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1 Scope 
The present document identifies the most common design patterns for using SDN in an NFV architectural framework. It 
also identifies potential recommendations to be fulfilled by the entities that perform the integration.  

2 References 

2.1 Normative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
reference document (including any amendments) applies. 

Referenced documents which are not found to be publicly available in the expected location might be found at 
http://docbox.etsi.org/Reference. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are necessary for the application of the present document. 

Not applicable. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
reference document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] ETSI GS NFV-INF 005 (V.1.1.1) - (12-2014): "Network Functions Virtualisation (NFV); 
Infrastructure; Network Domain". 

[i.2] ETSI GS NFV-MAN 001 (V1.1.1) - (12-2014): "Network Functions Virtualisation (NFV); 
Management and Orchestration". 

[i.3] ETSI GS NFV 002 (V1.2.1) - (12-2014): "Network Functions Virtualisation (NFV); Architectural 
Framework". 

[i.4] ETSI GS NFV 003 (V1.2.1) - (12-2014): "Network Functions Virtualisation (NFV); Terminology 
for Main Concepts in NFV". 

[i.5] ETSI GS NFV-SWA 001: "Network Functions Virtualisation (NFV); Virtual Network Functions 
Architecture". 

[i.6] Open Networking Foundation TR-502: "SDN Architecture", Issue 1.0, June 2014. 

[i.7] Metro Ethernet Forum (V1.1) (February 2012): "Carrier Ethernet for Delivery of Private Cloud 
Services". 

[i.8] Recommendation ITU-T Y.3300 (06-2014): "Framework of software-defined networking". 

[i.9] IETF SFC Architecture. 

NOTE: Available at http://tools.ietf.org/pdf/draft-ietf-sfc-architecture-07.pdf. 

http://docbox.etsi.org/Reference
http://tools.ietf.org/pdf/draft-ietf-sfc-architecture-07.pdf
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[i.10] IETF Service Function Chain Extension Architecture. 

NOTE: Available at https://tools.ietf.org/pdf/draft-gu-sfc-extend-architecture-00.pdf. 

[i.11] IETF I2NSF Interface to Network Security Functions. 

NOTE: Available at http://datatracker.ietf.org/doc/charter-ietf-i2nsf/. 

[i.12] Floodlight®: http://www.projectfloodlight.org/floodlight/. 

[i.13] OpenDaylight®: http://www.opendaylight.org/. 

[i.14] OpenContrail: http://www.opencontrail.org/. 

[i.15] ONOS®: http://onosproject.org/. 

[i.16] Ryu: http://osrg.github.io/ryu/. 

[i.17] Midonet®: https://www.midonet.org/. 

[i.18] IETF RFC 5493 (April 2009): "Requirements for the Conversion between Permanent Connections 
and Switched Connections in a Generalized Multiprotocol Label Switching (GPMLS) Network". 

NOTE: Available at https://tools.ietf.org/html/rfc5493. 

[i.19] IETF RFC 6830 (January 2013): "The Locator/ID Separation Protocol (LISP)". 

[i.20] IETF RFC 7285 (September 2014): "Application-Layer Traffic Optimization (ALTO) Protocol". 

[i.21] IETF RFC 7348: "Virtual eXtensible Local Area Network (VXLAN): A Framework for 
Overlaying Virtualized Layer 2 Networks over Layer 3 Networks". 

NOTE: Available at http://www.rfc-editor.org/rfc/rfc7348.txt. 

[i.22] IETF RFC 7426 (January 2015): "Software-Defined Networking (SDN): Layers and Architecture 
Terminology". 

NOTE: Avaiable at http://www.rfc-editor.org/rfc/rfc7426.txt. 

[i.23] IETF RFC 7432: "BGP MPLS-Based Ethernet VPN". 

NOTE: Avaiable at https://tools.ietf.org/rfc/rfc7432.txt. 

[i.24] ONOS® Developer's Guide. 

NOTE: Available at https://wiki.onosproject.org/display/ONOS/Developer's+Guide.  

3 Definitions and abbreviations 

3.1 Definitions 
For the purposes of the present document, the terms and definitions given in ETSI GS NFV 003 [i.4] and the following 
apply: 

Openflow: trademark from the Open Networking Foundation (ONF) for an SDN standard protocol which enables 
remote programming of the forwarding plane 

3.2 Abbreviations 
For the purposes of the present document, the abbreviations given in ETSI GS NFV 003 [i.4] and the following apply: 

DC Data Center 
EM Element Manager 
ETSI European Telecommunications Standards Institute 
FIB Forwarding Information Base (OSI Layer 3 forwarding table) 

https://tools.ietf.org/pdf/draft-gu-sfc-extend-architecture-00.pdf
http://datatracker.ietf.org/doc/charter-ietf-i2nsf/
http://www.projectfloodlight.org/floodlight/
http://www.opendaylight.org/
http://www.opencontrail.org/
http://onosproject.org/
http://osrg.github.io/ryu/
https://www.midonet.org/
https://tools.ietf.org/html/rfc5493
http://www.rfc-editor.org/rfc/rfc7348.txt
http://www.rfc-editor.org/rfc/rfc7426.txt
https://tools.ietf.org/rfc/rfc7432.txt
https://wiki.onosproject.org/display/ONOS/Developer's+Guide
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HSDN Hierarchical SDN 
ISG Industry Standards Group 
ITU-T International Telecommunication Union-Standardization Sector 
LFIB Label Forwarding Information Base (MPLS forwarding table)  
MPLS Multi-Protocol Label Switching 
OAM Operation and Management 
NCT Network Connectivity Topology 
NE Network Element 
NFP Network Forwarding Path 
POP Point of Presence 
SDN Software Defined Networks 
SFC Service Function Chaining 
SP Service Provider 
VTN Virtual Tenant Network 

4 Overview of SDN in the NFV architectural framework 

4.1 Introduction 
ETSI ISG NFV has defined an NFV architectural framework operating on the basis of the principle of separating 
network functions from the hardware they run on by using virtual hardware abstraction. The major components in this 
framework are (From ETSI GS NFV 002 [i.3]): 

• Network Functions Virtualisation Infrastructure (NFVI): subsystem which encompasses Compute, Network 
and Storage resources, i.e. the totality of all hardware and software components that build up the environment 
in which VNFs are deployed. 

• Management and Orchestration (MANO): subsystem which includes the Network Functions Virtualisation 
Orchestrator (NFVO), the Virtualised Infrastructure Manager (VIM) and Virtual Network Function Manager 
(VNFM). 

• Virtual Network Functions (VNFs): deployed in the NFVI. 

The present document provides an overview of SDN in relation to this ETSI NFV architectural framework as well as a 
summary of current industry work including a comparison of network controllers and PoCs including NFV and SDN. 

4.2 SDN scope 
Recommendation ITU-T Y.3300 [i.8] defines SDN as 'a set of techniques that enables to directly program, orchestrate, 
control and manage network resources, which facilitates the design, delivery and operation of network services in a 
dynamic and scalable manner'. Although this broad definition translates in many different ways in terms of 
specifications and implementations, most SDN-labelled solutions relocates the control of network resources to 
dedicated network elements, namely SDN controllers and might be mapped to the 3-layers reference model depicted in 
figure 1.  

 

Figure 1: Concept of SDN (from Recommendation ITU-T Y. 3300 [i.8]) 
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While there are other possible models, the present document focuses on the model described in figure 1.  

Within the NFV architectural framework [i.3], SDN solutions might be used in the infrastructure domain, in the tenant 
domain or both.  

When used in the infrastructure domain, the SDN controller acts as a Network Controller, as per 
ETSI GS NFV-MAN 001 [i.2]. In the present document SDN refers to software control of physical or virtual network 
resources that use standard interfaces (open APIs) to facilitate interoperability and evolution in a multi-vendor 
environment.  

The SDN controller is not necessarily a stand-alone physical entity, e.g. a software component(s) of the VIM. Ideally, 
when the SDN technology is used in the infrastructure domain, the VIM, the SDN controller, and the Network 
Resources (physical or virtual) form a hierarchy for delivering connectivity services. In some cases, multiple SDN 
controllers form a hierarchy across management and resources, depending on the placement of the functionality. The 
SDN controller responsibility includes very specific control functions, interfacing with management agents responsible 
for control and management functions.  

NOTE: SDN applications, SDN controllers and SDN resources come from one or different vendors, and are 
typically implemented in different VNF. The NFVO while on-boarding these VNFs would want to know 
that they are related and able to communicate with each other. 

There is a large landscape of SDN architectures (NFV and non-NFV) and SDN controller functionality encompassing a 
variety of capabilities e.g. service negotiation, network element provisioning, and control of resources. This broader 
interpretation of SDN is beyond the scope of the present document. 

4.3 SDN in the NFV architectural framework 

4.3.1 General 

As stated above, the focus of the present document lays on how network services and associated resources 
implemented, according to an SDN architecture, might be integrated with the NFV architectural framework by 
identifying possible design patterns and associated requirements. Many technical and non-technical issues need to be 
formulated and answered regarding all the functional entities that constitute this integrated architectural framework, 
such as:  

• The position of the SDN resources. 

• The position of the SDN controller. 

• The softwarization & virtualisation of the various SDN entities. 

• The interaction between the Element Managers, VNF Managers, SDN controllers and SDN applications that 
become enabled VNFs. 

• The hierarchy of SDN networks. 

• The position of the overlay SDN networks. 

• Others. 

4.3.2 SDN management plane 

IETF RFC 7426 [i.22] discusses the distinction between control and management plane in an SDN environment. In 
brief the control plane is mostly responsible for making decisions on how packets are forwarded by one or more 
network resources and pushing such decisions down to the network resources for execution, whilst the management 
plane is mostly responsible for monitoring, configuring, and maintaining network devices, e.g. making decisions 
regarding the state of a network resources.  

IETF RFC 7426 [i.22] also discusses the differentiation between these two planes by identifying their characteristics. It 
does so by showcasing four characteristics: (1) timescale, i.e. how often and how fast resources are configured and state 
persistence; (2) longevity of the state; (3) locality, i.e. centralized or distributed; (4) insights from the CAP theorem, e.g. 
the control plane is available, whilst the management plane is consistent. 
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Actually the CAP theorem (https://en.wikipedia.org/wiki/CAP_theorem) states that it is impossible for a distributed 
computer system to simultaneously provide consistency, availability and partition tolerance. 

NOTE: The distinction between the control and management plane has become somewhat muddled due to the 
logical centralization of the control plane which is more of the domain of the management plane. 

4.3.3 Position of SDN resources in an NFV architectural framework 

The first entities to be considered are the SDN resources. Multiple scenarios might be envisaged for their actual location 
or for their images:  

• Case a: physical switch or router 

• Case b: virtual switch or router 

• Case c: e-switch, software based SDN enabled switch in a server NIC  

• Case d: switch or router as a VNF 

In case d the resource might be logically part of the NFVI or belong to an independent tenant's domain. An example of 
case d is illustrated in NFV PoC#14 (clause B.5). This PoC has demonstrated the usage of SDN in an NFV environment 
by splitting the Service Gateway (SGW) and Packet Gateway (PGW) of the Long Term Evolution (LTE) architecture 
into a control and data plane for each, using an open interface, in this case IETF's ForCES. PoC#14 demonstrates that 
the data plane functionality might be deployed as VNF and controlled as a network resource. 

Figure 2 shows the functional entities in the NFV architectural framework [i.3] for the scenarios identified above. 

 

Figure 2: Possible SDN Resource Locations in the NFV Architectural Framework  
(adaptation from [i.3]) 

4.3.4 Position of the SDN controller in an NFV architectural framework  

The second entity in this context is the SDN controller, which interfaces with SDN network resources via the Resource 
Control Interface. One SDN controller might interface with multiple SDN network resources.  

Multiple scenarios exist to illustrate the possible locations of an SDN Controller in the context of an NFV framework:  

• Case 1: the SDN controller is merged with the Virtualised Infrastructure Manager functionality. 

https://en.wikipedia.org/wiki/CAP_theorem
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• Case 2: the SDN controller is Virtualised as a VNF. 

• Case 3: the SDN controller is part of the NFVI and is not a VNF. 

• Case 4: the SDN controller is part of the OSS/BSS. 

• Case 5: the SDN controller is a PNF. 

 

Figure 3: Possible SDN Controller Locations in the NFV Architectural Framework 

Case 1: SDN controller functionality merged with the VIM functionality, in such case the two functions are not 
distinguishable. 

Case 2: SDN controller as a VNF is typically the case of an SDN controller Virtualised as a VNF itself, or being 
part of a VNF. This VNF might be logically part of the NFVI and therefore belong to a special 
infrastructure tenant or belong to an independent tenant. 

Case 3: SDN controller in the NFVI is a classic case of SDN controller for the network connectivity in the NFVI, 
where the SDN controller is not implemented as a VNF. 

Case 4: SDN controller part of the OSS, is illustrated in clause 5.7, figures 27 and 28 as the tenant SDN 
controller.  

Case 5: SDN controller as a PNF - while this case exists, it has not been studied in the rest of the present 
document.  

4.3.5 Position of SDN applications in an NFV architectural framework 

The third entity to be considered is the SDN application which interfaces with the SDN controller. An SDN application 
might interface with multiple SDN controllers. Multiple case scenarios might be envisioned, for the position of the SDN 
applications in the NFV architectural framework, such as:  

• Case i: as part of a PNF 

• Case ii: as part of the VIM  

• Case iii: Virtualised as a VNF 

• Case iv: as part of an EM  

• Case v: as part of the OSS/BSS 
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Figure 4: Possible SDN Application Locations in the NFV Architectural Framework 

The positions of the SDN applications are further expanded: 

Case i: the network hardware might be a physical appliance talking to an SDN controller, or a complete solution 
including multiple SDN components, such as SDN controller + SDN application for instance. 

Case ii: the VIM might be an application interfacing with an SDN controller in the NFVI - for instance OpenStack 
Neutron as a VIM interfacing with an SDN controller in the NFVI. 

Case iii: the SDN application might be a VNF talking to an SDN controller, being Virtualised or not. For instance 
a PCRF VNF might talk to an SDN controller for some policy management for traffic steering.  

Case iv: the SDN application might be an element manager interfacing with an SDN controller to collect some 
metrics or configure some parameters. 

Case v: the SDN application might be an application interfacing with an SDN controller for instance in the 
OSS-BSS for tenant SDN service definitions. 

4.4 SDN controller interfaces in the NFV architectural 
framework 

4.4.1 Introduction 

The SDN controller entity has several possible interfaces. The interfaces are shown in figure 5. 
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Figure 5: SDN Controller Interfaces 

Figure 5 is based on figure 1, but with names for the interfaces so these interface names can be referenced. 

As described above in clause 4.2 (and taken from Recommendation ITU-T Y.3300 [i.8]), an SDN controller comprises 
the following elements:  

• Application Control Interface - interface between an SDN controller and an SDN application - it provides an 
application programmatic control of abstracted network resources. 

• Resource Control Interface - Interface between an SDN controller and SDN resources - it is used to control 
network resources. 

• Orchestration Interface - interface between an SDN controller and an NFV Orchestrator: 

- It might need to pass information between the 2 entities, such as topology information in both directions. 

- The interface might be an indirect interface. 

- The same interface might also be used between an SDN application and an NFV Orchestrator. 

• Controller-Controller Interface - interface between SDN controllers:  

- It might need to pass information between SDN controllers either in the same hierarchy or in different 
hierarchies. 

The different SDN controller interfaces need to be supported in an NFV environment.  

Some open source projects, such as ODL or ONOS® (see note), have also defined a Controller-Controller interface for 
SDN controllers to interact with each other. This might be exploited when federation of SDN controllers is being used 
for scalability reasons for instance. Today these interfaces remain specific to a given controller implementation and are 
not open to be used across different types of SDN controllers. 

NOTE: "ONOS is the trade name of a collaborative open source project from The Linux Foundation. This 
information is given for the convenience of users of the present document and does not constitute an 
endorsement by ETSI of the product named. Equivalent products may be used if they can be shown to 
lead to the same results". 

Also some entities, typically ONF and ODL, have defined Application Control interfaces such as the Intent NorthBound 
Interface. 
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The Intent NorthBound Interface interactions between applications and controllers are run-time (i.e. real-time) 
negotiations between an application layer that defines a network service and a controller layer that implements that 
service. The application layer network service defines the "what" of a given service, with some constraints on the 
requested service implementation or properties (SLA, latency, performance, etc.). Negotiations start by a set of 
interactions that begin with a service request by the application to the controller and terminate with agreement or not by 
the controller to deliver the requested service within the defined constraints, and by the application layer to accept 
delivery of that network service. Typically an Intent NorthBound interaction is a negotiation with four stages:  

• Request 

• Response 

• Selection 

• Confirmation 

It defines the "what": substance (e.g. "get me from A to B") with constraints (e.g. "before time C").  

From an SDN controller perspective, Intent NorthBound Interface functions might be implemented as a controller-
associated abstraction between applications and controller, or directly within/as part of the controller itself. 

From an NFV architectural framework perspective, the Intent NorthBound Interface could be considered as the 
Application Control Interface provided by the SDN controller if that layer is embedded in the SDN controller, or it 
could be considered as an SDN application if it seats on top of the SDN controller. As an SDN application it could be a 
VNF itself. 

The diagrams and tables below show the different combinations between the different components. The analysis has 
been divided in 2 cases to simplify the diagrams and tables: SDN controller and SDN application, then SDN controller 
and SDN resources. 

The cases that were considered irrelevant have been removed, again to simplify the diagrams and tables, and focus on 
the most relevant cases.  

4.4.2 SDN resource control interface options 

 

Figure 6: SDN Resource Control Interface Options in NFV  

Figure 6 shows the different implementation options for the SDN Resource Control Interface. The NFV environment 
would support the different implementation options. 
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Table 1: A List of SDN Resource Control Interface Options in NFV 

I/F Ref.  SDN Controller 
Location 

SDN Resource Location Comments 

1a 1. VIM a. NFVI (Network 
Hardware) 

 

1b 1. VIM b. Virtual Network  
1c 1. VIM c. Computing Hardware  
1d 1. VIM d. VNF Only if the VNF logically belongs to the NFVI  
2a 2. VNF a. NFVI (Network 

Hardware)  
Only if the VNF logically belongs to the NFVI 

2b 2. VNF b. Virtual Network Only if the VNF logically belongs to the NFVI 
2c 2. VNF c. Computing Hardware Only if the VNF logically belongs to the NFVI,  
2d 2. VNF d. VNF No need to specify VNF-VNF interface,  
3a 3. NFVI a. NFVI (Network 

Hardware) 
Internal NFVI interface 

3b 3. NFVI b. Virtual Network Internal NFVI interface 
3c 3. NFVI c. Computing Hardware Internal NFVI interface 
3d 3. NFVI d. VNF Only if the VNF logically belongs to the NFVI, 

Not common. 
4d 4. OSS/BSS d. VNF Applicable to the OSS/BSS of a VNF tenant 
 

There are several suggested SDN Resource Control Interfaces such as OpenFlow. NFV might optionally use some of 
these suggested SDN Resource Control Interfaces. The list in table 1 suggests that the same SDN Resource Control 
Interface be used in various implementation options. Some of the interfaces listed might be indirect interfaces. This 
means that the SDN Resource Control Interface between the SDN controller and the SDN resource might flow through 
other NFV entities. 

4.4.3 SDN controller orchestration interface options 

 

Figure 7: SDN Controller/Application Orchestration Interface Options 

NFV Management and Orchestration

Computing
Hardware

Storage
Hardware

Network
Hardware

Hardware resources

Virtualisation Layer

Virtualised
Infrastructure
Manager(s)

VNF
Manager(s)

NFV 
Orchestrator

OSS/BSS

NFVI

VNF 3VNF 1

Virtual 
Computing

Virtual 
Storage

Virtual 
Network

EM 2 EM 3EM 1

Or-Vi

Or-Vnfm

Vi-Vnfm

Os-Ma

Ve-Vnfm

Nf-Vi

Vn-Nf

Vl-Ha

Service, VNF and 
Infrastructure 
Description

VNF 2

SDN Controller &
SDN Application

1

2

3

4

iii

i

ii

v



 

ETSI 

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)18 

The orchestration might need to access either SDN controllers or SDN applications. From an orchestration perspective, 
an SDN controller and SDN applications have a lot in common so the orchestrator might interface both using the same 
interface. Figure 7 puts the SDN controller and SDN application together, reusing the same orchestration interface. This 
is also an actual implementation option, as many SDN controllers also include SDN applications.  

Figure 7 shows the different implementation options for the SDN controller Orchestration Interface. Below are the 
different implementation options.  

Table 2: A List of SDN Controller/Application Orchestration Interface Options in NFV 

I/F Ref SDN Controller/SDN 
Application Location 

Orchestration Location Comments 

1 1. VIM NFVO Uses Or-Vi interface 
2 2. VNF NFVO  
3 3. NFVI NFVO  
4 4. OSS/BSS NFVO Uses Os-Ma interface 
 

The information conveyed between the NFVO and the SDN controller is similar in all cases. A single SDN controller 
Orchestration Interface is used in all cases. It is recommended to use existing interfaces where possible. In the case 
where the SDN controller is implemented as a VNF, the SDN controller Orchestration Interface might possibly be 
achieved indirectly through the VNF Manager. In the case where the SDN controller is implemented in the NFVI, the 
SDN controller Orchestration Interface might possibly be achieved indirectly through the VIM. 

