

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)

Network Functions Virtualisation (NFV) Release 2;
Security;

Access Token Specification for API Access

Disclaimer

The present document has been produced and approved by the Network Functions Virtualisation (NFV) ETSI Industry
Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)2

Reference
RGS/NFV-SEC022ed271

Keywords
API, authentication, authorization, NFV, security

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.

All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and

of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 5

Introduction .. 5

1 Scope .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 8

3 Definition of terms, symbols and abbreviations ... 8

3.1 Terms .. 8

3.2 Symbols .. 8

3.3 Abbreviations ... 8

4 Security requirements for API access tokens ... 9

4.1 Authorization for API access using OAuth2.0 defined in ETSI GS NFV-SOL 013 .. 9

4.1.0 Authorization for API access using OAuth2.0 .. 9

4.1.1 Mapping roles for Authorization for API access using OAuth2.0 .. 9

4.1.2 Authorization grant for Authorization for API access using OAuth2.0 .. 9

4.1.3 High level procedures for API access and notifications using OAuth2.0 ... 9

4.1.4 Access token for API access and notifications using OAuth2.0 ... 10

4.2 Threat Analysis .. 11

4.2.0 Access token defined in ETSI GS NFV-SOL 013 .. 11

4.2.1 Risk analysis and assessment .. 11

4.3 Security requirements ... 16

5 NFV Access Token Definition ... 18

5.1 Authorization Server discovery .. 18

5.1.1 Authorization Server discovery description .. 18

5.1.2 Manual Authorization Server Identifier discovery ... 19

5.1.3 Dynamic Authorization Server Identifier discovery ... 19

5.1.4 Authorization Server Configuration discovery ... 20

5.2 Registration process ... 22

5.2.1 Disposition .. 22

5.2.2 Registration process description ... 23

5.2.3 Client metadata ... 23

5.3 Token Request .. 25

5.4 NFV Access Token Format .. 26

5.5 NFV access token associated Metadata .. 27

6 Token Verification Process .. 29

Annex A (informative): Analysis of existing Access Token specifications ... 30

A.1 OpenStack® Keystone .. 30

A.1.0 Introduction .. 30

A.1.1 Authorization scopes .. 30

A.1.2 Token binding .. 30

A.1.3 Fernet token .. 30

A.1.4 Fernet keys ... 31

A.1.5 Advantage of Fernet tokens .. 31

A.2 OpenID® Connect ID-Token .. 31

A.2.0 Introduction .. 31

A.2.1 ID Token .. 32

A.2.2 Advantage of ID Token .. 32

A.3 IETF TLS-Based AccessToken Binding .. 33

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)4

A.3.0 Introduction .. 33

A.3.1 OAuth 2.0 Token Binding .. 33

A.3.1.1 Token Binding ID ... 33

A.3.1.2 Token Binding for ID Token .. 33

A.3.1.3 Advantage of Token Binding .. 34

A.3.1.4 Security considerations ... 34

A.3.1.4.1 Security Token Replay .. 34

A.3.1.4.2 Downgrade attacks .. 34

A.3.2 OAuth 2.0 Certificate Bound Access Tokens ... 34

A.3.2.0 Basic principle .. 34

A.3.2.1 Certificate bound access token using JWT ... 34

A.3.3 OAuth 2.0 Token Binding and OAuth2.0 Certificate Token binding comparison ... 35

A.4 3GPP authorization framework .. 35

A.4.0 OAuth 2.0 authorization in 3GPP ... 35

A.4.1 Authentication between Network Functions .. 35

A.4.2 Access Token Request .. 36

A.4.3 3GPP Access Token ... 36

A.4.4 Service access request .. 36

Annex B (informative): Synthesis on existing Access Token .. 37

Annex C (informative): IANA Registry Considerations ... 45

C.1 "Well-Known URIs" Registry .. 45

C.1.1 Introduction .. 45

C.1.2 Registry contents .. 45

C.2 JSON Web Token Claims registry ... 45

C.2.1 Introduction .. 45

C.2.2 Registry contents .. 45

C.3 OAuth Parameters registry ... 46

C.3.1 Introduction .. 46

C.3.2 Registry contents .. 46

C.4 OAuth Dynamic Client Registration Metadata registry ... 46

C.4.1 Introduction .. 46

C.4.2 Registry contents .. 46

C.5 OAuth Authorization Server Metadata registry ... 47

C.5.1 Introduction .. 47

C.5.2 Registry contents .. 47

Annex D (informative): Change History .. 48

History .. 49

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)5

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Network Functions
Virtualisation (NFV) .

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Introduction
The common aspects for RESTful NFV MANO APIs have been defined in ETSI GS NFV-SOL 013 [22].

The ETSI NFV-MANO APIs are only allowed to be accessed by authorized consumers.

The Authorization of API Request and Authorization of notifications sending has been defined in SOL group. One
solution for authorizing access is the use of OAuth with access token.

The aim of the present document is to define the Access Token for this access Authorization and associated procedure
for the verification of the Access Token, ensuring security and interoperability. The present document results in a NFV
profile of the OAuth2.0 for the NFV-MANO API Request and notification sending Authorization.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)6

1 Scope
The present document defines the access tokens and related metadata for RESTful protocols and data model for ETSI
NFV management and orchestration (MANO) interfaces. It defines also the process for the token verification by the
API Producer.

For this aim, the present document:

• Analyses the security threat arising from the misuse of the access token and defines the security requirements
associated to access token.

• Analyses existing specifications related to access token for API access and their compliancy with the
requirements defined.

• Defines the token request and generation profile, the token format and associated metadata considering the
result of existing access token specifications analysis.

• Defines the token verification procedures for the API Producer.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI GS NFV 003: "Network Functions Virtualisation (NFV); Terminology for Main Concepts in
NFV".

[2] ETSI GS NFV-SEC 002: "Network Functions Virtualisation (NFV); NFV Security; Cataloguing
security features in management software".

[3] ETSI GS NFV-IFA 007: "Network Functions Virtualisation (NFV) Release 2; Management and
Orchestration; Or-Vnfm reference point - Interface and Information Model Specification".

[4] ETSI GS NFV-IFA 013: "Network Functions Virtualisation (NFV) Release 2; Management and
Orchestration; Os-Ma-Nfvo reference point - Interface and Information Model Specification".

[5] ETSI GS NFV-IFA 008: "Network Functions Virtualisation (NFV) Release 2; Management and
Orchestration; Ve-Vnfm reference point - Interface and Information Model Specification".

[6] IETF RFC 6749: "The OAuth 2.0 Authorization Framework".

NOTE: Available at https://tools.ietf.org/html/rfc6749.

[7] IETF RFC 6750: "The OAuth 2.0 Authorization Framework: Bearer Token Usage".

NOTE: Available at https://tools.ietf.org/html/rfc6750.

[8] IETF RFC 7519: "JSON Web Token (JWT)".

NOTE: Available at https://tools.ietf.org/html/rfc7519.

https://docbox.etsi.org/Reference/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7519

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)7

[9] IETF RFC 3339: "Date and Time on the Internet: Timestamps".

NOTE: Available at https://tools.ietf.org/html/rfc3339.

[10] IETF RFC 7515: "JSON Web Signature (JWS)".

NOTE: Available at https://tools.ietf.org/html/rfc7515.

[11] IETF RFC 7516: "JSON Web Encryption (JWE)".

NOTE: Available at https://tools.ietf.org/html/rfc7516.

[12] NIST Special Publication 800-90B: "Recommendation for the Entropy Sources Used for Random
Bit Generation", January 2018.

NOTE: Available at https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-90b.pdf.

[13] IETF RFC 8414: "OAuth 2.0 Authorization Server Metadata".

NOTE: Available at https://tools.ietf.org/html/rfc8414.

[14] IETF RFC 7033: "WebFinger".

NOTE: Available at https://tools.ietf.org/html/rfc7033.

[15] ETSI GS NFV-IFA 011: "Network Functions Virtualisation (NFV) Release 2; Management and
Orchestration; VNF Descriptor and Packaging Specification".

[16] IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

NOTE: Available at https://tools.ietf.org/html/rfc3986.

[17] IETF RFC 8615: "Well-Known Uniform Resource Identifiers (URIs)".

NOTE: Available at https://www.rfc-editor.org/info/rfc8615.

[18] IETF RFC 7591: "OAuth 2.0 Dynamic Client Registration Protocol".

NOTE: Available at https://tools.ietf.org/html/rfc7591.

[19] IETF RFC 7517: "JSON Web Key (JWK)".

NOTE: Available at https://tools.ietf.org/html/rfc7517.

[20] IETF RFC 7518: "JSON Web Algorithms (JWA)".

NOTE: Available at https://tools.ietf.org/html/rfc7518.

[21] IETF RFC 7662: "OAuth 2.0 Token Introspection".

NOTE: Available at https://tools.ietf.org/html/rfc7662.

[22] ETSI GS NFV-SOL 013: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data
Models; Specification of common aspects for RESTful NFV MANO APIs".

[23] draft-ietf-oauth-mtls-17: "OAuth 2.0 Mutual TLS Client Authentication and Certificate-Bound
Access Tokens". Work in progress.

NOTE: Available at https://tools.ietf.org/wg/oauth/draft-ietf-oauth-mtls/.

[24] ETSI GS NFV-IFA 005: "Network Functions Virtualisation (NFV) Release 2; Management and
Orchestration; Or-Vi reference point - Interface and Information Model Specification".

[25] ETSI GS NFV-IFA 006: "Network Functions Virtualisation (NFV) Release 2; Management and
Orchestration; Vi-Vnfm reference point - Interface and Information Model Specification".

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-90b.pdf
https://tools.ietf.org/html/rfc8414
https://tools.ietf.org/html/rfc7033
https://tools.ietf.org/html/rfc3986
https://www.rfc-editor.org/info/rfc8615
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/wg/oauth/draft-ietf-oauth-mtls/

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)8

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] https://docs.openstack.org/keystone/latest/admin/tokens.html.

[i.2] https://openid.net/specs/openid-connect-core-1_0.html#IDToken.

[i.3] IETF RFC 8471: "The Token Binding Protocol Version 1.0".

NOTE: Available at https://tools.ietf.org/html/rfc8471.

[i.4] IETF RFC 6819: "OAuth 2.0 Threat Model and Security Considerations".

NOTE: Available at https://tools.ietf.org/html/rfc6819.

[i.5] ETSI GS NFV-SEC 006: "Network Functions Virtualisation (NFV); Security Guide; Report on
Security Aspects and Regulatory Concerns".

[i.6] ETSI TS 133 501: "5G; Security architecture and procedures for 5G System (3GPP TS 33.501)".

[i.7] draft-ietf-oauth-token-binding-08: "OAuth 2.0 Token Binding", Work in progress.

NOTE: Available at https://tools.ietf.org/pdf/draft-ietf-oauth-token-binding-08.pdf.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the terms given in ETSI GS NFV 003 [1] apply.

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the abbreviations given in ETSI GS NFV 003 [1] and the following apply:

3GPP 3rd Generation Partnership Project
HSM Hardware Security Module
JRD JSON Resource Descriptor
JSON JavaScript Object Notation
JWE JSON Web Encryption
JWS JSON Web Signature
JWT JSON Web Token
MAC Message Authentication Code
MTLS Mutual TLS
NRF Network Resource Function
OTP One-Time Password
PKI Public Key Infrastructure

https://docs.openstack.org/keystone/latest/admin/tokens.html
https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://tools.ietf.org/html/rfc8471
https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/pdf/draft-ietf-oauth-token-binding-08.pdf

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)9

REST REpresentational State Transfer
SAML Security Assertion Markup Language
TLS Transport Layer Security
URI Uniform Resource Identifier
URL Uniform Resource Locator

4 Security requirements for API access tokens

4.1 Authorization for API access using OAuth2.0 defined in
ETSI GS NFV-SOL 013

4.1.0 Authorization for API access using OAuth2.0

The requirements on interfaces supported by the reference point of MANO's entities have been defined in ETSI
GS NFV-IFA 005 [24], ETSI GS NFV-IFA 006 [25], ETSI GS NFV-IFA 007 [3], ETSI GS NFV-IFA 013 [4] and ETSI
GS NFV-IFA 008 [5].

One of these requirements concerns authentication and authorization of the API consumer for all operations on
interfaces supported by the reference point.

To fulfil this requirement for the NFV-MANO reference points, authorization of API requests and notifications has
been defined in ETSI GS NFV-SOL 013 [22] specification.

One solution defined to handle these authorizations for API request and notification is the use of OAuth 2.0 protocol as
defined by IETF RFC 6749 [6].

