
 

 

 

 

 

 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 

Network Functions Virtualisation (NFV); 
Acceleration Technologies; 

Report on Acceleration Technologies & Use Cases 

 

  

Disclaimer 

This document has been produced and approved by the Network Functions Virtualisation (NFV) ETSI Industry Specification 
Group (ISG) and represents the views of those members who participated in this ISG. 

It does not necessarily represent the views of the entire ETSI membership. 

GROUP SPECIFICATION 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 2 

 

 

 

  

Reference 
DGS/NFV-IFA001 

Keywords 
NFV, acceleration, use case 

ETSI 

650 Route des Lucioles 
F-06921 Sophia Antipolis Cedex - FRANCE 

 
Tel.: +33 4 92 94 42 00   Fax: +33 4 93 65 47 16 

 
Siret N° 348 623 562 00017 - NAF 742 C 

Association à but non lucratif enregistrée à la 
Sous-Préfecture de Grasse (06) N° 7803/88 

 

Important notice 

The present document can be downloaded from: 
http://www.etsi.org/standards-search 

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or 
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any 

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the 
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. 

Users of the present document should be aware that the document may be subject to revision or change of status. 
Information on the current status of this and other ETSI documents is available at 

http://portal.etsi.org/tb/status/status.asp 

If you find errors in the present document, please send your comment to one of the following services: 
https://portal.etsi.org/People/CommiteeSupportStaff.aspx 

Copyright Notification 

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying 
and microfilm except as authorized by written permission of ETSI. 

The content of the PDF version shall not be modified without the written authorization of ETSI. 
The copyright and the foregoing restriction extend to reproduction in all media. 

 
© European Telecommunications Standards Institute 2015. 

All rights reserved. 
 

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. 
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and 

of the 3GPP Organizational Partners. 
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association. 

http://www.etsi.org/standards-search
http://portal.etsi.org/tb/status/status.asp
https://portal.etsi.org/People/CommiteeSupportStaff.aspx


 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 3 

Contents  
Intellectual Property Rights ................................................................................................................................ 4 

Foreword ............................................................................................................................................................. 4 

Modal verbs terminology .................................................................................................................................... 4 

1 Scope ........................................................................................................................................................ 5 

2 References ................................................................................................................................................ 5 

2.1 Normative references ......................................................................................................................................... 5 

2.2 Informative references ........................................................................................................................................ 5 

3 Definitions and abbreviations ................................................................................................................... 5 

3.1 Definitions .......................................................................................................................................................... 5 

3.2 Abbreviations ..................................................................................................................................................... 6 

4 Overview .................................................................................................................................................. 6 

4.1 General ............................................................................................................................................................... 6 

4.2 Hardware Acceleration ....................................................................................................................................... 8 

4.3 Software Acceleration ........................................................................................................................................ 8 

4.4 Heterogeneous Acceleration ............................................................................................................................... 8 

4.4.1 General .......................................................................................................................................................... 8 

4.4.2 Coherent acceleration ................................................................................................................................... 9 

4.4.2.1 Nature ...................................................................................................................................................... 9 

4.4.2.2 Runtime definable acceleration ............................................................................................................... 9 

4.5 Classification of accelerators .............................................................................................................................. 9 

4.5.1 General .......................................................................................................................................................... 9 

4.5.2  NFV Software ............................................................................................................................................. 10 

4.5.3  Types of Accelerator ................................................................................................................................... 11 

4.5.4  Housing/Location of Accelerator ................................................................................................................ 11 

4.5.5  Accelerator based on Functionality Type ................................................................................................... 11 

4.6  Accelerator Usage Models ............................................................................................................................... 12 

4.6.1  General ........................................................................................................................................................ 12 

4.6.2  NFVI Accelerator Usage ............................................................................................................................ 12 

4.6.3  VNF Accelerator Usage .............................................................................................................................. 13 

5 Use Cases ............................................................................................................................................... 14 

5.1 Compute Acceleration ...................................................................................................................................... 14 

5.1.1 IPSec tunnels termination ........................................................................................................................... 14 

5.1.2 Next Generation Fire Wall (NGFW) Acceleration ..................................................................................... 15 

5.1.3 Virtual Base Station (VBS) L1 Acceleration .............................................................................................. 16 

5.1.4 Virtual Acceleration Interface for VNFs ..................................................................................................... 19 

5.1.5 Transcoding ................................................................................................................................................ 22 

5.1.6 Deep Packet Inspection ............................................................................................................................... 24 

5.2 Network Acceleration ....................................................................................................................................... 25 

5.2.1 Load Balancing and NAT ........................................................................................................................... 25 

5.2.2  NFVI Virtual Networking Offload ............................................................................................................. 26 

5.2.3  NFVI Secure Overlay Offload .................................................................................................................... 30 

5.2.4  Dynamic Optimization of Packet Flow Routing ......................................................................................... 33 

5.3 Storage Acceleration ........................................................................................................................................ 35 

5.3.1 NVMe™ Over Fabric Enabled Acceleration .............................................................................................. 35 

5.3.2 High Performance Persistent Memory on Compute Node .......................................................................... 36 

Annex A (informative): Authors & contributors ................................................................................. 37 

History .............................................................................................................................................................. 38 

 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 4 

Intellectual Property Rights  
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (http://ipr.etsi.org). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Foreword  
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Network Functions 
Virtualisation (NFV). 

The present document gives an overview to the series of documents covering the NFV Acceleration. 

The trademarks mentioned within the present document are given for the convenience of users of the present document 
and do not constitute an endorsement by ETSI of these products. 

Modal verbs terminology 
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and 
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of 
provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

http://webapp.etsi.org/IPR/home.asp
http://portal.etsi.org/Help/editHelp!/Howtostart/ETSIDraftingRules.aspx


 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 5 

1 Scope  
The present document provides an overview of NFV acceleration techniques and suggests a common architecture and 
abstraction layer, which allows deployment of various accelerators within the NFVI and facilitates interoperability 
between VNFs and accelerators. The present document also describes a set of use cases illustrating the usage of 
acceleration techniques in an NFV environment. 

2 References  

2.1 Normative references  
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

Referenced documents which are not found to be publicly available in the expected location might be found at 
http://docbox.etsi.org/Reference. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are necessary for the application of the present document. 

Not applicable. 

2.2 Informative references  
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] ETSI GS NFV 003: "Network Functions Virtualisation (NFV); Terminology for main concepts in 
NFV". 

[i.2] ETSI GS NFV-INF 003: "Network Functions Virtualisation (NFV); Infrastructure; Compute 
Domain". 

[i.3] ETSI GS NFV-INF 005: "Network Functions Virtualisation (NFV); Infrastructure; Network 
Domain". 

[i.4] ETSI GS NFV-IFA 002: "Network Functions Virtualisation (NFV); Acceleration Technologies; 
VNF Interfaces Specification". 

http://docbox.etsi.org/Reference


 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 6 

3 Definitions and abbreviations  

3.1 Definitions  
For the purposes of the present document, the terms and definitions given in ETSI GS NFV 003 [i.1] and the following 
apply:  

para-virtualisation: virtualisation technique in which guest operating system virtual device drivers include software 
that works directly with specific hypervisor back-end interfaces for device access 

NOTE: The virtual device interface is often similar to but not identical to the underlying hardware interface. The 
intent of para-virtualisation is to improve performance compared to the host fully emulating non-
virtualised hardware interfaces. 

3.2 Abbreviations  
For the purposes of the present document, the abbreviations given in ETSI GS NFV 003 [i.1] and the following apply. 
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, 
in ETSI GS NFV 003 [i.1]. 

AAL Acceleration Abstraction Layer 
APU Accelerated Processing Unit 
ARP Address Resolution Protocol 
ASIC Application-Specific Integrated Circuit 
CoMP Coordinated MultiPoint radio 
CPU Central Processing Unit 
DOPFR Dynamic Optimization of Packet Flow Routing  
FPGA Field-Programmable Gate Array 
GENEVE GEneric NEtwork Virtualisation Encapsulation 
GPU Graphic Processing Unit 
HWA Hardware Acceleration 
IKE Internet Key Exchange protocol 
NFV  Network Functions Virtualisation 
NFVI NFV Infrastructure 
NPU Network Processor Unit 
NV-DIMM Non-Volatile Dual In-line Memory Module 
NVGRE Network Virtualisation using Generic Routing Encapsulation 
NVMe Non-Volatile Memory express™ 
OSPF Open Shortest Path First 
OVSDB Open vSwitch® Database 
RDMA Remote Direct Memory Access 
RIP Routing Information Protocol 
SoC System on Chip 
SRTP Secure Streaming Real-time Protocol 
TRILL Transparent Interconnection of Lots of Links 
vCPE virtual Customer Premises Equipment 
VNF Virtualised Network Function 
VPN Virtual Private Network 
VxLAN Virtual extensible Local Area Network 

4 Overview 

4.1 General  
The NFV Infrastructure (NFVI) includes the totality of all hardware and software components that build up the 
environment in which virtualised network functions (VNFs) are deployed. However, some VNFs may require some 
form of acceleration to be provided by the NFVI to meet their performance goals. While industry standard IT servers 
can support a large range of NFV use cases, some use cases are more challenging, especially relating to VNFs that need 
to meet certain latency or SLA requirements.  



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 7 

However, acceleration is not just about increasing performance. NFVI operators may seek different goals as far as 
acceleration is concerned: 

• Reaching the desirable performance metric at a reasonable price. 

• Best performance per processor core/cost/watt/square foot, whatever the absolute performance metric is. 

• Reaching the maximum theoretical performance level. 

NOTE: In this context, "Performance" can be expressed in throughput, packets per second, transactions per 
second, latency. 

To allow multiple accelerators to co-exist within the same NFVI, and to be used by multiple virtualised network 
function components (VNFCs), several virtualisation technologies exist in the industry and they will continue to evolve. 
In general an acceleration abstraction layer (AAL) is used to aid portability of application software (see figure 1). The 
role of an AAL is to present a common interface for use by a VNFC, independent of the underlying accelerators. 
Different implementations of the AAL and bindings to different accelerator implementations can be provided without 
requiring changes to the independent VNFC code. All code which is dependent on the accelerators is within the AAL. 

 

Figure 1: Use of acceleration abstraction layer (AAL) to enable  
fully portable VNFC code across servers with different accelerators 

This AAL is a normal feature of operating systems and is normally implemented using a common driver model and 
hardware specific drivers. In the NFVI, the virtualisation layer in charge of compute and storage resources is typically 
implemented in the form of a hypervisor which plays the role of a base operating system which interfaces to the 
hardware. The hypervisor then provides common and uniform virtual hardware to all virtual machines so that VNFC 
code is fully portable. 