4.4.4 SDN application control interface options 

 

Figure 8: SDN Application Control Interface Options in NFV 

Figure 8 shows the different implementation options for the SDN Application Control Interface. There are several cases 
where the SDN controller and the SDN applications reside in similar entities. In these cases the interface might be an 
internal interface. For example, an SDN controller in a VNF might include one or more SDN applications. In this case 
the interface between the SDN applications and the SDN controller in the same VNF is an internal interface. 
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Table 3: A List of SDN Application Control Interface Options in NFV 

I/F Ref SDN Controller Location SDN Application 
Location 

Comments 

1i 1. VIM i. NFVI (Network 
Hardware)  

Not common 

1ii 1. VIM ii. VIM VIM includes an SDN application and the SDN 
controller functionality is merged with the VIM. An 
internal VIM Interface. 

1iii 1. VIM iii. VNF Assumes the VNF is logically part of the NFVI 
1v 1. VIM v. OSS/BSS  
2i 2. VNF i. NFVI (Network 

Hardware)  
Not common. Assumes the VNF is logically part of 
the NFVI 

2ii 2. VNF ii. VIM Not common 
2iii 2. VNF iii. VNF Case 1: SDN controller includes an SDN application 

In this case the interface is internal. Out of scope of 
the present document. 
Case 2: SDN controller and SDN application VNFs. 
VNF will expose REST API, as Application Control 
Interface 
Both VNFs either logically belong to the NFVI or to 
independent infrastructure tenants. 

2iv 2. VNF iv. EM Not common 
2v 2. VNF v. OSS/BSS Not common 
3i 3. NFVI i. NFVI (Network 

Hardware)  
Internal NFVI interface.  

3ii 3. NFVI ii. VIM  
3iii 3. NFVI iii. VNF  
4v 4. OSS/BSS v. OSS/BSS OSS/BSS includes both an SDN application and an 

SDN controller. An internal OSS/BSS interface. 
 

There are several suggested SDN Application Control Interfaces such as the Intent NorthBound Interface. NFV might 
optionally use some of these suggested SDN Application Control Interfaces. The list in table 3 shows that the same 
SDN Application Control Interface can be used in various implementation options. Some of the interfaces listed might 
be indirect interfaces. This means that the SDN Application Control Interface between the SDN controller and an SDN 
application might flow through other NFV entities. 
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4.5 SDN controller to controller interface in NFV 

4.5.1 SDN controller to controller interface options in NFV 

 

Figure 9: SDN Controller to Controller Interface Options in NFV 

SDN controllers might have several possible location within the NFV reference architecture, as shown in figure 3. The 
SDN controllers interface between each other using the SDN Controller to Controller Interface. Figure 9 shows the 
different implementation options for the SDN Controller to Controller Interface. There are several cases where the SDN 
controllers reside in different NFV entities. In these cases SDN Controller to Controller Interface needs to be an 
external interface. For example, an SDN controller in a VNF might interface with an SDN controller in the VIM. 

Table 4: A List of SDN Controller to Controller Interface Options in NFV 

I/F Ref SDN Controller 
Location 

SDN controller Location Comments 

12 1. VIM 2. VNF   
13 1. VIM 3. NFVI  
23 2. VNF 3. NFVI  
24 2. VNF 4. OSS/BSS Not common 
 

There are several suggested SDN Controller to Controller Interface. NFV might optionally use some of these suggested 
SDN Controller to Controller Interface. The list in table 4 suggests that the same SDN Controller to Controller Interface 
be used in various implementation options. Some of the interfaces listed might be indirect interfaces. This means that 
the SDN Controller to Controller Interface flow through other NFV entities. 
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4.5.2 SDN controller federation options in NFV 

 

Figure 10: SDN Controller Federation Options in NFV 

SDN controllers' federation might take place in several locations within the NFV reference architecture. The SDN 
controllers' federation is done using the SDN Controller to Controller Interface. Figure 10 shows the different 
implementation options for SDN federation in the NFV reference architecture.  

Table 5: List of SDN Controller Federation Options in NFV 

I/F Ref SDN Controller 
Location 

SDN Controller 
Location 

Comments 

11 1. VIM 1. VIM   
22 2. VNF 2. VNF  
33 3. NFVI 3. NFVI Not common 
 

SDN controllers' federation might take place within a single domain. For example several SDN controllers residing as 
VNFs in a single NFVI-PoP might form a cluster. This cluster might be used for high availability and load balancing 
purposes.  

SDN controllers' federation might also take place across different administrator domains or NFVI-PoPs. For example 
several SDN controllers implemented across different VIMs might be federated. This federation allows for sharing and 
passing resources between VIMs. 

5 Design patterns of SDN in the NFV architectural framework 

5.1 Introduction 
This clause is describing common usage patterns of SDN design and operations. The goal is to capture all practically 
relevant points in applying SDN application, SDN controller, and SDN resource, from which recommendations on these 
entities might be derived. 
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5.2 SDN technology integration options with NFV 

5.2.0 Introduction 

This clause describes options for how SDN technology might be integrated into the NFV framework.  

NOTE:  Data plane is used here to refer to the network associated with the primary traffic a VNF is designed to 
process. Not considered here are how SDN and NFV are integrated in the data plane or the management 
and the control planes. 

5.2.1 Interconnecting VNFCs using SDN 

A VNF might be composed of several VNFCs with SDN used to both establish links between VNFCs and support other 
functions such as managing traffic between the VNFCs.  

5.2.2 Interconnecting VNFs using SDN 

5.2.2.0 Introduction  

A network service might be composed of a source, a destination, and a set of intermediate interconnected VNFs that 
process the traffic from the source to the destination. This chaining of VNFs might occur in a number of scenarios, 
outlined below. 

5.2.2.1 Chaining based on network service designed according to a VNF-FG  

A Network Service, as defined in [i.2], figure 6.5, contains one or more VNF-FG definitions that might be used when 
creating an instance of that Network Service. VNFs, therefore, might be chained together based upon the graph defined 
in one or more of a Network Service's VNF-FGs. This is a static chaining, applied at instantiation time of the network 
service. The interconnection between the VNF might be implemented by using L2/L3 segments and is established based 
on the fixed VNF-FGs that are defined ahead of time in the Network Service Descriptor. 

 

Figure 11: Network Service as defined in figure 6.5 in MANO GS [i.2] 

5.2.2.2 Chaining based on customer policy/service  

The previous example describes a fairly static establishment of a VNF chain, where a pre-defined VNF-FG is used and 
there is nearly no consideration of additional context. However, a more dynamic and flexible delivery of VNF chains is 
also envisioned. Which VNFs are connected and in what order will be determined, at the time of service instantiation, 
based on a variety of factors that will include policies, network, compute and storage conditions, and customer based 
policies. 
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5.2.2.3 Chaining based on VNF processing 

VNF chaining with regard to a specific or aggregate traffic flow might be modified on the fly depending on the 
processing provided by a VNF. For example a security related VNF might want to change a traffic path. This might be 
done by providing that VNF with direct or non-direct access (e.g. via the NFVO or VIM) to the Application Control 
Interface of an SDN controller so that the change might be dynamically implemented. 

5.2.2.4 Load balancing across VNF's 

A key capability of the NFV architecture is VNF elasticity. Elasticity enables scaling in order to grow or shrink traffic 
handling capacity either by adding or removing VNFC or VNF instances. The ETSI NFV architecture framework 
supports both of these options. For example, SDN might be used for automating the network so that when additional 
capacity is required, ingress traffic might be segregated per policy and forwarded to new additional elements for 
processing. Load balancing is considered as a L1-7capability.  

 

Figure 12: Load Balancing Across VNFs 

For providing this capability SDN controller(s,) might receive input from the ETSI MANO functional entities so that 
they might keep track of VNF instances, availability etc. and traffic might be forwarded to the appropriate instance as 
per policy. This traffic segregation as per policy, has to be implemented at a line rate. 

5.3 SDN across multiple VIM 

5.3.0 Introduction 

The clause 5.3 follows the general principles described in ETSI GS NFV-MAN 001 [i.2] (particularly clause 5.6.2), 
ETSI GS NFV-INF 005 [i.1] for network controllers in the NFV architectural framework [i.3] and the SDN architecture 
outlined in [i.6].  

5.3.1 SDN controller interfaces 

As described above in clause 4.2 (and taken from Recommendation ITU-T Y.3300 [i.8]), an SDN controller has got a:  

• Northbound interface called the Application-Control Interface (ACI) - provides a northbound application 
programmatic control of abstracted network resources. 
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• Southbound interface, called the Resource-Control Interface (RCI) - controls network resources. 

The possibility of defining different levels of abstraction for the network resources enables the definition of 
hierarchically recursive application/controller layers, with higher levels providing greater abstraction and broader scope. 
Here the Application Control Interface from one SDN controller presents abstract network resources to the resource-
control interface of an SDN controller above it. 

A number of the multi-VIM scenarios described below utilize hierarchical controllers and network abstractions. These 
enable the optimized utilization of network resources and the secure isolation of network resources across multiple trust 
domains.  

5.3.2 Scenarios for SDN across multiple VIMs 

To identify the challenges related to SDN deployment across multiple VIMs, two basic scenarios are considered 
separately:  

a) VIM instances located in the same NFVI-PoP; and 

b) VIM instances located in different NFVI-PoPs. 

In case b, at least one and possibly multiple WAN domains will exist between the NFVI-PoPs. The WAN connection 
supports SDN connectivity between VNFs, as well as PNFs, present in different NFVI-PoP.  

5.3.3 Challenges for SDN across multiple VIMs 

The two scenarios listed in clause 5.3.2 pose different challenges, including (but not limited to):  

• The crossing of administrative or organizational boundaries usually imposes requirements at various levels, 
e.g. connectivity, security, SLA fulfilment, information hiding, which constrains the choice of possible 
solutions. 

• The characteristics of network protocols used in the scope of a NFVI-PoP and in the WAN are significantly 
different. 

• The provisioning of network services across VIMs with requirements such as end-to-end low latency. 

• The dynamic setup of paths between newly instantiated VNF, and existing PNF or VNF over WAN. 

• Ensuring connection as well as SLA guarantee for VNF scaling over multiple NFVI-PoPs. 

• The extension of virtual links outside the NFVI-PoP into the WAN. 

• Transport network reconfiguration, e.g. during natural disasters, network congestion, etc. 

5.3.4 Analysis of SDN across multiple VIMs 

5.3.4.1 SDN across multiple VIMs located in a single NFVI-PoP 

a) In this case, a single trust domain is supposed to exist between endpoints, therefore the administration of NFVI 
and network resources is supposed to be handled by a single entity, which considerably simplifies the problem. 
The interconnection between VIM instances is supposed to be provided by protocols typically used in data 
centers (e.g. VXLAN, NVGRE, LISP). 

5.3.4.2 SDN across multiple VIM in different NFVI-PoPs 

5.3.4.2.0 Introduction 

End-to-end connectivity between VMs hosted on different NFVI-PoPs is built on network resources in three different 
segments:  

• the internal networks of the edge NFVI-PoPs; 

• the gateway routers at the edges NFVI-PoPs; 

• the WAN transport network in between.  
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The configuration of the intra-NFVI-PoP network resources is locally enforced, under the supervision of the respective 
VIM. One or more WAN domains are expected to exist between NFVI-PoPs. 

When there are multiple WAN domains, an understanding of the capabilities and connectivity endpoints provided by 
these WANs is necessary, so that an appropriate WAN will be used at path setup, based upon the VNF locations and 
traffic service classes needed. 

Different trust or organizational boundaries are expected to exist between the NFVI-PoP and the WAN domains. WAN 
operators and NFVI-PoP operators might be different, with the NFVI-PoP operator using the WAN services provided 
by the WAN operator. In the following, two basic sub-scenarios are briefly described. 

5.3.4.2.1 VNFs across multiple NFVI-PoP locations with a static bit pipe between them 

In this case, an overlay network, crossing transparently one or more network domains and trust/organizational 
boundaries, built upon a pre-allocated static WAN connectivity service (e.g. E-Line, E-LAN, IP/MPLS VPN) and 
typically based on a long-term contract, is established between multiple termination points located at geographically 
remote NFVI-PoPs under the same trust domain. This scenario is rather simple, as it does not require coordination 
between NFVI-PoP and WAN resources, but also limited in the sense that the WAN resources do not follow agility and 
dynamism of the NFVI-PoP network environment. 

Figure 13 below illustrates the simplest case (this basic scenario could be extended to any number of NFVI-PoPs), 
where a point-to-point connection between two NFVI-PoPs is transparently carried across the WAN over a transport 
tunnel by means of technologies such as MPLS or IEEE 802.1ad. Each endpoint is aware of the specific characteristics 
(e.g. bandwidth capacity) of the inter-NFVI-PoP connection, but the WAN network nodes are only aware of the 
transport pipe. Thus, the lifecycle of the inter-NFVI PoP inner connection (e.g. establishment, modification, release) is 
controlled by the intervening VIMs, but not the WAN domain(s) in between.  

Changes to the outer tunnel, if needed at all, are expected to occur on a relatively large timescale and are not expected 
to require automated control mechanisms. 

From the perspective of the NFVO, this solution, utilizing the static tunnel, appears identical to the first scenario with a 
single NFVI-PoP containing multiple VIM of the same trust domain. Establishment of the network connections among 
the NFVI is basically the same, regardless of whether the VNF are in the same or remote NFVI-PoP. 

 

Figure 13: NFVI-PoP Interconnection with Pre-Provisioned Static Pipe 

5.3.4.2.2  VNFs across multiple NFVI-PoP locations, SDN-based NaaS between them 

This scenario leverages SDN-based control in the WAN to build a richer networking environment. The WAN domain 
between NFVI-PoPs provides an "on-demand" connectivity service, NaaS (Network as a Service). This scenario is more 
complex than the previous one, in the sense that it requires coordinated control of NFVI and WAN resources. WAN 
connectivity services are explicitly requested by the NFVO through the WIM (WAN Infrastructure Manager), following 
the model described in [i.1]. Following the interface terminology proposed in [i.1], this corresponds to the Nd-Nd 
interface, in the case where the WAN domains interconnecting the NFVI-PoPs are SDN-enabled. 
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The connectivity service provided by the WAN domain could be either L2-based (e.g. following service models defined 
by the MEF – Ethernet Virtual Private Line, Ethernet Virtual Private LAN, Ethernet Virtual Tree [i.7]), or L3-based 
(e.g. IP/MPLS VPN).  

From a functional point of view, there is a client-provider relationship between each NFVI-PoP and the respective 
WAN provider, even if they are under the administration of the same business entity.  

The level of trust between the NFVI-PoP and the WAN domain(s) might have implications in terms of resource 
management policies, security and information sharing (usually, network operators are unwilling to reveal the internal 
details of their network infrastructure). Figures 14 to 16 illustrate three possible approaches for the interaction between 
the NFV orchestration and the WAN domains in this scenario. These three approaches might be mapped directly into 3 
out of 4 scenarios described in [i.6] (clause 5, "Control functions and interactions") for the SDN control plane. 

5.3.4.2.3 VNFs across multiple NFVI-PoP locations - NFVI-PoP and WAN in a common 
trust domain (Option A) 

In this scenario, also called Option A in the present clause, the WIM implements the application-control interface and 
uses directly the services exposed by the northbound interface of the WAN SDN controller. The WAN SDN controller, 
administered by the WAN operator, is in charge of managing the underlying physical resources. This is a good 
candidate for cases where NFVI and WAN resources are administered by the same entity.  

NOTE: This is not a case of the WIM executing network controller actions over and above the WAN SDN 
controller. Here in Option A the WAN SDN controller and the NVFI network resources it controls are in 
the same trust domain as the NVFI-PoPs. In fact, how the WIM manages the WAN resources mirrors the 
VIM control of the NFVI-PoP resources. A 2-tier hierarchy of controllers, used when the WAN and 
NFVI-PoPs are in different trust domains, is described as Option B. 

 

Figure 14: A Single SDN Controller for the WAN Resources (Option A) 

5.3.4.2.4 VNFs across multiple NFVI-PoP locations - NFVI-PoP and WAN in different trust 
domains - client access to virtual WAN resources (Option B) 

Option B might be seen as an extension of option A by defining a 2-level hierarchy of SDN controllers - C (Client, 
administratively part of the endpoints' NFVI-PoP trust domain) and P (Provider, administratively part of the WAN).  
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As described in [i.6], the WAN SDN controller accommodates an agent for each client virtual network controller (C). 
This agent presents a distinct application-control interface to each client virtual network controller. Controller P, as 
described above, provides a northbound application programmatic control of abstracted network resources. To support 
multiple client networks, the WAN P controller provides a unique set of abstracted resources to each client. In this case, 
a client virtual network controller (C) manages only the abstract network resources the WAN P controller exposes to it. 
This capability to define different levels of abstraction of the network resources for different client virtual network 
controllers might be a particularly useful feature to establish different administration models of the WAN in a flexible 
way. 

In the figure 15 below, the MANO components for multiple clients are presented. These include the clients' NFVO, 
WIM and SDN controllers that interacts with the WAN SDN controller. Each client controller is presented with a 
unique ACI / network abstraction. 

This scenario, Option B, includes a 2-level hierarchy of SDN controllers. A detailed analysis of this SDN controller 
hierarchy is included in clause 5.4. 

 

Figure 15: WAN Controller Presenting Multiple ACI for unique abstractions per client (Option B) 

5.3.4.2.5 VNFs across multiple NFVI-PoP locations - NFVI-PoP and WAN in different trust 
domains - client access to physical host resources (Option C) 

In this scenario, Option C, the WIM requests network resources through an SDN controller, which interacts directly 
with the network nodes. This means the client SDN controller is being provided direct access to control a subset of the 
WAN network resources.  
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Figure 16: No WAN Controller - each client SDN controller has direct access  
to WAN resources (Option C) 

The options indicated above might be mapped to the scenarios described in clause 5 of [i.6], "Control functions and 
interactions", as follows: 

• Option A maps into scenario "Single player SDN provider" ([i.6], clause 5.1). 

• Option B maps into scenario "SDN provider with Virtualised network, non-recursive" ([i.6], clause 5.3). 

• Option C maps into scenario "SDN provider with SDN clients, with underlying network exposed" ([i.6], 
clause 5.2). This option, classified as "not recommended for deployment in practice", is included here for 
completeness. 

• The fourth scenario described in [i.6], clause 5.4 "SDN provider with recursive Virtualised network" is 
considered to be beyond the scope of this clause. 

Although option B, as described above, includes a 2-level hierarchy of SDN controllers, a detailed analysis of SDN 
controller hierarchy issues is not performed here (but rather in the present document clause 5.4 - "SDN controller 
hierarchy"). 

5.3.4.2.6 SDN based NFV IaaS across multiple administration domains 

An additional pair of scenarios to consider is when a network service expands its domain by creating a virtual PoP 
within the NVFI-PoP of another trust domain. Here, the expanding service is a client of IaaS / NaaS offerings from the 
host (or server) service.  

These scenarios might occur, for example, when a service provider wants to expand geographically and either needs to 
do so quickly, temporarily, or simply manage its size dynamically, based on demand. 

Two versions are presented here:  

• The first is where the NaaS/PaaS service provides resources based on an abstraction provided by an SDN 
controller of the NaaS/PaaS provider (figure 17). 
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Figure 17: Virtual NFVI-PoP of Provider A Running as Guest in NFVI-PoP of Provider B 

Here, network control is managed in a way similar to the Option B, described earlier. The SDN controller of the host 
NFVI-PoP presents a client specific network abstraction (via its Application Control Interface) to the controller of the 
guest virtual NFVI. In other words, the network of the virtual PoP is the abstraction the host service SDN controller 
presents to it. 

Besides presenting the client specific Application Control Interface to the guest SDN controller, the host SDN controller 
also presents one to its own VIM. 

• The second scenario is similar to what is in the Option C described above, where the NaaS provides the tenant 
provider PoP A1 direct access to the underlying networking infrastructure. This is shown in figure 18. 

 

Figure 18: Virtual NFVI-PoP of Provider A Running as Guest in NFVI-PoP of Provider B  



 

ETSI 

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)30 

5.3.4.2.7 Multiple VIM for a mobile network 

Figure 19 provides a detailed inter-VIM SDN scenario for a mobile network which extends the option B illustrated in 
figure 15 of clause 5.3.4.2.4. The data plane is depicted more explicitly and the role of function blocks involved in inter-
VIM connection management is described.  

This scenario depicts a mobile network service provider that inter-connects its NFVI-PoPs utilizing other administration 
domains supportive for SDN controller and SDN data plane. 

 

Figure 19: The Mobile Network Scenario for SDN based NaaS  
Provided by Other Administration Domain  

As shown in the figure 19, the NFVI-PoP #1, #2 and #3 are inter-connected through administration domain #1 and #2 
which deploys SDN architecture based network. The administration domain #1 and #2 host multiple SDN data plane 
elements and provide the Virtualised network resources through a SDN controller to the WIM managed by the mobile 
network service provider. The mobile network service provider might orchestrate the NFVI-PoP networking resources 
offered by the VIMs and cross NFVI-PoP networking resources by the WIM through the NFV Orchestrator. 

