalability by allowing specific modules to be optimized or scaled 
without affecting the entire system. 

4) Efficient State Management: Implementing efficient state management techniques, such as using Merkle 
trees or other data structures that optimize storage and retrieval processes, can enhance scalability by reducing 
the computational load on the network. 

5) Optimized Consensus Mechanisms: Adopting consensus mechanisms that require less computational power 
and time, such as Proof-of-Stake (PoS) or Delegated Proof-of-Stake (DPoS), can improve transaction 
throughput and scalability. 

6) Interoperability Protocols: Ensuring interoperability with other blockchain networks allows for workload 
distribution across multiple chains. This can alleviate congestion on a single network and improve overall 
scalability. 

7) Implement Adaptive Scaling Techniques: Adaptive scaling methods can dynamically adjust resources based 
on current demand to maintain performance levels. This is useful to ensuring proper operation of a smart 
contract under changing loads. 

8) Focus on Gas Optimization: Continuously monitoring smart contract performance and updating scalability 
solutions as needed helps accommodating growing transaction volumes and evolving network conditions. 

By addressing these architectural and functional requirements, smart contract platforms can achieve better scalability, 
ensuring they can handle increased demand while maintaining performance and reliability. 

Additional examples of innovative approaches that address such scalability issues are listed in clause A.1.1.4. 
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4.4.8.2  Privacy 

Managing sensitive data while maintaining transparency is a significant challenge in smart contract development, given 
the inherently public nature of blockchain systems. While transparency is a key feature of blockchain technology, it can 
conflict with the need to protect confidential information. Developers should employ various techniques to balance 
these competing requirements. These may include on-chain encryption, where sensitive data is encrypted before being 
stored on the blockchain; off-chain storage solutions, where only hashes or references to sensitive data are stored 
on-chain; zero-knowledge proofs [84], allowing verification of information without revealing the underlying data; and 
secure multi-party computation protocols [167]. It is crucial to carefully consider what data absolutely needs to be 
on-chain and what can be managed off-chain. Additionally, developers should be aware of regulatory requirements like 
GDPR and design their data management strategies accordingly [140]. As the field evolves, new privacy-preserving 
technologies are emerging, offering more sophisticated solutions to this challenge [43]. 

4.4.8.3  Long-Term Storage 

Long-term storage in smart contracts presents unique challenges due to the ever-growing nature of blockchain data and 
the potential for technological obsolescence. As blockchain networks expand, concerns arise about data accessibility, 
storage costs, and the environmental impact of maintaining vast amounts of data indefinitely. Recent research has 
explored various solutions, including data compression techniques to reduce on-chain storage requirements, hybrid 
storage models that combine on-chain and off-chain data management, and novel consensus mechanisms that allow for 
more efficient data pruning without compromising security. Additionally, there is growing interest in blockchain 
interoperability and data migration strategies to ensure long-term data accessibility as technologies evolve. These 
approaches aim to balance the need for data persistence with practical considerations of scalability and sustainability. 
However, developers have to carefully consider the long-term implications of their data storage decisions, including 
potential regulatory requirements for data retention and the challenges of managing access to historical data over 
extended periods. 

4.4.8.4 Requirements and recommendations  

[R115] The smart contract architecture SHALL be designed to scale efficiently as the PDL network grows. 

[R116] Contracts handling sensitive data SHALL implement appropriate privacy measures. 

[D346] Smart contract developers SHOULD utilize data structures like Merkle trees for efficient storage and 
retrieval processes, minimizing computational load on the network. 

[D347] Developers SHOULD consider layer-2 solutions or sharding for scalability. 

[D348] Privacy-preserving techniques like zero-knowledge proofs SHOULD be used when dealing with sensitive 
data. 

[D349] Contracts SHOULD implement mechanisms to handle potential state inconsistencies in long-term 
storage. 

[D350] Smart contract developers SHOULD employ consensus mechanisms that reduce computational power 
requirements, such as Proof-of-Stake (PoS) or Delegated Proof-of-Stake (DPoS), to improve transaction 
throughput without compromising security. 

[D351] Smart contract developers SHOULD use adaptive scaling methods that dynamically adjust resources 
based on current demand to maintain performance levels. 

[D352] Smart contract developers SHOULD optimize smart contract code to reduce gas consumption, which can 
lead to more efficient use of network resources and improved scalability. 

[D353] Sharding-friendly data structures and logic SHOULD be implemented to support network scalability. 
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4.4.9  Future Trends 

4.4.9.1  Decentralized Storage Solutions 

Decentralized storage solutions are emerging as a crucial complement to blockchain-based smart contracts, addressing 
scalability and cost issues associated with on-chain data storage [147], [104], [154], [73], [168]. Integration with 
decentralized storage networks like InterPlanetary File System (IPFS) and Filecoin offers smart contracts the ability to 
store large amounts of data off-chain while maintaining a cryptographic link to the data on-chain. This approach 
significantly reduces on-chain storage costs and improves scalability. Recent advancements include the development of 
hybrid storage models that combine the immutability of blockchain with the scalability of decentralized storage, 
enhanced data retrieval mechanisms, and improved incentive structures for storage providers. Researchers are also 
exploring novel consensus mechanisms tailored for decentralized storage networks to ensure data availability and 
integrity. However, challenges remain in areas such as data privacy, access control, and long-term data persistence. As 
these technologies mature, they promise to enable more complex and data-intensive smart contract applications while 
maintaining the decentralized ethos of blockchain systems. Macrinici, D., Cartofeanu, C., & Gao, S. have conducted a 
systematic mapping study that provides an overview of smart contract applications and discusses emerging trends in the 
field. It includes discussion on future developments in storage solutions for smart contract [95]. 

[D354] Developers SHOULD stay informed about emerging storage solutions like decentralized storage 
networks. 

4.4.9.2  Layer-2 Storage Solutions 

Layer-2 storage solutions are emerging as a promising approach to address the scalability and cost limitations of 
on-chain data storage while leveraging the security of the main blockchain. These solutions involve storing data 
off-chain but anchoring cryptographic proofs or commitments on the main chain, thus inheriting its security guarantees. 
Recent research has explored various Layer-2 storage architectures, including state channels, sidechains, and rollups 
(both optimistic and zero-knowledge) [78], [54], [154], [95]. These approaches significantly reduce on-chain storage 
requirements and transaction costs while maintaining data integrity and availability. Advancements in zero-knowledge 
proof systems have enabled more efficient and privacy-preserving off-chain storage solutions. Researchers are also 
investigating hybrid models that combine different Layer-2 technologies to optimize specific use cases. However, 
challenges remain in areas such as data availability, cross-layer communication, and user experience. As these 
technologies mature, they promise to enable more data-intensive and complex smart contract applications while 
maintaining the security and decentralization benefits of the underlying blockchain. 

[D355] Smart contract designers SHOULD consider the potential of layer-2 storage solutions in their long-term 
planning. 

4.4.10  Best Practices 

4.4.10.1 General Discussion 

Smart contract developers should adhere to the following best practices for efficient and secure storage management: 

1) Minimize On-Chain Storage: Reduce on-chain storage to optimize costs and enhance performance. Store 
only essential data on-chain, using off-chain solutions for large datasets or frequently changing information. 
Implement techniques such as data compression or encoding to minimize storage requirements [30]. 

2) Efficient Data Structures: Select appropriate data structures for optimal storage and retrieval. Use mappings 
for key-value pairs with quick lookups, arrays for ordered lists that require iteration, and structs for grouping 
related data. Consider gas costs when choosing between different data structures, especially for large datasets 
[93]. 

3) Access Controls and Validation: Implement robust access controls to restrict who can modify storage 
variables. Use modifiers or dedicated functions to enforce permissions. Validate all input data before storage 
to ensure data integrity and prevent malicious inputs [175].  

4) Regular Audits and Optimization: Conduct periodic audits of storage usage to identify inefficiencies or 
unused data. Implement cleanup mechanisms to remove or archive obsolete data. Optimize storage layouts to 
take advantage of storage slots and reduce gas costs [72]. 
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5) Long-Term Considerations: Evaluate the long-term implications of storage decisions. Consider data 
migration strategies for potential contract upgrades. Plan for scalability by designing storage structures that 
can accommodate future growth. Be mindful of the immutable nature of blockchain data when deciding what 
to store on-chain [14]. 

By following these best practices, developers can create more efficient, cost-effective, and secure smart contracts with 
optimized storage management. 

4.4.10.2 Requirements and Recommendations 

[R117] Smart contracts SHALL implement storage optimization techniques to minimize gas costs and improve 
efficiency. 

[R118] Developers SHALL use appropriate data structures for efficient storage and retrieval based on the 
specific use case. 

[R119] Smart contracts SHALL implement robust access control mechanisms for all storage operations. 

[R120] Smart Contracts SHALL include comprehensive event logging for all significant state changes and 
important function calls. 

[R121] Smart contract systems SHALL implement mechanisms for handling potential differences in transaction 
speed and cost across interacting systems. 

[D356] Developers SHOULD minimize on-chain storage to optimize costs and enhance performance. 

[D357] Contracts SHOULD use mappings for key-value pairs with quick lookups, arrays for ordered lists that 
require iteration, and structs for grouping related data. 

[D358] Smart contracts SHOULD implement Role-Based Access Control (RBAC) for fine-grained permissions 
management. 

[D359] Developers SHOULD conduct periodic audits of storage usage to identify inefficiencies or unused data. 

[D360] Contracts SHOULD implement mechanisms to handle potential state rollbacks due to blockchain 
reorganizations. 

[D361] Developers SHOULD use constant and immutable variables where appropriate to optimize gas costs and 
improve code readability. 

[D362] Smart contracts SHOULD implement a clear separation between mutable and immutable state to enhance 
security and auditability. 

[D363] Developers SHOULD consider implementing state checkpoints for complex contracts to allow for easier 
debugging and state verification. 

4.5 Modern Smart Contract Platforms and Languages 

4.5.1 Introduction 

The landscape of smart contract development has evolved significantly, with various platforms and languages emerging 
to address different needs and use cases. This clause provides an overview of some prominent smart contract platforms 
and languages as of 2024. 

4.5.2 Ethereum and Solidity 

Ethereum remains one of the most widely used platforms for smart contract development, with Solidity as its primary 
programming language. Recent developments have significantly enhanced the capabilities and security of smart 
contracts on this platform. 
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Key features: 

1) Object-oriented, high-level language 

2) Statically typed 

3) Supports inheritance, libraries, and complex user-defined types 

4) Large developer community and extensive tooling 

Recent advancements: 

1) Improved Security Features: Solidity 0.8.0 (released in December 2020) introduced built-in overflow checks 
for arithmetic operations, significantly reducing the risk of integer overflow vulnerabilities [7]. 

2) Gas Optimization: Recent versions of Solidity have focused on gas optimization, introducing features like 
tight variable packing and more efficient storage layouts [25]. 

3) Enhanced Type System: The introduction of user-defined value types and custom errors in Solidity 0.8.0 has 
improved code readability and error handling [177]. 

4) Ethereum 2.0 Compatibility: With the ongoing transition to Ethereum 2.0, Solidity has been adapting to 
support new features like sharding and proof-of-stake consensus [153]. 

5) Formal Verification: There is an increasing focus on formal verification tools specifically designed for 
Solidity, enhancing smart contract reliability [53]. 

These advancements have further solidified Ethereum and Solidity's position in the smart contract ecosystem, 
addressing previous limitations and preparing for future scalability challenges. 

4.5.3 Polkadot and Ink 

Polkadot has emerged as a significant player in the blockchain ecosystem, offering a unique approach to interoperability 
and scalability. Ink, Polkadot's smart contract language, has been gaining traction as a robust alternative for developers. 

Key features: 

1) Based on Rust, providing strong safety guarantees 

2) Designed for cross-chain compatibility 

3) Supports WebAssembly (Wasm) for efficient execution 

4) Focuses on interoperability within the Polkadot ecosystem 

Recent advancements: 

1) Substrate Integration: Ink has been closely integrated with Substrate, Polkadot's blockchain development 
framework, allowing for seamless deployment of smart contracts across parachains [161]. 

2) Cross-Chain Functionality: Recent updates to Ink have enhanced its ability to facilitate cross-chain 
operations, leveraging Polkadot's unique architecture [156]. 

3) Performance Optimizations: The Ink! 3.0 release in 2021 introduced significant performance improvements, 
reducing contract size and enhancing execution speed [109]. 

4) Enhanced Developer Tools: The ecosystem has seen the development of new testing frameworks and IDEs 
specifically designed for Ink, improving the developer experience [42]. 

5) Security Enhancements: Recent research has focused on formal verification methods for Ink contracts, 
aiming to provide stronger security guarantees [52]. 

These developments have positioned Polkadot and Ink as strong contenders in the smart contract space, offering a 
unique value proposition centred around interoperability and scalability. 
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4.5.4 Cardano and Plutus 

Cardano has become a prominent blockchain platform, with Plutus as its smart contract language. Recent developments 
have significantly enhanced Cardano's smart contract capabilities, positioning it as a strong competitor in the blockchain 
space. 

Key features: 

1) Functional programming paradigm based on Haskell 

2) Strong type system for enhanced security 

3) Built-in support for formal verification 

4) Designed for high assurance applications 

Recent advancements: 

1) Plutus Platform Launch: The Alonzo hard fork in September 2021 marked the official introduction of smart 
contract functionality on Cardano, enabling the deployment of Plutus scripts on the mainnet [24]. 

2) Extended UTXO Model: Cardano implements an extended UTXO model, which combines the benefits of 
Bitcoin's UTXO model with Ethereum's account-based model, offering unique advantages for smart contract 
design [26]. 

3) Plutus Application Backend (PAB): The introduction of PAB has simplified the process of building and 
deploying Decentralized Applications (DApps) on Cardano [77]. 

4) Formal Verification Enhancements: Recent research has focused on improving formal verification 
techniques for Plutus contracts, leveraging its functional programming roots [i.31]. 

5) Scalability Solutions: Ongoing development of layer-2 solutions, such as Hydra, aims to enhance the 
scalability of Plutus smart contracts [27]. 

These developments have significantly boosted Cardano's capabilities in the smart contract domain, offering a unique 
approach that emphasizes security and formal verification. 

4.5.5 Algorand and TEAL/PyTeal 

Algorand has emerged as a notable player in the blockchain space, offering a unique approach to smart contract 
development with its Transaction Execution Approval Language (TEAL) and the higher-level PyTeal. 

Key features: 

1) Low-level, stack-based language (TEAL) 

2) Higher-level abstractions available through PyTeal 

3) Designed for efficiency and security 

4) Focus on fast finality and scalability 

Recent advancements: 

1) AVM 1.0 and TEAL 3.0: The Algorand Virtual Machine (AVM) 1.0 release in 2020 introduced significant 
enhancements to TEAL, including loops and subroutines, greatly expanding its capabilities [5]. 

2) Stateful Smart Contracts: Algorand implemented stateful smart contracts in 2020, allowing for more 
complex and persistent applications [29]. 

3) PyTeal Improvements: Recent updates to PyTeal have introduced more intuitive syntax and additional 
high-level constructs, making it easier for developers to write complex smart contracts [4]. 

4) Atomic Transfers: Algorand's atomic transfers feature has been leveraged to create more sophisticated smart 
contract interactions, enabling complex multi-party transactions [155]. 
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5) AVM 1.1 and TEAL 5.0: The latest updates have introduced new opcodes and increased the number of 
available scratch spaces, further enhancing TEAL's capabilities [6]. 

These developments have significantly expanded Algorand's smart contract functionality, positioning it as a compelling 
platform for developers seeking efficiency and security. 

4.5.6 Cosmos and CosmWasm 

The Cosmos ecosystem has gained significant traction in recent years, with CosmWasm emerging as its primary smart 
contract platform. CosmWasm allows smart contracts written in Rust to be compiled to WebAssembly (Wasm), 
offering a unique approach to blockchain interoperability and scalability. 

Key features: 

1) Interoperability across Cosmos-based chains 

2) Rust's safety features 

3) Efficient execution through WebAssembly 

4) Designed for multi-chain environments 

Recent advancements: 

1) CosmWasm 1.0: The release of CosmWasm 1.0 in 2021 marked a significant milestone, introducing stability 
and new features for production use [34]. 

2) Inter-Blockchain Communication (IBC) Integration: CosmWasm has been integrated with the IBC 
protocol, allowing smart contracts to communicate across different blockchain networks within the Cosmos 
ecosystem [85]. 

3) Multichain Contracts: Recent developments have enabled the deployment of a single smart contract across 
multiple Cosmos chains, enhancing interoperability and reducing development complexity [1]. 

4) CosmJS Integration: Improvements in CosmJS have made it easier to interact with CosmWasm contracts 
from JavaScript applications, broadening the developer base [33]. 

5) Security Enhancements: Recent research has focused on formal verification methods for CosmWasm [33] 
smart contracts, leveraging Rust's strong type system [125]. 

These advancements have positioned CosmWasm as a powerful tool for building interoperable and scalable 
decentralized applications within the Cosmos ecosystem. 

4.5.7 Tezos and Michelson/LIGO 

Tezos has established itself as a unique blockchain platform with a focus on formal verification and self-amendment. Its 
smart contract ecosystem, centred around Michelson and the high-level language LIGO, has seen significant 
developments in recent years. 

Key features: 

1) Michelson: Stack-based, strongly-typed language 

2) LIGO: High-level language compiling to Michelson 

3) Formal verification capabilities 

4) Self-amending protocol 

Recent advancements: 

1) LIGO Evolution: LIGO has undergone significant improvements, introducing new syntax options 
(CameLIGO, ReasonLIGO) and enhanced tooling, making it more accessible to developers from various 
programming backgrounds [139]. 
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2) Optimistic Rollups: Tezos has implemented optimistic rollups, allowing for more scalable and efficient smart 
contract execution [115]. 

3) Michelson Improvements: Recent protocol upgrades have introduced new Michelson instructions and 
optimizations, enhancing the expressiveness and efficiency of smart contracts [138]. 

4) Smart Contract Optimization: Research has focused on gas optimization techniques specific to Tezos smart 
contracts, improving their cost-effectiveness [16]. 

5) Formal Verification Advancements: New tools and methodologies for formal verification of Michelson 
contracts have been developed, further enhancing Tezos' focus on contract correctness [118]. 

These developments have strengthened Tezos' position as a platform for secure and verifiable smart contracts, 
particularly in domains requiring high assurance. 

These advancements highlight Tezos' continued focus on providing a robust, formally verifiable smart contract 
platform, with improvements in both low-level (Michelson) and high-level (LIGO) programming options. The 
platform's emphasis on security, verifiability, and self-amendment positions it uniquely in the evolving landscape of 
blockchain technologies. 

4.5.8 Emerging Trends 

Several trends are shaping the evolution of smart contract platforms and languages. 

• Interoperability: Increasing focus on cross-chain compatibility and communication. 

• Scalability: Development of layer-2 solutions and more efficient consensus mechanisms. 

• Security: Greater emphasis on formal verification and auditable code. 

• Accessibility: Creation of more user-friendly, high-level languages and development tools. 

• Specialization: Platforms tailored for specific use cases (e.g. DeFi, NFTs, enterprise applications). 

Here are some papers and reports that discuss those trends: 

1) Interoperability: Zhang et al. (2022) have issued a report that highlights the importance of cross-chain 
bridges and smart contract interoperability for enabling asset transfer across diverse blockchain networks 
[166]. 

2) Scalability: Rapid Innovation (2023) hosted an article that discusses Layer-2 solutions as a means to improve 
scalability by reducing transaction costs and enhancing the performance of decentralized applications [116]. 

3) Security: Zhou et al. published a paper that examines vulnerabilities in blockchain systems and discusses 
current remedies to these security challenges [171]. 

4) Accessibility: Rapid Innovation (2023 explores how low-code and no-code platforms are making smart 
contracts more accessible to a broader audience, including those without technical expertise [117]. 

5) Specialization: Tatum Blog (n.d) posted a blog that explains how different smart contract platforms like 
Ethereum, Cardano, and Hyperledger Fabric offer specialized features tailored to specific use cases, such as 
enterprise applications or secure financial transactions [130]. 

As the field continues to evolve, developers should stay informed about the latest advancements and choose platforms 
and languages that best suit their project requirements, considering factors such as security, scalability, ease of use, and 
ecosystem support. 
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5 Smart Contracts - Lifecycle phases 

5.1 Introduction 
The lifecycle of a smart contract encompasses several distinct phases from conception to retirement. Understanding this 
lifecycle is crucial for effective development, deployment, and management of smart contracts. Throughout these 
stages, it is crucial to maintain transparency, adhere to best practices, and prioritize security to ensure the contract's 
integrity and effectiveness throughout its lifecycle. The specific implementation of each phase may vary depending on 
the blockchain platform, the complexity of the contract, and the governance model chosen for the project.  

The main stages, discussed in clause 5.2 are Planning, Development and Testing, Deployment and Execution, 
Maintenance and Upgrade, Retirement and Deprecation. Clause 5.3 discusses Governance and Upgrade Models. 

5.2 Planning Phase 

5.2.1 Description and recent research 

The planning phase is a critical first step in the smart contract lifecycle, laying the foundation for a successful and 
secure implementation.  

The planning phase should involve collaboration between business stakeholders, legal experts, and technical teams to 
ensure a comprehensive and well-rounded approach. Thorough planning can significantly reduce risks, improve 
efficiency, and enhance the overall quality of the smart contract implementation. 

Recent research emphasizes the importance of this phase in mitigating risks and ensuring contract success. For instance, 
a study by Zheng et al. (2021) highlights the critical role of comprehensive planning in reducing vulnerabilities in smart 
contracts [169]. Additionally, work by Li et al. (2020) underscores the importance of stakeholder analysis and 
governance considerations in the early stages of smart contract development [90]. 

This phase involves several key activities listed in the clauses below. 

5.2.2  Defining the contract's purpose and requirements 

The planning phase of a smart contract's lifecycle begins with a clear definition of its purpose and requirements. This 
foundational step ensures that the contract is aligned with business objectives and functions as intended. 

• Clearly articulate the contract's objectives and functionalities: Establish a comprehensive understanding of 
what the smart contract is meant to achieve, including its primary goals and the specific tasks it will automate 
or facilitate. 

• Identify specific business rules and logic to be encoded: Determine the essential business rules that are to be 
embedded within the contract. These rules dictate how the contract will operate under various conditions. 

• Define expected inputs, outputs, and interactions: Specify the data that will be input into the contract, the 
outputs it will generate, and how it will interact with other systems or contracts. This clarity helps in designing 
robust and efficient workflows. 

5.2.3  Identifying Stakeholders and Their Interactions 

Identifying stakeholders and understanding their interactions with the smart contract is crucial for ensuring that all 
parties' needs are met and that the contract operates smoothly within its ecosystem. 

• Map out all parties involved in the contract's ecosystem: Identify all stakeholders, including users, 
administrators, and external entities that will interact with the contract. 

• Define roles, responsibilities, and access rights for each stakeholder: Clearly delineate what each 
stakeholder can do within the system. This includes setting permissions and access levels to ensure security 
and compliance. 
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• Outline the flow of interactions between stakeholders and the contract: Create a detailed map of how 
stakeholders will interact with the contract, including transaction flows and decision-making processes. 

