

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)

Network Functions Virtualisation (NFV) Release 2;
Protocols and Data Models;

RESTful protocols specification for
the Os-Ma-nfvo Reference Point

Disclaimer

The present document has been produced and approved by the Network Functions Virtualisation (NFV) ETSI Industry
Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)2

Reference
RGS/NFV-SOL005ed251

Keywords
API, NFV, protocol

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2018.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M logo is protected for the benefit of its Members.

GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)3

Contents

Intellectual Property Rights .. 17

Foreword ... 17

Modal verbs terminology .. 17

1 Scope .. 18

2 References .. 18

2.1 Normative references ... 18

2.2 Informative references .. 20

3 Abbreviations ... 20

4 General Aspects .. 22

4.1 Overview .. 22

4.2 URI structure and supported content formats ... 22

4.3 Common procedures... 23

4.3.1 Introduction... 23

4.3.2 Attribute-based filtering .. 23

4.3.2.1 Overview and example (informative).. 23

4.3.2.2 Specification.. 24

4.3.3 Attribute selectors ... 25

4.3.3.1 Overview and example .. 25

4.3.3.2 Specification.. 26

4.3.3.2.1 GET request ... 26

4.3.3.2.2 GET response .. 26

4.3.4 Usage of HTTP header fields .. 27

4.3.4.1 Introduction ... 27

4.3.4.2 Request header fields .. 27

4.3.4.3 Response header fields .. 28

4.3.5 Error reporting .. 29

4.3.5.1 Introduction ... 29

4.3.5.2 General mechanism ... 29

4.3.5.3 Type: ProblemDetails.. 29

4.3.5.4 Common error situations ... 29

4.3.5.5 Overview of HTTP error status codes ... 31

4.4 Common data types .. 32

4.4.1 Structured data types ... 32

4.4.1.1 Introduction ... 32

4.4.1.2 Type: Object .. 32

4.4.1.3 Type: Link ... 32

4.4.1.3a Type: NotificationLink .. 33

4.4.1.4 Type: KeyValuePairs .. 33

4.4.1.5 Type: NsInstanceSubscriptionFilter .. 33

4.4.1.6 Type: ResourceHandle .. 34

4.4.1.7 Type: ApiVersionInformation ... 34

4.4.2 Simple data types .. 35

4.5 Authorization of API requests and notifications .. 36

4.5.1 Introduction... 36

4.5.2 Flows (informative) .. 36

4.5.2.0 General .. 36

4.5.2.1 Authorization of API requests using OAuth 2.0 access tokens ... 36

4.5.2.1a Authorization of API requests using TLS certificates ... 38

4.5.2.2 Authorization of notifications using the HTTP Basic authentication scheme 39

4.5.2.3 Authorization of notifications using OAuth 2.0 access tokens.. 40

4.5.2.4 Authorization of notifications using TLS certificates ... 42

4.5.3 Specification ... 44

4.5.3.1 Introduction ... 44

4.5.3.2 General mechanism ... 44

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)4

4.5.3.3 Authorizing API requests .. 44

4.5.3.4 Authorizing the sending of notifications ... 45

4.5.3.5 Client roles .. 46

4.5.3.6 Negotiation of authorization method ... 47

4.5.3.6.1 Authorization of API requests ... 47

4.5.3.6.2 Authorization of notification requests ... 49

4.6 Version management .. 50

4.6.1 Version identifiers and parameters ... 50

4.6.1.1 Version identifiers ... 50

4.6.1.2 Version parameters.. 50

4.6.2 Rules for incrementing version identifier fields.. 50

4.6.2.1 General .. 50

4.6.2.2 Examples of backward and non-backward compatible changes ... 51

4.6.3 Version information retrieval .. 52

4.6.3.1 General .. 52

4.6.3.2 Resource structure and methods .. 52

4.6.3.3 Resource: API versions ... 53

4.6.3.3.1 Description .. 53

4.6.3.3.2 Resource definition .. 53

4.6.3.3.3 Resource methods .. 53

4.6.4 Version signalling ... 54

4.7 Handling of large query results .. 55

4.7.1 Description .. 55

4.7.2 Specification ... 55

4.7.2.1 Alternatives ... 55

4.7.2.2 Error response ... 55

4.7.2.3 Paged response .. 55

5 NSD Management interface ... 56

5.1 Description ... 56

5.1a API version ... 57

5.2 Resource structure and methods ... 57

5.3 Sequence diagrams (informative) ... 58

5.3.1 Flow of the creation of an individual NS descriptor resource ... 58

5.3.2 Flow of the uploading of NSD content ... 59

5.3.3 Flow of the fetching of NSD content .. 59

5.3.4 Flow of the update of an individual NS descriptor resource ... 60

5.3.5 Flow of the deletion of an individual NS descriptor resource ... 61

5.3.6 Flow of the querying/reading of NS descriptor resources ... 62

5.3.7 Flow of the creation of an individual PNF descriptor resource .. 63

5.3.8 Flow of the uploading of PNFD content ... 64

5.3.9 Flow of the fetching of PNFD content .. 65

5.3.10 Flow of the deletion of an individual PNF descriptor resource .. 65

5.3.11 Flow of the querying/reading of PNF descriptor resources .. 66

5.3.12 Flow of managing subscriptions ... 67

5.3.13 Flow of sending notifications.. 69

5.4 Resources ... 70

5.4.1 Introduction... 70

5.4.2 Resource: NS Descriptors ... 70

5.4.2.1 Description .. 70

5.4.2.2 Resource definition ... 70

5.4.2.3 Resource methods ... 71

5.4.2.3.1 POST ... 71

5.4.2.3.2 GET ... 71

5.4.2.3.3 PUT ... 72

5.4.2.3.4 PATCH .. 72

5.4.2.3.5 DELETE .. 72

5.4.3 Resource: Individual NS Descriptor ... 73

5.4.3.1 Description .. 73

5.4.3.2 Resource definition ... 73

5.4.3.3 Resource methods ... 73

5.4.3.3.1 POST ... 73

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)5

5.4.3.3.2 GET ... 73

5.4.3.3.3 PUT ... 74

5.4.3.3.4 PATCH .. 74

5.4.3.3.5 DELETE .. 75

5.4.4 Resource: NSD Content .. 76

5.4.4.1 Description .. 76

5.4.4.2 Resource definition ... 76

5.4.4.3 Resource methods ... 76

5.4.4.3.1 POST ... 76

5.4.4.3.2 GET ... 77

5.4.4.3.3 PUT ... 78

5.4.4.3.4 PATCH .. 79

5.4.4.3.5 DELETE .. 79

5.4.5 Resource: PNF Descriptors ... 80

5.4.5.1 Description .. 80

5.4.5.2 Resource definition ... 80

5.4.5.3 Resource methods ... 80

5.4.5.3.1 POST ... 80

5.4.5.3.2 GET ... 81

5.4.5.3.3 PUT ... 82

5.4.5.3.4 PATCH .. 82

5.4.5.3.5 DELETE .. 82

5.4.6 Resource: Individual PNF Descriptor ... 82

5.4.6.1 Description .. 82

5.4.6.2 Resource definition ... 83

5.4.6.3 Resource methods ... 83

5.4.6.3.1 POST ... 83

5.4.6.3.2 GET ... 83

5.4.6.3.3 PUT ... 83

5.4.6.3.4 PATCH .. 84

5.4.6.3.5 DELETE .. 84

5.4.7 Resource: PNFD Content .. 85

5.4.7.1 Description .. 85

5.4.7.2 Resource definition ... 85

5.4.7.3 Resource methods ... 85

5.4.7.3.1 POST ... 85

5.4.7.3.2 GET ... 85

5.4.7.3.3 PUT ... 86

5.4.7.3.4 PATCH .. 87

5.4.7.3.5 DELETE .. 87

5.4.8 Resource: Subscriptions .. 87

5.4.8.1 Description .. 87

5.4.8.2 Resource definition ... 87

5.4.8.3 Resource methods ... 88

5.4.8.3.1 POST ... 88

5.4.8.3.2 GET ... 88

5.4.8.3.3 PUT ... 89

5.4.8.3.4 PATCH .. 89

5.4.8.3.5 DELETE .. 89

5.4.9 Resource: Individual subscription ... 90

5.4.9.1 Description .. 90

5.4.9.2 Resource definition ... 90

5.4.9.3 Resource methods ... 90

5.4.9.3.1 POST ... 90

5.4.9.3.2 GET ... 90

5.4.9.3.3 PUT ... 91

5.4.9.3.4 PATCH .. 91

5.4.9.3.5 DELETE .. 91

5.4.10 Resource: Notification endpoint ... 91

5.4.10.1 Description .. 91

5.4.10.2 Resource definition ... 91

5.4.10.3 Resource methods ... 92

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)6

5.4.10.3.1 POST ... 92

5.4.10.3.2 GET ... 92

5.4.10.3.3 PUT ... 93

5.4.10.3.4 PATCH .. 93

5.4.10.3.5 DELETE .. 93

5.5 Data model ... 93

5.5.1 Introduction... 93

5.5.2 Resource and notification data types .. 93

5.5.2.1 Type: NsdInfoModifications ... 93

5.5.2.2 Type: NsdInfo ... 94

5.5.2.3 Type: CreateNsdInfoRequest .. 95

5.5.2.4 Type: PnfdInfoModifications .. 95

5.5.2.5 Type: PnfdInfo .. 95

5.5.2.6 Type: CreatePnfdInfoRequest ... 96

5.5.2.7 Type: NsdmSubscriptionRequest .. 96

5.5.2.8 Type: NsdmSubscription ... 97

5.5.2.9 Type: NsdOnboardingNotification .. 97

5.5.2.10 Type: NsdOnboardingFailureNotification .. 98

5.5.2.11 Type: NsdChangeNotification... 98

5.5.2.12 Type: NsdDeletionNotification ... 99

5.5.2.13 Type: PnfdOnboardingNotification ... 99

5.5.2.14 Type: PnfdOnboardingFailureNotification ... 99

5.5.2.15 Type: PnfdDeletionNotification .. 100

5.5.3 Referenced structured data types .. 100

5.5.3.1 Introduction ... 100

5.5.3.2 Type: NsdmNotificationsFilter ... 100

5.5.3.3 Type: NsdmLinks .. 101

5.5.3.4 Type: PnfdmLinks ... 102

5.5.4 Referenced simple data types and enumerations .. 102

5.5.4.1 Introduction ... 102

5.5.4.2 Simple data types .. 102

5.5.4.3 Enumeration: NsdOperationalStateType ... 102

5.5.4.4 Enumeration: NsdUsageStateType ... 102

5.5.4.5 Enumeration: NsdOnboardingStateType .. 103

5.5.4.6 Enumeration: PnfdOnboardingStateType ... 103

5.5.4.7 Enumeration: PnfdUsageStateType .. 103

6 NS Lifecycle Management interface .. 103

6.1 Description ... 103

6.1a API version ... 104

6.2 Resource structure and methods ... 104

6.3 Sequence diagrams (informative) ... 106

6.3.1 Flow of the creation of a NS instance resource... 106

6.3.2 Flow of the deletion of a NS instance resource... 107

6.3.3 Flow of NS lifecycle management operations triggered by task resources... 108

6.3.4 Flow of the get operations status operation .. 110

6.3.5 Flow of managing subscriptions ... 111

6.3.6 Flow of sending notifications.. 113

6.3.7 Flow of retrying a NS lifecycle management operation ... 114

6.3.8 Flow of rolling back a NS lifecycle management operation ... 115

6.3.9 Flow of continuing a NS lifecycle management operation ... 116

6.3.10 Flow of failing a NS lifecycle management operation .. 118

6.3.11 Flow of cancelling a NS lifecycle management operation .. 119

6.4 Resources ... 120

6.4.1 Introduction... 120

6.4.2 Resource: NS Instances .. 120

6.4.2.1 Description .. 120

6.4.2.2 Resource definition ... 120

6.4.2.3 Resource methods ... 120

6.4.2.3.1 POST ... 120

6.4.2.3.2 GET ... 121

6.4.2.3.3 PUT ... 122

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)7

6.4.2.3.4 PATCH .. 122

6.4.2.3.5 DELETE .. 122

6.4.3 Resource: Individual NS Instance ... 122

6.4.3.1 Description .. 122

6.4.3.2 Resource definition ... 123

6.4.3.3 Resource methods ... 123

6.4.3.3.1 POST ... 123

6.4.3.3.2 GET ... 123

6.4.3.3.3 PUT ... 123

6.4.3.3.4 PATCH .. 123

6.4.3.3.5 DELETE .. 124

6.4.4 Resource: Instantiate NS task ... 124

6.4.4.1 Description .. 124

6.4.4.2 Resource definition ... 124

6.4.4.3 Resource methods ... 125

6.4.4.3.1 POST ... 125

6.4.4.3.2 GET ... 125

6.4.4.3.3 PUT ... 125

6.4.4.3.4 PATCH .. 125

6.4.4.3.5 DELETE .. 126

6.4.5 Resource: Scale NS task ... 126

6.4.5.1 Description .. 126

6.4.5.2 Resource definition ... 126

6.4.5.3 Resource methods ... 126

6.4.5.3.1 POST ... 126

6.4.5.3.2 GET ... 127

6.4.5.3.3 PUT ... 127

6.4.5.3.4 PATCH .. 127

6.4.5.3.5 DELETE .. 127

6.4.6 Resource: Update NS task .. 127

6.4.6.1 Description .. 127

6.4.6.2 Resource definition ... 128

6.4.6.3 Resource methods ... 128

6.4.6.3.1 POST ... 128

6.4.6.3.2 GET ... 129

6.4.6.3.3 PUT ... 129

6.4.6.3.4 PATCH .. 129

6.4.6.3.5 DELETE .. 129

6.4.7 Resource: Heal NS task .. 129

6.4.7.1 Description .. 129

6.4.7.2 Resource definition ... 129

6.4.7.3 Resource methods ... 129

6.4.7.3.1 POST ... 129

6.4.7.3.2 GET ... 130

6.4.7.3.3 PUT ... 130

6.4.7.3.4 PATCH .. 130

6.4.7.3.5 DELETE .. 130

6.4.8 Resource: Terminate NS task.. 130

6.4.8.1 Description .. 130

6.4.8.2 Resource definition ... 131

6.4.8.3 Resource methods ... 131

6.4.8.3.1 POST ... 131

6.4.8.3.2 GET ... 132

6.4.8.3.3 PUT ... 132

6.4.8.3.4 PATCH .. 132

6.4.8.3.5 DELETE .. 132

6.4.9 Resource: NS LCM operation occurrences ... 132

6.4.9.1 Description .. 132

6.4.9.2 Resource definition ... 132

6.4.9.3 Resource methods ... 132

6.4.9.3.1 POST ... 132

6.4.9.3.2 GET ... 132

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)8

6.4.9.3.3 PUT ... 134

6.4.9.3.4 PATCH .. 134

6.4.9.3.5 DELETE .. 134

6.4.10 Resource: Individual NS LCM operation occurrence ... 134

6.4.10.1 Description .. 134

6.4.10.2 Resource definition ... 134

6.4.10.3 Resource methods ... 134

6.4.10.3.1 POST ... 134

6.4.10.3.2 GET ... 134

6.4.10.3.3 PUT ... 135

6.4.10.3.4 PATCH .. 135

6.4.10.3.5 DELETE .. 135

6.4.11 Resource: Retry operation task ... 135

6.4.11.1 Description .. 135

6.4.11.2 Resource definition ... 135

6.4.11.3 Resource methods ... 136

6.4.11.3.1 POST ... 136

6.4.11.3.2 GET ... 137

6.4.11.3.3 PUT ... 137

6.4.11.3.4 PATCH .. 137

6.4.11.3.5 DELETE .. 137

6.4.12 Resource: Rollback operation task .. 137

6.4.12.1 Description .. 137

6.4.12.2 Resource definition ... 137

6.4.12.3 Resource methods ... 137

6.4.12.3.1 POST ... 137

6.4.12.3.2 GET ... 138

6.4.12.3.3 PUT ... 138

6.4.12.3.4 PATCH .. 138

6.4.12.3.5 DELETE .. 138

6.4.13 Resource: Continue operation task ... 139

6.4.13.1 Description .. 139

6.4.13.2 Resource definition ... 139

6.4.13.3 Resource methods ... 139

6.4.13.3.1 POST ... 139

6.4.13.3.2 GET ... 140

6.4.13.3.3 PUT ... 140

6.4.13.3.4 PATCH .. 140

6.4.13.3.5 DELETE .. 140

6.4.14 Resource: Fail operation task .. 141

6.4.14.1 Description .. 141

6.4.14.2 Resource definition ... 141

6.4.14.3 Resource methods ... 141

6.4.14.3.1 POST ... 141

6.4.14.3.2 GET ... 142

6.4.14.3.3 PUT ... 142

6.4.14.3.4 PATCH .. 142

6.4.14.3.5 DELETE .. 143

6.4.15 Resource: Cancel operation task ... 143

6.4.15.1 Description .. 143

6.4.15.2 Resource definition ... 143

6.4.15.3 Resource methods ... 143

6.4.15.3.1 POST ... 143

6.4.15.3.2 GET ... 144

6.4.15.3.3 PUT ... 144

6.4.15.3.4 PATCH .. 144

6.4.15.3.5 DELETE .. 145

6.4.16 Resource: Subscriptions .. 145

6.4.16.1 Description .. 145

6.4.16.2 Resource definition ... 145

6.4.16.3 Resource methods ... 145

6.4.16.3.1 POST ... 145

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)9

6.4.16.3.2 GET ... 146

6.4.16.3.3 PUT ... 147

6.4.16.3.4 PATCH .. 147

6.4.16.3.5 DELETE .. 147

6.4.17 Resource: Individual subscription ... 147

6.4.17.1 Description .. 147

6.4.17.2 Resource definition ... 147

6.4.17.3 Resource methods ... 148

6.4.17.3.1 POST ... 148

6.4.17.3.2 GET ... 148

6.4.17.3.3 PUT ... 148

6.4.17.3.4 PATCH .. 148

6.4.17.3.5 DELETE .. 148

6.4.18 Resource: Notification endpoint ... 149

6.4.18.1 Description .. 149

6.4.18.2 Resource definition ... 149

6.4.18.3 Resource methods ... 149

6.4.18.3.1 POST ... 149

6.4.18.3.2 GET ... 150

6.4.18.3.3 PUT ... 150

6.4.18.3.4 PATCH .. 150

6.4.18.3.5 DELETE .. 150

6.5 Data model ... 151

6.5.1 Introduction... 151

6.5.2 Resource and notification data types .. 151

6.5.2.1 Introduction ... 151

6.5.2.2 Type: LccnSubscriptionRequest ... 151

6.5.2.3 Type: NsLcmOpOcc ... 151

6.5.2.4 Type: LccnSubscription .. 153

6.5.2.5 Type: NsLcmOperationOccurrenceNotification ... 153

6.5.2.6 Type: NsIdentifierCreationNotification .. 154

6.5.2.7 Type: NsIdentifierDeletionNotification .. 155

6.5.2.8 Type: NsChangeNotification... 155

6.5.2.9 Type: CreateNsRequest ... 156

6.5.2.10 Type: NsInstance ... 156

6.5.2.11 Type: InstantiateNsRequest... 157

6.5.2.12 Type: UpdateNsRequest .. 158

6.5.2.13 Type: HealNsRequest.. 160

6.5.2.14 Type: ScaleNsRequest .. 160

6.5.2.15 Type: TerminateNsRequest ... 161

6.5.2.16 Type: CancelMode .. 161

6.5.3 Referenced structured data types .. 161

6.5.3.1 Introduction ... 161

6.5.3.2 Type: AffectedVnf .. 161

6.5.3.3 Type: AffectedPnf ... 162

6.5.3.4 Type: AffectedVirtualLink .. 162

6.5.3.5 Type: AffectedVnffg ... 163

6.5.3.6 Type: AffectedNs .. 163

6.5.3.7 Type: AffectedSap .. 164

6.5.3.8 Type: LifecycleChangeNotificationsFilter .. 164

6.5.3.9 Type: LccnLinks ... 165

6.5.3.10 Type: SapData ... 166

6.5.3.11 Type: CpProtocolData ... 166

6.5.3.12 Type: IpOverEthernetAddressData ... 166

6.5.3.13 Type: PnfInfo .. 167

6.5.3.14 Type: AddPnfData .. 167

6.5.3.15 Type: ModifyPnfData ... 168

6.5.3.16 Type: PnfExtCpData ... 168

6.5.3.17 Type: PnfExtCpInfo .. 168

6.5.3.18 Type: IpOverEthernetAddressInfo .. 168

6.5.3.19 Type: VnfInstanceData ... 169

6.5.3.19a Type: NestedNsInstanceData .. 169

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)10

6.5.3.20 Type: VnfLocationConstraint ... 170

6.5.3.21 Type: LocationConstraints .. 170

6.5.3.21a Type: ParamsForNestedNs .. 170

6.5.3.22 Type: ParamsForVnf ... 170

6.5.3.23 Type: AffinityOrAntiAffinityRule .. 171

6.5.3.24 Type: InstantiateVnfData .. 171

6.5.3.25 Type: ChangeVnfFlavourData .. 172

6.5.3.26 Type: ExtVirtualLinkData .. 172

6.5.3.27 Type: ExtManagedVirtualLinkData .. 173

6.5.3.28 Type: ExtLinkPortData ... 173

6.5.3.29 Type: VnfExtCpData .. 173

6.5.3.30 Type: VnfExtCpConfig ... 174

6.5.3.31 Type: OperateVnfData .. 174

6.5.3.32 Type: ModifyVnfInfoData .. 175

6.5.3.33 Type: ChangeExtVnfConnectivityData .. 175

6.5.3.34 Type: AssocNewNsdVersionData ... 176

6.5.3.35 Type: MoveVnfInstanceData .. 176

6.5.3.36 Type: AddVnffgData .. 176

6.5.3.37 Type: UpdateVnffgData .. 177

6.5.3.38 Type: NfpData ... 177

6.5.3.39 Type: ChangeNsFlavourData .. 177

6.5.3.40 Type: NfpRule ... 178

6.5.3.41 Type: Mask ... 178

6.5.3.42 Type: PortRange ... 179

6.5.3.43 Type: HealNsData ... 179

6.5.3.44 Type: HealVnfData ... 179

6.5.3.45 Type: ScaleNsData .. 180

6.5.3.46 Type: ScaleNsByStepsData... 180

6.5.3.47 Type: ScaleNsToLevelData .. 181

6.5.3.48 Type: NsScaleInfo ... 181

6.5.3.49 Type: ScaleVnfData .. 181

6.5.3.50 Type: ScaleToLevelData ... 182

6.5.3.51 Type: VnfScaleInfo ... 182

6.5.3.52 Type: ScaleByStepData .. 182

6.5.3.53 Type: NsVirtualLinkInfo .. 183

6.5.3.54 Void... 183

6.5.3.55 Type: NsLinkPortInfo ... 183

6.5.3.56 Type: NsCpHandle .. 184

6.5.3.57 Type: VnfInstance ... 184

6.5.3.58 Type: CpProtocolInfo.. 186

6.5.3.59 Type: ExtManagedVirtualLinkInfo ... 187

6.5.3.60 Type: VnfcResourceInfo ... 187

6.5.3.61 Type: VnfVirtualLinkResourceInfo .. 187

6.5.3.62 Type: ExtVirtualLinkInfo ... 188

6.5.3.63 Type: ExtLinkPortInfo .. 188

6.5.3.64 Type: VnfLinkPortInfo ... 188

6.5.3.65 Type: VnffgInfo .. 189

6.5.3.66 Type: NfpInfo ... 189

6.5.3.67 Type: SapInfo .. 190

6.5.3.68 Type: NsMonitoringParameter .. 190

6.5.3.69 Type: VnfMonitoringParameter .. 190

6.5.3.70 Type: VnfExtCpInfo ... 191

6.5.3.71 Type: CpGroupInfo ... 191

6.5.3.72 Type: CpPairInfo ... 192

6.5.3.73 Type: ForwardingBehaviour InputParameters .. 192

6.5.4 Referenced simple data types and enumerations .. 193

6.5.4.1 Introduction ... 193

6.5.4.2 Simple data types .. 193

6.5.4.3 Enumeration: NsLcmOpType ... 193

6.5.4.4 Enumeration: NsLcmOperationStateType .. 193

6.5.4.5 Enumeration: NsComponentType ... 194

6.5.4.6 Enumeration: LcmOpNameForChangeNotificationType ... 194

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)11

6.5.4.7 Enumeration: LcmOpOccStatusForChangeNotificationType ... 194

6.5.4.8 Enumeration: OperationalStates .. 195

6.5.4.9 Enumeration: StopType .. 195

6.5.4.10 Enumeration: CancelModeType ... 195

6.6 Handling of errors during NS lifecycle management operations.. 196

6.6.1 Basic concepts (informative) .. 196

6.6.1.1 Motivation ... 196

6.6.1.2 Failure resolution strategies: Retry, Rollback and Continue ... 196

6.6.1.3 Error handling at NFVO and OSS/BSS .. 196

6.6.2 States and state transitions of a NS lifecycle management operation occurrence 198

6.6.2.1 General .. 198

6.6.2.2 States of a NS lifecycle management operation occurrence .. 198

6.6.2.3 Error handling operations that change the state of a NS lifecycle operation 201

6.6.3 Detailed flows ... 201

6.6.3.1 Immediate failure .. 201

6.6.3.2 Failure during actual NS LCM operation execution ... 202

6.6.3.3 LCM operation cancellation .. 203

7 NS Performance Management interface ... 204

7.1 Description ... 204

7.1a API version ... 204

7.2 Resource structure and methods ... 204

7.3 Sequence diagrams (informative) ... 205

7.3.1 Flow of creating a PM job .. 205

7.3.2 Flow of querying/reading PM jobs ... 206

7.3.3 Flow of deleting a PM job .. 207

7.3.4 Flow of obtaining performance reports ... 207

7.3.5 Flow of creating a threshold ... 208

7.3.6 Flow of querying/reading thresholds .. 209

7.3.7 Flow of deleting thresholds ... 209

7.3.8 Flow of managing subscriptions ... 210

7.3.9 Flow of sending notifications.. 212

7.4 Resources ... 213

7.4.1 Introduction... 213

7.4.2 Resource: PM jobs .. 213

7.4.2.1 Description .. 213

7.4.2.2 Resource definition ... 213

7.4.2.3 Resource methods ... 213

7.4.2.3.1 POST ... 213

7.4.2.3.2 GET ... 214

7.4.2.3.3 PUT ... 215

7.4.2.3.4 PATCH .. 215

7.4.2.3.5 DELETE .. 215

7.4.3 Resource: Individual PM job .. 215

7.4.3.1 Description .. 215

7.4.3.2 Resource definition ... 216

7.4.3.3 Resource methods ... 216

7.4.3.3.1 POST ... 216

7.4.3.3.2 GET ... 216

7.4.3.3.3 PUT ... 216

7.4.3.3.4 PATCH .. 217

7.4.3.3.5 DELETE .. 217

7.4.4 Resource: Individual performance report ... 217

7.4.4.1 Description .. 217

7.4.4.2 Resource definition ... 217

7.4.4.3 Resource methods ... 218

7.4.4.3.1 POST ... 218

7.4.4.3.2 GET ... 218

7.4.4.3.3 PUT ... 218

7.4.4.3.4 PATCH .. 218

7.4.4.3.5 DELETE .. 218

7.4.5 Resource: Thresholds .. 218

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)12

7.4.5.1 Description .. 218

7.4.5.2 Resource definition ... 219

7.4.5.3 Resource methods ... 219

7.4.5.3.1 POST ... 219

7.4.5.3.2 GET ... 219

7.4.5.3.3 PUT ... 220

7.4.5.3.4 PATCH .. 220

7.4.5.3.5 DELETE .. 221

7.4.6 Resource: Individual threshold ... 221

7.4.6.1 Description .. 221

7.4.6.2 Resource definition ... 221

7.4.6.3 Resource methods ... 221

7.4.6.3.1 POST ... 221

7.4.6.3.2 GET ... 221

7.4.6.3.3 PUT ... 222

7.4.6.3.4 PATCH .. 222

7.4.6.3.5 DELETE .. 222

7.4.7 Resource: Subscriptions .. 222

7.4.7.1 Description .. 222

7.4.7.2 Resource definition ... 223

7.4.7.3 Resource methods ... 223

7.4.7.3.1 POST ... 223

7.4.7.3.2 GET ... 224

7.4.7.3.3 PUT ... 225

7.4.7.3.4 PATCH .. 225

7.4.7.3.5 DELETE .. 225

7.4.8 Resource: Individual subscription ... 225

7.4.8.1 Description .. 225

7.4.8.2 Resource definition ... 226

7.4.8.3 Resource methods ... 226

7.4.8.3.1 POST ... 226

7.4.8.3.2 GET ... 226

7.4.8.3.3 PUT ... 226

7.4.8.3.4 PATCH .. 227

7.4.8.3.5 DELETE .. 227

7.4.9 Resource: Notification endpoint ... 227

7.4.9.1 Description .. 227

7.4.9.2 Resource definition ... 227

7.4.9.3 Resource methods ... 227

7.4.9.3.1 POST ... 227

7.4.9.3.2 GET ... 228

7.4.9.3.3 PUT ... 228

7.4.9.3.4 PATCH .. 229

7.4.9.3.5 DELETE .. 229

7.5 Data Model ... 229

7.5.1 Introduction... 229

7.5.2 Resource and notification data types .. 229

7.5.2.1 Introduction ... 229

7.5.2.2 Type: PmSubscriptionRequest .. 229

7.5.2.3 Type: PmSubscription ... 229

7.5.2.4 Type: ThresholdCrossedNotification .. 230

7.5.2.5 Type: PerformanceInformationAvailableNotification .. 230

7.5.2.6 Type: CreatePmJobRequest .. 231

7.5.2.7 Type: PmJob ... 231

7.5.2.8 Type: CreateThresholdRequest ... 232

7.5.2.9 Type: Threshold .. 232

7.5.2.10 Type: PerformanceReport ... 232

7.5.3 Referenced structured data types .. 233

7.5.3.1 Introduction ... 233

7.5.3.2 Type: PmNotificationsFilter .. 233

7.5.3.3 Type: PmJobCriteria ... 233

7.5.3.4 Type: ThresholdCriteria .. 234

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)13

7.5.4 Referenced simple data types and enumerations .. 235

7.5.4.1 Introduction ... 235

7.5.4.2 Simple data types .. 235

7.5.4.3 Enumeration: CrossingDirectionType ... 235

8 NS Fault Management interface ... 235

8.1 Description ... 235

8.1a API version ... 236

8.2 Resource structure and methods ... 236

8.3 Sequence diagrams (informative) ... 237

8.3.1 Flow of the Get Alarm List operation ... 237

8.3.2 Flow of acknowledging alarm .. 238

8.3.3 Flow of managing subscriptions ... 238

8.3.4 Flow of sending notifications.. 240

8.4 Resources ... 240

8.4.1 Introduction... 240

8.4.2 Resource: Alarms .. 241

8.4.2.1 Description .. 241

8.4.2.2 Resource definition ... 241

8.4.2.3 Resource methods ... 241

8.4.2.3.1 POST ... 241

8.4.2.3.2 GET ... 241

8.4.2.3.3 PUT ... 242

8.4.2.3.4 PATCH .. 242

8.4.2.3.5 DELETE .. 242

8.4.3 Resource: Individual alarm ... 242

8.4.3.1 Description .. 242

8.4.3.2 Resource definition ... 242

8.4.3.3 Resource methods ... 243

8.4.3.3.1 POST ... 243

8.4.3.3.2 GET ... 243

8.4.3.3.3 PUT ... 243

8.4.3.3.4 PATCH .. 243

8.4.3.3.5 DELETE .. 244

8.4.4 Resource: Subscriptions .. 244

8.4.4.1 Description .. 244

8.4.4.2 Resource definition ... 244

8.4.4.3 Resource methods ... 245

8.4.4.3.1 POST ... 245

8.4.4.3.2 GET ... 245

8.4.4.3.3 PUT ... 246

8.4.4.3.4 PATCH .. 246

8.4.4.3.5 DELETE .. 247

8.4.5 Resource: Individual subscription ... 247

8.4.5.1 Description .. 247

8.4.5.2 Resource definition ... 247

8.4.5.3 Resource methods ... 247

8.4.5.3.1 POST ... 247

8.4.5.3.2 GET ... 247

8.4.5.3.3 PUT ... 248

8.4.5.3.4 PATCH .. 248

8.4.5.3.5 DELETE .. 248

8.4.6 Resource: Notification endpoint ... 248

8.4.6.1 Description .. 248

8.4.6.2 Resource definition ... 249

8.4.6.3 Resource methods ... 249

8.4.6.3.1 POST ... 249

8.4.6.3.2 GET ... 249

8.4.6.3.3 PUT ... 250

8.4.6.3.4 PATCH .. 250

8.4.6.3.5 DELETE .. 250

8.5 Data Model ... 250

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)14

8.5.1 Introduction... 250

8.5.2 Resource and notification data types .. 250

8.5.2.1 Introduction ... 250

8.5.2.2 Type: FmSubscriptionRequest .. 250

8.5.2.3 Type: FmSubscription ... 251

8.5.2.4 Type: Alarm .. 251

8.5.2.5 Type: AlarmNotification ... 252

8.5.2.6 Type: AlarmClearedNotification ... 252

8.5.2.7 Type: AlarmListRebuiltNotification ... 253

8.5.2.8 Type: AlarmModifications .. 253

8.5.3 Referenced structured data types .. 253

8.5.3.1 Introduction ... 253

8.5.3.2 Type: FmNotificationsFilter .. 253

8.5.3.3 Type: FaultyResourceInfo ... 254

8.5.3.4 Type: FaultyComponentInfo ... 254

8.5.4 Referenced simple data types and enumerations .. 254

8.5.4.1 Introduction ... 254

8.5.4.2 Simple data types .. 254

8.5.4.3 Enumeration: PerceivedSeverityType ... 255

8.5.4.4 Enumeration: EventType .. 255

8.5.4.5 Enumeration: FaultyResourceType ... 255

9 VNF Package Management interface ... 256

9.1 Description ... 256

9.1a API version ... 256

9.2 Resource structure and methods ... 256

9.3 Sequence diagrams (informative) ... 258

9.3.1 Flow of the creation of an individual VNF package resource ... 258

9.3.2 Flow of the uploading of VNF package content ... 258

9.3.3 Flow of querying/reading VNF package information ... 260

9.3.4 Flow of reading the VNFD of an on-boarded VNF package .. 260

9.3.5 Flow of updating information of a VNF package ... 261

9.3.6 Flow of deleting a VNF package resource .. 262

9.3.7 Flow of fetching an on-boarded VNF package ... 263

9.3.8 Flow of fetching a VNF package artifact .. 264

9.3.9 Flow of managing subscriptions ... 265

9.3.10 Flow of sending notifications.. 267

9.4 Resources ... 267

9.4.1 Introduction... 267

9.4.2 Resource: VNF packages .. 268

9.4.2.1 Description .. 268

9.4.2.2 Resource definition ... 268

9.4.2.3 Resource methods ... 268

9.4.2.3.1 POST ... 268

9.4.2.3.2 GET ... 269

9.4.2.3.3 PUT ... 270

9.4.2.3.4 PATCH .. 270

9.4.2.3.5 DELETE .. 270

9.4.3 Resource: Individual VNF package .. 270

9.4.3.1 Description .. 270

9.4.3.2 Resource definition ... 271

9.4.3.3 Resource methods ... 271

9.4.3.3.1 POST ... 271

9.4.3.3.2 GET ... 271

9.4.3.3.3 PUT ... 271

9.4.3.3.4 PATCH .. 271

9.4.3.3.5 DELETE .. 272

9.4.4 Resource: VNFD in an individual VNF package .. 273

9.4.4.1 Description .. 273

9.4.4.2 Resource definition ... 273

9.4.4.3 Resource methods ... 273

9.4.4.3.1 POST ... 273

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)15

9.4.4.3.2 GET ... 274

9.4.4.3.3 PUT ... 275

9.4.4.3.4 PATCH .. 275

9.4.4.3.5 DELETE .. 275

9.4.5 Resource: VNF package content ... 276

9.4.5.1 Description .. 276

9.4.5.2 Resource definition ... 276

9.4.5.3 Resource methods ... 276

9.4.5.3.1 POST ... 276

9.4.5.3.2 GET ... 276

9.4.5.3.3 PUT ... 277

9.4.5.3.4 PATCH .. 278

9.4.5.3.5 DELETE .. 278

9.4.6 Resource: Upload VNF package from URI task ... 278

9.4.6.1 Description .. 278

9.4.6.2 Resource definition ... 279

9.4.6.3 Resource methods ... 279

9.4.6.3.1 POST ... 279

9.4.6.3.2 GET ... 280

9.4.6.3.3 PUT ... 280

9.4.6.3.4 PATCH .. 280

9.4.6.3.5 DELETE .. 280

9.4.7 Resource: Individual VNF package artifact .. 280

9.4.7.1 Description .. 280

9.4.7.2 Resource definition ... 280

9.4.7.3 Resource methods ... 280

9.4.7.3.1 POST ... 280

9.4.7.3.2 GET ... 280

9.4.7.3.3 PUT ... 282

9.4.7.3.4 PATCH .. 282

9.4.7.3.5 DELETE .. 282

9.4.8 Resource: Subscriptions .. 282

9.4.8.1 Description .. 282

9.4.8.2 Resource definition ... 282

9.4.8.3 Resource methods ... 282

9.4.8.3.1 POST ... 282

9.4.8.3.2 GET ... 283

9.4.8.3.3 PUT ... 284

9.4.8.3.4 PATCH .. 284

9.4.8.3.5 DELETE .. 284

9.4.9 Resource: Individual subscription ... 284

9.4.9.1 Description .. 284

9.4.9.2 Resource definition ... 285

9.4.9.3 Resource methods ... 285

9.4.9.3.1 POST ... 285

9.4.9.3.2 GET ... 285

9.4.9.3.3 PUT ... 285

9.4.9.3.4 PATCH .. 285

9.4.9.3.5 DELETE .. 286

9.4.10 Resource: Notification endpoint ... 286

9.4.10.1 Description .. 286

9.4.10.2 Resource definition ... 286

9.4.10.3 Resource methods ... 286

9.4.10.3.1 POST ... 286

9.4.10.3.2 GET ... 287

9.4.10.3.3 PUT ... 287

9.4.10.3.4 PATCH .. 287

9.4.10.3.5 DELETE .. 288

9.5 Data model ... 288

9.5.1 Introduction... 288

9.5.2 Resource and notification data types .. 288

9.5.2.1 Introduction ... 288

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)16

9.5.2.2 Type: CreateVnfPkgInfoRequest .. 288

9.5.2.3 Type: VnfPkgInfoModifications ... 288

9.5.2.4 Type: UploadVnfPackageFromUriRequest .. 288

9.5.2.5 Type: VnfPkgInfo ... 289

9.5.2.6 Type: PkgmSubscriptionRequest .. 290

9.5.2.7 Type: PkgmSubscription ... 290

9.5.2.8 Type: VnfPackageOnboardingNotification ... 291

9.5.2.9 Type: VnfPackageChangeNotification.. 291

9.5.3 Referenced structured data types .. 292

9.5.3.1 Introduction ... 292

9.5.3.2 Type: VnfPackageSoftwareImageInfo .. 292

9.5.3.3 Type: VnfPackageArtifactInfo .. 293

9.5.3.4 Type: PkgmNotificationsFilter .. 293

9.5.3.5 Type: PkgmLinks .. 294

9.5.3.6 Type: Checksum ... 295

9.5.4 Referenced simple data types and enumerations .. 295

9.5.4.1 Introduction ... 295

9.5.4.2 Simple data types .. 295

9.5.4.3 Enumeration: PackageOnboardingStateType .. 295

9.5.4.4 Enumeration: PackageOperationalStateType .. 295

9.5.4.5 Enumeration: PackageUsageStateType ... 296

9.5.4.6 Enumeration: PackageChangeType .. 296

Annex A (informative): Mapping operations to protocol elements .. 297

A.1 Overview .. 297

A.2 NSD Management interface ... 297

A.3 NS Lifecycle Management interface .. 297

A.4 NS Performance Management interface ... 298

A.5 NS Fault Management interface ... 298

A.6 VNF Package Management interface ... 299

Annex B (informative): State models .. 300

B.1 NSD state model ... 300

B.1.1 Introduction .. 300

B.1.2 State model ... 300

B.2 VNF package state model... 301

B.2.1 Introduction .. 301

B.2.2 State model ... 301

Annex C (informative): Complementary material for API utilization .. 304

Annex D (informative): Authors & contributors ... 305

Annex E (informative): Change History .. 306

History .. 312

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)17

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Network Functions
Virtualisation (NFV).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)18

1 Scope
The present document specifies a set of RESTful protocol specifications and data models fulfilling the requirements
specified in ETSI GS NFV-IFA 013 [3] for the interfaces used over the Os-Ma-Nfvo reference point.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are necessary for the application of the present document.

[1] IANA: "Assigned Internet Protocol Numbers".

NOTE: Available at https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml.

[2] ETSI GS NFV-IFA 010: "Network Functions Virtualisation (NFV) Release 2; Management and
Orchestration; Functional requirements Specification".

[3] ETSI GS NFV-IFA 013: "Network Functions Virtualisation (NFV) Release 2; Management and
Orchestration; Os-Ma-Nfvo reference point - Interface and Information Model Specification".

[4] ETSI GS NFV-SOL 003: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data
Models; RESTful protocols specification for the Or-Vnfm Reference Point".

[5] ETSI GS NFV-SOL 004: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data
Models; VNF Package specification".

[6] IEEE 802.1Q-2014: "IEEE Standard for Local and metropolitan area networks - Bridges and
Bridged Networks".

[7] IETF RFC 791: "Internet Protocol".

NOTE: Available at ://tools. .org/ /rfc791.

[8] IETF RFC 2818: "HTTP Over TLS".

NOTE: Available at https://tools.ietf.org/html/rfc2818.

[9] IETF RFC 3339: "Date and Time on the Internet: Timestamps".

NOTE: Available at ://tools. .org/ /rfc3339.

[10] IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

NOTE: Available at https://tools.ietf.org/html/rfc3986.

[11] IETF RFC 4291: "IP Version 6 Addressing Architecture".

NOTE: Available at ://tools. .org/ /rfc4291.

https://docbox.etsi.org/Reference/
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc4291

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)19

[12] IETF RFC 4632: "Classless Inter-Domain Routing (CIDR): The Internet Address Assignment and
Aggregation Plan".

NOTE: Available at https://tools.ietf.org/html/rfc4632.

[13] IETF RFC 4776: "Dynamic Host Configuration Protocol (DHCPv4 and DHCPv6) Option for
Civic Addresses Configuration Information".

NOTE: Available at https://tools.ietf.org/html/rfc4776.

[14] IETF RFC 4918: "HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV)".

NOTE: Available at https://tools.ietf.org/html/rfc4918.

[15] IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".

NOTE: Available at https://tools.ietf.org/html/rfc5246.

[16] IETF RFC 5646: "Tags for Identifying Languages".

NOTE: Available at https://tools.ietf.org/html/rfc5646.

[17] IETF RFC 6585: "Additional HTTP Status Codes".

NOTE: Available at https://tools.ietf.org/html/rfc6585.

[18] IETF RFC 6749: "The OAuth 2.0 Authorization Framework".

NOTE: Available at https://tools.ietf.org/html/rfc6749.

[19] IETF RFC 6750: "The OAuth 2.0 Authorization Framework: Bearer Token Usage".

NOTE: Available at https://tools.ietf.org/html/rfc6750.

[20] IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".

NOTE: Available at https://tools.ietf.org/html/rfc8259.

[21] IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".

NOTE: Available at https://tools.ietf.org/html/rfc7231.

[22] IETF RFC 7232: "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests".

NOTE: Available at https://tools.ietf.org/html/rfc7232.

[23] IETF RFC 7233: "Hypertext Transfer Protocol (HTTP/1.1): Range Requests".

NOTE: Available at https://tools.ietf.org/html/rfc7233.

[24] IETF RFC 7235: "Hypertext Transfer Protocol (HTTP/1.1): Authentication".

NOTE: Available at https://tools.ietf.org/html/rfc7235.

[25] IETF RFC 7396: "JSON Merge Patch".

NOTE: Available at ://tools. .org/ /rfc7396.

[26] IETF RFC 7617: "The 'Basic' HTTP Authentication Scheme".

NOTE: Available at https://tools.ietf.org/html/rfc7617.

[27] IETF RFC 7807: "Problem Details for HTTP APIs".

NOTE: Available at https://tools.ietf.org/html/rfc7807.

[28] IETF RFC 8200: "Internet Protocol, Version 6 (IPv6) Specification".

NOTE: Available at ://tools. .org/ /rfc8200.

https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4776
https://tools.ietf.org/html/rfc4918
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5646.
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7396
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc8200

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)20

[29] ISO 3166 (all parts): "Codes for the representation of names of countries and their subdivisions".

[30] Recommendation ITU-T X.733: "Information technology - Open Systems Interconnection -
Systems Management: Alarm reporting function".

[31] ETSI GS NFV-IFA 027: "Network Functions Virtualisation (NFV) Release 2; Management and
Orchestration; Performance Measurements Specification".

[32] IETF RFC 6901: "JavaScript Object Notation (JSON) Pointer".

NOTE: Available at https://tools.ietf.org/html/rfc6901.

[33] IETF RFC 4229: "HTTP Header Field Registrations".

NOTE: Available at https://tools.ietf.org/html/rfc4229.

[34] IETF RFC 8288: "Web Linking".

NOTE: Available at https://tools.ietf.org/html/rfc8288.

[35] Semantic Versioning 2.0.0.

NOTE: Available at https://semver.org/.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI TS 133 310: "Universal Mobile Telecommunications System (UMTS); LTE; Network
Domain Security (NDS); Authentication Framework (AF) (3GPP TS 33.310)".

[i.2] Hypertext Transfer Protocol (HTTP) Status Code Registry at IANA.

NOTE: Available at http://www.iana.org/assignments/http-status-codes.

[i.3] ETSI GS NFV-SOL 001: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data
Models; NFV descriptors based on TOSCA specification".

[i.4] OpenStack: "Disk and container formats for images".

NOTE: Available from http://docs.openstack.org/image-guide/image-formats.html.

[i.5] OpenAPI Specification.

NOTE: Available at https://github.com/OAI/OpenAPI-Specification.

3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
BSS Business Support System
CIDR Classless Inter-Domain Routing
CP Connection Point
CPD CP Descriptor

https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc4229
https://tools.ietf.org/html/rfc8288
https://semver.org/
http://www.iana.org/assignments/http-status-codes
http://docs.openstack.org/image-guide/image-formats.html
https://github.com/OAI/OpenAPI-Specification

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)21

DF Deployment Flavour
DSCP Differentiated Services Code Point
ETSI European Telecommunications Standards Institute
FM Fault Management
GMT Greenwich Mean Time
GS Group Specification
GUI Graphical User Interface
HATEOAS Hypermedia As The Engine Of Application State
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure
IANA Internet Assigned Numbers Authority
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IFA Interfaces and Architecture
IP Internet Protocol
JSON JavaScript Object Notation
LB Load Balancing algorithm
LCCN Lifecycle Change Notification
LCM Lifecycle Management
MAC Medium Access Control
MIME Multipurpose Internet Mail Extensions
NFP Network Forwarding Path
NFPD NFP Descriptor
NFV Network Functions Virtualisation
NFVI Network Function Virtualisation Infrastructure
NFVO NFV Orchestrator
NS Network Service
NSD Network Service Descriptor
OSS Operation Support System
PKG Package
PM Performance Management
PNF Physical Network Function
PNFD Physical Network Function Descriptor
RAM Random-Access Memory
REST Representational State Transfer
RFC Request For Comments
SAP Service Access Point
SAPD Service Access Point Descriptor
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
URI Uniform Resource Identifier
VDU Virtualisation Deployment Unit
VIM Virtualised Infrastructure Manager
VL Virtual Link
VLAN Virtual Local Area Network
VLD VL Descriptor
VNF Virtualised Network Function
VNFC VNF Component
VNFD VNF Descriptor
VNFFG VNF Forwarding Graph
VNFFGD VNFFG Descriptor
VNFM VNF Manager
YAML YAML Ain't Markup Language

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)22

4 General Aspects

4.1 Overview
The present document defines the protocol and data model for the following interfaces, in the form of RESTful
Application Programming Interface (APIs) specifications:

• NSD Management interface (as produced by the NFVO towards the OSS/BSS)

• NS Lifecycle Management interface (as produced by the NFVO towards the OSS/BSS)

• NS Performance Management interface (as produced by the NFVO towards the OSS/BSS)

• NS Fault Management interface (as produced by the NFVO towards the OSS/BSS)

• VNF Package Management interface (as produced by the NFVO towards the OSS/BSS)

The design of the protocol and data model for the above interfaces is based on the information model and requirements
defined in ETSI GS NFV-IFA 013 [3]. In clause 4, general aspects such as URI structure and supported content
formats, general procedures and common data types are specified.

In the subsequent clauses, the protocol and data model for the individual interfaces are specified. Per interface, the
resource structure with associated HTTP methods is defined and applicable flows are provided. Further, the resources
and the data model are specified in detail.

Annex A provides the mapping of the combination of resources and methods defined in the present document to the
operations defined in ETSI GS NFV-IFA 013 [3].

Even though the various interfaces defined in the present document are related, implementations shall not assume a
particular order of messages that arrive via different interfaces.

4.2 URI structure and supported content formats
This clause specifies the URI prefix and the supported formats applicable to the APIs defined in the present document.

All resource URIs of the APIs shall have the following prefix, except the "API versions" resource which shall follow
the rules specified in clause 4.6.3.

{apiRoot}/{apiName}/{apiMajorVersion}/

 where:

{apiRoot} indicates the scheme ("http" or "https"), the host name and optional port, and an optional
sequence of path segments that together represent a prefix path.

EXAMPLE: http://nfvo.example.com/nfv_apis/abc.

{apiName} indicates the interface name in an abbreviated form. The {apiName} of each interface is
defined in the clause specifying the corresponding interface.

{apiMajorVersion} indicates the current major version (see clause 4.6.1) of the API and is defined in the clause
specifying the corresponding interface.

For HTTP requests and responses that have a body, the content format JSON (see IETF RFC 8259 [20]) shall be supported.
The JSON format shall be signalled by the content type "application/json".

All APIs shall support and use HTTP over TLS (also known as HTTPS) (see IETF RFC 2818 [8]) TLS version 1.2 as
defined by IETF RFC 5246 [15] shall be supported.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)23

NOTE 1: The HTTP protocol elements mentioned in the present document originate from the HTTP specification;
HTTPS runs the HTTP protocol in a TLS layer. The present document therefore uses the statement above
to mention "HTTP request", "HTTP header", etc., without explicitly calling out whether or not these are
run over TLS.

NOTE 2: There are a number of best practices and guidelines how to configure and implement TLS 1.2 in a secure
manner, as security threats evolve. A detailed specification of those is beyond the scope of the present
document; the reader is referred to external documentation such as annex E of ETSI TS 133 310 [i.1].

All resource URIs of the API shall comply with the URI syntax as defined in IETF RFC 3986 [10]. An implementation
that dynamically generates resource URI parts (individual path segments, sequence of path segments that are separated
by "/", query parameter values) shall ensure that these parts only use the character set that is allowed by IETF
RFC 3986 [10] for these parts.

NOTE 3: This means that characters not part of this allowed set are escaped using percent-encoding as defined by
IETF RFC 3986 [10].

Unless otherwise specified explicitly, all request URI parameters that are part of the path of the resource URI shall be
individual path segments, i.e. shall not contain the "/" character.

NOTE 4: A request URI parameter is denoted by a string in curly brackets, e.g. {subscriptionId}.

4.3 Common procedures

4.3.1 Introduction

This clause specifies procedures applicable to all interfaces.

4.3.2 Attribute-based filtering

4.3.2.1 Overview and example (informative)

Attribute-based filtering allow to reduce the number of objects returned by a query operation. Typically, attribute-based
filtering is applied to a GET request that reads a resource which represents a list of objects (e.g. child resources). Only
those objects that match the filter are returned as part of the resource representation in the payload body of the GET
response.

Attribute-based filtering can test a simple (scalar) attribute of the resource representation against a constant value, for
instance for equality, inequality, greater or smaller than, etc. Attribute-based filtering is requested by adding a set of
URI query parameters, the "attribute-based filtering parameters" or "filter" for short, to a resource URI.

The following example illustrates the principle. Assume a resource "container" with the following objects:

EXAMPLE 1: Objects

obj1: {"id":123, "weight":100, "parts":[{"id":1, "color":"red"}, {"id":2, "color":"green"}]}
obj2: {"id":456, "weight":500, "parts":[{"id":3, "color":"green"}, {"id":4, "color":"blue"}]}

A GET request on the "container" resource would deliver the following response:

EXAMPLE 2: Unfiltered GET

 Request:

 GET …/container

 Response:

 [{"id":123, "weight":100, "parts":[{"id":1, "color":"red"}, {"id":2, "color":"green"}]},
 {"id":456, "weight":500, "parts":[{"id":3, "color":"green"}, {"id":4, "color":"blue"}]}
]

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)24

A GET request with a filter on the "container" resource would deliver the following response:

EXAMPLE 3: GET with filter

 Request:

 GET …/container?filter=(eq,weight,100)

 Response:

 [
 {id:123, weight:100, parts:[{id:1, color:red}, {id:2, color:green}]}
]

For hierarchically-structured data, filters can also be applied to attributes deeper in the hierarchy. In case of arrays, a
filter matches if any of the elements of the array matches. In other words, when applying the filter "eq.parts/color,green"
to the objects in Example 1, the filter matches obj1 when evaluating the second entry in the "parts" array of obj1, and
matches obj2 already when evaluating the first entry in the "parts" array of obj2. As the result, both obj1 and obj2 match
the filter.

If a filter expression contains multiple sub-parts that only differ in the leaf attribute (i.e. they share the same attribute
prefix), they are evaluated together per array entry when traversing an array. As an example, the two expressions in the
filter "(eq,parts/color,green);(eq,parts/id,3)" would be evaluated together for each entry in the array "parts." As the
result, obj2 matches the filter.

4.3.2.2 Specification

An attribute-based filter shall be represented by a URI query parameter named "filter". The value of this parameter shall
consist of one or more strings formatted according to "simpleFilterExpr", concatenated using the ";" character:

 simpleFilterExpr := <opOne>","<attrName>["/"<attrName>]*","<value>
 simpleFilterExprMulti := <opMulti>","<attrName>["/"<attrName>]*","<value>[","<value>]*
 simpleFilterExpr := "("<simpleFilterExprOne>")" | "("<simpleFilterExprMulti>")"
 filterExpr := <simpleFilterExpr>[";"<simpleFilterExpr>]*
 filter := "filter"=<filterExpr>
 opOne := "eq" | "neq" | "gt" | "lt" | "gte" | "lte"
 opMulti := "in" | "nin" | "cont" | "ncont"
 attrName := string
 value := string

where:

 * zero or more occurrences
 [] grouping of expressions to be used with *
 "" quotation marks for marking string constants
 <> name separator
 | separator of alternatives

"AttrName" is the name of one attribute in the data type that defines the representation of the resource. The slash ("/")
character in "simpleFilterExprOne" and "simpleFilterExprMulti" allows concatenation of <attrName> entries to filter by
attributes deeper in the hierarchy of a structured document. The elements "opOne" and "opMulti" stand for the
comparison operator (accepting one comparison value or a list of such values). If the expression has concatenated
<attrName> entries, it means that the operator is applied to the attribute addressed by the last <attrName> entry
included in the concatenation. All simple filter expressions are combined by the "AND" logical operator, denoted by
";".

In a concatenation of <attrName> entries in a <simpleFilterExprOne> or <simpleFilterExprMulti>, the rightmost
"attrName" entry in a "simpleFilterExpr" is called "leaf attribute". The concatenation of all "attrName" entries except
the leaf attribute is called the "attribute prefix". If an attribute referenced in an expression is an array, an object that
contains a corresponding array shall be considered to match the expression if any of the elements in the array matches
all expressions that have the same attribute prefix.

The leaf attribute of a <simpleFilterExprOne> or <simpleFilterExprMulti> shall not be structured, but shall be of a
simple (scalar) type such as String, Number or DateTime, or shall be an array of simple (scalar) values. Attempting to
apply a filter with a structured leaf attribute shall be rejected with "400 Bad request". A "filterExpr" shall not contain
any invalid "simpleFilterExpr" entry.

The operators listed in Table 4.3.2.2-1 shall be supported.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)25

Table 4.3.2.2-1: Attribute filter operators

Operator with parameters Meaning
eq,<attrName>,<value> Attribute equal to <value>
neq,<attrName>,<value> Attribute not equal to <value>
in,<attrName>,<value>[,<value>]* Attribute equal to one of the values in the list ("in set" relationship)
nin,<attrName>,<value>[,<value>]* Attribute not equal to any of the values in the list ("not in set"

relationship)
gt,<attrName>,<value> Attribute greater than <value>
gte,<attrName>,<value> Attribute greater than or equal to <value>
lt,<attrName>,<value> Attribute less than <value>
lte,<attrName>,<value> Attribute less than or equal to <value>
cont,<attrName>,<value>[,<value>]* String attribute contains (at least) one of the values in the list
ncont,<attrName>,<value>[,<value>]* String attribute does not contain any of the values in the list

Table 4.3.2.2-2: Applicability of the operators to data types

Operator String Number DateTime Enumeration Boolean
eq x x - x x
neq x x - x x
in x x - x -
nin x x - x -
gt x x x - -
gte x x x - -
lt x x x - -
lte x x x - -
cont x - - - -
ncont x - - - -

All objects that match the filter shall be returned as response to a GET request that contains a filter.

A <value> entry shall contain a scalar value of type Number, String, Boolean, Enum or DateTime. The content of a
<value> entry shall be formatted the same way as the representation of the related attribute in the resource
representation. The syntax of DateTime <value> entries shall follow the "date-time" production of IETF RFC 3339 [9].
The syntax of Boolean and Number <value> entries shall follow IETF RFC 8259 [20].

A <value> entry of type String shall be enclosed in single quotes (') if it contains any of the characters ")", "'" or ",", and
may be enclosed in single quotes otherwise. Any single quote (') character contained in a <value> entry shall be
represented as a sequence of two single quote characters.

The "/" and "~" characters in <attrName> shall be escaped according to the rules defined in section 3 of IETF
RFC 6901 [32]. The "," character in <attrName> shall be escaped by replacing it with "~a".

In the resulting <filterExpr>, percent-encoding as defined in IETF RFC 3986 [10] shall be applied to the characters that
are not allowed in a URI query part according to Appendix A of IETF RFC 3986 [10], and to the ampersand "&"
character.

NOTE: In addition to the statement on percent-encoding above, it is reminded that the percent "%" character is
always percent-encoded when used in parts of a URI, according to IETF RFC 3986 [10].

Attribute-based filters are supported for certain resources. Details are defined in the clauses specifying the actual
resources.

4.3.3 Attribute selectors

4.3.3.1 Overview and example

Certain resource representations can become quite big, in particular, if the resource is a container for multiple
sub-resources, or if the resource representation itself contains a deeply-nested structure. In these cases, it can be desired
to reduce the amount of data exchanged over the interface and processed by the API consumer application. On the other
hand, it can also be desirable that a "drill-deep" for selected parts of the omitted data can be initiated quickly.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)26

An attribute selector allows the API consumer to choose which attributes it wants to be contained in the response. Only
attributes that are not required to be present, i.e. those with a lower bound of zero on their cardinality (e.g. 0..1, 0..N)
and that are not conditionally mandatory, are allowed to be omitted as part of the selection process. Attributes can be
marked for inclusion or exclusion.

If an attribute is omitted, a link to a resource may be added where the information of that attribute can be fetched. Such
approach is known as HATEOAS which is a common pattern in REST, and enables drilling down on selected issues
without having to repeat a request that may create a potentially big response.

4.3.3.2 Specification

4.3.3.2.1 GET request

The URI query parameters for attribute selection are defined in Table 4.3.3.2.1-1.

In the provisions below, "complex attributes" are assumed to be those attributes that are structured, or that are arrays.

Table 4.3.3.2.1-1: Attribute selector parameters

Parameter Definition
all_fields This URI query parameter requests that all complex attributes are included in the response,

including those suppressed by exclude_default. It is inverse to the "exclude_default"
parameter. The API producer shall support this parameter for certain resources. Details are
defined in the clauses specifying the actual resources.

fields This URI query parameter requests that only the listed complex attributes are included in
the response.
The parameter shall be formatted as a list of attribute names. An attribute name shall either
be the name of an attribute, or a path consisting of the names of multiple attributes with
parent-child relationship, separated by "/". Attribute names in the list shall be separated by
comma (","). Valid attribute names for a particular GET request are the names of all
complex attributes in the expected response that have a lower cardinality bound of 0 and
that are not conditionally mandatory.

The API producer should support this parameter for certain resources. Details are defined
in the clauses specifying the actual resources.

exclude_fields This URI query parameter requests that the listed complex attributes are excluded from the
response. For the format, eligible attributes and support by the API producer, the provisions
defined for the "fields" parameter shall apply.

exclude_default Presence of this URI query parameter requests that a default set of complex attributes shall
be excluded from the response. The default set is defined per resource in the present
document. Not every resource will necessarily have such a default set. Only complex
attributes with a lower cardinality bound of zero that are not conditionally mandatory can be
included in the set.

The API producer shall support this parameter for certain resources. Details are defined in
the clauses specifying the actual resources.

This parameter is a flag, i.e. it has no value.

If a resource supports attribute selectors and none of the attribute selector parameters is
specified in a GET request, the "exclude_default" parameter shall be assumed as the
default.

The "/" and "~" characters in attribute names in an attribute selector shall be escaped according to the rules defined in
section 3 of IETF RFC 6901 [32]. The "," character in attribute names in an attribute selector shall be escaped by
replacing it with "~a". Further, percent-encoding as defined in IETF RFC 3986 [10] shall be applied to the characters
that are not allowed in a URI query part according to Appendix A of IETF RFC 3986 [10], and to the ampersand "&"
character.

4.3.3.2.2 GET response

Table 4.3.3.2.2-1 defines the valid parameter combinations.in a GET request and their effect on the GET response.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)27

Table 4.3.3.2.2-1: Valid combinations of attribute selector parameters

Parameter
combination

The GET response shall include…

(none) … same as "exclude_default".
all_fields … all attributes.
fields=<list> … all attributes except all complex attributes with minimum cardinality of zero that are not

conditionally mandatory, and that are not provided in <list>.
exclude_fields=<list> … all attributes except those complex attributes with a minimum cardinality of zero that are not

conditionally mandatory, and that are provided in <list>.
exclude_default … all attributes except those complex attributes with a minimum cardinality of zero that are not

conditionally mandatory, and that are part of the "default exclude set" defined in the present
document for the particular resource.

exclude_default and
include=<list>

… all attributes except those complex attributes with a minimum cardinality of zero that are not
conditionally mandatory and that are part of the "default exclude set" defined in the present
document for the particular resource, but that are not part of <list>.

If complex attributes were omitted in a GET response, the response may contain a number of links that allow to obtain
directly the content of the omitted attributes. Such links shall be embedded into a structure named "_links" at the same
level as the omitted attribute. That structure shall contain one entry for each link, named as the omitted attribute, and
containing an "href" attribute that contains the URI of a resource that can be read with GET to obtain the content of the
omitted attribute. A link shall not be present if the attribute is not present in the underlying resource representation. The
resource URI structure of such links is not standardized, but may be chosen by the NFVO implementation. Performing a
GET request on such a link shall return a representation that contains the content of the omitted attribute.

EXAMPLE:

"_links" : [
 {"vnfs" : {"href" : ".../nslcm/v1/ns_instances/1234/vnfs"}},
 {"virtualLinks" : {"href" : ".../nslcm/v1/ns_instances/1234/virtualLinks"}}
]

4.3.4 Usage of HTTP header fields

4.3.4.1 Introduction

HTTP headers are components of the header section of the HTTP request and response messages. They contain the
information about the server/client and metadata of the transaction. The use of HTTP header fields shall comply with
the provisions defined for those header fields in the specifications referenced from Tables 4.3.4.2-1 and 4.3.4.3-1. The
following clauses describe the HTTP header fields that are explicitly mentioned in the present document.

4.3.4.2 Request header fields

This clause describes the usage of HTTP header fields of the request messages applicable to the APIs defined in the
present document. The HTTP header fields used in the request messages are specified in Table 4.3.4.2-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)28

Table 4.3.4.2-1: Header fields supported in the request message

Header field name Reference Example Descriptions
Accept IETF RFC 7231 [21] application/json Content-Types that are acceptable for the

response.
This header field shall be present if the
response is expected to have a non-empty
message body.

Content-Type IETF RFC 7231 [21] application/json The MIME type of the body of the request.
This header field shall be present if the
request has a non-empty message body.

Authorization IETF RFC 7235 [24] Bearer mF_9.B5f-
4.1JqM

The authorization token for the request.
Details are specified in clause 4.5.3.

Range IETF RFC 7233 [23] 1 000-2 000 Requested range of bytes from a file.
Version IETF RFC 4229 [33] 1.2.0

or
1.2.0-
impl:example.com:my
NFVO:4

Version of the API requested to use when
responding to this request.

4.3.4.3 Response header fields

This clause describes the usage of HTTP header fields of the response messages applicable to the APIs defined in the
present document. The HTTP header fields used in the response messages are specified in Table 4.3.4.3-1.

Table 4.3.4.3-1: Header fields supported in the response message

Header field name Reference Example Descriptions
Content-Type IETF RFC 7231 [21] application/json The MIME type of the body of the response.

This header field shall be present if the
response has a non-empty message body.

Location IETF RFC 7231 [21] http://www.example.co
m/vnflcm/v1/vnf_instan
ces/123

Used in redirection, or when a new resource
has been created.
This header field shall be present if the
response status code is 201 or 3xx.
In the present document this header field is
also used if the response status code is 202
and a new resource was created.

WWW-Authenticate IETF RFC 7235 [24] Bearer
realm="example"

Challenge if the corresponding HTTP request
has not provided authorization, or error details
if the corresponding HTTP request has
provided an invalid authorization token.

Accept-Ranges IETF RFC 7233 [23] bytes Used by the server to signal whether or not it
supports ranges for certain resources.

Content-Range IETF RFC 7233 [23] bytes 21010-47021/
47022

Signals the byte range that is contained in the
response, and the total length of the file.

Retry-After IETF RFC 7231 [21] Fri, 31 Dec 1999
23:59:59 GMT

or

120

Used to indicate how long the user agent
ought to wait before making a follow-up
request.
It can be used with 503 responses.
The value of this field can be an HTTP-date or
a number of seconds to delay after the
response is received.

Version IETF RFC 4229 [33] 1.2.0
or
1.2.0-
impl:example.com:my
NFVO:4

Version of the API used in the response.

Link IETF RFC 8288 [34] <http://example.com/re
sources?nextpage_op
aque_marker=abc123
>; rel="next"

Reference to other resources. Used for
paging in the present document, see
clause 4.7.2.1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)29

4.3.5 Error reporting

4.3.5.1 Introduction

In RESTful interfaces, application errors are mapped to HTTP errors. Since HTTP error information is generally not
enough to discover the root cause of the error, additional application specific error information is typically delivered.
The following clauses define such a mechanism to be used by the interfaces specified in the present document.

4.3.5.2 General mechanism

When an error occurs that prevents the API producer from successfully fulfilling the request, the HTTP response shall
include in the response a status code in the range 400..499 (client error) or 500.599 (server error) as defined by the
HTTP specification (see IETF RFC 7231 [21], IETF RFC 7232 [22], IETF RFC 7233 [23] and IETF RFC 7235 [24], as
well as by IETF RFC 6585 [17]). In addition, the response body should contain a JSON representation of a
"ProblemDetails" data structure according to IETF RFC 7807 [27] that provides additional details of the error. In that
case, as defined by IETF RFC 7807 [27], the "Content-Type" HTTP header shall be set to "application/problem+json".

4.3.5.3 Type: ProblemDetails

The definition of the general "ProblemDetails" data structure from IETF RFC 7807 [27] is reproduced in
Table 4.3.5.3-1. Compared to the general framework defined in IETF RFC 7807 [27], the "status" and "detail" attributes
are mandated to be included by the present document, to ensure that the response contains additional textual
information about an error. IETF RFC 7807 [27] foresees extensibility of the "ProblemDetails" type. It is possible that
particular APIs in the present document, or particular implementations, define extensions to define additional attributes
that provide more information about the error.

The description column only provides some explanation of the meaning to facilitate understanding of the design. For a
full description, see IETF RFC 7807 [27].

Table 4.3.5.3-1: Definition of the ProblemDetails data type

Attribute name Data type Cardinality Description
type URI 0..1 A URI reference according to IETF RFC 3986 [10] that

identifies the problem type. It is encouraged that the
URI provides human-readable documentation for the
problem (e.g. using HTML) when dereferenced. When
this member is not present, its value is assumed to be
"about:blank".

title String 0..1 A short, human-readable summary of the problem
type. It should not change from occurrence to
occurrence of the problem, except for purposes of
localization. If type is given and other than
"about:blank", this attribute shall also be provided.

status Integer 1 The HTTP status code for this occurrence of the
problem.

detail String 1 A human-readable explanation specific to this
occurrence of the problem.

instance URI 0..1 A URI reference that identifies the specific occurrence
of the problem. It may yield further information if
dereferenced.

(additional attributes) Not specified 0..N Any number of additional attributes, as defined in a
specification or by an implementation.

NOTE: It is expected that the minimum set of information returned in ProblemDetails consists of "status" and
"detail". For the definition of specific "type" values as well as extension attributes by implementations,
guidance can be found in IETF RFC 7807 [27].

4.3.5.4 Common error situations

The following common error situations are applicable on all REST resources and related HTTP methods specified in the
present document, and shall be handled as defined in the present clause.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)30

NOTE 1: The error handling defined in this clause only applies to REST resources defined in the present document.
For the token endpoint defined in IETF RFC 6749 [18] and re-used in the present document as defined in
clause 4.5.3, the error handling provisions are defined in clause 4.5.3.

400 Bad Request: If the request is malformed or syntactically incorrect (e.g. if the request URI contains
incorrect query parameters or the payload body contains a syntactically incorrect data
structure), the API producer shall respond with this response code. The
"ProblemDetails" structure shall be provided, and should include in the "detail"
attribute more information about the source of the problem.

400 Bad Request: If the response to a GET request which queries a container resource would be so big
that the performance of the API producer is adversely affected, and the API producer
does not support paging for the affected resource, it shall respond with this response
code. The "ProblemDetails" structure shall be provided, and should include in the
"detail" attribute more information about the source of the problem.

400 Bad Request: If there is an application error related to the client's input that cannot be easily
mapped to any other HTTP response code ("catch all error"), the API producer shall
respond with this response code. The "ProblemDetails" structure shall be provided,
and shall include in the "detail" attribute more information about the source of the
problem.

NOTE 2: It is by design to represent these application error situations with the same HTTP error response code 400.

400 Bad Request: If the request contains a malformed access token, the API producer should respond
with this response. The details of the error shall be returned in the
WWW-Authenticate HTTP header, as defined in IETF RFC 6750 [19] and IETF
RFC 7235 [24]. The ProblemDetails structure may be provided.

NOTE 3: The use of this HTTP error response code described above is applicable to the use of the OAuth 2.0 for
the authorization of API requests and notifications, as defined in clauses 4.5.3.3 and 4.5.3.4.

401 Unauthorized: If the request contains no access token even though one is required, or if the request
contains an authorization token that is invalid (e.g. expired or revoked), the API
producer should respond with this response. The details of the error shall be returned
in the WWW-Authenticate HTTP header, as defined in IETF RFC 6750 [19] and
IETF RFC 7235 [24]. The ProblemDetails structure may be provided.

403 Forbidden: If the API consumer is not allowed to perform a particular request to a particular
resource, the API producer shall respond with this response code. The
"ProblemDetails" structure shall be provided. It should include in the "detail"
attribute information about the source of the problem, and may indicate how to solve
it.

404 Not Found: If the API producer did not find a current representation for the resource addressed
by the URI passed in the request or is not willing to disclose that one exists, it shall
respond with this response code. The "ProblemDetails" structure may be provided,
including in the "detail" attribute information about the source of the problem, e.g. a
wrong resource URI variable.

NOTE 4: This response code is not appropriate in case the resource addressed by the URI is a container resource
which is designed to contain child resources, but does not contain any child resource at the time the
request is received. For a GET request to an existing empty container resource, a typical response
contains a 200 OK response code and a payload body with an empty array.

405 Method Not Allowed: If a particular HTTP method is not supported for a particular resource, the API
producer shall respond with this response code. The "ProblemDetails" structure may
be omitted.