As per ETSI GS NFV-MAN 001 [i.2], the inter NFVI-PoP connections are managed by NFV Orchestrator and WIM, 
i.e. inter-connection establish/release/change decisions are at the NFV Orchestrator level and operations conducted at 
the WIM level. 

5.4 SDN controller hierarchy 

5.4.1  Introduction 

• A few key technical and business drivers typically drive the hierarchy of SDN controllers. These include: 
Improving performance, scalability and reliability by dividing the network. 

• Supporting multiple administrative domains / tenant networks. 

• Defining multiple network layers Virtualisation. 

Mapped to the ETSI NFV architectural framework, this translates into a set of options for applying a hierarchy of SDN 
controllers. This clause describes some SDN controller hierarchies and possible scenarios for their application. 

As described in figure 3 SDN controllers might be used in different functional blocks of the ETSI NFV architectural 
framework, such as in the NFVI or as a VNF. As such SDN Controller hierarchy might be used in WAN environment, 
inside Data Center, between WAN and Data Center PoP. 

This clause describes SDN Controller hierarchies and scenarios for implementation. 
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5.4.2 Technical and business scenario 

5.4.2.1 SDN controller hierarchy scenarios overview 

The following SDN controller hierarchy scenarios are being described in this clause:  

• Distributed performance, scalability and reliability 

• Administrative domains interaction 

• NaaS management 

• Multilayer transport fault management 

5.4.2.2 SDN controller hierarchy for distributed performance, scalability and reliability 
for multilayer and single-layer transport network 

WAN and Data Centre networks typically have hierarchical structures with potentially a very large number of NEs. An 
SDN controller not only manages traffic handling rules for all of these NEs but also collects status notifications (OAM 
information). Therefore, an SDN controller hierarchy approach could be used to avoid performance, scalability and 
reliability issues. The top network controller will manage network resource abstractions provided by lower level 
controllers. Lower layer network controllers will manage sets of NEs associated with them. If one of these network 
controllers fails, another controller will serve as a backup. 

In the figure 20 below, there is an SDN hierarchy for a multilayer network where SDN controller of packet transport 
network might use the abstraction provided by SDN controller of the optical transport network.  

Figures 20 and 21 present a Hierarchical SDN architecture (HSDN) for WAN and Data Center environments, 
respectively. Each top layer serves as a transport connecting other networks of systems. This approach helps to shrink 
FIB/LFIB transport tables at each layer. The packet transport like MPLS network might be divided into layers and one 
layer will be carried by another layers. FIB/LFIB information will be kept respectively on each layer SDN controllers, 
so it will be logical to use hierarchy approach on SDN controller layer. 

 

NOTE 1: ON-Optical Node, P - Provider, PE-Provide Edge, N-PE - Network Provide Edge, U-PE - User Provider Edge, 
AS - Access Switch. 

NOTE 2: The hierarchy of controllers on the right plane controls the forwarding rules of elements on the left plane. 
 

Figure 20: Typical WAN Packet Transport Structure 
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NOTE 1: GW - Gateway, SN - Spine Node, LN - Leaf Node, TOR - Top of the Rack, SVR - Server, VM - Virtual 
Machine. 

NOTE 2: The hierarchy of controllers on the right plane controls the forwarding rules of elements on the left plane. 
 

Figure 21: Typical Data Center Structure  

5.4.2.3 SDN controller hierarchy for distributed, cross-SP or cross-domain services 

An SDN controller hierarchy might be used when one SP provides network transport resources to another SP.  

This was described earlier in clause 5.3.4.2.2, and was also called Option B. Figure 22, shows 2 WAN domains 
belonging to SP3 and SP4, respectively. The WAN networks of SP3 and SP4 provide connectivity service for SP1 and 
SP2. The WIM and SDN controllers of SP1 and SP2, by using R-CI to A-CI interfaces, might make specific 
connectivity requests of SP3 and SP4. In the figure 22, the SDN controller "client1" is responsible for providing a 
northbound abstract view of WAN connectivity, while at the same time, choosing how to support that view via requests 
of the SP3 and SP4 SDN controllers below. SP2 also have SDN controller (client 2) connected to WAN SP4 to 
orchestrate NFV-PoP connections across WAN domain. 

 

Figure 22: SDN Hierarchy for Different SP 

In figure 23, a SP provides connectivity services based on its own WAN, (no other SP owns or manages it.) Here the 
layers of SDN controllers exist to support distinct virtual network abstractions for different organizations within the SP. 
There is a transport-level network controller to configure the transport connectivity. On top of it, there are separate 
controllers to coordinate the transport controller with VIM controllers of certain DCs, for example, for certain service 
types. PoP A / PoP B responsible for business services and PoP C / PoP D are responsible for generic services. 
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Figure 23: SDN Hierarchy Within one SP for Service Differentiation Purpose 

5.4.2.4 SDN controller hierarchy for NaaS  

In figure 24, a SP provides NFVI-B service inside his own NFVI-A. SDN hierarchy allows easy network resources 
management for NFVI-B within NFVI-A. Access Transport (some vSwiches) might be controlled directly by a tenant 
within his own NFVI-B however this network infrastructure might be connected to external carrier transport NFVI-B. 

SDN controllers hierarchy will be used to maintain such boundary connectivity. 

 

Figure 24: SDN Hierarchy Within one SP - NaaS 

5.4.2.5 SDN controller hierarchy for multi-domain, transport network fast fault 
recover 

Usually a SP network consists of multiple transport layers usually of distinct technologies, where each transport layer 
has dedicated management. All global service flow optimization, management and deployment actions are driven by the 
WIM and upper layer orchestration. 

To configure automatic fail-over, an SDN controller hierarchy might be used. Faults within each layer might be fixed 
independently without impact to higher layers or services. Such an approach could remove the WIM and upper layer 
orchestration from being used to address many WAN faults, with the expectation of more rapid problem resolution.  

Furthermore, layers across the WAN might be managed or owned by different SP. There might be two independent 
MPLS over one or more OTN over one or more optical networks, some subsets of these in different trust domains, 
managed by different SP. A transport failure might be detected directly and resolved directly in a layer, with 
communications between layers for optimization, as needed. 

To pre-configure back-up options if some network fault occurs, the underlying SDN controller will inform the top SDN 
controller to sync the back-up configuration with the NE or networks that the top controller manages for back-up as 
shown in figure 25. 
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Figure 25: SDN Controller Hierarchy for Fault Management in Multilayer Transport network 

The same approach might be used within a Data Center as illustrated in figure 26. The tenant virtual site NFVI-B might 
use a WAN transport which is different from the one used by the host site, NFVI-A.. In case of failure of the primary 
carrier transport within NFVI-A tenant, NFI-B SDN controller will be informed by NFVI-A SDN controller and 
NVFI-B access transport will be fast and safely switched to the backup carrier transport within NFVI-A. 

 

Figure 26: SDN Controller Hierarchy for Fault Management in Multilayer Transport network 

SDN hierarchy information exchange in the two above scenarios also might be used for traffic management. 

The carrier SDN controller might inform the access SDN controller not only about total transport failures but also about 
degradation issues. So the access SDN controller might decries traffic to a particular transport and perform load 
balancing between primary and backup transport. 

5.4.3 Mapping of SDN controller to the ETSI NFV architecture 

5.4.3.1 Introduction  

An SDN controller hierarchy might be implemented within and across different functional blocks of the ETSI NFV 
functional architecture. The present clause describes a number of these implementation options. 

5.4.3.2 Hierarchy of SDN controllers in the NFVI 

The hierarchy of SDN controllers within the NFVI might fold under 3 cases:  

• Hierarchy within a same domain, with underlay and overlay. 

The NFVI might be composed of an underlay SDN-based network, managed by another SDN controller in the same 
layer. 

The SDN might also be implemented in the overlay network, and have an SDN controller to manage this overlay. 
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When both cases are implemented there might be a hierarchy of SDN controllers within the same NFVI PoP and trust 
domain. 

• Hierarchy within a same or multiple domain related to hierarchy of network layers. 

In many telecom networks, there are layers of network technologies. Typically for optical networks, as illustrated in 
Clause C, the SDN controllers are connected to each other via northbound interfaces. 

• Hierarchy due to business relationship sharing resources within a same NFVI. 

In the final scenario, a Network provider who has an SDN enabled network, exposes some network resources to a guest 
NFVI-PoP. In this case, as illustrated in figure 17, there might be a hierarchy of SDN controllers, with one SDN 
controller in NFVI-PoP B1 host network, and one in guest NFVI-PoP A1. The SDN controller B1 is managed by 
Provider B1, while SDN controller A1 is managed by Provider A1. SDN controller A1 sits on top of the northbound 
API of SDN controller B1. Both SDN controllers might be Virtualised. 

5.4.3.3 Hierarchy of SDN controllers in a VNF 

The other case is hierarchy of VNF, where these VNFs are SDN controllers. This might occur in an NFV environment 
where multiple applications use SDN controllers Virtualised, VNF, and have to exchange information across those VNF 
controllers. This interfaces would be the inter-VNF interface defined in ETSI GS NFV-SWA [i.5] as SWA-1. These 
relationships between SDN controllers VNF might be part of a Network Service defined by the NFVO.  

5.4.3.4 Hierarchy of SDN controller across functional blocks 

The hierarchy of SDN controllers might occur across functional blocks.  

For example, it is the case if an SDN controller co-located with the VIM invokes an SDN controller in the NFVI to 
allocate NFVI network resources. This case happens when a VIM SDN controller both has direct control of NFVI 
network resources, for example SDN enabled vSwitch, and indirect control of NFVI network resources, for example 
control of physical SDN switches through an SDN controller provided by a NFVI vendor. It is also the case when a 
VIM is across multiple NFVI and a WAN, and the VIM SDN controller defines connectivity across these different 
domains. That VIM SDN controller will interact with the NFVI SDN controller to allocate NFVI network resources or 
change network paths. This is sometimes combined with hierarchy of SDN controller within a functional block: 
typically the VIM SDN controller interacts with an NFVI SDN controller, that interacts with another SDN controller 
within that same NFVI.  

5.4.3.5 Hierarchy of SDN controllers below the WIM 

While the WIM is not explicitly represented in the ETSI GS NFV 002 [i.3] architectural framework, there is the case of 
SDN controllers below the WIM in clause 5.3.4 and the hierarchy of SDN controller below the WIM in multiple figures 
such as figures 15, 17, 18, 19, 20, 21, 22 and 25. This hierarchy occurs when layers and regions of multiple trust 
domains occur in the Wide Area Network: with a C domain (Client, administratively part of the endpoints' NFVI-PoP 
trust domain) and P (Provider, administratively part of the WAN). 

5.5 SDN controller in a Virtualised environment 

5.5.1 Introduction 

Clause 4.3.4 describes the case where an SDN controller is in an NFV architectural framework. In the previous 
clause 5.4.3.3, is described the scenario where an SDN controller might be Virtualised and be a VNF.  

The present clause describes additional use cases, with some guidelines towards the design of an SDN controller to be 
deployed in a Virtualised environment. 

5.5.2 Virtualisation of SDN Controller 

A Virtualised SDN controller might be:  

• A VNFC; 

• A VNF; or 
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• A Network Service (NS) composed of multiple VNF that constitute the different sub-elements of the SDN 
controller. 

This SDN controller to be deployed in an NFV architectural framework:  

• would come with a software image and a description of resources required to deploy this software image.  

If it is a VNFC, these resource descriptions would be part of the VNF Descriptor, VNFD or the parent VNF. 

If it is a VNF, it would be the VNFD. 

If it is a NS, it would be part of the NS Descriptor, NSD.  

• would follow the architecture guidelines of ETSI NFV. 

If it is a VNFC or VNF, these guidelines are primarily as described in ETSI NFV SWA [i.5]. 

If it is a NS, these are primarily described in ETSI NFV MANO [i.2]. 

This includes the lifecycle management of the Virtualised SDN controller, and its relationship with the other entities of 
the NFV architectural framework. Based on our review of opensource SDN controllers available today, none of the ones 
studied, provide a software image and descriptors as currently defined by ETSI NFV. This could be an area of 
enhancement on their side. 

An SDN controller existing as a VNF will ultimately be controlling resources that are physical or virtual and in effect be 
controlling PNFs or VNFs.  

5.5.3 SDN controller across multiple Virtualised environment  

In the present document a number of use cases have been studied where SDN controller are used in the ETSI NFV 
architectural framework. In all those cases the SDN controller is considered within the same Virtualised environment, 
with one NFV Orchestrator.  

However there might be cases where the Virtualised SDN controller sits on top of multiple Virtualised environment, i.e. 
multiple operators and controls an SDN network that defines end to end paths across multiple operators.  

 

Figure 27: SDN Controller of a Service Provider #3, Across Multiple Service Providers  
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This use case which stretches beyond the current architectures covered by ETSI NFV raises a number of open questions 
such as:  

• if SDN Controller #3 needs to control virtual resources deployed in SP#1 or SP#2, how this would be achieved 
needs to be addressed: 

- One option would be to go through the NFVO#3. In that case, the question is whether the NFVO#3 
reaches NFVO#1 or NFVO#2 directly , or if there is an OSS in between the NFVOs. 

- Another option would be to go directly to the SDN resources or connect to an SDN controller deployed 
in the SP#1 or SP#2 NFVI PoP. 

These use cases will become more and more popular as SDN is being deployed and combined with NaaS type of 
offering that will allow virtual network operators to define network services that span across multiple service providers 
and uses virtual resources deployed and reserved in the NFVI PoP of those service providers.  

5.6 SDN and VNF forwarding graph  

5.6.1 General 

As described in ETSI GS NFV-MAN 001 [i.2], a VNFFG descriptor contains a list of Virtual Links to be established 
between its constituent VNFs and PNFs to form a Network Connection Topology (NCT) and might contain one or more 
Network Forwarding Path (NFP) elements associating traffic flows matching certain criteria to forwarding paths (i.e. 
the actual sequence of network functions to be traversed) within an NCT. The SDN technology might play a role for 
implementing both the NCT and NFP. The SDN controllers involved in the configuration of an NFP might be different 
from those involved in setting up the underlying NCT. 

5.6.2 Static NCT  

To implement a VNFFG, according to the architectural model described in clause 5.6 of ETSI GS NFV-MAN 001 [i.2], 
one or more SDN controllers would receive requests received from the NFVO, via one or more VIM or WAN 
infrastructure managers. Input parameters for these requests would be derived from the contents of the VNFFG 
descriptor. 

An alternative implementation model, although not explicitly described in ETSI GS NFV-MAN 001 [i.2] would consist 
in omitting the NFPs from the VNFFG descriptor and relying on a service chaining application (hosted in the OSS or in 
a VNF) to request one or more SDN controllers to configure the appropriate routers and switches with a set of rules 
associating traffic flows matching certain criteria to forwarding paths. This approach might be relevant to implement the 
scenario described in clause 5.1.2.2. 

The above cases assume that the definition of an NFP is relatively static while there are cases (e.g. see clause 5.1.2.3) 
where network forwarding paths are decided at runtime, e.g. by a VNF instance. This would require either: 

- the ability for a VNF instance to request the NFVO to add or modify an NFP in a VNFFG; 

- the ability for a VNF instance to access an SDN controller to provide NFP descriptions through means 
independent from NFV Management and Orchestration. 

These procedures are not described in ETSI GS NFV-MAN 001 [i.2]. The first approach would require an evolution of 
the NFV architectural framework as it introduces a new reference point. In the second approach the communication 
between the VNF requesting the modification and the SDN controller could be seen as occurring at the SWA-1 
reference point. 

5.6.3 Dynamic NCT 

Clause 5.5.2 assumes that the NCT is specified at the design time of a network service or is modified upon request of an 
OSS function. However, there might be cases (see clause 5.1.2.3) where an NCT would need to be modified at run time 
by a VNF instance. This would require the ability for a VNF instance to request the NFVO to modify a VNFFG. This 
procedure is not described in ETSI GS NFV-MAN 001 [i.2] and would require an evolution of the NFV architectural 
framework. 

Once an NCT has been modified, modification of a related NFPs might be performed as per clause 5.5.2. 
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5.7 SDN controllers in the tenant and the infrastructure domains 
There are two kinds of connectivity services in the NFV architectural framework, both of which require control 
capabilities and the orchestration and management of different types of resources for building and accomplishing a 
proper delivery, as NFV uses the network at two layers.  

The first type of connectivity services are those provided by the NFVI to enable communication among VNFs and 
among their components, including the cases when those VNFs are instantiated in separated PoPs, reachable through a 
WAN connection. There is a clear understanding that SDN plays a key role to support the requirements on elasticity and 
Virtualisation for the infrastructural network to support the VNFs. This is the role of the infrastructure controller, 
managed by the VIM, and extensively discussed across the present document 

The second deals with the network services provided at the service tenant layer (see note), and has to deal with the 
operation and management of the network service's constituent VNFs, and includes whatever semantics are related to 
the network service and that might be controlled by means of the SDN paradigm, through a programmatic, logically 
centralized control of the data forwarding plane (this would include functions like routing, filtering, service path 
selection, classification, etc.). The network services at this layer are suitable to be managed according to the SDN 
paradigm, and that is the proposed role of the tenant controller. It is important to highlight that applying SDN principles 
at this layer provides a concordance of the upper part of the NFV architecture with the general SDN proposal of a 
common control plane on top of which applications run. Those applications might range from enforcing intent-based 
policies provided by users to actually implementing OSS functions: the SDN model is general enough to accommodate 
all these uses. 

NOTE: At the moment of this writing, the term "tenant" has no agreed definition within the ETSI NFV ISG. 
While such a definition is agreed, we use the term along this text in rather wide section, considering a 
tenant whatever entity (person, organizational unit, organization, etc.) using the NFVI to provide or 
manage network services. 

While the first set of control actions are related to the semantics of the service itself (as intended by the deployment of 
the corresponding VNFs), the second set is related to the infrastructure resources. Despite of their different nature, all of 
these control actions have to be orchestrated in a consistent way to perform the expected service and to dynamically 
adapt to service changing conditions, as for instance the instantiation of new VNFs for that service. Furthermore, both 
kinds of control actions have to be comprehensively considered (i.e. synchronized and coordinated) at the same time. 

The archetypal deployment of both controllers will allow to consider the infrastructure controller as providing the 
supporting underlay through the NFVI network Virtualisation layer, and the tenant controller providing an overlay 
composed of the tenant VNFs. From this point, relevant use cases are: 

• Performing coordinated service function chaining by: 

- VNF composition, provided by the infrastructure controller through the NSD. 

- Dynamic VNF composition (according to user identity data, for example), provided by the tenant 
controller. 

• Support for any hierarchical relationship between controllers running with awareness of VNF deployment and 
controllers running as part of the NFVI. 

Figure 28 graphically presents the intended position of SDN controllers for both the infrastructure domain and the tenant 
domain within the NFV architecture framework. 
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Figure 28: Positioning Infrastructure and Tenant SDN Controllers in the NFV Architecture 

More detailed deployment options are shown in figure 29.  

The SDN controller in the tenant domain, which might itself be a VNF, interacts with the different deployed VNFs in 
order to instruct those VNFs for taking actions on the traffic. On the other side, the SDN controller in the infrastructure 
domain is in charge of setting up the required connectivity (including the WAN) for communicating those VNFs. The 
SDN controller in the infrastructure domain supports the infrastructure network (as initially conceived by the original 
NFV proposal), while the SDN controller in the tenant domain provides a programmatic, and potentially simplified 
VNF management interface (note the intended direct connection to VNF 1 in the above figure 28, where this VNF 1 
would be providing a direct SDN interface: OpenFlow, I2RS, etc.). Since the NFVO is in charge of orchestrating the 
NFVI resources and lifecycle management of network services, it might be completely orthogonal to the tenant SDN 
controller. NFVO is to be concerned precisely about the policy and rules being applied by the infrastructure controller. 

There is a need for coordination between both controllers (if service chaining is performed at both layers it would be 
highly desirable, for example), though whether both controllers might interact directly through a new reference point as 
shown in figure 28, or indirectly via the MANO stack requires further study. Note this is coordination, not implying a 
direct control of the infrastructure controller by the tenant one, or vice versa. On the one hand, the MANO stack could 
provide the tenant controller abstracted information about the virtual infrastructure network and allow some degree of 
interaction in both directions. On the other hand, using the MANO stack would require some extensions to the 
interfaces being currently considered, and it could probably violate the decoupling between MANO and network service 
semantics. In any case the reference point depicted there would be out of the scope of NFV specifications, as it is the 
case of the reference point between the OSS/BSS and the infrastructure domain, and would require the availability of a 
specific ACI (Application Control Interface) for the infrastructure controller, as it is foreseeable that the abstraction 
supported through this interface would be different to the one provided by the infrastructure controller to the VIM. 

Figure 29 shows two deployment options for the tenant controller, either as a VNF and therefore part of a network 
service deployment, or being part of the (new generation) OSS and therefore able to interact with several network 
services and even several tenant deployments if required. In both cases, the tenant controllers would be able to interact 
with the OSS either through a direct interface or by accessing data and policy repositories, such as HSS or PCRF.  
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Figure 29: Deployment Options for the Tenant Controller 

5.8 Service Function Chaining 

5.8.1 Introduction 

The following use case describes Service Function Chaining, SFC, combined with SDN and the ETSI NFV 
architectural framework. 