5.2.4  Outlining the Contract's Logic and State Variables 

Designing the logic and state variables of a smart contract is a critical step in ensuring that it functions correctly and 
efficiently stores necessary data. 

• Design the contract's core functions and workflows: Develop a blueprint for how the contract will execute 
its tasks, focusing on creating efficient and logical workflows. 

• Identify and define state variables to store contract data: Determine which pieces of data need to be stored 
persistently within the contract, ensuring they are accessible for future transactions. 

• Consider data types, structures, and storage optimization techniques: Choose appropriate data types and 
structures to optimize storage usage and performance, taking into account factors like gas costs on blockchain 
platforms. 

5.2.5  Considering Security, Scalability, and Interoperability Needs 

Addressing security, scalability, and interoperability during the planning phase helps mitigate risks and ensures that the 
smart contract can grow with future demands. 

• Conduct a preliminary risk assessment to identify potential vulnerabilities: Evaluate potential security 
threats early in the process to design mitigation strategies that protect against exploits. 

• Evaluate scalability requirements and potential solutions (e.g. Layer-2, sharding): Assess how the 
contract can handle increased loads or transactions over time, considering solutions like Layer-2 protocols or 
sharding to enhance performance. 

• Assess interoperability needs with other contracts or external systems: Determine how the contract will 
interact with other systems or contracts, ensuring compatibility through standards or protocols. 

5.2.6  Evaluating Governance and Upgrade Models 

Planning for governance and upgrades ensures that a smart contract remains adaptable to changing requirements or 
improvements without compromising its integrity. 

• Determine the governance structure for contract management: Establish who will have control over 
making decisions about changes or updates to the contract, including voting mechanisms or administrative 
controls. 

• Consider upgrade strategies (e.g. proxy patterns, modular design): Plan for future upgrades by 
implementing design patterns that allow for modifications without disrupting existing functionalities. 

• Plan for potential future modifications and their implications: Anticipate possible changes in business 
needs or technological advancements that may necessitate updates to the contract, ensuring these can be 
implemented smoothly. 

5.3 Development and Testing Phase 

5.3.1  Description and recent research 

The development and testing phase is crucial in transforming the planned smart contract into a functional, secure, and 
efficient piece of code. Recent research emphasizes the importance of rigorous development and testing practices in 
smart contract creation. For instance, a study by Zou et al. (2021) highlights the effectiveness of combining static and 
dynamic analysis techniques in identifying smart contract vulnerabilities [177]. Additionally, work by Gao et al. (2020) 
demonstrates the value of formal verification methods in enhancing smart contract reliability [48]. 
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The development and testing phase should be iterative, with continuous refinement based on test results and audit 
findings. This approach helps ensure the production of high-quality, secure smart contracts that meet the intended 
requirements and can withstand potential attacks or unexpected scenarios [149], [28]. 

This phase encompasses several critical activities described in the following clauses. 

5.3.2  Writing the contract code in a suitable language 

To properly fulfil this task a developer should follow the steps outlined herewith: 

• Select an appropriate language based on the target platform (e.g. Solidity for Ethereum, Rust for Solana) 

• Implement the contract logic following best coding practices and design patterns 

• Ensure code readability and maintainability through proper documentation and structuring 

5.3.3  Implementing security best practices and optimizations 

Best practices should be used when developing a testing smart contracts as described herewith: 

• Apply secure coding techniques to prevent common vulnerabilities (e.g. reentrancy, overflow/underflow) 

• Optimize gas usage and storage efficiency 

• Implement access control mechanisms and input validation 

5.3.4  Conducting thorough testing 

5.3.4.1 Introduction 

Testing smart contracts is a critical phase in the development lifecycle, ensuring that the contracts function correctly, 
securely, and efficiently. Given the immutable nature of blockchain deployments, rigorous testing helps prevent costly 
errors and vulnerabilities. This clause outlines various strategies and tools for effectively testing smart contracts. By 
employing these comprehensive testing strategies and tools, developers can enhance the reliability, security, and 
efficiency of their smart contracts while minimizing risks associated with deployment on blockchain networks. 

The testing phase should cover the following aspects: 

• Develop comprehensive unit tests for individual functions 

• Perform integration tests to verify interactions between contract components 

• Conduct scenario-based testing to simulate real-world use cases 

• Utilize automated testing tools and frameworks specific to smart contracts 

5.3.4.2  Testing Strategies 

Testing strategies for smart contracts encompass a range of methodologies to ensure comprehensive evaluation of 
contract functionality and security. These strategies include: 

• Unit Testing: Focuses on individual functions within the contract to ensure they work as intended. Tools like 
Truffle or Hardhat (see notes below) can automate unit tests, providing immediate feedback on code changes. 

• Integration Testing: Evaluates interactions between different components or contracts to ensure they work 
together correctly. This is crucial for complex systems where multiple contracts interact. 

• End-to-End Testing: Simulates real-world scenarios to verify that the entire system functions as expected 
from start to finish. This type of testing often involves deploying the contract on a testnet and interacting with 
it as a user would. 
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• Stress Testing: Assesses how contracts perform under high-load conditions to identify potential bottlenecks or 
failures. Stress testing helps ensure that the contract can handle large volumes of transactions without 
degrading performance. 

These strategies align with the key aspects outlined in clause 12.1 (Introduction), focusing on functionality, security, 
gas efficiency, and compliance with business logic [31], [148].  

NOTE 1:  Truffle is an open-source development environment, testing framework, and asset pipeline for Ethereum. 
It provides a suite of tools that make it easier to develop, test, and deploy smart contracts. 

NOTE 2: Hardhat is a flexible, extensible development environment and task runner for building, testing, and 
deploying Ethereum smart contracts. It is designed to help developers manage and automate the recurring 
tasks inherent to blockchain projects. 

Requirements: 

[R122] Smart contracts SHALL undergo unit, integration, and end-to-end testing before deployment. 

[R123] Stress testing SHALL be conducted to evaluate contract performance under load. 

Recommendations: 

[D364] Developers SHOULD use automated testing frameworks to streamline the testing process. 

[D365] Regular updates to test cases SHOULD be made to cover new features or changes in contract logic. 

5.3.4.3  Generalized Testing Targets 

Generalized testing targets refer to specific aspects of a smart contract that should be evaluated during the testing 
process: 

• Functionality: Ensures that each function performs its intended task correctly. For example, testing a token 
contract's transfer function to ensure it accurately updates balances. 

• Security: Identifies vulnerabilities such as reentrancy attacks or improper access controls. For instance, 
verifying that only authorized users can execute administrative functions within a contract. 

• Gas Efficiency: Evaluates whether the contract uses computational resources optimally to minimize 
transaction costs. This might involve analysing gas consumption patterns in commonly used functions to 
identify potential optimizations. 

• Compliance with Business Logic: Verifies that the contract adheres to specified business rules and 
requirements. An example would be ensuring that a loan contract correctly enforces interest calculations and 
repayment schedules according to agreed terms. 

Requirements: 

[R124] Smart contracts SHALL be tested for functionality, security vulnerabilities, and gas efficiency. 

[R125] Compliance with specified business logic SHALL be verified through tests. 

Recommendations: 

[D366] Developers SHOULD prioritize tests based on risk assessment to focus on critical areas first. 

[D367] Test coverage reports SHOULD be generated to ensure all targets are adequately addressed. 



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 96 

5.3.4.4  Testing Checklist 

A testing checklist serves as a comprehensive guide for developers to ensure all necessary aspects of smart contract 
testing are covered. This checklist includes verifying input validation, access control mechanisms, event emissions, 
error handling, and edge cases. By following a structured checklist, developers can systematically address potential 
issues and improve contract reliability. 

• Input Validation: Ensure that all inputs to the smart contract are validated to prevent invalid or malicious data 
from causing unexpected behaviour. For example, a token transfer function should validate that the sender has 
sufficient balance before proceeding. 

• Access Control Mechanisms: Verify that access control is properly implemented to restrict sensitive 
functions to authorized users only. For instance, administrative functions should only be callable by the 
contract owner or designated roles. 

• Event Emissions: Check that events are emitted for significant state changes or actions within the contract to 
provide an audit trail. For example, emitting an event when tokens are transferred can help track transactions. 

• Error Handling: Ensure that the contract handles errors gracefully and reverts transactions when necessary to 
maintain state integrity. This includes using require statements to enforce preconditions and revert on failure. 

• Edge Cases: Test edge cases such as boundary conditions and unexpected inputs to ensure the contract 
behaves correctly under all scenarios. This might include testing with maximum integer values or zero 
balances. 

By adhering to this checklist, developers can enhance the robustness and security of their smart contracts, reducing the 
risk of vulnerabilities and ensuring reliable operation. 

Requirements: 

[R126] Smart contracts SHALL have a detailed testing checklist covering all critical areas. 

[R127] Input validation and access control SHALL be key components of the checklist. 

Recommendations: 

[D368] Developers SHOULD regularly update the checklist to incorporate lessons learned from previous 
projects. 

[D369] Peer reviews of the checklist SHOULD be conducted to ensure completeness and accuracy. 

5.3.4.5  Offline Testing 

Offline testing involves simulating smart contract execution in a controlled environment without deploying it on the 
blockchain. This allows developers to identify bugs and optimize performance without incurring gas costs or affecting 
live data. Offline testing is crucial for verifying contract logic, ensuring security, and optimizing gas usage before 
deployment on a testnet or mainnet. Tools like Ganache (see note below) provide local blockchain environments that 
mimic Ethereum's mainnet conditions, allowing developers to execute transactions and test contract interactions in 
isolation. 

NOTE:  Ganache is a personal blockchain for Ethereum development that allows developers to create a local 
Ethereum network for testing smart contracts. Ganache enables developers to test their smart contracts in 
a controlled environment without spending real ETH or waiting for transactions to be mined on a public 
network. This makes it an essential tool for rapid development and testing of Ethereum applications. 

Examples of Offline Testing methods: 

• Simulated Blockchain Environment: Tools like Ganache create a personal blockchain that allows developers 
to test contracts in an environment that simulates the Ethereum network. This setup enables developers to 
perform various tests without the risk of affecting real assets or incurring costs. 

• Transaction Simulation: Offline testing tools can simulate transactions to verify how a contract handles 
different inputs and scenarios. For example, developers can test edge cases such as maximum integer values or 
invalid input data to ensure robust error handling. 
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• Performance Optimization: By analysing gas consumption during offline testing, developers can identify 
inefficient code paths and optimize them for better performance. This step is essential for reducing transaction 
costs once the contract is deployed on the mainnet. 

Requirements: 

[R128] Smart contracts SHALL undergo offline testing before any deployment on testnets or mainnets. 

[R129] Offline environments SHALL mimic mainnet conditions as closely as possible. 

Recommendations: 

[D370] Developers SHOULD use tools like Ganache or Hardhat for efficient offline testing. 

[D371] Offline test results SHOULD be documented and analysed to guide further development. 

5.3.4.6  Online Monitoring 

Online monitoring involves tracking smart contract performance and behaviour after deployment on a live network. 
This continuous oversight is essential for identifying anomalies, security breaches, or unexpected behaviour through 
logging and alert systems. By maintaining real-time surveillance, developers can ensure the integrity of smart contracts 
and quickly address any issues that arise post-deployment. 

Examples of Aspects: 

• Anomaly Detection: Online monitoring tools can detect unusual patterns in transaction activity, such as 
sudden spikes in transaction volume or unexpected changes in contract state. For instance, using platforms like 
Tenderly or Etherscan, developers can set up alerts for transactions that deviate from expected norms. 

• Security Breach Alerts: Monitoring systems can provide immediate notifications if a potential security 
breach is detected. This includes unauthorized access attempts or suspicious interactions with the contract. 
Tools like Forta Network can help identify and alert developers to these threats in real-time. 

• Performance Metrics: Tracking performance metrics such as gas usage, transaction throughput, and response 
times helps ensure that the contract operates efficiently. Developers can use these insights to optimize contract 
performance and reduce costs. 

Requirements: 

[R130] Smart contracts deployed on live networks SHALL have monitoring systems in place. 

[R131] Alerts for anomalies or security breaches SHALL be configured as part of the monitoring setup. 

Recommendations: 

[D372] Developers SHOULD integrate monitoring tools like Etherscan or Tenderly for real-time insights. 

[D373] Regular reviews of monitoring data SHOULD be conducted to identify trends or potential issues. 

5.3.4.7  Property-Based Testing Frameworks 

Property-based testing frameworks allow developers to define properties that should always hold true for their smart 
contracts. These frameworks automatically generate test cases to verify these properties under various conditions, 
helping uncover edge cases that might not be considered in traditional example-based tests. By specifying general 
properties rather than specific scenarios, developers can ensure their contracts are robust against a wide range of inputs. 

Examples of Frameworks and Test Cases: 

• QuickCheck: Originally developed for Haskell, QuickCheck has inspired similar frameworks in other 
languages. It generates random inputs to test properties defined by the developer. For example, a property 
might state that the sum of two balances should always equal the total supply of tokens in a contract. 

• Hypothesis: A property-based testing framework for Python that can be used to test smart contracts written in 
Solidity through Python bindings. An example test case might involve ensuring that a contract's function to 
transfer tokens never results in negative balances. 
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• Echidna: Specifically designed for Ethereum smart contracts, Echidna is a fuzzer that uses property-based 
testing principles to find violations of specified properties. For instance, it can test that a contract's 
invariant - that no more than a certain number of tokens can be minted - is never violated. 

By using these frameworks, developers can systematically explore the behaviour of their smart contracts across a wide 
range of inputs and conditions, increasing confidence in their correctness and security [87], [53]. 

Requirements: 

[R132] Smart contracts SHALL use property-based testing frameworks where applicable to validate key 
properties. 

[R133] Properties defined in tests SHALL reflect critical business logic and security requirements. 

Recommendations: 

[D374] Developers SHOULD leverage frameworks like QuickCheck or Hypothesis for property-based testing. 

[D375] Regular updates to property definitions SHOULD be made as contract logic evolves. 

Property-based testing frameworks allow developers to define properties that should always hold true for their smart 
contracts. These frameworks automatically generate test cases to verify these properties under various conditions. This 
approach helps uncover edge cases that might not be considered in traditional example-based tests. 

Requirements: 

[R134] Smart contracts SHALL use property-based testing frameworks where applicable to validate key 
properties. 

[R135] Properties defined in tests SHALL reflect critical business logic and security requirements. 

Recommendations: 

[D376] Developers SHOULD leverage frameworks like QuickCheck or Hypothesis for property-based testing. 

[D377] Regular updates to property definitions SHOULD be made as contract logic evolves. 

5.3.4.8  Symbolic Execution Tools 

Symbolic execution tools are essential for analysing smart contract code by exploring all possible execution paths using 
symbolic inputs rather than concrete values. This technique helps identify vulnerabilities such as reentrancy attacks, 
integer overflows, or access control issues by examining how different inputs affect contract behaviour. By simulating 
numerous execution scenarios, symbolic execution can uncover edge cases and potential security flaws that might not 
be detected through conventional testing methods. 

Examples of Symbolic Execution Tools: 

• MythX: A comprehensive security analysis service that uses symbolic execution to detect vulnerabilities in 
Ethereum smart contracts. MythX integrates with development environments like Truffle and Remix, 
providing developers with detailed reports on potential security issues. 

• Manticore: An open-source symbolic execution tool designed for analysing smart contracts and binaries. 
Manticore allows developers to explore multiple execution paths and identify vulnerabilities by simulating 
various input conditions. 

• Oyente: One of the first symbolic execution tools developed specifically for Ethereum smart contracts. Oyente 
analyses bytecode to detect common security issues such as reentrancy and transaction-ordering dependence. 

By leveraging these tools, developers can systematically explore the behaviour of their smart contracts across a wide 
range of inputs and conditions, increasing confidence in their correctness and security [28], [111], [123]. 

Requirements: 

[R136] Smart contracts SHALL undergo analysis with symbolic execution tools before deployment. 

[R137] Identified vulnerabilities from symbolic execution SHALL be addressed prior to release. 
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Recommendations: 

[D378] Developers SHOULD use tools like MythX or Manticore for symbolic execution analysis. 

[D379] Results from symbolic execution SHOULD inform additional test case development. 

5.3.4.9  SMT Solvers for Smart Contracts 

Satisfiability Modulo Theories (SMT) solvers are powerful tools used in formal verification processes to 
mathematically prove properties about smart contracts. By encoding contract logic into logical formulas, SMT solvers 
can verify correctness with respect to specified properties or invariants. This approach is particularly useful for ensuring 
that smart contracts adhere to critical business logic and security constraints, providing a high level of assurance before 
deployment. 

Examples of SMT Solvers: 

• Z3: Developed by Microsoft Research, Z3 is a widely used SMT solver that supports a variety of theories and 
is capable of handling complex logical expressions. It is often employed in the formal verification of smart 
contracts to ensure that they meet desired properties such as safety and liveness. 

• CVC4: An open-source SMT solver that supports a wide range of theories and is known for its efficiency in 
solving complex verification problems. CVC4 can be integrated into smart contract development workflows to 
assist in proving the correctness of contract logic. 

• MathSAT: A solver designed for industrial applications, MathSAT provides robust support for reasoning 
about mathematical formulas and is used in verifying properties of smart contracts, particularly those 
involving arithmetic operations. 

These tools help developers ensure their smart contracts are free from logical errors and vulnerabilities by providing 
rigorous mathematical proofs of their correctness [52], [80], [141]. 

Requirements: 

[R138] Critical smart contracts SHALL, where feasible, utilize SMT solvers for formal verification. 

[R139] Properties verified by SMT solvers SHALL align with essential business logic and security constraints. 

Recommendations: 

[D380] Developers SHOULD integrate SMT solvers like Z3 into their verification workflows. 

[D381] Results from SMT solver analyses SHOULD guide improvements in contract design and 
implementation. 

5.3.5  Performing code reviews and audits 

Developers SHOULD: 

[D382] Conduct internal code reviews involving multiple developers 

[D383] Engage external security experts for comprehensive audits 

[D384] Use automated analysis tools to identify potential vulnerabilities 

[D385] Address and rectify all identified issues and vulnerabilities 
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5.4 Deployment and Execution Phase 

5.4.1 Discussion and recent research 

The deployment and execution phase marks the transition of a smart contract from development to live operation. 
Recent research emphasizes the importance of careful deployment practices and ongoing monitoring. For instance, a 
study by Zhang et al. (2020) highlights the critical role of bytecode verification in ensuring contract integrity [165]. 
Additionally, work by Liu et al. (2021) underscores the importance of comprehensive monitoring strategies in 
identifying and mitigating runtime issues in smart contracts [91]. 

The deployment and execution phase requires meticulous attention to detail and robust operational procedures to ensure 
the contract functions as intended in the live environment. Continuous monitoring and the ability to respond quickly to 
any issues are crucial for maintaining the contract's security and effectiveness over time [111], [170]. 

This critical phase involves several key steps listed in the following clauses. 

5.4.2 Compiling the contract to bytecode 

Compiling a smart contract to bytecode is a critical step in the deployment process, transforming human-readable code 
into a format that can be executed on the blockchain's virtual machine:  

• Use the appropriate compiler version for the target blockchain platform 

• Ensure all dependencies are resolved and included in the compilation process 

• Generate the contract's Application Binary Interface (ABI) for interaction 

5.4.3 Selecting the appropriate network for deployment 

Selecting the appropriate network for deploying a smart contract is a critical decision that can significantly impact the 
contract's performance, security, and overall success. This clause explores the key factors to consider when choosing a 
blockchain network for smart contract deployment.  

Developers SHOULD: 

[D386] Choose between mainnet (production) or testnet based on readiness and testing needs 

[D387] Consider gas costs and network congestion when planning deployment timing 

[D388] Ensure sufficient funds are available in the deploying account for transaction fees 

5.4.4 Executing the deployment transaction 

Executing the deployment transaction is a critical step in the lifecycle of a smart contract, marking its transition from 
code to an active entity on the blockchain. This process involves sending a specially crafted transaction that includes the 
contract's bytecode and any initialization parameters. Understanding the intricacies of this step is crucial for developers 
to ensure a successful and secure deployment.  

Developers SHOULD: 

[D389] Initiate the deployment transaction with appropriate gas limits and prices 

[D390] Monitor the transaction status until confirmation 

[D391] Record the assigned contract address for future interactions 
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5.4.5 Verifying the deployed contract's bytecode 

The verification process involves comparing the bytecode of the deployed contract against the expected bytecode 
generated from the source code. By performing this verification, developers and users can confirm that the contract 
running on the blockchain matches the intended implementation, mitigating risks of malicious modifications or 
deployment errors.  

Developers SHOULD: 

[D392] Compare the on-chain bytecode with the compiled source code 

[D393] Use blockchain explorers or verification tools to ensure code integrity 

[D394] Publish and verify the source code on blockchain explorers for transparency 

5.4.6 Monitoring the contract's execution and user interactions 

The below recommendations address the importance of ongoing monitoring and the various techniques and tools 
available for tracking smart contract behaviour post-deployment. 

Developers SHOULD: 

[D395] Implement logging and event emission for important contract state changes 

[D396] Set up monitoring tools to track contract usage, gas consumption, and potential issues 

[D397] Establish a system for responding to unexpected behaviours or emergencies 

5.5 Maintenance, Update and Upgrade Phases 

5.5.1 Introduction 

Updating smart contracts is a crucial aspect of maintaining and improving blockchain applications, presenting unique 
challenges due to the inherent immutability of blockchain technology. While this immutability is fundamental for 
ensuring security and trust, it complicates the implementation of necessary changes, such as bug fixes, feature 
enhancements, or adaptations to new regulatory requirements. Consequently, updating smart contracts requires careful 
planning and execution to maintain security, functionality, and compliance with evolving needs. This maintenance and 
upgrade phase is vital for ensuring the long-term viability and relevance of deployed smart contracts. Recent research 
emphasizes effective maintenance strategies; for instance, studies by Pranomporn et al. (2021) highlight challenges and 
best practices in upgrading smart contracts [112], while Wang et al. (2020) underscore the importance of governance 
mechanisms in managing contract evolution [148]. Balancing necessary changes with the integrity and security of the 
contract necessitates well-defined processes and clear communication with all stakeholders throughout this phase, 
enabling developers to create robust, adaptable blockchain applications by exploring various methodologies and 
strategies for smart contract updates [156], [172]. 

5.5.2  Update Situations 

Updates to smart contracts may be required in several scenarios: 

• Bug Fixes: Addressing vulnerabilities or errors discovered post-deployment. 

• Feature Enhancements: Adding new functionalities or improving existing ones. 

• Regulatory Compliance: Adapting to new legal requirements or standards. 

• Performance Improvements: Optimizing contract code for better efficiency or reduced gas costs. 

Requirements: 

[R140] Smart contracts SHALL be designed with potential updates in mind from the outset. 

[R141] Developers SHALL identify and document all scenarios that may necessitate an update. 
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Recommendations: 

[D398] Regular reviews of contract performance and compliance SHOULD be performed to anticipate necessary 
updates. 

[D399] Stakeholders SHOULD be engaged in identifying update needs based on user feedback and market 
trends. 

5.5.3  Strategies of Updating 

Several strategies can be employed to update smart contracts: 

• Proxy Patterns: Using a proxy contract that delegates calls to an upgradable logic contract. 