4.1.1 Mapping roles for Authorization for API access using OAuth2.0

For API calls, the producer functional block of an API in NFV terms corresponds to the "resource server", and the
consumer functional block of an API corresponds to the "client" as defined by IETF RFC 6749 [6]. For sending a
notification, these roles are reversed: The producer (notification sender) corresponds to the "client", and the consumer
(notification receiver) corresponds to the "resource server".

Before invoking an HTTP method on a REST resource provided by a resource server, a consumer functional block
(referred to as "client" from now on) first obtains authorization from another functional block fulfilling the role of the
"authorization server".

4.1.2 Authorization grant for Authorization for API access using OAuth2.0

Authorization grant, which is a credential representing the resource owner's authorization to access the API resources is
used by the client to obtain an access token from the authorization server as defined by IETF RFC 6749 [6]. OAuth 2.0
defined 4 types of authorization grant (authorization code, implicit, resource owner password credentials, and client
credentials).

For the reference points listed in clause 4.1, access to API is performed by a machine which is a non-interactive Client,
acting on its own behalf and being the Resource owner. Example of such client is the EM requesting the creation of an
instance of its related VNF to the corresponding VNFM; this EM is the resource owner for the management resource of
the VNF. The authorization grant suitable to this case is the client credentials authorization grant. This is the
authorization grant type that has been selected for the NFV-MANO interfaces and defined in ETSI
GS NFV-SOL 013 [22].

4.1.3 High level procedures for API access and notifications using
OAuth2.0

The roles and exchanges are shown in figure 4.1.3-1 in case of API calls and in figure 4.1.3-2 for sending a notification.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)10

API consumer
(Client)

Authorization
Server

API Producer
(Resource

Server)

1

2

3

Figure 4.1.3-1: OAuth 2.0 roles in case of API calls

Notification
sender (Client)

Authorization
Server

Notification
receiver

(Resource
Server)

1

2

3

Figure 4.1.3-2: OAuth 2.0 roles in case of sending notifications

NOTE: The numbered steps below correspond to the steps of figure 4.1.3-1.

The procedure for API access is as follows:

Step 1. Before invoking the RESTful HTTP based API on the API producer, the API consumer
authenticates with an Authorization Server by presenting its credentials consisting of its Client Id
and Client Secret. It is assumed that authorization-related configuration parameters such as the
client credentials are pre-populated in the API consumer together with other information such as
the address of the token endpoint exposed by the authorization server.

Step 2. The Authorization server after authentication and validation of the API consumer returns an access
token.

Step 3. The API consumer uses the access token in the API Request.

Same procedure is used for the notifications case shown in figure 4.1.3-2.

4.1.4 Access token for API access and notifications using OAuth2.0

An access token represents a particular access right (defining the particular set of protected resources to access in a
particular manner) with a defined duration. The access token is usually used as a Bearer credential and transmitted in an
HTTP Authorization header to the API. The token may denote an identifier used to retrieve the authorization
information or may self-contain the authorization information in a verifiable manner (i.e. a token string consisting of
some data and a signature). Access tokens can have different formats, structures, and methods of utilization
(e.g. cryptographic properties) based on the resource server security requirements.

IETF has defined two aspects of access token use:

1) Bearer token as defined by IETF RFC 6750 [7] focuses on the transmission of the access token as an opaque
string and makes no assumption about the structure of the token.

2) JSON Web Token (JWT) as defined by IETF RFC 7519 [8] focuses on the structure of the token, and allows it
to be encrypted (JWE) or signed (JWS).

ETSI GS NFV-SOL 013 [22] specifies the transmission aspects of the token as a bearer token, according to the
definitions by IETF RFC 6750 [7].

The present document analyses the different access token used by different standardization and open source
organizations and the security threats around this access token.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)11

4.2 Threat Analysis

4.2.0 Access token defined in ETSI GS NFV-SOL 013

The access token defined by ETSI GS NFV-SOL 013 [22] to authorize access to the API of NFV MANO interfaces is
the bearer token as defined in IETF RFC 6750 [7].

The bearer token is defined in IETF RFC 6750 [7] as follows:

Bearer Token: A security token with the property that any party in possession of the token (a "bearer") can use the
token in any way that any other party in possession of it can. Using a bearer token does not require a bearer to prove
possession of cryptographic key material (proof-of-possession).

The Authorization grant type defined by ETSI GS NFV-SOL 013 [22] is the client credentials type as defined in IETF
RFC 6749 [6].

4.2.1 Risk analysis and assessment

This threat analysis takes as basis the OAuth 2.0 Threat Model as presented in IETF RFC 6819 [i.4]. This risk analysis
in table 4.2.1-1 uses the format found in the annex A of ETSI GS NFV-SEC 006 [i.5].

Table 4.2.1-1: Risk analysis and assessment

A Security Environment
a.1 Assumptions
a.1.1 It is assumed that the attacker has access to the communication between the

client (API consumer) and the authorization server, and between the client
(API consumer) and the resource server (API producer)

a.1.2 An attacker has unlimited resources to mount an attack
a.1.3 Two of the three parties involved in the OAuth protocol may collude to mount

an attack against the 3rd party

a.2 Assets
a.2.1 Access token

a.2.2 Refresh Token
a.2.3 Protected Resources
a.2.4 Client id, client credentials

a.3 Threat agents
a.3.1 Malicious authorization server: this malicious authorization server delivers

bogus token and get access to client credentials or refresh token (and then
obtains access token with the refresh token by counterfeiting the client)

Threats:
a.4.2.2.
a.4.2.3
a.4.2.4
a.4.3.3
a.4.3.6

a.3.2 Malicious client: this malicious client may modify the content of the token Threats:
a.4.1.2

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)12

a.3.3 Attacker of client: This attack could be through malicious software within the
client itself

Threats:
a.4.1.7
a.4.1.8
a.4.1.2
a.4.1.3
a.4.1.4
a.4.1.5
a.4.1.9
a.4.2.1
a.4.2.3
a.4.2.4
a.4.3.1
a.4.3.2
a.4.4.3

a.3.4 Malicious resource server: this malicious resource server gain access to the
access token sent by the client by counterfeiting the resource server

Threats:
a.4.1.11
a.4.1.2
a.4.1.3
a.4.1.4
a.4.1.5
a.4.1.9
a.4.4.3
a.4.4.4

a.3.5 Malicious entity acting as a Man in the Middle on the communication between
Authorization server and client

Threats:
a.4.1.1
a.4.1.2
a.4.1.3
a.4.1.4
a.4.1.5
a.4.1.9
a.4.3.4
a.4.3.6
a.4.4.1
a.4.4.3

a.3.6 Malicious entity acting as a Man in the Middle on the communication between
the Client and the resource server

Threats:
a.1.4.10
a.4.1.2
a.4.1.3
a.4.1.4
a.4.1.5
a.4.1.9
a.4.4.1
a.4.4.2
a.4.4.3

a.3.7 Attacker of the Authorization server: This attack could be through malicious
software within the Authorization server itself

Threats:
a.4.1.6
a.4.1.2
a.4.1.3
a.4.1.4
a.4.1.5
a.4.1.9
a.4.3.5
a.4.4.3

a.4 Threats
a.4.1 Threats on access token
a.4.1.1 Token Interception or token eavesdropping in transit from authorization server

and client
Mitigation by:
b.1.3
b.1.4

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)13

a.4.1.2 Token Manipulation Mitigation by:
b.1.1
b.1.18
b.1.22

a.4.1.3 Token disclosure - misuse Mitigation by:
b.1.2
b.1.3
b.1.4
b.1.10
b.1.12
b.1.13
b.1.14
b.1.21
b.1.24

a.4.1.4 Token redirect b.1.3
b.1.4
b.1.10
b.1.12
b.1.13
b.1.14
b.1.21
b.1.24

a.4.1.5 Token replay b.1.3
b.1.4
b.1.10
b.1.12
b.1.13
b.1.14
b.1.21
b.1.24

a.4.1.6 Obtaining Access tokens from authorization server database b.1.4
b.1.10
b.1.12
b.1.13
b.1.14
b.1.21
b.1.24

a.4.1.7 Attacker of client obtains access tokens from the storage device b.1.25
b.1.9
b.1.10
b.1.12
b.1.14

a.4.1.8 Redirection on client to malicious server: Attacker of client takes the control of
the client and get access to token and authorization code

b.1.25
b.1.7
b.1.9
b.1.10
b.1.12
b.1.14

a.4.1.9 Guessing the access token b.1.4
b.1.10
b.1.12
b.1.13
b.1.14
b.1.17
b.1.21
b.1.24

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)14

a.4.1.10 Token Interception or token eavesdropping in the request sent from client to
resource server

b.1.4
b.1.25
b.1.10
b.1.12
b.1.13
b.1.14
b.1.16
b.1.21
b.1.24

a.4.1.11 A malicious resource server gain access to a valid access token sent by a
legitimate client

b.1.4
b.1.25
b.1.10
b.1.11
b.1.12
b.1.13
b.1.16
b.1.19
b.1.20
b.1.21
b.1.23
b.1.24

a.4.2. Threats on refresh token
a.4.2.1 Attacker of client obtains refresh token stored in client b.1.6

b.1.7
b.1.9

a.4.2.2 Refresh token phishing by counterfeiting the authorization server b.1.4
b.1.5
b.1.6
b.1.8

a.4.2.3 Refresh token replay b.1.4
b.1.5
b.1.6
b.1.8

a.4.2.4 Guessing the refresh token b.1.26

a.4.3. Threats on client credentials
a.4.3.1 Attacker obtains client secrets from source code b.1.9
a.4.3.2 Attacker obtains client secrets from a client installation b.1.9
a.4.3.3 malicious authorization server get access to client credentials b.1.15
a.4.3.4 Disclosure of client credentials during client authentication process or token

requests
b.1.27
b.1.28

a.4.3.5 Obtaining client secrets from authorization server database b.1.29
a.4.3.6 Guessing the client credentials b.1.30

a.4.4. Threats on protected resources
a.4.4.1 An attacker eavesdrops Access tokens on transport and gain access to the

protected resources
b.1.13
b.1.21

a.4.4.2 Replay of authorized resource server requests b.1.16
a.4.4.3 Gain access to the protected resources by guessing the access tokens b.1.17
a.4.4.4 Malicious resource server gain access to a valid access token and uses it to

gain access to protected resources
b.1.19
b.1.13
b.1.21
b.1.23

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)15

B Security Objectives
b.1 Security objectives for the asset
b.1.1 Integrity protection of the token using digital signature or Message

Authentication Code (MAC)

b.1.2 Confidentiality protection
b.1.3 Access tokens should not be sent in clear over insecure channel. Use Secure

transmission as TLS

b.1.4 Binding of the token to ID of authorized party
b.1.5 The authorization server should validate the client id associated with the

refresh token

b.1.6 Revocation of refresh tokens
b.1.7 Revocation of client secrets
b.1.8 Refresh token rotation
b.1.9 Store secrets in secure storage
b.1.10 Limit token scope
b.1.11 Limit the token to a resource server
b.1.12 Limit lifetime of the access token, short access token duration
b.1.13 Binding of access token to client id, and client prove legitimate ownership of

the token to the resource server

b.1.14 Allow one-time access token usage
b.1.15 Verification of authorization server's authenticity
b.1.16 Resource server uses transport security measures to avoid replay attacks

(TLS) or uses signed requests with nonces and timestamps

b.1.17 Access token should have a reasonable level of entropy making the guessing
of the token infeasible

b.1.18 Assertion token should be protected by a digital signature
b.1.19 Authentication of the resource server by the client
b.1.20 Bind the access token to the endpoint URL of the legitimate resource server
b.1.21 Binding of the access token with the client and authenticate the client with

resource server requests (signature)

b.1.22 The token contents should be protected by a digital signature
b.1.23 The client should authenticate the resource server before sending the access

token

b.1.24 Authenticate the client with the resource server requests, and verification with
the binding of the access token with the client id

b.1.25 Revocation of access token
b.1.26 Refresh token should have a reasonable level of entropy
b.1.27 The client credentials and client ID shall not be sent in clear during

authentication process

b.1.28 The client credentials and client ID shall not be sent in clear in the token
request

b.1.29 The authorization server database shall be a tamper resistant storage such as
a HSM

b.1.30 The client credentials should have a reasonable level of entropy making the
guessing of these credentials infeasible

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)16

4.3 Security requirements
From the risk analysis and assessment of clause 4.2.1, the security requirements for authentication and protocols are
defined and listed in table 4.3-1.