5.8.2 Service Function Chaining (SFC)  

Defined by IETF, the SFC architecture is described in [i.9] and has identified a number of components as shown in 
figure 30 such as:  

• SFC aware network functions and SFC unaware network functions 

• SFC Proxy 

• SF Forwarder 

• SFC Classifier 
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Figure 30: SFC Architecture Components (as defined by IETF) 

The basic SFC architecture in IETF [i.9] does not consider SDN explicitly, neither NFV. IETF SFC is work in progress.  

IETF has recently suggested a draft to address SFC with SDN/NFV [i.10]. The following clauses will propose some 
combination of SFC with SDN and NFV. 

In the present document, the term SFC network function is used; however the IETF term 'service function' is used for 
what ISG NFV calls 'network function'. 

5.8.3 SFC and SDN  

In figure 30, and other figures in the clause 5.8, the term network is used as a generic term for networking resources 
carrying the traffic.  

When SDN is being introduced in this network layer, that network is then composed of SDN resources, controlled by an 
SDN controller, as described in figure 31.  

 

Figure 31: Adding SDN to SFC Underlying Network 

The other case is to have SDN introduced in the SFC functions. In this situation, the SFC Classifier and the SF 
Forwarder could become SDN resources, and be controlled by an SDN controller, as described in figure 32.  
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Figure 32: Adding SDN to SFC Components 

This is typically the case in the diagram below, figure 33, where incoming traffic flows through an SFC Classifier being 
an SDN resource in that case, controlled by an SDN controller, then goes to a Service Function Forwarder to an SFC 
aware function, then back to the SF Forwarder to another SFC function but SFC unaware using an SFC Proxy.  

 

Figure 33: Traffic Flow with SFC and SDN  

The entire SFC flow is defined by the SFC Application. This is an SDN application that implements the SFC service 
using the SDN controller. The flow might go through multiple SF Forwarder (SFF) typically, this diagram is a 
simplified view.  

Also traffic might brand out after the SFC classifier or anytime within the path.  

5.8.4 SFC, SDN and NFV with a single NFVI domain 

5.8.4.0 Introduction 

As NFV is being introduced, any of the components defined above might potentially be Virtualised and deployed on a 
Virtualized infrastructure managed by a Virtualisation management & orchestration environment, as described in 
figure 34. 
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Figure 34: Virtualisation of the SFC Functions with SDN Controller as a VNF 

Multiple cases might be envisioned:  

• Case a: the Service Function Chain is defined in the NFVI. The SDN controller is deployed in the NFVI. 

• Case b: the Service Function Chain is defined in the tenant domain. Some virtual resources are allocated to the 
tenant who deploys his service chaining functions, typically as an overlay network, with his virtual switching 
SDN enabled and his SDN controller. 

5.8.4.1 Service function chain in the NFVI  

In this case, SDN is used either in the NFVI underlay, meaning on native switches and routers, or as an overlay with 
virtual switches and routers SDN enabled on top of non SDN switches and routers. In both cases, an SDN controller is 
deployed in the NFVI, figure 35, connected to the VIM, and the NFPs are used to control the service chaining. Example 
of such configuration include using SDN switches or vswitch in the NFVI, with an OpenDaylight® (see note) SDN 
controller connected to an OpenStack Neutron, like in POC#8 , and in line with MANO [i.2] figure 5.2.as shown in 
figure 35. The SDN routers/switches of the NFVI, would play the SFF role.  

 

Figure 35: SDN Controller in NFVI (based on MANO [i.2] figure 5.2) 

NOTE: "Opendaylight is the trade name of a collaborative open source project from The Linux Foundation. This 
information is given for the convenience of users of the present document and does not constitute an 
endorsement by ETSI of the product named. Equivalent products may be used if they can be shown to 
lead to the same results". 
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The Network Services (NS) as defined by ETSI MANO , as shown in figure 36, would then be deployed on this SDN 
enabled Virtualized infrastructure. Considering NS within a same VIM domain, a NS could go through multiple VNF 
and potentially PNF. Virtual Links (VL) would be defined between the VNFs as shown in figure 6.5 of ETSI 
GS NFV-MANO [i.2]. A set of VLs in a NS form a Network Connection Topology (NCT) as described in ETSI 
GS NFV-SWA 001 [i.5]. A VNFFG might reference other information elements in the NS such as PNFs, VLs and 
VNFs. A VNFFG also contains a Network Forwarding Path (NFP) element. In our case, SDN is used to setup a 
Network Connectivity Topology (NCT) and several Network Forwarding Paths (NFPs). Then depending on the type of 
traffic, different Network Function Path (NFP) will be used to carry the traffic through appropriate VNFs. As new 
elements, VNFs or PNFs, are introduced in the service chain, a new NCT and a new set of NFPs is being defined.  

NSs are typically managed by the NFVO based on their NSD which defines the VNFFG and NFPs.  

 

Figure 36: VL between VNF (i.e. SFC VNF), and VNFFG/NFP as defined in ETSI GS NFV-MAN 001 [i.2] 

In summary, as SFC defined earlier is mapped with the ETSI NFV architectural framework in the case where the SFC is 
defined in the NFVI, the following elements are introduced:  

• Some SFC service function might be Virtualized and become VNFC or VNF: SFC aware functions, SFC 
unaware functions, SFC Classifier, SFC proxy, SFC/SDN Controller and SF Forwarder. 

• Others might remain non Virtualised. 

• The SFC/SDN controller is deployed in the NFVI and typically connects with the VIM. 

• The SDN routers/switches, Virtualised or not, underlay or overlay, play the role of SF Forwarder. 

• An NFV Orchestrator is introduced to deploy the VNF and manage the NS that will define the NCT and NFPs 
used by the Service Function Chaining. It will interface with the VIM and the VNF Manager(s).  

• Descriptors will be defined for VNF, VL, PNF, VNF-FG and NS. 

This mapping is illustrated in figure 37. 
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Figure 37: SFC with SDN and NFV based on figure 3 ETSI GS NFV-INF 005 [i.1] 

5.8.4.2 Service function chain in the tenant domain  

The second case, illustrated in figure 38, is to consider the SFC in the tenant domain. In this case the SFF and the SDN 
controller are VNFs and are part of a tenant NS. An appropriate NCT has been setup in the NFVI.  

NOTE 1: SDN might be used by the NFVI to setup this NCT but this is internal to the NFVI and not visible to the 
SFC. 

Once the virtual resources have been allocated to a tenant, he might deploy his VNF, SFF and SDN controller, but also 
SFC classifier and necessary SFC proxy, and define service chains depending on the classification of the traffic. These 
service chains might be uploaded on the SDN controller to be implemented on the SF Forwarder and evolve 
dynamically. Typically the service chains are often defined within a traffic steering/service chaining application that sits 
on top of the Application Control Interface of the SDN Controller.  

NOTE 2: Some implementation use the NFV Orchestrator to define these service chains, leveraging the fact that the 
NFVO has the view of the end to end topology. In that case this might require the NFVO to have a direct 
link to the SDN controller.  

 

Figure 38: SFC in the Tenant Domain 
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5.8.4.3 Different options to control a dynamic service chain  

The following figures 39 and 40 show how the two architectural options described earlier relate to the role of the 
optional NFPs in the NSD. 

Figure 39 depicts a configuration where service chaining solely relies on switching and routing capabilities provided by 
the NFVI. The SDN controller in the NFVI receives all necessary instructions from the VIM. This includes instructions 
on the virtual links to be setup and on the forwarding rules to be applied to particular flows. This approach requires 
VNF Forwarding Graph descriptors to include one or more NFP descriptor. 

 

Figure 39: NFV Service Chaining with Infrastructure Support 

Figure 40 depicts a configuration where service chaining relies on virtual switching and routing capabilities provided by 
VNFs as part of a Network Service (tenant). One of these VNFs is an SDN controller, which provides forwarding rules 
to one or more virtual router or virtual switch implemented in the form of VNF as well. These forwarding rules 
determine the paths that traffic flows between the other VNFs follow. These traffic flows are carried over a set of virtual 
links established with the support of another SDN controller in the NFVI. This approach assumes Forwarding Graph 
descriptors do not include any NFP descriptor. 

NOTE: The SDN controller is here in the NFVI, but it could be elsewhere, i.e. in the VIM.  
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Figure 40: NFV Service Chaining in the Overlay (Tenant) Network 

5.8.5 End to end carrier network with SFC, SDN and NFV 

Within carrier networks, multiple access networks are being provided such as mobile, wifi, xDSL, cable, FFTH, etc.  

As network and service providers move network functions into the cloud as shared resources in a data center, and want 
to optimize the usage of these resources, especially for video traffic for instance, with NAT, firewall, video 
optimization, TCP optimization etc., they introduce SFC and SDN in the data center for instance. Besides coping with 
traffic increase and getting more flexibility, they also introduce NFV in the data center.  

Typically in the example below, figure 41, the different access networks leverage the service function chaining 
implemented in the NFVI of a common data center.  

 

Figure 41: End to End Carrier Network with SFC, SDN, NFV in the Data Center 
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5.8.6 SFC, SDN, NFV with multi-domain, scalability, etc. 

As the system evolves with multiple NFVI-VIM domains, scalability of the VNF, failover with geographic redundancy 
across multiple domains, the SFC environment has to become very dynamic, flexible and performant. In the case of the 
SFC in the NFVI, the NFVO has to define the service chains, NS, across multiple VIM with SDN controllers as 
illustrated in figure 42. As the service chain evolve dynamically, their implementation through the different layers of 
APIs, VIM API, SDN controller API, has to perform to avoid latency in the network. The NFVO might also need to 
control the WIM in order to define chains that span across WANs.  

Figure 42: SFC in the NFVI with SDN and NFV in a Multi-Domain, Scalable Environment 

After the VNF2 scalability request which creates a VNF 2bis under NFVI-PoP 3, or the VNF2 failover with geographic 
redundancy to NFVI-PoP 3, as illustrated in figure 42, new virtual links might have to be defined, with new VNF-FG as 
shown in figure 43.  

The service chain then evolves not only by defining new paths among static Network Connection Topology (NCT), but 
also to adapt to dynamic NCT.  
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Figure 43: SFC in the NFVI with SDN and NFV in a Multi-domain and virtual links 

Latency has been mentioned when provisioning a service chain through a layer of APIs. But requirements could also 
come with service chains themselves, such as guaranteed low latency over a given E2E network service, which brings 
some further enhancements of the ETSI NFV specifications in terms of resource capacity exposure and E2E path 
latency calculation before allocating and configuring NFPs, but also proper monitoring to measure this latency.  

6 Functional recommendations 

6.1 Introduction  
The current list of recommendations is the following:  

REC#1:  

• Use case: SDN controller and associated SDN network resources need to be able to communicate, especially 
during scaling and migration of any of these components. 

• Recommendation: it is suggested that a requirement be specified for the NFV architectural framework to 
enable a given SDN controller to always be able to communicate with its associated SDN resources and 
provide a mechanism to associate the two. 

• Comment: this is particularly sensitive during scaling or migration of any of these components. This 
communication and the association procedure have to be made in a secure way. When the SDN technology is 
used in the tenant domain, the above requirement might be fulfilled by grouping the VNFs and/or PNFs 
corresponding to these components in the same NS and by specifying suitable requirements in the associated 
virtual link descriptors. 

• Clause: 4.2. 

REC#2: 

• Use case: SDN controller is a PNF. 

• Recommendation: it is suggested that a requirement be specified for the NFV architecture framework to 
support SDN controller being a PNF. 
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• Comment: further study might be conducted to analyse the impact of having an SDN controller PNF 
interacting with the NFV architecture framework to access NFV resources or SDN controller VNF for 
instance. 

• Clause: 4.3.4. 

REC#3: 

• Use case: VNF might be deployed in Docker® containers. Virtualised SDN components (NW resource, 
controller or application) might be VNF or VNFCs, but also SDN controller might have to configure virtual 
links and network forwarding path across resources in Docker. 

NOTE: "Docker is a registered trademark of Docker, Inc. This information is given for the convenience of users 
of the present document and does not constitute an endorsement by ETSI of the product named. 
Equivalent products may be used if they can be shown to lead to the same results". 

• Recommendation: it is suggested to further study NFV management with SDN control & Docker container 
based VNF. 

• Clause: C.3.2. 

REC#4: 

• Use case: interaction between tenant and infrastructure controller, or interactions between multiple SDN 
controllers as illustrated with East-West interface for instance that might be located in different building 
blocks on the NFV architecture. 

• Recommendation: it is suggested to further study the controller-controller interfaces. 

• Comment: for the tenant to infrastructure interactions, one of the key points of such a study will be to assess 
about using for this purpose dedicated, direct inter-controller interfaces (realized by any of the means already 
proposed, from protocols like BGP to specialized topology abstractions directly connected to the SDN model 
being used by the controllers), or to employ specific messages or parameters through the MANO stack. 

• Clause: 4.4.1. 

REC#5: 

• Use case: intent-enabled interface is being used to interface with the SDN controller. 

• Recommendation: it is suggested to further study the impact of intent-enabled interfaces on the NFV 
technologies. 

• Comment: intent-enabled interfaces will constitute one of the essential mechanisms for providing network 
users access to network services, and therefore constitute a key aspect for interaction among VNFs and the 
NFVI, among VNFs themselves, and among NFV-enabled services and their users. 

• Clause: 4.4.1. 

REC#6: 

• Use case: the NFVO might need access to an SDN controller or to an SDN application, in order to pass 
information between the 2 entities, such as topology information.  

• Recommendation: It is suggested that a study be started to assess whether to support an SDN controller 
orchestration interface between the NFVO and an SDN controller in the cases where the SDN controller is 
implemented as a VNF or inside the NFVI. The study would also assess whether to support the same interface 
between the NFVO and an SDN application. 

• Clause: 4.4.3. 

REC#7:  

• Use case: in case the SDN controller is a tenant SDN controller (case 4), an interface might exist with the 
infrastructure SDN controller (case 3). 
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• Recommendation: it is suggested that further study is conducted on the interactions and interface needed 
between a tenant SDN controller and an infrastructure SDN controller. 

• Clause: 4.5.1. 

REC#8:  

• Use case: in case of paths set up in an NFV architecture with different service classes across multiple VIM and 
multiple WAN domains, the respective WAN domain capabilities and connectivity endpoints need to be 
available. 

• Recommendation: it is suggested that WAN domain capabilities and connectivity end points requirements be 
specified when one or more WAN domains are involved via WIM. 

• Clause: 5.3.4.2.0. 

REC#9:  

• Use case: in case NFVI-PoP interconnect via a WAN, a point-to-point connection between two NFVI-PoPs is 
transparently carried across the WAN over a transport tunnel by means of technologies such as MPLS or IEEE 
802.1ad. Each endpoint is aware of the specific characteristics (e.g. bandwidth capacity) of the inter-NFVI-
PoP connection, but the WAN network nodes are only aware of the transport pipe. Thus, the lifecycle of the 
inter-NFVI PoP inner connection (e.g. establishment, modification, release) is controlled by the intervening 
VIMs, but not the WAN domain(s) in between. 

• Recommendation: it is suggested that further study is conducted to clarify how VIMs might request 
connectivity to the WAN domain in case of interconnected VIMs via WAN. 

• Comment: more details can be found in the present document, clause 5.3.2. 

• Clause: 5.3.4.2.1. 

REC#10: 

• Use case: the inner connection management controlled by the intervening VIMs might request direct 
connectivity across the WAN domain. 

• Recommendation: it is suggested that further study is conducted on how VIMs might request direct 
connectivity across the WAN domain. 

• Comment: VIM could connect to the WAN domain via OSS, via NFVO or directly. 

• Clause: 5.3.4.2.1. 

REC#11:  

• Use case: NFVI-PoPs might be interconnected via one (figure 15) or multiple (figure 16) WAN domain, each 
being managed by the same or different providers. In case of different providers, they might be different 
NFVO (figure 16) managing different WAN domains. 

• Recommendation: it is suggested that further study be conducted to analyse the relationship between each 
NFVI-PoP and the respective WAN domains/providers , in particular with regards of the role of the NFVO. 

• Clause: 5.3.4.2.2. 

REC#12: 

• Use case: a VNF processing might trigger a modification of network path and require changes to a dynamic 
VNF service chaining. The VNF instance requesting that change might need to ask the NFVO to access to the 
northbound interface of an SDN controller to implement that change. 

• Recommendation: it is suggested to further study this sort of direct access from a VNF to the NFVO to 
evaluate if a new interface is needed between VNF and NFVO in the ETSI NFV architecture. 
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• Comment: today interfaces exist between VNF and VNF, or a VNF and its VNF manager, but not to an SDN 
controller in the NFVI or VIM. The NFVO would validate the request, check that SDN controller location and 
authorize access or perform the change. 

• Clause: 5.6.2. 

6.2 Functional recommendations related to security 
REC#SEC.1: 

• Use case: attacks mounted via the Forwarding Plane. Examples are reconnaissance attacks, DoS and resource 
exhaustion attacks and vulnerability exploits. 

• Recommendation: it is suggested that a requirement be specified to prevent attacks mounted via the 
Forwarding Plane against SDN switches and controllers. 

REC#SEC.2: 

• Use case: attacks from the control network. Examples are attacking the integrity and confidentiality of the 
controller-switch traffic, exploiting vulnerabilities of controller-switch interface implementations, DoS and 
reconnaissance attacks. 

• Recommendation: it is suggested that a requirement be specified to mitigate attacks from the control network. 

REC#SEC.3: 

• Use case: attacks via the SDN Controller's Application Control Interface. Examples are vulnerable Application 
Control Interfaces, malicious or faulty applications running as part of the controller, unsecure protocols at the 
NBI, applications that are not authenticated and authorized, malicious or unexpected network control by 
(multiple) applications (rerouting flows, changing header fields to evade security policies also between 
different tenants). 

• Recommendation: it is suggested that a requirement be specified to mitigate attacks via the SDN Controller's 
Application Control Interface. 

REC#SEC.4: 

• Use Case: Attacks against controllers and switches via the Virtualised environment. Compromising the 
Virtualised environment (e.g. hypervisors) might also compromise Virtualised switches, controllers and 
applications. Examples are unreliable isolation between the different switches or control of SDN controllers 
through errors in hypervisors and virtual machines. 

• Recommendation: It is suggested that a requirement be specified to mitigate attacks against controllers and 
switches via the Virtualised environment. 

6.3 Functional recommendations related to SDN controller 
REC#13: 

• Use Case: SDN controller located in the NFVI. 

• Recommendation: it is suggested that a further study is conducted to clarify the exact location of an SDN 
controller in the NFVI according to NFV-INF architecture building blocks (ETSI GS NFV-INF 005 [i.1], 
figure 2). 

• Clause 4.3.4. 

REC#14:  

• Use Case: the SDN controller might request the dynamic creation, deletion, modification of VNF Forwarding 
Graphs under its control.  

• Recommendation: it is suggested to further study the NS lifecycle management request coming from SDN 
controller to the NFV Management & Orchestration. 
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• Comment: this use case only makes sense in the case of an SDN controller in the tenant domain requesting 
modification of a VNFFG in the same domain.  

REC#15:  

• Use Case: the SDN controller might use a semi-static resource inventory of various VNF types and instance as 
components in its own service offerings. 

• Recommendation: it is suggested to further study the access or synchronization of NFV MANO repositories 
with SDN repositories, i.e. for VNF instance repository. 

• Comment: this use case only makes sense in case of an SDN controller in the tenant domain. The NFV 
architecture holds metadata and instance repository. Interfaces to these repository are not clearly defined 
today. 

REC#16:  

• Use case: an SDN controller might relocate traffic to make better use of existing resources or might request 
additional resources. Rather than re-routing traffic, the NFV environment scales and migrates resources, driven 
by its own measurements or by request from another domain. 

• Recommendation: it is suggested to further study the case where traffic steering or some capacity issue triggers 
actions and has to choose between rerouting traffic, i.e. asking SDN controller to reroute traffic, or scale 
resources, VNF or NS. 

• Comment: the SDN controller has some understanding of the NW and the available options, NFV MANO has 
some understanding of the available resources and virtual functions, these 2 are complementary and could be 
coordinated to make best decision while optimizing resource usage & deliver best quality of service. 

6.4 Functional recommendations on connectivity and interfaces 
REC#17: 

• Use case: MANO functional entity might request an SDN controller to change SDN traffic redirections 
dynamically at line rate. 

• Recommendation: it is suggested that a requirement be specified for the interface between relevant MANO 
functional entities and SDN controller to provide low latency. 

• Clause: 5.2.2. 

REC#18: 

• Use case: when presented with a service request, an SDN controller chooses instances of VNFs, FGs, and non-
NFV resources, according to criteria that might include endpoint location, geographic or topological proximity 
of available resources, delay, aggregate or fine-grained load, monetary cost, fate-sharing, or other factors. 

• Recommendation: it is suggested to further study the interface between NFV MANO and the SDN controller 
to address some of the SDN controller request such as monetary cost and delay for instance. 

• Comment: some of these parameters are technical and might come from the infrastructure, i.e. delay, but 
others might be more business related, i.e. cost. 

REC#19: 

• Use case: MANO Network Forwarding Path provides classification and selection rules as attributes. These 
attributes and associated policies are passed to the SDN controller that has its own policies. Some correlation 
has to be performed. 

• Recommendation: it is suggested to further study policy management between NFV MANO and SDN 
controller. 

