ETSI GS NFV-REL 002 vi.1.1 (2015-09)

S

GROUP SPEC

Network Functions Virtualisation (NFV);
Reliability;
Report on Scalable Architectures for Reliability Management

Disclaimer

This document has been produced and approved by the Network Functions Virtualisation (NFV) ETSI Industry Specification
Group (ISG) and represents the views of those members who participated in this ISG.
It does not necessarily represent the views of the entire ETSI membership.

2 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

Reference
DGS/NFV-REL002

Keywords
architecture, NFV, reliability

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2015.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
http://portal.etsi.org/tb/status/status.asp
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

Contents

Intellectual Property RIGNES.... ..ot e e b e 4
0] Yo (o ST 4
MoOdal VErDS TEMINOIOQYccveieeiii ettt ettt e e s re s be e b e sbeeaeesbesreensesaeeaseseesneensesreeneensensens 4
1 o0 0L SR 5
2 L= £ 101 S 5
21 NOFMBLIVE FEFEIEINCEScutieiitiite ittt ettt sttt h ettt e e besb e ek e s bt e bt e ae e e e s bese e besheeb e e ae e s e eean e besaeebenneennennen 5
2.2 INfOrMELIVE FEFEIENCES. ... ettt e b b bbbt e e e e se e b e s bt eb e et e e e e e se e et e saeebeeneennennens 6
3 Definitions and @DDreVIaLiONS...........coviieieeeee et 7
31 DEfINITIONS. ...ttt et e et et e e te e e be e be e beeabeeaaesheesbeesbeesbeeseesaeesaeeseenseeaseenseeseesteeteentens 7
3.2 Y o] 1=V = 0] 1SR 7
4 Scalable ArchiteCtUre @A NVot te e st e eeesne e 8
41 11 0o 1 1 o o PP RTRSRSR 8
4.2 Overview of Current Adoption in Cloud Data CentreS.........ccviueieeieeieereesee e seesee st e e eesaeseesee e seesns 9
4.3 F N ool Lo a1 12 (o T 1N | SR 9
5 SCAIING SEALE.......ccveeeeetesieeie sttt ettt b e bttt et et e e et e e e st e st e bt e b e s be et e e e e et enenneebeneeneas 10
51 L] (>« SRS 10
52 Categories Of DYNAIMIC SLALE.........cieeiteeeterteeete sttt sttt sttt e it b et b e bt b e bt s be e et et e et ebe b e 13
53 CNBAITENGES ...t b et b bt b b e bt b e bt e R e bR e Rt bRt R e et h e Rt b e bt b e n e 14
6 Methods for Achieving High AVailability...........ccoviiieiiiiee e e 15
6.1 High AVailability SCENAITOSccivieiiee et e st e et e e teereesaeesteesaeeseeneenneennns 15
6.2 Dynamic Scaling With Migration AVOIGANCEc.eiueieeiieie e seese et ee e e s teesseseeseesreesaeeseenneens 16
6.3 Lightwei ght ROIDACK RECOVEIYcoiiiiieie ettt ettt ettt s ae et e et esnaesr e e seesteesteeeeeneennennnns 20
6.3.1 (@Y= YT TSN 20
6.3.2 (@11 o 4 o101 1) 1o S 21
6.3.3 CheckpoiNting With BUFFEIINGcoveiiiiiie ittt bbb e snene 22
6.34 CheckpoiNting With REDIGYc.eiiiiiiiiee ettt b e s b e bbb snene 23
6.3.5 Summary Trade-offs of RoIIback APPrOaChEscciiiiieiieeeee e 24
7 S w0 0] 1= 10 =] 0] 1SS 24
7.1 167000 11T] o TR TSP PO PP URUSROTRP 24
7.2 Guidelines for Scalable Architecture COMPONENES.........ccueiieiieiieie e e esraesreesneas 24
7.3 FULUNE WWOTK ...ttt bbb b b et e e et se e e bt s Rt e b e e e e b et sheebesaeene e e enrees 25
Annex A (informative): EXperimental RESUITS.........coiiiiiecees e 26
A1l Migration AVOIENCE RESUITS........coeiiiiiriiriesieie ettt sttt sttt nbe bt nee e 26
A.2 Lightweight Rollback RECOVENY RESUILS..........cccuiiiiciiiti ettt st 27
A.21 T 0o o (8 Tox 7ol o WSRO 27
A.2.2 [N <0 (0O PP PP SP TP TRT 28
A.2.3 TRFOUGNPUL ...ttt h bbb bt b ekt b e s e bt b e e e he bt s e e st ebeseeb e s b et eb e ne e e ebesbe e ebenbennenens 29
A.24 REDIGY TIIMIE ...ttt bbb bbb s h e bbbt e b e R b e e e bt e b e e st e b ettt enn e 29
A.25 167000 11 =T] o FH PO U RO URUSROTRP 30
Annex B (infor mative): AULhOrS & CONEIIDULONS....c.eieiicieee s 31
L 11 (TSP PT PR PRPRPRPRON 32

ETSI

4 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential |PRs, if any, ispublicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web

server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Palicy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This Group Specification (GS) has been produced by ETSI Industry Specification Group (1SG) Network Functions
Virtualisation (NFV).

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

http://webapp.etsi.org/IPR/home.asp
http://portal.etsi.org/Help/editHelp!/Howtostart/ETSIDraftingRules.aspx

5 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

1 Scope

The present document describes a study of how today's Cloud/Data Centre techniques can be adapted to achieve
scalahility, efficiency, and reliability in NFV environments. These techniques are designed for managing shared
processing state with low-latency and high-availability requirements. They are shown to be application-independent that
can be applied generaly, rather than have each VNF use its own idiosyncratic method for meeting these goals.
Although an individual VNF could manage its own scale and replication, the techniques described here require asingle
coherent manager, such as an orchestrator, to manage the scale and capacity of many disparate VNFs. Today's I T/Cloud
Data Centres exhibit very high availability levels by limiting the amount of unique state in asingle element and creating
avirtual network function from a number of small replicated components whose functional capacity can be scaled in
and out by adjusting the running number of components. Reliability and availability for these type of VNFsis provided
by a number of small replicated components. When an individual component fails, little state is lost and the overall
VNF experiences minimal change in functional capacity. Capacity failures can be recovered by instantiating additional
components. The present document considers a variety of use cases, involving differing levels of shared state and
different reliability requirements; each caseis explored for application-independent ways to manage state, react to
failures, and respond to increased load. The intent of the present document is to demonstrate the feasibility of these
techniques for achieving high availability for VNFs and provide guidance on Best Practices for scale out system
architectures for the management of reliability. As such, the architectures described in the present document are strictly
illustrative in nature.

Accordingly, the scope of the present document is stated as follows:
. Provide an overview of how such architectures are currently deployed in Cloud/Data Centres.
. Describe various categories of state and how scaling state can be managed.

. Describe scale-out techniques for instantiating new VNFs in a single location where failures have occurred or
unexpected traffic surges have been experienced. Scale-out may be done over multiple servers within a
location or in aserver in the same rack or cluster within any given location. Scaling out over serversin
multiple locations can be investigated in follow-up studies.

. Develop guidelines for monitoring state such that suitable requirements for controlling elements (e.g.
orchestrator) can be formalized in follow-up studies.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected |ocation might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

Not applicable.

ETSI

http://docbox.etsi.org/Reference

2.2

6 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE:

While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1]

[i.2]

[i.3]

[i.4]

[i.5]

NOTE:

[.6]

[i.7]

[i.8]

NOTE:

[i.9]
[i.10]

NOTE:

[i.11]
[i.12]

[i.13]

NOTE:

[i.14]

[i.15]

R. Stromand S. Yemini: "Optimistic Recovery in Distributed Systems’, ACM Transactions on
Computer Systems, 3(3):204-226, August 1985.

Sangjin Han, Keon Jang, Dongsu Han and Sylvia Rathasamy: "A Software NIC to Augment
Hardware", in Submission to 25" ACM Symposium on Operating Systems Principles (2015).

E.N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, David Johnson: "A Survey of Rollback-Recovery
Protocols in Message-Passing Systems’, ACM Computing Surveys, Vol. 34, Issue 3,
September 2002, pages 375-408.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson and A. Warfield: "Remus: High
Availability via Asynchronous Virtual Machine Replication”. In Proceedings USENIX NSDI,
2008.

Kemari Project.

Available at http://www.osrg.net/kemari/.

J. Sherry, P. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Macciocco, M. Manesh, J. Martins,
S. Ratnasamy, L. Rizzo and S. Shenker: "Rollback Recovery for Middleboxes®, Proceedings of the
ACM, SIGCOMM, 2015.

ETSI NFV Reliability Working Group Work Item DGS/NFV-REL004 (V0.0.5), June 2015:
"Report on active Monitoring and Failure Detection in NFV Environments'.

OPNFV Wiki: "Project: Fault Management (Doctor)".

Available at https://wiki.opnfv.org/doctor.

