

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)

Network Functions Virtualisation (NFV) Release 5;
Protocols and Data Models;

Specification of protocol and data model solutions for VNF
Generic OAM functions and PaaS Services

Disclaimer

The present document has been produced and approved by the Network Functions Virtualisation (NFV) ETSI Industry
Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)2

Reference
DGS/NFV-SOL024ed531

Keywords
API, data models, MANO, NFV, protocol

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver repository.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2025.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver/
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)3

Contents

Intellectual Property Rights .. 8

Foreword ... 8

Modal verbs terminology .. 8

1 Scope .. 9

2 References .. 9

2.1 Normative references .. 9

2.2 Informative references ... 10

3 Definition of terms, symbols and abbreviations ... 10

3.1 Terms ... 10

3.2 Symbols ... 10

3.3 Abbreviations .. 10

4 Overview .. 11

4.1 Introduction ... 11

4.2 Summary of ETSI GS NFV-IFA 049 .. 11

4.3 Profiled protocols and data models for the selected open source solutions ... 12

4.3.1 Introduction.. 12

4.3.2 API structure .. 12

4.3.3 Data model concepts .. 13

4.3.4 Query APIs for the Log and Metrics Analyser functions... 14

4.3.4.1 Introduction .. 14

4.3.4.2 OpenSearch PPL API ... 14

4.3.4.3 VictoriaMetrics Query API .. 14

5 VNF generic OAM functions object models mapping to profiled solution objects 14

5.1 Traffic Enforcer object mapped to Istio®... 14

5.1a Traffic Enforcer object mapped to Cilium®... 17

5.2 Log Aggregator object mapped to Fluent Bit .. 18

5.3 Log Analyser object mapped to OpenSearch .. 20

5.4 Notification Manager object mapped to Prometheus Alertmanager .. 24

5.5 Metrics Analyser object mapped to VictoriaMetrics ... 25

6 Traffic Management interface .. 27

6.1 Description .. 27

6.2 API version .. 27

6.3 Resource structure and methods .. 28

6.4 Sequence diagrams (informative) .. 28

6.5 Resources .. 28

6.5.1 Introduction.. 28

6.5.2 Resource: DestinationRule .. 28

6.5.3 Resource: AuthorizationPolicy .. 29

6.6 Data Model .. 29

6.6.1 Traffic Management operation input parameters mapped to CRD schemas configuration fields 29

7 Log Exposure Interface .. 30

7.1 Description .. 30

7.2 API version .. 31

7.3 Resource structure and methods .. 31

7.4 Sequence diagrams (informative) .. 31

7.5 Resources .. 31

7.5.1 Introduction.. 31

7.5.2 Resource: ClusterFilter .. 32

7.5.3 Resource: ClusterOutput .. 32

7.6 Data model .. 32

7.6.1 Log Exposure operation input parameters mapped to CRD schemas configuration fields 32

8 Log Analysis Exposure Interface ... 34

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)4

8.1 Description .. 34

8.2 API version .. 34

8.3 Resource structure and methods .. 34

8.4 Sequence diagrams (informative) .. 35

8.5 Resources .. 35

8.5.1 Introduction.. 35

8.5.2 Resource: OpenSearchCluster ... 35

8.6 Data model .. 36

8.6.1 Log Analysis Exposure operation input parameters mapping ... 36

9 Interfaces exposed by the PaaS Service Notification Manager .. 37

9.1 Description .. 37

9.2 API version .. 37

9.3 Resource structure and methods .. 37

9.4 Sequence diagrams (informative) .. 38

9.5 Resources .. 38

9.5.1 Introduction.. 38

9.5.2 Resource: AlertmanagerConfig ... 38

9.5.3 Resource: Alertmanager .. 38

9.6 Data Model .. 39

9.6.1 Notification Manager operation input parameters mapped to CRD schemas configuration fields 39

10 Metrics Analysis Exposure Interface ... 40

10.1 Description .. 40

10.2 API version .. 40

10.3 Resource structure and methods .. 40

10.4 Sequence diagrams (informative) .. 41

10.5 Resources .. 41

10.5.1 Introduction.. 41

10.5.2 Resource: VMRule .. 41

10.6 Data model .. 42

10.6.1 Metrics Analysis Exposure operation input parameters mapping .. 42

Annex A (informative): Analysis on the existing solutions based on the interfaces exposed by
the VNF generic OAM functions and other PaaS Services 44

A.1 Comparison of the VNF generic OAM functions and other PaaS Services functional requirements
with cloud native open source solutions ... 44

A.1.1 Overview ... 44

A.1.2 Comparison of Log Aggregator functional requirements with relevant open-source solutions
capabilities ... 44

A.1.2.1 Fluent Bit ... 44

A.1.2.1.1 Overview .. 44

A.1.2.1.2 Comparison .. 44

A.1.2.2 Fluentd ... 45

A.1.2.2.1 Overview .. 45

A.1.2.2.2 Comparison .. 45

A.1.2.3 OpenTelemetry Collector .. 46

A.1.2.3.1 Overview .. 46

A.1.2.3.2 Comparison .. 46

A.1.2.4 Grafana Loki .. 47

A.1.2.4.1 Overview .. 47

A.1.2.4.2 Comparison .. 48

A.1.2.5 OpenSearch .. 49

A.1.2.5.1 Overview .. 49

A.1.2.5.2 Comparison .. 50

A.1.3 Comparison of Log Analyser functional requirements with relevant open-source solutions capabilities 51

A.1.3.1 ElastAlert 2 .. 51

A.1.3.1.1 Overview .. 51

A.1.3.1.2 Comparison .. 51

A.1.3.2 Coroot .. 52

A.1.3.2.1 Overview .. 52

A.1.3.2.2 Comparison .. 52

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)5

A.1.3.3 Grafana® .. 53

A.1.3.3.1 Overview .. 53

A.1.3.3.2 Comparison .. 53

A.1.3.4 OpenSearch .. 54

A.1.3.4.1 Overview .. 54

A.1.3.4.2 Comparison .. 54

A.1.4 Comparison of Traffic Enforcer functional requirements with relevant open-source solutions
capabilities ... 55

A.1.4.1 Cilium® .. 55

A.1.4.1.1 Overview .. 55

A.1.4.1.2 Comparison .. 55

A.1.4.2 Istio® .. 55

A.1.4.2.1 Overview .. 55

A.1.4.2.2 Comparison .. 56

A.1.4.3 Linkerd ... 56

A.1.4.3.1 Overview .. 56

A.1.4.3.2 Comparison .. 56

A.1.4.4 Envoy ... 57

A.1.4.4.1 Overview .. 57

A.1.4.4.2 Comparison .. 57

A.1.5 Comparison of PaaS Service Policy Agent functional requirements with relevant open-source solutions
capabilities ... 58

A.1.5.1 Open Policy Agent (OPA) ... 58

A.1.5.1.1 Overview .. 58

A.1.5.1.2 Comparison .. 58

A.1.6 Comparison of VNF Metrics Aggregator functional requirements with relevant open source solutions
capabilities ... 59

A.1.6.1 Prometheus .. 59

A.1.6.1.1 Overview .. 59

A.1.6.1.2 Comparison .. 59

A.1.6.2 OpenTelemetry Collector .. 60

A.1.6.2.1 Overview .. 60

A.1.6.2.2 Comparison .. 61

A.1.6.3 VictoriaMetrics .. 62

A.1.6.3.1 Overview .. 62

A.1.7 Comparison of VNF Metrics Analyser functional requirements with relevant open source solutions
capabilities ... 64

A.1.7.1 Coroot .. 64

A.1.7.1.1 Overview .. 64

A.1.7.1.2 Comparison .. 65

A.1.7.2 OpenSearch .. 65

A.1.7.2.1 Overview .. 65

A.1.7.2.2 Comparison .. 66

A.1.7.3 VictoriaMetrics .. 67

A.1.7.3.1 Overview .. 67

A.1.7.3.2 Comparison .. 68

A.1.8 Comparison of Notification Manager functional requirements with relevant open-source solutions
capabilities ... 70

A.1.8.1 Prometheus Alertmanager .. 70

A.1.8.1.1 Overview .. 70

A.1.8.1.2 Comparison .. 70

A.1.8.2 Argo® ... 71

A.1.8.2.1 Overview .. 71

A.1.8.2.2 Comparison .. 71

A.1.8.3 Kafka ... 71

A.1.8.3.1 Overview .. 71

A.1.8.3.2 Comparison .. 72

A.1.8.4 Sensu .. 72

A.1.8.4.1 Overview .. 72

A.1.8.4.2 Comparison .. 73

A.1.9 Comparison of PaaS Service Configuration Server functional requirements with relevant open-source
solutions capabilities ... 73

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)6

A.1.9.1 Schema-driven Configuration (SDCIO) .. 73

A.1.9.1.1 Overview .. 73

A.1.9.1.2 Comparison .. 74

A.2 Comparison of the VNF generic OAM functions interface requirements against the considered
open-source solutions ... 76

A.2.1 Overview ... 76

A.2.2 Comparison of Log Aggregator Interface requirements with considered open-source solutions
capabilities ... 76

A.2.2.1 Fluent Bit ... 76

A.2.2.2 Fluentd ... 76

A.2.2.3 OpenTelemetry Collector .. 77

A.2.2.4 Grafana Loki .. 78

A.2.2.5 OpenSearch .. 78

A.2.3 Comparison of Log Analyser Interface requirements with considered open-source solutions
capabilities ... 79

A.2.3.1 ElastAlert 2 .. 79

A.2.3.2 Coroot .. 80

A.2.3.3 Grafana® .. 81

A.2.3.4 OpenSearch .. 82

A.2.4 Comparison of Traffic Enforcer Interface requirements with considered open-source solutions
capabilities ... 83

A.2.4.1 Cilium® .. 83

A.2.4.2 Istio® .. 84

A.2.4.3 Linkerd ... 85

A.2.4.4 Envoy ... 86

A.2.5 Comparison of Notification Manager Interface requirements with considered open-source solutions
capabilities ... 87

A.2.5.1 Prometheus Alertmanager .. 87

A.2.5.2 Argo® ... 88

A.2.5.3 Kafka ... 88

A.2.5.4 Sensu .. 89

A.2.6 Comparison of VNF Metrics Aggregator Interface requirements with considered open-source solutions
capabilities ... 90

A.2.6.1 OpenTelemetry Collector .. 90

A.2.7 Comparison of VNF Metrics Analyser Interface requirements with considered open-source solutions
capabilities ... 91

A.2.7.1 Coroot .. 91

A.2.7.2 OpenSearch .. 92

A.2.7.3 VictoriaMetrics .. 93

A.3 Comparison of the considered open-source solutions against VNF generic OAM functions'
functional and interface requirements .. 94

A.3.1 Comparison of the considered open-source solutions against Log Aggregator functional and interface
requirements .. 94

A.3.2 Comparison of the considered open-source solutions against Log Analyser functional and interface
requirements .. 95

A.3.3 Comparison of the considered open-source solutions against Traffic Enforcer functional and interface
requirements .. 96

A.3.4 Comparison of the considered open-source solutions against Notification Manager functional and
interface requirements ... 96

A.3.5 Comparison of the considered open-source solutions against VNF Metrics Analyser functional and
interface requirements ... 97

A.4 Cross-comparison of considered open-source solutions .. 98

A.4.1 Cross-comparison of open-source solutions for Log Aggregator Function ... 98

A.4.2 Cross-comparison of open-source solutions for Log Analyser Function .. 100

A.4.3 Cross-comparison of open-source solutions for Traffic Enforcer Function .. 101

A.4.4 Cross-comparison of open-source solutions for Notification Manager Function 103

A.4.5 Cross-comparison of open-source solutions for Metrics Analyser Function ... 106

A.5 Example CRD schemas .. 108

A.5.1 OpenSearch resource ... 108

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)7

A.5.1.1 OpenSearchCluster .. 108

A.5.2 Fluent Bit resources ... 110

A.5.2.1 ClusterFilter ... 110

A.5.2.2 ClusterOutput ... 112

A.5.3 Istio® resources .. 113

A.5.3.1 DestinationRule ... 113

A.5.3.2 AuthorizationPolicy ... 114

A.5.4 Prometheus Alertmanager resources ... 116

A.5.4.1 AlertmanagerConfig .. 116

A.5.4.2 Alertmanager ... 118

A.5.5 VictoriaMetrics resource ... 119

A.5.5.1 VMRule ... 119

Annex B (informative): Sequence diagrams .. 121

B.1 Sequence diagrams for the Traffic Enforcer profiled solution ... 121

B.1.1 Flow of creating AuthorizationPolicy and DestinationRule as a Traffic Management related NFV
objects to manage traffic ... 121

B.2 Sequence diagram for the Log Aggregator profiled solution ... 122

B.2.1 Flow of log aggregation .. 122

B.3 Sequence diagram for the Log Analyser profiled solution ... 123

B.3.1 Flow of log analysis .. 123

B.4 Sequence diagrams for the Notification Manager profiled solution ... 124

B.4.1 Flow of creating AlertmanagerConfig and Alertmanager as a Notification Manager related NFV objects
to manage notifications ... 124

B.5 Sequence diagram for the Metrics Analyser profiled solution ... 125

B.5.1 Flow of creating VMRule as a Metrics Analyser related NFV object ... 125

B.5.2 Flow of executing VictoriaMetrics Query API ... 126

Annex C (informative): Change history ... 127

History .. 131

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)8

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI IPR online database.

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™, LTE™ and 5G™ logo are trademarks of ETSI registered for the benefit of its Members and of the
3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of
the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Istio®, Argo®, Prometheus® and Cilium® are registered trademarks of The Linux Foundation.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Network Functions
Virtualisation (NFV).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)9

1 Scope
The present document specifies protocol and data model solutions fulfilling the requirements specified in ETSI
GS NFV-IFA 049 [1]. This present document analyses existing solutions against ETSI GS NFV-IFA 049 [1]
requirements. Based on the analysis results, it develops the protocol and data model for the IF-F1 interfaces of VNF
generic OAM functions and other PaaS Services, prominently using the CRD schema format where feasible, and other
formats for some VNF generic OAM functions and other PaaS Services if CRD is not feasible. The present document
specifies requirements for the protocol(s) on the IF-V interfaces toward the VNF. The resulting deliverable contains
normative provisions.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found in the
ETSI docbox.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI GS NFV-IFA 049: "Network Functions Virtualisation (NFV) Release 5; Architectural
Framework; VNF generic OAM functions and other PaaS Services specification".

[2] Istio® v1.25.

[3] Fluent Bit v4.0.

[4] OpenSearch v3.0.0.

[5] Cilium® v1.17.

[6] Prometheus Alertmanager v0.28.l.

[7] OTEL Collector v0.126.0.

[8] VictoriaMetrics v1.116.0.

[9] VictoriaMetrics Operator v0.58.0.

[10] VictoriaMetrics Query API.

[11] Istio®: "Sail Operator v1.26.0".

[12] Fluent Bit: "Fluent Operator v3.4.0".

[13] OpenSearch: "OpenSearch Kubernetes® Operator v2.7.0".

[14] Prometheus Alertmanager: "Prometheus Operator v0.82.2".

[15] OpenSearch PPL API.

https://docbox.etsi.org/Reference/
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/049/
https://istio.io/v1.25/docs/
https://docs.fluentbit.io/
https://opensearch.org/docs/
https://docs.cilium.io/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://opentelemetry.io/docs/collector/
https://docs.victoriametrics.com/
https://docs.victoriametrics.com/operator/
https://docs.victoriametrics.com/victoriametrics/keyconcepts/
https://github.com/istio-ecosystem/sail-operator
https://github.com/fluent/fluent-operator
https://docs.opensearch.org/docs/latest/tools/k8s-operator/
https://prometheus-operator.dev/docs/getting-started/introduction/
https://docs.opensearch.org/docs/latest/search-plugins/sql/sql-ppl-api/

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)10

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents may be useful in implementing an ETSI deliverable or add to the reader's
understanding, but are not required for conformance to the present document.

[i.1] ETSI GR NFV 003: "Network Functions Virtualisation (NFV); Terminology for Main Concepts in
NFV".

[i.2] Kubernetes® API v1.32.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the terms given in ETSI GR NFV 003 [i.1] apply.

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply.

ACL Access Control List
CNCF Cloud Native Computing Foundation
CRD Custom Resource Definition
CRUD Create Read Update and Delete
CSV Comma-Separated Values
DNS Domain Name System
DSL Domain-Specific language
eBPF extended Berkeley Packet Filter
gRPC Google Remote Procedure Call
JSON JavaScript Object Notation
JWT JSON Web Token
kSQL streaming SQL engine for Apache Kafka
LFN Linux Foundation Networking
LogQL Log Query Language
LTSV Labelled Tab-Separated Values
mTLS mutual Transport Layer Security
OAuth Open Authorization
OIDC OpenID Connect
OPA Open Policy Agent
OTLP OpenTelemetry Protocol
OTTL OpenTelemetry Transformation Language
PPL Piped Processing Language
PromQL Prometheus Query Language
pub/sub publish/subscribe
RBAC Role Based Access Control
SDCIO Schema Driven Configuration

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.32/

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)11

SLO Service Level Objective
SMI Service Mesh Interface
SNI Server Name Indication
SQL Structured Query Language
SSL Secure Sockets Layer
TLS Transport Layer Security
UI User Interface
YAML YAML Ain't Markup Language

4 Overview

4.1 Introduction
This clause summarises the VNF generic OAM functions and PaaS services, along with their interfaces. It also gives an
overview of the API structure, data models, and query APIs for the considered open-source solutions.

The present document covers the following VNF generic OAM functions and PaaS service:

• VNF generic OAM functions: Traffic Enforcer, Log Aggregator, Log Analyser, Metrics Analyser.

• PaaS Service: Notification Manager.

NOTE: Additional VNF generic OAM functions and PaaS services are out of the scope of the present document.

4.2 Summary of ETSI GS NFV-IFA 049
ETSI GS NFV-IFA 049 [1] specifies functional and interface requirements for VNF generic OAM functions and other
PaaS Services: Table 4.2-1 lists the exposed interface and responsibilities of VNF generic OAM functions.

Table 4.2-1: Exposed interface and responsibilities of VNF generic OAM functions

VNF generic function Exposed interface Responsibilities
Traffic Enforcer Traffic management interface

(TrafficEnforcerInf)
To perform traffic isolation and rerouting of one or more
VNFC instances.

Network Configuration
Manager

Network configuration
management interface
(NetConfMaInf)

To configure the network connectivity for one or more
VNF/VNFC instances with configuration data.

Upgrade VNF Manager Upgrade VNF management
interface (UpgVNFMaInf)

To coordinate the software modification or configuration
of a VNF instance.

Log Aggregator Log exposure interface
(VNFLogAggregatorInf)

To aggregate, filter, expose logs collected from VNF
instances or the NFVI and to store log records for further
processing (e.g. for root-cause analysis).

Log Analyser Log analysis exposure interface
(VNFLogAnalyserInf)

To configure the processing of logs to be analysed and
to expose log analysis results.

VNF Metrics Aggregator Metrics exposure interface
(VNFMetricAggregatorInf)

To aggregate, filter, expose metrics collected from VNF
instances and to store time services metrics for further
processing (e.g. abnormal behaviour detection).

VNF Metrics Analyser Metrics analysis exposure
interface (VNFMetricAnalyserInf)

To configure the processing of metrics to be analysed
and to expose metrics analysis results.

Time Manager Time management interface
(TimeMaInf)

To configure the protocols used for time synchronization
for VNF/VNFC instances and to expose logs related to
time protocol operations on VNF/VNFC instances.

VNF Configuration
Manager

VNF configuration management
interface (VNFConfigMaInf)

To manage configuration of VNF/VNFC instances
including but not limited to conveying
virtualisation-dependent configuration items and
configuration items at the application layer to VNF/VNFC
instances.

VNF Testing Manager VNF testing management
interface (VNFTestingMaInf)

To manage multilayer testing of VNF instances including
but not limited to setting testing plans, triggering the
execution of tests and exposing testing results.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)12

Table 4.2-2 lists the exposed interface and responsibilities of other PaaS Services.

Table 4.2-2: Exposed interface and responsibilities of other PaaS Services

Other PaaS Service Exposed interface Responsibilities
Configuration Server Configuration data management

interface (ConfigDataMaInf)
To store, update, delete configuration data in a logically
centralized data repository and to process (e.g. validate)
and expose configuration data set.

Notification Manager Notifications management
interface (NotificationMaInf)

To manage the subscriptions to notifications of events
and to process (e.g. group) and expose notifications.

Policy Agent Policy management interface
(PolicyMaInf)

To manage and execute policies about VNF instances,
VNF generic OAM functions and other PaaS Services.

4.3 Profiled protocols and data models for the selected open
source solutions

4.3.1 Introduction

This clause provides an overview of the selected open source solutions that can be profiled based on the analysis in
annex A of the present document. It provides an overview of the high-level API structures and the underlying data
model concepts of the managed resource objects. Additionally, it provides an overview of the query APIs, which are
profiled against query interface requirements of the Log and Metrics Analyser functions, as specified in ETSI
GS NFV-IFA 049 [1].

4.3.2 API structure

This clause provides an overview of the selected open source solutions, including their high-level API structures and
underlying data model concepts. Table 4.3.2-1 provides a high-level overview of the selected open source solutions,
profiled against the generic OAM functions.

Table 4.3.2-1: High-level overview of the selected open source solutions profiled against
the generic OAM functions

Generic OAM functions Selected open source solutions Overview
Traffic Enforcer function Istio® Istio® [2] is a service mesh that provides

a way to manage microservices traffic,
security, and monitoring.

Cilium® Cilium® [5] is a solution for networking,
observability, and security, designed to
improve visibility and control in
containerized environments.

Log Aggregator function Fluent Bit Fluent Bit [3] is a log processor and
forwarder for collecting, processing, and
delivering log data.

OpenTelemetry™ Collector OpenTelemetry Collector [7] is a
solution for providing a unified collection
for telemetry data including logs.

Log Analyser function OpenSearch OpenSearch [4] is a search and
analytics solution for real-time data
analysis, visualization, and log
management.

Metrics Analyser function VictoriaMetrics VictoriaMetrics [8] is a time-series
database designed for collecting,
storing, and querying metrics at scale.

Table 4.3.2-2 provides a high-level overview of the selected open source solutions, profiled against other PaaS Services.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)13

Table 4.3.2-2: High-level overview of the selected open source solutions profiled against
other PaaS Services

Other PaaS Services Selected open source solutions Overview
Notification Manager function Prometheus Alertmanager Prometheus Alertmanager [6] is a

notification manager and forwarder for
collecting, processing, and delivering
notification data.

All the selected open source solutions use Kubernetes® native APIs and follow standard Kubernetes® conventions for
resource management. They provide a set of declarative APIs that simplify the configuration and management of
microservices behaviour.

These APIs follow standard RESTful principles and use standard terminology to describe resources:

• A resource type is the name used in the URL.

• All resource types have a representation in JSON (their object schema), called a kind.

• A collection represents a list of instances of a resource type.

• A single instance of a resource type is referred to as a resource, typically representing a configuration object.

Resources defined by these open source solutions are either cluster-scoped or namespace-scoped depending on their
function and use case. The Kubernetes® API [i.2] supports read and write operations on resource objects of these open
source solutions via Kubernetes® API endpoints. These custom resources extend the Kubernetes® API and are not
included by default in standard Kubernetes® distributions; they can be installed and managed using their respective
controllers or operators.

Each solution defines a set of custom resource objects to deliver its intended functionalities and configuration
capabilities. For example, Istio® defines resources, such as DestinationRule and AuthorizationPolicy to manage
service traffic, and enforce policies.

Standard HTTP methods (POST, PUT, PATCH, DELETE) are supported for operations on individual resources (or
custom resources). However, the Kubernetes® API does not natively support submitting multiple resources as a part of a
single transaction, whether ordered or unordered.

The mapping of the selected open source solutions' custom resource objects to the generic OAM functions and other
PaaS Services, is provided in clauses 5 to 9 of the present document.

4.3.3 Data model concepts

Following the Kubernetes® [i.2] pattern for resource objects, the custom resource objects defined by the selected open
source solutions are modelled using specific schemas. These resource definitions generally consist of the following four
components:

• Custom Resource Kind: The kind field identifies the type of resource, such as DestinationRule,
AuthorizationPolicy in the case of Istio®, or other solution-specific kind. It determines the category of
configuration or behaviour the custom resource represents within the system.

• Custom Resource ObjectMeta: The metadata section contains information such as resource name, namespace,
labels, and annotations. This metadata structure follows a schema common to all Kubernetes® resources.
Certain metadata fields, such as annotations, may be modified by users or solution specific controllers, while
fields like name and namespace are typically immutable after resource creation.

• Custom Resource Spec: The spec section is defined by the user and describes the desired state of the resource.
This field is defined during the creation or modification of the resource to specify its intended behaviour and
configuration.

• Custom Resource Status: The status section summarizes the current state of the system concerning the
managed custom resource object.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)14

These components form the core of the declarative model used by all selected open source solutions to manage resource
lifecycle and configuration in a Kubernetes-native manner.

4.3.4 Query APIs for the Log and Metrics Analyser functions

4.3.4.1 Introduction

This clause provides an overview of the query APIs, which are profiled against query interface requirements of the Log
and Metrics Analyser functions, as specified in ETSI GS NFV-IFA 049 [1].

4.3.4.2 OpenSearch PPL API

The OpenSearch PPL API [4] provides a RESTful, operation-focused interface for querying structured log data,
optimized for log analytics and search operations. Unlike Kubernetes-based OpenSearch resource management, which
follows a declarative model to define resources, the PPL API enables users to execute dynamic, ad-hoc queries against
indexed log data using a SQL-like syntax. It does not represent a Kubernetes® resource or alter OpenSearch
configurations; rather, it offers a flexible querying mechanism designed specifically for retrieving and analysing log
data.

All PPL queries are executed via the "/_plugins/_ppl" endpoint using an HTTP POST request with a JSON-based query
body. The request body shall contain a valid PPL query, and the response returns a structured JSON object with the
query results.

4.3.4.3 VictoriaMetrics Query API

VictoriaMetrics provides a Query API [10] designed to retrieve and process time-series metrics data for monitoring,
alerting, and visualization. This API is Prometheus-compatible and leverages MetricsQL (an extended PromQL syntax)
to execute operations such like filtering, aggregation, and rate calculations on metrics stored in VictoriaMetrics.

The API operates in read-only mode; it does not modify stored data or system configurations. Instead, it enables
dynamic querying of metric data through endpoints "/api/v1/query" for retrieving metrics at a specific timestamp, and
"/api/v1/query_range" for retrieving metrics over defined time ranges.

Queries can be executed via HTTP GET or POST requests. GET requests pass parameters in the URL, while POST
requests accept URL-encoded form data (in key=value pairs) in the request body. The API returns results in structured
JSON format, suitable for consumption by tools like Grafana® or for automated processing in external systems.

5 VNF generic OAM functions object models mapping
to profiled solution objects

5.1 Traffic Enforcer object mapped to Istio®
The selected Istio® [11] custom resource objects are identified to map to the Traffic Enforcer object of the NFV object
model, see clause 6.3.1 in ETSI GS NFV-IFA 049 [1]. Table 5.1-1 lists the custom resource objects which are mapped
to the input and output parameters of the Traffic Management Interface in ETSI GS NFV-IFA 049 [1].

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)15

Table 5.1-1: Istio® custom resource object mapped to Traffic Enforcer object

Istio® custom
resource object

kind

Istio® custom resource URI Istio® custom
resource object

description
Gateway /apis/networking.istio.io/v1/namespaces/{namespace}/gateways Namespaced-

resource that defines
a load balancer
operating at the
edge of the mesh
receiving incoming
or outgoing
HTTP/TCP
connections. The
specification
describes a set of
ports that should be
exposed, the type of
protocol to use,
Server Name
Indication (SNI)
configuration for the
load balancer, etc.

VirtualService /apis/networking.istio.io/v1/namespaces/{namespace}/virtualservices Namespaced-
resource that defines
how requests are
routed to different
services within the
mesh. It allows to
configure traffic
routing rules like
route weighting and
traffic shifting, fault
injection, HTTP
routes, TCP routes,
gateways, and
advanced routing
based on request
headers or other
criteria. For example,
it can direct traffic to
specific versions of a
service for canary
deployments or A/B
testing.

DestinationRule /apis/networking.istio.io/v1/namespaces/{namespace}/destinationrules Namespaced-
resource that
specifies policies
that apply to traffic
after it has been
routed to a specific
service. It allows
fine-grained control
over aspects such as
load balancing,
timeouts, retries, and
connection pool
settings for a
particular service.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)16

Istio® custom
resource object

kind

Istio® custom resource URI Istio® custom
resource object

description
AuthorizationPolicy /apis/security.istio.io/v1/namespaces/{namespace}/authorizationpolicies Namespaced-

resource that
governs access
control within the
service mesh by
specifying who can
access a service and
under what
conditions. It uses
attributes like source
IP, request headers,
and JWT tokens to
allow or deny traffic,
enabling detailed
security policies for
services in the mesh.

NOTE: Clause 6.2.1 of ETSI GS NFV-IFA 049 [1] specifies requirements for traffic isolating, blocking and routing,
which can be implemented using the Istio® custom resources referenced. Specifically, traffic routing to
specific VNFC instances can be managed using a DestinationRule, following the creation of a VirtualService
and a Gateway. Similarly, an AuthorizationPolicy can be used to block or isolate specific VNFC instances.

See the following for an end-to-end explanation of traffic routing with Istio®:

• In Istio®, when a user (or operator) applies CRDs such as Gateway, VirtualService, DestinationRule, and
AuthorizationPolicy, Istiod reads these CRDs, generates proxy-specific configurations, and pushes them to the
appropriate Envoy proxies in the data plane, such as the Ingress Gateway and sidecar proxies running
alongside service pods.

When a user sends an external request (e.g. GET), it first reaches the Ingress Gateway, which exposes external traffic to
the service mesh, listens on ports like 443, provides TLS termination, and forwards the request based on rules defined in
a VirtualService - such as those matching hostnames or paths. A DestinationRule then configures how the traffic is sent
to specific service versions by defining subsets (e.g. v1) using labels and applying load balancing policies
(e.g. ROUND_ROBIN). These subsets typically map to pods running particular versions of a service. Before the request
reaches the application, the sidecar proxy inside the pod enforces security using an AuthorizationPolicy, checking
conditions like a valid JWT token, request method, or request path.

All of these configurations are centrally managed by Istiod, which continuously reads the CRDs, compiles them into
proxy-specific rules, and distributes them to sidecar proxies and gateways.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)17

Figure 5.1-1: Traffic routing with Istio® using Gateway, VirtualService, DestinationRule, and
AuthorizationPolicy

5.1a Traffic Enforcer object mapped to Cilium®
The selected Cilium® [5] custom resource objects are identified to map to the Traffic Enforcer object of the NFV object
model, see clauses 5.2, 6.2.1 and 6.3.1 in ETSI GS NFV-IFA 049 [1]. Table 5.1a-1 lists the Cilium® custom resource
objects which are mapped to the input and output parameters of the Traffic Management Interface in ETSI
GS NFV-IFA 049 [1].

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)18

Table 5.1a-1: Cilium® custom resource object mapped to Traffic Enforcer object

Cilium® custom resource
object kind

Cilium® custom resource URI Cilium® custom
resource object

description
CiliumNetworkPolicy /apis/cilium.io/v2/namespaces/{namespace}/ciliumnetworkpolicies Namespaced

resource that
defines network
policies for
controlling traffic at
L3/L4 and L7 layers
(see note).

CiliumClusterNetworkPolicy /apis/cilium.io/v2/ciliumclusterwidenetworkpolicies Cluster-scoped
resource that
defines global
network policies
that apply across all
namespaces.

CiliumEnvoyConfig /apis/cilium.io/v2/namespaces/{namespace}/ciliumenvoyconfigs Namespaced
resource that
enables advanced
L7 traffic
management
capabilities by
applying custom
Envoy proxy
configurations.

NOTE: To support partial traffic isolation, this custom resource can be applied to block all new incoming
connections to a Kubernetes® pod while keeping established TCP connections to other pods of a workload
application.

5.2 Log Aggregator object mapped to Fluent Bit
The selected Fluent Bit [12] custom resource objects are identified to map to the Log Aggregator object of the NFV
object model, see clause 6.3.4 in ETSI GS NFV-IFA 049 [1].

Table 5.2-1 lists the Fluent Bit custom resource objects which are mapped to the input and output parameters of the Log
Aggregator Exposure Interface as described in ETSI GS NFV-IFA 049 [1].

