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Essential patents  

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (https://ipr.etsi.org/). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Trademarks 

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. 
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no 
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does 
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. 

Foreword 
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Network Functions 
Virtualisation (NFV). 

Modal verbs terminology 
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and 
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of 
provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx
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1 Scope 
The present document specifies common aspects of RESTful protocols and data models for ETSI NFV management 
and orchestration (MANO) interfaces. 

2 References 

2.1 Normative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

Referenced documents which are not found to be publicly available in the expected location might be found at 
https://docbox.etsi.org/Reference/. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are necessary for the application of the present document. 

[1] IETF RFC 2818: "HTTP Over TLS". 

NOTE: Available at https://tools.ietf.org/html/rfc2818. 

[2] IETF RFC 3339: "Date and Time on the Internet: Timestamps". 

NOTE: Available at https://tools.ietf.org/html/rfc3339. 

[3] IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax". 

NOTE: Available at https://tools.ietf.org/html/rfc3986. 

[4] IETF RFC 4918: "HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV)". 

NOTE: Available at https://tools.ietf.org/html/rfc4918.  

[5] IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2". 

NOTE: Available at https://tools.ietf.org/html/rfc5246.  

[6] IETF RFC 6585: "Additional HTTP Status Codes". 

NOTE: Available at https://tools.ietf.org/html/rfc6585. 

[7] IETF RFC 6749: "The OAuth 2.0 Authorization Framework". 

NOTE: Available from https://tools.ietf.org/html/rfc6749.  

[8] IETF RFC 6750: "The OAuth 2.0 Authorization Framework: Bearer Token Usage". 

NOTE: Available from https://tools.ietf.org/html/rfc6750.  

[9] IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format". 

NOTE: Available at https://tools.ietf.org/html/rfc8259. 

[10] IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content". 

NOTE: Available at https://tools.ietf.org/html/rfc7231. 

https://docbox.etsi.org/Reference/
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc4918
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc7231
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[11] IETF RFC 7232: "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests". 

NOTE: Available at https://tools.ietf.org/html/rfc7232. 

[12] IETF RFC 7233: "Hypertext Transfer Protocol (HTTP/1.1): Range Requests". 

NOTE: Available at https://tools.ietf.org/html/rfc7233. 

[13] IETF RFC 7235: "Hypertext Transfer Protocol (HTTP/1.1): Authentication". 

NOTE: Available at https://tools.ietf.org/html/rfc7235. 

[14] IETF RFC 7617: "The 'Basic' HTTP Authentication Scheme". 

NOTE: Available from https://tools.ietf.org/html/rfc7617. 

[15] IETF RFC 7807: "Problem Details for HTTP APIs". 

NOTE: Available at https://tools.ietf.org/html/rfc7807. 

[16] IETF RFC 6901: "JavaScript Object Notation (JSON) Pointer". 

NOTE: Available at https://tools.ietf.org/html/rfc6901. 

[17] IETF RFC 8288: "Web Linking". 

NOTE: Available at https://tools.ietf.org/html/rfc8288.  

[18] Semantic Versioning 2.0.0. 

NOTE:  Available at https://semver.org/. 

[19] IETF RFC 4229: "HTTP Header Field Registrations". 

NOTE: Available at https://tools.ietf.org/html/rfc4229.  

[20] ETSI GS NFV-SEC 022: "Network Functions Virtualisation (NFV) Release 2; Security; Access 
Token Specification for API Access". 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] ETSI GS NFV 003: "Network Functions Virtualisation (NFV); Terminology for Main Concepts in 
NFV". 

[i.2] ETSI TS 133 310: "Universal Mobile Telecommunications System (UMTS); LTE; 5G; Network 
Domain Security (NDS); Authentication Framework (AF) (3GPP TS 33.310)". 

[i.3] IANA: "Hypertext Transfer Protocol (HTTP) Status Code Registry". 

NOTE: Available at http://www.iana.org/assignments/http-status-codes. 

[i.4] ETSI NFV OpenAPI repository. 

NOTE: Available at https://forge.etsi.org/rep/nfv/. 

https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc8288
https://semver.org/
https://tools.ietf.org/html/rfc4229
http://www.iana.org/assignments/http-status-codes
https://forge.etsi.org/rep/nfv/
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[i.5] JSON Schema Validation: A Vocabulary for Structural Validation of JSON, Version draft-07, 
November 19, 2017. 

NOTE 1: JSON schema is documented at http://json-schema.org/. 

NOTE 2: The specification is available as Internet Draft at https://tools.ietf.org/html/draft-handrews-json-schema-
validation-01.  

[i.6] OpenAPI™ Specification. 

NOTE 1: Available at https://github.com/OAI/OpenAPI-Specification. 

NOTE 2: OpenAPI Specification and OpenAPI Initiative and their respective logos, are trademarks of the Linux 
Foundation. 

3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the terms given in ETSI GS NFV 003 [i.1] apply. 

3.2 Symbols 
Void. 

3.3  Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

API Application Programming Interface 
EM Element Manager 
ETSI European Telecommunications Standards Institute 
GMT Greenwich Mean Time 
GS Group Specification 
HATEOAS Hypermedia As The Engine Of Application State 
HTML HyperText Markup Language 
HTTP HyperText Transfer Protocol 
HTTPS HTTP Secure 
IANA Internet Assigned Numbers Authority 
IETF Internet Engineering Task Force 
JSON JavaScript Object Notation 
MAC Medium Access Control 
MANO Management and Orchestration 
MIME Multipurpose Internet Mail Extensions 
NFV Network Functions Virtualisation 
NFVO NFV Orchestrator 
REST Representational State Transfer 
RFC Request For Comments 
TLS Transport Layer Security 
URI Uniform Resource Identifier 
VIM Virtualised Infrastructure Manager 
VNF Virtualised Network Function 
VNFM VNF Manager 

http://json-schema.org/
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01.
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01.
https://github.com/OAI/OpenAPI-Specification
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4 HTTP usage 

4.1 URI structure and supported content formats 
This clause specifies the URI prefix and the supported formats applicable to the RESTful NFV-MANO APIs. 

All resource URIs of the APIs shall have the following prefix, except the "API versions" resource which shall follow 
the rules specified in clause 9.3: 

{apiRoot}/{apiName}/{apiMajorVersion}/ 

 where: 

{apiRoot} indicates the scheme ("http" or "https"), the host name and optional port, and an 
optional sequence of path segments that together represent a prefix path.  

EXAMPLE: http://orchestrator.example.com/nfv_apis/abc 

{apiName} indicates the interface name in an abbreviated form. The {apiName} of each interface 
is defined in the clause specifying the corresponding interface.  

{apiMajorVersion} indicates the current major version (see clause 9.1) of the API and is defined in the 
clause specifying the corresponding interface.  

For HTTP requests and responses that have a body, the content format JSON (see IETF RFC 8259 [9]) shall be 
supported. The JSON format shall be signalled by the content type "application/json". 

All APIs shall support and use HTTP over TLS (also known as HTTPS) (see IETF RFC 2818 [1]). TLS version 1.2 as 
defined by IETF RFC 5246 [5] shall be supported. 

NOTE 1: The HTTP protocol elements mentioned in the RESTful NFV-MANO API specifications originate from 
the HTTP specification; HTTPS runs the HTTP protocol on top of a TLS layer. The RESTful 
NFV-MANO specifications therefore use the statement above to mention "HTTP request", "HTTP 
header", etc., without explicitly calling out whether or not these are run over TLS.  

NOTE 2: There are a number of best practices and guidelines how to configure and implement TLS 1.2 in a secure 
manner, as security threats evolve. A detailed specification of those is beyond the scope of the present 
document; the reader is referred to external documentation such as annex E of ETSI TS 133 310 [i.2]. 

All resource URIs of the API shall comply with the URI syntax as defined in IETF RFC 3986 [3]. An implementation 
that dynamically generates resource URI parts (individual path segments, sequences of path segments that are separated 
by "/", query parameter values) shall ensure that these parts only use the character set that is allowed by IETF 
RFC 3986 [3] for these parts.  

NOTE 3: This means that characters not part of this allowed set are escaped using percent-encoding as defined by 
IETF RFC 3986 [3]. 

Unless otherwise specified explicitly, all request URI parameters that are part of the path of the resource URI shall be 
individual path segments, i.e. shall not contain the "/" character.  

NOTE 4: A request URI parameter is denoted by a string in curly brackets, e.g. {subscriptionId}. 

4.2 Usage of HTTP header fields 

4.2.1 Introduction 

HTTP headers are components of the header section of the HTTP request and response messages. They contain the 
information about the server/client and metadata of the transaction. The use of HTTP header fields shall comply with 
the provisions defined for those header fields in the specifications referenced from tables 4.2.2-1 and 4.2.3-1. The 
following clauses describe more details related to selected HTTP header fields. 
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4.2.2 Request header fields 

This clause describes the usage of selected HTTP header fields of the request messages in the RESTful NFV-MANO 
APIs. The HTTP header fields used in the request messages are specified in table 4.2.2-1. 

Table 4.2.2-1: Header fields supported in the request message 

Header field name Reference Example Descriptions 
Accept IETF RFC 7231 [10] application/json Content-Types that are acceptable 

for the response. 
This header field shall be present if 
the response is expected to have a 
non-empty message body. 

Content-Type IETF RFC 7231 [10] application/json The MIME type of the body of the 
request. 
This header field shall be present if 
the request has a non-empty 
message body. 

Authorization IETF RFC 7235 [13] Bearer mF_9.B5f-4.1JqM  The authorization token for the 
request. Details are specified in 
clause 8.3. 

Range IETF RFC 7233 [12] 1 000-2 000 Requested range of bytes from a 
file. 

Version IETF RFC 4229 [19] 1.2.0  
or  
1.2.0-
impl:example.com:myProduct:4 

Version of the API requested to use 
when responding to this request. 

 

4.2.3 Response header fields 

This clause describes the usage of selected HTTP header fields of the response messages in the RESTful NFV-MANO 
APIs. The HTTP header fields used in the response messages are specified in table 4.2.3-1. 

Table 4.2.3-1: Header fields supported in the response message 

Header field name Reference Example Descriptions 
Content-Type IETF RFC 7231 [10] application/json The MIME type of the body of the 

response. 
This header field shall be present if 
the response has a non-empty 
message body. 

Location IETF RFC 7231 [10] http://www.example.com/vnflcm/v1/
vnf_instances/123 

Used in redirection, or when a new 
resource has been created. 
This header field shall be present if 
the response status code is 201 or 
3xx. 
In the RESTful NFV-MANO APIs 
this header field is also used if the 
response status code is 202 and a 
new resource was created.  