• Modular Design: Designing contracts with separate modules that can be individually updated. 

• Parameterization: Allowing configurable parameters that can be adjusted without altering the core code. 

Requirements: 

[R142] Smart contracts SHALL implement secure update mechanisms that preserve data integrity. 

[R143] Update strategies SHALL ensure minimal disruption to existing functionalities. 

Recommendations: 

[D400] Proxy patterns SHOULD be used to enable seamless upgrades while maintaining state continuity. 

[D401] Modular design principles SHOULD be implemented to facilitate targeted updates without affecting the 
entire system. 

5.5.4  Upgrading Through Versioning 

Versioning involves deploying new versions of a contract while maintaining backward compatibility: 

• Semantic Versioning: Using a systematic approach to version numbers to indicate the nature of changes 
(e.g. major, minor, patch). 

• Backward Compatibility: Ensuring new versions do not disrupt existing integrations or user interactions. 

Requirements: 

[R144] Smart contracts SHALL include version identifiers in their metadata. 

[R145] New contract versions SHALL maintain backward compatibility where possible. 

Recommendations: 

[D402] Version changes SHOULD be documented comprehensively to inform users and developers of updates. 

[D403] Migration scripts SHOULD be implemented to transition data smoothly between versions. 

5.5.5  Updating Steps 

The process of updating a smart contract typically involves several key steps: 

1) Assessment and Planning: Evaluate the need for an update and plan the implementation strategy. 

2) Development and Testing: Develop the updated contract code and conduct thorough testing. 

3) Deployment Preparation: Prepare deployment scripts and ensure all stakeholders are informed. 

4) Deployment Execution: Deploy the updated contract on the blockchain network. 

5) Post-deployment Monitoring: Monitor the updated contract for any issues or anomalies. 
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Requirements: 

[R146] A detailed update plan SHALL be created before initiating any changes. 

[R147] Comprehensive testing SHALL be conducted to validate updates before deployment. 

Recommendations: 

[D404] Stakeholders SHOULD be engaged throughout the update process to ensure alignment with business 
goals. 

[D405] Automated testing frameworks SHOULD be used to streamline the testing phase. 

5.5.6  Checklist Before Redeployment 

Before redeploying an updated smart contract, developers should verify: 

• All tests have passed successfully. 

• Security audits have been completed and any vulnerabilities addressed. 

• Documentation is up-to-date with changes clearly outlined. 

• Backup mechanisms are in place for data migration if needed. 

Requirements: 

[R148] A comprehensive checklist SHALL be completed before redeployment to ensure readiness. 

Recommendations: 

[D406] Peer reviews of the checklist items SHOULD be conducted to validate completeness and accuracy. 

5.5.7  Securely Inactivating Old Contract 

When updating a smart contract, it is essential to securely deactivate the old version: 

• Implement mechanisms such as self-destruct functions or access restrictions to prevent further interactions 
with the old contract. 

Requirements: 

[R149] Old contracts SHALL be securely inactivated upon deployment of a new version. 

Recommendations: 

[D407] Users SHOULD be notified about deactivation timelines and provide guidance on transitioning to the 
new contract version. 

5.5.8  Governing the Upgrade of Smart Contracts 

5.5.8.1  Discussion and recent research 

Smart Contracts may reach a stage where they have to undergo an upgrade or modification. Change management of 
objects that are immutable by definition requires careful planning and governance. In parallel, upgrading smart 
contracts necessitates modifying or enhancing their functionality with minimal disruption to the existing system or user 
experience. Governance and upgrade models are thus crucial aspects of smart contract management, ensuring 
adaptability while maintaining security and decentralization. As such the upgrade may be considered part of the 
lifecycle of smart contracts.  

Effective governance is crucial for managing smart contract upgrades. 

[D408] Clear governance frameworks that outline roles, responsibilities, and decision-making processes for 
upgrades SHOULD be established. 
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[D409] Robust upgrade mechanisms that balance flexibility with security and immutability concerns SHOULD 
be implemented. 

[D410] Transparency in decision-making by documenting proposals, voting outcomes, and implementation steps 
SHOULD be ensured. 

[D411] Developers SHOULD facilitate stakeholder engagement through open communication channels during 
upgrade discussions. 

Incorporating these governance practices ensures that smart contract upgrades are conducted transparently, securely, 
and in alignment with stakeholder interests while maintaining system integrity throughout their lifecycle.  

Recent research highlights the importance of well-designed governance and upgrade models. A study by Wang et al. 
(2021) emphasizes the need for flexible yet secure upgrade mechanisms in smart contracts [148]. Additionally, work by 
Liu et al. (2020) underscores the importance of balancing decentralized governance with efficient decision-making in 
blockchain systems [92]. 

Effective governance and upgrade models are essential for the long-term viability of smart contracts, allowing them to 
adapt to changing requirements and technological advancements while maintaining the trust and security expected in 
blockchain systems [164], [160]. 

Governing upgrades encompasses several key elements. 

5.5.8.2 Governance and upgrade models of Smart Contracts 

5.5.8.2.1 Similarities and Differences Between Blockchain Platform Governance and Smart 
Contract Change Governance 

Blockchain platform governance and smart contract change management both play crucial roles in maintaining the 
integrity, functionality, and adaptability of blockchain ecosystems. While they share some similarities, they also exhibit 
distinct differences due to their specific focuses and operational scopes. 

5.5.8.2.2 Similarities 

The similarities can be summarized as follows: 

• Decentralized Decision-Making: Both blockchain platform governance and smart contract change 
management often rely on decentralized decision-making processes. This typically involves stakeholder voting 
or consensus mechanisms to approve changes, ensuring that no single entity has unilateral control over 
decisions. 

• Security Concerns: Security is a paramount concern in both contexts. Ensuring that changes do not introduce 
vulnerabilities is critical, whether it involves updating the underlying blockchain protocol or modifying a 
smart contract. 

• Transparency: Both processes emphasize transparency to build trust among participants. Decisions, 
proposals, and changes are usually documented and made accessible to stakeholders to ensure accountability. 

5.5.8.2.3 Differences 

The main differences are listed herewith: 

• Scope of Governance: 

a) Blockchain Platform Governance: This encompasses broader aspects such as consensus protocol 
upgrades, network rules, transaction fees, and overall network policies. It affects the entire blockchain 
ecosystem. 

b) Smart Contract Change Management: This is more focused on individual contracts or applications 
running on the blockchain. It involves updating logic, fixing bugs, or adding features specific to a 
contract. 
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• Stakeholder Involvement: 

a) Blockchain Platform Governance: Typically involves a wide range of participants including miners, 
developers, users, and sometimes external entities like regulatory bodies. 

b) Smart Contract Change Management: Primarily involves the contract developers, users of the 
contract, and possibly a governance body if the contract is part of a larger Decentralized Application 
(DApp). 

• Frequency and Impact of Changes: 

a) Blockchain Platform Governance: Changes are less frequent but have a significant impact on the entire 
network. They require extensive testing and consensus due to their wide-reaching implications. 

b) Smart Contract Change Management: Changes can be more frequent as they often pertain to specific 
functionalities or bug fixes within a single application. However, they have to be carefully managed to 
avoid disrupting dependent systems. 

5.5.8.2.4 Recommendations for Effective Smart Contract Governance 

5.5.8.2.4.1  Establish Clear Governance Frameworks 

[D412] Stakeholder Involvement: All relevant stakeholders SHOULD be engaged in the governance processes 
to ensure that diverse perspectives are considered. 

[D413] Defined Roles and Responsibilities: Roles and responsibilities for those involved in governance to 
streamline decision-making SHOULD be clearly outlined. 

5.5.8.2.4.2  Implement Robust Upgrade Mechanisms 

[D414] Proxy Patterns: Proxy contracts SHOULD be used to facilitate upgrades without disrupting existing 
functionality. 

[D415] Version Control: Clear versioning SHOULD be maintained to track changes and manage compatibility 
across contract versions. 

5.5.8.2.4.3 Ensure Security and Compliance 

[D416] Security Audits: Regular security audits SHOULD be conducted before and after upgrades to identify 
vulnerabilities. 

[D417] Compliance Checks: Developers SHOULD ensure that smart contracts comply with relevant 
regulations, such as data protection laws. 

5.5.8.2.4.4  Facilitate Transparent Decision-Making 

[D418] Documentation: Comprehensive documentation of all governance decisions and processes SHOULD be 
maintained to ensure transparency. 

[D419] Voting Systems: Transparent voting mechanisms for stakeholders SHOULD be implemented to propose 
and approve changes. 

5.5.8.2.4.5 Balance Flexibility with Stability 

[D420] Emergency Protocols: Developers SHOULD establish protocols for emergency interventions to address 
critical issues promptly. 

[D421] Gradual Implementation: Developers SHOULD consider phased rollouts of significant updates to 
minimize disruptions. 
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5.5.8.2.5 Designing upgrade patterns 

Designing upgrades of smart contracts is very similar to designing upgrades of blockchain platforms thus similar 
approaches should be followed. 

Developers SHOULD: 

[D422] Implement proxy patterns to allow contract logic upgrades 

[D423] Use modular design to facilitate partial upgrades and reduce risks 

[D424] Implement state migration strategies for major upgrades 

[D425] Ensure upgrade mechanisms are secure against unauthorized changes 

5.5.8.2.6 Establishing Processes for Proposing, Voting on, and Implementing Changes in 
Smart Contract Change Management 

5.5.8.2.6.1 Introduction 

Effective management of changes in smart contracts requires a structured approach to ensure that modifications are 
made transparently, securely, and with stakeholder consensus. By following these structured processes, organizations 
can effectively manage smart contract changes while maintaining security, transparency, and stakeholder trust. The 
following clauses list recommendations to consider when establishing processes for proposing, voting on, and 
implementing changes in smart contract change management. 

5.5.8.2.6.2  Proposal Submission 

Developers SHOULD: 

[D426] Clear Submission Guidelines: Define clear guidelines for submitting change proposals, including 
required documentation such as the rationale, potential impacts, and technical specifications of the 
proposed change. 

[D427] Stakeholder Identification: Identify all relevant stakeholders who should be involved in the proposal 
process, including developers, users, and governance bodies. 

[D428] Public Accessibility: Ensure that all proposals are publicly accessible to allow for community review and 
feedback. 

5.5.8.2.6.3  Voting Mechanisms 

Developers SHOULD:  

[D429] Voting Eligibility: Establish criteria for who can vote on proposals, which may include token holders or 
designated governance participants. 

[D430] Voting Process: Define the voting process, including how votes are cast (e.g. on-chain voting systems) 
and the duration of the voting period. 

[D431] Quorum Requirements: Set quorum requirements to ensure that a sufficient number of stakeholders 
participate in the decision-making process. 

5.5.8.2.6.4  Implementation Procedures 

Developers SHOULD:  

[D432] Implementation Timeline: Develop a timeline for implementing approved changes, allowing time for 
necessary preparations such as code audits and testing. 

[D433] Testing and Auditing: Conduct thorough testing and security audits of the proposed changes before 
deployment to ensure they do not introduce vulnerabilities. 
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[D434] Rollback Mechanisms: Implement rollback mechanisms to revert changes if unforeseen issues arise 
post-deployment. 

5.5.8.2.6.5  Communication and Documentation 

Developers SHOULD: 

[D435] Transparent Communication: Maintain open channels of communication with stakeholders throughout 
the change management process to provide updates and gather feedback. 

[D436] Comprehensive Documentation: Document all stages of the change process, including proposal details, 
voting results, implementation steps, and any issues encountered. 

5.5.8.2.7 Balancing upgradability with security and immutability 

Similar to upgrades of blockchain platforms, governing the upgrade of smart-contracts requires maintaining a fine 
balance between security, upgradeability and immutability. 

Developers SHOULD: 

[D437] Implement role-based access control for upgrade functions 

[D438] Use time-delayed upgrades to allow for community review and potential reversion 

[D439] Maintain immutable core functionalities while allowing peripheral upgrades 

[D440] Implement event logging for all governance actions and upgrades for auditability 

5.5.8.3 Requirements and Recommendations  

Requirements: 

[R150] Smart contracts SHALL implement clearly defined governance mechanisms for managing upgrades and 
critical decisions. 

[R151] Any upgrades or significant changes to smart contracts SHALL require multi-signature approval from 
designated governance participants. 

[R152] The governance model SHALL include mechanisms for stakeholders to propose and vote on changes to 
the smart contract system. 

[R153] Smart contracts SHALL emit events for all governance actions to maintain a transparent, on-chain record 
of decisions. 

[R154] Upgrade mechanisms SHALL include time-locks to allow for community review and potential reversion 
of proposed changes. 

Recommendations: 

[D441] Governance models SHOULD be designed to balance decentralization with efficient decision-making 
processes. 

[D442] Tiered governance structures SHOULD be considered, with different approval thresholds for various 
types of contract changes. 

[D443] On-chain voting mechanisms SHOULD be implemented to enable transparent and verifiable governance 
decisions. 

[D444] Governance participants SHOULD be required to stake tokens or otherwise demonstrate long-term 
commitment to the project. 

[D445] The governance process SHOULD include a formal proposal stage with sufficient time for community 
discussion and analysis. 
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[D446] Upgrade patterns such as proxy contracts SHOULD be used to facilitate smoother contract upgrades 
while preserving data and contract addresses. 

[D447] Emergency response procedures SHOULD be established within the governance model to address critical 
vulnerabilities quickly. 

[D448] Governance actions SHOULD be subject to a challenge period during which stakeholders can contest 
decisions. 

[D449] The governance model SHOULD include mechanisms for delegating voting power to trusted 
representatives. 

[D450] Regular governance health checks SHOULD be conducted to assess the effectiveness of the model and 
propose improvements. 

[D451] Clear documentation SHOULD be maintained explaining the governance process and how stakeholders 
can participate. 

[D452] The upgrade process SHOULD include comprehensive testing of new contract versions in a staging 
environment before deployment. 

[D453] Governance participants SHOULD be provided with education and resources to make informed decisions 
about proposed changes. 

[D454] The governance model SHOULD include provisions for gradual parameter adjustments without requiring 
full contract upgrades. 

[D455] A system of checks and balances SHOULD be implemented to prevent any single entity from having 
disproportionate control over the governance process. 

5.6  Retirement or Deprecation Phase 

5.6.1 Discussion and recent research 

The retirement or deprecation phase is the final stage in a smart contract's lifecycle, addressing the conclusion of its 
operational life.  

Recent research highlights the importance of proper contract retirement procedures. For instance, a study by Li et al. 
(2021) emphasizes the need for well-planned deprecation strategies to mitigate risks associated with abandoned 
contracts [90]. Additionally, work by Chen et al. (2020) underscores the importance of user consideration and data 
preservation in the contract retirement process [30]. 

The retirement or deprecation phase requires careful planning and execution to ensure a smooth transition for all 
stakeholders while maintaining the integrity and security of the blockchain ecosystem. It is crucial to consider the long-
term implications of contract retirement, including data preservation, user impact, and potential regulatory requirements 
[164], [72]. 

Unlike previous lifecycle phases, retirement/deprecation phases are not initiated or coordinated by the developers but 
rather by stakeholders involved with governance of the PDL. Such stakeholders are defined in clause 6.2.5 herewith. 

[D456] Retirement and Deprecation phases SHOULD be planned and coordinated by stakeholders handling 
governance tasks. 

[O11] The deployment of those phases MAY be assigned to developers for implementation. 

This phase involves several key considerations and actions. 
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5.6.2 Deciding when a contract should be retired 

This clause explores the key considerations and criteria for determining when a smart contract should be retired from 
active use on the PDL.  

Governance stakeholders SHOULD: 

[D457] Assess the contract's ongoing relevance and usage. 

[D458] Evaluate if the contract has been superseded by improved versions. 

[D459] Consider regulatory changes that may necessitate retirement. 

[D460] Analyze the cost-benefit of maintaining the contract versus retiring it. 

5.6.3 Implementing a graceful shutdown process 

Implementing a graceful shutdown process for smart contracts is a critical aspect of responsible PDL development and 
management. This process ensures that contracts can be retired or replaced without disrupting user operations or 
compromising data integrity.  

Governance stakeholders SHOULD: 

[D461] Execute pre-designed termination functions, if available. 

[D462] Ensure all pending transactions and operations are completed. 

[D463] Securely transfer any remaining assets to designated addresses. 

[D464] Implement state freezing mechanisms to prevent further interactions. 

5.6.4 Ensuring users are notified and given time to extract assets or data 

When retiring a smart contract, it is crucial to consider the impact on users who may have assets or data stored within 
the contract. This clause explores the importance of proper notification and providing adequate time for users to extract 
their assets or data before a contract is fully decommissioned. Implementing a well-designed notification and extraction 
process not only demonstrates good faith and responsibility towards users but also helps mitigate potential legal and 
reputational risks associated with abrupt contract termination.  

Governance stakeholders SHOULD: 

[D465] Provide clear, timely communication to all stakeholders about the retirement. 

[D466] Offer a grace period for users to withdraw assets or export data. 

[D467] Implement user-friendly processes for asset extraction and data retrieval. 

[D468] Maintain support channels for assisting users during the transition. 

5.6.5 Potentially deploying a replacement contract 

As smart contract systems evolve and business requirements change, there may be situations where deploying a 
replacement contract becomes necessary. This process, while potentially complex, is crucial for maintaining the 
relevance and effectiveness of blockchain-based applications. This clause explores the considerations and best practices 
for deploying replacement contracts, including strategies for ensuring continuity of service, preserving critical data, and 
managing the transition for users and interconnected systems.  

Governance stakeholders and developers SHOULD implement: 

[D469] Design and develop an improved version of the contract, if necessary. 

[D470] Implement migration paths for users' assets and data to the new contract. 

[D471] Ensure backward compatibility or provide clear upgrade instructions. 
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[D472] Deploy and thoroughly test the replacement contract before full transition. 

5.7 Requirements and Recommendations 
Requirements: 

[R155] The PDL governance SHALL establish clear roles and responsibilities for smart contract lifecycle 
management. 

[R156] Smart contracts SHALL undergo thorough testing and auditing before deployment to the production 
environment. 

[R157] A formal change management process SHALL be implemented for any modifications to deployed smart 
contracts. 

[R158] Smart contracts SHALL include mechanisms for pausing or terminating functionality in case of 
discovered vulnerabilities. 

[R159] All smart contract deployments and upgrades SHALL be documented, including rationale and approval 
processes. 

Recommendations: 

[D473] Developers SHOULD use standardized templates and libraries when creating new smart contracts to 
promote consistency and security. 

[D474] Smart contracts SHOULD be designed with upgradeability in mind, using patterns like proxy contracts 
where appropriate. 

[D475] A staging environment SHOULD be used to test smart contracts in conditions closely mimicking the 
production environment before final deployment. 

[D476] Continuous monitoring tools SHOULD be implemented to track smart contract performance and detect 
anomalies. 

[D477] Regular security audits SHOULD be conducted on deployed smart contracts, especially before major 
upgrades. 

[D478] Education and training programs SHOULD be provided to all stakeholders involved in the smart contract 
lifecycle. 

[D479] Post-deployment reviews SHOULD be conducted to capture lessons learned and improve future 
development processes. 

[D480] Contracts nearing end-of-life SHOULD have a clear deprecation plan, including timelines for sunsetting 
functionality. 

[D481] Version control systems SHOULD be used to manage smart contract code and track changes over time. 

[D482] Formal verification techniques SHOULD be considered for critical smart contract functions to 
mathematically prove correctness. 
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6 Requirements for Designing a Smart Contract  

6.1  Smart Contract Facets  

6.1.1 Categories of Facets 

Smart contracts are multifaceted entities that can serve various roles within a Permissioned Distributed Ledger (PDL) 
ecosystem. When designing smart contracts, it is crucial to consider these different facets to ensure the contract meets 
its intended purpose and integrates seamlessly with the broader system. By considering these facets during the design 
phase, developers can create more comprehensive and effective smart contracts that fulfil their intended roles within the 
PDL ecosystem. Zheng, Z., Xie, S., Dai, H. N., Chen, W., Chen, X., Weng, J., & Imran, M. provide a comprehensive 
overview of smart contract platforms and discusses various facets such as interoperability, security, and scalability 
[169]. 

[R160] Smart contracts with business/operational roles SHALL incorporate both foundational and functional 
attributes as needed. 

[D483] These contracts SHOULD be designed with flexibility to adapt to changing business needs. 

The main facets of smart contracts can be categorized as follows. 

6.1.2  Foundational Role 

Smart contracts can serve a foundational role by defining core system rules, governance structures, and operational 
parameters. These contracts are often deployed at the genesis of the PDL or during major system upgrades. They 
establish the fundamental framework within which other contracts and transactions operate. Xu, X., Weber, I., Staples, 
M., Zhu, L., Bosch, J., Bass, L., ... & Rimba, P. outline the foundational aspects of blockchain systems and their 
architectural design considerations [156]. 

[R161] Smart contracts serving a foundational role SHALL define core system rules and operational parameters. 

[D484] Foundational smart contracts SHOULD be designed with immutability and long-term stability in mind, 
as they form the basis of the entire system.  

[D485] These contracts SHOULD include clear mechanisms for potential future upgrades or modifications, if 
allowed by the system's governance model. 

6.1.3  Functional Role 

In their functional role, smart contracts act as active components that execute specific business logic, manage assets, or 
control access within the PDL. These contracts handle day-to-day operations and interactions between participants. A 
paper by Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., & Wang, F. Y. discusses the functional roles of smart 
contracts in various applications and their architectural implications [148]. 

[R162] Functional smart contracts SHALL implement specific business logic and manage assets within the PDL. 

[D486] Functional smart contracts SHOULD be modular and reusable where possible, to promote efficiency and 
reduce redundancy in the system.  

[D487] These contracts SHOULD include comprehensive error handling and fail-safe mechanisms to ensure 
system stability. 

6.1.4  Governance Role 

Smart contracts can embody governance mechanisms, enabling on-chain decision-making, voting, and policy 
enforcement. These contracts translate organizational rules and procedures into executable code. Belchior, R., 
Vasconcelos, A., Guerreiro, S., & Correia, M. explore governance roles within blockchain systems and how they affect 
interoperability and system integration [14]. 
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[D488] Governance smart contracts SHOULD incorporate flexible parameterization to allow for adjustments 
without requiring full contract replacement.  

[R163] These contracts SHALL include transparent logging and event emission to ensure all governance actions 
are traceable and auditable. 

6.1.5  Interoperability Role 

Smart contracts can facilitate interoperability between different systems or layers within a PDL ecosystem. They may 
act as bridges, oracles, or interfaces that enable cross-chain or cross-layer communication. A paper by Zamyatin, A., 
Al-Bassam, M., Zindros, D., Kokoris-Kogias, E., Moreno-Sanchez, P., Kiayias, A., & Knottenbelt, W. J. provides 
insight into interoperability mechanisms across different blockchain platforms and their implications for smart contract 
design [161]. 

[D489] Interoperability-focused smart contracts SHOULD implement robust validation mechanisms for external 
data or cross-chain messages.  

[D490] These contracts SHOULD be designed with version compatibility in mind to ensure long-term 
functionality across system upgrades. 