406 Not Acceptable: If the "Accept" header does not contain at least one name of a content type that is
acceptable to the API producer, the API producer shall respond with this response
code. The "ProblemDetails" structure may be omitted.

413 Payload Too Large: If the payload body of a request is larger than the amount of data the API producer is
willing or able to process, it shall respond with this response code, following the
provisions in IETF RFC 7231 [21] for the use of the "Retry-After" HTTP header and
for closing the connection. The "ProblemDetails" structure may be omitted.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)31

414 URI Too Long: If the request URI of a request is longer than the API producer is willing or able to
process, it shall respond with this response code. This condition can e.g. be caused
by passing long queries in the request URI of a GET request. The "ProblemDetails"
structure may be omitted.

422 Unprocessable Entity: If the payload body of a request contains syntactically correct data (e.g. well-formed
JSON) but the data cannot be processed (e.g. because it fails validation against a
schema), the API producer shall respond with this response code. The
"ProblemDetails" structure shall be provided, and should include in the "detail"
attribute more information about the source of the problem.

NOTE 5: This error response code is only applicable for methods that have a request body.

429 Too Many Requests: If the API consumer has sent too many requests in a defined period of time and the
API producer is able to detect that condition ("rate limiting"), the API producer shall
respond with this response code, following the provisions in IETF RFC 6585 [17]
for the use of the "Retry-After" HTTP header. The "ProblemDetails" structure shall
be provided and shall include in the "detail" attribute more information about the
source of the problem.

NOTE 6: The period of time and allowed number of requests are configured within the API producer by means
outside the scope of the present document.

500 Internal Server Error: If there is an application error not related to the client's input that cannot be easily
mapped to any other HTTP response code ("catch all error"), the API producer shall
respond with this response code. The "ProblemDetails" structure shall be provided,
and shall include in the "detail" attribute more information about the source of the
problem.

503 Service Unavailable: If the API producer encounters an internal overload situation of itself or of a system
it relies on, it should respond with this response code, following the provisions in
IETF RFC 7231 [21] for the use of the "Retry-After" HTTP header and for the
alternative to refuse the connection. The "ProblemDetails" structure may be omitted.

504 Gateway Timeout: If the API producer encounters a timeout while waiting for a response from an
upstream server (i.e. a server that the API producer communicates with when
fulfilling a request), it should respond with this response code.

Further error situations are defined for specific REST resources and related HTTP methods in the individual APIs
specified in subsequent clauses of the present document.

4.3.5.5 Overview of HTTP error status codes

Table 4.3.5.5-1 lists the HTTP error status codes that are explicitly mentioned in the present document. The full
definition of each error code can be obtained from the referenced specification.

Table 4.3.5.5-1: HTTP error status codes used in the present document

Code Status text Reference Explanation
400 Bad Request IETF RFC 7231 [21]

IETF RFC 6750 [19]
IETF RFC 7235 [24]

Required information for the request was missing, or the
request had syntactical errors, or the request contains a
malformed access token or malformed credentials.

In the present document, this code is also used as "catch-all"
code for client errors.

401 Unauthorized IETF RFC 7235 [24] Client is required to include valid credentials in the request.
See clause 4.5.3.

403 Forbidden IETF RFC 7231 [21] The client is not allowed to perform the request on that
resource.

404 Not Found IETF RFC 7231 [21] The requested URI was not found. A reason can e.g. be that
resource URI variables were set wrongly.

405 Method Not Allowed IETF RFC 7231 [21] See clause 4.3.5.4.
406 Not Acceptable IETF RFC 7231 [21] See clause 4.3.5.4.
409 Conflict IETF RFC 7231 [21] Another request is in progress that prohibits the fulfilment of

the current request, or the current resource state is
inconsistent with the request.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)32

Code Status text Reference Explanation
412 Precondition failed IETF RFC 7232 [22] This code is used in conjunction with conditional requests

(typically used to protect resources consistency when using
PUT or PATCH in a multi-client scenario) to indicate that a
precondition has failed.

413 Payload Too Large IETF RFC 7231 [21] The server is refusing to process a request because the
request payload is larger than the server is willing or able to
process.

414 URI Too Long IETF RFC 7231 [21] The server is refusing to process a request because the
request URI is longer than the server is willing or able to
process.

416 Range Not Satisfiable IETF RFC 7233 [23] This code is returned if the requested byte range in the
Range HTTP header is not present in the requested
resource.

422 Unprocessable Entity IETF RFC 4918 [14] The server understands the content type of the request
entity and the syntax of the request entity is correct but was
unable to process the contained instructions.

429 Too Many Requests IETF RFC 6585 [17] The server is refusing to process a request because the
client has sent too many requests in a given period of time
(rate limiting).

500 Internal Server Error IETF RFC 7231 [21] Server is unable to process the request. Retrying the same
request later might eventually succeed.

In the present document, this code is also used as "catch-all"
code for server errors.

503 Service Unavailable IETF RFC 7231 [21] Server is unable to process the request due to internal
overload.

504 Gateway Timeout IETF RFC 7231 [21] The server did not receive a timely response from an
upstream server it needed to access in order to complete the
request.

In general, error response codes used for application errors should be mapped to the most similar HTTP error status
code. If no such code is applicable, one of the codes 400 (Bad request, for client errors) or 500 (Internal Server Error,
for server errors) should be used. Implementations may use additional error response codes on top of the ones listed in
Table 4.3.5.5-1, as long as they are valid HTTP response codes, and should include a ProblemDetails structure in the
entity body as defined in clause 4.3.5.2. A list of all valid HTTP response codes and their specification documents can
be obtained from the HTTP status code registry [i.2].

4.4 Common data types

4.4.1 Structured data types

4.4.1.1 Introduction

This clause defines data structures that are referenced from data structures in multiple interfaces.

4.4.1.2 Type: Object

An object contains structured data, and shall comply with the provisions in clause 4 of IETF RFC 8259 [20].

4.4.1.3 Type: Link

This type represents a link to a resource. It shall comply with the provisions defined in Table 4.4.1.3-1.

Table 4.4.1.3-1: Definition of the Links data type

Attribute name Data type Cardinality Description
href Uri 1 URI of another resource referenced from a resource.

Shall be an absolute URI (i.e. a URI that contains
{apiRoot}).

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)33

4.4.1.3a Type: NotificationLink

This type represents a link to a resource in a notification, using an absolute or relative URI. It shall comply with the
provisions defined in Table 4.4.1.3a-1.

Table 4.4.1.3a-1: Definition of the NotificationLink data type

Attribute name Data type Cardinality Description
href Uri 1 URI of a resource referenced from a notification.

Should be an absolute URI (i.e. a URI that contains
{apiRoot}), however, may be a relative URI (i.e. a URI
where the {apiRoot} part is omitted) if the {apiRoot}
information is not available.

4.4.1.4 Type: KeyValuePairs

This type represents a list of key-value pairs. The order of the pairs in the list is not significant. In JSON, a set of key-
value pairs is represented as an object. It shall comply with the provisions defined in clause 4 of IETF RFC 8259 [20].
In the following example, a list of key-value pairs with four keys ("aString", "aNumber", "anArray" and "anObject") is
provided to illustrate that the values associated with different keys can be of different type.

EXAMPLE:

{
 "aString" : "ETSI NFV SOL",
 "aNumber" : 0.05,
 "anArray" : [1,2,3],
 "anObject" : {"organization" : "ETSI", "isg" : "NFV", workingGroup" : "SOL"}
}

4.4.1.5 Type: NsInstanceSubscriptionFilter

This type represents subscription filter criteria to match NS instances. It shall comply with the provisions defined in
Table 4.4.1.5-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)34

Table 4.4.1.5-1: Definition of the NsInstanceSubscriptionFilter data type

Attribute name Data type Cardinality Description
nsdIds Identifier 0..N If present, match NS instances that were

created based on a NSD identified by one of
the nsdId values listed in this attribute.
See note 1.

vnfdIds Identifier 0..N If present, match NS instances that contain
VNF instances that were created based on a
VNFD identified by one of the vnfdId values
listed in this attribute.
See note 1.

pnfdIds Identifier 0..N If present, match NS instances that contain
PNFs that are represented by a PNFD
identified by one of the pnfdId values listed in
this attribute.
See note 1.

nsInstanceIds Identifier 0..N If present, match NS instances with an
instance identifier listed in this attribute. See
note 2.

nsInstanceNames String 0..N If present, match NS instances with a NS
Instance Name listed in this attribute. See
note 2.

NOTE 1: The attributes "nsdIds", "vnfdIds" and "pnfdIds" are alternatives to reference to NS instances that are
created based on certain NSDs, or contain VNF instances that are based on certain VNFDs, or contain
PNFs that are based on certain PNFDs in a filter. They should not be used together in the same filter
instance, but one alternative should be chosen.

NOTE 2: The attributes "nsInstanceIds" and "nsInstanceNames" are alternatives to reference to particular NS
Instances in a filter. They should not be used both in the same filter instance, but one alternative should be
chosen.

4.4.1.6 Type: ResourceHandle

This type represents the information that allows addressing a virtualised resource that is used by a VNF instance or by
an NS instance. Information about the resource is available from the VIM. The ResourceHandle type shall comply with
the provisions defined in Table 4.4.1.6-1.

Table 4.4.1.6-1: Definition of the ResourceHandle data type

Attribute name Data type Cardinality Description
vimId Identifier 0..1 Identifier of the VIM under whose control this resource is

placed.
This attribute shall be present if VNF-related resource
management in direct mode is applicable. It shall also be
present for resources that are part of an NS instance
such as virtual link resources.

resourceProviderId Identifier 0..1 Identifier of the entity responsible for the management of
the resource.
This attribute shall only be supported and present when
VNF-related resource management in indirect mode is
applicable. The identification scheme is outside the
scope of the present document.

resourceId IdentifierInVim 1 Identifier of the resource in the scope of the VIM or the
resource provider.

vimLevelResourceTy
pe

String 0..1 Type of the resource in the scope of the VIM or the
resource provider. See note.

NOTE: The value set of the "vimLevelResourceType" attribute is within the scope of the VIM or the resource provider
and can be used as information that complements the ResourceHandle.

4.4.1.7 Type: ApiVersionInformation

This type represents API version information. It shall comply with the provisions defined in Table 4.4.1.7-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)35

Table 4.4.1.7-1: ApiVersionInformation data type

Attribute name Data type Cardinality Description
uriPrefix String 1 Specifies the URI prefix for the API, in the following

form
{apiRoot}/{apiName}/{apiMajorVersion}/

apiVersions Structure (inlined) 1..N Version(s) supported for the API signalled by the
uriPrefix attribute.

>version String 1 Identifies a supported version. The value of the
version attribute shall be a version identifier as
specified in clause 4.6.1.

>isDeprecated Boolean 0..1 If such information is available, this attribute
indicates whether use of the version signaled by the
version attribute is deprecated (true) or not (false).
See note.

>retirementDate DateTime 0..1 The date and time after which the API version will no
longer be supported.

This attribute may be included if the value of the
isDeprecated attribute is set to true and shall be
absent otherwise.

NOTE: A deprecated version is still supported by the API producer but is recommended not to be used any longer.
When a version is no longer supported, it does not appear in the response body.

4.4.2 Simple data types

This clause defines simple data types that can be referenced from data structures defined in multiple interfaces.

Table 4.4.2-1: Simple data types

Type name Description
Identifier An identifier with the intention of being globally unique. Representation: string of

variable length.
IdentifierInNs An identifier that is unique with respect to a NS. Representation: string of variable

length.
IdentifierInNsd An identifier that is unique within a NS descriptor. Representation: string of variable

length.
IdentifierInPnf An Identifier that is unique within respect to a PNF. Representation: string of variable

length.
IdentifierInVim An identifier maintained by the VIM or other resource provider. It is expected to be

unique within the VIM instance. Representation: string of variable length.
DateTime Date-time stamp. Representation: String formatted as defined by the date-time

production in IETF RFC 3339 [9].
Uri String formatted according to IETF RFC 3986 [10].
Boolean The Boolean is a data type having two values (TRUE and FALSE).
MacAddress A MAC address. Representation: string that consists of groups of two hexadecimal

digits, separated by hyphens or colons.
IpAddress An IPV4 or IPV6 address. Representation: In case of an IPV4 address, string that

consists of four decimal integers separated by dots, each integer ranging from 0 to 255.
In case of an IPV6 address, string that consists of groups of zero to four hexadecimal
digits, separated by colons.

IpAddressPrefix An IPV4 or IPV6 address range in CIDR format. For IPV4 address range, refer to IETF
RFC 4632 [12]. For IPV6 address range, refer to IETF RFC 4291 [11].

Version A Version. Representation: string of variable length.
String A string as defined in IETF RFC 8259 [20].
Number A number as defined in IETF RFC 8259 [20].

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)36

4.5 Authorization of API requests and notifications

4.5.1 Introduction

The ETSI NFV MANO APIs are only allowed to be accessed by authorized consumers. Handling of authorization
differs between making an API call, and sending a notification. In the former case, OAuth 2.0 is used. In the latter case,
OAuth 2.0 or HTTP Basic authentication is used, and the flows differ from those used in the former case. Alternatively,
a solution based on public/private key pair as authentication alternative to client identifier/password is also allowed.

The following terms (set in italics below) are used as defined by IETF RFC 6749 [18]: client, resource server,
authorization server, token endpoint, access token. The description below is based on the "client credentials" grant type
as defined by IETF RFC 6749 [18].

For API calls, the producer functional block of an API in NFV terms corresponds to the "resource server", and the
consumer functional block of an API corresponds to the "client" as defined by IETF RFC 6749 [18]. For sending a
notification, these roles are reversed: The producer (notification sender) corresponds to the "client", and the consumer
(notification receiver) corresponds to the "resource server".

Before invoking an HTTP method on a REST resource provided by a resource server, a functional block (referred to as
"client" from now on) first obtains authorization from another functional block fulfilling the role of the "authorization
server". The present document makes no assumption about which functional block in the architecture plays the role of
the authorization server. It is however assumed that the address of the token endpoint exposed by the authorization
server and further specified in the clauses below is provisioned to the client together with additional authorization-
related configuration parameters, such as valid client credentials. The client requests an access token from the token
endpoint. As part of the request, it authenticates towards the authorization server by presenting its client credentials,
consisting of client identifier and client password. The authorization server responds with an access token which the
client will present to the resource server with every HTTP method invocation. An access token represents a particular
access right (defining the particular set of protected resources to access in a particular manner) with a defined duration.
The token is opaque to the client, and can typically be used by the authorization server and the resource server as an
identifier to retrieve authorization information, such as information that identifies the client, its role and access rights.
An access token expires after a certain time, or can be revoked. If that happens, the client can try to obtain a new access
token from the authorization server.

In order to ensure that no third party can eavesdrop on sensitive information such as client credentials or access tokens,
HTTP over TLS is used to protect the transport. If mutual authentication using TLS protocol is used, then the
producer/server is authenticated to the consumer/client, but also the consumer/client is authenticated by the
producer/server at the same time. To facilitate this mutual authentication, the server shall request a client certificate.
This can be done as described in IETF RFC 5246 [15], including the optional CertificateRequest from server to client.

HTTP over TLS enables authorization based on TLS certificates as an alternative to a token-based approach.

4.5.2 Flows (informative)

4.5.2.0 General

Clause 4.5.2.1 presents an approach for authorizing API requests using OAuth 2.0 access tokens. Clause 4.5.2.1a
describes an alternative method for authorization of API requests using TLS certificates. Clauses 4.5.2.2 and 4.5.2.3
outline a method to authorize notifications using basic authentication and OAuth2.0based approaches respectively.
Finally, authorization of notifications using TLS certificates is presented in clause 4.5.2.4.

4.5.2.1 Authorization of API requests using OAuth 2.0 access tokens

Figure 4.5.2.1-1 illustrates the authorization of API requests that the API consumer sends to the API producer.

NOTE 1: Typical choices for the implementation of the authorization server include the authorization server as a
component of the API producer, or as an external component.

Preconditions:

• Certificates are enrolled in the communicating entities as shown in the Figure 4.5.2.1-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)37

• Authorization server is configured with the authorization policy and access rights against the client credentials.

Figure 4.5.2.1-1: Authorization of API requests using OAuth 2.0 access tokens

The flow consists of the following steps:

1) To obtain an access token, the API consumer sends a POST request to the token endpoint of the authorization
server and includes its client credentials.

2) The authorization server responds to the API consumer with an access token, and possibly additional
information such as expiry time.

3) The API consumer sends an HTTP request to a resource provided by the API producer and includes the
received access token.

4) The API producer checks the token for validity. This assumes that it has received information about the valid
access tokens, and additional related information (e.g. time of validity, client identity, client access rights)
from the authorization server. Such exchange is outside the scope of the present document, and assumed to be
trivial if deployments choose to include the authorization server as a component into the API producer.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)38

5) In case the token is valid and refers to access rights that allow accessing the actual resource with the actual
request and its parameters, the API producer returns the HTTP response.

6) In case the token is invalid or expired, the API producer returns a "401 Unauthorized" response.

7) In case the access rights are insufficient to access the resource or to use the parameters, the API producer
returns a "403 Forbidden" response.

8) The API consumer sends an HTTP request to the API producer and includes in the request the access token.

9) The API producer checks the token for validity, and establishes that it has expired, or has been revoked by the
authorization server using means outside the scope of the present document.

10) The API producer responds with a "401 Unauthorized" response, indicating that the access token is invalid.

11) The API consumer attempts to obtain a new access token, as defined in step 3. This may eventually succeed or
fail, depending on whether access is allowed for that API consumer any longer.

NOTE 2: All the communication presented in this flow diagram is done over encrypted tunnel using TLS as
described in clause 4.2.

4.5.2.1a Authorization of API requests using TLS certificates

As an alternative to the authorization using OAuth 2.0 access tokens, authentication and authorization is defined herein
based on TLS certificates, applying the IETF RFC 5246 [15]. To facilitate mutual authentication during TLS tunnel
setup process, the server requests a client certificate as described in section 7.4.4 in the IETF RFC 5246 [15].

Preconditions:

• Certificates are enrolled in the communicating entities as shown in the Figure 4.5.2.1a-1.

• Authorization server is configured with the authorization policy and access rights against the certificates.

Figure 4.5.2.1a-1: Authorization of API requests using TLS certificates

The flow consists of the following steps:

1) The API consumer initiates the TLS tunnel setup process with the API producer. During the tunnel setup
process the API producer sends its certificate to API consumer and obtains the certificate from the API
consumer by including the CertificateRequest message specified in IETF RFC 5246 [15]. This ensures the
mutual authentication between the consumer and the producer.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)39

2) API consumer further sends the HTTP request for a resource over the TLS tunnel.

3) API producer now checks for the authorization information from the authorization server based on the API
consumer client certificate.

4) Authorization server checks its policy and sends the response to the API producer.

5) If the API consumer is authorized, then the API producer sends the response related to the requested resource.

6) If the API consumer is unauthorized, then the API producer sends "403 Forbidden" response to the API
consumer.

NOTE 1: Steps 3 and 4 are outside the scope of the present document. However, typical implementations can use
the certificates in such a way that the API producer verifies the certificate of the API consumer and
extracts the subject name from the certificate. This information will be sent to the authorization server in
order to check the authorization. In a response, the authorization server will send the associated client
profile that contains the access rights.

NOTE 2: All the communication presented in this flow diagram is done over encrypted tunnel using TLS as
described in clause 4.2.

NOTE 3: Authorization based on TLS certificates assumes the existence of a trust relationship between the API
producer and the authorization server. The authorization server has no direct communications with the
API consumer and thus cannot authenticate it but relies on the API producer to perform this
authentication.

4.5.2.2 Authorization of notifications using the HTTP Basic authentication scheme

Figure 4.5.2.2-1 illustrates the authorization of notifications that the API producer sends to the API consumer based on
the HTTP Basic authentication scheme (see IETF RFC 7617 [26]). In this flow, no authorization server is needed.

Figure 4.5.2.2-1: Authorization of notifications using the HTTP Basic authentication scheme

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)40

It is a precondition for this flow that the API consumer is authorized to access the "subscriptions" resource provided by
the API producer, using the procedure illustrated in clause 4.5.2.1. Additionally, to ensure secure communication, it is a
precondition that the TLS certificates are enrolled in the communicating entities.

The flow consists of the following steps:

1) The API consumer sends a request to create a new subscription resource to the API producer and includes in
the request a valid access token to prove that it is authorized to access the API. Also, it includes in the
subscription client credentials that the API producer can use to authenticate towards the API consumer when
subsequently sending notifications. Note that these credentials are typically different from the client
credentials used in the flow in clause 4.5.2.1.

2) The API producer creates the subscription resource and responds with "201 Created".

3) The API consumer sends an HTTP POST request with a notification to the callback URI registered by the API
consumer during subscription, and includes the client credential in the request to authenticate.

4) The API consumer checks the credentials against the information it has sent in step 1.

5) In case the credentials are valid, the API producer returns a "204 No Content" HTTP response to indicate
successful delivery of the notification.

6) In case the credentials are invalid, the API producer returns a "401 Unauthorized" response.

NOTE: All the communication presented in this flow diagram is done over encrypted tunnel using TLS as
described in clause 4.2.

4.5.2.3 Authorization of notifications using OAuth 2.0 access tokens

Figure 4.5.2.3-1 illustrates the authorization of notifications that the API producer sends to the API consumer using
OAuth 2.0. In this flow, the authorization server can be a different entity than the authorization server in clause 4.5.2.1.

NOTE 1: Typical choices for the implementation of the authorization server include the authorization server as a
component of the API producer, or as an external component.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)41

Figure 4.5.2.3-1: Authorization of notifications using OAuth 2.0

It is a precondition for this flow that the API consumer is authorized to access the "subscriptions" resource provided by
the API producer, using the procedure illustrated in clause 4.5.3.1. Additionally, to ensure secure communication, it is a
precondition that the TLS certificates are enrolled in the communicating entities.

The flow consists of the following steps:

1) The API consumer sends a request to create a new subscription resource to the API producer and includes in
the request a valid access token #1 to prove that it is authorized to access the API. Also, it includes in the
subscription request parameters that the API producer can use to obtain authorization to send notifications to
the API consumer, such as client credentials and a token endpoint. Note that these are typically different from
the credentials and token endpoint used in the flow in clause 4.5.2.1.

2) The API producer creates the subscription resource and responds with "201 Created".

3) Subsequently, and prior to sending any notification to the API consumer, the API producer obtains
authorization to do so by requesting an access token from the authorization server, using the end point and
notification client credentials that were sent in the subscription request, or provisioned otherwise.

4) The authorization server responds to the API producer with an access token, hereafter called access token #2,
and possibly additional information such as expiry time.

5) The API consumer sends an HTTP POST request with a notification to the callback URI registered by the API
consumer during subscription, and includes the received access token #2.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)42

6) The API consumer checks the token for validity. This assumes that it has received information about the valid
access tokens, and additional related information (e.g. time of validity, client identity, client access rights)
from the authorization server. Such exchange is outside the scope of the present document, and assumed to be
trivial if deployments choose to include the authorization server as a component into the API consumer.

7) In case the token #2 is valid, the API producer returns a "204 No Content" HTTP response to indicate
successful delivery of the notification.

8) In case the token #2 is invalid or expired, the API producer returns a "401 Unauthorized" response.

9) The API producer sends another notification in an HTTP POST request to the API consumer and includes in
the request the access token #2.

10) The API consumer checks the token #2 for validity, and establishes that it has expired, or has been revoked by
the authorization server using means outside the scope of the present document.

11) The API consumer responds with a "401 Unauthorized" response, indicating that the access token #2 is
invalid.

12) The API producer attempts to obtain a new access token. This may eventually succeed or fail, depending on
whether access is allowed for that API producer any longer.

NOTE 2: All the communication presented in this flow diagram is done over encrypted tunnel using TLS as
described in clause 4.2.

4.5.2.4 Authorization of notifications using TLS certificates

Figure 4.5.2.4-1 illustrates the authorization of notifications that the API producer sends to the API consumer using
TLS certificates.

Preconditions:

• Certificates are enrolled in the communicating entities as shown in the Figure 4.5.2.4-1.

• The API consumer is authorized to access the "subscriptions" resource provided by the API producer, using
the procedure illustrated in clause 4.5.2.1 or 4.5.2.1a.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)43

Figure 4.5.2.4-1: Authorization of notifications using TLS certificates

The flow consists of the following steps:

1) The API consumer initiates the TLS tunnel setup process with the API producer. During the tunnel setup
process the API producer obtains the certificate from the API consumer. This ensures the mutual
authentication between the consumer and the producer.

2) The API consumer sends a request to create a new subscription resource to the API producer. The API
producer can authenticate and authorize this request based on the API consumer certificate as illustrated in
clause 4.5.2.1a. The request also includes the callbackURI where the notification will be sent in future.

3) The API producer creates the subscription resource and responds with "201 Created".

4) The API consumer now stores the relevant information of the API producer's certificate in association with the
requested notification subscription.

5) The API producer initiates the TLS tunnel with the API consumer whenever there is a notification to send.
During the tunnel setup process the API consumer sends its certificate to API producer and obtains the client
certificate from the API producer. This ensures the mutual authentication between the consumer and the
producer.

6) The API producer sends the notification over the established TLS tunnel.

7) API consumer can now verify whether this sender is allowed to send this notification by matching the sender's
certificate information with the previously stored information at step 4.

8) In case is the API producer is authorized to send a notification, then the API consumer sends a "204 No
Content" response to indicate successful delivery of the notification.

9) In case if the API producer is not authorized to send a notification, the API consumer returns a "403
Forbidden" response.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)44

NOTE 1: Steps 4 and 7 are outside the scope of the present document. However, typical implementation can use the
certificates in such a way that the API consumer verifies the certificate of the API producer and extract
subject name from the certificate. This information is used in order to check the authorization at the API
consumer.

NOTE 2: All the communication presented in this flow diagram is done over encrypted tunnel using TLS as
described in clause 4.2.

NOTE 3: It is assumed that the API producer uses the same certificate for both the client and server role.

4.5.3 Specification

4.5.3.1 Introduction

OAuth 2.0 provides a framework for authorization of web applications that has multiple modes and options. This clause
profiles the framework for use in the context of the Os-Ma-nfvo reference point. Clause 4.5.3.2 specifies the general
mechanism. Two different uses of the general mechanism, actually for API requests and for sending notifications, are
defined in clauses 4.5.3.3 and 4.5.3.4.

4.5.3.2 General mechanism

For all requests to an API defined in the present document, and for all notifications sent via such an API, authorization
as defined below shall be used. Requests and notifications without authorization credentials shall be rejected.

To allow the client to obtain an access token, the authorization server shall expose a token endpoint that shall comply
with the provisions defined by the OAuth 2.0 specification for the client credentials grant type (see IETF
RFC 6749 [18]). A client shall use the access token request and response according to this grant type, as defined by
IETF RFC 6749 [18], to obtain an access token for access to the REST resources defined by the present document. The
content of the access token is out of the scope of the present document; however, it shall not be possible for an attacker
to easily guess it. The access token shall be a string. The set of allowed characters is defined in IETF RFC 6749 [18].

A client that invokes an HTTP request towards a resource defined by one of the APIs of the present document shall
include the access token as a bearer token in every HTTP method in the "Authorization" HTTP header, as defined by
IETF RFC 6750 [19]. A resource server that receives an HTTP request with an invalid access token, or without an
access token, shall reject the request, and shall signal the error in the HTTP response according to the provisions for the
error codes and the "WWW-Authenticate" response HTTP header as defined by IETF RFC 6750 [19].

A client that receives a rejection of an access token may obtain a new access token from the token endpoint of the
authorization server, and retry the request.

As an alternative to OAuth 2.0 access tokens, certificates, as defined by TLS 1.2 in IETF RFC 5246 [15], can be used to
facilitate the authentication and authorization between client and the server.

4.5.3.3 Authorizing API requests

A consumer of an API that wishes to issue HTTP requests towards resources provided by that API shall act as a client
according to clause 4.5.3.2 to obtain an access token, and shall include this access token in every HTTP request, as
defined in clause 4.5.3.2. The respective API producer shall act as a resource server as defined in clause 4.5.3.2.
Alternatively, API requests can be authorized based on TLS certificates. These two different alternatives are listed in
the following:

1) API consumer passes access token when accessing a resource provided by API producer. API producer checks
authorization based on access token. Access token can be obtained from the authorization server based on
client ID and password.

2) API consumer accesses a resource provided by API producer using TLS tunnel where both server and client
certificates are used to establish the secure tunnel. API producer checks authorization based on client's TLS
certificate. The client's TLS certificate is obtained during the TLS handshake.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)45

4.5.3.4 Authorizing the sending of notifications

The procedure defined in clause 4.5.2 allows an API consumer to obtain authorization to perform API requests towards
the API producer, including subscription requests. For sending the actual notifications matching a subscription, the API
producer needs to obtain separate authorization to actually send the notification to the API consumer.

If an API consumer requires the API producer to authorize for sending notifications to that API consumer, it shall
include in the subscription request a data structure that defines the authorization requirements, as defined in
Table 4.5.3.4-1.

Table 4.5.3.4-1: Definition of the SubscriptionAuthentication data type

Attribute name Data type Cardinality Description
authType Enum (inlined) 1..N Defines the types of Authentication /

Authorization the API consumer is willing to
accept when receiving a notification.

Permitted values:
BASIC: In every HTTP request to the
notification endpoint, use HTTP Basic
authentication with the client credentials.

OAUTH2_CLIENT_CREDENTIALS: In every
HTTP request to the notification endpoint, use
an OAuth 2.0 Bearer token, obtained using the
client credentials grant type.

TLS_CERT: Every HTTP request to the
notification endpoint is sent over a mutually
authenticated TLS session. i.e. not only server
is authenticated, but also the client is
authenticated during the TLS tunnel setup.

paramsBasic Structure
(inlined)

0..1 Parameters for authentication/authorization
using BASIC.

Shall be present if authType is "BASIC" and the
contained information has not been provisioned
out of band.

Shall be absent otherwise.

>userName String 0..1 Username to be used in HTTP Basic
authentication. Shall be present if it has not
been provisioned out of band.

>password String 0..1 Password to be used in HTTP Basic
authentication. Shall be present if it has not
been provisioned out of band.

paramsOauth2ClientCredentials Structure
(inlined)

0..1 Parameters for authentication/authorization
using OAUTH2_CLIENT_CREDENTIALS.

Shall be present if authType is
"OAUTH2_CLIENT_CREDENTIALS" and the
contained information has not been provisioned
out of band.

Shall be absent otherwise.

>clientId String 0..1 Client identifier to be used in the access token
request of the OAuth 2.0 client credentials grant
type. Shall be present if it has not been
provisioned out of band. See note.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)46

Attribute name Data type Cardinality Description
>clientPassword String 0..1 Client password to be used in the access token

request of the OAuth 2.0 client credentials grant
type. Shall be present if it has not been
provisioned out of band. See note.

>tokenEndpoint Uri 0..1 The token endpoint from which the access
token can be obtained. Shall be present if it has
not been provisioned out of band.

NOTE: The clientId and clientPassword passed in a subscription shall not be the same as the clientId and
clientPassword that are used to obtain authorization for API requests. Client credentials may differ
between subscriptions. The value of clientPassword should be generated by a random process.

If the value of "authType" is "OAUTH2_CLIENT_CREDENTIALS":

1) the API producer shall, prior to sending any notification, obtain an access token from the token endpoint using
the OAuth 2.0 client credentials grant type as defined in IETF RFC 6749 [18]. The API consumer should
include expiry information with the token response;

2) the API producer shall include that access token as a Bearer token in every POST request that sends a
notification (according to IETF RFC 6750 [19]);

3) if the access token is expired, the API consumer shall reject the notification. In that case, the API producer
shall obtain a new access token, and repeat sending the notification;

4) if the token expiry time is known to the API producer, it may obtain proactively a new access token.

If the value of "authType" is "BASIC":

• The API producer shall pass its client credentials in every POST request that sends a notification, as defined in
IETF RFC 7617 [26].

If the value of "authType" is "TLS_CERT":

• The API producer (client) shall use its TLS certificate to create a mutually authenticated TLS session with the
API consumer (server) and further the API consumer will do the authorization based on the API producer's
certificate.

4.5.3.5 Client roles

An access token allows the API producer to identify information about the client that has obtained the access token,
such as client identity, client role or client access rights. By having this property, access tokens can be used as a means
to distinguish between different roles (and consequently different access rights) to the same set of resources.

The mechanism for this works as follows: By means out of scope of the present document, the role of the client
identified by a particular client identifier is provisioned to the authorization server. When that client obtains an access
token, it sends its client identifier and client password to the authorization server. The authorization sever can obtain the
role of the client by evaluating the data that were provisioned for the client identifier, and associate that information to
the access token. By means out of scope of the present document, that association is shared with the API producer. This
enables the API producer to detect the role based on the access token.

In ETSI NFV, certain interfaces are exposed on multiple different reference points, i.e. the same interface is exposed to
different consumer functional blocks. Depending on the consumer block that originates an HTTP request, not all
resources / HTTP methods / request and parameters might be available. From the point of view of the producer
functional block, this can be seen as consumers acting in different roles when accessing a particular interface, such as
the NS LCM interface.

Implementations may use the OAuth access token to differentiate between these cases, assuming that an access token
can determine whether a consumer functional block acts in the role of the NFVO or the OSS/BSS. This assumes that the
role of the consumer functional block is bound to its client credentials. The means of creating this binding is out of
scope of the present document (e.g. a configuration step or policy).

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)47

As an alternative mechanism, the client role can be bound to its certificate. The mechanism for this works as follows:
By means out of scope of the present document, the client is identified by a particular client subject name that is
extracted from its certificate. This subject name is then provided to the authorization server in order to get the
associated role of that particular client. By means out of scope of the present document, the authorization server is
preconfigured to have this association between the client subject name and the role.

4.5.3.6 Negotiation of authorization method

4.5.3.6.1 Authorization of API requests

The following provisions apply to the support of the authorization methods defined in the present document for the
authorization of API requests:

• The API producer shall support checking the authorization of API requests it receives based on an OAuth 2.0
access token, and should support checking the authorization of API requests it receives based on TLS
certificates as defined in clause 4.5.3.3.

• The API consumer shall support the authorization of API requests it sends by including an OAuth 2.0 bearer
token in the request, and should support the authorization of API requests it sends by providing its client
certificate to the API producer during TLS tunnel setup, as defined in clause 4.5.3.3.

When performing and authorizing an API request, the API consumer and API producer shall use the following
procedure, illustrated in Figure 4.5.3.6.1-1, to negotiate the authorization method to use if the API consumer supports
both the authorization based on OAuth 2.0 and the authorization based on TLS certificates, and the API consumer
leaves the choice of OAuth or TLS to the API producer.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)48

Figure 4.5.3.6.1-1: Negotiation of authorization method to use for API requests

1) The API consumer shall send an HTTP request to the API producer without an access token.

2) If the API producer supports both authorization methods, chooses to use the method based on TLS certificates
and the API consumer is authorized, it shall return the HTTP response to fulfil the request. Subsequent
communication between API consumer and API producer shall use the authorization based on TLS
credentials.

3) If the API producer supports both authorization methods, chooses to use the method based on TLS certificates
and the API consumer is not authorized, it shall return a 403 Forbidden response.

4) If the API producer does not support the authorization based on TLS certificates, or chooses to use OAuth 2.0
for authorization, it shall return a 401 Unauthorized response to challenge the API consumer to use OAuth 2.0.

5) Once it has received the 401 Unauthorized response, the API consumer shall subsequently request an access
token from the authorization server, according to clause 4.5.3.2.

6) The authorization server shall respond with an access token according to clause 4.5.3.2.

7) The API consumer shall subsequently retry the HTTP request with the access token included as a bearer token
according to clause 4.5.3.2.

Subsequent authorized communication between API consumer and API producer shall take place as defined in
clause 4.5.3.2 (see also the flow in clause 4.5.2.1, starting at step 4).

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)49

When performing and authorizing an API request and the API consumer does not support the method based on TLS
certificates, or supports both methods but decides to use OAuth 2.0, no negotiation takes place, and the method defined
in clause 4.5.3.2 shall be used (see also the flow in clause 4.5.2.1).

Table 4.5.3.6.1-1 illustrates the alternatives.

Table 4.5.3.6.1-1: Illustration of the alternatives

Consumer supports Producer supports Consumer request Producer reaction
OAuth2 OAuth2 Consumer sends an access

token in the 1st HTTP request.
Producer detects that OAuth2 is
requested, and sends a success
HTTP response if consumer is
authorized (see note 1).

OAuth2+TLS OAuth2 If consumer intends to use
OAuth2, it sends an access token
in the 1st HTTP request.

Producer detects that OAuth2 is
requested, and sends a success
HTTP response if consumer is
authorized (see note 1).

Otherwise, consumer sends the
1st HTTP request without access
token.

Producer sends a 401 challenge to
initiate use of OAuth2 (see note 2).

OAuth2 OAuth2+TLS Consumer sends an access
token in the 1st HTTP request.

Producer detects that OAuth2 is
requested, and sends a success
HTTP response if consumer is
authorized (see note 1).

OAuth2+TLS OAuth2+TLS If consumer intends to use
OAuth2, it sends an access token
in the 1st HTTP request.

Producer detects that OAuth2 is
requested, and sends a success
HTTP response if consumer is
authorized (see note 1).

Otherwise, consumer sends the
1st HTTP request without access
token.

If producer chooses OAuth2, it sends
a 401 challenge (see note 2).
Otherwise, if producer chooses TLS,
it sends a success HTTP response if
consumer is authorized (see note 3).

NOTE 1: This flow (OAuth2 method chosen by API consumer) is illustrated in Figure 4.5.2.1-1.
NOTE 2: This flow (OAuth2 method chosen by API producer) is illustrated in Figure 4.5.3.6.1-1 as alternative 2.
NOTE 3: This flow (TLS method chosen by API producer) is illustrated in Figure 4.5.3.6.1-1 as alternative 1.

4.5.3.6.2 Authorization of notification requests

The following provisions apply to the support of the authorization methods defined in the present document for the
authorization of notification requests:

• The API consumer shall support checking the authorization of notification requests it receives based on an
OAuth 2.0 access token as defined in clause 4.5.3.4. Further, the API producer should support checking the
authorization of notification requests it receives based on HTTP Basic authentication, and based on TLS
certificates, as defined in clause 4.5.3.4.

• The API producer shall support the authorization of notification requests it sends by including an OAuth 2.0
bearer token in the request as defined in clause 4.5.3.4. Further, the API producer should support the
authorization of notification requests it sends by providing credentials based on HTTP Basic authentication,
and by providing its client certificate to the API producer during TLS tunnel setup as defined in clause 4.5.3.4.

When performing and authorizing a notification request, the API consumer and API producer shall use the following
procedure to negotiate the authorization method to use:

1) The API consumer shall signal in the subscription the authorization methods it accepts for notifications related
to that particular subscription.

2) If none of the methods signalled is supported by the API producer, the API producer shall reject the
subscription with "422 Unprocessable Entity", and shall include in the payload body a ProblemDetails
structure which shall provide the reason for the rejection in the "details" attribute.

3) Otherwise, the API producer shall select one of the authorization methods that was signalled in the
subscription, and shall use that method for the authorization of notifications it sends based on that subscription.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)50

4.6 Version management

4.6.1 Version identifiers and parameters

4.6.1.1 Version identifiers

API version identifiers shall consist of 3 numerical fields, following a MAJOR.MINOR.PATCH pattern and the rules
for Semantic Versioning [35] with the additional clarifications defined in clause 4.6.2. The fields in an API version
identifier shall be separated by dots ".". The last field may be followed by one or more version parameters.

The MAJOR, MINOR and PATCH fields are defined in [35] for Semantic Versioning.

The {apiMajorVersion} segment of the URIs used by an API shall be set to the character "v" followed by value of the
MAJOR field of the API version identifier.

EXAMPLE: ".../nslcm/v1/

The full version identifier (including parameters) is used in ApiVersionInformation (see clause 4.4.1.7) and in version
signalling (see clause 4.6.4). Furthermore, it also appears in the corresponding OpenAPI file (see annex C).

4.6.1.2 Version parameters

Version parameters are separated from the version identifier by a dash "-". Version parameters are separated by
semicolon ";".

The present document defines the following version parameters:

• impl

The optional "impl" parameter identifies an implementation and a version of this implementation (e.g. implementation
delivered by an open source community or a vendor). The OpenAPI specification referenced in annex C is also
considered an implementation under this scheme. The "impl" parameter shall have the following structure: "impl:"
<vendor>":"<product>":"<impl_version>, where:

• the <vendor> field shall be a string that contains either an IANA Enterprise Number assigned to that vendor,
or an Internet domain name owned by that vendor;

• the <product> field shall contain a string identifying the product, chosen by the vendor;

• the <impl_version> field shall contain a number that defines the version of the implementation. Version
numbers of subsequent implementations shall be monotonically increasing.

In case of the OpenAPI files provided by ETSI (see annex C), <vendor> shall be set to "etsi.org" and "product" shall be
set to "ETSI_NFV_OpenAPI".

4.6.2 Rules for incrementing version identifier fields

4.6.2.1 General

In a REST API, versioning applies to the resources structure (URI structure, URI query parameters, and supported
HTTP methods) and the payload body. Different criteria are applied to increment MAJOR, MINOR, and PATCH
version fields for changes that affect the URI compared to changes that affect the payload body.

The fields of an API version identifier are incremented from a previous version to the current version according to the
following rules:

• 1st field (MAJOR): This field is always incremented when one or more changes made to the resources structure
defined in the present document break backward compatibility. This field is also incremented if one or more
changes to at least one payload body defined in the present document break backward compatibility, unless
that change is correcting an error.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)51

NOTE 1: A change that corrects an error that would lead the API producer to always send an error response if a
certain valid condition is met is not considered a non-backward compatible change, irrespective of the
type of change. Indeed compatibility between a new version and a previous version can only be assessed
for a feature that is properly supported in the previous version.

NOTE 2: The 1st field (MAJOR) is kept equal to "1" in version 2.5.1 of the present document, recognizing that
existing and emerging commercial implementations could be adversely affected by a change to the
MAJOR version at this time.

• 2nd field (MINOR): This field is incremented if one or more technical changes (at least one of which is not an
error correction) are made to the API specification in the present document API but none of them (apart from
error corrections to the payload body) breaks backward compatibility. It is reset to zero if the MAJOR version
identifier is changed.

• 3rd field (PATCH): This field is incremented if one or more error corrections that are visible in communication
between API producer and API consumer are made on the API specification in the present document but none
of them (apart from error corrections to the payload body) breaks backward compatibility. It is reset to zero if
the MINOR version identifier is changed.

NOTE 3: All the aforementioned types of changes affect the corresponding OpenAPI specification (see annex C).

4.6.2.2 Examples of backward and non-backward compatible changes

Examples of backward compatible changes include:

• Adding a new resource

• Adding a new URI

• Supporting a new HTTP method for an existing resource

• Adding new optional URI query parameters

• Adding new optional attributes to a resource representation in a request

• Adding new attributes to a resource representation in a response or to a notification message

• Responding with a new status code of an error class

• Certain cardinality changes (see note 1)

NOTE 1: Whether attribute cardinality changes are backward compatible depends on the type of change. An
example of a backward-compatible cardinality change include making an attribute in a response required
(e.g. changing cardinality from 0..1 to 1).

Examples of non-backward compatible changes to the resources structure include:

• Removing a resource / URI

• Removing support for an HTTP method

• Changing a resource URI

• Adding new mandatory URI query parameters

Examples of non-backward compatible changes to the payload body include:

• Renaming an attribute in a resource representation

• Adding new mandatory attributes to a resource representation in a request

• Changing the data type of an attribute

• Certain cardinality changes (see note 2)

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)52

NOTE 2: Whether attribute cardinality changes are backward compatible depends on the type of change. Examples
of non-backward compatible cardinality changes include decreasing the upper bound of a cardinality
range for attributes sent by the client, changing the meaning of the default behaviour associated to the
absence of an attribute of cardinality 0..N, etc.

4.6.3 Version information retrieval

4.6.3.1 General

The API producer shall support the following dedicated URIs to enable API consumers to retrieve information about
API versions supported by an API producer:

1. {apiRoot}/{apiName}/api_versions
2. {apiRoot}/{apiName}/{apiMajorVersion}/api_versions

To obtain information about the supported API versions, the API consumer shall send a GET request to a URI of one of
above forms. The information contained in the GET response depends on the form of URI used in the GET request, as
follows:

• If the first form is used, the GET response shall provide the list of supported versions for the API
corresponding to the apiName indicated in the GET Request URI.

• If the second form is used, the GET response shall provide the list of supported versions for the API
corresponding to the apiName and the apiVersion indicated in the GET Request URI.

• If the API producer receives a GET request:

- In case of success, the API producer shall return in the body of a 200 OK response a value of the
ApiVersionInformation data type specified in clause 4.4.1.7.

- In case URI query parameters are provided, the API producer shall return a "400 Bad request" response
as defined in clause 4.3.5.4.

- In other cases of failure, the API producer shall return appropriate error information as defined in
clauses 4.3.5.4 and 4.3.5.5.

4.6.3.2 Resource structure and methods

Table 4.6.3.2-1 lists the individual resources defined for supporting API version information retrieval, and the
applicable HTTP method. The VNFM shall support responding to GET requests on the resources in Table 4.6.3.2-1.

Table 4.6.3.2-1: Resources and methods overview for API version information retrieval

Resource name Resource URI HTTP
Method

Meaning

API versions /{apiName}/api_versions GET Version information associated to an
API

API versions /{apiName}/{apiMajorVersion}/api_versions GET Version information associated to a
major version of an API

Figure 4.6.3.2-1 shows the "API versions" resources in the overall resource URI structure defined for all APIs.

The "API versions" resources, as defined in the present clause, are part of the overall resource URI structure of each
API defined in the present document.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)53

Figure 4.6.3.2-1: "API versions" resources

4.6.3.3 Resource: API versions

4.6.3.3.1 Description

There are two "API versions" resources defined for each API. The client can use these resources to obtain API version
information.

4.6.3.3.2 Resource definition

The resource URI of each of the two "API versions" resources shall be of one of the following forms.

1. {apiRoot}/{apiName}/api_versions
2. {apiRoot}/{apiName}/{apiMajorVersion}/api_versions

These resources shall support the resource URI variables defined in Table 4.6.3.3.2-1.

Table 4.6.3.3.2-1: Resource URI variables for these resources

Name Definition
apiRoot See clause 4.2
apiName See clause 4.2
apiMajorVersion See clause 4.2

4.6.3.3.3 Resource methods

4.6.3.3.3.1 POST

This method is not supported. When this method is requested on this resource, the VNFM shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

4.6.3.3.3.2 GET

The GET method reads API version information. This method shall follow the provisions specified in
Table 4.6.3.3.3.2-1 for request and response data structures, and response codes. URI query parameters are not
supported.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)54

Table 4.6.3.3.3.2-1: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

ApiVersionInformation 1 200 OK API version information was read successfully.

The response body shall contain API version
information, as defined in clause 4.4.1.7.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

4.6.3.3.3.3 PUT

This method is not supported. When this method is requested on this resource, the VNFM shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

4.6.3.3.3.4 PATCH

This method is not supported. When this method is requested on this resource, the VNFM shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

4.6.3.3.3.5 DELETE

This method is not supported. When this method is requested on this resource, the VNFM shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

4.6.4 Version signalling

The API consumer shall include the "Version" HTTP header (see IETF RFC 4229 [33]) in each HTTP request. The
"Version" header shall contain the three version identifier fields (MAJOR.MINOR.PATCH) indicating the API version
the API consumer intends to use. The "impl" version parameter may be provided, indicating the version of the API
producer implementation that the API consumer intends to use.

The API producer shall support receiving and interpreting the "Version" HTTP header. The API producer shall include
in the response the "Version" HTTP header signalling the used API version, including the "impl" version parameter if
available. If the "impl" version parameter has been omitted in the request, the API producer shall use the combination of
MAJOR, MINOR and PATCH as requested and the highest supported value for the "impl_version" field of the "impl"
version parameter for that combination, if available.

NOTE: In case multiple versions and/or implementation versions are supported by an API producer, this allows
the API consumer to request a particular version.

API consumers conforming to versions of the present document previous to version 2.5.1 omit this header. If the API
producer receives a request without this header:

• If it supports the previous version 2.4.1 of the present document, it shall behave as defined in that document,
and should indicate this by using MAJOR=1 and MINOR=1 and PATCH=0 in the "Version" HTTP header in
the response.

• If it does not support any of the previous versions, it shall respond with a 400 Bad Request response and shall
include in the response payload body a ProblemDetails structure providing more information on the cause of
the error in the "detail" attribute.

If the API version signalled in the "Version" request header is not supported by the API producer, the API producer
shall respond with a "406 Not Acceptable" error and shall include in the response payload body a ProblemDetails
structure providing more information on the cause of the error in the "detail" attribute.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)55

4.7 Handling of large query results

4.7.1 Description

If the response to a query to a container resource (i.e. a resource that contains child resources whose representations will
be returned when responding to a GET request) will become so large that the response will adversely affect the
performance of the server, the server either rejects the request with a 400 Bad Request response, or the server provides a
paged response, i.e. it returns only a subset of the query result in the response, and also provides information how to
obtain the remainder of the query result.

When returning a paged response, depending on the underlying storage organization, it might be problematic for the
server to determine the actual size of the result; however, it is usually possible to determine whether there will be
additional results returned when knowing, for the last entry in the returned page, the position in the overall query result
or some other property that has ordering semantics. For example, the time of creation of a resource has such an ordering
property. When using such an (implementation-specific) property, the API producer can correctly handle deletions of
child resources that happen between sending the first page of the query result, and sending the next page. It cannot be
guaranteed that child resources inserted between returning subsequent pages can be considered in the query result,
however, it shall be guaranteed that this does not lead to skipping of entries that have existed prior to insertion.

At minimum, a paged response needs to contain information telling the API consumer that the response is paged, and
how to obtain the next page of information. For that purpose, a link to obtain the next page is returned in an HTTP
header, containing a parameter that is opaque to the API consumer, but that allows the API producer to determine the
start of the next page.

NOTE: In the present document, this functionality is designed for overload protection only. Additional
functionality, such as configuring the page size by the API consumer, determining the size of the overall
query result or the number of pages, and determining the previous page, is left outside the scope of the
present document.

4.7.2 Specification

4.7.2.1 Alternatives

For each container resource (i.e. a resource that contains child resources whose representations will be returned when
responding to a GET request), the API producer shall support one of the following two behaviours specified below to
handle the case that a response to a query (GET request) will become so large that the response will adversely affect
performance:

1) Return an error response, as defined in clause 4.7.2.2.

2) Return the result in a paged manner, as defined in clause 4.7.2.3.

4.7.2.2 Error response

In this alternative, the server shall reject the request with a 400 Bad Request response, shall include the
"ProblemDetails" payload body, and shall provide in the "detail" attribute more information about the error.

This error code indicates to the API consumer that with the given attribute-based filtering query (or absence thereof),
the response would have been so big that performance is adversely affected. The client can obtain a query result by
specifying a (more restrictive) attribute-based filtering query (see clause 4.3.2).

4.7.2.3 Paged response

In this alternative, the API producer shall provide a response that contains a first page (subset) of the results to the
query, and shall include a LINK HTTP header (see IETF RFC 8288 [34]) with the "rel" attribute set to "next", which
communicates a URI that allows to obtain the next page of results to the original query. The API consumer can send a
GET request to the URI communicated in the LINK header to obtain the next page of results. The response which
returns that next page shall contain the LINK header to point to the next page, as specified above, unless there are no
further pages available in which case the LINK header shall be omitted.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)56

To allow the API producer to determine the start of the next page, the LINK header shall contain the URI query
parameter "nextpage_opaque_marker" whose value is chosen by the API producer. This parameter has no meaning for
the API consumer, but is echoed back by the API consumer to the API producer when requesting the next page. The
URI in the link header may include further parameters, such as those passed in the original request.

The size of each page may be chosen by the API provider, and may vary from page to page. The maximum page size is
determined by means outside the scope of the present document.

The response need not contain entries that correspond to child resources which were created after the original query was
issued.

5 NSD Management interface

5.1 Description

This interface allows the OSS/BSS to invoke management operations of NSDs towards the NFVO and to subscribe to
notifications related to NSD management changes.

The operations provided through this interface are as follows:

• Create NSD Info

• Upload NSD

• Fetch NSD

• Update NSD Info

• Delete NSD

• Query NSD Info

• Create PNFD Info

• Upload PNFD

• Fetch PNFD

• Update PNFD Info

• Delete PNFD

• Query PNFD Info

• Subscribe

• Terminate Subscription

• Query Subscription Information

• Notify

This interface also enables to invoke error handling procedures (i.e., Retry, Rollback, Continue, Cancel, and Fail) on the
actual NS lifecycle management operation occurrences, and API version retrieval.

The state changes of a NSD are illustrated in clause B.2.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)57

5.1a API version
For the NSD management interface as specified in the present document, the MAJOR version field shall be 1, the
MINOR version field shall be 1, and the PATCH version number shall be 0 (see clause 4.6.1 for a definition of the
version fields). Consequently, the {apiMajorVersion} URI variable shall be set to "v1".

NOTE: The MINOR version 0 corresponds to the version of the API specified in version 2.4.1 of the present
document.

5.2 Resource structure and methods
All resource URIs of the API shall use the base URI specification defined in clause 4.2. The string "nsd" shall be used
to represent {apiName}. All resource URIs in the clauses below are defined relative to the above base URI. Figure 5.2-1
shows the overall resource URI structure defined for the NSD management interface.

Figure 5.2-1: Resource URI structure of NSD Management Interface

Table 5.2-1 lists the individual resources defined, and the applicable HTTP methods. The NFVO shall support
responding to requests for all HTTP methods on the resources in Table 5.2-1 that are marked as "M" (mandatory) in the
"Cat" column. The NFVO shall also support the "API versions" resources as specified in clause 4.6.3.2.

Table 5.2-1: Resources and methods overview of the NSD Management interface

Resource name Resource URI HTTP
Method

Cat Meaning

NS Descriptors /ns_descriptors GET M Query information about multiple NS
descriptor resources.

POST M Create a new NS descriptor resource.
Individual NS
Descriptor

/ns_ descriptors/{nsdInfoId} GET M Read information about an individual NS
descriptor resource.

PATCH M
Modify the operational state and/or the
user defined data of an individual NS
descriptor resource.

DELETE M
Delete an individual NS descriptor
resource.

NSD Content /ns_descriptors/{nsdInfoId}/nsd_c
ontent

GET M Fetch the content of a NSD.
PUT M Upload the content of a NSD.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)58

Resource name Resource URI HTTP
Method

Cat Meaning

PNF Descriptors /pnf_descriptors GET M Query information about multiple PNF
descriptor resources.

POST M Create a new PNF descriptor resource.
Individual PNF
Descriptor

/pnf_descriptors/{pnfdInfoId} GET M Read an individual PNFD resource.

PATCH M Modify the user defined data of an
individual PNF descriptor resource.

DELETE M Delete an individual PNF descriptor
resource.

PNFD Content /pnf_descriptors/{pnfdInfoId}/pnfd_
content

GET M Fetch the content of a PNFD.
PUT M Upload the content of a PNFD.

Subscriptions /subscriptions POST M Subscribe to NSD and PNFD change
notifications.

GET M Query multiple subscriptions.
Individual
subscription

/subscriptions/{subscriptionId} GET M Read an individual subscription resource.
DELETE M Terminate a subscription.

Notification
endpoint

(client-provided) POST See
note

Notify about NSD and PNFD changes.
See note.

GET See
note

Test the notification endpoint. See note.

NOTE: The NFVO shall support invoking the HTTP methods defined for the "Notification endpoint" resource
exposed by the OSS/BSS. If the OSS/BSS supports invoking the POST method on the "Subscriptions"
resource towards the NFVO, it shall also support responding to the HTTP requests defined for the
"Notification endpoint" resource.

5.3 Sequence diagrams (informative)

5.3.1 Flow of the creation of an individual NS descriptor resource

This clause describes the procedure for creating an individual NS descriptor resource.

Figure 5.3.1-1: Flow of the creation of an individual NS descriptor resource

The procedure consists of the following steps as illustrated in Figure 5.3.1-1:

1) The OSS/BSS sends a POST request to the "ns_descriptors" resource including in the payload body a data
structure of type "CreateNsdInfoRequest".

2) The NFVO creates a new NS descriptor resource with nsdOnboardingState="CREATED",
nsdOperationalState="DISABLED" and nsdUsageState="NOT_IN_USE".

3) The NFVO returns a 201 Created response containing a representation of the individual NS descriptor resource
just created by the NFVO.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)59

Postcondition: Upon successful completion, the individual NS descriptor resource has been created with
nsdOnboardingState="CREATED", nsdOperationalState="DISABLED", and nsdUsageState="NOT_IN_USE".

5.3.2 Flow of the uploading of NSD content

This clause describes the procedure for the uploading of NSD content.

Figure 5.3.2-1: Flow of the uploading of NSD content

NOTE: Due to possible race conditions, the 204 response and the NsdOnBoardingNotification can arrive in any
order at the OSS/BSS.

Precondition: A NS descriptor resource has already been created.

The procedure consists of the following steps as illustrated in Figure 5.3.2-1:

1) The OSS/BSS sends a PUT request to a "NSD Content" resource using a "Content-Type" HTTP header as
defined in clause 5.4.4.3.3 of the present document.

2) For asynchronous processing, the NFVO returns "202 Accepted".

3) Otherwise, the NFVO returns a "204 No Content" response to the OSS/BSS with an empty payload body for
successful uploading of the NSD content.

The NFVO sends an NsdOnboardingNotification to the OSS/BSS.

Error handling: In case of failure, appropriate error information is provided in the response.

5.3.3 Flow of the fetching of NSD content

This clause describes the procedure for fetching the content of an onboarded NSD.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)60

Figure 5.3.3-1: Flow of the fetching of NSD content

Precondition: The NSD is on-boarded to the NFVO.

Fetching an on-boarded NSD, as illustrated in Figure 5.3.3-1, consists of the following steps:

1) If fetching the whole NSD content, the OSS/BSS sends a GET request to the "NSD content" resource.

2) The NFVO returns a "200 OK" response, and includes a copy of the NSD file in the payload body.

3) If fetching the NSD content using partial download, the OSS/BSS sends a GET request to the "NSD content"
resource, and includes a "Range" HTTP header indicating the partition of the NSD content that needs to be
transferred.

4) The NFVO returns a "206 Partial Content" response with a payload body containing the partial content of the
NSD, and a "Content-Range" HTTP header indicating the byte range enclosed in the payload and the complete
length of the NSD.

Postcondition: Upon successful completion, the OSS/BSS gets the whole or partial content of the NSD.

Error handling: In case of failure, appropriate error information is provided in the response.

5.3.4 Flow of the update of an individual NS descriptor resource

This clause describes the procedure for the update of an NS descriptor resource. The Update NSD Info operation allows
for the modification of the operational state and/or user defined data of an individual NS descriptor resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)61

Figure 5.3.4-1: Flow of the update of an individual NS descriptor resource

NOTE: Due to possible race conditions, the 200 response and the NsdChangeNotification can arrive in any order
at the OSS/BSS.

Precondition: The individual NS descriptor resource has been created. To modify the nsdOperationalState from
"ENABLED" to "DISABLED" or vice-versa, the individual NS descriptor resource has
nsdOnboardingState="ONBOARDED".

The procedure consists of the following steps as illustrated in Figure 5.3.4-1:

1) The OSS/BSS sends a PATCH request to the "Individual NS descriptor" resource.

2) The NFVO modifies the information associated with the individual NS descriptor resource.

3) The NFVO returns a "200 OK" response including the data structure of type "nsdInfoModifications" in the
payloadbody.

4) When modifying the nsdOperationalState attribute, the NFVO sends to the OSS/BSS a NsdChangeNotification
to indicate the state change of the individual NS descriptor resource.

Postcondition: Upon successful completion, the information about an individual NS descriptor resource has been
updated.

5.3.5 Flow of the deletion of an individual NS descriptor resource

This clause describes the procedure for the deletion of an individual NS descriptor resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)62

Figure 5.3.5-1: Flow of the deletion of an individual NS descriptor resource

NOTE: Due to possible race conditions, the 204 response and the NsdDeletionNotification can arrive in any order
at the OSS/BSS.

Precondition: NSD has been on boarded to the NFVO, the operational state of the NSD is equal to "DISABLED", and
the usage state of the NSD is equal to "NOT_IN_USE".

The procedure consists of the following steps as illustrated in Figure 5.3.5-1:

1) The OSS/BSS sends a DELETE request to an "Individual NS descriptor" resource.

2) The NFVO deletes the individual NS descriptor resource.

3) The NFVO returns a "204 No Content" response to the OSS/BSS with an empty payload body.

4) The NFVO sends to the OSS/BSS a NsdDeletionNotification to indicate the deletion of the individual NS
descriptor resource.

5.3.6 Flow of the querying/reading of NS descriptor resources

This clause describes the procedure for querying information about multiple NS descriptor resources and reading
information about an individual NS descriptor resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)63

Figure 5.3.6-1: Flow of the querying/reading of NS descriptor resources

The procedure consists of the following steps as illustrated in Figure 5.3.6-1.

Precondition: One or more NS descriptor resources have been created:

1) If the OSS/BSS intends to query information about multiple NS descriptor resources, it sends a GET request to
the ns_descriptors resource.

2) The NFVO returns a "200 OK" response, and includes in the payload body zero or more data structures of type
"NsdInfo".

3) If the OSS/BSS intends to read information about an individual NS descriptor resource, the OSS/BSS sends a
GET request to the "Individual NS descriptor" resource, addressed by the appropriate NsdInfo identifier in its
resource URI.

4) The NFVO returns a "200 OK" response, and includes in the payload body a data structure of type "NsdInfo".

Postcondition: Upon successful completion, the OSS/BSS gets the information of multiple (i.e. zero or more) NS
descriptor resources or an individual NS descriptor resource.

Error handling: In case of failure, appropriate error information is provided in the response.

5.3.7 Flow of the creation of an individual PNF descriptor resource

This clause describes the procedure for creating an individual PNF descriptor resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)64

Figure 5.3.7-1: Flow of the creation of an individual PNF descriptor resource

The procedure consists of the following steps as illustrated in Figure 5.3.7-1:

1) The OSS/BSS sends a POST request to the "pnf_descriptors" resource including in the payload body a data
structure of type "CreatePnfdInfoRequest".

2) The NFVO creates a new PNF descriptor resource with pnfdOnboardingState="CREATED" and
pnfdUsageState="NOT_IN_USE".

3) The NFVO returns a 201 Created response containing a representation of the individual PNF descriptor
resource just created by the NFVO.

Postcondition: Upon successful completion, the individual PNF descriptor resource has been created with
pnfdOnboardingState="CREATED" and pnfdUsageState="NOT_IN_USE".

5.3.8 Flow of the uploading of PNFD content

This clause describes the procedure for the uploading of PNFD content.

Figure 5.3.8-1: Flow of the uploading of PNFD content

Precondition: A PNF descriptor resource has already been created (i.e. "PnfdOnboardingState"=CREATED and
"pnfdUsageState"=NOT_IN_USE).

The procedure consists of the following steps as illustrated in Figure 5.3.8-1:

1) The OSS/BSS sends a PUT request to a "PNFD Content" resource using a "Content-Type" HTTP header as
defined in clause 5.4.4.3.3 of the present document.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)65

2) The NFVO returns a "204 No Content" response to the OSS/BSS with an empty payload body for successful
uploading of the PNFD content.

3) The NFVO sends a PnfdOnboardingNotification to the OSS/BSS.

Error handling: In case of failure, appropriate error information is provided in the response.

5.3.9 Flow of the fetching of PNFD content

This clause describes the procedure for fetching the content of an onboarded PNFD.

Figure 5.3.9-1: Flow of the fetching of PNFD content

Precondition: The PNFD has been on-boarded to the NFVO.

Fetching an on-boarded PNFD, as illustrated in Figure 5.3.9-1, consists of the following steps.

1) The OSS/BSS sends a GET request to the "PNFD content" resource.

2) The NFVO returns a "200 OK" response, and includes a copy of the PNFD file in the payload body.

Postcondition: Upon successful completion, the OSS/BSS gets the content of the PNFD.

Error handling: In case of failure, appropriate error information is provided in the response.

5.3.10 Flow of the deletion of an individual PNF descriptor resource

This clause describes the procedure for the deletion of an individual PNF descriptor resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)66

Figure 5.3.10-1: Flow of the deletion of an individual PNF descriptor resource

Precondition: NSD has been on boarded to the NFVO and in the Disabled state.

The procedure consists of the following steps as illustrated in Figure 5.3.10-1:

1) The OSS/BSS sends a DELETE request to an "Individual PNF descriptor" resource.

2) The NFVO deletes the individual PNF descriptor resource.

3) The NFVO returns a "204 No Content" response to the OSS/BSS with an empty payload body.

4) The NFVO sends to the OSS/BSS a PnfdDeletionNotification to indicate the deletion of the individual PNF
descriptor resource.

5.3.11 Flow of the querying/reading of PNF descriptor resources

This clause describes the procedure for querying information about multiple PNF descriptor resources and reading
information about an individual PNF descriptor resource.

Figure 5.3.11-1: Flow of the querying/reading of PNF descriptor resources

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)67

The procedure consists of the following steps as illustrated in Figure 5.3.11-1:

Precondition: One or more PNF descriptor resources have been created:

1) If the OSS/BSS intends to query information about multiple PNF descriptor resources, it sends a GET request
to the pnf_descriptors resource.

2) The NFVO returns a "200 OK" response, and includes in the payload body zero or more data structures of type
"PnfdInfo".

3) If the OSS/BSS intends to read information about an individual PNF descriptor resource, the OSS/BSS sends a
GET request to the "Individual PNF descriptor" resource, addressed by the appropriate PnfdInfo identifier in
its resource URI.

4) The NFVO returns a "200 OK" response, and includes in the payload body a data structure of type "PnfdInfo".

Postcondition: Upon successful completion, the OSS/BSS gets the information of multiple (i.e. zero or more) PNF
descriptor resources or an individual PNF descriptor resource.

Error handling: In case of failure, appropriate error information is provided in the response.

5.3.12 Flow of managing subscriptions

This clause describes the procedure for creating, reading and terminating subscriptions to notifications related to NSD
management.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)68

Figure 5.3.12-1: Flow of managing subscriptions

The procedure consists of the following steps as illustrated in Figure 5.3.12-1:

1) The OSS/BSS sends a POST request to the "Subscriptions" resource including in the payload body a data
structure of type "NsdmSubscriptionRequest". This data structure contains filtering criteria and a client side
URI to which the NFVO will subsequently send notifications about events that match the filter.

2) Optionally, to test the notification endpoint that was registered by the OSS/BSS as part of the subscription, the
NFVO sends a GET request to the notification endpoint URI.

3) In that case, the OSS/BSS returns a "204 No Content" response to indicate success.

4) The NFVO creates a new subscription for notifications related to NS fault management, and a resource that
represents this subscription.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)69

5) The NFVO returns a "201 Created" response containing a data structure of type "NsdmSubscription",
representing the subscription resource just created by the NFVO, and provides the URI of the newly-created
resource in the "Location" HTTP header.

6) Optionally, for example when trying to recover from an error situation, the OSS/BSS may query information
about its subscriptions by sending a GET request to the "Subscriptions" resource.

7) In that case, the NFVO returns a "200 OK" response that contains the list of representations of all existing
subscriptions that were created by the NFVO.

8) Optionally, for example when trying to recover from an error situation, the OSS/BSS may read information
about a particular subscription by sending a GET request to the resource representing that individual
subscription.

9) In that case, the NFVO returns a "200 OK" response that contains a representation of that individual
subscription.

10) When the OSS/BSS does not need the subscription anymore, it terminates the subscription by sending a
DELETE request to the resource that represents the individual subscription.

11) The NFVO acknowledges the successful termination of the subscription by returning a "204 No Content"
response.

Error handling: The NFVO rejects a subscription if the subscription information is not valid: endpoint cannot be
reached, subscription information is malformed, etc.

5.3.13 Flow of sending notifications

This clause describes the procedure for sending notifications related to NSD management.

Figure 5.3.13-1: Flow of sending notifications

Precondition: The OSS/BSS has subscribed previously for notifications related to NSD management.

The procedure consists of the following steps as illustrated in Figure 5.3.13-1:

1) If an event occurs that matches the filtering criteria which are part of the subscription, the NFVO generates a
notification that includes information about the event, and sends it in the body of a POST request to the URI
which the NFVO has registered as part of the subscription request. The variable <<Notification>> in the flow
is a placeholder for the different types of notifications that can be sent by this API (see clauses 5.5.2.9,
5.5.2.10, 5.5.2.11 and 5.5.2.12).

2) The OSS/BSS acknowledges the successful delivery of the notification by returning a "204 No Content"
response.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)70

Error handling: If the NFVO does not receive the "204 No Content" response from the OSS/BSS, it can retry sending
the notification.

5.4 Resources

5.4.1 Introduction

This clause defines all the resource and methods provided by the NSD management interface.

The on-boarding of a NSD includes:

1) Creation of an individual NS descriptor resource

2) Uploading the NSD content

3) Validation of the NSD inside the NFVO

In the present document, the NSD is referred to as "on-boarded" only after these three procedures are successfully
accomplished.

NOTE: Annex B describes the state model of NSD in the NFVO. It includes the state models for two phases, i.e.
onboarding phase of NSD and operational phase of NSD.

Further, the on-boarding of a PNFD includes:

1) Creation of an individual PNF descriptor resource

2) Uploading the PNFD

3) Processing the PNFD, including validation, inside the NFVO

A PNFD is referred as "on-boarded" only after these three procedures are successfully accomplished.

5.4.1a Resource: API versions

The "API versions" resources as defined in clause 4.6.3.3 are part of the NSD management interface.

5.4.2 Resource: NS Descriptors

5.4.2.1 Description

This resource represents NS descriptors. It can be used to create an individual NS descriptor resource, and to query
multiple NS descriptor resources.

5.4.2.2 Resource definition

The resource URI is:

 {apiRoot}/nsd/v1/ns_descriptors

This resource shall support the resource URI variables defined in Table 5.4.2.2-1.

Table 5.4.2.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)71

5.4.2.3 Resource methods

5.4.2.3.1 POST

The POST method is used to create a new NS descriptor resource.

This method shall follow the provisions specified in the Tables 5.4.2.3.1-1 and 5.4.2.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.2.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

Table 5.4.2.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
CreateNsdInfoRequest 1 Parameters of creating an NS descriptor resource, as defined in

clause 5.5.2.4.

Respons
e body

Data type Cardinality Response
Codes

Description

NsdInfo 1 201 Created An NS descriptor resource was created
successfully, as a new NS descriptor resource.

The response body shall contain a representation
of the new NS descriptor resource, as defined in
clause 5.5.2.2.

The HTTP response shall include a "Location"
HTTP header that contains the resource URI of the
new NS descriptor resource.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.2.3.2 GET

The GET method queries information about multiple NS descriptor resources.

This method shall follow the provisions specified in the Tables 5.4.2.3.2-1 and 5.4.2.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.2.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
filter 0..1 Attribute-based filtering expression according to clause 4.3.2.

The NFVO shall support receiving this filtering parameter as part of the URI
query string. The OSS/BSS may supply this parameter.

All attribute names that appear in the NsdInfo and in data types referenced
from it shall be supported by the NFVO in the filter expression.

all_fields 0..1 Include all complex attributes in the response. See clause 4.3.3 for details.
The NFVO shall support this parameter.

fields 0..1 Complex attributes to be included into the response. See clause 4.3.3 for
details. The NFVO should support this parameter.

exclude_fields 0..1 Complex attributes to be excluded from the response. See clause 4.3.3 for
details. The NFVO should support this parameter.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)72

Name Cardinality Description
exclude_default 0..1 Indicates to exclude the following complex attributes from the response. See

clause 4.3.3 for details. The VNFM shall support this parameter.

The following attributes shall be excluded from the NsdInfo structure in the
response body if this parameter is provided, or none of the parameters
"all_fields," "fields", "exclude_fields", "exclude_default" are provided:
userDefinedData.

nextpage_opaque_
marker

0..1 Marker to obtain the next page of a paged response. Shall be supported by
the NFVO if the NFVO supports alternative 2 (paging) according to
clause 4.7.2.1 for this resource.

Table 5.4.2.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

NsdInfo 0..N 200 OK Information about zero or more NS descriptors.

The response body shall contain in an array the
representations of zero or more NS descriptors, as
defined in clause 5.5.2.2.