WWW-Authenticate IETF RFC 7235 [13] Bearer realm="example" Challenge if the corresponding 
HTTP request has not provided 
authorization, or error details if the 
corresponding HTTP request has 
provided an invalid authorization 
token. 

Accept-Ranges IETF RFC 7233 [12] bytes Used by the server to signal 
whether or not it supports ranges for 
certain resources. 

Content-Range IETF RFC 7233 [12] bytes 21 010 - 47 021/47 022 Signals the byte range that is 
contained in the response, and the 
total length of the file. 
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Header field name Reference Example Descriptions 
Retry-After IETF RFC 7231 [10] Fri, 31 Dec 1999 23:59:59 GMT 

or 
120 

Used to indicate how long the user 
agent ought to wait before making a 
follow-up request. 
It can be used with 503 responses. 
The value of this field can be an 
HTTP-date or a number of seconds 
to delay after the response is 
received. 

Link IETF RFC 8288 [17] <http://example.com/resources?nex
tpage_opaque_marker=abc123>; 
rel="next" 

Reference to other resources. Used 
for paging in the present document, 
see clause 5.4.2.1. 

Version IETF RFC 4229 [19] 1.2.0  
or  
1.2.0-
impl:example.com:myProduct:4 

Version of the API requested to use 
when responding to this request. 

 

5 Result set control 

5.1 Introduction 
This clause specifies procedures that allow to control the size of the result set of GET requests w.r.t. the number of 
entries in a response list (using attribute-based filtering) or w.r.t. the number of attributes returned in a response (using 
attribute selection). 

5.2 Attribute-based filtering 

5.2.1 Overview and example (informative) 

Attribute-based filtering allows to reduce the number of objects returned by a query operation. Typically, 
attribute-based filtering is applied to a GET request that reads a resource which represents a list of objects (e.g. child 
resources). Only those objects that match the filter are returned as part of the resource representation in the payload 
body of the GET response. 

Attribute-based filtering can test a simple (scalar) attribute of the resource representation against a constant value, for 
instance for equality, inequality, greater or smaller than, etc. Attribute-based filtering is requested by adding a set of 
URI query parameters, the "attribute-based filtering parameters" or "filter" for short, to a resource URI. 

The following example illustrates the principle. Assume a resource "container" with the following objects: 

EXAMPLE 1: Objects: 

obj1: {"id":123, "weight":100, "parts":[{"id":1, "color":"red"}, {"id":2, "color":"green"}]} 
obj2: {"id":456, "weight":500, "parts":[{"id":3, "color":"green"}, {"id":4, "color":"blue"}]}  
 

A GET request on the "container" resource would deliver the following response: 

EXAMPLE 2:  Unfiltered GET: 

Request:  
GET …/container 
Response: 
[ 
    {"id":123, "weight":100, "parts":[{"id":1, "color":"red"}, {"id":2, "color":"green"}]},  
    {"id":456, "weight":500, "parts":[{"id":3, "color":"green"}, {"id":4, "color":"blue"}]} 
] 
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A GET request with a filter on the "container" resource would deliver the following response: 

EXAMPLE 3:  GET with filter: 

Request: 
GET …/container?filter=(eq,weight,100) 
Response:  
[ 
    {"id":123, "weight":100, "parts":[{"id":1, "color":"red"}, {"id":2, "color":"green"}]}  
 
] 
 

For hierarchically-structured data, filters can also be applied to attributes deeper in the hierarchy. In case of arrays, a 
filter matches if any of the elements of the array matches. In other words, when applying the filter 
"(eq,parts/color,green)" to the objects in Example 1, the filter matches obj1 when evaluating the second entry in the 
"parts" array of obj1 and matches obj2 already when evaluating the first entry in the "parts" array of obj2. As the result, 
both obj1 and obj2 match the filter. 

If a filter contains multiple sub-parts that only differ in the leaf attribute (i.e. they share the same attribute prefix), they 
are evaluated together per array entry when traversing an array. As an example, the two expressions in the filter 
"(eq,parts/color,green);(eq,parts/id,3)" would be evaluated together for each entry in the array "parts". As the result, 
obj2 matches the filter. 

5.2.2 Specification 

An attribute-based filter shall be represented by a URI query parameter named "filter". The value of this parameter shall 
consist of one or more strings formatted according to "simpleFilterExpr", concatenated using the ";" character: 

simpleFilterExprOne  := <opOne>","<attrName>["/"<attrName>]*","<value> 
simpleFilterExprMulti  := <opMulti>","<attrName>["/"<attrName>]*","<value>[","<value>]* 
simpleFilterExpr := "("<simpleFilterExprOne>")" | "("<simpleFilterExprMulti>")" 
filterExpr         := <simpleFilterExpr>[";"<simpleFilterExpr>]* 
filter    := "filter"=<filterExpr> 
opOne               := "eq" | "neq" | "gt" | "lt" | "gte" | "lte" 
opMulti                := "in" | "nin" | "cont" | "ncont" 
attrName           := string 
value              := string  
 

where: 

*  zero or more occurrences 
[]  grouping of expressions to be used with * 
""  quotation marks for marking string constants 
<>  name separator  
| separator of alternatives  
 
 

"AttrName" is the name of one attribute in the data type that defines the representation of the resource. The slash ("/") 
character in "simpleFilterExprOne" and " simpleFilterExprMulti" allows concatenation of <attrName> entries to filter 
by attributes deeper in the hierarchy of a structured document. The elements "opOne" and "opMulti" stand for the 
comparison operators (accepting one comparison value or a list of such values). If the expression has concatenated 
<attrName> entries, it means that the operator is applied to the attribute addressed by the last <attrName> entry 
included in the concatenation. All simple filter expressions are combined by the "AND" logical operator, denoted by 
";".  

In a concatenation of <attrName> entries in a <simpleFilterExprOne> or <simpleFilterExprMulti>, the rightmost 
<attrName> entry is called "leaf attribute". The concatenation of all "attrName" entries except the leaf attribute is called 
the "attribute prefix". If an attribute referenced in an expression is an array, an object that contains a corresponding 
array shall be considered to match the expression if any of the elements in the array matches all expressions that have 
the same attribute prefix. 

The leaf attribute of a <simpleFilterExprOne> or <simpleFilterExprMulti> shall not be structured but shall be of a 
simple (scalar) type such as String, Number, Boolean or DateTime, or shall be an array of simple (scalar) values. 
Attempting to apply a filter with a structured leaf attribute shall be rejected with "400 Bad request". A <filterExpr> 
shall not contain any invalid <simpleFilterExpr> entry. 

The operators listed in table 5.2.2-1 shall be supported. 
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Table 5.2.2-1: Operators for attribute-based filtering 

Operator with parameters Meaning 
eq,<attrName>,<value> Attribute equal to <value> 
neq,<attrName>,<value> Attribute not equal to <value> 
in,<attrName>,<value>[,<value>]* Attribute equal to one of the values in the list ("in set" relationship) 
nin,<attrName>,<value>[,<value>]* Attribute not equal to any of the values in the list ("not in set" relationship) 
gt,<attrName>,<value> Attribute greater than <value> 
gte,<attrName>,<value> Attribute greater than or equal to <value> 
lt,<attrName>,<value> Attribute less than <value> 
lte,<attrName>,<value> Attribute less than or equal to <value> 
cont,<attrName>,<value>[,<value>]* String attribute contains (at least) one of the values in the list 
ncont,<attrName>,<value>[,<value>]* String attribute does not contain any of the values in the list 

 

Table 5.2.2-2: Applicability of the operators to data types 

Operator String Number DateTime Enumeration Boolean 
eq x x - x x 
neq x x - x x 
in x x - x - 
nin x x - x - 
gt x x x - - 
gte x x x - - 
lt x x x - - 
lte x x x - - 
cont x - - - - 
ncont x - - - - 

 

Table 5.2.2-2 defines which operators are applicable for which data types. All combinations marked with a "x" shall be 
supported. 

All objects that match the filter shall be returned as response to a GET request that contains a filter. 

A <value> entry shall contain a scalar value of type Number, String, Boolean, Enum or DateTime. The content of a 
<value> entry shall be formatted the same way as the representation of the related attribute in the resource 
representation: The syntax of DateTime <value> entries shall follow the "date-time" production of IETF RFC 3339 [2]. 
The syntax of Boolean and Number <value> entries shall follow IETF RFC 8259 [9].  

A <value> entry of type String shall be enclosed in single quotes (') if it contains any of the characters ")", "'" or ",", and 
may be enclosed in single quotes otherwise. Any single quote (') character contained in a <value> entry shall be 
represented as a sequence of two single quote characters.  

The "/" and "~" characters in <attrName> shall be escaped according to the rules defined in section 3 of IETF 
RFC 6901 [16]. The "," character in <attrName> shall be escaped by replacing it with "~a". 

In the resulting <filterExpr>, percent-encoding as defined in IETF RFC 3986 [3] shall be applied to the characters that 
are not allowed in a URI query part according to Appendix A of IETF RFC 3986 [3], and to the ampersand "&" 
character. 

NOTE: In addition to the statement on percent-encoding above, it is reminded that the percent "%" character is 
always percent-encoded when used in parts of a URI, according to IETF RFC 3986 [3]. 

Attribute-based filters are supported for certain resources. Details are defined in the clauses specifying the actual 
resources. 
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5.3 Attribute selectors 

5.3.1 Overview and example (informative) 

Certain resource representations can become quite big, in particular, if the resource is a container for multiple 
sub-resources, or if the resource representation itself contains a deeply-nested structure. In these cases, it can be desired 
to reduce the amount of data exchanged over the interface and processed by the API consumer application. On the other 
hand, it can also be desirable that a "drill-deep" for selected parts of the omitted data can be initiated quickly.  

An attribute selector allows the API consumer to choose which attributes it wants to be contained in the response. Only 
attributes that are not required to be present, i.e. those with a lower bound of zero on their cardinality (e.g. 0..1, 0..N) 
and that are not conditionally mandatory, are allowed to be omitted as part of the selection process. Attributes can be 
marked for inclusion or exclusion.  

If an attribute is omitted, a link to a resource may be added where the information of that attribute can be fetched. Such 
approach is known as HATEOAS which is a common pattern in REST, and enables drilling down on selected issues 
without having to repeat a request that may create a potentially big response. 

5.3.2 Specification 

5.3.2.1 GET request 

The URI query parameters for attribute selection are defined in table 5.3.2.1-1. 

In the provisions below, "complex attributes" are assumed to be those attributes that are structured or that are arrays. 