Table 4.3-1: Requirements for authentication and protocols

Requirement Number Requirement Description Reference Security threat
(see clause 4.2)

Remarks

Authentication and protocols
Auth-Prot_001 The confidentiality and data integrity of all

messages shall be ensured, e.g. by using a
transport-layer mechanism, such as TLS, on
each interface.

a.4.1.3; a.4.1.5; a.4.2.3;
a.4.3.4; a.4.4.1; a.4.4.2

Auth-Prot_002 The client and authorization servers shall
mutually authenticate.

a.4.2.2; a.4.3.3;

Auth-Prot_003 The client shall authenticate the resource
server.

a.4.4.4

Auth-Prot_004 Before accepting the token as valid, the
resource server shall authenticate the
originator of the request as the legitimate
owner of the token.

a.4.1.3; a.4.1.4; a.4.1.5;
a.4.4.3; a.4.4.2; a.4.4.1

Auth-Prot_005 The authorization server database used to
authenticate the client and store associated
client credentials, access tokens and refresh
tokens shall be stored in a tamper resistant
location (e.g. HSM).

a.4.3.5

From the risk analysis and assessment of clause 4.2.1, the security requirements for client credentials are defined and
listed in table 4.3-2.

Table 4.3-2: Requirements for client credentials

Requirement Number Requirement Description Reference Security threat
(see clause 4.2)

Remarks

Client Credentials
Client-Cred_001 The client credentials shall be stored in a

secure and tamper resistant location, or
stored encrypted with the key protected in a
tamper resistant location.

a.4.3.1

Client-Cred_002 The client credentials shall be generated
with a minimum of 128 bits of entropy, using
best practices for entropy sources [12], in
order to mitigate the risk of guessing attacks.

a.4.3.6

Client-Cred_003 The client credentials shall not be included in
the source code and software packages.

a.4.3.1

Client-Cred_004 The client credentials shall be installed in the
client in a secure way, eliminating any
possibility of gaining access to these
credentials during installation.

a.4.3.2

Client-Cred_005 It shall be possible for the authorization
server to revoke the client credentials.

a.4.3.1; a.4.3.2; a.4.3.3; a.4.3.4;
a.4.3.5; a.4.3.6

From the risk analysis and assessment of clause 4.2.1, the security requirements for access token are defined and listed
in table 4.3-3.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)17

Table 4.3-3: Requirements for access token

Requirement
Number

Requirement Description Reference Security
threat

(see clause 4.2)

Remarks

Access token
Acc-Token_001 The access token shall be

stored in a secure and tamper
resistant location or stored
encrypted with the key
protected in a tamper resistant
location.

a.4.1.6; a.1.4.7

Acc-Token_002 The access token shall be
generated with a minimum of
128 bits of entropy, using best
practices for entropy sources
[12], in order to mitigate the risk
of guessing attacks.

a.4.1.9; a.4.4.3

Acc-Token_003 Access tokens shall have
policy-defined limited scope.

a.4.1.1; a.4.1.3; a.4.1.4;
a.4.1.5; a.4.1.6; a.4.1.7;
a.4.1.8

Acc-Token_004 Access tokens shall have
limited lifetimes.

a.4.1.1; a.4.1.3; a.4.1.4;
a.4.1.5; a.4.1.6; a.4.1.7;
a.4.1.8; a.4.1.9; a.4.4.3

Acc-Token_005 Access tokens shall be
restricted to a particular number
of operations.

a.4.1.1, a.4.1.3, a.4.1.4,
a.4.1.5; a.4.1.6; a.4.1.7;
a.4.1.8; a.4.1.9; a.4.4.1;
a.4.4.2; a.4.4.4; a.4.4.3

Acc-Token_006 It shall be possible to bind the
access token to the intended
resource server.

a.4.4.4

Acc-Token_007 It shall be possible to bind the
token to the endpoint URL
(token audience) used to obtain
the token.

a.4.4.4

Acc-Token_008 It shall be possible to limit the
scope of the token and
associate it to particular
resource.

a.4.4.1; a.4.4.2; a.4.4.3;
a.4.4.4

Acc-Token_009 Tokens shall be bound to the
client ID.

a.4.1.1; a.4.1.3; a.4.1.4;
a.4.1.5; a.4.1.6; a.4.1.7;
a.4.1.8; a.4.1.9

Needs an authentication of the clients
(pre-registered client-id and secret on
authorization server, or secrets in the
token as part of the encrypted
content of the token).

Acc-Token_010 The access token shall be
signed to detect manipulation of
the token or production of fake
tokens.

a.4.1.2

Acc-Token_011 It shall be possible to encrypt
content of the access token.

a.4.1.2; a.4.1.9

Acc-Token_012 The access token should be
defined in a standard format
(SAML or JWT).

Acc-Token_013 It shall be possible to revoke an
access token.

a.4.4.1; a.4.4.2; a.4.4.3;
a.4.4.4

e.g. In case of suspected
compromised client.

Acc-Token_014 Unbound tokens shall not be
used under any circumstance.

a.4.4.1; a.4.1.2; a.4.1.3;
a.4.1.4; a.4.1.5; a.4.1.6;
a.4.1.7; a.4.1.8; a.4.1.9;
a.4.1.10; a.4.1.11

Acc-Token 015 If a scheme to bind access
tokens to the underlying
transport layer relies on using
non-standard extensions, and
those extensions are not
available, the system shall fail
securely, preventing a bid-down
attack (i.e. the resource server
shall deny access).

a.4.1.10; a.4.1.11

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)18

From the risk analysis and assessment of clause 4.2.1, the security requirements for refresh token are defined and listed
in table 4.3-4.

Table 4.3-4: Requirements for refresh token

Requirement
Number

Requirement Description Reference Security
threat (see clause 4.2)

Remarks

Refresh token
Ref-Token_001 The refresh token shall be

stored in a secure and
tamper resistant location or
stored encrypted with the key
protected in a tamper
resistant location.

a.4.2.1

Ref-Token_002 The refresh token shall be
generated with a minimum of
128 bits of entropy, using
best practices for entropy
sources [12], in order to
mitigate the risk of guessing
attacks.

a.4.2.4

Ref-Token_003 Refresh tokens shall have
policy-defined limited scope.

a.4.2.1; a.4.2.2; a.4.2.3

Ref-Token_004 Refresh tokens shall have
limited lifetimes.

a.4.2.1; a.4.2.2; a.4.2.3;
a.4.2.4

Ref-Token_005 Refresh tokens shall be
restricted to a particular
number of operations.

a.4.2.1; a.4.2.2; a.4.2.3;
a.4.2.4

Ref-Token_006 The refresh token shall be
bound to the client ID.

a.4.2.1; a.4.2.2; a.4.2.3;
a.4.2.4

Needs an authentication of the clients
(pre-registered client-id and secret on
authorization server, or secrets in the
token as part of the encrypted content of
the token).

Ref-Token_007 It shall be possible to rotate
refresh tokens by changing
the value of the refresh token
with every refresh request.

a.4.2.1; a.4.2.2; a.4.2.3;
a.4.2.4

Ref-Token_008 It shall be possible to revoke
a refresh token.

a.4.2.1; a.4.2.2; a.4.2.3;
a.4.2.4

In case of suspected compromised client.

5 NFV Access Token Definition

5.1 Authorization Server discovery

5.1.1 Authorization Server discovery description

As described in clause 8.2 of ETSI GS NFV-SOL 013 [22], before invoking an HTTP method on a REST resource
provided by a resource server, a functional block (referred to as "client") first obtains authorization from another
functional block fulfilling the role of the "authorization server".

The first step for a consumer of an API is then to connect to the appropriate authorization server managing the
authorization for the corresponding API producer to obtain the access token.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)19

The API consumer needs to know which authorization server is relevant for the authorization request and needs to know
the address of the token endpoint exposed by this Authorization Server and its associated public key to establish a
secure channel with this endpoint. For this purpose an Authorization Server discovery is processed by the API
consumer as described in IETF RFC 8414 [13]. During this process the API consumer retrieves the metadata for the
authorization server from a well-known location as a JSON document, which declares its endpoint locations
(e.g. authorization endpoint, token endpoint, registration endpoint) and authorization server capabilities, e.g. its
capability to support MTLS as described in [23]. This well-known location is based on the Authorization Server
Identifier as defined in clause 5.1.4. The Authorization Server Identifier is discovered as described below.

The API consumer may either discover the Authorization Server Identifier (Issuer Identifier) using a pre-configuration
or may dynamically discover it through the use of WebFinger IETF RFC 7033 [14] as described in IETF
RFC 8414 [13].

The first approach is typically used when the Authorization server for the API Consumer is well-known and static. The
Identifier of the Authorization Server to access the VNFM for a VNFI/VNFCI is static but usually not known at the
VNF packaging time. A configuration of the authorization server identifier in the VNFI/VNFCI may be done during the
instantiation process and any time after the instantiation via configuration.

For the case where multiple instances of MANO entities are dynamically deployed, a dynamic discovery of the
authorization server identifier might be better fit to purpose.

5.1.2 Manual Authorization Server Identifier discovery

For this manual Authorization Server Identifier discovery, the Issuer Identifier is statically configured in the API
Consumer.

If the API Consumer is a VNF instance, the following mechanism can be used to provide a VNF instance with an
authorization server identifier associated to the VNFM, to access VNFM APIs:

• A VNF configurable property as described in clause 5.8 of ETSI GS NFV-IFA 011 [15] is declared in the
VNFD. The value of this VNF configurable property is provided by the VNFM to the VNF instance during the
VNF instantiation. The value can be modified any time after instantiation.

If the API Consumer is a MANO entity, the Authorization Server Identifier is statically configured in this MANO entity
during the deployment process, by means out of the scope of the present document.

If the API Consumer is a dynamically deployed VNF-specific EM, the Authorization Server Identifier is statically
configured in this entity during the deployment process, by means out of the scope of the present version of the present
document.

5.1.3 Dynamic Authorization Server Identifier discovery

NOTE: It is out of scope of the present document how trust with the Authorization Server for dynamic discovery
is established.

The dynamic discovery of Authorization Server is done through the use of WebFinger IETF RFC 7033 [14] as
described in IETF RFC 8414 [13]. Dynamic discovery of Authorization server is optional. If the API consumer knows
the API Producer's Authorization Server Identifier through an out-of-band mechanism, it can skip this step.

The WebFinger request is an HTTPS request to WebFinger resource which is a "well-known" URI using the HTTPS
scheme. The path of a WebFinger URI is:

"/.well-known/webfinger"

The request includes the following parameters:

• Resource: Identifier for the API producer that is the subject of the discovery request.

• Host: Server where a WebFinger service is hosted.

• Rel: URI identifying the type of service whose location is being requested.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)20

The following "rel" value for the discovery of the OAuth Authorization Server Identifier in Webfinger is defined:

Rel Type URI
ETSI NFV OAuth Authorization Server Identifier urn:etsi:nfv:webfinger:rel:api-oauth-server

In case of VNF discovering the OAuth Authorization server for an API exposed by VNFM that manages it, the
"resource" value is the URI prefix of the API exposed by the VNFM (i.e. the sequence of
{apiRoot}/{apiName}/{apiMajorVersion} as defined in clause 4.1 of ETSI GS NFV-SOL 013 [22]) and the "host"
value is the server where the WebFinger service is hosted. The API URI prefixes and the host which provides the
Webfinger resource are provisioned into the VNF instance by the VNFM during the VNF instantiation. Clause 5.8 of
ETSI GS NFV-IFA 011 [15] defines VNF configurable properties for this purpose.

The WebFinger resource returns a JSON Resource Descriptor (JRD) as defined in IETF RFC 7033 [14] to convey
information about the Authorization Server controlling the access to the resources provided by the API producer,
containing the Authorization Server Identifier. The Identifier is in form of URI as defined in IETF RFC 3986 [16] with
a scheme component that shall be HTTPS, a host component and optionally, port and path components and no query or
fragment components.

The OAuth Authorization Server Identifier is included in the "links" array as the value of the "href" corresponding to
the link's relation type "rel": urn:etsi:nfv:webfinger:rel:api-oauth-server as described in IETF RFC 7033 [14].

EXAMPLE: Discovery of the Authorization Server for the VNFM managing a specific VNF.