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)19

Table 5.2-1: Fluent Bit custom resource object mapped to Log Aggregator object

Fluent Bit
custom

resource
object kind

Fluent Bit custom resource URI Fluent Bit custom resource object description

ClusterInput /apis/fluentbit.fluent.io/v1alpha2/clusterinputs Cluster-scoped resource that defines the
configuration for collecting log data from various
sources within the Kubernetes®cluster. It specifies
the log input sources, such as file paths or system
logs, and determines how logs are gathered and
processed before further transformation or routing.

ClusterParser /apis/fluentbit.fluent.io/v1alpha2/clusterparsers Cluster-scoped resource that defines how to extract
structured data from raw log lines. It specifies the
format of the log entries (e.g. JSON, logfmt, custom
regex) and which fields to extract. ClusterParser
resources is typically used by input plugins to parse
unstructured logs before they are passed through
filters such as ClusterFilter.

ClusterFilter /apis/fluentbit.fluent.io/v1alpha2/clusterfilters Cluster-scoped resource that configures filters to
process and transform log data as it flows through
the Fluent Bit pipeline. ClusterFilter resources can
enrich logs with metadata, remove sensitive
information, add or modify log fields, and filter logs
based on specific criteria.

ClusterOutput /apis/fluentbit.fluent.io/v1alpha2/clusteroutputs Cluster-scoped resource that configures the
destination for processed log data. It defines the
output plugin type, target endpoint, and any
necessary authentication or authorization details.
ClusterOutput resources are used to send logs to
various destinations for analysis, storage, or alerting.

NOTE: Clause 6.2.4 of ETSI GS NFV-IFA 049 [1] specifies requirements for log filtering and querying. These
requirements can be fulfilled using Fluent Bit's custom resources. To manage log filtering, the Filter custom
resource can be used, following the creation of ClusterInput and Parser custom resources to ingest and
structure the logs. To expose logs to various destinations for analysis, storage, or visualization, the Output
custom resource can be used.

See the following for an end-to-end explanation of log aggregation with Fluent Bit:

• Fluent Bit collects logs generated by containers, files, or systemd using a DaemonSet that runs on each
Kubernetes® node. As a first step, the ClusterInput resource defines how and from where logs are collected.
Raw log entries are then passed to a ClusterParser, which transforms unstructured logs into structured data
using formats like JSON, regex, or multiline. The parsed logs are then passed through a ClusterFilter resource,
which can enrich, modify, or filter log entries, for example, by adding Kubernetes® metadata or removing
sensitive fields. Finally, the processed logs are routed to their destination as specified by a ClusterOutput, such
as Elasticsearch, S3, or any other custom endpoint.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)20

Figure 5.2-1: Log aggregation with Fluent Bit using ClusterInput, ClusterParser, ClusterFilter,
and ClusterOutput

5.3 Log Analyser object mapped to OpenSearch
The selected OpenSearch [13] custom resource objects are identified to map to the Log Analyser object of the NFV
object model, see clause 6.3.5 in ETSI GS NFV-IFA 049 [1].

Table 5.3-1 lists the OpenSearch custom resource objects which are mapped to the input and output parameters of the
Log Analysis Exposure Interface as described in ETSI GS NFV-IFA 049 [1].

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)21

Table 5.3-1: OpenSearch custom resource object mapped to Log Analyser object

OpenSearch
custom

resource object
kind

OpenSearch custom resource URI OpenSearch custom resource object
description

OpensearchCom
ponentTemplate

/apis/opensearch.opster.io/v1/namespaces/{n
amespace}/opensearchcomponenttemplates

Namespaced resource that defines a blueprint for
how OpenSearch indexes should be structured. An
OpenSearch index is essentially a collection of
documents, like a database table, where each
document represents a unit of information. This
blueprint allows defining reusable configurations,
such as how many shards and replicas each index
should have, and how data within your indexes
should be organized and searched. Instead of
setting or configuring every single index, this
template can be created once and apply it to many
indexes, to save time and effort. For example, in
context of the logs analysis, once logs are
ingested, they are stored in indexes for fast
retrieval and filtering.

OpensearchInde
xTemplate

/apis/opensearch.opster.io/v1/namespaces/{n
amespace}/opensearchindextemplates

Namespaced resource that serves as a blueprint
for a group of indexes that follow a specific naming
pattern (like logs-2020-01-*). It streamlines index
management by automatically applying predefined
configurations from component templates to all
matching indexes. By defining reusable rules, the
OpenSearchIndexTemplate ensures consistency,
reduces manual effort, and minimizes configuration
errors. This approach simplifies index lifecycle
management, improves efficiency, and helps
maintain a well-structured OpenSearch
environment.

OpenSearchISM
Policy

/apis/opensearch.opster.io/v1/namespaces/{n
amespace}/opensearchismpolicies

Namespaced resource that automates the lifecycle
management of indexes, particularly for time-series
data where older data becomes less relevant over
time. It enables automated actions such as
reducing replica counts, transitioning indexes to a
read-only state, or deleting outdated indexes based
on factors like index age, size, or document count.
For example, a policy can move an index to
read-only after 30 days and delete it after 90 days.
Leveraging this CRD streamlines data
management, optimizes resource utilization, and
ensures that data remains accessible and relevant
based on specific criteria.

OpenSearchClus
ter

/apis/opensearch.opster.io/v1/namespaces/{n
amespace}/opensearchclusters

Namespaced resource that simplifies the
deployment and management of a complete
OpenSearch environment by automating the
creation of OpenSearch cluster along with
OpenSearch Dashboards. It sets up the necessary
infrastructure for log visualization, analysis,
anomaly detection, and alerting. OpenSearch
Dashboards also provide an efficient interface for
querying and exploring data with various query
languages, supporting efficient log management,
analytics, and real-time monitoring with
customizable notifications and alerts.

NOTE: Clause 6.2.5 of ETSI GS NFV-IFA 049 [1] specifies requirements for log processing and exposing log
analysis results. These requirements can be fulfilled using the referenced OpenSearch custom resources.
Log processing and analysis visualisation can be managed through the OpenSearch dashboards, which
become accessible after deploying the OpenSearchCluster custom resource. This requires the prior creating
of supporting resources, including OpenSearch Data Prepper (solution for log ingestion) and other custom
resources OpensearchComponentTemplate, OpensearchIndexTemplate, and OpenSearchISMPolicy.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)22

See the following for an end-to-end explanation of log analysis and querying with OpenSearch:

• When a user (or operator) applies the OpenSearchCluster CRD, it deploys and manages the OpenSearch
nodes. Applying additional OpenSearch CRDs provides the supporting configurations: the
OpensearchComponentTemplate CRD defines reusable index settings and mappings; the
OpensearchIndexTemplate CRD specifies index patterns and links them to component templates; and the
OpenSearchISMPolicy CRD configures index lifecycle rules such as rollover and deletion. Once the cluster is
running and templates are in place, log agents or applications send data to the OpenSearch cluster, which
automatically creates indices based on the defined templates and policies. Users can perform log analysis by
running SQL-like queries via the PPL API (_plugins/_ppl), which translates the query into OpenSearch DSL,
executes it on the relevant log indices, and returns the results in a structured JSON format.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)23

Figure 5.3-1: Log analysis with OpenSearch using OpenSearchCluster, OpensearchComponentTemplate,
OpensearchIndexTemplate, and OpenSearchISMPolicy

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)24

5.4 Notification Manager object mapped to Prometheus
Alertmanager

The selected Prometheus Alertmanager [14] custom resource objects are identified to map to the notification manager
object of the NFV object model, see clause 6.3.12 in ETSI GS NFV-IFA 049 [1].

Table 5.4-1 lists the OpenSearch custom resource objects which are mapped to the input and output parameters of the
Log Analysis Exposure Interface as described in ETSI GS NFV-IFA 049 [1].

Table 5.4-1: Prometheus Alertmanager custom resource object mapped to
Notification manager object

Prometheus
Alertmanager

custom
resource object

kind

Prometheus Alertmanager custom
resource URI

Prometheus Alertmanager custom resource
object description

PrometheusRule /apis/monitoring.coreos.com/v1/namespaces
/{namespace}/prometheusrules

Namespaced resource that defines alerting and
recording rules for Prometheus. It evaluates scraped
data and triggers alerts when specified conditions
are met, which are then processed by Alertmanager
for routing.

AlertmanagerCo
nfig

/apis/monitoring.coreos.com/v1alpha1/name
spaces/{namespace}/alertmanagerconfigs

Namespaced resource that defines custom alert
routing rules and notification configurations for
Alertmanager. It specifies how alerts should be
grouped, filtered, and sent to different receivers
(e.g. email, webhook). This resource allows multiple
teams or users to configure independent notification
settings within a shared Alertmanager instance.

Alertmanager /apis/monitoring.coreos.com/v1/namespaces
/{namespace}/alertmanagers

Namespaced resource that represents an instance of
Prometheus Alertmanager responsible for managing
alerts, deduplicating them, grouping them, and
routing them to defined notification channels. This
resource defines global configurations for alert
processing, notification handling, and inhibition rules.

See the following for an end-to-end explanation of notification management using Prometheus Alertmanager:

• User (or operator) subscribes to notifications by applying the AlertmanagerConfig CRD. This CRD serves as
the control plane for notification routing, defining critical parameters such as receiver endpoints (e.g. webhook
URLs), alert routing rules based on severity or labels, and inhibition logic to prevent duplicate alerts.
Meanwhile, PrometheusRule CRD establishes the alert conditions that monitor system metrics, effectively
determining when specific events should trigger alerts. When these predefined conditions are met,
Prometheus® generates alerts and forwards them to Alertmanager for processing. Alertmanager evaluates each
alert against the configured routing and inhibition rules to determine whether it should be sent or suppressed. If
allowed, the alert is forwarded to the defined receiver (e.g. webhook, email). Otherwise, it is dropped to avoid
unnecessary noise or duplication.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)25

Figure 5.4-1: Notification management with Prometheus Alertmanager using Alertmanager,
AlertmanagerConfig, and PrometheusRule

5.5 Metrics Analyser object mapped to VictoriaMetrics
Selected VictoriaMetrics [9] custom resource objects are identified to map to the Metrics Analyser object of the NFV
object model, see clause 6.3.7 in ETSI GS NFV-IFA 049 [1]. Table 5.5-1 lists the VictoriaMetrics custom resource
objects which are mapped to the input and output parameters of the Metrics Analyser Interface in ETSI
GS NFV-IFA 049 [1].

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)26

Table 5.5-1: VictoriaMetrics custom resource object mapped to Metric Analyser object

VictoriaMetrics
custom resource

object kind

VictoriaMetrics custom resource URI VictoriaMetrics custom resource object
description

VMAgent /apis/operator.victoriametrics.com/v1beta1/name
spaces/{namespace}/vmagents

Namespaced resource that defines how
metrics are scraped from endpoints and
forwarded to VictoriaMetrics for storage and
analysis.

VMRule /apis/operator.victoriametrics.com/v1beta1/name
spaces/{namespace}/vmrules

Namespaced resource that defines alerting
and recording rules to evaluate. It defines
MetricsQL-based expressions to analyze
time-series data stored in VictoriaMetrics,
enabling automated issue detection or metric
generation. VMRule allows the configuration
of alerts for monitoring and observability
workflows.

VMAlert /apis/operator.victoriametrics.com/v1beta1/name
spaces/{namespace}/vmalerts

Namespaced resource that evaluates
VMRule definitions against VictoriaMetrics
data. It processes configured rules at fixed
intervals, triggers alerts when conditions are
met, and forwards them to VMAlertmanager
for notification routing.

VMAlertmanager /apis/operator.victoriametrics.com/v1beta1/name
spaces/{namespace}/vmalertmanagers

Namespaced resource that defines the
deployment and configuration of alert routing,
inhibition, and notification delivery based on
received alerts.

NOTE: Clause 6.2.7 of ETSI GS NFV-IFA 049 [1] defines requirements for metrics processing and exposure, which
can be fulfilled using VictoriaMetrics resources. The VMRule defines alerting and recording rules for metrics
evaluation, while VMAlert executes these rules against data stored in VMCluster and forwards any resulting
alerts to VMAlertmanager for notification routing and delivery. For external access, VictoriaMetrics also
provides a Prometheus-compatible Query API to query time-series metrics data.

See the following for an end-to-end explanation of metrics analysis and querying with VictoriaMetrics:

• An operator first defines evaluation rules using the VMRule resource, specifying expressions and thresholds
for detecting conditions like high CPU usage or latency spikes. Alerting logic such as duration, severity, and
labels is configured through VMAlert, while notification routing and inhibition policies are managed by
VMAlertmanager, which loads its config from VMAlertmanagerConfig. The VMAgent continuously scrapes
metrics and evaluates them against the defined rules. When an alert condition is met, VMAlert triggers an alert
and forwards it to VMAlertmanager. Based on the routing policy, the alert is either sent to the configured
receiver or suppressed. Metrics consumers can also query analytics results via the standard "/api/v1/query"
endpoint.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)27

Figure 5.5-1: Metrics analysis with VictoriaMetrics using VMAgent, VMRule, VMAlert,
VMAlertmanager

6 Traffic Management interface

6.1 Description
This interface allows the API consumer to invoke Istio® traffic management operations towards the API producer
through the interface operations specified in clause 6.2.1 of ETSI GS NFV-IFA 049 [1], primarily focusing on traffic
blocking and rerouting requests initiated by the API Consumer. Istio® DestinationRule, and AuthorizationPolicy custom
resource objects are identified as Traffic Management related NFV object (Traffic Enforcer object) as defined in
clause 5 of the present document.

The operations provided through this interface are:

• Create DestinationRule, and AuthorizationPolicy resources.

NOTE: The Kubernetes® API supports PUT, PATCH, and GET operations on Istio® resource objects; however,
these operations are out of the scope of the present document. Additionally, the DELETE/Termination
operation is not supported in this context, as the Traffic Enforcer function might remain available to
ensure continuous traffic rerouting or isolation.

6.2 API version
The API {VERSION} for the profiled solution Istio® [11] custom resource object identified as Traffic Management
related NFV object shall be set to "v1". Details on the API structure are specified in clause 4.3.2 of the present
document.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)28

The corresponding Istio® API roots are specified as:

/apis/networking.istio.io/v1

/apis/security.istio.io/v1

6.3 Resource structure and methods
Figures 6.3-1 and 6.3-2, show the overall resource URI structures for the profiled solution Istio® [11] for the Traffic
Management interface.

Figure 6.3-1: Resource URI structure of DestinationRule resource
object for the Traffic Management interface

Figure 6.3-2: Resource URI structure of AuthorizationPolicy resource
object for the Traffic Management interface

Table 6.3-1 lists the individual resources defined, and the applicable HTTP methods.

The Traffic Enforcer function supports responding to requests for all HTTP methods on the resources in Table 6.3-1
that are marked as "M" (mandatory) in the "Cat" column.

Table 6.3-1: Resources and methods overview of the Traffic Management interface

Resource name Resource URI HTTP Method Cat Meaning
DestinationRule /destinationrules POST M Create a new

"DestinationRule"
resource.

AuthorizationPolicy /authorizationpolicies POST M Create a new
"AuthorizationPolicy"
resource.

6.4 Sequence diagrams (informative)
See clause B.1 for the sequence diagrams for the Istio® resources.

6.5 Resources

6.5.1 Introduction

This clause profiles the resources and methods provided by the Traffic Management interface.

6.5.2 Resource: DestinationRule

This resource represents the Istio® [11] custom resource object DestinationRule, which specifies traffic policies, such as
load balancing, connection pooling, and mutual TLS, for routing requests to the pods backing a service.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)29

Table 6.5.2-1 provides the profiling of the supported DestinationRule resource methods against the Traffic Management
interface requirements as specified in ETSI GS NFV-IFA 049 [1].

The URI query parameters, request and response bodies, and response codes of the individual resource methods are
described in the respective DestinationRule custom resource object specifications of the profiled solution Istio®.

Table 6.5.2-1: DestinationRule resource methods profiling against
Traffic Management interface requirements

Resource URI HTTP Method Meaning Requirement identifier from
ETSI GS NFV-IFA 049 [1]

/destinationrules POST Create a new
"DestinationRule" resource.

TrafficEnf.Trafm.001

NOTE: Since interface requirement specified in clause 6.2.1 of ETSI GS NFV-IFA 049 [1] primarily focuses on
traffic rerouting for VNFC instances, which can be fulfilled by the DestinationRule, provided the
appropriate Gateway and VirtualService are created in advance.

6.5.3 Resource: AuthorizationPolicy

This resource represents the Istio® [11] custom resource object AuthorizationPolicy, which defines precise access
control rules to allow or deny requests to workloads in the service mesh, based on criteria such as source, destination,
and request attributes.

Table 6.5.3-1 provides the profiling of the supported AuthorizationPolicy resource methods against the Traffic
Management interface requirements as specified in ETSI GS NFV-IFA 049 [1].

The URI query parameters, request and response bodies, and response codes of the individual resource methods are
described in the respective AuthorizationPolicy custom resource object specifications of the profiled solution Istio®.

Table 6.5.3-1: AuthorizationPolicy resource methods profiling against
Traffic Management interface requirements

Resource URI HTTP Method Meaning Requirement identifier from
ETSI GS NFV-IFA 049 [1]

/authorizationpolicies POST Create a new
"AuthorizationPolicy" resource.

TrafficEnf.Trafm.001

NOTE: Since interface requirement specified in clause 6.2.1 of ETSI GS NFV-IFA 049 [1] primarily focuses on
traffic blocking for VNFC instances, which can be fulfilled by the AuthorizationPolicy.

6.6 Data Model

6.6.1 Traffic Management operation input parameters mapped to CRD
schemas configuration fields

This clause maps the Traffic Management operation input parameters as specified in clause 6.3.1.2.2 of ETSI
GS NFV-IFA 049 [1] with the configuration fields of the example CRD schemas for DestinationRule and
AuthorizationPolicy provided in clause A.5.3.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)30

Table 6.6.1-1: Traffic Management operation input parameters mapped to
Istio® CRD schemas configuration fields

Input parameter
from ETSI

GS NFV-IFA 049 [1]

Configuration
Fields profiled

from Istio® CRD
Schemas

Related Istio®
Resource

Description

vnfcInstanceId subsets.labels DestinationRule One or more named sets that represent
individual versions of a service. Traffic
policies can be overridden at subset level.
"subsets.labels" field identifies specific set
of pods/VMs on which a policy should be
applied.

targetAction action AuthorizationPolicy The action to take if the request is matched
with the rules. Default is ALLOW if not
specified.
Action specifies the operation to take.

• ALLOW
• DENY
• AUDIT
• CUSTOM

"action" field can help in traffic isolation by
denying traffic based on rules, such as
blocking traffic from specific namespaces.

rules AuthorizationPolicy A list of rules to match the request. A match
occurs when at least one rule matches the
request. Such as rules.from and rules.to
fields, can specify different namespaces,
paths, hosts, ports, etc.
"rules" field can help enforce access control
by specifying conditions for requests. By
combining these rules with appropriate
actions (such as ALLOW, DENY), it can
lead to partial or full isolation by restricting
access under specific conditions.

 selector.matchlab
els

AuthorizationPolicy One or more labels that indicate a specific
set of pods/VMs on which a policy should be
applied. The scope of label search is
restricted to the configuration namespace in
which the resource is present.

7 Log Exposure Interface

7.1 Description
This interface allows the API consumer to invoke Fluent Bit log aggregator operations towards the API producer
through the interface operations specified in clause 6.2.4 of ETSI GS NFV-IFA 049 [1], primarily focusing on logs
exposing and filtering requests initiated by the API Consumer. Fluent Bit ClusterFilter, and ClusterOutput custom
resource objects are identified as Log Exposure related NFV object (Log Aggregator object) as defined in clause 5 of
the present document.

The operations provided through this interface are:

• Create ClusterFilter, and ClusterOutput resources.

NOTE: The Kubernetes® API supports PUT, PATCH, and GET operations on Fluent Bit resource objects;
however, these operations are out of the scope of the present document. Additionally, the
DELETE/Termination operation is not supported in this context, as the Log Aggregator function might
remain available to ensure continuous log aggregation and processing.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)31

7.2 API version
The API {VERSION} for the profiled solution Fluent Bit [12] custom resource object identified as Log Exposure
related NFV object shall be set to "v1alpha2". Details on the API structure are specified in clause 4.3.2 of the present
document.

The corresponding Fluent Bit API roots are specified as:

/apis/fluentbit.fluent.io/v1alpha2

7.3 Resource structure and methods
Figures 7.3-1 and 7.3-2 show the overall resource URI structures for the profiled solution Fluent Bit [12] for the Log
Exposure interface.

Figure 7.3-1: Resource URI structure of ClusterFilter resource object for
the Log Exposure interface

Figure 7.3-2: Resource URI structure of ClusterOutput resource object
for the Log Exposure interface

Table 7.3-1 lists the individual resources defined, and the applicable HTTP methods.

The Log Aggregator function supports responding to requests for all HTTP methods on the resources in Table 7.3-1 that
are marked as "M" (mandatory) in the "Cat" column.

Table 7.3-1: Resources and methods overview of the Log Exposure interface

Resource name Resource URI HTTP Method Cat Meaning
ClusterFilter /clusterfilters POST M Create a new

"ClusterFilter" resource.
ClusterOutput /clusteroutputs POST M Create a new

"ClusterOutput"
resource.

7.4 Sequence diagrams (informative)
See clause B.2 for the sequence diagrams for the Fluent Bit resources.

7.5 Resources

7.5.1 Introduction

This clause profiles the resources and methods provided by the Log Exposure interface.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)32

7.5.2 Resource: ClusterFilter

This resource represents the Fluent Bit [12] custom resource object ClusterFilter, which modifies, enriches, or excludes
log data before output.

Table 7.5.2-1 provides the profiling of the supported ClusterFilter resource methods against the Log Exposure interface
requirements as specified in ETSI GS NFV-IFA 049 [1].

The URI query parameters, request and response bodies, and response codes of the individual resource methods are
described in the respective ClusterFilter custom resource object specifications of the profiled solution Fluent Bit.

Table 7.5.2-1: ClusterFilter resource methods profiling against
Log Exposure interface requirements

Resource URI HTTP Method Meaning Requirement identifier from
ETSI GS NFV-IFA 049 [1]

/clusterfilters POST Create a new "ClusterFilter"
resource.

LogAggr.Expose.002

7.5.3 Resource: ClusterOutput

This resource represents the Fluent Bit [12] custom resource object ClusterOutput, which defines where the processed
log data is sent.

Table 7.5.3-1 provides the profiling of the supported ClusterOutput resource methods against the Log Exposure
interface requirements as specified in ETSI GS NFV-IFA 049 [1].

The URI query parameters, request and response bodies, and response codes of the individual resource methods are
described in the respective ClusterOutput custom resource object specifications of the profiled solution Fluent Bit.

Table 7.5.3-1: ClusterOutput resource methods profiling against
Log Exposure interface requirements

Resource URI HTTP Method Meaning Requirement identifier from
ETSI GS NFV-IFA 049 [1]

/clusteroutputs POST Create a new "ClusterOutput"
resource.

LogAggr.Expose.001
See note.

NOTE: The requirement LogAggr.Expose.001 from ETSI GS NFV-IFA 049 [1] specifies that the Log Exposure
Interface shall support exposing the logs to authorized consumers. However, in the context of
"ClusterOutput," the focus is on transmitting logs to multiple destinations for purposes such as analysis,
storage, or alerting. Most existing log aggregation solutions are designed to collect and distribute logs
across various endpoints for these purposes, including visualization. While the "ClusterOutput" resource
contributes to fulfilling this requirement, it does so in an indirect manner by facilitating log distribution rather
than direct exposure.

7.6 Data model

7.6.1 Log Exposure operation input parameters mapped to CRD schemas
configuration fields

This clause maps the Log Exposure operation input parameters as specified in clause 6.3.4.2.2 of ETSI
GS NFV-IFA 049 [1] with the configuration fields of the example CRD schemas for ClusterFilter and ClusterOutput
provided in clause A.5.2.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)33

Table 7.6.1-1: Log Exposure operation input parameters mapped to
Fluent Bit CRD schemas configuration fields

Input parameter
from ETSI

GS NFV-IFA 049
[1]

Configuration Fields
profiled from Fluent Bit

CRD Schemas

Related Fluent
Bit Resource

Description

Filter filters.grep ClusterFilter The filters grep field is to processes logs by
matching or excluding patterns using regular
expressions. It supports options like regex for
keeping logs that match specific fields and
exclude for filtering out unwanted entries, along
with other configurations.

filters.kubernetes ClusterFilter The filters.kubernetes® field is to add
Kubernetes® metadata to logs, such as pod
names, namespaces, labels, and annotations. It
includes options like kubeURL for accessing the
API server, mergeLog to include JSON log
content, and regexParser for custom tag parsing
for Kubernetes-based environments.

filters.modify ClusterFilter The filters.modify field allows dynamic changes
to log data, applying rules like add to insert new
fields, remove to delete fields, rename to
change field names, and more. It supports
conditions for checking key matches and other
operations for various log manipulation needs.

filters.parser ClusterFilter The filters.parser field extracts and structures
data from log fields using predefined or custom
parsers. Features like preserveKey to keep
original fields and reserveData to include
unprocessed fields make it useful for working
with different log formats, such as JSON or
custom structures.

Not specified file ClusterOutput The file field is to configure Fluent Bit to output
logs to files in various formats. It supports
options like delimiter for CSV or LTSV formats,
file for setting the filename, path for defining the
directory, and format for the file structure
(e.g. out_file, csv, template). The template
option allows for custom formatting, and many
other configuration options are also available for
further customization.

opentelemetry ClusterOutput The Opentelemetry™ field is to configure Fluent
Bit to export logs and metrics to
OpenTelemetry™compatible systems. It
supports adding custom labels (addLabel),
specifying HTTP headers (header), and defining
the target server with host and port. Additionally,
it provides networking options such as DNS
settings and source address binding for
connectivity.
Many other tags are also available to send logs
to different destinations, with additional
configuration options for further customization.

NOTE: According to clause 6.3.4.2 of ETSI GS NFV-IFA 049 [1], the input parameter Filter is used to retrieve
logs as an output. In the context of Fluent Bit, however, the ClusterFilter custom resource processes,
transforms, and structures logs, enabling the filtered and processed logs to be sent to various destinations
for analysis, storage, or alerting. The ClusterOutput custom resource defines these destinations and
ensures log delivery. Need to check with ETSI GS NFV-IFA 049 [1] to add a new input parameter as
"Output" or "Destination" to expose the logs.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)34

8 Log Analysis Exposure Interface

8.1 Description
This interface allows the API consumer to invoke OpenSearch operations towards the API producer through the
interface operations specified in clause 6.2.5 of ETSI GS NFV-IFA 049 [1]. The interface supports both OpenSearch
resource management and log retrieval operations:

• The OpenSearchCluster custom resource object is identified as a Log Analysis Exposure related NFV object
(Log Analyser object), as defined in clause 5.3 of the present document. It provides a declarative way to
manage OpenSearch clusters and configurations.

• The PPL API enables consumers to retrieve and analyse log data dynamically. PPL allows structured queries
for filtering, sorting, and aggregating logs without modifying OpenSearch resources. See clause 4.3.4.2 in the
present document for details.

The operations provided through this interface are:

• Create OpenSearchCluster resource.

• Retrieve the log data.

NOTE: The Kubernetes® API supports PUT, PATCH, and GET operations on OpenSearch resource objects;
however, these operations are out of the scope of the present document. Additionally, the
DELETE/Termination operation is not supported in this context, as the Log Analyser function might
remain available to continue providing log-based analytics to authorised consumers.

8.2 API version
The API {VERSION} for the profiled solution OpenSearch [13] custom resource object identified as Log Analysis
Exposure related NFV object shall be set to "v1". Details on the API structure are specified in clause 4.3.2 of the present
document.

The corresponding OpenSearch API roots are specified as:

/apis/opensearch.opster.io/v1

The API {version} for the PPL API shall be set to "1.0.0". The PPL API does not expose a versioned endpoint in the
URI; instead, the API version is specified in the OpenAPI metadata under the info.version field.

8.3 Resource structure and methods
Figure 8.3-1, show the overall resource URI structures for the profiled solution OpenSearch [13] for the Log Analysis
Exposure interface.

Figure 8.3-1: Resource URI structure of OpenSearchCluster resource object for
the Log Analysis Exposure interface

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)35

Figure 8.3-2: Resource URI structure of PPL API

Table 8.3-1 lists the individual resources defined, and the applicable HTTP methods.

The Log Analyser function supports responding to requests for all HTTP methods on the resources in Table 8.3-1 that
are marked as "M" (mandatory) in the "Cat" column.

Table 8.3-1: Resources and methods overview of the Log Analysis Exposure interface

Resource name Resource URI HTTP Method Cat Meaning
OpenSearchCluster /opensearchclusters POST M Create a new

"/OpenSearchCluster"
resource.

PPL API /_plugins/_ppl POST M Retrieve the log data.

8.4 Sequence diagrams (informative)
See clause B.3 for the sequence diagrams for the OpenSearch resources.

8.5 Resources

8.5.1 Introduction

This clause profiles the resources and methods provided by the Log Analysis Exposure interface.

8.5.2 Resource: OpenSearchCluster

This resource represents the OpenSearch [13] custom resource object OpenSearchCluster, which manages the
deployment and configuration of an OpenSearch cluster including OpenSearch dashboards.

Table 8.5.2-1 provides the profiling of the supported OpenSearchCluster resource methods against the Log Analysis
Exposure interface requirements as specified in ETSI GS NFV-IFA 049 [1].

The URI query parameters, request and response bodies, and response codes of the individual resource methods are
described in the respective OpenSearchCluster custom resource object specifications of the profiled solution
OpenSearch.

Table 8.5.2-1: OpenSearchCluster resource methods profiling against
Log Analysis Exposure interface requirements

Resource URI HTTP Method Meaning Requirement identifier from
ETSI GS NFV-IFA 049 [1]

/opensearchclusters POST Create a new
"OpenSearchCluster"
resource.

LogAnalyser.Expose.002

8.5.3 Resource: PPL API

This resource represents the OpenSearch PPL API [15], to retrieve the log data dynamically based on query parameters.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)36

The PPL query operation is performed by sending an HTTP POST request to the /_plugins/_ppl endpoint, with a
JSON-based request body containing a valid PPL query. The response returns a structured JSON object containing the
query results.

Table 8.5.3-1 provides details of the PPL API operation.

Table 8.5.3-1: PPL API profiling against Log Analysis Exposure interface requirements

Resource URI HTTP Method Meaning Requirement Identifier
/_plugins/_ppl {"query":
"QUERY_STRING"}

POST Execute a PPL query for structured log
retrieval.

LogAnalyser.Expose.001

8.6 Data model

8.6.1 Log Analysis Exposure operation input parameters mapping

This clause maps the Log Analysis Exposure operation input parameters as specified in clause 6.3.5.2.2 of ETSI
GS NFV-IFA 049 [1] with the configuration fields in the example OpenSearchCluster CRD schema provided in
clause A.5.1, and the PPL API endpoint.

Table 8.6.1-1: Log Analysis Exposure operation input parameters mapped to OpenSearch CRD
schemas configuration fields

Input parameter from
ETSI GS NFV-IFA 049 [1]

Configuration
Fields profiled

from OpenSearch
CRD Schemas

Related
OpenSearch

Resource

Description

LogAnalysisConfig Not available OpenSearchCluster The OpenSearchCluster CRD schema does
not contain a corresponding configuration
field for the input parameter
'LogAnalysisConfig'. As stated in clause 5.3
of the present document,
OpenSearchCluster provisions an
OpenSearch cluster along with dashboards.
These dashboards provide an interface for
performing log filtering, applying log analysis
functions, and aggregating log data,
ensuring efficient log analysis and
visualization. Therefore, the requirements
for log analysis can be fulfilled using the
OpenSearch dashboards provided by the
OpenSearchCluster custom resource.

Table 8.6.1-2 details how the PPL API (/_plugins/_ppl) supports log filtering in the Log Analysis Exposure interface.

Table 8.6.1-2: Log Analysis Exposure operation input parameters mapped to PPL API endpoint

Input parameter from ETSI
GS NFV-IFA 049 [1]

Related OpenSearch API
Endpoint

Description

Filter PPL API endpoint
(/_plugins/_ppl)

The PPL API allows dynamic log retrieval and filtering
by enabling structured queries that specify conditions
for log selection. API consumers can apply filtering
criteria using PPL query syntax, such as the WHERE
clause, to extract only relevant log entries based on
predefined conditions.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)37

9 Interfaces exposed by the PaaS Service Notification
Manager

9.1 Description
This interface allows the API consumer to invoke Prometheus Alertmamanger operations towards the API producer
through the interface operations specified in clause 6.2.11 of ETSI GS NFV-IFA 049 [1], primarily focusing on
managing alert rules and notification configurations requests initiated by the API Consumer. Prometheus
AlertmanagerConfig and Alertmanager custom resource objects are identified as Notification manager related NFV
object (Prometheus Alertmanager object) as defined in clause 5 of the present document.