E. Kohler et al.: "Click Modular Router", ACM Transactions on Computer Systems, August 2000.
"Riverbed Completes Acquisition of Mazu Networks'.

Available at: http://www.riverbed.com/about/news-arti cles/press-rel eases/ri verbed-compl etes-acquisition-
of-mazu-networks.html.

Digital Corpora: "2009-M57-Patents packet trace".

S. Rajagopalan et a.: "Pico Replication: A High Availability Framework for Middleboxes®,
Proceedings of ACM SoCC, 2013.

Remus PV domU Requirements.

Available at http://wiki.xen.org/wiki/Remus PV_domU requirements.

B. Cully et al.: "Remus: High Availability via Asynchronous Virtual Machine Replication”,
Proceedings USENIX NSDI, 2008.

Lee D. and Brownlee N.: "Passive Measurement of One-way and Two-way Flow Lifetimes",
ACM SIGCOMM Computer Communications Review 37, 3 (November 2007).

ETSI

http://www.osrg.net/kemari/
https://wiki.opnfv.org/doctor
http://www.riverbed.com/about/news-articles/press-releases/riverbed-completes-acquisition-of-mazu-networks.html
http://www.riverbed.com/about/news-articles/press-releases/riverbed-completes-acquisition-of-mazu-networks.html
http://wiki.xen.org/wiki/Remus_PV_domU_requirements

7 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

3 Definitions and abbreviations
3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

affinity: for the purposes of the present document, property whereby a flow is always directed to the VNF instance that
mai ntai ns the state needed to process that flow

checkpoint: snapshot consisting of all state belonging to a VNF; required to make an identical "copy" of the running
VNF on another system

NOTE: Oneway to generate a checkpoint is by using memory snapshotting built in to the hypervisor.
cor e: independent processing unit within a CPU which executes program instructions

correct recovery: A system recovers correctly if itsinternal state after afailureis consistent with the observable
behaviour of the system before the failure.

NOTE: See[i.1] for further details.

flow: sequence of packets that share the same 5-tuple: source port and |P address, destination port and | P address, and
protocol

non-deter minism: A program is non-deterministic if two executions of the same code over the same inputs may
generate different outputs.

NOTE: Programs which when given the same input are always guaranteed to produce the same output are called
deterministic.

stable storage: memory, SSD, or disk storage whose failure conditions are independent of the failure condition of the
VNF; stable storage should provide the guarantee that even if the VNF fails, the stable storage will remain available

state: contents of all memory required to execute the VNF, e.g. counters, timers, tables, protocol state machines

thread: concurrent unit of execution, e.g. p-threads or process.h threads

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CDF Cumulative Distribution Function
CPU Central Processing Unit

DDoS Distributed Denial of Service
DHCP Dynamic Host Configuration Protocol
DPDK Data Plane Devel opment Kit

DPI Deep Packet Inspection

FTMB Fault Tolerant MiddleBox

Gbps Giga bits per second

HA High Availability

IDS Intrusion Detection System

IP Internet Protocol

Kpps Kilo packets per second

Mpps Mega packets per second

NAT Network Address Trandation
NFV Network Function Virtualisation
NFVI Network Function Virtualisation Infrastructure
NIC Network Interface Controller
NUMA Non Uniform Memory Access
QoS Quality of Service

TCP Transmission Control Protocol
VF Virtual Function

VM Virtual Machine

ETSI

8 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

VNF Virtualised Network Function
VPN Virtual Private Network
WAN Wide Area Network

4 Scalable Architecture and NFV

4.1 Introduction

Traditional reliability management in telecommunications networks typically depends on a variety of redundancy
schemes. For example, spare resources may be designated in some form of standby mode; these resources are activated
in the event of network failures such that service outages are minimized. Alternately, over-provisioning of resources
may also be considered (active-active mode) such that if one resource fails, the remaining resources can still process
traffic loads.

The advent of Network Functions Virtualisation (NFV) ushered in an environment where the focus of
telecommunications network operations shifted from specialized and sophisticated hardware with potentially
proprietary software functions residing on them towards commoditized and commercially available servers and
standardized software that can be loaded up on them on an as needed basis. In such an environment, Service Providers
can enable dynamic loading of Virtual Network Functions (VNF) to readily available servers as and when needed - this
isreferred to as "scaling out” (see note). Traffic loads can vary with bursts and spikes of traffic due to external events;
aternately network resource failures may reduce the avail able resources to process existing load adequately. The
management of high availability then becomes equivalent to managing dynamic traffic loads on the network by scaling
out VNFs where needed and when necessary. Thisis the current method of managing high availahility in Cloud/Data
Centres. The goal of the present document isto describe how such scalable architecture methods can be adapted for use
in NFV-based Service Provider networks in order to achieve high availability for telecommunications services.

NOTE: Itisalso possible to reduce the number of existing VNFsif specific traffic types have lower than expected
loads; this processis known as "scaling in".

The use of scalable architecture involves the following:

. Distributed functionality with sufficient hardware (servers and storage) resources deployed in multiple
locations in a Service Provider's region.

o Duplicated functionality within locations and in multiple locations such that failure in one location does not
impact processing of services.

. Load balancing such that any given network location does not experience heavier loads than others.

. Managing network scale and monitoring network state such that the ability of available resources to process
current loads is constantly determined. In the event of failures, additional VNFs can be dynamically "scaled-
out" to appropriate locations/servers such that high availability is maintained.

The following assumptions are stated for the development of the present document:

. Required hardware (servers and storage) is pre-provisioned in sufficient quantitiesin all Service Provider
locations such that scaling-out new VNFsis always possible at any given location when necessary.

. Required hardware is distributed strategically over multiple locations throughout the Service Provider's
network.

e Therelationship between the type of service and the corresponding VNFs necessary to process the service type
is expected to be known.

ETSI

9 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

4.2 Overview of Current Adoption in Cloud Data Centres

Typical services offered by Cloud providers include web based services and cloud computing. Scalable architectures for
managing availability in response to load demands have been successfully implemented by Cloud Service providers. A
high level overview of the techniques for achieving high availability is as follows:

. Sizing Functional Components: Cloud providers now craft smaller components in terms of functionality and
then deploy very large numbers of such componentsin Data Centres. Sizing such componentsis thus
important - how much functional software can be loaded onto commercial hardware products. Each hardware
resource therefore handles fewer functions than the traditional hardware resources. If one or more such
components fail, the impact on service delivery is not expected to be very significant.

. Distributed Functionality: Data Centres are located in multiple regions by the Cloud Service Provider. Failure
in one Data Centre does not impact the performance of other Centres. Functionality is duplicated simply by
deploying large numbers of functional components. The distributed nature of Cloud Data Centres thus permits
storage of critical information (service and customer information) within one location and in multiple locations
insulated from each other. Failure in one location thus permits the relevant information to be brought online
through alternate Centres.

. Load Balancing: Incoming load can be processed though aload balancer which distributes load by some
designated mechanism such that no Data Centre system experiences overload conditions. Given multiple
locations and multiple storage of critical information, load balancing provides a method to ensure availability
of resources even under failure conditions.

. Dynamic Scalability: Again, given the small size of functional components, it is fairly straightforward to scale-
out (or scale-in) necessary resources in the event of failure or bursty load conditions.

. Managing Scale and State: Methods for keeping track of the state of a Cloud Service provider'sresourcesis
critical. These methods enable the provider to determine whether currently deployed resources are sufficient to
ensure high availability or not. If additional resources are deemed necessary then they can be brought online
dynamically.

4.3 Applicability to NFV

The main motivating factor for Service Providers for adopting NFV is the promise of converting highly specialized
communication centre locations (e.g. Central Offices, Points of Presence) in today's networks into flexible Cloud-based
Data Centres built with commercia hardware products that:

1) Continue the current function of communication centres, namely; connect residential and business customers
to their networks.

2) Expand into new business opportunities by opening up their network infrastructures to third party services. An
example of such aserviceis hosting services currently offered by Cloud Data Centres.

Embracing an NFV-based design for communication centres allows Service Providers to enable such flexibility. This
also incentivizes Service Providers to explore Cloud/Data Centre methodol ogies for providing high availability to their
customers.
Today's communication centres provide awide range of network functions such as:

. Virtual Private Network (VPN) support

J Firewalls

. IPTV/Multicast

. Dynamic Host Configuration Protocol (DHCP)

. Quality of Service (QoS)

. Network Address Trandation (NAT)

. Wide Area Network (WAN) Support

ETSI

10 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

. Deep Packet Inspection (DPI)
. Content Caching
. Traffic Scrubbing for Distributed Denial of Service (DDoS) Prevention

These functions are well suited for an NFV environment. They can be supplemented with additional functions for
delivery of Cloud services such as hosting. In principle, al such functions can be managed for high availability via
Cloud-based Scalable Architecture techniques.

Traditional reliability management in telecommunications networks typically depends on a variety of redundancy
schemes whereby spare resources are designated in some form of active-active mode or active-standby mode such that
incoming traffic continues to be properly processed. The goal isto minimize service outages.