In this example the API prefix of the VNF LCM API produced by the VNFM is given in form of URL Syntax:

Resource: https://vnfm.example.com/someprefix/vnflcm/v1

Rel: urn:etsi:nfv:webfinger:rel:api-oauth-server

Host: webfinger.example.com

GET /.well-known/webfinger
 ?resource=https%3A%2F%2Fvnfm.example.com%2Fsomeprefix%2Fvnflcm2F%v1
&rel=urn%3Aetsi%3Anfv%3Awebfinger%3Arel%3Aapi-oauth-server
 HTTP/1.1
 Host: webfinger.example.com

 HTTP/1.1 200 OK
 Content-Type: application/jrd+json

 {
 "subject": "https://vnfm.example.com/someprefix/vnflcm/v1",
 "links":
 [
 {
 "rel": "urn:etsi:nfv:webfinger:rel:api-oauth-server",
 "href": "https://oauth.server.example.com"
 }
]
 }

 }
]
 }

5.1.4 Authorization Server Configuration discovery

Using the Authorization Server Identifier discovered as described in clauses 5.1.2 or 5.1.3, the Authorization Server
configuration information can be retrieved.

An Authorization Server Configuration Document (JSON document) shall be queried using an HTTP GET request via
HTTPS to the URI formed by inserting the well-known URI string defined for ETSI NFV "/.well-known/nfv-oauth-
server-configuration" into the URI that represents the authorization server identifier after the "host" component and
optional "port" component and before the optional "path" component, as defined in clause 3 of IETF RFC 8414 [13].

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)21

EXAMPLE 1: Get request in case the Authorization Server Identifier is https://example.com:

 GET /.well-known/ nfv-oauth-server-configuration HTTP/1.1
 Host: example.com

EXAMPLE 2: Get request in case the Authorization Server Identifier contains a path component
https://example.com/issuer1:

GET /.well-known/ nfv-oauth-server-configuration/issuer1 HTTP/1.1
 Host: example.com

The related HTTP response shall contain a payload body formatted as a JSON document compliant with the provisions
defined in table 5.1.4-1 of the present document and shall contain a Content-Type header set to "application/json".

The following metadata in table 5.1.4-1 are defined for this JSON document to describe the Authorization Server
configuration:

Table 5.1.4-1: Authorization server configuration JSON metadata

Claim Qualifier Cardinality Content Description
issuer M 1 String URL using the https scheme with no query

or fragment component that the
Authorization Server asserts as its Issuer
Identifier. If dynamic discovery of
Authorization Server as described in
clause 5.1.3 is used, this value shall be
identical to the issuer value returned by
WebFinger. This also shall be identical to
the iss Claim value in NFV Tokens issued
from this Issuer.

authorization_endpoint O 0..1 String URL of the OAuth 2.0 Authorization
Endpoint.

token_endpoint M 1 String URL of the OAuth 2.0 Token Endpoint.
jwks_uri M 1 String URL of the JSON Web Key Set as defined

in IETF RFC 7517 [19].
registration_endpoint O 0..1 String URL of the Dynamic Client Registration

Endpoint.
scopes_supported O 0..N String JSON array containing a list of the OAuth

2.0 scope values as defined in IETF
RFC 6749 [6] that this server supports.

response_types_supported M 1..N String JSON array containing a list of the OAuth
2.0 response_type values that this server
supports. NFV Authorization Server shall
support the "token nfv_token" Response
Type values.

grant_types_supported M 1..N String JSON array containing a list of the OAuth
2.0 Grant Type values that this server
supports. NFV Authorization Server shall
support the "client_credentials" and may
support other Grant Types.

nfv_token_signing_alg_val
ues_supported

M 1..N String JSON array containing a list of the JWS
signing algorithms (alg values as defined
in IETF RFC 7515 [10]) supported by the
server for the NFV access token to encode
the Claims in a JWT. The "RS256" alg
value shall always be included. The value
"none" shall not be used.

nfv_token_encryption_alg_
values_supported

O 0..N String JSON array containing a list of the JWE
encryption algorithms (alg values)
supported by the server for the NFV
access token to encode the Claims in a
JWT as defined in IETF RFC 7519 [8].

nfv_token_encryption_enc_
values_supported

O 0..N String JSON array containing a list of the JWE
encryption algorithms (enc values)
supported by the server for the NFV
access token to encode the Claims in a
JWT as defined in IETF RFC 7519 [8].

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)22

Claim Qualifier Cardinality Content Description
token_endpoint_auth_meth
ods_supported

O 0..N String JSON array containing a list of the JWS
signing algorithms (alg values as defined
in IETF RFC 7515 [10]) supported by the
Token Endpoint for the signature on the
JWT used to authenticate the Client at the
Token Endpoint for the private_key_jwt
and client_secret_jwt authentication
methods. Servers should support "RS256".
The value "none" shall not be used.
If Mutual TLS Authentication as defined in
draft-ietf-oauth-mtls [23] is used the
following methods may be supported:
"tls_client_auth" if PKI mthods is used and
"self_signed_tls_client_auth" if Self-Signed
Certificate method is used.

token_endpoint_auth_signi
ng_alg_values_supported

O 0..N String JSON array containing a list of the JWS
signing algorithms (alg values) supported
by the Token Endpoint for the signature on
the JWT used to authenticate the Client at
the Token Endpoint for the private_key_jwt
and client_secret_jwt authentication
methods. Servers should support "RS256".
The value "none" shall not be used.

tls_client_certificate_bound
_access_tokens

M 1 Boolean Boolean value indicating server support for
mutual TLS as defined in draft-ietf-oauth-
mtls [23] client certificate bound access
tokens. Authorization Server shall support
mutual TLS and the boolean value shall be
"true".

claims_supported O 0..N JSON array containing a list of the Claim
Names of the Claims that the server is
able to supply values for.

require_request_uri_registr
ation

O 0..1 Boolean Boolean value specifying whether the
server requires any request_uri values
used to be pre-registered using the
request_uris registration parameter. Pre-
registration is required when the value is
"true". If omitted, the default value is
"false".

The response of the Authorization Server Configuration request is a set of JWT Claims (as defined in IETF
RFC 7519 [8]) about the Authorization Server configuration, including all necessary endpoints and public key location
information. A successful response shall use the 200 OK HTTP status code and return a JSON object using the
application/json content type that contains a set of Claims as its members that are a subset of the Metadata values
defined above. Other JWT Claims may also be returned. Claims that return multiple values are represented as JSON
arrays. Claims with zero elements shall be omitted from the response.

An error response uses the applicable HTTP status code value.

5.2 Registration process

5.2.1 Disposition

The description of the registration process in the entire clause 5.2 is for further study and presented only for
information.

Throughout the document, the term "NFV access token" is used as a shorthand for an access token that conforms to the
provisions in clause 5.5 of the present document.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)23

5.2.2 Registration process description

The Authorization server maintains the profile of each entity for which it controls the API access, including e.g. the
type of the entity, the access policies for the API with some other parameters. This profile is created during the
registration process as described in clause 2 of IETF RFC 6749 [6]. During this process, the authorization server issued
the registered client a client identifier as described in clause 2 of IETF RFC 6749 [6].

The registration of the client with the authorization server is done as described in IETF RFC 7591 [18]. To register the
client with the authorization server, an HTTP POST is sent to the client registration endpoint with a content type of
"application/json". The HTTP Entity Payload is a JSON document containing a software statement includes in the
JSON object using the software_statement member as described in IETF RFC 7591 [18].

The software_statement member contains all client metadata values about the client software as claims. This is a string
value containing the entire signed JWT.

The registration process for a VNF instance and its interaction with the VNF instantiation process require further study
and are thus outside the scope of the present version of the present document.

5.2.3 Client metadata

The Client metadata are defined in table 5.2.3-1 and are included in the software statement as a JSON Web
Token (JWT) as defined in IETF RFC 7519 [8]. The software statement is signed using digital signatures or Message
Authentication Codes (MAC) based on JSON Web Signature (JWS) as defined in IETF RFC 7515 [10].

Table 5.2.3-1: Client metadata of the software statement

Claim Qualifier Cardinality Content Description
token_endpoint_auth_method M 1 String String indicator of the requested

authentication method for the token
endpoint.
The value "none" is not used.
If Mutual TLS Authentication as defined in
draft-ietf-oauth-mtls [23] is used the
following methods may be requested:
"tls_client_auth" if PKI methods is used and
"self_signed_tls_client_auth" if Self-Signed
Certificate method is used.

grant_types M 1 String "client_credentials". Other values defined in
IANA for "grant_types" are not used.

response_types M 1 String "none". Other value defined in IANA for
"response_type" are not used.

scope O 0..1 String String containing a space-separated list of
scope values (as described in section 3.3 of
IETF RFC 6749 [6]) that the client can use
when requesting access tokens. The
semantics of values in this list are service
specific. If omitted, an authorization server
may register a client with a default set of
scopes.

jwks_uri M 1 String URL of the client's JSON Web Key Set as
described in IETF RFC 7517 [19], which
contains the client's public keys.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)24

Claim Qualifier Cardinality Content Description
software_id M 1 String A unique identifier string (e.g. a Universally

Unique Identifier (UUID)) assigned by the
client developer or software publisher used
by registration endpoints to identify the
client software to be dynamically registered.
Unlike "client_id", which is issued by the
authorization server and should vary
between instances, the "software_id" should
remain the same for all instances of the
client software. The "software_id" should
remain the same across multiple updates or
versions of the same piece of software. The
value of this field is not intended to be
human readable and is usually opaque to
the client and authorization server.

software_version M 1 String A version identifier string for the client
software identified by "software_id".

nfv_token_signed_response_
alg

O 0..1 String JWS alg algorithm as defined in IETF
RFC 7518 [20] for signing the NFV access
token issued to this Client. The value none
is not used as the NFV access token alg
value. The default, if omitted, is RS256. The
public key for validating the signature is
provided by retrieving the JWK Set
referenced by the jwks_uri element.

nfv_token_encrypted_respon
se_alg

O 0..1 String JWE alg algorithm as defined in IETF
RFC 7518 [20] for encrypting the NFV
access token issued to this Client. If this is
requested, the response will be signed then
encrypted, with the result being a Nested
JWT, as defined in IETF RFC 7519 [8]. The
default, if omitted, is that no encryption is
performed.

nfv_token_encrypted_respon
se_enc

O 0..1 String JWE enc algorithm as defined in IETF
RFC 7518 [20] for encrypting the NFV
access token issued to this Client. If
nfv_token_encrypted_response_alg is
specified, the default for this value is
A128CBC-HS256. When
nfv_token_encrypted_response_enc is
included,
nfv_token_encrypted_response_alg is also
provided.

token_endpoint_auth_signing
_alg

O 0..N String JWS [10] alg algorithm as defined in IETF
RFC 7518 [20] that is used for signing the
JWT [8] used to authenticate the Client at
the Token Endpoint for the private_key_jwt
and client_secret_jwt authentication
methods. All Token Requests using these
authentication methods from this Client are
rejected, if the JWT is not signed with this
algorithm. Servers should support RS256.
The value none is not used. The default, if
omitted, is that any algorithm supported by
the Authorization server token endpoint may
be used.

tls_client_certificate_bound_a
ccess_tokens

M 1 Boolean Indicates the client's intention to use mutual
TLS client certificate bound access tokens
as defined in draft-ietf-oauth-mtls [23]. For
the present version of the present document
the value shall be "true".

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)25

Claim Qualifier Cardinality Content Description
tls_client_auth_subject_dn CM 0..1 String String value specifying the expected subject

distinguished name of the client certificate,
which the OAuth client will use in mutual
TLS authentication. The presence of this
claim is mandatory if
"tls_client_certificate_bound_access_tokens
"value is "true".

5.3 Token Request
In clause 4.3, Auth-Prot_001, Auth-Prot_002, Auth-Prot_003 and Auth-Prot_004 requirements are defined for the
protocols between authorization server and client and between client and resource server.

The use of OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access Tokens as defined in
draft-ietf-oauth-mtls [23] allows to fulfil all these requirements.

Auth-Prot_001 and Auth-Prot_002 are fulfilled by the Mutual TLS Client Authentication part described in clause 2 of
draft-ietf-oauth-mtls [23].

The Auth-Prot_003 and Auth-Prot_004 are fulfilled by the Mutual TLS Client Certificate Bound Access Tokens part
described in clause 3 of draft-ietf-oauth-mtls [23]. This method ensures that only the party in possession of the private
key corresponding to the certificate can utilize the token to access the associated resources.

The use of OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access Tokens as defined in draft-ietf-
oauth-mtls [23] is mandatory for API access control based on OAuth2.0. Two methods of authentication may be used:
PKI Mutual TLS OAuth Client Authentication Method, or Self-Signed Certificate Mutual TLS OAuth Client
Authentication Method. The authentication method used is declared in "token_endpoint_auth_method" metadata during
the registration process as described in clause 5.2.

The TLS connection between the client and the authorization server token endpoint shall be established with mutual
TLS X.509 certificate authentication, i.e. using certificate and certificate verify messages sent during the TLS
Handshake.

The client shall include in all requests to the authorization server, the "client_id" parameter, configured in the client
after the registration process as described in clause 5.2.