The operations provided through this interface are:

• Create AlertmanagerConfig and Alertmanager resources

NOTE: The Kubernetes® API supports POST, PUT, PATCH, and GET operations on Prometheus Alertmanger
resource objects; however, these operations are out of the scope of the present document. Additionally,
the DELETE/Termination operation is not supported in this context, as the Notification Manager function
might remain available to process and deliver notifications to users.

9.2 API version
The API {VERSION} for the profiled solution Prometheus Alertmanager [14] custom resource object identified as
Notification manager related NFV object shall be set to " v1alpha1" for AlertmanagerConfig and "v1" for Alertmanager
CRD object. Details on the API structure are specified in clause 4.3.2 of the present document.

The corresponding Prometheus Alertmanager API roots are specified as:

/api/ monitoring.coreos.com/v1alpha1,

/api/ monitoring.coreos.com/v1

9.3 Resource structure and methods
Figures 9.3-1 and 9.3-2 show the overall resource URI structures for the profiled solution Prometheus Alertmanager
[14] for the Alert and Receiver interfaces:

/apis/monitoring.coreos.com/v1alpha1/AlertmanagerConfig,

/apis/monitoring.coreos.com/v1/Alertmanager

Figure 9.3-1: Resource URI structure of AlertmanagerConfig resource object for
the Notification Manager interface

Figure 9.3-2: Resource URI structure of Alertmanager resource object for
the Notification Manager interface

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)38

Table 9.3-1 lists the individual resources defined, and the applicable HTTP methods.

The notification manager function supports responding to requests for all HTTP methods on the resources in
Table 9.3-1 that are marked as "M" (mandatory) in the "Cat" column.

Table 9.3-1: Resources and Methods Overview of the Prometheus Alertmanager Interface

Resource name Resource URI HTTP Method Cat Meaning
AlertmanagerConfig /alertmanagerconfigs POST M Create a new

"AlertmanagerConfig"
resource.

Alertmanager /alertmanagers POST M Create a new
"Alertmanager"
resource.

9.4 Sequence diagrams (informative)
See clause B.4 for the sequence diagrams for the Prometheus Alertmanager resources.

9.5 Resources

9.5.1 Introduction

This clause profiles the resources and methods provided by the Prometheus Alertmanager interface.

9.5.2 Resource: AlertmanagerConfig

This resource represents the Prometheus Alertmanager [14] custom resource object AlertmanagerConfig, which
specifies alert rules for monitoring metrics and generating alerts based on thresholds or conditions.

Table 9.5.2-1 provides the profiling of the supported AlertmanagerConfig resource methods against the Notification
Manager interface requirements as specified in ETSI GS NFV-IFA 049 [1].

The URI query parameters, request and response bodies, and response codes of the individual resource methods are
described in the respective AlertmanagerConfig custom resource object specifications of the profiled solution
Prometheus Alertmanager.

Table 9.5.2-1: AlertmanagerConfig resource methods profiling against
Notification Manager interface requirements

Resource URI HTTP Method Meaning Requirement identifier from
ETSI GS NFV-IFA 049 [1]

/alertmanagerconfigs POST Create a new
"AlertmanagerConfig"
resource.

Notif.Manager Notif.Mgmt.002

NOTE: Since interface requirements specified in clause 6.2.11 of ETSI GS NFV-IFA 049 [1] primarily focuses
on sending processed notifications to authorized consumers, this can be fulfilled by the
AlertmanagerConfig, which enables the definition of rules and configurations for sending notifications
through Alertmanager.

9.5.3 Resource: Alertmanager

This resource represents the Prometheus Alertmanager [14] custom resource object Alertmanager, which defines the
configuration for the deployment of the Alertmanager instance, alert routing logic (routing policies to determine how
alerts should be handled), specifying storage to ensure alert history and sending notifications to defined receivers.

Table 9.5.3-1 provides the profiling of the supported Alertmanager resource methods against the Notification Manager
interface requirements as specified in ETSI GS NFV-IFA 049 [1].

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)39

The URI query parameters, request and response bodies, and response codes of the individual resource methods are
described in the respective Alertmanager custom resource object specifications of the profiled solution Prometheus
Alertmanager.

Table 9.5.3-1: Alertmanager resource methods profiling against
Notification Manager interface requirements

Resource URI HTTP Method Meaning Requirement identifier from
ETSI GS NFV-IFA 049 [1]

/alertmanagers POST Create a new "Alertmanager"
resource.

Notif.Manager Notif.Mgmt.002

NOTE: Since interface requirements specified in clause 6.2.11 of ETSI GS NFV-IFA 049 [1] primarily focuses
on sending processed notifications to authorized consumers, this can be fulfilled by the Alertmanager,
which enables the define alerting routing logic for sending notifications to defined receivers.

9.6 Data Model

9.6.1 Notification Manager operation input parameters mapped to CRD
schemas configuration fields

This clause maps the Notification Manager operation input parameters as specified in clause 6.3.12.2.2 of ETSI
GS NFV-IFA 049 [1] with the configuration fields of the example CRD schemas for AlertmanagerConfig and
Alertmanager provided in clause A.5.4.

Table 9.6.1-1: Notification Management operation input parameters
mapped to Prometheus CRD schemas configuration fields

Input parameter from
ETSI

GS NFV-IFA 049 [1]

Configuration Fields
profiled from
Prometheus

Alertmanager CRD
Schemas

Related Prometheus
Alertmanager

Resource

Description

filter

receivers AlertmanagerConfig Defines the type of receiver
(e.g. email, webhook).

receivers.emailConfigs AlertmanagerConfig Specifies email addresses for
sending notifications.

route AlertmanagerConfig Specifies grouped and routed
definitions for alerts matching
the resource's namespace.

route.groupBy AlertmanagerConfig Groups alert by labels for
efficient routing and processing.

route.matchers AlertmanagerConfig Filters alerts based on label
matchers to decide which alerts
are handled by the receiver.

route.receiver AlertmanagerConfig Directs alerts to specific
receivers based on the alert
priority.

inhibitRules AlertmanagerConfig Prevents notifications for
specific alerts if other defined
alerts are already firing.

Not specified storage Alertmanager Defines the storage
configuration for Alertmanager,
used for managing notification
history.

Not specified alertmanagerConfigSele
ctor

Alertmanager Dynamically manage notification
routing and inhibition rules using
AlertmanagerConfig CRD.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)40

10 Metrics Analysis Exposure Interface

10.1 Description
This interface allows the API consumer to invoke VictoriaMetrics operations towards the API producer through the
interface operations specified in clause 6.2.7 of ETSI GS NFV-IFA 049 [1]. The interface supports both VictoriaMetrics
resource management and metrics retrieval operations:

• The VMRule custom resource object is identified as a Metrics Analysis Exposure related NFV object (Metrics
Analyser object), as defined in clause 5.5 of the present document. It provides a declarative way to manage
metrics analysis and alerting rules.

• The Query API is a read-only API, that allows consumers to dynamically retrieve and analyse metrics using
MetricsQL for filtering and aggregation. See clause 4.3.4.3 in the present document for details.

The operations provided through this interface are:

• Create VMRule resource.

• Retrieve time-series metrics data.

NOTE: The Kubernetes® API supports PUT, PATCH, and GET operations on VictoriaMetrics resource objects;
however, these operations are out of the scope of the present document. Additionally, the
DELETE/Termination operation is not supported in this context, as the Metrics Analyser function might
remain available to continue providing metrics-based analytics to authorised consumers.

10.2 API version
The API {VERSION} for the profiled solution VictoriaMetrics [9] custom resource object identified as Metrics
Analysis Exposure related NFV object shall be set to "v1beta1". Details on the API structure are specified in
clause 4.3.2 of the present document.

The corresponding VictoriaMetrics API roots are specified as:

/apis/operator.victoriametrics.com/v1beta1

The API {VERSION} for the Query API shall be set to "v1", as indicated by the "/api/v1/" path prefix. The version is
defined by the path itself.

10.3 Resource structure and methods
Figure 10.3-1, show the overall resource URI structures for the profiled solution VictoriaMetrics [9] for the Metrics
Analysis Exposure interface.

Figure 10.3-1: Resource URI structure of VMRule resource object
for the Metrics Analysis Exposure interface

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)41

Figure 10.3-2: Resource URI structure of Query API

Table 10.3-1 lists the individual resources defined, and the applicable HTTP methods.

The Metrics Analyser function supports responding to requests for all HTTP methods on the resources in Table 10.3-1
that are marked as "M" (mandatory) in the "Cat" column.

Table 10.3-1: Resources and methods overview of the Metrics Analysis Exposure interface

Resource name Resource URI HTTP Method Cat Meaning
VMRule /vmrules/{name} POST M Create a new "VMRule"

resource.
Query API /query POST M Retrieve time-series

metrics data at a
specific timestamp.

GET M

/query_range POST M Retrieve time-series
metrics data over a time
range.

GET M

10.4 Sequence diagrams (informative)
See clause B.5 for the sequence diagrams for the VictoriaMetrics resources.

10.5 Resources

10.5.1 Introduction

This clause profiles the resources and methods provided by the Metrics Analysis Exposure interface.

10.5.2 Resource: VMRule

This resource represents the VictoriaMetrics [9] custom resource object VMRule, which defines alerting and recording
rules for evaluating metrics data stored in VictoriaMetrics.

Table 10.5.2-1 provides the profiling of the supported VMRule resource methods against the Metrics Analysis Exposure
interface requirements as specified in clause 6.2.7 of ETSI GS NFV-IFA 049 [1].

The URI query parameters, request and response bodies, and response codes of the individual resource methods are
described in the respective VMRule custom resource object specifications of the profiled solution VictoriaMetrics.

Table 10.5.2-1: VMRule resource methods profiling against
Metrics Analysis Exposure interface requirements

Resource URI HTTP Method Meaning Requirement identifier from
ETSI GS NFV-IFA 049 [1]

/VMRules/{name} POST Create a new "VMRule"
resource.

MetricAnalyser.Expose.002

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)42

10.5.3 Resource: Query API

This resource represents the VictoriaMetrics Query API [10], used to retrieve time-series metrics data dynamically
based on query parameters.

The query operations can be performed by sending either an HTTP GET or POST request to the /api/v1/query or
/api/v1/query_range endpoints, with query parameters provided in the URL or as URL-encoded form data (in key=value
pairs) in the request body, following Prometheus® API-compatible behaviour. The response returns a structured JSON
object containing the query results.

Table 10.5.3-1 provides details of the Query API operations.

Table 10.5.3-1: Query API profiling against Metrics Analysis Exposure interface requirements

Resource URI HTTP Method Meaning Requirement identifier from
ETSI GS NFV-IFA 049 [1]

/api/v1/query POST Execute a query to retrieve the value at
a specific timestamp, with parameters
provided in request body as
URL-encoded form data.

MetricAnalyser.Expose.001

GET Execute a query to retrieve the value at
a specific timestamp, with parameters
provided in URL.

/api/v1/query_range POST Execute a query to retrieve values over
a specified time range, with parameters
provided in request body as
URL-encoded form data.

GET Execute a query to retrieve values over
a specified time range with parameters
provided in URL.

10.6 Data model

10.6.1 Metrics Analysis Exposure operation input parameters mapping

This clause maps the Metrics Analysis Exposure operation input parameters as specified in clause 6.3.7.2 of ETSI
GS NFV-IFA 049 [1] with the configuration fields in the example VMRule CRD schema provided in clause A.5.5, and
the query API endpoints.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)43

Table 10.6.1-1: Metrics Analysis Exposure operation input parameters mapped to
VictoriaMetrics CRD schemas configuration fields

Input parameter from
ETSI

GS NFV-IFA 049 [1]

Configuration Fields
profiled from

VictoriaMetrics CRD
Schemas

Related
VictoriaMetrics

Resource

Description

MetricsAnalysisConfig groups[].interval VMRule Defines how often the rule group should be
evaluated. It controls the frequency of metric
analysis execution.

groups[].rules[].expr VMRule The MetricsQL expression that specifies the
logic for analyzing the collected metrics. It
determines what conditions or patterns are
checked.

groups[].rules[].alert VMRule The name of the alert to be triggered if the
specified expr condition is true. It marks the
result as a named alert for further handling.

groups[].rules[].for VMRule Specifies the minimum duration the condition
shall remain true before the alert is triggered. It
helps reduce false positives by requiring
sustained conditions.

groups[].rules[].labels VMRule Custom labels attached to the alert or recorded
result for categorization, filtering, or routing. It is
useful for tagging results with metadata like
severity or environment.

groups[].rules[].record VMRule Defines a new metric name for storing the result
of the expression as a time-series metric,
enabling reuse in dashboards or further
analysis.

Table 10.6.1-2 details how the query API (/api/v1/query, /api/v1/query_range) supports metrics filtering in the Metrics
Analysis Exposure interface.

Table 10.6.1-2: Metrics Analysis Exposure operation input parameters mapped to query API
endpoints

Input parameter from ETSI
GS NFV-IFA 049 [1]

Related VictoriaMetrics
API Endpoints

Description

Filter Query API endpoints
(/api/v1/query,
/api/v1/query_range)

Provides a way to retrieve, filter, and aggregate
time-series metrics data using MetricsQL queries
over HTTP, enabling real-time analysis of metrics
stored in VictoriaMetrics.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)44

Annex A (informative):
Analysis on the existing solutions based on the interfaces
exposed by the VNF generic OAM functions and other PaaS
Services

A.1 Comparison of the VNF generic OAM functions and
other PaaS Services functional requirements with
cloud native open source solutions

A.1.1 Overview
This clause analyses comparison of the VNF generic OAM functions and other PaaS Services functional requirements
specified in ETSI GS NFV-IFA 049 [1] and open source solutions that fit in CNCF and LFN landscapes.

A.1.2 Comparison of Log Aggregator functional requirements with
relevant open-source solutions capabilities

A.1.2.1 Fluent Bit

A.1.2.1.1 Overview

This clause analyses the comparison of Log Aggregator functional requirements defined in clause 5.5 of ETSI
GS NFV IFA 049 [1], and the open-source solution Fluent Bit.

Fluent Bit is an open-source tool that collects logs and metrics from multiple sources, primarily for log-centric use
cases. It enables data enrichment through filters, parsing, and efficiently routes the processed data to defined
destinations. It has been developed with a focus on performance to allow the collection and processing of telemetry data
from different sources without complexity.

A.1.2.1.2 Comparison

This clause shows comparison of Log Aggregator functional requirements defined in clause 5.5 of ETSI
GS NFV-IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.1.2.1.2-1) and Fluent Bit (see
"Support by open source" and "Related capability of open source" column). The legend of "Support by open source" is
the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

NOTE: The text reproduced in tables in clauses A.1 and A.2 was extracted from clause 5.5 of ETSI
GS NFV IFA 049 [1] for readability purposes. Requirements reproduced in these tables are to be
considered as quotes as they are not new requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)45

Table A.1.2.1.2-1: Comparison of Log Aggregator functional requirements and Fluent Bit

Identifier Requirement Support by
open source

Related capability of open source

LogAggregator.001 The Log Aggregator function shall
support the capability to collect different
types of logs from different entities like
the VNF instances (including the VNF's
applications), NFV-MANO or NFVI
(compute, storage, network resources)
determined by a filter (see note 1).

Yes Collect logs from various sources
including VNF instances,
applications, containers, and
infrastructure components. It
supports flexible filtering based on
log attributes, source types, and
metadata.

LogAggregator.002 The Log Aggregator function shall
support the capability to pre-process the
logs (see note 2).

Yes Provides log parsing and format
conversion capabilities. It can
harmonize log formats using built-in
parsers or custom ones and perform
basic enrichment like adding
metadata.

LogAggregator.003 The Log Aggregator function shall
support the capability to aggregate the
logs in a configurable manner (see
note 3).

Yes Supports log aggregation and
routing based on configurable
conditions. It can group logs based
on criteria such as log level, source,
or other attributes and forward them
to appropriate destinations.

LogAggregator.004 The Log Aggregator function shall
support the capability to store historical
log records (see note 4).

Yes It forwards logs to external storage
systems for long-term storage.

LogAggregator.005 The Log Aggregator function shall
support the capability to expose (filtered)
logs to authorized consumers.

Yes It forwards filtered logs to external
systems that provide capabilities to
expose logs to authorized
consumers through dashboards or
APIs.

NOTE 1: As an example for the case of VNF/VNFC instances, the filter shall support filtering of VNF/VNFC instances
by type of the VNF/VNFC, vendor, host, zone, VNF instance identifier, etc. Also, it shall be able to filter by log
attributes metric/log type, severity level, etc.

NOTE 2: One form of pre-processing is to harmonize the format of the logs.
NOTE 3: Examples of configurable forms of aggregation are to aggregate all logs based on criteria of log level,

different instances belonging to the same VNF, VNF instances managed by the same VNFM, etc.
NOTE 4: A use case to store historical log records is about using such records for further root-cause analysis.

A.1.2.2 Fluentd

A.1.2.2.1 Overview

This clause analyses the comparison of Log Aggregator functional requirements defined in clause 5.5 of ETSI
GS NFV IFA 049 [1], and the open-source solution Fluentd.

Fluentd is an open-source log collector that unifies data collection and routing, enabling efficient gathering, processing,
and forwarding of log data from various sources to multiple destinations.

A.1.2.2.2 Comparison

This clause shows comparison of Log Aggregator functional requirements defined in clause 5.5 of ETSI
GS NFV IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.1.2.2.2-1) and Fluentd (see
"Support by open source" and "Related capability of open source" column). The legend of "Support by open source" is
the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)46

Table A.1.2.2.2-1: Comparison of Log Aggregator functional requirements and Fluentd

Identifier Requirement Support by open
source

Related capability of open source

LogAggregator.
001

The Log Aggregator function shall support
the capability to collect different types of
logs from different entities like the VNF
instances (including the VNF's
applications), NFV-MANO or NFVI
(compute, storage, network resources)
determined by a filter (see note 1).

Yes Collect logs from various sources
including VNF instances,
applications, containers, and
infrastructure components. It
supports flexible filtering based on
log attributes, source types, and
metadata.

LogAggregator.
002

The Log Aggregator function shall support
the capability to pre-process the logs (see
note 2).

Yes Provides filtering and parsing plugins
to standardize log formats and modify
log records as needed.

LogAggregator.
003

The Log Aggregator function shall support
the capability to aggregate the logs in a
configurable manner (see note 3).

Yes Offers output plugins for aggregation
based on various criteria (e.g. log
level, instance type) and supports
buffering for efficient log handling.

LogAggregator.
004

The Log Aggregator function shall support
the capability to store historical log records
(see note 4).

Yes It forwards logs to external systems
or vendor-specific backend that
manage long-term storage and
historical retention.

LogAggregator.
005

The Log Aggregator function shall support
the capability to expose (filtered) logs to
authorized consumers.

Yes It forwards filtered logs to external
systems that provide capabilities to
expose logs to authorized consumers
through dashboards or APIs.

NOTE 1: As an example for the case of VNF/VNFC instances, the filter shall support filtering of VNF/VNFC instances
by type of the VNF/VNFC, vendor, host, zone, VNF instance identifier, etc. Also, it shall be able to filter by log
attributes metric/log type, severity level, etc.

NOTE 2: One form of pre-processing is to harmonize the format of the logs.
NOTE 3: Examples of configurable forms of aggregation are to aggregate all logs based on criteria of log level,

different instances belonging to the same VNF, VNF instances managed by the same VNFM, etc.
NOTE 4: A use case to store historical log records is about using such records for further root-cause analysis.

A.1.2.3 OpenTelemetry Collector

A.1.2.3.1 Overview

This clause analyses the comparison of Log Aggregator functional requirements defined in clause 5.5 of ETSI
GS NFV IFA 049 [1], and the open-source solution OpenTelemetry Collector.OpenTelemetry Collector is an
open-source tool for collecting, processing, and exporting telemetry data (logs, metrics, traces) from various sources. It
also provides a flexible pipeline for observability data routing to multiple backends.

A.1.2.3.2 Comparison

This clause shows comparison of Log Aggregator functional requirements defined in clause 5.5 of ETSI
GS NFV IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.1.2.3.2-1) and OpenTelemetry
Collector (see "Support by open source" and "Related capability of open source" column). The legend of "Support by
open source" is the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)47

Table A.1.2.3.2-1: Comparison of Log Aggregator functional requirements and OpenTelemetry
Collector

Identifier Requirement Support by open
source

Related capability of
open source

LogAggregator.
001

The Log Aggregator function shall support the
capability to collect different types of logs from
different entities like the VNF instances (including
the VNF's applications), NFV-MANO or NFVI
(compute, storage, network resources) determined
by a filter (see note 1).

Yes Collect logs from various
sources, including VNF
instances and other
infrastructure components.
It supports filtering logs
through its processor
components, allowing for
customized log handling.

LogAggregator.
002

The Log Aggregator function shall support the
capability to pre-process the logs (see note 2).

Yes Can pre-process logs using
processors. It can perform
operations such as format
conversion, enrichment,
and harmonization to
standardize logs before
forwarding them to their
destinations.

LogAggregator.
003

The Log Aggregator function shall support the
capability to aggregate the logs in a configurable
manner (see note 3).

Yes It enables configurable log
aggregation based on
criteria like log level,
source, VNF instances, or
custom attributes using
flexible pipelines.

LogAggregator.
004

The Log Aggregator function shall support the
capability to store historical log records (see note 4).

Yes It forwards logs to external
systems that manage
long-term storage and
historical retention, such as
Prometheus® or
vendor-specific backend.

LogAggregator.
005

The Log Aggregator function shall support the
capability to expose (filtered) logs to authorized
consumers.

Yes It forwards logs to systems
that provide access
controls and exposure
functionalities, enabling the
exposure of logs to
authorized consumers
through dashboards or
APIs.

NOTE 1: As an example for the case of VNF/VNFC instances, the filter shall support filtering of VNF/VNFC instances
by type of the VNF/VNFC, vendor, host, zone, VNF instance identifier, etc. Also, it shall be able to filter by log
attributes metric/log type, severity level, etc.

NOTE 2: One form of pre-processing is to harmonize the format of the logs.
NOTE 3: Examples of configurable forms of aggregation are to aggregate all logs based on criteria of log level,

different instances belonging to the same VNF, VNF instances managed by the same VNFM, etc.
NOTE 4: A use case to store historical log records is about using such records for further root-cause analysis.

A.1.2.4 Grafana Loki

A.1.2.4.1 Overview

This clause analyses the comparison of Log Aggregator functional requirements defined in clause 5.5 of ETSI
GS NFV IFA 049 [1], and the open-source solution Grafana Loki.Grafana Loki is an open-source log aggregation
system that efficiently stores and indexes log metadata, allowing for cost-effective log querying. It integrates with
Grafana® for seamless visualization of logs.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)48

A.1.2.4.2 Comparison

This clause shows comparison of Log Aggregator functional requirements defined in clause 5.5 of ETSI
GS NFV IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.1.2.4.2-1) and Grafana Loki (see
"Support by open source" and "Related capability of open source" column). The legend of "Support by open source" is
the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)49

Table A.1.2.4.2-1: Comparison of Log Aggregator functional requirements and Grafana Loki

Identifier Requirement Support by open
source

Related capability of
open source

LogAggregator.
001

The Log Aggregator function shall support the
capability to collect different types of logs from
different entities like the VNF instances (including
the VNF's applications), NFV-MANO or NFVI
(compute, storage, network resources) determined
by a filter (see note 1).

Yes Loki collects logs from
various sources through
integrations with log
shippers like Fluentd or
Fluent Bit. It also supports
filtering during log querying
using Loki's query
language, which can filter
by log attributes and labels.

LogAggregator.
002

The Log Aggregator function shall support the
capability to pre-process the logs (see note 2).

No It does not provide built-in
pre-processing capabilities.
Logs are stored as they are
collected. Any format
conversion or enrichment
can be handled by
upstream tools or log
shippers before they are
sent to Loki.

LogAggregator.
003

The Log Aggregator function shall support the
capability to aggregate the logs in a configurable
manner (see note 3).

No It does not perform
advanced log aggregation.
It is designed for efficient
log storage and querying.
Aggregation of logs is done
during querying using
Loki's query language,
rather than during ingestion
or storage.

LogAggregator.
004

The Log Aggregator function shall support the
capability to store historical log records (see note 4).

Yes Stores historical logs
effectively. It uses a
scalable storage backend
optimized for managing
large volumes of log data
over extended periods,
allowing for long-term log
retention and analysis.

LogAggregator.
005

The Log Aggregator function shall support the
capability to expose (filtered) logs to authorized
consumers.

Yes It integrates with Grafana®
to provide visualization and
querying of logs. Access
control and authorization
for viewing logs are
managed through
Grafana®, allowing users to
access and interact with
logs based on their
permissions.

NOTE 1: As an example for the case of VNF/VNFC instances, the filter shall support filtering of VNF/VNFC instances
by type of the VNF/VNFC, vendor, host, zone, VNF instance identifier, etc. Also, it shall be able to filter by log
attributes metric/log type, severity level, etc.

NOTE 2: One form of pre-processing is to harmonize the format of the logs.
NOTE 3: Examples of configurable forms of aggregation are to aggregate all logs based on criteria of log level,

different instances belonging to the same VNF, VNF instances managed by the same VNFM, etc.
NOTE 4: A use case to store historical log records is about using such records for further root-cause analysis.

A.1.2.5 OpenSearch

A.1.2.5.1 Overview

This clause analyses the comparison of Log Aggregator functional requirements defined in clause 5.5 of ETSI
GS NFV IFA 049 [1], and the open-source solution OpenSearch.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)50

OpenSearch is an open-source search and analytics engine for scalable log and event data analysis. It offers powerful
search, aggregation, and visualization tools for log management and real-time analytics.

A.1.2.5.2 Comparison

This clause shows comparison of Log Aggregator functional requirements defined in clause 5.5 of ETSI
GS NFV-IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.1.2.5.2-1) and OpenSearch (see
"Support by open source" and "Related capability of open source" column). The legend of "Support by open source" is
the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.2.5.2-1: Comparison of Log Aggregator functional requirements and OpenSearch

Identifier Requirement Support by open
source

Related capability of
open source

LogAggregator.
001

The Log Aggregator function shall support the
capability to collect different types of logs from
different entities like the VNF instances (including
the VNF's applications), NFV-MANO or NFVI
(compute, storage, network resources) determined
by a filter (see note 1).

Yes OpenSearch, via Logstash
or Beats, can collect logs
from various sources,
including VMs,
applications, containers,
and infrastructure. Filters
can be applied for log
types, severity, etc.

LogAggregator.
002

The Log Aggregator function shall support the
capability to pre-process the logs (see note 2).

Partial OpenSearch integrates
with Logstash and Beats,
which allow pre-processing
of logs. This includes
formatting, filtering, and
enriching logs before they
are stored in OpenSearch.

LogAggregator.
003

The Log Aggregator function shall support the
capability to aggregate the logs in a configurable
manner (see note 3).

Yes Supports configurable
aggregation through
Logstash pipelines or
query-time aggregation.
You can define log
aggregation rules based on
log level, source,
application, etc

LogAggregator.
004

The Log Aggregator function shall support the
capability to store historical log records (see note 4).

Yes It can store logs for
long-term retention,
allowing users to query
historical log data for root
cause analysis. Time-
based indices help manage
large volumes of log
records efficiently.

LogAggregator.
005

The Log Aggregator function shall support the
capability to expose (filtered) logs to authorized
consumers.

Yes Offers RBAC to expose
filtered logs to authorized
users. Logs can be filtered
and visualized using
OpenSearch Dashboards.

NOTE 1: As an example for the case of VNF/VNFC instances, the filter shall support filtering of VNF/VNFC instances
by type of the VNF/VNFC, vendor, host, zone, VNF instance identifier, etc. Also, it shall be able to filter by log
attributes metric/log type, severity level, etc.

NOTE 2: One form of pre-processing is to harmonize the format of the logs.
NOTE 3: Examples of configurable forms of aggregation are to aggregate all logs based on criteria of log level,

different instances belonging to the same VNF, VNF instances managed by the same VNFM, etc.
NOTE 4: A use case to store historical log records is about using such records for further root-cause analysis.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)51

A.1.3 Comparison of Log Analyser functional requirements with
relevant open-source solutions capabilities

A.1.3.1 ElastAlert 2

A.1.3.1.1 Overview

This clause analyses comparison of Log Analyser functional requirements defined in clause 5.6 of ETSI
GS NFV IFA 049 [1], and open-source solution ElastAlert 2. It is an open-source alerting tool built on top of
Elasticsearch, designed to monitor data and trigger alerts based on customizable rules. It enables users to define alert
conditions and integrates with various notification services, making it for detecting anomalies and responding to
real-time issues within Elasticsearch data.

A.1.3.1.2 Comparison

This clause shows comparison of Log Analyser functional requirements defined in clause 5.6 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.3.1.2.1 and ElastAlert 2 as
"Support by open source" and "Related capability of open source" column. The legend of "Support by open source" is
the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.3.1.2-1: Comparison of Log Analyser functional requirements and ElastAlert 2

Identifier Requirement Support by open
source

Related capability of
open source

LogAnalyser.
001

The Log Analyser function shall support to analyse
and process different types of logs based on a set of
analysis functions (see note 1).

Yes Supports functions like
abnormal behaviour
detection (including spikes,
flatlines, backlist, whitelist),
threshold crossing, and
basic statistical processing.

LogAnalyser.
002

The Log Analyser function shall support configuration
of the analytics/processing to be applied (see note 2).

Yes Configurable via YAML
files. Allows setting
thresholds, defining time
windows, combining rules,
and customizing analysis
workflows.

LogAnalyser.
003

The Log Analyser function shall support the capability
to send notifications based on findings from the
analysis of the logs.

Yes Supports sending
notifications via email,
other relevant platforms,
and custom scripts based
on alerting conditions.

LogAnalyser.
004

The Log Analyser function shall support the capability
to expose analytics results to authorized consumers.

Yes Can send alerts to external
systems which could
expose results, although,
ElastAlert 2 doesn't natively
provide an API or
dashboard for analytics, but
with custom integrations it
can expose analytics
results to the authorized
consumers.

NOTE 1: Examples of analysis functions are abnormal behaviour detection, threshold cross, statistical processing,
correlation of logs, etc.

NOTE 2: Examples of configuration forms of the analytics are set threshold, define the composition of the analytic
function from a set of basic analytic functions, etc.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)52

A.1.3.2 Coroot

A.1.3.2.1 Overview

This clause analyses comparison of Log Analyser functional requirements defined in clause 5.6 of ETSI
GS NFV IFA 049 [1], and open-source solution Coroot.

Coroot is an open-source tool, which leverages eBPF to gather comprehensive telemetry data, including metrics, logs,
and traces, offering visibility into system performance. It generates a detailed Service Map that visualizes the
relationships and dependencies between services, helping users monitor and understand the health of their cloud-native
infrastructure effectively.

NOTE: Currently, Coroot is included in the CNCF Landscape but is not listed among the CNCF Graduated or
Incubating projects.

A.1.3.2.2 Comparison

This clause shows comparison of Log Analyser functional requirements defined in clause 5.6 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.3.2.2-1 and Coroot as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.3.2.2-1: Comparison of Log Analyser functional requirements and Coroot

Identifier Requirement Support by open
source

Related capability of
open source

LogAnalyser.
001

The Log Analyser function shall support to analyse
and process different types of logs based on a set of
analysis functions (see note 1).

Yes Supports detecting
abnormal behaviour, such
as performance issues and
resource bottlenecks in
applications.

LogAnalyser.
002

The Log Analyser function shall support configuration
of the analytics/processing to be applied (see note 2).

Yes Provides options to
configure alerting
thresholds and customize
log monitoring settings to
track key performance
metrics.

LogAnalyser.
003

The Log Analyser function shall support the capability
to send notifications based on findings from the
analysis of the logs.

Yes Integrates with various
relevant platforms to notify
users of detected issues or
alerts based on analysis
findings.

LogAnalyser.
004

The Log Analyser function shall support the capability
to expose analytics results to authorized consumers.

Yes Provides dashboards and
visual reports for easy
access and sharing of
analytics data with
authorized users.

NOTE 1: Examples of analysis functions are abnormal behaviour detection, threshold cross, statistical processing,
correlation of logs, etc.

NOTE 2: Examples of configuration forms of the analytics are set threshold, define the composition of the analytic
function from a set of basic analytic functions, etc.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)53

A.1.3.3 Grafana®

A.1.3.3.1 Overview

This clause analyses the comparison of Log Analyser functional requirements defined in clause 5.6 of ETSI
GS NFV IFA 049 [1], and the open-source solution Grafana®.