If the NFVO supports alternative 2 (paging) according
to clause 4.7.2.1 for this resource, inclusion of the
Link HTTP header in this response shall follow the
provisions in clause 4.7.2.3.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute-based filtering expression.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should convey
more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute selector.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should convey
more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Response too big.

If the NFVO supports alternative 1 (error) according to
clause 4.7.2.1 for this resource, this error response
shall follow the provisions in clause 4.7.2.2.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.2.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.2.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.2.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)73

5.4.3 Resource: Individual NS Descriptor

5.4.3.1 Description

This task resource represents an individual NS descriptor. The client can use this resource to modify, delete and read the
information of the individual NS descriptor.

5.4.3.2 Resource definition

The resource URI is:

 {apiRoot}/nsd/v1/ns_descriptors/{nsdInfoId}

This resource shall support the resource URI variables defined in Table 5.4.3.2-1.

Table 5.4.3.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
nsdInfoId Identifier of the individual NS descriptor resource. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request creating a new NS descriptor resource. It can also be retrieved from the "id" attribute in
the payload body of that response.

5.4.3.3 Resource methods

5.4.3.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.3.3.2 GET

The GET method reads information about an individual NS descriptor.

This method shall follow the provisions specified in the Tables 5.4.3.3.2-1 and 5.4.3.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.3.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
None supported

Table 5.4.3.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

NsdInfo 1 200 OK Information about the individual NS descriptor.

The response body shall contain a representation of
the individual NS descriptor, as defined in
clause 5.5.2.2.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)74

5.4.3.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.3.3.4 PATCH

The PATCH method modifies the operational state and/or user defined data of an individual NS descriptor resource.

This method can be used to:

1) Enable a previously disabled individual NS descriptor resource, allowing again its use for instantiation of new
network service with this descriptor. The usage state (i.e. "IN_USE/NOT_IN_USE") shall not change as a
result.

2) Disable a previously enabled individual NS descriptor resource, preventing any further use for instantiation of
new network service(s) with this descriptor. The usage state (i.e. "IN_USE/NOT_IN_USE") shall not change
as a result.

3) Modify the user defined data of an individual NS descriptor resource.

This method shall follow the provisions specified in the Tables 5.4.3.3.4-1 and 5.4.3.3.4-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.3.3.4-1: URI query parameters supported by the PATCH method on this resource

Name Cardinality Description
None supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)75

Table 5.4.3.3.4-2: Details of the PATCH request/response on this resource

Request
body

Data type Cardinality Description
NsdInfoModifications 1 Parameters for the modification of an individual NS descriptor

resource, as defined in clause 5.5.2.1.

Response
body

Data type Cardinality Response
Codes

Description

NsdInfoModifications 1 200 OK The operation was completed successfully.

The response body shall contain attribute
modifications for an 'Individual NS Descriptor'
resource (see clause 5.5.2.6).

ProblemDetails 1 409 Conflict Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to an operational state
mismatch, i.e. enable an already enabled or
disable an already disabled individual NS
descriptor resource, or the "nsdOnboardingState"
is not ONBOARDED.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails 0..1 412
Precondition
failed

Error: A precondition given in an HTTP request
header is not fulfilled.

Typically, this is due to an ETag mismatch,
indicating that the resource was modified by
another entity.

The response body should contain a
ProblemDetails structure, in which the "detail"
attribute should convey more information about the
error.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.3.3.5 DELETE

The DELETE method deletes an individual NS descriptor resource.

An individual NS descriptor resource can only be deleted when there is no NS instance using it (i.e. usageState =
NOT_IN_USE) and has been disabled already (i.e. operationalState = DISABLED). Otherwise, the DELETE method
shall fail.

This method shall follow the provisions specified in the Tables 5.4.3.3.5-1 and 5.4.3.3.5-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.3.3.5-1: URI query parameters supported by the DELETE method on this resource

Name Cardinality Description
None supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)76

Table 5.4.3.3.5-2: Details of the DELETE request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The operation has completed successfully.

The response body shall be empty.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact the NS descriptor
resource is in the enabled operational state (i.e.
operationalState = ENABLED) or there are running
NS instances using the concerned individual NS
descriptor resource (i.e. usageState = IN_USE).

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.4 Resource: NSD Content

5.4.4.1 Description

This resource represents the content of the individual NS descriptor, i.e. NSD content. The client can use this resource
to upload and download the content of the NSD.

5.4.4.2 Resource definition

The resource URI is:

 {apiRoot}/nsd/v1/ns_descriptors/{nsdInfoId}/nsd_content

This resource shall support the resource URI variables defined in Table 5.4.4.2-1.

Table 5.4.4.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
nsdInfoId Identifier of the individual NS descriptor. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request creating a new NS descriptor resource. It can also be retrieved from the "id" attribute in
the payload body of that response.

5.4.4.3 Resource methods

5.4.4.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)77

5.4.4.3.2 GET

The GET method fetches the content of the NSD.

The NSD can be implemented as a single file or as a collection of multiple files. If the NSD is implemented in the form
of multiple files, a ZIP file embedding these files shall be returned. If the NSD is implemented as a single file, either
that file or a ZIP file embedding that file shall be returned.

The selection of the format is controlled by the "Accept" HTTP header passed in the GET request:

• If the "Accept" header contains only "text/plain" and the NSD is implemented as a single file, the file shall be
returned; otherwise, an error message shall be returned.

• If the "Accept" header contains only "application/zip", the single file or the multiple files that make up the
NSD shall be returned embedded in a ZIP file.

• If the "Accept" header contains both "text/plain" and "application/zip", it is up to the NFVO to choose the
format to return for a single-file NSD; for a multi-file NSD, a ZIP file shall be returned.

NOTE: The structure of the NSD zip file is outside the scope of the present document.

This method shall follow the provisions specified in the Tables 5.4.4.3.2-1 and 5.4.4.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.4.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

Table 5.4.4.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a The request shall contain the appropriate entries in the "Accept"

HTTP header as defined above.

The request may contain a "Range" HTTP header to obtain single
range of bytes from the NSD file. This can be used to continue an
aborted transmission.

If the NFVO does not support range requests, the NFVO shall
ignore the 'Range" header, process the GET request, and return
the whole NSD file with a 200 OK response (rather than returning
a 4xx error status code).

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)78

Response
body

Data type Cardinality Response
Codes

Description

n/a 1 200 OK On success, the content of the NSD is returned.

The payload body shall contain a copy of the file
representing the NSD or a ZIP file that contains the
file or multiple files representing the NSD, as
specified above.

The "Content-Type" HTTP header shall be set
according to the format of the returned file, i.e. to
"text/plain" for a YAML file or to "application/zip" for
a ZIP file.

n/a 1 206 Partial
Content

On success, if the NFVO supports range requests,
a single consecutive byte range from the content of
the NSD file is returned.

The response body shall contain the requested part
of the NSD file.

The "Content-Range" HTTP header shall be
provided according to IETF RFC 7233 [23].

The "Content-Type" HTTP header shall be set as
defined above for the "200 OK" response.

ProblemDetails 0..1 406 Not
AccepTable

If the "Accept" header does not contain at least one
name of a content type for which the NFVO can
provide a representation of the NSD, the NFVO
shall respond with this response code.

The "ProblemDetails" structure may be included
with the "detail" attribute providing more information
about the error.

ProblemDetails 1 409 Conflict Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact
"nsdOnboardingState" has a value different from
ONBOARDED.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails 0..1 416 Range
Not
Satisfiable

The byte range passed in the "Range" header did
not match any available byte range in the NSD file
(e.g. "access after end of file").

The response body may contain a ProblemDetails
structure.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.4.3.3 PUT

The PUT method is used to upload the content of a NSD.

The NSD to be uploaded can be implemented as a single file or as a collection of multiple files, as defined in
clause 5.4.4.3.2. If the NSD is implemented in the form of multiple files, a ZIP file embedding these files shall be
uploaded. If the NSD is implemented as a single file, either that file or a ZIP file embedding that file shall be uploaded.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)79

The "Content-Type" HTTP header in the PUT request shall be set accordingly based on the format selection of the
NSD:

• If the NSD to be uploaded is a text file, the "Content-Type" header is set to "text/plain".

• If the NSD to be uploaded is a zip file, the "Content-Type" header is set to "application/zip".

This method shall follow the provisions specified in the Tables 5.4.4.3.3-1 and 5.4.4.3.3-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.4.3.3-1: URI query parameters supported by the PUT method on this resource

Name Cardinality Description
none supported

Table 5.4.4.3.3-2: Details of the PUT request/response on this resource

Request
body

Data type Cardinality Description
n/a 1 The payload body contains a copy of the file representing the

NSD or a ZIP file that contains the file or multiple files
representing the NSD, as specified above.

The request shall set the "Content-Type" HTTP header as defined
above.

Response
body

Data type Cardinality Response
Codes

Description

n/a 1 202
Accepted

The NSD content was accepted for uploading, but
the processing has not been completed. It is
expected to take some time for processing
(asynchronous mode).

The response body shall be empty. See note.

n/a 1 204 No
Content

The NSD content was successfully uploaded and
validated (synchronous mode).
The response body shall be empty.

ProblemDetails 1 409 Conflict Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact that the
NsdOnboardingState has a value other than
CREATED.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error re code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

NOTE: The client can track the uploading progress by receiving the "NsdOnBoardingNotification" and
"NsdOnBoardingFailureNotification" from the NFVO or by reading the status of the individual NS descriptor
resource using the GET method.

5.4.4.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.4.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)80

5.4.5 Resource: PNF Descriptors

5.4.5.1 Description

This resource represents PNF descriptors and it can be used to create an individual PNF descriptor resource, and to
query PNF descriptor resources.

5.4.5.2 Resource definition

The resource URI is:

 {apiRoot}/nsd/v1/pnf_descriptors

This resource shall support the resource URI variables defined in Table 5.4.5.2-1.

Table 5.4.5.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2

5.4.5.3 Resource methods

5.4.5.3.1 POST

The POST method is used to create a new PNF descriptor resource.

This method shall follow the provisions specified in the Tables 5.4.5.3.1-1 and 5.4.5.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.5.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

Table 5.4.5.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
CreatePnfdInfoRequest 1 Parameters of creating a PNF descriptor resource, as defined in

clause 5.5.2.6.

Response
body

Data type Cardinality Response
Codes

Description

PnfdInfo 1 201
Created

A PNF descriptor resource was created
successfully, as a new PNF descriptor resource.

The response body shall contain a representation of
the new PNF descriptor resource, as defined in
clause 5.5.2.5.
The HTTP response shall include a "Location"
HTTP header that contains the resource URI of the
new PNF descriptor resource.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)81

5.4.5.3.2 GET

The GET method queries information about multiple PNF descriptor resources.

This method shall follow the provisions specified in the Tables 5.4.5.3.2-1 and 5.4.5.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.5.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
filter 0..1 Attribute-based filtering expression according to clause 4.3.2.

The NFVO shall support receiving this filtering parameter as part of the
URI query string. The OSS/BSS may supply this parameter.

All attribute names that appear in the PnfdInfo and in data types
referenced from it shall be supported by the NFVO in the filter
expression.

all_fields 0..1 Include all complex attributes in the response. See clause 4.3.3 for
details. The NFVO shall support this parameter.

fields 0..1 Complex attributes to be included into the response. See clause 4.3.3
for details. The NFVO should support this parameter.

exclude_fields 0..1 Complex attributes to be excluded from the response. See clause 4.3.3
for details. The NFVO should support this parameter.

exclude_default 0..1 Indicates to exclude the following complex attributes from the response.
See clause 4.3.3 for details. The NFVO shall support this parameter.

The following attributes shall be excluded from the PnfdInfo structure in
the response body if this parameter is provided, or none of the
parameters "all_fields," "fields", "exclude_fields", "exclude_default" are
provided:
userDefinedData.

nextpage_opaque_
marker

0..1 Marker to obtain the next page of a paged response. Shall be
supported by the NFVO if the NFVO supports alternative 2 (paging)
according to clause 4.7.2.1 for this resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)82

Table 5.4.5.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

PnfdInfo 0..N 200 OK Information about zero or more PNF descriptors.

The response body shall contain in an array the
representations of zero or more PNF descriptors, as
defined in clause 5.5.2.2.

If the NFVO supports alternative 2 (paging) according
to clause 4.7.2.1 for this resource, inclusion of the
Link HTTP header in this response shall follow the
provisions in clause 4.7.2.3.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute-based filtering expression.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should convey
more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute selector.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should convey
more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Response too big.

If the NFVO supports alternative 1 (error) according to
clause 4.7.2.1 for this resource, this error response
shall follow the provisions in clause 4.7.2.2.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.5.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.5.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.5.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.6 Resource: Individual PNF Descriptor

5.4.6.1 Description

This resource represents an individual PNF descriptor. The client can use this resource to modify, delete and read the
information of the individual PNF descriptor resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)83

5.4.6.2 Resource definition

The resource URI is:

 {apiRoot}/nsd/v1/pnf_descriptors/{pnfdInfoId}

This resource shall support the resource URI variables defined in Table 5.4.6.2-1.

Table 5.4.6.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
pnfdInfoId Identifier of the individual PNF descriptor resource. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request creating a new PNF descriptor resource. It can also be retrieved from the "id" attribute in
the payload body of that response.

5.4.6.3 Resource methods

5.4.6.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.6.3.2 GET

The GET method reads information about an individual PNF descriptor.

This method shall follow the provisions specified in the Tables 5.4.6.3.2-1 and 5.4.6.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.6.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
None supported

Table 5.4.6.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

PnfdInfo 1 200 OK Information about the individual PNFD descriptor.

The response body shall contain a representation of
the individual PNF descriptor, as defined in
clause 5.5.2.5.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.6.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)84

5.4.6.3.4 PATCH

The PATCH method modifies the user defined data of an individual PNF descriptor resource.

This method shall follow the provisions specified in the Tables 5.4.6.3.4-1 and 5.4.6.3.4-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.6.3.4-1: URI query parameters supported by the PATCH method on this resource

Name Cardinality Description
None supported

Table 5.4.6.3.4-2: Details of the PATCH request/response on this resource

Request
body

Data type Cardinality Description
PnfdInfoModifications 1 Parameters for the modification of an individual PNF descriptor

resource, as defined in clause 5.5.2.4.

Response
body

Data type Cardinality Response
Codes

Description

PnfdInfoModifications 1 200 OK The operation was completed successfully.

The response body shall contain attribute
modifications for an 'Individual PNF Descriptor'
resource (see clause 5.5.2.4).

ProblemDetails 0..1 412
Precondition
failed

Error: A precondition given in an HTTP request
header is not fulfilled.

Typically, this is due to an ETag mismatch,
indicating that the resource was modified by
another entity.

The response body should contain a
ProblemDetails structure, in which the "detail"
attribute should convey more information about
the error.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.6.3.5 DELETE

The DELETE method deletes an individual PNF descriptor resource.

An individual PNF descriptor resource can only be deleted when there is no NS instance using it or there is NSD
referencing it.

To delete all PNFD versions identified by a particular value of the "pnfdInvariantId" attribute, the procedure is to first
use the GET method with filter "pnfdInvariantId" towards the PNF descriptors resource to find all versions of the
PNFD. Then, the client uses the DELETE method described in this clause to delete each PNFD version individually.

This method shall follow the provisions specified in the Tables 5.4.6.3.5-1 and 5.4.6.3.5-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.6.3.5-1: URI query parameters supported by the DELETE method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)85

Table 5.4.6.3.5-2: Details of the DELETE request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The operation has completed successfully.

The response body shall be empty.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.7 Resource: PNFD Content

5.4.7.1 Description

This resource represents the content of the individual PNF descriptor, i.e. PNFD content. The client can use this
resource to upload and download the content of the PNFD.

5.4.7.2 Resource definition

The resource URI is:

 {apiRoot}/nsd/v1/pnf_descriptors/{pnfdInfoId}/pnfd_content

This resource shall support the resource URI variables defined in Table 5.4.7.2-1.

Table 5.4.7.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
pnfdInfoId Identifier of the individual PNF descriptor. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request creating a new PNF descriptor resource. It can also be retrieved from the "id" attribute in
the payload body of that response.

5.4.7.3 Resource methods

5.4.7.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.7.3.2 GET

The GET method fetches the content of the PNFD.

This method shall follow the provisions specified in the Tables 5.4.7.3.2-1 and 5.4.7.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.7.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)86

Table 5.4.7.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a 1 200 OK On success, the content of the PNFD is returned.

The payload body shall contain a copy of the file
representing the PNFD.

The "Content-Type" HTTP header shall be set to
"text/plain".

ProblemDetails 1 409 Conflict Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact pnfdOnboardingState
has a value different from ONBOARDED.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.7.3.3 PUT

The PUT method is used to upload the content of a PNFD.

This method shall follow the provisions specified in the Tables 5.4.7.3.3-1 and 5.4.7.3.3-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.7.3.3-1: URI query parameters supported by the PUT method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)87

Table 5.4.7.3.3-2: Details of the PUT request/response on this resource

Request
body

Data type Cardinality Description
n/a 1 The payload body contains a copy of the file representing the

PNFD.

The request shall set the "Content-Type" HTTP header to
"text/plain".

Response
body

Data type Cardinality Response
Codes

Description

n/a 1 204 No
Content

The PNFD content was successfully uploaded and
validated. The response body shall be empty.

ProblemDetails 1 409 Conflict Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact that the
PnfdOnboardingState has a value other than
CREATED.
The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5 may be
returned.

5.4.7.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.7.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.8 Resource: Subscriptions

5.4.8.1 Description

This resource represents subscriptions. The client can use this resource to subscribe to notifications related to NSD
management and to query its subscriptions.

5.4.8.2 Resource definition

The resource URI is:

 {apiRoot}/nsd/v1/subscriptions

This resource shall support the resource URI variables defined in Table 5.4.8.2-1.

Table 5.4.8.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)88

5.4.8.3 Resource methods

5.4.8.3.1 POST

The POST method creates a new subscription.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 5.4.8.3.1-1 and 5.4.8.3.1-2.

Creation of two subscription resources with the same callbackURI and the same filter can result in performance
degradation and will provide duplicates of notifications to the OSS, and might make sense only in very rare use cases.
Consequently, the NFVO may either allow creating a subscription resource if another subscription resource with the
same filter and callbackUri already exists (in which case it shall return the "201 Created" response code), or may decide
to not create a duplicate subscription resource (in which case it shall return a "303 See Other" response code referencing
the existing subscription resource with the same filter and callbackUri).

Table 5.4.8.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Remarks
n/a

Table 5.4.8.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Remarks
NsdmSubscriptionRequest 1 Details of the subscription to be created, as defined in

clause 5.5.2.7.

Response
body

Data type Cardinality Response
Codes

Remarks

NsdmSubscription 1 201
Created

The subscription was created successfully.

The response body shall contain a representation
of the created subscription resource.

The HTTP response shall include a "Location:"
HTTP header that points to the created
subscription resource.

n/a 303
See Other

A subscription with the same callbackURI and the
same filter already exits and the policy of the
NFVO is to not create redundant subscriptions.

The HTTP response shall include a "Location"
HTTP header that contains the resource URI of
the existing subscription resource.

The response body shall be empty.
ProblemDetails See

clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.8.3.2 GET

The GET method queries the list of active subscriptions of the functional block that invokes the method. It can be used
e.g. for resynchronization after error situations.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 5.4.8.3.2-1 and 5.4.8.3.2-2.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)89

Table 5.4.8.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Remarks

filter 0..1 Attribute filtering expression according to clause 4.3.2.

The NFVO shall support receiving this parameter as part of the URI query string. The
OSS/BSS may supply this parameter.

All attribute names that appear in the NsdmSubscription and in data types
referenced from it shall be supported by the NFVO in the filter expression.

nextpage_opaque
_marker

0..1 Marker to obtain the next page of a paged response. Shall be supported by the
NFVO if the NFVO supports alternative 2 (paging) according to clause 4.7.2.1 for this
resource.

Table 5.4.8.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Remarks
n/a

Response
body

Data type Cardinality Response
Codes

Remarks

NsdmSubscription 0..N 200 OK The list of subscriptions was queried successfully.

The response body shall contain in an array the
representations of all active subscriptions of the
functional block that invokes the method, i.e., zero or
more representations of NSD management
subscriptions as defined in clause 5.5.2.8.

If the NFVO supports alternative 2 (paging)
according to clause 4.7.2.1 for this resource,
inclusion of the Link HTTP header in this response
shall follow the provisions in clause 4.7.2.3.

ProblemDetails 400 Bad
Request

Error: Invalid attribute-based filtering expression.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should
convey more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Response too big.

If the NFVO supports alternative 1 (error) according
to clause 4.7.2.1 for this resource, this error
response shall follow the provisions in clause 4.7.2.2.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.8.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.8.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.8.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)90

5.4.9 Resource: Individual subscription

5.4.9.1 Description

This resource represents an individual subscription. It can be used by the client to read and to terminate a subscription to
notifications related to NSD management.

5.4.9.2 Resource definition

The resource URI is:

 {apiRoot}/nsd/v1/subscriptions/{subscriptionId}

This resource shall support the resource URI variables defined in Table 5.4.9.2-1.

Table 5.4.9.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
subscriptionId Identifier of this subscription. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request creating a new subscription resource. It can also be retrieved from the "id" attribute in the
payload body of that response.

5.4.9.3 Resource methods

5.4.9.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.9.3.2 GET

The GET method retrieves information about a subscription by reading an individual subscription resource.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 5.4.9.3.2-1 and 5.4.9.3.2-2.

Table 5.4.9.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Remarks
n/a

Table 5.4.9.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Remarks
n/a

Response
body

Data type Cardinality Response
Codes

Remarks

NsdmSubscription 1 200 OK The operation has completed successfully.
The response body shall contain a representation of
the subscription resource.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)91

5.4.9.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.9.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.9.3.5 DELETE

The DELETE method terminates an individual subscription.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 5.4.9.3.5-1 and 5.4.9.3.5-2.

Table 5.4.9.3.5-1: URI query parameters supported by the DELETE method on this resource

Name Cardinality Remarks
n/a

Table 5.4.9.3.5-2: Details of the DELETE request/response on this resource

Request
body

Data type Cardinality Remarks
n/a

Response
body

Data type Cardinality Response
Codes

Remarks

n/a 204 No
Content

The subscription resource was deleted successfully.
The response body shall be empty.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.10 Resource: Notification endpoint

5.4.10.1 Description

This resource represents a notification endpoint. The server can use this resource to send notifications to a subscribed
client, which has provided the URI of this resource during the subscription process.

5.4.10.2 Resource definition

The resource URI is provided by the client when creating the subscription.

This resource shall support the resource URI variables defined in Table 5.4.10.2-1.

Table 5.4.10.2-1: Resource URI variables for this resource

Name Definition
n/a

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)92

5.4.10.3 Resource methods

5.4.10.3.1 POST

The POST method delivers a notification from the server to the client.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 5.4.10.3.1-1 and 5.4.10.3.1-2.

Table 5.4.10.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Remarks
n/a

Each notification request body shall include exactly one of the alternatives defined in Table 5.4.10.3.1-2.

Table 5.4.10.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Remarks
NsdOnBoardingNotificat
ion

1 A notification about the successful on-boarding of an NSD.

NsdOnBoardingFailureN
otification

1 A notification about the failure of on-boarding an NSD.

NsdChangeNotification 1 A notification about the state change of an on-boarded NSD.
NsdDeletionNotification 1 A notification about the deletion of an on-boarded NSD.
PnfdOnBoardingNotifica
tion

1 A notification about the successful on-boarding of a PNFD.

PnfdOnBoardingFailure
Notification

1 A notification about the failure of on-boarding a PNFD.

PnfdDeletionNotification 1 A notification about the deletion of an on-boarded PNFD.

Response
body

Data type Cardinality Response
Codes

Remarks

n/a 204 No
Content

The notification was delivered successfully.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.10.3.2 GET

The GET method allows the server to test the notification endpoint that is provided by the client, e.g. during
subscription.

This method shall follow the provisions specified in the Tables 5.4.10.3.2-1 and 5.4.10.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 5.4.10.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)93

Table 5.4.10.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The notification endpoint was tested successfully.

The response body shall be empty.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

5.4.10.3.3 PUT

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.10.3.4 PATCH

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.4.10.3.5 DELETE

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

5.5 Data model

5.5.1 Introduction

This clause defines the request and response data structures of the NSD Lifecycle management interface.

5.5.2 Resource and notification data types

5.5.2.1 Type: NsdInfoModifications

This type represents attribute modifications for an individual NS descriptor resource based on the "NsdInfo" data type.
The attributes of "NsdInfo" that can be modified are included in the "NsdInfoModifications" data type.

The "NsdInfoModifications" data type shall comply with the provisions defined in Table 5.5.2.1-1.

Table 5.5.2.1-1: Definition of the NsdInfoModifications data type

Attribute name Data type Cardinality Description
nsdOperationalState NsdOperationalStateType 0..1 New value of the "nsdOperationalState" attribute in

"NsdInfo" data type. See note.
Permitted values:
ENABLED
DISABLED

userDefinedData KeyValuePairs 0..1 Modifications of the "userDefinedData" attribute in
"NsdInfo" data type. See note.
If present, these modifications shall be applied according
to the rules of JSON Merge PATCH (see IETF
RFC 7396 [25].

NOTE: At least one of the attributes - nsdOperationalState and userDefinedData - shall be present.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)94

5.5.2.2 Type: NsdInfo

This type represents a response for the query NSD operation. It shall comply with the provisions defined in
Table 5.5.2.2-1.

Table 5.5.2.2-1: Definition of the NsdInfo data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of the onboarded individual NS descriptor

resource. This identifier is allocated by the NFVO.
nsdId Identifier 0..1 This identifier, which is allocated by the NSD

designer, identifies the NSD in a globally unique way.
It is copied from the NSD content and shall be
present after the NSD content is on-boarded.

nsdName String 0..1 Name of the onboarded NSD. This information is
copied from the NSD content and shall be present
after the NSD content is on-boarded.

nsdVersion Version 0..1 Version of the on-boarded NSD. This information is
copied from the NSD content and shall be present
after the NSD content is on-boarded.

nsdDesigner String 0..1 Designer of the on-boarded NSD. This information is
copied from the NSD content and shall be present
after the NSD content is on-boarded.

nsdInvariantId Identifier 0..1 This identifier, which is allocated by the NSD
designer, identifies an NSD in a version independent
manner. This information is copied from the NSD
content and shall be present after the NSD content is
on-boarded.

vnfPkgIds Identifier 0..N Identifies the VNF package for the VNFD referenced
by the on-boarded NS descriptor resource.
See note 1.

pnfdInfoIds Identifier 0..N Identifies the PnfdInfo element for the PNFD
referenced by the on-boarded NS descriptor
resource.

nestedNsdInfoIds Identifier 0..N Identifies the NsdInfo element for the nested NSD
referenced by the on-boarded NS descriptor
resource. See note 1.

nsdOnboardingState NsdOnboardingState
Type

1 Onboarding state of the individual NS descriptor
resource. See note 4.

onboardingFailureDetails ProblemDetails 0..1 Failure details of current onboarding procedure. See
clause 4.3.5.3 for the details of "ProblemDetails"
structure.

It shall be present when the "nsdOnboardingState"
attribute is CREATED and the uploading or
processing fails in NFVO.

nsdOperationalState NsdOperationalState
Type

1 Operational state of the individual NS descriptor
resource. This attribute can be modified with the
PATCH method. See notes 2 and 4.

nsdUsageState NsdUsageStateType 1 Usage state of the individual NS descriptor resource.
See notes 3 and 4.

userDefinedData KeyValuePairs 0..1 User defined data for the individual NS descriptor
resource. This attribute can be modified with the
PATCH method.

_links Structure (inlined) 1 Links to resources related to this resource.
>self Link 1 URI of this resource.
>nsd_content Link 1 Link to the NSD content resource.
NOTE 1: At least one of the attributes - vnfPkgId and nestedNsdInfoId shall be present, after the NSD is on-boarded.
NOTE 2: If the value of the nsdOnboardingState attribute is not equal to "ONBOARDED", the value of the

nsdOperationalState attribute shall be equal to "DISABLED".
NOTE 3: If the value of the nsdOnboardingState attribute is not equal to "ONBOARDED", the value of the nsdUsageState

attribute shall be equal to "NOT_IN_USE".
NOTE 4: State changes of a NSD are illustrated in clause B.2.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)95

5.5.2.3 Type: CreateNsdInfoRequest

This type creates a completely new NS descriptor resource. It shall comply with the provisions defined in
Table 5.5.2.3-1.

Table 5.5.2.3-1: Definition of the CreateNsdInfoRequest data type

Attribute name Data type Cardinality Description
userDefinedData KeyValuePairs 0..1 User-defined data for the NS descriptor resource to be

created.

It shall be present when the user defined data is set for
the individual NS descriptor resource to be created.

5.5.2.4 Type: PnfdInfoModifications

This type represents attribute modifications for an individual PNF descriptor resource based on the "PnfdInfo" data
type. The attributes of "PnfdInfo" that can be modified are included in the "PnfdInfoModifications" data type.

The "PnfdInfoModifications" data type shall comply with the provisions defined in Table 5.5.2.4-1.

Table 5.5.2.4-1: Definition of the PnfdInfoModifications data type

Attribute name Data type Cardinality Description
userDefinedData KeyValuePairs 1 Modifications of the "userDefinedData" attribute in "PnfdInfo"

data type.

If present, these modifications shall be applied according to
the rules of JSON Merge PATCH (see IETF RFC 7396 [25]).

5.5.2.5 Type: PnfdInfo

This type represents a response for the query PNFD operation. It shall comply with the provisions defined in
Table 5.5.2.5-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)96

Table 5.5.2.5-1: Definition of the PnfdInfo data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of the onboarded individual PNF

descriptor resource. This identifier is allocated by
the NFVO.

pnfdId Identifier 0..1 This identifier, which is managed by the PNFD
designer, identifies the PNFD in a globally unique
way. It is copied from the PNFD content and shall
be present after the PNFD content is on-boarded.

pnfdName String 0..1 Name of the onboarded PNFD. This information is
copied from the PNFD content and shall be
present after the PNFD content is on-boarded.

pnfdVersion Version 0..1 Version of the onboarded PNFD. This information
is copied from the PNFD content and shall be
present after the PNFD content is on-boarded.

pnfdProvider String 0..1 Provider of the onboarded PNFD. This information
is copied from the PNFD content and shall be
present after the PNFD content is on-boarded.

pnfdInvariantId Identifier 0..1 Identifies a PNFD in a version independent
manner. This attribute is invariant across versions
of PNFD.

pnfdOnboardingState PnfdOnboardingStateType 1 Onboarding state of the individual PNF descriptor
resource.

onboardingFailureDetails ProblemDetails 0..1 Failure details of current onboarding procedure.
See clause 4.3.5.3 for the details of
"ProblemDetails" structure.
It shall be present when the
"pnfdOnboardingState" attribute is CREATED and
the uploading or processing fails in the NFVO.

pnfdUsageState PnfdUsageStateType 1 Usage state of the individual PNF descriptor
resource.

userDefinedData KeyValuePairs 0..1 User defined data for the individual PNF descriptor
resource. This attribute can be modified with the
PATCH method.

_links Structure (inlined) 1 Links to resources related to this resource.
>self Link 1 URI of this resource.
>pnfd_content Link 1 Link to the PNFD Content resource.

5.5.2.6 Type: CreatePnfdInfoRequest

This type creates a new PNF descriptor resource. It shall comply with the provisions defined in Table 5.5.2.6-1.

Table 5.5.2.6-1: Definition of the CreatePnfdInfoRequest data type

Attribute name Data type Cardinality Description
userDefinedData KeyValuePairs 0..1 User-defined data for the PNF descriptor resource to be

created.

It shall be present when the user defined data is set for
the individual PNF descriptor resource to be created.

5.5.2.7 Type: NsdmSubscriptionRequest

This type represents a subscription request related to notifications about NSD management. It shall comply with the
provisions defined in Table 5.5.2.7-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)97

Table 5.5.2.7-1: Definition of the NsdmSubscriptionRequest data type

Attribute name Data type Cardinality Description
filter NsdmNotificationsFil

ter
0..1 Filter settings for this subscription, to define the subset of

all notifications this subscription relates to. A particular
notification is sent to the subscriber if the filter matches,
or if there is no filter.

callbackUri Uri 1 The URI of the endpoint to send the notification to.
authentication SubscriptionAuthenti

cation
0..1 Authentication parameters to configure the use of

Authorization when sending
notifications corresponding to this subscription, as
defined in clause 4.5.3.4.
This attribute shall only be present if the subscriber
requires authorization of notifications.

5.5.2.8 Type: NsdmSubscription

This type represents a subscription related to notifications about NSD management. It shall comply with the provisions
defined in Table 5.5.2.8-1.

Table 5.5.2.8-1: Definition of the NsdmSubscription data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this subscription resource.
filter NsdmNotificationsFilter 0..1 Filter settings for this subscription, to define the subset of

all notifications this subscription relates to. A particular
notification is sent to the subscriber if the filter matches,
or if there is no filter.

callbackUri Uri 1 The URI of the endpoint to send the notification to.
_links Structure (inlined) 1 Links to resources related to this resource.
 >self Link 1 URI of this resource.

5.5.2.9 Type: NsdOnboardingNotification

This type represents an NSD management notification, which informs the receiver of the successful on-boarding of an
NSD. It shall comply with the provisions defined in Table 5.5.2.9-1. The support of this notification is mandatory. The
notification shall be triggered by the NFVO when the "nsdOnboardingState" attribute of a new NSD has changed to
"ONBOARDED".

Table 5.5.2.9-1: Definition of the NsdOnboardingNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent

multiple times due to multiple subscriptions, the "id"
attribute of all these notifications shall have the same
value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to "NsdOnboardingNotification" for this
notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates
to.

timeStamp DateTime 1 Date-time of the generation of the notification.
nsdInfoId Identifier 1 Identifier of the NSD information object. This identifier is

allocated by the NFVO.
nsdId Identifier 1 This identifier, which is managed by the service provider,

identifies the NSD in a globally unique way.
It is copied from the on-boarded NSD.

_links NsdmLinks 1 Links to resources related to this notification.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)98

5.5.2.10 Type: NsdOnboardingFailureNotification

This type represents an NSD management notification, which informs the receiver of the failure of on-boarding an
NSD. It shall comply with the provisions defined in Table 5.5.2.10-1. The support of this notification is mandatory. The
notification shall be triggered by the NFVO when the on-boarding of an NSD has failed.

Table 5.5.2.10-1: Definition of the NsdOnboardingFailureNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent

multiple times due to multiple subscriptions, the "id"
attribute of all these notifications shall have the same
value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to "NsdOnboardingFailureNotification" for
this notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates
to.

timeStamp DateTime 1 Date-time of the generation of the notification.
nsdInfoId Identifier 1 Identifier of the NSD information object. This identifier is

allocated by the NFVO.
nsdId Identifier 0..1 This identifier, which is managed by the service provider,

identifies the NSD in a globally unique way.
onboardingFailureDe
tails

ProblemDetails 1 Failure details of current onboarding procedure. See
clause 4.3.5.3 for the details of "ProblemDetails"
structure.

_links NsdmLinks 1 Links to resources related to this notification.

5.5.2.11 Type: NsdChangeNotification

This type represents an NSD management notification, which informs the receiver of a change of the
"nsdOperationalState" attribute of an on-boarded NSD. Changes in the value of the "nsdUsageState" and
"nsdOnboardingState" attributes are not reported. The notification shall comply with the provisions defined in
Table 5.5.2.11-1. The support of this notification is mandatory. The notification shall be triggered by the NFVO when
the value of the "nsdOperationalState" attribute has changed, and the "nsdOperationalState" attribute has the value
"ONBOARDED".

Table 5.5.2.11-1: Definition of the NsdChangeNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent

multiple times due to multiple subscriptions, the "id"
attribute of all these notifications shall have the same
value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to "NsdChangeNotification" for this
notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates
to.

timeStamp DateTime 1 Date-time of the generation of the notification.
nsdInfoId Identifier 1 Identifier of the NSD information object. This identifier is

allocated by the NFVO.
nsdId Identifier 1 This identifier, which is managed by the service provider,

identifies the NSD in a globally unique way.
It is copied from the on-boarded NSD.

nsdOperationalState NsdOperationalState
Type

1 New operational state of the on-boarded NSD.

_links NsdmLinks 1 Links to resources related to this notification.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)99

5.5.2.12 Type: NsdDeletionNotification

This type represents an NSD management notification, which informs the receiver of the deletion of an on-boarded
NSD. The notification shall comply with the provisions defined in Table 5.5.2.12-1. The support of this notification is
mandatory. The notification shall be triggered by the NFVO when it has deleted an on-boarded NSD.

Table 5.5.2.12-1: Definition of the NsdDeletionNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent

multiple times due to multiple subscriptions, the "id"
attribute of all these notifications shall have the same
value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to "NsdDeletionNotification " for this
notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates
to.

timeStamp DateTime 1 Date-time of the generation of the notification.
nsdInfoId Identifier 1 Identifier of the NSD information object. This identifier is

allocated by the NFVO.
nsdId Identifier 1 This identifier, which is managed by the service provider,

identifies the NSD in a globally unique way.
It is copied from the on-boarded NSD.

_links NsdmLinks 1 Links to resources related to this notification.

5.5.2.13 Type: PnfdOnboardingNotification

This type represents a PNFD management notification, which informs the receiver of the successful on-boarding of a
PNFD. It shall comply with the provisions defined in Table 5.5.2.13-1. The support of this notification is mandatory.

The notification is triggered when a new PNFD is on-boarded.

Table 5.5.2.13-1: Definition of the PnfdOnboardingNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent

multiple times due to multiple subscriptions, the "id"
attribute of all these notifications shall have the same
value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to "PnfdOnboardingNotification" for this
notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates
to.

timeStamp DateTime 1 Date-time of the generation of the notification.
pnfdInfoId Identifier 1 Identifier of the PNFD information object. This identifier is

allocated by the NFVO.
pnfdId Identifier 1 This identifier, which is managed by the service provider,

identifies the PNFD in a globally unique way.
It is copied from the on-boarded PNFD.

_links PnfdmLinks 1 Links to resources related to this notification.

5.5.2.14 Type: PnfdOnboardingFailureNotification

This type represents a PNFD management notification, which informs the receiver of the failure of on-boarding a
PNFD. It shall comply with the provisions defined in Table 5.5.2.14-1. The support of this notification is mandatory.

The notification is triggered when the on-boarding of a PNFD fails.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)100

Table 5.5.2.14-1: Definition of the PnfdOnboardingFailureNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent

multiple times due to multiple subscriptions, the "id"
attribute of all these notifications shall have the same
value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to "PnfdOnboardingFailureNotification" for
this notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates
to.

timeStamp DateTime 1 Date-time of the generation of the notification.
pnfdInfoId Identifier 1 Identifier of the PNFD information object. This identifier is

allocated by the NFVO.
pnfdId Identifier 0..1 This identifier, which is managed by the service provider,

identifies the PNFD in a globally unique way.
onboardingFailureDe
tails

ProblemDetails 1 Failure details of current onboarding procedure. See
clause 4.3.5.3 for the details of "ProblemDetails"
structure.

_links PnfdmLinks 1 Links to resources related to this notification.

5.5.2.15 Type: PnfdDeletionNotification

This type represents a PNFD management notification, which informs the receiver of the deletion of an on-boarded
PNFD. The notification shall comply with the provisions defined in Table 5.5.2.15-1. The support of this notification is
mandatory.

The notification is triggered when an on-boarded PNFD is deleted.

Table 5.5.2.15-1: Definition of the PnfdDeletionNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent

multiple times due to multiple subscriptions, the "id"
attribute of all these notifications shall have the same
value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to "PnfdDeletionNotification " for this
notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates
to.

timeStamp DateTime 1 Date-time of the generation of the notification.
pnfdInfoId Identifier 1 Identifier of the PNFD information object. This identifier is

allocated by the NFVO.
pnfdId Identifier 1 This identifier, which is managed by the service provider,

identifies the PNFD in a globally unique way.
It is copied from the on-boarded PNFD.

_links PnfdmLinks 1 Links to resources related to this notification.

5.5.3 Referenced structured data types

5.5.3.1 Introduction

This clause defines data structures that can be referenced from data structures defined in the previous clauses, but can
neither be resource representations nor bound to any subscribe/notify mechanism.

5.5.3.2 Type: NsdmNotificationsFilter

This type represents a subscription filter related to notifications about NSD management. It shall comply with the
provisions defined in Table 5.5.3.2-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)101

At a particular nesting level in the filter structure, the following applies: All attributes shall match in order for the filter
to match (logical "and" between different filter attributes). If an attribute is an array, the attribute shall match if at least
one of the values in the array matches (logical "or" between the values of one filter attribute).

Table 5.5.3.2-1: Definition of the NsdmNotificationsFilter data type

Attribute name Data type Cardinality Description
notificationTypes Enum (inlined) 0..N Match particular notification types.

Permitted values:
NsdOnBoardingNotification
NsdOnboardingFailureNotification
NsdChangeNotification
NsdDeletionNotification
PnfdOnBoardingNotification
PnfdOnBoardingFailureNotification
PnfdDeletionNotification

See note 1.

nsdInfoId Identifier 0..N Match the NsdInfo identifier which is allocated by the
NFVO. See note 2.

nsdId Identifier 0..N Match the NSD identifier, which is allocated by the
NSD designer. See note 2.

nsdName String 0..N Match the name of the onboarded NSD.
nsdVersion Version 0..N Match the NSD version listed as part of this attribute.
nsdDesigner String 0..N Match the NSD designer of the on-boarded NSD.
nsdInvariantId Identifier 0..N Match the NSD invariant identifier which is allocated

by the NSD designer and identifies an NSD in a
version independent manner.

vnfPkgIds Identifier 0..N Match VNF packages with a package identifier listed
in the attribute.

pnfdInfoIds Identifier 0..N Match the PnfdInfo identifier for the PNFD referenced
by the on-boarded NSD. See note 3.

nestedNsdInfoIds Identifier 0..N Match the NsdInfo identifier for the nested NSD
referenced by the on-boarded NSD.

nsdOnboardingState NsdOnboardingStateT
ype

0..N Match particular on-boarding state of the NSD.

nsdOperationalState NsdOperationalStateT
ype

0..N Match particular operational state of the on-boarded
NSD.

nsdUsageState NsdUsageStateType 0..N Match particular usage state of the on-boarded NSD.
pnfdId Identifier 0..N Match the PNFD identifier which is copied from the

PNFD content. See note 3.
pnfdName String 0..N Match the name of the onboarded PNFD.
pnfdVersion Version 0..N Match the PNFD designer of the on-boarded PNFD.
pnfdProvider String 0..N Match the provider of the on-boarded PNFD.
pnfdInvariantId Identifier 0..N Match the PNFD in a version independent manner.
pnfdOnboardingState PnfdOnboardingState

Type
0..N Match particular onboarding state of the PNFD.

pnfdUsageState PnfdUsageStateType 0..N Match the usage state of the individual PNF
descriptor resource.

NOTE 1: The permitted values of the "notificationTypes" attribute are spelled exactly as the names of the notification
types to facilitate automated code generation systems.

NOTE 2: The attributes "nsdId" and "nsdInfoId" are alternatives to reference to a particular NSD in a filter. They should
not be used both in the same filter instance, but one alternative should be chosen.

NOTE 3: The attributes "pnfdId" and "pnfdInfoId" are alternatives to reference to a particular PNFD in a filter. They should
not be used both in the same filter instance, but one alternative should be chosen.

5.5.3.3 Type: NsdmLinks

This type represents the links to resources that an NSD management notification can contain. It shall comply with the
provisions defined in Table 5.5.3.3-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)102

Table 5.5.3.3-1: Definition of the NsdmLinks data type

Attribute name Data type Cardinality Description
nsdInfo NotificationLink 1 Link to the resource representing the NSD to which the

notified change applies, i.e. the individual NS descriptor
resource that represents the NSD.

subscription NotificationLink 1 Link to the related subscription.

5.5.3.4 Type: PnfdmLinks

This type represents the links to resources that a PNFD management notification can contain. It shall comply with the
provisions defined in Table 5.5.3.4-1.

Table 5.5.3.4-1: Definition of the PnfdmLinks data type

Attribute name Data type Cardinality Description
pnfdInfo NotificationLink 1 Link to the resource representing the PNFD to which the

notified change applies, i.e. the individual PNF descriptor
resource that represents the PNFD.

subscription NotificationLink 1 Link to the related subscription.

5.5.4 Referenced simple data types and enumerations

5.5.4.1 Introduction

This clause defines simple data types and enumerations that can be referenced from data structures defined in the
previous clauses.

5.5.4.2 Simple data types

No particular simple data types are defined for this interface, in addition to those defined in clause 4.4.2.

5.5.4.3 Enumeration: NsdOperationalStateType

The enumeration NsdOperationalStateType shall comply with the provisions defined in Table 5.5.4.3-1. It indicates the
operational state of the resource.

Table 5.5.4.3-1: Enumeration NsdOperationalStateType

Enumeration value Description
ENABLED The operational state of the resource is enabled.
DISABLED The operational state of the resource is disabled.

5.5.4.4 Enumeration: NsdUsageStateType

The enumeration NsdUsageStateType shall comply with the provisions defined in Table 5.5.4.4-1. It indicates the usage
state of the resource.

Table 5.5.4.4-1: Enumeration NsdUsageStateType

Enumeration value Description
IN_USE The resource is in use.
NOT_IN_USE The resource is not-in-use.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)103

5.5.4.5 Enumeration: NsdOnboardingStateType

The enumeration NsdOnboardingStateType shall comply with the provisions defined in Table 5.5.4.5-1. It indicates the
onboarding state of the NSD.

Table 5.5.4.5-1: Enumeration NsdOnboardingStateType

Enumeration value Description
CREATED The NSD information object is created.
UPLOADING The associated NSD content is being uploaded.
PROCESSING The associated NSD content is being processed, e.g. validation.
ONBOARDED The associated NSD content is on-boarded.

5.5.4.6 Enumeration: PnfdOnboardingStateType

The enumeration PnfdOnboardingStateType shall comply with the provisions defined in Table 5.5.4.6-1. It indicates the
onboarding state of the individual PNF descriptor resource.

Table 5.5.4.6-1: Enumeration PnfdOnboardingStateType

Enumeration value Description
CREATED The PNF descriptor resource is created.
UPLOADING The associated PNFD content is being uploaded.
PROCESSING The associated PNFD content is being processed, e.g. validation.
ONBOARDED The associated PNFD content is on-boarded.

5.5.4.7 Enumeration: PnfdUsageStateType

The enumeration PnfdUsageStateType shall comply with the provisions defined in Table 5.5.4.7-1. It indicates the
usage state of the resource.

Table 5.5.4.7-1: Enumeration PnfdUsageStateType

Enumeration value Description
IN_USE The resource is in use.
NOT_IN_USE The resource is not-in-use.

6 NS Lifecycle Management interface

6.1 Description
This interface allows the OSS/BSS to invoke NS lifecycle management operations of NS instances towards the NFVO,
and to subscribe to notifications regarding NS lifecycle changes provided by the NFVO.

The operations provided through this interface are as follows:

• Create NS Identifier

• Instantiate NS

• Scale NS

• Update NS

• Query NS

• Terminate NS

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)104

• Delete NS Identifier

• Heal NS

• Get Operation Status

• Subscribe

• Query Subscription Information

• Notify

• Terminate Subscription

6.1a API version
For the NS lifecycle management interface as specified in the present document, the MAJOR version field shall be 1,
the MINOR version field shall be 1, and the PATCH version number shall be 0 (see clause 4.6.1 for a definition of the
version fields). Consequently, the {apiMajorVersion} URI variable shall be set to "v1".

NOTE: The MINOR version 0 corresponds to the version of the API specified in version 2.4.1 of the present
document.

6.2 Resource structure and methods
All resource URIs of the API shall use the base URI specification defined in clause 4.2. The string "nslcm" shall be
used to represent {apiName}. All resource URIs in the clauses below are defined relative to the above base URI.

Figure 6.2-1 shows the overall resource URI structure defined for the NS lifecycle management interface.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)105

Figure 6.2-1: Resource URI structure of NS Lifecycle Management Interface

Table 6.2-1 lists the individual resources defined, and the applicable HTTP methods. The NFVO shall support
responding to requests for all HTTP methods on the resources in Table 6.2-1 that are marked as "M" (mandatory) in the
"Cat" column. The NFVO shall also support the "API versions" resources as specified in clause 4.6.3.2.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)106

Table 6.2-1: Resources and methods overview of the NS Lifecycle Management interface

Resource name Resource URI HTTP
Method Cat Meaning

NS instances /ns_instances
GET M Query multiple NS instances
POST M Create a NS instance resource

Individual NS instance /ns_instances/{nsInstanceId}
GET M Read an individual NS instance

resource
DELETE M Delete NS instance resource

Instantiate NS task
/ns_instances/{nsInstanceId}/i
nstantiate POST M Instantiate a NS

Scale NS task /ns_instances/{nsInstanceId}/s
cale POST M Scale a NS instance

Update NS task /ns_instances/{nsInstanceId}/u
pdate POST M Updates a NS instance

Terminate NS task /ns_instances/{nsInstanceId}/t
erminate POST M Terminate a NS instance

Heal NS task
/ns_instances/{nsInstanceId}/h
eal POST M Heal a NS instance

NS LCM operation
occurrences /ns_lcm_op_ops GET M Query multiple NS LCM operation

occurrences
Individual NS LCM
operation occurrence

/ns_lcm_op_ops/{nsLcmOpOc
cId} GET M Read an individual NS LCM operation

occurrence resource

Retry operation task /ns_lcm_op_occs/{nsLcmOpO
ccId}/retry POST M Retry a NS lifecycle management

operation occurrence

Rollback operation task /ns_lcm_op_occs/{nsLcmOpO
ccId}/rollback

POST M Rollback a NS lifecycle management
operation occurrence

Continue operation task /ns_lcm_op_occs/{nsLcmOpO
ccId}/continue POST M Continue a NS lifecycle management

operation occurrence

Fail operation task /ns_lcm_op_occs/{nsLcmOpO
ccId}/fail POST M Mark a NS lifecycle management

operation occurrence as failed

Cancel operation task /ns_lcm_op_occs/{nsLcmOpO
ccId}/cancel POST M Cancel a NS lifecycle management

operation occurrence

Subscriptions /subscriptions
POST M Subscribe to NS lifecycle change

notifications
GET M Query multiple subscriptions

Individual subscription /subscriptions/{subscriptionId}
GET

M
Read an individual subscription
resource

DELETE M Terminate a subscription

Notification endpoint (client-provided)
POST See note Notify about NS lifecycle change. See

note
GET See note Test the notification endpoint. See note

NOTE: The NFVO shall support invoking the HTTP methods defined for the "Notification endpoint" resource exposed
by the OSS/BSS. If the OSS/BSS supports invoking the POST method on the "Subscriptions" resource
towards the NFVO, it shall also support responding to the HTTP requests defined for the "Notification
endpoint" resource.

6.3 Sequence diagrams (informative)

6.3.1 Flow of the creation of a NS instance resource

This clause describes the procedure for the creation of a NS instance resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)107

Figure 6.3.1-1: Flow of the creation of a NS instance resource

NOTE: Due to possible race conditions, the 201 response and the NsIdentifierCreationNotification can arrive in
any order at the OSS/BSS.

The procedure consists of the following steps as illustrated in Figure 6.3.1-1:

1) The OSS/BSS sends a POST request to the "NS Instances" resource including in the entity body a data
structure of type "CreateNsRequest".

2) The NFVO creates a new NS instance resource in NOT_INSTANTIATED state, and the associated NS
instance identifier.

3) The NFVO returns a 201 Created response containing a representation of the NS instance resource just created
by the NFVO, and provides the URI of the newly-created resource in the "Location:" HTTP header.

4) The NFVO sends a NsIdentifierCreationNotification to the OSS/BSS to indicate the creation of the NS
instance resource and the associated NS instance identifier.

Postcondition: Upon successful completion, the NS instance resource has been created in "NOT_INSTANTIATED"
state.

6.3.2 Flow of the deletion of a NS instance resource

This clause describes the procedure for the deletion of a NS instance resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)108

Figure 6.3.2-1: Flow of the deletion of a NS instance resource

NOTE: Due to possible race conditions, the 204 response and the NsIdentifierDeletionNotification can arrive in
any order at the OSS/BSS.

Precondition: The resource representing the NS instance to be deleted is in NOT_INSTANTIATED state.

The procedure consists of the following steps as illustrated in Figure 6.3.2-1:

1) The OSS/BSS sends a DELETE request to the "Individual NS Instance" resource.

2) The NFVO deletes the NS instance resource and the associated NS instance identifier.

3) The NFVO returns a "204 No Content" response with an empty entity body.

4) The NFVO sends to the OSS/BSS a NsIdentifierDeletionNotification to indicate the deletion of the NS
instance resource and the associated NS instance identifier.

Error Handling: If the NS instance is not in NOT_INSTANTIATED state, the NFVO rejects the deletion request.

6.3.3 Flow of NS lifecycle management operations triggered by task
resources

This clause describes the general sequence for NS Lifecycle Management operations that operate on a NS instance
resource and are triggered by task resources. The flows for these operations are very similar. The differences between
the individual operations are covered in Table 6.3.3-1.

This flow is applicable to the following operations:

• Instantiate NS

• Scale NS

• Update NS

• Heal NS

• Terminate NS

Figure 6.3.3-1 illustrates the general lifecycle management flow. Placeholders in this flow allow for differentiating
between the operations and are marked with double angular brackets "<<…>>".

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)109

Figure 6.3.3-1: Flow of NS lifecycle operations triggered by task resources

NOTE: Due to possible race conditions, the 202 response and the "start" NsLcmOperationOccurrenceNotification
can arrive in any order at the OSS/BSS.

Precondition: The precondition depends on the actual operation and is described by the template parameter
<<Precondition>> in Table 6.3.3-1.

A NS lifecycle operation, as illustrated in Figure 6.3.3-1, consists of the following steps:

1) The OSS/BSS sends a POST request to the <<Task>> resource that represents the lifecycle operation to be
executed on the NS instance, and includes in the entity body a data structure of type <<RequestStructure>>.
The name <<Task>> of the task resource and the <<RequestStructure>> depend on the operation and are
described in Table 6.3.3-1.

2) The NFVO creates a "NS Lifecycle Operation Occurrence" resource for the request.

3) The NFVO returns a "202 Accepted" response with an empty entity body and a "Location" HTTP header that
points to the new "NS Lifecycle Operation Occurrence" resource, i.e. it includes the URI of that resource
which is "…/ns_lcm_op_occs/{nsLcmOpOccId}."

4) The NFVO sends to the OSS/BSS a lifecycle management operation occurrence notification (see clause 6.3.6)
to indicate the start of the lifecycle management operation occurrence.

5) If desired, the NFVO can poll the "NS Lifecycle Operation Occurrence" resource to obtain information about
the ongoing operation by sending a GET request to the resource that represents the NS Lifecycle Operation
Occurrence.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)110

6) In the response to that request, the NFVO returns to the OSS/BSS information of the operation, such as the
operation status, by providing in the entity body a data structure of type "NsLcmOpOcc."

7) The NFVO has finished the operation <<Operation>>.

8) The NFVO sends a lifecycle management operation occurrence notification (see clause 6.3.6) to indicate the
completion of the lifecycle management operation occurrence.

9) If desired, the OSS/BSS can send a new GET request to the "NS Lifecycle Operation Occurrence" resource.

10) In the response to that request, the NFVO returns to the OSS/BSS information about the result of the
operation, by providing in the entity body a data structure of type "NsLcmOpOcc".

Postcondition: The postcondition depends on the actual operation and is described by the template parameter
<<Postcondition>> in Table 6.3.3-1.

Error handling: If the NS lifecycle management operation fails, error information is provided in the notification
message that reports the erroneous completion of the procedure, and is also available in the resource that represents the
actual NS lifecycle management operation occurrence related to this NS lifecycle management operation. Table 6.3.3-1
defines how the flow described above is parameterized for the different NS lifecycle management operations.

Table 6.3.3-1: Parameterization of the flow for different NS lifecycle management operations

Operation Precondition Task RequestStructure Postcondition
Instantiate NS NS instance created and in

NOT_INSTANTIATED
state

instantiate InstantiateNsRequest NS instance in
INSTANTIATED state

Scale NS NS instance in
INSTANTIATED state

scale ScaleNsRequest NS instance still in
INSTANTIATED state and
NS was scaled

Update NS NS instance in
INSTANTIATED state

update UpdateNsRequest NS instance still in
INSTANTIATED state and
NS was updated

Heal NS NS instance in
INSTANTIATED state

heal HealNsRequest NS instance still in
INSTANTIATED state

Terminate NS NS instance in
INSTANTIATED state

terminate TerminateNsRequest NS instance in
NOT_INSTANTIATED state

6.3.4 Flow of the get operations status operation

This clause describes a sequence for obtaining the status of a NS lifecycle management operation occurrence.

Figure 6.3.4-1: Flow of get NS lifecycle operation status

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)111

Obtaining the NS lifecycle operation status, as illustrated in Figure 6.3.4-1, consists of the following steps:

1) If the OSS/BSS intends to query all NS lifecycle management operation occurrences, it sends a GET request to
the "NS LCM operation occurrences" resource.

2) The NFVO returns a "200 OK" response to the OSS/BSS, and includes zero or more data structures of type
"NsLcmOpOcc" in the payload body.

3) If the OSS/BSS intends to read information about a particular NS LCM operation occurrence, it sends a GET
request to the "Individual NS LCM operation occurrence" resource, addressed by the appropriate NS LCM
operation occurrence identifier in its resource URI.

4) The NFVO returns a "200 OK" response to the OSS/BSS, and includes one data structure of type
"NsLcmOpOcc" in the payload body.

Error Handling: In case of failure, appropriate error information is provided in the response.

6.3.5 Flow of managing subscriptions

This clause describes the procedure for creating, reading, and terminating subscriptions to notifications related to NS
lifecycle management.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)112

Figure 6.3.5-1: Flow of managing subscriptions

The procedure consists of the following steps as illustrated in Figure 6.3.5-1:

1) The OSS/BSS sends a POST request to the "Subscriptions" resource including in the entity body a data
structure of type "NsLccnSubscriptionRequest". That data structure contains filtering criteria and a client side
URI to which the NFVO will subsequently send notifications about events that match the filter.

2) Optionally, to test the notification endpoint that was registered by the OSS/BSS as part of the subscription, the
NFVO sends a GET request to the notification endpoint URI.

3) In that case, the OSS/BSS returns a "204 No Content" response to indicate success.

4) The NFVO creates a new subscription to notifications related to NS lifecycle changes, and a resource that
represents this subscription.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)113

5) The NFVO returns a "201 Created" response containing a data structure of type "NsLccnSubscription"
representing the subscription resource just created by the NFVO, and provides the URI of the newly-created
resource in the "Location:" HTTP header.

6) If desired, e.g. to recover from an error situation, the OSS/BSS may obtain information about its subscriptions
by sending a GET request to the resource representing the subscriptions.

7) In that case, the NFVO returns a "200 OK" response that contains the list of representations of all existing
subscriptions that were created by the OSS/BSS.

8) If desired, e.g. to recover from an error situation, the OSS/BSS may obtain information about a particular
subscription by sending a GET request to the resource representing that individual subscription.

9) In that case, the NFVO returns a "200 OK" response that contains a representation of that individual
subscription.

10) If the OSS/BSS does not need the subscription anymore, it terminates the subscription by sending a DELETE
request to the resource that represents the individual subscription to remove.

11) The OSS/BSS acknowledges the successful termination of the subscription by returning a "204 No Content"
response.

6.3.6 Flow of sending notifications

This clause describes the procedure for sending notifications related to NS lifecycle management.

Figure 6.3.6-1: Flow of sending notifications

The procedure consists of the following steps as illustrated in Figure 6.3.6-1.

Precondition: The OSS/BSS has subscribed previously to notifications related to NS lifecycle management.

1) If an event occurs that matches the filtering criteria which are part of the subscription, the NFVO generates a
notification that includes information about the event, and sends it in the body of a POST request to the URI
which the OSS/BSS has registered as part of the subscription request. The variable <<Notification>> in the
flow is a placeholder for the different types of notifications that can be sent by this API (see clauses 6.5.2.5
through 6.5.2.8).

2) The OSS/BSS acknowledges the successful delivery of the notification by returning a "204 No Content"
response.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)114

6.3.7 Flow of retrying a NS lifecycle management operation

This clause describes a sequence for retrying a NS lifecycle management operation occurrence that is represented by a
"NS LCM operation occurrence" resource. Retry is used if an operation is in FAILED_TEMP state, and there is reason
to believe that the operation will eventually succeed when retried, for instance because obstacle that led to an error
during the execution of the LCM operation have been removed by an automated procedure, or by manual intervention.
The "retry" operation is also called "idempotent retry" because it is possible to invoke retry multiple times, without side
effects.

A comprehensive description of the handling of NS lifecycle management errors is provided in clause 6.6.

Figure 6.3.7-1: Flow of retrying a NS lifecycle management operation

NOTE: Due to possible race conditions, the 202 response and the "PROCESSING"
NsLcmOperationOccurrenceNotification can arrive in any order at the OSS/BSS.

Precondition: The NS lifecycle operation occurrence is in FAILED_TEMP state.

Retrying a NS lifecycle operation, as illustrated in Figure 6.3.7-1, consists of the following steps:

1) The OSS/BSS sends a POST request with an empty body to the "Retry operation task" resource of the NS
LCM operation occurrence that is to be retried.

2) The NFVO returns a "202 Accepted" response.

3) The NFVO starts the retry procedure.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)115

4) The NFVO sends a lifecycle management operation occurrence notification of type "start" to indicate that the
NS LCM operation occurrence enters the "PROCESSING" state.

5) The NFVO finishes the retry procedure.

6) On successful retry, the NFVO sends a NS lifecycle management operation occurrence notification (see
clause 6.3.6) to indicate successful completion of the operation, and inform the OSS/BSS about the changes on
the NS components (e.g. VNFs, VLs).

7) On unsuccessful retry, the NFVO sends a NS lifecycle management operation occurrence notification (see
clause 6.3.6) to indicate an intermediate error (retry failed) of the operation, and inform the OSS/BSS about
the changes on the NS components (e.g. VNFs, VLs).

Postcondition: The NS lifecycle operation occurrence resource is in one of the following states: FAILED_TEMP,
COMPLETED. COMPLETED is a terminal state (see clause 6.6.2.2).

Error handling: The operation is rejected in case the "NS LCM operation occurrence" resource is in any other state
than FAILED_TEMP, or in case Retry is not supported by for the particular NS LCM operation for the particular NS.

6.3.8 Flow of rolling back a NS lifecycle management operation

This clause describes a sequence for rolling back a NS lifecycle management operation occurrence that is represented
by a "NS LCM operation occurrence" resource. Rollback can be used for example if an operation is in FAILED_TEMP
state, and there is no reason to believe that retrying the operation will eventually succeed.

A comprehensive description of the handling of NS lifecycle management errors is provided in clause 6.6.

Figure 6.3.8-1: Flow of rolling back a NS lifecycle management operation

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)116

NOTE: Due to possible race conditions, the 202 response and the "ROLLING_BACK"
NsLcmOperationOccurrenceNotification can arrive in any order at the OSS/BSS.

Precondition: The NS lifecycle operation occurrence is in FAILED_TEMP state.

Initiating the rollback of a NS lifecycle management operation, as illustrated in Figure 6.3.8-1, consists of the following
steps:

1) The OSS/BSS sends a POST request with an empty body to the "Rollback operation task" resource of the NS
LCM operation occurrence that is to be rolled back.

2) The NFVO returns a "202 Accepted" response.

3) The NFVO starts the rollback procedure.

4) The NFVO sends a lifecycle management operation occurrence notification of type "start" to indicate that the
NS LCM operation occurrence enters the "ROLLING_BACK" state.

5) The NFVO finishes the rollback procedure.

6) On successful rollback, the NFVO sends a NS lifecycle management operation occurrence notification (see
clause 6.3.6) to indicate successful completion of the operation, and inform the OSS/BSS about the changes on
the NS components (e.g. VNFs, VLs).

7) On unsuccessful retry, the NFVO sends a NS lifecycle management operation occurrence notification (see
clause 6.3.6) to indicate an intermediate error (rollback failed) of the operation, and inform the OSS/BSS about
the changes on the NS components (e.g. VNFs, VLs).

Postcondition: The NS lifecycle operation occurrence resource is in one of the following states: FAILED_TEMP,
ROLLED_BACK. ROLLED_BACK is a terminal state (see clause 6.6.2.2).

Error handling: The operation is rejected in case the NS lifecycle operation occurrence resource is in any other state
than FAILED_TEMP, or in case Rollback is not supported for the particular NS LCM operation for the particular NS.

6.3.9 Flow of continuing a NS lifecycle management operation

This clause describes a sequence for continuing a NS lifecycle management operation occurrence that is represented by
a "NS LCM operation occurrence" resource. Continue is used if an operation is in FAILED_TEMP state, and there is
reason to believe that the current operation can continue despite the error. The error can be fixed later, typically after
current NS lifecycle management operation finishes.

A comprehensive description of the handling of NS lifecycle management errors is provided in clause 6.6.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)117

Figure 6.3.9-1: Flow of continuing a NS lifecycle management operation

NOTE: Due to possible race conditions, the 202 response and the "PROCESSING"
NsLcmOperationOccurrenceNotification can arrive in any order at the OSS/BSS.

Precondition: The NS lifecycle operation occurrence is in FAILED_TEMP state.

Continuing a NS lifecycle operation, as illustrated in Figure 6.3.9-1, consists of the following steps:

1) The OSS/BSS sends a POST request with an empty body to the "Continue operation task" resource of the NS
LCM operation occurrence that is to be retried.

2) The NFVO returns a "202 Accepted" response.

3) The NFVO starts the continue procedure.

4) The NFVO sends a lifecycle management operation occurrence notification of type "start" to indicate that the
NS LCM operation occurrence enters the "PROCESSING" state.

5) The NFVO finishes the continue procedure.

6) On successful continue, the NFVO sends a NS lifecycle management operation occurrence notification (see
clause 6.3.6) to indicate successful completion of the operation, and inform the OSS/BSS about the resources
changes.

7) On unsuccessful continue, the NFVO sends a NS lifecycle management operation occurrence notification (see
clause 6.3.6) to indicate an intermediate error (continue failed) of the operation, and inform the OSS/BSS
about the changes on the NS components (e.g. VNFs, VLs).

Postcondition: The NS lifecycle operation occurrence resource is in one of the following states: FAILED_TEMP,
PARTIALLY_COMPLETED. PARTIALLY_COMPLETED is a terminal state (see clause 6.6.2.2).

Error handling: The operation is rejected in case the "NS LCM operation occurrence" resource is in any other state
than FAILED_TEMP, or in case Continue is not supported for the particular NS LCM operation for the particular NS.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)118

6.3.10 Flow of failing a NS lifecycle management operation

This clause describes a sequence for declaring as "failed" a NS lifecycle management operation occurrence that is
represented by a "NS LCM operation occurrence" resource. If there is neither an assumption that the operation can
eventually succeed after further retries, nor that the operation can be successfully rolled back, the operation can be
declared as "failed". This will unblock the invocation of other LCM operations, such as HealNs, or non-graceful NS
termination, on the affected NS instance.

A comprehensive description of the handling of NS lifecycle management errors is provided in clause 6.6.

Figure 6.3.10-1: Flow of declaring a NS lifecycle management operation as failed

NOTE: Due to possible race conditions, the 200 response and the "FAILED"
NsLcmOperationOccurrenceNotification can arrive in any order at the OSS/BSS.

Precondition: The NS lifecycle operation occurrence is in FAILED_TEMP state.

Declaring a NS lifecycle management operation as failed, as illustrated in Figure 6.3.10-1, consists of the following
steps:

1) The OSS/BSS sends a POST request with an empty body to the "Fail operation task" resource of the NS LCM
operation occurrence that is to be marked as failed.

2) The NFVO marks the operation as failed.

3) The NFVO sends a NS lifecycle management operation occurrence notification (see clause 6.3.6) to indicate
the final failure of the operation, and inform the OSS/BSS about the s changes on the NS components (e.g.
VNFs, VLs). Furthermore, it returns a "200 OK" response, and includes in the body a NsLcmOpOcc structure.
The order in which the response and the notification arrive at the OSS/BSS is not defined.

Postcondition: The NS lifecycle operation occurrence resource is FAILED state. This is a terminal state (see
clause 6.6.2.2).

Error handling: The operation is rejected in case the NS lifecycle operation occurrence resource is in any other state
than FAILED_TEMP.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)119

6.3.11 Flow of cancelling a NS lifecycle management operation

This clause describes a sequence for cancelling an ongoing NS LCM operation occurrence, or a rollback of a NS LCM
operation occurrence. The possibility and timing of cancellation is dependent on the implementation of the underlying
lifecycle management operation.

A comprehensive description of the handling of NS lifecycle management errors is provided in clause 6.6.

Figure 6.3.11-1: Flow of cancelling a NS lifecycle management operation
in "PROCESSING" or "ROLLING_BACK" state

NOTE: Due to possible race conditions, the 202 response and the "FAILED_TEMP"
NsLcmOperationOccurrenceNotification can arrive in any order at the OSS/BSS.

Precondition: The NS lifecycle operation occurrence is in PROCESSING or ROLLING_BACK state.

Cancelling a NS lifecycle operation when it is in "PROCESSING" or "ROLLING_BACK" state, as illustrated in
Figure 6.3.11-1, consists of the following steps:

1) The OSS/BSS sends a POST request with a "CancelMode" structure in the body to the "Cancel operation task"
resource of the NS LCM operation occurrence that is to be cancelled.

2) The NFVO returns a "202 Accepted" response.

3) The NFVO cancels the ongoing LCM operation. This can take some time.

4) The NFVO sends a NS lifecycle management operation occurrence notification (see clause 6.3.6) to indicate
an intermediate error (cancelled) of the operation, and inform the OSS/BSS about the changes on the NS
components (e.g. VNFs, VLs).

Postcondition: The NS lifecycle management operation occurrence resource is FAILED_TEMP state.

Error handling: The operation is rejected in case the NS lifecycle operation occurrence is in any other state than
PROCESSING or ROLLING_BACK, or in case Cancel is not supported for the particular NS LCM operation for the
particular NS.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)120

6.4 Resources

6.4.1 Introduction

This clause defines all the resources and methods provided by the NS lifecycle management interface.

6.4.1a Resource: API versions

The "API versions" resources as defined in clause 4.6.3.3 are part of the NS lifecycle management interface.

6.4.2 Resource: NS Instances

6.4.2.1 Description

This resource represents NS instances. The client can use this resource to create individual NS instance resources, and to
query NS instances.

6.4.2.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_instances

This resource shall support the resource URI variables defined in Table 6.4.2.2-1.

Table 6.4.2.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2

6.4.2.3 Resource methods

6.4.2.3.1 POST

The POST method creates a new NS instance resource.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 6.4.2.3.1-1 and 6.4.2.3.1-2.

Table 6.4.2.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Remarks
n/a

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)121

Table 6.4.2.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Remarks
CreateNsRequest 1 The Ns creation parameters, as defined in clause 6.5.2.7.

Response
body

Data type Cardinality Response
Codes

Remarks

NsInstance 1 201
Created

A NS Instance identifier was created successfully.

The response body shall contain a representation of
the created NS instance, as defined in clause 6.5.2.8.

The HTTP response shall include a "Location" HTTP
header that contains the resource URI of the created
NS instance.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.2.3.2 GET

The GET method queries information about multiple NS instances.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 6.4.2.3.2-1 and 6.4.2.3.2-2.

Table 6.4.2.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
filter 0..1 Attribute-based filtering expression according to clause 4.3.2.

The NFVO shall support receiving this parameter as part of the URI query
string. The OSS/BSS may supply this parameter.

All attribute names that appear in the NsInstance and in data types
referenced from it shall be supported by the NFVO in the filter expression.

all_fields 0..1 Include all complex attributes in the response. See clause 4.3.3 for details.
The NFVO shall support this parameter.

fields 0..1 Complex attributes to be included into the response. See clause 4.3.3 for
details. The NFVO should support this parameter.

exclude_fields 0..1 Complex attributes to be excluded from the response. See clause 4.3.3 for
details. The NFVO should support this parameter.

exclude-default 0..1 Indicates to exclude the following complex attributes from the response.
See clause 4.3.3 for details. The NFVO shall support this parameter.

The following attributes shall be excluded from the NsInstance structure in
the response body if this parameter is provided, or none of the parameters
"all_fields," "fields", "exclude_fields", "exclude_default" are provided:

- vnfInstances
- pnfInfo
- virtualLinkInfo
- vnffgInfo
- sapInfo
- nsScaleStatus
- additionalAffinityOrAntiAffinityRules

nextpage_opaq
ue_marker

0..1 Marker to obtain the next page of a paged response. Shall be supported by
the NFVO if the NFVO supports alternative 2 (paging) according to
clause 4.7.2.1 for this resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)122

Table 6.4.2.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Remarks
n/a

Response
body

Data type Cardinality Response
Codes

Remarks

NsInstance 0..N 200 OK Information about zero or more NS instances was
queried successfully.