The API Consumer makes a Token Request by presenting its Client Credentials to the Token Endpoint using the
"grant_type" value "client_credentials", as described in section 4.4.2 of IETF RFC 6749 [6]. The Client sends the
parameters to the Token Endpoint using the HTTP POST method and the Form Serialization, as described in
section 4.4.2 of IETF RFC 6749 [6]. The URL of the Token Endpoint is retrieved in the Authorization server
configuration as defined in clause 5.1.4.

The Authorization Server authenticates the API consumer and if valid, issues the NFV access token as JWT access
token as defined in IETF RFC 7519: "JSON Web Token (JWT)" [8], with the claims defined in clause 5.5.

To bind the certificate to the access token, the hash of the certificate is included by the authorization server in the
"x5t#S256" confirmation method of the NFV access token as described in clause 5.5.

The API consumer includes in the API requests to the API Producer (i.e. in requests to protected resources), the NFV
access token in the Authorization request header field, as described in IETF RFC 6750 [7].

These requests shall be made over a mutually authenticated TLS connection using the same client certificate that was
used for mutual TLS at the token endpoint.

EXAMPLE: API consumer request to API producer including the NFV access token (with line breaks for
display purposes only).

GET /resource HTTP/1.1
Host: server.example.com
Authorization: Bearer eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQdBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)26

The protected resource verifies that the client certificate matches the certificate associated with the NFV access token. If
they do not match, the resource access is rejected with an error as defined in draft-ietf-oauth-mtls [23].

Mutual TLS is used only as a proof-of-possession mechanism during protected resource access. The resource server
should therefore configure the TLS stack in a way that it does not verify whether the certificate presented by the client
during the handshake is signed by a trusted CA certificate.

5.4 NFV Access Token Format
The NFV access token to authorize access to the API of NFV-MANO interfaces is transmitted, according to ETSI
GS NFV-SOL 013 [22], like a bearer token as defined in IETF RFC 6750 [7].

It is emphasized that the NFV access token as defined in the present document is strictly speaking not a bearer token as
defined in IETF RFC 6750 [7], as it adds the property to give a proof-of-possession during protected resource access,
i.e. it cannot be used by any party in possession of this token, but only by the legitimate owner. However, the NFV
access token is transmitted using the protocol defined for bearer token in IETF RFC 6750 [7].

To fulfil the requirements from Acc-Token_003 to Acc-Token_009 and Acc-Token_014 in clause 4.3, the NFV access
token shall be associated to different parameters to restrict the lifetime, the number of operations, to bind the token to a
clientID, etc.

The NFV access token shall then be associated to some metadata. These metadata are defined in clause 5.5.

In clause 4.3, the requirement Acc-Token_012 recommends a standard format for the definition of NFV access token.

For the defined NFV-MANO interfaces, where OAuth2.0 is used for API access control, NFV access token is defined
as a JSON Web Token as described in IETF RFC 7519: "JSON Web Token (JWT)" [8], including claims defined in
clause 5.5 that bind this NFV access token to the TLS client certificate of the API consumer that receives the NFV
access token from the Authorization server, and restrict the use of the NFV access token.

The NFV access token shall be included in the token response (as defined by IETF RFC 6749 [6]).

In clause 4.3, the Acc-Token_010 requires that the NFV access token is signed.

To ensure the integrity of the NFV access token and to authenticate the issuer, the JWT document shall be signed using
digital signatures or Message Authentication Codes (MAC) based on JSON Web Signature (JWS) as described in
IETF RFC 7515 [10].

In clause 4.3, the Acc-Token_011 requires the possibility to encrypt the content of NFV access token.

The NFV access token JWT document shall be signed and then may be encrypted using JSON Web Signature (JWS) as
defined in IETF RFC 7515 [10] and JSON Web Encryption (JWE) as defined in IETF RFC 7516 [11] respectively.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)27

5.5 NFV access token associated Metadata
The following claims in table 5.5-1 are defined for the NFV access token:

Table 5.5-1: NFV access token claims

Claim Method Qualifier Cardinality Content Description Associated
requirement

iss M 1 String Issuer Identifier for the Issuer of the token. The iss value is a case sensitive URL
using the https scheme that contains scheme, host, and optionally, port number and
path components and no query or fragment components.

sub M 1 String Subject Identifier. A locally unique and never reassigned identifier within the Issuer
for API producer which provide protected resources consumed by the client. It shall
not exceed 255 ASCII characters in length. The sub value is a case sensitive string.

Acc-Token_006
Acc-Token_008

aud M 1 String Audience(s) that this NFV Token is intended for. It shall contain the OAuth 2.0
"client_id" as an audience value. The "aud" value is a case sensitive string.

Acc-Token_009,
Acc-Token_007

exp M 1 JSON number Expiration time on or after which the NFV Token shall not be accepted for
processing. The processing of this parameter requires that the current date/time shall
be before the expiration date/time listed in the value. Implementers may provide for
some small leeway, usually no more than a few minutes, to account for clock skew.
Its value is a JSON number representing the number of seconds from 1970-01-
01T0:0:0Z as measured in UTC until the date/time. See IETF RFC 3339 [9] for
details regarding date/times in general and UTC in particular.

Acc-Token_004

iat M 1 JSON number Time at which the JWT was issued. Its value is a JSON number representing the
number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time.

Acc-Token_004

auth_time CM 0..1 JSON number Time when the client authentication occurred. Its value is a JSON number
representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC
until the date/time. When "auth_time" is requested in the token request as an
Essential Claim using "claims" parameter, then this Claim is mandatory.

jti M 1 String Unique identifier for the JWT. The identifier value shall be assigned in a manner that
ensures that there is a negligible probability that the same value will be accidentally
assigned to a different data object and that the value is not guessable; and collisions
shall be prevented among values produced by different issuers as well. The "jti"
claim is used to prevent the JWT from being replayed. The "jti" value is a case-
sensitive string.

cnf x5t#S256 M 1 String Hash of the client certificate used for the mutual TLS at the token endpoint as
described in draft-ietf-oauth-mtls [23]. Value is a base64url-encoded SHA-256 hash
(a.k.a. thumbprint, fingerprint or digest) of the DER encoding of the
X.509 certificate. The base64url-encoded value shall omit all trailing pad '='
characters and shall not include any line breaks, whitespace, or other additional
characters.

Acc-Token_009

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)28

Claim Method Qualifier Cardinality Content Description Associated
requirement

scope M 0..1 String String containing a space-separated list of scope of operation values (as described in
section 3.3 of IETF RFC 6749 [6]) for which the NFV access token is valid. The
semantics of values in this list are service specific. If the value is omitted, it means
that the NFV access token is valid for all API operations. Other values are defined in
the corresponding API specification.

Acc-Token_003
Acc-Token_008

at_use_nbr M 1 JSON number Non-negative integer that represents the number of API requests for which the NFV
access token can be used. If the value is set to 0, the NFV access token can be used
until it expires, as defined by the "exp" claim.
See note.

Acc-Token_005

NOTE: The "at_use_nbr" claim improves the security of the NFV access token as it helps limiting the effect of attacks that extend the expiry time of an NFV access token. API
producers should support non-zero values of the "at_use_nbr" claim (i.e. they should be able to count in a secure way how often an NFV access token was used). API
producers that do not support non-zero values of the "at_use_nbr" claim shall reject a token with non-zero values of this claim.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)29

6 Token Verification Process
The API producer verifies the NFV access token presented by the API consumer before answering to the API consumer
requests. It uses the token information included in the NFV access token for its verification.

It verifies among others, the validity of the NFV access token, and the scope value for which the NFV access token was
issued. It shall authenticate the originator of the request as the legitimate owner of the token, verifying that the hash
value of the certificate in the NFV access token is the same as the hash value of the client certificate used for the mutual
TLS establishment with the API consumer.

The resource server may also use the OAuth2.0 Token Introspection method as defined in IETF RFC 7662 [21] to get
from the authorization server, the metadata associated to the NFV access token.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)30

Annex A (informative):
Analysis of existing Access Token specifications

A.1 OpenStack® Keystone

A.1.0 Introduction
Keystone is an OpenStack service that provides API client authentication, service discovery, and distributed multi-
tenant authorization by implementing OpenStack's Identity API.

In OpenStack Keystone, the tokens are used to authenticate and authorize interactions with the various OpenStack APIs.
Tokens come in many scopes, representing various authorization and sources of identity.

NOTE: Information in this clause gives high level description of OpenStack Keystone token got from the
keystone website [i.1] and is for information only.

A.1.1 Authorization scopes
Several authorization scopes are possible for the tokens:

• Unscoped tokens: An unscoped token contains neither a service catalogue, any roles, a project scope, nor a
domain scope. Their primary use case is simply to prove your identity to keystone at a later time (usually to
generate scoped tokens), without repeatedly presenting your original credentials.

• Project-scoped tokens: They contain a service catalogue, a set of roles, and details of the project upon which
the tenant of the token has authorization.

• Domain-scoped tokens: They contain a limited service catalogue (only those services which do not explicitly
require per-project endpoints), a set of roles, and details of the project upon which the tenant of the token has
authorization. They express authorization to operate a domain-level, typically as a domain-level administrator.

• System-scoped tokens: It represents the role assignments a user has to operate on the deployment as a whole,
i.e. for operations that affect the entire deployment system such as e.g. modifying endpoints, service
management, or listing information about hypervisors.

A.1.2 Token binding

OpenStack Keystone may support token binding.

Token binding embeds information from an external authentication mechanism, such as a Kerberos server or X.509
certificate, inside a token. By using token binding, a client can enforce the use of a specified external authentication
mechanism with the token. This additional security mechanism ensures that if a token is stolen, for example, it is not
usable without external authentication.

A.1.3 Fernet token
The token format supported by keystone is the fernet token, and fernet is the default and only token provider supported
currently by OpenStack Keystone.

In OpenStack Newton release, there are four supported token types: UUID, PKI, PKIZ and fernet. Since OpenStack
Ocata release, PKI and PKIZ tokens are deprecated. Since Pike release, UUID token are also deprecated and the fernet
fshatoken is the default and only supported token type. UUID token, PKI and PKIZ tokens are described in ETSI
GS NFV-SEC 002 [2] for further information on these token types.

Fernet tokens are bearer token. They are protected from unnecessary disclosure to prevent unauthorized access.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)31

Fernet tokens do not need to be persistent in a back end. AES256 encryption is used to protect the information stored in
the token and integrity is verified with a SHA256 HMAC signature. Only the Identity service should have access to the
keys used to encrypt and decrypt fernet tokens. Like UUID tokens, fernet tokens are passed back to the Identity service
in order to validate them.

The binding to other attributes as an additional authentication method (e.g. kerberos or x509certificate) is not supported
by fernet token.

OAuth access tokens can be exchanged for keystone tokens.

The validation of the token can be done only on-line. An offline validation, i.e. Self-validation of tokens, rather than
calling back to keystone, in order to improve performance and scalability, is not supported by fernet tokens.

Fernet tokens contain a limited amount of identity and authorization data in a MessagePacked payload. The data inside
a fernet token is protected using symmetric encryption keys, or fernet keys.

A.1.4 Fernet keys
A fernet key is used to encrypt and decrypt fernet tokens. Each key is actually composed of two smaller keys: a 128-bit
AES encryption key and a 128-bit SHA256 HMAC signing key.

The keys are held in a key repository that keystone passes to a library that handles the encryption and decryption of
tokens. A key repository is required by keystone in order to create fernet tokens. These keys are used to encrypt and
decrypt the information that makes up the payload of the token.

Each key in the repository can have one of three states: primary key, secondary key and staged key.

Each key starts as a staged key, is promoted to be the primary key, and then demoted to be a secondary key.

New tokens can only be encrypted with a primary key. Secondary and staged keys are never used to encrypt token.

The staged key is used to perform a key rotation on one keystone node, and distribute the new key set over a span of
time. This does not require the distribution to take place in an ultra-short period of time. Tokens encrypted with a
primary key can be decrypted, and validated, on other nodes where that key is still staged.

A.1.5 Advantage of Fernet tokens
Fernet tokens, unlike UUID tokens, do not require persistence and do not have to be replicated. As long as each
keystone node shares the same key repository, the fernet tokens can be created and validated instantly across nodes.

In addition the advantage of fernet tokens over PKI or PKIZ tokens is the fact that the fernet tokens are much smaller.
The fernet tokens are kept under 250 byte limit.

A.2 OpenID® Connect ID-Token

A.2.0 Introduction
OpenID connect is an identity layer on the top of the OAuth 2.0 protocol. It allows Clients to verify the identity of the
End-User based on the authentication performed by an Authorization Server, as well as to obtain basic profile
information about the End-User in an interoperable and REST-like manner.