Table 5.3.2.1-1: Attribute selector parameters 

Parameter Definition 
all_fields This URI query parameter requests that all complex attributes are included in the response, including 

those suppressed by exclude_default. It is inverse to the "exclude_default" parameter. The API 
producer shall support this parameter for certain resources. Details are defined in the clauses 
specifying the actual resources. 

fields This URI query parameter requests that only the listed complex attributes are included in the 
response.  
The parameter shall be formatted as a list of attribute names. An attribute name shall either be the 
name of an attribute, or a path consisting of the names of multiple attributes with parent-child 
relationship, separated by "/". Attribute names in the list shall be separated by comma (","). Valid 
attribute names for a particular GET request are the names of all complex attributes in the expected 
response that have a lower cardinality bound of 0 and that are not conditionally mandatory. 
 
The API producer should support this parameter for certain resources. Details are defined in the 
clauses specifying the actual resources. 

exclude_fields This URI query parameter requests that the listed complex attributes are excluded from the 
response. For the format, eligible attributes and support by the API producer, the provisions defined 
for the "fields" parameter shall apply. 

exclude_default Presence of this URI query parameter requests that a default set of complex attributes shall be 
excluded from the response. The default set is defined per resource in the applicable RESTful NFV-
MANO API specification. Not every resource will necessarily have such a default set. Only complex 
attributes with a lower cardinality bound of zero that are not conditionally mandatory can be included 
in the set. 
 
The API producer shall support this parameter for certain resources. Details are defined in the 
clauses in the applicable RESTful NFV-MANO API specification defining the actual resources. 
 
This parameter is a flag, i.e. it has no value. 
 
If a resource supports attribute selectors and none of the attribute selector parameters is specified in 
a GET request, the "exclude_default" parameter shall be assumed as the default. 
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The "/" and "~" characters in attribute names in an attribute selector shall be escaped according to the rules defined in 
section 3 of IETF RFC 6901 [16]. The "," character in attribute names in an attribute selector shall be escaped by 
replacing it with "~a". Further, percent-encoding as defined in IETF RFC 3986 [3] shall be applied to the characters that 
are not allowed in a URI query part according to Appendix A of IETF RFC 3986 [3], and to the ampersand "&" 
character. 

5.3.2.2 GET response 

Table 5.3.2.2-1 defines the valid parameter combinations in a GET request and their effect on the GET response. 

Table 5.3.2.2-1: Valid combinations of attribute selector parameters 

Parameter 
combination 

The GET response shall include… 

(none) … same as "exclude_default". 
all_fields … all attributes. 
fields=<list> … all attributes except all complex attributes with minimum cardinality of zero that are not 

conditionally mandatory, and that are not provided in <list>. 
exclude_fields=<list> … all attributes except those complex attributes with a minimum cardinality of zero that are 

not conditionally mandatory, and that are provided in <list>.  
exclude_default … all attributes except those complex attributes with a minimum cardinality of zero that are 

not conditionally mandatory, and that are part of the "default exclude set" defined in the 
applicable RESTful NFV-MANO API specification for the particular resource. 

exclude_default and 
fields=<list> 

… all attributes except those complex attributes with a minimum cardinality of zero that are 
not conditionally mandatory and that are part of the "default exclude set" defined in the 
applicable RESTful NFV-MANO API specification for the particular resource, but that are not 
part of <list>. 

 

If complex attributes were omitted in a GET response, the response may contain a number of links that allow to obtain 
directly the content of the omitted attributes. Such links shall be embedded into a structure named "_links" at the same 
level as the omitted attribute. That structure shall contain one entry for each link, named as the omitted attribute, and 
containing an "href" attribute that contains the URI of a resource that can be read with GET to obtain the content of the 
omitted attribute. A link shall not be present if the attribute is not present in the underlying resource representation. The 
resource URI structure of such links is not standardized but may be chosen by the API producer implementation. 
Performing a GET request on such a link shall return a representation that contains the content of the omitted attribute.  

EXAMPLE: 

"_links" : { 
"vnfcs" : {"href" : ".../vnflcm/v1/vnf_instances/1234/vnfcs"}, 
"extVirtualLinks" : {"href" : ".../vnflcm/v1/_dynamic/7d6bef4e-d86b-4abc-97ed-9dc9b951f206"} 

} 
 

5.4 Handling of large query results 

5.4.1 Overview  

If the response to a query to a container resource (i.e. a resource that contains child resources whose representations will 
be returned when responding to a GET request) will become so large that the response will adversely affect the 
performance of the server, the server either rejects the request with a 400 Bad Request response, or the server provides a 
paged response, i.e. it returns only a subset of the query result in the response, and also provides information how to 
obtain the remainder of the query result.  

When returning a paged response, depending on the underlying storage organization, it might be problematic for the 
server to determine the actual size of the result; however, it is usually possible to determine whether there will be 
additional results returned when knowing, for the last entry in the returned page, the position in the overall query result 
or some other property that has ordering semantics. For example, the time of creation of a resource has such an ordering 
property. When using such an (implementation-specific) property, the API producer can correctly handle deletions of 
child resources that happen between sending the first page of the query result, and sending the next page. It cannot be 
guaranteed that child resources inserted between returning subsequent pages can be considered in the query result, 
however, it shall be guaranteed that this does not lead to skipping of entries that have existed prior to insertion. 
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At minimum, a paged response needs to contain information telling the API consumer that the response is paged, and 
how to obtain the next page of information. For that purpose, a link to obtain the next page is returned in an HTTP 
header, containing a parameter that is opaque to the API consumer, but that allows the API producer to determine the 
start of the next page. 

NOTE: In the present document, this functionality is designed for overload protection only. Additional 
functionality, such as configuring the page size by the API consumer, determining the size of the overall 
query result or the number of pages, and determining the previous page, is left outside the scope of the 
present document. 

5.4.2 Specification  

5.4.2.1 Alternatives 

For each container resource (i.e. a resource that contains child resources whose representations will be returned when 
responding to a GET request), the API producer shall support one of the following two behaviours specified below to 
handle the case that a response to a query (GET request) will become so large that the response will adversely affect 
performance: 

1) Return an error response, as defined in clause 5.4.2.2. 

2) Return the result in a paged manner, as defined in clause 5.4.2.3. 

5.4.2.2 Error response 

In this alternative, the server shall reject the request with a 400 Bad Request response, shall include the 
"ProblemDetails" payload body, and shall provide in the "detail" attribute more information about the error. 

This error code indicates to the API consumer that with the given attribute-based filtering query (or absence thereof), 
the response would have been so big that performance is adversely affected. The client can obtain a query result by 
specifying a (more restrictive) attribute-based filtering query (see clause 5.2). 

5.4.2.3 Paged response 

In this alternative, the API producer shall provide a response that contains a first page (subset) of the results to the 
query, and shall include a LINK HTTP header (see IETF RFC 8288 [17]) with the "rel" attribute set to "next", which 
communicates a URI that allows to obtain the next page of results to the original query.  

The API consumer can send a GET request to the URI communicated in the LINK header to obtain the next page of 
results. The response which returns that next page shall contain the LINK header to point to the next page, as specified 
above, unless there are no further pages available in which case the LINK header shall be omitted.  

To allow the API producer to determine the start of the next page, the LINK header shall contain the URI query 
parameter "nextpage_opaque_marker" whose value is chosen by the API producer. This parameter has no meaning for 
the API consumer, but is echoed back by the API consumer to the API producer when requesting the next page. The 
URI in the link header may include further parameters, such as those passed in the original request.  

The size of each page may be chosen by the API provider, and may vary from page to page. The maximum page size is 
determined by means outside the scope of the present document. 

The response need not contain entries that correspond to child resources which were created after the original query was 
issued.  
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6 Error reporting 

6.1 Introduction 
In RESTful interfaces, application errors are mapped to HTTP errors. Since HTTP error information is generally not 
enough to discover the root cause of the error, additional application specific error information is typically delivered. 
The following clauses define such a mechanism to be used by the RESTful NFV-MANO APIs.  

6.2 General mechanism 
When an error occurs that prevents the API producer from successfully fulfilling the request, the HTTP response shall 
include in the response a status code in the range 400..499 (client error) or 500..599 (server error) as defined by the 
HTTP specification (see IETF RFC 7231 [10], IETF RFC 7232 [11], IETF RFC 7233 [12] and IETF RFC 7235 [13], as 
well as by IETF RFC 6585 [6]). In addition, the response body should contain a JSON representation of a 
"ProblemDetails" data structure according to IETF RFC 7807 [15] that provides additional details of the error. In that 
case, as defined by IETF RFC 7807 [15], the "Content-Type" HTTP header shall be set to "application/problem+json". 

6.3 Type: ProblemDetails 
The definition of the general "ProblemDetails" data structure from IETF RFC 7807 [15] is reproduced in table 6.3-1. 
Compared to the general framework defined in IETF RFC 7807 [15], the "status" and "detail" attributes are mandated to 
be included, to ensure that the response contains additional textual information about an error. IETF RFC 7807 [15] 
foresees extensibility of the "ProblemDetails" type. It is possible that particular RESTful NFV-MANO API, or 
particular implementations, specify extensions to define additional attributes that provide more information about the 
error. 

The description column only provides some explanation of the meaning to facilitate understanding of the design. For a 
full description, see IETF RFC 7807 [15]. 

Table 6.3-1: Definition of the ProblemDetails data type 

Attribute name Data type Cardinality Description 
type URI 0..1 A URI reference according to IETF RFC 3986 [3] that identifies 

the problem type. It is encouraged that the URI provides 
human-readable documentation for the problem (e.g. using 
HTML) when dereferenced. When this member is not present, 
its value is assumed to be "about:blank".  

title String 0..1 A short, human-readable summary of the problem type. It should 
not change from occurrence to occurrence of the problem, 
except for purposes of localization. If type is given and other 
than "about:blank", this attribute shall also be provided. 

status Integer 1 The HTTP status code for this occurrence of the problem. 
detail String 1 A human-readable explanation specific to this occurrence of the 

problem. 
instance URI 0..1 A URI reference that identifies the specific occurrence of the 

problem. It may yield further information if dereferenced. 
(additional attributes) Not specified. 0..N Any number of additional attributes, as defined in a specification 

or by an implementation. 
NOTE: It is expected that the minimum set of information returned in ProblemDetails consists of "status" and "detail". 

For the definition of specific "type" values as well as extension attributes by implementations, guidance can 
be found in IETF RFC 7807 [15]. 

 

6.4 Common error situations 
The following common error situations are applicable on all REST resources and related HTTP methods defined in the 
RESTful NFV-MANO API specifications, and shall be handled as defined in the present clause. The full definition of 
each error code can be obtained from the referenced specification. 
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In general, error response codes used for application errors should be mapped to the most similar HTTP error status 
code. If no such code is applicable, one of the codes 400 (Bad Request, for client errors) or 500 (Internal Server Error, 
for server errors) should be used.  