The response body shall contain in an array the
representations of zero or more NS instances, as
defined in clause 6.5.2.8.

If the NFVO supports alternative 2 (paging)
according to clause 4.7.2.1 for this resource,
inclusion of the Link HTTP header in this response
shall follow the provisions in clause 4.7.2.3.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute-based filtering expression.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should
convey more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute selector.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should
convey more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Response too big.

If the NFVO supports alternative 1 (error) according
to clause 4.7.2.1 for this resource, this error
response shall follow the provisions in clause 4.7.2.2.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.2.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.2.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.2.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.3 Resource: Individual NS Instance

6.4.3.1 Description

This resource represents an individual NS instance. The client can use this resource to modify, delete, and query the
underlying NS instance.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)123

6.4.3.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_instances/{nsInstanceId}

The base resource URI variables for this resource are defined in Table 6.4.3.2-1.

Table 6.4.3.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2
nsInstanceId Identifier of the NS instance

6.4.3.3 Resource methods

6.4.3.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.3.3.2 GET

The GET method retrieves information about a NS instance by reading an individual NS instance resource.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 6.4.3.3.2-1 and 6.4.3.3.2-2.

Table 6.4.3.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Remarks
n/a

Table 6.4.3.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Remarks
n/a

Response
body

Data type Cardinality Response
codes

Remarks

NsInstance 1 200 OK Information about an individual NS instance was
queried successfully.

The response body shall contain a representation of
the NS instance, as defined in clause 6.5.2.8.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.3.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.3.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)124

6.4.3.3.5 DELETE

This method deletes an individual NS instance resource.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 6.4.3.3.5-1 and 6.4.3.3.5-2.

Table 6.4.3.3.5-1: URI query parameters supported by the DELETE method on this resource

Name Cardinality Remarks
n/a

Table 6.4.3.3.5-2: Details of the DELETE request/response on this resource

Request
body

Data type Cardinality Remarks
n/a

Response
body

Data type Cardinality Response
Codes

Remarks

n/a 204 No
Content

The NS instance resource and the associated NS
identifier were deleted successfully.

The response body shall be empty.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact that the NS instance
resource is in INSTANTIATED state.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.4 Resource: Instantiate NS task

6.4.4.1 Description

This task resource represents the "Instantiate NS" operation. The client can use this resource to instantiate a NS
instance.

6.4.4.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_instances/{nsInstanceId}/instantiate

This resource shall support the resource URI variables defined in Table 6.4.4.2-1.

Table 6.4.4.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
nsInstanceId Identifier of the NS instance to be instantiated.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)125

6.4.4.3 Resource methods

6.4.4.3.1 POST

The POST method requests to instantiate a NS instance resource.

This method shall follow the provisions specified in the Tables 6.4.4.3.1-1 and 6.4.4.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 6.4.4.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
None supported

Table 6.4.4.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
InstantiateNsReque
st

1 Parameters for the instantiate NS operation, as defined in
clause 6.5.2.10.

Response
body

Data type Cardinality Response
Codes

Description

n/a 202
Accepted

The request was accepted for processing, but the
processing has not been completed.

The response body shall be empty.

The HTTP response shall include a "Location" HTTP
header that contains the URI of the newly-created
"NS LCM operation occurrence" resource
corresponding to the operation.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact that the NS instance
resource is in the INSTANTIATED state, or that
another lifecycle management operation is ongoing.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 / 4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.4.3.2 GET

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.4.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.4.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)126

6.4.4.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.5 Resource: Scale NS task

6.4.5.1 Description

This task resource represents the "Scale NS" operation. The client can use this resource to request to scale a NS
instance. Scaling an NS instance can be performed by explicitly adding/removing existing VNF instances to/from the
NS instance, by leveraging on the abstraction mechanism provided by the NS scaling aspects and NS levels information
elements declared in the NSD or by scaling individual VNF instances that are part of the NS itself. When adding VNFs
and nested NSs - already existing or not - to the NS to be scaled, the NFVO shall follow the indications provided by the
dependencies attribute, as specified in the corresponding NSD.

NOTE: In case the NS is a composite NS, it is also possible to scale directly its nested NS, as they are also NS
and thus indirectly effectively scale the composite NS.

6.4.5.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_instances/{nsInstanceId}/scale

This resource shall support the resource URI variables defined in Table 6.4.5.2-1.

Table 6.4.5.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
nsInstanceId Identifier of the NS instance to be scaled.

6.4.5.3 Resource methods

6.4.5.3.1 POST

The POST method requests to scale a NS instance resource.

This method shall follow the provisions specified in the Tables 6.4.5.3.1-1 and 6.4.5.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 6.4.5.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)127

Table 6.4.5.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
ScaleNsRequest 1 Parameters for the scale NS operation, as defined in

clause 6.5.2.13.

Response
body

Data type Cardinality Response
Codes

Description

n/a 202
Accepted

The request was accepted for processing, but the
processing has not been completed.

The response body shall be empty.

The HTTP response shall include a "Location" HTTP
header that contains the URI of the newly-created
"NS lifecycle operation occurrence" resource
corresponding to the operation.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact that the NS instance
resource is in NOT_INSTANTIATED state, or that
another lifecycle management operation is ongoing.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.5.3.2 GET

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.5.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.5.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.5.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.6 Resource: Update NS task

6.4.6.1 Description

This task resource represents the "Update NS" operation. The client can use this resource to update a NS instance.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)128

6.4.6.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_instances/{nsInstanceId}/update

This resource shall support the resource URI variables defined in Table 6.4.6.2-1.

Table 6.4.6.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
nsInstanceId Identifier of the NS instance to be updated.

6.4.6.3 Resource methods

6.4.6.3.1 POST

The POST method requests to update a NS instance resource.

This method shall follow the provisions specified in the Tables 6.4.6.3.1-1 and 6.4.6.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 6.4.6.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

Table 6.4.6.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
UpdateNsRequest 1 Parameters for the update NS operation, as defined in

clause 6.5.2.11.

Response
body

Data type Cardinality Response
Codes

Description

n/a 202
Accepted

The request was accepted for processing, but the
processing has not been completed.

The response body shall be empty.

The HTTP response shall include a "Location" HTTP
header that contains the URI of the newly-created
"NS lifecycle operation occurrence" resource
corresponding to the operation.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact that the NS instance
resource is in NOT_INSTANTIATED state, or that
another lifecycle management operation is ongoing.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)129

6.4.6.3.2 GET

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.6.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.6.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.6.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.7 Resource: Heal NS task

6.4.7.1 Description

This task resource represents the "Heal NS" operation. The client can use this resource to request healing a NS instance.

6.4.7.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_instances/{nsInstanceId}/heal

This resource shall support the resource URI variables defined in Table 6.4.7.2-1.

Table 6.4.7.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
nsInstanceId Identifier of the NS instance to be healed.

6.4.7.3 Resource methods

6.4.7.3.1 POST

The POST method requests to heal a NS instance resource.

This method shall follow the provisions specified in the Tables 6.4.7.3.1-1 and 6.4.7.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 6.4.7.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)130

Table 6.4.7.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
HealNsRequest 1 Parameters for the heal NS operation, as defined in

clause 6.5.2.12.

Response
body

Data type Cardinality Response
Codes

Description

n/a 202
Accepted

The request was accepted for processing, but the
processing has not been completed.

The response body shall be empty.

The HTTP response shall include a "Location" HTTP
header that contains the URI of the newly-created
"NS lifecycle operation occurrence" resource
corresponding to the operation.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact that the NS instance
resource is in NOT_INSTANTIATED state, or that
another lifecycle management operation is ongoing.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.7.3.2 GET

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.7.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.7.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.7.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.8 Resource: Terminate NS task

6.4.8.1 Description

This task resource represents the "Terminate NS" operation. The client can use this resource to terminate a NS instance.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)131

6.4.8.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_instances/{nsInstanceId}/terminate

This resource shall support the resource URI variables defined in Table 6.4.8.2-1.

Table 6.4.8.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
nsInstanceId The identifier of the NS instance to be terminated.

6.4.8.3 Resource methods

6.4.8.3.1 POST

The POST method terminates a NS instance. This method can only be used with a NS instance in the INSTANTIATED
state. Terminating a NS instance does not delete the NS instance identifier, but rather transitions the NS into the
NOT_INSTANTIATED state.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 6.4.8.3.1-1 and 6.4.8.3.1-2.

Table 6.4.8.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Remarks
n/a

Table 6.4.8.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Remarks
TerminateNsRequest 1 The terminate NS request parameters, as defined in

clause 6.5.2.14.

Response
body

Data type Cardinality Response
Codes

Remarks

n/a 1 202
Accepted

The request was accepted for processing, but the
processing has not been completed.

The response body shall be empty.

The HTTP response shall include a "Location" HTTP
header that contains the URI of the newly-created
"NS lifecycle operation occurrence" resource
corresponding to the operation.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact that the NS instance
resource is in NOT_INSTANTIATED state, or that
another lifecycle management operation is ongoing.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)132

6.4.8.3.2 GET

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.8.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.8.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.8.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.9 Resource: NS LCM operation occurrences

6.4.9.1 Description

This resource represents NS lifecycle management operation occurrences. The client can use this resource to query
status information about multiple NS lifecycle management operation occurrences.

6.4.9.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_lcm_op_occs

The base resource URI variables for this resource are defined in Table 6.4.9.2-1.

Table 6.4.9.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2

6.4.9.3 Resource methods

6.4.9.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.9.3.2 GET

The client can use this method to query status information about multiple NS lifecycle management operation
occurrences.

This method shall follow the provisions specified in the Tables 6.4.9.3.2-1 and 6.4.9.3.2-2 for URI query parameters,
request and response data structures, and response codes.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)133

Table 6.4.9.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
filter 0..1 Attribute-based filtering expression according to clause 4.3.2.

The NFVO shall support receiving this parameter as part of the URI query string. The
OSS/BSS may supply this parameter.

All attribute names that appear in the NsLcmOpOcc and in data types referenced
from it shall be supported by the NFVO in the filter expression.

fields 0..1 Complex attributes to be included into the response. See clause 4.3.3 for details.
The NFVO should support this parameter.

exclude_fields 0..1 Complex attributes to be excluded from the response. See clause 4.3.3 for details.
The NFVO should support this parameter.

exclude_default 0..1 Indicates to exclude the following complex attributes from the response. See clause
4.3.3 for details. The NFVO shall support this parameter.

The following attributes shall be excluded from the NsLcmOpOcc structure in the
response body if this parameter is provided:

- operationParams
- changedVnfInfo
- error
- resourceChanges

nextpage_opaque
_marker

0..1 Marker to obtain the next page of a paged response. Shall be supported by the
NFVO if the NFVO supports alternative 2 (paging) according to clause 4.7.2.1 for this
resource.

Table 6.4.9.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

NsLcmOpOcc 0..N 200 OK Status information for zero or more NS lifecycle
management operation occurrences was queried
successfully.

The response body shall contain in an array the
representations of zero or more NS instances, as
defined in clause 5.5.2.13.

If the NFVO supports alternative 2 (paging) according
to clause 4.7.2.1 for this resource, inclusion of the Link
HTTP header in this response shall follow the
provisions in clause 4.7.2.3.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute-based filtering expression.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should convey
more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute selector.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should convey
more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Response too big.

If the NFVO supports alternative 1 (error) according to
clause 4.7.2.1 for this resource, this error response
shall follow the provisions in clause 4.7.2.2.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)134

6.4.9.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.9.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.9.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.10 Resource: Individual NS LCM operation occurrence

6.4.10.1 Description

This resource represents a NS lifecycle management operation occurrence. The client can use this resource to read
information about a NS lifecycle management operation occurrence. Further, the client can use task resources which are
children of this resource to request cancellation of an operation in progress, and to request the handling of operation
errors via retrying the operation, rolling back the operation, or permanently failing the operation.

6.4.10.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_lcm_op_occs/{nsLcmOpOccId}

The base resource URI variables for this resource are defined in Table 6.4.10.2-1.

Table 6.4.10.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2
nsLcmOpOccId Identifier of a NS lifecycle management operation occurrence

6.4.10.3 Resource methods

6.4.10.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.10.3.2 GET

The client can use this method to retrieve status information about a NS lifecycle management operation occurrence by
reading an individual "NS LCM operation occurrence" resource.

This method shall follow the provisions specified in the Tables 6.4.10.3.2-1 and 6.4.10.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 6.4.10.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)135

Table 6.4.10.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes Description

NsLcmOpOcc 1 200 OK Information about a NS LCM operation occurrence
was queried successfully.

The response body shall contain status information
about a NS lifecycle management operation
occurrence (see clause 6.5.2.3).

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.10.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.10.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.10.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.11 Resource: Retry operation task

6.4.11.1 Description

This task resource represents the "Retry operation" operation. The client can use this resource to initiate retrying a NS
lifecycle management operation.

6.4.11.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_lcm_op_occs/{nsLcmOpOccId}/retry

This resource shall support the resource URI variables defined in Table 6.4.11.2-1.

Table 6.4.11.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
nsLcmOpOccId Identifier of a NS lifecycle management operation occurrence to be retried. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request triggering a NS LCM operation. It can also be retrieved from the "nsLcmOpOccId"
attribute in the NsLcmOperationOccurrenceNotification.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)136

6.4.11.3 Resource methods

6.4.11.3.1 POST

The POST method initiates retrying a NS lifecycle management operation if that operation has experienced a temporary
failure, i.e. the related "NS LCM operation occurrence" is in "FAILED_TEMP" state.

This method shall follow the provisions specified in the Tables 6.4.11.3.1-1 and 6.4.11.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 6.4.11.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

Table 6.4.11.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
n/a The POST request to this resource has an empty payload body.

Response
body

Data type Cardinality Response
Codes

Description

n/a 202
Accepted

The request was accepted for processing, but
processing has not been completed.

The response shall have an empty payload body.

ProblemDetails 0..1 404 Not
Found

Error: The API producer did not find a current
representation for the target resource or is not willing
to disclose that one exists.

The general cause for this error and its handling is
specified in clause 4.3.5.4, including rules for the
presence of the response body.

Specifically in case of this task resource, the reason
can also be that the task is not supported for the NS
LCM operation occurrence represented by the parent
resource, and that the task resource consequently
does not exist.

In this case, the response body shall be present, and
shall contain a ProblemDetails structure, in which the
"detail" attribute shall convey more information about
the error.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the NS LCM
operation occurrence resource.

Typically, this is due to the fact that the NS LCM
operation occurrence is not in FAILED_TEMP state, or
another error handling action is starting, such as
rollback or fail.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)137

6.4.11.3.2 GET

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.11.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.11.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.11.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.12 Resource: Rollback operation task

6.4.12.1 Description

This task resource represents the "Rollback operation" operation. The client can use this resource to initiate rolling back
a NS lifecycle management operation.

6.4.12.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_lcm_op_occs/{nsLcmOpOccId}/rollback

This resource shall support the resource URI variables defined in Table 6.4.12.2-1.

Table 6.4.12.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
nsLcmOpOccId Identifier of a NS lifecycle management operation occurrence to be rolled back. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request triggering a NS LCM operation. It can also be retrieved from the "nsLcmOpOccId"
attribute in the NsLcmOperationOccurrenceNotification.

6.4.12.3 Resource methods

6.4.12.3.1 POST

The POST method initiates rolling back a NS lifecycle operation if that operation has experienced a temporary failure,
i.e. the related "NS LCM operation occurrence" is in "FAILED_TEMP" state.

This method shall follow the provisions specified in the Tables 6.4.12.3.1-1 and 6.4.12.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 6.4.12.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)138

Table 6.4.12.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
n/a The POST request to this resource has an empty payload body.

Response
body

Data type Cardinality Response
Codes

Description

n/a 202
Accepted

The request was accepted for processing, but
processing has not been completed.

The response shall have an empty payload body.

ProblemDetails 0..1 404 Not
Found

Error: The API producer did not find a current
representation for the target resource or is not willing
to disclose that one exists.

The general cause for this error and its handling is
specified in clause 4.3.5.4, including rules for the
presence of the response body.

Specifically, in case of this task resource, the reason
can also be that the task is not supported for the NS
LCM operation occurrence represented by the parent
resource, and that the task resource consequently
does not exist.

In this case, the response body shall be present, and
shall contain a ProblemDetails structure, in which the
"detail" attribute shall convey more information about
the error.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the NS LCM
operation occurrence resource.

Typically, this is due to the fact that the NS LCM
operation occurrence is not in FAILED_TEMP state,
or another error handling action is starting, such as
retry or fail.
The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.12.3.2 GET

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.12.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.12.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.12.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)139

6.4.13 Resource: Continue operation task

6.4.13.1 Description

This task resource represents the "Continue operation" operation. The client can use this resource to initiate continuing
an NS lifecycle management operation.

6.4.13.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_lcm_op_occs/{nsLcmOpOccId}/continue

This resource shall support the resource URI variables defined in Table 6.4.13.2-1.

Table 6.4.13.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
nsLcmOpOccId Identifier of a NS lifecycle management operation occurrence to be continued. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request triggering a NS LCM operation. It can also be retrieved from the "nsLcmOpOccId"
attribute in the NsLcmOperationOccurrenceNotification.

6.4.13.3 Resource methods

6.4.13.3.1 POST

The POST method initiates continuing an NS lifecycle operation if that operation has experienced a temporary failure,
i.e. the related "NS LCM operation occurrence" is in "FAILED_TEMP" state.

This method shall follow the provisions specified in the Tables 6.4.13.3.1-1 and 6.4.13.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 6.4.13.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)140

Table 6.4.13.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
n/a The POST request to this resource has an empty payload body.

Response
body

Data type Cardinality Response
Codes

Description

n/a 202
Accepted

The request was accepted for processing, but
processing has not been completed.
The response shall have an empty payload body.

ProblemDetails 0..1 404 Not
Found

Error: The API producer did not find a current
representation for the target resource or is not willing
to disclose that one exists.
The general cause for this error and its handling is
specified in clause 4.3.5.4, including rules for the
presence of the response body.
Specifically, in case of this task resource, the reason
can also be that the task is not supported for the NS
LCM operation occurrence represented by the parent
resource, and that the task resource consequently
does not exist.
In this case, the response body shall be present, and
shall contain a ProblemDetails structure, in which the
"detail" attribute shall convey more information about
the error.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the NS LCM
operation occurrence resource.
Typically, this is due to the fact that the NS LCM
operation occurrence is not in FAILED_TEMP state,
or another error handling action is starting, such as
retry or fail.
The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.13.3.2 GET

Not supported.

6.4.13.3.3 PUT

Not supported.

6.4.13.3.4 PATCH

Not supported.

6.4.13.3.5 DELETE

Not supported.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)141

6.4.14 Resource: Fail operation task

6.4.14.1 Description

This task resource represents the "Fail operation" operation. The client can use this resource to mark a NS lifecycle
management operation occurrence as "finally failed", i.e. change the state of the related NS LCM operation occurrence
resource to "FAILED", if it is not assumed that a subsequent retry or rollback will succeed. Once the operation is
marked as "finally failed", it cannot be retried or rolled back anymore.

6.4.14.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_lcm_op_occs/{nsLcmOpOccId}/fail

This resource shall support the resource URI variables defined in Table 6.4.14.2-1.

Table 6.4.14.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
nsLcmOpOccId Identifier of a NS lifecycle management operation occurrence to be marked as "failed". See

note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request triggering a NS LCM operation. It can also be retrieved from the "nsLcmOpOccId"
attribute in the NsLcmOperationOccurrenceNotification.

6.4.14.3 Resource methods

6.4.14.3.1 POST

The POST method marks a NS lifecycle management operation occurrence as "finally failed" if that operation
occurrence is in "FAILED_TEMP" state.

This method shall follow the provisions specified in the Tables 6.4.14.3.1-1 and 6.4.14.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 6.4.14.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
None supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)142

Table 6.4.14.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
n/a The POST request to this resource has an empty payload body.

Response
body

Data type Cardinality Response
Codes

Description

NsLcmOpOcc 1 200 OK The state of the NS lifecycle management operation
occurrence was changed successfully.

The response shall include a representation of the NS
lifecycle management operation occurrence resource.

ProblemDetails 0..1 404 Not
Found

Error: The API producer did not find a current
representation for the target resource or is not willing
to disclose that one exists.

The general cause for this error and its handling is
specified in clause 4.3.5.4, including rules for the
presence of the response body.

Specifically in case of this task resource, the reason
can also be that the task is not supported for the NS
LCM operation occurrence represented by the parent
resource, and that the task resource consequently
does not exist.

In this case, the response body shall be present, and
shall contain a ProblemDetails structure, in which the
"detail" attribute shall convey more information about
the error.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the NS LCM
operation occurrence resource.

Typically, this is due to the fact that the NS LCM
operation occurrence is not in FAILED_TEMP state, or
another error handling action is starting, such as retry
or rollback.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.14.3.2 GET

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.14.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.14.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)143

6.4.14.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.15 Resource: Cancel operation task

6.4.15.1 Description

This task resource represents the "Cancel operation" operation. The client can use this resource to cancel an ongoing NS
lifecycle management operation.

6.4.15.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/ns_lcm_op_occs/{nsLcmOpOccId}/cancel

This resource shall support the resource URI variables defined in Table 6.4.15.2-1.

Table 6.4.15.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
nsLcmOpOccId Identifier of a NS lifecycle management operation occurrence to be cancelled. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request triggering a NS LCM operation. It can also be retrieved from the "nsLcmOpOccId"
attribute in the NsLcmOperationOccurrenceNotification.

6.4.15.3 Resource methods

6.4.15.3.1 POST

The POST method initiates cancelling an ongoing NS lifecycle management operation while it is being executed or
rolled back, i.e. the related "NS LCM operation occurrence" is either in "PROCESSING" or "ROLLING_BACK" state.

This method shall follow the provisions specified in the Tables 6.4.15.3.1-1 and 6.4.15.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 6.4.15.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
None supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)144

Table 6.4.15.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
CancelMode 1 The POST request to this resource shall include a CancelMode

structure in the payload body to choose between "graceful" and
"forceful" cancellation.

Response
body

Data type Cardinality Response
Codes

Description

n/a 202
Accepted

The request was accepted for processing, but
processing has not been completed.

The response shall have an empty entity body.

ProblemDetails 0..1 404 Not
Found

Error: The API producer did not find a current
representation for the target resource or is not willing
to disclose that one exists.

The general cause for this error and its handling is
specified in clause 4.3.5.4, including rules for the
presence of the response body.

Specifically, in case of this task resource, the reason
can also be that the task is not supported for the NS
LCM operation occurrence represented by the parent
resource, and that the task resource consequently
does not exist.

In this case, the response body shall be present, and
shall contain a ProblemDetails structure, in which the
"detail" attribute shall convey more information about
the error.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the NS LCM
operation occurrence resource.

Typically, this is due to the fact that the operation
occurrence is not in STARTING, PROCESSING or
ROLLING_BACK state.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.15.3.2 GET

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.15.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.15.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)145

6.4.15.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.16 Resource: Subscriptions

6.4.16.1 Description

This resource represents subscriptions. The client can use this resource to subscribe to notifications related to NS
lifecycle management, and to query its subscriptions.

6.4.16.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/subscriptions

This resource shall support the resource URI variables defined in Table 6.4.16.2-1.

Table 6.4.16.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2

6.4.16.3 Resource methods

6.4.16.3.1 POST

The POST method creates a new subscription.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 6.4.16.3.1-1 and 6.4.16.3.1-2.

Creation of two subscription resources with the same callbackURI and the same filter can result in performance
degradation and will provide duplicates of notifications to the OSS, and might make sense only in very rare use cases.
Consequently, the NFVO may either allow creating a subscription resource if another subscription resource with the
same filter and callbackUri already exists (in which case it shall return the "201 Created" response code), or may decide
to not create a duplicate subscription resource (in which case it shall return a "303 See Other" response code referencing
the existing subscription resource with the same filter and callbackUri).

Table 6.4.16.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Remarks
n/a

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)146

Table 6.4.16.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Remarks
LccnSubscriptionRequest 1 Details of the subscription to be created, as defined in

clause 6.5.2.2.

Response
body

Data type Cardinality Response
Codes

Remarks

LccnSubscription 1 201 Created The subscription was created successfully.
The response body shall contain a representation
of the created subscription resource.
The HTTP response shall include a "Location:"
HTTP header that points to the created
subscription resource.

n/a 303
See Other

A subscription with the same callbackURI and the
same filter already exits and the policy of the
NFVO is to not create redundant subscriptions.
The HTTP response shall include a "Location"
HTTP header that contains the resource URI of
the existing subscription resource.
The response body shall be empty.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.16.3.2 GET

The GET method queries the list of active subscriptions of the functional block that invokes the method. It can be used
e.g. for resynchronization after error situations.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 6.4.16.3.2-1 and 6.4.16.3.2-2.

Table 6.4.16.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Remarks
filter 0..1 Attribute-based filtering expression according to clause 4.3.2.

The NFVO shall support receiving this parameter as part of the URI query string. The
OSS/BSS may supply this parameter.

All attribute names that appear in the LccnSubscription and in data types referenced
from it shall be supported by the NFVO in the filter expression.

nextpage_opaque
_marker

0..1 Marker to obtain the next page of a paged response. Shall be supported by the
NFVO if the NFVO supports alternative 2 (paging) according to clause 4.7.2.1 for this
resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)147

Table 6.4.16.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Remarks
n/a

Response
body

Data type Cardinality Response
Codes

Remarks

LccnSubscription 0..N 200 OK The list of subscriptions was queried successfully.

The response body shall contain the representations
of all active subscriptions of the functional block that
invokes the method.

If the NFVO supports alternative 2 (paging) according
to clause 4.7.2.1 for this resource, inclusion of the Link
HTTP header in this response shall follow the
provisions in clause 4.7.2.3.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute-based filtering expression.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should convey
more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Response too big.

If the NFVO supports alternative 1 (error) according to
clause 4.7.2.1 for this resource, this error response
shall follow the provisions in clause 4.7.2.2.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.16.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.16.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.16.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.17 Resource: Individual subscription

6.4.17.1 Description

This resource represents an individual subscription. It can be used by the client to read and to terminate a subscription to
Notifications related to NS lifecycle management.

6.4.17.2 Resource definition

The resource URI is:

 {apiRoot}/nslcm/v1/subscriptions/{subscriptionId}

This resource shall support the resource URI variables defined in Table 6.4.17.2-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)148

Table 6.4.17.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2
subscriptionId Identifier of this subscription

6.4.17.3 Resource methods

6.4.17.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.17.3.2 GET

The GET method retrieves information about a subscription by reading an individual subscription resource.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 6.4.17.3.2-1 and 6.4.17.3.2-2.

Table 6.4.17.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Remarks
n/a

Table 6.4.17.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Remarks
n/a

Response
body

Data type Cardinality Response
Codes

Remarks

LccnSubscription 1 200 OK The operation has completed successfully.
The response body shall contain a representation of
the subscription resource.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.17.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.17.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.17.3.5 DELETE

The DELETE method terminates an individual subscription.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 6.4.17.3.5-1 and 6.4.17.3.5-2.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)149

Table 6.4.17.3.5-1: URI query parameters supported by the DELETE method on this resource

Name Cardinality Remarks
n/a

Table 6.4.17.3.5-2: Details of the DELETE request/response on this resource

Request
body

Data type Cardinality Remarks
n/a

Response
body

Data type Cardinality Response
Codes

Remarks

n/a 204 No
Content

The subscription resource was deleted successfully.
The response body shall be empty.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.18 Resource: Notification endpoint

6.4.18.1 Description

This resource represents a notification endpoint. The server can use this resource to send notifications to a subscribed
client, which has provided the URI of this resource during the subscription process.

6.4.18.2 Resource definition

The resource URI is provided by the client when creating the subscription.

This resource shall support the resource URI variables defined in Table 6.4.18.2-1.

Table 6.4.18.2-1: Resource URI variables for this resource

Name Definition
n/a

6.4.18.3 Resource methods

6.4.18.3.1 POST

The POST method delivers a notification from the server to the client.

This method shall support the URI query parameters, request and response data structures, and response codes, as
specified in the Tables 6.4.18.3.1-1 and 6.4.18.3.1-2.

Table 6.4.18.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Remarks
n/a

Each notification request body shall include exactly one of the alternatives defined in Table 6.4.18.3.1-2.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)150

Table 6.4.18.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Remarks
NsLcmOperationOccurr
enceNotification

1 A notification about lifecycle changes triggered by a NS LCM
operation occurrence.

NsIdentifierCreationNotif
ication

1 A notification about the creation of a NS identifier and the related
NS instance resource.

NsIdentifierDeletionNotif
ication

1 A notification about the deletion of a NS identifier and the related
NS instance resource.

Response
body

Data type Cardinality Response
Codes

Remarks

n/a 204 No
Content

The notification was delivered successfully.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.18.3.2 GET

The GET method allows the server to test the notification endpoint that is provided by the client, e.g. during
subscription.

This method shall follow the provisions specified in the Tables 6.4.18.3.2-1 and 6.4.18.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 6.4.18.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

Table 6.4.18.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The notification endpoint was tested successfully.

The response body shall be empty.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

6.4.18.3.3 PUT

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.18.3.4 PATCH

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

6.4.18.3.5 DELETE

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)151

6.5 Data model

6.5.1 Introduction

This clause defines the request and response data structures of the NS Lifecycle management interface.

6.5.2 Resource and notification data types

6.5.2.1 Introduction

This clause defines the data structures to be used in resource representations and notifications.

6.5.2.2 Type: LccnSubscriptionRequest

This type represents a subscription request related to notifications about NS lifecycle changes. It shall comply with the
provisions defined in Table 6.5.2.2-1.

Table 6.5.2.2-1: Definition of the LccnSubscriptionRequest data type

Attribute name Data type Cardinality Description
filter LifecycleChangeNoti

ficationsFilter
0..1 Filter settings for this subscription, to define the subset of

all notifications this subscription relates to. A particular
notification is sent to the subscriber if the filter matches,
or if there is no filter.

callbackUri Uri 1 The URI of the endpoint to send the notification to.
authentication SubscriptionAuthenti

cation
0..1 Authentication parameters to configure the use of

Authorization when sending notifications corresponding
to this subscription, as defined in clause 4.5.3.4.
This attribute shall only be present if the subscriber
requires authorization of notifications.

6.5.2.3 Type: NsLcmOpOcc

This type represents a request a NS lifecycle operation occurrence. It shall comply with the provisions defined in
Table 6.5.2.3-1.

Table 6.5.2.3-1: Definition of the NsLcmOpOcc data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this NS lifecycle operation occurrence.
operationState NsLcmOperationStat

eType
1 The state of the NS LCM operation.

statusEnteredTime DateTime 1 Date-time when the current state was entered.
nsInstanceId Identifier 1 Identifier of the NS instance to which the operation

applies.
lcmOperationType NsLcmOpType 1 Type of the actual LCM operation represented by this lcm

operation occurrence.
startTime DateTime 1 Date-time of the start of the operation.
isAutomaticInvocation Boolean 1 Set to true if this NS LCM operation occurrence has been

automatically triggered by the NFVO. This occurs in the
case of auto-scaling, auto-healing and when a nested NS
is modified as a result of an operation on its composite
NS.

Set to false otherwise.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)152

Attribute name Data type Cardinality Description
operationParams Object 0..1 Input parameters of the LCM operation. This attribute

shall be formatted according to the request data type of
the related LCM operation.

The following mapping between lcmOperationType and
the data type of this attribute shall apply:

• INSTANTIATE: InstantiateNsRequest
• SCALE: ScaleNsRequest
• UPDATE: UpdateNsRequest
• HEAL: HealNsRequest
• TERMINATE: TerminateNsRequest

This attribute shall be present if this data type is returned
in a response to reading an individual resource, and may
be present according to the chosen attribute selector
parameter if this data type is returned in a response to a
query of a container resource.

isCancelPending Boolean 1 If the LCM operation occurrence is in "PROCESSING" or
"ROLLING_BACK" state and the operation is being
cancelled, this attribute shall be set to true. Otherwise, it
shall be set to false.

cancelMode CancelModeType 0..1 The mode of an ongoing cancellation. Shall be present
when isCancelPending=true, and shall be absent
otherwise.

error ProblemDetails 0..1 If "operationState" is "FAILED_TEMP" or "FAILED" or
"operationState" is "PROCESSING" or
"ROLLING_BACK" and previous value of
"operationState" was "FAILED_TEMP", this attribute shall
be present and contain error information, unless it has
been requested to be excluded via an attribute selector.

resourceChanges Structure (inlined) 0..1 This attribute contains information about the cumulative
changes to virtualised resources that were performed so
far by the LCM operation since its start, if applicable.

>affectedVnfs AffectedVnf 0..N Information about the VNF instances that were affected
during the lifecycle operation, if this notification
represents the result of a lifecycle operation. See note.

>affectedPnfs AffectedPnf 0..N Information about the PNF instances that were affected
during the lifecycle operation, if this notification
represents the result of a lifecycle operation. See note.

>affectedVls AffectedVl 0..N Information about the VL instances that were affected
during the lifecycle operation, if this notification
represents the result of a lifecycle operation. See note.

>affectedVnffgs AffectedVnffg 0..N Information about the VNFFG instances that were
affected during the lifecycle operation, if this notification
represents the result of a lifecycle operation. See note.

>affectedNss AffectedNs 0..N Information about the nested NS instances that were
affected during the lifecycle operation, if this notification
represents the result of a lifecycle operation. See note.

>affectedSaps AffectedSap 0..N Information about the SAP instances that were affected
during the lifecycle operation, if this notification
represents the result of a lifecycle operation. See note.

_links Structure (inline) 1 Links to resources related to this resource.
>self Link 1 URI of this resource.
>nsInstance Link 1 Link to the NS instance that the operation applies to.
>cancel Link 0..1 Link to the task resource that represents the "cancel"

operation for this LCM operation occurrence, if cancelling
is currently allowed.

>retry Link 0..1 Link to the task resource that represents the "retry"
operation for this LCM operation occurrence, if retrying is
currently allowed.

>rollback Link 0..1 Link to the task resource that represents the "rollback"
operation for this LCM operation occurrence, if rolling
back is currently allowed.

>continue Link 0..1 Link to the task resource that represents the "continue"
operation for this LCM operation occurrence, if continuing
is currently allowed.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)153

Attribute name Data type Cardinality Description
>fail Link 0..1 Link to the task resource that represents the "fail"

operation for this LCM operation occurrence, if declaring
as failed is currently allowed.

NOTE: This allows the OSS/BSS to obtain a copy of the latest "result" notification if it has not received it due to an
error. If the notification represents the successful result of a lifecycle operation, at least an affectedVnf, or
affectedPnf, or affectedVl, or affectedVnffg or affectedNs, or affectedSap shall be present.

6.5.2.4 Type: LccnSubscription

This type represents a subscription related to notifications about NS lifecycle changes. It shall comply with the
provisions defined in Table 6.5.2.4-1.

Table 6.5.2.4-1: Definition of the LccnSubscription data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this subscription resource.
filter LifecycleChangeNotific

ationsFilter
0..1 Filter settings for this subscription, to define the subset of

all notifications this subscription relates to. A particular
notification is sent to the subscriber if the filter matches,
or if there is no filter.

callbackUri Uri 1 The URI of the endpoint to send the notification to.
_links Structure (inlined) 1 Links to resources related to this resource.
 >self Link 1 URI of this resource.

6.5.2.5 Type: NsLcmOperationOccurrenceNotification

This type represents an NS lifecycle management operation occurrence notification, which informs the receiver of
changes in the NS lifecycle caused by an NS LCM operation occurrence. The NS LCM operation occurrence may be
triggered by the OSS/BSS or automatically triggered by the NFVO. The automatic trigger occurs in case of auto-
scaling, auto-healing and when a nested NS is modified as a result of an operation on its composite NS.

It shall comply with the provisions defined in Table 6.5.2.5-1. The support of the notification is mandatory.

This notification shall be triggered by the NFVO when there is a change in the NS lifecycle caused by an LCM
operation occurrence, including:

• Instantiation of the NS (start and result)

• Scaling of the NS (start and result, including the auto-scaling)

• Update of the NS (start and result)

• Termination of the NS (start and result)

• Healing of the NS (start and result, including the auto-healing)

• When a nested NS is modified as a result of an operation on its composite NS

If this is the initial notification about the start of an LCM operation occurrence, the notification shall be sent by the
NFVO before any action is taken as part of , the LCM operation. Due to possible race conditions, the "start" notification
and the LCM operation acknowledgment can arrive in any order at the OSS/BSS, and the OSS/BSS shall be able to
handle such a situation.

If this is a notification about a final or intermediate result state of an LCM operation occurrence, the notification shall
be sent after all related actions of the LCM operation that led to this state have been executed.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)154

Table 6.5.2.5-1: Definition of the NsLcmOperationOccurrenceNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent

multiple times due to multiple subscriptions, the "id"
attribute of all these notifications shall have the same
value.

nsInstanceId Identifier 1 The identifier of the NS instance affected.
nsLcmOpOccId Identifier 1 The identifier of the NS lifecycle operation occurrence

associated to the notification.
operation LcmOpType 1 The lifecycle operation.
notificationType String 1 Discriminator for the different notification types. Shall be

set to "NsLcmOperationOccurrenceNotification" for this
notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates
to.

timestamp DateTime 1 Date-time of the generation of the notification.
notificationStatus Enum (inlined) 1 Indicates whether this notification reports about the start

of a NS lifecycle operation or the result of a NS lifecycle
operation.

Permitted values:
- START: Informs about the start of the NS LCM

operation occurrence.
- RESULT: Informs about the final or intermediate

result of the NS LCM operation occurrence.
operationState NsLcmOperationStateTy

pe
1 The state of the NS lifecycle operation occurrence.

isAutomaticInvocation Boolean 1 Set to true if this NS LCM operation occurrence has been
automatically triggered by the NFVO. This occurs in case
of auto-scaling, auto-healing and when a nested NS is
modified as a result of an operation on its composite NS.

Set to false otherwise.

affectedVnf AffectedVnf 0..N Information about the VNF instances that were affected
during the lifecycle operation. See note.

affectedPnf AffectedPnf 0..N Information about the PNF instances that were affected
during the lifecycle operation. See note.

affectedVl AffectedVirtualLink 0..N Information about the VL instances that were affected
during the lifecycle operation. See note.

affectedVnffg AffectedVnffg 0..N Information about the VNFFG instances that were
affected during the lifecycle operation. See note.

affectedNs AffectedNs 0..N Information about the NS instances that were affected
during the lifecycle operation. See note.

affectedSap AffectedSap 0..N Information about the SAP instances that were affected
during the lifecycle operation. See note.

error ProblemDetails 0..1 Details of the latest error, if one has occurred during
executing the LCM operation (see clause 4.3.5). Shall be
present if operationState is "FAILED_TEMP" or
"FAILED", and shall be absent otherwise.

_links LccnLinks 1 Links to resources related to this notification.
NOTE: Shall be present if the "notificationStatus" is set to "RESULT" and the operation has performed any resource

modification. Shall be absent otherwise.

6.5.2.6 Type: NsIdentifierCreationNotification

This type represents a NS identifier creation notification, which informs the receiver of the creation of a new NS
instance resource and the associated NS instance identifier. It shall comply with the provisions defined in
Table 6.5.2.6-1. The support of the notification is mandatory. This notification shall be triggered by the NFVO when it
has created a NS instance resource and the associated NS instance identifier.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)155

Table 6.5.2.6-1: Definition of the NsIdentifierCreationNotification data type

Attribute name Data type Cardinality Description
notificationType String 1 Discriminator for the different notification types.

Shall be set to "NsIdentifierCreationNotification" for this
notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates
to.

timestamp DateTime 1 Date-time of the generation of the notification.
nsInstanceId Identifier 1 The created NS instance identifier.
_links LccnLinks 1 Links to resources related to this notification.

6.5.2.7 Type: NsIdentifierDeletionNotification

This type represents a NS identifier deletion notification, which informs the receiver of the deletion of a new NS
instance resource and the associated NS instance identifier. It shall comply with the provisions defined in
Table 6.5.2.7-1. The support of the notification is mandatory. This notification shall be triggered by the NFVO when it
has deleted a NS instance resource and the associated NS instance identifier.

Table 6.5.2.7-1: Definition of the NsInstanceDeletionNotification data type

Attribute name Data type Cardinality Description
notificationType String 1 Discriminator for the different notification types.

Shall be set to "NsIdentifierDeletionNotification" for this
notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates
to.

timeStamp DateTime 1 Date-time of the generation of the notification.
nsInstanceId Identifier 1 The deleted NS instance identifier.
_links LccnLinks 1 Links to resources related to this notification.

6.5.2.8 Type: NsChangeNotification

This type represents a NS change notification, which informs the receiver of changes on the NS instance caused by the
LCM operation occurrence, which directly or indirectly impacts its NS component and is triggered without any context
of this NS instance. This notification is different from the NsLcmOperationOccurenceNotification (see clause 6.5.2.5),
which is triggered by the LCM operation occurrence on the NS instance itself. It shall comply with the provisions
defined in Table 6.5.2.8-1. The support of the notification is mandatory.

The trigger conditions include:

• LCM operation occurrence which directly or indirectly impacts the NS component (start and result)

If this is a notification about the start of an LCM operation occurrence impacting the NS component, the notification
shall be provided as soon as the impact on the NS component is identified.

If this is a notification about a final result state of an LCM operation occurrence impacting the NS component, the
notification shall be provided after the impact on the NS component has been executed.

Table 6.5.2.8-1: Definition of the NsChangeNotification data type

Attribute name Data type Cardinality Description
nsInstanceId Identifier 1 The identifier of the NS instance affected.
nsComponentType NsComponentType 1 Indicates the impacted NS component type.
nsComponentId Identifier 1 The identifier of the impacted NS component.
lcmOpOccIdImpactin
gNsComponent

Identifier 1 The identifier of the lifecycle operation occurrence which
is associated to the notification and impacts the NS
component directly or indirectly.

lcmOpNameImpactin
gNsComponent

LcmOpNameForChange
NotificationType

1 Indicates the name of the lifecycle operation occurrence
which is associated to the notification and impacts the NS
component directly or indirectly.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)156

Attribute name Data type Cardinality Description
lcmOpOccStatusImp
actingNsComponent

LcmOpOccStatusForCh
angeNotificationType

1 Indicates this status of the lifecycle operation occurrence
which is associated to the notification and impacts the NS
component directly or indirectly.

notificationType String 1 Discriminator for the different notification types. Shall be
set to "NsChangeNotification" for this notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates
to.

timeStamp DateTime 1 Date-time of the generation of the notification.
error ProblemDetails 0..1 Details of the latest error, if one has occurred during

executing the LCM operation (see clause 4.3.5). Shall be
present if lcmOpOccStatusImpactingNsComponent is
"PARTIALLY_COMPLETED" or "FAILED", and shall be
absent otherwise.

_links LccnLinks 1 Links to resources related to this notification.

6.5.2.9 Type: CreateNsRequest

This type represents a request for the NS identifier creation operation. It shall comply with the provisions defined in
Table 6.5.2.9-1.

Table 6.5.2.9-1: Definition of the CreateNsRequest data type

Attribute name Data type Cardinality Description
nsdId Identifier 1 Identifier of the NSD that defines the NS instance to be

created.
nsName String 1 Human-readable name of the NS instance to be created.
nsDescription String 1 Human-readable description of the NS instance to be

created.

6.5.2.10 Type: NsInstance

This type represents a response for Query NS operation. It shall comply with the provisions defined in Table 6.5.2.10-1.

Table 6.5.2.10-1: Definition of the NsInstance data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of the NS instance.
nsInstanceName String 1 Human readable name of the NS instance.
nsInstanceDescription String 1 Human readable description of the NS instance.
nsdId Identifier 1 Identifier of the NSD on which the NS instance is

based.
nsdInfoId Identifier 1 Identifier of the NSD information object on which the

NS instance is based. This identifier was allocated by
the NFVO.

flavourId IdentifierInNsd 0..1 Identifier of the NS deployment flavour applied to the
NS instance.
This attribute shall be present if the nsState attribute
value is INSTANTIATED.

vnfInstance VnfInstance 0..N Information on constituent VNF(s) of the NS instance.
See note.

pnfInfo PnfInfo 0..N Information on the PNF(s) that are part of the NS
instance.

virtualLinkInfo NsVirtualLinkInfo 0..N Information on the VL(s) of the NS instance.
This attribute shall be present if the nsState attribute
value is INSTANTIATED and if the NS instance has
specified connectivity.

vnffgInfo VnffgInfo 0..N Information on the VNFFG(s) of the NS instance.
sapInfo SapInfo 0..N Information on the SAP(s) of the NS instance.
nestedNsInstanceId Identifier 0..N Identifier of the nested NS(s) of the NS instance.

See note.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)157

Attribute name Data type Cardinality Description
nsState Enum (inlined) 1 The state of the NS instance.

Permitted values:
NOT_INSTANTIATED: The NS instance is
terminated or not instantiated.
INSTANTIATED: The NS instance is instantiated.

monitoringParameter NsMonitoringParame
ter

0..N Performance metrics tracked by the NFVO (e.g. for
auto-scaling purposes) as identified by the NS
designer in the NSD.

nsScaleStatus NsScaleInfo 0..N Status of each NS scaling aspect declared in the
applicable DF, how "big" the NS instance has been
scaled w.r.t. that aspect.
This attribute shall be present if the nsState attribute
value is INSTANTIATED.

additionalAffinityOrAntiAffinit
yRule

AffinityOrAntiAffinity
Rule

0..N Information on the additional affinity or anti-affinity
rule from NS instantiation operation. Shall not conflict
with rules already specified in the NSD.

_links Structure (inlined) 1 Links to resources related to this resource.
>self Link 1 URI of this resource.
>nestedNsInstances Link 0..N Links to the nested NS instances of the present NS

instance.
>instantiate Link 0..1 Link to the "instantiate" task resource, if the related

operation is possible based on the current status of
this NS instance resource (i.e. NS instance in
NOT_INSTANTIATED state).

>terminate Link 0..1 Link to the "terminate" task resource, if the related
operation is possible based on the current status of
this NS instance resource (i.e. NS instance is in
INSTANTIATED state).

>update Link 0..1 Link to the "update" task resource, if the related
operation is possible based on the current status of
this NS instance resource (i.e. NS instance is in
INSTANTIATED state).

>scale Link 0..1 Link to the "scale" task resource, if the related
operation is supported for this NS instance, and is
possible based on the current status of this NS
instance resource (i.e. NS instance is in
INSTANTIATED state).

>heal Link 0..1 Link to the "heal" task resource, if the related
operation is supported for this NS instance, and is
possible based on the current status of this NS
instance resource (i.e. NS instance is in
INSTANTIATED state).

NOTE: If the "nsState" attribute is INSTANTIATED, at least either one "vnfInstance" attribute or one
"nestedNsInstanceId" attribute shall be present.

6.5.2.11 Type: InstantiateNsRequest

This operation supports the instantiation of a NS instance. It shall comply with the provisions defined in
Table 6.5.2.11-1.

Table 6.5.2.11-1: Definition of the InstantiateNsRequest data type

Attribute name Data type Cardinality Description
nsFlavourId IdentifierInNsd 1 Identifier of the NS deployment flavour to be instantiated.
sapData SapData 0..N Create data concerning the SAPs of this NS.
addpnfData AddPnfData 0..N Information on the PNF(s) that are part of this NS.
vnfInstanceData VnfInstanceData 0..N Specify an existing VNF instance to be used in the NS. If

needed, the VNF Profile to be used for this VNF instance
is also provided. See note 1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)158

Attribute name Data type Cardinality Description
nestedNsInstanceData NestedNsInstanc

eDatat
0..N Specify an existing NS instance to be used as a nested

NS within the NS. If needed, the NS Profile to be used for
this nested NS instance is also provided. See notes 2
and 3.

localizationLanguage VnfLocationConst
raint

0..N Defines the location constraints for the VNF to be
instantiated as part of the NS instantiation.
An example can be a constraint for the VNF to be in a
specific geographic location.

additionalParamsForNs KeyValuePairs 0..1 Allows the OSS/BSS to provide additional parameter(s)
at the composite NS level (as opposed to the VNF level,
which is covered in additionalParamsForVnf), and as
opposed to the nested NS level, which is covered in
additionalParamForNestedNs.

additionalParamForNeste
dNs

ParamsForNeste
dNs

0..N Allows the OSS/BSS to provide additional parameter(s)
per nested NS instance (as opposed to the composite NS
level, which is covered in additionalParamForNs, and as
opposed to the VNF level, which is covered in
additionalParamForVnf). This is for nested NS instances
that are to be created by the NFVO as part of the NS
instantiation and not for existing nested NS instances that
are referenced for reuse.

additionalParamsForVnf ParamsForVnf 0..N Allows the OSS/BSS to provide additional parameter(s)
per VNF instance (as opposed to the composite NS level,
which is covered in additionalParamsForNs), and as
opposed to the nested NS level, which is covered in
additionalParamForNestedNs). This is for VNFs that are
to be created by the NFVO as part of the NS instantiation
and not for existing VNF that are referenced for reuse.

startTime DateTime 0..1 Timestamp indicating the earliest time to instantiate the
NS. Cardinality "0" indicates the NS instantiation takes
place immediately.

nsInstantiationLevelId IdentifierInNsd 0..1 Identifies one of the NS instantiation levels declared in
the DF applicable to this NS instance. If not present, the
default NS instantiation level as declared in the NSD
shall be used.

additionalAffinityOrAntiAffi
nityRule

AffinityOrAntiAffin
ityRule

0..N Specifies additional affinity or anti-affinity constraint for
the VNF instances to be instantiated as part of the NS
instantiation.
Shall not conflict with rules already specified in the NSD.

NOTE 1: The DF of the VNF instance shall match the VNF DF present in the associated VNF Profile.
NOTE 2: The NS DF of each nested NS shall be one of the allowed flavours in the associated NSD (as referenced in the

nestedNsd attribute of the NSD of the NS to be instantiated).
NOTE 3: The NSD of each referenced NSs (i.e. each nestedInstanceId) shall match the one of the nested NSD in the

composite NSD.

6.5.2.12 Type: UpdateNsRequest

This operation supports the update of a NS instance. It shall comply with the provisions defined in Table 6.5.2.12-1.

Table 6.5.2.12-1: Definition of the UpdateNsRequest data type

Attribute name Data type Cardinality Description
updateType Enum (inlined) 1 The type of update. It determines also which one of the

following parameters is present in the operation. Possible
values include:

- ADD_VNF: Adding existing VNF instance(s)
- REMOVE_VNF: Removing VNF instance(s)
- INSTANTIATE_VNF: Instantiating new VNF(s)
- CHANGE_VNF_DF: Changing VNF DF
- OPERATE_VNF: Changing VNF state
- MODIFY_VNF_INFORMATION: Modifying VNF

information and/or the configurable properties of
VNF instance(s)

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)159

Attribute name Data type Cardinality Description
- CHANGE_EXTERNAL_VNF_CONNECTIVITY:

Changing the external connectivity of VNF
instance(s)ADD_SAP: Adding SAP(s)

- REMOVE_SAP: Removing SAP(s)
- ADD_NESTED_NS: Adding existing NS

instance(s) as nested NS(s)
- REMOVE_NESTED_NS: Removing existing

nested NS instance(s)
- ASSOC_NEW_NSD_VERSION: Associating a

new NSD version to the NS instance
- MOVE_VNF: Moving VNF instance(s) from one

origin NS instance to another target NS instance
- ADD_VNFFG: Adding VNFFG(s)
- REMOVE_VNFFG: Removing VNFFG(s)
- UPDATE_VNFFG: Updating VNFFG(s)
- CHANGE_NS_DF: Changing NS DF
- ADD_PNF: Adding PNF
- MODIFY_PNF: Modifying PNF
- REMOVE_PNF: Removing PNF

addVnfIstance VnfInstanceData 0..N Identifies an existing VNF instance to be added to the NS
instance. It shall be present only if updateType =
"ADD_VNF".

removeVnfInstanceI
d

Identifier 0..N Identifies an existing VNF instance to be removed from
the NS instance. It contains the identifier(s) of the VNF
instances to be removed. It shall be present only if
updateType = "REMOVE_VNF." Note: If a VNF instance
is removed from a NS and this NS was the last one for
which this VNF instance was a part, the VNF instance is
terminated by the NFVO.

instantiateVnfData InstantiateVnfData 0..N Identifies the new VNF to be instantiated. It can be used
e.g. for the bottom-up NS creation. It shall be present
only if updateType = "INSTANTIATE_VNF".

changeVnfFlavourD
ata

ChangeVnfFlavourData 0..N Identifies the new DF of the VNF instance to be changed
to. It shall be present only if updateType =
"CHANGE_VNF_DF".

operateVnfData OperateVnfData 0..N Identifies the state of the VNF instance to be changed. It
shall be present only if updateType = "OPERATE_VNF".

modifyVnfInfoData ModifyVnfInfoData 0..N Identifies the VNF information parameters and/or the
configurable properties of VNF instance to be modified. It
shall be present only if updateType =
"MODIFY_VNF_INFORMATION".

changeExtVnfConne
ctivityData

ChangeExtVnfConnectiv
ityData

0..N Specifies the new external connectivity data of the VNF
instance to be changed. It shall be present only if
updateType =
"CHANGE_EXTERNAL_VNF_CONNECTIVITY".

addSap SapData 0..N Identifies a new SAP to be added to the NS instance.
It shall be present only if updateType = "ADD_SAP."

removeSapId Identifier 0..N The identifier an existing SAP to be removed from the NS
instance. It shall be present only if updateType =
"REMOVE_SAP."

addNestedNsData NestedNsInstanceData 0..N The identifier of an existing nested NS instance to be
added to (nested within) the NS instance. It shall be
present only if updateType = "ADD_NESTED_NS".

removeNestedNsId IdentiferInNs 0..N The identifier of an existing nested NS instance to be
removed from the NS instance. It shall be present only if
updateType = "REMOVE_NESTED_NS".

assocNewNsdVersio
nData

AssocNewNsdVersionD
ata

0..1 Specify the new NSD to be used for the NS instance. It
shall be present only if updateType =
ASSOC_NEW_NSD_VERSION".

moveVnfInstanceDat
a

MoveVnfInstanceData 0..N Specify existing VNF instance to be moved from one NS
instance to another NS instance. It shall be present only
if updateType = MOVE_VNF".

addVnffg AddVnffgData 0..N Specify the new VNFFG to be created to the NS
Instance. It shall be present only if updateType =
"ADD_VNFFG".

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)160

Attribute name Data type Cardinality Description
removeVnffgId Identifier 0..N Identifier of an existing VNFFG to be removed from the

NS Instance. It shall be present only if updateType =
"REMOVE_VNFFG".

updateVnffg UpdateVnffgData 0..N Specify the new VNFFG Information data to be updated
for a VNFFG of the NS Instance. It shall be present only
if updateType = "UPDATE_VNFFG".

changeNsFlavourDa
ta

ChangeNsFlavourData 0..1 Specifies the new DF to be applied to the NS instance. It
shall be present only if updateType =
"CHANGE_NS_DF".

addPnfData AddPnfData 0..N Specifies the PNF to be added into the NS instance. It
shall be present only if updateType = "ADD_PNF".

modifyPnfData ModifyPnfData 0..N Specifies the PNF to be modified in the NS instance. It
shall be present only if updateType = "MODIFY_PNF".

removePnfId Identifier 0..N Identifier of the PNF to be deleted from the NS instance.
It shall be present only if updateType = "REMOVE_PNF".

updateTime DateTime 0..1 Timestamp indicating the update time of the NS, i.e. the
NS will be updated at this timestamp. Cardinality "0"
indicates the NS update takes place immediately.

6.5.2.13 Type: HealNsRequest

This operation supports the healing of an NS instance, either by healing the complete NS instance or by healing one of
more of the VNF instances that are part of this NS. It shall comply with the provisions defined in Table 6.5.2.13-1.

Table 6.5.2.13-1: Definition of the HealNsRequest data type

Attribute name Data type Cardinality Description
healNsData HealNsData 0..1 Provides the information needed to heal an NS. See

note.
healVnfData HealVnfData 0..N Provides the information needed to heal a VNF. See

note.
NOTE: Either the parameter healNsData or the parameter healVnfData, but not both shall be provided.

6.5.2.14 Type: ScaleNsRequest

This type represents a request for the scale NS operation. It shall comply with the provisions defined in
Table 6.5.2.14-1.

Table 6.5.2.14-1: Definition of the ScaleNsRequest data type

Attribute name Data type Cardinality Description
scaleType Enum (inlined) 1 Indicates the type of scaling to be performed. Possible

values:
- SCALE_NS
- SCALE_VNF

scaleNsData ScaleNsData 0..1 The necessary information to scale the referenced NS
instance.
It shall be present when scaleType = SCALE_NS. See
note.

scaleVnfData ScaleVnfData 0..N The necessary information to scale the referenced NS
instance.
It shall be present when scaleType = SCALE_VNF. See
note.

scaleTime DateTime 0..1 Timestamp indicating the scale time of the NS, i.e. the
NS will be scaled at this timestamp. Cardinality "0"
indicates the NS scaling takes place immediately.

NOTE: Either the parameter scaleNsData or the parameter scaleVnfData, but not both shall be provided.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)161

6.5.2.15 Type: TerminateNsRequest

This type represents a NS termination request. It shall comply with the provisions defined in Table 6.5.2.15-1.

Table 6.5.2.15-1: Definition of the TerminateNsRequest data type

Attribute name Data type Cardinality Description
terminationTime DateTime 0..1 Timestamp indicating the end time of the NS, i.e. the NS

will be terminated automatically at this timestamp.
Cardinality "0" indicates the NS termination takes place
immediately.

6.5.2.16 Type: CancelMode

This type represents a parameter to select the mode of cancelling an ongoing NS LCM operation occurrence. It shall
comply with the provisions defined in Table 6.5.2.16-1.

Table 6.5.2.16-1: Definition of the CancelMode data type

Attribute name Data type Cardinality Description
cancelMode CancelModeType 1 Cancellation mode to apply.

6.5.3 Referenced structured data types

6.5.3.1 Introduction

This clause defines data structures that can be referenced from data structures defined in the previous clauses, but can
neither be resource representations nor bound to any subscribe/notify mechanism.

6.5.3.2 Type: AffectedVnf

This type provides information about added, deleted and modified VNFs. It shall comply with the provisions in
Table 6.5.3.2-1.

Table 6.5.3.2-1: Definition of the AffectedVnf data type

Attribute name Data type Cardinality Description
vnfInstanceId Identifier 1 Identifier of the VNF instance.
vnfdId Identifier 1 Identifier of the VNFD of the VNF Instance.
vnfProfileId IdentifierInNsd 1 Identifier of the VNF profile of the NSD.
vnfName String 1 Name of the VNF Instance.
changeType Enum (inline) 1 Signals the type of change

Permitted values:

- ADD
- REMOVE
- INSTANTIATE
- TERMINATE
- SCALE
- CHANGE_FLAVOUR
- HEAL
- OPERATE
- MODIFY_INFORMATION
- CHANGE_EXTERNAL_VNF_CONNE

CTIVITY

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)162

Attribute name Data type Cardinality Description
changeResult Enum (inline) 1 Signals the result of change identified by the

"changeType" attribute.

Permitted values:

- COMPLETED
- ROLLED_BACK
- FAILED

changedInfo Structure (inline) 0..1 Information about the changed VNF instance
information, including VNF configurable
properties, if applicable.

>changedVnfInfo ModifyVnfInfoData 0..1 Information about the changed VNF instance
information, including configurable properties, if
applicable. See note.

>changedExtConnectivity ExtVirtualLinkInfo 0..N Information about changed external
connectivity, if applicable. See note.

NOTE: When the "changedInfo" attribute is present, either the "changedVnfInfo" attribute or the
"changedExtConnectivity" attribute or both shall be present.

6.5.3.3 Type: AffectedPnf

This type provides information about added, deleted and modified PNFs. It shall comply with the provisions in
Table 6.5.3.3-1.

Table 6.5.3.3-1: Definition of the AffectedPnf data type

Attribute name Data type Cardinality Description
pnfId Identifier 1 Identifier of the affected PNF. This identifier is

allocated by the OSS/BSS.
pnfdId IdentifierInNsd 1 Identifier of the PNFD on which the PNF is

based.
pnfProfileId IdentifierInNsd 1 Identifier of the PNF profile of the NSD.
pnfName String 1 Name of the PNF.
cpInstanceId IdentifierInPnf 1..N Identifier of the CP in the scope of the PNF.
changeType Enum (inline) 1 Signals the type of change.

Permitted values:

- ADD
- REMOVE
- MODIFY

changeResult Enum (inline) 1 Signals the result of change identified by the
"changeType" attribute.

Permitted values:

- COMPLETED
- ROLLED_BACK
- FAILED

6.5.3.4 Type: AffectedVirtualLink

This type provides information about added, deleted and modified VLs. It shall comply with the provisions in
Table 6.5.3.4-1.

Table 6.5.3.4-1: Definition of the AffectedVirtualLink data type

Attribute name Data type Cardinality Description
nsVirtualLinkInstanceId IdentifierInNs 1 Identifier of the VL Instance.
nsVirtualLinkDescId IdentifierInNsd 1 Identifier of the VLD in the NSD for this VL.
vlProfileId IdentifierInNsd 1 Name of the VL profile.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)163

Attribute name Data type Cardinality Description
changeType Enum (inline) 1 Signals the type of change.

Permitted values:

- ADD
- DELETE
- MODIFY
- ADD_LINK_PORT
- REMOVE_LINK_PORT

changeResult Enum (inline) 1 Signals the result of change identified by the
"changeType" attribute.

Permitted values:

- COMPLETED
- ROLLED_BACK
- FAILED

6.5.3.5 Type: AffectedVnffg

This type provides information about added, deleted and modified VNFFG instances. It shall comply with the
provisions in Table 6.5.3.5-1.

Table 6.5.3.5-1: Definition of the AffectedVnffg data type

Attribute name Data type Cardinality Description
vnffgInstanceId IdentifierInNs 1 Identifier of the VNFFG instance.
vnffgdId IdentifierInNsd 1 Identifier of the VNFFGD of the VNFFG

instance.
changeType Enum (inline) 1 Signals the type of lifecycle change.

Permitted values:

- ADD
- REMOVE
- MODIFY

changeResult Enum (inline) 1 Signals the result of change identified by the
"changeType" attribute.

Permitted values:

- COMPLETED
- ROLLED_BACK
- FAILED

6.5.3.6 Type: AffectedNs

This type provides information about added, deleted and modified nested NSs. It shall comply with the provisions in
Table 6.5.3.6-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)164

Table 6.5.3.6-1: Definition of the AffectedNs data type

Attribute name Data type Cardinality Description
nsInstanceId Identifier 1 Identifier of the nested NS instance.
nsdId Identifier 1 Identifier of the NSD of the nested NS instance.
changeType Enum (inline) 1 Signals the type of lifecycle change.

Permitted values:

- ADD
- REMOVE
- INSTANTIATE
- INSTANTIATE
- SCALE
- UPDATE
- HEAL
- TERMINATE

changeResult Enum (inline) 1 Signals the result of change identified by the
"changeType" attribute.

Permitted values:

- COMPLETED
- ROLLED_BACK
- FAILED
- PARTIALLY_COMPLETED

6.5.3.7 Type: AffectedSap

This type provides information about added, deleted and modified SAP of a NS. It shall comply with the provisions in
Table 6.5.3.7-1.

Table 6.5.3.7-1: Definition of the AffectedSap data type

Attribute name Data type Cardinality Description
sapInstanceId IdentifierInNs 1 Identifier of the SAP instance.
sapdId IdentifierInNsd 1 Identifier of the SAPD for this SAP.
sapName String 1 Human readable name for the SAP.
changeType Enum (inline) 1 Signals the type of lifecycle change.

Permitted values:

- ADD
- REMOVE
- MODIFY

changeResult Enum (inline) 1 Signals the result of change identified by the
"changeType" attribute.

Permitted values:

- COMPLETED
- ROLLED_BACK
- FAILED

6.5.3.8 Type: LifecycleChangeNotificationsFilter

This type represents a subscription filter related to notifications about NS lifecycle changes. It shall comply with the
provisions defined in Table 6.5.3.8-1.

At a particular nesting level in the filter structure, the following applies: All attributes shall match in order for the filter
to match (logical "and" between different filter attributes). If an attribute is an array, the attribute shall match if at least
one of the values in the array matches (logical "or" between the values of one filter attribute).

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)165

Table 6.5.3.8-1: Definition of the LifecycleChangeNotificationsFilter data type

Attribute name Data type Cardinality Description
nsInstanceSubscriptionFilter NsInstanceSubscription

Filter
0..1 Filter criteria to select NS instances about

which to notify.
notificationTypes Enum (inlined) 0..N Match particular notification types.

Permitted values:
- NsLcmOperationOccurenceNotification
- NsIdentifierCreationNotification
- NsIdentifierDeletionNotification
- NsChangeNotification

See note.
operationTypes NsLcmOpType 0..N Match particular NS lifecycle operation types

for the notification of type
NsLcmOperationOccurrenceNotification.

May be present if the "notificationTypes"
attribute contains the value
"NsLcmOperationOccurrenceNotification",
and shall be absent otherwise.

operationStates LcmOperationStateTyp
e

0..N Match particular LCM operation state values
as reported in notifications of type
NsLcmOperationOccurrenceNotification.

May be present if the "notificationTypes"
attribute contains the value
"NsLcmOperationOccurrenceNotification",
and shall be absent otherwise.

nsComponentTypes NsComponentType 0..N Match particular NS component types for the
notification of type NsChangeNotification.

May be present if the "notificationTypes"
attribute contains the value
"NsChangeNotification", and shall be absent
otherwise.

lcmOpNameImpactingNsCom
ponent

LcmOpNameForChang
eNotificationType

0..N Match particular LCM operation names for the
notification of type NsChangeNotification.

May be present if the "notificationTypes"
attribute contains the value
"NsChangeNotification", and shall be absent
otherwise.

lcmOpOccStatusImpactingNs
Component

LcmOpOccStatusForC
hangeNotificationType

0..N Match particular LCM operation status values
as reported in notifications of type
NsChangeNotification.

May be present if the "notificationTypes"
attribute contains the value
"NsChangeNotification", and shall be absent
otherwise.

NOTE: The permitted values of the "notificationTypes" attribute are spelled exactly as the names of the notification
types to facilitate automated code generation systems.

6.5.3.9 Type: LccnLinks

This type represents the links to resources that a notification can contain. It shall comply with the provisions defined in
Table 6.5.3.9-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)166

Table 6.5.3.9-1: Definition of the LccnLinks data type

Attribute name Data type Cardinality Description
nsInstance NotificationLink 1 Link to the resource representing the NS instance to

which the notified change applies.
subscription NotificationLink 1 Link to the subscription that triggered this notification.
nslcmOpOcc NotificationLink 0..1 Link to the lifecycle operation occurrence that this

notification is related to. Shall be present if there is a
related lifecycle operation occurrence.

6.5.3.10 Type: SapData

This type represents the information related to a SAP of a NS. It shall comply with the provisions defined in
Table 6.5.3.10-1.

Table 6.5.3.10-1: Definition of the SapData data type

Attribute name Data type Cardinality Description
sapdId IdentifierInNsd 1 Reference to the SAPD for this SAP.
sapName String 1 Human readable name for the SAP.
description String 1 Human readable description for the SAP.
sapProtocolData CpProtocolData 0..N Parameters for configuring the network protocols on the

SAP.

6.5.3.11 Type: CpProtocolData

This type represents network protocol data. It shall comply with the provisions defined in Table 6.5.3.11-1.

Table 6.5.3.11-1: Definition of the CpProtocolData data type

Attribute name Data type Cardinality Description
layerProtocol Enum (inlined) 1 Identifier of layer(s) and protocol(s).

Permitted values: IP_OVER_ETHERNET

See note.

ipOverEthernet IpOverEthernetAddressData 0..1 Network address data for IP over Ethernet to
assign to the extCP instance. Shall be
present if layerProtocol is equal to
"IP_OVER_ETHERNET", and shall be
absent otherwise.

NOTE: This attribute allows to signal the addition of further types of layer and protocol in future versions of the
present document in a backwards-compatible way. In the current version of the present document, only IP
over Ethernet is supported.

6.5.3.12 Type: IpOverEthernetAddressData

This type represents network address data for IP over Ethernet. It shall comply with the provisions defined in
Table 6.5.3.12-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)167

Table 6.5.3.12-1: Definition of the IpOverEthernetAddressData data type

Attribute name Data type Cardinality Description
macAddress MacAddress 0..1 MAC address. If this attribute is not present, it

shall be chosen by the NFV MANO.
See note 1.

ipAddresses Structure (inlined) 0..N List of IP addresses to assign to the extCP
instance. Each entry represents IP address
data for fixed or dynamic IP address
assignment per subnet.

If this attribute is not present, no IP address
shall be assigned. See note 1.

>type Enum (inlined) 1 The type of the IP addresses.

Permitted values: IPV4, IPV6.

>fixedAddresses IpAddress 0..N Fixed addresses to assign (from the subnet
defined by "subnetId" if provided). See note 2.

>numDynamicAddresses Integer 0..1 Number of dynamic addresses to assign (from
the subnet defined by "subnetId" if provided).
See note 2.

>addressRange Structure (inlined) 0..1 An IP address range to be used, e.g. in case of
egress connections.

In case this attribute is present, IP addresses
from the range will be used. See note 2.

>>minAddress IpAddress 1 Lowest IP address belonging to the range.
>>maxAddress IpAddress 1 Highest IP address belonging to the range.
>subnetId IdentifierInVim 0..1 Subnet defined by the identifier of the subnet

resource in the VIM.

In case this attribute is present, IP addresses
from that subnet will be assigned; otherwise,
IP addresses not bound to a subnet will be
assigned.

NOTE 1: At least one of "macAddress" or "ipAddresses" shall be present.
NOTE 2: Exactly one of "fixedAddresses", "numDynamicAddresses" or "ipAddressRange" shall be present.

6.5.3.13 Type: PnfInfo

This type represents the information about a PNF that is part of an NS instance. It shall comply with the provisions
defined in Table 6.5.3.13-1.

Table 6.5.3.13-1: Definition of the PnfInfo data type

Attribute name Data type Cardinality Description
pnfId Identifier 1 Identifier of the PNF. This identifier is allocated by the

OSS/BSS.
pnfName String 1 Name of the PNF.
pnfdId Identifier 1 Identifier of the PNFD on which the PNF is based.
pnfdInfoId Identifier 1 Identifier of the PNFD information object related to this

PNF. This identifier is allocated by the NFVO.
pnfProfileId IdentifierInNsd 1 Identifier of the related PnfProfile in the NSD on which

the PNF is based.
cpInfo PnfExtCpInfo 1..N Information on the external CP of the PNF.

6.5.3.14 Type: AddPnfData

This type specifies an PNF to be added to the NS instance and the PNF Profile to use for this PNF. It shall comply with
the provisions defined in Table 6.5.3.14-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)168

Table 6.5.3.14-1: Definition of the AddPnfData data type

Attribute name Data type Cardinality Description
pnfId Identifier 1 Identifier of the PNF. This identifier is allocated by the

OSS/BSS.
pnfName String 1 Name of the PNF.
pnfdId Identifier 1 Identifier of the PNFD on which the PNF is based.
pnfProfileId IdentifierInNsd 1 Identifier of related PnfProfile in the NSD on which the

PNF is based.
cpData PnfExtCpData 0..N Address assigned for the PNF external CP(s).

6.5.3.15 Type: ModifyPnfData

This type specifies an PNF to be modified in the NS instance. It shall comply with the provisions defined in
Table 6.5.3.15-1.

Table 6.5.3.15-1: Definition of the ModifyPnfData data type

Attribute name Data type Cardinality Description

pnfId Identifier 1 Identifier of the PNF. This identifier is allocated by the
OSS/BSS.

pnfName String 0..1 Name of the PNF. See note.
cpData PnfExtCpData 0..N Address assigned for the PNF external CP(s). See note.
NOTE: At least one attribute shall be present.

6.5.3.16 Type: PnfExtCpData

This type represents the configuration data on the external CP of the PNF. It shall comply with the provisions defined in
Table 6.5.3.16-1.

Table 6.5.3.16-1: Definition of the PnfExtCpData data type

Attribute name Data type Cardinality Description
cpInstanceI16 IdentifierInPnf 0..1 Identifier of the CP. Shall be present for existing CP.
cpdId IdentifierInNsd 0..1 Identifier of the Connection Point Descriptor (CPD) for

this CP. Shall be present for new CP.
cpProtocolData CpProtocolData 1..N Address assigned for this CP.