6.2  Actors  

6.2.1 Distinct roles in a smart contract 

When designing smart contracts for a Permissioned Distributed Ledger (PDL), it is crucial to identify and define the 
various actors involved in the contract's lifecycle. These actors play distinct roles in the creation, deployment, 
execution, and management of smart contracts. Understanding these actors and their responsibilities is essential for 
designing secure, efficient, and effective smart contracts. By carefully considering these actors and their requirements 
during the design phase, developers can create smart contracts that are more robust, secure, and aligned with the needs 
of all stakeholders in the PDL ecosystem. 

[R164] The PDL governance SHALL establish clear roles and responsibilities for smart contract lifecycle 
management. 

[D491] Mechanisms SHOULD be in place to manage stakeholder interactions and dispute resolutions. 

6.2.2  Contract Developer 

The Contract Developer is a key actor in the smart contract ecosystem, responsible for designing, coding, testing, and 
optimizing smart contracts for deployment on a Permissioned Distributed Ledger (PDL). This role requires a deep 
understanding of both the technical aspects of blockchain technology and the specific business logic the contract aims to 
implement. Contract Developers should be proficient in specialized programming languages such as Solidity or Vyper, 
and have a strong grasp of cryptographic principles, data structures, and distributed systems. They are tasked with 
translating complex business requirements into efficient, secure, and bug-free code. This involves not only writing the 
core functionality but also implementing robust error handling, access controls, and upgrade mechanisms. Contract 
Developers should also be adept at using development tools, testing frameworks, and security analysis software to 
ensure the reliability and safety of their code. As smart contracts often deal with valuable assets or critical processes, 
developers should maintain a security-first mindset, anticipating potential vulnerabilities and attack vectors. Continuous 
learning is crucial in this role, as the field of smart contract development is rapidly evolving with new best practices, 
design patterns, and security considerations emerging regularly. 

[D492] Developers SHOULD have a thorough understanding of the PDL platform, its programming language, 
and best practices for smart contract development [169]. 

[R165] Developers SHALL implement comprehensive testing suites to validate the contract's functionality and 
security [72]. 
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6.2.3  Contract Owner 

The Contract Owner is a critical stakeholder in the lifecycle of a smart contract, typically the entity or individual 
responsible for deploying the contract to the Permissioned Distributed Ledger (PDL). This role carries significant 
authority and responsibility within the contract's ecosystem. The Contract Owner usually possesses special privileges, 
such as the ability to upgrade the contract, modify critical parameters, or even pause its functionality in case of 
emergencies. They are often tasked with managing access controls, determining who can interact with specific contract 
functions, and potentially appointing other administrative roles. In many cases, the Contract Owner represents the 
business entity or consortium that initiated the smart contract project. Their responsibilities extend beyond deployment, 
including overseeing the contract's operation, coordinating with developers for updates or bug fixes, and potentially 
managing any funds or assets controlled by the contract. The Contract Owner has to maintain a delicate balance 
between exercising control and fostering trust among users, as excessive centralization can undermine the principles of 
decentralized systems. In some advanced governance models, the concept of contract ownership may evolve into a 
more distributed form, with decisions being made collectively by stakeholders through voting mechanisms encoded 
within the contract itself [129], [92]. 

[R166] The contract SHALL include clearly defined owner functions with appropriate access controls.  

[R167] Ownership transfer mechanisms SHALL be implemented to allow changes in contract management. 

6.2.4  Contract Users 

Contract Users represent the diverse group of individuals, organizations, or even other smart contracts that interact with 
a deployed smart contract on a Permissioned Distributed Ledger (PDL). These actors form the primary audience for 
whom the smart contract is designed and implemented. Contract Users may have varying levels of permissions and 
capabilities within the contract's ecosystem, ranging from basic interactions like querying data to more complex 
operations such as initiating transactions or modifying contract states. They may include customers, service providers, 
stakeholders, or automated systems, each with their own set of rights and responsibilities defined by the contract's logic 
and access control mechanisms. The experiences and needs of Contract Users significantly influence the design and 
functionality of smart contracts, as developers have to ensure intuitive interfaces, efficient execution, and appropriate 
safeguards for different user roles. Contract Users may interact with the smart contract through various means, such as 
Decentralized Applications (DApps), APIs, or directly through the PDL's interface. Their actions and transactions form 
the core operational data of the smart contract, driving its state changes and triggering predefined outcomes. As such, 
understanding the diverse requirements, technical capabilities, and potential behaviours of Contract Users is crucial for 
creating effective, user-friendly, and secure smart contracts that fulfil their intended purpose within the PDL ecosystem 
[39]. 

[O12] The contract MAY implement role-based access control to manage different levels of user permissions. 

[R168] User interactions SHALL be logged and emit events for transparency and auditability. 

6.2.5 Governance Body 

The Governance Body in a Permissioned Distributed Ledger (PDL) ecosystem serves as the overarching authority 
responsible for maintaining the integrity, security, and efficiency of the network, including the management of smart 
contracts. This entity, which may be composed of representatives from various stakeholders, establishes and enforces 
the rules and policies that govern the PDL. In the context of smart contracts, the Governance Body plays a crucial role 
in approving new contracts for deployment, overseeing major upgrades, and intervening in case of critical issues or 
disputes. They may have special privileges encoded within the smart contracts themselves, such as the ability to pause 
operations in emergencies or to trigger upgrades [148]. The Governance Body also ensures that smart contracts align 
with regulatory requirements and the overall objectives of the PDL consortium [175]. Implementing a robust 
governance structure is essential for maintaining trust among participants and adapting to changing needs and 
circumstances over time [156], [148], [175]. 

[R169] The contract SHALL include hooks or interfaces for governance-level controls, such as pausing or 
upgrading. 

[D493] Governance decisions affecting the contract SHOULD be implemented through a multi-signature or 
time-locked mechanism for enhanced security. 
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6.2.6  Auditors 

Auditors play a critical role in ensuring the security, efficiency, and compliance of smart contracts within a 
Permissioned Distributed Ledger (PDL) ecosystem. These specialized professionals conduct comprehensive reviews of 
smart contract code, analysing it for potential vulnerabilities, logical flaws, and adherence to best practices. Their work 
extends beyond static code analysis to include dynamic testing and simulation of various execution scenarios. Auditors 
also evaluate the contract's on-chain behaviour post-deployment, examining transaction patterns and state changes to 
verify that the contract operates as intended in real-world conditions. In the context of PDLs, auditors may additionally 
focus on compliance with specific regulatory requirements or consortium rules [111]. The increasing complexity of 
smart contracts has led to the development of automated auditing tools and formal verification methods to complement 
manual auditing processes [52]. Regular audits throughout a smart contract's lifecycle are crucial for maintaining trust 
in the system and quickly identifying any emerging issues or vulnerabilities [91]. Consequently, smart contract 
designers have to prioritize auditability from the outset, implementing clear documentation, standardized patterns, and 
comprehensive event logging to facilitate thorough and effective auditing processes [95], [111]. 

[D494] The contract code SHOULD be well-documented and follow standardized patterns to facilitate auditing.  

[R170] The contract SHALL implement comprehensive event logging to aid in post-deployment auditing. 

6.2.7  Oracles 

Oracles play a crucial role in bridging the gap between smart contracts and the external world. These entities provide 
external data to smart contracts, enabling them to interact with off-chain information and trigger contract executions 
based on real-world events. Oracles can be software interfaces that pull data from web APIs, hardware devices that 
capture physical world data, or even human experts providing specialized information. The integrity and reliability of 
oracle data are paramount, as smart contracts rely on this information to execute critical functions. Recent research has 
focused on developing decentralized oracle networks to mitigate single points of failure and enhance data reliability [2]. 
When designing smart contracts that interact with oracles, developers have to implement robust validation mechanisms 
and consider potential attack vectors such as oracle manipulation or outdated data [96]. Additionally, incorporating 
multiple oracle sources and implementing a consensus mechanism for critical data inputs can significantly enhance the 
security and reliability of oracle-dependent smart contracts [156]. 

[D495] The contract SHOULD implement a decentralized oracle pattern to avoid single points of failure. 

[R171] Oracle data SHALL be validated and include timestamps to ensure freshness and reliability. 

6.3  Requirements During Design  

6.3.1 Key considerations 

When designing smart contracts for a Permissioned Distributed Ledger (PDL), several key requirements should be 
considered to ensure the contract's security, efficiency, and effectiveness. These requirements guide the development 
process and help create robust, reliable smart contracts. By adhering to these requirements during the design phase, 
developers can create smart contracts that are more secure, efficient, and aligned with the needs of the PDL ecosystem. 

[R172] Smart contracts SHALL be designed with consideration for their entire lifecycle, from deployment to 
termination. 

6.3.2  Security 

Security is paramount in smart contract design, as vulnerabilities can lead to significant financial losses and 
compromise the integrity of the entire system. It encompasses measures to protect against unauthorized access, data 
breaches, and malicious attacks. Secure smart contracts should be resistant to common vulnerabilities and implement 
strong access controls to ensure that only authorized parties can execute critical functions or modify contract states 
[129], [72], [52]. 

[D496] Comprehensive access control mechanisms SHOULD be implemented to restrict function calls and state 
modifications to authorized parties only. 
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[D497] Secure coding practices SHOULD be used to prevent common vulnerabilities such as reentrancy, integer 
overflow, and unauthorized access. 

[D498] Formal verification techniques SHOULD be incorporated to mathematically prove the correctness of 
critical contract functions. 

6.3.3 Scalability 

Scalability in smart contract design refers to the ability of the contract to handle increasing amounts of work or 
accommodate growth without compromising performance. This is crucial for ensuring that the contract remains 
efficient and cost-effective as the number of users or transactions increases. Scalable smart contracts should minimize 
computational and storage costs while allowing for future expansion and upgrades [31], [92], [156]. 

[D499] Contracts SHOULD be designed with gas optimization in mind, minimizing computational and storage 
costs.  

[D500] Modular design patterns SHOULD be implemented to allow for contract upgradability and extensibility.  

[O13] Off-chain storage solutions MAY be considered for large datasets to reduce on-chain storage 
requirements. 

6.3.4 Interoperability 

Interoperability in smart contracts refers to the ability of the contract to interact seamlessly with other contracts, 
systems, or even different blockchain networks. This is essential for creating interconnected ecosystems and enabling 
complex multi-contract operations. Interoperable smart contracts should use standardized interfaces and be designed 
with cross-chain compatibility in mind when necessary [148], [161]. 

[D501] Contracts SHOULD be designed with standardized interfaces to facilitate interaction with other contracts 
and systems.  

[D502] Cross-chain compatibility features SHOULD be implemented when required, using secure bridge 
protocols. 

6.3.5 Auditability 

Auditability in smart contracts refers to the ability to trace and verify all actions and state changes within the contract. 
This is crucial for transparency, debugging, and ensuring compliance with regulatory requirements. Auditable smart 
contracts should implement comprehensive logging mechanisms and be written in a clear, well-documented manner to 
facilitate review and analysis [39], [177]. 

[R173] Implement comprehensive event logging SHALL be implemented for all significant state changes and 
important function calls.  

[D503] Clear, well-documented code SHOULD be provided with inline comments explaining complex logic. 

6.3.6 Privacy 

Privacy in smart contract design involves protecting sensitive information and ensuring that confidential data is not 
exposed on the public ledger. This is particularly important in permissioned environments where certain information 
should only be accessible to authorized parties. Privacy-preserving smart contracts should minimize on-chain storage of 
sensitive data and implement cryptographic techniques to protect confidential information when necessary [83], [3], 
[21]. 

[R174] Implement privacy-preserving techniques such as zero-knowledge proofs SHALL be implemented for 
sensitive data when required.  

[D504] Contracts SHOULD be designed to minimize the storage of personally identifiable information on-chain. 
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6.3.7 Governance 

Governance in smart contracts refers to the mechanisms that allow for the management and evolution of the contract 
over time, while respecting the principle of immutability inherent to blockchain systems. This presents a unique 
challenge: how to adapt and improve contracts that are, by design, unchangeable once deployed. Effective governance 
in smart contracts strikes a balance between preserving the integrity and trust provided by immutability, and the need 
for flexibility to address unforeseen issues, changing requirements, or emergent vulnerabilities. This often involves 
implementing upgradeable patterns, parameter adjustment mechanisms, or modular designs that allow for controlled 
changes without compromising the contract's core logic or historical data. Well-governed smart contracts should include 
transparent, decentralized decision-making processes for any potential modifications, ensuring that all stakeholders 
have a voice in significant changes while maintaining the security and reliability of the system [175], [18], [174], [40], 
[60], [23]. 

[D505] Upgradeable contract patterns (such as proxy patterns) that allow for logic updates while preserving data 
and contract address SHOULD be implemented.  

[D506] Parameter adjustment mechanisms that allow for fine-tuning of contract behaviour without changing core 
logic SHOULD be Incorporated.  

[D507] Modular contract systems where individual components can be replaced or updated without affecting the 
entire system SHOULD be designed.  

[R175] Time-locks and multi-signature requirements for critical operations SHALL be implemented to ensure 
transparency and consensus in governance actions.  

[R176] Event emission for all governance actions SHALL be included to maintain a transparent, on-chain record 
of changes.  

[D508] Implementation of a Decentralized Autonomous Organization (DAO) structure SHOULD be considered 
for major governance decisions, allowing stakeholders to vote on proposed changes. 

6.3.8 Error Handling 

Error handling in smart contracts involves managing unexpected situations or inputs gracefully to prevent system 
failures or vulnerabilities. Robust error handling is crucial for maintaining the stability and security of the contract, 
especially in high-stakes environments. Smart contracts with effective error handling should be able to manage 
exceptions without compromising the integrity of the system or exposing vulnerabilities. 

[R177] Robust error handling and exception management SHALL be implemented to gracefully handle 
unexpected situations. 

[R178] Contracts SHALL be designed with circuit breaker mechanisms to allow pausing of contract functionality 
in case of emergencies. 

6.4 Available technologies evaluation and selection 

6.4.1 Introduction 

When designing smart contracts for Permissioned Distributed Ledgers (PDLs), developers should consider the various 
technologies available to ensure efficient, secure, and effective smart contract implementation. The choice of 
technologies can significantly impact the smart contract's performance, security, and interoperability. 

6.4.2 Programming Languages 

Smart contract programming languages are specialized to cater to the unique requirements of blockchain environments. 
These languages should balance expressiveness with security, allowing developers to implement complex logic while 
minimizing the risk of vulnerabilities. Popular languages like Solidity (for Ethereum-based systems) and Go (for 
Hyperledger Fabric) continue to evolve, with newer alternatives like Rust gaining traction for their enhanced safety 
features [177]. 

[R179] Smart contracts SHALL be written in programming languages supported by the target PDL platform. 
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[D509] Developers SHOULD choose widely adopted languages with robust tooling and community support. 

6.4.3  Development Frameworks 

Development frameworks provide essential tools and libraries that streamline the smart contract creation process. These 
frameworks often include testing suites, deployment scripts, and interaction utilities. Examples include Truffle for 
Ethereum-based systems and Hyperledger Composer for Fabric. The choice of framework can significantly impact 
development efficiency and contract quality [71]. 

[R180] Any external libraries used in smart contract development SHALL be approved by the PDL governance. 

[D510] Libraries SHOULD be thoroughly audited and their versions carefully managed. 

6.4.4  Security Analysis Tools 

Given the critical nature of smart contracts, security analysis tools are essential for identifying vulnerabilities before 
deployment. Static and dynamic analysis tools, as well as formal verification systems, help developers catch potential 
issues early in the development process. Tools like Mythril, Slither, and Manticore have become integral parts of the 
smart contract development lifecycle [52]. 

[R181] Smart contract developers SHALL utilize security analysis tools to identify potential vulnerabilities 
before deployment. 

[R182] Smart contract developers SHALL employ static and dynamic analysis tools to ensure comprehensive 
security coverage. 

[D511] Smart contract developers SHOULD use formal verification tools to mathematically prove the 
correctness of critical contract functions. 

[D512] Smart contract developers SHOULD incorporate fuzzing techniques to test contracts with unexpected or 
random inputs. 

[D513] Smart contract developers SHOULD regularly update and integrate automated security checks within 
continuous integration pipelines. 

6.4.5  Oracle Services 

Oracles bridge the gap between smart contracts and external data sources, allowing contracts to interact with real-world 
information. Decentralized oracle networks like Chainlink have gained prominence for their ability to provide reliable, 
tamper-resistant data to smart contracts. The integration of oracle services should be carefully considered to maintain 
the contract's security and decentralization [2]. 

[R183] Smart contracts SHALL implement secure oracle services to fetch external data reliably. 

[R184] Oracles SHALL ensure data integrity and authenticity when providing information to smart contracts. 

Smart contract developers SHOULD:  

[D514] Use decentralized oracle networks to avoid reliance on a single data source. 

[D515] Implement validation mechanisms for oracle data to prevent manipulation or inaccuracies. 

[D516] Consider using multiple oracles and aggregating their results for enhanced reliability. 

6.4.6  Interoperability Protocols 

As the blockchain ecosystem grows more diverse, interoperability protocols are becoming increasingly important. 
These technologies allow smart contracts to interact across different blockchain networks, expanding their utility and 
reach. Projects like Polkadot and Cosmos are at the forefront of enabling cross-chain communication for smart contracts 
[161]. 

[R185] Smart contracts SHALL adhere to standardized interoperability protocols for cross-chain communication. 
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[R186] Interoperability mechanisms SHALL NOT compromise the security or integrity of the smart contract. 

Smart contract developers SHOULD:  

[D517] Implement cross-chain bridges and atomic swap protocols for secure asset transfers between different 
blockchains. 

[D518] Use standardized data formats and interfaces to facilitate seamless integration with other systems. 

[D519] Consider employing modular designs to enable easier interoperability with various platforms. 

6.4.7  Privacy-Enhancing Technologies 

In permissioned environments, preserving data privacy while maintaining transparency is crucial. Zero-knowledge 
proofs, secure multi-party computation, and other privacy-enhancing technologies are being integrated into smart 
contract platforms to enable confidential transactions and computations [83]. 

[R187] Smart contracts handling sensitive information SHALL implement privacy-enhancing technologies. 

[R188] Privacy measures SHALL comply with relevant data protection regulations, such as GDPR. 

Smart contract developers SHOULD: 

[D520] Utilize zero-knowledge proofs or secure multi-party computation techniques for privacy-preserving 
operations. 

[D521] Implement encryption for sensitive on-chain data, ensuring only authorized parties can access it. 

[D522] Consider using privacy-focused blockchain platforms or solutions that support confidential transactions. 

6.4.8  Scalability Solutions 

As blockchain networks face scalability challenges, various layer-2 solutions and sharding technologies are being 
developed. These can significantly impact smart contract design, allowing for more complex operations without 
overwhelming the main chain. Solutions like Optimistic Rollups and zk-Rollups are becoming increasingly relevant for 
smart contract developers [156]. 

[R189] Smart contracts SHALL incorporate scalability solutions to handle increased transaction volumes 
efficiently. 

[R190] Scalability measures SHALL maintain the security and performance of the smart contract. 

Smart contract developers SHOULD: 

[D523] Implement layer-2 solutions, such as state channels or rollups, to enhance transaction throughput. 

[D524] Optimize gas usage in smart contracts by employing efficient algorithms and data structures. 

[D525] Consider sharding or partitioning strategies for large-scale applications requiring high performance. 

6.5  Auditability considerations 

6.5.1 Definition of Auditability 

Auditability is a crucial aspect of smart contract design, ensuring transparency, accountability, and trust in the contract's 
operations. It allows stakeholders to verify the contract's behaviour, trace transactions, and detect any anomalies or 
potential vulnerabilities. 

[R191] Smart contract code and all associated libraries SHALL be available for auditing purposes. 

[D526] Contracts SHOULD use standardized, well-documented patterns to facilitate easier auditing. 
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6.5.2  Code Transparency 

Smart contract code should be open and accessible for review by all relevant parties. This transparency allows for 
community-driven audits and helps build trust among users. Developers should strive to write clean, well-documented 
code that is easy to understand and analyse. Using established design patterns and following coding standards can 
significantly enhance code readability and auditability [177]. 

[D527] Smart contract code SHOULD be open and accessible for review by all relevant parties. 

6.5.3  Event Logging 

Implementing comprehensive event logging is essential for tracking the contract's state changes and important 
operations. Events should be emitted for all significant actions, providing a detailed audit trail that can be easily queried 
and analysed. This not only aids in debugging and monitoring but also serves as a transparent record of the contract's 
activities [39]. 

[R192] All smart contract transactions and communications SHALL be available for audit to authorized parties. 

[D528] Comprehensive event logging SHOULD be implemented to facilitate thorough auditing. 

6.5.4  Formal Verification 

Formal verification techniques can be employed to mathematically prove the correctness of smart contract behaviour. 
While complex, these methods provide a high degree of assurance about the contract's adherence to its specifications. 
Incorporating formal verification into the development process can significantly enhance the contract's auditability and 
reliability [102]. 

[R193] Verification processes SHALL ensure that the contract logic aligns with its intended behaviour and 
specifications. 

[D529] Smart contracts SHOULD undergo formal verification to mathematically prove the correctness of critical 
functions. 

Smart contract developers SHOULD: 

[D530] Use formal verification tools such as Coq, Isabelle, or K to validate smart contract logic. 

[D531] Prioritize formal verification for high-value contracts or those handling sensitive data. 

[D532] Integrate formal verification into the development lifecycle to catch issues early. 

6.5.5  Automated Analysis Tools 

Leveraging automated analysis tools can greatly enhance the auditability of smart contracts. Static analysis tools, 
dynamic analysis frameworks, and symbolic execution engines can help identify potential vulnerabilities, gas 
inefficiencies, and logical flaws. Integrating these tools into the development workflow ensures continuous auditing 
throughout the contract's lifecycle [28]. 

Smart contract developers SHOULD: 

[D533] Implement automated analysis tools to identify potential vulnerabilities and inefficiencies in smart 
contract code. Such tools should cover both static and dynamic analysis to provide comprehensive 
security coverage. 

[D534] Use tools like MythX, Slither, or Oyente for static analysis of smart contracts. 

[D535] Incorporate fuzz testing and symbolic execution to explore multiple execution paths and uncover hidden 
issues. 

[D536] Regularly update analysis tools to incorporate the latest security checks and improvements. 
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6.5.6  Version Control and Change Management 

Maintaining a clear record of contract versions and changes is crucial for auditability. Implementing robust version 
control practices and documenting all modifications, including the rationale behind them, ensures that the contract's 
evolution can be traced and audited. This is particularly important for upgradeable contracts [92]. 

Smart contract developers SHALL: 

[R194] Utilize version control systems to manage changes in smart contract code, ensuring traceability and 
accountability. 

[R195] Implement change management processes to handle updates and modifications systematically. 

Smart contract developers SHOULD: 

[D537] Use platforms like Git for version control, maintaining a clear history of code changes. 

[D538] Establish a formal process for proposing, reviewing, and approving changes to smart contracts. 

[D539] Document all changes thoroughly, including rationale and potential impacts on the system. 

6.5.7  External Audits 

While internal auditing processes are essential, engaging third-party auditors provides an additional layer of scrutiny 
and credibility. External audits can uncover overlooked vulnerabilities and offer fresh perspectives on the contract's 
design and implementation. Establishing a regular external audit schedule is a best practice for critical smart contracts 
[111]. 