The Authorization server (called the OpenID Provider) answers to the Client AuthN Request with an ID token and
usually an Access Token.

The OAuth2.0 token_type response parameter value is "bearer" and in addition to the response parameters specified by
OAuth2.0, the id_token is included in the response.

NOTE: Information in this clause gives high level description of OpenID Connect ID-Token got from the OpenID
Connect website [i.2] and is for information only.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)32

A.2.1 ID Token
The primary extension of the OpenID Connect is the use of ID Token, which is a security token containing claims about
the Authentication of the End-User by the Authorization Server, and potentially other claims. The Authentication result
is returned in an ID Token using claims expressing such information as the Issuer, the Subject Identifier, when the
authentication expires, etc.

The ID Token is represented as a JSON Web Token (JWT) as defined by IETF RFC 7519 [8].

Claims used in the ID Token for all OAuth 2.0 flows used by OpenID Connect are described in clause 2 ID Token of
[i.2] and are described in table A.2.1-1.

Table A.2.1-1: Claims used for OpenID Connect ID Token

Claim Description
iss Issuer Identifier for the Issuer of the response
sub Subject Identifier. A locally unique and never reassigned identifier within the Issuer for the End-User, which

is intended to be consumed by the Client
aud Audience that this ID Token is intended for. It contains the OAuth 2.0 client_id of the Relying Party as an

audience value. It may also contain identifiers for other audiences
exp Expiration time on or after which the ID Token is not be accepted for processing. The processing of this

parameter requires that the current date/time is before the expiration date/time listed in the value
iat Time at which the JWT was issued
auth_time Time when the End-User authentication occurred
nonce String value used to associate a Client session with an ID Token, and to mitigate replay attacks. The value

is passed through unmodified from the Authentication Request to the ID Token. If present in the ID Token,
Clients verify that the nonce Claim Value is equal to the value of the nonce parameter sent in the
Authentication Request. If present in the Authentication Request, Authorization Servers include a nonce
Claim in the ID Token with the Claim Value being the nonce value sent in the Authentication Request.
Authorization Servers performs no other processing on nonce values used

acr Authentication Context Class Reference. String specifying an Authentication Context Class Reference
value that identifies the Authentication Context Class that the authentication performed satisfied

amr Authentication Methods References. JSON array of strings that are identifiers for authentication methods
used in the authentication (e.g. password and OTP authentication methods)

azp Authorized party - the party to which the ID Token was issued. If present, it contains the OAuth 2.0 Client
ID of this party. This Claim is only needed when the ID Token has a single audience value and that
audience is different than the authorized party

at_hash Access Token hash value
c_hash Code hash value. Used in case of hybrid flow, where an authorization code is used

ID Tokens may contain other claims.

ID Token are signed using JSON Web Signature (JWS) as defined in IETF RFC 7515 [10] and optionally signed and
then encrypted using JSON Web Signature (JWS) as defined in IETF RFC 7515 [10] and JSON Web Encryption (JWE)
as defined in IETF RFC 7516 [11] respectively.

A.2.2 Advantage of ID Token

ID Token embeds information from authentication mechanism used to authenticate the End_User. The ID Token is then
used as token binding. This additional security mechanism ensures that if the token is stolen, for example, it is not
usable without external authentication.

The ID Token is bound also to the access token using the at_hash claim. The access_token is then in its turn bound to
the authentication mechanism and cannot be used without such authentication.

This binding avoid the use of a stolen access token.

An additional advantage of the ID Token is the use of additional claims that enables the mitigation of replay attacks
such as the "nonce" claim, or enabling a lifetime for the token such as the "exp" claim, or defining the expected
audience such as the "aud" claim, or defining the issuer of the token such as the "iss" claim.

Additional claims may be defined to add other bindings if needed.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)33

The id_token is defined in IANA and may be used with the bearer access token in the response by the token end-point,
without any change of the OAuth2.0 protocol.

A.3 IETF TLS-Based AccessToken Binding

A.3.0 Introduction
In general, any party in possession of bearer security tokens gain access to certain protected resource. Attackers take
advantage of this by exporting bearer tokens from a Client and presenting them to application servers, and
impersonating authenticated users.

The idea of Token Binding is to prevent such attacks by cryptographically binding security tokens to the underlying
TLS layer and then to scope the applicability of the access token to a certain sender. The sender is then obliged to
demonstrate knowledge of a certain secret as pre-requisite for the acceptance of the access token by the resource server.

IETF is currently defining this kind of token binding to access tokens, authorization codes or grants and client
authentication in "OAuth 2.0 Token Binding" as defined in draft-ietf-oauth-token-binding [i.7]. This use of token
binding protects token from man-in-the-middle and token export and replay attacks. The access token is, via a token
binding id, finally bound to the TLS connection used between the OAuth Client and the protected resource server, and
on which the access token is provided to the protected resource server by the OAuth Client.

Another solution for this token binding is proposed in the "OAuth 2.0 Mutual TLS Client Authentication and Certificate
Bound Access Tokens" as defined in draft-ietf-oauth-mtls [23]. In this solution the access token is bound to the
fingerprint of public key of the client, used during the mutual authentication between the client and the authorization
server. The resource server in the same way obtains the public key from the TLS stack and verifies the fingerprint with
the one contained in the access token before giving access to the protected resources to the client.

A.3.1 OAuth 2.0 Token Binding

A.3.1.1 Token Binding ID

The token binding for access tokens cryptographically binds the access token to the client's Token Binding key pair,
possession of which is proven on the TLS connection between the client and the protected resource.

The Token Binding Protocol as defined in IETF RFC 8471 [i.3] defines Token Binding ID for a TLS connection
between a client and a server. This Token Binding ID is constructed using the public key of a private-public key pair.
The client proves the possession of the corresponding private key.

An attacker need to be able to use the Client's private key to export and replay a bound security token. To avoid this
attack, the private key should be specially protected, e.g. generated in a Hardware Security Module.

The Token binding ID is then used in the "Sec-Token-Binding" header as the referred Token Binding ID and is used to
Token bind the access token. The authorization server associates and embeds the Token Binding ID with the access
token in a way that can be accessed by the protected resource server, for the access token verification.

NOTE: To obtain the Token Binding ID, the client may need to establish the TLS connection between itself and
the protected resource server prior to making the token request to the authorization server.

A.3.1.2 Token Binding for ID Token

It is possible to add a Token Binding in the OpenID Connect ID Tokens. A new 'tbh' (token binding hash) element is
defined in the confirmation claim "cnf" to represent the SHA-256 hash of a Token Binding ID in an ID token.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)34

Table A.3.1.2-1: Token Binding for ID token

Claim Method Mandatory/
Optional/

Conditional

Description Value

cnf tbh O Token Binding ID hash value The value of the "tbh" member is the base64url
encoding of the SHA-256 hash of the Token
Binding ID.

A.3.1.3 Advantage of Token Binding

The access token is bound to the TLS connection used between the OAuth Client and the protected resource server, and
on which the access token is provided to the protected resource server by the OAuth Client. The Access Token cannot
be used by an attacker on another TLS connection and this avoids the misuse of access token.

A.3.1.4 Security considerations

A.3.1.4.1 Security Token Replay

The Token Binding private keys are high-value assets and should be strongly protected ideally generating them in a
hardware security module that prevents key export.

The bound token needs to be integrity-protected, so that an attacker cannot remove the binding or substitute a Token
binding ID of their choice without detection.

But nothing prevent collaborative Client to export a bound token with corresponding Token Binding private key.

A.3.1.4.2 Downgrade attacks

The Token Binding protocol is negotiated using a mechanism that prevents downgrade, e.g. use TLS extension for
Token Binding negotiation.

A.3.2 OAuth 2.0 Certificate Bound Access Tokens

A.3.2.0 Basic principle

OAuth 2.0 certificate bound Access Tokens is described in "OAuth 2.0 Mutual TLS Client Authentication and
Certificate Bound Access Tokens" as defined in draft-ietf-oauth-mtls [23].

When mutual TLS authentication is used by the client on the connection of the token endpoint, the authorization server
is able to bind the access token to the client certificate. This binding is accessible by the protected resource server,
either in the issued access token directly or through the Token Introspection process described in "OAuth 2.0 Token
Introspection" as defined in IETF RFC 7662 [21].

This way of binding the access token to the client has the advantage to decouple the binding of the access token (from
the client's authentication with the authorization server) and the proof-of-possession mechanism (enabled by the client's
authentication with the protected resource server). The only constraint is the use of the same certificate for the client's
authentication with the authorization server and for the client's authentication with the protected resource server.

A.3.2.1 Certificate bound access token using JWT

The certificate hash information is included in the confirmation method of the JWT ("cnf"). A new confirmation method
member ("x5t#S256") has been defined to convey the certificate hash information.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)35

Table A.3.2.1-1: Certificate hash element for access token

Claim Method Mandatory/
Optional/

Conditional

Description Value

cnf x5t#S256 O X.509 Certificate SHA-256 Thumbprint hash
value

The value of the " x5t#S256"
member is the SHA-256 hash of
the DER encoding of the X.509
certificate base64url-encoded
with all trailing pad '=' characters
omitted and without the inclusion
of any line breaks, whitespace,
or other additional characters.

Oher JWT confirmation method members could be defined in the future if needed.

The same confirmation method is applicable for the introspected access token and is included in the token introspection
response.

A.3.3 OAuth 2.0 Token Binding and OAuth2.0 Certificate Token
binding comparison

In OAuth 2.0 Token Binding, the key material is automatically managed by the TLS stack. In the OAuth2.0 Certificate
Token binding, the developer creates and maintains the key pairs and respective certificates. The use of self-signed
certificates facilitates and reduces the complexity of this solution.

OAuth 2.0 Token Binding allows to use different key pairs for different resource servers, which is a privacy benefit. In
the case of NFV, the privacy should not be an issue.

But OAuth 2.0 Token Binding needs the use of TLS extensions for the token binding that are not largely used for the
time of the present document writing. The OAuth2.0 Certificate Token binding requires only widely deployed TLS
features and then easier to adopt in a short term.

A.4 3GPP authorization framework

A.4.0 OAuth 2.0 authorization in 3GPP

The 3GPP has defined in ETSI TS 133 501 [i.6] an authorization framework for the authorization of Network Functions
service access for 5G systems. This authorization framework uses the OAuth 2.0 framework specified in IETF
RFC 6749 [6], and its support by Network Functions (NF) and Network Resource Function (NRF), acting as OAuth 2.0
Authorization Server, is mandated by 3GPP.

The Grant type used in 3GPP is the Client Credentials Grant, as the grant type defined by ETSI GS NFV-SOL 013 [22].

Access token are JSON Web Tokens and secured with digital signatures or Message Authentication Code (MAC) as
defined in JSON Web Signature (JWS) [10].

A.4.1 Authentication between Network Functions

When the token-based authorization is used 3GPP mandates that the service consumer NF authenticates the Service
Producer NF at transport layer before trying to access to the service API. 3GPP allows the Service producer NF to
authenticate the service consumer NF; the authentication of the Service consumer NF is implicit using the token-based
authorization, which is granted only after a mutual authentication of the service consumer NF towards the NRF at
transport layer.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)36

A.4.2 Access Token Request

Before the Network Function that consumes a service (OAuth 2.0 Client), is able to request an access token, this
Network Function first registers with the NRF acting as the Authorization Server using the NF service registration
procedure and using the Client id which is the NF Instance Id of the NF.

In the Access Token Request the NF consumer includes its NF Instance Id and its NF type, the expected NF service
name and NF Type. These information allows the NRF to verify if the NF consumer is authorized to access to this NF
producer and NF service. If the NF service consumer is authorized, an access token with appropriate claims is generated
and sent back to the NF service consumer.

A.4.3 3GPP Access Token
3GPP mandates that the 3GPP access token is JSON Web Token as described in IETF RFC 7519 [8].

The 3GPP access token is secured with digital signatures or MAC based on JSON Web Signature (JWS) as described in
IETF RFC 7515 [10].

3GPP mandates that the claims in the JSON Web Token include:

• NF Instance Id of the NRF (issuer of the access token).

• NF Instance Id of the NF Service consumer (subject).

• NF Instance Id of the NF Service producer (audience).

• Authorized services (scope).

• Expiration time (expiration).

Additional claims may be further defined by 3GPP.

These claims ensure that the access token is bound to the issuer of the access token, bound to the subject and cannot be
used by another malicious NF, and bound to the service producer and cannot be used for another service.