6.5.3.17 Type: PnfExtCpInfo

This type represents the information about the external CP of the PNF. It shall comply with the provisions defined in
Table 6.5.3.17-1.

Table 6.5.3.17-1: Definition of the PnfExtCpInfo data type

Attribute name Data type Cardinality Description
cpInstanceId IdentifierInPnf 1 Identifier of the CP in the scope of the PNF.
cpdId IdentifierInNsd 1 Identifier of (reference to) the Connection Point

Descriptor (CPD) for this CP.
cpProtocolData cpProtocolData 1..N Parameters for configuring the network protocols on the

CP.

6.5.3.18 Type: IpOverEthernetAddressInfo

This type represents information about a network address that has been assigned. It shall comply with the provisions
defined in Table 6.5.3.18-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)169

Table 6.5.3.18-1: Definition of the IpOverEthernetAddressInfo data type

Attribute name Data type Cardinality Description
macAddress MacAddress 0..1 Assigned MAC address.
ipAddresses Structure (inlined) 0..N Addresses assigned to the CP or SAP

instance. Each entry represents IP addresses
assigned by fixed or dynamic IP address
assignment per subnet.

>type Enum (inlined) 1 The type of the IP addresses.

Permitted values: IPV4, IPV6.

>addresses IpAddress 0..N Fixed addresses assigned (from the subnet
defined by "subnetId" if provided). See note.

>isDynamic Boolean 0..1 Indicates whether this set of addresses was
assigned dynamically (true) or based on
address information provided as input from the
API consumer (false). Shall be present if
"addresses" is present and shall be absent
otherwise.

>addressRange Structure (inlined) 0..1 An IP address range used, e.g. in case of
egress connections. See note.

>>minAddress IpAddress 1 Lowest IP address belonging to the range
>>maxAddress IpAddress 1 Highest IP address belonging to the range
>subnetId IdentifierInVim 0..1 Subnet defined by the identifier of the subnet

resource in the VIM.

In case this attribute is present, IP addresses
are bound to that subnet.

NOTE: Exactly one of "addresses" or "addressRange" shall be present.

6.5.3.19 Type: VnfInstanceData

This type specifies an existing VNF instance to be used in the NS instance and if needed, the VNF Profile to use for this
VNF instance. It shall comply with the provisions defined in Table 6.5.3.19-1.

Table 6.5.3.19-1: Definition of the VnfInstanceData data type

Attribute name Data type Cardinality Description
vnfInstanceId Identifier 1 Identifier of the existing VNF instance to be used in the

NS.
vnfProfileId IdentifierInNsd 0..1 Identifier of (Reference to) a vnfProfile defined in the

NSD which the existing VNF instance shall be matched
with. If not present, the NFVO will select the VnfProfile
matching the information in the VNF instance.

6.5.3.19a Type: NestedNsInstanceData

This type specifies an existing nested NS instance to be used in the NS instance and if needed, the NsProfile to use for
this nested NS instance. It shall comply with the provisions defined in Table 6.5.3.19a-1.

Table 6.5.3.19a-1: Definition of the NestedNsInstanceData data type

Attribute name Data type Cardinality Description
nestedNsInstanceId Identifier 1 Identifier of the existing nested NS instance to be used in

the NS.
nsProfileId IdentifierInNsd 0..1 Identifier of an NsProfile defined in the NSD which the

existing nested NS instance shall be matched with.
If not present, the NFVO will select the NsProfile
matching the information in the nested NS instance.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)170

6.5.3.20 Type: VnfLocationConstraint

This type represents the association of location constraints to a VNF instance to be created according to a specific VNF
profile. It shall comply with the provisions defined in Table 6.5.3.20-1.

Table 6.5.3.20-1: Definition of the VnfLocationConstraint data type

Attribute name Data type Cardinality Description
vnfProfileId IdentifierInNsd 1 Identifier (reference to) of a VnfProfile in the NSD used to

manage the lifecycle of the VNF instance.
locationConstraints LocationConstraints 1 Defines the location constraints for the VNF instance to

be created based on the VNF profile.

See note.

NOTE: These constraints are typically determined by the OSS from service requirements (e.g. latency requirements,
regulatory requirements). The NFVO can map such location constraints to eligible NFVI-PoPs/ resource zones
where the VNF instance is to be created.

6.5.3.21 Type: LocationConstraints

This type represents location constraints for a VNF to be instantiated. The location constraints shall be presented as a
country code, optionally followed by a civic address based on the format defined by IETF RFC 4776 [13]. The
LocationConstraints data type shall comply with the provisions defined in Table 6.5.3.21-1.

Table 6.5.3.21-1: Definition of the LocationConstraints data type

Attribute name Data type Cardinality Description
countryCode String 1 The two-letter ISO 3166 [29] country code in capital

letters.
civicAddressElement Structure (inlined) 0..N Zero or more elements comprising the civic address.
>caType Integer 1 Describe the content type of caValue. The value of

caType shall comply with Section 3.4 of IETF
RFC 4776 [13].

>caValue String 1 Content of civic address element corresponding to the
caType. The format caValue shall comply with
section 3.4 of IETF RFC 4776 [13].

6.5.3.21a Type: ParamsForNestedNs

This type specifies additional parameters on a per-nested NS instance basis. It shall comply with the provisions defined
in Table 6.5.3.21a-1.

Table 6.5.3.21a-1: Definition of the ParamsForNestedNs data type

Attribute name Data type Cardinality Description
nsProfileId IdentifierInNsd 1 Identifier of a NsProfile to which the additional

parameters apply.
additionalParam KeyValuePairs 0..N Additional parameters that are to be applied on a per

nested NS instance.

6.5.3.22 Type: ParamsForVnf

This type defines the additional parameters for the VNF instance to be created associated with an NS instance. It shall
comply with the provisions defined in Table 6.5.3.22-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)171

Table 6.5.3.22-1: Definition of the ParamsForVnf data type

Attribute name Data type Cardinality Description
vnfProfileId IdentifierInNsd 1 Identifier of (reference to) a vnfProfile to which the

additional parameters apply.
additionalParams KeyValuePairs 0..1 Additional parameters that are applied for the VNF

instance to be created.

6.5.3.23 Type: AffinityOrAntiAffinityRule

This type describes the additional affinity or anti-affinity rule applicable between the VNF instances to be instantiated
in the NS instantiation operation request or between the VNF instances to be instantiated in the NS instantiation
operation request and the existing VNF instances. It shall comply with the provisions defined in Table 6.5.3.23-1.

Table 6.5.3.23-1: Definition of the AffinityOrAntiAffinityRule data type

Attribute name Data type Cardinality Description
vnfdId Identifier 0..N Reference to a VNFD.

When the VNFD which is not used to instantiate VNF, it
presents all VNF instances of this type as the subjects of
the affinity or anti-affinity rule. The VNF instance which
the VNFD presents is not necessary as a part of the NS
to be instantiated.

vnfProfileId IdentifierInNsd 1..N Reference to a vnfProfile defined in the NSD.
At least one VnfProfile which is used to instantiate VNF
for the NS to be instantiated as the subject of the affinity
or anti-affinity rule shall be present. When the VnfProfile
which is not used to instantiate VNF, it presents all VNF
instances of this type as the subjects of the affinity or
anti-affinity rule. The VNF instance which the VnfProfile
presents is not necessary as a part of the NS to be
instantiated.

vnfInstanceId Identifier 0..N Reference to the existing VNF instance as the subject of
the affinity or anti-affinity rule. The existing VNF instance
is not necessary as a part of the NS to be instantiated.

affinityOrAntiAffinity Enum (inlined) 1 The type of the constraint.

Permitted values:
AFFINITY
ANTI_AFFINITY

scope Enum (inlined) 1 Specifies the scope of the rule where the placement
constraint applies.

Permitted values:
NFVI_POP
ZONE
ZONE_GROUP
NFVI_NODE

6.5.3.24 Type: InstantiateVnfData

This type represents the information related to a SAP of a NS. The InstantiateVnfData data type specifies the
parameters that are needed for VNF instantiation. This information element is used for the bottom-up NS creation when
the OSS/BSS explicitly requests VNF instantiation for a given NS. When the NFVO invokes the Instantiate VNF
update operation, a set of these parameters are then passed by the NFVO to the VNFM. It shall comply with the
provisions defined in Table 6.5.3.24-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)172

Table 6.5.3.24-1: Definition of the InstantiateVnfData data type

Attribute name Data type Cardinality Description
vnfdId Identifier 1 Information sufficient to identify the VNFD which defines

the VNF to be instantiated.
vnfFlavourId IdentifierInVnfd

1 Identifier of the VNF deployment flavour to be

instantiated.
vnfInstantiationLevel
Id

IdentifierInVnfd 0..1 Identifier of the instantiation level of the deployment
flavour to be instantiated. If not present, the default
instantiation level as declared in the VNFD is
instantiated.

vnfInstanceName String 0..1 Human-readable name of the VNF instance to be
created.

vnfInstanceDescripti
on

String 0..1 Human-readable description of the VNF instance to be
created.

extVirtualLinks ExtVirtualLinkData 0..N Information about external VLs to connect the VNF to.
extManagedVirtualLi
nks

ExtManagedVirtualLink
Data

0..N Information about internal VLs that are managed by other
entities than the VNFM.

localizationLanguag
e

String 0..1 Localization language of the VNF to be instantiated.
The value shall comply with the format defined in IETF
RFC 5646 [16].

additionalParams KeyValuePairs 0..1 Additional input parameters for the instantiation process,
specific to the VNF being instantiated.

6.5.3.25 Type: ChangeVnfFlavourData

The type represents the information that is requested to be changed deployment flavour for an existing VNF instance. It
shall comply with the provisions defined in Table 6.5.3.25-1.

Table 6.5.3.25-1: Definition of the ChangeVnfFlavourData data type

Attribute name Data type Cardinality Description

vnfInstanceId Identifier 1 Identifier of the VNF instance to be modified.
newFlavourId IdentifierInVnfd 1 Identifier of the VNF deployment flavour to be

instantiated.
instantiationLevelId IdentifierInVnfd 0..1 Identifier of the instantiation level of the deployment

flavour to be instantiated. If not present, the default
instantiation level as declared in the VNFD is
instantiated.

extVirtualLinks ExtVirtualLinkData 0..N Information about external VLs to connect the VNF to.
extManagedVirtualLi
nks

ExtManagedVirtualLink
Data

0..N Information about internal VLs that are managed by
NFVO.

additionalParams KeyValuePairs 0..1 Additional input parameters for the flavour change
process, specific to the VNF being modified, as declared
in the VNFD as part of "ChangeVnfFlavourOpConfig".

6.5.3.26 Type: ExtVirtualLinkData

This type represents an external VL. It shall comply with the provisions defined in Table 6.5.3.26-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)173

Table 6.5.3.26-1: Definition of the ExtVirtualLinkData data type

Attribute name Data type Cardinality Description
extVirtualLinkId Identifier 0..1 The identifier of the external VL instance, if provided.
vimId Identifier 0..1 Identifier of the VIM that manages this resource. This

attribute shall only be supported and present if VNF-
related resource management in direct mode is
applicable.

resourceProviderId Identifier 0..1 Identifies the entity responsible for the management of
this resource.
This attribute shall only be supported and present if VNF-
related resource management in indirect mode is
applicable. The identification scheme is outside the
scope of the present document.

resourceId IdentifierInVim 1 The identifier of the resource in the scope of the VIM or
the resource provider.

extCps VnfExtCpData 1..N External CPs of the VNF to be connected to this external
VL.

extLinkPorts ExtLinkPortData 0..N Externally provided link ports to be used to connect
external connection points to this external VL.

6.5.3.27 Type: ExtManagedVirtualLinkData

This type represents an externally-managed internal VL. It shall comply with the provisions defined in Table 6.5.3.27-1.

Table 6.5.3.27-1: Definition of the ExtManagedVirtualLinkData data type

Attribute name Data type Cardinality Description
extManagedVirtualLi
nkId

Identifier 0..1 The identifier of the externally-managed internal VL
instance, if provided.

vmfVirtualLinkDescId IdentifierInVnfd 1 The identifier of the VLD in the VNFD for this VL.
vimId Identifier 0..1 Identifier of the VIM that manage this resource. This

attribute shall only be supported and present if VNF-
related resource management in direct mode is
applicable.

resourceProviderId Identifier 0..1 Identifies the entity responsible for the management of
this resource.
This attribute shall only be supported and present if VNF-
related resource management in indirect mode is
applicable. The identification scheme is outside the
scope of the present document.

resourceId IdentifierInVim 1 The identifier of the resource in the scope of the VIM or
the resource provider.

6.5.3.28 Type: ExtLinkPortData

This type represents an externally provided link port to be used to connect a VNF external connection point to an
external VL. It shall comply with the provisions defined in Table 6.5.3.28-1.

Table 6.5.3.28-1: Definition of the ExtLinkPortData data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this link port as provided by the entity that

has created the link port.
resourceHandle ResourceHandle 1 Reference to the virtualised resource realizing this link

port.

6.5.3.29 Type: VnfExtCpData

This type represents configuration information for external CPs created from a CPD. It shall comply with the provisions
defined in Table 6.5.3.29-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)174

Table 6.5.3.29-1: Definition of the VnfExtCpData data type

Attribute name Data type Cardinality Description
cpdId IdentifierInVnfd 1 The identifier of the CPD in the VNFD.
cpConfig VnfExtCpConfig 1..N List of instance data that need to be configured on

the CP instances created from the respective CPD.

6.5.3.30 Type: VnfExtCpConfig

This type represents an externally provided link port or network address information per instance of a VNF external
connection point. In case a link port is provided, the NFVO shall use that link port when connecting the VNF external
CP to the external VL. In case a link port is not provided, the NFVO or VNFM shall create a link port on the external
VL, and use that link port to connect the VNF external CP to the external VL.

This type shall comply with the provisions defined in Table 6.5.3.30-1.

Table 6.5.3.30-1: Definition of the VnfExtCpConfig data type

Attribute name Data type Cardinality Description
cpInstanceId IdentifierInVnf 0..1 Identifier of the external CP instance to which this set of

configuration parameters is requested to be applied.

Shall be present if this instance has already been
created.

linkPortId Identifier 0..1 Identifier of a pre-configured link port to which the
external CP will be associated. See note.

cpProtocolData CpProtocolData 0..N Parameters for configuring the network protocols on the
link port that connects the CP to a VL. See note.

NOTE: The following conditions apply to the attributes "linkPortId" and "cpProtocolData":
− The "linkPortId" and "cpProtocolData" attributes shall both be absent for the deletion of an existing external

CP instance addressed by cpInstanceId.
− At least one of these attributes shall be present for a to-be-created external CP instance or an existing

external CP instance.

6.5.3.31 Type: OperateVnfData

This type represents a VNF instance for which the operational state needs to be changed and the requested new state. It
shall comply with the provisions defined in Table 6.5.3.31-1.

Table 6.5.3.31-1: Definition of the OperateVnfData data type

Attribute name Data type Cardinality Description
vnfInstanceId Identifier 1 Identifier of the VNF instance.
changeStateTo OperationalStates 1 The desired operational state (i.e. started or stopped) to

change the VNF to.
stopType StopType 0..1 It signals whether forceful or graceful stop is requested.

See note.
gracefulStopTimeout Integer 0..1 The time interval (in seconds) to wait for the VNF to be

taken out of service during graceful stop, before
stopping the VNF. See note.

NOTE: The "stopType" and "gracefulStopTimeout" attributes shall be absent, when the "changeStateTo" attribute is
equal to "STARTED". The "gracefulStopTimeout" attribute shall be present, when the "changeStateTo"
attribute is equal to "STOPPED" and the "stopType" attribute is equal to "GRACEFUL". The
"gracefulStopTimeout" attribute shall be absent, when the "changeStateTo" attribute is equal to "STOPPED"
and the "stopType" attribute is equal to "FORCEFUL". The request shall be treated as if the "stopType"
attribute was set to "FORCEFUL", when the "changeStateTo" attribute is equal to "STOPPED" and the
"stopType" attribute is absent.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)175

6.5.3.32 Type: ModifyVnfInfoData

This type represents the information that is requested to be modified for a VNF instance. The information to be
modified shall comply with the associated NSD.

EXAMPLE: The vnfPkgId attribute value for a particular VNF instance can only be updated with a value that
matches the identifier value of a VNF package whose vnfdId is present in the associated profile of
the NSD.

Thus type shall comply with the provisions defined in Table 6.5.3.32-1.

Table 6.5.3.32-1: Definition of the ModifyVnfInfoData data type

Attribute name Data type Cardinality Description
vnfInstanceId Identifier 1 Identifier of the VNF instance.
vnfInstanceName String 0..1 New value of the "vnfInstanceName" attribute in

"VnfInstance", or "null" to remove the attribute.
vnfInstanceDescriptio
n

String 0..1 New value of the "vnfInstanceDescription" attribute in
"VnfInstance", or "null" to remove the attribute.

vnfPkgId Identifier 0..1 New value of the "vnfPkgId" attribute in "VnfInstance".
The value "null" is not permitted.

vnfConfigurablePrope
rties

KeyValuePairs 0..1 Modifications to entries in the
"vnfConfigurableProperties" list, as defined below this
Table.

Metadata KeyValuePairs 0..1 Modifications to entries in the "metadata" list, as defined
below this Table.

Extensions KeyValuePairs 0..1 Modifications to entries in the "extensions" list, as
defined below this Table.

6.5.3.33 Type: ChangeExtVnfConnectivityData

This type describes the information invoked by the NFVO to change the external VNF connectivity information
maintained by the VNFM. The types of changes that this operation supports are:

1) Disconnect the external CPs that are connected to a particular external VL, and connect them to a different
external VL.

2) Change the connectivity parameters of the existing external CPs, including changing addresses.

NOTE: Depending on the capabilities of the underlying VIM resources, certain changes (e.g. modifying the IP
address assignment) might not be supported without deleting the resource and creating another one with
the modified configuration.

This type shall comply with the provisions defined in Table 6.5.3.33-1.

Table 6.5.3.33-1: Definition of the ChangeExtVnfConnectivityData data type

Attribute name Data type Cardinality Description
vnfInstanceId Identifier 1 Identifier of the VNF instance.
extVirtualLink ExtVirtualLinkData 1..N Information about external VLs to change (e.g. connect

the VNF to).
additionalParams KeyValuePairs 0..1 Additional parameters passed by the OSS as input to the

external connectivity change process, specific to the VNF
instance being changed.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)176

6.5.3.34 Type: AssocNewNsdVersionData

This type specifies a new NSD version that is associated to the NS instance. After issuing the Update NS operation with
updateType = "AssocNewNsdVersion", the NFVO shall use the referred NSD as a basis for the given NS instance.
Different versions of the same NSD have same nsdInvariantId, but different nsdId attributes, therefore if the
nsdInvariantId of the NSD version that is to be associated to this NS instance is different from the one used before, the
NFVO shall reject the request. Only new versions of the same NSD can be associated to an existing NS instance. This
data type shall comply with the provisions defined in Table 6.5.3.34-1.

Table 6.5.3.34-1: Definition of the AssocNewNsdVersionData data type

Attribute name Data type Cardinality Description
newNsdId Identifier 1 Identifier of the new NSD version that is to be associated

to the NS instance.
sync Boolean 0..1 Specify whether the NS instance shall be automatically

synchronized to the new NSD by the NFVO (in case of
true value) or the NFVO shall not do any action (in case
of a false value) and wait for further guidance from
OSS/BSS (i.e. waiting for OSS/BSS to issue NS lifecycle
management operation to explicitly add/remove VNFs
and modify information of VNF instances according to the
new NSD).
The synchronization to the new NSD means e.g.
instantiating/adding those VNFs whose VNFD is
referenced by the new NSD version but not referenced
by the old one, terminating/removing those VNFs whose
VNFD is referenced by the old NSD version but not
referenced by the new NSD version, modifying
information of VNF instances to the new applicable
VNFD provided in the new NSD version.
A cardinality of 0 indicates that synchronization shall not
be done.

6.5.3.35 Type: MoveVnfInstanceData

This type specifies existing VNF instances to be moved from one NS instance (source) to another NS instance
(destination). The NS instance defined in the Update NS operation indicates the source NS instance and the destination
NS instance is specified in this data type (referred to targetNsInstanceId). It shall comply with the provisions defined in
Table 6.5.3.35-1.

Table 6.5.3.35-1: Definition of the MoveVnfInstanceData data type

Attribute name Data type Cardinality Description
targetNsInstanceId Identifier 1 Specify the target NS instance where the VNF instances

are moved to.
vnfInstanceId Identifier 1..N Specify the VNF instance that is moved.

6.5.3.36 Type: AddVnffgData

This type specifies the parameters used for the creation of a new VNFFG instance. It shall comply with the provisions
defined in Table 6.5.3.36-1.

Table 6.5.3.36-1: Definition of the AddVnffgData data type

Attribute name Data type Cardinality Description
vnffgdId IdentifierInNsd 1 Identifier of the VNFFGD used to create this VNFFG

instance.
vnffgName String 1 Human readable name for the VNFFG.
description String 1 Human readable description for the VNFFG.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)177

6.5.3.37 Type: UpdateVnffgData

This type specifies the parameters used for the update of an existing VNFFG instance. It shall comply with the
provisions defined in Table 6.5.3.37-1.

Table 6.5.3.37-1: Definition of the UpdateVnffgData data type

Attribute name Data type Cardinality Description
vnffgInfoId IdentifierInNs 1 Identifier of an existing VNFFG to be updated for the NS

Instance.
nfp NfpData 0..N Indicate the desired new NFP(s) for a given VNFFG after

the operations of addition/removal of NS components
(e.g. VNFs, VLs, etc.) have been completed, or indicate
the updated or newly created NFP classification and
selection rule which applied to an existing NFP.

nfpInfoId IdentifierInNs 0..N Identifier(s) of the NFP to be deleted from a given
VNFFG.

6.5.3.38 Type: NfpData

This type contains information used to create or modify NFP instance parameters for the update of an existing VNFFG
instance. It shall comply with the provisions defined in Table 6.5.3.38-1.

Table 6.5.3.38-1: Definition of the NfpData data type

Attribute name Data type Cardinality Description
nfpInfoId IdentifierInNs 0..1 Identifier of the NFP to be modified. It shall be present for

modified NFPs and shall be absent for the new NFP. See
note 1.

nfpName String

0..1 Human readable name for the NFP. It shall be present for
the new NFP, and it may be present otherwise.
See note 2.

description String 0..1 Human readable description for the NFP. It shall be
present for the new NFP, and it may be present
otherwise. See note 2.

cpGroup CpGroupInfo 0..N Group(s) of CPs and/or SAPs which the NFP passes by.
Cardinality can be 0 if only updated or newly created
NFP classification and selection rule which applied to an
existing NFP is provided. See notes 3 and 4.

nfpRule NfpRule 0..1 NFP classification and selection rule. See note 1.
NOTE 1: It shall be present for modified NFPs and shall be absent for the new NFP.
NOTE 2: It shall be present for the new NFP, and it may be present otherwise.
NOTE 3: At least a CP or an nfpRule shall be present.
NOTE 4: When multiple identifiers are included, the position of the identifier in the cpGroup value specifies the position

of the group in the path.

6.5.3.39 Type: ChangeNsFlavourData

This type specifies an existing NS instance for which the DF needs to be changed. This specifies the new DF, the
instantiationLevel of the new DF that may be used and the additional parameters as input for the flavour change. It shall
comply with the provisions defined in Table 6.5.3.39-1.

Table 6.5.3.39-1: Definition of the ChangeNsFlavourData data type

Attribute name Data type Cardinality Description
newNsFlavourId IdentifierInNsd 1 Identifier of the new NS DF to apply to this NS instance.
instantiationLevelId IdentifierInNsd 0..1 Identifier of the instantiation level of the deployment

flavour to be instantiated. If not present, the default
instantiation level as declared in the NSD is instantiated.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)178

6.5.3.40 Type: NfpRule

The NfpRule data type is an expression of the conditions that shall be met in order for the NFP to be applicable to the
packet. The condition acts as a flow classifier and it is met only if all the values expressed in the condition are matched
by those in the packet. It shall comply with the provisions defined in Table 6.5.3.40-1.

Table 6.5.3.40-1: Definition of the NfpRule data type

Attribute name Data type Cardinality Description
etherDestinationAddress MacAddress 0..1 Indicates a destination Mac address

See note.
etherSourceAddress MacAddress 0..1 Indicates a source Mac address

See note.
etherType Enum (inlined) 0..1 Indicates the protocol carried over the Ethernet layer.

Permitted values:
IPV4
IPV6
See note.

vlanTag String 0..N Indicates a VLAN identifier in an IEEE 802.1Q-2014
tag [6]
Multiple tags can be included for QinQ stacking.
See note.

protocol Enum (inlined) 0..1 Indicates the L4 protocol, For IPv4 [7] this
corresponds to the field called "Protocol" to identify
the next level protocol. For IPv6 [28] this corresponds
to the field is called the "Next Header" field.
Permitted values: Any keyword defined in the IANA
protocol registry [1], e.g.:

- TCP
- UDP
- ICMP

See note.
dscp String 0..1 For IPv4 [7] a string of "0" and "1" digits that

corresponds to the 6-bit Differentiated Services Code
Point (DSCP) field of the IP header.
For IPv6 [28] a string of "0" and "1" digits that
corresponds to the 6 differentiated services bits of the
traffic class header field.
See note.

sourcePortRange PortRange 0..1 Indicates a range of source ports.
See note.

destinationPortRange PortRange 0..1 Indicates a range of destination ports.
See note.

sourceIpAddressPrefix IpAddressPrefix 0..1 Indicates the source IP address range in CIDR
format.
See note.

destinationIpAddressPrefix IpAddressPrefix 0..1 Indicates the destination IP address range in CIDR
format.
See note.

extendedCriteria Mask 0..N Indicates values of specific bits in a frame.
See note.

NOTE: At least one attribute shall be present. If multiple attributes are present, a logical "AND" operation shall be
applied to those attributes when matching packets against the rule.

6.5.3.41 Type: Mask

The Mask data type identifies the value to be matched for a sequence of bits at a particular location in a frame. It shall
comply with the provisions defined in Table 6.5.3.41-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)179

Table 6.5.3.41-1: Definition of the Mask data type

Attribute name Data type Cardinality Description
startingPoint Integer 1 Indicates the offset between the last bit of the source

mac address and the first bit of the sequence of bits
to be matched.

length Integer 1 Indicates the number of bits to be matched.
value String 1 Provide the sequence of bit values to be matched.

6.5.3.42 Type: PortRange

The PortRange data type provides the lower and upper bounds of a range of Internet ports. It shall comply with the
provisions defined in Table 6.5.3.42-1.

Table 6.5.3.42-1: Definition of the PortRange data type

Attribute name Data type Cardinality Description
lowerPort Integer 1 Identifies the lower bound of the port range.
upperPort Integer 1 Identifies the upper bound of the port range

6.5.3.43 Type: HealNsData

This type represents the information used to heal a NS. It shall comply with the provisions defined in Table 6.5.3.43-1.

Table 6.5.3.43-1: Definition of the HealNsData data type

Attribute name Data type Cardinality Description
degreeHealing Enum (inlined) 1 Indicates the degree of healing. Possible values

include:
- HEAL_RESTORE: Complete the healing of the

NS restoring the state of the NS before the
failure occurred

- HEAL_QOS: Complete the healing of the NS
based on the newest QoS values

- HEAL_RESET: Complete the healing of the
NS resetting to the original instantiation state
of the NS

- PARTIAL_HEALING
actionsHealing String 0..N Used to specify dedicated healing actions in a particular

order (e.g. as a script). The actionsHealing attribute can
be used to provide a specific script whose content and
actions might only be possible to be derived during
runtime. See note.

healScript IdentifierInNsd 0..1 Reference to a script from the NSD that shall be used to
execute dedicated healing actions in a particular order.
The healScript, since it refers to a script in the NSD, can
be used to execute healing actions which are defined
during NS design time. See note.

additionalParamsfor
Ns

KeyValuePairs 0..1 Allows the OSS/BSS to provide additional parameter(s)
to the healing process at the NS level.

NOTE: Either the actionsHealing or healScript attribute shall be present, not both attributes.

6.5.3.44 Type: HealVnfData

This type represents the information to heal a VNF that is part of an NS. The NFVO shall then invoke the HealVNF
operation towards the appropriate VNFM. It shall comply with the provisions defined in Table 6.5.3.44-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)180

Table 6.5.3.44-1: Definition of the HealVnfData data type

Attribute name Data type Cardinality Description
vnfInstanceId Identifier 1 Identifies the VNF instance, part of the NS, requiring a

healing action.
cause String 0..1 Indicates the reason why a healing procedure is required.
additionalParams KeyValuePairs 0..1 Additional parameters passed by the NFVO as input to

the healing process, specific to the VNF being healed.
EXAMPLE: Input parameters to VNF-specific

healing procedures.

6.5.3.45 Type: ScaleNsData

This type represents the information to scale a NS. It shall comply with the provisions defined in Table 6.5.3.45-1.

Table 6.5.3.45-1: Definition of the ScaleNsData data type

Attribute name Data type Cardinality Description
vnfInstanceToBeAdded VnfInstanceData 0..N An existing VNF instance to be added to the NS

instance as part of the scaling operation. If
needed, the VNF Profile to be used for this VNF
instance may also be provided.
See notes 1, 2 and 3.

vnfInstanceToBeRemoved Identifier 0..N The VNF instance to be removed from the NS
instance as part of the scaling operation.
See notes 1 and 4.

scaleNsByStepsData ScaleNsByStepsData 0..1 The information used to scale an NS instance by
one or more scaling steps. See note 1.

scaleNsToLevelData ScaleNsToLevelData 0..1 The information used to scale an NS instance to a
target size. See note 1.

additionalParamsForNs KeyValuePairs 0..1 Allows the OSS/BSS to provide additional
parameter(s) at the NS level necessary for the NS
scaling (as opposed to the VNF level, which is
covered in additionalParamForVnf).

additionalParamsForVnf ParamsForVnf 0..N Allows the OSS/BSS to provide additional
parameter(s) per VNF instance (as opposed to the
NS level, which is covered in
additionalParamforNs). This is for VNFs that are to
be created by the NFVO as part of the NS scaling
and not for existing VNF that are covered by the
scaleVnfData.

locationConstraints VnfLocationConstraint 0..N The location constraints for the VNF to be
instantiated as part of the NS scaling.
An example can be a constraint for the VNF to be
in a specific geographic location.

NOTE 1: No more than two attributes between vnfInstanceToBeAdded, vnfInstanceToBeRemoved,
scaleNsByStepsData and scaleNsToLevelData shall be present. In case of two, the attributes shall be
vnfInstanceToBeAdded and vnfInstanceToBeRemoved.

NOTE 2: The DF of the VNF instance shall match the VNF DF present in the associated VNF Profile of the new NS
flavour.

NOTE 3: This functionality is the same as the one provided by the Update NS operation when the AddVnf update type is
selected (see clause 7.3.5).

NOTE 4: This functionality is the same as the one provided by the Update NS operation when the RemoveVnf update
type is selected (see clause 7.3.5).

6.5.3.46 Type: ScaleNsByStepsData

This type represents the information used to scale an NS instance by one or more scaling steps, with respect to a
particular NS scaling aspect. Performing a scaling step means increasing/decreasing the capacity of an NS instance in a
discrete manner, i.e. moving from one NS scale level to another. The NS scaling aspects and their corresponding NS
scale levels applicable to the NS instance are declared in the NSD. It shall comply with the provisions defined in
Table 6.5.3.46-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)181

Table 6.5.3.46-1: Definition of the ScaleNsByStepsData data type

Attribute name Data type Cardinality Description
scalingDirection Enum (inlined) 1 The scaling direction. Possible values are:

- SCALE_IN
- SCALE_OUT.

aspectId IdentifierInNsd 1 The aspect of the NS that is requested to be scaled, as
declared in the NSD.

numberOfSteps Integer 0..1 The number of scaling steps to be performed. Defaults to
1.

6.5.3.47 Type: ScaleNsToLevelData

This type represents the information used to scale an NS instance to a target size. The target size is either expressed as
an NS instantiation level or as a list of NS scale levels, one per NS scaling aspect, of the current DF. The NS
instantiation levels, the NS scaling aspects and their corresponding NS scale levels applicable to the NS instance are
declared in the NSD. It shall comply with the provisions defined in Table 6.5.3.47-1.

Table 6.5.3.47-1: Definition of the ScaleNsToLevelData data type

Attribute name Data type Cardinality Description
nsInstantiationLevel IdentifierInNsd 0..1 Identifier of the target NS instantiation level of the current

DF to which the NS instance is requested to be scaled.
See note.

nsScaleInfo NsScaleInfo 0..N For each NS scaling aspect of the current DF, defines the
target NS scale level to which the NS instance is to be
scaled. See note.

NOTE: Either nsInstantiationLevel or nsScaleInfo, but not both, shall be present.

6.5.3.48 Type: NsScaleInfo

This type represents the target NS Scale level for each NS scaling aspect of the current deployment flavour. It shall
comply with the provisions defined in Table 6.5.3.48-1.

Table 6.5.3.48-1: Definition of the NsScaleInfo data type

Attribute name Data type Cardinality Description
nsScalingAspectId IdentifierInNsd 1 Identifier of the NS scaling aspect.
nsScaleLevelId IdentifierInNsd 1 Identifier of the NS scale level.

6.5.3.49 Type: ScaleVnfData

This type represents defines the information to scale a VNF instance to a given level, or to scale a VNF instance by
steps. It shall comply with the provisions defined in Table 6.5.3.49-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)182

Table 6.5.3.49-1: Definition of the ScaleVnfData data type

Attribute name Data type Cardinality Description
vnfInstanceid Identifier 1 Identifier of the VNF instance being scaled.
scaleVnfType Enum (inlined) 1 Type of the scale VNF operation requested. Allowed

values are:
- SCALE_OUT
- SCALE_IN
- SCALE_TO_INSTANTIATION_LEVEL
- SCALE_TO_SCALE_LEVEL(S)

The set of types actually supported depends on the
capabilities of the VNF being managed. See note 1.

scaleToLevelData ScaleToLevelData 0..1 The information used for scaling to a given level. See
note 2.

scaleByStepData ScaleByStepData 0..1 The information used for scaling by steps. See note 2.
NOTE 1: ETSI GS NFV-IFA 010 [2] specifies that the lifecycle management operations that expand or contract a VNF

instance include scale in, scale out, scale up and scale down. Vertical scaling (scale up, scale down) is not
supported in the present document.

NOTE 2: Either scaletoLevelData or scaleByStepData but not both shall be present. The scaleByStepData is used for
scale out/in type of scaling, and the scaleToLevelData is used for scale to instantiation/scale level type of
scaling.

6.5.3.50 Type: ScaleToLevelData

This type describes the information used to scale a VNF instance to a target size. The target size is either expressed as
an instantiation level of that DF as defined in the VNFD, or given as a list of scale levels, one per scaling aspect of that
DF. Instantiation levels and scaling aspects are declared in the VNFD. The NFVO shall then invoke the
ScaleVnfToLevel operation towards the appropriate VNFM. It shall comply with the provisions defined in
Table 6.5.3.50-1.

Table 6.5.3.50-1: Definition of the ScaleToLevelData data type

Attribute name Data type Cardinality Description
vnfInstantiationLevel
Id

IdentifierInVnfd 0..1 Identifier of the target instantiation level of the current
deployment flavour to which the VNF is requested to be
scaled. See note.

vnfScaleInfo VnfScaleInfo 0..N For each scaling aspect of the current deployment
flavour, indicates the target scale level to which the VNF
is to be scaled. See note.

additionalParams KeyValuePairs 0..1 Additional parameters passed by the NFVO as input to
the scaling process, specific to the VNF being scaled.

NOTE: Either the instantiationLevelId attribute or the scaleInfo attribute shall be included.

6.5.3.51 Type: VnfScaleInfo

This type describes the provides information about the scale level of a VNF instance with respect to one scaling aspect.
It shall comply with the provisions defined in Table 6.5.3.51-1.

Table 6.5.3.51-1: Definition of the VnfScaleInfo data type

Attribute name Data type Cardinality Description
aspectlId IdentifierInVnfd 1 The scaling aspect.
scaleLevel Integer 1 The scale level for that aspect. Minimum value 0,

maximum value maxScaleLevel as declared in the
VNFD.

6.5.3.52 Type: ScaleByStepData

This type describes the information to scale a VNF instance by steps. The NFVO shall then invoke the Scale VNF
operation towards the appropriate VNFM. It shall comply with the provisions defined in Table 6.5.3.52-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)183

Table 6.5.3.52-1: Definition of the ScaleByStepData data type

Attribute name Data type Cardinality Description
aspectId IdentifierInVnfd 1 Identifier of (reference to) the aspect of the VNF that is

requested to be scaled, as declared in the VNFD.
numberOfSteps Integer 0..1 Number of scaling steps. It shall be a positive number.

Defaults to 1.

The VNF provider defines in the VNFD whether or not a
particular VNF supports performing more than one step
at a time. Such a property in the VNFD applies for all
instances of a particular VNF. See note.

additionalParams KeyValuePairs 0..1 Additional parameters passed by the NFVO as input to
the scaling process, specific to the VNF instance being
scaled.

NOTE: A scaling step is the smallest unit by which a VNF instance can be scaled w.r.t a particular scaling aspect.

6.5.3.53 Type: NsVirtualLinkInfo

This type specifies the information about an NS VL instance. It shall comply with the provisions defined in
Table 6.5.3.53-1.

Table 6.5.3.53-1: Definition of the NsVirtualLinkInfo data type

Attribute name Data type Cardinality Description
id IdentifierInNs 1 Identifier of the VL instance.
nsVirtualLinkDescId IdentifierInNsd 1 Identifier of the VLD in the NSD.
nsVirtualLinkProfileId IdentifierInNsd 1 Identifier of the VL profile in the NSD.
resourceHandle ResourceHandle 1..N Identifier(s) of the virtualised network resource(s)

realizing the VL instance. See note.
linkPort NsLinkPortInfo 0..N Link ports of the VL instance.

Cardinality of zero indicates that no port has yet been
created for the VL instance.

NOTE: As an NS can include NFs deployed in NFVI PoPs under the control of several different VIMs, deploying an NS
VL can involve several VIMs each allocating different virtualised network resources. When this NsVirtualLink is
provided as an ExtVirtualLink as input of a VNF LCM operation, the id of the ExtVirtualLink shall be the same
as the corresponding NsVirtualLink. The connectivity between virtualised network resources allocated in
different VIMs and part of the same VL is not addressed in the present document.

6.5.3.54 Void

6.5.3.55 Type: NsLinkPortInfo

This type represents information about a link port of a VL instance. It shall comply with the provisions defined in
Table 6.5.3.55-1.

Table 6.5.3.55-1: Definition of the NsLinkPortInfo data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this link port as provided by the entity that

has created the link port.
resourceHandle ResourceHandle 1 Identifier of the virtualised network resource realizing this

link port.
nsCpHandle NsCpHandle 0..1 Identifier of the CP/SAP instance to be connected to this

link port. The value refers to a vnfExtCpInfo item in the
VnfInstance, or a pnfExtCpInfo item in the PnfInfo, or a
sapInfo item in the NS instance.
There shall be at most one link port associated with any
connection point instance.

NOTE: When the NsVirtualLink, from which the present NsLinkPort is part of, is provided as an ExtVirtualLink as input
of a VNF LCM operation, the id of the ExtLinkPort shall be the same as the corresponding NsLinkPort.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)184

6.5.3.56 Type: NsCpHandle

This type represents an identifier of the CP or SAP instance. It shall comply with the provisions defined in
Table 6.5.3.56-1.

Table 6.5.3.56-1: Definition of the NsCpHandle data type

Attribute name Data type Cardinality Description
vnfInstanceId Identifier 0..1 Identifier of the VNF instance associated to the CP

instance.
This attribute shall be present if the CP instance is VNF
external CP. See notes 1 and 4.

vnfExtCpInstanceId IdentifierInVnf 0..1 Identifier of the VNF external CP instance in the scope of
the VNF instance.
This attribute shall be present if the CP instance is VNF
external CP. See notes 1 and 4.

pnfInfoId Identifier 0..1 Identifier of the PNF instance associated to the CP
instance.
This attribute shall be present if the CP instance is PNF
external CP. See notes 2 and 4.

pnfExtCpInstanceId IdentifierInPnf 0..1 Identifier of the PNF external CP instance in the scope of
the PNF.
This attribute shall be present if the CP instance is PNF
external CP. See notes 2 and 4.

nsInstanceId Identifier 0..1 Identifier of the NS instance associated to the SAP
instance.
This attribute shall be present if the CP instance is NS
SAP. See notes 3 and 4.

nsSapInstanceId IdentifierInNs 0..1 Identifier of the SAP instance in the scope of the NS
instance.
This attribute shall be present if the CP instance is NS
SAP. See notes 3 and 4.

NOTE 1: For the VNF external CP instance, both vnfInstanceId and vnfExtCpInstanceId shall be present as a pair.
NOTE 2: For the PNF external CP instance, both pnfInfoId and PnfExtCpInstanceId shall be present as a pair.
NOTE 3: For the SAP instance, both nsInstanceId and nsSapInstanceId shall be present as a pair.
NOTE 4: One pair of identifiers (VNF external CP, PNF external CP or SAP) shall be present.

6.5.3.57 Type: VnfInstance

This type represents a VNF instance. It shall comply with the provisions defined in Table 6.5.3.57-1.

NOTE: Clause B.3.2 of ETSI GS NFV-SOL 003 [4] provides examples illustrating the relationship among the
different run-time information elements (CP, VL and link ports) used to represent the connectivity of a
VNF.

Table 6.5.3.57-1: Definition of the VnfInstance data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of the VNF instance.
vnfInstanceName String 0..1 Name of the VNF instance.

This attribute can be modified with the PATCH
method.

vnfInstanceDescription String 0..1 Human-readable description of the VNF instance.
This attribute can be modified with the PATCH
method.

vnfdId Identifier 1 Identifier of the VNFD on which the VNF instance is
based.

vnfProvider String 1 Provider of the VNF and the VNFD. The value is
copied from the VNFD.

vnfProductName String 1 Name to identify the VNF Product. The value is
copied from the VNFD.

vnfSoftwareVersion Version 1 Software version of the VNF. The value is copied
from the VNFD.

vnfdVersion Version 1 Identifies the version of the VNFD. The value is
copied from the VNFD.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)185

Attribute name Data type Cardinality Description
vnfPkgId Identifier 1 Identifier of information held by the NFVO about the

specific VNF package on which the VNF is based.
This identifier was allocated by the NFVO.

This attribute can be modified with the PATCH
method. See note 1.

vnfConfigurableProperties KeyValuePairs 0..1 Current values of the configurable properties of the
VNF instance.

Configurable properties referred in this attribute are
declared in the VNFD (see notes 2 and 3).

These configurable properties include the following
standard attributes, which are declared in the
VNFD if auto-scaling and/or auto-healing are
supported by the VNF:

- isAutoscaleEnabled: If present, the VNF
supports auto-scaling. If set to true, auto-
scaling is currently enabled. If set to false,
auto-scaling is currently disabled.

- isAutohealEnabled: If present, the VNF
supports auto-healing. If set to true, auto-
healing is currently enabled. If set to false,
auto-healing is currently disabled.

This attribute can be modified with the PATCH
method.

vimId Identifier 0..N Identifier of a VIM that manages resources for the
VNF instance.

instantiationState Enum (inlined) 1 The instantiation state of the VNF.

Permitted values:
NOT_INSTANTIATED: The VNF instance is
terminated or not instantiated.
INSTANTIATED: The VNF instance is instantiated.

instantiatedVnfInfo Structure (inlined) 0..1 Information specific to an instantiated VNF
instance.
This attribute shall be present if the instantiateState
attribute value is INSTANTIATED.

>flavourId IdentifierInVnfd 1 Identifier of the VNF deployment flavour applied to
this VNF instance.

>vnfState VnfOperationalStateTy
pe

1 State of the VNF instance.

>scaleStatus VnfScaleInfo 0..N Scale status of the VNF, one entry per aspect.
Represents for every scaling aspect how "big" the
VNF has been scaled w.r.t. that aspect.

This attribute shall be present if the VNF supports
scaling.

See clause B.2 of ETSI GS NFV-SOL 003 [4] for an
explanation of VNF scaling.

>extCpInfo VnfExtCpInfo 1..N Information about the external CPs exposed by the
VNF instance.

>extVirtualLinkInfo ExtVirtualLinkInfo 0..N Information about the external VLs the VNF
instance is connected to.

>extManagedVirtualLinkInfo ExtManagedVirtualLin
kInfo

0..N Information about the externally-managed internal
VLs of the VNF instance.

>monitoringParameters VnfMonitoringParamet
er

0..N Performance metrics tracked by the VNFM (e.g. for
auto-scaling purposes) as identified by the VNF
provider in the VNFD.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)186

Attribute name Data type Cardinality Description
>localizationLanguage String 0..1 Information about localization language of the VNF

(includes e.g. strings in the VNFD).
The localization languages supported by a VNF can
be declared in the VNFD, and localization language
selection can take place at instantiation time.
The value shall comply with the format defined in
IETF RFC 5646 [16].

>vnfcResourceInfo VnfcResourceInfo 0..N Information about the virtualised compute and
storage resources used by the VNFCs of the VNF
instance.

>vnfVirtualLinkResourceInfo VnfVirtualLinkResourc
eInfo

0..N Information about the virtualised network resources
used by the VLs of the VNF instance.

>virtualStorageResourceInf
o

VirtualStorageResourc
eInfo

0..N Information about the virtualised storage resources
used as storage for the VNF instance.

metadata KeyValuePairs 0..1 Additional VNF-specific metadata describing the
VNF instance. Metadata that are writeable are
declared in the VNFD (see note 2).

This attribute can be modified with the PATCH
method.

extensions KeyValuePairs 0..1 VNF-specific attributes that affect the lifecycle
management of this VNF instance by the VNFM, or
the lifecycle management scripts. Extensions that
are writeable are declared in the VNFD (see
note 2).

This attribute can be modified with the PATCH
method.

NOTE 1: Modifying the value of this attribute shall not be performed when no conflicts exist between the previous and the
newly referred VNF package, i.e. when the new VNFD is not changed with respect to the previous VNFD apart
from referencing to other VNF software images. In order to avoid misalignment of the VnfInstance with the
current VNF's on-boarded VNF Package, the values of attributes in the VnfInstance that have corresponding
attributes in the VNFD shall be kept in sync with the values in the VNFD.

NOTE 2: ETSI GS NFV-SOL 001 [i.3] specifies the structure and format of the VNFD based on TOSCA specifications.
NOTE 3: VNF configurable properties are sometimes also referred to as configuration parameters applicable to a VNF.

Some of these are set prior to instantiation and cannot be modified if the VNF is instantiated, some are set prior
to instantiation (are part of initial configuration) and can be modified later, and others can be set only after
instantiation. The applicability of certain configuration may depend on the VNF and the required operation of the
VNF at a certain point in time.

6.5.3.58 Type: CpProtocolInfo

This type describes the protocol layer(s) that a CP or SAP uses together with protocol-related information, like
addresses. It shall comply with the provisions defined in Table 6.5.3.58-1.

Table 6.5.3.58-1: Definition of the CpProtocolInfo data type

Attribute name Data type Cardinality Description
layerProtocol Enum (inlined) 1 The identifier of layer(s) and protocol(s)

associated to the network address information.

Permitted values: IP_OVER_ETHERNET

See note.

ipOverEthernet IpOverEthernetAddressI
nfo

0..1 IP addresses over Ethernet to assign to the CP
or SAP instance. Shall be present if
layerProtocol is equal to "
IP_OVER_ETHERNET", and shall be absent
otherwise.

NOTE: This attribute allows to signal the addition of further types of layer and protocol in future versions of the
present document in a backwards-compatible way. In the current version of the present document, only IP
over Ethernet is supported.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)187

6.5.3.59 Type: ExtManagedVirtualLinkInfo

This type provides information about an externally-managed virtual link for VNFs. It shall comply with the provisions
defined in Table 6.5.3.59-1.

Table 6.5.3.59-1: Definition of the ExtManagedVirtualLinkInfo data type

Attribute name Data type Cardinality Description
Id Identifier 1 Identifier of the externally-managed internal VL and

the related externally-managed VL information
instance.

vnfVirtualLinkDescId IdentifierInVnfd 1 Identifier of the VNF Virtual Link Descriptor (VLD) in
the VNFD.

networkResource ResourceHandle 1 Reference to the VirtualNetwork resource.
vnfLinkPorts VnfLinkPortInfo 0..N Link ports of this VL.

6.5.3.60 Type: VnfcResourceInfo

This type represents the information on virtualised compute and storage resources used by a VNFC in a VNF instance.
It shall comply with the provisions defined in Table 6.5.3.60-1.

Table 6.5.3.60-1: Definition of the VnfcResourceInfo data type

Attribute name Data type Cardinality Description
Id IdentifierInVnf 1 Identifier of this VnfcResourceInfo instance.
vduId IdentifierInVnfd 1 Reference to the applicable VDU in the VNFD. See note.
computeResource ResourceHandle 1 Reference to the VirtualCompute resource.
storageResourceIds IdentifierInVnf 0..N References to the VirtualStorage resources.

The value refers to a VirtualStorageResourceInfo item in
the VnfInstance.

reservationId Identifier 0..1 The reservation identifier applicable to the resource. It
shall be present when an applicable reservation exists.

vnfcCpInfo Structure (inlined) 0..N CPs of the VNFC instance.
Shall be present when that particular CP of the VNFC
instance is associated to an external CP of the VNF
instance.
May be present otherwise.

>id IdentifierInVnf 1 Identifier of this VNFC CP instance and the associated
array entry.

>cpdId IdentifierInVnfd 1 Identifier of the VDU CPD, cpdId, in the VNFD. See note.
>vnfExtCpId IdentifierInVnf 0..1 When the VNFC CP is exposed as external CP of the

VNF, the identifier of this external VNF CP.
>cpProtocolInfo CpProtocolInfo 0..N Network protocol information for this CP.
>vnfLinkPortId IdentifierInVnf 0..1 Identifier of the "vnfLinkPortInfo" structure in the

"VnfVirtualLinkResourceInfo" structure. Shall be present
if the CP is associated to a link port.

>metadata KeyValuePairs 0..1 Metadata about this CP.
metadata KeyValuePairs 0..1 Metadata about this resource.
NOTE: ETSI GS NFV-SOL 001 [i.3] specifies the structure and format of the VNFD based on TOSCA specifications.

6.5.3.61 Type: VnfVirtualLinkResourceInfo

This type represents the information that allows addressing a virtualised resource that is used by an internal VL instance
in a VNF instance. It shall comply with the provisions defined in Table 6.5.3.61-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)188

Table 6.5.3.61-1: Definition of the VnfVirtualLinkResourceInfo data type

Attribute name Data type Cardinality Description
id IdentifierInVnf 1 Identifier of this VnfVirtualLinkResourceInfo instance.
vnfVirtualLinkDescId IdentifierInVnfd 1 Identifier of the VNF Virtual Link Descriptor (VLD) in the

VNFD.
networkResource ResourceHandle 1 Reference to the VirtualNetwork resource.
reservationId Identifier 0..1 The reservation identifier applicable to the resource. It

shall be present when an applicable reservation exists.
vnfLinkPorts VnfLinkPortInfo 0..N Links ports of this VL.

Shall be present when the linkPort is used for external
connectivity by the VNF (refer to VnfLinkPortInfo).
May be present otherwise.

metadata KeyValuePairs 0..1 Metadata about this resource.

6.5.3.62 Type: ExtVirtualLinkInfo

This type represents information about an VNF external VLs. It shall comply with the provisions defined in
Table 6.5.3.62-1.

Table 6.5.3.62-1: Definition of the ExtVirtualLinkInfo data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of the external VL and the related external VL

information instance.
resourceHandle ResourceHandle 1 Reference to the resource realizing this VL.
extLinkPorts ExtLinkPortInfo 0..N Link ports of this VL.

6.5.3.63 Type: ExtLinkPortInfo

This type represents information about a link port of an external VL, i.e. a port providing connectivity for the VNF to an
NS VL. It shall comply with the provisions defined in Table 6.5.3.63-1.

Table 6.5.3.63-1: Definition of the ExtLinkPortInfo data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this link port as provided by the entity that

has created the link port.
resourceHandle ResourceHandle 1 Reference to the virtualised resource realizing this link

port.
cpInstanceId IdentifierInVnf 0..1 Identifier of the external CP of the VNFconnected to this

link port.
There shall be at most one link port associated with any
external connection point instance.
The value refers to an "extCpInfo" item in the
VnfInstance.

6.5.3.64 Type: VnfLinkPortInfo

This type represents a link port of an internal VL of a VNF. It shall comply with the provisions defined in
Table 6.5.3.64-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)189

Table 6.5.3.64-1: Definition of the VnfLinkPortInfo data type

Attribute name Data type Cardinality Description
id IdentifierInVnf 1 Identifier of this link port as provided by the entity that

has created the link port.
resourceHandle ResourceHandle 1 Reference to the virtualised network resource realizing

this link port.
cpInstanceId IdentifierInVnf 0..1 When the link port is used for external connectivity by the

VNF, this attribute represents the identifier of the external
CP associated with this link port.

When the link port is used for internal connectivity in the
VNF, this attribute represents the VNFC CP to be
connected to this link port.

Shall be present when the link port is used for external
connectivity by the VNF.

May be present if used to reference a VNFC CP
instance.

There shall be at most one link port associated with any
external connection point instance or internal connection
point (i.e. VNFC CP) instance.

The value refers to an "extCpInfo" item in the VnfInstance
or a "vnfcCpInfo" item of a "vnfcResouceInfo" item in the
VnfInstance.

cpInstanceType Enum (inlined) 0..1 Type of the CP instance that is identified by cpInstanceId.

Shall be present if "cpInstanceId" is present, and shall be
absent otherwise.

Permitted values:
VNFC_CP: The link port is connected to a VNFC CP
EXT_CP: The link port is associated to an external CP.

6.5.3.65 Type: VnffgInfo

This type specifies the information about a VNFFG instance. It shall comply with the provisions defined in
Table 6.5.3.65-1.

Table 6.5.3.65-1: Definition of the VnffgInfo data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this VNFFG instance.
vnffgdId IdentifierInNsd 1 Identifier of the VNFFGD in the NSD.
vnfInstanceId Identifier 1..N Identifier(s) of the constituent VNF instance(s) of this

VNFFG instance.
pnfInfoId Identifier 0..N Identifier(s) of the constituent PNF instance(s) of this

VNFFG instance.
nsVirtualLinkInfoId IdentifierInNs 1..N Identifier(s) of the constituent VL instance(s) of this

VNFFG instance.
nsCpHandle NsCpHandle 1..N Identifiers of the CP instances attached to the constituent

VNFs and PNFs or the SAP instances of the VNFFG.
See note.

nfpInfo NfpInfo 1..N Information on the NFP instances.
NOTE: It indicates an exhaustive list of all the CP instances and SAP instances of the VNFFG.

6.5.3.66 Type: NfpInfo

This type represents an NFP instance. It shall comply with the provisions defined in Table 6.5.3.66-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)190

Table 6.5.3.66-1: Definition of the NfpInfo data type

Attribute name Data type Cardinality Description
id IdentifierInNs 1 Identifier of this NFP instance.
nfpdId IdentifierInNsd 0..1 Identifier of the NFPD used to instantiate this NFP

instance. It shall be present if the NFP instance is
instantiated from the NFPD.

nfpName String 0..1 Human readable name for the NFP instance.
description String 0..1 Human readable description for the NFP instance.
cpGroup CpGroupInfo 1..N Group(s) of CPs and/or SAPs which the NFP passes

through. See note.
totalCp Integer 0..1 Total number of CP and SAP instances in this NFP

instance.
nfpRule NfpRule 1 NFP classification and selection rule.
nfpState Enum (inlined) 1 The state of the NFP instance.

Permitted values:
ENABLED: The NFP instance is enabled.
DISABLED: The NFP instance is disabled.

NOTE: When multiple identifiers are included, the position of the identifier in the CpGroup data type specifies the
position of the group in the path.

6.5.3.67 Type: SapInfo

This type represents an SAP instance. It shall comply with the provisions defined in Table 6.5.3.67-1.

Table 6.5.3.67-1: Definition of the SapInfo data type

Attribute name Data type Cardinality Description
id IdentifierInNs 1 Identifier of the SAP instance.
sapdId IdentifierInNsd 1 Identifier of the SAPD in the NSD.
sapName String 1 Human readable name for the SAP instance.
description String 1 Human readable description for the SAP instance.
sapProtocolInfo CpProtocolInfo 1..N Network protocol information for this SAP.

6.5.3.68 Type: NsMonitoringParameter

This type represents a monitoring parameter that is tracked by the NFVO, for example, for auto-scaling purposes. It
shall comply with the provisions defined in Table 6.5.3.68-1.

Table 6.5.3.68-1: Definition of the NsMonitoringParameter data type

Attribute name Data type Cardinality Description
id IdentifierInNsd 1 Identifier of the monitoring parameter defined in the

NSD.
name String 0..1 Human readable name of the monitoring parameter, as

defined in the NSD.
performanceMetric String 1 Performance metric that is monitored. This attribute

shall contain the related "Measurement Name" value
as defined in clause 7.2 of ETSI GS NFV-IFA 027 [31].

6.5.3.69 Type: VnfMonitoringParameter

This type represents a monitoring parameter that is tracked by the VNFM, for example, for auto-scaling purposes. It
shall comply with the provisions defined in Table 6.5.3.69-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)191

Table 6.5.3.69-1: Definition of the VnfMonitoringParameter data type

Attribute name Data type Cardinality Description
id IdentifierInVnfd 1 Identifier of the monitoring parameter defined in

the VNFD.
name String 0..1 Human readable name of the monitoring

parameter, as defined in the VNFD.
performanceMetric String 1 Performance metric that is monitored. This

attribute shall contain the related
"Measurement Name" value as defined in
clause 7.2 of ETSI GS NFV-IFA 027 [31].

6.5.3.70 Type: VnfExtCpInfo

This type represents information about an external CP of a VNF. It shall comply with the provisions defined in
Table 6.5.3.70-1.

Table 6.5.3.70-1: Definition of the VnfExtCpInfo data type

Attribute name Data type Cardinality Description
id IdentifierInVnf 1 Identifier of the external CP instance and the related

information instance.
cpdId IdentifierInVnfd 1 Identifier of the external CPD, VnfExtCpd, in the VNFD.
cpProtocolInfo CpProtocolInfo 1..N Network protocol information for this CP.
extLinkPortId Identifier 0..1 Identifier of the "extLinkPortInfo" structure inside the

"extVirtualLinkInfo" structure. Shall be present if the CP is
associated to a link port.

metadata KeyValuePairs 0..1 Metadata about this external CP.
associatedVnfcCpId IdentifierInVnf 0..1 Identifier of the "vnfcCpInfo" structure in

"VnfcResourceInfo" structure that represents the VNFC
CP which is exposed by this external CP instance. Shall
be present in case this CP instance maps to a VNFC CP
See note.

associatedVnfVirtual
LinkId

IdentifierInVnf 0..1 Identifier of the "VnfVirtualLinkResourceInfo" structure
that represents the internal VL, which is exposed by this
external CP instance. Shall be present in case this CP
instance maps to an internal VL. See note.

NOTE: The attributes "associatedVnfcCpId" and "associatedVnfVirtualLinkId" are mutually exclusive. One and only one
shall be present.

6.5.3.71 Type: CpGroupInfo

This type represents describes a group of CPs and/or SAPs pairs associated to the same position in an NFP. It shall
comply with the provisions defined in Table 6.5.3.71-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)192

Table 6.5.3.71-1: Definition of the CpGroupInfo data type

Attribute name Data type Cardinality Description
cpPairInfo CpPairInfo 1..N One or more pair(s) of ingress and egress CPs or SAPs

which the NFP passes by.

See note.

forwardingBehaviour Enum (inlined) 0..1 Identifies a rule to apply to forward traffic to the ingress
CPs or SAPs of the group.

Permitted values:

ALL = Traffic flows shall be forwarded
simultaneously to all CPs or SAPs of the
group.

LB = Traffic flows shall be forwarded to one CP or
SAP of the group selected based on a load-
balancing algorithm.

forwardingBehaviourI
nputParameters

ForwardingBehaviour
InputParameters

0..1 Provides input parameters to configure the forwarding
behaviour (e.g. identifies a load balancing algorithm and
criteria).

NOTE: All CP or SAP pairs in a group shall be instantiated from connection point descriptors or service access point
descriptors referenced in the corresponding NfpPositionDesc.

6.5.3.72 Type: CpPairInfo

This type represents describes a pair of ingress and egress CPs or SAPs which the NFP passes by. It shall comply with the
provisions defined in Table 6.5.3.72-1.

Table 6.5.3.72-1: Definition of the CpPairInfo data type

Attribute name Data type Cardinality Description
vnfExtCpIds IdentifierInVnf 0..2 Identifier(s) of the VNF CP(s) which form the pair.

See notes 1 and 2.

pnfExtCpIds IdentifierInPnf 0..2 Identifier(s) of the PNF CP(s) which form the pair.

See notes 1 and 2.

sapIds IdentifierInNs 0..2 Identifier(s) of the SAP(s) which form the pair.

See notes 1 and 2.

NOTE 1: The presence of a single vnfExpCpId, pnfExtCpId, or sapId occurrence indicates that the CP or SAP is used
both as an ingress and egress port at a particular NFP position.

NOTE 2: Only one of these three attributes shall be present.

6.5.3.73 Type: ForwardingBehaviour InputParameters

This type represents provides input parameters to configure the forwarding behaviour. It shall comply with the
provisions defined in Table 6.5.3.73-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)193

Table 6.5.3.73-1: Definition of the ForwardingBehaviour InputParameters data type

Attribute name Data type Cardinality Description
algortihmName Enum (Inlined) 0..1 May be included if forwarding behaviour is equal to LB.

Shall not be included otherwise.

Permitted values:

- ROUND_ROBIN
- LEAST_CONNECTION
- LEAST_TRAFFIC
- LEAST_RESPONSE_TIME
- CHAINED_FAILOVER
- SOURCE_IP_HASH
- SOURCE_MAC_HASH

algorithmWeights Integer 0..N Percentage of messages sent to a CP instance. May be
included if applicable to the algorithm. See notes 1 and 2.

NOTE 1: If applicable to the algorithm but not provided, default values determined by the VIM or NFVI are expected to
be used.

NOTE 2: Weight applies to the CP instances in the order they have been created.

6.5.4 Referenced simple data types and enumerations

6.5.4.1 Introduction

This clause defines simple data types that can be referenced from data structures defined in the previous clauses.

6.5.4.2 Simple data types

No particular simple data types are defined for this interface, in addition to those defined in clause 4.4.2.

6.5.4.3 Enumeration: NsLcmOpType

The enumeration NsLcmOpType represents those lifecycle operations that trigger a NS lifecycle management operation
occurrence notification. It shall comply with the provisions defined in Table 6.5.4.3-1.

Table 6.5.4.3-1: Enumeration NsLcmOpType

Enumeration value Description
INSTANTIATE Represents the "Instantiate NS" LCM operation.
SCALE Represents the "Scale NS" LCM operation.
UPDATE Represents the "Update NS" LCM operation.
TERMINATE Represents the "Terminate NS" LCM operation.
HEAL Represents the "Heal NS" LCM operation.

6.5.4.4 Enumeration: NsLcmOperationStateType

The enumeration NsLcmOperationStateType shall comply with the provisions defined in Table 6.5.4.4-1. More
information of the meaning of the states can be found in clause 6.6.2.2.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)194

Table 6.5.4.4-1: Enumeration NsLcmOperationStateType

Enumeration value Description
PROCESSING The LCM operation is currently in execution.
COMPLETED The LCM operation has been completed successfully.
PARTIALLY_COMPLETED The LCM operation has been partially completed with acceptable errors.
FAILED_TEMP The LCM operation has failed and execution has stopped, but the execution of

the operation is not considered to be closed.
FAILED The LCM operation has failed and it cannot be retried or rolled back, as it is

determined that such action will not succeed.
ROLLING_BACK The LCM operation is currently being rolled back.
ROLLED_BACK The LCM operation has been successfully rolled back, i.e. The state of the NS

prior to the original operation invocation has been restored as closely as
possible.

6.5.4.5 Enumeration: NsComponentType

The enumeration NsComponentType represents the NS component type. It shall comply with the provisions defined in
Table 6.5.4.5-1.

Table 6.5.4.5-1: Enumeration NsComponentType

Enumeration value Description
VNF Represents the impacted NS component is a VNF.
PNF Represents the impacted NS component is a PNF.
NS Represents the impacted NS component is a nested NS.

6.5.4.6 Enumeration: LcmOpNameForChangeNotificationType

The enumeration LcmOpNameForChangeNotificationType represents the name of the lifecycle operation that impacts
the NS component and trigger an NS change notification. It shall comply with the provisions defined in Table 6.5.4.6-1.

Table 6.5.4.6-1: Enumeration LcmOpNameForChangeNotificationType

Enumeration value Description
VNF_INSTANTIATE Represents the "Instantiate VNF" LCM operation.
VNF_SCALE Represents the "Scale VNF" LCM operation.
VNF_SCALE_TO_LEVEL Represents the "Scale VNF to Level" LCM operation.
VNF_CHANGE_FLAVOUR Represents the "Change VNF Flavour" LCM operation.
VNF_TERMINATE Represents the "Terminate VNF" LCM operation.
VNF_HEAL Represents the "Heal VNF" LCM operation.
VNF_OPERATE Represents the "Operate VNF" LCM operation.
VNF_CHANGE_EXT_CONN Represents the "Change external VNF connectivity" LCM operation.
VNF_MODIFY_INFO Represents the "Modify VNF Information" LCM operation.
NS_INSTANTIATE Represents the "Instantiate NS" LCM operation.
NS_SCALE Represents the "Scale NS" LCM operation.
NS_UPDATE Represents the "Update NS" LCM operation.
NS_TERMINATE Represents the "Terminate NS" LCM operation.
NS_HEAL Represents the "Heal NS" LCM operation.

6.5.4.7 Enumeration: LcmOpOccStatusForChangeNotificationType

The enumeration LcmOpOccStatusForChangeNotificationType represents the status of the lifecycle management
operation occurrence that impacts the NS component and triggers an NS change notification. It shall comply with the
provisions defined in Table 6.5.4.7-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)195

Table 6.5.4.7-1: Enumeration LcmOpOccStatusForChangeNotificationType

Enumeration value Description
START The impact on the NS component is identified.
COMPLETED The impact on the NS component stops and related lifecycle operation

completes successfully.
PARTIALLY_COMPLETED The impact on the NS component stops and related lifecycle operation

partially completes. Inconsistency state may exist on the NS component.
FAILED The impact on the NS component stops and related lifecycle operation fails.

Inconsistency state may exist for the NS component.
ROLLED_BACK The impact on the NS component stops and related lifecycle operation is

rolled back.

6.5.4.8 Enumeration: OperationalStates

The enumeration OperationalStates shall comply with the provisions defined in Table 6.5.4.8-1.

Table 6.5.4.8-1: Enumeration OperationalStates

Enumeration value Description
STARTED The VNF instance is up and running.
STOPPED The VNF instance has been shut down.

6.5.4.9 Enumeration: StopType

The enumeration StopType shall comply with the provisions defined in Table 6.5.4.9-1.

Table 6.5.4.9-1: Enumeration StopType

Enumeration value Description
FORCEFUL The VNFM will stop the VNF immediately after accepting the request.
GRACEFUL The VNFM will first arrange to take the VNF out of service after accepting the

request. Once that operation is successful or once the timer value specified in the
"gracefulStopTimeout" attribute expires, the VNFM will stop the VNF.

6.5.4.10 Enumeration: CancelModeType

The enumeration CancelModeType defines the valid modes of cancelling a NS LCM operation occurrence. It shall
comply with the provisions defined in Table 6.5.4.10-1.

Table 6.5.4.10-1: Enumeration CancelModeType

Enumeration value Description
GRACEFUL The NFVO shall not start any new VNF lifecycle management and resource

management operation, and shall wait for the ongoing VNF lifecycle management
and resource management operations in the underlying system, typically the VNFM
and VIM, to finish execution or to time out. After that, the NFVO shall put the
operation occurrence into the FAILED_TEMP state.

FORCEFUL The NFVO shall not start any new VNF lifecycle management and resource
management operation, shall cancel the ongoing VNF lifecycle management and
resource management operations in the underlying system, typically the VNFM and
VIM, and shall wait for the cancellation to finish or to time out. After that, the NFVO
shall put the operation occurrence into the FAILED_TEMP state.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)196

6.6 Handling of errors during NS lifecycle management
operations

6.6.1 Basic concepts (informative)

6.6.1.1 Motivation

NS lifecycle management operation occurrences can fail. Failure can be caused by multiple reasons, which generally
fall into the following categories:

• Transient errors which do not require intervention from a human operator or a higher-layer management entity
for resolution, e.g. momentary network outage.

• "Permanent" errors which require such intervention.

It is unreasonable to expect that all errors can be resolved automatically, therefore the possibility of intervention will
usually be incorporated in the system design as acknowledged means of error resolution.

6.6.1.2 Failure resolution strategies: Retry, Rollback and Continue

Most transient errors are handled best with a retry mechanism. Retry might happen automatically at the point of failure
within the same NS LCM workflow (where it makes sense to limit the number of automatic retries). It is important to
strive for designing retry operations that have no unintended side effects from the original invocation of the operation.
This is called idempotent retry. Idempotent retry can also be used as an on-demand error resolution mechanism (see
below) if the original operation failed because of a condition that has been resolved manually by the human operator or
by a higher-level management entity, so idempotent retry is suitable for general error resolution in most cases.

However, even if a system is designed with idempotent retry capabilities, eventual success of the operation cannot be
guaranteed. In this case, the system needs to decide the error handling strategy, either by a backward action or a forward
action. By a backward action, it means the concerned error is not acceptable and permanent. Therefore, the system
attempts to resolve the inconsistent state by requesting to roll back the changes made by the operation. By a forward
action, it means the concerned error is acceptable and can be fixed later (typically after current operation). Therefore,
the system decides to skip the concerned error and continues the operation, e.g. based on policy configuration. Given
that, rollback and continue as error handling strategies are also desired to be allowed in the system design.

In many cases, idempotent retry can resolve transient errors and lead to success eventually. Depending on the situation,
rollback followed by a repetition of the operation could take longer than a successful retry, as rollback first removes
allocated resources and then the repetition of the operation allocates them again, which costs time. Therefore, it often
makes sense to perform first idempotent retry, which is followed by either rollback or continue if the retry has failed.

Idempotent retry is meaningful and useful for all operation types. For some operations, rollback is better suited and has
a better chance of success. In general, rollback is well-suited for additive operations such as InstantiateNs or scale out,
while ill-suited for subtractive ones such as scale in or TerminateNs, or for HealNs. For some operations, continue is
better suited if the concerned error is acceptable.

Both rollback and idempotent retry can fail. In that case, the system can be left in an inconsistent state after a failed
operation, which requires resolution by a higher-level entity such as the OSS/BSS or human operator.

6.6.1.3 Error handling at NFVO and OSS/BSS

If the NFVO executes an NS LCM workflow and encounters a problem, the following options are possible:

• Stop on first error:

- Once the NFVO encounters an error, the normal execution of the NS LCM workflow is interrupted, and
an error handling procedure is triggered (i.e. automatic retry, automatic rollback, automatic fail,
escalate). See the paragraphs below for description of error handling procedures.

- It is assumed that all NSs and all NFVOs support "stop on first error".

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)197

EXAMPLE 1: OSS/BSS is attempting to instantiate a NS with 10 VNFs. The first 8 VNFs are instantiated
successfully, however, an error occurs when attempting to instantiate VNF #9. The NFVO stops
execution and chooses which of the error handling options it invokes (note that it even could try
multiple options after each other).

• Best Effort:

- Each time the NFVO encounters an error, it is decided whether the execution of a part or all of the
remaining steps of the NS LCM workflow is performed, or whether the execution is interrupted and an
error handling procedure is triggered (i.e. automatic retry, automatic rollback, automatic fail, escalate).
See the paragraphs below for description of error handling procedures.

- Support of "best effort" requires a suitable workflow design.

- It is therefore assumed that not all NSs and not all NFVOs support "best effort".

EXAMPLE 2: Same example as above. After the error occurs attempting to instantiate VNF #8, the NFVO
continues by creating #9 and #10, and then chooses which error handling options it invokes.