In order to achieve full portability of VNFC code, the AAL can be entirely contained in the hypervisor. In this way, the 
virtualised accelerator presented to the VNFC is generic so that the host operating system of the VNFC can use generic 
drivers, without requiring awareness of the AAL. 

However the performance of fully independent VNFCs may be less than desired because the hypervisor needs to 
emulate real hardware, so an alternate model known as para-virtualisation also exists. With para-virtualisation, AAL 
code is also present in the VNFC and is adapted to specific virtualisation drivers and hardware. 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 8 

It is the intention of the present document to define and promote acceleration architectures that aid portability with the 
use of an AAL in the guest, host or both. The specification of an AAL when other forms of virtualisation are used and 
acceleration without use of an AAL are outside the scope of the present document. The present document does not 
intend to preclude any specific acceleration architectures from VNF deployments. 

NFV Acceleration can be done by hardware, software or any combination thereof. The AAL should not prescribe a 
specific hardware or software implementation, but enable a spectrum of different approaches (including pure software). 

4.2 Hardware Acceleration  
Hardware acceleration is the use of specialized hardware to perform some function faster than is possible by executing 
the same function on a general-purpose central processing unit (CPU) or on a traditional networking (or other I/O) 
device (such as network interface controller (NIC), switch, storage controller, etc.). 

These functions may be correlated to the three NFVI domains and subsequently address Compute, Network and Storage 
Acceleration. By using the term "functions", the present document abstracts the actual physical implementation of the 
hardware accelerator. 

This hardware accelerator covers the options for ASICs, network processors, flow processors, FPGAs, multi-core 
processors, etc. to offload the main CPU, and to accelerate workload performance.  

With AAL, multiple hardware accelerators can be presented as one common and uniform virtualised accelerator to the 
accelerating function and thus can work simultaneously for that function. 

4.3 Software Acceleration  
In addition to the rich selection of hardware acceleration solutions, modern, high performance CPU (as well as GPU or 
APU) silicon enables an alternative acceleration option -  software accelerations.  

Software acceleration provides a set of one or more optional software layers that are selectively added within elements 
of an NFV deployment (e.g. Compute, Hypervisor, VNF, etc.) to augment or bypass native software within a solution. 
Together, these new layers bring improved capabilities (e.g. increased network throughput, reduced operating overhead) 
which result in measurable improvements over standard, un-accelerated implementations. Software acceleration 
frameworks and software accelerators are the two major components built upon these layers to constitute a complete 
software acceleration solution. 

There are several well-known software acceleration frameworks; one is Data Plane Development Kit (DPDK®). 
DPDK® works hand in hand with an underlying Linux operating system to "revector" network traffic outside of the 
Linux kernel and into user space processes where the traffic can be handled with reduced system overhead. When 
deployed appropriately into a virtual switch, this capability enables performance improvements over a native (un-
accelerated) virtual switch. Additional improvements can be seen when elements of this open framework are 
implemented and deployed within a suitable VNF. Together, the combined acceleration results can be greater than 
either alone. 

Another acceleration framework example is OpenDataPlane (ODP®) from the Linaro Networking Group. ODP® is an 
open source project which provides an application programming environment for data plane applications. ODP® offers 
high performance and portability across networking Systems on Chip solutions (SoCs) of various instruction sets and 
architectures. The environment consists of common APIs, configuration files, services, and utilities on top of an 
implementation optimized for the underlying hardware. ODP® cleanly separates its API from the underlying hardware 
architecture, and is designed to support implementations ranging from pure software to those that deeply exploit 
underlying hardware co-processing and acceleration features present in most modern networking "Systems on Chip" 
(SoCs) solutions. 

Software accelerators are components which are typically (though not necessarily exclusively) built against 
corresponding software acceleration frameworks such as DPDK® and ODP®. Examples of such accelerators are Poll 
Mode Drivers that would utilize DPDK® fast path, or similar fast path mechanism built with ODP® APIs. When dealing 
with the concept of acceleration abstraction layer (AAL) with regard to software acceleration, it should be noted that 
AAL provides a common abstraction to a set of variant software accelerators, not a set of different software acceleration 
frameworks.  



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 9 

4.4 Heterogeneous Acceleration  

4.4.1 General 

Heterogeneous accelerators are another class of accelerated functions called from the VNFC (and differentiated from 
hardware accelerators described in clause 7.2.3 of ETSI GS NFV-INF 003 [i.2]). It refers to functions implemented 
within the compute node on the NIC, CPU Complex, accelerator blades / chassis, a plug-in card or an attached device 
such as FPGA, ASIC, NPU, and called from the VNFC, possibly on a fine granularity.  

Heterogeneous acceleration techniques may be independent of, or may rely on the CPU Complex and NIC hardware 
features. Software may make use of techniques such as huge page memory, ring buffers and poll-mode drivers. 

Implementation of heterogeneous accelerators may vary from vendor to vendor. 

4.4.2 Coherent acceleration 

4.4.2.1 Nature 

Coherent hardware acceleration denotes a special execution context of acceleration where the accelerator and the CPU 
are closely coupled so that general memory (physical addressable or VNF virtual private address space) can be 
addressed directly from the accelerator. Coherent accelerator access can be done through new instructions available in 
the processor or through a special controlling interface in the processor. 

The execution of accelerated function in the hardware may be synchronous or asynchronous to the CPU program. When 
asynchronous, the CPU or the controlling interface provides mechanisms for either notification (via interrupts or other 
mechanisms) or polling for the completion of the instruction execution. 

The acceleration hardware may be on the same chip as the processor or elsewhere, connected through standard 
interfaces or private interfaces. 

4.4.2.2 Runtime definable acceleration 

Some acceleration hardware can be configured or programmed at runtime in such a way that the hardware does not 
define a specific acceleration function but is rather programmed/configured at runtime. 

Runtime definable acceleration combines: 

• Programmable/Configurable hardware such as FPGA, GPU, NPU, SoC or an extendable processor (instruction 
extension by microcode update for instance); 

• "Firmware" for the hardware; 

• Software that VNF can leverage to make use of the programmed/configured hardware. 

The programming or configuration of the acceleration hardware is hardware specific, is done at Compute Node 
initialization so that VIM inventory is updated with created accelerators. 

4.5 Classification of accelerators  

4.5.1 General 

As shown on figure 2, hardware, software and heterogeneous accelerators can be classified according to different 
criteria or multiple facets such as: 

• what software would be making use of the accelerator [NFV Software]; 

• type of the accelerator [Type of accelerator]; 

• location of the accelerator [Housing/Location]; 

• functionality type. 

NOTE: Figures 2, 3 and 4 are mostly driving the use cases described in the present document, hence are not the 
exhaustive list of accelerator taxonomy. 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 10 

Figure 2: Classification of accelerators 

4.5.2  NFV Software 

This classification is based on the possible NFV software candidates, that can make use of the accelerator. In the NFV 
architectural framework, there are two possible candidates namely:  

1) NFVI: 

This refers to the case, where a piece of software that is part of the NFVI, makes use of the accelerator (e.g. vSwitch). 

2) VNFs: 

This refers to the case where a piece of software within a VNFC code makes use of the accelerator. 

NOTE: When NFVI software components are deployed as VNFs, those components would be under a separate 
administrative domain, providing an infrastructure for a separate NFVI domain from the one in which 
they are deployed. 

NFV Software

NFVI

VNF

Type of 
Accelerator

Look Aside 
Accelerator

In-line

Fast Path

Optimized Software 
Path

e.g. DPDK®, ODP®

Optimized Store

Network Attached

Housing/Location 
of Accelerator

CPU (Instruction 
based)

Integrated 
CPU(Accelerator as 
Hardware function, 
FPGA, GPU, NDU, 

AIOP etc.)

iNIC

Network Attached

Bus Attached

Memory Slots

Processor 

Interconnect s

Accelerator based 
on Functionality 

Type

Security (Crypto, 
IPsec, SSL, SRTP etc.)

Compression / 
Decompression 

Accelerator

OF based Packet 
processors for fast 

path and data plane

Function based 
packet processor e.g. 
Secure L2/L3 Packet 
Processor, eNodeB 

Packet Processor, etc.

L1 Accelerator (DSP, 
Transcode)

Pattern Matching



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 11 

4.5.3  Types of Accelerator 

The classification is based on the possible types of accelerators, including: 

1) Look-aside accelerator: 

Accelerators of this type are typically algorithmic accelerators that are used to speed up compute intensive operations. 
These accelerators work typically in command/response mode, where the software submits the command and data to the 
accelerator. The accelerator processes the data based on the command and returns a response. Examples include crypto, 
protocol accelerators, pattern matching and compression. 

2) In-line: 

Accelerators of this type work in-line with software for packet processing. 

3) Fast Path: 

This refers to accelerators where the packet processing happens in a cut-through fashion without reaching the Host 
CPU. 

4) Optimized Software Path: 

In this case, the accelerator is an optimized software path. Examples include accelerators created using DPDK® or 
ODP® frameworks. 

5) Optimized Store: 

In this case, the accelerator function is an optimized store - e.g. NV-DIMM, Flash DIMM. 

4.5.4  Housing/Location of Accelerator 

This classification is done based on where the accelerator is housed located or realized. This classification includes: 

1) CPU Instruction based: 

In this case, the accelerator function is part of processor instruction set. 

2) Integrated CPU: 

In this case the accelerator is housed as a hardware function, (e.g. FPGA, GPU, NDU, AIOP) within the CPU socket. 

3) iNIC: 

In this case, the accelerator in this case is housed as part of iNIC. 

4) Network Attached: 

The accelerator is accessible through the network. 

5) Bus Attached: 

The accelerator functionality is accessible through a bus. 

6) Memory Slots: 

Memory device provides the accelerated function. 

7) Processor Interconnects: 

The accelerator is attached to the processor interconnect (which is a processor dependent feature). 

4.5.5  Accelerator based on Functionality Type  

This classification of accelerators is based on the actual functionality accomplished by the accelerator. It includes: 

1) security (Crypto accelerator, IPsec, SSL, SRTP, etc.); 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 12 

2) compression / decompression accelerator; 

3) packet processors for fast path and data plane; 

4) function based packet processor, e.g. Secure L2/L3 Packet Processor, eNodeB Packet Processor, etc.; 

5) L1 Accelerator (e.g. DSP, Transcode); 

6) pattern matching (e.g. DPI). 