With the advent of NFV, aternate methods of reliability management can be considered due to the following:

. Commercial Hardware - Hardware resources are no longer expected to be specialized. Rather than have
sophisticated and possibly proprietary hardware, NFV is expected to usher in an era of easily available and
commoditized Commercial Off-the-Shelf products.

. Standardized Virtual Network Functions (VNF) - Software resources that form the heart of any network's
operations are expected to become readily available from multiple sources. They are also expected to be
deployed in multiple commercia hardware with relative ease.

In such an environment, it can be convenient to "scale-out” network resources - rapidly instantiate large numbers of
readily available and standardized VNFs onto pre-configured commercial hardware/servers. Thisresultsin large
numbers of server/VNF combinations each performing arelatively small set of network functions. This scenario is
expected to handle varying traffic loads:

. Normal Loads - Typically expected traffic |oads based on time-of-day and day-of-week.

e Traffic Bursts - Such situations can arise due to outside events or from network failures. Outside events (e.g.
natural disasters, local events of extreme interest) can create large bursts of traffic above and beyond average
values. Network failures reduce the available resources needed to process service traffic loads thereby creating
higher load volumes for remai ning resources.

Scaling out resources with NFV can be managed dynamically such that all types of network |oads can be satisfactorily
processed. This type of dynamic scale-out process in response to traffic load demands results in high availability of
network resources for service delivery.

The present document provides an overview of some of these techniques to ensure high availability of these functions
under conditions of network failures as well as unexpected surges in telecommunications traffic.

5 Scaling State
5.1 Context

This clause presents a high level overview of the context underlying the solution methods that are presented in clause 6.
The focus here is on managing high availability of VNF services within a single location; this location may be a cluster
deployed within a Service Provider's Central Office, aregional Data Centre, or even a set of racks in a general-purpose
cloud. A Service Provider's network will span multiple such locations. The assumption isthat there is a network-wide
control architecture that is responsible for determining what subset of traffic is processed by which VNFsin each
location. For example, the controlling mechanism might determine that Data Centre D1 will provide firewall, WAN
optimization and Intrusion Detection services for traffic from customers C1, . . ., Ck. A discussion of this network-wide
control architecture is beyond the scope of the present document.

ETSI

11 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

Itiscritical to note that the focus of the present document is only on meeting the dictates of the network-wide
controlling mechanism within a single location, in the face of failure and traffic fluctuations. Some high level
descriptions of the architecture utilized for this study are as follows:

Infrastructure View: It is understood that multiple architectures are possible for the solution infrastructure. The
clause 6 solution techniques are based on a high level architecture that comprises a set of general-purpose
servers interconnected with commaodity switches within each location. The techniques for managing scale are
presented in the context of a single rack-scale deployment (i.e. with serversinterconnected by a single switch);
the same techniques can be applied in multi-rack deployments as well. As shown in figure 1, a subset of the
switch ports are "externa" facing, while the remaining ports interconnect commodity servers on which VNF
services are run. This architecture provides flexibility to balance computing resources and switching capacity
based on operator needs. A traffic flow enters and exits this system on the external ports: an incoming flow
may be directly switched between the input and output ports using only the hardware switch, or it may be
"steered" through one or more VNFS running on one or more Servers.

Servers
D —
‘ ’
>
>
E 1 Sl : Internal { ’
.xterna : switch
ports ‘ . ports
—>
>

Figure 1: Hardware Infrastructure

System View: The overall system architecture (within asingle location) isillustrated in figure 2. This
architecture comprises three components:

- Logically centralized controlling mechanism (such as an orchestrator) that maintains a system-wide
view.

- Virtual Network Functions (VNFs) implemented as software applications

- Software switching layer that underlies the VNFs - VNFsimplement specific traffic processing services -
e.g. firewalling, Intrusion Detection System (IDS), WAN optimization - while the software switching
layer isresponsible for correctly "steering” traffic between VNFs.

ETSI

12 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

Location-wide
Controlling
Mechanism o,

>
oy

—‘—‘ S TS
-~ s

]

]

. -~
Controlling T
mechanism

Hardware switch Software
switch

\ 4

/
’
’
D
.
y
I
oV A

mZ<

Figure 2: System View

e VNF Implementation View: VNFs are implemented as multi-threaded applications that run in parallel on a
multicore CPU (seefigure 3). It is assumed that 'multi-queue’ Network Interface Controllers (NIC) are
deployed offering multiple transmit and receive queues that are partitioned across threads. Each thread reads
from its own receive queue(s) and writesto its own transmit queue(s). The NIC partitions packets across
threads using the classification capabilities offered by modern NIC hardware - e.g. hashing a packet's 5-tuple
including source and destination port and address to a queue; hence, all packets from aflow are processed by
the same thread and each packet is processed entirely by one thread. The above are standard approaches to
parallelizing traffic processing in multicore packet-processing systems.

NOTE: Itispossibletoimplement VNFs as single-threaded applications. In such cases, they are equivaent to

Per-flow State (see clause 5.2) and hence, recovery mechanisms for such applications fall into the
"straightforward" type (see clause 6.1).

ETSI

5.2

13 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

— | P THREAD our| [

2

2 N THREAD ot -

z / —r | 2

- S

z)

-l THREAD ot | |
SHARED
STATE

Figure 3: Multi-Threaded VNF
Virtualisation View: VNF code is assumed to be running in avirtualised mode. The virtualisation need not be

aVM per se; containers could be used or some other form of compartmentalization that provides isolation and
supports low overhead snapshots of its content.

Categories of Dynamic State

Those VNFs dealing with stateful applications - e.g. Network Address Translators (NATS), WAN Optimizers, and
Intrusion Prevention Systems all maintain dynamic state about flows, users, and network conditions. As discussed in
clause 5.3, correctly managing this state is the key challenge in achieving high availability. While many forms of state
are possible for general applications, the focus here is on three forms of state that are most common to traffic processing
applications:

Control State: State that is created (i.e. written) by a single control thread and consumed (i.e. read) by all other
threads. The canonical example of such state would be data structures that store forwarding entries or access
control lists. Note that the reading and writing thread(s) may run on different cores within a single server, or
on different servers.

Per-flow State: State that is created and consumed when processing packets that belong to asingle flow. State
maintained for byte stream reconstruction, connection tracking, or counters that track the number of bytes or
packets per flow are examples of per-flow state.

Aggregate State: State that is created and consumed when processing packets belong to an aggregate of flows.
Examples of flow aggregatesinclude all flows to/from an enterprise, all flows from a source prefix, or all
flows to a destination address. Common forms of aggregate state include counters that track the number of
connectionsinitiated from (say) an | P prefix range, IDS state machines, rate limiters, packet caches for WAN
optimizers, etc.

ETSI

14 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

The three types of state described above can be shared across multiple threads; thisis referred to as shared state. High
Availability (HA) techniques for shared state face additional challenges (clause 5.3) since they have to consider the
effects of coordination across multiple threads. For the model proposed in the present document for how VNFs partition
traffic across threads, all packets from a flow are processed by a single thread, so per-flow stateislocal to asingle
thread and is not shared state. Control state is shared state, but thisis arelatively easy case since thereisonly asingle
thread that writes to the state; al other threads only read the shared state. Aggregate state may be shared and, in this
case, each thread can both read and write the shared state. Whileit is preferable that aggregate state be contained within
asingle server, this may not always be possible. In particular, if the total throughput demand of a flow aggregate cannot
be handled by a single server, then any state associated with that aggregate has to be spread across multiple servers;
multiple servers may be needed in any case for redundancy purposes. Hence it is necessary to further distinguish
between aggregate state that is shared across multiple threads on a single server (aggregate, single-server) and aggregate
state that is shared by threads on different servers (aggregate, multi-server).

5.3 Challenges

There are two aspects to achieving high availability for VNF services: scaling out/in the number of VNF instancesin
response to variations in traffic load, and recovering from the failure of a VNF instance.

. Challenges for Dynamic Scaling: Under overload condition, new VNFs are instantiated when the existing
VNFs are unable to cope with the load. For the purposes of the present document, existing VNFs and existing
traffic are referred to as"old"; new VNFs and newly arriving traffic are referred to as "new". VNFs exhibit two
characteristics that make dynamic scaling of VNFs challenging: statefulness and low packet processing
latencies. Statefulness makes dynamic scaling challenging because it requires load balancing techniques that
split traffic across new and old instances in a manner that maintains affinity between packets and their
associated (control, per-flow or aggregate) state while also maintaining a good load distribution among the
replicas. Such load balancing techniques have also to be fast to avoid any noticeable disruption to applications.
Finaly, they shall be compatible with the resource and feature limitations of commaodity hardware switches
(e.g. limited flow table sizes, features, and rule update times). A description of how these challenges constrain
the design spaceis provided in clause 6.2.