[R196] Smart contract developers SHALL conduct external audits of smart contracts by reputable third-party 
firms before deployment. 

[R197] Such audits SHALL assess both security vulnerabilities and compliance with specifications. 

Smart contract developers SHOULD: 

[D540] Schedule regular audits as part of the contract maintenance routine, especially after significant updates. 

[D541] Choose auditors with expertise in blockchain technology and a proven track record in smart contract 
security. 

[D542] Address all findings from audits promptly, implementing necessary fixes or improvements before 
deployment. 

6.6 Designing and implementing Input and Output methods to 
Smart Contracts 

6.6.1 Generalized Input/Output Requirements 

6.6.1.1 Introduction 

Smart contracts often need to interact with external data sources and systems to fulfil their intended functions. However, 
this interaction introduces potential security and reliability risks. Therefore, it is crucial to establish robust requirements 
for data inputs and outputs. By implementing these requirements and recommendations, smart contracts can interact 
with both internal and external data sources in a secure and reliable manner, enhancing their functionality while 
mitigating associated risks. 
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Generalized Input/Output Requirements form the foundational principles for managing data flow in smart contract 
systems. These requirements encompass a set of universal best practices and standards that apply to all types of data 
interactions, whether internal or external to the blockchain. They address critical aspects such as data integrity, format 
validation, error handling, and rate limiting. By establishing these generalized requirements, smart contract developers 
can create more robust, secure, and interoperable systems that can reliably process inputs and generate outputs. These 
requirements serve as a crucial safeguard against common vulnerabilities and ensure that smart contracts can effectively 
manage the diverse range of data they encounter, from on-chain transactions to off-chain oracle inputs. Adhering to 
these generalized requirements not only enhances the functionality and security of individual smart contracts but also 
contributes to the overall reliability and trustworthiness of decentralized applications built on blockchain platforms. 

6.6.1.2 Data Integrity and Authenticity 

Data Integrity and Authenticity are critical aspects of smart contract data inputs and outputs. Integrity ensures that data 
remains unaltered and complete throughout its lifecycle, from input to storage and output. Authenticity verifies that the 
data originates from a legitimate and expected source. E.g. Implementing hash functions to verify data integrity in smart 
contracts ensures that the data has not been altered since it was originally created. 

In smart contracts, these properties are typically enforced through cryptographic mechanisms such as digital signatures 
and hash functions. For inputs, smart contracts should verify the integrity and authenticity of data before processing it, 
rejecting any data that fails these checks. For outputs, contracts should provide cryptographic proofs that allow external 
systems to verify the integrity and authenticity of the data produced. Implementing robust measures for data integrity 
and authenticity helps prevent attacks such as data tampering and unauthorized access, thereby enhancing the overall 
security and reliability of smart contract systems. 

Zheng, Z., Xie, S., Dai, H. N., Chen, W., Chen, X., Weng, J., & Imran, M. discuss methods for ensuring data integrity 
and authenticity in smart contracts, emphasizing cryptographic techniques and secure data handling [169]. 

[R198] All data inputs to smart contracts SHALL be cryptographically signed to ensure integrity and 
authenticity. 

[R199] Smart contracts SHALL verify the signatures of input data before processing it. 

[D543] Developers SHOULD implement multi-signature schemes for highly sensitive data inputs to enhance 
security. 

6.6.1.3  Data Format and Validation  

Data Format and Validation are essential considerations for ensuring the reliability and security of smart contract 
operations. Smart contracts should strictly define the expected format of input data, including data types, structures, and 
acceptable ranges or patterns. E.g. Using JSON schema validation within smart contracts to ensure that incoming data 
adheres to expected formats before processing. 

Rigorous validation routines should be implemented to check all incoming data against these predefined formats and 
constraints. This process helps prevent issues such as type errors, buffer overflows, or logical inconsistencies that could 
arise from malformed or unexpected inputs. For outputs, smart contracts should ensure data is formatted consistently 
and in compliance with any relevant standards or protocols. Proper data formatting and validation not only enhance the 
contract's robustness but also improve interoperability with other systems and contracts. Furthermore, clear error 
handling and reporting mechanisms should be in place to manage and log any validation failures, providing valuable 
feedback for debugging and security analysis. Xu et al. [156] outline the importance of standardized data formats and 
validation processes in blockchain systems to ensure interoperability and correctness. 

[R200] Smart contracts SHALL implement strict input validation to check data types, ranges, and formats. 

[R201] Any data that fails validation SHALL be rejected, and the transaction reverted. 

[D544] Developers SHOULD use standardized data formats (e.g. JSON, Protobuf) for interoperability. 

6.6.1.4 Error Handling 

Error Handling is a crucial aspect of smart contract design, particularly when dealing with data inputs and outputs. 
Robust error handling mechanisms ensure that smart contracts can gracefully manage unexpected situations, invalid 
inputs, or failed operations without compromising the integrity of the system. E.g. Implementing try-catch blocks in 
smart contract code to handle exceptions gracefully and revert transactions when errors occur. 
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For inputs, contracts should implement comprehensive checks and provide clear, specific error messages when 
validation fails. These errors should be carefully designed to be informative for debugging purposes while avoiding the 
exposure of sensitive information. For outputs, error handling should account for potential failures in external calls or 
state changes, implementing patterns like checks-effects-interactions to maintain consistency. Additionally, contracts 
should emit events for significant errors, allowing for off-chain monitoring and analysis. Proper error handling not only 
enhances the reliability and security of smart contracts but also improves their maintainability and user experience by 
providing clear feedback and preventing unintended state changes. Zou, W., Lo, D., Kochhar, P. S., Le, X. B. D., Xia, 
X., Feng, Y., & Xu, B. [177] discuss error handling mechanisms in smart contracts to prevent failures and ensure 
robustness. 

[R202] Smart contracts SHALL implement comprehensive error handling for all input/output operations. 

[R203] Error messages SHALL be logged but not exposed directly to end-users to prevent information leakage. 

6.6.1.5  Rate Limiting 

Rate Limiting is an essential mechanism for protecting smart contracts against potential abuse or overload, particularly 
when dealing with external data inputs or frequent interactions. By implementing rate limiting, contracts can restrict the 
frequency of certain operations or data inputs within a given time frame. This helps prevent denial-of-service attacks, 
where an attacker might attempt to overwhelm the contract or the underlying blockchain network with a flood of 
transactions. E.g. Using token bucket algorithms within smart contracts to limit the number of transactions a user can 
perform within a given time frame. For data inputs, rate limiting can be applied to external oracle updates or user-driven 
data submissions. In the context of outputs, it can control the frequency of state updates or external calls. Smart 
contracts can implement rate limiting through various methods, such as enforcing minimum time intervals between 
operations, using token bucket algorithms, or leveraging global transaction limits set by the blockchain protocol. 
Effective rate limiting not only enhances the security and stability of individual smart contracts but also contributes to 
the overall health of the blockchain ecosystem by preventing resource exhaustion. Wang, S., Ouyang, L., Yuan, Y., Ni, 
X., Han, X., & Wang, F. Y. [148] cover strategies for implementing rate limiting in blockchain applications to prevent 
abuse and ensure fair resource allocation. 

[D545] Developers SHOULD implement rate limiting for external data inputs to prevent DoS attacks. 

6.6.1.6  Randomness 

Generating secure random numbers within smart contracts is challenging due to the deterministic nature of blockchain 
execution.  

[D546] When randomness is required, developers SHOULD consider using external sources of entropy or 
implementing multi-party computation schemes.  

It is crucial to understand the limitations and potential vulnerabilities associated with on-chain randomness [92]. 

6.6.1.7  Governance Inputs 

For contracts with upgradeability or parameter adjustment features, governance inputs play a crucial role.  

[D547] These inputs, often in the form of votes or multi-signature approvals, SHOULD be carefully designed to 
ensure security, fairness, and resistance to manipulation.  

Implementing time-locks and quorum requirements can enhance the security of governance-related inputs [151]. 
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6.6.2  Internal Data Inputs 

6.6.2.1 Introduction 

Internal data inputs in smart contracts refer to the data that originates and is processed within the blockchain ecosystem 
itself, without relying on external sources. These inputs are crucial for the functioning of smart contracts as they 
determine how contracts interact with other on-chain elements, such as other contracts, tokens, and blockchain-specific 
events. The management of internal data inputs involves ensuring that data is accurately captured, securely stored, and 
efficiently processed to maintain the integrity and reliability of the smart contract's operations. This clause explores the 
mechanisms and best practices for handling internal data inputs, focusing on aspects such as inter-contract 
communication, on-chain data sources, and the implications of using blockchain-native data in smart contract logic. By 
effectively managing internal data inputs, developers can enhance the functionality and security of smart contracts, 
enabling them to perform complex operations autonomously within a decentralized environment. 

6.6.2.2 Inter-Contract Communication 

Inter-contract communication refers to the ability of smart contracts to interact with one another within the blockchain 
ecosystem, enabling them to call functions, share data, and coordinate actions. This capability is essential for building 
complex Decentralized Applications (DApps) where multiple contracts work together to execute intricate workflows. 
Effective inter-contract communication relies on well-defined interfaces and standards, such as ERC interfaces in 
Ethereum, which ensure compatibility and interoperability between different contracts. It also involves careful 
consideration of security aspects, as improper handling of inter-contract calls can lead to vulnerabilities like reentrancy 
attacks. Recent advancements have focused on enhancing the robustness and efficiency of these interactions through 
techniques like atomic swaps and cross-chain bridges, which facilitate secure and seamless communication across 
different blockchain networks. By leveraging these mechanisms, developers can create more versatile and 
interconnected smart contract systems that extend beyond the limitations of individual contracts.  

Zamyatin, A., Al-Bassam, M., Zindros, D., Kokoris-Kogias, E., Moreno-Sanchez, P., Kiayias, A., & Knottenbelt, W. J. 
[161] discusses interoperability within blockchain networks and the importance of effective inter-contract 
communication for achieving it. 

Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., & Rimba, P. [156] outline architectural considerations for 
blockchain systems, including the role of inter-contract communication in system design. 

Belchior, R., Vasconcelos, A., Guerreiro, S., & Correia, M. [14] discuss interoperability within blockchain networks 
and the importance of effective inter-contract communication for achieving it. 

[R204] Smart contracts SHALL use well-defined interfaces for inter-contract communication. 

[D548] Developers SHOULD implement access control mechanisms to restrict which contracts can call sensitive 
functions. 

[D549] Developers SHOULD use the "pull over push" pattern for payments to prevent reentrancy attacks. 

EXAMPLE: A payment contract could be designed with separate functions for recording payments and 
withdrawing funds. The recording function would update an internal balance, while the withdrawal 
function would first set the balance to zero before initiating the transfer. This "pull over push" 
pattern helps prevent reentrancy attacks by ensuring that the contract's state is updated before any 
external calls are made. 

6.6.2.3  On-Chain Data Sources 

On-chain data sources refer to the information that is natively available within the blockchain ecosystem, which smart 
contracts can access and utilize without relying on external inputs. This data includes transaction details, block 
information, and other contract states that are stored on the blockchain. Utilizing on-chain data sources ensures that 
smart contracts operate with high reliability and security, as this data is inherently part of the blockchain's immutable 
ledger. Smart contracts can leverage on-chain data to trigger actions, verify conditions, and interact with other contracts, 
enabling complex Decentralized Applications (DApps) to function autonomously. The use of on-chain data sources 
minimizes the need for external dependencies, thereby reducing potential vulnerabilities associated with off-chain 
interactions. Recent advancements in blockchain technology have enhanced the efficiency and accessibility of on-chain 
data, allowing developers to build more robust and scalable smart contract solutions. 
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Implementing safeguards against reentrancy attacks and other vulnerabilities associated with contract interactions is 
crucial [169], [156], [154]. 

[D550] When designing contracts that interact with on-chain data, developers SHOULD consider the potential 
for malicious contracts, state inconsistencies, and gas limitations.  

[R205] Smart contracts SHALL verify the authenticity of on-chain data sources (e.g. other contracts, storage). 

[D551] Developers SHOULD use cryptographic commitments or zero-knowledge proofs for privacy-preserving 
on-chain data access. 

6.6.3  External Data Inputs 

6.6.3.1 Definition 

External data inputs come from off-chain sources. External data inputs are critical to the functionality and versatility of 
smart contracts, enabling them to interact with real-world information and events. Unlike internal data inputs, which are 
confined to the blockchain environment, external data inputs are sourced from outside the blockchain, typically through 
oracles or other data feeds. These inputs allow smart contracts to execute based on conditions that reflect real-world 
scenarios, such as flight status, network congestion, or survey data. The integration of external data inputs expands the 
potential use cases for smart contracts by allowing them to automate processes that depend on dynamic and real-time 
information. However, incorporating external data also introduces challenges related to data integrity, authenticity, and 
security. Ensuring that external data is accurate and tamper-proof is crucial for maintaining the reliability and 
trustworthiness of smart contracts. As such, developers have to carefully design mechanisms for sourcing and validating 
external data to mitigate risks and enhance the contract's functionality. 

6.6.3.2 Oracles 

6.6.3.2.1 Definition 

Oracles play a crucial role in bridging the gap between blockchain-based smart contracts and external data sources, 
enabling smart contracts to interact with real-world information. They act as trusted intermediaries that fetch, verify, 
and relay data from outside the blockchain to the smart contract, allowing it to execute based on dynamic inputs such as 
financial market data, weather conditions, or sports results. The use of oracles expands the functionality of smart 
contracts by providing them with access to external events and information that are not natively available on the 
blockchain. However, integrating oracles introduces challenges related to data integrity, trust, and security, as the 
reliability of a smart contract's execution becomes dependent on the accuracy and honesty of the oracle. Recent 
advancements have focused on developing decentralized oracle networks, such as Chainlink (see note below). which 
aim to mitigate these risks by distributing trust across multiple nodes and ensuring that no single point of failure can 
compromise the system's integrity.  

NOTE:  Chainlink: Next-Gen Blockchain Oracle Network (2020). Chainlink documentation provides insights 
into how decentralized oracle networks function and their role in enhancing smart contract capabilities. 

Zamyatin, A., et al. discuss the importance of secure communication mechanisms like oracles in enabling cross-chain 
interactions and data integration [161].  

Al-Breiki, H., et al. review various oracle solutions and highlights ongoing challenges in ensuring their reliability and 
security within blockchain ecosystems [2]. 

[D552] Smart contracts SHOULD use decentralized oracle networks instead of single-source oracles to enhance 
reliability. 

[D553] Developers SHOULD Implement a time delay between receiving oracle data and acting on it to allow for 
dispute resolution. 

[D554] Developers SHOULD Use crypto-economic incentives to ensure oracle honesty. 
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EXAMPLE: A smart contract could be designed to interact with a decentralized oracle network like Chainlink. 
It would include functions to request data (such as price information) from the oracle network and 
to receive and process the response. The contract would specify the data source, the type of data 
required, and any processing needed (such as scaling the result). The oracle network would then 
fetch this data, process it as specified, and return it to the contract in a separate transaction. 

6.6.3.2.2 Oracle selection 

Selecting the appropriate oracle is a critical aspect of integrating external data inputs into smart contracts, as it directly 
impacts the reliability, security, and accuracy of the data being fed into the blockchain. Oracles serve as bridges 
between the off-chain world and on-chain environments, providing smart contracts with access to real-world data 
necessary for executing complex operations. When selecting an oracle, several factors have to be considered: the trust 
model (centralized vs. decentralized), data source reliability, latency, cost, and security features. Decentralized oracles, 
such as Chainlink, are often preferred for their ability to reduce single points of failure and enhance trust through 
distributed data validation. Additionally, the oracle's ability to provide cryptographic proofs of data authenticity and 
integrity is crucial for maintaining the security of smart contracts. Recent advancements in oracle technology have 
focused on improving scalability and reducing latency while ensuring robust security measures are in place to protect 
against data manipulation and other attacks. 

[R206] Smart contracts SHALL use oracle services that provide cryptographic proofs of their computations. 

[D555] Developers SHOULD implement a reputation system for oracles based on their historical accuracy and 
reliability. 

[D556] Developers SHOULD use specialized oracles for different types of data (e.g. financial data, IoT data) to 
leverage domain expertise. 

6.6.3.2.3 Data Aggregation 

Data aggregation in the context of oracles as external data sources for smart contracts involves the process of collecting, 
verifying, and consolidating data from multiple sources to ensure accuracy and reliability before it is fed into the 
blockchain. This is crucial because smart contracts often rely on real-world data to execute functions, and any 
inaccuracies can lead to incorrect contract behaviour. Aggregating data from multiple oracles helps mitigate risks 
associated with single points of failure or manipulation by providing a consensus on the data's validity. Recent 
advancements in decentralized oracle networks, such as Chainlink, have emphasized the importance of robust data 
aggregation mechanisms to enhance the security and trustworthiness of smart contracts. These systems use multiple 
independent nodes to fetch and verify data, ensuring that the aggregated result is both accurate and tamper-proof. By 
implementing effective data aggregation strategies, smart contracts can achieve higher levels of reliability and resilience 
against potential attacks or errors in external data inputs. 

[D557] Developers SHOULD implement robust aggregation methods (e.g. median) for data from multiple 
oracles to resist outliers and attacks. 

[D558] Developers SHOULD use weighted aggregation based on oracle reputation scores. 

EXAMPLE: A data aggregator contract could be designed to collect reports from multiple oracles. Each oracle 
would submit its data along with a timestamp. The contract would store this information along 
with the oracle's reputation score. When aggregating the data, the contract would consider only 
recent reports (e.g. within the last hour) and weight each report by the oracle's reputation. The final 
result would be a weighted average of the valid reports. This approach helps to mitigate the impact 
of outliers or malicious reports. 
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6.6.3.2.4 Oracle Security 

Oracle security is a critical consideration when integrating external data sources into smart contracts, as oracles act as 
the bridge between on-chain and off-chain data. Ensuring the security of oracles is essential to maintaining the integrity 
and reliability of the smart contracts that depend on them. Oracles have to be protected against various threats, such as 
data tampering, unauthorized access, and denial-of-service attacks. Decentralized oracle networks, like Chainlink, 
enhance security by distributing trust across multiple nodes, reducing the risk of a single point of failure and increasing 
resistance to manipulation. Additionally, implementing cryptographic proofs and secure data transmission protocols can 
further safeguard the data being fed into smart contracts. Recent advancements in oracle technology have focused on 
improving security measures to ensure that smart contracts receive accurate and reliable data inputs, which is crucial for 
their correct execution and the prevention of potential exploits.  

Developers SHOULD: 

[D559] Implement circuit breakers to halt contract execution if oracle data deviates significantly from expected 
ranges. 

[D560] Use commit-reveal schemes for time-sensitive oracle data to prevent front-running. 

[D561] Implement oracle rotation to distribute trust and prevent single points of failure. 

6.6.3.3  Off-Chain Data Sources 

Off-chain data sources refer to information that originates outside the blockchain ecosystem and is accessed by smart 
contracts to execute specific functions or make decisions based on real-world events. These data sources are crucial for 
enabling smart contracts to interact with external systems and environments, thereby extending their functionality 
beyond the blockchain. Off-chain data can include anything from financial market prices and weather data to supply 
chain information and IoT sensor readings [163]. To incorporate this data securely and reliably, smart contracts often 
rely on oracles, which act as trusted intermediaries that fetch, verify, and transmit the data to the blockchain. The 
integration of off-chain data presents challenges such as ensuring data integrity, authenticity, and minimizing trust 
dependencies. Recent advancements in decentralized oracle networks aim to address these challenges by distributing 
trust across multiple nodes, thereby enhancing the security and reliability of off-chain data inputs in smart contracts. 

Al-Breiki, et al. [2] discuss the challenges in ensuring the reliability and security of off-chain data integration. 

Zamyatin, et al. [161] explore secure communication mechanisms for integrating off-chain data into blockchain 
systems. 

[D562] Developers SHOULD Implement multiple independent data sources for critical off-chain data to ensure 
reliability. 

[D563] Developers SHOULD Use secure hardware (e.g. TEEs) for sensitive off-chain computations when 
possible. 

[D564] Developers SHOULD Implement a challenge-response mechanism for large off-chain datasets. 

6.6.3.4  User Inputs 

User inputs are the primary means by which external actors interact with smart contracts.  

[R207] These inputs SHALL be carefully validated to prevent malicious actions or unintended behaviours. 

[R208] Smart contracts SHALL only accept input from authorized sources.  

Implementing robust input validation mechanisms, including range checks, type checks, and format validations, is 
essential to maintain the contract's integrity and security [72]. 

6.6.3.5  Time-Based Inputs 

Many smart contracts rely on time-based triggers or conditions. However, blockchain timestamps can be manipulated to 
some extent by miners.  

[D565] Developers SHOULD be aware of these limitations and implement appropriate safeguards when using 
time-based inputs. 
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Considering block numbers as a proxy for time or using commit-reveal schemes can mitigate some of these risks [47]. 

6.6.4 Smart Contract Outputs 

6.6.4.1 Introduction 

Smart contract outputs consist of several types of data as described in the following clauses. By carefully designing 
these output methods, smart contracts can effectively communicate their state changes, provide necessary data, and 
interact with both on-chain and off-chain systems in a secure and efficient manner. 

6.6.4.2 Event Emission 

Smart contracts can emit events to log important state changes and actions. Events serve as an efficient way to notify 
external systems or user interfaces about contract activities. 

When designing event structures the developers SHOULD: 

[D566] Include relevant data as indexed parameters for efficient filtering 

[D567] Emit events for all significant state changes 

[D568] Use descriptive names for events and their parameters 

6.6.4.3 Return Values 

Functions in smart contracts can return values to provide immediate feedback or data to the caller. When implementing 
return values the developers SHOULD: 

[D569] Define clear and consistent return types for functions 

[D570] Use multiple return values when appropriate to provide comprehensive information 

[D571] Consider using structs for complex return data 

6.6.4.4 State Updates 

Smart contracts modify their internal state as a result of function executions. Proper state management is crucial for 
maintaining contract integrity. 

When updating state developers SHOULD: 

[D572] Ensure all state changes are atomic and consistent 

[D573] Use appropriate data structures (e.g. mappings, arrays) for efficient state storage 

[D574] Implement access controls to protect sensitive state variables 

6.6.4.5 External Calls 

Smart contracts can make calls to other contracts or external addresses. When designing external calls developers 
SHOULD: 

[D575] Implement proper error handling for failed calls 

[D576] Be aware of potential reentrancy vulnerabilities 

[D577] Use the appropriate call methods (e.g. transfer, send, call) based on the specific requirements 
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6.6.4.6 Off-Chain Notifications 

While not directly part of the blockchain, smart contracts can trigger off-chain notifications through oracles or other 
middleware. Developers SHOULD Consider: 

[D578] Implementing webhook-like mechanisms for notifying external systems 

[D579] Using oracles to bridge on-chain events with off-chain processes 

[D580] Ensuring proper authentication and encryption for off-chain communications 

6.7 Using a universal clock 

6.7.1 The criticality of Universal Time 

The concept of time in smart contracts is crucial for many applications, yet it presents unique challenges in distributed 
systems, as certain nodes may reside in different time-zones and others may rely on an unsynchronized internal clock. A 
universal clock mechanism is essential for ensuring consistency and fairness in time-dependent contract executions. 