4.6  Accelerator Usage Models 

4.6.1  General 

As shown below there are two use cases, one for NFVI and the type of accelerators it may use (see clause 4.6.2) and the 
other for VNFs and the type of accelerator they may use (see clause 4.6.3). 

4.6.2  NFVI Accelerator Usage 

In this case, the accelerator is intended to improve the NFVI performance, so that the VNF can see a resulting 
performance gain (see figure 3). For example: 

• A gateway VNF can benefit from a direct connected iNIC accelerator bypassing the virtualisation layer and 
hence achieve better performance; 

• An VNF requiring a load balancer function can delegate the actual load balancing functionality to a vSwitch or 
vRouter of the NFVI instead of relying on a load balancer VNFC; or 

• VNF instantiation can be accelerated by NFVI leveraging network and storage acceleration. 

 

Figure 3: NFVI usage of accelerators 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 13 

The NFVI may use:  

• Look Aside Accelerator; which can be housed as part of: 

- Integrated CPU, iNIC or Bus Attached. 

• In-line accelerator; which can be housed as part of: 

- Integrated CPU, iNIC, Network Attached or CPU. 

• Fast Path; which can be housed as part of: 

- iNIC, Bus Attached or Integrated CPU. 

• Optimized Software Path; which can be housed as part of: 

- Integrated CPU. 

NOTE: Fast Path and Optimized Software Path may make use of Look Aside Accelerators or In-Line 
accelerators.  

4.6.3  VNF Accelerator Usage 

Some VNFs require accelerators to offload some portions of their packet processing or most of the data processing to 
meet their performance needs (see figure 4).  

 

Figure 4: VNF usage of accelerators 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 14 

The VNF may use:  

• Look Aside Accelerator with housing in: 

- integrated CPU, iNIC or Bus Attached. 

• In-line with housing in: 

- integrated CPU, iNIC, CPU or Network Attached. 

• Fast Path with housing in: 

- iNIC or Bus Attached or Integrated CPU or Network Attached. 

• Optimized Software Path with housing in: 

- integrated CPU. 

• Optimized Store with housing: 

- on Memory Slots, Bus Attached or Network Attached. 

NOTE: Fast Path and Optimized Software Path may make use of Look Aside Accelerator or In-Line Accelerator. 

These categorizations of accelerators help in mapping individual application performance requirements and design to 
specific accelerator requirements. 

5 Use Cases  

5.1 Compute Acceleration  

5.1.1 IPSec tunnels termination 

Title * IPSec tunnels termination VNFC 
NFV Components 
* 

VNFC 
VNFD 
VIM 
Orchestrator 

Introduction & 
Problem 
Statement * 

The Virtual Application is a router that terminates IPSec tunnels on one set of vNICs and routes 
traffic to another set of vNICs: 

• WiFi hot spot aggregation (tens of thousands of tunnels) 
• enodeB backhauling (thousands of tunnels) 
• Enterprise connectivity aggregation (hundreds of tunnels) 
• vCPE aggregation (tens of thousands of tunnels) 

Performance 
Consideration * 

a) IKE tunnel creation rate (in case a region of hot spots reconnects after an outage). 
b) Concurrent number of tunnelled interfaces is a key parameter. 
c) bandwidth or packets per second. 
d) Fragment handling (relevant for IPSec termination of the NIC) 

Management & 
Orchestration 
Consideration 

Nf-Vi - Instantiation and VNFD 
Contain a list needed crypto (RSA, AES-2048, etc.) and hash (MD5, SHA1, etc.) algorithms; if the 
list is mandatory (instantiation impossible if not there) or optional. 
That said, it may be wise to define a set of reachable performance for the VNFC and a required 
acceleration support: 

• 10 Gbps: 1 core, no hardware 
• 20 Gbps: 2 cores, AVX instruction set 
• 40 Gbps : 1 core, IPSec AES-2048 hardware support 

VIM 
The VIM maintains the list of available acceleration resources and their consumption by VNFs so 
that orchestration can properly identify instantiation targets for new VNFs. 

Possible 
Accelerators 

Accelerator types: look-aside, in-line, fast path, software. 
Accelerator locations: CPU (instruction set, native or with FPGA support), integrated in CPU, iNIC, 
bus attached. 
VNF leveraging of accelerators need to be independent from accelerator types and locations.  



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 15 

Description * Vn-Nf - VNF interface 
(see note) 
The VNF needs to deal with IKE and dataplane aspects of IPSec. 
 
Dataplane Crypto card 
Application (Linux/DPDK®) reads/writes packets from NIC, application leverages the crypto interface 
to apply crypto operation, application routes the data. 
The interface is based on a standalone virtual, or more accurately, a synthetic device that will 
provide crypto operations interfaces much like virtio-net provides packet interface. 
 
Data plane IPSec termination on a NIC 
Application (Linux/DPDK®) reads(decrypted)/writes(to be encrypted) packets from NIC, application 
routes the data. 
The interface is the NIC but there is a need of a NIC IPSec Tunnel termination capability in the 
VNFD Information Element. Standard vNICs such as virtio-net and vmxnet3 need to be extended to 
signal capability and activate it. 
 
Software library for CPU 
Application (Linux/DPDK®) read/ and writes packets from NIC, executes crypto operation, application 
routes the data. 
The virtual application uses the library independently from NFVI. Instantiation needs VNFD 
description of achievable performance metrics depending on the processor available. 

Other 
Considerations 

Live migration 
Accelerators maintains contextual information (in particular if the NIC terminates the tunnels) that 
have to be migrated to a new system. Live migration from one hardware accelerator model to 
another one seems fairly impossible if any state is maintained. 
 
Security 
The provisions to avoid key leaks between VNFCs if the IPSec termination is fully offloaded to a 
single device are not addressed in the present document. 
The discussion on the maintenance of the FIPS compliance has not be addressed in the present 
document. 

NOTE: For this architectural use case, the analysis is limited at high level and does not deal with the details of 
asynchronous behaviour of hardware chips, this will be detailed in ETSI NFV-IFA 002 [i.4]. 

Legend:  * identify mandatory fields. 
 

5.1.2 Next Generation Fire Wall (NGFW) Acceleration 

Title  Next Generation Fire Wall (NGFW).  
NGFW combines the functions of a standard firewall, Intrusion Prevention Systems (IPS), SSL VPN 
and Deep Packet Inspection (DPI) capability associated with user-ID and/or application-ID.  

NFV 
Components  

NFVI, Software Architecture, Performance and Security  

Introduction & 
Problem 
Statement 

Example required features of NGFW include the following: 
• Support for inline/passive/tap modes 
• Switched and routed network architectures 
• Layer 2 forwarding: bridge / switch Ethernet  
• Layer 3 forwarding: route IPv4/v6 packets  
• Network Address Port Translation (NAPT) 
• High-availability support 
• IPSec VPN termination/origination 
• Packet classification/filtering 
• Load balancing to host (x86) applications  
• Stateful flow processing 
• Zero copy delivery to host OS user mode applications 
• Cryptography support 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 16 

Description 

 

Figure 5 

With NGFW, customers / end-users can enforce user / application - specific policies, such as real-
time protection against threats, by leveraging the performance of the underlying hardware, and its 
required stateful flow management capability – As a result it can manage the state and actions 
associated with millions of flows, dynamically at > 100 Gbps. 

Functional & 
Performance  

NGFW is a perfect example of an application that requires acceleration of a COTS platform, the 
hypervisor, and in some cases the underlying network infrastructure (see note). 
The result can be CPU-bound or I/O bound or both and can affect the underlying implementation. 
Performance requirement includes support for 100 GbE full-duplex. 
An example workload consists of the following: 
Data plane - Key Functions: 

• L2 forwarding and virtual bridges. 
• L3 routing and virtual routing. 
• IP VPN termination. 
• Network address and port translation (NAPT) - multiple modes of operation. 
• Stateful network flow analysis. 
• Packet classification and filtering. 
• Dynamic per flow application policy. 
• Load balancing to x86 or ARM on egress interfaces. 
• SSL identification. 
• SSL inspection. 

Application plane on Host processor (x86 or ARM): 
• DPI for application and protocol identification. 
• Snort for threat management. 
• Passive network discovery. 
• Targeted vulnerability assessment. 

Control plane on Host processor (x86 or ARM): 
• ARP. 
• OSPF. 
• RIP. 
• Application management GUI. 

Possible 
Accelerators 

NFVI Fast Path, In-Line, and Look-Aside Accelerators - all as iNIC, Bus Attached, and Integrated 
CPU - can all be used for acceleration in this use case. 

Management & 
Orchestration 
Consideration  

Managing the NGFW through a local or remote API is required. This acceleration is transparent to 
the VNFs. It is desirable that the orchestrator is able to discover the underlying performance 
capability of the compute node. 

Related Use 
Case(s) 

Load balancing, NAT and value-add Use Cases. 

NOTE: The functional partitioning is workload specific and will depend on the IPS and / or Firewall application. 
 

5.1.3 Virtual Base Station (VBS) L1 Acceleration 

Virtualisation and centralization of the Base Station resources (Cloud-RAN topology) at different scale can leverage 
resource utilization for load balancing among different base stations to provide cost reduction, high resource and 
spectrum utilization and energy efficient networks. 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 17 

The main challenge in virtualising the base station is its compute-intensive baseband functions such as the PHY layer 
(L1), typically implemented on dedicated modern hardware/processors or on general purpose L1 hardware accelerators. 

In this use case of virtual base station L1 Acceleration, the L1 software is virtualised and running as VM on high 
volume servers, leveraging a network attached or look aside hardware accelerator, covering several key challenges and 
architectures such as compute-intensive, real time processing and networking, abstraction layer between the software 
and acceleration resources and topologies for the physical and logical connectivity between CPU and acceleration 
resources.  

The virtual Base Station include additional layers such as L2, L3, RRM and OAM, which also include certain compute-
intensive functions that can be accelerated in a similar manners at the same or different hardware accelerators 
topologies. For example, the accelerators can be inserted or integrated in CPU blades / chassis via high bandwidth 
interface, such as rapid I/O, PCIe, and Ethernet. While the pure implementation of the accelerated data transportation in 
this topology is simpler due to the accelerated data chain is CPU->accelerator->CPU generally, pooling the HWA 
resources out of server, provide higher level of flexibility, lifecycle, thermal efficiency and other cost benefits, as 
detailed in this use case. 

Title  Virtual Base Station (VBS) L1 Acceleration Use Case 
NFV Components • VNF / VNFC. 