• Clause: B.4.4. 
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REC#20: 

• Use case: some resources of an NFVI might be physically dedicated for use by NFV-MANO, but many 
resources, especially in the WAN, will be shared with other NFV network domain, or with other non- NFV 
network domain, and in particular with SDN. NFV-MANO and SDN coordinate their claims to the shared 
resources. 

• Recommendation: it is suggested to further study the coordination of concurrent claims coming from SDN 
controller or NFV-MANO to shared resources in an NFV environment. 

6.5 Functional recommendations on NFV Management and 
Orchestration 

6.5.1 General 

This clause describes functional recommendations on the NFV-MANO as following the general principles cited in 
ETSI GS NFV-MAN 001 [i.2] (particularly clauses 5.6.2 and 5.6.3) and in clause 5.2.2 of the present document. 

The following list expresses the non-exhaustive recommended functionalities performed by the NFV-MANO. Those 
functionalities might be exposed by means of interfaces consumed by the MANO functional blocks or by authorized 
external entities:  

• inter-administrative domain connectivity coordination; 

• support of operations to an SDN controller below the VIM; 

• support of ordering and charging across multiple administrative domains. 

6.5.2 Inter-administrative domain connectivity coordination 

The inter-administrative domain connectivity coordination is responsible for managing virtual links dynamically and 
consistently on top of the underlying NFVI network resources across multiple administrative domains by means of 
programmatic interfaces produced by the network controller in each administrative domain. In the setup and control of 
virtual links, the inter-administrative domain connectivity coordination requests each administrative domain to play any 
of the three roles: sender, receiver or relay domain. 

• The sender domain is required to be informed of which addresses and/or identifiers are destined and which 
administrative domain(s) are the next. 

• The receiver domain is required to be informed of which addresses and/or identifiers are received. 

• The relay domain is required to be informed of which set of addresses and/or identifiers is relayed and which 
Administrative Domain(s) are the next. 

The inter-administrative domain connectivity coordination informs them of their required information. 

REC#21: 

• Use case: the NFV-MANO functional blocks or authorized external entities might set up partial virtual link 
within each administrative domain dynamically and consistently across multiple administrative domains based 
on the result of the inter-administrative domain connectivity coordination; in such cases for inter-VIM SDN as 
described in clause 5.3.4.2. 

• Recommendation: it is recommended that a requirement be specified for the NFV-MANO to ensure that 
administrative domain(s) are provided with enough information to ensure that the proper network connectivity 
role is performed by the SDN controller(s), including: 

- For SDN across VIM in different NFVI-PoP, with pre-allocated static WAN connectivity service (see 
clause 5.3.4.2.1), the inter-administrative domain connectivity coordination (which is played by VIM of 
a sender administrative domain) is informed about destination addresses and/or identifiers of virtual links 
to reach the receiver administrative domain.  
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- For SDN across VIM in different NFVI-PoP with SDN-based NaaS between NFVI-PoPs (clause 
5.3.4.2.2), the inter-administrative domain connectivity coordination (which is played by WIM) is 
informed about origin and destination addresses and/or identifiers of virtual links so that WIM might 
determine the role of each administrative domain to configure the end-to-end connectivity. 

6.5.3 Support of operations to an SDN controller below the VIM 

REC#22: 

• Use case: the VIM may need access to an SDN controller that is in the NFVI. 

• Recommendation: it is suggested that a requirement be specified for the Nf-Vi interface to support operations 
going to an SDN controller. 

6.5.4 Support of ordering and charging operations between multiple 
administrative domains 

REC#23: 

• Use Case: some use cases address interworking between multiple administrative domains (different trust 
domains), sometimes between competitive companies. Some NFV services span across multiple administrative 
domains with NFV/SDN interworking. These cases will require attention to many factors such as ordering and 
charging mechanisms, inter-administrative domain security considerations and the need for standardized 
service descriptions and identifiers. 

• Recommendation: it is suggested to further study the requirements for interworking between multiple 
administrative domains using NFV and SDN, including ordering, charging, and inter-administrative domain 
security requirements.  

• Clause: 5.5.3 figure 27. 

6.6 Recommendations on operational aspects 
The following are proposed operational recommendations based on IETF RFC 5493 [i.18] which discusses supporting 
conversions between distributed control and centralized control of network resources. These scenario are considered 
when introducing SDN in a network or evolving the existing SDN infrastructure: new SDN controller instance, 
migration, etc. 

REC#24: 

• Use case: transfer from/to management plane (or control Plane) to SDN control. 

• Recommendation: it is suggested that a requirement be specified to transfer the ownership of resources from a 
management plane (or control plane) to SDN control (and vice versa). 

REC#25:  

• Use case: infrastructure consistency during control transfers from/to management plane (or control Plane) to 
SDN control. 

• Recommendation: it is suggested that a requirement be specified for the infrastructure resources and the NFV 
environment need to stay in place throughout any control transfer or control update process. Services need to 
follow the same path through the network and use the same network resources. 

REC#26:  

• Use case: no Disruption of user traffic or alarms towards end users during control transfers from/to 
management plane (or control plane) to SDN control. 

• Recommendation: it is suggested that a requirement be specified for control transfer process not to cause any 
disruption of user traffic. No alarms have to be generated towards the end users. 
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REC#27:  

• Use case: no alarms to end users traffic during control transfers from/to management plane (or control plane) 
to SDN control. 

• Recommendation: it is suggested that a requirement be specified for no alarms to be generated towards the end 
users during control transfers. 

REC#28:  

• Use case: synchronization of control state during conversion, transferring control from management plane to 
SDN control. 

• Recommendation: it is suggested that a requirement be specified to assure that the control state of the service 
path is synchronized across the resources before the control conversion is considered complete. 

REC#29:  

• Use case: support for more than one control entity. 

• Recommendation: it is suggested that a requirement be specified to be possible to segment a service 
path/resources under different control domains (co-existence). 

REC#30:  

• Use case: failure of transfer, transferring control from management plane to SDN control. 

• Recommendation: it is suggested that a requirement be specified to be possible for a transfer from one control 
entity to another to fail in a non-destructive way, leaving the ownership unchanged and without impacting 
traffic. 

• Comment: if during the transfer procedure issues arise causing an unsuccessful or unexpected result, it needs 
to be assured that: a) user traffic is not affected, b) the service path state is not impacted. Point b) assures that 
even in case of some failure during the transfer, the state of a service path/resources is brought back to the 
initial one and is fully under the control of the owning entity. 

REC#31: 

• Use case: security and policy considerations, transferring control from management plane to SDN control. 

• Recommendation: it is suggested that a requirement be specified to support security and policy mechanism 
that would prevent from malicious intervention during transfer of control from management plane to SDN 
control. 

• Comment: allowing control transfers introduces a possibility of malicious intervention. It is recommended that 
appropriate security and policy mechanisms are supported. 
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Annex A (informative): 
SDN in ETSI NFV POC 

A.0 Introduction 
This annex provides a summary of the ETSI NFV PoCs demonstrations involving the SDN technology. Any deviation 
between the solutions implemented for these PoCs and the ETSI NFV architectural framework is not to be understood 
as a proposal to modify this architectural framework. 

A.1 POC#1: Open NFV Framework Project 

 

Figure A.1: POC#1 - Open NFV Framework Project 

Table A.1 

Describe Application This POC provides a high-level abstraction over both NFV and SDN for 
unified Management and Operations. It presents a Northbound API to 
OSS/BSS systems that exposes a Catalog of network capabilities and 
hides MANO complexity, providing the necessary abstractions for 
management to express its intent over infrastructure by policy without 
considering implementation details. It supports feedback loops for fully 
dynamic services, which might leverage active monitoring to drive re-
evaluation of policies (real-time and batch analytics) for network 
operations to scale, heal, move and terminate functions to meet SLAs.  
It supports an end-to-end solution for a multi-vendor, multi-technology, 
multi-protocol and multi-PoP environments with dynamically composed 
service chains that are "network aware". System demonstrations extend 
from core to cRAN, where microcell LTE networks are instantiated using 
the same methods as core functions such as IMS. A single instance 
might support VM deployments via OpenStack or other mechanism, as 
well as Docker containers. 
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The MANO middleware platform for this POC features an information-
model based fabric for declaring connections and composing services, as 
well as a run-time with lifecycle management. It might perform the 
functions of NFV Orchestrator and VNF Manager for a unified 
architecture, but also serves as an Orchestrator of Orchestrators / 
Federated Controller.  
It supports a catalog of VNFs provided by eco-system partners including: 
IMS, DPI, EPC and eNodeB.  
This POC is deployed in a lab, with hardware and integration services, as 
well as switches, acceleration and OpenStack orchestration.  

Role of SDN DPI and cRAN aspects of the system require SDN level policies to be in 
place. In particular, the DPI VNFs requires that core functions such as 
IMS have their packets routed through and/or copied to its ports so that it 
might analyse the traffic. Likewise, with the cRAN, flow level policies 
need to be in place to ensure packets from connected devices are 
chained properly through the DPI components. 

Role of NFV Orchestrator The NFV orchestrator is used to translate declarative policies into 
dynamic processes, in this POC this involves multi-variant constraint 
satisfaction to calculate deployment manifests and then the correct steps 
for realizing a service. Part of this process involves evaluating the 
requirements for each component, so for instance, when a VNF for DPI is 
used the NFV orchestrator sees the requirement that packets have to be 
mirrored to one of its ports, it then scans the connected Infrastructure (or 
VIMs) to see what capabilities are available, and in this case settles on 
both the use of the OpenStack Open vSwitch plugin for instantiation, and 
then direction use of Open vSwitch through OpenFlow for subsequent 
configuration. From there the NFV Orchestrator is charged with 
generating an interface to each components, and determining the order 
and payloads of messages sent across each interface. 

Network Controller details Given OpenStack is the platform used for the ETSI NFV VIM, Open 
vSwitch plug-in is used for basic establishment of routers/networks, then 
the NFV orchestrator interfaces directly with Open vSwitch for the 
established networks.  

Network controller to NFV Orchestrator 
interface and function 

As detailed above, the NFV orchestrator interfaces both with the 
Openstack Neutron REST API and directly with the Open vSwitch NC 
using its REST-based OpenFlow API. 

Data Forwarding Plane As provided by the Open vSwitch. 
Data Control Plane (Programming plane)  Our focus is on the determination and generation of proper SDN level 

policies based on the overall service requirement. Here the control plane 
issues FlowMod commands to affect the changes in packets in the Data 
Forwarding Plane, for instance to ensure chaining of IMS packets to DPI.  
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Lessons learned and (new) requirements The overall goals of our POC are focused on high-level orchestration of 
VNFs, but it became evident early on that the SDN level would need to 
be included even for simple applications. The out of the box OpenStack 
does not have the capabilities necessary for advanced use cases. To 
overcome this, Neutron Plug-ins might be used to add SDN capabilities 
to the OpenStack, however the two paths this offers each have 
limitations. People would either create your own Plug-in, at best creating 
a customized software extension with limited reuse, or they might re-use 
one of the many existing Plug-ins (Open vSwitch, OpenDaylight, ML2, 
etc.). In any case, concepts of SDN will be a requirement of any 
orchestrator, however writing them to any specific plugin will limit their 
applicability, and it is unclear version to version which plug-ins will 
survive in their current form. The API evolution in OpenStack itself is 
problematic; the flow through to the semantics involved with using the 
plugins compounds this. For this POC, a more robust solution was to 
utilize a plugin such as the Open vSwitch minimally to simply instantiate 
the underlying structure, then to communicate with it directly using the 
underlying standard, establishing a pattern that is decoupled from the 
APIs of any specific plugin and portable to other NFV VIM. This 
represented a natural extension to our service model to include base 
concepts of flow-based requirements to our common set of abstractions. 
Given our declarative approach, this meant extending our information 
model with a few additional SDN/OpenFlow-like commands/constraints. 
Our generalized approach to synthesizing interfaces allowed to generate 
an OpenFlow interface using the same techniques as are used for 
communicating with OpenStack, further demonstrating the value in a 
holistic system for orchestration of both NFV and SDN layers involved in 
cloud solutions.  

Gaps Identified As this POC has demonstrated, it wraps and extends emerging protocols 
and standards to provide early worked examples that in turn accelerate 
protocol/standard evolution and adoption, in a positive self-reinforcing 
loop. It allows minimum viable protocols/standards to be promoted early 
and iterated quickly in a live testbed/system.  
The problem is that OpenStack is low-level tooling with limited 
abstractions. 
The gap is that ETSI NFV does not describe a MANO application 
architecture, without which implementations, as has been evidenced by 
many NFV vendor demonstrations and Cloud deployments generally, 
devolve into a sea of static scripts.  
The implementation gap is a historic challenge in SDO community. 
This POC provides a generalized platform (MANO middleware), a high-
level abstraction over NFV and SDN, which provides flexibility in a 
diverse and evolving environment. It provides a bridge for implementing 
ETSI NFV specifications along with other related protocols and standards 
to achieve desired industry goals. 
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A.2 POC#2: Service Chaining for NW function selection 
in Carrier Networks 

 

Figure A.2: POC #2 Service Chaining for NW function selection in Carrier Networks 
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Table A.2 

Describe Application This PoC demonstrates the concept of Service Function Chaining (SFC). 
This PoC verify a new SFC method which works on carrier networks with 
Virtualised NW functions (VNFs). VNFs are provided by several vendors 
and some subjects will be clarified to consider in terms of interoperability. 

Role of SDN SDN is used for classification of user traffic, adding labels to packet and 
packet forwarding with tunnelling protocol. Our developed method adds 
labels to each packet to achieve SFC. In this method, an SDN enabled 
edge switch classifies packets and adds labels that show the Service 
Function (SF) the packet to be forwarded.  

Role of NFV Orchestrator The NFV Orchestrator has roles to manage user's service and VNFs, 
create service chain of each user. In this POC, an original NFV 
orchestrator was created and customized for this application. 

Network Controller details In this PoC In this POC, the SDN Controller (Ryu) is used to manage 
SDN enabled switch. Ryu [i.16] 

Network Controller to NFV Orchestrator 
interface and function 

In this POC, REST APIs are used between NC and NFV orchestrator, 
although the REST message description is our original. 

Network Controller to Data Plane Control 
interface and function 
(Data Forwarding Plane) 

In this POC environment, MPLS label is tentatively used as an SFC 
(service Function Chain) label and OpenFlow vswitch as a forwarding 
function in edge switch in order to implement the SFC method and 
evaluate its efficiency. 

Data Control Plane (Programming plane) The NFV Orchestrator exposes to users the interfaces necessary to 
contract service functions. The contracted services are translated into 
OpenFlow flow entries by the NFV Orchestrator. 

Lessons learned and (new) requirements The network functions working as routers require virtual interfaces to 
belong to various network segments. In SFC, VNFs might be connected 
to/from various VNFs; thus, designing IP addresses will be difficult. an 
OpenFlow controller has been temporally customized to reply to the 
dummy ARP packet to make neighbour VNFs work as default gateways. 

Gaps Identified The important point of our PoC is that new method is suggested to create 
a VNFFG and service function chain inside the NFVI. Therefore, 
intelligent load balancing is not considered. When performing load 
balancing of SFC in realistic environment, the service chain will be 
controlled dynamically depending on the resources of the VM or demand 
of VNFs. In that case, service chains are reconstructed in real time. In 
order to control the network in this way, taking advantage of the SDN is 
important. Therefore, the control mechanism in conjunction with load 
balancing of VNF is required. 
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A.3 POC#8: Automated Network Orchestration 

 

Figure A.3: POC#8 Automated Network Orchestration 
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Table A.3 

Describe Application This PoC demonstrates the use of an open source orchestration system 
to automate the instantiation and scaling of a typical telecom messaging 
application as VNF, consisting of multiple VNFC. The application is not 
NFV-adapted and requires internal layer-2-connectivity for non-IP traffic 
and pre-programmed MAC addresses on the interfaces.  

Role of SDN SDN technology is used to implement the MAC forwarding required to 
connect the clustered VNFC components within the VNF and to connect 
the VNF to the network. The northbound abstraction of a L2 network is 
provided by an SDN agent function in the SDN controller and consumed 
by the SDN plugin component in Neutron. The required forwarding in the 
virtual switches is implemented using OpenFlow as a south bond 
protocol. 

Role of NFV Orchestrator  
Network Controller details The controller used in this PoC is an own development written in Erlang. 

At the time this PoC was planned, there were no sufficient open source 
alternatives available. In the meantime functional equivalents based on 
OpenDaylight are used in similar PoC work. 

Network Controller to Orchestrator 
interface and function 

The SDN agent component in the controller provides a Rest API to the 
SDN plugin in Neutron, which in turn provides a Rest API to the NFV 
orchestrator (the un-modified Openstack Networking API). 

Data Forwarding Plane In the PoC environment, forwarding has been provided using  
OpenFlow-1.3 capable virtual switches. The PoC used the CPqD 
reference implementation of a software switch 
(http://cpqd.github.io/ofsoftswitch13/), since switching performance was 
not the primary focus of this PoC. 

Data Control Plane (Programming plane)  All needed network services, such as MAC learning, broadcast, flooding, 
or multicasting, are implemented and controlled via the OpenFlow 
interface. No native L2 switching function is used in the virtual switches. 
An SDN daemon in the host connects newly created virtual NICs to the 
OpenFlow switch and maps their ID's to the Openflow ports. 

Lessons learned and (new) requirements The OpenFlow implementation provides an extremely flexible control 
over the implemented services based on the OpenFlow 1.3 forwarding 
abstractions. While this could be seen as overly complex for plain L2 
services, it allows flexible integration of distributed routing, load 
balancing, or forwarding graphs without changes in the control 
architecture or vSwitch implementation. 

Gaps Identified The approach shown requires a highly performant Openflow-capable 
dataplane in the vSwitch, which is not available in open source products 
today. The requirement is line-rate for multi-table Openflow pipelines 
using one or maximum two cores per server. 
In order to make use of the aforementioned flexibility of the southbound 
resource control interface, more work is required to provide standardized 
northbound abstractions of the required functionality for OpenStack, 
OpenDaylight, and the NFV orchestrator in order to assure exposure of 
networking capabilities all the way from OSS/BSS to the actual 
forwarding. 

 

http://cpqd.github.io/ofsoftswitch13
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A.4 POC#13: Multi-Layered Traffic Steering for Gi-Lan 

 

Figure A.4: POC#13 Multi-Layered Traffic Steering for Gi-Lan 
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Table A.4 

Describe Application This POC demonstrates the concept of multi-layered traffic steering 
system, i.e. support the definition of steering rules at different layers of 
the networking stack and enforce those decision at the most appropriate 
(Virtualised) device hence optimizing the utilization of network 
components and, accordingly, reducing the need for high capacity high 
level network components. In addition, this PoC, demonstrates the 
Infrastructure and VNF-external Load Balancing models as described in 
ETSI GS NFV-SWA 001 [i.5]. 

Role of SDN SDN serves two roles: 1. An SDN enabled forwarding fabric is used for 
L3-L4 traffic steering; and 2. The SDN enabled forwarding fabric is also 
used to support elasticity of the L7 traffic steering fabric, i.e. traffic that 
might require L7 analysis is distributed, by the SDN enabled fabric, 
among the different instances of the L7 traffic steering virtual appliance. 
The traffic steering control application sits on top of an SDN controller 
and programs thru it both the L3-L4 traffic steering flows as well as the 
L7 traffic distribution flows.  

Role of NFV Orchestrator The NFV Orchestrator is responsible for the provisioning of all the 
components. The goal is to integrate the steering functionality with the 
NFV Orchestrator , but initially the PoC will be based on vanilla 
OpenStack  

Network Controller details In this POC, a vendor SDN controller is used as a virtual appliance (a 
VNFC). See gaps 

Network controller to NFV Orchestrator 
interface and function 

Not applicable (see gaps) 

Network Controller to Data Plane Control 
interface and function 
(Data Forwarding Plane) 

In this POC, OVS is used as the L3-L4 steering component as well as the 
load balancer for the L7 steering elastic fabric. In a more realistic 
environment, the recommendation is to provide these functionalities with 
physical switches both for performance and for flexibility in the 
deployment of the different VNFCs that comprise the network service 
(see gaps). The interface between NC and the OVS is OpenFlow (1.3 or 
higher) 

Data Control Plane (Programming plane) The Steering Control application exposes to users the interfaces 
necessary to define service chains and steering rules. These rules are 
translated into OF flow entries and/or ADC steering rules 

Lessons learned and (new) requirements On-going - TBD 
Gaps Identified In its current incarnation all the components in the PoC, including the NC, 

the OVS and the value added services (VAS) VMs, are packed together 
as a single VNF. In more realistic environment the VASs are not likely to 
be part of the steering VNF and might be distributed over the entire NFVI, 
hence a single OVS is not likely to be the proper solution. Instead, the 
steering VNF needs to be able to create and manage the steering flows 
on the physical network or at least in a partition of the physical network. 
Whether this is done directly by the controller embedded in the VNF or by 
an infrastructure controller in the NFVI the interfaces from VNF to 
infrastructure switch and/or controller are not defined. Moreover, then 
mechanisms (partitioning, prioritization, etc.) to enable VNFs to influence 
traffic flows in the physical infrastructure are not defined. 
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A.5 POC#14: Forces applicability for NFV and integrated 
SDN 

 

Figure A.5: POC#14 Forces applicability for NFV and integrated SDN 
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Table A.5 

Describe Application Demonstrate the applicability of the ForCES framework, both in terms of 
modelling and interfacing. Show how the ForCES modelling language 
might be used to model the infrastructure as well as the network 
functions. Utilizing only the ForCES protocol on modelled entities, to 
demonstrate control of both the infrastructure and the NFs. Provide a 
view on how to use a single framework (model and protocol) for the 
whole NFV architecture. 