Implementations may use additional error response codes on top of the ones listed in this clause, as long as they are 
valid HTTP response codes; and should include a ProblemDetails structure in the payload body as defined in clause 6.3. 
A list of all valid HTTP response codes and their specification documents can be obtained from the HTTP status code 
registry [i.3]. 

NOTE 1: The error handling defined in this clause only applies to REST resources defined in the RESTful 
NFV-MANO API specifications. For the token endpoint defined in IETF RFC 6749 [7] and re-used in the 
present document as defined in clause 8.3, the error handling provisions are defined in clause 8.3. 

400 Bad Request: If the request is malformed or syntactically incorrect (e.g. if the request URI 
contains incorrect query parameters or the payload body contains a syntactically 
incorrect data structure), the API producer shall respond with this response code. 
More details are defined in IETF RFC 7231 [10]. The "ProblemDetails" structure 
shall be provided, and should include in the "detail" attribute more information 
about the source of the problem.  

400 Bad Request: If the response to a GET request which queries a container resource would be so big 
that the performance of the API producer is adversely affected, and the API 
producer does not support paging for the affected resource, it shall respond with this 
response code. Clause 5.4.2.2 specifies provisions for the "ProblemDetails" structure 
provided in the response body. 

400 Bad Request: If there is an application error related to the client's input that cannot be easily 
mapped to any other HTTP response code ("catch all error"), the API producer shall 
respond with this response code. The "ProblemDetails" structure shall be provided, 
and shall include in the "detail" attribute more information about the source of the 
problem.  

NOTE 2: It is by design to represent these application error situations with the same HTTP error response code 400. 

400 Bad Request: If the request contains a malformed access token, the API producer should respond 
with this response. The details of the error shall be returned in the WWW-
Authenticate HTTP header, as defined in IETF RFC 6750 [8]. The ProblemDetails 
structure may be provided. 

NOTE 3: The use of this HTTP error response code described above is applicable to the use of the OAuth 2.0 for 
the authorization of API requests and notifications, as defined in clauses 8.3.3 and 8.3.4. 

401 Unauthorized: If the request contains no access token even though one is required, or if the request 
contains an authorization token that is invalid (e.g. expired or revoked), the API 
producer should respond with this response. The details of the error shall be returned 
in the WWW-Authenticate HTTP header, as defined in IETF RFC 6750 [8] and 
IETF RFC 7235 [13]. The ProblemDetails structure may be provided. 

403 Forbidden: If the API consumer is not allowed to perform a particular request to a particular 
resource, the API producer shall respond with this response code. More details are 
defined in IETF RFC 7231 [10]. The "ProblemDetails" structure shall be provided. 
It should include in the "detail" attribute information about the source of the 
problem, and may indicate how to solve it. 

404 Not Found: If the API producer did not find a current representation for the resource addressed 
by the URI passed in the request, or is not willing to disclose that one exists, it shall 
respond with this response code. A typical reason for this error can e.g. be that 
resource URI variables were set wrongly. More details are defined in IETF 
RFC 7231 [10]. The "ProblemDetails" structure may be provided, including in the 
"detail" attribute information about the source of the problem, e.g. a wrong resource 
URI variable. 

NOTE 4: This response code is not appropriate in case the resource addressed by the URI is a container resource 
which is designed to contain child resources, but does not contain any child resource at the time the 
request is received. For a GET request to an existing empty container resource, a typical response 
contains a 200 OK response code and a payload body with an empty array. 
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405 Method Not Allowed:  If a particular HTTP method is not supported for a particular resource, the API 
producer shall respond with this response code. The "ProblemDetails" structure may 
be provided. 

406 Not Acceptable:  If the "Accept" HTTP header does not contain at least one name of a content type 
that is acceptable to the API producer, the API producer shall respond with this 
response code. The "ProblemDetails" structure may be provided. 

413 Payload Too Large: If the payload body of a request is larger than the amount of data the API producer is 
willing or able to process, it shall respond with this response code, following the 
provisions in IETF RFC 7231 [10] for the use of the "Retry-After" HTTP header and 
for closing the connection. The "ProblemDetails" structure may be provided. 

414 URI Too Long: If the request URI of a request is longer than the API producer is willing or able to 
process, it shall respond with this response code. This condition can e.g. be caused 
by passing long queries in the request URI of a GET request. More details are 
defined in IETF RFC 7231 [10]. The "ProblemDetails" structure may be provided. 

422 Unprocessable Entity: If the content type of the payload body is supported and the payload body of a 
request contains syntactically correct data (e.g. well-formed JSON) but the data 
cannot be processed (e.g. because it fails validation against a schema), the API 
producer shall respond with this response code. More details are defined in IETF 
RFC 4918 [4]. The "ProblemDetails" structure shall be provided, and should include 
in the "detail" attribute more information about the source of the problem.  

NOTE 5: This error response code is only applicable for methods that have a request body. 

429 Too Many Requests: If the API consumer has sent too many requests in a defined period of time and the 
API producer is able to detect that condition ("rate limiting"), the API producer shall 
respond with this response code, following the provisions in IETF RFC 6585 [6] for 
the use of the "Retry-After" HTTP header. The "ProblemDetails" structure shall be 
provided, and shall include in the "detail" attribute more information about the 
source of the problem.  

NOTE 6: The period of time and allowed number of requests are configured within the API producer by means 
outside the scope of the present document. 

500 Internal Server Error: If the Server is unable to process the request, and retrying the same request later 
might eventually succeed, the server shall respond with this response code. Further, 
if there is an application error not related to the client's input that cannot be easily 
mapped to any other HTTP response code ("catch all error"), the API producer shall 
respond with this response code. More details are defined in IETF RFC 7231 [10]. 
The "ProblemDetails" structure shall be provided, and shall include in the "detail" 
attribute more information about the source of the problem. 

503 Service Unavailable: If the API producer encounters an internal overload situation of itself or of a system 
it relies on, it should respond with this response code, following the provisions in 
IETF RFC 7231 [10] for the use of the "Retry-After" HTTP header and for the 
alternative to refuse the connection. The "ProblemDetails" structure may be 
provided.  

504 Gateway Timeout: If the API producer encounters a timeout while waiting for a response from an 
upstream server (i.e. a server that the API producer communicates with when 
fulfilling a request), it should respond with this response code. More details are 
defined in IETF RFC 7231 [10]. The "ProblemDetails" structure may be provided. 
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7 Common data types 

7.1 Structured data types 

7.1.1 Introduction 

This clause defines data structures that are referenced from data structures in multiple interfaces.  

7.1.2 Type: Object 

An object contains structured data, and shall comply with the provisions of clause 4 of IETF RFC 8259 [9]. 

7.1.3 Type: Link 

This type represents a link to a resource using an absolute URI. It shall comply with the provisions defined in 
table 7.1.3-1. 

Table 7.1.3-1: Definition of the Link data type 

Attribute name Data type Cardinality Description 
href Uri 1 URI of another resource referenced from a resource. Shall be an absolute 

URI (i.e. a URI that contains {apiRoot}). 
 

7.1.4 Type: NotificationLink 

This type represents a link to a resource in a notification, using an absolute or relative URI. It shall comply with the 
provisions defined in table 7.1.4-1. 

Table 7.1.4-1: Definition of the NotificationLink data type 

Attribute name Data type Cardinality Description 
href Uri 1 URI of a resource referenced from a notification.  

Should be an absolute URI (i.e. a URI that contains {apiRoot}), however, may 
be a relative URI (i.e. a URI where the {apiRoot} part is omitted) if the 
{apiRoot} information is not available.  

 

7.1.5 Type: KeyValuePairs 

This type represents a list of key-value pairs. The order of the pairs in the list is not significant. In JSON, a set of key-
value pairs is represented as an object. It shall comply with the provisions defined in clause 4 of IETF RFC 8259 [9]. In 
the following example, a list of key-value pairs with four keys ("aString", "aNumber", "anArray" and "anObject") is 
provided to illustrate that the values associated with different keys can be of different type. 

EXAMPLE:  

{ 
 "aString" : "ETSI NFV SOL", 
 "aNumber" : 0.03, 
 "anArray" : [1,2,3], 
 "anObject" : {"organization" : "ETSI", "isg" : "NFV", workingGroup" : "SOL"} 
} 
 

7.1.6 Type: ApiVersionInformation 

This type represents API version information. It shall comply with the provisions defined in table 7.1.6-1. 
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Table 7.1.6-1: ApiVersionInformation data type 

Attribute name Data type Cardinality Description 
uriPrefix String 1 Specifies the URI prefix for the API, in the following form  

{apiRoot}/{apiName}/{apiMajorVersion}/. 
apiVersions Structure (inlined) 1..N Version(s) supported for the API signaled by the uriPrefix attribute.  
>version String 1 Identifies a supported version. The value of the version attribute 

shall be a version identifier as specified in clause 9.1. 
>isDeprecated Boolean 0..1 If such information is available, this attribute indicates whether use of 

the version signaled by the version attribute is deprecated (true) or 
not (false). 
See note. 

>retirementDate DateTime 0..1 The date and time after which the API version will no longer be 
supported. 
 
This attribute may be included if the value of the isDeprecated 
attribute is set to true and shall be absent otherwise. 

NOTE: A deprecated version is still supported by the API producer but is recommended not to be used any longer. 
When a version is no longer supported, it does not appear in the response body. 

 

7.2 Simple data types and enumerations 

7.2.1 Introduction 

This clause defines simple data types and enumerations that can be referenced from data structures defined in multiple 
interfaces. 

7.2.2 Simple data types 

Table 7.2.2-1 lists the simple data types that are referenced from multiple interfaces. 

Table 7.2.2-1: Simple data types 

Type name Description 
Identifier An identifier with the intention of being globally unique. Representation: string of variable length. See 

note. 
DateTime A date-time stamp. Representation: String formatted as defined by the date-time production in IETF 

RFC 3339 [2]. 
Uri A string formatted according to IETF RFC 3986 [3]. 
Boolean A data type having two values (true and false). 
MacAddres
s 

A MAC address. Representation: string that consists of groups of two hexadecimal digits, separated by 
hyphens or colons. 

IpAddress An IPV4 or IPV6 address. Representation: In case of an IPV4 address, string that consists of four 
decimal integers separated by dots, each integer ranging from 0 to 255. In case of an IPV6 address, 
string that consists of groups of zero to four hexadecimal digits, separated by colons. 