• VIM. 
• Compute Nodes. 
• Networking Nodes. 
• HWA (Hardware Acceleration) Nodes. 

Introduction & Problem 
Statement * 

Introduction: 
Virtualisation of mobile base station is expected to provide advantages 
such as lower footprint and energy consumption coming from dynamic 
resource allocation and traffic load balancing, easier management and 
operation, faster time-to-market and enablement of advanced algorithm 
for spectrum efficiency (e.g. CoMP). 
 
Challenges: 
The main challenge in virtualising the base station is its baseband PHY 
(L1) layer, which includes the most computational intensive signal 
processing tasks, such as channel coding/decoding, FFT/iFFT. Typically, 
those functions are implemented on dedicated modem processors or on 
general purpose L1 accelerators. 
 
Virtualisation of HWA resources: 
General purpose L1 modem processing unit accelerators contain 
processing elements blocks (Channel coding/decoding, FFT/iFFT, etc.), 
in which through combination of related blocks and service chaining of 
dataflow, accelerate the baseband software and enables the 
virtualisation of independent hardware acceleration resources similar to 
the virtualisation of CPU resources (cores, memory, I/O). 
 
Abstraction Layer: 
An abstraction layer such as modem programing language can be 
implemented between the L1 Hardware Acceleration (HWA) and the 
baseband software (CPU) virtual machines. Similar to the case of 
OpenCL and GPUs, an open abstraction layer would simplify the 
programing of the workload to be executed on the HWA, it would enable 
certain portability capabilities and a creation of open eco-system of 
hardware and software technology providers, VNF product/solution 
providers and Carriers. 
 
Physical interface of HWAs and CPUs:  
The physical interface between the CPU in which the baseband SW is 
running on and the L1 Hardware Acceleration (HWA) might be in a form 
of server attached card or module, for example a PCIe card over PCIe 
bus and the use of SR-IOV to share the acceleration resources between 
different baseband virtual machines on the specific server. While 
functionality wise, such configuration can work, it would not provide the 
same level of agility, flexibility, scalability, functionality and cost reduction 
(both capital and operational) as in the case of disaggregation of all 
resources model with a pool of HWA resources. 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 18 

Introduction & Problem 
Statement *(continued) 

The disaggregation model description: 
In the case of disaggregation model, the independent CPU blades / 
chassis are separated from the independent accelerators blades / 
chassis and connected by network elements. A preferred network 
protocol would be similar to the CPUs / Servers interconnect network (for 
example, Ethernet, Infiniband, PCIe, etc.) to allow either dedicated 
network or integration onto single network for all compute and 
acceleration resources. In order to support the low latency requirement 
between L1 Acceleration and baseband software the use of technologies 
such as SR-IOV, DPDK® or RDMA/RoCE can be used. 
The disaggregation model benefits: 
The advantages of the disaggregation model between CPU blades / 
chassis and Acceleration blades / chassis are: 

• Sharing the accelerators resources across many computing 
blades / servers. 

• Providing improved amortization of traditionally expensive 
components. 

• Independant upgrading and scaling of resources. 
• Increasing lifespan of each resource by enabling easy 

replacement of specific resource and allowing thermal efficiency 
design by optimal component placement within a rack or space. 

Performance Consideration* • Latency between L1 HWA and baseband SW on CPU 
• Bandwidth between L1 HWA and baseband SW on CPU 
• Data integrity measures 
• Live migration 

Management & Orchestration 
Consideration 

The VBS VNF supports several operating configuration to support 
different radio configurations (supported antenna configuration (2x2/4x4/, 
etc.) or service requirements such as number of users.  
Operating configurations may have different CPU, HWA and networking 
requirements. Hence, resources are assigned for specific base station 
configuration. 
The Orchestrator and VIM need to know about available compute 
resources, acceleration resources and availability of networking routes 
and features to support: 

• The VNF (vBS) supported configuration/s CPU resources; 
• The VNF (vBS) supported configuration/s HWA resources; 
• The VNF (vBS) supported configuration/s networking resources; 

− Latency and bandwidth requirements between HWA and 
CPUs. 

The VNF Manager and or VNF EMS need to maintain performance, 
functionality and lifecycle of the VNF VNFCs (CPUs, HWA) and 
networking resources. 

Possible Accelerators Baseband modem processing unit L1 hardware acceleration might be in 
the form of: 

• FPGA 
• Structured ASIC 
• Custom ASIC 

There could be different options for the system implementation of L1 
hardware accelerator, as an example:  
Option 1: 

• Accelerator Type: In-Line 
• Accelerator Location: Network Attached 

Option 2: 
• Accelerator Type: Look Aside accelerator 
• Accelerator Location: Bus Attached 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 19 

Description The available CPU, Hardware Accelerators and Network nodes 
resources are identified and reported to the management system. 
The VBS VNF provider provides descriptors to the orchestrator with 
possible configurations and related resources per each configuration as 
well as portability measures (Supported abstraction layers, resources 
type and features). 
The Management System need to allocate the resources for the VNF in 
its specific configuration. 
Based on VNF EM configuration, the orchestrator and/or VNF EM 
leverages the VNF related virtualised resources to change and/or 
optimizes the VNF configuration and performance.  
The VNF EM and VNF Manager handle performance, functionality and 
lifecycle of the VNF and its components. 

Notes  
Legend:  * identify mandatory fields. 

5.1.4 Virtual Acceleration Interface for VNFs 

Title Virtual Acceleration Interface for VNFs (In Server Acceleration) 
NFV 
Components 

NFV Infrastructure (NFVI), Management and Orchestration (MANO), Software 
Architecture, Performance and Security. 

Introduction & 
Problem 
Statement 

With NFVI, Virtual Network Functions (VNFs) run as software-only entities in a 
hardware agnostic fashion. Examples of VNF range from: 

• Switching, Routing  
• CDNs  
• Security application such as Firewall, Intrusion Prevention systems, Virus and 

SPAM Protection Systems, IPsec and SSL-VPN gateways 
• eNodeB 
• EPC SGW, PGW  

While a range of VNFs work efficiently as software-only entities, VNFs such as Intrusion 
Detection Systems (IDS), Intrusion Prevention Systems (IPS), Web Application 
Firewalls (WAF) that do virus scanning and spam protection, IPsec/SSL-VPN 
Gateways, LTE requiring Packet Data Convergence Protocol (PDCP) processing and 
VoIP (Voice over IP) Gateways do compute intensive operations that takes away cycles 
off the VMs and the VNFs. Achieving high performance for the above mentioned 
collective umbrella of Compute Intensive applications (CI) is a known challenge when 
run as VNFs.  
The CI applications that run on propriety complex hardware-based appliances in a 
traditional setup (not on cloud or data centres) showcase higher performance as the 
compute intensive operations (e.g. cryptography, compression/decompression, pattern 
matching) are offloaded to the hardware accelerators of SoCs. The major stumbling 
block in providing hardware acceleration for these CIs as VNFs is that the hardware 
accelerators available today have proprietary vendor specific interfaces that defeat the 
basic goal of NFV that envisages VNFs to be run as a software-only entity in a 
hardware agnostic fashion.  
Keeping the requirement of VNF to achieve high performance virtualised network 
appliances which are portable between different hardware vendors, it becomes 
imperative to define a standard vendor independent accelerator interface, Virtual 
Accelerator Interface, so that VNFs continue to exist as software-only entities and work 
in a hardware agnostic fashion and yet address the performance challenges for the CI 
applications as VNFs. 
In summary, the problem statement is as follows: 

• CI VNFs are unable to showcase high performances as traditional CIs as they 
run as software-only entities. Using accelerators is one method with which CI 
VNFs can showcase higher performance as their traditional counter-parts. 

• CI VNFs are unable to make use of hardware accelerators as they have 
proprietary vendor-specific interfaces and using such proprietary interfaces 
defeats the portability and migration requirements of VNFs across various 
ecosystems. 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 20 

Description Different CI VNFs require specific type of offload accelerators. The table below cites 
some examples of CI VNFs and the accelerators that they will need. 
 

 VNF Application Offload Accelerator Capabilities 
1 IPsec/SSL Gateway Symmetric Key Cryptography,  

Public Key Cryptography, 
IPsec Protocol Accelerators, 
SSL Record Layer Accelerators 

2 Intrusion Prevention 
Systems 

Pattern matching,  
Compression,  
Decompression 

3 Web Application, 
Firewall,  
Anti-Virus,  
Anti-Spam Systems 

Compression,  
Decompression,  
Pattern Matching,  
SSL Record Layer Processing, 
Public and Symmetric Cryptography 

4 Packet Data  
Convergence  
Protocol 

Crypto engines 
Protocol Acceleration 

5 VOIP Gateway Crypto engines 
SRTP Protocol Acceleration 

6 Routing, Firewall Table lookup Accelerators 
 
The NFV Architectural framework can include a Virtual Accelerator in addition to Virtual 
Compute, Virtual Storage and Virtual Network that can abstract the underlying 
proprietary vendor-specific hardware offload accelerators and provide a virtual instance 
that the VNFs can use. The Virtual Accelerator provide a standardized vendor agnostic 
accelerator interface that VNFs can use to access the underlying accelerator. The VNFs 
interface with the Virtual Accelerator using the Virtual Accelerator (VA) Driver. 

 

Figure 6: Modified NFV Architectural framework 

VA Drivers extend through the range of accelerators such VA-SSL driver, VA-IPsec 
driver, VA-Pattern Matching driver, etc.  
To ensure portability across ecosystems with or without accelerators, the Virtualisation 
Layer provide a software emulation of the offload functions so that VNFs can continue 
to exist as software-only entities and work in a hardware agnostic fashion. 

 

Hardware Resources 

VNF  VNF  VNF  VNF  VNF  

NFV 
Management 

and 
Orchestration 

Virtualisation Layer 

Virtual Compute  Virtual 
Storage  

Virtual 
Network  Virtual Accelerator 

Compute  
Storage  Network 

Accelerator  

Software 
Emulation 

VA 
Driver 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 21 

 

Figure 7: Standardized Accelerator Interface using Virt-IO drivers 

Figure 7 shows a suggested implementation of standardized accelerator interfaces 
available to VNFs using Virt-IO drivers. 

Solution 
Considerations 

The key requirements that need to be met are as follows: 
• Identify the list of accelerator required to accelerate Compute intensive VNFs. 
• Define a standard vendor independent accelerator interface for each of the 

accelerators that can be accessed by VNFs. 
• Virtual Accelerator works with different proprietary hardware offload 

accelerators, so that VNFs using this interface can continue to run in a 
hardware agnostic manner. 