The NFVO has the following error handling procedures to react to errors (see clause 6.6.1.2 for general elaboration
regarding retry, rollback, and continue):

• Automatic Retry: The NFVO retries (once or more) to continue the execution of the workflow without
involving an external entity. Automatic retry of failed parts of the workflow might even be built into the
workflow itself. Retry can eventually succeed or fail. Successful retry leads to the NS LCM operation to be
reported as successful. Failed retry is typically escalated.

• Automatic Rollback: The NFVO rolls back the NS to the state prior to starting the NS LCM operation without
involving an external entity. Rollback can eventually succeed or can fail, preventing the NS from reaching that
previous state. Successful rollback leads to the NS LCM operation to be reported as rolled back. Failed
rollback is typically escalated.

• Automatic Continue: The NFVO skips the error and continue the NS LCM operation without involving an
external entity. Continue can eventually succeed or fail. Successful continue leads to the NS LCM operation to
be reported as partially completed. Failed continue is typically escalated or trying other error handling
procedures like automatic rollback.

• Escalate: After failed automatic retry/retries, automatic rollback or automatic continue is typically not the first
option in most situations, but the error is preferably reported to the OSS/BSS for further resolution. The same
applies if no automatic error resolution was attempted by the NFVO, or if automatic rollback has failed or if
automatic continue is not appropriate (e.g. based on policy configuration). This is done by sending a NS LCM
operation occurrence notification.

• Unresolvable Error: The NFVO determines that the operation has failed and definitely cannot be recovered
(e.g. if no retry, no continue, and no rollback is possible), and that escalating the error to the OSS/BSS will
have no chance to lead to a resolution either. In this case, the NFVO would report that the operation has
terminally failed. After that, other means of resolution can be attempted, such as the invocation of Heal NS, or
manual procedures using the GUI of the NFVO or VIM to release stranded resources.

The OSS/BSS has the following error handling procedures to react to error reports from the NFVO:

• On-demand retry: After the NFVO has reported the error to the OSS/BSS, the OSS/BSS or the human operator
takes steps to resolve the situation that has led to the occurrence of the error. Subsequently, the retry of the
operation is triggered towards the NFVO by the OSS/BSS via the NS LCM interface.

• On-demand rollback: After the NFVO has reported the error to the OSS/BSS, and after the OSS/BSS or the
human operator has decided to roll back the operation, the rollback of the operation is triggered towards the
NFVO by the OSS/BSS via the NS LCM interface.

• On-demand continue: After the NFVO has reported the error to the OSS/BSS, and after the OSS/BSS or the
human operator has decided to continue the operation, the continue of the operation is triggered towards the
NFVO by the OSS/BSS via the NS LCM interface.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)198

• Fail: After the NFVO has reported the error to the OSS/BSS, and after the OSS/BSS or the human operator has
determined that neither on-demand retry nor on-demand rollback will fix the error, or on-demand continue is
not appropriate, the NS LCM operation can be declared as terminally failed towards the NFVO by the
OSS/BSS via the NS LCM interface. After that, other means of resolution can be attempted, such as the
invocation of HealNs, or manual procedures using the GUI of the NFVO or VIM to release stranded resources.

6.6.2 States and state transitions of a NS lifecycle management operation
occurrence

6.6.2.1 General

A NS lifecycle management operation occurrence supports a number of states and error handling operations. The states
and state transitions that shall be supported are shown in Figure 6.6.2.1-1. Transitions labelled with underlined text
represent error handling operations; other transitions represent conditions.

Figure 6.6.2.1-1: States of a NS lifecycle management operation occurrence

6.6.2.2 States of a NS lifecycle management operation occurrence

At each time, a NS lifecycle management operation occurrence is in one of the following states. There are transitional
states (states from which a different state can be reached) and terminal states (states from which no other state can be
reached; i.e. the state of a NS lifecycle management operation occurrence in a terminal state cannot change anymore).

PROCESSING: The NS LCM operation is currently in execution. This state has the following characteristics:

• This is the initial state for any NS operation.

• This is a transient state.

• This state may block other NS LCM operations from being executed on the same NS instance (up to NS and
NFVO implementation).

• The operations "Retry", "Continue", "Fail", and "Rollback" shall not be permitted to be invoked for an
operation that is in this state.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)199

• All failures of procedures executed by the NFVO as part of the NS LCM operation while in "PROCESSING"
state should result by default in transiting to FAILED_TEMP, with the following two alternative options:

- If a failure occurs in the "PROCESSING" state from which the NFVO knows that the NS instance can be
brought into a consistent state by immediately rolling back the operation, the NS lifecycle management
operation occurrence may transit directly into the "ROLLING_BACK" state ("AutoRollback").

- If a failure occurs in the "PROCESSING" state from which the NFVO knows that it can neither be fixed
by retrying nor be rolled back nor be skipped by continuing, the NS lifecycle management operation
occurrence may transit directly into the "FAILED" state ("Unresolvable Error").

- If a failure occurs in the "PROCESSING" state from which the NFVO knows that the failure is
acceptable and continues the NS LCM operation till it finishes, the NS lifecycle management operation
occurrence may transit directly into the "PARTIALLY_COMPLETED" state ("Partial success").

• If a "cancel" request was issued during the operation is in "PROCESSING" state, processing will be cancelled
but this might not be immediate. This is represented by a flag in the data model that indicates there is a
pending "cancel" request for this state. Upon successful cancellation, the NS lifecycle management operation
occurrence shall transit into the "FAILED_TEMP" state.

COMPLETED: The operation has completed successfully. This is a terminal state.

PARTIALLY COMPLETED: The operation has completed partially, i.e. with acceptable errors. This state has the
following characteristics:

• This is a terminal state.

• Such an operation state is typically the result of an automatic continue operation inside the NFVO or an on-
demand continue operation from a higher layer management entity (i.e. OSS/BSS) for a given error.

• The result of the NS LCM operation (the actual resource changes) can show an inconsistent state of the NS.
Nevertheless, these changes shall be synchronized between the NFVO and OSS/BSS (by reporting them in the
LCCN, and by allowing the OSS/BSS to obtain them on request) in order for other NS LCM operations (e.g.
Heal, Terminate, Update) to be guaranteed to work on resources that are known to the OSS/BSS.

The fact that a LCM operation is in "PARTIALLY_COMPLETED" state shall not block other operations from
execution on the NS instance by the NFVO. However, the NS instance may itself be in a state that disallows certain
operations.

FAILED_TEMP: The operation has failed and execution has stopped, but the execution of the operation is not
considered to be closed. This state has the following characteristics:

• This is a transient state.

• This state may block other NS LCM operations from being executed on the same NS instance (enforced by the
NFVO, and up to NS and NFVO capabilities).

• Retry and/or rollback and/or continue and/or fail may be invoked for the operation.

• If the NS LCM operation is retried or continued, the NS lifecycle management operation occurrence shall
transit into the "PROCESSING" state.

• If the NS LCM operation is rolled back, the NS lifecycle management operation occurrence shall transit into
the "ROLLING_BACK" state.

• If the NS LCM operation is marked as "failed", the NS lifecycle management operation occurrence shall
transit into the "FAILED" state.

• Operation cancellation and failure to roll back should result in FAILED_TEMP.

FAILED: The operation has failed and it cannot be retried, rolled back, or continued, as it is determined that such
action will not succeed. This state has the following characteristics:

• This is a terminal state.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)200

• Such an operation state is typically the result of a decision of a higher layer management entity (i.e. OSS/BSS)
or its human operator that an operation in "FAILED_TEMP" state cannot be retried or rolled back or continued
("Fail").

• Such an operation state can also be reached immediately in case of failure of an operation in "PROCESSING"
state that can neither be retried, rolled back, nor continued ("Unresolvable Error").

• The result of the NS LCM operation (the actual resource changes) can show an inconsistent state of the NS.
Nevertheless, these changes shall be synchronized between the NFVO and OSS/BSS (by reporting them in the
LCCN, and by allowing the OSS/BSS to obtain them on request) in order for other NS LCM operations (e.g.
Heal, Terminate) to be guaranteed to work on resources that are known to the OSS/BSS.

• The fact that a LCM operation is in "FAILED" state shall not block other operations from execution on the NS
instance by the NFVO. However, the NS instance may itself be in a state that disallows certain operations.

ROLLED_BACK: The state of the NS prior to the original operation invocation has been restored as closely as
possible. This state has the following characteristics:

• This is a terminal state.

• This may involve recreating some resources that have been deleted by the operation, the recreated resources
should be as similar as possible to the deleted ones. Differences between original resources and re-created ones
may include a different resource identity, but also different dynamic attributes such as an IP address.

ROLLING_BACK: The NS LCM operation is currently being rolled back. This state has the following characteristics:

• This is a transient state.

• This state may block other NS LCM operations from being executed on the same NS instance (up to NS and
NFVO implementation).

• The operations "Retry", "Continue", and "Rollback" shall not be permitted to be invoked for an operation that
is in this state.

• If a "Cancel" request was issued during the operation is in "ROLLING_BACK" state, rolling back will be
cancelled but this might not be immediate. This is represented by a flag in the data model that indicates there is
a pending "Cancel" request for this state. Upon successful cancellation, the NS lifecycle management
operation occurrence shall transit into the "FAILED_TEMP" state.

• If a failure occurs during rolling back, the operation should transition to the "FAILED_TEMP" state.

• Upon successful rollback, the NS lifecycle management operation occurrence shall transit into the
"ROLLED_BACK" state.

In addition, the following provisions apply to NS lifecycle management operation occurrence notifications:

• The "start" notification (i.e. notificationStatus="START") shall be sent when the operation enters one of states
"PROCESSING" and "ROLLING_BACK" from another state, indicating the state entered.

• The "result" notification (i.e. notificationStatus="RESULT") shall be sent when the NS LCM operation
occurrence enters one of the error states "FAILED_TEMP", "FAILED", "ROLLED_BACK", indicating the
state entered, the error cause and the changes to the NS's resources since the operation was initially started.

• The "result" notification (i.e. notificationStatus="RESULT") shall be sent when the operation enters the
success state "COMPLETED" or partial success state "PARTIALLY_COMPLETED", indicating the state
entered and the changes to the NS's resources.

Such a notification scheme allows the OSS/BSS to keep in sync with changes to the NS's resources by an ongoing NS
LCM operation. If the notification relates to a transient state, further changes can be expected. If the notification relates
to a terminal state, no further changes to the NS's resources will be performed by the related NS lifecycle management
operation occurrence, and the OSS/BSS can use the information in the notification to synchronize its internal state with
the result of the LCM operation. In case of loss of notifications, a query of the resource that represents the NSlifecycle
operation occurrence can be used by the OSS/BSS to obtain the same information.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)201

6.6.2.3 Error handling operations that change the state of a NS lifecycle operation

Retry: This operation retries a NS lifecycle operation. It has the following characteristics:

• Execution of "Retry" for an actual NS LCM operation on a particular NS may be supported, depending on
characteristics of the NS and the NS LCM operation.

• The operation may be invoked via an interface, or the NFVO may invoke the operation per its own decision.

Rollback: This operation rolls back a NS lifecycle operation. It has the following characteristics:

• Execution of "Rollback" for an actual NS LCM operation on a particular NS may be supported, depending on
characteristics of the NS and the NS LCM operation.

• The operation may be invoked via an interface, or the NFVO may invoke the operation per its own decision.

Continue: This operation continues a NS lifecycle operation. It has the following characteristics:

• Execution of "Continue" for an actual NS LCM operation on a particular NS may be supported, depending on
characteristics of the NS and the NS LCM operation.

• The operation may be invoked via an interface, or the NFVO may invoke the operation per its own decision.

Fail: This operation transits the NS lifecycle operation occurrence into the terminal "FAILED" state. It has the
following characteristics:

• Execution of "Fail" shall be supported for a LCM operation on a particular NS if at least one of following -
Retry, Rollback, Continue, or Cancel - is supported for this operation.

• The operation may be invoked via an interface, or the NFVO may invoke the operation per its own decision.

Cancel: This operation cancels an ongoing NS lifecycle management operation, its Retry, Rollback, or Continue. It has
the following characteristics:

• Execution of "Cancel" for an actual NS LCM operation on a particular NS may be supported, depending on
characteristics of the NS and the NS LCM operation.

• The "Cancel" operation need not have immediate effect, depending on the capabilities of the underlying
systems, and the currently executed resource management operation.

• Two modes of cancellation are supported: graceful and forceful:

- When executing the graceful "Cancel" operation, the NFVO will not initiate any new operation towards
the underlying systems, will wait until the currently executed operations finish or time out, and will then
put the NS lifecycle management operation occurrence into the "FAILED_TEMP" state.

- When executing the forceful "Cancel" operation, the NFVO will cancel all ongoing operations in the
underlying systems for which cancellation is supported, will not initiate any new operation towards the
underlying systems, will wait for the requested cancellations to finish or time out, and will the put the NS
lifecycle management operation occurrence into the "FAILED_TEMP" state.

• Executing "Cancel" can lead to inconsistencies between the information that the NFVO has about the state of
the resources of the NS, and their actual state. The probability of such inconsistencies is bigger when using the
forceful cancellation mode.

6.6.3 Detailed flows

6.6.3.1 Immediate failure

If the NS LCM operation fails immediately, i.e. it returns an HTTP error, then the operation has not started, and no "NS
LCM operation occurrence resource" has been created. Also, a "start" lifecycle management operation occurrence
notification has not been sent. The operation cannot be retried, but the same operation may be invoked again from the
API. The NS instance is not changed by a synchronous failure, so no special error handling is required.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)202

Figure 6.6.3.1-1 illustrates the flow.

Figure 6.6.3.1-1: Immediate failure of a NS LCM operation

6.6.3.2 Failure during actual NS LCM operation execution

After a failed resource management operation, automatic retry can be invoked by the NFVO itself. These invocations
are not visible outside of the NFVO, as the NS LCM operation occurrence stays in "PROCESSING" state during these
automatic retries. If these do not resolve the issue, intervention (typically by a human operator) is necessary. For that
purpose, the NS LCM operation is set into a temporary failure state, and the OSS/BSS is notified. The human operator
performs a root cause analysis and eventually resolves the obstacle. Subsequently, and if supported, the operation can
be retried, rolled-back or determined as permanently failed. Figure 6.6.3.2-1 illustrates the possible options.

NOTE 1: Excluding automated rollback which is seen as a rare option.

NOTE 2: Excluding "start" notifications (i.e. notificationStatus="START") for simplification purposes.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)203

Figure 6.6.3.2-1: Handling failures during the actual execution of a NS LCM operation

6.6.3.3 LCM operation cancellation

The cancellation of a NS LCM operation that is in PROCESSING or ROLLING_BACK state is handled like any other
error that leads to stopping the execution of the NS LCM workflow before it can be successfully completed. The NS
LCM operation transits into the FAILED_TEMP state which allows root cause analysis, possible fixing of the root
cause, followed by retrying, rolling back, or finally failing of the operation.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)204

7 NS Performance Management interface

7.1 Description
This interface allows providing performance management (measurement results collection and notifications) related to
NSs. Performance information on a given NS instance is sent by the NFVO to the OSS/BSS. Collection and reporting of
performance information is controlled by a PM job that groups details of performance collection and reporting
information.

When new performance information is available, the consumer is notified using the notification
NsPerformanceInformationAvailableNotification.

The operations provided through this interface are:

• Create PM Job

• Query PM Job

• Delete PM Job

• Create Threshold

• Query Threshold

• Delete Threshold

• Subscribe

• Query Subscription Information

• Terminate Subscription

• Notify

7.1a API version
For the NS performance management interface as specified in the present document, the MAJOR version field shall be
1, the MINOR version field shall be 1, and the PATCH version number shall be 0 (see clause 4.6.1 for a definition of
the version fields). Consequently, the {apiMajorVersion} URI variable shall be set to "v1".

NOTE: The MINOR version 0 corresponds to the version of the API specified in version 2.4.1 of the present
document.

7.2 Resource structure and methods
All resource URIs of the API shall use the base URI specification defined in clause 4.2. The string "nspm" shall be used
to represent {apiName}. All resource URIs in the clauses below are defined relative to the above base URI.

Figure 7.2-1 shows the overall resource URI structure defined for the performance management API.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)205

Figure 7.2-1: Resource URI structure of the NS Performance Management interface

Table 7.2-1 lists the individual resources defined, and the applicable HTTP methods. The NFVO shall support
responding to requests for all HTTP methods on the resources in Table 7.2-1 that are marked as "M" (mandatory) in the
"Cat" column. The NFVO shall also support the "API versions" resources as specified in clause 4.6.3.2.

Table 7.2-1: Resources and methods overview of the NS Performance Management interface

Resource name Resource URI HTTP
Method

Cat Meaning

PM jobs /pm_jobs
POST M Create a PM job
GET M Query PM jobs

Individual PM job /pm_jobs/{pmJobId}
GET M Read an individual PM job
DELETE M Delete a PM job

Individual performance report
/pm_jobs/{pmJobId}/reports/
{reportId} GET M Read an individual performance report

Thresholds /thresholds
POST M Create a threshold
GET M Query thresholds

Individual threshold /thresholds/{thresholdId}
GET M Read a single threshold
DELETE M Delete a threshold

Subscriptions /subscriptions
POST M Subscribe to PM notifications
GET M Query PM related subscriptions

Individual subscription /subscriptions/{subscriptionI
d}

GET M Read a single PM related subscription
DELETE M Terminate a subscription

Notification endpoint (client-defined)
POST

See
note

Notify about PM related events. See
note

GET See
note Test the notification endpoint. See note

NOTE: The NFVO shall support invoking the HTTP methods defined for the "Notification endpoint" resource exposed by
the OSS/BSS. If the OSS/BSS supports invoking the POST method on the "Subscriptions" resource towards the
NFVO, it shall also support responding to the HTTP requests defined for the "Notification endpoint" resource.

7.3 Sequence diagrams (informative)

7.3.1 Flow of creating a PM job

This clause describes a sequence for creating a performance management jobs.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)206

Figure 7.3.1-1: Flow of PM job creation

PM job creation, as illustrated in Figure 7.3.1-1, consists of the following steps:

1) If the OSS/BSS intends to create a PM job, it sends a POST request to the "PM jobs" resource, including one
data structure of type "CreatePmJobRequest" in the payload body.

2) The NFVO creates a PM job instance.

3) The NFVO returns a "201 Created" response to the OSS/BSS, and includes in the payload body a
representation of the PM job just created.

Error handling: In case of failure, appropriate error information is provided in the response.

7.3.2 Flow of querying/reading PM jobs

This clause describes a sequence for querying/reading performance management jobs.

Figure 7.3.2-1: Flow of PM jobs query/read

PM jobs query/read, as illustrated in Figure 7.3.2-1, consists of the following steps:

1) If the OSS/BSS intends to query all PM jobs, it sends a GET request to the "PM jobs" resource.

2) The NFVO returns a "200 OK" response to the OSS/BSS, and includes zero or more data structures of type
"PmJob" in the payload body.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)207

3) If the OSS/BSS intends to read information about a particular PM job, it sends a GET request to the
"Individual PM job" resource, addressed by the appropriate PM job identifier in its resource URI.

4) The NFVO returns a "200 OK" response to the OSS/BSS, and includes one data structure of type "PmJob" in
the payload body.

Error handling: In case of failure, appropriate error information is provided in the response.

7.3.3 Flow of deleting a PM job

This clause describes a sequence for deleting a performance management jobs.

Figure 7.3.3-1: Flow of PM job deletion

PM job deletion, as illustrated in Figure 7.3.3-1, consists of the following steps:

1) If the OSS/BSS intends to delete a PM job, it sends a DELETE request to the "Individual PM job" resource,
addressed by the appropriate PM job identifier in its resource URI.

2) The NFVO deletes the PM Job instance.

3) The NFVO returns a response with a "204 No Content" response code and an empty payload body to the
OSS/BSS.

Error handling: In case of failure, appropriate error information is provided in the response.

7.3.4 Flow of obtaining performance reports

This clause describes a sequence for obtaining performance reports.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)208

Figure 7.3.4-1: Flow of obtaining performance reports

Obtaining a performance report, as illustrated in Figure 7.3.4-1, consists of the following steps:

1) The NFVO sends to the OSS/BSS a PerformanceInformationAvailableNotification (see clause 7.3.9) that
indicates the availability of a new performance report, including a link from which the report can be obtained.

2) Alternatively, the OSS/BSS sends a GET request to the "Individual PM job" resource, to obtain a
representation of the PM job resource including information about performance reports that are available for
this PM job, including their URIs.

3) In that case, the NFVO returns a "200 OK" response to the OSS/BSS, and includes a data structure of type
"PmJob" in the payload body.

4) The OSS/BSS sends to the NFVO a GET request to the URI obtained either in step (1) or step (3), in order to
read a performance report resource.

5) The NFVO returns a "200 OK" response to the OSS/BSS, and includes a data structure of type
"PerformanceReport" in the payload body.

7.3.5 Flow of creating a threshold

This clause describes a sequence for creating a performance management threshold.

Figure 7.3.5-1: Flow of threshold creation

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)209

Threshold creation, as illustrated in Figure 7.3.5-1, consists of the following steps:

1) If the OSS/BSS intends to create a threshold, it sends a POST request to the "Thresholds" resource, including a
data structure of type "CreateThresholdRequest" in the payload body.

2) The NFVO creates a threshold instance.

3) The NFVO returns a "201 Created" response to the OSS/BSS, and includes in the payload body a
representation of the threshold just created.

Error handling: In case of failure, appropriate error information is provided in the response.

7.3.6 Flow of querying/reading thresholds

This clause describes a sequence for querying/reading performance management thresholds.

Figure 7.3.6-1: Flow of thresholds query/read

Threshold query/read, as illustrated in Figure 7.3.6-1, consists of the following steps:

1) If the OSS/BSS intends to query all thresholds, it sends a GET request to the "Thresholds" resource.

2) The NFVO returns a "200 OK" response to the OSS/BSS, and includes zero or more data structures of type
"Threshold" in the payload body.

3) If the OSS/BSS intends to read information about a particular threshold, it sends a GET request to the
"Individual threshold" resource with the appropriate threshold identifier in its resource URI.

4) The NFVO returns a "200 OK" response to the OSS/BSS, and includes a data structure of type "Threshold" in
the payload body.

Error handling: In case of failure, appropriate error information is provided in the response.

7.3.7 Flow of deleting thresholds

This clause describes a sequence for deleting performance management thresholds.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)210

Figure 7.3.7-1: Flow of threshold deletion

Threshold deletion, as illustrated in Figure 7.3.7-1, consists of the following steps:

1) If the OSS/BSS intends to delete a particular threshold, it sends a DELETE request to the "Individual
threshold" resource, addressed by the appropriate threshold identifier in its resource URI.

2) The NFVO returns a "204 No Content" response code to the NFVO. The response body shall be empty.

Error handling: In case of failure, appropriate error information is provided in the response.

7.3.8 Flow of managing subscriptions

This clause describes the procedure for creating, reading and terminating subscriptions to notifications related to NS
performance management.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)211

Figure 7.3.8-1: Flow of managing subscriptions

The procedure consists of the following steps as illustrated in Figure 7.3.8-1:

1) The OSS/BSS sends a POST request to the "Subscriptions" resource including in the payload body a data
structure of type "PmSubscriptionRequest". This data structure contains filtering criteria and a client-side URI
to which the NFVO will subsequently send notifications about events that match the filter.

2) Optionally, to test the notification endpoint that was registered by the OSS/BSS as part of the subscription, the
NFVO sends a GET request to the notification endpoint URI.

3) In that case, the OSS/BSS returns a "204 No Content" response to indicate success.

4) The NFVO creates a new subscription to notifications related to NS performance management, and a resource
that represents this subscription.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)212

5) The NFVO returns a "201 Created" response containing a data structure of type "PmSubscription,"
representing the subscription resource just created by the NFVO, and provides the URI of the newly-created
resource in the "Location" HTTP header.

6) Optionally, for example when trying to recover from an error situation, the OSS/BSS may query information
about its subscriptions by sending a GET request to the "Subscriptions" resource.

7) In that case, the NFVO returns a "200 OK" response that contains the list of representations of all existing
subscriptions that were created by the OSS/BSS.

8) Optionally, for example when trying to recover from an error situation, the OSS/BSS may read information
about a particular subscription by sending a GET request to the resource representing that individual
subscription.

9) In that case, the NFVO returns a "200 OK" response that contains a representation of that individual
subscription.

10) When the OSS/BSS does not need the subscription anymore, it terminates the subscription by sending a
DELETE request to the resource that represents the individual subscription.

11) The NFVO acknowledges the successful termination of the subscription by returning a "204 No Content"
response.

Error handling: The NFVO rejects a subscription if the subscription information is not valid: endpoint cannot be
reached, subscription information is malformed, etc.

7.3.9 Flow of sending notifications

This clause describes the procedure for sending notifications related to NS performance management.

Figure 7.3.9-1: Flow of sending notifications

Precondition: The OSS/BSS has subscribed previously for notifications related to NS performance management.

The procedure consists of the following steps as illustrated in Figure 7.3.9-1:

1) If an event occurs that matches the filtering criteria which are part of the subscription, the NFVO generates a
notification that includes information about the event, and sends it in the body of a POST request to the URI
which the OSS/BSS has registered as part of the subscription request. The variable <<Notification>> in the
flow is a placeholder for the different types of notifications that can be sent by this API.

2) The OSS/BSS acknowledges the successful delivery of the notification by returning a "204 No Content"
response.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)213

Error handling: If the NFVO does not receive the "204 No Content" response from the NFVO, it can retry sending the
notification.

7.4 Resources

7.4.1 Introduction

This clause defines all the resources and methods provided by the performance management API.

7.4.1a Resource: API versions

The "API versions" resources as defined in clause 4.6.3.3 are part of the NS performance management interface.

7.4.2 Resource: PM jobs

7.4.2.1 Description

This resource represents PM jobs. The client can use this resource to create and query PM jobs.

7.4.2.2 Resource definition

The resource URI is:

 {apiRoot}/nspm/v1/pm_jobs

This resource shall support the resource URI variables defined in Table 7.4.2.2-1.

Table 7.4.2.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2

7.4.2.3 Resource methods

7.4.2.3.1 POST

The POST method creates a PM job.

This method shall follow the provisions specified in the Tables 7.4.2.3.1-1 and 7.4.2.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 7.4.2.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)214

Table 7.4.2.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
CreatePmJobRequest 1 PM job creation request

Response
body

Data type Cardinality Response
Codes

Description

PmJob 1 201 Created The PM job was created successfully.

The response body shall contain a representation
of the created PM job resource, as defined in
clause 7.5.2.7.

The HTTP response shall include a "Location"
HTTP header that points to the created PM job
resource.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.2.3.2 GET

The client can use this method to retrieve information about PM jobs.

This method shall follow the provisions specified in the Tables 7.4.2.3.2-1 and 7.4.2.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 7.4.2.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
filter 0..1 Attribute-based filtering expression according to clause 4.3.2.

The NFVO shall support receiving this parameter as part of the URI query string. The
OSS/BSS may supply this parameter.

All attribute names that appear in the PmJob and in data types referenced from it
shall be supported by the NFVO in the filter expression.

all_fields 0..1 Include all complex attributes in the response. See clause 4.3.3 for details. The
NFVO shall support this parameter.

include 0..1 Complex attributes to be included into the response. See clause 4.3.3 for details.
The NFVO should support this parameter.

exclude 0..1 Complex attributes to be excluded from the response. See clause 4.3.3 for details.
The NFVO should support this parameter.

exclude-
default

0..1 Indicates to exclude the following complex attributes from the response. See
clause 4.3.3 for details. The NFVO shall support this parameter.

The following attributes shall be excluded from the PmJob structure in the response
body if this parameter is provided, or none of the parameters "all_fields," "fields",
"exclude_fields", "exclude_default" are provided:
reports.

nextpage_opa
que_marker

0..1 Marker to obtain the next page of a paged response. Shall be supported by the
NFVO if the NFVO supports alternative 2 (paging) according to clause 4.7.2.1 for this
resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)215

Table 7.4.2.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

PmJob 0..N 200 OK Information about zero or more PM jobs was
queried successfully.

The response body shall contain in an array the
representations of zero or more PM jobs, as
defined in clause 7.5.2.7.

If the NFVO supports alternative 2 (paging)
according to clause 4.7.2.1 for this resource,
inclusion of the Link HTTP header in this response
shall follow the provisions in clause 4.7.2.3.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute-based filtering expression.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should
convey more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute selector.

In the returned ProblemDetails structure, the
"detail" attribute should convey more information
about the error.

ProblemDetails 1 400 Bad
Request

Error: Response too big.

If the NFVO supports alternative 1 (error)
according to clause 4.7.2.1 for this resource, this
error response shall follow the provisions in
clause 4.7.2.2.

ProblemDetails See clauses
4.3.5.4 / 4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.2.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.2.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.2.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.3 Resource: Individual PM job

7.4.3.1 Description

This resource represents an individual PM job. The client can use this resource to delete and read the underlying PM
job.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)216

7.4.3.2 Resource definition

The resource URI is:

 {apiRoot}/nspm/v1/pm_jobs/{pmJobId}

This resource shall support the resource URI variables defined in Table 7.4.3.2-1.

Table 7.4.3.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
pmJobId Identifier of the PM job. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request creating a new PM job resource. It can also be retrieved from the "id" attribute in the
payload body of that response.

7.4.3.3 Resource methods

7.4.3.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.3.3.2 GET

The client can use this method for reading an individual PM job.

This method shall follow the provisions specified in the Tables 7.4.3.3.2-1 and 7.4.3.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 7.4.3.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

Table 7.4.3.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

PmJob 1 200 OK Information about an individual PM job was read
successfully.

The response body shall contain a representation of
the PM job resource, as defined in clause 7.5.2.7.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.3.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)217

7.4.3.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.3.3.5 DELETE

This method terminates an individual PM job.

This method shall follow the provisions specified in the Tables 7.4.3.3.5-1 and 7.4.3.3.5-2 for URI query parameters,
request and response data structures, and response codes.

Table 7.4.3.3.5-1: URI query parameters supported by the DELETE method on this resource

Name Cardinality Description
none supported

Table 7.4.3.3.5-2: Details of the DELETE request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The PM job was deleted successfully.

The response body shall be empty.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.4 Resource: Individual performance report

7.4.4.1 Description

This resource represents an individual performance report that was collected by a PM job. The client can use this
resource to read the performance report. The URI of this report can be obtained from a
PerformanceInformationAvailableNotification (see clause 7.5.2.5) or from the representation of the "Individual PM job"
resource.

It is determined by means outside the scope of the present document, such as configuration or policy, how long an
individual performance report is available.

7.4.4.2 Resource definition

The resource URI is:

 {apiRoot}/nspm/v1/pm_jobs/{pmJobId}/reports/{reportId}

This resource shall support the resource URI variables defined in Table 7.4.4.2-1.

Table 7.4.4.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
pmJobId Identifier of the PM job.
reportId Identifier of the performance report.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)218

7.4.4.3 Resource methods

7.4.4.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.4.3.2 GET

The client can use this method for reading an individual performance report.

This method shall follow the provisions specified in the Tables 7.4.4.3.2-1 and 7.4.4.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 7.4.4.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

Table 7.4.4.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

PerformanceReport 1 200 OK Information of an individual performance report was
read successfully.

The response body shall contain a representation of
the performance report resource, as defined in
clause 7.5.2.10.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.4.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.4.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.4.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.5 Resource: Thresholds

7.4.5.1 Description

This resource represents thresholds. The client can use this resource to create and query thresholds.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)219

7.4.5.2 Resource definition

The resource URI is:

 {apiRoot}/nspm/v1/thresholds

This resource shall support the resource URI variables defined in Table 7.4.5.2-1.

Table 7.4.5.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2

7.4.5.3 Resource methods

7.4.5.3.1 POST

The POST method can be used by the client to create a threshold.

This method shall follow the provisions specified in the Tables 7.4.5.3.1-1 and 7.4.5.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 7.4.5.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
None supported

Table 7.4.5.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
CreateThresholdRequest 1 Request parameters to create a threshold resource.

Response
body

Data type Cardinality Response
Codes

Description

Threshold 1 201 Created A threshold was created successfully.

The response body shall contain a
representation of the created threshold
resource, as defined in clause 7.5.2.9.

The HTTP response shall include a "Location"
HTTP header that contains the resource URI
of the created threshold resource.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined
above, any common error response code as
defined in clause 4.3.5.4, and any other valid
HTTP error response as defined in
clause 4.3.5.5, may be returned.

7.4.5.3.2 GET

The client can use this method to query information about thresholds.

This method shall follow the provisions specified in the Tables 7.4.5.3.2-1 and 7.4.5.3.2-2 for URI query parameters,
request and response data structures, and response codes.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)220

Table 7.4.5.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
filter 0..1 Attribute-based filtering expression according to clause 4.3.2.

The NFVO shall support receiving this parameter as part of the URI query string. The
OSS/BSS may supply this parameter.

All attribute names that appear in the Thresholds data type and in data types
referenced from it shall be supported by the NFVO in the filter expression.

nextpage_opa
que_marker

0..1 Marker to obtain the next page of a paged response. Shall be supported by the
NFVO if the NFVO supports alternative 2 (paging) according to clause 4.7.2.1 for this
resource.

NOTE: There are no attribute selectors defined for this resource as the threshold attributes with cardinality 0..1 or
0..N are not structurally complex in nature.

Table 7.4.5.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

Threshold 0..N 200 OK Information about zero or more thresholds was
queried successfully.

The response body shall contain in an array the
representations of zero or more thresholds, as
defined in clause 7.5.2.9.

If the NFVO supports alternative 2 (paging)
according to clause 4.7.2.1 for this resource,
inclusion of the Link HTTP header in this response
shall follow the provisions in clause 4.7.2.3.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute-based filtering expression.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should
convey more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Response too big.

If the NFVO supports alternative 1 (error) according
to clause 4.7.2.1 for this resource, this error
response shall follow the provisions in clause 4.7.2.2.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.5.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.5.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)221

7.4.5.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.6 Resource: Individual threshold

7.4.6.1 Description

This resource represents an individual threshold.

7.4.6.2 Resource definition

The resource URI is:

 {apiRoot}/nspm/v1/thresholds/{thresholdId}

This resource shall support the resource URI variables defined in Table 7.4.6.2-1.

Table 7.4.6.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
thresholdId Identifier of the threshold. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request creating a new threshold resource. It can also be retrieved from the "id" attribute in the
payload body of that response.

7.4.6.3 Resource methods

7.4.6.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.6.3.2 GET

The client can use this method for reading an individual threshold.

This method shall follow the provisions specified in the Tables 7.4.6.3.2-1 and 7.4.6.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 7.4.6.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)222

Table 7.4.6.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

Threshold 1 200 OK Information about an individual threshold was read
successfully.

The response body shall contain a representation of
the threshold, as defined in clause 7.5.2.9.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.6.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.6.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.6.3.5 DELETE

This method allows to delete a threshold.

This method shall follow the provisions specified in the Tables 7.4.6.3.5-1 and 7.4.6.3.5-2 for URI query parameters,
request and response data structures, and response codes.

Table 7.4.6.3.5-1: URI query parameters supported by the DELETE method on this resource

Name Cardinality Description

Table 7.4.6.3.5-2: Details of the DELETE request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The threshold was deleted successfully.

The response body shall be empty.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.7 Resource: Subscriptions

7.4.7.1 Description

This resource represents subscriptions. The client can use this resource to subscribe to notifications related to NS
performance management and to query its subscriptions.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)223

7.4.7.2 Resource definition

The resource URI is:

 {apiRoot}/nspm/v1/subscriptions

This resource shall support the resource URI variables defined in Table 7.4.7.2-1.

Table 7.4.7.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2

7.4.7.3 Resource methods

7.4.7.3.1 POST

The POST method creates a new subscription.

This method shall follow the provisions specified in the Tables 7.4.7.3.1-1 and 7.4.7.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Creation of two subscription resources with the same callbackURI and the same filter can result in performance
degradation and will provide duplicates of notifications to the OSS, and might make sense only in very rare use cases.
Consequently, the NFVO may either allow creating a subscription resource if another subscription resource with the
same filter and callbackUri already exists (in which case it shall return the "201 Created" response code), or may decide
to not create a duplicate subscription resource (in which case it shall return a "303 See Other" response code referencing
the existing subscription resource with the same filter and callbackUri).

Table 7.4.7.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)224

Table 7.4.7.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
PmSubscriptionRequest 1 Details of the subscription to be created.

Response
body

Data type Cardinality Response
Codes

Description

PmSubscription 1 201 Created The subscription was created successfully.

A representation of the created subscription
resource shall be returned in the response body, as
defined in clause 7.5.2.3.

The HTTP response shall include a "Location"
HTTP header that contains the resource URI of the
created subscription resource.

n/a 303
See Other

A subscription with the same callbackURI and the
same filter already exits and the policy of the NFVO
is to not create redundant subscriptions.

The HTTP response shall include a "Location"
HTTP header that contains the resource URI of the
existing subscription resource.

The response body shall be empty.
ProblemDetails See clauses

4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.7.3.2 GET

The client can use this method to query the list of active subscriptions to Performance management notifications
subscribed by the client.

This method shall follow the provisions specified in the Tables 7.4.7.3.2-1 and 7.4.7.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 7.4.7.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
filter 0..1 Attribute-based filtering expression according to clause 4.3.2.

The NFVO shall support receiving this parameter as part of the URI query
string. The OSS/BSS may supply this parameter.

All attribute names that appear in the PmSubscription and in data types
referenced from it shall be supported by the NFVO in the filter expression.

nextpage_opaque_marker 0..1 Marker to obtain the next page of a paged response. Shall be supported
by the NFVO if the NFVO supports alternative 2 (paging) according to
clause 4.7.2.1 for this resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)225

Table 7.4.7.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

PmSubscription 0..N 200 OK The list of subscriptions was queried successfully.

The response body shall contain in an array the
representations of all active subscriptions of the
functional block that invokes the method, i.e. zero or
more representations of PM subscriptions, as
defined in clause 7.5.2.3.

If the NFVO supports alternative 2 (paging)
according to clause 4.7.2.1 for this resource,
inclusion of the Link HTTP header in this response
shall follow the provisions in clause 4.7.2.3.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute-based filtering expression.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should
convey more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Response too big.

If the NFVO supports alternative 1 (error) according
to clause 4.7.2.1 for this resource, this error
response shall follow the provisions in clause 4.7.2.2.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.7.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.7.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.7.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.8 Resource: Individual subscription

7.4.8.1 Description

This resource represents an individual subscription for notifications about performance management related events.

The client can use this resource to read and to terminate a subscription to notifications related to NS performance
management.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)226

7.4.8.2 Resource definition

The resource URI is:

 {apiRoot}/nspm/v1/subscriptions/{subscriptionId}

This resource shall support the resource URI variables defined in Table 7.4.8.2-1.

Table 7.4.8.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
subscriptionId Identifier of the subscription. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request creating a new subscription resource. It can also be retrieved from the "id" attribute in the
payload body of that response.

7.4.8.3 Resource methods

7.4.8.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.8.3.2 GET

The client can use this method for reading an individual subscription about Performance management notifications
subscribed by the client.

This method shall follow the provisions specified in the Tables 7.4.8.3.2-1 and 7.4.8.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 7.4.8.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

Table 7.4.8.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

PmSubscription 1 200 OK The subscription was read successfully.

The response body shall contain a representation of
the subscription resource, as defined in
clause 7.5.2.3.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.8.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)227

7.4.8.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.8.3.5 DELETE

This method terminates an individual subscription.

This method shall follow the provisions specified in the Tables 7.4.8.3.5-1 and 7.4.8.3.5-2 for URI query parameters,
request and response data structures, and response codes.

Table 7.4.8.3.5-1: URI query parameters supported by the DELETE method on this resource

Name Cardinality Description
none supported

Table 7.4.8.3.5-2: Details of the DELETE request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The subscription resource was deleted successfully.

The response body shall be empty.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.9 Resource: Notification endpoint

7.4.9.1 Description

This resource represents a notification endpoint for NS performance management.

The API producer can use this resource to send notifications related to performance management events to a subscribed
API consumer, which has provided the URI of this resource during the subscription process.

7.4.9.2 Resource definition

The resource URI is provided by the client when creating the subscription.

This resource shall support the resource URI variables defined in Table 7.4.9.2-1.

Table 7.4.9.2-1: Resource URI variables for this resource

Name Definition
n/a

7.4.9.3 Resource methods

7.4.9.3.1 POST

The POST method delivers a notification regarding a performance management event from the server to the client.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)228

This method shall follow the provisions specified in the Tables 7.4.9.3.1-1 and 7.4.9.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 7.4.9.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

Table 7.4.9.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
PerformanceInformation
AvailableNotification

1 Notification about performance information availability

ThresholdCrossedNotifi
cation

1 Notification about threshold crossing

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The notification was delivered successfully.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.9.3.2 GET

The GET method allows the server to test the notification endpoint that is provided by the client, e.g. during
subscription.

This method shall follow the provisions specified in the Tables 7.4.9.3.2-1 and 7.4.9.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 7.4.9.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

Table 7.4.9.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The notification endpoint was tested successfully.

The response body shall be empty.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

7.4.9.3.3 PUT

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)229

7.4.9.3.4 PATCH

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.4.9.3.5 DELETE

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

7.5 Data Model

7.5.1 Introduction

This clause defines the request and response data structures of the NS Performance Management interface. If a request
or response contains attributes not defined in the present document, a receiving functional block that does not
understand these attributes shall not treat their presence as an error, and may choose to ignore them.

7.5.2 Resource and notification data types

7.5.2.1 Introduction

This clause defines the data structures to be used in resource representations and notifications.

7.5.2.2 Type: PmSubscriptionRequest

This type represents a subscription request. It shall comply with the provisions defined in Table 7.5.2.2-1.

Table 7.5.2.2-1: Definition of the PmSubscriptionRequest data type

Attribute name Data type Cardinality Description
filter PmNotificationsFilter 0..1 Filter settings for this subscription, to define the subset of

all notifications this subscription relates to. A particular
notification is sent to the subscriber if the filter matches, or
if there is no filter.

callbackUri Uri 1 The URI of the endpoint to send the notification to.
authentication SubscriptionAuthentic

ation
0..1 Authentication parameters to configure the use of

Authorization when sending notifications corresponding to
this subscription, as defined in clause 4.5.3.4.

This attribute shall only be present if the subscriber
requires authorization of notifications.

7.5.2.3 Type: PmSubscription

This type represents a subscription. It shall comply with the provisions defined in Table 7.5.2.3-1.

Table 7.5.2.3-1: Definition of the PmSubscription data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier that identifies the subscription.
filter PmNotificationsFilter 0..1 Filter settings for this subscription, to define the subset of

all notifications this subscription relates to. A particular
notification is sent to the subscriber if the filter matches,
or if there is no filter.

callbackUri Uri 1 The URI of the endpoint to send the notification to.
_links Structure (inlined) 1 Links to resources related to this resource.
>self Link 1 URI of this resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)230

7.5.2.4 Type: ThresholdCrossedNotification

This type represents a notification that is sent when a threshold has been crossed. It shall comply with the provisions
defined in Table 7.5.2.4-1.

Table 7.5.2.4-1: Definition of the ThresholdCrossedNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent

multiple times due to multiple subscriptions, the "id"
attribute of all these notifications shall have the
same value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to "ThresholdCrossedNotification " for
this notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification
relates to.

timeStamp DateTime 1 Date and time of the generation of the notification.
thresholdId Identifier 1 Identifier of the threshold which has been crossed.
crossingDirection CrossingDirectionTy

pe
1 An indication of whether the threshold was crossed

in upward or downward direction.
objectInstanceId Identifier 1 Identifier that identifies a NS instance.
performanceMetric String 1 Performance metric associated with the threshold.

This attribute shall contain the related
"Measurement Name" value as defined in clause 7.2
of ETSI GS NFV-IFA 027 [31].

performanceValue (any type) 1 Value of the metric that resulted in threshold
crossing. The type of this attribute shall correspond
to the related "Measurement Unit" as defined in
clause 7.2 of ETSI GS NFV-IFA 027 [31].

_links Structure (inlined) 1 Links to resources related to this notification.
>subscription NotificationLink 1 Link to the related subscription.
>objectInstance NotificationLink 0..1 Link to the resource representing the NS instance to

which the notified change applies. Shall be present if
the NS instance information is accessible as a
resource.

>threshold NotificationLink 1 Link to the resource that represents the threshold
that was crossed.

7.5.2.5 Type: PerformanceInformationAvailableNotification

This notification informs the receiver that performance information is available. It shall comply with the provisions
defined in Table 7.5.2.5-1.

NOTE: The timing of sending this notification is determined by the capability of the producing entity to evaluate
the threshold crossing condition.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)231

Table 7.5.2.5-1: Definition of the PerformanceInformationAvailableNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is

sent multiple times due to multiple subscriptions,
the "id" attribute of all these notifications shall
have the same value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to
"PerformanceInformationAvailableNotification"
for this notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification
relates to.

timeStamp DateTime 1 Date and time of the generation of the
notification.

objectInstanceId Identifier 1 Identifier that identifies a NS instance.
_links Structure (inlined) 1 Links to resources related to this notification.
>subscription NotificationLink 1 Link to the related subscription.
>objectInstance NotificationLink 0..1 Link to the resource representing the NS

instance to which the notified change applies.
Shall be present if the NS instance information is
accessible as a resource.

>pmJob NotificationLink 1 Link to the resource that represents the PM job
for which performance information is available.

>performanceReport NotificationLink 1 Link from which the available performance
information of data type "PerformanceReport"
(see clause 7.5.2.10) can be obtained.

This link should point to an "Individual
performance report" resource as defined in
clause 7.4.4.

7.5.2.6 Type: CreatePmJobRequest

This type represents a request to create a PM job. It shall comply with the provisions defined in Table 7.5.2.6-1.

Table 7.5.2.6-1: Definition of the CreatePmJobRequest data type

Attribute name Data type Cardinality Description
objectInstanceIds Identifier 1..N Identifiers of the NS instances for which

performance information is requested to be
collected.

criteria PmJobCriteria 1 Criteria of the collection of performance
information.

7.5.2.7 Type: PmJob

This type represents a PM job. It shall comply with the provisions defined in Table 7.5.2.7-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)232

Table 7.5.2.7-1: Definition of the PmJob data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this PM job.
objectInstanceIds Identifier 1..N Identifiers of the NS instances for which

performance information is collected.
criteria PmJobCriteria 1 Criteria of the collection of performance

information.
reports Structure (inlined) 0..N Information about available reports collected by

this PM job.
>href Uri 1 The Uri where the report can be obtained.
>readyTime DateTime 1 The time when the report was made available.
>expiryTime DateTime 0..1 The time when the report will expire.
>fileSize UnsigendInt 0..1 The size of the report file in bytes, if known.
_links Structure (inlined) 1 Links for this resource.
>self Link 1 URI of this resource.
>objects Link 0..N Links to resources representing the NS

instances for which performance information is
collected. Shall be present if the NS instance
information is accessible as a resource.

7.5.2.8 Type: CreateThresholdRequest

This type represents a request to create a threshold. It shall comply with the provisions defined in Table 7.5.2.8-1.

Table 7.5.2.8-1: Definition of the CreateThresholdRequest data type

Attribute name Data type Cardinality Description
objectInstanceId Identifier 1 Identifier of the NS instance associated with this

threshold.
criteria ThresholdCriteria 1 Criteria that define this threshold.

7.5.2.9 Type: Threshold

This type represents a threshold. It shall comply with the provisions defined in Table 7.5.2.9-1.

Table 7.5.2.9-1: Definition of the Threshold data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this threshold resource.
objectInstanceId Identifier 1 Identifier of the NS instance associated with the

threshold.
criteria ThresholdCriteria 1 Criteria that define this threshold.
_links Structure (inlined) 1 Links for this resource.
>self Link 1 URI of this resource.
>object Link 0..1 Link to a resource representing the NS instance for

which performance information is collected. Shall be
present if the NS instance information is accessible as
a resource.

7.5.2.10 Type: PerformanceReport

This type defines the format of a performance report provided by the NFVO to the OSS/BSS as a result of collecting
performance information as part of a PM job. The type shall comply with the provisions defined in Table 7.5.2.10-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)233

Table 7.5.2.10-1: Definition of the PerformanceReport data type

Attribute name Data type Cardinality Description
entries Structure (inlined) 1..N List of performance information entries. Each

performance report entry is for a given metric of a given
object (i.e. NS instance), but can include multiple
collected values.

>objectType String 1 Defines the object type for which performance
information is reported (i.e. NS type). The string value
shall be set to the nsdId of the NS instance to which the
performance information relates.

>objectInstanceId Identifier 1 The object instance for which the performance metric is
reported.
The object instances for this information element will be
NS instances.

>performanceMetric String 1 Name of the metric collected.
>performanceValue Structure (inlined) 1..N List of performance values with associated timestamp.
>>timeStamp DateTime 1 Time stamp indicating when the data was collected.
>>performanceValue (any type) 1 Value of the metric collected. See note.
NOTE: The type of the "performanceValue" attribute (i.e. scalar, structure (Object in JSON), or array (of scalars, arrays

or structures / Objects)) is outside the scope of the present document.

7.5.3 Referenced structured data types

7.5.3.1 Introduction

This clause defines data structures that can be referenced from data structures defined in the previous clauses, but can
neither be resource representations nor bound to any subscribe/notify mechanism.

7.5.3.2 Type: PmNotificationsFilter

This type represents a filter that can be used to subscribe for notifications related to performance management events. It
shall comply with the provisions defined in Table 7.5.3.2-1.

At a particular nesting level in the filter structure, the following applies: All attributes shall match in order for the filter
to match (logical "and" between different filter attributes). If an attribute is an array, the attribute shall match if at least
one of the values in the array matches (logical "or" between the values of one filter attribute).

Table 7.5.3.2-1: Definition of the PmNotificationsFilter data type

Attribute name Data type Cardinality Description
nsInstanceSubscriptionFilter NsfInstanceSubscriptionFilter 0..1 Filter criteria to select NS instances about

which to notify.
notificationTypes Enum (inlined) 0..N Match particular notification types.

Permitted values:

- ThresholdCrossedNotification
- PerformanceInformationAvailableNo

tification
See note.

NOTE: The permitted values of the "notificationTypes" attribute are spelled exactly as the names of the notification types
to facilitate automated code generation systems.

7.5.3.3 Type: PmJobCriteria

This type represents collection criteria for PM jobs. It shall comply with the provisions defined in Table 7.5.3.3-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)234

Table 7.5.3.3-1: Definition of the PmJobCriteria data type

Attribute name Data type Cardinality Description
performanceMetric String 0..N This defines the types of performance metrics

for the specified object instances. At least one of
the two attributes (performance metric or group)
shall be present.

performanceMetricGroup String 0..N Group of performance metrics.
A metric group is a pre-defined list of metrics,
known to the producer that it can decompose to
individual metrics. At least one of the two
attributes (performance metric or group) shall be
present.

collectionPeriod UnsignedInt 1 Specifies the periodicity at which the producer
will collect performance information. The unit
shall be seconds. See notes 1 and 2.

reportingPeriod UnsignedInt 1 Specifies the periodicity at which the producer
will report to the consumer.
about performance information. The unit shall be
seconds. See notes 1 and 2.

reportingBoundary DateTime 0..1 Identifies a time boundary after which the
reporting will stop. The boundary shall allow a
single reporting as well as periodic reporting up
to the boundary.

NOTE 1: At the end of each reportingPeriod, the producer will inform the consumer about availability of the performance
data collected for each completed collection period during this reportingPeriod. The reportingPeriod should be
equal to or a multiple of the collectionPeriod. In the latter case, the performance data for the collection periods
within one reporting period are reported together.

NOTE 2: In particular when choosing short collection and reporting periods, the number of PM jobs that can be
supported depends on the capability of the producing entity.

7.5.3.4 Type: ThresholdCriteria

This type represents criteria that define a threshold. It shall comply with the provisions defined in Table 7.5.3.4-1.

Table 7.5.3.4-1: Definition of the ThresholdCriteria data type

Attribute name Data type Cardinality Description
performanceMetric String 1 Defines the performance metric associated with the

threshold.
thresholdType Enum (inlined) 1 Type of threshold. This attribute determines which other

attributes are present in the data structure.

Permitted values:

- SIMPLE: Single-valued static threshold

See note 1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)235

Attribute name Data type Cardinality Description
simpleThresholdDetails Structure (inlined) 0..1 Details of a simple threshold. Shall be present if

thresholdType="SIMPLE".
>thresholdValue Number 1 The threshold value. Shall be represented as a floating

point number.
>hysteresis Number 1 The hysteresis of the threshold.

Shall be represented as a non-negative floating point
number.

A notification with crossing direction "UP" will be
generated if the measured value reaches or exceeds
"thresholdValue" + "hysteresis". A notification with
crossing direction "DOWN" will be generated if the
measured value reaches or undercuts "thresholdValue" -
"hysteresis". See note 2.

NOTE 1: In the present document, simple thresholds are defined. The definition of additional threshold types is left for
future specification.

NOTE 2: The hysteresis is defined to prevent storms of threshold crossing notifications. When processing a request to
create a threshold, implementations should enforce a suitable minimum value for this attribute (e.g. override the
value or reject the request).

7.5.4 Referenced simple data types and enumerations

7.5.4.1 Introduction

This clause defines simple data types and enumerations that can be referenced from data structures defined in the
previous clauses.

7.5.4.2 Simple data types

No particular simple data types are defined for this interface, in addition to those defined in clause 4.4.2.

7.5.4.3 Enumeration: CrossingDirectionType

The enumeration CrossingDirectionType shall comply with the provisions defined in Table 7.5.4.3-1.

Table 7.5.4.3-1: Enumeration CrossingDirectionType

Enumeration value Description
UP The threshold was crossed in upward direction.
DOWN The threshold was crossed in downward direction.

8 NS Fault Management interface

8.1 Description
This interface allows the OSS/BSS to subscribe to notifications regarding NS alarms provided by the NFVO. An alarm
on a given NS results from either a collected virtualised resource fault impacting the connectivity of the NS instance or
a VNF alarm, resulting from a virtualised resource alarm, issued by the VNFM for a VNF that is part of this NS
instance.

The operations provided through this interface are:

• Get Alarm List

• Acknowledge Alarm

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)236

• Subscribe

• Query Subscription Information

• Terminate Subscription

• Notify

8.1a API version
For the NS fault management interface as specified in the present document, the MAJOR version field shall be 1, the
MINOR version field shall be 1, and the PATCH version number shall be 0 (see clause 4.6.1 for a definition of the
version fields). Consequently, the {apiMajorVersion} URI variable shall be set to "v1".

NOTE: The MINOR version 0 corresponds to the version of the API specified in version 2.4.1 of the present
document.

8.2 Resource structure and methods
All resource URIs of the API shall use the base URI specification defined in clause 4.2. The string "nsfm" shall be used
to represent {apiName}. All resource URIs in the clauses below are defined relative to the above base URI.

Figure 8.2-1 shows the overall resource URI structure defined for the NS fault management interface.

Figure 8.2-1: Resource URI structure of the NS Fault Management interface

Table 8.2-1 lists the individual resources defined, and the applicable HTTP methods. The NFVO shall support
responding to requests for all HTTP methods on the resources in Table 8.2-1 that are marked as "M" (mandatory) in the
"Cat" column. The NFVO shall also support the "API versions" resources as specified in clause 4.6.3.2.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)237

Table 8.2-1: Resources and methods overview of the NS Fault Management interface

Resource name Resource URI HTTP
Method

Cat Meaning

Alarms /alarms GET M Query alarms related to NS
instances.

Individual alarm /alarms/{alarmId} GET M Read individual alarm.
PATCH M Acknowledge individual alarm.

Subscriptions /subscriptions POST M Subscribe to alarms related to
NSs.

GET M Query multiple subscriptions.
Individual subscription /subscriptions/{subscriptionId} GET M Read an individual

subscription.
DELETE M Terminate a subscription.

Notification endpoint (client-provided) POST See note Notify about NS alarms. See
note.

GET See note Test the notification endpoint.
See note.

NOTE: The NFVO shall support invoking the HTTP methods defined for the "Notification endpoint" resource exposed by
the OSS/BSS. If the OSS/BSS supports invoking the POST method on the "Subscriptions" resource towards the
NFVO, it shall also support responding to the HTTP requests defined for the "Notification endpoint" resource.

8.3 Sequence diagrams (informative)

8.3.1 Flow of the Get Alarm List operation

This clause describes a sequence flow for querying one or multiple alarms.

Figure 8.3.1-1: Flow of alarm query/read

Alarm query, as illustrated in Figure 8.3.1-1, consists of the following steps:

1) If the OSS/BSS intends to query all alarms, it sends a GET request to the "Alarms " resource.

2) The NFVO returns a "200 OK" response to the OSS/BSS, and includes zero or more data structures of type
"Alarm" in the payload body.

3) If the OSS/BSS intends to read a particular alarm, it sends a GET request to the "Individual alarm" resource,
addressed by the appropriate alarm identifier in its resource URI.

4) The NFVO returns a "200 OK" response to the OSS/BSS, and includes a data structure of type "Alarm" in the
payload body.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)238

Error handling: In case of failure, appropriate error information is provided in the response.

8.3.2 Flow of acknowledging alarm

This clause describes the procedure to acknowledge an individual alarm.

Figure 8.3.2-1: Flow of acknowledging alarm

Precondition: The resource representing the individual alarm has been created.

Acknowledge alarm, as illustrated in Figure 8.3.2-1, consists of the following steps:

1) The OSS/BSS sends a PATCH request to the individual alarm.

2) The NFVO returns a "200 OK" response to the OSS/BSS, and includes a data structure of type
"AlarmModifications" in the payload body.

Error handling: In case of failure, appropriate error information is provided in the response.

8.3.3 Flow of managing subscriptions

This clause describes the procedure for creating, reading and terminating subscriptions to notifications related to NS
fault management.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)239

Figure 8.3.3-1: Flow of managing subscriptions

The procedure consists of the following steps as illustrated in Figure 8.3.3-1:

1) The OSS/BSS sends a POST request to the "Subscriptions" resource including in the payload body a data
structure of type "FmSubscriptionRequest". This data structure contains filtering criteria and a client side URI
to which the NFVO will subsequently send notifications about events that match the filter.

2) Optionally, to test the notification endpoint that was registered by the OSS/BSS as part of the subscription, the
NFVO sends a GET request to the notification endpoint URI.

3) In that case, the OSS/BSS returns a "204 No Content" response to indicate success.

4) The NFVO creates a new subscription for notifications related to NS fault management, and a resource that
represents this subscription.

5) The NFVO returns a "201 Created" response containing a data structure of type "FmSubscription,"
representing the subscription resource just created by the NFVO, and provides the URI of the newly-created
resource in the "Location" HTTP header.

6) Optionally, for example when trying to recover from an error situation, the OSS/BSS may query information
about its subscriptions by sending a GET request to the "Subscriptions" resource.

7) In that case, the NFVO returns a "200 OK" response that contains the list of representations of all existing
subscriptions that were created by the NFVO.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)240

8) Optionally, for example when trying to recover from an error situation, the OSS/BSS may read information
about a particular subscription by sending a GET request to the resource representing that individual
subscription.

9) In that case, the NFVO returns a "200 OK" response that contains a representation of that individual
subscription.

10) When the OSS/BSS does not need the subscription anymore, it terminates the subscription by sending a
DELETE request to the resource that represents the individual subscription.

11) The NFVO acknowledges the successful termination of the subscription by returning a "204 No Content"
response.

Error handling: The NFVO rejects a subscription if the subscription information is not valid: endpoint cannot be
reached, subscription information is malformed, etc.

8.3.4 Flow of sending notifications

This clause describes the procedure for sending notifications related to NS fault management.

Figure 8.3.4-1: Flow of sending notifications

Precondition: The OSS/BSS has subscribed previously for notifications related to NS fault management.

The procedure consists of the following steps as illustrated in Figure 8.3.4-1:

1) If an event occurs that matches the filtering criteria which are part of the subscription, the NFVO generates a
notification that includes information about the event, and sends it in the body of a POST request to the URI
which the NFVO has registered as part of the subscription request. The variable <<Notification>> in the flow
is a placeholder for the different types of notifications that can be sent by this API (see clauses 8.5.2.5, 8.5.2.6
and 8.5.2.7).

2) The OSS/BSS acknowledges the successful delivery of the notification by returning a "204 No Content"
response.

Error handling: If the NFVO does not receive the "204 No Content " response from the OSS/BSS, it can retry sending
the notification.

8.4 Resources

8.4.1 Introduction

This clause defines all the resources and methods provided by the NS fault management interface.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)241

8.4.1a Resource: API versions

The "API versions" resources as defined in clause 4.6.3.3 are part of the NS fault management interface.

8.4.2 Resource: Alarms

8.4.2.1 Description

This resource represents a list of alarms related to NS instances.

8.4.2.2 Resource definition

The resource URI is:

 {apiRoot}/nsfm/v1/alarms

This resource shall support the resource URI variables defined in Table 8.4.2.2-1.

Table 8.4.2.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2

8.4.2.3 Resource methods

8.4.2.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.2.3.2 GET

The client can use this method to retrieve information about the alarm list.

This method shall follow the provisions specified in the Tables 8.4.2.3.2-1 and 8.4.2.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 8.4.2.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
filter 0..1 Attribute-based filtering expression according to clause 4.3.2.

The NFVO shall support receiving this parameter as part of the URI query string. The
OSS/BSS may supply this parameter.

The following attribute names shall be supported by the NFVO in the filter expression:

- id
- nsInstanceId
- rootCauseFaultyComponent.faultyNestedNsInstanceId
- rootCauseFaultyComponent.faultyNsVirtualLinkInstanceId
- rootCauseFaultyComponent.faultyVnfInstanceId
- rootCauseFaultyResource.faultyResourceType
- eventType
- perceivedSeverity
- probableCause

nextpage_opaq
ue_marker

0..1 Marker to obtain the next page of a paged response. Shall be supported by the NFVO if
the NFVO supports alternative 2 (paging) according to clause 4.7.2.1 for this resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)242

NOTE: There are no attribute selectors defined for this resource as the Alarm attributes with cardinality 0..1 or
0..N are not structurally complex in nature.

Table 8.4.2.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

Alarm 0..N 200 OK Information about zero or more alarms was queried
successfully.

The response body shall contain the list of related
alarms.

If the NFVO supports alternative 2 (paging) according
to clause 4.7.2.1 for this resource, inclusion of the Link
HTTP header in this response shall follow the
provisions in clause 4.7.2.3.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute-based filtering expression.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should convey
more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Response too big.

If the NFVO supports alternative 1 (error) according to
clause 4.7.2.1 for this resource, this error response
shall follow the provisions in clause 4.7.2.2.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

8.4.2.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.2.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.2.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.3 Resource: Individual alarm

8.4.3.1 Description

This resource represents an individual alarm.

8.4.3.2 Resource definition

The resource URI is:

 {apiRoot}/nsfm/v1/alarms/{alarmId}

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)243

This resource shall support the resource URI variables defined in Table 8.4.3.2-1.

Table 8.4.3.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
alarmId Identifier of the alarm. See note.
NOTE: This identifier can be retrieved from the "id" attribute of the "alarm" attribute in the AlarmNotification or

AlarmClearedNotification. It can also be retrieved from the "id" attribute of the applicable array element in the
payload body of the response to a GET request to the "Alarms" resource.

8.4.3.3 Resource methods

8.4.3.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.3.3.2 GET

The client can use this method to read an individual alarm.

This method shall follow the provisions specified in the Tables 8.4.3.3.2-1 and 8.4.3.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 8.4.3.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

Table 8.4.3.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

Alarm 1 200 OK Information about an individual alarm was read
successfully.

The response body shall contain a representation of
the individual alarm.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

8.4.3.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.3.3.4 PATCH

This method modifies an individual alarm resource.

This method shall follow the provisions specified in the Tables 8.4.3.3.4-1 and 8.4.3.3.4-2 for URI query parameters,
request and response data structures, and response codes.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)244

Table 8.4.3.3.4-1: URI query parameters supported by the PATCH method on this resource

Name Cardinality Description
none supported

Table 8.4.3.3.4-2: Details of the PATCH request/response on this resource

Request
body

Data type Cardinality Description
AlarmModifications 1 The parameter for the alarm modification, as defined in

clause 8.5.2.8.

Response
body

Data type Cardinality Response
Codes

Description

AlarmModifications 1 200 OK The request was accepted and completed.

The response body shall contain attribute
modifications for an 'Individual alarm' resource (see
clause 8.5.2.4).

ProblemDetails 0..1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the "Individual alarm"
resource.

Typically, this is due to the fact that the alarm is
already in the state that is requested to be set (such
as trying to acknowledge an already-acknowledged
alarm).

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails 0..1 412
Preconditi
on failed

Error: A precondition given in an HTTP request header
is not fulfilled.

Typically, this is due to an ETag mismatch, indicating
that the resource was modified by another entity.

The response body should contain a ProblemDetails
structure, in which the "detail" attribute should convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 / 4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

8.4.3.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.4 Resource: Subscriptions

8.4.4.1 Description

This resource represents subscriptions. The client can use this resource to subscribe to notifications related to alarms
related to a NS and to query its subscriptions.

8.4.4.2 Resource definition

The resource URI is:

 {apiRoot}/nsfm/v1/subscriptions

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)245

This resource shall support the resource URI variables defined in Table 8.4.4.2-1.

Table 8.4.4.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2

8.4.4.3 Resource methods

8.4.4.3.1 POST

The POST method creates a new subscription.

This method shall follow the provisions specified in the Tables 8.4.4.3.1-1 and 8.4.4.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Creation of two subscription resources with the same callbackURI and the same filter can result in performance
degradation and will provide duplicates of notifications to the OSS, and might make sense only in very rare use cases.
Consequently, the NFVO may either allow creating a subscription resource if another subscription resource with the
same filter and callbackUri already exists (in which case it shall return the "201 Created" response code), or may decide
to not create a duplicate subscription resource (in which case it shall return a "303 See Other" response code referencing
the existing subscription resource with the same filter and callbackUri).

Table 8.4.4.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Remarks
none supported

Table 8.4.4.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
FmSubscriptionRequest 1 Details of the subscription to be created, as defined in

clause 8.5.2.2.

Response
body

Data type Cardinality Response
Codes

Description

FmSubscription 1 201
Created

The subscription was created successfully.

The response body shall contain a representation of
the created subscription resource.

The HTTP response shall include a "Location:" HTTP
header that points to the created subscription
resource.

n/a 303
See Other

A subscription with the same callbackURI and the
same filter already exits and the policy of the NFVO is
to not create redundant subscriptions.
The HTTP response shall include a "Location" HTTP
header that contains the resource URI of the existing
subscription resource.
The response body shall be empty.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

8.4.4.3.2 GET

The client can use this method to retrieve the list of active subscriptions for alarms related to a NS subscribed by the
client. It can be used e.g. for resynchronization after error situations.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)246

This method shall follow the provisions specified in the Tables 8.4.4.3.2-1 and 8.4.4.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 8.4.4.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Remarks
filter 0..1 Attribute-based filtering expression according to clause 4.3.2.

The NFVO shall support receiving this parameter as part of the URI query
string. The OSS/BSS may supply this parameter.

All attribute names that appear in the FmSubscription and in data types
referenced from it shall be supported by the NFVO in the filter expression.

nextpage_opaque_marke
r

0..1 Marker to obtain the next page of a paged response. Shall be supported by
the NFVO if the NFVO supports alternative 2 (paging) according to
clause 4.7.2.1 for this resource.

Table 8.4.4.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

FmSubscription 0..N 200 OK The list of subscriptions was queried successfully.

The response body shall contain in an array the
representations of all active subscriptions of the
functional block that invokes the method, i.e., zero or
more representations of FM subscriptions, as
defined in clause 8.5.2.3.

If the NFVO supports alternative 2 (paging)
according to clause 4.7.2.1 for this resource,
inclusion of the Link HTTP header in this response
shall follow the provisions in clause 4.7.2.3.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute-based filtering expression.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should
convey more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Response too big.

If the NFVO supports alternative 1 (error) according
to clause 4.7.2.1 for this resource, this error
response shall follow the provisions in
clause 4.7.2.2.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

8.4.4.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.4.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)247

8.4.4.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.5 Resource: Individual subscription

8.4.5.1 Description

This resource represents an individual subscription for alarms related to NSs. The client can use this resource to read
and to terminate a subscription to notifications related to NS fault management.

8.4.5.2 Resource definition

The resource URI is:

 {apiRoot}/nsfm/v1/subscriptions/{subscriptionId}

This resource shall support the resource URI variables defined in Table 8.4.5.2-1.

Table 8.4.5.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
subscriptionId Identifier of this subscription. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request creating a new subscription resource. It can also be retrieved from the "id" attribute in the
payload body of that response.

8.4.5.3 Resource methods

8.4.5.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.5.3.2 GET

The client can use this method for reading an individual subscription for alarms related to NSs subscribed by the client.

This method shall follow the provisions specified in the Tables 8.4.5.3.2-1 and 8.4.5.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 8.4.5.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)248

Table 8.4.5.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

FmSubscription 1 200 OK The operation has completed successfully.

The response body shall contain a representation of
the subscription resource.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

8.4.5.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.5.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.5.3.5 DELETE

This method terminates an individual subscription.

This method shall follow the provisions specified in the Tables 8.4.5.3.5-1 and 8.4.5.3.5-2 for URI query parameters,
request and response data structures, and response codes.

Table 8.4.5.3.5-1: URI query parameters supported by the DELETE method on this resource

Name Cardinality Description
none supported

Table 8.4.5.3.5-2: Details of the DELETE request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The subscription resource was deleted successfully.

The response body shall be empty.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

8.4.6 Resource: Notification endpoint

8.4.6.1 Description

This resource represents a notification endpoint for alarms related to NSs.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)249

The API producer can use this resource to send notifications related to alarms related to NSs or about a rebuilt alarm list
to a subscribed API consumer, which has provided the URI of this resource during the subscription process.

8.4.6.2 Resource definition

The resource URI is provided by the client when creating the subscription.

This resource shall support the resource URI variables defined in Table 8.4.6.2-1.

Table 8.4.6.2-1: Resource URI variables for this resource

Name Definition
n/a

8.4.6.3 Resource methods

8.4.6.3.1 POST

The POST method notifies an alarm related to a NS or that the alarm list has been rebuilt.

This method shall follow the provisions specified in the Tables 8.4.6.3.1-1 and 8.4.6.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 8.4.6.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

Each notification request body shall include exactly one of the alternatives defined in Table 8.4.6.3.1-2.

Table 8.4.6.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
AlarmNotification 1 Information of a NS alarm.
AlarmClearedNotificatio
n

1 Information of the clearance of a NS alarm.

AlarmListRebuiltNotificat
ion

1 Information that the alarm list has been rebuilt by the NFVO.

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The notification was delivered successfully.

The response body shall be empty.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5 may be
returned.

8.4.6.3.2 GET

The GET method allows the server to test the notification endpoint that is provided by the client, e.g. during
subscription.

This method shall follow the provisions specified in the Tables 8.4.6.3.2-1 and 8.4.6.3.2-2 for URI query parameters,
request and response data structures, and response codes.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)250

Table 8.4.6.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

Table 8.4.6.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The notification endpoint was tested successfully.

The response body shall be empty.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

8.4.6.3.3 PUT

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.6.3.4 PATCH

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.4.6.3.5 DELETE

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

8.5 Data Model

8.5.1 Introduction

This clause defines the request and response data structures of the NS fault management interface. If a request or
response contains attributes not defined in the present document, a receiving functional block that does not understand
these attributes shall not treat their presence as an error, and may choose to ignore them.

8.5.2 Resource and notification data types

8.5.2.1 Introduction

This clause defines the data structures to be used in the resource representations and notifications for the NS fault
management interface.

8.5.2.2 Type: FmSubscriptionRequest

This type represents a subscription request related to notifications about NS faults. It shall comply with the provisions
defined in Table 8.5.2.2-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)251

Table 8.5.2.2-1: Definition of the FmSubscriptionRequest data type

Attribute name Data type Cardinality Description
filter FmNotificationsFilter 0..1 Filter settings for this subscription, to define the subset of

all notifications this subscription relates to. A particular
notification is sent to the subscriber if the filter matches, or
if there is no filter.

callbackUri Uri 1 The URI of the endpoint to send the notification to.
authentication SubscriptionAuthentic

ation
0..1 Authentication parameters to configure the use of

Authorization when sendingnotifications corresponding to
this subscription, as defined in clause 4.5.3.4.

This attribute shall only be present if the subscriber
requires authorization of notifications.

8.5.2.3 Type: FmSubscription

This type represents a subscription related to notifications about NS faults. It shall comply with the provisions defined
in Table 8.5.2.3-1.