Role of SDN SDN is applied in two specific cases in this PoC. The first is to control 
and manage the networking resources of the infrastructure, connect 
containers and VMs. The second is the VNF itself, which is modelled and 
abstracted using the ForCES model and is controlled by an EM 
application. 

Role of NFV Orchestrator The NFV orchestrator is an application on top of the VIM controller 
requesting to set up the VMs and connect them together. The NFV 
orchestrator in this PoC is a combined SDN & NFV orchestrator 

Network Controller details There are actually two different groups of controllers and applications 
using the controller. The first group is the EM CEs and applications 
controlling the VNFs. The second group is the VIM which is acting as the 
controller for the networking between VMs. It is important to highlight that 
the controller is in fact both and SDN & NFV controller, as the Hypervisor 
is also being modelled using the ForCES model, and as such the 
controller is both an SDN & NFV controller. 

Network Controller to NFV Orchestrator 
interface and function 

The NFV orchestrator being an application on top of the controller is 
using ForCES specific APIs to request, provision and control the network 
resources. 

Data Forwarding Plane All data plane forwarding is performed by the VNFs.  
Data Control Plane (Programming plane)  Both, the EM control applications program the VNFs and the VIM 

program the network infrastructure through the ForCES protocol 
interface. 

Lessons learned and (new) requirements The ForCES framework is applicable to both SDN and NFV. 
Gaps Identified The interface between EM and NFV has not been specified and might 

lead to vendor lock-ins for complete Virtualised solutions. Opening up 
such an interface using SDN techniques will allow more stakeholders to 
develop solutions and thus provide more variety and flexibility for 
operators to select the best possible solutions. 
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A.6 POC#15: Subscriber Aware Sgi/Gi-lan Virtualisation 

 

Figure A.6: POC#15 Subscriber Aware Sgi/Gi-lan Virtualisation 



 

ETSI 

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)69 

Table A.6 

Describe Application This POC demonstrates:  
1. A subscriber aware method for service chaining intrinsically 

provided by the NFVI. 
2. How a subscriber aware service chaining method applied in the 

NFVI might enable Virtualisation of functions on the Sgi/Gi 
interface and provide elasticity to VNFs. 

3. How a subscriber's specific service function element chain is 
selected and is composed from a catalog of individual functions, 
where these functions might be hosted within a NFVI-PoP or 
across NFVI-PoPs.  

4. How Virtualisation might enable programmability of network 
driven functions that are selected by subscribers on a self-
service portal. 

Role of SDN SDN provides the fabric through which the traffic from/to the P-GW 
to/from PDN passes. It creates steering so that traffic might be delivered 
to/from VNFs. While VNFs interconnect on "an Ethernet interface" to the 
fabric, the next hop VNF is chained on a per subscriber basis. 
The PoC uses an SDN controller to dynamically configure the Ethernet 
switches using OpenFlow. In the PoC subscribers are added to the 
network. The SDN controller configures the end-to-end service chaining 
path for each new subscriber.  

Role of NFV Orchestrator The VIM is OpenStack. It creates/manages the virtual machines 
associated with VNFs.  
The networking component of OpenStack (Neutron) assigns IP/Mac 
addresses, but is not responsible for setting up interconnectivity for the 
VM, beyond configuration of vNIC. 
The NFV orchestrator is not yet used in this POC.  

Network Controller details Distributed controller that is federated using a distributed mapping 
service (IETF LISP framework and ODL based). Controller sets up 
connectivity from vNIC, vSwitch, to TOR and Subscriber aware switch.  
Interconnectivity between TOR is via. Overlay that in PoC is beyond 
scope of NC. 
The Network Controller used is an SDN Controller. It is based on the 
OpenDayLight controller.  

Network Controller to NFV Orchestrator 
interface and function 

The SDN network controller interfaces with Openstack Neutron to keep 
track of VNFs. This knowledge is global and distributed. 
The integration of the Network Controller to the NFV orchestrator is 
planned for the 2nd stage of the PoC. 

Data Forwarding Plane Open Flow  
The data plane uses OVS switches. The switches are used to establish 
per subscriber service chains.  
The switches are configured using OpenFlow. 

Data Control Plane (Programming plane)  Interface with policy engine so that per subscriber flows might be setup 
when subscriber connects. This helps make the network programmable 
on a per subscriber basis. 

Lessons learned and (new) requirements  
Gaps Identified The PoC identified a gap where the SDN controller, which is a VNF, does 

not have a way to configure the infrastructure, according to the current 
NFV reference architecture. 
Another gap identified is the lack of a standard North Bound API to the 
SDN controller. There was not a standard way to connect the SDN 
controller to the orchestrator. 

 



 

ETSI 

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)70 

A.7 POC#16: NFVIaaS with Secure SDN-controlled WAN 
Gateway 

 

Figure A.7: POC#16 NFVIaaS with Secure SDN-controlled WAN Gateway 

 

Figure A.8: POC#16 Mapping to NFV end-to-end architecture framework 
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Table A.7 

Describe Application This POC evolves around using a cloud orchestrator, with OpenStack 
integration, to provision a Virtualised network topology (VMs & VNFs) 
while monitoring and enforcing SLAs via SDN-OpenFlow, including 
across legacy MPLS WAN.  

This PoC demonstrated the following: 

1. The orchestration of a software-defined data centre, or NFVI 

2. Deploy an enterprise service with SLAs (private –loud - NFVI) 
enforced by monitoring real-time analytics through the Open 
Source nTOP application 

3. Provide VNF services such as firewall, IPS/IDS and load 
balancer to the enterprise, or to remote users across the WAN 

4. Ensure seamless connection over the WAN by having an 
accelerated COTS server-based Gateway, hosting IDS/IPS, 
firewall and load balancing VNFs  

5. Demonstrate SLA across the WAN using orchestrator capability 
to control the Open Source SDN-OpenFlow controller (RYU) 
and the OpenFlow-capable Gateway while monitoring WAN 
bandwidth using traffic monitoring application (e.g. nTOP) and 
OpenFlow protocol statistics 

6. Demonstrate interoperability with a legacy MPLS WAN switch-
router 

In addition, the PoC demonstrated the co-existence of physical and 
virtual functions (PNFs and VNFs) within a data centre, or between data 
centres, across a legacy MPLS WAN. 

Role of SDN This PoC uses an open source SDN controller (RYU) controlling a SDN 
gateway. The gateway interfaces a multi-tenant data centre to a legacy 
MPLS WAN. The PoC uses a full implementation of OpenFlow 1.3 with 
multi-table and metering capabilities – all implemented on the SDN 
gateway. It is important to note that this Gateway combines the functions 
of SDN controller, WAN controller, and SDN gateway, and that of NFVI, 
all in one physical, Virtualised platform. As a result, The gateway is 
capable of hosting multiple VNFs. In fact the SDN controller is one such 
VNF. 

Role of NFV Orchestrator The NFV Orchestrator, acting as both NFV and VIM orchestrator, is used 
to instantiate the software-defined data centre (SDDC), based on 
requirements in a user-defined service template. In addition to controlling 
the NFVI entities, it also interacts with the SDN WAN gateway to control 
the SLA over the WAN. 

Network Controller details The network controller is the open source RYU SDN controller. This is 
implemented as a VNF, hosted by the gateway.  

Network Controller to NFV Orchestrator 
interface and function 

The Network, or SDN, controller interfaces with the NFV/VIM orchestrator 
through a RESTful type API. The gateway gathers flow statistics. The 
orchestrator polls the gateway to obtain the traffic statistics. An 
application hosted by the orchestrator computes the bandwidth (BW) 
utilization, based on the gathered statistics. Based on the calculated BW, 
the orchestrator sets the OpenFlow metering parameters on the gateway, 
and as a result controls the amount of BW allocated to the video stream 
application, transported over the WAN.  

Data Forwarding Plane Data plane forwarding is implemented as a VNF hosted by NFVI 
compute nodes, or by the gateway. The forwarding plane might be based 
on physical or virtual network functions (PNFs and VNFs), including 
security, management and monitoring functions. 

Data Control Plane (Programming plane)  In this PoC, OpenFlow was used to control the data plane network 
elements for traffic forwarding, firewall, load balancing and other 
applications. 

Lessons learned and (new) requirements This PoC controls SLA over the WAN through the interaction between 
the NFV/VIM orchestrator and the SDN controller. A need was identified 
to control the SLA within the DC, in addition to the WAN.  
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Gaps Identified Although this might be a common knowledge, there is a stronger sense 
to continue to highlight that SDN might control both physical and virtual 
functions in the various GS documents. In addition, there is a need for 
tight integration between the orchestrator and the SDN controller. 

 

A.8 POC#21: network intensive and compute intensive 
hardware acceleration 

 

Figure A.9: POC#21 network intensive and compute intensive hardware acceleration 
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Table A.8 

Describe Application Demonstrate the benefits or Hardware Acceleration in NFV environments 
for compute and network intensive functions. The first stage shows how 
rerouting of flows from the VNF to the Infrastructure Network might 
improve performance. A Layer 7 Load balancer VNF is used as an 
example VNF for this PoC.  

Role of SDN SDN is used to program the physical network switches and NIC cards to 
process and reroute traffic on behalf of the VNF based on the Dynamic 
Rerouting of Packet Flow Routing as described in GS NFV-INF 005 [i.1].  

Role of NFV Orchestrator Not applicable - the first stage of the PoC focused on the infrastructure 
only and relied on manual provisioning.  

Network Controller details The controller is a Protocol Oblivious Forwarding (POF) controller 
(http://www.poforwarding.org/) that is based on Project Floodlight® (see 
note) and enhances OpenFlow to be oblivious to the dataplane 
forwarding protocol.  

Network Controller to NFV Orchestrator 
interface and function 

Not applicable - the first stage of the PoC focused on the infrastructure 
only and relied on manual provisioning. No NFV Orchestrator used.  

Data Forwarding Plane Initially, all data plane forwarding is performed by the VNF that performs 
the load balancing decision. Once it has made its load balancing 
decision, the VNF requests some rules be added to the infrastructure 
network (physical switch, NIC). It makes those requests through an 
Optimization Interface that converts those requests into NBI calls to the 
network controller.  

Data Control Plane (Programming plane)  The VNF programs the SDN switch/NIC through an optimization 
interface. 

Lessons learned and (new) requirements Scalability of the SDN controller and SDN agent/switch need to be taken 
into consideration.  

Gaps Identified • Need adoption of VNF API to SDN controller for HWA through 
standards or open source.  

• OpenFlow extensions are needed to support dynamic rerouting 
based on L4-L7, preferably using protocol agnostic extensions 
to provide the necessary flexibility and extendibility.  

NOTE: "Floodlight is a registered trademark of Big Switch Networks, Inc. This information is given for the 
convenience of users of the present document and does not constitute an endorsement by ETSI of the 
product named. Equivalent products may be used if they can be shown to lead to the same results". 
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https://docbox.etsi.org/ISG/NFV/EVE/05-CONTRIBUTIONS/2015/NFVEVE(15)000366r1_EVE005-Clause4_2_and_4_3.docx
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A.9 POC#23: E2E orchestration of Virtualised LTE Core-
Network functions 

 

Figure A.10: POC#23 E2E orchestration of Virtualised LTE Core-Network functions 
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Table A.9 

Describe Application Our NFV orchestrator defines an interface between the NFV orchestrator 
and the SDN controller for dynamically chaining various in-line & value-
add service functions (e.g. video optimization, content caching, etc.) in 
the SGi LAN in the LTE core network 

Role of SDN As briefly mentioned above, SDN is used within the SGi LAN for dynamic 
service chaining based on the policy.  
The following describes an example use-case. Assume User-1 
subscribed to a video optimization service, whereas User-2 did not. In 
such case, User-1's packets will be directed to the video optimization 
service node (for a better user experience), whereas User-2's packets 
will not be directed to the particular service node.  

Role of NFV Orchestrator In our PoC architecture, the NFV orchestrator has the global view of the 
Virtualised LTE network. Furthermore, all the dynamics on the network 
service topology are managed through the NFV orchestrator using VNF-
FGs.  
The topology dynamics information as defined in the ETSI NFV 
specification get passed to the SDN controller (via our internally defined 
interface between the orchestrator and the SDN controller) and used as 
part of dynamic service chaining of the user traffic. 

Network Controller details Currently in the PoC, a proprietary SDN controller is use. An earlier 
version of this controller was used in a demo during MWC 2013.. 

Network Controller to NFV Orchestrator 
interface and function 

There is an interface between the SDN controller and the NFV 
orchestrator to exchange the VNF-FG dynamics information. Whenever 
there is a VNF-FG change, the NFV orchestrator sends the updated 
VNF-FG information to the SDN controller.  

Data Forwarding Plane The dynamic service chaining feature is transparent to both the data 
packets and the in-line value-add network functions in the SGi LAN. The 
value-add functions simply process the incoming packets in-line as they 
receive them. 

Data Control Plane (Programming plane)  Data forwarding plane consists of SDN switches. The SDN controller 
sends the data forwarding (i.e. OpenFlow) rules to the switches in the 
SGi LAN, and the switches act as data packet forwarders based on the 
rule received. 

Lessons learned and (new) requirements • The number and variety of in-line and value-add functions in the 
SGi LAN do not grow as fast as fast as initially anticipated  

• On the other hand, if the number of functions happens to 
increase dramatically, there might be scalaibility issues, 
especially in OpenFlow (e.g. how many rules might be stored, 
how fast has the rule-updates to be done, etc.). 

Gaps Identified • Since the NFV orchestrator sends very primitive information (i.e. 
VNF-FG) to the SDN controller, most complexity will be residing 
in the implementation of the SDN controller and the applications 
sitting on top of the SDN controller.  

• There might also be scalability issues in the number of 
OpenFlow rules to be stored as briefly mentioned above. 

However, the above concerns do not belong to the scope of the NFV 
orchestrator. At least from the scope of our PoC, no major gaps were 
identified. 
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A.10 POC#26: Virtual EPC with SDN functions in Mobile 
Backhaul Networks 

 

Figure A.11: POC#26 Virtual EPC with SDN functions in Mobile Backhaul Networks 

Table A.10 

Describe Application This PoC will verify the entire Virtualisation of EPC (vEPC) and the 
benefits that Network Function Virtualisation (NFV) and Software Defined 
Network (SDN) bring to EPC. The Orchestrator interacts with virtual EPC 
network elements such as the Mobility Management Entity (MME) to 
receive mobility information and trigger the action in the SDN network 
controller to change the required data plane flows to perform mobility 
while maintaining the QoS assigned to the mobile devices across 
network events. 

Role of SDN In this PoC, several use cases of vEPC are demonstrated where 
progressively the scenario moves from the usage of VNFs of existing 
EPC network elements (scenario 1) to the integration of SDN as part of 
the transport network used in the mobile backhaul (scenarios 2 and 3). 
SDN is used to replace mobile network stack such as GTP replaced by 
off the shelf switches e.g. Ethernet, VLAN or MPLS.  

Role of Orchestrator The orchestrator relies on the information received by the vEPC to 
configure the edge nodes of the SDN network to forward the specific user 
data accordingly to the backhaul provisioned paths.  

Network Controller details The SDN network controller is compliant with OpenFlow 1.3. The PoC 
uses Ryu SDN network controller, which is available as open source and 
developed in Python® (see note).  

NC to Orchestrator interface and function The orchestrator application is implemented in Python, running directly 
on top of the SDN network controller. The MME uses a REST-like API 
based on JSON messages to interact with the SDN network controller to 
notify mobile events.  

Data Forwarding Plane The data forwarding planes are based on L2 switches with Ethernet, 
VLAN or MPLS forwarding capabilities managed from the SDN network 
controller.  
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Data Control Plane (Programming plane)  There are different control planes in use:  
• OpenFlow 1.3: TCP-based Between SDN network controller 

and OpenFlow datapaths. 
• 3GPP S1AP: SCTP-based between the eNB and the MME. 
• 3GPP S11: UDP-based between the MME and the S/P-GW. 

Lessons learned and (new) requirements The choice of Ryu for the SDN network controller application seems to 
be appropriate as it allows fast development of Python applications for 
realizing the orchestration. Network provisioning is performed proactively, 
upon initialization of the setup, which does not introduce any operational 
delays from the controller's perspective. The controller reacts to mobile 
specific operations, i.e. attach, detach, handover setting up the 
appropriate flows proactively. It also receive network events such as link 
down, link up, congestion and acts to correct and adapt the network to 
the new conditions to obtain the optimal performance and user 
experience.  
The provisioning of the backhaul, either VLAN-based or MPLS-based 
seems suitable for our technology. In more extreme cases where no 
dedicated Layer 2 paths are available, it would be possible to fall back to 
standard layer 3 IP GRE tunnelling between endpoints, however it is not 
preferred. Furthermore, it was demonstrated that mobile events require 
only changes at the edge of the network, signalled from our SDN 
controller, and would not affect by any means the existing backhaul 
provisioning. These 2 functions might ran independently from each other 
the moment there is an agreement on the communicating endpoints 
based on specific packet fields (VLAN tags, MPLS labels or IP 
addresses).  
The 3GPP signalling mechanisms for handovers were executed 
successfully, albeit further testing is required to make a more 
comprehensive analysis of the delays in play and devise possible 
optimizations.  
The PoC shows the feasibility of adapting the standard 3GPP GTP 
tunnelling to different use cases. Encapsulating the GTP in an MPLS 
tunnel, or completely removing the GTP tunnelling, encapsulating the 
user data in an MPLS tunnel, which then provides the scope previously 
offered by GTP.  
In addition, one of the lesson learnt is that SDN capable switch 
implementations differ from one another, resulting in unexpected 
behaviours that have to be specifically dealt with. In our setup, this meant 
having to add middleboxes to perform MPLS Label Edge Router (LER) 
functions was not originally conceived and contributes to increase the 
delay, especially of the signalling events. Furthermore, the original 
network design had to be reworked replacing the single broadcast 
domain with routing techniques to connect the separated networks.  
During the realization of the POC, a standalone policy and charging 
function was realized using OpenFlow. This function brings together 
MPLS encapsulation/decapsulation, Evolved Packet System (EPS) 
bearer metering as well as Service Data Flow (SDF) metering that 
enforces the Traffic Flow Templates (TFT) defined for a user. The 
charging might be performed by collecting the flow/meter statistics from 
the datapaths.  

Gaps Identified ETSI NFV has not defined an interface between NFV Orchestrator and 
SDN controller north bound interface in the form of a standard API. 
Therefore, it is recommend that ETSI NFV pays attention to:  

1. Interoperability and certification of OpenFlow or SDN 
enabled switches to ensure the required functionality is 
available.  

2. Abstraction layers between HW and Virtualised 
components. The SDN controller needs to access directly 
to information in packet headers to determine new 
locations of the packet forwarding during mobility events. 
Therefore, it is recommend that applications (e.g. vMME) 
having a direct access to the SDN controller instead of 
API to the VIM.  

3. Having NFV APIs built to access only virtual instances of 
the network which do not require time critical actions.  
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A test framework with a broad number of tests has to be defined to 
explore each possibility that the OpenFlow protocol supports. In this 
direction, there is already some work developed by Ryu SDN Controller, 
what they call the "Ryu Certification". However, additional effort is 
required to complete the uses cases that evaluates the datapaths 
implementation and their conformance with the standard OpenFlow. For 
instance, the switches do not behave as expected what comes to the 
internal treatment of the actions and matching functionality specified in 
the Openflow specifications. For instance, the MPLS packet processing 
differs in OpenvSwitch and OfSoftSwitch13 in terms of removing the 
MPLS label and reprocessing the packet in a different table.  
Our PoC considered the SDN controller as an additional VNF in addition 
to other functions as MME and control plane S/P-GW. In the present 
testbed, there is no interface with the cloud orchestration, but such 
interfaces might simplify the connection of mobile specific VNFs as these 
might control the underlying SDN network. Special abstractions need to 
be defined for that purpose.  
The EPC used in the PoC used single tenant but the multitenancy 
support of EPC infrastructure was considered during the network 
provisioning.  

NOTE: "Python is a registered trademark of the Python Software Foundation. This information is given for the 
convenience of users of the present document and does not constitute an endorsement by ETSI of the 
product named. Equivalent products may be used if they can be shown to lead to the same results". 

 

A.11 POC#27: VoLTE Service based on vEPC and vIMS 
architecture 

 

Figure A.12: POC#27 VoLTE Service based on vEPC and vIMS architecture 
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Table A.11 

Describe Application The PoC demonstrates the end-to-end VoLTE service that might be 
constructed based on vIMS and vEPC VNFs running on a multi-vendor NFV 
environment. 

Role of SDN SDN technology is used to separate the control plane and user plane in 
vEPC xGW (SGW and PGW), that is, the control plane implementing SDN 
controller deployed as VNFs runs in Virtualised environment, and the user 
plane runs in SDN-based forwarding equipments. 
On the other hand, SDN technology is introduced into NFVI to enhance the 
capability of network management in telecom cloud. 