Grafana® is an open-source observability platform for visualizing and analysing data from multiple sources. It is known
for its customizable dashboards, alerting features, and real-time monitoring capabilities.

A.1.3.3.2 Comparison

This clause shows comparison of Log Analyser functional requirements defined in clause 5.6 of ETSI
GS NFV-IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.3.3.2-1 and Grafana® as "Support
by open source" and "Related capability of open source" column. The legend of "Support by open source" is the
following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.3.3.2-1: Comparison of Log Analyser functional requirements and Grafana®

Identifier Requirement Support by open
source

Related capability of
open source

LogAnalyser.
001

The Log Analyser function shall support to analyse
and process different types of logs based on a set of
analysis functions (see note 1).

Yes Grafana® can integrate
with Loki (for logs),
supporting analysis such as
threshold crossing,
abnormal behaviour
detection, and visual
correlation of logs.

LogAnalyser.
002

The Log Analyser function shall support configuration
of the analytics/processing to be applied (see note 2).

Yes Grafana® allows users to
configure dashboards with
thresholds, queries, and
alerts. However, the core
analytics are driven by
external log processing
tools like Loki, not
Grafana® itself.

LogAnalyser.
003

The Log Analyser function shall support the capability
to send notifications based on findings from the
analysis of the logs.

Yes Supports alerts and
notifications via integrations
with other relevant
platforms. These
notifications are triggered
by custom conditions
applied to data (e.g. log
errors, thresholds).

LogAnalyser.
004

The Log Analyser function shall support the capability
to expose analytics results to authorized consumers.

Yes Provides RBAC to share
dashboards and analytics
results securely with
authorized users through
its web-based interface.

NOTE 1: Examples of analysis functions are abnormal behaviour detection, threshold cross, statistical processing,
correlation of logs, etc.

NOTE 2: Examples of configuration forms of the analytics are set threshold, define the composition of the analytic
function from a set of basic analytic functions, etc.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)54

A.1.3.4 OpenSearch

A.1.3.4.1 Overview

This clause analyses the comparison of Log Analyser functional requirements defined in clause 5.6 of ETSI
GS NFV IFA 049 [1], and the open-source solution OpenSearch.

OpenSearch is an open-source search and analytics engine for scalable log and event data analysis. It offers powerful
search, aggregation, and visualization tools for log management and real-time analytics.

A.1.3.4.2 Comparison

This clause shows comparison of Log Analyser functional requirements defined in clause 5.6 of ETSI
GS NFV-IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.3.4.2-1 and OpenSearch as
"Support by open source" and "Related capability of open source" column. The legend of "Support by open source" is
the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.3.4.2-1: Comparison of Log Analyser functional requirements and OpenSearch

Identifier Requirement Support by open
source

Related capability of
open source

LogAnalyser.
001

The Log Analyser function shall support to analyse
and process different types of logs based on a set of
analysis functions (see note 1).

Yes OpenSearch supports log
analysis functions such as
anomaly detection,
threshold-based alerting,
statistical processing, and
correlation of logs.

LogAnalyser.
002

The Log Analyser function shall support configuration
of the analytics/processing to be applied (see note 2).

Yes Allows configuration
through its alerting
features, with customizable
thresholds, time windows,
and rule-based processing
for log data.

LogAnalyser.
003

The Log Analyser function shall support the capability
to send notifications based on findings from the
analysis of the logs.

Yes Supports sending
notifications through its
alerting framework, it
integrates with email,
webhooks, and other
relevant platforms for
notifications based on log
analysis.

LogAnalyser.
004

The Log Analyser function shall support the capability
to expose analytics results to authorized consumers.

Yes OpenSearch Dashboards
provide visual analytics
results, which can be
shared securely with
authorized consumers via
roles and access controls.

NOTE 1: Examples of analysis functions are abnormal behaviour detection, threshold cross, statistical processing,
correlation of logs, etc.

NOTE 2: Examples of configuration forms of the analytics are set threshold, define the composition of the analytic
function from a set of basic analytic functions, etc.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)55

A.1.4 Comparison of Traffic Enforcer functional requirements with
relevant open-source solutions capabilities

A.1.4.1 Cilium®

A.1.4.1.1 Overview

This clause analyses comparison of Traffic Enforcer functional requirements defined in clause 5.2 of ETSI
GS NFV IFA 049 [1], and open-source solution Cilium®.

Cilium® is an open-source solution that provides networking, observability, and security via an eBPF based dataplane.
Cilium® includes features like BGP, service mesh, and cross-cluster connectivity beyond basic Layer 3 networking for
containers.

A.1.4.1.2 Comparison

This clause shows comparison of Traffic Enforcer functional requirements defined in clause 5.2 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.4.1.2-1 and Cilium® as "Support
by open source" and "Related capability of open source" column. The legend of "Support by open source" is the
following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.4.1.2-1: Comparison of Traffic Enforcer functional requirements and Cilium®

Identifier Requirement Support by open
source

Related capability of
open source

TrafficEnforcer.
001

The Traffic Enforcer function shall support the
capability to perform traffic isolation and traffic
rerouting of one or more VNFC instances (see
note).

Yes Cilium® uses eBPF-based
policies for network
isolation, restricting or
blocking traffic across
microservices. It also
supports traffic rerouting
through service mesh
integration and applies
rate-limiting measures for
both partial and complete
service isolation.

NOTE: Traffic isolation can be partial or full (i.e. lowering the traffic sent to a VNFC instance) or full (i.e. blocking the
traffic sent to a VNFC instance).

A.1.4.2 Istio®

A.1.4.2.1 Overview

This clause analyses comparison of Traffic Enforcer functional requirements defined in clause 5.2 of ETSI
GS NFV IFA 049 [1], and open-source solution Istio®.

Istio® is an open-source service mesh that provides a way to manage microservices, facilitating service-to-service
communication and offering features like traffic management, security, and observability. It allows developers to
implement policies and telemetry for services without altering the application code, enabling better control over
microservices architecture.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)56

A.1.4.2.2 Comparison

This clause shows comparison of Traffic Enforcer functional requirements defined in clause 5.2 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.4.2.2-1 and Istio® as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.4.2.2-1: Comparison of Traffic Enforcer functional requirements and Istio®

Identifier Requirement Support by open
source

Related capability of
open source

TrafficEnforcer.
001

The Traffic Enforcer function shall support the
capability to perform traffic isolation and traffic
rerouting of one or more VNFC instances (see
note).

Yes Istio® allows traffic isolation
by applying policies to
control traffic across
microservices, either
partially or fully. It supports
traffic rerouting using
service mesh features like
virtual services and
destination rules, enabling
dynamic routing decisions
and rerouting around
affected VNFC instances.

NOTE: Traffic isolation can be partial or full (i.e. lowering the traffic sent to a VNFC instance) or full (i.e. blocking the
traffic sent to a VNFC instance).

A.1.4.3 Linkerd

A.1.4.3.1 Overview

This clause analyses comparison of Traffic Enforcer functional requirements defined in clause 5.2 of ETSI
GS NFV IFA 049 [1], and open-source solution Linkerd.

Linkerd is an open-source service mesh that enhances microservices communication by providing features such as
observability, load balancing, and security. It enables service-to-service interactions without requiring changes to
application code, focusing on resilience and efficient resource use.

A.1.4.3.2 Comparison

This clause shows comparison of Traffic Enforcer functional requirements defined in clause 5.2 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.4.3.2-1 and Linkerd as "Support
by open source" and "Related capability of open source" column. The legend of "Support by open source" is the
following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)57

Table A.1.4.3.2-1: Comparison of Traffic Enforcer functional requirements and Linkerd

Identifier Requirement Support by open
source

Related capability of
open source

TrafficEnforcer.
001

The Traffic Enforcer function shall support the
capability to perform traffic isolation and traffic
rerouting of one or more VNFC instances (see
note).

Yes Linkerd enforces traffic
policies using rate limiting
and circuit breaking,
enabling partial traffic
isolation by controlling flow
across pods, containers, or
services. It also facilitates
traffic rerouting through
load balancing and failover
features, allowing dynamic
adjustments during service
disruptions.

NOTE: Traffic isolation can be partial or full (i.e. lowering the traffic sent to a VNFC instance) or full (i.e. blocking the
traffic sent to a VNFC instance).

A.1.4.4 Envoy

A.1.4.4.1 Overview

This clause analyses comparison of Traffic Enforcer functional requirements defined in clause 5.2 of ETSI
GS NFV IFA 049 [1], and open-source solution Envoy.

Envoy is an open-source edge and service proxy tailored for cloud-native applications. It manages service discovery,
load balancing, and traffic routing while providing observability features for microservices communication. Operating
at the application layer (Layer 7), Envoy simplifies complex service interactions without major architectural changes.

A.1.4.4.2 Comparison

This clause shows comparison of Traffic Enforcer functional requirements defined in clause 5.2 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.4.4.2-1 and Envoy as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.4.4.2-1: Comparison of Traffic Enforcer functional requirements and Envoy

Identifier Requirement Support by open
source

Related capability of
open source

TrafficEnforcer.
001

The Traffic Enforcer function shall support the
capability to perform traffic isolation and traffic
rerouting of one or more VNFC instances (see
note).

Yes Envoy provides capabilities
for traffic isolation and
rerouting through its routing
and service mesh features.
It supports partial isolation
by implementing rate
limiting, which can control
traffic across
microservices. Additionally,
Envoy facilitates traffic
rerouting through load
balancing and failure
handling mechanisms.

NOTE: Traffic isolation can be partial or full (i.e. lowering the traffic sent to a VNFC instance) or full (i.e. blocking the
traffic sent to a VNFC instance).

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)58

A.1.5 Comparison of PaaS Service Policy Agent functional
requirements with relevant open-source solutions
capabilities

A.1.5.1 Open Policy Agent (OPA)

A.1.5.1.1 Overview

This clause analyses comparison of Policy Agent functional requirements specified in clause 5.11 of ETSI
GS NFV IFA 049 [1], and open source solution Open Policy Agent (OPA).

OPA is an open source CNCF® project that includes a general purpose policy engine that decouples policy from
application logic and separates policy decision from enforcement. It aims at improving the security and regulatory
compliance of applications and underlying infrastructure in cloud native environments.

A.1.5.1.2 Comparison

This clause shows comparison of Policy Agent functional requirements defined in clause 5.11 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.5.1.2-1 and OPA as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)59

Table A.1.5.1.2-1: Comparison of Policy Agent functional requirements and OPA

Identifier Requirement Support by open
source

Related capability of
open source

PolicyAgent.001 The Policy Agent function shall support the
capability to support automated decision making
to ease administrative tasks (see note 1).

Yes It is a policy decision point
that can interact with
various policy enforcement
functions (e.g. Envoy
Proxy, k8s API server) and
can be used to prevent
accidental operations such
as e.g. deletion of
namespaces.

PolicyAgent.002 The Policy Agent function shall support the
capability to notify the consumers (e.g. OSS/BSS)
about events related to policy managements
actions (see note 2).

Partial It can periodically report
decision logs events using
the Decision Log Service
API. Security-sensitive
attributes can be masked
from the notifications.

PolicyAgent.003 The Policy Agent function shall support the
capability to parse and execute VNF and VNF
generic OAM functions policies (see note 3).

Partial It requires to adopt Rego
which is a flexible and
expressive declarative
language for writing
policies.

PolicyAgent.004 The Policy Agent function shall support the
capability to perform CRUD operations for policies
upon request from a consumer (see note 4).

Yes It provides REST API
services to e.g. create,
update, delete policies that
can be stored with the data
in a bundle registry.

NOTE 1: The Policy Agent function can interact with other VNF generic OAM functions to perform automated decision
making with or without interaction with NFV-MANO components. See use case description in clause 4.4.2.6
of ETSI GR NFV-EVE 019 [i.2].

NOTE 2: Notifications sent by the Policy Agent are forwarded to the notifications subscriber (e.g. OSS/BSS) through
the Notification Manager. See clause 4.2.1.5 of ETSI GS NFV-IFA 049 [1].

NOTE 3: Refer to description in clause 4.2.1.6 of ETSI GS NFV-IFA 049 [1] regarding the enforcement of policies.
NOTE 4: The Policy Agent upon a request to create, delete or update a policy, updates accordingly a repository where

the policies are stored. The policies can target VNF generic OAM functions and other PaaS Services and
VNF/VNFC instances.

A.1.6 Comparison of VNF Metrics Aggregator functional
requirements with relevant open source solutions
capabilities

A.1.6.1 Prometheus

A.1.6.1.1 Overview

This clause analyses comparison of VNF Metrics Aggregator functional requirements specified in clause 5.7 of ETSI
GS NFV IFA 049 [1], and open source solution Prometheus.

Prometheus® is an open source CNCF® project that is designed to provide insights into system performance and health
and is commonly used in cloud native environments to collect, store and query time series metric data.

A.1.6.1.2 Comparison

This clause shows comparison of VNF Metrics Aggregator functional requirements defined in clause 5.7 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.6.1.2-1 and Prometheus® as
"Support by open source" and "Related capability of open source" column. The legend of "Support by open source" is
the following:

"Yes": fully support the functional requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)60

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.6.1.2-1: Comparison of VNF Metrics Aggregator functional requirements and Prometheus®

Identifier Requirement Support by open
source

Related capability of
open source

VNFMetricAg
gregator.001

The VNF Metrics Aggregator function shall support
the capability to collect different types of metrics from
entities determined by a filter (see notes 1 and 5).

Yes It supports discovery
mechanism of
Prometheus® target
endpoints that expose
metrics for collection and
supports filtering using
PromQL.

VNFMetricAg
gregator.002

The VNF Metrics Aggregator function shall support
the capability to pre-process the metrics (see note 2).

Yes It includes ecosystem of
community-maintained
exporters that gather
common metrics (e.g.
hardware, OS metrics) and
convert them into
Prometheus-formatted
metrics.

VNFMetricAg
gregator.003

The VNF Metrics Aggregator function shall support
the capability to aggregate the metrics in a
configurable manner (see note 3).

Yes PromQL supports various
built-in aggregation
functions/operators that
can be leveraged to
aggregate and analyse
time series metrics.

VNFMetricAg
gregator.004

The VNF Metrics Aggregator function shall support
the capability to store time series metrics for records
(see note 4).

Yes It provides own time series
backend for short to
medium-term storage or
can be integrated with
Prometheus® compatible
backends.

VNFMetricAg
gregator.005

The VNF Metrics Aggregator function shall support
the capability to expose (filtered) metrics to authorized
consumers.

Yes It can be configured to
integrate with various
dashboards to visualize
Prometheus-formatted
metrics.

NOTE 1: The filter shall support operations like filtering of VNF/VNFC instances by type of the VNF/VNFC, vendor,
host, zone, VNF instance identifier, etc. Also it shall be able to filter by metric/log type, severity level, etc.

NOTE 2: One form of pre-processing is to harmonize the format of the metrics.
NOTE 3: Examples of configurable forms of aggregation are to aggregate all metrics related to performance,

aggregate metrics from different instances belonging to the same VNF, aggregate metrics of VNF instances
managed by the same VNFM, etc.

NOTE 4: Use cases for storing time services of metrics are for instance using the stored metrics for further root-cause
analysis, abnormal behaviour detection, etc.

NOTE 5: VNF Metrics include virtualisation-dependent as well as virtualisation-independent metrics like VNF's
application metrics, VNF's connectivity and VNF's network performance metrics, NFVI related metrics, etc.

A.1.6.2 OpenTelemetry Collector

A.1.6.2.1 Overview

This clause analyses comparison of VNF Metrics Aggregator functional requirements specified in clause 5.7 of ETSI
GS NFV IFA 049 [1], and open source solution OpenTelemetry Collector.

OpenTelemetry Collector is an open source CNCF® project that is designed to receive, process and export telemetry
data (logs, metrics and traces) to various backends in cloud native environments.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)61

A.1.6.2.2 Comparison

This clause shows comparison of VNF Metrics Aggregator functional requirements defined in clause 5.7 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.6.2.2-1 and OpenTelemetry
Collector as "Support by open source" and "Related capability of open source" column. The legend of "Support by open
source" is the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)62

Table A.1.6.2.2-1: Comparison of VNF Metrics Aggregator functional requirements and
OpenTelemetry Collector

Identifier Requirement Support by open
source

Related capability of
open source

VNFMetricAg
gregator.001

The VNF Metrics Aggregator function shall support
the capability to collect different types of metrics from
entities determined by a filter (see notes 1 and 5).

Yes It supports receiving
metrics data from multiple
sources by leveraging
community-maintained
receivers
(e.g. Prometheus® receiver,
Host Metrics receiver) or by
integrating custom-built
receivers using the
OpenTelemetry Collector
Builder.

VNFMetricAg
gregator.002

The VNF Metrics Aggregator function shall support
the capability to pre-process the metrics (see note 2).

Yes One or more pipelines of
processors can be
leveraged to pre-process
the metrics and perform
operations such as format
conversion, enrichment and
harmonization before
forwarding the processed
data to exporters

VNFMetricAg
gregator.003

The VNF Metrics Aggregator function shall support
the capability to aggregate the metrics in a
configurable manner (see note 3).

Yes Community maintained
processors (e.g. Transform
processor) can be
configured to aggregate
and transform metrics
using the OTTL.
Custom-based processors
can also be integrated and
configured allowing for
customized metrics
aggregation.

VNFMetricAg
gregator.004

The VNF Metrics Aggregator function shall support
the capability to store time series metrics for records
(see note 4).

Yes OTLP exporters can be
configured to export
metrics to various
backends that support
OTLP format.

VNFMetricAg
gregator.005

The VNF Metrics Aggregator function shall support
the capability to expose (filtered) metrics to authorized
consumers.

Yes OTLP exporters can be
configured to integrate with
various dashboards to
visualize OTLP-formatted
metrics.

NOTE 1: The filter shall support operations like filtering of VNF/VNFC instances by type of the VNF/VNFC, vendor,
host, zone, VNF instance identifier, etc. Also it shall be able to filter by metric/log type, severity level, etc.

NOTE 2: One form of pre-processing is to harmonize the format of the metrics.
NOTE 3: Examples of configurable forms of aggregation are to aggregate all metrics related to performance,

aggregate metrics from different instances belonging to the same VNF, aggregate metrics of VNF instances
managed by the same VNFM, etc.

NOTE 4: Use cases for storing time services of metrics are for instance using the stored metrics for further root-cause
analysis, abnormal behaviour detection, etc.

NOTE 5: VNF Metrics include virtualisation-dependent as well as virtualisation-independent metrics like VNF's
application metrics, VNF's connectivity and VNF's network performance metrics, NFVI related metrics, etc.

A.1.6.3 VictoriaMetrics

A.1.6.3.1 Overview

This clause analyses comparison of VNF Metrics Aggregator functional requirements specified in clause 5.7 of ETSI
GS NFV IFA 049 [1], and open source solution VictoriaMetrics.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)63

VictoriaMetrics is an open-source project that extends the Prometheus® capabilities. It is a time series database that
enables full-stack metric collection, rule evaluation, and alert routing with deduplication, grouping, and silencing
features.

A.1.6.3.2 Comparison

This clause shows comparison of VNF Metrics Aggregator functional requirements defined in clause 5.7 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.6.3.2-1 and VictoriaMetrics as
"Support by open source" and "Related capability of open source" column. The legend of "Support by open source" is
the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)64

Table A.1.6.3.2-1: Comparison of VNF Metrics Aggregator functional requirements and
VictoriaMetrics

Identifier Requirement Support by open
source

Related capability of
open source

VNFMetricAg
gregator.001

The VNF Metrics Aggregator function shall support
the capability to collect different types of metrics from
entities determined by a filter (see notes 1 and 5).

Yes Provides full metric
ingestion control through
VMAgent custom resource,
including label-based
filtering for selective metric
collection, automatic target
discovery, and dynamic
metric relabelling for data
consistency.

VNFMetricAg
gregator.002

The VNF Metrics Aggregator function shall support
the capability to pre-process the metrics (see note 2).

Yes Supports real-time metric
processing including label
and value modifications,
and conditional metric
filtering during ingestion.

VNFMetricAg
gregator.003

The VNF Metrics Aggregator function shall support
the capability to aggregate the metrics in a
configurable manner (see note 3).

Yes Supports run-time metric
aggregation using PromQL
functions (sum(), avg(),
etc.). It also provides
VMAlert custom resource
for pre-calculated metrics
via recording rules and
custom alerting logic.

VNFMetricAg
gregator.004

The VNF Metrics Aggregator function shall support
the capability to store time series metrics for records
(see note 4).

Yes Supports optimized
long-term storage with high
compression ratios. It also
supports configurable
retention policies and
cost-efficient backups to
cloud storage.

VNFMetricAg
gregator.005

The VNF Metrics Aggregator function shall support
the capability to expose (filtered) metrics to authorized
consumers.

Partial Provides HTTP Query API
for metrics and alert status
exposure. It supports TLS
encryption and basic auth,
while advanced RBAC
requires reverse proxies or
API gateways.

NOTE 1: The filter shall support operations like filtering of VNF/VNFC instances by type of the VNF/VNFC, vendor,
host, zone, VNF instance identifier, etc. Also it shall be able to filter by metric/log type, severity level, etc.

NOTE 2: One form of pre-processing is to harmonize the format of the metrics.
NOTE 3: Examples of configurable forms of aggregation are to aggregate all metrics related to performance,

aggregate metrics from different instances belonging to the same VNF, aggregate metrics of VNF instances
managed by the same VNFM, etc.

NOTE 4: Use cases for storing time services of metrics are for instance using the stored metrics for further root-cause
analysis, abnormal behaviour detection, etc.

NOTE 5: VNF Metrics include virtualisation-dependent as well as virtualisation-independent metrics like VNF's
application metrics, VNF's connectivity and VNF's network performance metrics, NFVI related metrics, etc.

A.1.7 Comparison of VNF Metrics Analyser functional
requirements with relevant open source solutions
capabilities

A.1.7.1 Coroot

A.1.7.1.1 Overview

This clause analyses comparison of VNF Metrics Analyser functional requirements specified in clause 5.8 of ETSI
GS NFV IFA 049 [1], and open source solution Coroot.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)65

Coroot is an open-source project, which is powered by eBPF and can natively be integrated with Kubernetes® to offer
visibility into system performance and application health in cloud native environments.

A.1.7.1.2 Comparison

This clause shows comparison of VNF Metrics Analyser functional requirements defined in clause 5.8 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.7.1.2-1 and Coroot as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.7.1.2-1: Comparison of VNF Metrics Analyser functional requirements and Coroot

Identifier Requirement Support by open
source

Related capability of
open source

VNFMetricAnalyser.
001

The VNF Metrics Analyser function shall support
the capability to analyse and process different
types of metrics based on a set of analysis
functions (see note 1).

Yes It can natively be
integrated with
Prometheus, supports
detecting abnormal
behaviour such as
performance issues and
resource bottlenecks in
applications and can
generate audit reports,
e.g. about DNS related
issues.

VNFMetricAnalyser.
002

The VNF Metrics Analyser function shall support
the capability to provide configuration of the
analytics/processing of metrics to be applied
(see note 2).

Partial It provides options to
configure/override
inspection thresholds for
common metrics such as
node CPU utilization or to
define custom SLOs to
ensure that e.g. a certain
percentage of requests are
performed faster than a
given latency threshold.

VNFMetricAnalyser.
003

The VNF Metrics Analyser function shall support
the capability to send notifications based on
findings from the analysis of the metrics.

Partial It supports sending
messages about incidents
and status of deployments
via webhooks.

VNFMetricAnalyser.
004

The VNF Metrics Aggregator function shall
support the capability to expose analytics report
to authorized consumers.

Yes It provides dashboards and
visual reports for easy
access and sharing of
analytics data with
authorized users.

NOTE 1: Examples of analysis functions are abnormal behaviour detection, threshold crossing, statistical processing,
etc.

NOTE 2: Examples of configuration forms of the analytics are set thresholds, define the composition of the analytic
function from a set of basic analytic functions.

A.1.7.2 OpenSearch

A.1.7.2.1 Overview

This clause analyses the comparison of VNF Metrics Analyser functional requirements specified in clause 5.8 of ETSI
GS NFV IFA 049 [1], and the open source solution OpenSearch.

OpenSearch is an open-source search and analytics engine for scalable metrics and event data analysis. It offers
powerful search, aggregation, and visualization tools for real-time metrics monitoring and observability.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)66

A.1.7.2.2 Comparison

This clause shows comparison of VNF Metrics Analyser functional requirements defined in clause 5.8 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.7.2.2-1 and OpenSearch as
"Support by open source" and "Related capability of open source" column. The legend of "Support by open source" is
the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)67

Table A.1.7.2.2-1: Comparison of VNF Metrics Analyser functional requirements and OpenSearch

Identifier Requirement Support by open
source

Related capability of
open source

VNFMetricAnalyser.
001

The VNF Metrics Analyser function shall support
the capability to analyse and process different
types of metrics based on a set of analysis
functions (see note 1).

Yes Supports metrics analysis
through custom queries,
aggregations, and
threshold-based alerting. It
supports various statistical
processing methods,
including histograms, to
help users analyse trends
and patterns in their data.
Additionally, the Anomaly
Detection plugin enhances
these capabilities by
automatically identifying
unusual behaviour and
trends.

VNFMetricAnalyser.
002

The VNF Metrics Analyser function shall support
the capability to provide configuration of the
analytics/processing of metrics to be applied
(see note 2).

Yes Supports configurable
metric analytics through
custom queries,
dashboards, and alerting
rules. Users can set
thresholds, define
aggregation logic, and
create alerting conditions.
Additionally, the Anomaly
Detection plugin enables
advanced configuration,
such as setting custom
detection intervals and
fine-tuning anomaly
detection models.

VNFMetricAnalyser.
003

The VNF Metrics Analyser function shall support
the capability to send notifications based on
findings from the analysis of the metrics.

Yes It includes built-in alerting
capabilities that enable the
creation of monitors and
triggers to send
notifications based on
metric conditions.
Notifications can be routed
to various channels such
as email, and webhooks.

VNFMetricAnalyser.
004

The VNF Metrics Analyser function shall support
the capability to expose the metrics analytics
results to authorized consumers.

Yes It provides RBAC and
authentication mechanisms
to restrict analytics access
to authorized users. It
enables secure metrics
visualization in
OpenSearch Dashboards,
allowing users to apply
permissions and share
data while maintaining data
security.

NOTE 1: Examples of analysis functions are abnormal behaviour detection, threshold crossing, statistical processing,
etc.

NOTE 2: Examples of configuration forms of the analytics are set thresholds, define the composition of the analytic
function from a set of basic analytic functions.

A.1.7.3 VictoriaMetrics

A.1.7.3.1 Overview

This clause analyses the comparison of VNF Metrics Analyser functional requirements specified in clause 5.8 of ETSI
GS NFV IFA 049 [1], and the open source solution VictoriaMetrics.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)68

VictoriaMetrics is an open-source project that extends the Prometheus® capabilities. It is a time series database that
enables full-stack metric collection, rule evaluation, and alert routing with deduplication, grouping, and silencing
features.

A.1.7.3.2 Comparison

This clause shows comparison of VNF Metrics Analyser functional requirements defined in clause 5.8 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.7.3.2-1 and VictoriaMetrics as
"Support by open source" and "Related capability of open source" column. The legend of "Support by open source" is
the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)69

Table A.1.7.3.2-1: Comparison of VNF Metrics Analyser functional requirements and VictoriaMetrics

Identifier Requirement Support by
open source

Related capability of
open source

VNFMetricAnalyser.
001

The VNF Metrics Analyser function shall support
the capability to analyse and process different
types of metrics based on a set of analysis
functions (see note 1).

Partial Supports time-series
analysis using MetricsQL,
enabling threshold-based
alerts, rate calculations,
and statistical
aggregations viaVMRule.
However, advanced
analytics such as anomaly
detection or machine
learning-based behaviour
prediction require
additional customization
(e.g. via VMAnomaly).

VNFMetricAnalyser.
002

The VNF Metrics Analyser function shall support
the capability to provide configuration of the
analytics/processing of metrics to be applied (see
note 2).

Partial Supports rule-based
configuration through
VMRule defined recording
and alerting rules,
providing the capability to
define thresholds and
compose analytic
expressions using
MetricsQL. However,
lacks advanced pipeline
management features or
runtime configurability
beyond static rule
definitions.

VNFMetricAnalyser.
003

The VNF Metrics Analyser function shall support
the capability to send notifications based on
findings from the analysis of the metrics.

Yes Supports generating
alerts based on the rules
defined in VMRule
resource(s), and forwards
them to VictoriaMetrics
Alertmanager instances.
VictoriaMetrics
Alertmanager takes care
of routing, grouping,
suppressing, and
delivering notifications to
external systems such as
email, webhooks, or
custom endpoints. It also
supports message
templating and the ability
to silence alerts when
needed.

VNFMetricAnalyser.
004

The VNF Metrics Analyser function shall support
the capability to expose the metrics analytics
results to authorized consumers.

Partial Provides Query API to
expose analytical results
including metrics from
recording rules and firing
alert statuses. While it
supports TLS encryption
and basic client certificate
validation, implementing
advanced authentication
and authorization
(e.g. RBAC) requires
external tools such as
reverse proxies or OAuth2
gateways.

NOTE 1: Examples of analysis functions are abnormal behaviour detection, threshold crossing, statistical processing,
etc.

NOTE 2: Examples of configuration forms of the analytics are set thresholds, define the composition of the analytic
function from a set of basic analytic functions.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)70

A.1.8 Comparison of Notification Manager functional
requirements with relevant open-source solutions
capabilities

A.1.8.1 Prometheus Alertmanager

A.1.8.1.1 Overview

This clause analyses comparison of Notification manager functional requirements defined in clause 5.13 of ETSI
GS NFV IFA 049 [1], and open-source solution Prometheus Alertmanager. It is an open-source alerting tool designed to
monitor data and trigger alerts based on customizable rules. It enables users to define alert conditions and integrates
with various notification services, making it for detecting anomalies and responding to real-time issues.

A.1.8.1.2 Comparison

This clause shows comparison of Notification Manager functional requirements defined in clause 5.13 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.8.1.2-1 and Prometheus
alertmanager as "Support by open source" and "Related capability of open source" column. The legend of "Support by
open source" is the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.8.1.2-1: Comparison of Notification Manager functional requirements and
Prometheus Alertmanager

Identifier Requirement Support by open
source

Related capability of
open source

NotificationM
anager.001

The Notification Manager shall support the capability
to receive notifications sent by other VNF generic
OAM functions and other PaaS Services.

Yes Prometheus Alertmanager
receives alerts from
Prometheus Server and
can process external alerts.

NotificationM
anager.002

The Notification Manager shall support the capability
to process (e.g. group, deduplicate) received
notifications (see note 1).

Yes Prometheus Alertmanager
provides alert grouping and
deduplication based on
alert labels.

NotificationM
anager.003

The Notification Manager shall support the capability
to route processed notification to authorized
consumers.

Yes Prometheus Alertmanager
routes notifications to
various channels, such as
email, webhooks, and other
custom endpoints.

NotificationM
anager.004

The Notifications manager shall support the capability
for a consumer to manage subscriptions to
notifications about events reported by VNF generic
OAM functions and other PaaS Services (see notes 1
and 2)

Partial Prometheus Alertmanager
does not have a built-in
subscription management
mechanism but allows
selective routing via
label-based filtering.
It requires external
integration or API-based
subscription handling.

NOTE 1: Notifications sent by VNF generic OAM functions and other PaaS Services to the Notification Manager, can
be sent on demand or automatically to the Notification Manager.

NOTE 2: Subscription management includes creation and termination of subscriptions to notifications.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)71

A.1.8.2 Argo®

A.1.8.2.1 Overview

This clause analyses comparison of Notification Manager functional requirements defined in clause 5.13 of ETSI
GS NFV IFA 049 [1], and open-source solution Argo®.

Argo® is an open-source Kubernetes®-native event-driven workflow automation tool.

A.1.8.2.2 Comparison

This clause shows comparison of Notification Manger functional requirements defined in clause 5.13 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.8.2.2-1 and Argo® as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.8.2.2-1: Comparison of Notification Manager functional requirements and Argo®

Identifier Requirement Support by open
source

Related capability of
open source

NotificationM
anager.001

The Notification Manager shall support the capability
to receive notifications sent by other VNF generic
OAM functions and other PaaS Services.

Partial Supports various sources,
native VNF OAM
integration might require
custom adapters.

NotificationM
anager.002

The Notification Manager shall support the capability
to process (e.g. group, deduplicate) received
notifications (see note 1).

Partial Allows event filtering and
transformation before
routing. It requires
additional logic for
deduplication.

NotificationM
anager.003

The Notification Manager shall support the capability
to route processed notification to authorized
consumers.