Version A version. Representation: string of variable length. 
String A string as defined in IETF RFC 8259 [9]. 
Number A number as defined in IETF RFC 8259 [9]. 
Integer An integer, i.e. a number that can't have a fractional component. See note 2. 
UnsignedInt An unsigned integer, i.e. an integer that can't assume negative values. See note 2. 
NOTE 1: Individual API specifications are assumed to define types for additional identifiers with dedicated scope (e.g. 

identifiers scoped by the VIM). 
NOTE 2: In the JSON instance data model, only the concept of a "number" is used to represent numerical data. 

Numbers in JSON can be integral, i.e. have no fractional part, or can include a fractional part. The additional 
numeric types defined in the present document represent constraints on the general "number" type present 
in JSON instances which can be enforced e.g. during parsing when processing the JSON instance or 
expressed as constraints in modelling languages such as JSON Schema [i.5] or OpenAPI [i.6]. 
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7.2.3 Enumerations 

Void. 

8 Authorization of API requests and notifications 

8.1 Introduction 
The RESTful NFV-MANO APIs are only allowed to be accessed by authorized consumers. Handling of authorization 
differs between making an API call and sending a notification. In the former case, OAuth 2.0 is used. In the latter case, 
OAuth 2.0 or HTTP Basic authentication is used, and the flows differ from those used in the former case. Alternatively, 
a solution based on public/private key pairs as authentication alternative to client identifier/password is also allowed. 

The following terms (set in italics below) are used as defined by IETF RFC 6749 [7]: 

• client; 

• resource server; 

• authorization server; 

• token endpoint; 

• access token. 

The description below is based on the "client credentials" grant type as defined by IETF RFC 6749 [7].  

For API calls, the producer functional block of an API in NFV terms corresponds to the "resource server", and the 
consumer functional block of an API corresponds to the "client" as defined by IETF RFC 6749 [7]. For sending a 
notification, these roles are reversed: The producer (notification sender) corresponds to the "client", and the consumer 
(notification receiver) corresponds to the "resource server". 

Before invoking an HTTP method on a REST resource provided by a resource server, a functional block (referred to as 
"client" from now on) first obtains authorization from another functional block fulfilling the role of the "authorization 
server". The present document makes no assumption about which functional block in the architecture plays the role of 
the authorization server. It is however assumed that the address of the token endpoint exposed by the authorization 
server and further specified in the clauses below is provisioned to the client together with additional authorization-
related configuration parameters, such as valid client credentials. The client requests an access token from the token 
endpoint. As part of the request, it authenticates towards the authorization server by presenting its client credentials, 
consisting of client identifier and client password. The authorization server responds with an access token which the 
client will present to the resource server with every HTTP method invocation. An access token represents a particular 
access right (defining the particular set of protected resources to access in a particular manner) with a defined duration. 
The token is opaque to the client, and can typically be used by the authorization server and the resource server as an 
identifier to retrieve authorization information, such as information that identifies the client, its role and access rights. 
An access token expires after a certain time, or can be revoked. If that happens, the client can try to obtain a new access 
token from the authorization server.  

In order to ensure that no third party can eavesdrop on sensitive information such as client credentials or access tokens, 
HTTP over TLS is used to protect the transport. If mutual authentication using TLS protocol is used, then the 
producer/server is authenticated to the consumer/client, but also the consumer/client is authenticated by the 
producer/server at the same time. To facilitate this mutual authentication, the server shall request a client certificate. 
This can be done as described in IETF RFC 5246 [5], including the optional CertificateRequest from server to client. 

HTTP over TLS enables authorization based on TLS certificates as an alternative to a token-based approach.  
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8.2 Flows (informative) 

8.2.1 General 

This clause outlines several alternative methods for authentication and authorization. Clause 8.2.2 presents an approach 
for authorizing API requests using OAuth 2.0 access tokens. Clause 8.2.3 describes an alternative method for 
authorization of API requests using TLS certificates. Clauses 8.2.4 and 8.2.5 outline a method to authorize notifications 
using basic authentication and OAuth2.0based approaches respectively. Finally, authorization of notifications using 
TLS certificates is presented in clause 8.2.6. 

8.2.2 Authorization of API requests using OAuth 2.0 access tokens 

The flow below illustrates the authorization of API requests that the API consumer sends to the API producer.  

NOTE 1: Typical choices for the implementation of the authorization server include the authorization server as a 
component of the API producer, or as an external component.  

Preconditions: 

• Certificates are enrolled in the communicating entities as shown in the figure 8.2.2-1. 

• Authorization server is configured with the authorization policy and access rights against the client credentials. 
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Figure 8.2.2-1: Authorization of API requests using OAuth 2.0 access tokens 

The flow consists of the following steps: 

1) To obtain an access token, the API consumer sends a POST request to the token endpoint of the authorization 
server and includes its client credentials.  

2) The authorization server responds to the API consumer with an access token, and possibly additional 
information such as expiry time. 

3) The API consumer sends an HTTP request to a resource provided by the API producer and includes the 
received access token. 
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4) The API producer checks the token for validity. This assumes that it has received information about the valid 
access tokens, and additional related information (e.g. time of validity, client identity, client access rights) 
from the authorization server. Such exchange is outside the scope of the present document, and assumed to be 
trivial if deployments choose to include the authorization server as a component into the API producer. 

5) In case the token is valid and refers to access rights that allow accessing the actual resource with the actual 
request and its parameters, the API producer returns the HTTP response. 

6) In case the token is invalid or expired, the API producer returns a "401 Unauthorized" response. 

7) In case the access rights are insufficient to access the resource or to use the parameters, the API producer 
returns a "403 Forbidden" response. 

8) The API consumer sends an HTTP request to the API producer and includes in the request the access token. 

9) The API producer checks the token for validity, and establishes that it has expired, or has been revoked by the 
authorization server using means outside the scope of the present document. 

10) The API producer responds with a "401 Unauthorized" response, indicating that the access token is invalid. 

11) The API consumer attempts to obtain a new access token, as defined in step 3. This may eventually succeed or 
fail, depending on whether access is allowed for that API consumer any longer. 

NOTE 2: All the communication presented in this flow diagram is done over encrypted tunnel using TLS as 
described in clause 4.1. 

8.2.3 Authorization of API requests using TLS certificates 

As an alternative to the authorization using OAuth 2.0 access tokens, authentication and authorization is defined herein 
based on TLS certificates, applying the IETF RFC 5246 [5]. To facilitate mutual authentication during TLS tunnel setup 
process, the server requests a client certificate as described in section 7.4.4 in IETF RFC 5246 [5].  

Preconditions: 

• Certificates are enrolled in the communicating entities as shown in the figure 8.2.3-1. 

• Authorization server is configured with the authorization policy and access rights against the certificates. 

 

Figure 8.2.3-1: Authorization of API requests using TLS certificates 
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The flow consists of the following steps: 

1) The API consumer initiates the TLS tunnel setup process with the API producer. During the tunnel setup 
process the API producer sends its certificate to API consumer and obtains the certificate from the API 
consumer by including the CertificateRequest message specified in IETF RFC 5246 [5]. This ensures the 
mutual authentication between the consumer and the producer. 

2) API consumer further sends the HTTP request for a resource over the TLS tunnel.  

3) API producer now checks for the authorization information from the authorization server based on the API 
consumer client certificate.  

4) Authorization server checks its policy and sends the response to the API producer. 

5) If the API consumer is authorized, then the API producer sends the response related to the requested resource. 

6) If the API consumer is Unauthorized, then the API producer sends "403 Forbidden" response to the API 
consumer. 

NOTE 1: Steps 3 and 4 are outside the scope of the present document. However, typical implementations can use 
the certificates in such a way that the API producer verifies the certificate of the API consumer and 
extracts the subject name from the certificate. This information will be sent to the authorization server in 
order to check the authorization. In a response, the authorization server will send the associated client 
profile that contains the access rights.  

NOTE 2: All the communication presented in this flow diagram is done over encrypted tunnel using TLS as 
described in clause 4.1. 

NOTE 3: Authorization based on TLS certificates assumes the existence of a trust relationship between the API 
producer and the authorization server. The authorization server has no direct communication with the API 
consumer and thus cannot authenticate it but relies on the API producer to perform this authentication. 

8.2.4 Authorization of notifications using the HTTP Basic authentication 
scheme 

Figure 8.2.4-1 illustrates the authorization of notifications that the API producer sends to the API consumer based on 
the HTTP Basic authentication scheme (see IETF RFC 7617 [14]). In this flow, no authorization server is needed.  



 

ETSI 

ETSI GS NFV-SOL 013 V2.8.1 (2020-09)27 

 

Figure 8.2.4-1: Authorization of notifications using the HTTP Basic authentication scheme 

It is a precondition for this flow that the API consumer is authorized to access the "subscriptions" resource provided by 
the API producer, using the procedure illustrated in clause 8.2.2. Additionally, to ensure secure communication, it is a 
precondition that the TLS certificates are enrolled in the communicating entities. 

The flow consists of the following steps: 

1) The API consumer sends a request to create a new subscription resource to the API producer and includes in 
the request a valid access token to prove that it is authorized to access the API. Also, it includes in the 
subscription client credentials that the API producer can use to authenticate towards the API consumer when 
subsequently sending notifications. Note that these credentials are typically different from the client 
credentials used in the flow in clause 8.2.2. 

2) The API producer creates the subscription resource and responds with "201 Created". 

3) The API producer sends an HTTP POST request with a notification to the callback URI registered by the API 
consumer during subscription, and includes the client credential in the request to authenticate. 

4) The API consumer checks the credentials against the information it has sent in step 1. 

5) In case the credentials are valid, the API consumer returns a "204 No Content" HTTP response to indicate 
successful delivery of the notification. 

6) In case the credentials are invalid, the API consumer returns a "401 Unauthorized" response. 

NOTE: All the communication presented in this flow diagram is done over encrypted tunnel using TLS as 
described in clause 4.1. 

8.2.5 Authorization of notifications using OAuth 2.0 access tokens 

The flow below illustrates the authorization of notifications that the API producer sends to the API consumer using 
OAuth 2.0. In this flow, the authorization server can be a different entity than the authorization server in clause 8.2.2.  

NOTE 1: Typical choices for the implementation of the authorization server include the authorization server as a 
component of the API consumer, or as an external component. 
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Figure 8.2.5-1: Authorization of notifications using OAuth 2.0 

It is a precondition for this flow that the API consumer is authorized to access the "subscriptions" resource provided by 
the API producer, using the procedure illustrated in clause 8.2.2. Additionally, to ensure secure communication, it is a 
precondition that the TLS certificates are enrolled in the communicating entities. 