• Virtual Accelerator interface supports software emulation, so that the VNFs 
can work seamlessly with or without acceleration. 

• NFVI supports virtual accelerators in the same fashion as it supports virtual 
network, storage and compute. 

• Ability for VNFs to indicate the type of accelerators it could use. 
• Ability for NFVI to indicate the accelerators it supports. 

Performance 
Consideration 

• NFV Accelerator Offload using hardware accelerators can reduce significant 
compute cycles utilization by the VNFs leaving more for other tasks of VNF 
and hence result in a capacity gain, throughput gain, connection rate gain or 
some combination of the above for the VNF. 

• Avoiding Virtualisation Layer interaction on a per packet basis would bring 
significant performance gain and hence it is important to consider methods to 
bypass the Virtualisation layer on a per packet basis. 

Management & 
Orchestration 
Consideration 

MANO match VNF's accelerator's requirements with NFVI's accelerator capabilities. 

Possible 
Accelerators 

Crypto - Public key and Symmetric Key, IPsec Protocol Accelerator, SSL Record Layer 
Accelerators, Pattern Matching, Compression, De-compression, PDCP Accelerator, 
SRTP Protocol Accelerator and Table Lookup Accelerators 
Accelerator Type - Look Aside Accelerator 
Housing/Location - Integrated CPU, iNIC, Bus Attached 

Other 
Consideration 

Live Migration Consideration:  
• When a VNF moves from one NFVI node to another, the VNF continues to 

work with minimal disruption.  



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 22 

5.1.5 Transcoding 

Title  Transcoding Hardware Acceleration Use Case 
NFV Components VNF / VNFC 

VIM 
NFVO 
VNFM 

Introduction & 
Problem 
Statement * 

In the future the rapid adoption of VoLTE, VoWiFi and WebRTC solutions for multimedia 
communication services will determine the contemporary usage in the network of many different 
audio and video codecs. Interoperability will require transcoding and/or transrating of the media 
streams exchanged between end user terminals to adapt them to the capabilities supported by 
each device. 
Multimedia services may have high bandwidth requirements, with strict requirements for latency, 
jitter, and packet loss in order to ensure QoE for end users. Besides, new audio and video 
codecs such as H.265 or VP9 video require more processing resources than previously used 
audio codecs. 
Transcoding is not always performed in "real-time". Anyway the impact on "real-time 
communication" is more relevant considering the possible impact on the QoE for end-users. 
Transcoding is performed by decoding a media stream using a specific codec and then 
re-encoding the information by using a different codec. Transrating is performed by reducing the 
amount of image data and resolution in order to adapt the video to different available screen 
sizes and network bandwidth.  
Media transcoding performed with Hardware accelerators can provide an efficient and effective 
solution with respect to Software-based transcoding in a fully virtualised environment. 
Usage of the Hardware acceleration for transcoding needs to be based on the following possible 
requirements: 
It can be possible to include Hardware Acceleration capabilities on selected compute servers. 
It can be possible to create instance of VNFCs making use of Transcoding with virtualisation 
containers hosted on these servers. 
It can be possible to make use of VNFC software implementations that are independent from the 
acceleration technology. 
It can be possible to include Hardware Accelerators as elements of the NFVI managed by the 
VIM. 
It can be possible to perform lifecycle management according to the NFV requirements for the 
VNF making use of Hardware Acceleration. 
The impact on the NFV reference architecture is shown in figure 7. 

 

Figure 8 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 23 

The major impacts are on the following functions: 
NFVI can include a new type of Hardware resources providing Transcoding Hardware 
Acceleration. These resources, shown in figure 8 as "Hardware Accelerator" are part of the 
Infrastructure "Compute Domain". 
The virtualisation layer in NFVI can provide "virtual transcoding" resources to the VNFs. 
VNFD can include the requirements in term of Hardware Acceleration for the VNF and 
specifically for the VNFCs. 
VNF can make use of Transcoding Hardware acceleration capabilities (e.g. the VNF implements 
the Session Border Controller function). 
Infrastructure Description: compute resources with acceleration capabilities can be identified 
within the Infrastructure "Compute Domain". 
The VNFM can be able to request resource allocation according the need of the VNF described 
in the VNFD. 
The VIM can be able to select Compute resources with acceleration capabilities. 

Performance 
Consideration * 

Performances will be measured with respect to:  
type and number of transcoded media streams;  
type of transcoding (e.g. codecs, video resolutions, frames per second);  
total managed bandwidth;  
introduced latency (when transcoding real time communication sessions); 
effect on jitter and packet loss (when transcoding real time communication sessions); 
energy efficiency (expected lower power consumption). 

Management & 
Orchestration 
Consideration 

Starting from the VNFD and on the knowledge of the resources available on the infrastructure 
(information regarding consumable virtualised resources that can be provided by the VIM) the 
VNFM and NFVO may request the allocation of transcoding resources that can fulfil the 
Hardware acceleration requirements for the VNF. 
The VIM may support Hardware resources capable of Transcoding Hardware Acceleration. 
From the VIM N/B interface it may be possible to instantiate, scale, migrate and terminate virtual 
resources making use of Transcoding Hardware Acceleration. 

Possible 
Accelerators 

Possible transcoding hardware accelerators can be implemented with:  
• PCIe plug-in cards using Digital Signal Processors (DSPs); 
• SoC; 
• GPUs; 
• Extensions of the ISA. 

 
Classifying accelerators according to the "type of accelerator" leads to: 

• Look-aside; 
• "In-line",  
• "Fast Path" or "Optimized SW Path". 

 
Classifying accelerators according to possible "Housing/Location" classification leads to: 

• CPU Instruction based, being part of processor instruction set; 
• Integrated CPU, being housed as a HW function (GPU, FPGA, etc.); 
• Part of iNIC; 
• "Network Attached"; 
• "Bus attached". 

Description Transcoding Hardware accelerator is in the form of specific hardware or chipset. 
The hardware resource is virtualised with device drivers by the virtualisation layer. 
NFV Software making use of the Transcoding Hardware Accelerators is the VNF. Specifically, 
the VNFC instances can perform transcoding by taking advantage of virtualised transcoding 
resources. 
The usage of Transcoding Hardware accelerator allows obtaining better performance at lower 
cost and with lower power consumption. 

Legend:  * identify mandatory fields. 
 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 24 

5.1.6 Deep Packet Inspection 

Title  DPI Acceleration Use Case 
NFV Components VNF / VNFC 

VIM 
NFVO 
VNFM 

Introduction & 
Problem 
Statement * 

With the development of mobile internet and 4G, services will become more diverse with 
different characteristics, like protocol, content type, user-user, user-network and so on. Mobile 
operators network (i.e. EPC) has the requirement and capability to detect and identify the service 
data flow, and then they can provide policy control, service data charging, and new business 
model, like providing sponsored data to users.  
Deep Packet Inspection (DPI) is usually used in the detection and identification process, 
especially identifying L4-L7 characteristics of packet or flow.  
DPI can be performed with accelerators, which can provide a more efficient and effective 
solution compared to standard COTS implementation in NFV environment. 
 
Usage of DPI acceleration function can be based on the following possible requirements: 

• NFVI can be enhanced to support DPI acceleration capability. 
• DPI acceleration resources can be managed by the VIM and provided to VNF or VNFC; 
• DPI acceleration resources can be identified by a VNFD-related information element. 

Besides, this DPI acceleration function can be used by next generation fire wall. 
Performance 
Consideration * 

Performances can be measured with respect to:  
• Capability on flexible upgrade of match rules. 
• Number of match rules or number of identified application (protocols, type, and so on). 
• Total managed bandwidth. 
• Number of concurrent processing flow. 
• Introduced latency. 
• Energy efficiency (expected lower power consumption). 

Management & 
Orchestration 
Consideration 

The major impacts are on the following functions: 
• NFVI can be enhanced to support DPI acceleration function; 
• The virtualisation layer in NFVI can provide virtual DPI acceleration resources to the 

VNFs. 
• VNFD can include the requirement and related information element, in term of DPI 

acceleration for the VNF and specifically for the VNFCs. 
• The VNFM and NFVO can request resource allocation according to the need of the 

VNF described in the VNFD. 
• The VIM can manage DPI acceleration capabilities. 
• VNF(like PGW (Packet Data Network Gateway), NGFW (Next Generation FW) ) can 

make use of DPI acceleration capabilities. 
Possible 
Accelerators 

Possible DPI hardware accelerators implementation includes but not limited to:  
• FPGA 
• ASIC 
• Integrated CPU  

Type of accelerator can be Look-Aside, Fast-Path, In-Line, or Optimized Software Path. 
Location of accelerators can be: 

• Integrated CPU 
• Network Attached 
• Bus Attached 
• iNIC 

Description DPI acceleration capability can be a kind of specific hardware or chipset, or software or hybrid 
implementation. 
The DPI acceleration resources can be managed by VIM, and described by VNFD-related 
information elements. 
The VNFM and NFVO can request resource allocation according to the need of the VNF 
described in the VNFD. 
VNF can make use of DPI acceleration capability, i.e. VNFC instances can perform DPI function 
by taking advantage of virtualised accelerators resources.  
The usage of DPI acceleration capability should make better performance at acceptable cost 
and power consumption. 

Notes DPI is one key function of NGFW platform in clause 5.1.2, this use case depicts DPI acceleration 
in mobile network. 

Legend:  * identify mandatory fields. 
 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 25 

5.2 Network Acceleration 

5.2.1 Load Balancing and NAT 

Title  Load balancing & NAT 
NFV Components  Compute Node, including an intelligent NIC with offload capability. 
Introduction & Problem 
Statement  

Load balancing (LB) and NAT have been deployed as a software only 
solution in the server, such as in the hypervisor, in the form of a vSwitch, 
or virtual switch. As server network speeds move to 40 GbE it is 
envisioned that these functions will have to be offloaded, such as to an 
intelligent NIC in the server, or compute node. This use case can be 
applied to data centers that use OVS® (Open Virtual Switch). 

Performance Consideration  Many applications require the support of multiple physical ports at 
40 GbE each. In addition, many compute node servers can host 
hundreds of VMs, which in turn host many applications. The accelerated 
solution helps to meet the performance, latency, jitter and the SLA 
requirements. 

Management & 
Orchestration 
Consideration  

Managing the vSwitch through a local API is required. This acceleration 
is transparent to the VNFs. It is desirable that the orchestrator is able to 
discover the underlying performance capability of the compute node. 