Role of NFV Orchestrator The NFV Orchestrator has the role to manage the whole resources in multi-
vendor NFV environment, the instantiation of the VoLTE service and all 
constituted VNFs, and their lifecycle management. 

Network Controller details There are two kinds of Network controllers applied in different layers in this 
PoC. 
Type I, the Network controller is deployed as part of VNF and provides the 
interaction with user plane of the EPC GW using SDN-based protocols. 
Type II, the Network controller is introduced into VIM to enhance the 
capability of network management in telecom cloud. 

Network Controller to NFV Orchestrator 
interface and function 

In this PoC, the Type I Network Controller has no direct interface with the 
NFV Orchestrator. The Type II Network Controller exposes interface through 
VIM to NFV Orchestrator, through which the network resource might be 
managed efficiently. 

Data Forwarding Plane In this PoC, the SDN-based data forwarding equipments might be 
Virtualised or non-Virtualised. The SDN-based data forwarding equipments 
interact with Type I Network Controller based on OF-epc protocol (see note), 
and interact with Type II Network Controller based on OpenFlow 
implementation. 

Data Control Plane (Programming 
plane)  

The SDN controller sends the data forwarding rules (i.e. defined in 
OpenFlow, or OF-epc) to the forwarding equipments, and the forwarding 
equipments act as data packet forwarders based on the rule received. 

Lessons learned and (new) 
requirements 

 

Gaps Identified With the separation of control plane and data plane in EPC GW, the internal 
private control-forwarding interfaces need be open and standardized, and 
supported by the SDN-based interface. This gap now is considered in ONF. 
More gaps will be identified and provided with the progress of this PoC. 

NOTE: OF-epc is extended by ZTE based on the OF-mpc interface that is in progress in ONF. 
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A.12 POC#28: SDN Controlled VNF Forwarding graph 

 

Figure A.13: POC#28 SDN controlled VNF Forwarding Graph 

Table A.12 

Describe 
Application 

SDN Controlled VNF Forwarding Graph 

Role of SDN In this PoC, the SDN is used to control individual flows traversing through their designated virtual 
network functions (VNF).  
Assuming that the VNF are already interconnected, which might be controlled by traditional control 
protocols or SDN approaches.  
This PoC is SDN controlled Service layer (the Red Line) as defined in ETSI GS NFV-INF 005 [i.1] 
clause 6.2.3  and in the reference diagram extracted from GS NFV-INF 005 [i.1] Network Function 
Virtualisation Infrastructure Architecture (figure 22):  
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PoC Architecture 

 

The following figures maps the PoC components to NFV Architectural framework 
(gs_NFV002v010101p.docx): 

 

Mapping the PoC components to the End to End Service Forwarding Graph (ETSI GS NFV 002 [i.3] 
V1.1.1 (2013-10): 

SFC SDN Controller

SFC orchestrator

 

Plane Examples 

Management SFC Orchestrator, i.e. SFC manager and SF VNF Manager 
SFC applications (e.g. SFC OAM functions) 

Control SFC SDN controllers 

Data Classifier 
SF Forwarders, SF Proxy 
SF Nodes 
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Describe 
Application 

SDN Controlled VNF Forwarding Graph 

SFC management and control plane elements are responsible for translating user/application 
requests; converting requisite policies into network topology dependent paths; and disseminating 
steering commands to relevant forwarding nodes. SFC data plane components are responsible for 
carrying out the steering commands. 
In the ONF SDN paradigm, the SFC Orchestrator requests necessary changes through the 
northbound interface (NBI) of the OpenFlow SDN controller, which in turn implements the requested 
changes via OpenFlow. If service function are not OpenFlow-speaking or are not under the domain of 
OpenFlow SDN controllers, the SFC Manager might need to interact directly with the service functions 
themselves or interact with another service function instance manager. 

Role of NFV 
Orchestrator 

The SFC Manager Component of the NFV Orchestrator (Service Orchestrator) translates clients' high-
level intent policy based network-topology agnostic requirements into flow classification constructs, 
and sequences of L4-L7 service function constructs associated with the flows. The SFC Manager 
provides an interface for service clients to specify SFC requirements including the desired 
classification criteria, policies, sequence of service functions, etc.  
The Orchestrator consists of two key components: the SF Chain Manager and the SF Instance 
Manager. The Chain Manager is responsible for translating user's SFC flow classification rules and 
SFC requirements into flow classification constructs and associated sequences of L4-L7 service 
functions. The Instance Manager is responsible for managing the life cycle of each service function 
instance, and for keeping track of each service function instance's locator and chain header 
encapsulation and transport capabilities. The Chain Manager will then pass these classification 
constructs, sequence of service functions, and the L4-L7 service function instance catalogue to the 
SDN Controller through the SDN NBI so that the SDN Controller might further translate them into 
southbound OpenFlow programming constructs. 

Network 
Controller details 

The SDN Controller is responsible for setting up service function steering/chaining paths. It translates 
flow classification constructs and associated sequences of SF locators into southbound OpenFlow 
programming commands. It locates the flow classifier and instructs it how to classify a flow and the 
flow packets with an appropriate SFC header. It is also responsible for locating the sequence of SF 
Forwarders associated with the sequence of SF Locators so as to enforce the flow going through the 
sequence of designated SF Nodes. That is, the SDN Controller will use those OpenFlow programming 
constructs to program the classifier to classify the traffic flows and program the SF Forwarders to steer 
the flow through the sequence of SF locators. 

Network 
Controller to NFV 
Orchestrator 
interface and 
function 

• This interface allows communication of VNF instance locator and flavor details as well as a 
service chain's service function ordering information. To support different types of SDN 
Controllers, the Service Chain Orchestrator (might be implemented in OpenStack) will 
interface with the SDN Controller through Plugin Driver mechanism. The Service Chain 
Orchestrator will pass the following information to the SDN Controller:  
− Sequence of Requested Service Functions: This specifies the sequence of service 

function treatment for a tenant's traffic flow.  
− Traffic Flow Classification rules: It consists of a set of flow descriptors. 
− List of Available Service Function Instances: each SF Instance contains information such 

as the Instance's Locator, the Instance's Flavor. An example of a SF Instance is a 
firewall or an IDS. 
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Describe 
Application 

SDN Controlled VNF Forwarding Graph 

Data Forwarding 
Plane 

|1  -----   |n        |21   ---- |2m 
+---+---+   +---+---+   +-+---+   +--+-----+ 
| SF#1  |   |SF#n   |   |SF#i1|   |SF#im   | 
|       |   |       |   |     |   |        | 
+---+---+   +---+---+   +--+--+   +--+--+--+ 

:           :          :         :  : 
:           :          :         :  : 

\         /            \       / 
+--------+             +---------+ 
|proxy   |             |proxy    | 

+--------------+   +--------+    +--------+---------+ 
  -->| Chain        |   | SFF    |               | SFF     | ---

-> 
|classifier    |   |Node-1  |             | Node-i  | 
+--------------+   +----+---+             +----+--+-+ 

\         |                     / 
\        | SFC Encapsulation  / 
\       |                   / 

,. ......................................._ 
,-'                                        `-. 

/                                              `. 
|                      Network                   | 
`.                                             / 

`.__.................................. _,-' 
 

The Service Function Forwarder (SFF) is responsible for forwarding data packets to their designated 
service function instances. As the case with other SFC entities, the SFF might come in physical, virtual 
or any other form factor. The SFF might make its forwarding/steering decision by matching the chain 
identification information carried in the SFC header with the next-hop information provided by the SDN 
controller. The SFC header would carry sufficient information for each SFF in the path to establish 
symmetric flows in forward and reverse directions, if necessary. 

Data Control 
Plane 
(Programming 
plane)  

OpenFlow 1.3+-capable SFFs might make its forwarding decisions on L2-L3 header fields such as 
MAC or IP addresses. With an OpenFlow version that supports L4 fields such as TCP and UDP ports, 
the SFF will be able to make forwarding decisions at L4. 

Lessons learned 
and (new) 
requirements 

One of the Key Components for Virtualised Network Functions:  
• Data path have to be dynamically adapted to the Virtualised Network Functions as they are 

moved, added, or removed. 
• Without SDN, it is very difficult, if not impossible, for data flows to dynamically steered to their 

designated service functions  
• VNFs by different vendors have different features and need different provisioning. There are 

mechanisms today (e.g. OpenFlow or IETF's I2RS) for SDN controller to dynamically control 
L2/L3 switches and routers, it is virtually impossible to control security functions, such as 
Authentication VNF, FW/IPS/IDS VNFs because there is no standard interface to those VNFs 

SDN controlled Service Graph forwarding might be deployed in today's network without requiring 
replacing existing equipment and control plan. But SDN Controller is not able to control non 
switch/router based VNFs yet.  

Gaps Identified There are many types of VNFs, the Video Optimization based VNF is very different from FW/IPS/IDS 
based VNF, or Router/switch based VNF.  
In order for NFV Orchestration to automatically utilize various types of VNF, it is recommend that ETSI 
NFV to have an initiative to categorize VNFs, and then move on to define interfaces to various types of 
VNFs.  
For example, for the category of Flow based Security Functions (VNFs), "Subject - Object - Function - 
Action" paradigm might be used to manage them as discussed in IETF I2NSF [i.11] 

• Subject - Match values based on packet data Packet header or Packet payload  
• Object - Match values based on context. E.g. State, time, geo-location, etc. 
• Action- Egress processing, such as Invoke signaling; Packet forwarding and/or 

transformation; Possibility for SDN/NFV integration  
• Function = Functional Profile – E.g. IPS:<Profile>, signature file, Anti-virus file, URL filtering 

file, Threat Database, etc. Integrated and one-pass checks on the content of packets.  
The functional profile is vendor specific and differentiates vendor unique innovation.  



 

ETSI 

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)84 

 

A.13 POC#34: SDN-enabled Virtual EPC Gateway 

 

Figure A.14: POC#34 SDN enabled Virtual EPC Gateway 

Table A.13 

Describe Application This PoC verifies an enhanced EPC Virtualisation architecture: by 
introducing Software Defined Networking (SDN), EPC Virtual Functions 
might be distributed to location of choice.  
Rather than virtualizing EPC as a whole, the PoC presents an SDN-
based decomposition of EPC Gateways, SGW and PGW, into Control 
and Data functions. 
The EPC Gateway decomposition is designed to meet 3GPP functionality 
and comply with SGW/PGW Data and Control external interfaces. 
The distribution of Data Plane functions to the network edges, enables 
Local Breakout towards network edge content and services and the 
implementation of an Edge Service Chaining. 
This solution enables service continuity for users handed over between 
network edge locations.  
Virtual Network Functions in the PoC are secured with an Intrusion 
Detection System. 

Role of SDN SDN is enabling decomposition of EPC Gateways, SGW and PGW, into 
Control Plane and Data plane functions. 
The EPC Data Plane is implemented based on SDN. SDN allows the 
programming of GTP tunnels, per attached users and active bearers. 
The SDN switch strips off GTP tunnel encapsulation in case traffic needs 
to breakout locally. 
SDN is also used to implement Service Chaining both in the core Gi-LAN 
and in the edge. 

Role of the NFV Orchestrator NFV Orchestrator instantiates the EPC and RAN VNFs, including EPC 
Control Plane, EPC Data Plane and eNBs. 

SDN Network Controller details SDN Controller is based on OpenDayLight, with required enhancements 
to support GTP.  
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The SDN Controller is exposing an ACI (Application Control Interface) to 
the EPC Control Plane to be able to manage GTP tunnels, based on 
events indicated by the EPC Control. The downstream ACI is used to 
reflect user state changes, active bearer information and user mobility 
events, all mapped to EPC procedures (e.g. Attach, handover, etc.). 
The upstream ACI is used for Data Plane usage reports. 
The Controller's Resource Control Interface (RCI) uses OpenFlow 1.3 

SDN NC to VIM and NFV Orchestrator 
interfaces and functions 

SDN Controller is running on OpenStack that is functioning as the 
Virtualised Infrastructure Manager (VIM). 
The Orchestrator coordinates the allocation of virtual resources in the 
VIM and the Virtual Network Functions 

Data Forwarding Plane The EPC Data Forwarding Plane was implemented based on SW-based 
SDN switches, enhanced with GTP support, one acting as an Edge 
Mobile Anchor and the other as a Core Mobile Anchor. 
Data Forwarding Plane between eNB and SDN Switch acting as an Edge 
Mobile Anchor uses GTP-U. 
Data Forwarding Plane between SDN Switches, uses  
GTP-U. 
Data Forwarding Plane between VNFs on the Gi-LAN and on the Edge 
Gi-LAN uses VXLAN.  

Data Control Plane (Programming plane)  Data Control Plane is based on OpenFlow 1.3. OpenFlow rules are 
placed based on control messages received from the EPC Control Plane 
through the SDN Controller Application Control Interface (ACI) 

Lessons learned and (new) requirements An SDN-based vEPC Split has proven to support 3GPP functionality, 
while allowing better performance and scale and supporting placement of 
Data Plane functions, independently of Control Plane functions. 
This architecture allows best-of-breed selection of EPC sub-functions. 
The PoC architecture has proven to enable higher performance on the 
EPC Control Plane, by extracting Data Plane functionality and 
implementing it in an SDN infrastructure. 
Data Plane performance is also proven to be high, based on OpenFlow 
switches. 
vEPC functions might be placed anywhere, and specifically Data Plane 
functions might be pushed to network edges to allow local breakout 
towards edge content and services. 
Network Edge service examples include network edge caching, edge 
CDN (Content Distribution Networking), multi-unicast of OTT Live Traffic 
and hair-pinning of video conference traffic. 
Service continuity is maintained in the event of mobility between network 
edge locations. 
Service Chaining is applicable in the network edge, avoiding over-
subscription of edge services.   

Gaps Identified It is recommended that the VIM to SDN Controller interface be specified 
to support carrier-grade life cycle management 

 

A.14 POC#38: Full ISO-7 layer stack fulfilment, activation 
and orchestration of VNFs in carrier networks 

This PoC is built upon the ETSI/NFV reference architecture framework. The PoC includes VNFs from multiple 
vendors, each with its own Element Manger and VNF Manager. Additional components to the ETSI framework are 
highlighted in blue. These are described below. 
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Figure A.15: POC#38 SDN controlled VNF Forwarding Graph 

Table A.14 

Describe Application Use of SDN in an NFV architectural framework 
This POC is focussed on full ISO 7-layer stack fulfilment, activation and 
orchestration of VNFs in carrier networks. As part of fulfilment, the 
connectivity between VNFs and between VNFs and enterprise network 
customers' needs to be instantiated. SDN programming of the virtual 
network is used to automatically create the required connectivity as part 
of fulfilment. Creation of forwarding graphs to support service chaining is 
also utilized to show how additional VNFs might be added to existing 
customer services to provide new value added capabilities. 

Role of SDN The SDN Policy Manager contains the networking policy requirements for 
tenants in the NFVI. Each NFVI tenant represents a different virtual 
private network (VPN) which might be used to : 
Associate VNFs to a specific end customer (e.g. vFW or vDPI for a 
specific enterprise)  
Administrative domains for SP VNFs (e.g. management our OOB control 
networks) 
Emulate the switch fabric connectivity between multiple VMs (VNFC) that 
might represent components of a single Network function (e.g. if 
individual line cards are represented as VMs)  
In the following description the term domain will be used to describe the 
networking connectivity for a tenant or VPN. For each NFVI domain, 
policies might represent L2 or L3 connectivity between VNFs (including 
addressing requirements, security, and forwarding graphs) as well as 
how these domains will extend to MPLS VPNs in the event a VNF needs 
to be exposed to enterprise customers across the existing WAN network. 
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The SDN Services Controller maintains the forwarding state of the 
domains, for example the connectivity between the VNFs and extension 
to the MPLS VPN network. Any new forwarding changes (e.g. 
add/move/delete of VNFs or changes in the VPN network) are processed 
by the controller and used to program the virtual network domain. The 
SDN services controller uses the SDN policy manager in the event 
further information on VNF connectivity or networking domains are 
required. The controller uses MP-BGP to communicate network changes 
with the MPLS WAN network and Openflow to program connectivity 
between the VNFs. 
The SDN Virtual Switch Router is an enhanced OVS that resides locally 
with each Hypervisor. It is programmed by the SDN services controller to 
provide connectivity between VNFs instantiated as VMs within the 
hypervisor. VXLAN overlay tunnels are initiated between the hypervisors 
to allow L2 or L3 connectivity between relevant VNFs in the same 
domain. MPLS/GRE tunnels are initiated between the hypervisors and 
MPLS network if VNF connectivity to end enterprise customers is 
required. Security policies or forwarding graphs are also programmed in 
the Virtual Switch Router as defined by policy requirements. Connectivity 
with the MPLS WAN network is based on MP-BGP VPN-IPv4 routes and 
MPLS/GRE tunnels. Connectivity between the switch routers is based on 
IETF draft draft-ietf-bess-evpn-overlay. 
Upon receiving requests from the NFV Portal, "Orchestrator" interacts 
with VIM and "VNF Managers" (through standardized APIs across 
multiple vendors) to validate (e.g. syntax, resource management, etc.) 
and finally executes the requests. When needed, the NFV Orchestrator 
(or the VNF Manager depending on the policy) elastically scales up/down 
or in/out a given VNF. 
The VNFs shown in the figure above are likely to be interworking with 
some of the existing PNFs. More details on the complete list of VNFs, the 
SDN controller (e.g. vendor, version, models, etc.), and whether or not 
the test-bed environment includes both VNFs and PNFs will be described 
in the final PoC report. 
When VNFs or VNFC are instantiated by the VIM, metadata is passed 
from the VIM to the HV which identifies the connectivity for interfaces of 
that VNF/VNFC. Metadata might specify virtual location by naming the 
relevant domain (network or subnet level), or specifically for a (virtual) 
port if service chaining is required. A VNF might be part of multiple 
domains (e.g. a vFW might have OOB management, public/insecure and 
private/secure interfaces that exist in different domains). A VNFC might 
also have an interface that represents the internal fabric to connect to 
other VNFC of the distributed VNF. In this scenario metadata is passed 
to represent the domains that each of the corresponding VNF/VNFC 
interfaces connect to. This metadata is captured by the SDN Virtual 
Switch Router and sent to the Services Controller. If the Services 
Controller already has local state of the domain, the controller will: 
program the local switch router on the hypervisor with connectivity to 
other VNFs or MPLS VPNs in the same domain 
program the other relevant VNFs already connected to the domain with 
connectivity to the new VNF 
program the MPLS WAN network (using MP-BGP) with connectivity 
information to the new VNF 
If required the SDN services controller will pull the relevant information 
from the SDN policy manager before taking the above actions. 
If the VIM needs to re-instantiate or move the VNF (e.g. for failure 
recovery or scaling), the corresponding metadata for the VNF will be 
pushed to the new HV to ensure that the connectivity for VNF at the new 
location might be programmed via the SDN Service Controller. 
The SDN components are highlighted in blue on the ETSI framework 
(above). The SDN Policy Manager is a centralized component and might 
be considered part of the MANO framework. The SDN Services 
Controller is part of the NFVI and controls virtual network. Multiple SDN 
services controllers might be added for scaling (i.e. as hypervisor 
endpoints are added). The SDN Virtual Switch Router is part of the NFVI, 
and individual instances are installed as part of the hypervisor on the 
compute platforms. 
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Role of the NFV Orchestrator The NFV Orchestrator interacts with the SDN Policy Manager through a 
standard REpresentational State Transfer (REST) API. As part of this 
interaction the Orchestrator is able to create network and security 
policies as well as virtual interfaces and domains within the SDN Policy 
Manager. These policies and interfaces are defined within Policy 
Manager logical constructs known as domains and zones and are 
applied to virtual port interfaces (vport) at both layers 2 and 3. VNFs are 
linked to vports within the Policy Manager through metadata that is 
configured at the virtual machine level by NFV Orchestrator and 
instantiated via the VIM. The metadata is read by the SDN Virtual Switch 
Router as VNFs are created and will be used by the SDN Policy 
Controller to determine network connectivity, how traffic is handled and 
which policies are applied to the VNF virtual machine network interfaces. 
Templates might also be used to apply common network policies to 
multiple domains in the NFVI. 

SDN Network Controller details The SDN Services Controller uses Openflow to configure L2 and L3 
connectivity for each VNF at the Virtual Switch Router on the hypervisor. 
Multiple network domains might be supported using separate L2 and L3 
forwarding tables on the enhanced OVS and separate VXLAN Network 
Identifiers (VNI) on overlay VXLAN tunnels to other VNFs on other 
hypervisors. When a VNF is created: 
Metadata is passed from the VIM to Virtualisation layer as part of 
VM/VNF creation 
This metadata is passed from the Virtual Switch Router to the Services 
Controller, and used by Controller to query the defined policies on Policy 
Manager. This determines connectivity requirements for the created 
VNF. 
Based on the required connectivity policies for the VNF, the SDN 
Services Controller will use Openflow to configure connectivity between 
the created VNF and existing VNFs in the same domain and zones as 
required. This connectivity might include security rules and forwarding 
graphs. 
If WAN connectivity is required, The SDN Services Controller will use 
MP-BGP to signal the MPLS WAN with the VNF information. WAN 
interworking uses MP-BGP VPN-IPv4. The ability to signal VNF creation 
to the MPLS WAN network supports VNF portability, e.g. VNFs might be 
moved across hypervisors or between NFVI's and still be advertised to 
the existing WAN network. In the POC a MPLS WAN gateway was 
utilized to translate MP-BGP routes from the DC/NFVI to MPLS core, and 
MPLS core to DC/NFVI, while changing the NH in both directions to the 
local gateway local address. This isolated the addresses of the NFVI 
from the core. Tunnels from VNF/hypervisors are created to the gateway 
in the NFVI, and tunnels from the WAN are also created to the gateway 
from the WAN. 