The flow consists of the following steps: 

1) The API consumer sends a request to create a new subscription resource to the API producer and includes in 
the request a valid access token #1 to prove that it is authorized to access the API. Also, it includes in the 
subscription request parameters that the API producer can use to obtain authorization to send notifications to 
the API consumer, such as client credentials and a token endpoint. Note that these are typically different from 
the credentials and token endpoint used in the flow in clause 8.2.2. 

2) The API producer creates the subscription resource and responds with "201 Created". 

3) Subsequently, and prior to sending any notification to the API consumer, the API producer obtains 
authorization to do so by requesting an access token from the authorization server, using the end point and 
notification client credentials that were sent in the subscription request, or provisioned otherwise.  

4) The authorization server responds to the API producer with an access token, hereafter called access token #2, 
and possibly additional information such as expiry time. 
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5) The API producer sends an HTTP POST request with a notification to the callback URI registered by the API 
consumer during subscription, and includes the received access token #2. 

6) The API consumer checks the token for validity. This assumes that it has received information about the valid 
access tokens, and additional related information (e.g. time of validity, client identity, client access rights) 
from the authorization server. Such exchange is outside the scope of the present document, and assumed to be 
trivial if deployments choose to include the authorization server as a component into the API consumer. 

7) In case the token #2 is valid, the API consumer returns a "204 No Content" HTTP response to indicate 
successful delivery of the notification. 

8) In case the token #2 is invalid or expired, the API consumer returns a "401 Unauthorized" response. 

9) The API producer sends another notification in an HTTP POST request to the API consumer and includes in 
the request the access token #2. 

10) The API consumer checks the token #2 for validity, and establishes that it has expired, or has been revoked by 
the authorization server using means outside the scope of the present document.  

11) The API consumer responds with a "401 Unauthorized" response, indicating that the access token #2 is 
invalid. 

12) The API producer attempts to obtain a new access token. This may eventually succeed or fail, depending on 
whether access is allowed for that API producer any longer. 

NOTE 2: All the communication presented in this flow diagram is done over encrypted tunnel using TLS as 
described in clause 4.1. 

8.2.6 Authorization of notifications using TLS certificates 

The flow in figure 8.2.6-1 illustrates the authorization of notifications that the API producer sends to the API consumer 
using TLS certificates.  

Preconditions: 

• Certificates are enrolled in the communicating entities as shown in the figure 8.2.6-1. 

• The API consumer is authorized to access the "subscriptions" resource provided by the API producer, using 
the procedure illustrated in clause 8.2.2 or 8.2.3. 
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Figure 8.2.6-1: Authorization of notifications using TLS certificates 

The flow consists of the following steps: 

1) The API consumer initiates the TLS tunnel setup process with the API producer. During the tunnel setup 
process the API producer obtains the certificate from the API consumer. This ensures the mutual 
authentication between the consumer and the producer. 

2) The API consumer sends a request to create a new subscription resource to the API producer. The API 
producer can authenticate and authorize this request based on the API consumer certificate as illustrated in 
clause 8.2.3. The request also includes the callbackURI where the notification will be sent in future.  

3) The API producer creates the subscription resource and responds with "201 Created". 

4) The API consumer now stores the relevant information of the API producer's certificate in association with the 
requested notification subscription. 

5) The API producer initiates the TLS tunnel with the API consumer whenever there is a notification to send. 
During the tunnel setup process the API consumer sends its certificate to API producer and obtains the client 
certificate from the API producer. This ensures the mutual authentication between the consumer and the 
producer. 

6) The API producer sends the notification over the established TLS tunnel. 

7) API consumer can now verify whether this sender is allowed to send this notification by matching the sender's 
certificate information with the previously stored information at step 4. 

8) In case is the API producer is authorized to send a notification, then the API consumer sends a "204 No 
Content" response to indicate successful delivery of the notification. 

9) In case if the API producer is not authorized to send a notification, the API consumer returns a "403 
Forbidden" response. 
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NOTE 1: Steps 4 and 7 are outside the scope of the present document. However, typical implementation can use the 
certificates in such a way that the API consumer verifies the certificate of the API producer and extract 
subject name from the certificate. This information is used in order to check the authorization at the API 
consumer.  

NOTE 2: All the communication presented in this flow diagram is done over encrypted tunnel using TLS as 
described in clause 4.1. 

NOTE 3: It is assumed that the API producer uses the same certificate for both the client and server role. 

8.3 Specification  

8.3.1 Introduction 

OAuth 2.0 provides a framework for authorization of web applications that has multiple modes and options. This 
clause profiles the framework for use in the context of the NFV-MANO reference points. Clause 8.3.2 specifies the 
general mechanism. Two different uses of the general mechanism, actually for API requests and for sending 
notifications, are defined in clauses 8.3.3 and 8.3.4. 

8.3.2 General mechanism 

For all requests to any RESTful NFV-MANO API, and for all notifications sent via such an API, authorization as 
defined below shall be used. Requests and notifications without authorization credentials shall be rejected.  

To allow the client to obtain an access token, the authorization server shall expose a token endpoint that shall comply 
with the provisions defined by the OAuth 2.0 specification for the client credentials grant type (see IETF RFC 6749 [7]) 
and that should further comply to those defined by clause 5.3 of ETSI GS NFV-SEC 022 [20]. A client shall use the 
access token request and response according to this grant type to obtain an access token for access to the REST 
resources defined by the RESTful NFV-MANO API specifications. Access token request and response shall comply 
with the provisions defined in IETF RFC 6749 [7] and should further comply with those defined by clause 5.3 of ETSI 
GS NFV-SEC 022 [20].  

The access token shall be a string with the set of allowed characters as defined in IETF RFC 6749 [7], and it shall not be 
possible for an attacker to easily guess it. Further, the access token content and format should comply with the 
provisions defined by clause 5.4 of ETSI GS NFV-SEC 022 [20] for the NFV access token. 

NOTE: The NFV access token defined in ETSI GS NFV-SEC 022 [20] mitigates the risk of token stealing and 
also enables strong authentication of the API consumer. 

A client that invokes HTTP requests towards a resource defined in one of the RESTful NFV-MANO API specifications 
shall include the access token in every HTTP request in the "Authorization" HTTP header, using the protocol defined 
for bearer tokens in IETF RFC 6750 [8]. A resource server that receives an HTTP request with an invalid access token, 
or without an access token, shall reject the request, and shall signal the error in the HTTP response according to the 
provisions for the error codes and the "WWW-Authenticate" response HTTP header as defined by IETF RFC 6750 [8]. 

A client that receives a rejection of an access token may obtain a new access token from the token endpoint of the 
authorization server and retry the request. 

As an alternative to OAuth 2.0 access tokens, certificates, as defined by TLS 1.2 in IETF RFC 5246 [5], can be used to 
facilitate the authentication and authorization between client and the server. 

8.3.3 Authorizing API requests 

A consumer of an API that wishes to issue HTTP requests towards resources provided by that API shall act as a client 
according to clause 8.3.2 to obtain an access token, and shall include this access token in every HTTP request, as 
defined in clause 8.3.2. The respective API producer shall act as a resource server as defined in clause 8.3.2. 

Alternatively, API requests can be authorized based on TLS certificates.  



 

ETSI 

ETSI GS NFV-SOL 013 V2.8.1 (2020-09)32 

These two different alternatives are listed in the following: 

1) API consumer passes access token when accessing a resource provided by API producer. API producer checks 
authorization based on access token. Access token can be obtained from the authorization server based on 
client ID and password. 

2) API consumer accesses a resource provided by API producer using TLS tunnel where both server and client 
certificates are used to establish the secure tunnel. API producer checks authorization based on client's TLS 
certificate. The client's TLS certificate is obtained during the TLS handshake. 

8.3.4 Authorizing the sending of notifications 

The procedure defined in clause 8.2 allows an API consumer to obtain authorization to perform API requests towards 
the API producer, including subscription requests. For sending the actual notifications matching a subscription, the API 
producer needs to obtain separate authorization to actually send the notification to the API consumer. 

If an API consumer requires the API producer to authorize for sending notifications to that API consumer, it shall 
include in the subscription request a data structure that defines the authorization requirements, as defined in 
table 8.3.4-1. 

Table 8.3.4-1: Definition of the SubscriptionAuthentication data type 

Attribute name Data type Cardinality Description 
authType Enum (inlined) 1..N Defines the types of Authentication/Authorization which 

the API consumer is willing to accept when receiving a 
notification. 
 
Permitted values: 

- BASIC: In every HTTP request to the 
notification endpoint, use HTTP Basic 
authentication with the client credentials.  

- OAUTH2_CLIENT_CREDENTIALS: In every 
HTTP request to the notification endpoint, use 
an OAuth 2.0 bearer token, obtained using the 
client credentials grant type. 

- TLS_CERT: Every HTTP request to the 
notification endpoint is sent over a mutually 
authenticated TLS session, i.e. not only the 
server is authenticated, but also the client is 
authenticated during the TLS tunnel setup. 

paramsBasic Structure (inlined) 0..1 Parameters for authentication/authorization using 
BASIC.  
 
Shall be present if authType is "BASIC" and the 
contained information has not been provisioned out of 
band.  
 
Shall be absent otherwise.  

>userName String 0..1 Username to be used in HTTP Basic authentication. 
Shall be present if it has not been provisioned out of 
band. 

>password String 0..1 Password to be used in HTTP Basic authentication. 
Shall be present if it has not been provisioned out of 
band.  

paramsOauth2ClientCr
edentials 

Structure (inlined) 0..1 Parameters for authentication/authorization using 
OAUTH2_CLIENT_CREDENTIALS. 
 
Shall be present if authType is 
"OAUTH2_CLIENT_CREDENTIALS" and the contained 
information has not been provisioned out of band.  
 
Shall be absent otherwise. 

>clientId String 0..1 Client identifier to be used in the access token request 
of the OAuth 2.0 client credentials grant type. Shall be 
present if it has not been provisioned out of band. See 
note. 
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Attribute name Data type Cardinality Description 
>clientPassword String 0..1 Client password to be used in the access token request 

of the OAuth 2.0 client credentials grant type. Shall be 
present if it has not been provisioned out of band. See 
note. 

>tokenEndpoint Uri 0..1 The token endpoint from which the access token can be 
obtained. Shall be present if it has not been provisioned 
out of band. 

NOTE: The clientId and clientPassword passed in a subscription shall not be the same as the clientId and 
clientPassword that are used to obtain authorization for API requests. Client credentials may differ between 
subscriptions. The value of clientPassword should be generated by a random process.  