. Challenges for Fault-Tolerance: Akin to the above discussion, VNFs exhibit three characteristics that, in
combination, make recovery from failure challenging: statefulness, very frequent non-determinism, and low
packet-processing latencies. As mentioned earlier, many VNFs are stateful. With no mechanism to restore lost
state, backup VNFs may be unable to correctly process packets after failure, leading to service disruption.
Thus, failover solutions shall correctly restore state such that future packets are processed asif this state was
never lost (see clause 6). This could be achieved in many ways. For example, an 'active:active' operation could
be deployed, in which a'master' and a 'replica’ execute on all inputs but only the master's output is released to
users. One problem with this approach isthat it is inefficient, requiring 1:1 redundancy for every VNF. More
egregioudly, this approach fails when system execution is non-deterministic, because the master and replica
might diverge in their internal state and produce an incorrect recovery. Similarly, such non-determinism
prevents replicated state machine techniques from providing recovery in this context.

Non-determinism is a common problem in parallel programs when threads 'race’ to access shared state: the order in
which these accesses occur depends on hard-to-control effects (such as the scheduling order of threads, their rate of
progress, etc.) and are thus hard to predict. Unfortunately, as mentioned earlier, shared state is common in many VNFs,
and shared state such as counters, caches or address pools may be accessed on a per-packet or per-flow basis leading to
frequent non-determinism. In addition, non-determinism can also arise because of access to hardware devices, including
clocks and random number generators, whose return values cannot be predicted. Any failure recovery technique shall
cope with all of these sources of non-determinism. As described in the following clauses, the common approach to
accommodating non-determinism is to intercept and/or record the outcome of all potentially non-deterministic
operations. However, such interception slows down normal operation and is thus at odds with the other two
characteristics of traffic processing applications, namely very frequent accesses to shared state and low packet
processing latencies. Specifically, a piece of shared state may be accessed 100 k -1 M times per second (the rate of
packet arrivals), and the latency through the VNF should be in 10 - 100 s of microseconds. Hence, mechanisms for
fault-tolerance shall support high access rates and introduce extra latencies of a similar magnitude.

ETSI

15 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

6 Methods for Achieving High Availability
6.1 High Availability Scenarios

Two situations where Scalable Architecture methods can be considered for reliability management are;

1) Unexpectedly large surgesin incoming traffic - this situation can be mitigated by dynamically scaling out new
VNFsto handle additional traffic loads.

2) Network failures - failuresin element hardware, virtualisation layer, and VNFs that require fast recovery.

Each situation may have traffic flows undergoing different types of state; such state needs to be replicated for successful
instantiation of new VNFs. As described in clause 5.2, there are various types of state that need to be considered:

1) Control State

2) Per-flow State

3) Aggregate State:
a) Single-server Case
b) Multiple-server case

Combinations of these situations and the type of state can be stated as straightforward, non-trivial but common,
uncommon and difficult.

There are three straightforward cases:

1) Dynamic scaling of control state: control thread pushes updates to all other threads or servers or to a shared
repository. The rate of updates can be tuned based on the VNF's consistency requirements for that state. I
updates are to be atomic, then standard two-phase commit protocols can be used to push out updates although
this will necessarily constrain the frequency of updates.

2) Recovery of control state: the control thread can checkpoint state before pushing it out to the other threads. If a
thread other than the control thread fails, it can simply restore it from the control thread's copy.

3) Recovery of per-flow state: the techniques needed here are a strict subset of the ones needed for recovery of
aggregate state; thisinvolves simple black-box checkpoint and replay techniques. This is because per-flow
state islocal to asingle thread and is not shared state. This case will be discussed as part of the case involving
recovery of aggregate state.

There are three non-trivial but common cases:
1) Dynamic scaling of per-flow state.
2) Dynamic scaling of single-server aggregate state.
3) Recovery of single-server aggregate state.

Two technigues - Migration Avoidance and Lightweight Rollback Recovery - are presented below for addressing these
three non-trivial but common cases.

Finally, there are two difficult casesinvolving multi server aggregate states; multi servers may be necessary if the total
throughput demand of a flow aggregate cannot be handled by asingle server:

1) Dynamic scaling of cross-server aggregate state - thisis difficult because reads and writes now have to be
synchronized across servers. While algorithms exist for this (e.g. Paxos), they are very slow.

2) Recovery of cross-server aggregate state - thisis difficult for the same reason as above.

These two cases are for further study.

ETSI

16 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

6.2 Dynamic Scaling with Migration Avoidance

Solutions for dynamically scaling a service are important for efficient use of infrastructure. In particular, a processis
required whereby existing VNFs that are overloaded get supplemented with newly instantiated VNFs (scaling out) and
the surging traffic load is now split over the increased number of VNFs. This clause describes a Migration Avoidance
method [i.2] for scaling out the number of VNF instances; methods for contraction when underutilized (scaling in) are
not presented, but are similar in spirit. The key idea behind migration avoidance isto have all processing switches
(hardware and software) act in concert in order to meet the affinity requirement - ensure that all flows are directed to the
VNF instance that maintains the state needed to process that flow. It is best applied to two of the three non-trivial but
COMMON Cases.

1) Dynamic scaling of per-flow state
2) Dynamic scaling of single server aggregate state

Details on the underlying architecture as well asthe individual processing steps for migration avoidance are provided
below.

Under overload conditions, new VNF instance(s) are instantiated and the incoming traffic is split between the original
VNF and the new VNF. The techniques described in this clause build on afew system components that are assumed to
exist but that are not described here in detail; these are[i.2]:

1) Overload detector: this component detects when a VNF instance is overloaded and then notifies the system-
wide controller; the specifics of how such overloads are detected is orthogonal to the techniques for reacting to
overloads that are described below.

2) Placement: this component determines where - i.e. at which server core(s) - the new VNF instance(s) should
be placed; the specific logic used to determine placement is orthogonal to the techniques described below.

3) Creation of new VNF instances:. this component instantiates new VNF instances (whether processes,
containers or VMSs) at specified cores (as computed by the placement component).

Once overload is detected and new VNF instances are installed at the appropriate cores, the remaining component
needed for dynamic scaling is to configure the network to direct traffic to the appropriate VNF instances. As shall be
seen, some of the situations discussed below involve migrating dynamic VNF state from the original to the new VNF
instances. The remainder of this clause focuses on techniques for this component.

Most VNFs are stateful (i.e. processing a particular packet depends on state established by the arrival of previous
packetsin that flow or aggregate of flows) and therefore they require affinity, where traffic for agiven flow (or
aggregates of flows) has to reach the instance that holds that flow's (or aggregate's) state (for example, if there are
multiple instances of aNAT VNF, then a packet p should be sent to the NAT instance that maintains the address
mappings for p's flow). Note that the techniques described in this clause only require that the flow ID can be computed
based on information available at the switch, such as the packet's header fields. When aVNF instance is replicated, its
input traffic will be split in a manner that preserves the VNF's affinity requirement.

A high level overview of the architecture for thistechnique is depicted in figure 4 below. Note that thisis an illustrative
example - other architectures are possible. Key components in this architecture are:

1) Servers(Sland S2infigure 4) over which VNFs are instantiated - new VNFs are instantiated by replicating
existing ones over these servers. In the figure, VNF A on server Sl is replicated with a new instance A" which
isinstantiated on server S2.

2) Software Switches are run on each server; the VNFs are run over these switches.

3) Hardware Switch connects the servers together and it directs flows to the servers based on which VNF the
flows need to be processed by.

4) Externa Controller coordinates and manages the entire process.
The techniques described in the remainder of this clause are based on the following assumptions:

1) Each flow can be mapped into aflow ID (e.g. viaa hash function applied to relevant header fields) in a
specified interval R.

ETSI

17 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

2) Each VNF instance is associated with one or more sub-intervals (or range) within R. A range is described asa
subset of the original interval R; note that ranges are non-overlapping.

3) The hardware switch can compute the flow 1D and determine which range within R it belongsto using a
manageable set of rules.

4) The software switch on each server tracks the active flows that a VNF instance on that server handles. The
notation Fqd(A) is used to refer to the set of flows handled by the VNF instance A prior to the instantiation of
A

A VNF instance A will have arange filter installed in the server's software switch or in the hardware switch. When
replicating a VNF instance A with A', the range previously associated with A shall now be partitioned between A and A'.
For example, if the original range for Ais[X, Y], then the partitioning into two new ranges is done without overlap,
such as:

. Range for A prior to split: ~ [X, Y]
. Range for A after split: [X, M) - this notation indicates that time instance M is not part of the range for A
. Range for A' after split: [M, Y] - this notation indicates that time instance M is part of the range for A’

The goal is to partition the range in a manner that ensures good balance of load across A and A' while ensuring that
affinity for the dynamic state associated with flows in Fqq(A) is maintained.