A.4.4 Service access request

The service consumer NF request access to the service provided by the service producer NF including the access token
in the request and after a successful authentication towards the service producer NF.

The service producer NF verifies the access token or sends it to the NRF for verification. The verification consists of
integrity check and verification of the claims in the token. If the service producer NF verifies the access token by itself,
it needs the NRF's public key or the shared secret that has been used by the NRF to generate the access token.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)37

Annex B (informative):
Synthesis on existing Access Token
Table B-1 compares the existing solutions described in annex A against the security requirements defined in clause 4.3.

NOTE 1: The text reproduced in table B-1 was extracted from clause 4.3 of the present document and from other external documents for readability purposes. Requirements
reproduced in this table are to be considered as quotes: they are not new requirements.
In the unlikely case (following re-publication of any of the quoted documents) where a description or a comment in table B-1 would differ from the source text, it
is the source text that takes precedent.

NOTE 2: The empty cells mean that information found on the existing access token technology is not sufficient to assess the fulfilment of the corresponding requirement.

Table B-1: Synthesis on existing Access Token

Requirements in clause 4.3 Openstack Keystone OpenId Connect ETSI TS 133 501 [i.6] IETF
Number Description Req

OK
Comments Req

OK
Comments Req

OK
Comments Req

OK
Comments

Auth-
Prot_001

The confidentiality
of the requests
shall be ensured by
using a transport-
layer mechanism
such as TLS on
each interface.

 X Solution provided in IETF
RFC 6819 [i.4] + OpenID
connect provides a way to
provide confidentiality of the
request: content of the
request is an encrypted
JWT.

X A protection at transport
layer is used (e.g. TLS).

X Using the draft-ietf-oauth-
mtls: "OAuth 2.0 Mutual TLS
Client Authentication and
Certificate Bound Access
Tokens" [23], a TLS channel
is established.

Auth-
Prot_002

The client and
authorization
servers shall
mutually
authenticate.

 X IETF RFC 6819 [i.4] +
authentication of the server
through either the use of
signed or encrypted JWT
with appropriate key and
cipher.

X Mutual authentication is
done by the transport layer
protection and is required.

X Using the draft-ietf-oauth-
mtls: "OAuth 2.0 Mutual TLS
Client Authentication and
Certificate Bound Access
Tokens" [23].

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)38

Requirements in clause 4.3 Openstack Keystone OpenId Connect ETSI TS 133 501 [i.6] IETF
Number Description Req

OK
Comments Req

OK
Comments Req

OK
Comments Req

OK
Comments

Auth-
Prot_003

The client shall
authenticate the
resource server.

 X The service Consumer NF
shall authenticate the
service producer NF.

X Using the draft-ietf-oauth-
mtls: "OAuth 2.0 Mutual TLS
Client Authentication and
Certificate Bound Access
Tokens" [23], a mutual
authentication is required
between the client and
protected resource server.

Using draft-ietf-oauth-token-
binding: "OAuth 2.0 Token
Binding" [i.7], the Client
authenticates to the
protected resource server
and the public key of the
client is used to generate
the token binding ID.

Auth-
Prot_004

Before accepting
the token as valid,
the resource server
shall authenticate
the originator of the
request as the
legitimate owner of
the token.

 X The token is bound to the
subject through the subject
Identifier, ensuring that the
token has been provided for
this consumer. In OpenID
connect the connection t the
resource server is not
described.

X Authentication of the service
consumer NF towards the
service producer NF will be
implicit by authorization,
which can only be granted
after successful
authentication of the service
consumer NF towards the
NRF.

X Using the draft-ietf-oauth-
mtls: "OAuth 2.0 Mutual TLS
Client Authentication and
Certificate Bound Access
Tokens" [23], the protected
resource server shall verify
that the certificate used for
the mutual authentication is
the same as the certificate
associated to the access
token.

Using draft-ietf-oauth-token-
binding: "OAuth 2.0 Token
Binding" [i.7], the protected
resource server verifies that
the token binding ID in
access token is the correct
one.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)39

Requirements in clause 4.3 Openstack Keystone OpenId Connect ETSI TS 133 501 [i.6] IETF
Number Description Req

OK
Comments Req

OK
Comments Req

OK
Comments Req

OK
Comments

Auth-
Prot_005

The Authorization
server database
used to
authenticate the
client and store
associated client
credentials, access
tokens and refresh
tokens shall be
stored in a tamper
resistant location
(e.g. HSM).

 This is an implementation
requirement that is not
described in the
specification.

 Depends on
implementation, not
specified by 3GPP.

 Depends on implementation
of authorization server.

Client-
Cred_001

The client
credentials shall be
stored in a secure
and tamper
resistant location or
stored encrypted
with a key
protected in a
tamper resistant
location.

 Depends on
implementation, not
specified by 3GPP.

Client-
Cred_002

The client
credentials shall be
generated with a
minimum of 128
bits of entropy,
using best
practices for
entropy sources, in
order to mitigate
the risk of guessing
attacks.

Client-
Cred_003

The client
credentials shall
not be included in
the source code
and software
packages.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)40

Requirements in clause 4.3 Openstack Keystone OpenId Connect ETSI TS 133 501 [i.6] IETF
Number Description Req

OK
Comments Req

OK
Comments Req

OK
Comments Req

OK
Comments

Client-
Cred_004

The client
credentials shall be
installed in the
client in a secure
way eliminating
any possibility of
gaining access to
these credentials
during installation.

Client-
Cred_005

It shall be possible
for the
authorization
server to revoke
the client
credentials.

Acc-
Token_001

The access token
shall be stored in a
secure and tamper
resistant location or
stored encrypted
with a key
protected in a
tamper resistant
location.

 Depends on the
implementation of Keystone
fernet key repository and
the protection of the process
of encryption decryption of
the fernet token.

 Depends on
implementation, not
specified by 3GPP.

Acc-
Token_002

The access token
shall be generated
with a minimum of
128 bits of entropy,
using best
practices for
entropy sources, in
order to mitigate
the risk of guessing
attacks.

Acc-
Token_003

Access tokens
shall have policy-
defined limited
scope.

X The token may be scoped
token (Project, Domain or
System scoped) . For the
Project scoped token,
Project_ID is included in the
token.

X X The access token includes a
claim for the authorized
services (scope).

Acc-
Token_004

Access tokens
shall have limited
lifetimes.

X The token includes an
expiration time and a
timestamp.

X Lifetime and timestamp
values may be included in
the token

X The access token includes a
claim for the expiration time
(expiration).

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)41

Requirements in clause 4.3 Openstack Keystone OpenId Connect ETSI TS 133 501 [i.6] IETF
Number Description Req

OK
Comments Req

OK
Comments Req

OK
Comments Req

OK
Comments

Acc-
Token_005

Access tokens
shall be restricted
to a particular
number of
operations.

X The Fernet Token are
ephemeral bearer tokens.
They are encrypted with a
key that the system may
rotate. Tokens encrypted
with a primary key can be
decrypted, and validated, on
other nodes where that key
is still staged.

X A nonce value used to
associate a Client session
with an ID Token, and to
mitigate replay attacks could
be added in the "nonce"
claim.

 X Using draft-ietf-oauth-token-
binding: "OAuth 2.0 Token
Binding" [i.7]: The access
token is bound to a key
material (token binding Id,
which is associated to the
TLS connection between the
client and the resource
server. This solution is a
way to mitigate the replay
attacks.

Using the draft-ietf-oauth-
mtls: "OAuth 2.0 Mutual TLS
Client Authentication and
Certificate Bound Access
Tokens" [23]: The access
token is associated to the
sender via the fingerprint of
its public key. This is a way
of mitigation of replay
attacks by a malicious client.

Acc-
Token_006

It shall be possible
to bind the access
token to the
intended resource
server.

 Not really. The token could
just be a Project/Domain or
System scoped token.

X With the "aud" claim X The access token includes a
claim for the NF Instance Id
of the Service Producer
(audience).

X Using draft-ietf-oauth-token-
binding: "OAuth 2.0 Token
Binding" [i.7], the token
binding ID may be specific
to the resource server
implied in the TLS
connection.

Acc-
Token_007

It shall be possible
to bind the token to
the endpoint URL
(token audience)
used to obtain the
token.

 Claims (e.g. "aud") to bind
to the Id (client Id) but not
the URL

 X Using draft-ietf-oauth-token-
binding: "OAuth 2.0 Token
Binding" [i.7], the token is
bound to the TLS
connection.

Acc-
Token_008

It shall be possible
to limit the scope of
the token and
associate it to
particular resource.

 The token may be scoped
token (Project, Domain or
System scoped). For the
Project scoped token,
Project_ID is included in the
token. Not really precise to
be able to associate to a
particular resource.

X With the "aud" claim X The access token includes a
claim for the authorized
services (scope).

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)42

Requirements in clause 4.3 Openstack Keystone OpenId Connect ETSI TS 133 501 [i.6] IETF
Number Description Req

OK
Comments Req

OK
Comments Req

OK
Comments Req

OK
Comments

Acc-
Token_009

Tokens shall be
bound to the client
ID.

X The Fernet token includes
the User ID.

X The ID token associated to
access token (bound with
the "at_hash" claim in ID
token) has "aud" claim used
to bind the access token to
the "client_id".

X The access token includes a
claim for the NF Instance Id
of the Service Consumer
(subject) which is the "Client
ID".

X Using the draft-ietf-oauth-
mtls: "OAuth 2.0 Mutual TLS
Client Authentication and
Certificate Bound Access
Tokens" [23], the access
token is bound to the
certificate of the client.

Using draft-ietf-oauth-token-
binding: "OAuth 2.0 Token
Binding" [i.7], the token is
bound to the public key
used for the TLS connection
with the resource server.

Acc-
Token_010

The access token
shall be signed to
detect manipulation
of the token or
production of fake
tokens.

X Signed using SHA256
HMAC (with a 128 bits key).

X The token shall be signed
using JWS.

X Access tokens are secured
with digital signatures or
Message Authentication
Codes (MAC) based on
JSON Web Signature (JWS)
as described in [10].

X Using IETF RFC 7515:
"JSON Web Signature
(JWS)" [10]

Using draft-ietf-oauth-token-
binding: "OAuth 2.0 Token
Binding" [i.7], a solution for
token binding using JWT is
described. The use of JWS
is then possible but not
described.

Acc-
Token_011

It shall be possible
to encrypt content
of the access
token.

X Encrypted with AES128 in
CBC mode using an
Initialization vector IV
included in the token.

X Use of JWE is possible in
addition of JWS.

 The use of JWE is not
described.

X IETF RFC 7516: "JSON
Web Encryption (JWE)" [11]

Acc-
Token_012

The access token
should be defined
in a standard
format (SAML or
JWT)

 No Fernet token format is
not standard and the fernet
spec is abandoned.
Openstack is working on the
addition of JWT, JWS and
JWE to rely on standard
format.

X ID token is represented as
JSON Web Token (JWT).

X Access tokens shall be
JSON Web Tokens as
described in [8].

X IETF RFC 7519: "JSON
Web Token (JWT)" [8]

Using draft-ietf-oauth-token-
binding: "OAuth 2.0 Token
Binding" [i.7], a solution for
token binding using JWT is
described.

Acc-
Token_013

It shall be possible
to revoke an
access token.

X Rotation of the key. The
fernet token is really
revoked when all nodes
have rotated the keys and
the key used for encryption
of the fernet token is no
more available.

X The authorization server
should provide a
mechanism for this
revocation. If not the lifetime
of the Access token shall be
very short or access token
should be single use.

 Not described.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)43

Requirements in clause 4.3 Openstack Keystone OpenId Connect ETSI TS 133 501 [i.6] IETF
Number Description Req

OK
Comments Req

OK
Comments Req

OK
Comments Req

OK
Comments

Ref-
Token_001

The refresh token
shall be stored in a
secure and tamper
resistant location or
stored encrypted
with the key
protected in a
tamper resistant
location.

 NA Depends on implementation

Ref-
Token_002

The refresh token
shall be generated
with a minimum of
128 bits of entropy,
using best
practices for
entropy sources
[12], in order to
mitigate the risk of
guessing attacks.

 NA X

Ref-
Token_003

Refresh tokens
shall have policy-
defined limited
scope.

 NA

Ref-
Token_004

Refresh tokens
shall have limited
lifetimes..

 NA

Ref-
Token_005

Refresh tokens
shall be restricted
to a particular
number of
operations.

 NA

Ref-
Token_006

The refresh token
shall be bound to
the client ID.

 NA X Using draft-ietf-oauth-token-
binding: "OAuth 2.0 Token
Binding" [i.7], the token is
bound to the public key
used for the TLS connection
with the resource server.