 

The authType attribute is used to propose supported authorization methods of the API consumer for the authorization of 
notifications. If multiple methods are supported, the API producer shall choose a method as defined in clause 8.3.6.2. 
The expected behaviour of the authorization methods that can be signalled in the "authType" attribute is defined as 
follows: 

"OAUTH2_CLIENT_CREDENTIALS": 

• The API producer shall, prior to sending any notification, obtain an access token from the token endpoint using 
the OAuth 2.0 client credentials grant type as defined in IETF RFC 6749 [7]. The API consumer should 
include expiry information with the token response. 

• The API producer shall include that access token as a bearer token in every POST request that sends a 
notification (according to IETF RFC 6750 [8]). 

• If the access token is expired, the API consumer shall reject the notification. In that case, the API producer 
shall obtain a new access token, and repeat sending the notification. 

• If the token expiry time is known to the API producer, it may obtain proactively a new access token. 

"BASIC": 

• The API producer shall pass its client credentials in every POST request that sends a notification, as defined in 
IETF RFC 7617 [14]. 

"TLS_CERT":  

• The API producer (client) shall use its TLS certificate to create a mutually authenticated TLS session with the 
API consumer (server) and further the API consumer will do the authorization based on the API producer's 
certificate. 

8.3.5 Client roles 

An access token allows the API producer to identify information about the client that has obtained the access token, 
such as client identity, client role or client access rights. By having this property, access tokens can be used as a means 
to distinguish between different roles (and consequently different access rights) to the same set of resources.  

The mechanism for this works as follows: By means out of scope of the present document, the role of the client 
identified by a particular client identifier is provisioned to the authorization server. When that client obtains an access 
token, it sends its client identifier and client password to the authorization server. The authorization sever can obtain the 
role of the client by evaluating the data that were provisioned for the client identifier, and associate that information to 
the access token. By means out of scope of the present document, that association is shared with the API producer. This 
enables the API producer to detect the role based on the access token.  

In ETSI NFV, certain interfaces are exposed on multiple different reference points, i.e. the same interface is exposed to 
different consumer functional blocks. Depending on the consumer block that originates an HTTP request, not all 
resources/HTTP methods/request and parameters might be available. From the point of view of the producer functional 
block, this can be seen as consumers acting in different roles when accessing a particular interface.  
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Implementations may use the OAuth access token to differentiate between these cases, assuming that an access token 
can determine in which role (e.g. VNFM, NFVO, EM, VNF) a consumer functional block acts when accessing a 
particular interface. This assumes that the role of the consumer functional block is bound to its client credentials. The 
means of creating this binding is out of scope of the present document (e.g. a configuration step or policy).  

As an alternative mechanism, the client role can be bound to its certificate. The mechanism for this works as follows: 
By means out of scope of the present document, the client is identified by a particular client subject name that is 
extracted from its certificate. This subject name is then provided to the authorization server in order to get the 
associated role of that particular client. By means out of scope of the present document, the authorization server is 
preconfigured to have this association between the client subject name and the role. 

8.3.6 Negotiation of the authorization method  

8.3.6.1 Authorization of API requests 

The following provisions apply to the support of the authorization methods defined in the present document for the 
authorization of API requests: 

• The API producer shall support checking the authorization of API requests it receives based on an OAuth 2.0 
access token, and should support checking the authorization of API requests it receives based on TLS 
certificates, as defined in clause 8.3.3. 

• The API consumer shall support the authorization of API requests it sends by including an OAuth 2.0 bearer 
token in the request, and should support the authorization of API requests it sends by providing its client 
certificate to the API producer during TLS tunnel setup as defined in clause 8.3.3. 

When performing and authorizing an API request, API consumer and API producer shall use the following procedure, 
illustrated in figure 8.3.6.1-1, to negotiate the authorization method to use if the API consumer supports both the 
authorization based on OAuth 2.0 and the authorization based on TLS certificates, and the API consumer leaves the 
choice of OAuth or TLS to the API producer. 
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Figure 8.3.6.1-1: Negotiation of the authorization method to use for API requests 

1) The API consumer shall send an HTTP request to the API producer without an access token. 

2) If the API producer supports both authorization methods, chooses to use the method based on TLS certificates 
and the API consumer is authorized, it shall return the HTTP response to fulfil the request. Subsequent 
communication between API consumer and API producer shall use the authorization based on TLS 
credentials. 

3) If the API producer supports both authorization methods, chooses to use the method based on TLS certificates 
and the API consumer is not authorized, it shall return a 403 Forbidden response. 

4) If the API producer does not support the authorization based on TLS certificates, or chooses to use OAuth 2.0 
for authorization, it shall return a 401 Unauthorized response to challenge the API consumer to use OAuth 2.0. 

5) Once it has received the 401 Unauthorized response, the API consumer shall subsequently request an access 
token from the authorization server, according to clause 8.3.2. 

6) The authorization server shall respond with an access token according to clause 8.3.2. 

7) The API consumer shall subsequently retry the HTTP request with the access token included as a bearer token 
according to clause 8.3.2.  

Subsequent authorized communication between API consumer and API producer shall take place as defined in 
clause 8.3.2 (see also the flow in clause 8.2.2, starting at step 4). 



 

ETSI 

ETSI GS NFV-SOL 013 V2.8.1 (2020-09)36 

When performing and authorizing an API request and the API consumer does not support the method based on TLS 
certificates, or supports both methods but decides to use OAuth 2.0, no negotiation takes place, and the method defined 
in clause 8.3.2 shall be used (see also the flow in clause 8.2.2). 

Table 8.3.6.1-1 illustrates the alternatives. 

Table 8.3.6.1-1: Illustration of the alternatives 

Consumer supports Producer supports Consumer request Producer reaction 
OAuth2 OAuth2 Consumer sends an access 

token in the 1st HTTP request. 
Producer detects that OAuth2 is 
requested, and sends a success 
HTTP response if consumer is 
authorized (see note 1). 

OAuth2+TLS OAuth2 If consumer intends to use 
OAuth2, it sends an access token 
in the 1st HTTP request.  

Producer detects that OAuth2 is 
requested, and sends a success 
HTTP response if consumer is 
authorized (see note 1). 

Otherwise, consumer sends the 
1st HTTP request without access 
token. 

Producer sends a 401 challenge to 
initiate use of OAuth2 (see note 2). 

OAuth2 OAuth2+TLS Consumer sends an access 
token in the 1st HTTP request. 

Producer detects that OAuth2 is 
requested, and sends a success 
HTTP response if consumer is 
authorized (see note 1). 

OAuth2+TLS OAuth2+TLS If consumer intends to use 
OAuth2, it sends an access token 
in the 1st HTTP request.  

Producer detects that OAuth2 is 
requested, and sends a success 
HTTP response if consumer is 
authorized (see note 1). 

Otherwise, consumer sends the 
1st HTTP request without access 
token. 

If producer chooses OAuth2, it sends 
a 401 challenge (see note 2). 
Otherwise, if producer chooses TLS, 
it sends a success HTTP response if 
consumer is authorized (see note 3). 

NOTE 1: This flow (OAuth2 method chosen by API consumer) is illustrated in figure 8.2.2-1. 
NOTE 2: This flow (OAuth2 method chosen by API producer) is illustrated in figure 8.3.6.1-1 as alternative 2. 
NOTE 3: This flow (TLS method chosen by API producer) is illustrated in figure 8.3.6.1-1 as alternative 1. 
 

8.3.6.2 Authorization of notification requests 

The following provisions apply to the support of the authorization methods defined in the present document for the 
authorization of notification requests: 

• The API consumer shall support checking the authorization of notification requests it receives based on an 
OAuth 2.0 access token as defined in clause 8.3.4. Further, the API consumer should support checking the 
authorization of notification requests it receives based on HTTP Basic authentication, and based on TLS 
certificates as defined in clause 8.3.4. 

• The API producer shall support the authorization of notification requests it sends by including an OAuth 2.0 
bearer token in the request as defined in clause 8.3.4. Further, the API producer should support the 
authorization of notification requests it sends by providing credentials based on HTTP Basic authentication, 
and by providing its client certificate to the API producer during TLS tunnel setup as defined in clause 8.3.4. 

When performing and authorizing a notification request, API consumer and API producer shall use the following 
procedure to negotiate the authorization method to use: 

1) The API consumer shall signal in the subscription the authorization methods it accepts for notifications related 
to that particular subscription. 

2) If none of the methods signalled is supported by the API producer, the API producer shall reject the 
subscription with "422 Unprocessable Entity", and shall include in the payload body a ProblemDetails 
structure which shall provide the reason for the rejection in the "details" attribute.  

3) Otherwise, the API producer shall select one of the authorization methods that was signalled in the 
subscription, and shall use that method for the authorization of notifications it sends based on that subscription.  
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9 Version management 

9.1 Version identifiers and parameters 

9.1.1 Version identifiers 

API version identifiers shall consist of 3 numerical fields, following a MAJOR.MINOR.PATCH pattern and the rules 
for Semantic Versioning [18] with the additional clarifications defined in clause 9.2. The fields in an API version 
identifier shall be separated by dots ".". The last field may be followed by one or more version parameters. 

The MAJOR, MINOR and PATCH fields are defined in [18] for Semantic Versioning.  

The {apiMajorVersion} segment of the URIs used by an API shall be set to the character "v" followed by value of the 
MAJOR field of the API version identifier. 

EXAMPLE: ".../vnflcm/v1/ 

The full version identifier (including parameters) is used in ApiVersionInformation (see clause 7.1.6) and in version 
signalling (see clause 9.4). Furthermore, it also appears in the corresponding OpenAPI file that ETSI publishes as 
collateral material for each RESTful NFV-MANO API specification [i.4]. 

9.1.2 Version parameters 

Version parameters are separated from the version identifier by a dash "-". Version parameters are separated by 
semicolons ";". 

The present document defines the following version parameters: 

• impl 

The optional "impl" parameter identifies an implementation and a version of this implementation (e.g. implementation 
delivered by an open source community or a vendor). The OpenAPI specification that ETSI publishes as collateral 
material for each RESTful NFV-MANO API specification [i.4] is also considered an implementation under this scheme. 
The "impl" parameter shall have the following structure: "impl:" <vendor>":"<product>":"<impl_version>, where: 

• the <vendor> field shall be a string that contains either an IANA Enterprise Number assigned to that vendor, 
or an Internet domain name owned by that vendor; 

• the <product> field shall contain a string identifying the product, chosen by the vendor; 

• the <impl_version> field shall contain a number that defines the version of the implementation. Version 
numbers of subsequent implementations shall be monotonically increasing. 