Yes Supports routing and
notification delivery based
on defined triggers to
Kubernetes® services,
workflows, and other
consumers.

NotificationM
anager.004

The Notifications manager shall support the capability
for a consumer to manage subscriptions to
notifications about events reported by VNF generic
OAM functions and other PaaS Services (see notes 1
and 2).

Partial Subscription handling
exists lacks a dynamic
self-service subscription
model.

NOTE 1: Notifications sent by VNF generic OAM functions and other PaaS Services to the Notification Manager, can
be sent on demand or automatically to the Notification Manager.

NOTE 2: Subscription management includes creation and termination of subscriptions to notifications.

A.1.8.3 Kafka

A.1.8.3.1 Overview

This clause analyses the comparison of Notification Manager functional requirements defined in clause 5.13 of ETSI
GS NFV IFA 049 [1], and the open-source solution Kafka.

Kafka is an open-source distributed event streaming platform designed for high-throughput data distribution. It serves
as a central hub for receiving, storing, and routing events to multiple consumers in real-time using a publish-subscribe
messaging model, while stream processing is enabled through external frameworks like Kafka Streams.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)72

A.1.8.3.2 Comparison

This clause shows comparison of Notification Managers functional requirements defined in clause 5.13 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.8.3.2-1 and Kafka as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.8.3.2-1: Comparison of Notification Manager functional requirements and Kafka

Identifier Requirements Support by open
source

Related capability of
open source

NotificationM
anager.001

The Notification Manager shall support the capability
to receive notifications sent by other VNF generic
OAM functions and other PaaS Services.

Yes Provides a
publish-subscribe model
that allows event producers
(VNFs, PaaS services, etc.)
to send notifications to
Kafka topics.

NotificationM
anager.002

The Notification Manager shall support the capability
to process (e.g. group, deduplicate) received
notifications (see note 1).

Partial Does not process
notifications itself, but
Kafka Streams, or
deduplication and event
processing can be
implemented by external
consumer.

NotificationM
anager.003

The Notification Manager shall support the capability
to route processed notification to authorized
consumers.

Yes Provides topic-based
routing and consumer
group model which allow
notifications to be routed
dynamically to multiple
subscribers.

NotificationM
anager.004

The Notifications manager shall support the capability
for a consumer to manage subscriptions to
notifications about events reported by VNF generic
OAM functions and other PaaS Services (see notes 1
and 2).

Partial Follows a pub-sub model,
where consumers
automatically subscribe to
Kafka topics by joining a
consumer group.
Subscription management
needs to be handled by
external authentication
mechanisms (e.g. Kafka
ACLs, OAuth, or RBAC in
applications).

NOTE 1: Notifications sent by VNF generic OAM functions and other PaaS Services to the Notification Manager, can
be sent on demand or automatically to the Notification Manager.

NOTE 2: Subscription management includes creation and termination of subscriptions to notifications.

A.1.8.4 Sensu

A.1.8.4.1 Overview

This clause analyses the comparison of Notification Manager functional requirements defined in clause 5.13 of ETSI
GS NFV IFA 049 [1], and the open-source solution Sensu.

Sensu is an open-source monitoring and observability tool designed for dynamic cloud-native environments, hybrid
infrastructure, and traditional data centers. It provides event-driven monitoring, enabling real-time health checks, metric
collection, and alerting across distributed systems.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)73

A.1.8.4.2 Comparison

This clause shows comparison of Notification Managers functional requirements defined in clause 5.13 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.8.4.2-1 and Sensu as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

Table A.1.8.4.2-1: Comparison of Notification Manager functional requirements and Sensu

Identifier Requirements Support by open
source

Related capability of
open source

NotificationM
anager.001

The Notification Manager shall support the capability
to receive notifications sent by other VNF generic
OAM functions and other PaaS Services.

Yes Enables event reception
from various sources using
event brokers and sources.

NotificationM
anager.002

The Notification Manager shall support the capability
to process (e.g. group, deduplicate) received
notifications (see note 1).

Partial Provides event routing but
does not natively handle
deduplication or grouping
like Prometheus
Alertmanager. However, it
can be extended via
custom processing logic.

NotificationM
anager.003

The Notification Manager shall support the capability
to route processed notification to authorized
consumers.

Partial Supports sending
processed notifications to
authorized consumers via
handlers, RBAC, and
subscriptions It forwards
notifications but does not
store them for later
consumption.

NotificationM
anager.004

The Notifications manager shall support the
capability for a consumer to manage subscriptions to
notifications about events reported by VNF generic
OAM functions and other PaaS Services (see notes 1
and 2).

Partial Allows users to configure
event routing and filtering,
but it does not provide a
built-in mechanism for
dynamic subscription
management, such as
creating or terminating
subscriptions automatically.

NOTE 1: Notifications sent by VNF generic OAM functions and other PaaS Services to the Notification Manager, can
be sent on demand or automatically to the Notification Manager.

NOTE 2: Subscription management includes creation and termination of subscriptions to notifications.

A.1.9 Comparison of PaaS Service Configuration Server
functional requirements with relevant open-source solutions
capabilities

A.1.9.1 Schema-driven Configuration (SDCIO)

A.1.9.1.1 Overview

This clause analyses comparison of Configuration Server functional requirements specified in clause 5.14 of ETSI
GS NFV IFA 049 [1], and open source solution Schema-driven Configuration (SDCIO in abbreviation).

SDCIO is an open source project that uses schema-driven approaches for configuring in a declarative way PNFs,
VM-based and container-based VNFs.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)74

A.1.9.1.2 Comparison

This clause shows comparison of Configuration Server functional requirements defined in clause 5.14 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.1.9.1.2-1 and SDCIO as "Support
by open source" and "Related capability of open source" column. The legend of "Support by open source" is the
following:

"Yes": fully support the functional requirements.

"No": not support the functional requirements.

"Partial": partial support the functional requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)75

Table A.1.9.1.2-1: Comparison of Configuration Server functional requirements and SDCIO

Identifier Requirement Support by open
source

Related capability of
open source

ConfigServer.
001

The Configuration Server shall support the capability
of storing configuration data.

Yes SDCIO Config API Server
can be used to store
configuration artifacts and
may be integrated with
GitOps solutions. In the
latter case, network
configurations are stored in
Git repositories.

ConfigServer.
002

The Configuration Server shall support the capability
of converting configuration data between different
formats.

Yes Vendor-specific data
formats (e.g. Netconf/XML)
can be transformed to a
unified abstract format
(e.g. JSON) so that desired
configuration states can be
applied via Intent CRs and
stored in the SDCIO Config
API Server backend.

ConfigServer.
003

The Configuration Server should support the
capability to validate configuration data based on data
schemas (see note 1).

Partial It has basic validation
capabilities (e.g. dry run
validation) but does not
support semantic validation
of configuration data
schemas.

ConfigServer.
004

The Configuration Server shall support the capability
of version control configuration data.

Yes It leverages Kubernetes®
native version control
capabilities for managing
network configurations.

ConfigServer.
005

The Configuration Server shall support the capability
of providing the configuration data to consumers that
request to fetch such configuration data.

Yes It supports CRUD
operations for network
configurations.

ConfigServer.
006

The Configuration Server shall support the capability
keep information about the stored configuration data
(see note 2).

Yes It also supports Repository
Management APIs and
GitOps REST APIs for easy
integration with GitOps
solutions.

ConfigServer.
007

The Configuration Server shall support the capability
to notify about events and changes of configuration
data.

Partial It leverages de-facto
Kubernetes® capabilities
(i.e. events related to status
updates on custom
resources) rather than
external alerting
mechanisms. For example,
in the case of configuration
deviation, Config CR status
is updated by the
DeviationWatcher and drift
can be checked e.g. using
GitOps drift API.

NOTE 1: Data schemas can be onboarded onto the Configuration Server or provided during operations issued by a
consumer.

NOTE 2: Information about the stored configuration data includes, but it is not limited to format of the data, last
modification date of the data, version of the stored data.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)76

A.2 Comparison of the VNF generic OAM functions
interface requirements against the considered
open-source solutions

A.2.1 Overview
This clause analyses comparison of VNF generic OAM functions interface requirements specified in ETSI
GS NFV-IFA 049 [1] against the considered open-source solutions as specified in clause A.1.

A.2.2 Comparison of Log Aggregator Interface requirements with
considered open-source solutions capabilities

A.2.2.1 Fluent Bit

This clause shows comparison of Log Aggregator interface requirements defined in clause 6.2.4 of ETSI
GS NFV IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.2.2.1-1) and Fluent Bit (see
"Support by open source" and "Related capability of open source" column). The legend of "Support by open source" is
the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

Table A.2.2.1-1: Comparison of Log Aggregator interface requirements and Fluent Bit

Identifier Requirement Support by
open source

Related capability of open source

VNFLogAggregator.001 The VNF Log Aggregator function
shall support producing the Log
Exposure Interface (see note).

Yes Supports various output plugins,
such as HTTP, Prometheus®,
OpenTelemetry™, OpenSearch,
allow Fluent Bit to expose logs to
multiple destinations.

LogAggr.Expose.001 The Log Exposure Interface shall
support exposing the logs to
authorized consumers.

Yes Supports various output plugins
allow secure log transmission with
TLS/SSL encryption and, in some
cases, Basic Authentication.

LogAggr.Expose.002 The Log Exposure Interface shall
support the capability to support
filtering of the logs.

Yes Supports various filter plugins such
as Grep, Modify, Parser,
Kubernetes® Metadata, can
include/exclude logs based on
patterns, restructure logs for easier
analysis, and are configured via the
Fluent Bit configuration file,
facilitating customizable log
exposure.

NOTE: Refer to the support of capabilities of log collection by the log aggregator function specified in clause 8.2 of
ETSI GS NFV IFA 049 [1].

A.2.2.2 Fluentd

This clause shows comparison of Log Aggregator interface requirements defined in clause 6.2.4 of ETSI
GS NFV IFA 049 [1] see "Identifier" column and "Requirement" column in Table A.2.2.2-1) and Fluentd (see "Support
by open source" and "Related capability of open source" column). The legend of "Support by open source" is the
following:

"Yes": fully support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)77

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

Table A.2.2.2-1: Comparison of Log Aggregator interface requirements and Fluentd

Identifier Requirement Support by
open source

Related capability of open source

VNFLogAggregator.001 The VNF Log Aggregator function
shall support producing the Log
Exposure Interface (see note).

Yes Supports various output plugins,
such as out_http (HTTP),
out_opensearch (OpenSearch),
out_s3 (S3), and out_forward (for
other Fluent Bit nodes), allow
Fluentd to expose logs to multiple
destinations.

LogAggr.Expose.001 The Log Exposure Interface shall
support exposing the logs to
authorized consumers.

Yes Supports various output plugins
allow secure log transmission with
TLS/SSL encryption and, in some
cases, Basic Authentication.

LogAggr.Expose.002 The Log Exposure Interface shall
support the capability to support
filtering of the logs.

Yes Supports various filter plugins such
as Grep, Parser, Record
Transformer, allows for tailored log
exposure based on specific criteria,
improving log management and
analysis capabilities.

NOTE: Refer to the support of capabilities of log collection by the log aggregator function specified in clause 8.2 of
ETSI GS NFV IFA 049 [1].

A.2.2.3 OpenTelemetry Collector

This clause shows comparison of Log Aggregator interface requirements defined in clause 6.2.4 of ETSI
GS NFV IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.2.2.3-1) and OpenTelemetry
Collector (see "Support by open source" and "Related capability of open source" column). The legend of "Support by
open source" is the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

Table A.2.2.3-1: Comparison of Log Aggregator interface requirements and OpenTelemetry Collector

Identifier Requirement Support by
open source

Related capability of open source

VNFLogAggregator.001 The VNF Log Aggregator function
shall support producing the Log
Exposure Interface (see note).

Yes Supports various receivers such as
OTLP, HTTP, file, Prometheus to
ingest logs from multiple sources,
allowing for effective log
aggregation.

LogAggr.Expose.001 The Log Exposure Interface shall
support exposing the logs to
authorized consumers.

Yes Supports TLS/SSL for secure
transport and authentication options
for HTTP receivers, to secure log
transmission options and can
enforce access control through
authentication mechanisms to
protect log data.

LogAggr.Expose.002 The Log Exposure Interface shall
support the capability to support
filtering of the logs.

Yes The Processor supports filtering and
modifying capabilities, to filter and
transform logs, allowing users to
manage which logs are exposed
based on specific criteria.

NOTE: Refer to the support of capabilities of log collection by the log aggregator function specified in clause 8.2 of
ETSI GS NFV IFA 049 [1].

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)78

A.2.2.4 Grafana Loki

This clause shows comparison of Log Aggregator interface requirements defined in clause 6.2.4 of ETSI
GS NFV IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.2.2.4-1) and Grafana Loki (see
"Support by open source" and "Related capability of open source" column). The legend of "Support by open source" is
the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

Table A.2.2.4-1: Comparison of Log Aggregator interface requirements and Grafana Loki

Identifier Requirement Support by
open source

Related capability of open source

VNFLogAggregator.001 The VNF Log Aggregator function
shall support producing the Log
Exposure Interface (see note).

Yes Can ingest logs from multiple
sources, including applications and
system logs, through the Loki API
(/loki/api/v1/push for log ingestion)
and Promtail (collects and sends
logs to loki), making it adaptable to
various logging scenarios.

LogAggr.Expose.001 The Log Exposure Interface shall
support exposing the logs to
authorized consumers.

Yes Integrates with Grafana® over TLS,
for user management and access
control, ensuring that logs can be
securely accessed by authorized
consumers. It also supports Basic
Auth and Token-based
authentication.

LogAggr.Expose.002 The Log Exposure Interface shall
support the capability to support
filtering of the logs.

Yes Supports (LogQL, Loki's query
language for log retrieval) for
complex queries for log filtering and
retrieval, allowing users to specify
criteria for effective log
management.

NOTE: Refer to the support of capabilities of log collection by the log aggregator function specified in clause 8.2 of
ETSI GS NFV IFA 049 [1].

A.2.2.5 OpenSearch

This clause shows comparison of Log Aggregator interface requirements defined in clause 6.2.4 of ETSI
GS NFV IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.2.2.5-1) and OpenSearch (see
"Support by open source" and "Related capability of open source" column). The legend of "Support by open source" is
the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)79

Table A.2.2.5-1: Comparison of Log Aggregator interface requirements and OpenSearch

Identifier Requirement Support by
open source

Related capability of open source

VNFLogAggregator.001 The VNF Log Aggregator function
shall support producing the Log
Exposure Interface (see note).

Yes Supports ingest APIs such as Bulk
API (/_bulk) for batch log ingestion
and Index API, allowing logs to be
sent directly to OpenSearch.

LogAggr.Expose.001 The Log Exposure Interface shall
support exposing the logs to
authorized consumers.

Yes Supports robust security features
such as Security APIs (/_security),
Security plugin REST API, ensuring
that only authorized users can
access logs through authentication
and role-based access control.

LogAggr.Expose.002 The Log Exposure Interface shall
support the capability to support
filtering of the logs.

Yes Enables advanced log filtering and
analysis through its Query DSL and
various APIs such as
/{index}/_search, /_search/scroll,
/_search/scroll/<scroll-id>,
/<index>/_msearch, /_msearch,
making it easy to retrieve relevant
logs based on specific criteria.

NOTE: Refer to the support of capabilities of log collection by the log aggregator function specified in clause 8.2 of
ETSI GS NFV IFA 049 [1].

A.2.3 Comparison of Log Analyser Interface requirements with
considered open-source solutions capabilities

A.2.3.1 ElastAlert 2

This clause shows comparison of Log Analyser interface requirements defined in clause 6.2.5 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.2.3.1-1 and ElastAlert 2 as "Support
by open source" and "Related capability of open source" column. The legend of "Support by open source" is the
following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)80

Table A.2.3.1-1: Comparison of Log Analyser interface requirements and ElastAlert 2

Identifier Requirement Support by open
source

Related capability of
open source

VNFLogAnalyser.001 The Log Analyser function shall support
producing the Log Analysis Exposure
Interface.

Yes Utilizes custom alerting
rules to analyze log data in
OpenSearch or
Elasticsearch and produce
alert notifications,
effectively serving as an
analysis exposure
interface. Alerts can be
sent via email, custom
webhooks, and other
integrations, providing
flexible delivery options.

LogAnalyser.Expose.001 The Log Analysis Exposure Interface
shall support exposing the logs analysis
results to authorized consumers.

Yes Supports secure endpoints
for delivering alerts, which
can be customized to
restrict access to
authorized consumers only.
This, combined with secure
connection setups such as
using TLS, TLS certificates
or suppress related
warnings, ensures that only
intended consumers
receive alerts.

LogAnalyser.Expose.002 The Log Analysis Exposure Interface
shall support configuring the processing
of logs to be analysed.

Yes Enables detailed
configuration of log
processing through YAML
rule files. These files allow
the specification of data
sources, definition of alert
conditions, establishment of
filtering criteria, and
configuration of processing
frequency for customized
log analysis. This flexibility
helps tailor the log analysis
to specific needs and
requirements.

A.2.3.2 Coroot

This clause shows comparison of Log Analyser interface requirements defined in clause 6.2.5 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.2.3.2-1 and Coroot as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)81

Table A.2.3.2-1: Comparison of Log Analyser interface requirements and Coroot

Identifier Requirement Support by open
source

Related capability of
open source

VNFLogAnalyser.001 The Log Analyser function shall support
producing the Log Analysis Exposure
Interface.

Yes Uses the
Coroot-node-agent and
Coroot-cluster-agent to
collect logs from various
sources, such as
containers, databases,
based on the eBPF
technology. Additionally,
Coroot utilizes ClickHouse
for storing logs, and
benefiting from its efficient
data compression
technique. It also supports
the OpenTelemetry
protocol (OTLP over HTTP)
for logs.

LogAnalyser.Expose.001 The Log Analysis Exposure Interface shall
support exposing the logs analysis results
to authorized consumers.

Yes Supports integrations with
various alerting platforms,
including email, webhooks,
and custom endpoints to
notify authorized
consumers of log analysis
results. Additionally,
configurations can be
managed via the user
interface, ensuring that
access controls and
notifications are
appropriately set up.

LogAnalyser.Expose.002 The Log Analysis Exposure Interface shall
support configuring the processing of logs
to be analysed.

Yes Dupports integrations with
various alerting platforms,
such as Incident Pages,
webhooks, to notify
authorized consumers of
log analysis results.
Additionally, configurations
can be managed via the
user interface, ensuring
that access controls and
notifications are
appropriately set up.

A.2.3.3 Grafana®

This clause shows comparison of Log Analyser interface requirements defined in clause 6.2.5 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.2.3.3-1 and Grafana® as "Support
by open source" and "Related capability of open source" column. The legend of "Support by open source" is the
following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)82

Table A.2.3.3-1: Comparison of Log Analyser interface requirements and Grafana®

Identifier Requirement Support by open
source

Related capability of
open source

VNFLogAnalyser.001 The Log Analyser function shall support
producing the Log Analysis Exposure
Interface.

Yes Offers dynamic log
visualization through
integrations with Loki,
Elasticsearch, Prometheus,
and other data sources. It
supports tools for
visualizing and exploring
log data through features
like Grafana Explore and
custom dashboards.

LogAnalyser.Expose.001 The Log Analysis Exposure Interface
shall support exposing the logs analysis
results to authorized consumers.

Yes Supports this through its
RBAC and API
integrations. API endpoints
such as the Dashboard API
(/api/dashboards/), RBAC
API (/api/access-control),
Data source Permissions
API (/api/access-
control/datasources)
enable secure access to
logs and dashboards for
authorized users, ensuring
controlled exposure of log
analysis results.

LogAnalyser.Expose.002 The Log Analysis Exposure Interface
shall support configuring the processing
of logs to be analysed.

Yes In combination with Explore
Logs, Loki or Grafana
agent, allows configurable
querying, filtering, and
visualization. Users can set
up data sources and define
log processing rules,
allowing for customized
workflows. This also
includes utilizing LogQL for
querying and filtering logs
dynamically.

A.2.3.4 OpenSearch

This clause shows comparison of Log Analyser interface requirements defined in clause 6.2.5 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.2.3.4-1 and OpenSearch as
"Support by open source" and "Related capability of open source" column. The legend of "Support by open source" is
the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)83

Table A.2.3.4-1: Comparison of Log Analyser interface requirements and OpenSearch

Identifier Requirement Support by open
source

Related capability of
open source

VNFLogAnaly
ser.001

The Log Analyser function shall support producing the
Log Analysis Exposure Interface.

Yes Support API endpoints
such as Index API for
ingesting log data and the
Search API (/_search) to
query and retrieve logs for
analysis. Also allows the
creation of dashboards via
OpenSearch Dashboards,
which can visualize log
data. Additionally, users
can query and analyse logs
and present them in
various formats such as
charts and tables.

LogAnalyser.
Expose.001

The Log Analysis Exposure Interface shall support
exposing the logs analysis results to authorized
consumers.

Yes Supports built-in security
features that enable RBAC,
allows for the definition of
roles and permissions to
restrict access to log data
and dashboards, ensuring
only authorized users can
view analysis results. Also
supports API endpoints for
this functionality include the
Security Plugin for
managing user roles and
permissions, and the
Security Plugin REST API
(_plugins/_security/api/) to
create and manage roles
for user access control.

LogAnalyser.
Expose.002

The Log Analysis Exposure Interface shall support
configuring the processing of logs to be analysed.

Yes Supports Ingest pipelines
for preprocessing log data
before indexing, but
complex configurations
may require additional
queries. Also supports API
endpoints include the
Ingest Node for defining
processing pipelines, the
Ingest API
(_ingest/pipeline) for
managing these pipelines,
and the Query DSL for
building queries to analyse
log data.

A.2.4 Comparison of Traffic Enforcer Interface requirements with
considered open-source solutions capabilities

A.2.4.1 Cilium®

This clause shows comparison of Traffic Enforcer interface requirements defined in clause 6.2.1 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.2.4.1-1 and Cilium® as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)84

"Partial": partial support the interface requirements.

Table A.2.4.1-1: Comparison of Traffic Enforcer interface requirements and Cilium®

Identifier Requirement Support by open
source

Related capability of
open source

TrafficEnforcerInf
.001

The Traffic Enforcer function shall support
producing the traffic management Interface.

Yes Supports various traffic
management features,
mainly through
CiliumNetworkPolicy and
CiliumClusterwideNetwork
Policy, along with service
mesh capabilities. It
supports eBPF for efficient
packet processing at the
kernel level and supports
technologies such as Kata
Containers, Multi-Cluster
(Cluster Mesh), ingress and
egress gateways, the
Cilium® agent, and both
REST and gRPC APIs.

TrafficEnf.Trafm.
001

The Traffic Management Interface shall support
the blocking and rerouting of traffic indicating
selected VNFC Instances.

Yes Supports capabilities for
traffic blocking and
rerouting through its
network policy definitions. It
allows for granular control
of traffic to and from
specific workloads (VNFC
instances) using its
CiliumNetworkPolicy and
CiliumClusterwideNetwork
Policy resources.
Furthermore, it supports
features like Egress
Gateway, which can be
configured to manage
outbound traffic.

A.2.4.2 Istio®

This clause shows comparison of Traffic Enforcer interface requirements defined in clause 6.2.1 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.2.4.2-1 and Istio® as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)85

Table A.2.4.2-1: Comparison of Traffic Enforcer interface requirements and Istio®

Identifier Requirement Support by open
source

Related capability of
open source

TrafficEnforcerInf
.001

The Traffic Enforcer function shall support
producing the traffic management Interface.

Yes Supports traffic
management capabilities
through configuration
resources like
VirtualService, allowing
users to control routing
behavior, including traffic
splitting and circuit
breaking, via YAML files.
Components such as
IstioOperator, and Istio®
Gateway API, also support
fine-grained traffic control,
including retries and
failover handling.

TrafficEnf.Trafm.
001

The Traffic Management Interface shall support
the blocking and rerouting of traffic indicating
selected VNFC Instances.

Yes Supports traffic blocking
through different
components such as
VirtualServices, Sidecar,
which allows to define
routing rules that either
block traffic to specific
services or reroute traffic
based on various
conditions (like HTTP
headers, Ports, etc.).

A.2.4.3 Linkerd

This clause shows comparison of Traffic Enforcer interface requirements defined in clause 6.2.1 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.2.4.3-1 and Linkerd as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)86

Table A.2.4.3-1: Comparison of Traffic Enforcer interface requirements and Linkerd

Identifier Requirement Support by open
source

Related capability of
open source

TrafficEnforcerInf
.001

The Traffic Enforcer function shall support
producing the traffic management Interface.

Yes Supports traffic
management through
features like Traffic Split,
enabling efficient traffic
routing. It exposes this
capability via the SMI
TrafficSplit API, allowing for
traffic distribution across
various application versions
or instances, facilitating
canary releases and
blue/green deployments.

TrafficEnf.Trafm.
001

The Traffic Management Interface shall support
the blocking and rerouting of traffic indicating
selected VNFC Instances.

Partial Partially supports this
requirement by enabling
rerouting and flow control
policies. While it does not
provide explicit blocking
controls for individual
instances, users can
effectively manage traffic
using policies, annotations
in Service Profiles, and
service mappings.
Additionally, features like
Circuit Breaking feature
can isolate failing services
by stopping traffic to them
temporarily, while Rate
Limiting feature can control
the volume of requests sent
to specific services.
Together, these capabilities
can enhance traffic
management and resilience
within the mesh.

A.2.4.4 Envoy

This clause shows comparison of Traffic Enforcer interface requirements defined in clause 6.2.1 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.2.4.4-1 and Envoy as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)87

Table A.2.4.4-1: Comparison of Traffic Enforcer interface requirements and Envoy

Identifier Requirement Support by open
source

Related capability of
open source

TrafficEnforcerInf
.001

The Traffic Enforcer function shall support
producing the traffic management Interface.

Yes Supports traffic
management through its
routing capabilities. It
allows the definition of
routes that determine how
traffic is handled based on
various criteria (e.g.
headers, paths). The Envoy
API facilitates dynamic
management of these
routes; API endpoints such
as v3.Route, v3.Listener,
v3.RouteAction, v3.Filter
provide mechanisms for
configuring routing
behaviour, managing
incoming traffic, specifying
traffic actions, and
implementing custom
request and response logic.

TrafficEnf.Trafm.
001

The Traffic Management Interface shall support
the blocking and rerouting of traffic indicating
selected VNFC Instances.

Partial Supports rerouting and
blocking of traffic through
features like Route
Matching and HTTPFilters,
which enable custom logic
for managing traffic flows.
Endpoints such as
v3.RouteAction defines
specific actions for
rerouting traffic, and
v3.Filter allows for the
implementation of custom
filtering logic. Although
Envoy can block and
reroute traffic based on
various criteria, directly
indicating instances may
require additional custom
logic or tagging to fully
implement this
requirement.

A.2.5 Comparison of Notification Manager Interface requirements
with considered open-source solutions capabilities

A.2.5.1 Prometheus Alertmanager

This clause shows comparison of Notification manager interface requirements defined in clause 6.2.11 of ETSI
GS NFV IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.2.5.1-1) and Prometheus
Alertmanager (see "Support by open source" and "Related capability of open source" column). The legend of "Support
by open source" is the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)88

Table A.2.5.1-1: Comparison of Notification interface requirements and Prometheus Alertmanager

Identifier Requirement Support by
open source

Related capability of open source

NotificationManagerInf
.001

The Notification Manager function shall
support producing the Notifications
Management Interface.

Partial It exposes a management interface
through its rest API for managing
alerts, silences, and status
monitoring. It also provides a Web
UI for visualization and operations.
However, it lacks a dedicated
interface for managing notifications
dynamically.

Notif.Manager
Notif.Mgmt.001

The Notifications Management
Interface shall support management of
subscriptions to notifications.

Partial Allows configuration-based routing
of alerts but does not have a built-in
API for managing dynamic
subscriptions. External automation
tools are needed.

Notif.Manager
Notif.Mgmt.002

The Notifications Management
Interface shall support sending
processed notifications to authorized
consumers.

Yes Processes and routes alerts to
various consumers.

A.2.5.2 Argo®

This clause shows comparison of Notification Manager interface requirements defined in clause 6.2.11 of ETSI
GS NFV IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.2.5.2-1) and Argo® (see "Support
by open source" and "Related capability of open source" column). The legend of "Support by open source" is the
following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

Table A.2.5.2-1: Comparison of Notification Manager interface requirements and Argo®

Identifier Requirement Support by
open source

Related capability of open source

NotificationManagerInf
.001

The Notification Manager function shall
support producing the Notifications
Management Interface.

Partial It does not provide a native
notification management interface.
Argo® CD Notifications Controller,
provides a framework for sending
notifications using predefined or
custom templates.

Notif.Manager
Notif.Mgmt.001

The Notifications Management
Interface shall support management of
subscriptions to notifications.

Partial Subscription to events is supported,
but un-subscription and dynamic
subscription lifecycle management
are limited.

Notif.Manager
Notif.Mgmt.002

The Notifications Management
Interface shall support sending
processed notifications to authorized
consumers.

Yes Support sending notifications to
designated consumers.

A.2.5.3 Kafka

This clause shows comparison of Notification manager interface requirements defined in clause 6.2.11 of ETSI
GS NFV IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.2.5.3-1) and Kafka (see "Support
by open source" and "Related capability of open source" column). The legend of "Support by open source" is the
following:

"Yes": fully support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)89

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

Table A.2.5.3-1: Comparison of Notification Manager interface requirements and Kafka

Identifier Requirement Support by
open source

Related capability of open source

NotificationManagerInf
.001

The Notification Manager function shall
support producing the Notifications
Management Interface.

Yes Kafka supports notification
management through its
publish-subscribe model. Producers
publish notifications to topics, and
consumers can subscribe to receive
them. Kafka's Streams API and
Connect API further enable
processing, routing, and
management of notifications.

Notif.Manager
Notif.Mgmt.001

The Notifications Management
Interface shall support management of
subscriptions to notifications.

Partial It does not provide a native API for
managing consumer subscriptions
dynamically (e.g. listing, modifying,
or deleting specific subscriptions per
user or service). However, supports
dynamic subscription management
using Kafka Consumer Groups,
where consumers can join or leave
at runtime. Kafka Admin API and
Kafka REST Proxy allow
programmatic subscription
management.

Notif.Manager
Notif.Mgmt.002

The Notifications Management
Interface shall support sending
processed notifications to authorized
consumers.

Yes Provides message retention and
supports querying notification status
and history using Kafka Connect
with external storage (Elasticsearch,
Prometheus, PostgreSQL, etc.).
Kafka consumer offsets allow
tracking delivery status, and failure
logs can be handled using dead-
letter topics.

A.2.5.4 Sensu

This clause shows comparison of Notification manager interface requirements defined in clause 6.2.11 of ETSI
GS NFV IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.2.5.4-1) and Sensu (see "Support
by open source" and "Related capability of open source" column). The legend of "Support by open source" is the
following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)90

Table A.2.5.4-1: Comparison of Notification Manager interface requirements and Sensu

Identifier Requirement Support by
open source

Related capability of open source

NotificationManagerInf
.001

The Notification Manager function shall
support producing the Notifications
Management Interface.

Yes Supports notification management
using its event pipeline. It can
process events from multiple
sources, apply filtering, and send
notifications to defined handlers.
Sensu's API and CLI offer interfaces
for managing notifications and
integrating with external systems.

Notif.Manager
Notif.Mgmt.001

The Notifications Management
Interface shall support management of
subscriptions to notifications.

Partial Supports subscription-based event
routing via configuration and API
settings. Consumers (agents) can
subscribe to event sources, but
subscriptions are typically defined in
advance and are not dynamically
managed at runtime like a full
pub/sub system.

Notif.Manager
Notif.Mgmt.002

The Notifications Management
Interface shall support sending
processed notifications to authorized
consumers.

Partial Supports sending processed
notifications to authorized
consumers through handlers,
RBAC, and subscriptions.
Notifications are processed in real
time but not stored for later retrieval.

A.2.6 Comparison of VNF Metrics Aggregator Interface
requirements with considered open-source solutions
capabilities

A.2.6.1 OpenTelemetry Collector

This clause shows comparison of VNF Metrics Aggregator interface requirements defined in clause 6.2.6 of ETSI
GS NFV IFA 049 [1] (see "Identifier" column and "Requirement" column in Table A.2.6.1-1) and OpenTelemetry
Collector (see "Support by open source" and "Related capability of open source" column). The legend of "Support by
open source" is the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)91

Table A.2.6.1-1: Comparison of VNF Metrics Aggregator interface requirements
and OpenTelemetry Collector

Identifier Requirement Support by
open source

Related capability of open source

VNFMetricAggregator.001 The VNF Metrics Aggregator
function shall support producing
the Metrics Exposure Interface
(see note).