Table 8.5.2.3-1: Definition of the FmSubscription data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this subscription resource.
filter FmNotificationsFilter 0..1 Filter settings for this subscription, to define the subset of

all notifications this subscription relates to. A particular
notification is sent to the subscriber if the filter matches, or
if there is no filter.

callbackUri Uri 1 The URI of the endpoint to send the notification to.
_links Structure (inlined) 1 Links for this resource.
>self Link 1 URI of this resource.

8.5.2.4 Type: Alarm

The alarm data type encapsulates information about an alarm. It shall comply with the provisions defined in
Table 8.5.2.4-1.

Table 8.5.2.4-1: Definition of the Alarm data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this Alarm information element.
managedObjectId Identifier 1 Identifier of the affected NS instance.
rootCauseFaultyCompone
nt

FaultyComponentInfo 1 The NS components that are causing the NS fault.

rootCauseFaultyResource FaultyResourceInfo 0..1 The virtualised resources that are causing the NS
fault. It shall be present when the faulty component is
"NS Virtual Link" or "VNF" (see clause 8.5.3.4).

alarmRaisedTime DateTime 1 Time stamp indicating when the alarm is raised by the
managed object.

alarmChangedTime DateTime 0..1 Time stamp indicating when the alarm was last
changed. It shall be present if the alarm has been
updated.

alarmClearedTime DateTime 0..1 Time stamp indicating when the alarm was cleared. It
shall be present if the alarm has been cleared.

ackState Enum (inlined) 1 Acknowledgement state of the alarm.

Permitted values:
UNACKNOWLEDGED
ACKNOWLEDGED

perceivedSeverity PerceivedSeverityTy
pe

1 Perceived severity of the managed object failure.

eventTime DateTime 1 Time stamp indicating when the fault was observed.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)252

Attribute name Data type Cardinality Description
eventType EventType 1 Type of event.
faultType String 0..1 Additional information to clarify the type of the fault.
probableCause String 1 Information about the probable cause of the fault.
isRootCause Boolean 1 Attribute indicating if this fault is the root for other

correlated alarms. If TRUE, then the alarms listed in
the attribute CorrelatedAlarmId are caused by this
fault.

correlatedAlarmIds Identifier 0..N List of identifiers of other alarms correlated to this
fault.

faultDetails String 0..N Provides additional information about the fault.
_links Structure (inlined) 1 Links for this resource.
>self Link 1 URI of this resource.
 >objectInstance Link 0..1 Link to the resource representing the NS instance to

which the notified alarm is correlated. Shall be
present if the NS instance information is accessible
as a resource.

8.5.2.5 Type: AlarmNotification

This type represents an alarm notification about NS faults. It shall comply with the provisions defined in
Table 8.5.2.5-1.

Table 8.5.2.5-1: Definition of the AlarmNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent multiple

times due to multiple subscriptions, the "id" attribute of all
these notifications shall have the same value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to "AlarmNotification" for this notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates to.
timeStamp DateTime 1 Date-time of the generation of the notification.
alarm Alarm 1 Information about an alarm including AlarmId, affected NS

identifier, and FaultDetails.
_links Structure (inlined) 1 Links to resources related to this notification.
>subscription NotificationLink 1 Link to the related subscription.

8.5.2.6 Type: AlarmClearedNotification

This type represents an alarm cleared notification about NS faults. It shall comply with the provisions defined in
Table 8.5.2.6-1.

Table 8.5.2.6-1: Definition of the AlarmClearedNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent multiple

times due to multiple subscriptions, the "id" attribute of all
these notifications shall have the same value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to "AlarmClearedNotification" for this
notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates to.
timeStamp DateTime 1 Date-time of the generation of the notification.
alarmId Identifier 1 Alarm identifier.
alarmClearedTime DateTime 1 The time stamp indicating when the alarm was cleared.
_links Structure (inlined) 1 Links to resources related to this notification.
>subscription NotificationLink 1 Link to the related subscription.
>alarm NotificationLink 1 Link to the resource that represents the related alarm.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)253

8.5.2.7 Type: AlarmListRebuiltNotification

This type represents a notification that the alarm list has been rebuilt, e.g. if the NFVO detects its storage holding the
alarm list is corrupted. It shall comply with the provisions defined in Table 8.5.2.7-1.

Table 8.5.2.7-1: Definition of the AlarmListRebuiltNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent multiple

times due to multiple subscriptions, the "id" attribute of all
these notifications shall have the same value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to "AlarmListRebuiltNotification" for this
notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates to.
timeStamp DateTime 1 Date-time of the generation of the notification.
_links Structure (inlined) 1 Links to resources related to this notification.
>subscription NotificationLink 1 Link to the related subscription.
>alarms NotificationLink 1 Link to the alarm list, i.e. the "Alarms" resource.

8.5.2.8 Type: AlarmModifications

This type represents attribute modifications for an "Individual alarm" resource, i.e. modifications to a resource
representation based on the "Alarm" data type. The attributes of "Alarm" that can be modified according to the
provisions in clause 8.5.2.4 are included in the "AlarmModifications" data type.

The "AlarmModifications" data type shall comply with the provisions defined in Table 8.5.2.8-1.

Table 8.5.2.8-1: Definition of the AlarmModifications data type

Attribute name Data type Cardinality Description
ackState Enum (inlined) 1 New value of the "ackState" attribute in "Alarm".

Permitted values:
ACKNOWLEDGED

8.5.3 Referenced structured data types

8.5.3.1 Introduction

This clause defines data structures that can be referenced from data structures defined in the previous clauses, but can
neither be resource representations nor bound to any subscribe/notify mechanism.

8.5.3.2 Type: FmNotificationsFilter

This type represents a subscription filter related to notifications about NS faults. It shall comply with the provisions
defined in Table 8.5.3.2-1.

At a particular nesting level in the filter structure, the following applies: All attributes shall match in order for the filter
to match (logical "and" between different filter attributes). If an attribute is an array, the attribute shall match if at least
one of the values in the array matches (logical "or" between the values of one filter attribute).

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)254

Table 8.5.3.2-1: Definition of the FmNotificationsFilter data type

Attribute name Data type Cardinality Description
nsInstanceSubscriptionFilter NsInstanceSubscription

Filter
0..1 Filter criteria to select NS instances about which

to notify.
notificationTypes Enum (inlined) 0..N Match particular notification types.

Permitted values:
AlarmNotification
AlarmClearedNotification
AlarmListRebuiltNotification
See note.

faultyResourceTypes FaultyResourceType 0..N Match alarms related to NSs with a faulty
resource type listed in this attribute.

perceivedSeverities PerceivedSeverityType 0..N Match alarms related to NSs with a perceived
severity listed in this attribute.

eventTypes EventType 0..N Match alarms related to NSs with an event type
listed in this attribute.

probableCauses String 0..N Match alarms related to NSs with a probable
cause listed in this attribute.

NOTE: The permitted values of the "notificationTypes" attribute are spelled exactly as the names of the notification
types to facilitate automated code generation systems.

8.5.3.3 Type: FaultyResourceInfo

This type represents the faulty virtual resources that have a negative impact on a NS. It shall comply with the provisions
defined in Table 8.5.3.3-1.

Table 8.5.3.3-1: Definition of the FaultyResourceInfo data type

Attribute name Data type Cardinality Description
faultyResource ResourceHandle 1 Information that identifies the faulty resource instance and

its managing entity.
faultyResourceType FaultyResourceType 1 Type of the faulty resource.

8.5.3.4 Type: FaultyComponentInfo

This type represents the faulty component that has a negative impact on an NS. It shall comply with the provisions
defined in Table 8.5.3.4-1.

Table 8.5.3.4-1: Definition of the FaultyComponentInfo data type

Attribute name Data type Cardinality Description
faultyNestedNsInstanceId Identifier 0..1 Identifier of the faulty nested NS instance. See note.
faultyNsVirtualLinkInstanceId Identifier 0..1 Identifier of the faulty NS virtual link instance. See note.
faultyVnfInstanceId Identifier 0..1 Identifier of the faulty VNF instance. See note.
NOTE: At least one of the attributes shall be present.

8.5.4 Referenced simple data types and enumerations

8.5.4.1 Introduction

This clause defines simple data types and enumerations that can be referenced from data structures defined in the
previous clauses.

8.5.4.2 Simple data types

No particular simple data types are defined for this interface, in addition to those defined in clause 4.4.2.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)255

8.5.4.3 Enumeration: PerceivedSeverityType

The enumeration PerceivedSeverityType shall comply with the provisions defined in Table 8.5.4.3-1. It indicates the
relative level of urgency for operator attention.

Table 8.5.4.3-1: Enumeration PerceivedSeverityType

Enumeration value Description
CRITICAL The Critical severity level indicates that a service affecting condition has occurred and an

immediate corrective action is required. Such a severity can be reported, for example, when
a managed object becomes totally out of service and its capability needs to be restored
(Recommendation ITU-T X.733 [30]).

MAJOR The Major severity level indicates that a service affecting condition has developed and an
urgent corrective action is required. Such a severity can be reported, for example, when
there is a severe degradation in the capability of the managed object and its full capability
needs to be restored (Recommendation ITU-T X.733 [30]).

MINOR The Minor severity level indicates the existence of a non-service affecting fault condition and
that corrective action should be taken in order to prevent a more serious (for example,
service affecting) fault. Such a severity can be reported, for example, when the detected
alarm condition is not currently degrading the capacity of the managed object
(Recommendation ITU-T X.733 [30]).

WARNING The Warning severity level indicates the detection of a potential or impending service
affecting fault, before any significant effects have been felt. Action should be taken to further
diagnose (if necessary) and correct the problem in order to prevent it from becoming a more
serious service affecting fault (Recommendation ITU-T X.733 [30]).

INDETERMINATE The Indeterminate severity level indicates that the severity level cannot be determined
(Recommendation ITU-T X.733 [30]).

CLEARED The Cleared severity level indicates the clearing of one or more previously reported alarms.
This alarm clears all alarms for this managed object that have the same Alarm type,
Probable cause and Specific problems (if given) (Recommendation ITU-T X.733 [30]).

8.5.4.4 Enumeration: EventType

The enumeration EventType represents those types of events that trigger an alarm. It shall comply with the provisions
defined in Table 8.5.4.4-1.

Table 8.5.4.4-1: Enumeration EventType

Enumeration value Description
COMMUNICATIONS_ALARM An alarm of this type is associated with the procedure and/or process

required conveying information from one point to another
(Recommendation ITU-T X.733 [30]).

PROCESSING_ERROR_ALARM An alarm of this type is associated with a software or processing fault
(Recommendation ITU-T X.733 [30]).

ENVIRONMENTAL_ALARM An alarm of this type is associated with a condition related to an enclosure
in which the equipment resides (Recommendation ITU-T X.733 [30]).

QOS_ALARM An alarm of this type is associated with degradation in the quality of a
service (Recommendation ITU-T X.733 [30]).

EQUIPMENT_ALARM An alarm of this type is associated with an equipment fault
(Recommendation ITU-T X.733 [30]).

8.5.4.5 Enumeration: FaultyResourceType

The enumeration FaultyResourceType represents those types of faulty resource. It shall comply with the provisions
defined in Table 8.5.4.5-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)256

Table 8.5.4.5-1: Enumeration FaultyResourceType

Enumeration value Description
COMPUTE Virtual compute resource
STORAGE Virtual storage resource
NETWORK Virtual network resource

9 VNF Package Management interface

9.1 Description
This interface allows the OSS/BSS to invoke VNF package management operations towards the NFVO, and to
subscribe to notifications regarding VNF package on-boarding or changes provided by the NFVO.

The operations provided through this interface are as follows:

• Create VNF Package Info

• Upload VNF Package

• Update VNF Package Info

• Delete VNF Package

• QueryVNF Package Info, include obtaining the VNFD

• Fetch VNF Package

• Fetch VNF Package Artifacts

• Subscribe

• Query Subscription Info

• Notify

• Terminate Subscription

State changes of a VNF package are illustrated in clause B.2.

9.1a API version
For the VNF package management interface as specified in the present document, the MAJOR version field shall be 1,
the MINOR version field shall be 1, and the PATCH version number shall be 0 (see clause 4.6.1 for a definition of the
version fields). Consequently, the {apiMajorVersion} URI variable shall be set to "v1".

NOTE: The MINOR version 0 corresponds to the version of the API specified in version 2.4.1 of the present
document.

9.2 Resource structure and methods
All resource URIs of the API shall use the base URI specification defined in clause 4.2. The string "vnfpkgm" shall be
used to represent {apiName}. All resource URIs in the clauses below are defined relative to the above base URI.

Figure 9.2-1 shows the overall resource URI structure defined for the VNF package management interface.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)257

Figure 9.2-1: Resource URI structure of the VNF Package Management Interface

Table 9.2-1 lists the individual resources defined, and the applicable HTTP methods. The NFVO shall support
responding to requests for all HTTP methods on the resources in Table 9.2-1 that are marked as "M" (mandatory) in the
"Cat" column. The NFVO shall also support the "API versions" resources as specified in clause 4.6.3.2.

Table 9.2-1: Resources and methods overview of the VNF Package Management interface

Resource name Resource URI HTTP
Method

Cat Meaning

VNF packages /vnf_packages
GET M Query VNF packages information

POST M Create a new individual VNF
package resource

Individual VNF
package /vnf_packages/{vnfPkgId}

GET M Read information about an
individual VNF package

PATCH M Update information about an
individual VNF package

DELETE M Delete an individual VNF package
VNFD of an
individual VNF
package

/vnf_packages/{vnfPkgId}/vnfd GET M Read VNFD of an on-boarded VNF
package

VNF package
content

/vnf_packages/{vnfPkgId}/package
_content

GET M Fetch an on-boarded VNF package

PUT M
Upload a VNF package by
providing the content of the VNF
package

Upload VNF
package from URI
task

/vnf_packages/{vnfPkgId}/package
_content/upload_from_uri POST M

Upload a VNF package by
providing the address information of
the VNF package

IndividualVNF
package artifact

/vnf_packages/{vnfPkgId}/artifacts/
{artifactPath} GET M Fetch individual VNF package

artifact

Subscriptions /subscriptions
POST M

Subscribe to notifications related to
on-boarding and/or changes of VNF
packages

GET M Query multiple subscriptions

{apiRoot}/vnfpkgm/v1

/subscriptions

/{subscriptionId}

/{vnfPkgId}

/vnf_packages

/package_content

/{artifactPath}

/artifacts

/vnfd

/upload_from_uri

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)258

Resource name Resource URI HTTP
Method

Cat Meaning

Individual
subscription /subscriptions/{subscriptionId}

GET M
Read an individual subscription
resource

DELETE M Terminate a subscription

Notification endpoint (client-provided)
POST See note Notify about VNF package on-

boarding or change. See note

GET See note Test the notification endpoint. See
note

NOTE: The NFVO shall support invoking the HTTP methods defined for the "Notification endpoint" resource exposed
by the OSS/BSS. If the OSS/BSS supports invoking the POST method on the "Subscriptions" resource
towards the NFVO, it shall also support responding to the HTTP requests defined for the "Notification
endpoint" resource.

9.3 Sequence diagrams (informative)

9.3.1 Flow of the creation of an individual VNF package resource

This clause describes the procedure for creating an individual VNF package resource.

Figure 9.3.1-1: Flow of the creation of an individual VNF package resource

Creation of an individual VNF package resource, as illustrated in Figure 9.3.1-1, consists of the following steps:

1) The OSS/BSS sends a POST request to the "VNF packages" resource including in the payload body a data
structure of type "CreateVnfPkgInfoRequest".

2) The NFVO creates a new individual VNF package resource.

3) The NFVO returns a "201 Created" response containing a representation of the individual VNF package
resource and a "Location" HTTP header that points to the new "individual VNF package" resource.

Postcondition: Upon successful completion, the individual VNF package resource is created with the value of the
"onboardingState" attribute equals to "CREATED", the value of the "operationalState" attribute equals to "DISABLED"
and the value of "usageState" attribute equals to "NOT_IN_USE".

Error handling: In case of failure, appropriate error information is provided in the response.

9.3.2 Flow of the uploading of VNF package content

This clause describes the procedure of uploading the content of a VNF package.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)259

Figure 9.3.2-1: Flow of the uploading of VNF package content

Precondition: The individual VNF package resource has been created with the value of "onboardingState" attribute
equals to "CREATED".

Uploading the content of a VNF package, as illustrated in Figure 9.3.2-1, consists of the following steps:

1) If the OSS/BSS uploads the VNF package content directly to the NFVO, it sends a PUT request to the "VNF
package content" resource including in the payload body a copy of the VNF package content.

2) The NFVO returns a "202 Accepted" response with an empty payload body.

3) If the OSS/BSS uploads the VNF package content indirectly to the NFVO, it sends a POST request to the
"Upload VNF package from URI task" resource including in the payload body a data structure of type
"UploadVnfPackageFromUriRequest".

4) The NFVO returns a "202 Accepted" response with an empty payload body to indicate the address information
is successfully received.

5) The NFVO utilizes the address information to retrieve the VNF package content.

6) The NFVO continues processing the VNF package (e.g. validation) after it retrieves the package content.

7) Optionally, the OSS/BSS can send a GET request to the "individual VNF package" resource to check the on-
boarding state of the VNF package resource.

8) The NFVO returns a "200 OK" response containing the information of the VNF package resource.

9) The NFVO sends a VnfPackageOnboardingNotification to the OSS/BSS to indicate the successful on-boarding
of the VNF package content.

Postcondition: Upon successful completion, the content of the VNF package is on-boarded. And the state of the VNF
package is changed as follows: the value of the "onboardingState" attribute equals to "ONBOARDED", the value of the
"operationalState" attribute equals to "ENABLED" and the value of the "usageState" attribute equals to
"NOT_IN_USE".

Error handling: In case of failure, appropriate error information is provided in the response.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)260

9.3.3 Flow of querying/reading VNF package information

This clause describes a sequence for querying information about one or multiple VNF packages.

Figure 9.3.3-1: Flow of querying/reading VNF package information

Precondition: One or more individual VNF package resources are created.

VNF package information query, as illustrated in Figure 9.3.3-1, consists of the following steps:

1) If the OSS/BSS intends to query information about multiple VNF packages, it sends a GET request to the
"VNF packages" resource.

2) The NFVO returns a "200 OK" response, and includes in the payload body zero or more data structures of type
"VnfPkgInfo".

3) If the OSS/BSS intends to read information about a particular VNF package, the OSS/BSS sends a GET
request to the "Individual VNF package" resource, addressed by the appropriate VNF package identifier in its
resource URI.

4) The NFVO returns a "200 OK" response, and includes in the payload body a data structure of type
"VnfPkgInfo".

Postcondition: Upon successful completion, the OSS/BSS gets the information of the VNF packages or the VNF
package.

Error handling: In case of failure, appropriate error information is provided in the response.

9.3.4 Flow of reading the VNFD of an on-boarded VNF package

This clause describes the procedure for reading the VNFD of an on-boarded VNF package.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)261

Figure 9.3.4-1: Flow of reading VNFD

Precondition: The VNF package is on-boarded to the NFVO.

The procedure consists of the following steps as illustrated in Figure 9.3.4-1.

1) The OSS/BSS sends a GET request to the "VNFD in an individual VNF package" resource.

2) The NFVO returns a "200 OK" response, and includes a copy of the VNFD from the VNF package in the
payload body.

9.3.5 Flow of updating information of a VNF package

This clause describes the procedure for enabling/disabling/abort deletion of a VNF package.

Figure 9.3.5-1: Flow of updating information of a VNF package

NOTE: Due to possible race conditions, the 200 response and the VnfPackageChangeNotification can arrive in
any order at the OSS/BSS.

Precondition: The VNF package is in <<Precondition State>>, the value of <<Precondition State>> depends on the
actual requested operation, and is described in Table 9.3.5-1.

The procedure consists of the following steps as illustrated in Figure 9.3.5-1:

1) The OSS/BSS sends a PATCH request to the "individual VNF package" resource including in the payload
body a data structure of type "VnfPkgInfoModifications".

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)262

2) The NFVO updates the information of the VNF package.

3) The NFVO returns a "200 OK" response with a payload body containing a data structure of type
"VnfPkgInfoModifications".

4) If the operational state of the VNF package is modified, the NFVO sends to OSS/BSS a
VnfPackageChangeNotification to indicate the state change of the VNF package.

Postcondition: The VNF package is in << Postcondition State>>.

Table 9.3.5-1 describes how the <<Precondition State>> and << Postcondition State>> are parameterized in the above
flow.

Table 9.3.5-1: Parameterization of the flow for updating information of a VNF package

Operation <<Precondition State>> <<PostconditionState>>
Enable a VNF package The on-boarding state of

the VNF package is
ONBOARDED and the
operational state of the
VNF package is
DISABLED

The operational state of the
VNF package is ENABLED

Disable a VNF package The on-boarding state of
the VNF package is
ONBOARDED and the
operational state of the
VNF package is
ENABLED

The operational state of the
VNF package is DISABLED

Update user defined data The individual VNF
package resource is
created

The user defined data is
updated

9.3.6 Flow of deleting a VNF package resource

This clause describes a sequence for deleting a VNF package resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)263

Figure 9.3.6-1: Flow of deleting a VNF package resource

NOTE: Due to possible race conditions, the 204 response and the VnfPackageChangeNotification can arrive in
any order at the OSS/BSS.

Precondition: The individual VNF package resource has been created, the operational state of the VNF package is
DISABLED, and the usage state of the VNF package is NOT_IN_USE.

Deleting a VNF package resource, as illustrated in Figure 9.3.6-1, consists of the following steps:

1) The OSS/BSS sends a DELETE request to the "individual VNF package" resource.

2) The NFVO deletes the "individual VNF package" resource and related VNF package content if the VNF
package is on-boarded.

3) The NFVO returns a "204 No Content" response with an empty payload body.

4) The NFVO sends to the OSS/BSS a VnfPackageChangeNotification to indicate the deletion of the VNF
package resource.

Postcondition: Upon successful completion, the individual VNF package resource is deleted.

Error handling: In case of failure, appropriate error information is provided in the response.

9.3.7 Flow of fetching an on-boarded VNF package

This clause describes a sequence for fetching the content of an on-boarded VNF package.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)264

Figure 9.3.7-1: Flow of fetching an on-boarded VNF package

Precondition: The VNF package is on-boarded to the NFVO.

Fetching an on-boarded VNF package, as illustrated in Figure 9.3.7-1, consists of the following steps.

1) If fetching the whole VNF package content, the OSS/BSS sends a GET request to the "VNF package content"
resource.

2) The NFVO returns a "200 OK" response, and includes a copy of the VNF package file in the payload body.

3) If fetching the VNF package content using partial download, the OSS/BSS sends a GET request to the "VNF
package content" resource, and includes a "Range" HTTP header indicating the partition of the VNF package
content needs to be transferred.

4) The NFVO returns a "206 Partial Content" response with a payload body containing the partial content of the
VNF package, and a "Content-Range" HTTP header indicating the byte range enclosed in the payload and the
complete length of the VNF package content.

Postcondition: Upon successful completion, the OSS/BSS gets the whole or partial content of the VNF package.

Error handling: In case of failure, appropriate error information is provided in the response.

9.3.8 Flow of fetching a VNF package artifact

This clause describes a sequence for fetching an individual artifact contained in an on-boarded VNF package.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)265

Figure 9.3.8-1: Flow of fetching a VNF package artifact

Precondition: The VNF package is on-boarded to the NFVO.

Fetching an individual artifact contained in an on-boarded VNF package, as illustrated in Figure 9.3.8-1, consists of the
following steps.

1) If fetching the whole content of the artifact, the OSS/BSS sends a GET request to the "Individual VNF
package artifact" resource.

2) The NFVO returns a "200 OK" response, and includes a copy of the applicable artifact file from the VNF
package in the payload body.

3) If fetching the artifact using partial download, the OSS/BSS sends a GET request to the "Individua VNF
package artifact" resource, and includes a "Range" HTTP header indicating the partition of the artifact needs to
be transferred.

4) The NFVO returns a "206 Partial Content" response with a payload body containing the partial content of the
artifact file, and a "Content-Range" HTTP header indicating the byte range enclosed in the payload and the
complete length of the artifact file.

Error handling: In case of failure, appropriate error information is provided in the response.

9.3.9 Flow of managing subscriptions

This clause describes the procedure for creating, reading and terminating subscriptions to notifications related to VNF
package management.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)266

Figure 9.3.9-1: Flow of managing subscriptions

The procedure consists of the following steps as illustrated in Figure 9.3.9-1:

1) The OSS/BSS sends a POST request to the "Subscriptions" resource including in the payload body a data
structure of type "PkgmSubscriptionRequest". That data structure contains filtering criteria and a client side
URI to which the NFVO will subsequently send notifications about events that match the filter.

2) Optionally, to test the notification endpoint that was registered by the OSS/BSS as part of the subscription, the
NFVO sends a GET request to the notification endpoint URI.

3) In that case, the OSS/BSS returns a "204 No Content" response to indicate success.

4) The NFVO creates a new subscription to notifications related to VNF package on-boarding or changes, and a
resource that represents this subscription.

5) The NFVO returns a "201 Created" response containing a data structure of type "PkgmSubscription"
representing the subscription resource just created by the NFVO, and provides the URI of the newly-created
resource in the "Location" HTTP header.

6) If desired, e.g. to recover from an error situation, the OSS/BSS may obtain information about its subscriptions
by sending a GET request to the resource representing the subscriptions.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)267

7) In that case, the NFVO returns a "200 OK" response that contains the list of representations of all existing
subscriptions that were created by the OSS/BSS.

8) If desired, e.g. to recover from an error situation, the OSS/BSS may obtain information about a particular
subscription by sending a GET request to the resource representing that individual subscription.

9) In that case, the NFVO returns a "200 OK" response that contains a representation of that individual
subscription.

10) If the OSS/BSS does not need the subscription anymore, it terminates the subscription by sending a DELETE
request to the resource that represents the individual subscription to remove.

11) The NFVO acknowledges the successful termination of the subscription by returning a "204 No Content"
response.

Error handling: The NFVO rejects a subscription if the subscription information is not valid: endpoint cannot be
reached, subscription information is malformed, etc.

9.3.10 Flow of sending notifications

This clause describes the procedure for sending notifications related to VNF package management.

Figure 9.3.10-1: Flow of sending notifications

Precondition: The OSS/BSS has subscribed previously for notifications related to VNF package management.

The procedure consists of the following steps as illustrated in Figure 9.3.10-1:

1) If an event occurs that matches the filtering criteria which are part of the subscription, the NFVO generates a
notification that includes information about the event, and sends it in the body of a POST request to the URI
which the OSS/BSS has registered as part of the subscription request. The variable <<Notification>> in the
flow is a placeholder for the different types of notifications that can be sent by this API (see clauses 9.5.2.7
and 9.5.2.8).

2) The OSS/BSS acknowledges the successful delivery of the notification by returning a "204 No Content"
response.

Error handling: If the NFVO does not receive the "204 No Content" response from the OSS/BSS, it can retry sending
the notification.

9.4 Resources

9.4.1 Introduction

This clause defines all the resources and methods provided by the VNF package management interface.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)268

9.4.1a Resource: API versions

The "API versions" resources as defined in clause 4.6.3.3 are part of the VNF package management interface.

9.4.2 Resource: VNF packages

9.4.2.1 Description

This resource represents VNF packages. The client can use this resource to create individual VNF package resources,
and to query information of the VNF packages.

9.4.2.2 Resource definition

The resource URI is:

 {apiRoot}/vnfpkgm/v1/vnf_packages

This resource shall support the resource URI variables defined in Table 9.4.2.2-1.

Table 9.4.2.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2

9.4.2.3 Resource methods

9.4.2.3.1 POST

The POST method creates a new individual VNF package resource.

This method shall follow the provisions specified in the Tables 9.4.2.3.1-1 and 9.4.2.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.2.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

Table 9.4.2.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
CreateVnfPkgInfoReq
uest

1 IndividualVNF package resource creation parameters, as defined
in clause 9.5.2.2.

Response
body

Data type Cardinality Response
Codes

Description

VnfPkgInfo 1 201
Created

An individual VNF package resource has been
created successfully.

The response body shall contain a representation of
the new individual VNF package resource, as
defined in clause 9.5.2.4.

The HTTP response shall include a "Location"
HTTP header that contains the resource URI of the
individual VNF package resource.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)269

9.4.2.3.2 GET

The GET method queries the information of the VNF packages matching the filter.

This method shall follow the provisions specified in the Tables 9.4.2.3.2-1 and 9.4.2.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.2.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description

filter 0..1 Attribute-based filtering expression according to clause 4.3.2.

The NFVO shall support receiving this parameter as part of the URI query string. The
OSS/BSS may supply this parameter.

All attribute names that appear in the VnfPkgInfo and in data types referenced from it
shall be supported by the NFVO in the filter expression.

all_fields 0..1 Include all complex attributes in the response. See clause 4.3.3 for details. The NFVO
shall support this parameter.

fields 0..1 Complex attributes to be included into the response. See clause 4.3.3 for details. The
NFVO should support this parameter.

exclude_fields 0..1 Complex attributes to be excluded from the response. See clause 4.3.3 for details. The
NFVO should support this parameter.

exclude_default 0..1 Indicates to exclude the following complex attributes from the response. See
clause 4.3.3 for details.

The NFVO shall support this parameter.

The following attributes shall be excluded from the VnfPkgInfo structure in the
response body if this parameter is provided, or none of the parameters "all_fields,"
"fields", "exclude_fields", "exclude_default" are provided:

- softwareImages
- additionalArtifacts
- userDefinedData
- checksum

nextpage_opaq
ue_marker

0..1 Marker to obtain the next page of a paged response. Shall be supported by the NFVO
if the NFVO supports alternative 2 (paging) according to clause 4.7.2.1 for this
resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)270

Table 9.4.2.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

VnfPkgInfo 0..N 200 OK Information about zero or more VNF packages was
successfully queried.

The response body shall contain in an array the
VNF package info representations that match the
attribute filter, i.e., zero or more VNF package info
representations as defined in clause 9.5.2.5.

If the NFVO supports alternative 2 (paging)
according to clause 4.7.2.1 for this resource,
inclusion of the Link HTTP header in this response
shall follow the provisions in clause 4.7.2.3.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute-based filtering expression.

In the returned ProblemDetails structure, the "detail"
attribute should convey more information about the
error.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute selector.

In the returned ProblemDetails structure, the "detail"
attribute should convey more information about the
error.

ProblemDetails 1 400 Bad
Request

Error: Response too big.

If the NFVO supports alternative 1 (error) according
to clause 4.7.2.1 for this resource, this error
response shall follow the provisions in
clause 4.7.2.2.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

9.4.2.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.2.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.2.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.3 Resource: Individual VNF package

9.4.3.1 Description

This resource represents an individual VNF package. The client can use this resource to read information of the VNF
package, update information of the VNF package, or delete a VNF package.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)271

9.4.3.2 Resource definition

The resource URI is:

 {apiRoot}/vnfpkgm/v1/vnf_packages/{vnfPkgId}

This resource shall support the resource URI variables defined in Table 9.4.3.2-1.

Table 9.4.3.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
vnfPkgId Identifier of the VNF package. The identifier is allocated by the NFVO. See note.
NOTE: This identifier can be retrieved from the "VnfPkgId" attribute in the VnfPackageOnboardingNotification or

VnfPackageChangeNotification.

9.4.3.3 Resource methods

9.4.3.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.3.3.2 GET

The GET method reads the information of an individual VNF package.

This method shall follow the provisions specified in the Tables 9.4.3.3.2-1 and 9.4.3.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.3.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

Table 9.4.3.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

vnfPkgInfo 1 200 OK Information of the VNF package was read
successfully.

The response body shall contain the VNF package
info representation defined in clause 9.5.2.5.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

9.4.3.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.3.3.4 PATCH

The PATCH method updates the information of a VNF package.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)272

This method shall follow the provisions specified in the Tables 9.4.3.3.4-1 and 9.4.3.3.4-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.3.3.4-1: URI query parameters supported by the PATCH method on this resource

Name Cardinality Description
none supported

Table 9.4.3.3.4-2: Details of the PATCH request/response on this resource

Request
body

Data type Cardinality Description
VnfPkgInfoModifications 1 Parameters for VNF package information modifications.

Respons
e body

Data type Cardinality Response
Codes

Description

VnfPkgInfoModifications 1 200 OK The operation was completed successfully.

The response body shall contain attribute
modifications for an "Individual VNF
package" resource.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed
currently, due to a conflict with the state of
the resource.

Typically, this is due to any of the following
scenarios:

- Disable a VNF package resource
of which the operational state is
not ENABLED

- Enable a VNF package resource
of which the operational state is
not DISABLED

The response body shall contain a
ProblemDetails structure, in which the
"detail" attribute shall convey more
information about the error.

ProblemDetails See
clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined
above, any common error response code
as defined in clause 4.3.5.4, and any other
valid HTTP error response as defined in
clause 4.3.5.5, may be returned.

9.4.3.3.5 DELETE

The DELETE method deletes an individual VNF package resource.

This method shall follow the provisions specified in the Tables 9.4.3.3.5-1 and 9.4.3.3.5-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.3.3.5-1: URI query parameters supported by the DELETE method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)273

Table 9.4.3.3.5-2: Details of the DELETE request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a

204 No
Content

The VNF package was deleted successfully.

The response body shall be empty.

ProblemDetails 1 409 Conflict Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact that the operational
state of the VNF package resource is ENABLED or
there are running VNF instances which are
instantiated based on the concerned VNF package.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

9.4.4 Resource: VNFD in an individual VNF package

9.4.4.1 Description

This resource represents the VNFD contained in an on-boarded VNF package. The client can use this resource to obtain
the content of the VNFD.

9.4.4.2 Resource definition

The resource URI is:

 {apiRoot}/vnfpkgm/v1/vnf_packages/{vnfPkgId}/vnfd

This resource shall support the resource URI variables defined in Table 9.4.4.2-1.

Table 9.4.4.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
vnfPkgId Identifier of the VNF package. The identifier is allocated by the NFVO. See note.
NOTE: This identifier can be retrieved from the "vnfPkgId" attribute in the VnfPackageOnboardingNotification or

VnfPackageChangeNotification.

9.4.4.3 Resource methods

9.4.4.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)274

9.4.4.3.2 GET

The GET method reads the content of the VNFD within a VNF package.

The VNFD can be implemented as a single file or as a collection of multiple files. If the VNFD is implemented in the
form of multiple files, a ZIP file embedding these files shall be returned. If the VNFD is implemented as a single file,
either that file or a ZIP file embedding that file shall be returned.

The selection of the format is controlled by the "Accept" HTTP header passed in the GET request.

• If the "Accept" header contains only "text/plain" and the VNFD is implemented as a single file, the file shall
be returned; otherwise, an error message shall be returned.

• If the "Accept" header contains only "application/zip", the single file or the multiple files that make up the
VNFD shall be returned embedded in a ZIP file.

• If the "Accept" header contains both "text/plain" and "application/zip", it is up to the NFVO to choose the
format to return for a single-file VNFD; for a multi-file VNFD, a ZIP file shall be returned.

The default format of the ZIP file shall be the one specified in ETSI GS NFV-SOL 004 [5] where only the YAML files
representing the VNFD, and information necessary to navigate the ZIP file and to identify the file that is the entry point
for parsing the VNFD (such as TOSCA-meta or manifest files or naming conventions) are included.

This method shall follow the provisions specified in the Tables 9.4.4.3.2-1 and 9.4.4.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.4.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)275

Table 9.4.4.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a The request shall contain the appropriate entries in the "Accept"

HTTP header as defined above.

Response
body

Data type Cardinality Response
Codes

Description

n/a 1 200 OK On success, the content of the VNFD is returned.

The payload body shall contain a copy of the file
representing the VNFD or a ZIP file that contains
the file or multiple files representing the VNFD, as
specified above.

The "Content-Type" HTTP header shall be set
according to the format of the returned file, i.e. to
"text/plain" for a YAML file or to "application/zip" for
a ZIP file.

ProblemDetails 0..1 406 Not
AccepTabl
e

If the "Accept" header does not contain at least one
name of a content type for which the NFVO can
provide a representation of the VNFD, the NFVO
shall respond with this response code.

The "ProblemDetails" structure may be included
with the "detail" attribute providing more information
about the error.

ProblemDetails 1 409
Conflict

Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact that
"onboardingState" of the VNF package has a value
different from "ONBOARDED".

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

9.4.4.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.4.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.4.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)276

9.4.5 Resource: VNF package content

9.4.5.1 Description

This resource represents a VNF package identified by the VNF package identifier allocated by the NFVO. The client
can use this resource to fetch the content of the VNF package.

9.4.5.2 Resource definition

The resource URI is:

 {apiRoot}/vnfpkgm/v1/vnf_packages/{vnfPkgId}/package_content

This resource shall support the resource URI variables defined in Table 9.4.5.2-1.

Table 9.4.5.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
vnfPkgId Identifier of the VNF package. The identifier is allocated by the NFVO. See note.
NOTE: This identifier can be retrieved from the "vnfPkgId" attribute in the VnfPackageOnboardingNotification or

VnfPackageChangeNotification.

9.4.5.3 Resource methods

9.4.5.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.5.3.2 GET

The GET method fetches the content of a VNF package identified by the VNF package identifier allocated by the
NFVO.

This method shall follow the provisions specified in the Tables 9.4.5.3.2-1 and 9.4.5.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.5.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)277

Table 9.4.5.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a The request may contain a "Range" HTTP header to obtain single

range of bytes from the VNF package file. This can be used to
continue an aborted transmission.

If the NFVO does not support range requests, it should return the
whole file with a 200 OK response instead.

Response
body

Data type Cardinality Response
Codes

Description

n/a 1 200 OK On success, a copy of the VNF package file is
returned.

The response body shall include a copy of the VNF
package file.

The "Content-Type" HTTP header shall be set
according to the type of the file, i.e. to
"application/zip" for a VNF Package as defined in
ETSI GS NFV-SOL 004 [5].

n/a 1 206 Partial
Content

On success, if the NFVO supports range requests,
a single consecutive byte range from the content of
the VNF package file is returned.

The response body shall contain the requested part
of the VNF package file.

The "Content-Range" HTTP header shall be
provided according to IETF RFC 7233 [23].

The "Content-Type" HTTP header shall be set as
defined above for the "200 OK" response.

ProblemDetails 1 409 Conflict Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact that
"onboardingState" of the VNF package has a value
different from "ONBOARDED".

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails 0..1 416 Range
Not
Satisfiable

The byte range passed in the "Range" header did
not match any available byte range in the VNF
package file (e.g. "access after end of file").

The response body may contain a ProblemDetails
structure.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

9.4.5.3.3 PUT

The PUT method uploads the content of a VNF package.

This method shall follow the provisions specified in the Tables 9.4.5.3.3-1 and 9.4.5.3.3-2 for URI query parameters,
request and response data structures, and response codes.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)278

Table 9.4.5.3.3-1: URI query parameters supported by the PUT method on this resource

Name Cardinality Description
none supported

Table 9.4.5.3.3-2: Details of the PUT request/response on this resource

Request
body

Data type Cardinality Description
n/a 1 The payload body contains a ZIP file that represents the VNF

package.

The "Content-Type" HTTP header shall be set according to the
type of the file, i.e. to "application/zip" for a VNF Package as
defined in ETSI GS NFV-SOL 004 [5].

Response
body

Data type Cardinality Response
Codes

Description

n/a 202
Accepted

The VNF package was accepted for uploading, but
the processing has not been completed. It is
expected to take some time for processing.

The response body shall be empty. See note.

ProblemDetails 1 409 Conflict Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact that the onboarding
state of the VNF package resource is not
CREATED .

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

NOTE: The client can track the uploading progress by receiving the "VnfPackageOnBoardingNotification" from the
NFVO or by reading the status of the individual VNF package resource using the GET method.

9.4.5.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.5.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.6 Resource: Upload VNF package from URI task

9.4.6.1 Description

This task resource represents the "Upload VNF package from URI" operation. The client can use this resource to
request the uploading of a VNF package by providing address information to the NFVO for retrieving the content of the
VNF package.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)279

9.4.6.2 Resource definition

The resource URI is:

 {apiRoot}/vnfpkgm/v1/vnf_packages/{vnfPkgId}/package_content/upload_from_uri

This resource shall support the resource URI variables defined in Table 9.4.6.2-1.

Table 9.4.6.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
vnfPkgId Identifier of the VNF package. The identifier is allocated by the NFVO. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request creating a new Individual VNF package resource.

9.4.6.3 Resource methods

9.4.6.3.1 POST

The POST method provides the information for the NFVO to get the content of a VNF package.

This method shall follow the provisions specified in the Tables 9.4.6.3.1-1 and 9.4.6.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.6.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

Table 9.4.6.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
UploadVnfPkgFromUri
Request

1 The payload body contains the address information based on
which the NFVO can obtain the content of the VNF package.

Response
body

Data type Cardinality Response
Codes

Description

n/a 202 Accepted The information about the VNF package was
received successfully, but the on-boarding has not
been completed. It is expected to take some time
for processing.

The response body shall be empty. See note.

ProblemDetails 1 409 Conflict Error: The operation cannot be executed
currently, due to a conflict with the state of the
resource.

Typically, this is due to the fact that the on-
boarding state of the VNF package resource is
not CREATED.

The response body shall contain a
ProblemDetails structure, in which the "detail"
attribute shall convey more information about the
error.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

NOTE: The client can track the uploading progress by receiving the "VnfPackageOnBoardingNotification" from the
NFVO or by reading the status of the individual on-boarded VNF package resource using the GET method.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)280

9.4.6.3.2 GET

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.6.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.6.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.6.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.7 Resource: Individual VNF package artifact

9.4.7.1 Description

This resource represents an individual artifact contained in a VNF package. The client can use this resource to fetch the
content of the artifact.

9.4.7.2 Resource definition

The resource URI is:

 {apiRoot}/vnfpkgm/v1/vnf_packages/{vnfPkgId}/artifacts/{artifactPath}

This resource shall support the resource URI variables defined in Table 9.4.7.2-1.

Table 9.4.7.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
vnfPkgId Identifier of the VNF package. The identifier is allocated by the NFVO. See note 1.
artifactPath Sequence of one or path segments representing the path of the artifact within the VNF

package. See note 2.
EXAMPLE: foo/bar/run.sh

NOTE 1: This identifier can be retrieved from the "vnfPkgId" attribute in the VnfPackageOnboardingNotification or
VnfPackageChangeNotification.

NOTE 2: This identifier can be retrieved from the "artifactPath" attribute of the applicable "additionalArtifacts" entry in
the body of the response to a GET request querying the "Individual VNF package" or the "VNF packages"
resource.

9.4.7.3 Resource methods

9.4.7.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.7.3.2 GET

The GET method fetches the content of an artifact within a VNF package.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)281

This method shall follow the provisions specified in the Tables 9.4.7.3.2-1 and 9.4.7.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.7.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

Table 9.4.7.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a The request may contain a "Range" HTTP header to obtain single

range of bytes from an artifact file. This can be used to continue
an aborted transmission.

If the NFVO does not support range requests, it should return the
whole file with a 200 OK response instead.

Response
body

Data type Cardinality Response
Codes

Description

n/a 1 200 OK On success, the content of the artifact is returned.

The payload body shall contain a copy of the artifact
file from the VNF package, as defined by ETSI
GS NFV-SOL 004 [5].

The "Content-Type" HTTP header shall be set
according to the content type of the artifact file. If
the content type cannot be determined, the header
shall be set to the value "application/octet-stream".

n/a 1 206 Partial
Content

A single consecutive byte range from the content of
the artifact file, if the NFVO supports range
requests.

The response body shall contain the requested part
of the artifact file from the VNF package, as defined
by ETSI GS NFV-SOL 004 [5].

The "Content-Type" HTTP header shall be set
according to the content type of the artifact file. If
the content type cannot be determined, the header
shall be set to the value "application/octet-stream".

The "Content-Range" HTTP header shall be
provided according to IETF RFC 7233 [23].

ProblemDetails 1 409 Conflict Error: The operation cannot be executed currently,
due to a conflict with the state of the resource.

Typically, this is due to the fact that
"onboardingState" of the VNF package has a value
different from "ONBOARDED".

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute shall convey
more information about the error.

ProblemDetails 0..1 416 Range
Not
Satisfiable

The byte range passed in the "Range" header did
not match any available byte range in the artifact file
(e.g. "access after end of file").

The response body may contain a ProblemDetails
structure.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)282

9.4.7.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.7.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.7.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.8 Resource: Subscriptions

9.4.8.1 Description

This resource represents subscriptions. The client can use this resource to subscribe to notifications related to the VNF
package management, and to query its subscriptions.

9.4.8.2 Resource definition

The resource URI is:

 {apiRoot}/vnfpkgm/v1/subscriptions

This resource shall support the resource URI variables defined in Table 9.4.8.2-1.

Table 9.4.8.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.

9.4.8.3 Resource methods

9.4.8.3.1 POST

The POST method creates a new subscription.

This method shall follow the provisions specified in the Tables 9.4.8.3.1-1 and 9.4.8.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Creation of two subscription resources with the same callbackURI and the same filter can result in performance
degradation and will provide duplicates of notifications to the OSS, and might make sense only in very rare use cases.
Consequently, the NFVO may either allow creating a subscription resource if another subscription resource with the
same filter and callbackUri already exists (in which case it shall return the "201 Created" response code), or may decide
to not create a duplicate subscription resource (in which case it shall return a "303 See Other" response code referencing
the existing subscription resource with the same filter and callbackUri).

Table 9.4.8.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)283

Table 9.4.8.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
PkgmSubscriptionReque
st

1 Details of the subscription to be created.

Response
body

Data type Cardinality Response
Codes

Description

PkgmSubscription 1 201
Created

Representation of the created subscription
resource.

The HTTP response shall include a "Location"
HTTP header that points to the created
subscription resource.

n/a 303
See Other

A subscription with the same callbackURI and the
same filter already exits and the policy of the
NFVO is to not create redundant subscriptions.

The HTTP response shall include a "Location"
HTTP header that contains the resource URI of
the existing subscription resource.

The response body shall be empty.
ProblemDetails See

clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

9.4.8.3.2 GET

The GET method queries the list of active subscriptions of the functional block that invokes the method. It can be used
e.g. for resynchronization after error situations.

This method shall follow the provisions specified in the Tables 9.4.8.3.2-1 and 9.4.8.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.8.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
filter 0..1 Attribute-based filtering expression according to clause 4.3.2.

The NFVO shall support receiving this filtering parameter as part of the URI query
string. The OSS/BSS may supply this filtering parameter.

All attribute names that appear in the PkgmSubscription and in data types
referenced from it shall be supported by the NFVO in the filtering expression.

nextpage_opaqu
e_marker

0..1 Marker to obtain the next page of a paged response. Shall be supported by the
NFVO if the NFVO supports alternative 2 (paging) according to clause 4.7.2.1 for
this resource.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)284

Table 9.4.8.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

PkgmSubscription 0..N 200 OK The list of subscriptions was queried successfully.

The response body shall contain in an array the
representations of all active subscriptions of the
functional block that invokes the method, i.e., zero
or more representations of VNF package
management subscriptions, as defined in
clause 9.5.2.7.

If the NFVO supports alternative 2 (paging)
according to clause 4.7.2.1 for this resource,
inclusion of the Link HTTP header in this response
shall follow the provisions in clause 4.7.2.3.

ProblemDetails 1 400 Bad
Request

Error: Invalid attribute-based filtering expression.

The response body shall contain a ProblemDetails
structure, in which the "detail" attribute should
convey more information about the error.

ProblemDetails 1 400 Bad
Request

Error: Response too big.

If the NFVO supports alternative 1 (error) according
to clause 4.7.2.1 for this resource, this error
response shall follow the provisions in
clause 4.7.2.2.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

9.4.8.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.8.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.8.3.5 DELETE

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.9 Resource: Individual subscription

9.4.9.1 Description

This resource represents an individual subscription. The client can use this resource to read and to terminate a
subscription to notifications related to the VNF package management.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)285

9.4.9.2 Resource definition

The resource URI is:

 {apiRoot}/vnfpkgm/v1/subscriptions/{subscriptionId}

This resource shall support the resource URI variables defined in Table 9.4.9.2-1.

Table 9.4.9.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.2.
subscriptionId Identifier of this subscription. See note.
NOTE: This identifier can be retrieved from the resource referenced by the "Location" HTTP header in the response

to a POST request creating a new subscription resource. It can also be retrieved from the "id" attribute in the
payload body of that response.

9.4.9.3 Resource methods

9.4.9.3.1 POST

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.9.3.2 GET

The GET method reads an individual subscription.

This method shall follow the provisions specified in the Tables 9.4.9.3.2-1 and 9.4.9.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.9.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

Table 9.4.9.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

PkgmSubscription 1 200 OK Representation of the subscription resource.
ProblemDetails See clauses

4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

9.4.9.3.3 PUT

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.9.3.4 PATCH

This method is not supported. When this method is requested on this resource, the NFVO shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)286

9.4.9.3.5 DELETE

The DELETE method terminates an individual subscription.

This method shall follow the provisions specified in the Tables 9.4.9.3.5-1 and 9.4.9.3.5-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.9.3.5-1: URI query parameters supported by the DELETE method on this resource

Name Cardinality Description
none supported

Table 9.4.9.3.5-2: Details of the DELETE request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The subscription resource was deleted successfully.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above,
any common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

9.4.10 Resource: Notification endpoint

9.4.10.1 Description

This resource represents a notification endpoint.

The API producer can use this resource to send notifications related to VNF package management events to a
subscribed API consumer, which has provided the URI of this resource during the subscription process.

9.4.10.2 Resource definition

The resource URI is provided by the client when creating the subscription.

This resource shall support the resource URI variables defined in Table 9.4.10.2-1.

Table 9.4.10.2-1: Resource URI variables for this resource

Name Definition
n/a

9.4.10.3 Resource methods

9.4.10.3.1 POST

The POST method delivers a notification from the server to the client.

This method shall follow the provisions specified in the Tables 9.4.10.3.1-1 and 9.4.10.3.1-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.10.3.1-1: URI query parameters supported by the POST method on this resource

Name Cardinality Description
none supported

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)287

Each notification request body shall include exactly one of the alternatives defined in Table 9.4.10.3.1-2.

Table 9.4.10.3.1-2: Details of the POST request/response on this resource

Request
body

Data type Cardinality Description
VnfPackageOnboardingNotification 1 A notification about on-boarding of a VNF

package.
VnfPackageChangeNotification 1 A notification about changes of status in a

VNF package.

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The notification was delivered
successfully.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes
defined above, any common error
response code as defined in
clause 4.3.5.4, and any other
valid HTTP error response as
defined in clause 4.3.5.5, may be
returned.

9.4.10.3.2 GET

The GET method allows the server to test the notification endpoint that is provided by the client, e.g. during
subscription.

This method shall follow the provisions specified in the Tables 9.4.10.3.2-1 and 9.4.10.3.2-2 for URI query parameters,
request and response data structures, and response codes.

Table 9.4.10.3.2-1: URI query parameters supported by the GET method on this resource

Name Cardinality Description
none supported

Table 9.4.10.3.2-2: Details of the GET request/response on this resource

Request
body

Data type Cardinality Description
n/a

Response
body

Data type Cardinality Response
Codes

Description

n/a 204 No
Content

The notification endpoint was tested successfully.

The response body shall be empty.

ProblemDetails See clauses
4.3.5.4 /
4.3.5.5

4xx/5xx In addition to the response codes defined above, any
common error response code as defined in
clause 4.3.5.4, and any other valid HTTP error
response as defined in clause 4.3.5.5, may be
returned.

9.4.10.3.3 PUT

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.4.10.3.4 PATCH

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)288

9.4.10.3.5 DELETE

This method is not supported. When this method is requested on this resource, the OSS/BSS shall return a "405 Method
Not Allowed" response as defined in clause 4.3.5.4.

9.5 Data model

9.5.1 Introduction

This clause defines the request and response data structures of the VNF package management interface. If a request or
response contains attributes not defined in the present document, a receiving functional block that does not understand
these attributes shall not treat their presence as an error, and may choose to ignore them.

9.5.2 Resource and notification data types

9.5.2.1 Introduction

This clause defines data structures to be used in resource representations and notifications.

9.5.2.2 Type: CreateVnfPkgInfoRequest

This type represents the request parameters for creating a new individual VNF package resource. It shall comply with
the provisions defined in Table 9.5.2.2-1.

Table 9.5.2.2-1: Definition of the CreateVnfPkgInfoRequest data type

Attribute name Data type Cardinality Description
userDefinedData KeyValuePairs 0..1 User defined data for the VNF package.

9.5.2.3 Type: VnfPkgInfoModifications

This type represents modifications to the information of a VNF package. It shall comply with the provisions defined in
Table 9.5.2.3-1.

Table 9.5.2.3-1: Definition of the VnfPkgInfoModifications data type

Attribute name Data type Cardinality Description
operationalState PackageOperational

StateType
0..1 New value of the operational state of the on-boarded

instance of the VNF package. See note.
userDefinedData KeyValuePairs 0..1 User defined data to be updated. For existing keys, the

value is replaced. See note.
NOTE: At least one of the two parameters shall be present. If the VNF package is not on-boarded, the operation is

used only to update existing or add additional user defined data using the userDefinedData attribute.

9.5.2.4 Type: UploadVnfPackageFromUriRequest

This type represents the request parameters for uploading the content of a VNF package. The NFVO can obtain the
VNF package content through the information provided in the request parameters. It shall comply with the provisions
defined in Table 9.5.2.4-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)289

Table 9.5.2.4-1: Definition of the UploadVnfPackageFromUriRequest data type

Attribute name Data type Cardinality Description
addressInformation Uri 1 Address information of the VNF package

content. The NFVO can use this address to
obtain the VNF package.

userName String 0..1 User name to be used for authentication.
Shall be present if user name is needed
but has not been provisioned out of band.

password String 0..1 Password to be used for authentication.
Shall be present if password is needed but
has not been provisioned out of band.

9.5.2.5 Type: VnfPkgInfo

This type represents the information of a VNF package. It shall comply with the provisions defined in Table 9.5.2.5-1.

Table 9.5.2.5-1: Definition of the VnfPkgInfo data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of the VNF package. This

identifier is allocated by the NFVO.
vnfdId Identifier 0..1 This identifier, which is managed by the

VNF provider, identifies the VNF package
and the VNFD in a globally unique way.
It is copied from the VNFD of the on-
boarded VNF package. It shall be present
after the VNF package content has been
on-boarded and absent otherwise.

vnfProvider String 0..1 Provider of the VNF package and the
VNFD. This information is copied from the
VNFD. It shall be present after the VNF
package content has been on-boarded and
absent otherwise.

vnfProductName String 0..1 Name to identify the VNF product. Invariant
for the VNF product lifetime. This
information is copied from the VNFD. It
shall be present after the VNF package
content has been on-boarded and absent
otherwise.

vnfSoftwareVersion Version 0..1 Software version of the VNF. This is
changed when there is any change to the
software included in the VNF package.
This information is copied from the VNFD.
It shall be present after the VNF package
content has been on-boarded and absent
otherwise.

vnfdVersion Version 0..1 The version of the VNFD. This information
is copied from the VNFD. It shall be
present after the VNF package content has
been on-boarded and absent otherwise.

checksum Checksum 0..1 Checksum of the on-boarded VNF
package. It shall be present after the VNF
package content has been on-boarded and
absent otherwise.

softwareImages VnfPackageSoftwareImageInfo 0..N Information about VNF package artifacts
that are software images.

This attribute shall not be present before
the VNF package content is on-boarded.
Otherwise, this attribute shall be present
unless it has been requested to be
excluded per attribute selector.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)290

Attribute name Data type Cardinality Description
additionalArtifacts VnfPackageArtifactInfo 0..N Information about VNF package artifacts

contained in the VNF package that are not
software images.

This attribute shall not be present before
the VNF package content is on-boarded.
Otherwise, this attribute shall be present if
the VNF package contains additional
artifacts.

onboardingState PackageOnboardingStateType 1 On-boarding state of the VNF package.
See note 3.

operationalState PackageOperationalStateType 1 Operational state of the VNF package.

See notes 1 and 3.

usageState PackageUsageStateType 1 Usage state of the VNF package.

See notes 2 and 3.

userDefinedData KeyValuePairs 0..1 User defined data for the VNF package.
_links Structure (inlined) 1 Links to resources related to this resource.
>self Link 1 URI of this resource.
>vnfd Link 0..1 Link to the VNFD resource. This link shall

be present after the VNF package content
is on-boarded.

>packageContent Link 1 Link to the "VNF package content"
resource.

NOTE 1: If the value of the onboardingState attribute is not equal to "ONBOARDED", the value of the operationalState
attribute shall be equal to "DISABLED".

NOTE 2: If the value of the onboardingState attribute is not equal to "ONBOARDED", the value of the usageState
attribute shall be equal to "NOT_IN_USE".

NOTE 3: State changes of a VNF package are illustrated in clause B.2.

9.5.2.6 Type: PkgmSubscriptionRequest

This type represents a subscription request related to VNF package management notifications about VNF package on-
boarding or changes. It shall comply with the provisions defined in Table 9.5.2.6-1.

Table 9.5.2.6-1: Definition of the PkgmSubscriptionRequest data type

Attribute name Data type Cardinality Description
filter PkgmNotificationsFil

ter
0..1 Filter settings for this subscription, to define the subset of

all notifications this subscription relates to. A particular
notification is sent to the subscriber if the filter matches,
or if there is no filter.

callbackUri Uri 1 The URI of the endpoint to send the notification to.
authentication SubscriptionAuthenti

cation
0..1 Authentication parameters to configure the use of

authorization when sending notifications corresponding to
this subscription, as defined in clause 4.5.3.4.

This attribute shall only be present if the subscriber
requires authorization of notifications.

9.5.2.7 Type: PkgmSubscription

This type represents a subscription related to notifications about VNF package management. It shall comply with the
provisions defined in Table 9.5.2.7-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)291

Table 9.5.2.7-1: Definition of the PkgmSubscription data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this subscription resource.
filter PkgmNotificationsFilter 0..1 Filter settings for this subscription, to define the subset of

all notifications this subscription relates to. A particular
notification is sent to the subscriber if the filter matches,
or if there is no filter.

callbackUri Uri 1 The URI of the endpoint to send the notification to.
_links Structure (inlined) 1 Links to resources related to this resource.
>self Link 1 URI of this resource.

9.5.2.8 Type: VnfPackageOnboardingNotification

This type represents a VNF package management notification, which informs the receiver that the onboarding process
of a VNF package is complete and the package is ready for use. A change of the on-boarding state before the VNF
package is on-boarded is not reported. It shall comply with the provisions defined in Table 9.5.2.8-1. The support of this
notification is mandatory. The notification shall be triggered by the NFVO when the value of the "onboardingState"
attribute of a new VNF package has changed to "ONBOARDED".

Table 9.5.2.8-1: Definition of the VnfPackageOnboardingNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent

multiple times due to multiple subscriptions, the "id"
attribute of all these notifications shall have the same
value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to "VnfPackageOnboardingNotification" for
this notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates
to.

timeStamp DateTime 1 Date-time of the generation of the notification.
vnfPkgId Identifier 1 Identifier of the VNF package. This identifier is allocated

by the NFVO.

Its value is the same as the value of the "id" attribute of
the related "Individual VNF package" resource.

vnfdId Identifier 1 This identifier, which is managed by the VNF provider,
identifies the VNF package and the VNFD in a globally
unique way.
It is copied from the VNFD of the on-boarded VNF
package.

_links PkgmLinks 1 Links to resources related to this notification.

9.5.2.9 Type: VnfPackageChangeNotification

This type represents a VNF package management notification, which informs the receiver of a change of the status in an
on-boarded VNF package. Only changes in the "operationalState" attribute of an on-boarded VNF package and the
deletion of the VNF package will be reported. Change in the "usageState" and "onboardingState" attributes are not
reported. The notification shall comply with the provisions defined in Table 9.5.2.9-1. The support of this notification is
mandatory. The notification shall be triggered by the NFVO when there is a change in the status of an onboarded VNF
package, as follows.

• The "operationalState" attribute of a VNF package has changed, and the "onboardingState" attribute of the
package has the value "ONBOARDED".

• The on-boarded VNF package has been deleted.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)292

Table 9.5.2.9-1: Definition of the VnfPackageChangeNotification data type

Attribute name Data type Cardinality Description
id Identifier 1 Identifier of this notification. If a notification is sent

multiple times due to multiple subscriptions, the "id"
attribute of all these notifications shall have the same
value.

notificationType String 1 Discriminator for the different notification types.
Shall be set to "VnfPackageChangeNotification" for this
notification type.

subscriptionId Identifier 1 Identifier of the subscription that this notification relates
to.

timeStamp DateTime 1 Date-time of the generation of the notification.
vnfPkgId Identifier 1 Identifier of the VNF package. This identifier is allocated

by the NFVO.

Its value is the same as the value of the "id" attribute of
the related "Individual VNF package" resource.

vnfdId Identifier 1 Identifier of the VNFD contained in the VNF package,
which also identifies the VNF package. This identifier is
allocated by the VNF provider and copied from the
VNFD.

changeType PackageChangeType 1 The type of change of the VNF package.
operationalState PackageOperationalSt

ateType
0..1 New operational state of the VNF package.

Only present when changeType is
OP_STATE_CHANGE.

_links PkgmLinks 1 Links to resources related to this notification.

9.5.3 Referenced structured data types

9.5.3.1 Introduction

This clause defines data structures that can be referenced from data structures defined in the previous clauses, but are
not resource representations.

9.5.3.2 Type: VnfPackageSoftwareImageInfo

This type represents an artifact contained in a VNF package which represents a software image. It shall comply with
provisions defined in Table 9.5.3.2-1.

Table 9.5.3.2-1: Definition of the VnfPackageSoftwareImageInfo data type

Attribute name Data type Cardinality Description
id IdentifierInVnfd 1 Identifier of the software image.
name String 1 Name of the software image.
provider String 1 Provider of the software image.
version Version 1 Version of the software image.
checksum Checksum 1 Checksum of the software image file.
containerFormat Enum (inlined) 1 Container format indicates whether the software image is

in a file format that also contains metadata about the
actual software.

Permitted values:
- AKI: a kernel image format
- AMI: a machine image format
- ARI: a ramdisk image format
- BARE: the image does not have a container or

metadata envelope
- DOCKER: docker container format
- OVA: OVF package in a tarfile
- OVF: OVF container format

See note 1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)293

Attribute name Data type Cardinality Description
diskFormat Enum (inlined) 1 Disk format of a software image is the format of the

underlying disk image.

Permitted values:
- AKI: a kernel image format
- AMI: a machine image format
- ARI: a ramdisk image format
- ISO: an archive format for the data contents of an

optical disc, such as CD-ROM
- QCOW2: a common disk image format, which can

expand dynamically and supports copy on write
- RAW: an unstructured disk image format
- VDI: a common disk image format
- VHD: a common disk image format
- VHDX: enhanced version of VHD format
- VMDK: a common disk image format

See note 2.

createdAt DateTime 1 Time when this software image was created.
minDisk UnsignedInt 1 The minimal disk for this software image in bytes.
minRam UnsignedInt 1 The minimal RAM for this software image in bytes.
size UnsignedInt 1 Size of this software image in bytes.
userMetadata KeyValuePairs 0..1 User-defined data.
imagePath String 1 Path in the VNF package, which identifies the image

artifact and also allows to access a copy of the image
artifact.

NOTE 1: The list of permitted values was taken from "Container formats" in [i.4].
NOTE 2: The list of permitted values was adapted from "Disk formats" in [i.4].

9.5.3.3 Type: VnfPackageArtifactInfo

This type represents an artifact other than a software image which is contained in a VNF package. It shall comply with
provisions defined in Table 9.5.3.3-1.

Table 9.5.3.3-1: Definition of the VnfPackageArtifactInfo data type

Attribute name Data type Cardinality Description
artifactPath String 1 Path in the VNF package, which identifies the artifact and

also allows to access a copy of the artifact.
checksum Checksum 1 Checksum of the artifact file.
metadata KeyValuePairs 0..1 The metadata of the artifact that are available in the VNF

package, such as Content type, size, creation date, etc.

9.5.3.4 Type: PkgmNotificationsFilter

This type represents a subscription filter related to notifications related to VNF package management. It shall comply
with the provisions defined in Table 9.5.3.4-1.

At a particular nesting level in the filter structure, the following applies: All attributes shall match in order for the filter
to match (logical "and" between different filter attributes). If an attribute is an array, the attribute shall match if at least
one of the values in the array matches (logical "or" between the values of one filter attribute).

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)294

Table 9.5.3.4-1: Definition of the PkgmNotificationsFilter data type

Attribute name Data type Cardinality Description
notificationTypes Enum (inlined) 0..N Match particular notification types.

Permitted values:
- VnfPackageOnboardingNotification
- VnfPackageChangeNotification

See note 1.

vnfProductsFromProviders Structure (inlined) 0..N If present, match VNF packages that contain
VNF products from certain providers.
See note 2.

>vnfProvider String 1 Name of the VNFprovider to match.
>vnfProducts Structure (inlined) 0..N If present, match VNF packages that contain

VNF products with certain product names,
from one particular provider.

>>vnfProductName String 1 Name of the VNF product to match.
>>versions Structure (inlined) 0..N If present, match VNF packages that contain

VNF products with certain versions and a
certain product name, from one particular
provider.

>>>vnfSoftwareVersion Version 1 VNF software version to match.
>>>vnfdVersions Version 0..N If present, match VNF packages that contain

VNF products with certain VNFD versions, a
certain software version and a certain product
name, from one particular provider.

vnfdId Identifier 0..N Match VNF packages with a VNFD identifier
listed in the attribute. See note 2.

vnfPkgId Identifier 0..N Match VNF packages with a package
identifier listed in the attribute.

May be present if the "notificationTypes"
attribute contains the value
"VnfPackageChangeNotification", and shall be
absent otherwise. See note 2.

operationalState PackageOperationalStateT
ype

0..N Match particular operational state of the VNF
package.

May be present if the "notificationTypes"
attribute contains the value
"VnfPackageChangeNotification", and shall be
absent otherwise.

usageState PackageUsageStateType 0..N Match particular usage state of the VNF
package.

May be present if the "notificationTypes"
attribute contains the value
"VnfPackageChangeNotification", and shall be
absent otherwise.

NOTE 1: The permitted values of the "notificationTypes" attribute are spelled exactly as the names of the notification
types to facilitate automated code generation systems.

NOTE 2: The attributes "vnfProductsFromProviders", "vnfdId", and "vnfPkgId" are alternatives to reference particular
VNF packages in a filter. They should not be used both in the same filter instance, but one alternative should
be chosen.

9.5.3.5 Type: PkgmLinks

This type represents the links to resources that a VNF package management notification can contain. It shall comply
with the provisions defined in Table 9.5.3.5-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)295

Table 9.5.3.5-1: Definition of the PkgmLinks data type

Attribute name Data type Cardinality Description
vnfPackage NotificationLink 1 Link to the resource representing the VNF package to

which the notified change applies, i.e. the individual on-
boarded VNF package resource that represents the VNF
package.

subscription NotificationLink 1 Link to the related subscription.

9.5.3.6 Type: Checksum

This type represents the checksum of a VNF package or an artifact file. It shall comply with the provisions defined in
Table 9.5.3.6-1.

Table 9.5.3.6-1: Definition of the Checksum data type

Attribute name Data type Cardinality Description
algorithm String 1 Name of the algorithm used to generate the checksum,

as defined in ETSI GS NFV-SOL 004 [5]. For example,
SHA-256, SHA-512.

hash String 1 The hexadecimal value of the checksum.

9.5.4 Referenced simple data types and enumerations

9.5.4.1 Introduction

This clause defines simple data types and enumerations that can be referenced from data structures defined in the
previous clauses.

9.5.4.2 Simple data types

No particular simple data types are defined for this interface, in addition to those defined in clause 4.4.2.

9.5.4.3 Enumeration: PackageOnboardingStateType

The enumeration PackageOnboardingStateType shall comply with the provisions defined in Table 9.5.4.3-1.

Table 9.5.4.3-1: Enumeration PackageOnboardingStateType

Enumeration value Description
CREATED The VNF package resource has been created.
UPLOADING The associated VNF package content is being uploaded.
PROCESSING The associated VNF package content is being processed, e.g. validation.
ONBOARDED The associated VNF package content is successfully on-boarded.

9.5.4.4 Enumeration: PackageOperationalStateType

The enumeration PackageOperationalStateType shall comply with the provisions defined in Table 9.5.4.4-1.

Table 9.5.4.4-1: Enumeration PackageOperationalStateType

Enumeration value Description
ENABLED The VNF package is enabled, i.e. it can be used for instantiation of new VNF

instances.
DISABLED The VNF package is disabled, i.e. it cannot be used for further VNF instantiation

requests (unless and until the VNF package is re-enabled).

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)296

9.5.4.5 Enumeration: PackageUsageStateType

The enumeration PackageUsageStateType shall comply with the provisions defined in Table 9.5.4.5-1.

Table 9.5.4.5-1: Enumeration PackageUsageStateType

Enumeration value Description
IN_USE VNF instances instantiated from this VNF package exist.
NOT_IN_USE No existing VNF instance is instantiated from this VNF package.

9.5.4.6 Enumeration: PackageChangeType

The enumeration PackageChangeType shall comply with the provisions defined in Table 9.5.4.6-1.

Table 9.5.4.6-1: Enumeration PackageChangeType

Enumeration value Description
OP_STATE_CHANGE The "operationalState" attribute has been changed.
PKG_DELETE The VNF package has been deleted.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)297

Annex A (informative):
Mapping operations to protocol elements

A.1 Overview
This annex provides the mapping between operations as defined in ETSI GS NFV-IFA 013 [3] and the corresponding
resources and HTTP methods defined in the present document.

A.2 NSD Management interface
The mapping of NSD management interface operations, defined in ETSI GS NFV-IFA 013 [3], to the resources and
HTTP methods defined in the present document can be found in Table A.2-1.

Table A.2-1: Mapping of ETSI GS NFV-IFA0 13 [3] NSD Management interface operations
with resources and HTTP methods

ETSI GS NFV-IFA 013 [3]
NSD Management
interface operation

HTTP
method

Resource Direction

Create NSD Info POST nsd/v1/ns_descriptors OSS/BSS NFVO
Upload NSD PUT nsd/v1/ns_descriptors/{nsdInfoId}/nsd_content OSS/BSS NFVO

Update NSD Info PATCH nsd/v1/ns_descriptors/{nsdInfoId} OSS/BSS NFVO
Delete NSD DELETE nsd/v1/ns_descriptors/{nsdInfoId} OSS/BSS NFVO

Query NSD
GET nsd/v1/ns_descriptors OSS/BSS NFVO
GET nsd/v1/ns_descriptors/{nsdInfoId} OSS/BSS NFVO

Fetch NSD GET nsd/v1/ns_descriptors/{nsdInfoId}/nsd_content OSS/BSS NFVO
Create PNFD Info POST nsd/v1/pnf_descriptors OSS/BSS NFVO

Upload PNFD PUT nsd/v1/pnf_descriptors/{pnfdInfoId}/pnfd_content OSS/BSS NFVO
Update PNFD Info POST nsd/v1/pnf_descriptors/{pnfdInfoId} OSS/BSS NFVO

Delete PNFD DELETE nsd/v1/pnf_descriptors/{pnfdInfoId} OSS/BSS NFVO

Query PNFD Info
GET nsd/v1/pnf_descriptors OSS/BSS NFVO
GET nsd/v1/pnf_descriptors/{pnfdInfoId} OSS/BSS NFVO

Fetch PNFD GET nsd/v1/pnf_descriptors/{pnfdInfoId}/pnfd_content OSS/BSS NFVO
Subscribe POST nsd/v1/subscriptions OSS/BSS NFVO

Query Subscription
Information

GET nsd/v1/subscriptions OSS/BSS NFVO
GET nsd/v1/subscriptions/{subscriptionId} OSS/BSS NFVO

Terminate Subscription DELETE nsd/v1/subscriptions/{subscriptionId} OSS/BSS NFVO
Notify POST (client-provided) NFVO OSS/BSS

A.3 NS Lifecycle Management interface
The mapping of NS lifecycle management operations, defined in ETSI GS NFV-IFA 013 [3], to the resources and
HTTP methods defined in the present document can be found in Table A.3-1.