6.7.2 Time Representation 

[R209] Smart contracts SHALL have a standardized way of representing time to ensure consistent execution 
across all nodes.  

Most blockchain platforms use block timestamps or block numbers as a proxy for time. Developers should be aware of 
the granularity and potential manipulation of these time representations when designing time-sensitive contracts [47]. 

6.7.3  Consensus on Time 

In distributed systems, achieving consensus on the current time is challenging. Smart contract platforms typically rely 
on the consensus mechanism to agree on block timestamps. However, there can be slight variations between nodes.  

[D581] Developers SHOULD account for these potential discrepancies in time-critical applications [74]. 

6.7.4  Time Drift Mitigation 

Over time, the cumulative effect of small inconsistencies in timekeeping can lead to significant drift. Implementing 
mechanisms to periodically synchronize contract time with a trusted external time source can help mitigate this issue. 
However, care has to be taken to maintain the decentralized nature of the system [153]. 

[D582] Contracts SHOULD implement mechanisms to handle potential time discrepancies between nodes. 

6.7.5  Time-based Triggers 

Many smart contracts rely on time-based triggers for executing certain functions.  

[D583] Developers SHOULD implement time-based triggers with care, considering potential manipulations by 
miners or validators.  

Using block numbers as a proxy for time or implementing commit-reveal schemes can provide more reliable time-based 
executions [89]. 

6.7.6  Time Zones and Localization 

For contracts that interact with real-world events across different time zones, proper handling of time zone conversions 
is crucial. Storing all timestamps in UTC and performing conversions only when necessary can help avoid confusion 
and errors related to time zone differences [145]. 

[R210] Smart contracts SHALL use the time/zone format defined by the PDL governance. 
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6.7.7  Time Oracles 

In cases where high precision or tamper-resistant time data is required, time oracles can be employed. These external 
services provide verified time data to smart contracts. However, the use of oracles introduces additional trust 
considerations that should be carefully managed [2]. 

[O14] Time Oracles MAY be used. 

6.8  Terminatability considerations 

6.8.1  Problem Definition of Terminatability 

The ability to safely terminate or deactivate a smart contract is a crucial design consideration, especially for long-
running or upgradeable contracts. Proper termination mechanisms ensure that contracts can be retired gracefully when 
they are no longer needed or when critical issues are discovered. 

[R211] Smart contracts SHALL include a mechanism for termination or deactivation. 

[D584] Termination mechanisms SHOULD include proper state cleanup and event emission. 

6.8.2  Self-Destruction Mechanisms 

Self-destruction (or "selfdestruct" in Solidity) is a built-in feature in some smart contract platforms that allows for the 
complete removal of a contract from the blockchain. While powerful, this mechanism should be used cautiously and 
with proper access controls to prevent unauthorized termination [175].  

[D585] Developers SHOULD consider the implications of self-destruction on contract dependencies and user 
assets. 

NOTE:  It is important to understand that self-destruction does not violate the principle of blockchain 
immutability. When a contract self-destructs, it does not erase its past transactions or states from the 
blockchain's history. Instead, it renders the contract address invalid for future interactions and typically 
transfers any remaining balance to a designated address. The contract's bytecode is replaced with an 
empty value, but all previous interactions with the contract remain permanently recorded on the 
blockchain. This nuance highlights the need for careful consideration when implementing self-destruction 
mechanisms, as they have permanent and irreversible effects on the contract's future usability while 
preserving its historical record [10]. 

6.8.3  Graceful Shutdown 

Implementing a graceful shutdown process allows for a controlled deactivation of the contract's functionalities. This 
typically involves a multi-step process where the contract enters a "shutdown mode," preventing new operations while 
allowing users to withdraw their assets or complete ongoing transactions [92]. 

[D586] Smart Contracts SHOULD include mechanisms for change and graceful termination. 

6.8.4 Time-Based Termination 

For contracts with a predetermined lifespan, implementing time-based termination can ensure that the contract 
automatically ceases operations after a specific date or block number. This approach requires careful consideration of 
time representation in blockchain environments and potential manipulations of block timestamps [47]. 

[O15] Smart contracts MAY include mechanisms to automatically terminate after a predefined time period or 
date. 

[R212] The termination process SHALL ensure that all pending transactions are processed before the contract is 
closed. 

Smart contract developers SHOULD: 

[D587] Use blockchain timestamps to trigger time-based termination reliably. 
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[D588] Implement notifications for stakeholders prior to termination to allow for any necessary actions. 

[D589] Consider using a grace period after the termination trigger to handle any last-minute transactions. 

6.8.5  Condition-Based Termination 

Contracts can be designed to terminate based on specific conditions, such as reaching a certain state, completing a 
particular task, or responding to external triggers.  

[D590] Smart contracts SHOULD define specific conditions under which they will terminate automatically. 

[R213] The conditions for such termination SHALL be clearly documented and accessible to all stakeholders 
involved in the contract and resistant to manipulation to prevent premature or delayed termination [72]. 

Smart contract developers SHOULD: 

[D591] Use oracles or other reliable data sources to verify external conditions that trigger termination. 

[D592] Implement thorough testing of condition-based triggers to prevent premature or unintended terminations. 

[D593] Allow for manual override or review processes in case of disputes over condition satisfaction. 

6.8.6  Governance-Controlled Termination 

For contracts with complex ecosystems or high-value assets, implementing a governance-controlled termination process 
can provide additional security and flexibility. This typically involves multi-signature approval or stakeholder voting to 
initiate the termination process [148]. 

[D594] Smart contracts SHOULD include governance mechanisms that allow authorized parties to terminate the 
contract if necessary. 

[R214] The governance process SHALL be transparent and involve multiple stakeholders to prevent misuse. 

Smart contract developers SHOULD: 

[D595] Use multi-signature approvals or voting systems for governance-controlled termination decisions. 

[D596] Document all governance processes and decisions related to termination for auditability. 

[D597] Implement safeguards against malicious or unauthorized termination attempts by requiring consensus 
among stakeholders. 

6.8.7  Data Preservation and State Finalization 

When terminating a contract, it is crucial to consider the preservation of important data and the finalization of the 
contract's state. Implementing mechanisms to archive data or transfer it to a successor contract can ensure continuity 
and maintain historical records [145]. 

[R215] Upon termination, smart contracts SHALL preserve critical data and finalize their state to ensure integrity 
and auditability. 

[R216] Data preservation mechanisms SHALL comply with relevant legal and regulatory requirements. 

[O16] Smart contract developers MAY use off-chain storage solutions for preserving large datasets while 
maintaining references on-chain. 

Smart contract developers SHOULD: 

[D598] Implement mechanisms to provide stakeholders with access to preserved data after contract termination. 

[D599] Consider using Merkle trees or similar structures for efficient verification of preserved data integrity. 



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 131 

6.9 Security aspects of smart contract design 
The security aspects of smart contract design are discussed in depth in clause 4.3.9.9. 

7 Architectural requirements for Smart Contracts 

7.1 Reusability 

7.1.1 Definition of Reusability 

Reusability is a crucial architectural requirement for smart contracts, as it promotes efficiency, reduces development 
time, and minimizes the potential for errors. By creating contracts that can be easily adapted and reused, developers can 
build more robust and maintainable systems. Reusable smart contracts also contribute to standardization within the 
blockchain ecosystem, fostering interoperability and reducing the learning curve for new developers. Reusability is 
discussed in depth in clause 4.3.9.1 herewith. The following text provides requirements and recommendations with the 
specific context of Architecture of smart contracts. 

7.1.2 Contract Templates 

Developing standardized contract templates for common use cases enhances reusability and reduces development time. 
These templates can be customized for specific needs while maintaining a consistent and tested foundation. Contract 
templates serve as building blocks for more complex systems and can significantly speed up the development process 
while ensuring best practices are followed [92]. 

[R217] Smart contract systems SHALL implement standardized templates for common use cases. 

[D600] Developers SHOULD create a library of customizable contract templates for different scenarios. 

[D601] Templates SHOULD be regularly reviewed and updated to incorporate best practices and security 
improvements. 

7.1.3  Library Development  

Creating reusable libraries for common functionalities allows for code sharing across multiple contracts. This approach 
reduces redundancy and improves overall code quality. Libraries can encapsulate complex logic, security features, or 
standard implementations of common patterns, making them valuable resources for the entire development community 
[92]. 

[R218] Reusable code libraries SHALL be developed and maintained for common smart contract functionalities. 

[D602] Libraries SHOULD be thoroughly tested and audited before being used in production contracts.  

[D603] Version control and dependency management SHOULD be implemented for all libraries. 

7.1.4  Inheritance and Composition  

Utilizing inheritance and composition patterns enables the creation of flexible and reusable contract structures. This 
allows for the extension of existing contracts with new functionalities while maintaining a modular design. These 
object-oriented principles, when applied to smart contracts, provide a powerful way to create extensible and 
maintainable code [177]. 

[R219] Smart contracts SHALL utilize inheritance and composition patterns to promote code reuse and 
extensibility. 

[D604] Developers SHOULD favour composition over deep inheritance hierarchies to maintain flexibility. 

[D605] Contract interfaces SHOULD be used to define standard behaviours that can be implemented by multiple 
contracts. 
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7.2 Self-destruction 

7.2.1 Definition  

Self-destruction mechanisms in smart contracts are essential for managing the contract lifecycle and maintaining the 
overall health of the blockchain network. By allowing contracts to be safely terminated when they are no longer needed, 
self-destruction helps prevent the accumulation of obsolete contracts and reduces unnecessary blockchain bloat. 

7.2.2  Controlled Termination 

Implementing controlled self-destruction mechanisms allows for the safe termination of contracts when they are no 
longer needed. This helps in managing the contract lifecycle and reducing unnecessary blockchain bloat. Controlled 
termination should include safeguards to ensure that only authorized parties can initiate the self-destruction process 
[175]. 

[R220] Smart contracts SHALL include a secure mechanism for self-destruction when they are no longer needed. 

[D606] Self-destruction functions SHOULD be protected with multi-signature or time-lock mechanisms.  

[D607] The ability to initiate self-destruction SHOULD be limited to authorized roles or governance processes. 

7.2.3  State Cleanup  

Designing proper state cleanup procedures ensures that all relevant data is appropriately handled or transferred before 
contract termination. This may involve transferring remaining funds, settling outstanding transactions, or archiving 
important data. Proper state cleanup is crucial to prevent loss of assets or information [175]. 

[R221] Self-destruction processes SHALL include comprehensive state cleanup procedures. 

[D608] Contracts SHOULD implement functions to transfer any remaining assets before self-destruction.  

[D609] Important data SHOULD be archived or transferred to a designated storage contract before termination. 

7.2.4  Event Emission  

Emitting events upon self-destruction provides a clear audit trail and notifies relevant parties of the contract's 
termination. These events can be monitored off-chain to trigger necessary actions or updates in connected systems, 
ensuring smooth transitions and maintaining system integrity [175]. 

[R222] Smart contracts SHALL emit events upon initiation and completion of the self-destruction process. 

[D610] Emitted events SHOULD include relevant details such as the initiator and timestamp.  

[D611] Systems interacting with the contract SHOULD monitor these events to update their state accordingly. 

7.3 Data Ownership 

7.3.1 Definition 

Data ownership is a critical concern in smart contract architecture, especially in permissioned environments where 
privacy and access control are paramount. Properly implemented data ownership mechanisms ensure that sensitive 
information is protected while still allowing for necessary operations and interactions within the contract ecosystem. 

7.3.2  Access Control Mechanisms 

Implementing robust access control mechanisms ensures that data within the contract is only accessible or modifiable 
by authorized parties. This can involve Role-Based Access Control (RBAC) systems, multi-signature requirements, or 
other advanced permission structures that align with the specific needs of the contract and its stakeholders [164]. 
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[R223] Smart contracts SHALL implement robust access control mechanisms to protect data ownership. 

[D612] Role-Based Access Control (RBAC) SHOULD be used to manage permissions granularly. 

[D613] Access control lists SHOULD be updatable by authorized governance processes. 

7.3.3  Data Portability  

Designing contracts with data portability in mind allows for the transfer of ownership or migration of data to new 
contracts when necessary. This is particularly important for long-lived systems where contract upgrades or migrations 
may be required. Data portability ensures that valuable information can be preserved and transferred securely [164]. 

[R224] Smart contract systems SHALL provide mechanisms for securely transferring data ownership or 
migrating data. 

[D614] Contracts SHOULD implement functions to export data in a standardized format. 

[D615] Data migration processes SHOULD include verification steps to ensure data integrity. 

7.3.4  Privacy-Preserving Techniques  

Incorporating privacy-preserving techniques, such as zero-knowledge proofs, can protect sensitive data while still 
allowing for necessary computations and verifications. These advanced cryptographic methods enable contracts to 
operate on confidential data without exposing the underlying information, striking a balance between transparency and 
privacy [83]. 

[R225] Smart contracts dealing with sensitive data SHALL incorporate privacy-preserving techniques. 

[D616] Zero-knowledge proofs SHOULD be used where possible to verify computations without revealing data.  

[D617] Contracts SHOULD minimize on-chain storage of sensitive data, preferring off-chain storage with 
on-chain verification. 

7.4 Reference Architecture 

7.4.1 Problem statement 

A well-designed reference architecture provides a blueprint for creating robust, scalable, and maintainable smart 
contracts. It defines the overall structure and key components of the contract system, ensuring consistency and best 
practices across different implementations. ETSI has published ETSI GS PDL 012 [45] which defines a reference 
architecture of PDLs. While not specific to Smart Contracts, it should be adhered to where applicable. 

[D618] Developers SHOULD adhere to the ETSI PDL Reference Architecture defined in ETSI 
GS PDL 012 [45]. 

7.4.2  Modular Design  

Modularity is a fundamental architectural principle for smart contract design, promoting flexibility, reusability, and 
maintainability. In the context of smart contracts, modularity involves breaking down complex systems into smaller, 
self-contained components or modules, each responsible for specific functionalities. This approach allows developers to 
create more manageable and upgradeable smart contract systems, facilitating easier maintenance, upgrades, and reuse of 
contract components. Modular design enhances code reusability, allowing common functionalities to be shared across 
different contracts or projects, and supports better scalability and upgradability, as specific modules can be replaced or 
upgraded without affecting the entire system. Furthermore, it facilitates easier testing and auditing, as individual 
components can be verified independently. Implementing modularity in smart contracts often involves using design 
patterns such as proxy contracts, libraries, and factory patterns. By adhering to modular architecture, smart contract 
developers can create more robust, flexible, and efficient systems that are better equipped to evolve with changing 
requirements and technological advancements in the blockchain ecosystem, while also creating more adaptable systems 
that are easier to maintain and audit [148]. 
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[R226] Smart contracts SHALL be designed with a modular architecture to enhance maintainability and 
reusability. 

[D619] Contracts SHOULD be divided into logical modules with clear interfaces between them.  

[D620] Each module SHOULD have a single responsibility to enhance maintainability. 

[D621] Developers SHOULD use design patterns such as the proxy pattern to enable upgradeable contract logic. 

7.4.3  Standardized Interfaces  

Implementing standardized interfaces enhances interoperability and allows for easier integration with other contracts 
and systems. Standardized interfaces, such as those defined by ERC standards in Ethereum, provide a common 
language for contract interactions, promoting ecosystem-wide compatibility and reducing integration complexities 
[148]. 

[R227] Smart contracts SHALL implement standardized interfaces for common functionalities. 

[D622] Developers SHOULD adhere to established standards (e.g. ERC standards for Ethereum) where 
applicable.  

[D623] Custom interfaces SHOULD be well-documented and follow consistent patterns. 

7.4.4  Separation of functionalities  

Clearly separating different functionalities (e.g. logic, data storage, access control) within the contract architecture 
improves maintainability and security. This principle helps in managing complexity by isolating different aspects of the 
contract, making it easier to update, debug, and secure individual components without affecting the entire system [148]. 

[R228] Smart contract architecture SHALL clearly separate different functionalities. 

[D624] Logic, data storage, and access control SHOULD be implemented in separate contract components.  

[D625] Interaction between separated components SHOULD be through well-defined interfaces. 

7.5  Scalability Solutions 

7.5.1 Problem statement 

Scalability is a significant challenge in blockchain systems, and smart contract architecture should consider scalability 
solutions to ensure performance and cost-effectiveness as the network grows. Implementing scalable smart contracts is 
crucial for supporting large-scale, high-throughput applications. The clauses below list approaches that may be 
considered to improve smart-contract scalability. 

7.5.2  Layer-2 Integration 

Layer-2 solutions represent a critical approach to smart contract offloading, addressing scalability and efficiency 
challenges inherent in base layer blockchain networks. These solutions operate as secondary frameworks built on top of 
the main blockchain, processing transactions and executing smart contract logic off-chain while leveraging the security 
of the underlying blockchain. Popular Layer-2 technologies include state channels, sidechains, rollups (both optimistic 
and zero-knowledge), and plasma chains. By moving computation and data storage off the main chain, Layer-2 
solutions can significantly increase transaction throughput, reduce gas costs, and improve overall system performance. 
For instance, rollups can bundle multiple transactions into a single on-chain submission, dramatically reducing fees and 
increasing processing speed. Designing contracts with Layer-2 scalability solutions in mind can significantly improve 
transaction throughput and reduce costs, allowing for faster and cheaper transactions while still benefiting from the 
security of the main chain. Moreover, some Layer-2 solutions offer enhanced privacy features, allowing for confidential 
transactions and selective data disclosure. When implementing Layer-2 solutions, developers have to carefully consider 
trade-offs between scalability, security, and decentralization, ensuring that the chosen approach aligns with the specific 
requirements of their decentralized application while maintaining the integrity and trust guarantees provided by the base 
layer blockchain [156]. 



 

ETSI 

ETSI GS PDL 033 V1.1.1 (2025-06) 135 

[R229] Smart contract systems SHALL be designed to integrate with Layer-2 scalability solutions where 
appropriate. 

[D626] Developers SHOULD consider implementing state channels or rollups for high-frequency, low-value 
transactions. 

[D627] Rollup-friendly design patterns SHOULD be adopted to enable efficient off-chain computation. 

7.5.3  Sharding Compatibility  

Ensuring contracts are compatible with sharding architectures can enhance scalability in blockchain networks that 
implement sharding. Sharding divides the network into smaller partitions, each capable of processing transactions 
independently. Smart contracts designed with sharding in mind can take full advantage of this parallel processing 
capability [156]. 

[R230] Smart contracts SHALL be designed to be compatible with sharding architectures. 

[D628] Contracts SHOULD minimize cross-shard operations to maintain efficiency in sharded environments.  

[D629] Data structures SHOULD be designed to allow efficient partitioning across shards. 

7.5.4  Gas Optimization  

Implementing gas-efficient coding practices and data structures helps in reducing transaction costs and improving 
overall scalability. This includes optimizing storage usage, minimizing expensive operations, and designing efficient 
algorithms. Gas optimization is crucial for making smart contracts economically viable on public blockchains [31]. 

[R231] Smart contracts SHALL implement gas-efficient coding practices and data structures. 

[D630] Loops SHOULD be optimized to minimize gas consumption.  

[D631] Storage patterns SHOULD be chosen to minimize gas costs for frequent operations. 

7.6  Privacy-Preserving Smart Contracts 

7.6.1 Problem statement 

The inherent transparency of blockchain technology, while beneficial for ensuring trust and accountability, presents 
significant challenges when dealing with sensitive or confidential information in smart contracts. This transparency can 
potentially expose private data, intellectual property, or business-critical information to unauthorized parties, limiting 
the adoption of blockchain solutions in industries where data privacy is paramount, such as healthcare, finance, and 
legal services. 

Challenges: 

1) Data Exposure: Traditional smart contracts store all data on-chain, making it visible to all network 
participants. 

2) Regulatory Compliance: Many industries are subject to strict data protection regulations, which can conflict 
with blockchain's transparent nature. 

3) Competitive Advantage: Businesses may be reluctant to use blockchain if it means exposing proprietary 
information to competitors. 

4) User Privacy: Individual users may be hesitant to interact with smart contracts that could reveal their personal 
or financial information. 

Privacy-preserving smart contracts address the challenge of maintaining confidentiality in a transparent blockchain 
environment. By incorporating privacy-preserving mechanisms such as those listed in the following clauses, smart 
contracts can maintain the benefits of blockchain technology while protecting sensitive information. This approach 
opens up new possibilities for blockchain applications in fields where data confidentiality is crucial, potentially 
accelerating the adoption of blockchain solutions across various industries and use cases. 
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7.6.2  Zero-Knowledge Proofs  

Incorporating zero-knowledge proof technologies allows for verification of computations without revealing underlying 
data. This powerful cryptographic technique enables contracts to prove the validity of a statement or computation 
without disclosing any information beyond the truth of the statement itself, maintaining privacy while ensuring 
correctness [9]. 

[R232] Smart contracts handling sensitive data SHALL incorporate zero-knowledge proof technologies where 
applicable. 

[D632] zk-SNARKs or zk-STARKs SHOULD be used for privacy-preserving verifications.  

[D633] The choice of zero-knowledge proof system SHOULD consider the trade-offs between proof size, 
verification time, and setup requirements. 

NOTE 1:  Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-SNARK) is a cryptographic 
proof system that enables one party to prove to another that they know a value, without revealing any 
information about the value itself. zk-SNARKs are characterized by their succinctness, meaning the 
proofs are very small and can be verified quickly, and non-interactivity, which means they do not require 
interaction between the prover and verifier after the initial setup phase. This technology is widely used in 
blockchain applications to enhance privacy and scalability, as it allows for the verification of complex 
computations without revealing the underlying data or requiring extensive computational resources from 
the verifier. 

NOTE 2: Zero-Knowledge Scalable Transparent Argument of Knowledge (zk-STARK) is a cryptographic proof 
system designed to provide similar functionalities to zk-SNARKs but with greater scalability and 
transparency. Unlike zk-SNARKs, zk-STARKs do not rely on a trusted setup phase, making them more 
secure and easier to implement. They use hash functions instead of elliptic curves, which contributes to 
their scalability and resistance to quantum attacks. zk-STARKs generate larger proofs than zk-SNARKs 
but are more efficient in terms of proving time and verification speed, making them suitable for 
applications requiring high throughput and robust security assurances. 

7.6.3  Secure Multi-Party Computation  

Implementing secure multi-party computation techniques enables collaborative computations while keeping individual 
inputs private. This allows multiple parties to jointly compute a function over their inputs while keeping those inputs 
secret, opening up possibilities for privacy-preserving collaborations and data analysis [11]. 

[R233] Smart contracts requiring collaborative computations on private data SHALL implement secure 
multi-party computation techniques. 

[D634] Threshold cryptography SHOULD be used to distribute trust among multiple parties.  

[D635] The number of parties involved in the computation SHOULD be carefully chosen to balance security and 
efficiency. 

7.6.4  Encrypted Data Processing  

Designing contracts to work with encrypted data, such as through homomorphic encryption, allows for computations on 
sensitive data without exposing it. This advanced technique enables contracts to perform operations on encrypted data, 
producing encrypted results that can be decrypted only by authorized parties, thus maintaining data confidentiality 
throughout the computation process [11]. 

[R234] Smart contracts operating on sensitive data SHALL support computations on encrypted data where 
necessary. 

[D636] Homomorphic encryption SHOULD be used for operations on encrypted data when full data 
confidentiality is required.  