Possible Accelerators NFVI Fast Path, In-Line, and Look-Aside Accelerators - all as iNIC, Bus 
Attached, and Integrated CPU - can all be used for acceleration in this 
use case. 

Description  This use case is comprised of two steps:  
1) Load Balance (select a Destination IP address, or DIP). 
2) NAT (translate a Virtual IP address, or VIP to a DIP and ports). 

The virtual switch (e.g. OVS) and the NIC are relevant for the following: 
• 2nd Tier: Provides connection-level (layer-4) load spreading; 

implemented in servers; 
• 3rd Tier: Provides Stateful NAT; implemented in the virtual 

switch in every server. 
 
L4 load spreading among a set of available servers (virtual machines) is 
implemented by computing a hash function on the traffic received on a 
given input endpoint. It uses the following fields from an incoming packet 
to compute a hash value: source and destination IP address, IP protocol 
(TCP or UDP), source and destination ports. This function would be 
offloaded to an intelligent NIC in the 2nd Tier. 

Other Considerations One test scenario to benchmark this type of acceleration is as follows: 
A number of tenants need to be defined in terms of VIPs. VMs are 
allocated to each tenant and DIPs assigned to them. Multiple VMs are 
installed in a single server, with OVS and the NIC serving multiple 
tenants so as to load up the server and CPU cycles adequately and 
stress the I/O performance in the server. 
 
Suggested Benchmarks: 

1) LB and NAT are implemented in software and in two tiers; 
2) LB is implemented in OVS and NAT is implemented in software, 

in two tiers; 
3) LB is implemented in the NIC and NAT in implemented in 

software, in two tiers; 
4) LB and NAT are implemented in OVS in a single tier; 
5) LB and NAT are implemented in the NIC in a single tier. 

 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 26 

5.2.2  NFVI Virtual Networking Offload 

Title NFVI Virtual Networking Offload 
NFV 
Components 

VNF, VIM, Compute Node, Network Node, Storage Node, HWA (Hardware 
Acceleration) Node. 

Introduction & 
Problem 
Statement 

The key value enabler of NFV is the introduction of virtualisation support in the NFVI 
that enables service delivery utilizing VNFs decoupled from the underlying physical 
compute, storage and network infrastructure. By the same token, a key challenge 
occurs in overcoming the performance impediments that result from the introduction 
of this virtualisation support. A less obvious but equally important challenge is that 
these performance impediments need to be overcome in a way that is transparent to 
VNFs. 
From figure 9, there are three main components to NFVI virtualisation support: 
Virtual Compute, Virtual Storage and Virtual Network. 

Virtual Network Functions (VNFs)

VNF VNF VNF VNF VNF

NFV 
Management 

and 
Orchestration

NFV Infrastructure (NFVI)

Compute Storage Network

Virtual 
Compute

Virtual 
Storage

Virtual 
Network

Virtualization Layer

Hardware resources

ETSI NFV Framework “Network 

Functions”

The logic we 

deploy to build 

services

“Functions 

Virtualization”

The logic that does 

the deployment

“Operationalization”

The way we keep things 

running and buildable

 

Figure 9 

NFVI Virtual Networking, unlike Virtual Computing and Virtual Storage, can be very 
CPU intensive, disproportionately bogging down CPU resources available to Virtual 
Compute/Storage workloads which form the more visible part of the service offering. 
Furthermore, NFVI Virtual Networking is becoming increasingly burdensome, 
growing from basic virtual switching to overlay networking to secure transport, QoS, 
VM isolation/filtering/firewalling and load balancing, etc., not to mention adjunct and 
utility functions like traffic monitoring, traffic mirroring and fragmentation and 
reassembly. Therefore, the focus of this Use Case is to describe an approach and 
high level requirements for overcoming the performance impediments introduced 
specifically by the networking aspects of the NFVI virtualisation support referenced 
above as NFVI Virtual Networking in a manner transparent to VNFs and that goes 
beyond the current state of the art. 

Description NFVI Virtual Networking can be offloaded to mitigate the performance impediment 
introduced by virtualisation support. One of the key components in NFVI Virtual 
Networking is the virtual switch. OVS is a popular OpenFlow based software switch 
implementation that comes with Linux and KVM/QEMU distributions. Therefore, 
many vendors have focused on OVS acceleration/offload. 

Use Case focus 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 27 

OVS Acceleration/Offload 
OVS has two components, a user space component and a kernel space component. 
The user space component consists of OVSDB (configuration), an OpenFlow agent 
and the OpenFlow normal path processing logic. The kernel component implements 
the fast path which OVS refers to as the data path. This kernel data path, as is 
generally the case, is not efficient due to the following overheads: 

• Linux kernel processing overhead before a packet is handed over to the 
OVS data path 
− Interrupt processing 
− Softirq processing 
− Dev Layer processing 

• Interrupt overhead 
• Fast Path to Normal Path overhead for the first few packets of a flow 

Some software/networking vendors have accelerated OVS by implementing a user 
space data path using the OVS "dpif" provider interface and Intel DPDK® or ODP® in 
poll mode. Poll mode dedicates a few cores to receive packets from the Ethernet 
controller directly, eliminating interrupts and thereby avoiding overhead associated 
with interrupt processing. Also, since the Ethernet ports are owned by this custom 
user space process, there is no need for any complex hook processing as needed in 
the Linux kernel. This user space data path can start OpenFlow processing on the 
packets immediately upon reception from Ethernet controllers, thereby avoiding any 
intermediate processing overhead. These features by themselves provide a good 
performance boost. 
Vendors have also offloaded the OVS data path on to an iNIC or NPU using SR-IOV 
to bypass the virtualisation layer and almost eliminate the OVS data path burden on 
the general purpose processing layer. 
 
Limitations of OVS Acceleration/Offload 
OVS acceleration/offload implementations may not perform well in popular 
OpenStack environments because these environments depend upon more than just 
virtual switching. OpenStack environments additionally require the following NFVI 
Virtual Networking support: 

• Network virtualisation using VxLAN, NVGRE, etc. 
• Linux IPtables for isolation amongst VMs 
• VxLAN-over-IPSec to protect the traffic from eaves dropping 
• VM connection to OVS via tuntap interfaces 

Overlay networking, isolation using IPtables firewall, VxLAN-over-IPsec and VM 
connection via tuntap interfaces all use Linux kernel capabilities. For accelerated 
OVS data path in user space, packets still have to traverse through the kernel 
(sometimes twice) to avail of these capabilities beyond virtual switching. This may 
result in even worse performance than the OVS data path in the kernel. For 
offloaded OVS, packets will have to traverse between execution domains (i.e. 
accelerator and general purpose processing layer), potentially multiple times, to avail 
of these capabilities. Therefore, in an Openstack environment, just OVS 
acceleration/offload may actually reduce performance for realistic use cases. 
 
NFVI Virtual Network Offload 
NFVI Virtual Networking Offload not only envisions offloading of the OVS kernel data 
path, but also all/most other NFVI virtual networking data/fast paths. By doing so, it 
enables VNFs to bypass NFVI virtual networking in the general purpose processing 
layer, as it happens with SR-IOV for example, and thus mitigate performance 
impediments introduced by virtualisation support without losing functionality provided 
by this support. Only exception packets go to NFVI Virtual Networking in the general 
purpose processing layer. The growing list of NFVI Virtual Networking data/fast path 
components to be offloaded include: 

• Virtual Switching, e.g. OVS kernel data path 
• Overlay Networking, e.g. VxLAN, NVGRE, GENEVE 
• Secure Transport, e.g. IPsec 
• QoS 
• VM isolation/filtering, e.g. IPtables, D/DOS, syn flood prevention 
• Distributed Routing, Firewall and Load Balancer 
• Traffic Monitoring, e.g. Netflow/Sflow 
• Traffic Mirroring 
• Fragmentation/Reassembly 
• etc. 

 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 28 

NFVI Virtual Networking Offload functionality include offloading its various data/fast 
paths onto the following: 

• iNICs 
• Programmable advanced I/O processors 
• NPUs 
• FPGAs 
• etc. 

Figure 10 shows its various components and organization as compared to the non-
accelerated/non-offloaded case. 

NFVI Virtual Networking (VN) Offload

Standard NFVI Node

NVM

IPtables

Conn 
Track

LAN on Motherboard or Basic NIC

NVM

NFVI Virtual Networking (VN)

OVS 
Control

OVS 
Fast Path

VTEP

VxLAN

IPsec/IKE 
Control

IPsec

App AppApp App
DPDK

TC

QoS

Frag / Reassembly

ODP NVM

IPtables

IPtables
Listener 

NVM

NFVI Virtual Networking (VN)

OVS 
Control

DPIF

Datapath
Control

IPsec/IKE 
Control

IPsec
Listener

Datapaths (Growing)

ConnTrack
Fastpath

Switch
Fastpath

Overlay  
Fastpath

Security/QoS
Fastpath

Packet Forwarding Engine
Frag/Reassy, Monitoring, Mirroring …

NFVI VN Offloaded Node

App AppApp App
ODP

TC

QoS
Driver

ODP

NFVI VN Offload
• iNIC
• Advanced I/O Processor

• NPU
• FPGA, etc.

SR-IOV

 

Figure 10 

It is important that NFVI Virtual Networking Offload enable access to offload 
accelerators, whether it is an iNIC, an advance I/O processor, an NPU, an FPGA, 
etc. without requiring changes to VNFs. 

Performance 
Considerations 

NFVI/VMM Virtual Networking Offload using iNICs, advance I/O processors and/or 
other forms of HW acceleration needs to reduce CPU utilization leaving more for 
VNF capacity gains for a given performance profile or increase VNF performance for 
a given capacity or some combination thereof. This performance improvement 
implies offloading necessary NFVI virtual networking components as described 
above. This translates into avoiding intervention by NFVI virtual networking in the 
general purpose processing layer for processing packets. 

Management & 
Orchestration 
Considerations 

MANO related aspects include: 
• Ability for NFVI nodes to advertise NFVI Virtual Networking Offload support 

in terms of performance characteristics such as latency, jitter, throughput 
and connection rate. 

• A mechanism for VNFs to request or provide guidance on performance 
characteristics' constraints/capabilities. 