Table A.3-1: Mapping of ETSI GS NFV-IFA 013 [3] operations
with NS Lifecycle Management interface resources and methods

ETSI GS NFV-IFA 013 [3]
NS Lifecycle Management

interface operation

HTTP
method

Resource Direction

Create NS Identifier POST nslcm/v1/ns_instances OSS/BSS NFVO
Instantiate NS POST nslcm/v1/ns_instances/{nsInstanceId}/instantiate OSS/BSS NFVO
Scale NS POST nslcm/v1/ns_instances/{nsInstanceId}/scale OSS/BSS NFVO
Update NS POST nslcm/v1/ns_instances/{nsInstanceId}/update OSS/BSS NFVO
Terminate NS POST nslcm/v1/ns_instances/{nsfInstanceId}/terminate OSS/BSS NFVO

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)298

ETSI GS NFV-IFA 013 [3]
NS Lifecycle Management

interface operation

HTTP
method

Resource Direction

Delete NS Identifier DELETE nslcm/v1/ns_instances/{nsInstanceId} OSS/BSS NFVO

Query NS
GET nslcm/v1/ns_instances/{nsInstanceId} OSS/BSS NFVO
GET nslcm/v1/ns_instances OSS/BSS NFVO

Heal NS POST nslcm/v1/ns_instances/{nsInstanceId}/heal OSS/BSS NFVO

Get Operation Status
GET nslcm/v1/ns_lcm_op_occs OSS/BSS NFVO
GET nslcm/v1/ns_lcm_op_occs/{nsLcmOpOccId} OSS/BSS NFVO

Subscribe POST nslcm/v1/subscriptions OSS/BSS NFVO
Query Subscription
Information

GET nslcm/v1/subscriptions OSS/BSS NFVO
GET nslcm/v1/subscriptions/{subscriptionId} OSS/BSS NFVO

Terminate Subscription DELETE nslcm/v1/subscriptions/{subscriptionId} OSS/BSS NFVO
Notify POST (client-provided) NFVO OSS/BSS

A.4 NS Performance Management interface
The mapping of NS performance management operations, defined in ETSI GS NFV-IFA 013 [3], to the resources and
HTTP methods defined in the present document can be found in Table A.4-1.

Table A.4-1: Mapping of ETSI GS NFV-IFA 013 [3] NS Performance Management
interface operations with resources and HTTP methods

ETSI GS NFV-IFA013 [3]
NS Performance

Management operation
HTTP

method Resource Direction
Create PM Job POST nspm/v1/pm_jobs OSS/BSS NFVO
Delete PM Job DELETE nspm/v1/pm_jobs/{pmJobId} OSS/BSS NFVO

Query PM Job
GET nspm/v1/pm_jobs OSS/BSS NFVO
GET nspm/v1/pm_jobs/{pmJobId} OSS/BSS NFVO

Create Threshold POST nspm/v1/thresholds OSS/BSS NFVO
Delete Threshold DELETE nspm/v1/thresholds/{thresholdId} OSS/BSS NFVO

Query Threshold
GET nspm/v1/thresholds OSS/BSS NFVO
GET nspm/v1/thresholds/{thresholdId} OSS/BSS NFVO

Subscribe POST nspm/v1/subscriptions OSS/BSS NFVO
Query Subscription
Information

GET nspm/v1/subscriptions OSS/BSS NFVO
GET nspm/v1/subscriptions/{subscriptionId} OSS/BSS NFVO

Terminate Subscription DELETE nspm/v1/subscriptions/{subscriptionId} OSS/BSS NFVO
Notify POST (client-provided) NFVO OSS/BSS

A.5 NS Fault Management interface
The mapping of NS fault management operations, defined in ETSI GS NFV-IFA 013 [3], to the resources and HTTP
methods defined in the present document can be found in Table A.5-1.

Table A.5-1: Mapping of ETSI GS NFV-IFA 013 [3] NS Fault Management interface operations
with resources and HTTP methods

ETSI GS NFV-IFA 013 [3]
NS Fault Management

interface operation

HTTP
method

Resource Direction

Get Alarm List GET nsfm/v1/alarms OSS/BSS NFVO
GET nsfm/v1//alarms/{alarmId} OSS/BSS NFVO

Acknowledge Alarm PATCH nsfm/v1//alarms/{alarmId} OSS/BSS NFVO
Subscribe POST nsfm/v1/subscriptions OSS/BSS NFVO
Query Subscription
Information

GET nsfm/v1/subscriptions OSS/BSS NFVO
GET nsfm/v1/subscriptions/{subscriptionId} OSS/BSS NFVO

Terminate Subscription DELETE nsfm/v1/subscriptions/{subscriptionId} OSS/BSS NFVO
Notify POST (client-provided) NFVO OSS/BSS

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)299

A.6 VNF Package Management interface
The mapping of VNF package management operations, defined in ETSI GS NFV-IFA 013 [3], to the resources and
HTTP methods defined in the present document can be found in Table A.6-1.

Table A.6-1: Mapping of ETSI GS NFV-IFA 013 [3] operations
with VNF Package Management interface resources and methods

ETSI GS NFV-IFA 013 [3]
VNF Package

Management interface
operation

HTTP
method

Resource Direction

Create VNF Package Info POST vnfpkgm/v1/vnf_packages OSS/BSS NFVO
Update VNF Package Info PATCH vnfpkgm/v1/vnf_packages/{vnfPkgId} OSS/BSS NFVO
Delete VNF Package DELETE vnfpkgm/v1/vnf_packages/{vnfPkgId} OSS/BSS NFVO

Query VNF Package Info
GET vnfpkgm/v1/vnf_packages OSS/BSS NFVO
GET vnfpkgm/v1/vnf_packages/{vnfPkgId} OSS/BSS NFVO
GET vnfpkgm/v1/vnf_packages/{vnfPkgId}/vnfd OSS/BSS NFVO

Upload VNF Package
PUT vnfpkgm/v1/vnf_packages/{vnfPkgId}/package_content OSS/BSS NFVO

POST vnfpkgm/v1/vnf_packages/{vnfPkgId}/package_content/u
pload_from_uri

OSS/BSS NFVO

Fetch VNF Package GET vnfpkgm/v1/vnf_packages/{vnfPkgId}/package_content OSS/BSS NFVO
Fetch VNF Package
Artifacts GET vnfpkgm/v1/vnf_packages/{vnfPkgId}/artifacts/{artifactPat

h}
OSS/BSS NFVO

Subscribe POST vnfpkgm/v1/subscriptions OSS/BSS NFVO
Query Subscription
Information

GET vnfpkgm/v1/subscriptions OSS/BSS NFVO
GET vnfpkgm/v1/subscriptions/{subscriptionId} OSS/BSS NFVO

Terminate subscription DELETE vnfpkgm/v1/subscriptions/{subscriptionId} OSS/BSS NFVO
Notify POST (client-provided) NFVO OSS/BSS

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)300

Annex B (informative):
State models

B.1 NSD state model

B.1.1 Introduction
This clause describes the state model of NSD in the NFVO. It includes the state models for two phases, i.e. onboarding
phase of NSD and operational phase of NSD.

B.1.2 State model
A given NSD has three states, i.e. on-boarding state, operational state and usage state.

The on-boarding state is represented by the "nsdOnboardingState" attribute in the "NsdInfo" data type with below
values:

• CREATED: The NSD information object is created.

• UPLOADING: The NSD is being uploaded.

• PROCESSING: The NSD is being processed, e.g. validation.

• ONBOARDED: The NSD is successfully on-boarded.

The operational state is represented by the "nsdOperationalState" attribute in the "NsdInfo" data type with below values:

• ENABLED: The NSD is enabled.

• DISABLED: The NSD is disabled.

The usage state is represented by the "nsdUsageState" attribute in the "NsdInfo" data type with below values:

• IN_USE: The NSD is in use.

• NOT_IN_USE: The NSD is not in use.

The state model of on-boarding phase in Figure B.1.2-1 applies to a given NSD being on-boarded. Besides the
operations and conditions specified in the Figure, below operations are also considered as available during the
on-boarding phase:

• Query NSD Info

• Update NSD Info (with user defined data only)

The state model of operational phase in Figure B.1.2-1 applies to an on-boarded NSD. Besides the operations and
conditions specified in the Figure, below operations are also considered as available during the operational phase:

• Query NSD Info

• Update NSD Info (with user defined data only)

• Fetch NSD

At the end of the on-boarding phase, the "nsdOnboardingState" value transitions to "ONBOARDED" and the
"nsdOperationalState" value transitions from "DISABLED" to "ENABLED", and the operational phase is entered.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)301

The "nsdOperationalState" and "nsdUsageState" detail the state changes during the NSD operational phase. During the
NSD on-boarding phase, the value of the "nsdOperationalState" is "DISABLED" and the value of the "nsdUsageState"
is "NOT_ IN_USE". Right after the NSD becomes on-boarded, the value of the "nsdOperationalState" is changed to
"ENABLED" and the value of the "nsdUsageState" is kept as "NOT_ IN_USE".

Figure B.1.2-1: NSD state model

B.2 VNF package state model

B.2.1 Introduction
This clause describes the state model of VNF Package in the NFVO. It includes the state models for two phases, i.e. on-
boarding phase and operational phase.

B.2.2 State model
A given VNF Package has three states, i.e. on-boarding state, operational state and usage state.

The on-boarding state is represented by the "onboardingState" attribute in the "VnfPkgInfo" information element with
below values:

• CREATED: The VNF Package information object is created.

• UPLOADING: The VNF Package is being uploaded.

• PROCESSING: The VNF Package is being processed, e.g. validation.

• ONBOARDED: The VNF Package is successfully on-boarded.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)302

The operational state is represented by the "operationalState" attribute in the "VnfPkgInfo" information element with
below values:

• ENABLED: The VNF Package is enabled.

• DISABLED: The VNF Package is disabled.

The usage state is represented by the "usageState" attribute in the "VnfPkgInfo" information element with below values:

• IN_USE: The VNF Package is in use.

• NOT_IN_USE: The VNF Package is not in use.

The state model of on-boarding phase in Figure B.2.2-1 applies to a given VNF Package being on-boarded. Besides the
operations and conditions specified in the Figure, below operations are also considered as available during the
on-boarding phase:

• Query VNF Package Info

• Update VNF Package Info (with user defined data only)

The state model of operational phase in Figure B.2.2-1 applies to an on-boarded VNF Package. Besides the operations
and conditions specified in the Figure, below operations are also considered as available during the operational phase:

• Query VNF Package Info

• Update VNF Package Info (with user defined data only)

• Fetch VNF Package

• Fetch VNF Package Artifacts

The "onboardingState" details the state changes during the VNF Package on-boarding phase. The value of this attribute
during the VNF Package operational phase is "ONBOARDED".

The "operationalState" and "usageState" detail the state changes during the VNF Package operational phase. During the
VNF Package on-boarding phase, the value of the "operationalState" is "DISABLED" and the value of the "usageState"
is "NOT_ IN_USE". Right after the VNF Package becomes on-boarded, the value of the "operationalState" is changed
to "ENABLED" and the value of the "usageState" is kept as "NOT_ IN_USE", as shown in Figure B.2.2-1.

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)303

Figure B.2.2-1: VNF Package state model

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)304

Annex C (informative):
Complementary material for API utilization
To complement the definitions of each method, resource, and data type defined in the main body of the present
document, the ETSI NFV ISG is providing supplementary description files, compliant to the OpenAPI Specification
[i.5], for the Os-Ma-nfvo reference point. These supplementary description files, containing the OpenAPI specification
for each API defined in the present document, are located at https://forge.etsi.org/rep/nfv/NFV-SOL005.

In case of discrepancies between the supplementary files and the related data structure definitions in the main body of
the present document, the data structure definitions take precedence.

The OpenAPI representations referenced above:

1) use the MAJOR.MINOR.PATCH version fields to signal the version of the API as defined in the present
document; and

2) use the "impl" version parameter to represent changes to the OpenAPI representation without changing the
present document (see clause 4.6.1.2).

The full version identifier of an API appears in the corresponding OpenAPI file, in the "version" subfield of the "info"
field, where numerical fields are separated by a dot, as illustrated below.

EXAMPLE:

swagger: "2.0"
info:
 version: "1.0.0-impl:etsi.org:ETSI_NFV_OpenAPI:1"
 title: SOL005 NS LCM
 license:
 name: "ETSI Forge copyright notice"
 url: https://forge.etsi.org/etsi-forge-copyright-notice.txt
basePath: "/nslcm/v1"

END EXAMPLE

https://forge.etsi.org/rep/nfv/NFV-SOL005

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)305

Annex D (informative):
Authors & contributors
The following people have contributed to the present document:

Rapporteur:

Ernest Bayha, Ericsson LM

Other contributors:

Hidenori Asaba, DOCOMO Communications Lab

Bruno Chatras, ORANGE

Haibin Chu, Ericsson LM

Gang He, China Unicom

Manchang Ju, ZTE

Yuya Kuno, DOCOMO Communications Lab

Jie Miao, China Unicom

Jiaqiang Pan, ZTE

Anne-Marie Praden, Gemalto N.V.

Uwe Rauschenbach, Nokia Networks

Kazi Wali Ullah, Ericsson LM

Xu Yang, Huawei Technologies Co. Ltd.

Jong-Hwa Yi, ETRI

Yaoye Zhang, Huawei Technologies Co. Ltd.

Peng Zhao, China Mobile

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)306

Annex E (informative):
Change History

Date Version Information about changes

December 2016 0.0.1
Initial version based on contributions that were agreed at the NFVSOL#15 meeting

- NFVSOL(16)000169 SOL005_Scope_Statement
- NFVSOL(16)000171_SOL005_Proposed_Table_of_Contents

February 2017 0.1.0

Version 0.1.0 based on contributions that were agreed at the NFVSOL#20 meeting
- NFVSOL(17)000061_SOL005_URI_structure_and_supported_content_formats
- NFVSOL(17)000064R1_SOL002_SOL003_SOL005_Labeling_of_API_names
- NFVSOL(17)000095R1_SOL005_Error_reporting
- NFVSOL(17)000106R1_Conventions_document_NFVSOL(17)000050_swagger_

representation_of_the_API
- NFVSOL(17)000107R1_SOL005_Common_procedures
- NFVSOL(17)000111_SOL003_Conventions_move_Resource_structure_up_in_th

e_TOC

March 2017 0.2.0

Version 0.2.0 based on contributions that were agreed at the NFVSOL#22 meeting
- NFVSOL(17)000196R1_SOL005_Add_SOL003_Normative_Reference
- NFVSOL(17)000198_SOL005_Clause_4.1_Overview
- NFVSOL(17)000199_SOL002_SOL003_Renaming_attribute_selectors
- NFVSOL(17)000200_SOL002_SOL003_Attribute_filter_equality
- NFVSOL(17)000179_SOL005_Simple_Data_Types
- NFVSOL(17)000138_SOL005_NS_LCM_Description_Clause_6.1
- NFVSOL(17)000142R1_SOL005_NS_LCM_Resource_Structure_and_Methods_

Clause_6.2
- NFVSOL(17)000123R2_SOL005_Flow_of_the_Creation_of_a_NS_Instance_Res

ource
- NFVSOL(17)000129R1_SOL005_Flow_of_the_Deletion_of_a_NS_Instance_Res

ource
- NFVSOL(17)000130_SOL005_Flow_of_the_Get_Operations_Status_Operation
- NFVSOL(17)000137_SOL005_Flow_of_Managing_Subscriptions_to_Notifications

_Related_to_NS_Lifecycle_Management
- NFVSOL(17)000136_SOL005_Flow_of_Sending_Notifications_Related_to_NS_Li

fecycle_management
- NFVSOL(17)000156R2_SOL005_NS_Lifecycle_Change_Resource_Definitions_

Methods_and_Data_Types
- NFVSOL(17)000160_SOL005_NS_Lifecycle_Management_Resource_Definitions

_Methods_and_Data_Types

April 2017 0.3.0

Version 0.3.0 based on contributions that were agreed at the NFVSOL#26 meeting
- NFVSOL(17)000263_SOL005_Instantiate_NS_Lifecycle_Management

Resource_Definition_Methods_and_Data_Types
- NFVSOL(17)000265_SOL005_Heal_NS_Lifecycle_Management

Resource_Definition_Methods_and_Data_Types

May 2017 0.4.0

Version 0.4.0 based on contributions that were agreed at the NFVSOL#28 meeting
- NFVSOL(17)000264R1_SOL005_Update_NS_Lifecycle_Management_Resource

_Methods_and_Data_Types
- NFVSOL(17)000266_SOL005_Scale_NS_Operation_Resource_Definition_Metho

ds_and_Data_Types
- NFVSOL(17)000267_SOL005_Terminate_NS_Operation_Resource_Definition_M

ethods_and_Data Type
- NFVSOL(17)000268_SOL005_Merge_NS_LCCN_interface_into_the_NS_LCM_i

nterface
- NFVSOL(17)000348R4_SOL005_NSD_Management_Interface
- NFVSOL(17)000378_SOL005_NS_Lifecycle_Change_Occurrence_Resource_De

finitions_Methods_and_Data_Types
- NFVSOL(17)000383_SOL005_Flow_of_NS_Lifecycle_Management_Operations_

Triggered_by_Task_Resources
- NFVSOL(17)000385R1_SOL005_Individual_NS_Descriptor_Resource_Descripto

r_Methods_and_Data_Types
- NFVSOL(17)000390R1_SOL005_Handling_of_Errors_During_NS_Lifecycle_Man

agement_Operations

June 2017 0.5.0

Version 0.5.0 based on contributions that were agreed at the NFVSOL#30 and
NFVSOL#31 meetings

- NFVSOL(17)000371R1_SOL005:_Data_Type_NsInstance
- NFVSOL(17)000411R1_SOL005:_Clause_6.6_Update,_"Handling_of_Errors_Dur

ing_NS_Lifecycle_Management"

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)307

Date Version Information about changes
- NFVSOL(17)000420R1_SOL005:_Update_ScaleVnfData_and_ScaleByStepData

_Data_Types_consistent_with_NFVIFA(17)000382R1

- NFVSOL(17)000421R1_SOL005:_Update_"additionalParam…"_attribute_names
, KeyValuePair data type_and_its_cardinality_consistent_with_SOL003

- NFVSOL(17)000422_SOL005:_Update_AffinityOrAntiAffinityRule_Data_Type_Co
nsistent_with_NFVIFA(17)000534

- NFVSOL(17)000424_SOL005:_Modify_VNF_Configuration_in_Update_NS_oper
ation_consistent_with_NFVIFA(17)000527

- NFVSOL(17)000427R2_SOL005:_Update_NSD_Interface_Resource_Tree,_Res
ources,_and_Methods_(Clause_5.2)

- NFVSOL(17)000428_SOL005:_ParamsForVnf_and_Resolution_of_the_Associat
ed_Editor's_Note

- NFVSOL(17)000431R3_SOL005:_Error_Handling_for_NS_Lifecycle_operation,_
Resource_Definition_and_Methods

- NFVSOL(17)000432R2_SOL005:_Update_Flow_of_Error_Handling_for_NS_LC
M_Operations

- NFVSOL(17)000433R3_SOL005:_Update_"address"_attribute's_
data_type_in_PnfExtCpInfo_data_type

- NFVSOL(17)000434R3_SOL005:_Update_LocationConstraints_data
type_in_Instantiate_NS_operation

- NFVSOL(17)000436R2_SOL005:_Filter_design_for_NS_Instances
- NFVSOL(17)000438R2_SOL005_VNF_Package_management_interface_-

_resource_structure_and_methods
- NFVSOL(17)000439R3_SOL005_VNF_package_management_interface_-

_resources
- NFVSOL(17)000440R3_SOL005:_Updates_to_the_Lifecycle_Change_Notificatio

ns_Filter
- NFVSOL(17)000441R1_SOL005:_Authorizations_of_API_requests_and_notificati

ons
- NFVSOL(17)000446R1_SOL005:_Update_Clause_4.3_"Common_Procedures"_

Consistent_with_SOL003
- NFVSOL(17)000451_SOL005:_Correct_various_references_to_NS_Lifecycle_op

eration_occurrences
- NFVSOL(17)000464_SOL005_-_Modifications_on_sequence_diagrams_in

clauses_5.3.2_and 5.3.3
- NFVSOL(17)000466_SOL005:_Add_IdentifierInVim_simple_data_type

August 2017 0.6.0

Version 0.6.0 based on contributions that were agreed at the NFVSOL#34 and
NFVSOL#35,meetings

- NFVSOL(17)00426R6_SOL005:_Changes_to_NSD_Resources,_Methods,
and_Data_Types

- NFVSOL(17)00493_SOL005: Update_Clause_3,_Abbreviations
- NFVSOL(17)000494R1_SOL005:_NS_PM_Interface_description,_resource_struc

ture,_and_methods
- NFVSOL(17)000508_SOL005:_Remove_Editor's Npte_in Clause_6.5.3.8
- NFVSOL(17)000509_SOL005:_Remove_Editor's_Note_in_Clauses 5.5.3.1,

5.5.4.1, and 5.5.4.2
- NFVSOL(17)000510R1_SOL005:_NS_Performance_Management_Interface_res

ources_and_data_model
- NFVSOL(17)000511R1_SOL005:_VNF_package_managment_interface_flows
- NFVSOL(17)000512R1_SOL005:_VNF_package_management_interface_data_t

ypes
- NFVSOL(17)000513R2_SOL005:_NSD_Management_Interface_operations,_res

ource_structure,_and_methods
- NFVSOL(17)000514R1_SOL005:_NS_LCM_Updates

September 2017 0.7.0

Version 0.7.0 based on contributions that were agreed at the NFVSOL#36 and
NFVSOL#37 meetings

- NFVSOL(17)000386R3_SOL005:_PNFD_resources,_methods,_and_data_types
- NFVSOL(17)00478R1_SOL005:_VL_and_CP_consistency_(mirror_of_403r3_and

_423)
- NFVSOL(17)000519R4_SOL005:_NS_fault_management_interface
- NFVSOL(17)000520R1_SOL005:_New_Annex_B_Mapping_operations_to_proto

col_elements
- NFVSOL(17)000524R1_SOL005:_Refactoring_of_NSD_management_interface
- NFVSOL(17)000526R1_SOL005:_Definition of_the_HealNsData_data type

(clause_6.5.3.33)
- NFVSOL(17)000529_SOL005:_Apply_the_agreed_design_for_VNF_package_on

-boarding_operation

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)308

Date Version Information about changes
- NFVSOL(17)000530R1_SOL005:_Remaining_VNF_package_management_interf

ace flows
- NFVSOL(17)000531R1_SOL005:_Remaining_resource_design_for_VNF_packag

e_management_interface
- NFVSOL(17)000532R1_SOL005:_Filters_and_selectors_for_VNF_package_man

agement_interface
- NFVSOL(17)000533R2_SOL005:_Additional_data_model_for_VNF_package_ma

nagement_interface
- NFVSOL(17)000534_SOL005:_VNF_package_management_interface_data_type

_align_with_SOL003
- NFVSOL(17)000554_SOL005: Align_with_IFA013_on vimId

October 2017 0.8.0

Version 0.8.0 based on contributions that were agreed at the NFVSOL#38 meeting.
- NFVSOL(17)000521_SOL005:_NS_performance_management_interface_seque

nce diagrams
- NFVSOL(17)000558R1_SOL005: NSD_management_interface_-

_notification_and_state_diagram
- NFVSOL(17)000573_SOL005:_NSD_management_interface_subscription_resou

rces

November 2017 0.9.0

Version 0.9.0 based on contributions that were agreed at the NFVSOL#40 and
NFVSOL#41 meetings.

- NFVSOL(17)000535r2_SOL005:_Modification_of_data_types_due_to_the_separ
ation_of_on-boarding_VNF_package_operation

- NFVSOL(17)000546R3_SOL005:_Define_the_nfpRule_attribute
- NFVSOL(17)000578R1_SOL005:_Refactor_PNFD_management
- NFVSOL(17)000579_SOL005:_Annex_B.5_-

_Add_NS_fault_management_mapping_operations_to_protocol_elements
- NFVSOL(17)000604r1_SOL005:_NS_LCM_interface_-_edit_note_fix
- NFVSOL(17)000607r1_SOL005:_NSD_management_interface_-_consistency_fix
- NFVSOL(17)000608r1_SOL005:_NSD_management_interface_-

_partial_download
- NFVSOL(17)000610r1_SOL005:_NS_LCM_interface_-_edit_note_fix2
- NFVSOL(17)000613_SOL005:_VNF_package_management_interface_delete_V

NF_package_flow
- NFVSOL(17)000623R1_SOL005:_Resolve_editor's_note_in_clause

6.5.3.33_(HealNsData)
- NFVSOL(17)000625_SOL005:_Remove_"pnfdName"-

related_editor's_note_in_clause_5.5.2.5
- NFVSOL(17)000627r1_S0L005:_Use_of_verbal_forms_for_the_expression_of_pr

ovisions
- NFVSOL(17)000628R1_SOL005:_Miscellaneous technical improvements
- NFVSOL(17)000640_SOL005:_Update_sequence_diagram_for_the_get_operatio

ns_status_operations

November 2017 0.9.1 Clean-up done by editHelp!
E-mail: mailto:edithelp@etsi.org

November 2017 0.10.0

Version 0.10.0 based on contributions that were agreed at the NFVSOL#42 and
NFVSOL#43 meetings and during Email Approval (EA) resulting from the NFVSOL#41
meeting.

- NFVSOL(17)000612R2_SOL005:_VNF_package_management_interface_refacto
ring_operations_and_data_types

- NFVSOL(17)000632R2_SOL005_-_Editorial_changes
- NFVSOL(17)000633R3_SOL005:_Sequence_diagram_for_the_deletion_of_an_in

dividual_PNF_descriptor_reource
- NFVSOL(17)000639R2_SOL005:_Sequence_diagram_for_the_deletion_of_an_in

dividual_NS_descriptor_resource
- NFVSOL(17)000645R1_SOL005:_Adding 405 response
- NFVSOL(17)000648_SOL005:_Addition_of_the_notes_for_identifier_in_the_reso

urce_URI
- NFVSOL(17)000657_SOL005:_Flow_of_the_creation_of_an_individual_NS_desc

riptor_resource
- NFVSOL(17)000658R1_SOL005:_Flow_of_the_creation_of_an_individual_PNF_

descriptor_resource
- NFVSOL(17)000659_SOL005:_Resolution_of_Rapporteur's_Notes_in_Annex_A
- NFVSOL(17)000660_SOL005_Flow_of_the_querying_reading_of_NS_descriptor

_resources
- NFVSOL(17)000662_SOL005_Flow_of_the_querying_reading_of_PNF_descripto

r_resources
- NFVSOL(17)000664_SOL005_Proposed_resolution_of_clause_4_editor's note

mailto:edithelp@etsi.org

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)309

Date Version Information about changes
- NFVSOL(17)000665_SOL005_Proposed_resolution_of_clause_4.2_editor's note
- NFVSOL(17)000678R1_SOL005_Update_NFP_related_data_types
- NFVSOL(17)000679_SOL005_Add_VNF_package_state_model_to_annex_C
- NFVSOL(17)000682_SOL005_Flow_of_the_update_of_an_individual_NS_descri

ptor_resource

Version 0.10.0 also reflects additional clean-up done by editHelp!
- E-mail: mailto:edithelp@etsi.org

December 2017 0.11.0

Version 0.11.0 based on contributions that were agreed at the NFVSOL#45 meeting.
- NFVSOL(17)000606R3_SOL005:_Update_data_type_NsLcmOpOcc_and_NsLcm

OperationOccurrenceNotification
- NFVSOL(17)000609R3_SOL005:_NS LCM interface_-_Error handling

enhancement
- NFVSOL(17)000614R3_SOL005:_VNF_package_management_interface_upload

_VNF_content_through_external_link
- NFVSOL(17)000649R2:_SOL005:_6.5.3.2_OperateVnfData
- NFVSOL(17)000672R2_SOL005:_Resolution_of_editor's_note_on_structure_of_t

heNSD_zip_file_in_clause_5.4.4.3.2
- NFVSOL(17)000680R2:_SOL005:_Update_ResourceHandle_datatype
- NFVSOL(17)000683R2_SOL005:_Remove_pnfdInfoId_and_related_editor's_note

_from_clause_5.5.2.6
- NFVSOL(17)000701R1_SOL005:_NS_LCM_interface_-

_Sequence_diagram_for_continue_operation
- NFVSOL(17)000702R1_SOL005:_Update_the_NSD_state_diagram_in _annex
- NFVSOL(17)000703R1_SOL005:_NS_LCL_interface_-

_resolve_the_editor's_note_about_resource_changes_in_NsLcmOperationOccurr
enceNotification

- NFVSOL(17)000704R1_SOL005:_Resolve_the_editor's_notes_on_NS_PM_interf
ace

- NFVSOL(17)000705_SOL005:_Resolve_the_editor's_notes_on_ExtVirtualLinkDa
ta_and_ExtManagedVirtualLinkData

- NFVSOL(17)000707R2_SOL005:_Sequence_diagram_for_the_uploading_of_NS
D_content

- NFVSOL(17)000708R1_SOL005:_Sequence_diagram_for_the_uploading_of_PN
FD_content

- NFVSOL(17)000709R1_SOL005:_Resolution_of_editor's_note_on_the_NsLcmO
pOcc_data_type_in_clause_6.4.9.3.2

- NFVSOL(17)000710_SOL005:_Resolution_of_editor's_note_in_clause 5.4.4.3.3_
on_partial/chunking/resumable_upload

- NFVSOL(17)000712R1:_SOL005_-_Additional_fields and values_for_NfpRules
- NFVSOL(17)000713_SOL005_4.2_Consistency_of_URI_and OAuth
- NFVSOL(17)000714R1:_SOL005:_Resolve_the_editor's_notes_on_ExtLinkPort

and NsLinkPort
- NFVSOL(17)000716R1_SOL005:_Double_subscriptions_for_notifications
- NFVSOL(17)000720_SOL005:_Resolution_of_two_editor's_notes_on_pnfdInvaria

ntId
- NFVSOL(17)000721R1_SOL005:_Sequences of responses_and_notifications
- NFVSOL(17)000727_SOL005:_Flow_of_the_fetching_of the_content_of_a_NSD
- NFVSOL(17)000728_SOL005:_Flow_of_the_fetching_of

the_content_of_a_PNFD
- NFVSOL(17)000729_SOL005:_Update_to_the_flow_of_the_creation_of_the_indi

vidual_NS_descriptor_resource
- NFVSOL(17)000731R1_SOL005:_Fix_description_of_unsupported_method_for_

notification_endpoint
- NFVSOL(17)000732R1_SOL005:_Resolve_editor's_note_on_checksum
- NFVSOL(17)000738_SOL005_Add_Update PNFD

Info_operation_to_the_list_of_NSD_management_interface_operations_in_claus
e 5.1

- NFVSOL(17)000741_SOL005:_Fix_the_inconsisistency_related_to_NS_LCM_op
eration_state

- NFVSOL(17)000742_SOL005:_Add_PNFD_Notifications
- NFVSOL(17)000743R1_SOL005:_Adding_normative_category_to_resource_and

_methods_Tables
- NFVSOL(17)000744_SOL005:_Align_PkgmNotificationsFilter_with_VnfInstanceS

ubscriptionFilter
- NFVSOL(17)000748R1_SOL005:_Add_NS_change_notification_on_NS_LCM_int

erface

mailto:edithelp@etsi.org

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)310

Date Version Information about changes
- NFVSOL(17)000750:_SOL005:_Add_error_code_for_fetching_package_content,

_vnfd_and_artifact_operations
- NFVSOL(17)000755:_SOL005:_Remove_redundant_description_of_vnfConfigura

bleProperties
- NFVSOL(17)000759R2_SOL005_Add ChangeVnfFlavourData
- NFVSOL(17)000760_SOL005_6.5.3.2_Add_changedInfo_to

AffectedVnf_data_type
- NFVSOL(17)000762R1_SOL005:_Authorization of API

requests_and_notifications

December 2017 0.12.0

Version 0.12.0 based on contributions that were agreed at the NFVSOL#46 meeting and
during Email Approval (EA) following the NFVSOL#45 meeting.

- NFVSOL(17)000603R1_SOL005:_NS_LCM_interface_-_network_address
- NFVSOL(17)000745_SOL005: Change_the_name_of_the "ScaleInfo" data type

to "VnfScaleInfo"
- NFVSOL(17)000747R2_SOL005:_Add_and_modify_PNF_on_NS_LCM_interface
- NFVSOL(17)000752_SOL005:_Change_"pnfdInfoStateType"_to_"pnfdOnboardin

gStateType"_ to resolve_editor's_note_in_clause_5.5.4.6
- NFVSOL(17)000761_SOL005:_Resolve_NsInstanceSubscriptionFilter_editor's_n

ote_(Issue Gen.3)
- NFVSOL(17)000763_SOL005:_Align_normative_statements_in_trigger_condition

s_mirror_734
- NFVSOL(17)000767_SOL005:_Authorization_method_negotiation
- NFVSOL(17)000769_SOL005:_Annex_A.6_operation_name_and_resource_URI

alignment
- NFVSOL(17)000770_SOL005:Add/remove_notes_about_race_conditions
- NFVSOL(17)000772_SOL005:_Add_get_method_support_on_the_notification_en

dpoint_resource_in_the_NSD_and_NS_LCM interfaces
- NFVSOL(17)000776_SOL005:_Alignment_of_timeStamp_attribute_name
- NFVSOL(17)000777_SOL005:_Change "NsLinkPort" to "NsLinkPortInfo"
- NFVSOL(17)000779_SOL005:_Precondition_for_VNF_package_deletion
- NFVSOL(17)000784_SOL005:_Add_a_pointer_to_annex_B_for_the_NSD_state_

model_in_NsdInfo
February 2018 2.4.1 Publication

March 2018 2.4.2

Version 2.4.2 based on contributions that were agreed at the NFVSOL#55 meeting.
- NFVSOL(18)000047_SOL005ed251_API_authorization_clarification
- NFVSOL(18)000084_SOL005ed251_Making_authorixation_negotiation_more_fle

xible

April 2018 2.4.3

Version 2.4.3 based on contributions that were agreed at the NFVSOL#59, NFVSOL#60,
and NFVSOL#61 meetings (including EA)

- NFVSOL(18)000098_SOL005ed251_Empty_collections_clarification_addressing_
PlugtestTM issue

- NFVSOL(18)000137_SOL005ed251_Disambiguating artifactPath
- NFVSOL(18)000155R1_SOL005ed251_Fix cardinality of the operationParams

attribute in the NsLcmOpOcc data type

May 2018 2.4.4

Version 2.4.4 based on contributions that were agreed at the NFVSOL#62, NFVSOL#64,
and NFVSOL#65 meetings (including EA)

- NFVSOL(18)000167_SOL005ed251:_fixing_tracker_issue_007748
- NFVSOL(18)000177_SOL005ed251:_Correct_description_of_POST_method_on

_NS_descriptors_resourc
- NFVSOL(18)000184_SOL005ed251:_Change_the_cardinality_of_the_subscriptio

nId_atttribute_in_the_NSD_management,_NS_LCM,_and_VNF_package_manag
ement_notifications

- NFVSOL(18)000233_SOL005ed251:_Define_userDefinedData_attribute_consiste
ntly

- NFVSOL(18)000235_SOL005ed251:_Remove_reference_to_the_note_in_the_de
scription_of_the_pnfdInvariantId_attribute_in_clause_5.5.2.5

- NFVSOL(18)000238_SOL005ed251: Updating_ JSON_RFC_reference
- NFVSOL(18)000243_SOL005ed251:_VnfPkgm_small_fix
- NFVSOL(18)000248_SOL005ed251:_Version_Management
- NFVSOL(18)000251R1_SOL005ed251: Move_ResourceHandle_to

common_data_types_in_clause_4.4.1.6

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)311

Date Version Information about changes

July 2018 2.4.5

Version 2.4.5 based on contributions that were agreed at the NFVSOL#66 and
NFVSOL#67 (including EA)

- NFVSOL(18)000244_SOL005ed251:_Different_names_for_virtual_link_descriptor
_id

- NFVSOL(18)000245_SOL005ed251:_Adding_status_codes
- NFVSOL(18)000259R1_SOL005ed251:_Add_two …

monitoringParameter_data_types
- NFVSOL(18)000279_SOL005ed251:_Attribute_selectors
- NFVSOL(18)000280_SOL005ed251:_Fixing_the_sequence_of_400_response_c

ode_definitions
- NFVSOL(18)000281_SOL005ed251:_Small_fix_to_the_description_of_the_400_

error_code
- NFVSOL(18)000311_SOL005ed251:_Small_fix_replace_queried_by_read
- NFVSOL(18)000318_SOL005ed251:_Add_IFA027_reference
- NFVSOL(18)000319_SOL005ed251:_Attribute_filters
- NFVSOL(18)000320_SOL005ed251: String_and_number_data_types
- NFVSOL(18)000321_SOL005ed251:_Mirror_of_NFVSOL(18)000341r2
- NFVSOL(18)000332R2_SOL005ed251:_Add_annex_with_a_reference_to_Open

API_repository
- NFVSOL(18)8)000334_SOL005ed251:_Add_VL_profile_id_in_NsrtualLinkInfo_da

ta_type
- NFVSOL(18)000341_SOL005ed251: Clarifying_association_from VnfLinkPort to

VnfcCp and VnfExtCp

July 2018 2.4.6

Version 2.4.6 based on contributions that were agreed at the NFVSOL#68 and
NFVSOL#69 (including EA)

- NFVSOL(18)000347_SOL005ed251:_Normative_attribute_filters_support
- NFVSOL(18)000350_SOL005ed251:_Metadata_for CPs_and_extCPs
- NFVSOL(18)000355_SOL005ed251:_Add_relative_URIs_for_links_in_notification

s
- NFVSOL(18)000356_SOL005ed251:_Retry_as_reaction_to_error_responses_dur

ing_notification_delivery
- NFVSOL(18)000357_SOL005ed251:_NestedNsInstanceData_for_the_Instantiate

Ns_and_UpdateNs_operations
- NFVSOL(18)000358_SOL005ed251:_Add_ParamsForNestedNS_to_the_Instanti

ateNs_operations
- NFVSOL(18)000359_SOL005ed251:_Clarify_linkage_between_vnfcCP_and

vnfcExtCP
- NFVSOL(18)000360_SOL005ed251:_Attach metadata to extCPs
- NFVSOL(18)000391_SOL005ed251:_Define_minor_version_number
- NFVSOL(18)000392_SOL005ed251:_Attribute_selector_attribute_filter_small_fix

es

July 2018 2.4.7

Version 2.4.7 based on contributions that were agreed at NFVSOL#71 (including EA)
- NFVSOL(18)000361_SOL005ed251:_Fix_NFP_Management
- NFVSOL(18)000438_SOL005ed251:_Ensure_consistency_with_SOL003_on_Vnf

LinkPortInfo_and_VnfExtCpInfo

August 2018 2.4.8

Version 2.4.8 based on contributions that were agreed at NFVSOL#72 and NFVSOL#72a
(including EA)

- NFVSOL(18)000456R1_SOL005ed251:_Version_management
- NFVSOL(18)000458_SOL005ed251:_Version signaling
- NFVSOL(18)000461R1_SOL005ed251: Define_patch_version_number
- NFVSOL(18)000462_SOL005ed251: Closing pagination gap
- NFVSOL(18)000473R1_SOL005ed251: Add_note_to_MAJOR_version_field

ETSI

ETSI GS NFV-SOL 005 V2.5.1 (2018-09)312

History

Document history

V2.4.1 February 2018 Publication

V2.5.1 September 2018 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Abbreviations
	4 General Aspects
	4.1 Overview
	4.2 URI structure and supported content formats
	4.3 Common procedures
	4.3.1 Introduction
	4.3.2 Attribute-based filtering
	4.3.2.1 Overview and example (informative)
	4.3.2.2 Specification

	4.3.3 Attribute selectors
	4.3.3.1 Overview and example
	4.3.3.2 Specification
	4.3.3.2.1 GET request
	4.3.3.2.2 GET response

	4.3.4 Usage of HTTP header fields
	4.3.4.1 Introduction
	4.3.4.2 Request header fields
	4.3.4.3 Response header fields

	4.3.5 Error reporting
	4.3.5.1 Introduction
	4.3.5.2 General mechanism
	4.3.5.3 Type: ProblemDetails
	4.3.5.4 Common error situations
	4.3.5.5 Overview of HTTP error status codes

	4.4 Common data types
	4.4.1 Structured data types
	4.4.1.1 Introduction
	4.4.1.2 Type: Object
	4.4.1.3 Type: Link
	4.4.1.3a Type: NotificationLink
	4.4.1.4 Type: KeyValuePairs
	4.4.1.5 Type: NsInstanceSubscriptionFilter
	4.4.1.6 Type: ResourceHandle
	4.4.1.7 Type: ApiVersionInformation

	4.4.2 Simple data types

	4.5 Authorization of API requests and notifications
	4.5.1 Introduction
	4.5.2 Flows (informative)
	4.5.2.0 General
	4.5.2.1 Authorization of API requests using OAuth 2.0 access tokens
	4.5.2.1a Authorization of API requests using TLS certificates
	4.5.2.2 Authorization of notifications using the HTTP Basic authentication scheme
	4.5.2.3 Authorization of notifications using OAuth 2.0 access tokens
	4.5.2.4 Authorization of notifications using TLS certificates

	4.5.3 Specification
	4.5.3.1 Introduction
	4.5.3.2 General mechanism
	4.5.3.3 Authorizing API requests
	4.5.3.4 Authorizing the sending of notifications
	4.5.3.5 Client roles
	4.5.3.6 Negotiation of authorization method
	4.5.3.6.1 Authorization of API requests
	4.5.3.6.2 Authorization of notification requests

	4.6 Version management
	4.6.1 Version identifiers and parameters
	4.6.1.1 Version identifiers
	4.6.1.2 Version parameters

	4.6.2 Rules for incrementing version identifier fields
	4.6.2.1 General
	4.6.2.2 Examples of backward and non-backward compatible changes

	4.6.3 Version information retrieval
	4.6.3.1 General
	4.6.3.2 Resource structure and methods
	4.6.3.3 Resource: API versions
	4.6.3.3.1 Description
	4.6.3.3.2 Resource definition
	4.6.3.3.3 Resource methods

	4.6.4 Version signalling

	4.7 Handling of large query results
	4.7.1 Description
	4.7.2 Specification
	4.7.2.1 Alternatives
	4.7.2.2 Error response
	4.7.2.3 Paged response

	5 NSD Management interface
	5.1 Description
	5.1a API version
	5.2 Resource structure and methods
	5.3 Sequence diagrams (informative)
	5.3.1 Flow of the creation of an individual NS descriptor resource
	5.3.2 Flow of the uploading of NSD content
	5.3.3 Flow of the fetching of NSD content
	5.3.4 Flow of the update of an individual NS descriptor resource
	5.3.5 Flow of the deletion of an individual NS descriptor resource
	5.3.6 Flow of the querying/reading of NS descriptor resources
	5.3.7 Flow of the creation of an individual PNF descriptor resource
	5.3.8 Flow of the uploading of PNFD content
	5.3.9 Flow of the fetching of PNFD content
	5.3.10 Flow of the deletion of an individual PNF descriptor resource
	5.3.11 Flow of the querying/reading of PNF descriptor resources
	5.3.12 Flow of managing subscriptions
	5.3.13 Flow of sending notifications

	5.4 Resources
	5.4.1 Introduction
	5.4.2 Resource: NS Descriptors
	5.4.2.1 Description
	5.4.2.2 Resource definition
	5.4.2.3 Resource methods
	5.4.2.3.1 POST
	5.4.2.3.2 GET
	5.4.2.3.3 PUT
	5.4.2.3.4 PATCH
	5.4.2.3.5 DELETE

	5.4.3 Resource: Individual NS Descriptor
	5.4.3.1 Description
	5.4.3.2 Resource definition
	5.4.3.3 Resource methods
	5.4.3.3.1 POST
	5.4.3.3.2 GET
	5.4.3.3.3 PUT
	5.4.3.3.4 PATCH
	5.4.3.3.5 DELETE

	5.4.4 Resource: NSD Content
	5.4.4.1 Description
	5.4.4.2 Resource definition
	5.4.4.3 Resource methods
	5.4.4.3.1 POST
	5.4.4.3.2 GET
	5.4.4.3.3 PUT
	5.4.4.3.4 PATCH
	5.4.4.3.5 DELETE

	5.4.5 Resource: PNF Descriptors
	5.4.5.1 Description
	5.4.5.2 Resource definition
	5.4.5.3 Resource methods
	5.4.5.3.1 POST
	5.4.5.3.2 GET
	5.4.5.3.3 PUT
	5.4.5.3.4 PATCH
	5.4.5.3.5 DELETE

	5.4.6 Resource: Individual PNF Descriptor
	5.4.6.1 Description
	5.4.6.2 Resource definition
	5.4.6.3 Resource methods
	5.4.6.3.1 POST
	5.4.6.3.2 GET
	5.4.6.3.3 PUT
	5.4.6.3.4 PATCH
	5.4.6.3.5 DELETE

	5.4.7 Resource: PNFD Content
	5.4.7.1 Description
	5.4.7.2 Resource definition
	5.4.7.3 Resource methods
	5.4.7.3.1 POST
	5.4.7.3.2 GET
	5.4.7.3.3 PUT
	5.4.7.3.4 PATCH
	5.4.7.3.5 DELETE

	5.4.8 Resource: Subscriptions
	5.4.8.1 Description
	5.4.8.2 Resource definition
	5.4.8.3 Resource methods
	5.4.8.3.1 POST
	5.4.8.3.2 GET
	5.4.8.3.3 PUT
	5.4.8.3.4 PATCH
	5.4.8.3.5 DELETE

	5.4.9 Resource: Individual subscription
	5.4.9.1 Description
	5.4.9.2 Resource definition
	5.4.9.3 Resource methods
	5.4.9.3.1 POST
	5.4.9.3.2 GET
	5.4.9.3.3 PUT
	5.4.9.3.4 PATCH
	5.4.9.3.5 DELETE

	5.4.10 Resource: Notification endpoint
	5.4.10.1 Description
	5.4.10.2 Resource definition
	5.4.10.3 Resource methods
	5.4.10.3.1 POST
	5.4.10.3.2 GET
	5.4.10.3.3 PUT
	5.4.10.3.4 PATCH
	5.4.10.3.5 DELETE

	5.5 Data model
	5.5.1 Introduction
	5.5.2 Resource and notification data types
	5.5.2.1 Type: NsdInfoModifications
	5.5.2.2 Type: NsdInfo
	5.5.2.3 Type: CreateNsdInfoRequest
	5.5.2.4 Type: PnfdInfoModifications
	5.5.2.5 Type: PnfdInfo
	5.5.2.6 Type: CreatePnfdInfoRequest
	5.5.2.7 Type: NsdmSubscriptionRequest
	5.5.2.8 Type: NsdmSubscription
	5.5.2.9 Type: NsdOnboardingNotification
	5.5.2.10 Type: NsdOnboardingFailureNotification
	5.5.2.11 Type: NsdChangeNotification
	5.5.2.12 Type: NsdDeletionNotification
	5.5.2.13 Type: PnfdOnboardingNotification
	5.5.2.14 Type: PnfdOnboardingFailureNotification
	5.5.2.15 Type: PnfdDeletionNotification

	5.5.3 Referenced structured data types
	5.5.3.1 Introduction
	5.5.3.2 Type: NsdmNotificationsFilter
	5.5.3.3 Type: NsdmLinks
	5.5.3.4 Type: PnfdmLinks

	5.5.4 Referenced simple data types and enumerations
	5.5.4.1 Introduction
	5.5.4.2 Simple data types
	5.5.4.3 Enumeration: NsdOperationalStateType
	5.5.4.4 Enumeration: NsdUsageStateType
	5.5.4.5 Enumeration: NsdOnboardingStateType
	5.5.4.6 Enumeration: PnfdOnboardingStateType
	5.5.4.7 Enumeration: PnfdUsageStateType

	6 NS Lifecycle Management interface
	6.1 Description
	6.1a API version
	6.2 Resource structure and methods
	6.3 Sequence diagrams (informative)
	6.3.1 Flow of the creation of a NS instance resource
	6.3.2 Flow of the deletion of a NS instance resource
	6.3.3 Flow of NS lifecycle management operations triggered by task resources
	6.3.4 Flow of the get operations status operation
	6.3.5 Flow of managing subscriptions
	6.3.6 Flow of sending notifications
	6.3.7 Flow of retrying a NS lifecycle management operation
	6.3.8 Flow of rolling back a NS lifecycle management operation
	6.3.9 Flow of continuing a NS lifecycle management operation
	6.3.10 Flow of failing a NS lifecycle management operation
	6.3.11 Flow of cancelling a NS lifecycle management operation

	6.4 Resources
	6.4.1 Introduction
	6.4.2 Resource: NS Instances
	6.4.2.1 Description
	6.4.2.2 Resource definition
	6.4.2.3 Resource methods
	6.4.2.3.1 POST
	6.4.2.3.2 GET
	6.4.2.3.3 PUT
	6.4.2.3.4 PATCH
	6.4.2.3.5 DELETE

	6.4.3 Resource: Individual NS Instance
	6.4.3.1 Description
	6.4.3.2 Resource definition
	6.4.3.3 Resource methods
	6.4.3.3.1 POST
	6.4.3.3.2 GET
	6.4.3.3.3 PUT
	6.4.3.3.4 PATCH
	6.4.3.3.5 DELETE

	6.4.4 Resource: Instantiate NS task
	6.4.4.1 Description
	6.4.4.2 Resource definition
	6.4.4.3 Resource methods
	6.4.4.3.1 POST
	6.4.4.3.2 GET
	6.4.4.3.3 PUT
	6.4.4.3.4 PATCH
	6.4.4.3.5 DELETE

	6.4.5 Resource: Scale NS task
	6.4.5.1 Description
	6.4.5.2 Resource definition
	6.4.5.3 Resource methods
	6.4.5.3.1 POST
	6.4.5.3.2 GET
	6.4.5.3.3 PUT
	6.4.5.3.4 PATCH
	6.4.5.3.5 DELETE

	6.4.6 Resource: Update NS task
	6.4.6.1 Description
	6.4.6.2 Resource definition
	6.4.6.3 Resource methods
	6.4.6.3.1 POST
	6.4.6.3.2 GET
	6.4.6.3.3 PUT
	6.4.6.3.4 PATCH
	6.4.6.3.5 DELETE

	6.4.7 Resource: Heal NS task
	6.4.7.1 Description
	6.4.7.2 Resource definition
	6.4.7.3 Resource methods
	6.4.7.3.1 POST
	6.4.7.3.2 GET
	6.4.7.3.3 PUT
	6.4.7.3.4 PATCH
	6.4.7.3.5 DELETE

	6.4.8 Resource: Terminate NS task
	6.4.8.1 Description
	6.4.8.2 Resource definition
	6.4.8.3 Resource methods
	6.4.8.3.1 POST
	6.4.8.3.2 GET
	6.4.8.3.3 PUT
	6.4.8.3.4 PATCH
	6.4.8.3.5 DELETE

	6.4.9 Resource: NS LCM operation occurrences
	6.4.9.1 Description
	6.4.9.2 Resource definition
	6.4.9.3 Resource methods
	6.4.9.3.1 POST
	6.4.9.3.2 GET
	6.4.9.3.3 PUT
	6.4.9.3.4 PATCH
	6.4.9.3.5 DELETE

	6.4.10 Resource: Individual NS LCM operation occurrence
	6.4.10.1 Description
	6.4.10.2 Resource definition
	6.4.10.3 Resource methods
	6.4.10.3.1 POST
	6.4.10.3.2 GET
	6.4.10.3.3 PUT
	6.4.10.3.4 PATCH
	6.4.10.3.5 DELETE

	6.4.11 Resource: Retry operation task
	6.4.11.1 Description
	6.4.11.2 Resource definition
	6.4.11.3 Resource methods
	6.4.11.3.1 POST
	6.4.11.3.2 GET
	6.4.11.3.3 PUT
	6.4.11.3.4 PATCH
	6.4.11.3.5 DELETE

	6.4.12 Resource: Rollback operation task
	6.4.12.1 Description
	6.4.12.2 Resource definition
	6.4.12.3 Resource methods
	6.4.12.3.1 POST
	6.4.12.3.2 GET
	6.4.12.3.3 PUT
	6.4.12.3.4 PATCH
	6.4.12.3.5 DELETE

	6.4.13 Resource: Continue operation task
	6.4.13.1 Description
	6.4.13.2 Resource definition
	6.4.13.3 Resource methods
	6.4.13.3.1 POST
	6.4.13.3.2 GET
	6.4.13.3.3 PUT
	6.4.13.3.4 PATCH
	6.4.13.3.5 DELETE

	6.4.14 Resource: Fail operation task
	6.4.14.1 Description
	6.4.14.2 Resource definition
	6.4.14.3 Resource methods
	6.4.14.3.1 POST
	6.4.14.3.2 GET
	6.4.14.3.3 PUT
	6.4.14.3.4 PATCH
	6.4.14.3.5 DELETE

	6.4.15 Resource: Cancel operation task
	6.4.15.1 Description
	6.4.15.2 Resource definition
	6.4.15.3 Resource methods
	6.4.15.3.1 POST
	6.4.15.3.2 GET
	6.4.15.3.3 PUT
	6.4.15.3.4 PATCH
	6.4.15.3.5 DELETE

	6.4.16 Resource: Subscriptions
	6.4.16.1 Description
	6.4.16.2 Resource definition
	6.4.16.3 Resource methods
	6.4.16.3.1 POST
	6.4.16.3.2 GET
	6.4.16.3.3 PUT
	6.4.16.3.4 PATCH
	6.4.16.3.5 DELETE

	6.4.17 Resource: Individual subscription
	6.4.17.1 Description
	6.4.17.2 Resource definition
	6.4.17.3 Resource methods
	6.4.17.3.1 POST
	6.4.17.3.2 GET
	6.4.17.3.3 PUT
	6.4.17.3.4 PATCH
	6.4.17.3.5 DELETE

	6.4.18 Resource: Notification endpoint
	6.4.18.1 Description
	6.4.18.2 Resource definition
	6.4.18.3 Resource methods
	6.4.18.3.1 POST
	6.4.18.3.2 GET
	6.4.18.3.3 PUT
	6.4.18.3.4 PATCH
	6.4.18.3.5 DELETE

	6.5 Data model
	6.5.1 Introduction
	6.5.2 Resource and notification data types
	6.5.2.1 Introduction
	6.5.2.2 Type: LccnSubscriptionRequest
	6.5.2.3 Type: NsLcmOpOcc
	6.5.2.4 Type: LccnSubscription
	6.5.2.5 Type: NsLcmOperationOccurrenceNotification
	6.5.2.6 Type: NsIdentifierCreationNotification
	6.5.2.7 Type: NsIdentifierDeletionNotification
	6.5.2.8 Type: NsChangeNotification
	6.5.2.9 Type: CreateNsRequest
	6.5.2.10 Type: NsInstance
	6.5.2.11 Type: InstantiateNsRequest
	6.5.2.12 Type: UpdateNsRequest
	6.5.2.13 Type: HealNsRequest
	6.5.2.14 Type: ScaleNsRequest
	6.5.2.15 Type: TerminateNsRequest
	6.5.2.16 Type: CancelMode

	6.5.3 Referenced structured data types
	6.5.3.1 Introduction
	6.5.3.2 Type: AffectedVnf
	6.5.3.3 Type: AffectedPnf
	6.5.3.4 Type: AffectedVirtualLink
	6.5.3.5 Type: AffectedVnffg
	6.5.3.6 Type: AffectedNs
	6.5.3.7 Type: AffectedSap
	6.5.3.8 Type: LifecycleChangeNotificationsFilter
	6.5.3.9 Type: LccnLinks
	6.5.3.10 Type: SapData
	6.5.3.11 Type: CpProtocolData
	6.5.3.12 Type: IpOverEthernetAddressData
	6.5.3.13 Type: PnfInfo
	6.5.3.14 Type: AddPnfData
	6.5.3.15 Type: ModifyPnfData
	6.5.3.16 Type: PnfExtCpData
	6.5.3.17 Type: PnfExtCpInfo
	6.5.3.18 Type: IpOverEthernetAddressInfo
	6.5.3.19 Type: VnfInstanceData
	6.5.3.19a Type: NestedNsInstanceData
	6.5.3.20 Type: VnfLocationConstraint
	6.5.3.21 Type: LocationConstraints
	6.5.3.21a Type: ParamsForNestedNs
	6.5.3.22 Type: ParamsForVnf
	6.5.3.23 Type: AffinityOrAntiAffinityRule
	6.5.3.24 Type: InstantiateVnfData
	6.5.3.25 Type: ChangeVnfFlavourData
	6.5.3.26 Type: ExtVirtualLinkData
	6.5.3.27 Type: ExtManagedVirtualLinkData
	6.5.3.28 Type: ExtLinkPortData
	6.5.3.29 Type: VnfExtCpData
	6.5.3.30 Type: VnfExtCpConfig
	6.5.3.31 Type: OperateVnfData
	6.5.3.32 Type: ModifyVnfInfoData
	6.5.3.33 Type: ChangeExtVnfConnectivityData
	6.5.3.34 Type: AssocNewNsdVersionData
	6.5.3.35 Type: MoveVnfInstanceData
	6.5.3.36 Type: AddVnffgData
	6.5.3.37 Type: UpdateVnffgData
	6.5.3.38 Type: NfpData
	6.5.3.39 Type: ChangeNsFlavourData
	6.5.3.40 Type: NfpRule
	6.5.3.41 Type: Mask
	6.5.3.42 Type: PortRange
	6.5.3.43 Type: HealNsData
	6.5.3.44 Type: HealVnfData
	6.5.3.45 Type: ScaleNsData
	6.5.3.46 Type: ScaleNsByStepsData
	6.5.3.47 Type: ScaleNsToLevelData
	6.5.3.48 Type: NsScaleInfo
	6.5.3.49 Type: ScaleVnfData
	6.5.3.50 Type: ScaleToLevelData
	6.5.3.51 Type: VnfScaleInfo
	6.5.3.52 Type: ScaleByStepData
	6.5.3.53 Type: NsVirtualLinkInfo
	6.5.3.54 Void
	6.5.3.55 Type: NsLinkPortInfo
	6.5.3.56 Type: NsCpHandle
	6.5.3.57 Type: VnfInstance
	6.5.3.58 Type: CpProtocolInfo
	6.5.3.59 Type: ExtManagedVirtualLinkInfo
	6.5.3.60 Type: VnfcResourceInfo
	6.5.3.61 Type: VnfVirtualLinkResourceInfo
	6.5.3.62 Type: ExtVirtualLinkInfo
	6.5.3.63 Type: ExtLinkPortInfo
	6.5.3.64 Type: VnfLinkPortInfo
	6.5.3.65 Type: VnffgInfo
	6.5.3.66 Type: NfpInfo
	6.5.3.67 Type: SapInfo
	6.5.3.68 Type: NsMonitoringParameter
	6.5.3.69 Type: VnfMonitoringParameter
	6.5.3.70 Type: VnfExtCpInfo
	6.5.3.71 Type: CpGroupInfo
	6.5.3.72 Type: CpPairInfo
	6.5.3.73 Type: ForwardingBehaviour InputParameters

	6.5.4 Referenced simple data types and enumerations
	6.5.4.1 Introduction
	6.5.4.2 Simple data types
	6.5.4.3 Enumeration: NsLcmOpType
	6.5.4.4 Enumeration: NsLcmOperationStateType
	6.5.4.5 Enumeration: NsComponentType
	6.5.4.6 Enumeration: LcmOpNameForChangeNotificationType
	6.5.4.7 Enumeration: LcmOpOccStatusForChangeNotificationType
	6.5.4.8 Enumeration: OperationalStates
	6.5.4.9 Enumeration: StopType
	6.5.4.10 Enumeration: CancelModeType

	6.6 Handling of errors during NS lifecycle management operations
	6.6.1 Basic concepts (informative)
	6.6.1.1 Motivation
	6.6.1.2 Failure resolution strategies: Retry, Rollback and Continue
	6.6.1.3 Error handling at NFVO and OSS/BSS

	6.6.2 States and state transitions of a NS lifecycle management operation occurrence
	6.6.2.1 General
	6.6.2.2 States of a NS lifecycle management operation occurrence
	6.6.2.3 Error handling operations that change the state of a NS lifecycle operation

	6.6.3 Detailed flows
	6.6.3.1 Immediate failure
	6.6.3.2 Failure during actual NS LCM operation execution
	6.6.3.3 LCM operation cancellation

	7 NS Performance Management interface
	7.1 Description
	7.1a API version
	7.2 Resource structure and methods
	7.3 Sequence diagrams (informative)
	7.3.1 Flow of creating a PM job
	7.3.2 Flow of querying/reading PM jobs
	7.3.3 Flow of deleting a PM job
	7.3.4 Flow of obtaining performance reports
	7.3.5 Flow of creating a threshold
	7.3.6 Flow of querying/reading thresholds
	7.3.7 Flow of deleting thresholds
	7.3.8 Flow of managing subscriptions
	7.3.9 Flow of sending notifications

	7.4 Resources
	7.4.1 Introduction
	7.4.2 Resource: PM jobs
	7.4.2.1 Description
	7.4.2.2 Resource definition
	7.4.2.3 Resource methods
	7.4.2.3.1 POST
	7.4.2.3.2 GET
	7.4.2.3.3 PUT
	7.4.2.3.4 PATCH
	7.4.2.3.5 DELETE

	7.4.3 Resource: Individual PM job
	7.4.3.1 Description
	7.4.3.2 Resource definition
	7.4.3.3 Resource methods
	7.4.3.3.1 POST
	7.4.3.3.2 GET
	7.4.3.3.3 PUT
	7.4.3.3.4 PATCH
	7.4.3.3.5 DELETE

	7.4.4 Resource: Individual performance report
	7.4.4.1 Description
	7.4.4.2 Resource definition
	7.4.4.3 Resource methods
	7.4.4.3.1 POST
	7.4.4.3.2 GET
	7.4.4.3.3 PUT
	7.4.4.3.4 PATCH
	7.4.4.3.5 DELETE

	7.4.5 Resource: Thresholds
	7.4.5.1 Description
	7.4.5.2 Resource definition
	7.4.5.3 Resource methods
	7.4.5.3.1 POST
	7.4.5.3.2 GET
	7.4.5.3.3 PUT
	7.4.5.3.4 PATCH
	7.4.5.3.5 DELETE

	7.4.6 Resource: Individual threshold
	7.4.6.1 Description
	7.4.6.2 Resource definition
	7.4.6.3 Resource methods
	7.4.6.3.1 POST
	7.4.6.3.2 GET
	7.4.6.3.3 PUT
	7.4.6.3.4 PATCH
	7.4.6.3.5 DELETE

	7.4.7 Resource: Subscriptions
	7.4.7.1 Description
	7.4.7.2 Resource definition
	7.4.7.3 Resource methods
	7.4.7.3.1 POST
	7.4.7.3.2 GET
	7.4.7.3.3 PUT
	7.4.7.3.4 PATCH
	7.4.7.3.5 DELETE

	7.4.8 Resource: Individual subscription
	7.4.8.1 Description
	7.4.8.2 Resource definition
	7.4.8.3 Resource methods
	7.4.8.3.1 POST
	7.4.8.3.2 GET
	7.4.8.3.3 PUT
	7.4.8.3.4 PATCH
	7.4.8.3.5 DELETE

	7.4.9 Resource: Notification endpoint
	7.4.9.1 Description
	7.4.9.2 Resource definition
	7.4.9.3 Resource methods
	7.4.9.3.1 POST
	7.4.9.3.2 GET
	7.4.9.3.3 PUT
	7.4.9.3.4 PATCH
	7.4.9.3.5 DELETE

	7.5 Data Model
	7.5.1 Introduction
	7.5.2 Resource and notification data types
	7.5.2.1 Introduction
	7.5.2.2 Type: PmSubscriptionRequest
	7.5.2.3 Type: PmSubscription
	7.5.2.4 Type: ThresholdCrossedNotification
	7.5.2.5 Type: PerformanceInformationAvailableNotification
	7.5.2.6 Type: CreatePmJobRequest
	7.5.2.7 Type: PmJob
	7.5.2.8 Type: CreateThresholdRequest
	7.5.2.9 Type: Threshold
	7.5.2.10 Type: PerformanceReport

	7.5.3 Referenced structured data types
	7.5.3.1 Introduction
	7.5.3.2 Type: PmNotificationsFilter
	7.5.3.3 Type: PmJobCriteria
	7.5.3.4 Type: ThresholdCriteria

	7.5.4 Referenced simple data types and enumerations
	7.5.4.1 Introduction
	7.5.4.2 Simple data types
	7.5.4.3 Enumeration: CrossingDirectionType

	8 NS Fault Management interface
	8.1 Description
	8.1a API version
	8.2 Resource structure and methods
	8.3 Sequence diagrams (informative)
	8.3.1 Flow of the Get Alarm List operation
	8.3.2 Flow of acknowledging alarm
	8.3.3 Flow of managing subscriptions
	8.3.4 Flow of sending notifications

	8.4 Resources
	8.4.1 Introduction
	8.4.2 Resource: Alarms
	8.4.2.1 Description
	8.4.2.2 Resource definition
	8.4.2.3 Resource methods
	8.4.2.3.1 POST
	8.4.2.3.2 GET
	8.4.2.3.3 PUT
	8.4.2.3.4 PATCH
	8.4.2.3.5 DELETE

	8.4.3 Resource: Individual alarm
	8.4.3.1 Description
	8.4.3.2 Resource definition
	8.4.3.3 Resource methods
	8.4.3.3.1 POST
	8.4.3.3.2 GET
	8.4.3.3.3 PUT
	8.4.3.3.4 PATCH
	8.4.3.3.5 DELETE

	8.4.4 Resource: Subscriptions
	8.4.4.1 Description
	8.4.4.2 Resource definition
	8.4.4.3 Resource methods
	8.4.4.3.1 POST
	8.4.4.3.2 GET
	8.4.4.3.3 PUT
	8.4.4.3.4 PATCH
	8.4.4.3.5 DELETE

	8.4.5 Resource: Individual subscription
	8.4.5.1 Description
	8.4.5.2 Resource definition
	8.4.5.3 Resource methods
	8.4.5.3.1 POST
	8.4.5.3.2 GET
	8.4.5.3.3 PUT
	8.4.5.3.4 PATCH
	8.4.5.3.5 DELETE

	8.4.6 Resource: Notification endpoint
	8.4.6.1 Description
	8.4.6.2 Resource definition
	8.4.6.3 Resource methods
	8.4.6.3.1 POST
	8.4.6.3.2 GET
	8.4.6.3.3 PUT
	8.4.6.3.4 PATCH
	8.4.6.3.5 DELETE

	8.5 Data Model
	8.5.1 Introduction
	8.5.2 Resource and notification data types
	8.5.2.1 Introduction
	8.5.2.2 Type: FmSubscriptionRequest
	8.5.2.3 Type: FmSubscription
	8.5.2.4 Type: Alarm
	8.5.2.5 Type: AlarmNotification
	8.5.2.6 Type: AlarmClearedNotification
	8.5.2.7 Type: AlarmListRebuiltNotification
	8.5.2.8 Type: AlarmModifications

	8.5.3 Referenced structured data types
	8.5.3.1 Introduction
	8.5.3.2 Type: FmNotificationsFilter
	8.5.3.3 Type: FaultyResourceInfo
	8.5.3.4 Type: FaultyComponentInfo

	8.5.4 Referenced simple data types and enumerations
	8.5.4.1 Introduction
	8.5.4.2 Simple data types
	8.5.4.3 Enumeration: PerceivedSeverityType
	8.5.4.4 Enumeration: EventType
	8.5.4.5 Enumeration: FaultyResourceType

	9 VNF Package Management interface
	9.1 Description
	9.1a API version
	9.2 Resource structure and methods
	9.3 Sequence diagrams (informative)
	9.3.1 Flow of the creation of an individual VNF package resource
	9.3.2 Flow of the uploading of VNF package content
	9.3.3 Flow of querying/reading VNF package information
	9.3.4 Flow of reading the VNFD of an on-boarded VNF package
	9.3.5 Flow of updating information of a VNF package
	9.3.6 Flow of deleting a VNF package resource
	9.3.7 Flow of fetching an on-boarded VNF package
	9.3.8 Flow of fetching a VNF package artifact
	9.3.9 Flow of managing subscriptions
	9.3.10 Flow of sending notifications

	9.4 Resources
	9.4.1 Introduction
	9.4.2 Resource: VNF packages
	9.4.2.1 Description
	9.4.2.2 Resource definition
	9.4.2.3 Resource methods
	9.4.2.3.1 POST
	9.4.2.3.2 GET
	9.4.2.3.3 PUT
	9.4.2.3.4 PATCH
	9.4.2.3.5 DELETE

	9.4.3 Resource: Individual VNF package
	9.4.3.1 Description
	9.4.3.2 Resource definition
	9.4.3.3 Resource methods
	9.4.3.3.1 POST
	9.4.3.3.2 GET
	9.4.3.3.3 PUT
	9.4.3.3.4 PATCH
	9.4.3.3.5 DELETE

	9.4.4 Resource: VNFD in an individual VNF package
	9.4.4.1 Description
	9.4.4.2 Resource definition
	9.4.4.3 Resource methods
	9.4.4.3.1 POST
	9.4.4.3.2 GET
	9.4.4.3.3 PUT
	9.4.4.3.4 PATCH
	9.4.4.3.5 DELETE

	9.4.5 Resource: VNF package content
	9.4.5.1 Description
	9.4.5.2 Resource definition
	9.4.5.3 Resource methods
	9.4.5.3.1 POST
	9.4.5.3.2 GET
	9.4.5.3.3 PUT
	9.4.5.3.4 PATCH
	9.4.5.3.5 DELETE

	9.4.6 Resource: Upload VNF package from URI task
	9.4.6.1 Description
	9.4.6.2 Resource definition
	9.4.6.3 Resource methods
	9.4.6.3.1 POST
	9.4.6.3.2 GET
	9.4.6.3.3 PUT
	9.4.6.3.4 PATCH
	9.4.6.3.5 DELETE

	9.4.7 Resource: Individual VNF package artifact
	9.4.7.1 Description
	9.4.7.2 Resource definition
	9.4.7.3 Resource methods
	9.4.7.3.1 POST
	9.4.7.3.2 GET
	9.4.7.3.3 PUT
	9.4.7.3.4 PATCH
	9.4.7.3.5 DELETE

	9.4.8 Resource: Subscriptions
	9.4.8.1 Description
	9.4.8.2 Resource definition
	9.4.8.3 Resource methods
	9.4.8.3.1 POST
	9.4.8.3.2 GET
	9.4.8.3.3 PUT
	9.4.8.3.4 PATCH
	9.4.8.3.5 DELETE

	9.4.9 Resource: Individual subscription
	9.4.9.1 Description
	9.4.9.2 Resource definition
	9.4.9.3 Resource methods
	9.4.9.3.1 POST
	9.4.9.3.2 GET
	9.4.9.3.3 PUT
	9.4.9.3.4 PATCH
	9.4.9.3.5 DELETE

	9.4.10 Resource: Notification endpoint
	9.4.10.1 Description
	9.4.10.2 Resource definition
	9.4.10.3 Resource methods
	9.4.10.3.1 POST
	9.4.10.3.2 GET
	9.4.10.3.3 PUT
	9.4.10.3.4 PATCH
	9.4.10.3.5 DELETE

	9.5 Data model
	9.5.1 Introduction
	9.5.2 Resource and notification data types
	9.5.2.1 Introduction
	9.5.2.2 Type: CreateVnfPkgInfoRequest
	9.5.2.3 Type: VnfPkgInfoModifications
	9.5.2.4 Type: UploadVnfPackageFromUriRequest
	9.5.2.5 Type: VnfPkgInfo
	9.5.2.6 Type: PkgmSubscriptionRequest
	9.5.2.7 Type: PkgmSubscription
	9.5.2.8 Type: VnfPackageOnboardingNotification
	9.5.2.9 Type: VnfPackageChangeNotification

	9.5.3 Referenced structured data types
	9.5.3.1 Introduction
	9.5.3.2 Type: VnfPackageSoftwareImageInfo
	9.5.3.3 Type: VnfPackageArtifactInfo
	9.5.3.4 Type: PkgmNotificationsFilter
	9.5.3.5 Type: PkgmLinks
	9.5.3.6 Type: Checksum

	9.5.4 Referenced simple data types and enumerations
	9.5.4.1 Introduction
	9.5.4.2 Simple data types
	9.5.4.3 Enumeration: PackageOnboardingStateType
	9.5.4.4 Enumeration: PackageOperationalStateType
	9.5.4.5 Enumeration: PackageUsageStateType
	9.5.4.6 Enumeration: PackageChangeType

	Annex A (informative): Mapping operations to protocol elements
	A.1 Overview
	A.2 NSD Management interface
	A.3 NS Lifecycle Management interface
	A.4 NS Performance Management interface
	A.5 NS Fault Management interface
	A.6 VNF Package Management interface

	Annex B (informative): State models
	B.1 NSD state model
	B.1.1 Introduction
	B.1.2 State model

	B.2 VNF package state model
	B.2.1 Introduction
	B.2.2 State model

	Annex C (informative): Complementary material for API utilization
	Annex D (informative): Authors & contributors
	Annex E (informative): Change History
	History