Yes Receivers can be configured to
collect metrics via file-based
(e.g. Prometheus, OTLP JSON File
receiver) or streaming-based
mechanisms (OTLP, Kafka receiver)
allowing for effective metrics
aggregation.

MetricAggr.Expose.001 The Metrics Exposure Interface
shall support exposing the metrics
to authorized consumers.

Yes Supports TLS/mTLS for secure
communication and mutual
authentication options to secure
transmission of metrics.
Authenticators (e.g. OIDC
authenticator) can also be
integrated to ensure that only
authorized requests are processed.

MetricAggr.Expose.002 The Metrics Exposure Interface
shall support the capability to
support filtering of the metrics.

Yes Processors support the filtering and
the transformation of metrics,
allowing users to manage which
metrics are exposed based on
specific criteria.

NOTE: Refer to the support of capabilities of metrics collection by the metrics aggregator function specified in
clause 8.2 of ETSI GS NFV-IFA 049 [1].

A.2.7 Comparison of VNF Metrics Analyser Interface
requirements with considered open-source solutions
capabilities

A.2.7.1 Coroot

This clause shows comparison of VNF Metrics Analyser interface requirements defined in clause 6.2.7 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.2.7.1-1 and Coroot as "Support by
open source" and "Related capability of open source" column. The legend of "Support by open source" is the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)92

Table A.2.7.1-1: Comparison of VNF Metrics Analyser interface requirements and Coroot

Identifier Requirement Support by open
source

Related capability of
open source

VNFMetricAnalyser
.001

The VNF Metrics Analyser function shall support
producing the Metrics Analysis Exposure
Interface.

Yes Supports observability by
collecting and analyzing
telemetry data, including
metrics, logs, traces, and
profiles, using eBPF
technology. Provides
dashboards to display and
analyse the collected
metrics efficiently.

MetricAnalyser.Exp
ose.001

The Metrics Analysis Exposure Interface shall
support exposing the metrics analysis results to
authorized consumers.

Partial Provides RBAC for
managing access to
metrics analysis results,
though access control
capabilities may be limited
in some configurations.
Metrics analysis results can
be accessed via
dashboards and shared
through notifications via
webhooks, and other
channels.

MetricAnalyser.Exp
ose.002

The Metrics Analysis Exposure Interface shall
support configuring the processing of metrics to be
analysed.

Partial Supports configuration of
metrics processing by
allowing users to define
thresholds for inspections
and set SLOs. However,
customization is limited to
predefined parameters and
system configurations,
without full flexibility for
advanced metric
processing.

A.2.7.2 OpenSearch

This clause shows comparison of VNF Metrics Analyser interface requirements defined in clause 6.2.7 of ETSI
GS NFV IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.2.7.2-1 and OpenSearch as
"Support by open source" and "Related capability of open source" column. The legend of "Support by open source" is
the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)93

Table A.2.7.2-1: Comparison of VNF Metrics Analyser interface requirements and OpenSearch

Identifier Requirement Support by open
source

Related capability of
open source

VNFMetricAnalyser.001 The VNF Metrics Analyser function shall
support producing the Metrics Analysis
Exposure Interface.

Yes Offers capabilities for
producing a Metrics
Analysis Exposure
Interface. It allows users to
collect, process, and
visualize metrics through
various tools and plugins.
For instance, OpenSearch
can ingest metrics from
sources like Prometheus
and OpenTelemetry,
enabling analysis and
visualization within
OpenSearch Dashboards.

MetricAnalyser.Expose.
001

The Metrics Analysis Exposure Interface
shall support exposing the metrics analysis
results to authorized consumers.

Yes Ensures that metrics
analysis results are
accessible to authorized
consumers through its
integration with
OpenSearch Dashboards.
Users can create custom
visualizations and
dashboards to display
metrics data. Additionally,
OpenSearch supports
RBAC, ensuring that only
authorized users can
access specific metrics and
dashboards.

MetricAnalyser.Expose.
002

The Metrics Analysis Exposure Interface
shall support configuring the processing of
metrics to be analysed.

Yes Provides capabilities for
configuring metric
processing. Users can
define structured queries,
implement transformation
rules, and set up data
pipelines to control metric
ingestion, aggregation, and
storage. It supports real-
time data processing and
customizable workflows,
ensuring efficient handling
of metrics for analysis and
visualization.

A.2.7.3 VictoriaMetrics

This clause shows comparison of VNF Metrics Analyser interface requirements defined in clause 6.2.7 of ETSI
GS NFV-IFA 049 [1] as "Identifier" column and "Requirement" column in Table A.2.7.3-1 and VictoriaMetrics as
"Support by open source" and "Related capability of open source" column. The legend of "Support by open source" is
the following:

"Yes": fully support the interface requirements.

"No": not support the interface requirements.

"Partial": partial support the interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)94

Table A.2.7.3-1: Comparison of VNF Metrics Analyser interface requirements and VictoriaMetrics

Identifier Requirement Support by open
source

Related capability of
open source

VNFMetricAnalyser.001 The VNF Metrics Analyser function shall
support producing the Metrics Analysis
Exposure Interface.

Yes Exposes analysis results
such as metrics from
recording rules and alert
statuses through its Query
API, serving as an
exposure interface for
analytics.

MetricAnalyser.Expose.
001

The Metrics Analysis Exposure Interface
shall support exposing the metrics analysis
results to authorized consumers.

Partial Exposes analytics results
via HTTP endpoints.
However, authentication
and authorization
mechanisms (e.g. OAuth2,
RBAC) can be
implemented externally
using reverse proxies, or
API gateways, as
VictoriaMetrics does not
support these natively.

MetricAnalyser.Expose.
002

The Metrics Analysis Exposure Interface
shall support configuring the processing of
metrics to be analysed.

Partial Supports rule-based
configuration through
VMRule defined recording
and alerting rules, providing
the capability to define
thresholds and compose
analytic expressions using
MetricsQL. However, lacks
advanced pipeline
management features or
runtime configurability
beyond static rule
definitions.

A.3 Comparison of the considered open-source solutions
against VNF generic OAM functions' functional and
interface requirements

A.3.1 Comparison of the considered open-source solutions
against Log Aggregator functional and interface
requirements

Table A.3.1-1 and Table A.3.1-2 provide a comparison of open source solutions against the Log Aggregator functional
and interface requirements, based on the "Requirements" columns in:

• Tables A.1.2.1.2-1 to A.1.2.5.2-1 for the functional requirements, with details listed for each requirement
identifier.

• Tables A.2.2.1-1 to A.2.2.5-1 for the interface requirements, with details listed for each requirement identifier.

The legend of "Support by open-source" is the following:

"Yes": fully support the functional/interface requirements.

"No": not support the functional/interface requirements.

"Partial": partial support the functional/interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)95

Table A.3.1-1: Comparison of the open-source solutions against
the Log Aggregator functional requirements

Identifier Support by
Fluent Bit

Support by
Fluent

Support by
OpenTelemetry

Collector

Support by
Grafana Loki

Support by
OpenSearch

LogAggregator.001 Yes Yes Yes Yes Yes
LogAggregator.002 Yes Yes Yes No Partial
LogAggregator.003 Yes Yes Yes No Yes
LogAggregator.004 Yes Yes Yes Yes Yes
LogAggregator.005 Yes Yes Yes Yes Yes

Table A.3.1-2: Comparison of the open-source solutions against
the Log Aggregator interface requirements

Identifier Support by
Fluent Bit

Support by
Fluent

Support by
OpenTelemetry

Collector

Support by
Grafana Loki

Support by
OpenSearch

VNFLogAggregator.001 Yes Yes Yes Yes Yes
LogAggr.Expose.001 Yes Yes Yes Yes Yes
LogAggr.Expose.002 Yes Yes Yes Yes Yes

A.3.2 Comparison of the considered open-source solutions
against Log Analyser functional and interface requirements

Table A.3.2-1 and Table A.3.2-2 provide a comparison of open source solutions against the Log Analyser functional
and interface requirements, based on the "Requirements" columns in:

• Tables A.1.3.1.2-1 to A.1.3.4.2-1 for the functional requirements, with details listed for each requirement
identifier.

• Tables A.2.3.1-1 to A.2.3.4-1 for the interface requirements, with details listed for each requirement identifier.

The legend of "Support by open-source" is the following:

"Yes": fully support the functional/interface requirements.

"No": not support the functional/interface requirements.

"Partial": partial support the functional/interface requirements.

Table A.3.2-1: Comparison of the open-source solutions against
the Log Analyser functional requirements

Identifier Support by
ElastAlert 2

Support by
Coroot

Support by
Grafana®

Support by
OpenSearch

LogAnalyser.001 Yes Yes Yes Yes
LogAnalyser.002 Yes Yes Yes Yes
LogAnalyser.003 Yes Yes Yes Yes
LogAnalyser.004 Yes Yes Yes Yes

Table A.3.2-2: Comparison of the open-source solutions against
the Log Analyser interface requirements

Identifier Support by
ElastAlert 2

Support by
Coroot

Support by
Grafana®

Support by
OpenSearch

VNFLogAnalyser.001 Yes Yes Yes Yes
LogAnalyser.Expose.001 Yes Yes Yes Yes
LogAnalyser.Expose.002 Yes Yes Yes Yes

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)96

A.3.3 Comparison of the considered open-source solutions
against Traffic Enforcer functional and interface
requirements

Table A.3.3-1 and Table A.3.3-2 provide a comparison of open source solutions against the Traffic Enforcer functional
and interface requirements, based on the "Requirements" columns in:

• Tables A.1.4.1.2-1 to A.1.4.4.2-1 for the functional requirements, with details listed for each requirement
identifier.

• Tables A.2.4.1-1 to A.2.4.4-1 for the interface requirements, with details listed for each requirement identifier.

The legend of "Support by open-source" is the following:

"Yes": fully support the functional/interface requirements.

"No": not support the functional/interface requirements.

"Partial": partial support the functional/interface requirements.

Table A.3.3-1: Comparison of the open-source solutions against
the Traffic Enforcer functional requirements

Identifier Support by
Cilium®

Support by
Istio®

Support by
Linkerd

Support by
Envoy

TrafficEnforcer.001 Yes Yes Yes Yes

Table A.3.3-2: Comparison of the open-source solutions against
the Traffic Enforcer functional and interface requirements

Identifier Support by
Cilium®

Support by
Istio®

Support by
Linkerd

Support by
Envoy

TrafficEnforcerInf.001 Yes Yes Yes Yes
TrafficEnf.Trafm.001 Yes Yes Partial Partial

A.3.4 Comparison of the considered open-source solutions
against Notification Manager functional and interface
requirements

Table A.3.4-1 and Table A.3.4-2 provide a comparison of open source solutions against the Notification Manager
functional and interface requirements, based on the "Requirements" columns in:

• Tables A.1.8.1.2-1 to A.1.8.4.2-1 for the functional requirements, with details listed for each requirement
identifier.

• Tables A.2.5.1-1 to A.2.5.4-1 for the interface requirements, with details listed for each requirement identifier.

The legend of "Support by open-source" is the following:

"Yes": fully support the functional/interface requirements.

"No": not support the functional/interface requirements.

"Partial": partial support the functional/interface requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)97

Table A.3.4-1: Comparison of the open-source solutions against
the Notification Manager functional requirements

Identifier Support by
Prometheus

Alertmanager

Support by
Argo®

Support by
Kafka

Support by
Sensu

NotificationManager.001 Yes Partial Yes Yes
NotificationManager.002 Yes Partial Partial Partial
NotificationManager.003 Yes Yes Yes Yes
NotificationManager.004 Yes Partial Partial Partial

Table A.3.4-2: Comparison of the open-source solutions against
the Notification Manager interface requirements

Identifier Support by
Prometheus

Alertmanager

Support by
Argo®

Support by
Kafka

Support by
Sensu

NotificationManagerInf.001 Partial Partial Yes Yes
Notif.Manager
Notif.Mgmt.001

Partial Partial Partial Partial

Notif.Manager
Notif.Mgmt.002

Yes Yes Yes Partial

A.3.5 Comparison of the considered open-source solutions
against VNF Metrics Analyser functional and interface
requirements

Table A.3.5-1 and Table A.3.5-2 provide a comparison of open source solutions against the Metrics Analyser functional
and interface requirements, based on the "Requirements" columns in:

• Tables A.1.7.1.2-1 to A.1.7.3.2-1 for the functional requirements, with details listed for each requirement
identifier.

• Tables A.2.7.1-1 to A.2.7.3-1 for the interface requirements, with details listed for each requirement identifier.

The legend of "Support by open-source" is the following:

"Yes": fully support the functional/interface requirements.

"No": not support the functional/interface requirements.

"Partial": partial support the functional/interface requirements

Table A.3.5-1: Comparison of the open-source solutions against
the VNF Metrics Analyser functional requirements

Identifier Support by
Coroot

Support by
OpenSearch

Support by
VictoriaMetrics

VNFMetricAnalyser.001 Yes Yes Partial
VNFMetricAnalyser.002 Partial Yes Partial
VNFMetricAnalyser.003 Partial Yes Yes
VNFMetricAnalyser.004 Yes Yes Partial

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)98

Table A.3.5-2: Comparison of the open-source solutions against
the VNF Metrics Analyser functional and interface requirements

Identifier Support by
Coroot

Support by
OpenSearch

Support by
VictoriaMetrics

VNFMetricAnalyser.001 Yes Yes Yes
MetricAnalyser.Expose.001 Partial Yes Partial
MetricAnalyser.Expose.002 Partial Yes Partial

A.4 Cross-comparison of considered open-source
solutions

A.4.1 Cross-comparison of open-source solutions for Log
Aggregator Function

Based on the solutions considered in clause A.1.2, Table A.4.1-1 shows a cross-comparison of the open-source
solutions (FluentBit, Fluentd, OpenTelemetry Collector, Grafana Loki, and OpenSearch) based on defined criteria
focused on functional, interface, and non-functional requirements.

Table A.4.1-1: Cross-comparison of open-source solutions for Log Aggregator Function

Cross comparison
criteria

Fluent Bit Fluentd OpenTelemery
Collector

Grafana Loki OpenSearch

LogAggregator.001 Collects logs
from various
sources
including VNF
instances,
applications,
and
infrastructure
with flexible
filtering
capabilities.

Collects logs
from various
sources with
support for
flexible filtering
based on log
attributes.

Capable of
collecting logs
from various
sources,
supporting
filtering through
processor
components.

Collects logs
via integrations
with Fluentd or
Fluent Bit;
filtering is
possible during
querying.

Capable of collecting
logs via Logstash or
Beats, supports
filtering for log types
and severity.

LogAggregator.002 Provides log
parsing and
format
conversion and
supports basic
enrichment
functionalities.

Offers filtering
and parsing
plugins to
standardize
log formats
and modify
records as
needed.

Can pre-
process logs
with processors
for format
conversion and
enrichment.

Does not
provide built-in
pre-
processing;
requires
upstream tools
for any format
conversion.

Integrates with
Logstash/Beats for
pre-processing,
allowing formatting,
filtering, and
enriching logs.

LogAggregator.003 Supports
configurable log
aggregation
and routing
based on
various criteria.

Provides
output plugins
for aggregation
based on log
level and
instance type,
with buffering
for efficiency.

Enables
configurable log
aggregation
using flexible
pipelines.

Does not
perform
advanced log
aggregation;
querying uses
Loki's query
language for
aggregation.

Supports
configurable
aggregation through
Logstash pipelines or
query-time
aggregation.

LogAggregator.004 Forwards logs
to external
storage
systems for
long-term
storage.

Forwards logs
to external
systems or
vendor-specific
backends for
long-term
storage and
historical
retention.

Forwards logs
to external
systems that
manage
historical
retention, like
Prometheus or
vendor-specific
backends.

Stores
historical logs
with a scalable
backend
optimized for
managing
large volumes.

Capable of storing
logs for long-term
retention, supports
time-based indices
for efficient
management of large
volumes of log
records.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)99

Cross comparison
criteria

Fluent Bit Fluentd OpenTelemery
Collector

Grafana Loki OpenSearch

LogAggregator.005 Forwards
filtered logs to
systems that
provide
exposure
functionalities.

Forwards
filtered logs to
external
systems that
expose logs to
authorized
consumers.

Forwards logs
to systems
enabling access
controls for
exposing logs to
authorized
consumers.

Integrates with
Grafana® for
visualization
and querying;
access control
managed
through
Grafana®

permissions.

Offers RBAC to
expose filtered logs,
visualized using
OpenSearch
Dashboards.

VNFLogAggregator.001 Supports
multiple output
plugins for log
exposure.

Supports
various output
plugins for log
exposure to
multiple
destinations.

Supports
various
receivers to
ingest logs,
allowing
effective log
aggregation.

Can ingest
logs from
various
sources
through Loki
API and
Promtail.

Supports ingest APIs
for batch log
ingestion, allowing
logs to be sent
directly to
OpenSearch.

LogAggr.Expose.001 Supports
secure log
transmission
with TLS/SSL
encryption and
Basic
Authentication.

Supports
secure log
transmission
and various
output plugins
for
authorization.

Supports
secure transport
and
authentication
options for
HTTP receivers.

Integrates with
Grafana® over
TLS for user
management
and access
control.

Offers robust security
features ensuring
that only authorized
users can access
logs.

LogAggr.Expose.002 Supports
various filter
plugins for
customizable
log exposure.

Supports
various filter
plugins to tailor
log exposure
based on
specific
criteria.

Processor
supports
filtering and
modifying logs
for tailored
exposure.

Supports
complex
queries using
LogQL for
effective log
management.

Enables advanced
log filtering and
analysis through
Query DSL and
various APIs.

CRD Support Supports
Custom
Resource
Definitions for
Kubernetes®.

Supports
CRDs for
Kubernetes®
integrations.

Supports
Kubernetes®
CRDs for
integrating with
various
observability
tools.

Does not
directly support
CRDs but can
be used in
Kubernetes®
environments.

Supports CRDs for
integrating with
Kubernetes®,
enabling
customization for log
management
workflows.

Community and
Ecosystem

Established
community
support with
numerous
integrations and
plugins
available.

Large
community
with extensive
plugins and
integrations
available,
widely adopted
in production.

Growing
community;
integrates well
with existing
observability
tools.

Active
community,
particularly in
combination
with Grafana®,
widely used in
observability
setups.

Strong ecosystem
with support from
Amazon, extensive
documentation, and
various plugins
available.

Scalability Designed to
handle high log
throughput in
low-resource
environments.

Scalable
solution for
large log
volumes,
capable of
clustering for
high
availability.

Capable of
efficiently
handling large
volumes of
telemetry data
through its
architecture.

Scalable
storage
backend that
manages large
volumes of log
data
effectively.

Capable of managing
large volumes of log
data through
horizontal scaling
and distributed
architecture.

Customization and
Extensibility

Customizable
with a range of
plugins for
output, filters,
and format
conversions.

Extensible with
support for
custom plugins
and
configurations
for diverse log
handling
needs.

Extensible
through various
components,
allowing users
to create
custom
pipelines and
processes.

Limited
extensibility;
primarily
focused on log
storage and
querying rather
than extensive
customization.

Customizable with
support for various
data ingestion
methods, plugins,
and APIs for tailored
log management.

Based on this comparison, among the open-source solution candidates Fluent Bit, Fluentd, OpenTelemetry Collector,
Grafana Loki, and OpenSearch, no single tool stands out as the absolute best; instead, the choice depends on specific
use cases and functionality requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)100

Based on the overall analysis in clauses A.1.2, A.2.2, and A.4.1, most Log Aggregator functional and interface
requirements can be met by the considered open-source tools. However, Fluent Bit and OpenTelemetry Collector stand
out as the most suitable options. The choice ultimately depends on the specific use cases and functionalities required.
For example, Fluent Bit is lightweight and optimized for high-throughput environments, making it ideal for low-latency
log processing in Kubernetes® or resource-constrained environments. On the other hand, OpenTelemetry Collector's
multi-signal support for logs, metrics, and traces makes it preferable for environments prioritizing comprehensive
observability and detailed data aggregation across diverse sources.

A.4.2 Cross-comparison of open-source solutions for Log
Analyser Function

Based on the solutions considered in clause A.1.3, Table A.4.2-1 shows a cross-comparison of the open-source
solutions (ElastAlert 2, Coroot, Grafana®, and OpenSearch) based on defined criteria focused on functional, interface,
and non-functional requirements.

Table A.4.2-1: Cross-comparison of open-source solutions for Log Analyser Function

Cross comparison
criteria

ElastAlert 2 Coroot Grafana® OpenSearch

LogAnalyser.001 Supports functions
such as abnormal
behaviour detection
(including spikes,
flatlines, blacklist,
whitelist), threshold
crossing, and basic
statistical
processing.

Capable of detecting
abnormal behaviour,
including
performance issues
and resource
bottlenecks in
applications.

Integrates with Loki
for logs, enabling
analysis such as
threshold crossing,
abnormal behaviour
detection, and visual
correlation of logs.

Facilitates log
analysis functions,
including anomaly
detection, threshold-
based alerting,
statistical processing,
and log correlation.

LogAnalyser.002 Configurable
through YAML files,
allowing the setting
of thresholds,
defining time
windows, combining
rules, and
customizing analysis
workflows.

Provides options to
configure alerting
thresholds and
customize log
monitoring settings
to track key
performance
metrics.

Allows users to
configure dashboards
with thresholds,
queries, and alerts,
relying on external log
processing tools for
core analytics.

Configuration
available through
alerting features,
offering customizable
thresholds, time
windows, and
rule-based
processing for log
data.

LogAnalyser.003 Capable of sending
notifications via
email, relevant
platforms, and
custom scripts
based on alerting
conditions.

Integrates with
various platforms to
notify users of
detected issues or
alerts based on
analysis findings.

Supports alerts and
notifications through
integrations with
relevant platforms,
triggered by custom
conditions applied to
data (e.g. log errors,
thresholds).

Capable of sending
notifications through
an alerting
framework,
integrating with
email, webhooks,
and relevant
platforms based on
log analysis.

LogAnalyser.004 Can send alerts to
external systems
that expose results,
although lacks a
native API or
dashboard for
analytics; custom
integrations required
for exposing
analytics results.

Provides
dashboards and
visual reports for
easy access and
sharing of analytics
data with authorized
users.

Offers RBAC for
securely sharing
dashboards and
analytics results with
authorized users
through its web-based
interface.

OpenSearch
Dashboards provide
visual analytics
results, shared
securely with
authorized
consumers via roles
and access controls.

VNFLogAnalyser.001 Utilizes custom
alerting rules to
analyze log data in
OpenSearch or
Elasticsearch,
generating alert
notifications.

Uses Coroot-node-
agent and Coroot-
cluster-agent to
collect logs, with
support for the
OpenTelemetry
protocol for logs.

Offers dynamic log
visualization through
integrations with Loki,
Elasticsearch, and
Prometheus.

Supports API
endpoints for
ingesting log data
and querying it,
allowing the creation
of dashboards for
visualizing log data.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)101

Cross comparison
criteria

ElastAlert 2 Coroot Grafana® OpenSearch

LogAnalyser.Expose.001 Supports secure
endpoints for
delivering alerts,
ensuring alerts
reach intended
consumers.

Supports
integrations with
various alerting
platforms, ensuring
access controls are
properly configured.

Enables controlled
exposure of log
analysis results
through RBAC and
API integrations.

Offers built-in
security features that
facilitate RBAC,
ensuring only
authorized users can
view analysis results.

LogAnalyser.Expose.002 Enables detailed
configuration of log
processing through
YAML rule files for
tailored analysis.

Supports
integrations with
alerting platforms
and offers user
interface
configurations for
access controls and
notifications.

Allows configurable
querying and filtering
in combination with
Explore Logs,
facilitating customized
workflows.

Provides support for
ingest pipelines that
preprocess log data,
with API endpoints
available for defining
processing pipelines
and building queries.

CRD Support Lacks direct
support, requiring
custom
implementations for
integration.

Offers support for
CRD via
Kubernetes®
integration focused
on monitoring.

Not applicable
directly; integrates
with external data
sources.

Provides support for
CRD through
OpenSearch features
and plugins for
customized setups.

Community and
Ecosystem

Maintains an active
community with
ongoing
development efforts.

Developing
ecosystem with
integrations
concentrated on
performance
monitoring.

Benefits from a large
community and
extensive plugin
ecosystem for
visualization.

Features an active
community with
numerous plugins
and ongoing
updates.

Scalability Scales efficiently
with horizontal
scaling options
based on
Elasticsearch.

Architecture
designed for
scalability utilizing
ClickHouse for log
storage and eBPF
technology.

Demonstrates
scalability, leveraging
backend data sources
for managing large
datasets.

Architecture capable
of handling large
datasets and
supporting distributed
log processing.

Customization and
Extensibility

Offers customization
through YAML
configurations but
may require
additional scripting
for complex use
cases.

Customization
options available
through agent
configurations and
user interface
settings.

Extensive
customization options
available through
dashboard
configuration and
plugin support.

Provides robust
customization
through APIs and
query DSL, enabling
tailored log
processing and
analysis.

Based on this comparison, among open-source solution candidates ElastAlert 2, Coroot, Grafana®, and OpenSearch, no
single tool stands out as the absolute best; instead, the choice depends on specific use cases and functionality
requirements.

Based on the overall analysis in clauses A.1.3, A.2.3, and A.4.2, most Log Analyser functional and interface
requirements can be met by the considered open-source tools. However, OpenSearch and Grafana® stand out as the
most suitable options. The choice ultimately depends on the specific use cases and functionalities required. For
example, OpenSearch offers robust search capabilities and advanced query features, making it ideal for detailed log
analysis, visualization, and real-time monitoring. On the other hand, Grafana® excels in creating dynamic dashboards
that facilitate visual analytics and comprehensive insights from log data.

A.4.3 Cross-comparison of open-source solutions for Traffic
Enforcer Function

Based on the solutions considered in clause A.1.4, Table A.4.3-1 shows a cross-comparison of the open-source
solutions (Cilium®, Istio®, Linkerd, and Envoy) based on defined criteria focused on functional, interface, and
non-functional requirements.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)102

Table A.4.3-1: Cross-comparison of open-source solutions for Traffic Enforcer Function

Cross comparison
criteria

Cilium® Istio® Linkerd Envoy

TrafficEnforcer.001 Supports traffic
isolation and
rerouting using
eBPF-based policies,
enabling control over
microservices
communication.

Allows traffic isolation
with policies for
managing
communication
between microservices.
Traffic rerouting is
facilitated through
virtual services and
destination rules.

Implements traffic
policies with rate
limiting and circuit
breaking, enabling
partial isolation and
rerouting through
load balancing and
failover features.

Offers traffic
isolation and
rerouting through
routing and service
mesh features,
incorporating rate
limiting and traffic
management across
microservices.

TrafficEnforcerInf.001 Produces the traffic
management
interface via
CiliumNetworkPolicy
and
CiliumClusterwideNet
workPolicy.
Integration with
ingress/egress
gateways and both
REST and gRPC
APIs is supported.

Provides traffic
management
capabilities through
configuration resources
like VirtualService.
Users can control
routing behavior via
YAML files, supporting
retries and failover
handling.

Facilitates traffic
management through
features like Traffic
Split, which allows for
efficient routing and
canary releases using
the SMI, TrafficSplit
API.

Enables traffic
management via
routing capabilities,
allowing the
definition of routes
based on various
criteria, with
dynamic
management
facilitated through
the Envoy API.

TrafficEnf.Trafm.001 Allows for blocking
and rerouting traffic
using network policy
definitions, providing
granular control of
workloads instances.
The Egress Gateway
can manage
outbound traffic.

Supports traffic blocking
and rerouting using
VirtualServices and
Sidecar, which define
rules for managing
traffic flow to specific
services based on
various conditions.

Provides capabilities
for rerouting and flow
control policies, with
features such as
circuit breaking to
isolate failing services
and rate limiting for
traffic control.

Facilitates rerouting
and blocking of
traffic through
features like Route
Matching and
HTTPFilters, which
enable custom logic
for managing traffic
flows. Custom logic
may be needed for
instance-based
control.

CRD Support Strong support for
CRDs via
Kubernetes® for
traffic policies,
enhancing integration
and extensibility.

Comprehensive CRD
support through Istio®'s
resources, such as
VirtualService,
DestinationRule, and
Gateway, enabling
detailed traffic
management
configurations.

Limited CRD support,
primarily through
Service Profiles and
TrafficSplit
configurations within
the SMI.

Good support for
custom resources,
primarily focused on
service definitions
and routing
configurations rather
than dedicated
traffic management
CRDs.

Community and
Ecosystem

A growing community
with active
contributions and
support for various
integrations,
particularly within
Kubernetes®
environments.

Well-established
ecosystem with
extensive
documentation and
community support.
Strong integrations with
Kubernetes® and
various cloud-native
tools enhance its
usability.

An emerging
community with
increasing adoption
and integration with
Kubernetes®,
supporting service
mesh patterns.

A robust community
and ecosystem that
is widely used
across various
cloud-native
applications, offering
strong support for
integrations with
existing systems
and tools.

Scalability Highly scalable due
to its eBPF
architecture, allowing
efficient packet
processing without
significant overhead,
making it suitable for
large environments.

Scalable architecture
supports large
deployments, with
fine-grained traffic
control and routing
policies to effectively
manage extensive
microservice
interactions.

Offers good
scalability, with
features like Traffic
Split for efficient
distribution and
control of traffic
across multiple
service versions.

Highly scalable and
performant, capable
of managing large
volumes of traffic
with low latency due
to its efficient
architecture and
service mesh
capabilities.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)103

Cross comparison
criteria

Cilium® Istio® Linkerd Envoy

Customization and
Extensibility

Highly customizable
with support for
various policies and
configurations
through YAML files
and eBPF, enabling
tailored traffic
management
solutions.

Extensive customization
options are available
through configurations
in YAML and custom
resource definitions,
allowing users to define
specific routing and
traffic management
behaviors.

Customization is
achievable,
particularly in traffic
management, though
it may be more
limited compared to
Istio® or Cilium®
regarding granular
control.

Supports extensive
customization via
dynamic routing
configurations and
custom logic,
although specific
implementations
may require
additional effort.

Based on this comparison, among open-source solution candidates Cilium®, Istio®, Linkerd, and Envoy, no single tool
stands out as the absolute best; instead, the choice depends on specific use cases and functionality requirements.

Based on the overall analysis in clauses A.1.4, A.2.4, and A.4.3, most Traffic Enforcer functional and interface
requirements can be met by the considered tools. However, Cilium® and Istio® stand out as the most suitable options.
The choice ultimately depends on the specific use cases and functionalities required. For example, Cilium® excels at
layer 4 networking, leveraging eBPF technology for efficient traffic management with minimal overhead, particularly in
cloud-native environments. This makes it ideal for scenarios requiring high-performance, low-latency traffic control. In
contrast, Istio® is more focused on layer 7 traffic management, offering advanced features such as sophisticated routing,
policy enforcement, and observability. This makes Istio® preferable for complex service mesh scenarios that require
detailed control and monitoring of microservice communications.

A.4.4 Cross-comparison of open-source solutions for Notification
Manager Function

Based on the solutions considered in clause A.1.8, Table A.4.4-1 shows a cross-comparison of the open-source
solutions (Prometheus Alertmanager, Argo®, Kafka and Sensu) based on defined criteria focusing on functional,
interface, and non-functional requirements.

Table A.4.4-1: Cross-comparison of open-source solutions for Notification Manager Function

Cross comparison
criteria

Prometheus
Alertmanager

Argo® Kafka Sensu

NotificationManager.001 Prometheus
Alertmanager can
receive alerts only
from Prometheus-
compatible monitoring
systems using HTTP
API or Alertmanager
federation. However, it
lacks built-in support
for direct VNF or PaaS
service notifications
unless those services
integrate with
Prometheus exporters.

Does not have a
native mechanism to
receive notifications
from external
services.

Kafka is a distributed
event streaming
platform that natively
supports receiving
notifications from
VNFs & PaaS
services. Notifications
can be sent to Kafka
via APIs, message
queues, or
connectors, ensuring
high availability,
scalability, and
real-time processing.

Sensu can receive
monitoring events
and notifications
from VNFs & PaaS
services via API,
agents, and service
hooks. However, it is
less scalable than
Kafka for large-scale
distributed
environments.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)104

Cross comparison
criteria

Prometheus
Alertmanager

Argo® Kafka Sensu

NotificationManager.002 Prometheus
Alertmanager provides
built-in deduplication,
grouping, and
inhibition of alerts. It
reduces duplicate
alerts and sends
grouped notifications
based on labels and
routing configurations.
However, it cannot
perform advanced
event correlation
beyond basic matching
rules.

Does not have any
built-in capability to
process, group, or
deduplicate
notifications.