Some perspective can be gleaned from describing two opposite and extreme positions as follows:

1) Never Migrate: In this approach, dynamic state is never migrated across VNF instances and instead, affinity is
achieved by inserting specia 'exception’ rules for flows in Fqq(A) in the hardware or software switch. For
example, an exception rule can be inserted for every previously active flow from Fqq(A) that fallsin the range
now associated with the new VNF instance A'. In practice, the number of exceptions here can be very large. It
may be possible to reduce the range (or sub-interval) for the new VNF instance A', but this resultsin an uneven
traffic split. This problem may arise when the filters are installed on a hardware switch, and A and A’ reside on
different servers.

2) Always Migrate: In this approach, dynamic state for flows from Fqq(A) that fall in the range associated with A’
ismigrated from Ato A'. Thefilter on the switch is then updated with two replacement filters; the original
rangeis split into two new non-overlapping ranges as described above. This method is highly scalableiniits
use of switch rule table space and achieves a good balance of load between A and A'. However it does rely on
support for state migration which may not exist in legacy applications. In addition, it can be complex and
expensive to implement.

The disadvantages of these two extremes are dependence on state migration techniques to move the relevant dynamic
state from one instance to another or the need for large rule setsin switches. One way to avoid these disadvantagesis
the technique of Migration Avoidance stated as follows. The key ideain migration avoidance isto have the hardware
and software switch act in concert to maintain affinity. Migration avoidance does not require state migration (state
migration can be implemented as an optimization to migration avoidance but is not strictly required), achieves good
load balance, and is designed to minimize the number of flow table entries used on the hardware switch to pass traffic to
VNF instances. The approach is described as follows:

1) Upon splitting, the original range filter on the hardware switch isinitially unchanged, and the new filters (two
new ranges plus exceptions) are installed in the software switch of the server that hosts A.

2) Asflowsin Fqd(A) gradualy terminate, the corresponding exception rules can be removed.

3) When the number of exceptions drops below some threshold, the new ranges and remaining exceptions are
pushed to the hardware switch, replacing the origina filter rule. The purpose of this threshold isto exit
migration avoidance once the number of exception rules remaining can be accommodated by the hardware
switch. Once migration avoidance terminates, flows processed by the new VNF instance A' are no longer
detoured through the server that hosts A and are instead directly forwarded from the hardware switch to the
server hosting A'.

ETSI

18 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

By temporarily leveraging the capabilities of the software switch, migration avoidance achieves load distribution
without the complexity of state migration and with efficient use of switch resources. The trade-off is the additional
latency to new flows being punted between servers (but this overhead is small and for a short period of time) and some
additional switch bandwidth (again, for a short duration) - thislevel of efficient performance is quantified for these
overheadsin clause A.1.

@ SI_™. S2

) @ A A
Controller .- @ @ -

“~~~J.] S/W Switch S/W Switch

@ $)

H/W Switch

Figure 4: High Level Migration Avoidance Architecture

A step-by-step process for Migration Avoidance is as follows:

1)

2)

3
4)

5)

6)

The controller is notified that VNF A is overloaded. There are many ways in which overload could be detected
and communicated (e.g. this could be done by the VNF itself, or by external monitors); this process does not
mandate any particular method for overload detection and communication.

The controller determines where anew VNF instance should be placed. In the examplein figure 4, the
controller chooses server S2.

The controller instantiates the new VNF instance A' at server S2.

As introduced above, [X,Y] denotes the range for A prior to the replication and [X,M) and [M, Y] the ranges
for Aand A’ after the replication; similarly, Fod(A) denotes the flows that were active at A prior to the
replication. The controller's next step is to configure the software switch at S1 to send packets from new flows
that fall in the range [M,Y] to the server S2 while continuing to send packets from flows in Foqd(A) to VNF
instance A at S1.

Asflowsin Fqq(A) gradually terminate, their corresponding rules are removed from the software switch at S1.
Once the number of active flowsin Fqq(A) that belong to the range [M,Y] drops below a configured threshold
value T, the controller is notified.

The controller now configures the hardware switch to achieve the following:

a) Packetsfrom active flowsin Fqq(A) that fall in the range [M,Y] are sent to S1 (as per the above, there
will be fewer than T of these).

b) Packetsfrom flowsthat fall in the range [X,M) are sent to S1.

c) Packetsfrom flows not in Fqq4(A) that fall in the range [M,Y] are sent to S2.

ETSI

19 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

Sl S2 S1 S2 Sl S2
A A A A A
A A A a A
| [s/W Bwitch || | | S/W Switch | [[s/W stwitch || | | S/WiSwitch | | S/W Switch || || $/W Switch |
$ H I i HElE } HEH
H/W Switch i | H/W Switch i H/W Switch |
o .i B
F1 F51 F1 F2F51 F52 F2 F51 F52 F53
(a) Before (b) During (c) After
Legend: Old Flow in Range [X, M) —
Old Flow in Range [M, Y]
New Flow in Range [X, M) cccacaaeaa- -
New Flow in Range [M, Y] e >

Figure 5. Example traffic flows using migration avoidance

Figure 5 shows an example of packet forwarding before, during and after migration avoidance. In the figure, assume
that arange [0,100] is split as[0,50) and [50,100]. Note that F; denotes a flow with ID equal to i. Before the split, al
flows are processed by the original instance A as shown in figure 5 (a). After A’ isinstantiated, all flows are till sent to
S1 by the switch. New flows that belong to [50,100] are redirected by software switch to instance A’ (Flow 52). All
existing flows (F1, F51), and new flows in the range for instance A are processed by A as shown in figure 5 (b). As
existing flows in the range [50,100], e.g. F51, die out and the number of flows falls below a certain threshold, the
controller inserts exception rules and split rules in the hardware switch. Thusin figure 5 (c) al the flows are redirected
by the hardware switch to the corresponding server:

. Old flowsin Fqg(A) that fall in the range [M,Y] are sent to S1 (Flow F51)
. Flows that fall in the range [X,M) are sent to S1 (Flow F2)
. Flows not in Feq(A) that fall in the range [M, Y] are sent to S2 (Flows F52 and F53)

The process described here is based on the assumption that the hardware switch will be able to handle the diminishing
number of exception rules (as stated in step 6 above) once the number of old flows drops below the threshold value. In
the experimental results stated in clause A.1, that assumption is shown to hold true. However, there may be other types
of physical element combinations where the selected hardware switch may not be able to handle the flow routing as

described in step 6.

In such cases, an aternative method could be considered whereby the hardware switch simply directs all flowsto A and
A' depending on where they fall on the range:

e [X,M)D>A
e [MY]DA
All remaining old flows Fqq(A) that get directed to A" are then rerouted by A’ to A - see figure 6.

ETSI

20 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

S1 S2
A A
A 'Al‘ ? A
/W Swilch | W Switchi |
il B2 I
i 1 H/WSwiteh | |
1 1 | 1
1 1 I 1 !
1 I I I
F2 F3 F51F52 F53

Figure 6: The Final Step (Step 6) with Alternative Method

Investigation of the pros and cons of these two alternatives will depend on the selection of the physical element
configurations; it isatopic for further study.

6.3 Lightweight Rollback Recovery

6.3.1 Overview

Recovery istriggered when a VNF fails due to failure at the server, e.g. hardware, driver, or host operating system. The
objective of recovery systemsisto quickly enable a"backup” or "replica’ to assume the role of the lost VNF
immediately after it fails, thus masking the failure to clients. This method applies to the non-trivial but common case for
recovery of single server aggregate state.

The goals for recovery are stated as follows. The principal requirement is that recovery should be correct - A system
recovers correctly if itsinternal state after afailureis consistent with the observable behaviour of the system before the
failure[i.1]. It isimportant to note that reconstructed state need not be identical to that before failure. Instead, it is
sufficient that the reconstructed state be one that could have generated the interactions that the system has already had
with the external world. This definition leads to a necessary condition for correctness called "output commit”, which is
stated as follows: no output can be released to the external world until all information necessary to recreate internal state
consistent with that output has been committed to stable storage. The nature of this necessary information varies widely
across different designs for fault-tolerance as does the manner in which the output commit property is enforced. In the
context of VNFs, the output in question is a packet and hence to meet the output commit property, the process needsto
ensure that before the VNF transmits a packet p, it has successfully logged to stable storage al the information needed
to recreate internal state consistent with an execution that would have generated that packet p.

In addition to performing correct recovery, there are four other desirable properties for arecovery architecture:

1) Low overhead on failure-free operation - Recovering lost state necessitates some instrumentation to record and
ensure that it is backed up; thisinstrumentation will inevitably introduce some performance overhead under
normal operation. Aswill be shown, this overhead typically manifestsin increased packet latency. As
discussed previoudly, typical VNF latency should be in the 10-100s of microseconds; while arecovery
architecture may increase latency (even under failure-free operation), mechanisms that commensurately
introduce no more than 10-100s of microseconds of added delay to packet latency are preferred.

2) Fast Recovery - Recovery from failures shall be fast to prevent degradation in the end-to-end protocols and
applications. Recovery times that avoid endpoint protocols like TCP entering timeout or reset modes are
preferred. The minimum TCP timeout is 200 ms; hence the goal for recovery timesis under this threshold
value.