• A mechanism to bind VNF requests with NFVI node capabilities. 
Possible 
Accelerators 

NFVI Virtual Networking Offload can be realized with iNICs, advanced I/O 
processors, and/or accelerators leveraging a myriad of accelerator types (e.g. Multi-
core Processor, NPU, FPGA, GPU, etc.). 
There could be different options for the system implementation of NFVI Virtual 
Networking Offload, e.g.:  

• NFV Software: 
− NFVI 

• Type of Accelerator Type: 
− Fast Path 

• Housing/Location of Accelerator: 
− Integrated CPU  
− iNIC 

• Accelerator based on Functional Type: 
− OF based packet processor 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 29 

Other 
Considerations 

NFVI Virtual Networking Offload needs to be transparent to VNFs. This also implies 
that VNFs should support live migration, with or without HW acceleration, and 
independent of accelerator vendor or type. This is critical because NFV market 
potential will be primarily dominated by VNF demand and offerings and as a result 
Network Operators and VNF providers will expect VNFs to be deployable on the 
NFVI in a HW vendor agnostic manner, with or without HW acceleration, (i.e. 
standard platforms). Any requirement for vendor specific drivers or software in the 
VNF to take advantage of the benefits of the vendor specific NFVI HW acceleration 
will likely be a competitive disadvantage to vendor market share as well as hinder 
NFV market potential. Even if vendor specific VNF drivers are upstreamed, the 
resultant driver sprawl could burden VNF validation, maintenance and general life 
cycle management. 
NFVI Virtual Networking Offload needs to also be easily upgradeable and 
programmable to meet the increasing and changing NFVI virtual networking needs. 

Solution 
Considerations 

• NFVI/VMM Virtual Networking Offload using iNICs, advance I/O processors 
and/or other forms of HW acceleration needs to reduce CPU utilization 
leaving more for VNF capacity gains for a given performance profile or 
increase VNF performance for a given capacity or some combination 
thereof.  
− Minimize NFVI Virtual Networking in the general processing layer by 

offloading it to an offload accelerator directly accessible to VNFs (e.g. 
SR-IOV). 

− Only exception processing is handled by NFVI virtual networking in the 
general processing layer. 

• NFVI Virtual Networking Offload needs to be transparent to VNFs. 
− VNFs do not need any NFVI accelerator specific software, even if the 

virtualisation layer is bypassed (e.g. SR-IOV). For example, no special 
Ethernet drivers is needed in the VNF. Hence, a standardized Ethernet 
interface is needed across vendors. 

− VNFs supporting live migration, with or without HW acceleration, and 
independent of accelerator vendor or type. 

• NFVI Virtual Networking Offload needs to also be easily upgradeable and 
programmable to meet the increasing and changing NFVI virtual 
networking needs. 

 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 30 

5.2.3  NFVI Secure Overlay Offload 

Title NFVI Secure Overlay Offload 
NFV 
Components 

VNF, VIM, Compute Node, Network Node, Storage Node, HWA (Hardware 
Acceleration) Node. 

Introduction & 
Problem 
Statement 

The key value enabler of NFV is the introduction of virtualisation support in the NFVI 
that enables service delivery utilizing VNFs decoupled from the underlying physical 
compute, storage and network infrastructure. By the same token, a key challenge 
occurs in overcoming the performance impediments that result from the introduction 
of this virtualisation support. A less obvious but equally important challenge is that 
these performance impediments need to be overcome in a way that is transparent to 
VNFs.  
From the figure 11 below, there are three main components to NFVI: Virtual 
Compute, Virtual Storage and Virtual Network. 

Virtual Network Functions (VNFs)

VNF VNF VNF VNF VNF

NFV 
Management 

and 
Orchestration

NFV Infrastructure (NFVI)

Compute Storage Network

Virtual 
Compute

Virtual 
Storage

Virtual 
Network

Virtualization Layer

Hardware resources

ETSI NFV Framework

 

Figure 11 

NFVI Virtual Networking, unlike Virtual Computing and Virtual Storage, can be very 
CPU intensive, disproportionately bogging down CPU resources available to Virtual 
Compute/Storage workloads which form the more visible part of the service offering. 
Furthermore, NFVI Virtual Networking is becoming increasingly burdensome. The 
growing list of NFVI Virtual Networking functions include: 

• Virtual Switching, e.g. OVS kernel data path 
• Overlay Networking, e.g. VxLAN, NVGRE, GENEVE, Custom Tunneling 
• Secure Transport, e.g. IPsec 
• QoS 
• VM isolation/filtering, e.g. IPtables, D/DOS, syn flood prevention 
• Distributed Routing, Firewall and Load Balancer 
• Traffic Monitoring, e.g. Netflow/Sflow 
• Traffic Mirroring 
• Fragmentation/Reassembly 
• etc. 

Therefore, the focus of this Use Case is on NFVI Virtual Networking. Specifically, 
this Use Case homes in on the need for the Overlay Networking and Secure 
Transport (or Secure Overlay in brief) subcomponents of NFVI Virtual Networking 
and describes an approach and high level requirements for overcoming the 
performance impediments introduced by these subcomponents in a manner 
transparent to VNFs. 

Use Case 
focus 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 31 

Description Overlay Networking 
While Virtual Compute and Virtual Storage leverage maturing cloud technologies, 
the core of Virtual Network is increasingly contemplated as L2inL3 Overlay Networks 
to overcome VLAN scalability limitations for large and hyper scale cloudified 
networks envisioned by NFV. 

• VLANs are fixed in number. The VLAN header defines 12 bits for VLAN ID 
which means only 4K VLAN IDs are possible. Assuming the best case of 1 
VLAN ID per tenant, at most only 4K tenants can be supported. 

• VLANs are mostly an L2 concept. Keeping VLANs intact across L2 
networks separated out by L3 routers is not straightforward and requires 
some intelligence in L3 devices. Especially when tenant networks need to 
be expanded to multiple geographic locations, extending VLANs across the 
Internet requires newer protocols (such as TRILL).  

• If tenants require VLANs themselves for various reasons, double or triple 
tagging may be required. Though 802.1ad tagging can be used for tenant 
identification and 802.1Q tagging for tenant specific VLANs, this may also 
require changes to existing devices. 

A popular overlay technology is VxLAN named as such to be indicative of an 
extension to VLANs, overcoming the limitations of this traditional work horse of 
virtual networks. VxLAN is a new tunneling protocol that works on top of UDP/IP. It 
does require changes to existing infrastructure for its support, but it does not have 
the limitations of VLAN based tenant identification. Since L2 networks are created 
over L3 networks, they can now easily extend not only within a Data 
Center/Enterprise/Provider locations, but across different locations of Data 
Center/Enterprise/Provider networks. VxLAN or other overlay networking protocols 
are the key enabling technologies to large scale Network Virtualisation and Multi-
Tenancy. 
 
Secure Overlay 
Security considerations are critical as networks become virtual with overlay 
technologies like VxLAN. For example, it is possible to corrupt the VTEP (VxLAN 
Tunnel End Point) learning tables by the man-in-the middle or even external 
attackers. VNIs can become known to attackers eventually. With this knowledge, 
multicast or unicast packets can be generated to corrupt or overwhelm learning 
tables, thereby creating a DoS condition.  
IPsec amongst VTEPs can mitigate these issues with its support of network-level 
data integrity, data confidentiality, data origin authentication, and replay protection. 
The Management Entity can populate IPsec keys in the VTEPs. For Multicast 
tunnels, the IPsec key needs to be the same across all VTEPs. The Management 
Entity may recycle the key to strengthen security. For unicast VxLAN tunnels, the 
Management Entity can either use the same key for all VTEPs or it can use pair wise 
keys. With proper precautions virtual networks can be just as secure as regular 
networks. 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 32 

Description Secure Overlay Offload 
As part of overall NFVI Virtual Networking Offload, NFVI Secure Overlay Offload is 
highlighted in figure 12. 

NFVI Secure Overlay Offload

Standard NFVI Node

NVM

IPtables

Conn 
Track

LAN on Motherboard or Basic NIC

NVM

NFVI Virtual Networking (VN)

OVS 
Control

OVS 
Fast Path

VTEP

VxLAN

IPsec/IKE 
Control

IPsec

App AppApp App
DPDK

TC

QoS

Frag / Reassembly

ODP NVM

IPtables

IPtables
Listener 

NVM

NFVI Virtual Networking (VN)

OVS 
Control

DPIF

Datapath
Control

IPsec/IKE 
Control

IPsec
Listener

Datapaths (Growing)

ConnTrack
Fastpath

Switch
Fastpath

Overlay  
Fastpath

Security/QoS
Fastpath

Packet Forwarding Engine
Frag/Reassy, Monitoring, Mirroring …

NFVI VN Offloaded Node

App AppApp App
ODP

TC

QoS
Driver

ODP

NFVI VN Offload
• iNIC
• Advanced I/O Processor

• NPU
• FPGA, etc.

SR-IOV

 

Figure 12 

It is important that NFVI Secure Overlay Offload, as part of overall NFVI Virtual 
Networking Offload, enable access to offload accelerators, whether it is an iNIC, an 
advance I/O processor, an NPU, an FPGA, etc., without requiring changes to VNFs. 

Performance 
Considerations 

NFVI Secure Overlay Offload, as part of overall NFVI Virtual Networking Offload, 
using iNICs, advance I/O processors and/or other forms of HW acceleration needs 
to reduce CPU utilization leaving more for VNF capacity gains for a given 
performance profile or increase VNF performance for a given capacity or some 
combination thereof. 

Management & 
Orchestration 
Considerations 

MANO related aspects include: 
• Ability for NFVI nodes to advertise support for NFVI Secure Overlay 

Offload, as part of overall NFVI Virtual Networking Offload, in terms of 
performance characteristics such as latency, jitter, throughput and 
connection rate. 

• A mechanism for VNFs to request or provide guidance on performance 
characteristics' constraints/capabilities. 

• A mechanism to bind VNF requests with NFVI node capabilities. 
Possible 
Accelerators 

NFVI Secure Overlay Offload, as part of overall NFVI Virtual Networking Offload, 
can be realized with iNICs, advanced I/O processors, and/or accelerators leveraging 
a myriad of accelerator types (e.g. Multi-core Processor, NPU, FPGA, GPU, etc.) 
There could be different options for the system implementation of NFVI Secure 
Overlay Offload, e.g.:  

• NFV Software: 
− NFVI. 

• Type of Accelerator Type: 
− Fast Path. 

• Housing/Location of Accelerator: 
− Integrated CPU; or  
− iNIC. 

• Accelerator based on Functional Type: 
− OF based packet processor. 

Other 
Considerations 

NFVI Secure Overlay Offload, as part of overall NFVI Virtual Networking Offload, 
needs to be transparent to VNFs. This also implies that VNFs should support live 
migration, with or without HW acceleration, and independent of accelerator vendor 
or type. 
NFVI Secure Overlay Offload, as part of overall NFVI Virtual Networking Offload, 
needs to also be easily upgradeable and programmable to meet the increasing and 
changing NFVI virtual networking needs. 