[D637] The performance impact of encrypted data processing SHOULD be carefully evaluated and optimized. 
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7.7 Smart Contract Offloading 

7.7.1 Introduction 

Smart Contract Offloading is an advanced architectural approach that addresses multiple challenges in blockchain 
systems, including scalability, privacy, and data management. This technique involves strategically relocating certain 
computations, data storage, or processing tasks away from the main blockchain to enhance system performance, reduce 
costs, and improve data privacy. By offloading select operations to external systems, secondary chains, or 
privacy-preserving computation environments, smart contracts can overcome limitations such as high transaction fees, 
limited on-chain storage, slow processing times, and lack of data confidentiality. 

This clause explores various offloading strategies, including the use of sidechains, layer-2 solutions, secure enclaves, 
and zero-knowledge proof systems. It discusses how these approaches can be leveraged not only for performance 
optimization but also for implementing robust data segregation and privacy-preserving computations. The discussion 
will cover techniques for maintaining data confidentiality while still leveraging the transparency and immutability 
benefits of blockchain technology. 

This clause discusses the trade-offs between on-chain and off-chain execution, considering factors such as security, 
decentralization, data availability, and regulatory compliance. The clause also provides insights into designing hybrid 
architectures that balance the need for public verifiability with requirements for data protection and selective disclosure. 

Understanding and effectively utilizing smart contract offloading techniques is crucial for creating scalable, efficient, 
and privacy-aware decentralized applications that can meet the complex demands of enterprise and regulated 
environments while still adhering to the core principles of blockchain technology. 

7.7.2 Sidechain Integration 

Sidechain integration represents a powerful approach to smart contract offloading, offering a balance between 
scalability, customization, and security. Sidechains are separate blockchain networks that run parallel to the main chain, 
connected through a two-way peg mechanism that allows for the secure transfer of assets and data. By offloading smart 
contract execution and data storage to sidechains, developers can significantly reduce congestion on the main network 
while maintaining a connection to its security and liquidity. Sidechains can be optimized for specific use cases, allowing 
for tailored consensus mechanisms, faster block times, and specialized functionality. This flexibility enables the 
creation of application-specific chains that can handle complex computations or high-frequency transactions more 
efficiently than the main chain. Furthermore, sidechains can offer enhanced privacy features, as not all data needs to be 
broadcast to the entire network. When implementing sidechain integration, developers have to carefully design the 
cross-chain communication protocols and consider the security implications of the sidechain's validator set. Effective 
sidechain integration can dramatically improve the scalability and functionality of decentralized applications while 
leveraging the robustness of the main blockchain network. 

[R235] The PDL architecture SHALL allow for sidechain integration to offload specific smart contract 
operations. 

[D638] Sidechains SHOULD be used for specialized operations that require different consensus rules or higher 
transaction throughput. 
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7.7.3 Off-chain Computation 

Off-chain computation is a crucial strategy for smart contract offloading, addressing limitations in on-chain processing 
power and cost-effectiveness. This approach involves executing complex or resource-intensive calculations outside the 
blockchain environment, while using the blockchain primarily for data integrity and settlement. Off-chain computation 
can be implemented through various technologies, including Trusted Execution Environments (TEEs), decentralized 
oracle networks, and verifiable computation protocols. By moving intensive computations off-chain, smart contracts 
can handle more complex logic, process larger datasets, and operate with greater efficiency. This is particularly 
beneficial for applications requiring real-time data processing, machine learning algorithms, or compliance with data 
privacy regulations. The results of off-chain computations are typically submitted back to the blockchain with 
cryptographic proofs of correctness, ensuring transparency and verifiability. Implementing off-chain computation 
requires careful consideration of the trust model, as it introduces potential centralization risks. Developers have to 
design robust verification mechanisms and consider hybrid approaches that balance the benefits of off-chain processing 
with the security guarantees of on-chain execution. When properly implemented, off-chain computation can 
significantly enhance the capabilities and performance of smart contract systems, enabling more sophisticated and 
scalable decentralized applications. 

[R236] Smart contracts SHALL be designed to leverage off-chain computation where possible, with on-chain 
verification. 

[D639] Complex computations SHOULD be performed off-chain, with results verified and recorded on-chain to 
reduce blockchain bloat. 

NOTE: Trusted Execution Environments (TEEs) are secure areas within a main processor that provide a protected 
environment for executing code and processing data. TEEs are isolated from the rest of the device and the 
operating system, ensuring that data and code within the TEE are protected from unauthorized access, 
modification, and tampering. 

7.8 Design Patterns 

7.8.1 Introduction and problem statement 

Smart contract development has evolved significantly since its inception, giving rise to a rich ecosystem of design 
patterns that address various challenges in blockchain-based applications. This clause delves into a comprehensive 
exploration of these design patterns, each tailored to solve specific problems encountered in smart contract development 
offering powerful architectural approaches that enable dynamic creation, efficient management, and secure execution of 
contract instances [97], [79], [126], [12], [56]. 

From foundational patterns that enhance contract modularity and upgradeability to advanced patterns that facilitate 
complex interactions and data management, this clause covers a wide spectrum of architectural solutions. 

Key areas explored include: 

1) Factory patterns for dynamic contract creation 

2) Proxy patterns for upgradeable contracts 

3) Access control patterns for managing permissions 

4) Oracle patterns for integrating external data 

5) State management patterns for efficient data handling 

6) Security patterns to mitigate common vulnerabilities 

7) Governance patterns for decentralized decision-making 

8) Interoperability patterns for cross-chain communication 

By focusing on these advanced architectural patterns and their functional integrations, this clause aims to equip 
developers with the knowledge to design and implement sophisticated, secure, and scalable smart contract systems. It 
examines each pattern's structure, use cases, benefits, and potential drawbacks, providing a comprehensive 
understanding of when and how to apply these patterns effectively. 
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It also discusses how these patterns can be combined and adapted to meet the unique requirements of various 
blockchain applications, from Decentralized Finance (DeFi) to supply chain management and beyond. By mastering 
these design patterns, developers will be better prepared to create robust smart contract systems that can effectively 
leverage external data, manage complex access control requirements, and adapt to the evolving landscape of blockchain 
technology. 

7.8.2  Contract Factory Pattern  

The Contract Factory Pattern is a design pattern in smart contract development where a specialized contract, known 
as a factory contract, is used to create and deploy other smart contracts. This pattern allows for the efficient deployment 
of multiple instances of the same contract type, each with its own unique state, while adhering to a consistent and 
predefined logic. The factory contract acts as a central registry, simplifying the process of tracking and interacting with 
the deployed contracts, and can optimize gas costs by deploying numerous child contracts with lower gas costs per 
deployment [105], [35], [76]. 

[R237] PDL systems SHALL support the implementation of contract factory patterns for efficient deployment of 
multiple similar contracts. 

[D640] Contract factories SHOULD include version control mechanisms to manage different iterations of 
deployed contracts. 

7.8.3  Oracle Integration Pattern 

The Oracle Integration Pattern is a design pattern in smart contract development that enables the integration of 
external data sources and systems with blockchain-based smart contracts. This pattern involves using oracle services as 
intermediaries to fetch and verify external data, which is then used to execute smart contract functions. Oracles act as 
bridges between the on-chain and off-chain worlds, allowing smart contracts to access real-world data while 
maintaining the security and integrity of the blockchain [32], [110], [76]. 

[R238] The smart contract architecture SHALL include secure mechanisms for integrating with oracle services 
for external data. 

[D641] Multiple oracle sources SHOULD be used with a consensus mechanism to enhance data reliability. 

7.8.4 Model-View-Controller (MVC) Pattern 

The Model-View-Controller (MVC) Pattern is a software design pattern that separates an application into three 
interconnected components: Model, View, and Controller. The Model represents the application's data and business 
logic, the View displays the data to the user, and the Controller manages user input and updates the Model and View 
accordingly. This separation allows for easier maintenance and modification of individual components without affecting 
the entire system [36], [55].  

Benefits: Improves maintainability, scalability, and reusability of smart contract systems. 

7.8.5 Observer Pattern 

The Observer Pattern is a design pattern that defines a one-to-many dependency between objects, allowing multiple 
observers to be notified and updated automatically when the state of a subject object changes. This pattern enables loose 
coupling between objects, making it easier to modify and extend systems without affecting other components. The 
observer pattern consists of two main components: the Subject, which maintains a list of observers and notifies them of 
changes, and the Observer, which registers with the subject to receive updates [38], [100], [i.26], [17], [75], [41].  

Benefits: Facilitates real-time communication and interaction between different components of a decentralized 
application. 
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7.8.6 Strategy Pattern 

The Strategy Pattern is a design pattern that defines a family of algorithms, encapsulates each one, and makes them 
interchangeable. This pattern allows smart contracts to select a strategy at runtime, enabling dynamic changes in 
behaviour without altering the contract's structure. By using the strategy pattern, developers can decouple the 
algorithmic logic from the contract's core functionality, making it easier to add new strategies or modify existing ones 
without affecting the entire system [135], [50], [144].  

Benefits: Enhances flexibility and maintainability of smart contract systems by allowing for dynamic changes in 
behaviour. 

7.8.7 Decorator Pattern 

The Decorator Pattern is a design pattern that allows behaviour to be added to an individual object, either statically or 
dynamically, without affecting the behaviour of other objects from the same class. In the context of smart contracts, the 
decorator pattern enables the dynamic addition of new functionalities to existing contracts without altering their core 
structure. This pattern is particularly useful for extending the behaviour of smart contracts in a flexible and modular 
way, allowing developers to add new features or modify existing ones without redeploying the entire contract [143], 
[133], [49].  

Benefits: Improves flexibility and maintainability of smart contract systems by allowing for dynamic changes in 
behaviour. 

7.8.8 N-Tier Pattern 

The N-Tier Pattern is a software architecture pattern that separates an application into multiple layers or tiers, each with 
a specific responsibility. This pattern allows for the physical and logical separation of presentation, business logic, and 
data storage, enhancing scalability, maintainability, and flexibility. The N-Tier architecture typically includes three 
tiers: the presentation tier (user interface), the logic tier (business rules and processing), and the data tier (storage and 
data management). This separation enables developers to modify or add specific tiers without affecting the entire 
application, improving manageability and reducing the impact of changes [136], [99]. 

Benefits: Enhances scalability, maintainability, and flexibility of smart contract systems. 

7.8.9 Shared Repository Pattern 

The Shared Repository Pattern is a design pattern that centralizes data access logic, providing a single interface for 
managing data interactions between multiple components or applications. This pattern separates the data access layer 
from the business logic, making it easier to maintain, test, and scale systems. The shared repository acts as an 
intermediary between the data storage and the application, encapsulating data access operations and providing a 
standardized way to interact with the data [98], [i.33].  

Benefits: Ensures data consistency and integrity across a decentralized network. 

7.8.10 Broker Pattern 

The Broker Pattern is a design pattern that enables secure communication between nodes and actors in a system by 
acting as an intermediary. In the context of smart contracts, the broker pattern facilitates interactions between different 
contracts or external systems, ensuring that messages are delivered securely and reliably. This pattern is particularly 
useful in decentralized applications where direct communication between contracts may not be feasible or secure [132], 
[142].  

Benefits: Facilitates secure and resilient communication and interaction between different components of a 
decentralized application. 
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7.8.11 Pipe-Filter Pattern 

The Pipe-Filter Pattern is a design pattern that represents a processing pipeline in which data flow through a series of 
filters, with each filter transforming the data in some way. In the context of smart contracts, this pattern can be used to 
process and transform data in a series of steps, ensuring that each step is executed in a specific order and that the data is 
transformed correctly [i.26], [134]. 

Benefits: Ensures the authenticity of transactions and identifies potential threats in a decentralized system. 

8 Smart Contracts - Applications, Solutions, and Needs 

8.1  Applications 

8.1.1 Introduction 

Smart contracts have revolutionized various industries by automating processes and enhancing transparency and 
security. They are widely used in finance for Decentralized Finance (DeFi) applications, enabling peer-to-peer lending, 
borrowing, and trading without intermediaries. In supply chain management, smart contracts automate the tracking of 
goods and verification of transactions, ensuring transparency and reducing fraud. The healthcare sector utilizes smart 
contracts for secure patient data management and automated insurance claims processing. Additionally, smart contracts 
facilitate digital identity verification and voting systems in governance, providing tamper-proof and transparent 
solutions. These applications demonstrate how smart contracts are transforming industries by offering automated, 
transparent, and secure solutions that reduce reliance on intermediaries and enhance operational efficiency. As these 
applications grow, the need for standardized protocols and robust security measures becomes increasingly important to 
ensure interoperability and trust across different platforms [148]. 

8.1.2 Finance 

In the finance sector, smart contracts are central to Decentralized Finance (DeFi) platforms, enabling peer-to-peer 
lending, borrowing, and trading without intermediaries. Platforms like Uniswap and Aave use smart contracts to 
automate liquidity provision and interest rate adjustments based on supply and demand, ensuring transparency and 
reducing operational costs [151]. 

8.1.3 Supply Chain Management 

Smart contracts streamline supply chain operations by automating the tracking of goods and verifying transactions at 
each stage. For example, IBM Food Trust uses blockchain technology to enhance transparency and traceability in the 
food supply chain, allowing stakeholders to track the journey of food products from farm to table [81]. ETSI 
GS PDL 022 [107] discusses the use of PDL for supply chain management with an implicit reference to use of smart 
contracts in response to events. 

8.1.4 Healthcare 

In healthcare, smart contracts facilitate secure patient data management and automate insurance claims processing. 
Projects like MedRec leverage blockchain to create immutable records of patient data, ensuring privacy and security 
while allowing authorized parties access to medical records [160]. 

8.1.5 Real Estate 

Smart contracts automate real estate transactions by handling agreements, payments, and ownership transfers without 
the need for intermediaries. This reduces costs and increases transaction speed while providing a transparent record of 
property ownership changes [162]. 
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8.1.6 Government Services 

Governments are exploring smart contracts for digital identity verification and voting systems. Estonia's e-Residency 
program uses blockchain technology to provide secure digital identities for citizens, enabling them to access 
government services online with enhanced security and transparency [106]. 

8.2  Solutions 

8.2.1 Issues to be solved 

Smart contract solutions focus on addressing challenges related to scalability, security, and interoperability. Layer-2 
solutions like rollups and state channels enhance scalability by processing transactions off-chain while maintaining 
security through periodic on-chain settlements. Security solutions include formal verification techniques to 
mathematically prove the correctness of contract logic and the use of decentralized oracle networks to securely integrate 
external data. Interoperability is achieved through cross-chain bridges and standardized interfaces that enable seamless 
communication between different blockchain networks. These solutions are crucial for building robust smart contract 
systems that can handle complex operations efficiently [169]. 

Here are some examples of smart contract solutions that address challenges related to scalability, security, and 
interoperability: 

8.2.2 Scalability 

1) Layer-2 Solutions: Technologies like Optimistic Rollups and zk-Rollups on Ethereum improve scalability by 
processing transactions off-chain while maintaining security through periodic on-chain settlements. These 
solutions significantly increase transaction throughput and reduce costs [20]. 

2) State Channels: State channels allow multiple transactions to occur off-chain between parties and only settle 
the final state on-chain, reducing the load on the main blockchain and improving scalability [114]. 

8.2.3 Security 

1) Formal Verification: Tools like CertiK and Securify provide formal verification of smart contracts, 
mathematically proving the correctness of contract logic to prevent vulnerabilities such as reentrancy attacks 
[58]. 

2) Decentralized Oracle Networks: Chainlink provides secure and reliable data feeds by aggregating data from 
multiple sources to prevent manipulation and ensure data integrity for smart contracts [2]. 

8.2.4 Interoperability 

1) Cross-Chain Bridges: Solutions like Polkadot's parachains and Cosmos' Inter-Blockchain Communication 
(IBC) Protocol facilitate interoperability by allowing different blockchain networks to communicate and 
exchange assets securely [161]. 

2) Atomic Swaps: Atomic swaps enable trustless exchanges of cryptocurrencies between different blockchains 
without intermediaries, enhancing interoperability across blockchain ecosystems [57]. 

8.2.5  Smart Contracts with QoS Monitoring 

Smart contracts can be used to monitor Quality of Service (QoS) in various applications such as telecommunications or 
cloud services. By automatically executing predefined actions when specific QoS metrics are met or violated 
(e.g. latency thresholds), smart contracts ensure compliance with Service Level Agreements (SLAs). This automation 
reduces the need for manual intervention and enhances transparency in service delivery. Implementing QoS monitoring 
in smart contracts requires integrating reliable data sources through oracles to provide real-time performance metrics 
[3], [21]. 
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8.3  Requirements for Building a Viable System using Smart 
Contracts 

Building a viable system with smart contracts requires addressing key requirements such as scalability, security, 
interoperability, and user experience. Scalability solutions like layer-2 protocols are essential for handling high 
transaction volumes efficiently. Security measures should include formal verification and regular audits to prevent 
vulnerabilities in immutable code. Interoperability is crucial for enabling seamless interaction between different 
blockchain networks and external systems through standardized protocols and decentralized oracles. Additionally, user 
experience should be prioritized by providing intuitive interfaces and clear documentation to facilitate user interaction 
with smart contracts [156], [67], [68], [66], [70]. 

9 Governance Role in Smart Contracts 

9.1 Introduction to the Role of Governance in Smart Contracts 
Governance of smart contracts is crucial for ensuring that these digital agreements operate smoothly, securely, and in 
alignment with stakeholder interests. Governance involves setting rules and policies that dictate how smart contracts are 
managed, updated, and terminated. This clause explores various aspects of governance, including delegation to policies, 
updating mechanisms, operational decision-making, contract termination, and compliance strategies. 

Similar to the role of governance PDL systems, governance of smart contracts involves establishing rules and processes 
for managing the lifecycle of contracts, including their creation, execution, modification, and termination. It ensures 
that smart contracts operate within the defined parameters and adapt to changing conditions or requirements. Effective 
governance enhances transparency, accountability, and trust among stakeholders by providing clear protocols for 
decision-making and conflict resolution. In decentralized environments, governance can be embedded within the 
contract code or managed through Decentralized Autonomous Organizations (DAOs), allowing for community-driven 
oversight and control [156]. 

Requirements: 

[R239] Governance mechanisms SHALL be clearly defined within the smart contract to ensure consistent 
application. 

[R240] Stakeholders SHALL have access to governance processes to participate in decision-making. 

Recommendations: 

[D642] Developers SHOULD implement transparent governance models that allow for stakeholder input. 

[D643] Contracts SHOULD include mechanisms for dispute resolution to address conflicts arising from 
governance decisions. 

9.2  Governing the Update of a Smart Contract 
Updating smart contracts is essential for incorporating new features, fixing bugs, or adapting to regulatory changes. Due 
to the immutable nature of blockchain, updating requires careful planning and execution. Governance plays a critical 
role in managing updates by defining processes for proposing changes, obtaining stakeholder approval, and 
implementing modifications without disrupting existing functionalities [112]. 

Requirements: 

[R241] Smart contracts SHALL implement upgrade mechanisms that allow secure updates. 

[R242] Update processes SHALL be transparent and documented for stakeholder review. 

Recommendations: 

[O17] Developers MAY use proxy patterns to facilitate contract updates. 

[D644] Smart Contracts SHOULD include versioning systems to track changes over time. 
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9.3  Governing Operational Decisions 
Operational decisions involve managing day-to-day activities such as executing transactions, adjusting parameters, or 
responding to external events. Effective governance requires clear protocols for making these decisions to ensure 
consistency and accountability. Decentralized Autonomous Organizations (DAOs) often use voting mechanisms or 
multi-signature approvals for collective decision-making [148]. 

Requirements: 

[R243] Smart contracts SHALL define protocols for making operational decisions. 

[R244] Decision-making processes SHALL involve relevant stakeholders where applicable. 

Recommendations: 

[D645] Developers SHOULD implement voting mechanisms for collective decision-making. 

[D646] Contracts SHOULD provide audit trails of operational decisions for transparency. 

9.4  Governing the Termination of a Smart Contract 
Termination involves ending a contract's operations upon fulfilment of its terms or due to external factors like 
regulatory changes, bug fixing or security vulnerabilities. Governance is crucial in defining termination processes to 
ensure orderly shutdowns and asset recovery by stakeholders. Mechanisms such as self-destruct functions or 
governance-controlled termination facilitate this process [108]. 

Requirements: 

[R245] Smart contracts SHALL include mechanisms for orderly termination. 

[R246] Termination processes SHALL ensure asset recovery by stakeholders. 

Recommendations: 

[D647] Developers SHOULD implement self-destruct functions with safeguards against misuse. 

[D648] Contracts SHOULD notify stakeholders prior to termination to allow asset extraction. 

9.5  General Governance Compliance Strategies for Smart 
Contracts  

Compliance strategies ensure that smart contracts adhere to relevant legal and regulatory requirements throughout their 
lifecycle. This includes data protection laws like GDPR and financial regulations applicable to transactions or asset 
management. Governance plays a role in embedding compliance measures into contract logic and maintaining audit 
trails for regulatory review [140], [61], [62], [65], [63], [64], [69]. 

Requirements: 

[R247] Smart contracts SHALL comply with relevant legal and regulatory requirements. 

[R248] Compliance measures SHALL be documented and auditable by regulators. 

Recommendations: 

[D649] Developers SHOULD use privacy-preserving techniques to protect sensitive data. 

[D650] Contracts SHOULD implement audit trails for compliance verification. 
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10 Gas Optimization Techniques  

10.1 Introduction to Gas optimization 
Gas optimization techniques are essential in smart contract development to minimize transaction costs on blockchain 
platforms. These methods ensure efficient operation by reducing computational resource demands and, consequently 
(where applicable), the gas fees users incur. Effective gas optimization not only lowers transaction costs but also 
enhances the scalability of decentralized applications, allowing more transactions to be processed within a given block 
size. As smart contracts grow in complexity, efficient gas management becomes increasingly critical to their viability 
and adoption. Developers employ various strategies and patterns to optimize gas usage, emphasizing the importance of 
cost efficiency and performance in smart contract execution [31]. 

Requirements: 

[R249] Smart contracts SHALL be designed with gas efficiency in mind, minimizing unnecessary computations 
and storage operations. 

[R250] Developers SHALL regularly review and optimize contract code to reduce gas consumption. 

Recommendations: 

[D651] Developers SHOULD use established design patterns and tools that facilitate gas optimization. 

[D652] Smart contracts SHOULD be tested in various scenarios to identify potential areas for gas savings. 

10.2  Gas-Efficient Design Patterns 

10.2.1 Introduction Gas-Efficient Design Patterns 

Gas-efficient design patterns are coding practices that help reduce the computational overhead of smart contracts. These 
patterns include using libraries for common functions to avoid code duplication, optimizing data structures for minimal 
storage costs, and employing lazy loading techniques to defer computations until necessary. By adhering to these 
patterns, developers can create contracts that execute with lower gas consumption [92]. 

Requirements: 

[R251] Smart contracts SHALL implement design patterns that minimize redundant computations and storage 
operations. 

[R252] Contracts SHALL use efficient data structures to optimize storage costs. 

Recommendations: 

[D653] Developers SHOULD leverage existing libraries and frameworks that offer optimized implementations of 
common functionalities. 