3) Generdlity - A genera approach is preferred; the approach should not require complete rewriting of VNF
applications nor needs to be tailored to each VNF application.

4) Passive Operation - Dedicated replicas for each VNF application are not desired, instead solutions that only
need a passive replica are preferred, such that the backup server can be shared across active master instances.

ETSI

21 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

A generd illustrative architecture for recovery is shown in figure 6.

NOTE: Thisarchitecture can be implemented in many ways. For example, the Input and Output Handler
functions can be implemented in the NI Cs (figure 3). Detailed examination of architectural optionsisa
topic for further study.

The requirement for any architecture isthat it needs to be sufficiently robust in order to support the recovery of afailed
VNF. The goal here isto demonstrate how this general architecture can be used to implement three forms of rollback-
recovery:

. Approach #1: Checkpointing
e Approach #2: Checkpointing with Buffering

. Approach #3: Checkpointing with Replay

Input
Handler

Stable O =
A5

storage:

in/out Backup

packets,

logs, and Virtualisation
snapshots -

Virtualisation (" 4

Output |-~

Handler p
| O

Figure 7: Rollback Recovery Architecture

In al three approaches, inbound packets flow from the input handler to the master VNF to the output handler and
finally, to egress. Each of the three approaches make different trade-offs among the stated goals; these trade-offs are
summarized in clause 6.4. Checkpointing and checkpointing with buffering are the most general: they work with any
legacy VNF binary, even those which are not specifically configured for high availability. However, checkpointing
achieves generality by sacrificing correctness, and checkpointing with buffering achieves generality by sacrificing
latency. Checkpointing with replay achieves all stated goals. However, it can be applied only if the VNF source code is
available for modification (via automated instrumentation) such that the required application state can be exported.
These trade-offs are presented as part of the design of each approach.

6.3.2 Checkpointing

The key idea behind Checkpointing isto periodically take complete system snapshots of the running VNF [i.3]; Backup
VNFs can be provisioned immediately by restoring (on a separate host) the most recent snapshot of the failed VNF.

The tasks for each component (figure 7) are asfollows:

1) Input Handler. Theinput handler performs VNF selection. It forwards inbound traffic to either the Master
VNF (if afailure has not been detected) or the Backup VNF (after receiving asignal from the Failure
Detector). Once the Failure Detector declares the Master VNF to have failed, the Input Handler shall not
forward traffic to the Master VNF any longer. Thisis because an intermittent failure could lead to two copies
of the same VNF running at once and packets are duplicated.

ETSI

22 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

2) Failure Detector. The failure detector declares whether or not the Master VNF hasfailed. If so, it signalsto the
Input Handler to cease forwarding to the Master VNF and begin forwarding to the Backup VNF. It also signals
to the Backup VNF to begin the recovery process by loading the most recent snapshot from stable storage.

3) Master VNF. In this approach, the Master VNF is only utilized for normal traffic processing.

4) Virtualisation Layer. The virtualisation layer hosting the Master VNF periodically takes system snapshots and
delivers them to stable storage; these snapshots encapsulate the state of the entire running codebase of the
VNF. These snapshots may be virtual machine[i.4], [i.5] or container or process snapshots, depending upon
the system implementation.

5) Stable Storage. The stable storage records the snapshots from the Master VNF.
6) Output Handler. In this approach, the Output Handler is not necessary.

7) Backup VNF. The Backup VNF isidle until receiving asignal from the Failure Detector, at which point it
loads the most recent snapshot from Stable Storage and begins processing traffic received from the Input
Handler.

Trade-offs: This approach imposes little latency penalty and can apply to any legacy VNF binary. However, this
approach fails the stated goals quite fundamentally. Checkpointing alone cannot guarantee correct recovery after failure
because snapshot restoration leads to loading a Backup which represents an "old" version of the Master VNF: most
checkpointing approaches can perform snapshots at best on the order of every few tens or hundreds of milliseconds.

Note that checkpointing is done at periodic intervals. Assume for example that a snapshot istaken at timet = nand the
next oneis scheduled at time t = n+1. Suppose the VNF fails after timet = n and before time t = n+1. Then the snapshot
available to the Backup VNF does not represent the latest state of the Master VNF.

Recovering to an old snapshot would lead to unknown behaviour for any connection whose packets were processed in
the interval between when the last snapshot was taken, and when the Master VNF failed; such behaviours might be
connection resets (in the case of appliances such as NAT), or failure to detect attacks (in the case of appliances such as
IDS). Consequently, this approach in general is not recommended.

6.3.3 Checkpointing with Buffering

Checkpointing with buffering overcomes the correctness problem of checkpointing by withholding packetsin a buffer
until after a checkpoint completes. By introducing this delay, the system can guarantee that no connection ever observes
a packet such that the state relevant to that packet has not already been checkpointed, hence guaranteeing correct
recovery from failure.

The tasks for each component (figure 6) are asfollows:

1) Input Handler. The Input Handler performs VNF selection asin Approach 1. In addition, the Input Handler is
responsible for ensuring that failover does not result in a burst of packet oss. To achieve this, the Input
Handler keeps a copy of each packet received and forwarded to the Master VNF since the last checkpoint at
the Master VNF. After failure, the Input Handler begins forwarding incoming traffic to the Backup VNF,
starting from these copied packets.

2) Failure Detector. The Failure Detector is the same asin Approach 1.

3) Master VNF. The Master VNF isthe same asin Approach 1.

4) Virtudisation Layer. The virtualisation layer isthe same asin Approach 1.
5) Stable Storage. The Stable Storage is the same asin Approach 1.

6) Output Handler. The Output Handler is responsible for enforcing the output commit property and hence
ensuring correctness. The Output Handler keeps a holding buffer and does not allow packets to egress the
system until after a checkpoint has completed, i.e. a snapshot has been recorded and acknowledged. Once a
checkpoint is complete, al packets which arrived at the Output Handler prior to taking the snapshot can safely
be released to the network.

7) Backup VNF. The Backup VNF isthe same asin Approach 1.

ETSI

23 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

Trade-offs: Checkpointing with buffering guarantees correctness where simple checkpointing does not. However,
delaying packets at the Output Handler imposes increased latency on the order of the checkpoint interval; currently
available VM Checkpointing approaches can perform checkpoints at best on the order of every few tens of
milliseconds. As shown in clause A.2, an off-the-shelf VM checkpointing application with buffering implemented in
this way increases median per-packet latencies to around 50 milliseconds.

6.3.4 Checkpointing with Replay

Checkpointing with Replay [i.6] does not withhold packets until a checkpoint completes, and hence it has a lower
latency penalty during failure-free operation than checkpointing with buffering does. Recovery under replay consists of
two steps. After the input handler detects failure, the Backup loads the most recent snapshot from Stable Storage
received from the Master VNF just asin checkpointing with buffering. However, packets have been released by the
output handler since the most recent snapshot (unlike checkpointing with buffering, where packets are delayed between
snapshots), hence this snapshot is not a correct replacement for the Master VNF. The next step then isto restore the
VNF state which was created or modified since the last snapshot, but before the Master VNF failed. To do this, the
Backup VNF processes all duplicate stored packets from the input logger. These packets enable the backup to replay
locally what actions the Master VNF performed prior to failure. If the VNF is deterministic, re-processing the same
packets the Master VNF saw in the same order is sufficient to recover the lost state. However, as discussed in clause 5,
VNFs exhibit a high degree of non-determinism. Hence, for correct state recovery, the Backup VNF requires not only
the input packets, but a secondary set of logs from the Master VNF, where the logs constitute a record of every non-
deterministic event occurring at the Master VNF since the last snapshot. This is known as the determinant log. They
include records of all accesses to variables accessible by multiple cores, as well as calls to fundamentally non-
deterministic functions such as gettimeofday().

The tasks of each component (figure 7) are as follows:
1) Input Handler. The Input Handler isthe same asin Approach 2.
2) Failure Detector. The Failure Detector isthe same asin Approaches 1 and 2.

3) Master VNF. The Master VNF processes packets asin Approaches 1 and 2. Additionally, the Master VNF will
create logs recording every non-deterministic event which occursin the system, e.g. accesses to cross-core
state and calls to gettimeofday(). Whenever a nondeterministic event occurs, the Master VNF generates alog
packet and transmits thislog over the same egress interface that it uses to transmit data packets (hence sending
the logs to the Output Handler). There are many possible approaches to recording nondeterministic events, see
[i.6].

4) Virtuaisation Layer. The virtualisation layer isthe same asin Approach 1.

5) Stable Storage. The Stable Storage is the same asin Approach 1 and 2, with the addition that it also stores the
logs for the Master VNF and, just as the snapshots, transmits them to the Backup VNF at failure time.

6) Output Handler. Just asin Approach 2, the Output Handler is responsible for enforcing output commit.
However, the Output Handler no longer delays packets until a snapshot completes. Instead, it only delays
packets until all determinant logs needed to replay the system up to and including that packet have been
recorded to stable storage.