Area of Use Case focus 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 33 

Summary • NFVI Secure Overlay Offload, as part of overall NFVI Virtual Networking 
Offload, using iNICs, advance I/O processors and/or other forms of HW 
acceleration needs to reduce CPU utilization leaving more for VNF capacity 
gains for a given performance profile or increase VNF performance for a 
given capacity or some combination thereof. 
− Minimize NFVI Virtual Networking in the general processing layer by 

offloading it to an offload accelerator directly accessible to VNFs (e.g. 
SR-IOV). 

− Only exception processing is handled by NFVI virtual networking in the 
general processing layer. 

• NFVI Secure Overlay Offload, as part of overall NFVI Virtual Networking 
Offload, needs to be transparent to VNFs. 
− VNFs shall not need any NFVI accelerator specific software, even if 

the virtualisation layer is bypassed (e.g. SR-IOV). For example, no 
special Ethernet drivers should be needed in the VNF. Hence, a 
standardized Ethernet interface is needed across vendors. 

− VNFs should be live migratable, with or without HW acceleration, and 
independent of accelerator vendor or type. 

• NFVI Secure Overlay Offload, as part of overall NFVI Virtual Networking 
Offload, needs to also be easily upgradeable and programmable to meet 
the increasing and changing NFVI virtual networking needs. 

 

5.2.4  Dynamic Optimization of Packet Flow Routing 

Title  Dynamic Optimization of Packet Flow Routing (DOPFR) (ETSI GS NFV-INF 005 [i.3]) 
NFV Components  VNF, VIM, Infrastructure Network including Network Controller. 
Introduction & 
Problem Statement  

VNFs may take advantage of the capabilities to offload traffic to the infrastructure network. This 
follows SDN principles of separation of control and data plane, where the control plane may be 
implemented in the VNFC instance (VNFCI) and the data plane offloaded to the infrastructure 
network resources. This requires the infrastructure network to be able to manage the state and 
actions associated with a very large number of flows and high flow modification rate.  

Performance 
Consideration  

Taking advantage of the existing capabilities of the infrastructure network improves VNF packet 
processing performance while decreasing the usage of server resources. 

Management & 
Orchestration 
Consideration  

The VIM requests the Network Controller to provide a logical switch dedicated to the VNF that 
will be exposed to the VNFCI so it can request DOPFR for some of its flows to dynamically 
reroute over its internal VNF connectivity without impacting the other Infrastructure Network 
resources.  
The VIM also configures a virtual link to enable establishment of a communication channel (e.g. 
OpenFlow) which will be used by the VNFCI to offload packet processing to the logical switch.  

Possible 
Accelerators 

Fast Path Packet Processors.  
Possible locations include: 

− Integrated CPU; 
− iNIC; 
− Network Attached; 
− Processor Interconnect Attached.  

It includes physical switches, virtual switches and other accelerator devices.  



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 34 

Description  

 

Figure 13 

VNFCI can request offloads at run-time via the Network Controller or be accelerated with an 
offload control function that resides directly on the infrastructure network resources that perform 
the acceleration.  
For example, a virtual Layer 7 Load Balancer (vL7LB) may have a slow path consisting of the 
3 way handshake for the TCP connections that allows the vL7LB to make the load balancing 
decision. Then, the vL7LB instructs the infrastructure network to perform the proxy phase where 
the infrastructure network redirects the TCP segments from the client to the server TCP 
segments and vice versa, i.e. the fast path. This redirection requires traffic be rerouted in the 
infrastructure network and some actions applied to the packets.  

Other 
Considerations 

 

 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 35 

5.3 Storage Acceleration 

5.3.1 NVMe™ Over Fabric Enabled Acceleration 

Title * NVMe™ Over Fabric Enabled Acceleration 
NFV Components * VNF/VNFC/VNFD 

VIM 
Compute Node 
Storage Node/Virtual Storage 

Introduction & Problem 
Statement * 

In order to achieve high performance in storage systems, ephemeral 
storage and cache acceleration are currently widely adopted. However in 
NFV, when operators have high QoS requirements and large storage 
system, these mechanisms might not perform so well. Hence in this use 
case, NVMe™ SSD is proposed to replace the traditional SSD to speed 
up cache acceleration. Also, NVMe™ Over Fabric (NOF) technique is 
proposed here to accelerate remote storage access. 

Performance Consideration 
* 

a) Latency between storage server and JBOD. 
b) Latency between compute and storage server. 
c) Number of remote storage end-points. 

Management & 
Orchestration 
Consideration * 

VNFD 
Requirements and Reports would be provided via VNFD. For example 
Orchestrator would inform VIM about certain NVMe™ Over Fabric 
performance requirement through VNFD. 
 
VIM 
VIM would have the ability of maintaining the lifecycle of the acceleration, 
providing support for VNF to be scheduled with efficient storage 
resource, and completing storage side of live migration if necessary. 

Possible Accelerators a) Type : In-Line Accelerator 
b) Location: Network Attached 
c) Examples:  

− NVMe™ Controller, which is a chip located in NVMe™ 
device.  

− RNIC(RDMA Network Interface Card) is necessary for 
remote NVMe disks are plugged into the system. 

Description * VNF / VNFC 
By the support of concept like Virtual Functions (VF) and Namespaces, 
multiple VNFCs or VNFs on a single compute node could be attached to 
multiple VFs virtualised on NVMe™ Controller side via NVMe™ driver. 
 
Compute / Storage Node / Virtual Storage 
Different VFs would interact with corresponding Namespaces on 
NVMe™ SSD to support storage multi-tenancy. Compute Node would 
need to rely on RNIC to communicate between local and remote NVMe™ 
instances. 

Other Considerations Security issue regarding NOF is still under study. 
Legend:  * identify mandatory fields. 

 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 36 

5.3.2 High Performance Persistent Memory on Compute Node 

Title * High performance persistent memory on compute node 
NFV Components * Compute Node 

VNF Manager 
VIM 
Orchestrator 

Introduction & Problem 
Statement * 

Network functions such as DNS servers and HSS require very low 
latency access to large persistent datasets to perform their duties. 
The typical decoupling of compute and storage described in NFV may 
jeopardize performance goals. 
To cope with ever increasing demands, new technologies such as 
NV-DIMM and Flash-DIMM are now available to bare metal applications. 
NV-DIMM is to be used for highest performance, sub terabyte datasets 
such as DNS servers. 
Flash-DIMM is more likely to be used for multi-terabyte datasets that 
require less than hundreds of microsecond latencies such as HSS 
Databases. 

Performance Consideration 
* 

Latency to read or write a record 
Jitter of read or write operations 
Number of queries and updates per second 
Dataset capacity 
Data integrity measures 

Management & 
Orchestration 
Consideration * 

VIM and Orchestrator need to know about available capacity, location 
and mode of access of persistent memory. 
VIM has to maintain usage count. 

Possible Accelerators Accelerator types: Optimized Store  
Examples: NV-DIMM: regular DDR3 DIMM plus Flash backup powered 
by hypercapacitors, Flash DIMM: Flash memory chips on a DDR3 DIMM 
module (no DDR3 memory). 
Accelerator locations: Memory Slots, Bus Attached, Network Attached 
VNF leveraging of accelerators shall be independent from accelerator 
types and locations. 

Description * Depending on the technology used, usage of the accelerator can be as 
simple as making use of a specified memory zone or a driving PCI 
device. 
For NV-DIMM and some Flash DIMM technologies, the available 
persistent memory is identified by the VIM through BIOS/EFI memory 
map. It is reserved by the VIM and made available to the VNFC via the 
hypervisor.  
Flash DIMM may also present a specific PCI interface which looks similar 
to NVMe™ device except that the controlling PCI registers are in memory 
rather than on PCI configuration space. 

Other Considerations  
Legend:  * identify mandatory fields. 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 37 

Annex A (informative): 
Authors & contributors 
The following people have contributed to this specification: 

Rapporteur: 
Jinwei Xia, Huawei 

Other contributors: 
Nabil G. Damouny, Netronome 

Ning Zong, Huawei 

François-Frédéric Ozog, 6WIND 

Srini Addepalli, Freescale 

Subhashini Venkataraman, Freescale 

Bharat Mota, Freescale 

Zhipeng Huang, Huawei 

Ron Breault, Wind River 

Alfred Morton, AT&T 

Robert Dimond, ARM 

Eran Bello, Asocsnetworks 

Yuan Yannan, China Mobile 

Andy Reid, BT 

Skerry Brian J, Intel 

Bruno Chatras, Orange 

Giuseppe Monteleone, ITALTEL SpA 

Andrew Thurber, Cisco 

Evelyne Roch, Huawei 

Janusz Pieczerak, Orange 



 

ETSI 

ETSI GS NFV-IFA 001 V1.1.1 (2015-12) 38 

History 

Document history 

V1.1.1 December 2015 Publication 

   

   

   

   

 

 


	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview
	4.1 General
	4.2 Hardware Acceleration
	4.3 Software Acceleration
	4.4 Heterogeneous Acceleration
	4.4.1 General
	4.4.2 Coherent acceleration
	4.4.2.1 Nature
	4.4.2.2 Runtime definable acceleration


	4.5 Classification of accelerators
	4.5.1 General
	4.5.2  NFV Software
	4.5.3  Types of Accelerator
	4.5.4  Housing/Location of Accelerator
	4.5.5  Accelerator based on Functionality Type

	4.6  Accelerator Usage Models
	4.6.1  General
	4.6.2  NFVI Accelerator Usage
	4.6.3  VNF Accelerator Usage


	5 Use Cases
	5.1 Compute Acceleration
	5.1.1 IPSec tunnels termination
	5.1.2 Next Generation Fire Wall (NGFW) Acceleration
	5.1.3 Virtual Base Station (VBS) L1 Acceleration
	5.1.4 Virtual Acceleration Interface for VNFs
	5.1.5 Transcoding
	5.1.6 Deep Packet Inspection

	5.2 Network Acceleration
	5.2.1 Load Balancing and NAT
	5.2.2  NFVI Virtual Networking Offload
	5.2.3  NFVI Secure Overlay Offload
	5.2.4  Dynamic Optimization of Packet Flow Routing

	5.3 Storage Acceleration
	5.3.1 NVMeŽ Over Fabric Enabled Acceleration
	5.3.2 High Performance Persistent Memory on Compute Node


	Annex A (informative): Authors & contributors
	History