[D654] Smart Contracts SHOULD be modularized to enable reuse of efficient components across different 
projects. 

10.2.2  Using Libraries for Common Functions to Avoid Code Duplication 

Utilizing libraries for common functions helps avoid code duplication, which can significantly reduce the size of the 
contract and associated deployment costs. By abstracting frequently used functionalities into libraries, developers can 
ensure consistency across multiple contracts while minimizing gas consumption during execution. 

Requirements: 

[R253] Smart contracts SHALL use libraries for implementing common functionalities to reduce code 
duplication. 

[R254] Libraries SHALL be thoroughly tested and audited before integration into contracts. 
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Recommendations: 

[D655] Developers SHOULD leverage existing libraries like OpenZeppelin for standardized implementations. 

[D656] Smart Contracts SHOULD modularize code into reusable components to enhance maintainability and 
efficiency. 

10.2.3  Optimizing Data Structures for Minimal Storage Costs 

Optimizing data structures involves selecting efficient storage methods that minimize the amount of data stored 
on-chain, thereby reducing storage costs. Techniques such as using mappings instead of arrays or compressing data into 
smaller units can lead to significant gas savings. 

Requirements: 

[R255] Smart contracts SHALL implement efficient data structures to minimize on-chain storage costs. 

[R256] Data structures SHALL be chosen based on their suitability for the contract's specific use case. 

Recommendations: 

[D657] Developers SHOULD evaluate different data structures for their space-time trade-offs before 
implementation. 

[D658] Smart Contracts SHOULD use packed storage where possible to optimize memory usage. 

10.2.4  Employing Lazy Loading Techniques to Defer Computations Until 
Necessary 

Lazy loading defers computations until they are explicitly needed, reducing unnecessary processing and saving gas. 
This technique is particularly useful in scenarios where certain data or calculations are not required immediately or in 
every transaction. 

Requirements: 

[R257] Smart contracts SHALL implement lazy loading techniques where applicable to defer unnecessary 
computations. 

[R258] Deferred computations SHALL be managed carefully to ensure they do not affect contract logic or 
security. 

Recommendations: 

[D659] Developers SHOULD identify parts of the contract that can benefit from lazy loading during the design 
phase. 

[D660] Smart Contracts SHOULD include mechanisms to trigger deferred computations efficiently when 
needed. 

10.3 Managing complex operations efficiently 

10.3.1 Batching 

Batching reduces gas costs by consolidating multiple operations into a single transaction, which minimizes redundant 
state changes and transaction overheads. This technique is especially useful for managing complex operations 
efficiently within a single transaction context. 

Requirements: 

[R259] Smart contracts SHALL implement batching techniques where applicable to consolidate multiple 
operations into single transactions. 
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[R260] Batching processes SHALL ensure atomicity and consistency of operations within a batch. 

Recommendations: 

[D661] Developers SHOULD design contracts with modularity in mind to facilitate batching of related 
operations. 

[D662] Smart Contracts SHOULD provide clear documentation on how batching impacts transaction execution 
and outcomes. 

10.3.2  Proxy Patterns 

Proxy patterns enable contract upgrades without redeploying the entire contract, thus saving on deployment costs while 
preserving state continuity. This pattern separates the logic from the data layer, allowing updates without affecting 
existing user interactions or data integrity [112]. 

Requirements: 

[R261] Contracts SHALL use proxy patterns for upgradeability without incurring additional deployment costs. 

[R262] Proxy implementations SHALL ensure secure delegation of calls between proxy and logic contracts. 

Recommendations: 

[D663] Developers SHOULD implement robust access controls within proxy patterns to prevent unauthorized 
upgrades. 

[D664] Proxy patterns SHOULD be used judiciously to ensure security while enabling contract upgrades. 

10.4 Tools for Flexible Management of Gas Expenses 

10.4.1 Gas Tokens 

Gas tokens are mechanisms that allow users to manage their gas expenses by pre-purchasing gas at lower prices or 
earning rebates through the release of unused storage space on the blockchain. By minting gas tokens when gas prices 
are low and redeeming them when prices are high, users can effectively reduce their transaction costs. Gas tokens work 
by taking advantage of Ethereum's refund mechanism, where users receive a gas refund for freeing up storage space. 
This approach provides flexibility in managing gas expenses, especially during periods of network congestion when gas 
prices spike [151]. 

Requirements: 

[R263] Smart contracts SHALL be compatible with gas token standards if they are intended to leverage such 
mechanisms. 

[R264] Contracts SHALL ensure that the use of gas tokens does not introduce security vulnerabilities or affect 
contract functionality. 

Recommendations: 

[D665] Developers SHOULD consider implementing support for gas tokens in scenarios where significant 
storage operations are involved. 

[D666] Contracts SHOULD provide clear documentation on how users can benefit from using gas tokens. 
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10.4.2 Relayers 

Relayers facilitate transactions by covering gas costs on behalf of users, often used in meta-transactions where the user 
does not hold native tokens but wants to interact with a contract. This tool allows users to execute transactions without 
needing to own or spend Ether directly, enhancing accessibility and user experience. Relayers operate by submitting 
transactions on behalf of users and charging a small fee for their service. This model is particularly beneficial for 
Decentralized Applications (DApps) targeting non-crypto-savvy users or those who want to abstract away the 
complexities of managing Ether for transaction fees [31]. 

Requirements: 

[R265] Smart contracts SHALL support interactions with relayers where applicable to enable user-friendly 
transaction models. 

[R266] Contracts SHALL implement security measures to ensure that relayer interactions do not compromise 
transaction integrity or user data. 

Recommendations: 

[D667] Developers SHOULD design contracts to accommodate meta-transactions and relayer services 
seamlessly. 

[D668] Contracts SHOULD provide clear guidelines on how relayers can be integrated and used effectively 
within the DApp ecosystem. 

11 Emerging Smart Contract Standards  

11.1  Intro  
Emerging smart contract standards are pivotal in advancing the functionality, security, and interoperability of 
blockchain applications. These standards aim to address the evolving needs of decentralized systems by introducing 
new protocols and frameworks that enhance the capabilities of smart contracts. This clause explores advanced token 
standards, Non-Fungible Token (NFT) standards, and innovations in smart contract wallets and account abstraction. 

11.2  Advanced ERC Token Standards 
Advanced Ethereum Request for Comments (ERC) token standards [113], [146] build upon the foundational ERC-20 
[46] and ERC-721 [44] standards to introduce new functionalities and improve interoperability. These standards 
include: 

• ERC-777 [146]: An improvement over ERC-20 [46], providing advanced features like hooks, which allow 
tokens to notify contracts of incoming transactions, enhancing security and flexibility. 

• ERC-1155 [113]: A multi-token standard that supports both fungible and non-fungible tokens within a single 
contract, optimizing gas usage and simplifying complex interactions. 

Requirements: 

[R267] Smart contracts SHALL implement advanced token standards to leverage enhanced functionalities and 
interoperability. 

[R268] Token standards SHALL ensure backward compatibility with existing protocols where possible. 

Recommendations: 

[D669] Developers SHOULD evaluate the specific needs of their application to choose the most appropriate 
token standard. 

[D670] Contracts SHOULD include comprehensive documentation on how they implement these standards. 
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11.3  Non-Fungible Token Standards 
Non-Fungible Tokens (NFTs) have gained significant traction for representing unique digital assets on the blockchain. 
The primary standard for NFTs is: 

• ERC-721 [44]: Defines a standard interface for NFTs, enabling unique asset representation with distinct 
ownership and metadata. 

Emerging NFT standards focus on improving scalability and interoperability: 

• ERC-2981: Introduces royalty payment mechanisms directly into NFT transactions, allowing creators to earn 
royalties on secondary sales [124]. 

Requirements: 

[R269] NFT contracts SHALL adhere to established standards like ERC-721 [44] to ensure compatibility across 
platforms. 

[R270] Contracts implementing royalties SHALL comply with emerging standards like ERC-2981 [124]. 

Recommendations: 

[D671] Developers SHOULD consider using layer-2 solutions to enhance the scalability of NFT platforms. 

[D672] Contracts SHOULD provide clear metadata structures for NFTs to facilitate integration with 
marketplaces and other services. 

11.4  Smart Contract Wallets and Account Abstraction 
Smart contract wallets and account abstraction are innovations aimed at improving user experience and security in 
blockchain interactions: 

• Smart Contract Wallets: These wallets use smart contracts to manage user funds and permissions, offering 
features like multi-signature approvals and recovery mechanisms [88]. 

• Account Abstraction: Allows users to interact with blockchain applications without needing native 
cryptocurrency for transaction fees by abstracting account operations into smart contracts [22]. 

Requirements: 

[R271] Smart contract wallets SHALL implement robust security measures such as multi-signature support. 

[R272] Account abstraction mechanisms SHALL ensure seamless user experiences without compromising 
security. 

Recommendations: 

[D673] Developers SHOULD integrate user-friendly interfaces for smart contract wallets to enhance 
accessibility. 

[D674] Contracts SHOULD provide clear documentation on account abstraction processes to educate users on 
their benefits. 

By adopting these emerging standards, developers can create more versatile and secure smart contract applications that 
meet the growing demands of blockchain ecosystems while ensuring compatibility and ease of use across platforms. 
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12 Regulatory and Environmental Considerations  

12.1 Introduction 
The increasing adoption of smart contracts necessitates a thorough understanding of the regulatory and environmental 
implications associated with their use. This clause explores recent legislative developments, regulatory guidance, and 
environmental impacts related to smart contract platforms. 

12.2  Recent Legislation on Smart Contract Enforceability 
Recent legislative efforts have focused on clarifying the legal status and enforceability of smart contracts. Jurisdictions 
are increasingly recognizing smart contracts as legally binding agreements, provided they meet certain criteria such as 
clear terms and mutual consent [150], [152]. For instance, the state of Arizona in the United States has enacted laws 
affirming that smart contracts can be used for legally enforceable agreements. These legislative developments aim to 
provide legal certainty and encourage broader adoption of blockchain technologies. 

Requirements: 

[R273] Smart contracts SHALL comply with applicable laws and regulations to ensure their enforceability in the 
country of operation. 

[R274] Developers SHALL ensure that smart contract terms are clear and unambiguous to meet legal standards. 

Recommendations: 

[D675] Legal professionals SHOULD be consulted during the development of smart contracts to ensure 
compliance with relevant legislation. 

[D676] Developers SHOULD stay informed about changes in legislation affecting smart contract enforceability. 

12.3 Regulatory Guidance from Financial Authorities 
Financial authorities worldwide are providing guidance on the use of smart contracts within financial systems. 
Regulatory bodies such as the U.S. Securities and Exchange Commission (SEC) and the European Securities and 
Markets Authority (ESMA) have issued guidelines to ensure that smart contracts used in financial transactions comply 
with existing securities laws and consumer protection standards. These guidelines focus on transparency, risk 
management, and the prevention of fraud [176], [51]. 

Requirements: 

[R275] Smart contracts used in financial applications SHALL adhere to regulations set by relevant financial 
authorities. 

[R276] Compliance measures SHALL be documented and auditable by regulators. 

Recommendations: 

[D677] Developers SHOULD implement features that enhance transparency and accountability in financial smart 
contracts. 

[D678] Regular audits SHOULD be conducted to ensure ongoing compliance with financial regulations. 

12.4  Energy Consumption of Smart Contract Platforms 
The energy consumption associated with blockchain platforms, particularly those using proof-of-work consensus 
mechanisms like Ethereum, has raised environmental concerns. The high computational power required for mining 
contributes significantly to carbon emissions [127], [137]. However, efforts are underway to transition to more 
energy-efficient models. 
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Requirements: 

[R277] Developers SHALL consider the environmental impact when choosing a blockchain platform for 
deploying smart contracts. 

[R278] Energy consumption metrics SHALL be monitored and reported for transparency. 

Recommendations: 

[D679] Developers SHOULD prioritize platforms that implement energy-efficient consensus mechanisms. 

[D680] Efforts SHOULD be made to offset carbon emissions through renewable energy sources or carbon 
credits. 

12.5 Proof-of-Stake and Other Eco-Friendly Consensus 
Mechanisms 

To address environmental concerns, many blockchain platforms are transitioning from energy-intensive proof-of-work 
systems to more sustainable Proof-of-Stake (PoS) models or other eco-friendly consensus mechanisms like Delegated 
Proof-of-Stake (DPoS) or Proof-of-Authority (PoA) [121], [82]. These alternatives significantly reduce energy 
consumption by eliminating the need for competitive mining processes. 

Requirements: 

[R279] Smart contract platforms SHALL implement eco-friendly consensus mechanisms where feasible. 

[R280] Transition plans from proof-of-work to proof-of-stake SHALL be clearly documented and communicated 
to stakeholders. 

Recommendations: 

[D681] Developers SHOULD support initiatives aimed at enhancing the sustainability of blockchain 
technologies. 

[D682] Platforms SHOULD provide incentives for validators who utilize renewable energy sources. 

By considering these regulatory and environmental factors, developers can create smart contract solutions that are not 
only legally compliant but also environmentally sustainable, contributing positively to both technological advancement 
and ecological preservation. 
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Annex A (informative): 
Examples from research papers used in the present 
document 

A.1 Void 

A.1.1 Void 

A.1.1.1 Examples of publications for each of the solutions listed in 
clause 4.3.1.4 "Solutions" 

A.1.1.1.1 Proxy Patterns 

Publication: "Proxy Patterns for Upgradeable Smart Contracts: A Survey" (2021) Authors: Sayeed, S., & 
Marco-Gisbert, H. [i.22]. 

• This paper surveys various proxy patterns used for upgrading smart contracts, discussing their advantages and 
limitations.  

Publication: "Upgradeable Smart Contracts: A Survey" (2021) [i.23]. 

• This paper provides a comprehensive survey of upgradeable smart contract patterns, including various proxy 
implementations. It analyses the security implications and trade-offs of different proxy approaches. 

A.1.1.1.2 Data Separation 

Publication: "State Separation for Dynamic Smart Contract Upgrades" (2020) Authors: Rodler, M., Li, W., Karame, G. 
O., & Davi, L. [i.21]. 

• This paper proposes a novel approach to separate contract logic from state, enabling more flexible upgrades 
while preserving data integrity.  

Publication: "State Separation for Flexible Upgrades in Ethereum Smart Contracts" (2020) [i.9]. 

• This publication proposes a novel approach to separate contract logic from state, enabling more flexible 
upgrade mechanisms while preserving data integrity. 

A.1.1.1.3 Parameterization 

Publication: "Parametric Smart Contracts: A New Paradigm for Blockchain-Based Agreement" (2022) [i.25]. 

• The authors introduce a framework for creating highly configurable smart contracts through parameterization, 
allowing for greater flexibility without compromising immutability. 

A.1.1.1.4 Modular Design 

Publication: "A Modular Design for Ethereum Smart Contracts Verification" (2020) Authors: Li, Y., Liao, C., & 
Zhang, Y. [i.16]. 

• This paper presents a modular approach to smart contract design and verification, improving scalability and 
reusability.  

Publication: "Modular Smart Contracts: A Compositional Approach to Contract Development" (2023) [i.13]. 

• This paper presents a methodology for designing smart contracts as interconnected modules, enhancing 
reusability and facilitating easier upgrades of specific components. 
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A.1.1.1.5 Thorough Testing and Auditing 

Publication: "SmartBugs: A Framework to Analyze Solidity Smart Contracts" (2020) Authors: Ferreira, J. F., Cruz, P., 
Durieux, T., & Abreu, R. [i.7]. 

• This paper introduces a comprehensive framework for testing and analysing Solidity smart contracts, aiding in 
the detection of vulnerabilities and bugs.  

Publication: "Automated Smart Contract Testing: Techniques and Challenges" (2021) [i.8]. 

• The publication explores advanced techniques for comprehensive smart contract testing, including formal 
verification methods and automated vulnerability detection tools. 

A.1.1.2 Examples of publications for each of the emerging interoperability 
solutions listed in clause 4.3.8.7 

A.1.1.2.1 Polkadot Parachains 

Publication: "Polkadot: Vision for a Heterogeneous Multi-Chain Framework" (2020) Authors: Wood, G. [i.27]. 

• This whitepaper outlines the vision and technical details of Polkadot, including its parachain architecture for 
interoperable blockchain networks.  

A.1.1.2.2 Cosmos Inter-Blockchain Communication (IBC) 

Publication: "Inter-Blockchain Communication Protocol: An Overview" (2021) Authors: Kwon, J., & Buchman, E. 
[85]. 

• This paper provides an in-depth overview of the Inter-Blockchain Communication protocol used in the 
Cosmos ecosystem for enabling communication between independent blockchains.  

A.1.1.2.3 Ethereum Layer-2 Solutions 

Publication: "Rollups on Trial: Optimistic vs. Zero-Knowledge" (2021) Authors: John, K., Yin, H., Ektefa, M., & 
Sakurai, K. [i.12]. 

• This paper compares and analyses two prominent Ethereum Layer-2 scaling solutions: Optimistic Rollups and 
Zero-Knowledge Rollups, discussing their mechanisms, advantages, and challenges.  

Publication: "Optimistic Rollups: The Present and Future of Ethereum Scaling" (2022) [i.1]. 

• This publication explores Optimistic Rollups as a Layer-2 scaling solution for Ethereum. It discusses how 
these rollups interact with the main Ethereum network, providing increased transaction throughput while 
maintaining security guarantees. 

A.1.1.2.4 Additional relevant publications: 

A.1.1.2.4.1 Cross-Chain Bridges: 

Publication: Zamyatin A., Al-Bassam M., Zindros D., Kokoris-Kogias E., Moreno-Sanchez P., Kiayias A. & 
Knottenbelt W. J. (2021): "SoK: Communication across distributed ledgers", [161]. 

• This systematic overview covers various cross-chain communication protocols, including bridges, providing a 
comprehensive analysis of their security and design principles.  
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A.1.1.2.4.2 Interoperability Protocols: 

Publication: "Interoperability between Blockchain Systems" (2020) Authors: Belchior, R., Vasconcelos, A., Guerreiro, 
S., & Correia, M. [14]. 

• This survey paper provides a comprehensive overview of blockchain interoperability solutions, including 
protocols, architectures, and frameworks for enabling cross-chain interactions.  

A.1.1.3 Examples of publications related to the tools and techniques listed in 
clause 4.3.9.6  

A.1.1.3.1 Static Analysis Tools 

Publication: "SmartBugs: A Framework to Analyze Solidity Smart Contracts" (2020) [i.6]. 

• This paper introduces SmartBugs, an execution framework for analysing Ethereum smart contracts using 
multiple static analysis tools. It provides a comprehensive evaluation of existing tools and their effectiveness 
in detecting various vulnerabilities. 

Publication: "Slither: A Static Analysis Framework For Smart Contracts" (2020) Authors: Feist, J., Grieco, G., & 
Groce, A. [i.4]. 

• This paper presents Slither, a static analysis framework for Ethereum smart contracts. It can detect various 
vulnerabilities, optimize gas usage, and provide insights into code quality.  

A.1.1.3.2 Dynamic Analysis 

Publication: "ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection" (2021) [i.11]. 

• This publication presents ContractFuzzer, a novel fuzzing framework specifically designed for Ethereum smart 
contracts. It demonstrates how dynamic analysis through fuzzing can effectively uncover vulnerabilities that 
might be missed by static analysis alone. 

Publication: "ETHPLOIT: From Fuzzing to Efficient Exploit Generation against Smart Contracts" (2020) Authors: 
Feng, Y., Torlak, E., & Bodík, R. [i.5]. 

• This paper introduces ETHPLOIT, a dynamic analysis tool that combines fuzzing with symbolic execution to 
generate exploits for vulnerabilities in Ethereum smart contracts.  

A.1.1.3.3 Fuzzing 

Publication: "EthPloit: From Fuzzing to Efficient Exploit Generation against Smart Contracts" (2022) [i.10]. 

• The authors introduce EthPloit, an advanced fuzzing tool that not only detects vulnerabilities but also 
generates exploits for Ethereum smart contracts. This work showcases the evolution of fuzzing techniques in 
the smart contract security domain. 

Publication: "sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts" (2020) Authors: Nguyen, T. D., 
Pham, L. H., Sun, J., Lin, Y., & Minh, Q. T. [i.17]. 

• This paper presents sFuzz, an adaptive fuzzer for Solidity smart contracts that uses a novel algorithm to 
generate test inputs efficiently.  

A.1.1.3.4 Formal Verification Tools 

Publication: "VERISOL: A Formal Verifier for Solidity Smart Contracts" (2020) [i.15]. 

• This paper presents VERISOL, a formal verification tool for Solidity smart contracts. It demonstrates how 
formal methods can be applied to prove correctness properties of smart contracts, providing a higher level of 
assurance than traditional testing methods. 
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Publication: "VeriSmart: A Highly Precise Safety Verifier for Ethereum Smart Contracts" (2020) Authors: So, S., Lee, 
M., Park, J., Lee, H., & Oh, H. [i.24]. 

• This paper introduces VeriSmart, a formal verification tool for Ethereum smart contracts that can prove the 
absence of vulnerabilities with high precision.  

A.1.1.3.5 Security Frameworks 

Example: "OpenZeppelin Contracts: An Open Framework of Reusable and Secure Smart Contracts" (2023) [i.18]. 

• While not a traditional academic publication, the OpenZeppelin Contracts library documentation and its 
associated technical papers provide a comprehensive overview of a widely-used security framework for smart 
contract development. The 2023 version includes significant updates and new security features. 

Publication: "SmartShield: Automatic Smart Contract Protection Made Easy" (2021) [i.28]. 

• This paper presents SmartShield, a comprehensive security framework for smart contracts that combines 
multiple analysis techniques to detect and mitigate vulnerabilities automatically.  

A.1.1.4 Examples of solutions for storing large amounts of data on-chain, as 
mentioned in clause 4.4.8.1 

A.1.1.4.1 Layer-2 Solutions: 

Example: "Rollups on Ethereum: A Comprehensive Survey" (2022) [i.14]. 

• This paper provides an overview of various Layer-2 scaling solutions, focusing on rollups and their impact on 
data storage scalability. 

A.1.1.4.2  Sharding: 

Example: "A Sharding-Based Blockchain Protocol. Proceedings of the ACM Conference on Advances in 
Cryptographic Technology" (2021) [i.2]. 

• This paper presents a Sharding-Based Blockchain Protocol using sharding and Practical Bysantine Fault 
Tolerance (PBFT) protocol demonstrating high efficiency and scalability. 

A.1.1.4.3 Off-chain Storage with On-chain Verification: 

Example: "Decentralized Storage: The Backbone of the Blockchain" (2020) [i.29]. 

• This paper explores the integration of decentralized storage solutions with blockchain, discussing how to 
maintain data integrity while reducing on-chain storage requirements. 

A.1.1.4.4  Data Compression Techniques: 

Example: "Efficient Data Compression for Blockchain Storage Optimization" (2023) [i.19]. 

• This study presents novel compression techniques specifically designed for blockchain data, aiming to reduce 
storage requirements without compromising data integrity. 

A.1.1.4.5  State Channels: 

Example: "State Channels: An Overview and State of the Art" (2021) [i.3]. 

• This publication provides a comprehensive review of state channel technology, including its application in 
reducing on-chain data storage by moving transactions off-chain. 
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