9.2 Rules for incrementing version identifier fields 

9.2.1 General 

In the RESTful NFV-MANO APIs, versioning applies to the resources structure (URI structure, URI query parameters, 
and supported HTTP methods) and the payload body. Different criteria are applied to increment MAJOR, MINOR, and 
PATCH version fields for changes that affect the URI compared to changes that affect the payload body. 

The fields of an API version identifier are incremented from a previous version to the current version according to the 
following rules: 

• 1st field (MAJOR): This field is always incremented when one or more changes were made to the resources 
structure of the API that break backward compatibility. This field is also incremented if one or more changes 
were made to at least one payload body of the API that break backward compatibility, unless that change is 
correcting an error.  
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NOTE 1: A change that corrects an error that would lead the API producer to always send an error response if a 
certain valid condition is met is not considered a non-backward compatible change, irrespective of the 
type of change. Indeed, compatibility between a new version and a previous version can only be assessed 
for a feature that is properly supported in the previous version. 

NOTE 2: Void. 

• 2nd field (MINOR): This field is incremented if one or more technical changes (at least one of which is not an 
error correction) were made to the API specification but none of them (apart from error corrections to the 
payload body) breaks backward compatibility. It is reset to zero if the MAJOR version identifier is changed. 

• 3rd field (PATCH): This field is incremented if one or more error corrections that are visible in communication 
between API producer and API consumer were made to the API specification but none of them (apart from 
error corrections to the payload body) breaks backward compatibility. It is reset to zero if the MINOR version 
identifier is changed. 

NOTE 3: All the aforementioned types of changes affect the corresponding OpenAPI specification that ETSI 
publishes as collateral material for each RESTful NFV-MANO API specification [i.4]. 

9.2.2 Examples of backward and non-backward compatible changes 

Examples of backward compatible changes include: 

• Adding a new resource 

• Adding a new URI 

• Supporting a new HTTP method for an existing resource 

• Adding new optional URI query parameters 

• Adding new optional attributes to a resource representation in a request 

• Adding new attributes to a resource representation in a response or to a notification message 

• Responding with a new status code of an error class 

• Certain cardinality changes (see note 2) 

NOTE 1: Whether attribute cardinality changes are backward compatible depends on the type of change. An 
example of a backward-compatible cardinality change include making an attribute in a response required 
(e.g. changing cardinality from 0..1 to 1). 

Examples of non-backward compatible changes to the resources structure include: 

• Removing a resource/URI 

• Removing support for an HTTP method 

• Changing a resource URI 

• Adding new mandatory URI query parameters  

Examples of non-backward compatible changes to the payload body include: 

• Renaming an attribute in a resource representation 

• Adding new mandatory attributes to a resource representation in a request 

• Changing the data type of an attribute 

• Certain cardinality changes (see note 2) 
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NOTE 2: Whether attribute cardinality changes are backward compatible depends on the type of change. Examples 
of non-backward compatible cardinality changes include decreasing the upper bound of a cardinality 
range for attributes sent by the client, changing the meaning of the default behavior associated to the 
absence of an attribute of cardinality 0..N, etc. 

9.3 Version information retrieval 

9.3.1 General 

The API producer shall support the following dedicated URIs to enable API consumers to retrieve information about 
API versions supported by an API producer:  

1. {apiRoot}/{apiName}/api_versions 
2. {apiRoot}/{apiName}/{apiMajorVersion}/api_versions 

 

To obtain information about the supported API versions, the API consumer shall send a GET request to a URI of one of 
above forms. The information contained in the GET response depends on the form of URI used in the GET request, as 
follows:  

• If the first form is used, the GET response shall provide the list of supported versions for the API 
corresponding to the apiName indicated in the GET Request URI. 

• If the second form is used, the GET response shall provide the list of supported versions for the API 
corresponding to the {apiName} and the {apiMajorVersion} indicated in the GET Request URI. 

If the API producer receives a GET request: 

• In case of success, the API producer shall return in the body of a 200 OK response a value of the 
ApiVersionInformation data type specified in clause 7.1.6.  

• In case URI query parameters are provided, the API producer shall return a "400 Bad request" response as 
defined in clause 6.4. 

• In other cases of failure, the API producer shall return appropriate error information as defined in clause 6.4. 

9.3.2 Resource structure and methods 

Table 9.3.2-1 lists the individual resources defined for supporting API version information retrieval, and the applicable 
HTTP method. The API producer shall support responding to GET requests on the resources in table 9.3.2-1.  

Table 9.3.2-1: Resources and methods overview for API version information retrieval 

Resource name Resource URI HTTP 
Method 

Meaning 

API versions /{apiName}/api_versions GET Version information associated to an 
API 

API versions /{apiName}/{apiMajorVersion}/api_versions GET Version information associated to a 
major version of an API 

 

Figure 9.3.2-1 shows the "API versions" resources in the overall resource URI structure defined for all APIs.  

The "API versions" resources, as defined in the present clause, shall be part of the overall resource URI structure of 
each RESTful NFV-MANO API.  
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Figure 9.3.2-1: "API versions" resources 

9.3.3 Resource: API versions 

9.3.3.1 Description 

There are two "API versions" resources defined for each API. The client can use these resources to obtain API version 
information. 

9.3.3.2 Resource definition 

The resource URI of each of the two "API versions" resources shall be of one of the following forms: 

1. {apiRoot}/{apiName}/api_versions 
2. {apiRoot}/{apiName}/{apiMajorVersion}/api_versions 

 

These resources shall support the resource URI variables defined in table 9.3.3.2-1. 

Table 9.3.3.2-1: Resource URI variables for these resources 

Name Definition 
apiRoot See clause 4.1 
apiName See clause 4.1 
apiMajorVersion See clause 4.1 

 

9.3.3.3 Resource methods 

9.3.3.3.1 POST 

This method is not supported. When this method is requested on this resource, the API producer shall return a "405 
Method Not Allowed" response as defined in clause 6.4. 

9.3.3.3.2 GET 

The GET method reads API version information. This method shall follow the provisions specified in table 9.3.3.3.2-1 
for request and response data structures, and response codes. URI query parameters are not supported. 
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Table 9.3.3.3.2-1: Details of the GET request/response on this resource  

Request 
body 

Data type Cardinality Description 
n/a   

Response 
body Data type Cardinality Response 

Codes Description 

 

ApiVersionInformation 1 200 OK API version information was read successfully. 
 
The response body shall contain API version 
information, as defined in clause 7.1.6. 

 
ProblemDetails See clause 

6.4 
4xx/5xx In addition to the response codes defined above, any 

common error response code as defined in clause 6.4 
may be returned. 

 

9.3.3.3.3 PUT 

This method is not supported. When this method is requested on this resource, the API producer shall return a 
"405 Method Not Allowed" response as defined in clause 6.4. 

9.3.3.3.4 PATCH 

This method is not supported. When this method is requested on this resource, the API producer shall return a 
"405 Method Not Allowed" response as defined in clause 6.4. 

9.3.3.3.5 DELETE 

This method is not supported. When this method is requested on this resource, the API producer shall return a 
"405 Method Not Allowed" response as defined in clause 6.4. 

9.4 Version signaling 
The API consumer shall include the "Version" HTTP header (see IETF RFC 4229 [19]) in each HTTP request. The 
"Version" header shall contain the three version identifier fields (MAJOR.MINOR.PATCH) indicating the API version 
the API consumer intends to use. The "impl" version parameter may be provided, indicating the version of the API 
producer implementation that the API consumer intends to use. 

The API producer shall support receiving and interpreting the "Version" HTTP header. The API producer shall include 
in the response the "Version" HTTP header signaling the used API version, including the "impl" version parameter if 
available. If the "impl" version parameter has been omitted in the request, the API producer shall use the combination of 
MAJOR, MINOR and PATCH as requested and the highest supported value for the "impl_version" field of the "impl" 
version parameter for that combination, if available. 

NOTE: In case multiple versions and/or implementation versions are supported by an API producer, this allows 
the API consumer to request a particular version. 

API consumers conforming to versions of the RESTful NFV-MANO API specifications previous to version 2.5.1 omit 
this header. If the API producer receives a request without this header: 

• If it supports the provisions defined in version 2.4.1 of the applicable RESTful NFV-MANO API specification 
document, it shall behave as defined in that document, and should indicate this by using MAJOR=1 and 
MINOR=1 and PATCH=0 in the "Version" HTTP header in the response.  

• Otherwise, it shall respond with a 400 Bad Request response and shall include in the response payload body a 
ProblemDetails structure providing more information on the cause of the error in the "detail" attribute. 

If the API version signaled in the "Version" request header is not supported by the API producer, the API producer shall 
respond with a "406 Not Acceptable" error and shall include in the response payload body a ProblemDetails structure 
providing more information on the cause of the error in the "detail" attribute. 
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Annex A (informative): 
Change History 

Date Version Information about changes 

Nov 2018 2.5.2 

Initial version based on: 
- NFVSOL(18)000583r1 

 
Contributions incorporated: 

- NFVSOL(18)000582r3_SOL013_Content_moved_from_SOL003 

Feb 2019 2.5.3 

Contributions incorporated 
- NFVSOL(18)000677r1_SOL013ed261_Addressing_EN_on_error_codes 
- NFVSOL(19)000003r1_SOL013_modifications_to_authorization_description 
- NFVSOL(19)000104r1_SOL013ed261_Version_related_update_for_publication 

 
Editorials: 

- Changed year 
- Fixed bullet numbering in clause 8 
- Fixed mis-formatting and missing table reference in clause 7.2.2. 

Mar 2019 2.6.1 Publication by ETSI 

Aug 2019 2.6.2 

Contributions incorporated 
- NFVSOL(19)000127r3_SOL013ed271_Reference_to_SEC022 
- NFVSOL(19)000413_SOL013_moving_OpenAPI_version_conventions_to_SOL

015 
- NFVSOL(19)000465r1_SOL013_fixing_occurrences_of_the_present_document 

(with some editorials applied) 
 
Editorials: 

- Generally use "NFV-MANO" 
- replace occurrences of “ETSI NFV-SOL APIs” in clause 9.4 with “RESTful NFV-

MANO APIs” 

Oct 2019 2.6.3 Contributions incorporated: 
- NFVSOL(19)000501_SOL013ed271_numeric_data_types 

Dec 2019 2.7.1 Publication by ETSI 

May 2020 2.7.2 

Contributions incorporated: 
- NFVSOL(20)000445_SOL013ed281_resolve_bug_report_0007836 
- NFVSOL(20)000454_SOL013ed281_mirror_backporting_453_Fixing_misalign

ment_of_no 
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History 

Document history 

V2.6.1 March 2019 Publication 

V2.7.1 December 2019 Publication 

V2.8.1 September 2020 Publication 
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