Does not process
notifications itself, but
allows event
processing
frameworks like
Kafka Streams and
kSQL which enable
grouping, filtering,
deduplication, and
correlation of
notifications in real
time.

Sensu provides
event filtering and
deduplication to
reduce alert noise.
However, its
deduplication logic is
limited to event
occurrences and
lacks advanced
event correlation
and transformation
capabilities like
Kafka Streams.

NotificationManager.003 Alertmanager routes
alerts to predefined
receivers (email,
webhooks, etc.) based
on label-based routing
rules. However, it
lacks dynamic
consumer
authorization controls
(no fine-grained
access management).

It is a workflow
orchestration tool, It
does not handle
notification routing.

Kafka natively
supports event
routing to multiple
authorized
consumers:

• Consumer
groups allow
multiple services
to receive
notifications.

• ACLs & RBAC
provide
fine-grained
access control.

• Kafka Streams
& kSQL allow
filtering and
transformation
of messages
before routing.

Sensu supports
event routing to
specific handlers
(e.g. webhooks,
alert services). It
provides basic
access control via
RBAC, but lacks
Kafka's scalability
and dynamic
subscription
management.

NotificationManager.004 Alertmanager does not
provide dynamic
subscription
management. Routing
is statically defined in
configuration files, and
consumers cannot
manage their
subscriptions
dynamically.

Does not support
event-driven
subscription
management.

Subscription
management needs
to be handled by
external
authentication
mechanisms
(e.g. Kafka ACLs,
OAuth, or RBAC in
applications).
Kafka natively
supports
consumer-managed
subscriptions via
consumer groups,
topic-based pub/sub
model, and access
control mechanisms.
Consumers can
dynamically
subscribe/unsubscrib
e to specific event
streams.

Sensu supports
basic subscription
management via
event handlers and
RBAC. However, it
lacks Kafka's
dynamic topic-based
subscription model
and scalability.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)105

Cross comparison
criteria

Prometheus
Alertmanager

Argo® Kafka Sensu

NotificationManagerInf.0
01

Alertmanager
produces notifications
via its API and routes
alerts to configured
receivers (email,
webhooks, etc.).
However, it lacks a
dedicated interface for
managing notifications
dynamically
(everything is
configured statically
via YAML).

It is a workflow
automation tool, not
a notification
manager. It does not
produce or expose a
notifications
management
interface.

Kafka's API allows
applications to
produce and manage
notifications
dynamically, offering
high throughput,
persistence, and
fine-grained access
control.

Sensu produces
notifications via
event pipelines and
handlers. It exposes
an API to manage
events, making it a
viable notification
management
interface for
monitoring systems.
However, it lacks
Kafka's high
scalability and
message
persistence.

Notif.Manager
Notif.Mgmt.001

It does not provide
dynamic subscription
management. Instead,
notifications are routed
based on predefined
static configurations
(YAML-based routing
rules). Consumers
cannot dynamically
subscribe/unsubscribe

Argo® is a workflow
automation tool, not
designed for
notification handling
or subscription
management.

It does not offer a
built-in API for
dynamically
managing consumer
subscriptions but
supports a publish-
subscribe model,
allowing consumers
to subscribe or
unsubscribe from
topics dynamically.
Additionally, it
provides fine-grained
access control for
subscriptions through
ACLs and RBAC.

Supports
subscription-based
event routing via
configuration and
API, with predefined
subscriptions rather
than dynamic
runtime
management.

Notif.Manager
Notif.Mgmt.002

Prometheus
Alertmanager is useful
for alert-based
notifications but lacks
access control &
persistence.

Argo® is a workflow
automation tool. It
can trigger workflows
but does not natively
handle notifications
to external
consumers.

Provides the most
robust notification
system. It ensures
reliable delivery,
persistence, and
consumer-based
access control.

Enables the delivery
of processed
notifications to
authorize
consumers via
handlers, RBAC,
and subscriptions.
Notifications are
processed in
real-time but are not
retained for future
retrieval.

CRD Support Provides CRD for
managing
Alertmanager
instances but lacks
built-in dynamic
subscription handling.

Offers CRD support
via Kubernetes® for
workflows and event-
driven automation,
but not specifically
for notifications.

Does not natively
support CRD but
integrates with
Strimzi or Confluent
Operator, CRD-based
management of
Kafka topics and
consumer groups.

Supports CRD via
Sensu Go API with
custom event
processing and
routing
configurations.

Community and
Ecosystem

Maintains an active
and well-established
community with
ongoing development
and contributions.

Growing ecosystem
with strong
Kubernetes®-native
integration and
increasing adoption.

Large, mature
community with
extensive enterprise
adoption and
ecosystem of plugins.

Active open-source
community with
contributions
focused on
observability and
monitoring

Scalability Supports horizontal
scaling via sharding
and clustering but
requires additional
tools like Thanos for
large-scale
deployments.

Designed for
Kubernetes-native
scalability,
leveraging
Kubernetes®
controllers for
efficient workload
management.

Highly scalable, built
for distributed
message streaming,
capable of handling
large-scale event
processing.

Supports distributed
architectures but
scales primarily
through agent-based
workload
distribution.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)106

Cross comparison
criteria

Prometheus
Alertmanager

Argo® Kafka Sensu

Customization and
Extensibility

Offers Alert templates
& notification routing
rules.
Relies on external
integrations (Grafana®,
Webhooks, or custom
scripts).

Uses Argo®
Workflows & Argo®
Events for
automation scripting
and supporting
YAML-based
workflow
customization.

Allows custom event
processing logic
using Kafka Streams
API (Java/Scala).

Supports scripting
(Go, Python, Ruby)
for event handling.

Based on this comparison, among the open-source solution candidates Prometheus Alertmanager, Argo®, Kafka, and
Sensu, no single tool stands out as the absolute best; instead, the choice depends on specific use cases and functionality
requirements.

Based on the overall analysis in clauses A.1.8, A.2.5 and A.4.4, most Notification Manager functional and interface
requirements can be met by the considered open-source tools. However, Kafka and Prometheus Alertmanager stand out
as the most suitable options. The choice ultimately depends on the specific use cases and functionalities required. For
example, Kafka is ideal for high-volume, scalable, and event-driven architectures, providing dynamic consumer
management, fine-grained access control. It ensures efficient routing of notifications to authorized consumers and
supports strong access control. On the other hand, Prometheus Alertmanager is optimized for monitoring alerts. It is
best suited for alerting and monitoring use cases where notifications follow predefined static routes based on labels.

A.4.5 Cross-comparison of open-source solutions for Metrics
Analyser Function

Based on the tools considered in clause A.1.7, Table A.4.5-1 shows a cross-comparison of the open-source solutions
(Coroot, OpenSearch, and VictoriaMetrics) based on defined criteria focused on functional, interface, and
non-functional requirements.

Table A.4.5-1: Cross-comparison of open-source solutions for Metrics Analyser Function

Cross comparison criteria Coroot OpenSearch VictoriaMetrics
VNFMetricAnalyser.001 Provides built-in analysis

for performance issues
and application-level
anomalies using
Prometheus data.

Supports advanced
metrics analysis with
custom queries,
aggregations, and
anomaly detection
through plugins.

Supports time-series analysis
with MetricsQL, but advanced
analytics like anomaly
detection require external
customization.

VNFMetricAnalyser.002 Provides basic
configuration options for
adjusting thresholds and
defining SLOs for
commonly monitored
metrics.

Fully configurable via
dashboards, queries, and
alerting rules, supporting
custom analysis pipelines.

Supports static rule-based
configurations via VMRule
but lacks dynamic or runtime
configurability.

VNFMetricAnalyser.003 Provides basic webhook
notifications for incidents,
lacking advanced alert
routing features.

Provides built-in alerting
with routing to multiple
channels including email
and webhooks.

Provides advanced alert
routing, grouping, and
suppression with external
notification support.

VNFMetricAnalyser.004 Provides web dashboards
for sharing analytics with
authorized users.

Supports secure,
role-based access to
dashboards and analytics
with fine-grained user
permissions.

Exposes results via Query
API with basic security, but
advanced access control
requires external integration.

VNFMetricAnalyser.001 Provides observability
dashboards and analysis
using eBPF and
Prometheus data,
covering metrics, logs,
traces, and profiles.

Provides a complete
analysis and visualization
pipeline with integration
for Prometheus and
OpenTelemetry in
OpenSearch Dashboards.

Provides an Query API for
exposing analytics results
such as recording rule
outputs and alert statuses.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)107

Cross comparison criteria Coroot OpenSearch VictoriaMetrics
MetricAnalyser.Expose.001 Supports result sharing

via dashboards and
notifications with basic
RBAC, though access
control may be limited in
some setups.

Provides secure, role-
based access to metrics
dashboards, ensuring
controlled exposure of
analysis results to
authorized users.

Exposes analytics through
Query APIs but requires
external components for
enforcing authentication and
authorization.

MetricAnalyser.Expose.002 Allows threshold and SLO
configuration for metrics
processing but lacks
flexibility beyond
predefined parameters.

Provides advanced,
customizable metric
processing through
queries, pipelines, and
transformation rules for
real-time analysis.

Supports static rule-based
configuration using VMRule
but lacks dynamic pipeline
management or advanced
processing control.

CRD Support Offers a Kubernetes®
Operator that simplifies
deployment and
management within
Kubernetes® clusters.
While it utilizes Helm
charts, it doesn't define
extensive CRDs for
granular configurations.

Provides comprehensive
CRDs support, allowing
detailed management of
OpenSearch clusters and
dashboards through
custom resources.

Provides multiple CRDs
(e.g. VMCluster, VMRule,
VMAgent), facilitating detailed
configuration and
management of its
components within
Kubernetes® environments.

Community and Ecosystem Has an active community
with resources like Slack
channels, GitHub
repositories, and
documentation. Its
ecosystem is growing,
focusing on observability
and performance
monitoring.

Has a vibrant community-
driven ecosystem, with
extensive documentation,
forums, and a wide range
of plugins and
integrations, based on the
foundation of
Elasticsearch.

Has a steadily growing
community, offering
comprehensive
documentation, GitHub
repositories, and integrations
with tools like Grafana® and
Prometheus.

Scalability Designed for simplicity,
scales effectively for small
to medium-sized
deployments. Its
architecture supports
horizontal scaling but may
require additional
configurations for
large-scale environments.

Supports both vertical and
horizontal scaling. It can
handle large volumes of
data and complex queries,
making it suitable for
enterprise-level
deployments.

Designed for high
performance and scalability, it
can handle millions of data
points per second. It works in
both single-node and cluster
setups, making it efficient for
storing and accessing time-
series data.

Customization and
Extensibility

Provides customization
options through its
configuration files and
supports integrations with
various data sources.
However, its extensibility
is somewhat limited
compared to more mature
platforms.

Offers extensive
customization and
extensibility through its
plugin architecture,
allowing users to develop
custom plugins and
leverage existing ones to
enhance functionality.

Supports customization via its
MetricsQL query language
and configuration files. While
it offers essential extensibility
features, advanced
customizations may require
additional tooling or
integrations.

Based on this comparison, among open-source solution candidates Coroot, OpenSearch, and VictoriaMetrics, no single
tool stands out as the absolute best; instead, the choice depends on specific use cases and functionality requirements.

Based on the overall analysis in clauses A.1.7, A.2.7, and A.4.5, most Metrics Analyser functional and interface
requirements can be met by the considered tools. However, VictoriaMetrics and OpenSearch stand out as the most
suitable options. The choice ultimately depends on the specific use cases and functionalities required. For example,
VictoriaMetrics is best suited for handling large amounts of time-series data, offering fast processing, efficient storage,
and quick querying, making it ideal for heavy environments. In contrast, OpenSearch provides a unified observability
platform with native RBAC, dashboards, and ML-driven anomaly detection, optimized for interactive analysis.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)108

A.5 Example CRD schemas

A.5.1 OpenSearch resource

A.5.1.1 OpenSearchCluster

This example includes a subset of the OpenSearchCluster CRD [13] that has been considered when performing the
input parameter mapping in clause 8.6.1.

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 annotations:
 controller-gen.kubebuilder.io/version: v0.14.0
 name: opensearchclusters.opensearch.opster.io
spec:
 group: opensearch.opster.io
 names:
 kind: OpenSearchCluster
 listKind: OpenSearchClusterList
 plural: opensearchclusters
 singular: opensearchcluster
 scope: Namespaced
 versions:
 - name: v1
 schema:
 openAPIV3Schema:
 description: "Schema for OpenSearchCluster API"
 type: object
 properties:
 apiVersion: {type: string, description: "Defines the versioned schema of
the object."}
 kind: {type: string, description: "Represents the REST resource this object
corresponds to."}
 metadata: {type: object}
 spec:
 description: ClusterSpec defines the desired state of OpenSearchCluster
 type: object
 required: [nodePools]
 properties:
 general:
 description: INSERT ADDITIONAL SPEC FIELDS - desired state of cluster
 type: object
 properties: {serviceName: {type: string}, version: {type: string}}
 required: [serviceName]
 dashboards:
 description: Dashboards configuration.
 type: object
 properties:
 enable: {type: boolean}
 replicas: {type: integer, format: int32}
 version: {type: string}
 resources:
 description: ResourceRequirements describes the compute resource
requirements.
 type: object
 properties:
 limits:

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)109

 description: Limits describes the maximum amount of compute
resources allowed.
 additionalProperties:
 anyOf: [type: integer, type: string]
 pattern: ^(\+|-)?(([0-9]+(\.[0-9]*)?)|(\.[0-
9]+))(([KMGTPE]i)|[numkMGTPE]|([eE](\+|-)?(([0-9]+(\.[0-9]*)?)|(\.[0-9]+))))?$
 x-kubernetes-int-or-string: true
 type: object
 requests:
 description: Requests describes the minimum amount of compute
resources required. If Requests is omitted for a container, it defaults to Limits if
that is explicitly specified, otherwise to an implementation-defined value. Requests
cannot exceed Limits.
 additionalProperties:
 anyOf: [type: integer, type: string]
 pattern: ^(\+|-)?(([0-9]+(\.[0-9]*)?)|(\.[0-
9]+))(([KMGTPE]i)|[numkMGTPE]|([eE](\+|-)?(([0-9]+(\.[0-9]*)?)|(\.[0-9]+))))?$
 x-kubernetes-int-or-string: true
 type: object
 required: [replicas, version]
 nodePools:
 description: "Node pools configuration"
 type: array
 items:
 type: object
 properties:
 component: {type: string}
 replicas: {type: integer, format: int32}
 diskSize: {type: string}
 nodeSelector: {additionalProperties: {type: string}, type:
object}
 resources:
 description: Resource requirements describes the compute
resource requirements.
 type: object
 properties:
 limits:
 description: Limits describes the maximum amount of compute
resources allowed.
 additionalProperties:
 anyOf: [type: integer, type: string]
 pattern: ^(\+|-)?(([0-9]+(\.[0-9]*)?)|(\.[0-
9]+))(([KMGTPE]i)|[numkMGTPE]|([eE](\+|-)?(([0-9]+(\.[0-9]*)?)|(\.[0-9]+))))?$
 x-kubernetes-int-or-string: true
 type: object
 requests:
 description: Requests describes the minimum amount of
compute resources required. If Requests is omitted for a container, it defaults to
Limits if that is explicitly specified, otherwise to an implementation-defined value.
Requests cannot exceed Limits.
 additionalProperties:
 anyOf: [type: integer, type: string]
 pattern: ^(\+|-)?(([0-9]+(\.[0-9]*)?)|(\.[0-
9]+))(([KMGTPE]i)|[numkMGTPE]|([eE](\+|-)?(([0-9]+(\.[0-9]*)?)|(\.[0-9]+))))?$
 x-kubernetes-int-or-string: true
 type: object
 roles: {type: array, items: {type: string}}
 required: [component, replicas, roles]

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)110

A.5.2 Fluent Bit resources

A.5.2.1 ClusterFilter

This example includes a subset of the ClusterFilter CRD [12] that has been considered when performing the input
parameter mapping in clause 7.6.1.

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 annotations:
 controller-gen.kubebuilder.io/version: v0.15.0
 name: clusterfilters.fluentbit.fluent.io
spec:
 group: fluentbit.fluent.io
 names:
 kind: ClusterFilter
 listKind: ClusterFilterList
 plural: clusterfilters
 singular: clusterfilter
 scope: Cluster
 versions:
 - name: v1alpha2
 schema:
 openAPIV3Schema:
 description: ClusterFilter defines a cluster-level Filter configuration.
 type: object
 properties:
 apiVersion: {description: API version of the resource., type: string}
 kind: {description: Kind of the resource., type: string}
 metadata: {type: object}
 spec:
 type: object
 description: Specification of desired Filter configuration.
 properties:
 filters:
 type: array
 description: A set of filter plugins in order.
 items:
 type: object
 properties:
 grep:
 type: object
 description: Grep defines Grep Filter configuration.
 properties:
 exclude: {type: string, description: "Exclude records which
field matches the regular expression. Value Format: FIELD REGEX."}
 regex: {type: string, description: "Keep records which field
matches the regular expression. Value Format: FIELD REGEX."}
 kubernetes:
 type: object
 description: Kubernetes defines Kubernetes Filter
configuration.
 properties:
 kubeURL: {type: string, description: API Server endpoint.}
 labels: {type: boolean, description: Include Kubernetes
resources labels in the extra metadata.}
 regexParser: {type: string, description: Set an alternative
Parser to process record Tag and extract pod_name, namespace_name, container_name and

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)111

docker_id. The parser must be registered in a parsers file (refer to parser filter-
kube-test as an example).}
 mergeLog: {type: boolean, description: When enabled, it
checks if the log field content is a JSON string map, if so, it append the map fields
as part of the log structure.}
 annotations: {type: boolean, description: Include Kubernetes
resource annotations in the extra metadata.}
 modify:
 type: object
 description: Modify defines Modify Filter configuration.
 properties:
 alias: {type: string, description: Alias for the plugin.}
 conditions:
 type: array
 description: All conditions have to be true for the rules
to be applied.
 items:
 type: object
 properties:
 aKeyMatches: {type: string, description: Is true if a
key matches regex KEY.}
 keyDoesNotExist: {type: object, description: Is true if
KEY does not exist, additionalProperties: {type: string}}
 keyValueDoesNotMatch: {type: object, description: Is
true if key KEY exists and its value does not match VALUE, additionalProperties: {type:
string}}
 rules:
 type: array
 description: Rules are applied in the order they appear,
with each rule operating on the result of the previous rule.
 items:
 type: object
 properties:
 add: {type: object, description: Add a key/value pair
with key KEY and value VALUE if KEY does not exist, additionalProperties: {type:
string}}
 remove: {type: string, description: Remove a key/value
pair with key KEY if it exists }
 rename: {type: object, description: Rename a key/value
pair with key KEY to RENAMED_KEY if KEY exists AND RENAMED_KEY does not exist,
additionalProperties: {type: string}}
 parser:
 type: object
 description: Parser defines Parser Filter configuration.
 properties:
 keyName: {type: string, description: Specify field name in
record to parse.}
 parser: {type: string, description: Specify the parser name
to interpret the field. Multiple Parser entries are allowed (split by comma).}
 preserveKey: {type: boolean, description: Keep original
Key_Name field in the parsed result. If false, the field will be removed.}
 reserveData: {type: boolean, description: Keep all other
original fields in the parsed result. If false, all other original fields will be
removed.}
 unescapeKey: {type: boolean, description: 'If the key is a
escaped string (e.g: stringify JSON), unescape the string before to apply the parser.'}

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)112

A.5.2.2 ClusterOutput

This example includes a subset of the ClusterOutput CRD [12] that has been considered when performing the input
parameter mapping in clause 7.6.1.

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 annotations:
 controller-gen.kubebuilder.io/version: v0.15.0
 name: clusteroutputs.fluentbit.fluent.io
spec:
 group: fluentbit.fluent.io
 names:
 kind: ClusterOutput
 listKind: ClusterOutputList
 plural: clusteroutputs
 singular: clusteroutput
 scope: Cluster
 versions:
 - name: v1alpha2
 schema:
 openAPIV3Schema:
 description: ClusterOutput is the Schema for the cluster-level outputs API
 type: object
 properties:
 apiVersion: {description: Defines the versioned schema of this object.,
type: string}
 kind: {description: Represents the REST resource type in CamelCase., type:
string}
 metadata: {type: object}
 spec:
 description: OutputSepc defines the desired state of ClusterOutput
 type: object
 properties:
 file:
 description: File Output configuration
 type: object
 properties:
 delimiter: {description: The character to separate each pair.
Applicable only if format is csv or ltsv., type: string}
 file: {description: Set file name to store the records. If not set,
the file name will be the tag associated with the records., type: string}
 format:
 description: 'The format of the file content.'
 enum: [out_file, plain, csv, ltsv, template]
 type: string
 path: {description: Absolute directory path to store files. If not
set, Fluent Bit will write the files on its own positioned directory., type: string}
 opentelemetry:
 description: OpenTelemetry defines OpenTelemetry Output
configuration.
 type: object
 properties:
 addLabel: {description: This allows you to add custom labels to all
metrics exposed through the OpenTelemetry exporter. You may have multiple of these
fields., additionalProperties: {type: string}, type: object}
 header: {description: Add a HTTP header key/value pair. Multiple
headers can be set., additionalProperties: {type: string}, type: object}
 host: {description: IP address or hostname of the target HTTP
Server, default `127.0.0.1`, type: string}

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)113

 networking:
 description: Include fluentbit networking options for this
output-plugin.
 type: object
 properties:
 DNSMode: {description: Select the primary DNS connection type
(TCP or UDP)., enum: [TCP, UDP], type: string}
 DNSPreferIPv4: {description: Prioritize IPv4 DNS results when
trying to establish a connection., type: boolean}
 sourceAddress: {description: Specify network address to bind
for data traffic., type: string}
 port: {description: TCP port of the target OpenTelemetry instance,
default `80`.', format: int32, minimum: 1, maximum: 65535, type: integer}

A.5.3 Istio® resources

A.5.3.1 DestinationRule

This example includes a subset of the DestinationRule CRD [11] that has been considered when performing the input
parameter mapping in clause 6.6.1.

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 name: destinationrules.networking.istio.io
spec:
 group: networking.istio.io
 names:
 kind: DestinationRule
 plural: destinationrules
 singular: destinationrule
 scope: Namespaced
 versions:
 - name: v1
 schema:
 openAPIV3Schema:
 type: object
 properties:
 spec:
 description: "Configuration affecting load balancing, outlier detection,
etc."
 type: object
 properties:
 host: {description: The name of a service from the service registry.,
type: string}
 subsets:
 description: One or more named sets that represent individual
versions of a service.
 type: array
 items:
 type: object
 properties:
 labels:
 description: Labels apply a filter over the endpoints of a
service in the service registry.
 type: object
 additionalProperties: {type: string}
 name: {description: Name of the subset., type: string}

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)114

 trafficPolicy:
 description: Traffic policies that apply to this subset.
 type: object
 properties:
 loadBalancer:
 description: Settings controlling the load balancer
algorithms.
 type: object
 properties:
 simple: {type: string, enum: [UNSPECIFIED, LEAST_CONN,
RANDOM, PASSTHROUGH, ROUND_ROBIN, LEAST_REQUEST]}
 oneOf:
 - not:
 anyOf:
 - required: [simple]
 - required: [consistentHash]
 - required: [simple]
 - required: [consistentHash]
 required: [name]

A.5.3.2 AuthorizationPolicy

This example includes a subset of the AuthorizationPolicy CRD [11] that has been considered when performing the
input parameter mapping in clause 6.6.1.

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 name: authorizationpolicies.security.istio.io
spec:
 group: security.istio.io
 names:
 kind: AuthorizationPolicy
 plural: authorizationpolicies
 singular: authorizationpolicy
 scope: Namespaced
 versions:
 - name: v1
 schema:
 openAPIV3Schema:
 properties:
 spec:
 description: Configuration for access control on workloads.
 properties:
 action: { description: Optional, enum: [ALLOW, DENY, AUDIT, CUSTOM],
type: string}
 rules:
 description: Optional.
 items:
 type: object
 properties:
 from:
 description: Optional.
 items:
 type: object
 properties:
 source:
 description: Source specifies the source of a request.
 type: object

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)115

 properties:
 ipBlocks: {description: Optional., items: {type:
string}, type: array}
 namespaces: {description: Optional., items: {type:
string}, type: array}
 principals: {description: Optional., items: {type:
string}, type: array}
 type: array
 to:
 description: Optional.
 items:
 properties:
 operation:
 description: Operation specifies the operation of a
request.
 type: object
 properties:
 hosts: {description: Optional., items: {type: string},
type: array}
 methods: {description: Optional., items: {type:
string}, type: array}
 paths: {description: Optional., items: {type: string},
type: array}
 ports: {description: Optional., items: {type: string},
type: array}
 type: object
 type: array
 when:
 description: Optional.
 items:
 type: object
 properties:
 key: {description: The name of an Istio attribute., type:
string}
 notValues: {description: Optional., items: {type: string},
type: array}
 values: {description: Optional., items: {type: string},
type: array}
 required: [key]
 type: array
 type: array
 selector:
 properties:
 matchLabels:
 description: One or more labels that indicate a specific set of
pods/VMs on which a policy should be applied.
 type: object
 additionalProperties:
 type: string
 type: object
 type: object
 type: object

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)116

A.5.4 Prometheus Alertmanager resources

A.5.4.1 AlertmanagerConfig

This example includes a subset of the AlertmanagerConfig CRD [14] that has been considered when performing the
input parameter mapping in clause 9.6.1.

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 name: alertmanagerconfigs.monitoring.coreos.com
spec:
 group: monitoring.coreos.com
 names:
 plural: alertmanagerconfigs
 singular: alertmanagerconfig
 kind: AlertmanagerConfig
 listKind: AlertmanagerConfigList
 scope: Namespaced
 versions:
 - name: v1alpha1
 served: true
 storage: true
 schema:
 openAPIV3Schema:
 description: AlertmanagerConfig configures the Prometheus Alertmanager,
specifying how alerts should be grouped, inhibited and notified to external systems.
 type: object
 required: [spec]
 properties:
 metadata: {type: object}
 spec:
 type: object
 description: AlertmanagerConfigSpec is a specification of the desired
behavior of the Alertmanager configuration.
 properties:
 route:
 type: object
 description: "The Alertmanager route definition for alerts matching
the resource's namespace. If present, it will be added to the generated Alertmanager
configuration as a first-level route."
 properties:
 receiver: {type: string, description: Name of the receiver for this
route. If not empty, it should be listed in the `receivers` field.}
 matchers:
 description: "List of matchers that the alert's labels should
match. For the first level route, the operator removes any existing equality and regexp
matcher on the `namespace` label and adds a `namespace: <objectnamespace>` matcher".
 type: array
 items:
 type: object
 properties:
 name: {description: Label to match., type: string}
 value: {description: Label value to match., type: string}
 matchType: {description: Match operation available with
AlertManager >= v0.22.0 and takes precedence over Regex (deprecated) if non-empty.,
type: string, enum: ["=", "!="]}
 regex: {description: "Whether to match on equality (false) or
regular-expression (true). Deprecated: for AlertManager >= v0.22.0, `matchType` should
be used instead.",type: Boolean}

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)117

 required: [name]
 groupBy:
 type: array
 description: List of labels to group by. Labels must not be
repeated (unique list). Special label "..." (aggregate by all possible labels), if
provided, must be the only element in the list.
 items: {type: String}
 receivers:
 type: array
 description: List of receivers.
 items:
 type: object
 properties:
 name: {type: string, description: Name of the receiver. Must be
unique across all items from the list., minLength: 1}
 emailConfigs:
 type: array
 description: List of Email configurations.
 items:
 type: object
 properties:
 to: {type: string, description: The email address to send
notifications to.}
 from: {type: string, description: "The sender address."}
 smarthost: {type: string, description: The SMTP host and
port through which emails are sent. E.g. example.com:25}
 authUsername: {type: string, description: The username to
use for authentication.}
 required: [name]
 inhibitRules:
 type: array
 description: List of inhibition rules. The rules will only apply to
alerts matching the resource's namespace.
 items:
 type: object
 properties:
 sourceMatch:
 type: array
 description: Matchers for which one or more alerts have to
exist for the inhibition to take effect. The operator enforces that the alert matches
the resource's namespace.
 items:
 type: object
 properties:
 matchType: {description: "Match operation available with
AlertManager >= v0.22.0 and takes precedence over Regex (deprecated) if non-empty.",
enum: ['!=', '=', '=~', '!~'], type: string}
 name: {description: Label to match., minLength: 1, type:
string}
 regex: {description: "Whether to match on equality (false)
or regular-expression (true). Deprecated: for AlertManager >= v0.22.0, `matchType`
should be used instead.", type: Boolean}
 required: [name]
 targetMatch:
 type: array
 description: Matchers that have to be fulfilled in the alerts
to be muted. The operator enforces that the alert matches the resource's namespace.
 items:
 type: object
 properties:

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)118

 matchType: {description: "Match operation available with
AlertManager >= v0.22.0 and takes precedence over Regex (deprecated) if non-empty.",
enum: ['!=', '=', '=~', '!~'], type: string}
 name: {description: Label to match., minLength: 1, type:
string}
 regex: {description: "Whether to match on equality (false)
or regular-expression (true). Deprecated: for AlertManager >= v0.22.0, `matchType`
should be used instead.", type: Boolean}
 required: [name]
 equal:
 type: array
 items:
 type: string
 description: Labels that must have an equal value in the
source and target alert for the inhibition to take effect.

A.5.4.2 Alertmanager

This example includes a subset of the Alertmanaer CRD [14] that has been considered when performing the input
parameter mapping in clause 9.6.1.

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 name: alertmanagers.monitoring.coreos.com
spec:
 group: monitoring.coreos.com
 names:
 plural: alertmanagers
 singular: alertmanager
 kind: Alertmanager
 listKind: AlertmanagerList
 scope: Namespaced
 versions:
 - name: v1
 served: true
 storage: true
 schema:
 openAPIV3Schema:
 type: object
 description: The Alertmanager CRD defines a desired Alertmanager setup to run
in a Kubernetes cluster. It allows to specify many options such as the number of
replicas, persistent storage and many more.
 Required: [spec]
 properties:
 metadata: {type: object}
 spec:
 type: object
 description: Specification of the desired behavior of the Alertmanager
cluster.
 properties:
 storage:
 type: object
 description: Storage is the definition of how storage will be used by
the Alertmanager instances.
 properties:
 volumeClaimTemplate:
 type: object

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)119

 description: "Defines the PVC spec to be used by the Prometheus
StatefulSets. The easiest way to use a volume that cannot be automatically provisioned
is to use a label selector alongside manually created PersistentVolumes."
 properties:
 metadata: {type: object, description: EmbeddedMetadata contains
metadata relevant to an EmbeddedResource., properties: {name: {type: string,
description: Name must be unique within a namespace. Is required when creating
resources, although some resources may allow a client to request the generation of an
appropriate name automatically. Name is primarily intended for creation idempotence and
configuration definition.}}}
 spec: {type: object, description: description: "Defines the
desired characteristics of a volume requested by a pod author.", properties:
{volumeMode: {type: string, description: "volumeMode defines what type of volume is
required by the claim. Value of Filesystem is implied when not included in claim
spec."}, volumeName: {type: string, description: "volumeName is the binding reference
to the PersistentVolume backing this claim.}}}
 alertmanagerConfigSelector:
 type: object
 description: AlertmanagerConfigs to be selected for to merge and
configure Alertmanager with.
 x-kubernetes-map-type: atomic
 properties:
 matchExpressions:
 type: object
 description: matchExpressions is a list of label selector
requirements. The requirements are ANDed.
 items:
 type: array
 x-kubernetes-list-type: atomic
 description: "A label selector requirement is a selector that
contains values, a key, and an operator that relates the key and values."
 properties:
 key: {type: string, description: key is the label key that
the selector applies to.}
 operator: {type: string, description: operator represents a
key's relationship to a set of values. Valid operators are In, NotIn, Exists and
DoesNotExist.}
 required: [key, operator]

A.5.5 VictoriaMetrics resource

A.5.5.1 VMRule

This example includes a subset of the VMRule CRD [9] that has been considered when performing the input parameter
mapping in clause 10.6.1.