7) Backup VNF. Just asin Approach 2, the Backup VNF begins recovery by loading a snapshot from Stable
Storage. It then enters a"replay mode" and begins re-processing packets which were originally processed by
the Master VNF prior to failure. Whenever it attempts an action which may be non-deterministic, it consults
the log from the Master VNF run and repeats the behaviour used in the original execution. All packets which
are processed in replay mode are dropped rather than forwarded to the network, since clients have already seen
copies of these packets from the Master VNF's original execution. Finally, after the log has been re-processed,
the Backup VNF exits replay mode and can begin processing traffic as normal.

Trade-offs. Checkpointing with replay guarantees correctness. Further, the high latency introduced by checkpointing
with buffering is not a problem with replay. This is because the VNF application records data that is required for
recovery; any VNF codebase can be configured to take this approach, so long as the source code is available for
modification (required modifications can be done via program analysis).

ETSI

24 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

6.3.5 Summary Trade-offs of Rollback Approaches

Table 1: Trade-offs Between Rollback Recovery Algorithms

Approach Correctness Latency Overhead Generality
Checkpointing Not guaranteed |0 microseconds Any legacy VNF binary
Checkpointing with buffering |Guaranteed 10 s of milliseconds (see note) Any legacy VNF binary
Checkpointing with replay Guaranteed 10 s of microseconds (see note) [Any legacy VNF source code
NOTE: Results in clause A.1.

7 Recommendations

7.1 Conclusion

The present document demonstrates how Scalable Architecture techniques currently adopted in Cloud/Data Centres can
be adapted for use in telecommunications networks in an NFV environment. In particular, two techniques have been
described:

1) Migration Avoidance: This technique enables dynamic scaling of VNFs when existing VNFs are unable to
cope with unexpected bursts of incoming telecommunications traffic.

2) Lightweight Rollback Recovery: Thistechnigue enablesthe recovery of failed VNFs without degrading
existing traffic flows.

The development of specific architectures to support these techniques in actual network conditionsis atopic for further
study.

7.2 Guidelines for Scalable Architecture Components

Some observations can be made regarding the components of the two techniques; the intent isto assist in developing
formal requirements for achieving high availability as follows.

1) Controller (Migration Avoidance): A controlling mechanism is necessary to oversee the process of dynamic
scaling as described in clause 6.2. It can be implemented as a standal one device in support of this process or
the functionalities can be implemented in other devices such as an orchestrator. The specific functions that
need to be supported include:

a) Receive notification of message indicating overload condition of a VNF and initiate migration avoidance
process.

b) Determinelocation (server) of new VNF instance and instantiate it.

¢) Configurerulesin software and hardware switches to gracefully phase out existing old flows as
described.

2) Overload Detector (Migration Avoidance): The role of this detector isto determineif existing VNFs become
overloaded. This workload overload detection may be achieved by active monitoring methodol ogies described
in clause 7 of the ETSI NFV "Report on active Monitoring and Fault Detection” Work Item [i.7].

3) Failure Detector (Lightweight Rollback Recovery): The role of this detector isto determine if aVNF (e.g.
Master VNF in clause 6.3) isin afailed state. The fault detector proposed here may be conceived as a
combination of active monitoring techniques for fault detection described in clause 7 of the ETSI NFV "Report
on active Monitoring and Fault Detection" Work Item [i.7] and the architecture proposed by the OPNFV
Doctor Project [i.8] which relieson NFVI analytics.

ETSI

7.3

25 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

Future Work

Possible areas for future work identified in the present document include the following:

1)

2)

3)

4)

5)

Multi-server Aggregate State Recovery - As described in clause 6.1, the multi-server case has certain
complexities and will require enhanced techniques for:

@ Dynamic Scaling of cross-server aggregate state
b) Recovery of cross-server aggregate state

For Migration Avoidance, the process described in clause 6.2 depicts the role of the hardware switch in
configuring the necessary rules for gracefully phasing out old flows. For the components selected for this
study, the hardware switch had no problem accommodating these rules. However, this may not be the case
depending on the selection of switch types. An alternative process that invokes the use of the software switch
to configure the final rules for old flows can then be considered. The pros and cons of the two alternatives can
then be evaluated for various types of selected components.

The checkpointing with buffering applications tested here indicated somewhat higher levels of latency than
those experienced with checkpointing with replay. Additional methods/algorithms should be examined to
reduce the checkpointing with buffering latency.

The checkpointing+replay process described in the present document was tested on hypervisor-based
checkpoints. This process resulted in along tail for latency (clause A.2.2). It is expected that thistail will
shorten significantly if the checkpoints are done at the application layer given that the amount of data that
needs to be written will typically beless. It would be fruitful to quantify the improvements expected from
application-layer checkpoints.

Checkpointing/Logging Functions (Lightweight Rollback Recovery): Therole of these functionsisto correctly
capture the state of existing flowsin a VNF. This functionality could be considered as a mechanism for
Passive Monitoring of VNF state information. The proper role of Checkpointing/Logging in particular and
Passive Monitoring techniquesin an NFV environment is atopic for further study.

Finally, it would be beneficial to demonstrate the performance of these techniques in telecommunications network type
settings involving architectures and components that reflect expected NFV environments. Such demonstrations will
enable the development of efficient architectures and subsequent formal requirementsin order to support these
Processes.

ETSI

26 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

Annex A (informative):
Experimental Results

A.1 Migration Avoidance Results

This clause presents experimental results using a prototype of migration avoidance run on a small-scale experimental
testbed of the form shown in figure 1 (clause 5.1 - Hardware Infrastructure). The testbed uses an Intel FM6000 Seacliff
Trail Switch interconnected with 48 10G ports and 2 048 flow table entries. The switch interconnects four servers with
a 10 Gbpslink each. One server uses the Intel Xeon E5-2680 v2 CPU with 10 cores and two sockets and the remaining
use the Intel Xeon E5-2650 v2 CPU with 8 cores and two sockets, for atotal of 68 cores. The prototype's system
architecture isas shown in figure 2 (clause 5.1 - System View) and uses SoftNIC [i.2], a software switch built on top of
Intel DPDK. Results specific to the performance of SoftNIC are highlighted below. The controller that coordinates
migration avoidance runs on a standal one server that connects with dedicated 1 Gbps links to each server and to the
management port on the switch. All experiments use atraffic source and sink connected to four external ports on the
switch. Unless stated otherwise, the results presented are based on atraffic workload of al minimum-sized 64B packets;
qualitatively similar results were observed with workloads of different packet sizes.

The test evaluates migration avoidance for the scenario whereby a single VNF instance is replicated. The test uses

1 Gbps of input traffic, with 2 000 new flows arriving each second on average and flow length distributions drawn from
published measurement studies [i.15]. Thisresultsin an input traffic load with an average of 10 000 concurrently active
flows and hence dynamic scaling requires re-balancing load equivalent to 5 000 flows from the original VNF instance
to the new instance. The test results that follow report the time it takes to redistribute load across the original and new
VNF instance.

— 1,200 -
£ 1,000 o
= 800 A el
5 600 - il P IR —
%) e SLWE RS
T 4001 e Total Rate
§ 200 A e s lhnhe Original
= 0 Ll | mmmem—- New
= T T

0 5 10 15

Time (s)
Figure A.1: Traffic Load at Original and New VNF Instance with Migration Avoidance

Figure A.1 shows the traffic load on the original and new VNF instances over time. Migration avoidance is triggered at
time 2 seconds. The graph shows that migration avoidance is effective at balancing the load across the two instances:
the difference in load on the two VNF instances is less than 10 % and convergence takes 5,6 seconds. This degree of
imbal ance and the time to convergence are largely a consequence of the test traffic used [i.15]. Specifically, the degree
of imbalance that persists even after convergence (i.e. a the 7,5 second mark) depends on the size and duration of long-
lasting flows. Similarly, the convergence time depends on the rate of arrival of new flows and the distribution of flow
sizes (which determines the rate of flow completion).

ETSI

27 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

50 - -5~
—~ 40 | —— Median Latency | a B
é_ ------- Switch Bandwidth g
> 30 - - 3 &=
§ 20 revmnmsmsgfiitetTm Rt A + 2 E
= o
— 10 - - 1 é

0 T T 0
0 5 10 15
Time (s)

Figure A.2: Latency and Bandwidth Overheads of Migration Avoidance

The next set of resultslook at how active flows are impacted during the process of migration avoidance. Figure A.2
shows the corresponding packet latency and switch bandwidth consumption over time. The figure shows that packet
latency and bandwidth consumption increase during the period (roughly between the two and eight second markers)
when traffic is'detoured’ through the software switch at the original VNF. The graph shows that this (temporary)
degradation is low: in this experiment, latency increases by less than 10 psecs on average, while switch bandwidth
increases by 0,5 Gbpsin the worst case, for asmall period of time. The latency overhead is a fixed cost that depends on
the forwarding latency through the software switch and hence the absolute latency overhead reported in figure A.2
reflects the overhead of the DPDK-based software switch used in this experiment. The bandwidth overhead depends on
the arrival rate of new flowsin the input traffic trace.