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)44

Requirements in clause 4.3 Openstack Keystone OpenId Connect ETSI TS 133 501 [i.6] IETF
Number Description Req

OK
Comments Req

OK
Comments Req

OK
Comments Req

OK
Comments

Ref-
Token_007

It shall be possible
to rotate refresh
tokens by changing
the value of the
refresh token with
every refresh
request.

 NA

Ref-
Token_008

It shall be possible
to revoke a refresh
token.

 NA

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)45

Annex C (informative):
IANA Registry Considerations

C.1 "Well-Known URIs" Registry

C.1.1 Introduction
In order to allow the discovery of the authorization server configuration, as described in clause 5.1.4 of the present
document, some information is registered in the IANA "Well-Known URIs" registry.

Clause C.1.2 describes the content of the registered information.

NOTE: Well-known URIs registration is described in IETF RFC 8615 [17].

C.1.2 Registry contents
• URI suffix: nfv-oauth-server-configuration

• Change controller: ETSI: PNNS@etsi.org

• Specification document: clause 5.1.4 of the present document

• Related information: None

C.2 JSON Web Token Claims registry

C.2.1 Introduction
Several Claims described in clause 5.5 of the present document are declared in the IANA JSON Web Token registry.

Clause C.2.2 describes the content of the registered information.

NOTE: JSON web token are specified in IETF RFC 7519 [8].

C.2.2 Registry contents
• Claim Name: at_use_nbr

• Claim Description: Number of API requests for which the access token can be used

• Change Controller: ETSI: PNNS@etsi.org

• Specification Document(s): clause 5.5 of the present document

https://www.iana.org/assignments/well-known-uris/well-known-uris.xml
https://www.iana.org/assignments/jwt/jwt.xhtml

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)46

C.3 OAuth Parameters registry

C.3.1 Introduction
Some OAuth parameters associated with the access token are declared in the IANA OAuth Parameters registry.

Clause C.3.2 describes the content of the registered information.

NOTE: OAuth parameters are specified in IETF RFC 6749 [6].

C.3.2 Registry contents
• Parameter name: nfv_token

• Parameter usage location: Access Token Response

• Change controller: ETSI: PNNS@etsi.org

• Specification document(s): clause 5.4 of the present document

• Related information: None

C.4 OAuth Dynamic Client Registration Metadata registry

C.4.1 Introduction
Some OAuth Dynamic Client Registration metadata is declared in the IANA OAuth Dynamic Client Registration
Metadata registry.

Clause C.4.2 describes the content of the registered information.

NOTE: OAuth Dynamic Client Registration Metadata are specified in IETF RFC 7591 [18].

C.4.2 Registry contents
• Client Metadata Name: nfv_token_signed_response_alg

• Client Metadata Description: JWS alg algorithm required for signing the nfv Token issued to this Client

• Change controller: ETSI: PNNS@etsi.org

• Specification document(s): clause 5.2.3 of the present document

• Related information: None

• Client Metadata Name: nfv_token_encrypted_response_alg

• Client Metadata Description: JWE alg algorithm required for encrypting the nfv Token issued to this Client

• Change controller: ETSI: PNNS@etsi.org

• Specification document(s): clause 5.2.3 of the present document

• Related information: None

• Client Metadata Name: nfv_token_encrypted_response_enc

https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml
https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml
https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)47

• Client Metadata Description: JWE enc algorithm required for encrypting the nfv Token issued to this Client

• Change controller: ETSI: PNNS@etsi.org

• Specification document(s): clause 5.2.3 of the present document

• Related information: None

C.5 OAuth Authorization Server Metadata registry

C.5.1 Introduction
Some OAuth Authorization Server Metadata is declared for the OAuth Authorization Server configuration in the
Authorization Server Metadata registry.

Clause C.5.2 describes the content of the registered information.

NOTE: OAuth Authorization Server Metadata are specified in IETF RFC 8414 [13].

C.5.2 Registry contents
• Client Metadata Name: nfv_token_signing_alg_values_supported

• Client Metadata Description: JSON array containing a list of the JWS signing algorithms supported by the
server for signing the JWT used as NFV Token

• Change controller: ETSI: PNNS@etsi.org

• Specification document(s): clause 5.1.4 of the present document

• Related information: None

• Client Metadata Name: nfv_token_encryption_alg_values_supported

• Client Metadata Description: JSON array containing a list of the JWE encryption algorithms (alg values)
supported by the server to encode the JWT used as NFV Token

• Change controller: ETSI: PNNS@etsi.org

• Specification document(s): clause 5.1.4 of the present document

• Related information: None

• Client Metadata Name: nfv_token_encryption_enc_values_supported

• Client Metadata Description: JSON array containing a list of the JWE encryption algorithms (enc values)
supported by the server to encode the JWT used as NFV Token

• Change controller: ETSI: PNNS@etsi.org

• Specification document(s): clause 5.1.4 of the present document

• Related information: None

https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)48

Annex D (informative):
Change History

Date Version Information about changes
2018-01-18 V0.0.1 First draft with the Table of Content.
2018-01-19 V0.0.2 Implementation of the following contributions accepted during the SEC#117 meeting:

- NFVSEC(18)000004r1_SEC022_Introduction-draft
- NFVSEC(18)000005r1_SEC022_Scope

2018-07-03 V0.0.3 Implementation of the following contributions accepted during the SEC#126 meeting:
- NFVSEC(18)000052r1_SEC022_Section_5_1
- NFVSEC(18)000053r1_SEC022_Section_5_2

2018-07-06 V0.0.4 Implementation of the following contributions accepted during the SEC#127 meeting:
- NFVSEC(18)000051r2_SEC022_Section_4_1
- NFVSEC(18)000054r1_SEC022_Section_5_3

2018-07-19 V0.0.5 Implementation of the following contributions accepted during the SEC#128 meeting:
- NFVSEC(18)000073r1_SEC022_Section_4_2 with an editorial change for a.4.1.8:

"open redirector on client" change to "redirection on client to malicious server"
- NFVSEC(18)000074r1_SEC022_Section_4_3

2018-09-07 V0.0.6 Implementation of the following contributions accepted during the SEC#130 meeting
- NFVSEC(18)000087r1_SEC022_Annex_A_3GPP_Token
- NFVSEC(18)000088_SEC022_Annex_A_IETF_Mutual_TLS
- NFVSEC(18)000089r1_SEC022_Section_5

2018-10-26 V0.0.7 Implementation of the following contributions accepted during the SEC#133 meeting
- NFVSEC(18)000107r1_022_Requirements_cleanup reversing the Auth-Prot_003

change, as described in the report of the SEC#133 (NFVSEC(18)000128)
2018-11-29 V0.0.8 Implementation of the following contributions accepted during the SEC#135 meeting

- NFVSEC(18)135001_SEC022_Authorization_Server_discovery adding a note:
"NOTE: It is FFS how we establish trust with the Authorization Server for dynamic
discovery". As described in SEC#135 meeting report (NFVSEC(18)000140)

- NFVSEC(18)135003_SEC022_Registration_process
2018-12-05 V0.0.9 Implementation of the following contributions accepted during the SEC#136 meeting

- NFVSEC(18)135007r1_SEC022_Access_Token_Format_and_metadata
- NFVSEC(18)000152_SEC022_Token_request with Editorial corrections
- NFVSEC(18)000153_SEC022_Token_verification_process

2019-01-22 V0.0.10 Implementation of Editorial comments following the SOL review
Adding a clause for IANA registration

2019-02-13 V0.0.11 Editorial modifications after EditHelp.
- Hanging paragraph suppression
- Changes in the IANA Registry consideration Clause 7
- Add IANA registration that was missing.
- Editorial changes to make the NFV Token naming consistent
- Change the cardinality of optional elements to be consistent with SOL rules.
- Change the scope to apply to all API of NFV-MANO endpoints, addressed by

SOL013.
2019-02-20 V0.0.12 Editorial modifications and answers to the comments of NFV(19)000050: SEC022 Comments

and editorial updates
- Authorization Server support of the MTLS mandatory in Authorization server

configuration.
- Add example of protected resource request with access_token and nfv token.

2019-04-11 V0.0.13 Implementation of the following contributions accepted during the SEC#142, SEC#144 and
SEC#145 meetings:

- NFVSEC(19)000028_SEC022_-_Clause_5_2_-
_Simplification_of_the_resgitration_pro

- NFVSEC(19)000044r1_SEC022_Authorization_Server_Identifier_clarification
- NFVSEC(19)000045r1_SEC022_single_access_token
- NFVSEC(19)000047r1_SEC022_Authorization_Server_Configuration_simplification
- NFVSEC(19)000049r1_SEC022_at_use_nbr_default_fix

2019-04-23 V0.1.0 Implementation of the following contribution accepted during the SEC#146 meeting with other
changes agreed during the meeting:

- NFVSEC(19)000059_DCM_comments_on_SEC022_v0_0_13
2019-08-06 V2.6.1 Publication
2019-11-21 V2.6.2 Implementation of the CR NFVSEC(19)000094r1 agreed during NFVSEC#152-F2F Paris

https://docbox.etsi.org/ISG/NFV/05-CONTRIBUTIONS/2019/NFV(19)000050_SEC022_Comments_and_editorial_updates.zip

ETSI

ETSI GS NFV-SEC 022 V2.7.1 (2020-01)49

History

Document history

V2.6.1 August 2019 Publication

V2.7.1 January 2020 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Security requirements for API access tokens
	4.1 Authorization for API access using OAuth2.0 defined in ETSI GS NFV-SOL 013
	4.1.0 Authorization for API access using OAuth2.0
	4.1.1 Mapping roles for Authorization for API access using OAuth2.0
	4.1.2 Authorization grant for Authorization for API access using OAuth2.0
	4.1.3 High level procedures for API access and notifications using OAuth2.0
	4.1.4 Access token for API access and notifications using OAuth2.0

	4.2 Threat Analysis
	4.2.0 Access token defined in ETSI GS NFV-SOL 013
	4.2.1 Risk analysis and assessment

	4.3 Security requirements

	5 NFV Access Token Definition
	5.1 Authorization Server discovery
	5.1.1 Authorization Server discovery description
	5.1.2 Manual Authorization Server Identifier discovery
	5.1.3 Dynamic Authorization Server Identifier discovery
	5.1.4 Authorization Server Configuration discovery

	5.2 Registration process
	5.2.1 Disposition
	5.2.2 Registration process description
	5.2.3 Client metadata

	5.3 Token Request
	5.4 NFV Access Token Format
	5.5 NFV access token associated Metadata

	6 Token Verification Process
	Annex A (informative): Analysis of existing Access Token specifications
	A.1 OpenStack® Keystone
	A.1.0 Introduction
	A.1.1 Authorization scopes
	A.1.2 Token binding
	A.1.3 Fernet token
	A.1.4 Fernet keys
	A.1.5 Advantage of Fernet tokens

	A.2 OpenID® Connect ID-Token
	A.2.0 Introduction
	A.2.1 ID Token
	A.2.2 Advantage of ID Token

	A.3 IETF TLS-Based AccessToken Binding
	A.3.0 Introduction
	A.3.1 OAuth 2.0 Token Binding
	A.3.1.1 Token Binding ID
	A.3.1.2 Token Binding for ID Token
	A.3.1.3 Advantage of Token Binding
	A.3.1.4 Security considerations
	A.3.1.4.1 Security Token Replay
	A.3.1.4.2 Downgrade attacks

	A.3.2 OAuth 2.0 Certificate Bound Access Tokens
	A.3.2.0 Basic principle
	A.3.2.1 Certificate bound access token using JWT

	A.3.3 OAuth 2.0 Token Binding and OAuth2.0 Certificate Token binding comparison

	A.4 3GPP authorization framework
	A.4.0 OAuth 2.0 authorization in 3GPP
	A.4.1 Authentication between Network Functions
	A.4.2 Access Token Request
	A.4.3 3GPP Access Token
	A.4.4 Service access request

	Annex B (informative): Synthesis on existing Access Token
	Annex C (informative): IANA Registry Considerations
	C.1 "Well-Known URIs" Registry
	C.1.1 Introduction
	C.1.2 Registry contents

	C.2 JSON Web Token Claims registry
	C.2.1 Introduction
	C.2.2 Registry contents

	C.3 OAuth Parameters registry
	C.3.1 Introduction
	C.3.2 Registry contents

	C.4 OAuth Dynamic Client Registration Metadata registry
	C.4.1 Introduction
	C.4.2 Registry contents

	C.5 OAuth Authorization Server Metadata registry
	C.5.1 Introduction
	C.5.2 Registry contents

	Annex D (informative): Change History
	History