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 annotations:
 controller-gen.kubebuilder.io/version: v0.17.2
 name: vmrules.operator.victoriametrics.com
spec:
 group: operator.victoriametrics.com
 names:
 kind: VMRule
 listKind: VMRuleList
 plural: vmrules

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)120

 singular: vmrule
 scope: Namespaced
 versions:
 - name: v1beta1
 schema:
 openAPIV3Schema:
 type: object
 description: VMRule defines rule records for vmalert application.
 required: [spec]
 properties:
 apiVersion: {description: API version of the VMRule., type: string}
 kind: {description: Kind of the resource., type: string}
 metadata: {type: object}
 spec:
 type: object
 description: VMRuleSpec defines the desired state of VMRule.
 required: [groups]
 properties:
 groups:
 type: array
 description: Groups list of group rules.
 items:
 type: object
 required: [name, rules]
 properties:
 name: {type: string, description: Name of the rule group.}
 interval: {type: string, description: Evaluation interval for
group.}
 rules:
 type: array
 description: Rule list of alert rules.
 items:
 type: object
 description: Rule describes an alerting or recording rule.

 properties:
 expr: {type: string, description: Expr is query, that will
be evaluated at dataSource.}
 alert: {type: string, description: Alert is a name for
alert.}
 for: {type: string, description: For evaluation interval in
time. Duration format 30s, 1m, 1h or nanoseconds.}
 labels:
 type: object
 additionalProperties: {type: string}
 description: Labels will be added to rule configuration.
 record: {type: string, description: Record represents a
query, that will be recorded to dataSource.}

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)121

Annex B (informative):
Sequence diagrams

B.1 Sequence diagrams for the Traffic Enforcer profiled
solution

B.1.1 Flow of creating AuthorizationPolicy and DestinationRule as
a Traffic Management related NFV objects to manage traffic

This clause describes a sequence for creating an individual AuthorizationPolicy and DestinationRule as a Traffic
Management related NFV objects to manage the traffic.

Figure B.1.1-1: Flow of creating AuthorizationPolicy and DestinationRule as
a Traffic Management related NFV object

The creation of AuthorizationPolicy and DestinationRule as a traffic management related NFV objects, as illustrated in
Figure B.1.1-1, consists of the following steps:

Precondition: none.

1) The API consumer sends a POST request to the Traffic Enforcer with the appropriate AuthorizationPolicy
resource URI, including the data structure of the declarative descriptor of the respective AuthorizationPolicy
custom resource object in the payload body, specifying traffic control rules, for example, based on source
identity, namespaces, pod labels, hosts, ports, paths, and HTTP methods.

2) The Traffic Enforcer creates an individual AuthorizationPolicy as a Traffic Management related NFV object,
enforcing access control to regulate traffic before it reaches the intended service or workload instances.

3) The Traffic Enforcer returns a "201 Created" response to the API consumer and includes in the payload body a
representation of the created AuthorizationPolicy as a Traffic Management related NFV object.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)122

4) The API consumer sends a POST request to the Traffic Enforcer with the appropriate DestinationRule
resource URI, including the data structure of the declarative descriptor of the respective DestinationRule
custom resource object in the payload body, specifying how allowed traffic should be further routed, for
example, by defining service subsets, load balancing strategies, and connection policies.

5) The Traffic Enforcer creates an individual DestinationRule as a Traffic Management related NFV object,
defining how allowed traffic is routed and distributed across service subsets.

6) The Traffic Enforcer returns a "201 Created" response to the API consumer and includes in the payload body a
representation of the created DestinationRule as a Traffic Management related NFV object.

Postcondition: Upon successful completion, the individual AuthorizationPolicy and DestinationRule as the requested
Traffic Management-related NFV objects has been created.

Error handling: In case of failure, appropriate error information is provided in the response.

B.2 Sequence diagram for the Log Aggregator profiled
solution

B.2.1 Flow of log aggregation
This clause describes a sequence for log aggregation by creating individual ClusterFilter and ClusterOutput resources as
a Log Exposure related NFV objects.

Figure B.2.1-1: Flow of log aggregation by creating an individual ClusterFilter and
ClusterOutput resources as a Log Analysis Exposure related NFV object

The flow of log aggregation consists of the following steps as illustrated in Figure B.2.1-1:

Precondition: none.

1) The API consumer sends a POST request to the Log Aggregator with the appropriate ClusterFilter resource
URI, including the data structure of the declarative descriptor of the respective ClusterFilter custom resource
object in the payload body.

2) The Log Aggregator creates an individual ClusterFilter as a Log Exposure related NFV object to filter, modify,
and structure logs based on the provided filter rules.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)123

3) The Log Aggregator returns a "201 Created" response to the API consumer and includes in the payload body a
representation of the created ClusterFilter as a Log Exposure related NFV object.

4) The API consumer sends a POST request to the Log Aggregator with the appropriate ClusterOutput resource
URI, including the data structure of the declarative descriptor of the respective ClusterOutput custom resource
object in the payload body.

5) The Log Aggregator creates an individual ClusterOutput as a Log Exposure related NFV object to configure
the log destination based on the ClusterOutput configurations, ensuring log exposure for the analysis.

6) The Log Aggregator returns a "201 Created" response to the API consumer and includes in the payload body a
representation of the created ClusterOutput as a Log Exposure related NFV object.

Postcondition: none.

Error handling: In case of failure, appropriate error information is provided in the response.

B.3 Sequence diagram for the Log Analyser profiled
solution

B.3.1 Flow of log analysis
This clause describes a sequence for log analysis by creating an individual OpenSearchCluster resource as a Log
Analysis Exposure related NFV object and executing a PPL query.

Figure B.3.1-1: Flow of log analysis by creating an individual OpenSearchCluster resource as
a Log Analysis Exposure related NFV object and executing a PPL query

The flow of analysing logs consists of the following steps as illustrated in Figure B.3.1-1:

Precondition: none.

1) The API consumer sends a POST request to the Log Analyser with the appropriate OpenSearchCluster
resource URI, including the data structure of the declarative descriptor of the respective OpenSearchCluster
custom resource object in the payload body.

2) The Log Analyser creates an individual OpenSearchCluster as a Log Analysis Exposure related NFV object, to
configure dashboard setup, log ingestion from source(s), and indexing and analysis settings.

3) The Log Analyser returns a "201 Created" response to the API consumer and includes in the payload body a
representation of the created OpenSearchCluster as a Log Analysis Exposure related NFV object.

4) The API consumer sends a POST request to the PPL API endpoint (".../_plugins/_ppl") with a query string in
the request body to retrieve the processed log results.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)124

5) The Log Analyser returns a "200 OK" response to the API consumer, returning the processed logs in JDBC
format, which is the default response structure for PPL.

Postcondition: None.

Error handling: In case of failure, appropriate error information is provided in the response.

B.4 Sequence diagrams for the Notification Manager
profiled solution

B.4.1 Flow of creating AlertmanagerConfig and Alertmanager as
a Notification Manager related NFV objects to manage
notifications

This clause describes a sequence for creating an individual AlertmanagerConfig and Alertmanager as a Notification
Manager related NFV objects to manage the notification.

Figure B.4.1-1: Flow of creating AlertmanagerConfig and Alertmanager as
a Notification Manager related NFV object

The creation of AlertmanagerConfig and Alertmanager as a notification manager related NFV objects, as illustrated in
Figure B.4.1-1, consists of the following steps:

Precondition: none.

1) The API consumer sends a POST request to the Notification Manager with the appropriate
AlertmanagerConfig resource URI, including in the request body the declarative descriptor for the respective
AlertmanagerConfig custom resource object. The payload should define the necessary alerting configuration
parameters such as routes, receivers, inhibition rules, and templates to control how alerts are grouped, filtered,
and sent.

2) The Notification Manager creates an individual AlertmanagerConfig as a Notification Management related
NFV object.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)125

3) The Notification manager returns a "201 Created" response to the API consumer and includes in the payload
body a representation of the created AlertmanagerConfig as a Notification Management related NFV object.

4) The API consumer sends a POST request to the Notification Manager with the appropriate Alertmanager
resource URI, including in the request body the declarative descriptor of the respective Alertmanager custom
resource object.

5) The Notification Manager creates an individual Alertmanager as a Notification Management related NFV
object that defines how alerts should be managed and routed by Alertmanager, based on the
AlertmanagerConfig.

6) The Notification Manager returns a "201 Created" response to the API consumer and includes in the payload
body a representation of the created Alertmanager as a Notification Management related NFV object.

Postcondition: Upon successful completion, the individual AlertmanagerConfig and Alertmanager as the requested
Notification Manager-related NFV objects have been created.

Error handling: In case of failure, appropriate error information is provided in the response.

B.5 Sequence diagram for the Metrics Analyser profiled
solution

B.5.1 Flow of creating VMRule as a Metrics Analyser related NFV
object

This clause describes a sequence for metrics analysis by creating an individual VMRule resource as a Metrics Analysis
Exposure related NFV object.

Figure B.5.1-1: Flow of metrics analysis by creating an individual VMRule resource as
a Metrics Analysis Exposure related NFV object

The flow of analysing metrics consists of the following steps as illustrated in Figure B.5.1-1:

Precondition: An individual VMAlert instance is already created and running, discovering and evaluating rules defined
in VMRule resource(s) in the target namespace.

1) The API consumer sends a POST request to the Metrics Analyser with the appropriate VMRule resource URI,
including the data structure of the declarative descriptor of the respective VMRule custom resource object in
the payload body.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)126

2) The Metrics Analyser creates an individual VMRule as a Metrics Analysis Exposure related NFV object,
specifying rules that define how metrics should be filtered, evaluated, and either recorded as new time-series
data or used to trigger alerts based on defined expressions.

3) The Metrics Analyser returns a "201 Created" response to the API consumer and includes in the payload body
a representation of the created VMRule as a Metrics Analysis Exposure related NFV object, which
automatically enables VMAlert to begin evaluating the rules defined in the VMRule for real-time alerting or
recording of metrics.

Postcondition: The individual VMRule as a metrics analyser related NFV object has been created.

Error handling: In case of failure, appropriate error information is provided in the response.

B.5.2 Flow of executing VictoriaMetrics Query API
This clause describes a sequence for executing VictoriaMetrics Query API.

Figure B.5.2-1: Flow of executing VictoriaMetrics Query API

The flow of executing VictoriaMetrics Query API consists of the following steps as illustrated in Figure B.5.2-1:

Precondition: none.

1) The API consumer sends a GET (or POST) request to the Metrics Analyser using either "/api/v1/query" for
retrieving metrics at a specific timestamp, or "/api/v1/query_range" for retrieving metrics over a defined time
range. The request includes a MetricsQL expression as the query parameter, which can be provided as a URL
query string for the GET method, or as URL-encoded form data in the request body for the POST method.

2) The Metrics Analyser validates the query expression, retrieves the relevant time-series data from storage, and
processes it by applying the specified criteria defined in the MetricsQL expression.

3) The Metrics Analyser returns a 200 OK response with the processed metrics in structured JSON format, either
a single result per series (for instant queries) or a sequence of timestamped values (for range queries).

Postcondition: None.

Error handling: In case of failure, appropriate error information is provided in the response.

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)127

Annex C (informative):
Change history

Date Version Information about changes
June 2024 V0.0.1 Early draft version implementing approved contributions 172r1 and 186r1

October 2024 V0.0.2

Implemented approved contributions:
NFVSOL(24)000237 - SOL024 include other PaaS Services
NFVSOL(24)000253 - SOL024 Update scope description
NFVSOL(24)000351r1 - SOL024ed521 Adding Analysis of Log Aggregator Functional
requirements and FluentBit and Fluentd capabilities
NFVSOL(24)000352r1 - SOL024ed521 Adding Analysis of Log Aggregator Functional
requirements and Loki and OpenSearch capabilities
NFVSOL(24)000353r1 - SOL024ed521 Adding Analysis of Log Aggregator Functional
requirements and Open Telemetry Collector capabilities
NFVSOL(24)000354r1 - SOL024ed521 Adding Analysis of Log Analyser Functional
requirements and ElastAlert and Coroot capabilities
NFVSOL(24)000355r1 - SOL024ed521 Adding Analysis of Log Analyser Functional
requirements and Grafana and OpenSearch capabilities
NFVSOL(24)000356r2 - SOL024ed521 Adding Analysis of Traffic Enforcer Functional
requirements and Cilium and Istio capabilities
NFVSOL(24)000357r2 - SOL024ed521 Adding Analysis of Traffic Enforcer Functional
requirements and Linkerd and Envoy capabilities

November 2024 V0.0.3

Implemented approved contributions:
NFVSOL(24)000393 - SOL024ed521 Update heading names in Annex_A
NFVSOL(24)000415 - SOL024ed521 Comparison of the considered open-source
solutions against Log Aggregator function interface requirements
NFVSOL(24)000416 - SOL024ed521 Comparison of the considered open-source
solutions against Log Analyser function interface requirements
NFVSOL(24)000417 - SOL024ed521 Comparison of the considered open-source
solutions against Traffic Enforcer function interface requirements
NFVSOL(24)000422 - SOL024ed521 Update ElastAlert to ElastAlert 2
NFVSOL(24)000419r1 - SOL024ed521 Cross comparison of considered open-source
solutions against Log Aggregator function
NFVSOL(24)000420r1 - SOL024ed521 Cross comparison of considered open-source
solutions against Log Analyser function
NFVSOL(24)000421r1 - SOL024ed521 Cross comparison of considered open-source
solutions against Traffic Enforcer function
NFVSOL(24)000418r1 - SOL024ed521 Comparison of open-source solutions against
VNF generic OAM functions functional and interface requirements

Also few rapporteur actions (e.g. fix typos, correct font color, etc.)

December 2024 V0.0.4

Implemented approved contributions:
NFVSOL(24)000441 -SOL024 Adding Analysis of Policy Agent Functional requirements
and Open Policy Agent capabilities
NFVSOL(24)000443r3 -SOL024 Adding Traffic Enforcer Object to map with profiled
solution objects
NFVSOL(24)000444r1 -SOL024 Adding Data Model section for the Traffic Management
interface
NFVSOL(24)000475 -SOL024 Adding Istio overview API structure and data model
concepts
NFVSOL(24)000476r1 - SOL024 Adding Traffic Management Interface based on the
profiled solution
NFVSOL(24)000478r1 - SOL024 Adding Resources for Traffic Management interface
NFVSOL(24)000479 - SOL024 Adding Fluent Bit overview API structure and data model
concepts
NFVSOL(24)000480r1 - SOL024 Adding Log Exposure Interface based on the profiled
solution
NFVSOL(24)000482r1 - SOL024 Adding Resources for Log Exposure interface

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)128

Date Version Information about changes

February 2025 V0.0.5

Implemented approved contributions:
NFVSOL(24)000361r1 - SOL024 Adding Analysis of VNF Metrics Aggregator Functional
requirements and Prometheus capabilities
NFVSOL(25)000002r1 - SOL024 Adding Log Aggregator Object to map with profiled
solution objects
NFVSOL(25)000003r1 - SOL024 Adding Data Model section for the Log Exposure
interface
NFVSOL(25)000011 - SOL024 Adding Analysis of VNF Metrics Analyser Functional
requirements and Coroot capabilities
NFVSOL(25)000025 - SOL024 Adding Log Analyser Object to map with profiled solution
objects
NFVSOL(25)000031 - SOL024 Adding Resource for Log Analysis Exposure interface
NFVSOL(25)000032 - SOL024 Minor bug fixes of the wordings
NFVSOL(25)000026r2 - SOL024 Adding Data Model section for the Log Analysis
Exposure interface
NFVSOL(25)000027r1 - SOL024 Adding OpenSearch overview API structure and data
model concepts
NFVSOL(25)000028r1 - SOL024 Adding Log Analysis Exposure Interface based on the
profiled solution

March 2025 V0.0.6

Implemented approved contributions:
NFVSOL(24)000465r1 - SOL024 Adding Analysis of VNF Metrics Aggregator Functional
requirements and OTEL capabilities
NFVSOL(24)000477r2 - SOL024 Adding Sequence diagrams for the Traffic
Management interface
NFVSOL(25)000048r1 - SOL024 Fix resource URIs and some other minor fixes
NFVSOL(25)000047 - SOL024 Adding example CRD schemas for the OpenSearch
Resource
NFVSOL(25)000046 - SOL024 Adding example CRD schemas for the Fluent Bit
Resources
NFVSOL(25)000045 - SOL024 Adding example CRD schemas for the Istio Resources
NFVSOL(25)000042r2 - SOL024_Adding_Annex_section_for_the_NotificationManager
NFVSOL(25)000060r1
SOL024_Adding_Annex1&2_section_for_the_NotificationManager
NFVSOL(25)000061r1 -
SOL024_Adding_Annex3&4_section_for_the_NotificationManager
NFVSOL(25)000073 - SOL024 Comparison of the considered open source solutions
against VNF Metrics Aggregator interface requirements
NFVSOL(25)000074 - SOL024 Adding analysis of VNF Metrics Analyser Functional
requirements and OpenSearch capabilities
NFVSOL(25)000075r1 - SOL024 Adding analysis of VNF Metrics Analyser Functional
requirements and Prometheus Alertmanager capabilities
NFVSOL(25)000076 - SOL024 Comparison of the considered open source solutions
against VNF Metrics Analyser Interface requirements
NFVSOL(25)000077r1 - SOL024 Comparison of the considered open source solutions
against VNF Metrics Analyser Functional and Interface requirements
NFVSOL(25)000078 - SOL024 Fix table numbering in the Annex
NFVSOL(25)000085r1 - SOL024 Add note for FluentBit Output CRD resource

Also few rapporteur actions (e.g. fix typos, etc.)

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)129

Date Version Information about changes

April 2025 V0.0.7

Implemented approved contributions:
NFVSOL(24)000481r2 SOL024 Adding Sequence diagrams for the Log Exposure
interface
NFVSOL(25)000095 SOL024 Update Annex section for the NotificationManager
InterfaceRequirement
NFVSOL(25)000096r1 SOL024 Adding 4.2.3 section for the NotificationManager
NFVSOL(25)00092r1 SOL024 Adding Sequence diagrams for the Log Analysis
Exposure Interface
NFVSOL(25)000107 SOL024 Adding Cilium overview API structure and data model
concepts
NFVSOL(25)000084r2 SOL024 Update Log Analysis Exposure interface to add PPL
Query API
NFVSOL(25)000117 SOL024 Adding 5.4 section for the NotificationManager
NFVSOL(25)000116r2 SOL024 Adding 4.2.3 section for the NotificationManager Update
NFVSOL(25)000124 SOL024 Minor bug fixes and Abbreviations update
NFVSOL(25)000133 SOL024 Adding section for the NotificationManager sequence
NFVSOL(25)000132r1 SOL024 Update Section19 NotificationManager CRDMapping

As usual, few rapporteur actions (e.g. fix typos, etc.)

May 2025 V0.0.8

Implemented approved contributions:
NFVSOL(25)000108_SOL024_Adding_Traffic_Enforcer_Object_to_map_with_Cilium_o
bj
NFVSOL(25)000142_SOL024_Adding_5_4_section for the NotificationManager
NFVSOL(25)000143_SOL024_One_section_of_Profiled_protocols_and_data_models
NFVSOL(25)000144_SOL024_Updates_to_improve_readability_and_fix_several_issues
NFVSOL(25)000145r3_SOL024_updatePrometheus_Alertmanager_to_Prometheus_to_
profil
NFVSOL(25)000158_SOL024_Cross-comparison_of_open-
source_solutions_for_Metrics
NFVSOL(25)000159_SOL024_Clause_4_amendments_and_releases_upgrades
NFVSOL(25)000161r2_SOL024_Adding_Metrics_Exposure_Interface_based_on_the_p
rofil
NFVSOL(25)000162r1_SOL024_Adding_Resources_for_Metrics_Analysis_Exposure_In
terf
NFVSOL(25)000163r1_SOL024_Addding_Metrics_Analyser_Interface_based_on_the_o
profil

June 2025 V0.0.9

Implemented approved contributions:
NFVSOL(24)000462_SOL024_Adding_Analysis_of_PaaS_Service_Configuration_Serv
er
NFVSOL(25)000160r2_SOL024_Fix_resource_trees_URIs_and_text_readability

NFVSOL(25)000164r2_SOL024_Adding_Data_Model_section_for_the_Metrics_Analysi
s_Ex
NFVSOL(25)000176_SOL024_Adding_sequence_diagrams_for_the_Metrics_Analysis_
Exp
NFVSOL(25)000177r1_SOL024_Add_VMRule_Example_CRD_Schema

Rapporteur change to align the text in clause 2.2 as per the new ETSI GS skeleton

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)130

Date Version Information about changes

June 2025 V0.0.10

Implemented approved contributions:
NFVSOL(25)000203r2_SOL024_Resource_structures_and_URIs_fixes_for_Traffic_Man
age.zip
NFVSOL(25)000204r1_SOL024_Resource_structures_and_URIs_fixes_for_Log_Expos
ure_I.zip
NFVSOL(25)000205r2_SOL024_Resource_structures_and_URIs_fixes_for_Log_Analys
is_E.zip
NFVSOL(25)000206r1_SOL024_Resource_structures_and_URIs_fixes_for_Notification
_M.zip
NFVSOL(25)000207_SOL024_Add_end_to_end_explanatory_figures_for_the_consider
ed.zip
NFVSOL(25)000208_SOL024_Fix_DestinationRule_and_AuthorizationPolicy_CRD_sch
em.docx
NFVSOL(25)000209_SOL024_Fix_OpenSearchCluster_CRD_schema.docx
NFVSOL(25)000210_SOL024_Fix_AlertmanagerConfig_and_Alertmanager_CRD_sche
mas.docx
NFVSOL(25)000211_SOL024_Fix_ClusterFilter_and_ClusterOutput_CRD_schemas.do
cx
NFVSOL(25)000212_SOL024_update_Log_Aggregator_sequence_diagram.zip
NFVSOL(25)000226r1_SOL024_Comparison_of_VNF_Metrics_Aggregator_functional_r
equi.docx
NFVSOL(25)000227r1_SOL024_Resolve_Editors__Notes.docx
NFVSOL(25)000236_SOL024_Update_note_in_section_10_1.docx
NFVSOL(25)000237r1_SOL024_Update_section_4_overview_section.docx

July 2025 V0.0.11 Implemented approved contributions:
NFVSOL(25)000257_SOL024_fix_minor_inconsistencies.docx

August 2025 V0.0.12 Fixing hanging paragraphs, use of shall in informative part of the deliverable, use of
must, editorial modifications

ETSI

ETSI GS NFV-SOL 024 V5.3.1 (2025-09)131

History

Document history

V5.3.1 September 2025 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Overview
	4.1 Introduction
	4.2 Summary of ETSI GS NFV-IFA 049
	4.3 Profiled protocols and data models for the selected open source solutions
	4.3.1 Introduction
	4.3.2 API structure
	4.3.3 Data model concepts
	4.3.4 Query APIs for the Log and Metrics Analyser functions
	4.3.4.1 Introduction
	4.3.4.2 OpenSearch PPL API
	4.3.4.3 VictoriaMetrics Query API

	5 VNF generic OAM functions object models mapping to profiled solution objects
	5.1 Traffic Enforcer object mapped to Istio®
	5.1a Traffic Enforcer object mapped to Cilium®
	5.2 Log Aggregator object mapped to Fluent Bit
	5.3 Log Analyser object mapped to OpenSearch
	5.4 Notification Manager object mapped to Prometheus Alertmanager
	5.5 Metrics Analyser object mapped to VictoriaMetrics

	6 Traffic Management interface
	6.1 Description
	6.2 API version
	6.3 Resource structure and methods
	6.4 Sequence diagrams (informative)
	6.5 Resources
	6.5.1 Introduction
	6.5.2 Resource: DestinationRule
	6.5.3 Resource: AuthorizationPolicy

	6.6 Data Model
	6.6.1 Traffic Management operation input parameters mapped to CRD schemas configuration fields

	7 Log Exposure Interface
	7.1 Description
	7.2 API version
	7.3 Resource structure and methods
	7.4 Sequence diagrams (informative)
	7.5 Resources
	7.5.1 Introduction
	7.5.2 Resource: ClusterFilter
	7.5.3 Resource: ClusterOutput

	7.6 Data model
	7.6.1 Log Exposure operation input parameters mapped to CRD schemas configuration fields

	8 Log Analysis Exposure Interface
	8.1 Description
	8.2 API version
	8.3 Resource structure and methods
	8.4 Sequence diagrams (informative)
	8.5 Resources
	8.5.1 Introduction
	8.5.2 Resource: OpenSearchCluster

	8.6 Data model
	8.6.1 Log Analysis Exposure operation input parameters mapping

	9 Interfaces exposed by the PaaS Service Notification Manager
	9.1 Description
	9.2 API version
	9.3 Resource structure and methods
	9.4 Sequence diagrams (informative)
	9.5 Resources
	9.5.1 Introduction
	9.5.2 Resource: AlertmanagerConfig
	9.5.3 Resource: Alertmanager

	9.6 Data Model
	9.6.1 Notification Manager operation input parameters mapped to CRD schemas configuration fields

	10 Metrics Analysis Exposure Interface
	10.1 Description
	10.2 API version
	10.3 Resource structure and methods
	10.4 Sequence diagrams (informative)
	10.5 Resources
	10.5.1 Introduction
	10.5.2 Resource: VMRule

	10.6 Data model
	10.6.1 Metrics Analysis Exposure operation input parameters mapping

	Annex A (informative): Analysis on the existing solutions based on the interfaces exposed by the VNF generic OAM functions and
	A.1 Comparison of the VNF generic OAM functions and other PaaS Services functional requirements with cloud native open source s
	A.1.1 Overview
	A.1.2 Comparison of Log Aggregator functional requirements with relevant open-source solutions capabilities
	A.1.2.1 Fluent Bit
	A.1.2.1.1 Overview
	A.1.2.1.2 Comparison

	A.1.2.2 Fluentd
	A.1.2.2.1 Overview
	A.1.2.2.2 Comparison

	A.1.2.3 OpenTelemetry Collector
	A.1.2.3.1 Overview
	A.1.2.3.2 Comparison

	A.1.2.4 Grafana Loki
	A.1.2.4.1 Overview
	A.1.2.4.2 Comparison

	A.1.2.5 OpenSearch
	A.1.2.5.1 Overview
	A.1.2.5.2 Comparison

	A.1.3 Comparison of Log Analyser functional requirements with relevant open-source solutions capabilities
	A.1.3.1 ElastAlert 2
	A.1.3.1.1 Overview
	A.1.3.1.2 Comparison

	A.1.3.2 Coroot
	A.1.3.2.1 Overview
	A.1.3.2.2 Comparison

	A.1.3.3 Grafana®
	A.1.3.3.1 Overview
	A.1.3.3.2 Comparison

	A.1.3.4 OpenSearch
	A.1.3.4.1 Overview
	A.1.3.4.2 Comparison

	A.1.4 Comparison of Traffic Enforcer functional requirements with relevant open-source solutions capabilities
	A.1.4.1 Cilium®
	A.1.4.1.1 Overview
	A.1.4.1.2 Comparison

	A.1.4.2 Istio®
	A.1.4.2.1 Overview
	A.1.4.2.2 Comparison

	A.1.4.3 Linkerd
	A.1.4.3.1 Overview
	A.1.4.3.2 Comparison

	A.1.4.4 Envoy
	A.1.4.4.1 Overview
	A.1.4.4.2 Comparison

	A.1.5 Comparison of PaaS Service Policy Agent functional requirements with relevant open-source solutions capabilities
	A.1.5.1 Open Policy Agent (OPA)
	A.1.5.1.1 Overview
	A.1.5.1.2 Comparison

	A.1.6 Comparison of VNF Metrics Aggregator functional requirements with relevant open source solutions capabilities
	A.1.6.1 Prometheus
	A.1.6.1.1 Overview
	A.1.6.1.2 Comparison

	A.1.6.2 OpenTelemetry Collector
	A.1.6.2.1 Overview
	A.1.6.2.2 Comparison
	A.1.6.3 VictoriaMetrics
	A.1.6.3.1 Overview

	A.1.7 Comparison of VNF Metrics Analyser functional requirements with relevant open source solutions capabilities
	A.1.7.1 Coroot
	A.1.7.1.1 Overview
	A.1.7.1.2 Comparison

	A.1.7.2 OpenSearch
	A.1.7.2.1 Overview
	A.1.7.2.2 Comparison

	A.1.7.3 VictoriaMetrics
	A.1.7.3.1 Overview
	A.1.7.3.2 Comparison

	A.1.8 Comparison of Notification Manager functional requirements with relevant open-source solutions capabilities
	A.1.8.1 Prometheus Alertmanager
	A.1.8.1.1 Overview
	A.1.8.1.2 Comparison

	A.1.8.2 Argo®
	A.1.8.2.1 Overview
	A.1.8.2.2 Comparison

	A.1.8.3 Kafka
	A.1.8.3.1 Overview
	A.1.8.3.2 Comparison

	A.1.8.4 Sensu
	A.1.8.4.1 Overview
	A.1.8.4.2 Comparison

	A.1.9 Comparison of PaaS Service Configuration Server functional requirements with relevant open-source solutions capabilities
	A.1.9.1 Schema-driven Configuration (SDCIO)
	A.1.9.1.1 Overview
	A.1.9.1.2 Comparison

	A.2 Comparison of the VNF generic OAM functions interface requirements against the considered open-source solutions
	A.2.1 Overview
	A.2.2 Comparison of Log Aggregator Interface requirements with considered open-source solutions capabilities
	A.2.2.1 Fluent Bit
	A.2.2.2 Fluentd
	A.2.2.3 OpenTelemetry Collector
	A.2.2.4 Grafana Loki
	A.2.2.5 OpenSearch

	A.2.3 Comparison of Log Analyser Interface requirements with considered open-source solutions capabilities
	A.2.3.1 ElastAlert 2
	A.2.3.2 Coroot
	A.2.3.3 Grafana®
	A.2.3.4 OpenSearch

	A.2.4 Comparison of Traffic Enforcer Interface requirements with considered open-source solutions capabilities
	A.2.4.1 Cilium®
	A.2.4.2 Istio®
	A.2.4.3 Linkerd
	A.2.4.4 Envoy

	A.2.5 Comparison of Notification Manager Interface requirements with considered open-source solutions capabilities
	A.2.5.1 Prometheus Alertmanager
	A.2.5.2 Argo®
	A.2.5.3 Kafka
	A.2.5.4 Sensu

	A.2.6 Comparison of VNF Metrics Aggregator Interface requirements with considered open-source solutions capabilities
	A.2.6.1 OpenTelemetry Collector

	A.2.7 Comparison of VNF Metrics Analyser Interface requirements with considered open-source solutions capabilities
	A.2.7.1 Coroot
	A.2.7.2 OpenSearch
	A.2.7.3 VictoriaMetrics

	A.3 Comparison of the considered open-source solutions against VNF generic OAM functions' functional and interface requirements
	A.3.1 Comparison of the considered open-source solutions against Log Aggregator functional and interface requirements
	A.3.2 Comparison of the considered open-source solutions against Log Analyser functional and interface requirements
	A.3.3 Comparison of the considered open-source solutions against Traffic Enforcer functional and interface requirements
	A.3.4 Comparison of the considered open-source solutions against Notification Manager functional and interface requirements
	A.3.5 Comparison of the considered open-source solutions against VNF Metrics Analyser functional and interface requirements

	A.4 Cross-comparison of considered open-source solutions
	A.4.1 Cross-comparison of open-source solutions for Log Aggregator Function
	A.4.2 Cross-comparison of open-source solutions for Log Analyser Function
	A.4.3 Cross-comparison of open-source solutions for Traffic Enforcer Function
	A.4.4 Cross-comparison of open-source solutions for Notification Manager Function
	A.4.5 Cross-comparison of open-source solutions for Metrics Analyser Function

	A.5 Example CRD schemas
	A.5.1 OpenSearch resource
	A.5.1.1 OpenSearchCluster

	A.5.2 Fluent Bit resources
	A.5.2.1 ClusterFilter
	A.5.2.2 ClusterOutput

	A.5.3 Istio® resources
	A.5.3.1 DestinationRule
	A.5.3.2 AuthorizationPolicy

	A.5.4 Prometheus Alertmanager resources
	A.5.4.1 AlertmanagerConfig
	A.5.4.2 Alertmanager

	A.5.5 VictoriaMetrics resource
	A.5.5.1 VMRule

	Annex B (informative): Sequence diagrams
	B.1 Sequence diagrams for the Traffic Enforcer profiled solution
	B.1.1 Flow of creating AuthorizationPolicy and DestinationRule as a Traffic Management related NFV objects to manage traffic

	B.2 Sequence diagram for the Log Aggregator profiled solution
	B.2.1 Flow of log aggregation

	B.3 Sequence diagram for the Log Analyser profiled solution
	B.3.1 Flow of log analysis

	B.4 Sequence diagrams for the Notification Manager profiled solution
	B.4.1 Flow of creating AlertmanagerConfig and Alertmanager as a Notification Manager related NFV objects to manage notification

	B.5 Sequence diagram for the Metrics Analyser profiled solution
	B.5.1 Flow of creating VMRule as a Metrics Analyser related NFV object
	B.5.2 Flow of executing VictoriaMetrics Query API

	Annex C (informative): Change history
	History