In summary: migration avoidance balances load evenly (within 10 % of ideal) and within a reasonable time frame
(shifting load equivalent to roughly 5 000 flows in 5,6 seconds) and does so with minimal impact to active flows
(adding less than 10 pseconds to packet latencies) without requiring per-flow rulesin the switch flow table.

A.2 Lightweight Rollback Recovery Results
A.2.1 Introduction

Results of recent studies on the performance of checkpoint + buffer fault- tolerance and checkpoint + replay fault-
tolerance are presented here (note that checkpointing alone is not guaranteed to perform correct recovery).

The experimental setup is asfollows:
J Xen 4.2 at the Master

e Oneof six different Click-based [i.9] middiebox implementations running in an OpenSuse VM. OpenSuseis
chosen for its support of fast VM snapshotting [i.13].

e Test VFsinclude:
- MazuNAT (an open-source combination NAT and Firewall released by Mazu Networks [i.10]),
- Basic NAT,
- WAN Optimizer,
- Traffic monitor
- QoS device
- Adaptive Load Balancer.

. Local network of servers with 16-core Intel Xeon EB-2650 processors at 2,6 GHz, 20 MB cache size, and
128 GB memory divided across two NUMA nodes.

ETSI

28 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

For al experiments shown, a standard enterprise trace was used as the input packet stream [i.11]; results are
representative of tests run on other traces.

Three different system implementations are compared:
. Fault-Tolerant MiddleBox (FTMB) [i.6], a checkpoint + replay solution;
Pico[i.12], a checkpoint + buffer solution with checkpoints taken at the application layer;

. Remus[i.14], a checkpoint + buffer solution with checkpoints taken at the hypervisor layer.

A.2.2 Latency

Figure A.3 shows a cumulative distribution function (CDF) of per-packet latencies through the testbed when running
the MazuNAT VF. A given (X,y) coordinate means that y % of packets had latencies less than or equal to x
microseconds. The plot contains four lines: a baseline configuration (where packets enter and exit the middliebox with
no fault-tolerance enabled), replay fault-tolerance, and two forms of checkpoint fault-tolerance (checkpointing at
hypervisor and checkpointing at application layer). In the baseline setup, per-packet median latencies are about 70 s
and at worst in the low hundreds of us. Asdiscussed in clause 6.3, al fault-tolerance mechanismsintroduce some
latency overhead. As expected, the checkpoint + buffer solutions introduce higher latency than the checkpoint + replay

solution.

Checkpointing + buffering increases median latency by over 50 milliseconds when checkpoints are taken at the
hypervisor, and by 8-9 milliseconds when checkpoints are taken at the application layer. The checkpoint + replay
approach increases median latencies by only 30 microseconds. FTMB, the checkpoint + replay system relies on
hypervisor-based checkpoints rather than application-layer checkpoints which resultsin milliseconds of tail latency (at
the 95" percentile and above) [i.6]; the expectation hereisthat if FTMB used application layer checkpoints, this tail

would decrease. Thisinvestigation is for further study.

“Ill'l'l'l'iilllililiW

&
~

1

0.8

1

0.6

1

0.4

CDF of Packets

1

III|lIIIIIIIIll||aIIlIIlII|IIlllIIIIlIIIIIIIlHIH[

10 100 1000 10000 100000
Latency (us)
s Basecline
snnnEn Checkpoint + Replay
Checkpoint + Buffer (Application-Layer)
i Checkpoint + Buffer (Virtualization Layer)

Figure A.3: CDFs of Packet Latencies

Summary: Checkpoint + replay recovery offers the lowest latency overhead of all fault tolerance approaches. Median
latency penaltiesfor FTMB were 30 ps.

ETSI

29 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

A.2.3 Throughput

Asdiscussed in clause 6.3, all fault-tolerance mechanisms introduce some throughput overhead. Figure A.4 shows
baseline throughput in the testbed for six middiebox applications, compared against throughput for the FTMB
Checkpoint + replay system. In the baseline configuration, all middleboxes could sustain throughputs of 1 to 6 million
packets per second (Mpps). The MazuNAT and SimpleNat saw atotal throughput reduction of 5,6 % and 12,5 %
respectively. For the Monitor and the Adaptive Load Balancer overheads resulted in a 22 % and 30 % drop in
throughput respectively. In these experiments, the two buffering implementations resulted in throughputs an order of
magnitude lower, at best 100-200 thousand packets per second (Kpps).

4 ' A 4 A -

6e+06 With Checkpointing + Replay Logging {
Baseline
'é Se+06 i
3
2 4e+06
b
S 3e406 |]
&
S 2e+06 1
&
le+06 4
0
MazuNAT SimpleNAT WAN Opt. Monitor QoS Adaptive LB

Figure A.4: Throughput Comparisons

Summary: Checkpoint + replay fault tolerance reduces VF throughput by at most 5-30 %.

A.2.4 Replay Time

On failure, checkpoint + buffer approaches load a new VNF by restoring from the most recently stored checkpoint.
Checkpoint + replay approaches reguire alonger recovery time: not only they need to restore from the most recent
checkpoint, but they also need to replay the logs stored before failure. Figure A.5 displays the impact of this replay
overhead. The plot contains four bars per middlebox; each bar represents replay time when checkpoints are taken every
20, 50, 100, or 200 milliseconds. The amount of time to perform replay is dependent on:

. Complexity of the application - six VFs are tested here.
. Checkpoint interval, which determines how much data will be replayed.

The longer the checkpoint interval, the longer the replay time. Overall, replay times ranged between 10 milliseconds
and 270 milliseconds, depending on these two variables. Application developers can tune recovery time by decreasing
the checkpoint interval, and ensure that recovery will not result in application-layer timeouts (which are typically on the
order of seconds).

B aadl| 20ms m———

E 250 50ms — ' [
F 200 -100ms 1
i= 150 ~200ms |
Z 100}]
S 50 | .
v 0! - A A JA d A

m, WA/V

Us, Qo Loa Ma Sy
er Mo, S 98, ’ani Z/v,q r Pleng " Opy
r

Figure A.5: Replay Time

ETSI

30 ETSI GS NFV-REL 002 V1.1.1 (2015-09)

Summary: Replay time increases time to recovery by tensto hundreds of milliseconds relative to checkpoint + buffer
approaches, which is within acceptable ranges for application recovery times.

A.2.5 Conclusion

These experimental results suggest that while both checkpoint + buffering and checkpoint + replay approaches can
provide correct recovery, checkpoint + replay offers a better performance trade-off. Buffering approaches have a faster
recovery time, but impose latencies of 8-50 milliseconds on every packet processed under normal operation; thisis
prohibitively high for many NFV contexts[i.6]. In contrast, the checkpoint + replay system tested here increases
median latencies under normal operation by only tens of microseconds, at the cost of arecovery time whichis

10 s- 100 s of milliseconds higher, but still within typical application timeout bounds.

ETSI

31

ETSI GS NFV-REL 002 V1.1.1 (2015-09)

Annex B (informative):
Authors & contributors

The following people have contributed to this specification:
Rapporteur:

Percy S. Tarapore
Contributors:

Percy Tarapore, AT&T
Richard Schlichting, AT& T
Randee Adams, Alcatel-Lucent
Stefan Antzen, Huawei

LAC Chidung, Orange
Gurpreet Singh, Spirent

Pasi Vaananen, Stratus

Carry Liu, Huawei

Acknowledgement: The Migration Avoidance and Lightweight Rollback Recovery techniques described here are
based on research carried out by Sylvia Ratnasamy, Scott Shenker, Justine Sherry, and Keon Jang from the University

of California, Berkeley, in association with AT&T.

ETSI

32

ETSI GS NFV-REL 002 V1.1.1 (2015-09)

History

Document history

V111

September 2015

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Scalable Architecture and NFV
	4.1 Introduction
	4.2 Overview of Current Adoption in Cloud Data Centres
	4.3 Applicability to NFV

	5 Scaling State
	5.1 Context
	5.2 Categories of Dynamic State
	5.3 Challenges

	6 Methods for Achieving High Availability
	6.1 High Availability Scenarios
	6.2 Dynamic Scaling with Migration Avoidance
	6.3 Lightweight Rollback Recovery
	6.3.1 Overview
	6.3.2 Checkpointing
	6.3.3 Checkpointing with Buffering
	6.3.4 Checkpointing with Replay
	6.3.5 Summary Trade-offs of Rollback Approaches

	7 Recommendations
	7.1 Conclusion
	7.2 Guidelines for Scalable Architecture Components
	7.3 Future Work

	Annex A (informative): Experimental Results
	A.1 Migration Avoidance Results
	A.2 Lightweight Rollback Recovery Results
	A.2.1 Introduction
	A.2.2 Latency
	A.2.3 Throughput
	A.2.4 Replay Time
	A.2.5 Conclusion

	Annex B (informative): Authors & contributors
	History