SDN NC to VIM and NFV Orchestrator 
interfaces and functions 

The NFV Orchestrator provides the primary interface between the VIM 
and the SDN Policy Manager. In both instances these interfaces are 
through standard REST APIs. NFV Orchestrator will configure the VNF 
virtual machines with metadata obtained from the SDN Policy Manager. 
The VIM instantiates the VNF, and this metadata will be used by the 
Virtual Switch Router to determine the policies to be applied to the VNF 
interfaces. 
The NFV Orchestrator streamlines the integration between the network 
management function in VIM and SDN Policy Manager and provides 
operator and user simplified overviews and management options for the 
entire L2 and L3 networks. The NFV Orchestrator also ensures the 
consistency between the network view in VIM and the actual network in 
SDN. 

Data Forwarding Plane Data plane forwarding between VNFs is based on draft-ietf-bess-evpn-
overlay and IETF RFC 7348 [i.21] Virtual eXtensible Local Area Network 
(VXLAN): A Framework for Overlaying Virtualised Layer 2 Networks over 
Layer 3 Networks. 
Data plane between the VNFs and MPLS network is MPLS/GRE. For this 
scenario the MPLS WAN gateway was responsible for terminating 
tunnels from the NFVI before forwarding traffic to the MPLS core. 

Data Control Plane (Programming plane)  Control plane programming between the SDN Services Controller and 
SDN Virtual Switch Router on the hypervisors uses Openflow. 
Control plane between the SDN Services Controller and MPLS network 
is MP-BGP using VPN-IPv4 address family. 
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Lessons learned, gaps identified and 
(new) requirements 

The following items are for further study. 
(A) Selective service chaining 
For interworking with MPLS VPNs (specifically when providing VAS 
services for enterprise customers e.g. FW/NAT for Internet services for 
VPN enterprise customers), a default MP-BGP route was injected into 
the MPLS VPN to attract internet traffic into the FW/NAT function in the 
NFVI before forwarding to the internet. This method attracts all traffic that 
is not destined to VPN prefixes/sites and does not discriminate either 
based on the source or type of traffic. This was done to be backwards 
compatible with the existing MPLS network. 
A method to create a service chain/forwarding graph from the customer 
endpoint to the first VNF in a service chain provides the options to 
provide VAS services for selective sites. Additionally the ability to utilize 
policy based forwarding rules to selective forward only specific types of 
traffic provides additional control that might help scale the VNF to support 
relevant traffic. These requirements needs to be linked to the VNF 
creation and needs to cater for VNF portability.  
Following is an example of requirements : 

• labelling each VNF with a unique tag which might be advertised 
(along with VNF location) during creation time 

• PBF policy at the customer site to the VNF tag  
• a tunnelling mechanism to deliver customer site traffic to the 

VNF 
When the customer site receives an advertisement with the VNF location, 
it updates its PBF policy with this information (including location) and 
uses the advertised tunnelling method to steer traffic to the VNF. This 
allows a service chain to be defined at the customer site that is linked to 
the VNF such that when the VNF creation is signalled to the WAN 
network, a service chain might be created regardless of which hypervisor 
or NFVI location is utilized. An example is to label VNFs with a unique 
ESI value advertised in an EVPN route with reachability information for 
the VNF. 
(B) Support for L2 VAS services 
For interworking with MPLS VPNs (specifically when providing VAS 
services for enterprise customers), layer 3 connectivity was used. This 
was done to be backwards compatible with the existing MPLS network. 
VNFs might also need to be deployed as L2 (bump in the wire). In this 
scenario a method of extending L2 connectivity into the MPLS VPN is 
required. IETF RFC 7432 [i.23] defines EVPN MP-BGP. EVPN has the 
added benefit over VPN-IPv4 of supporting MAC address advertisement. 
This could be used to extend L2 NFVI domains into MPLS VPNs. In 
combination with VXLAN data plane, EVPN could be used to support 
service chains from customer sites to VNFs. E.g. service chain policy at 
the customer site to a specific VNF IP/MAC/ESI. When an EVPN MP-
BGP route is received signalling VNF creation, the advertised data plane 
tunnel method in the MP-BGP route might be used to create connectivity 
directly to the VNF. 
(C) Portability 
One of the benefits of Virtualisation is the ability to create networks 
functions where they are most needed, e.g. based on geography or 
resources. This portability requires a method of identifying VNFs and 
corresponding connectivity requirements, regardless of where the VNF is 
created. 
In this POC, this was achieved by using metadata when VNFs were 
created by the VIM. This metadata was utilized by the SDN solution to 
identify the VNF and ensure the correct connectivity. 
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Gaps Identified For service chaining, a default route to the first VNF is injected into the 
MPLS VPN network. In the event this first VNF fails traffic will be lost. For 
redundancy 2 x FW/NAT VNFs were required, however a default route 
pointing at Virtual IP address was not supported. This has been 
addressed in subsequent releases of the SDN solution but not tested as 
part of this POC. 
Other suggestions for EVE005 : 
Portability is probably covered in a different area, however the fact VNFs 
might be instantiated anywhere has implication on SDN, which is 
responsible for the connectivity of these portable VNFs. As such there is 
a need for a linkage between portability and the SDN requirements to 
carry this information. In theory when the VIM creates the VNF/C (based 
on what whatever resource criteria) a method is needed to identify the 
location of the VM, other relevant VM/endpoints that it needs to 
communicate to, and create this connectivity. How the connectivity 
occurs is dependent on the SDN resource (as per clause 4.3.3). E.g. in 
our scenario this SDN resource/endpoint is really in the virtual switch in 
the compute hardware (i.e. case c). So the VIM would pre-configure the 
network policies in advance (via the policy manager). When the VIM 
instantiates the VNF, the metadata linked to the VM creation is added to 
allow identification of where this fits from a network perspective. The 
metadata is captured via the virtual switch router, and forwarded to the 
controller. The controller then polls the policy manager with this metadata 
to identify the relevant networking policy, and then programs the 
connectivity for the VNF via the virtual switch router component on the 
compute node, and all other relevant endpoints that need connectivity to 
the VNF. This is an automated pull model, i.e. pre-configure all policy and 
then when a VNF is created pull the policy and configure the connectivity 
for the VNFs automatically. The metadata here is just to correlate/identify 
the VNF creation to where it fits in the network policy, so it needs to be 
defined at both the policy manager and VNF creation. The controller here 
then becomes a proxy to get the relevant policy information when the 
VNF is created, and then program the relevant connectivity. 
It is recommended that Clause 5 also mention connectivity between 
VNFs and end customers 
Clause 5.5.2 Virtualisation of SDN controller: when VNF connectivity 
requires the SDN controller, and when the SDN controller is put into a 
VNF it still requires external connectivity to other functions. This is 
somewhat recursive with reliability implications, e.g. like trying to manage 
a distributed network with only inband connections. 
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Annex B (informative): 
SDN Use Cases in NFV environment 

B.1 Introduction 
This clause contains a number of use cases that illustrate scenario with SDN combined with NFV.  

B.2 Multi-Layer Bandwidth on Demand 

B.2.1 Introduction 
SWA GS clause A.3 contains ETSI NFV use cases related to SDN. It currently contains one use case covering L2 
Transparent Network Service Chaining with Traffic Steering. This clause adds additional uses cases. The set of use 
cases focuses on expanding the coverage to include multi-layer use cases including circuit oriented networks  
(e.g. optical). 

B.2.2 Problem Description 
Networks are constructed from elements operating in different network layers. This structure is usually not visible to the 
end user and is independent of service definition for that user. A service request from the end user perspective is best 
stated in terms of requirements important to the user and independent of the network instantiation of the service within a 
multi-layer network. For example, a service request for connectivity between a client and storage/compute resource is 
best stated in terms of requirement bandwidth, delay, reliability, etc. and not in terms of the technologies used to 
provide the service.  

 

Figure B.1: Service Request 

Automation of the process to map the service request requirements into available network resources is needed. Dynamic 
management of these resources might map the service into the appropriate network layer for the most efficient use of 
network resources. NFV/SDN might be used to automate this mapping. 
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Figure B.2: Service Instantiation 

B.2.3 Solution Description 
The following procedure will be followed: 

 A service request is made to the upper SDN Controller. It requests the bandwidth, latency, and other 
constraints important to the end user application. The role of this controller is to match the service 
requirements into the layer(s) of the network that will be needed to satisfy the request. This might result in one 
or more layers being involved in the service instantiation.  

 The upper SDN Controller maps the request into resources that best match the required service parameters 
without wasting network resources ("best worst fit"). For example a very low latency requirement might 
require the service to be carried over the shortest possible optical paths to lower total latency. Services not 
requiring such low latency would not be routed over these paths. In the figure these two delay options are 
shown. One path through the Carrier Ethernet Layer and the other path through the lower delay optical 
switching layer. 

 The required layer SDN Controllers are instructed by the upper SDN Controller to make the flow connections 
required to satisfy the service. For instance, for services being instantiated via Carrier Ethernet, if not enough 
bandwidth is available in the Carrier Ethernet network layer additional bandwidth might be requested by the 
upper SDN Controller from the DWDM layer's SDN Controller; if the request is satisfied the new resource is 
made available to the Carrier Ethernet layer. 

B.3 Bandwidth Defragmentation  

B.3.1 Problem Description 
In current multi-layer networks channelized resources become fragmented as services are instantiated and removed 
during network operation (see Multi-layer Bandwidth on Demand). Today operators periodically audit the circuit 
oriented portions (e.g. SONET/SDH/OTN/Optical) of their networks to defragment these resources. Defragmentation 
means moving services (either in service affecting or non-service affecting manner) to allow larger bandwidth service to 
be instantiated when without defragmentation, such instantiation would not be possible. 
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B.3.2 Solution Description 
Under NFV/SDN control, the upper SDN Controller or an SDN controller for a layer network is used to instantiate and 
remove all services. Therefore there is continual awareness of the network topology. This allows continuous 
"defragmentation" of resources. An example of this is: 

1) A service request arrives at an SDN Controller. The Controller decides which layer will be used to implement 
the service in the "best worst fit" solution (see above). For example, a latency requirement might force the use 
of a DWDM resource rather than IP/MPLS.  

2) The request is passed from the upper SDN Controller to the DWDM SDN Controller to service the request. 
The SDN Controller maps the required bandwidth into the available bandwidth. It finds that there is not 
enough bandwidth available to grant the request.  

3) When de-fragmentation is being used, while processing the service request, the controller will move lower 
bandwidth service(s) to free enough bandwidth to instantiate the service request. If enough bandwidth to 
service the request is not found in this manner the layer SDN Controller might refuse the service request or 
bring up another DWDM lambda to service it. 

B.4 Policy Based Configuration  

B.4.1 Problem Description 
In a number of cases a large number of Network Services are expected to be deployed by various Tenants or Cloud 
administrators, following a common set of rules specifying how the traffic between the various deployed VNFs is 
supposed to flow, possibly through some rerouting of the traffic via other VNFs responsible for common tasks such as 
Firewalling, NAT or DPI. 

Group Based Policy projects progressing in Openstack and OpenDaylight (ODL) are addressing these use cases. They 
rely on a declarative approach to define how data traffic is supposed to flow between network resources. The goal is to 
facilitate the deployment of Network Services by automating the configuration of the network and leverage SDN to 
apply policies dynamically 

Network Intent Composition (ODL NIC) in OpenDaylight is also taking the view that a configuration of a network is a 
descriptive way to get what is desired from the communication infrastructure. 

B.4.2 Solution Description 
Policy Based configuration separates information about connectivity requirements from information about the 
underlying details of the SDN network infrastructure. 

A set of components are responsible for managing the policy definition, the associated configuration and related state. 

Renderer components are responsible for applying the policy as specified by the user, to the SDN network 
infrastructure. 

At a high level, Policies are typically expressed as a contract between two groups of Endpoints. 

EndPoints might be part of the resources managed by the SDN Controllers of the concerned administrative domain. 
They might also be external entities which are expected to send/receive traffic to some of the resources managed in the 
domain concerned. 

Some Policy Rules in the contract describing the policy are used to ensure that appropriate actions will be taken on the 
traffic between the concerned Endpoint groups when some Classification criteria are met. 
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Policy Model 

 

Figure B.3: Policy applying to Endpoint Groups 

Architectural view 

 

Figure B.4: VIM Based Policy implementation 

GBP for example is implemented by the VIM (as for Openstack GBP, and possibly Congress). Other Policy flavour is 
implemented by the SDN Network Controller (as for ODL GBP and ODL NIC). 

Applying a policy might trigger some interactions with the NFVO and/or the VIM as it possibly modifies deployed 
Network Services.  

For example when traffic matching a policy is redirected to go through some transparent middle boxes, the renderer 
might reconfigure some virtual switches to encapsulate the traffic in a corresponding service function chain, and 
possibly instantiate VNFs which need to be part of it. 

New repositories are needed to support GBP, to store the Abstract Policies, the Endpoints and possibly additional status 
information (for example: availability of VNFs of a particular type). 
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Figure B.5: SDN Controller Policy Model 

It is noted that Policy Based Models are seen also as an internal means to address the multiple writer problem, which 
takes place when independently designed or implemented APIs need to coexists while driving a common set of network 
resources. The OpenDaylight GBP API for example might be used to implement various Openstack neutron APIs 
consistently.  

B.4.3 Scope of Policy Based Configuration 
A typical "Action" in the OpenDayLight Policy Model could allow redirecting the traffic between two VNFs on a 
Service Function Chain (SFC). The chain might then be seen as a Network Service dynamically created as a result of a 
policy configuration. 

GBP might be applied inside a VNF or inside a Network Service. Typical usage of GBP is to insert firewall and DPI 
functions in a Network Service, for security purposes. 

Finally it might be used to steer external traffic, issued by component external to the administrative domain covered by 
the SDN controller for example, through a Network Service. 

B.4.4 Questions raised by Policy Based Configuration 
Implementations differ on what type of Rules might be used to describe what type of traffic between groups is 
concerned by the policy. Does the rule apply only to resources managed by the administrative domain, does it deal with 
Tenant's end users, with Time of Day or various network events such as Radio Access Type change for Gi- LAN use 
case? 

In addition, the question is at which level is the policy repository located? Is it part of the VIM or of the SDN 
Controller? Or even is it shared with the virtual or physical switches in some cases? 

B.5 Virtual CPE  

B.5.1 Problem Description 
Nowadays, deployment of new customer services requires change to the access equipment on the customer premise, as 
well as activation of configuration on Operator Service platform. This practice increases the cost of new CPE and 
service delivery, as well as CPE and service maintenance, especially in complex service created by chaining existing 
services or services from partners. It also decreases the ability of customer self-care, for example adding new Value 
Added Services (VAS) in near real-time for users in its home network. 

There are many studies about vCPE in the industry. It is about simplification of customer infrastructure to layer 2 
access, shifting layer 3 functionalities from customer home network to the edge of Operator network. 
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Below, as example, is description of a two use cases of service provisioning. 

The first is VAS - Parental control and second Anti-DDoS service. 

Solution describes how Network Controller (SDN Controller), VNFO, VNFM, VIM and EMS are used in vCPE 
architecture, to steer traffic to appropriate service functions to make service chain. 

Use case Parental Control:  

Parents want to prevent their children from visiting adult network resources and other particular internet resources. 

This control is implemented per children's device basis. Parent manage this control through the customer portal. 

1) Parent1 accesses the portal using credentials he was given after ordering the service. 

2) Parent1 registers the terminal he uses to access the portal. The system now knows that a particular MAC 
address (MAC1 from the table on Slide 2) is associated with user 'Parent1' under the main customer account. 

3) After that, he registers the terminals and users for Parent2 (MAC2, laptop), Child1 (MAC3, smartphone) and 
Child2 (MAC4, tablet). 

4) For Parent1 and Parent2 terminals parental control is left in 'Off' state. 

5) For MAC3 and MAC4 terminals, 'Parental Control - Teen' and 'Parental Control - Pre-teen' are selected, 
respectively. 

6) Child1 accesses his Facebook page and views his 'Friends' page. 

7) He tries to open a link to adult content and is blocked from doing that. 

8) Child2 tries to access Facebook to check his friend's birthday date and is blocked from doing that. 

9) He asks his Parent1 to give him access. 

10) Parent1 logs into the self-care portal and disables the parental control on Child2 tablet (MAC4) temporarily. 

11) Child2 checks his friend's birthday successfully and Parent1 turns the parental control feature back on or waits 
for the Parental Control inactivity timer to expires. 

12) Child2 tries to access Facebook again and is blocked from doing that. 

Use case DoS/DDoS protection: 

Service provider wants to prevent outside DoS attacks to subscribers. 

This function is typically preconfigured by system administrators. 

1) All inbound internet traffic goes through Intelligent Firewall/Traffic Analyzer VNF. 

2) System administrator makes pre-configuration for DoS detection - signatures, SYN/FIN/ACK packets number, 
min/max packets per second threshold, stateful inspection, etc. 

3) Subscribers protected from DoS attack and still able access resources which located in affected subnets. 

B.5.2 Solution Description 
Figures B.6 and B.7 are illustrative vCPE solution architecture, with MANO functional blocks, and Network Controller 
for service chaining for two use cases:  

Use case Parental Control:  

Below is the flow of management actions to provision the parental control service, including activity of the Network 
Controller: 

1) Parent1 accesses the portal using credentials he was given after ordering the service. 

2) Parent1 turns on Parental control service. 
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3) Customer portal forwards information about MAC addresses and associated policies for parental control to 
OSS/BSS. 

4) Forwarding Path configuration change request: 

- OSS/BSS sends FP-change request to NFVO.  

- NFVO forwards request to VIM. 

- VIM makes changes in SDN Controller configuration. 

- Network Controller changes traffic flow path for particular packets based on MAC address information. 

5) VNF configuration change request: 

- OSS/BSS sends VNF-change request to VNF Manager. 

- VNF Manager forwards request EMS. 

- EMS makes changes in DPI VNF configuration (specific internet resource filters). 

- DPI VNF processed traffic filtering accordingly to customer portal requirements. 

 

Figure B.6: vCPE Solution architecture - Parental Control use case 

Use case DoS/DDoS protection: 

1) DoS/DDoS attack detected from particular subnet/subnets by VNF Firewall(TA) VNF. Firewall(TA) VNF also 
recognized legitimate traffic from these particular subnets because connection was initiated by internal 
subscribers. 

2) Forwarding Path configuration change request: 

- Firewall(TA) VNF sends FP-change request to NFVO. 

- NFVO forwards change request to VIM. 

- VIM makes Network Controller configuration changes. 

- Network Controller redirects traffic flows from particular subnet/subnets to DPI. 

3) VNF configuration change request: 

- Firewall(TA) VNF sends VNF-change request to NFVO. 

- NFVO forwards change request to VNFM. 

- VNFM forwards request to appropriate EMS. 

- EMS makes DPI VNF configuration changes. 
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- DPI VNF renews filters and traffic might be cleaned precisely. 

- DPI blocks only non-legitimate traffic and passes all legitimate traffic to subscribers. 

4) After amount of time DPI engine recognized there is no DoS/DDoS traffic anymore from particular subnets. 

5) Forwarding Path-configuration change request: 

- DPI VNF sends FP-change request to NFVO. 

- NFVO forwards change request to VIM. 

- VIM makes Network Controller configuration changes. 

- Network Controller redirects traffic flows from particular subnet/subnets to Firewall(TA) VNF. 

6) VNF configuration change request: 

- DPI VNF sends VNF-change request to NFVO. 

- NFVO forwards VNF-change request to VNFM. 

- VNFM forwards request to appropriate EMS. 

- EMS makes DPI VNF configuration changes. 

- DPI VNF removing unnecessary filters. 

 

Figure B.7: vCPE Solution architecture - DoS/DdoS protection use case 
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Annex C (informative): 
Comparison of Opensource SDN Controller 

C.1 Introduction 
As part of ETSI NFV reference architecture is NFVI+VIM, and network elements. As network evolve towards SDN, 
SDN switches and SDN controllers are being integrated in this architecture. Both non-opensource and open source 
software-based controllers are being developed and are available in the industry. A number of opensource software 
implementations are available. The objective of this clause is to collect a list of publicly available opensource SDN 
controller and perform a comparison according to a common set of criteria. 

C.2 List of Opensource SDN controller 

C.2.0 Introduction 
There are a number of opensource controllers available today. 

The 1st one was NOX opensourced in 2008.  

Other controllers came along such as POX, or Beacon is 2010, Trema which is a Ruby based controller or Ryu.  

Floodlight was issued out of Beacon and released under the Apache® 2.0 licence (see note).  

NOTE 1: "Apache is a registered trademark of the Apache Software Foundation. This information is given for the 
convenience of users of the present document and does not constitute an endorsement by ETSI of the 
product named. Equivalent products may be used if they can be shown to lead to the same results". 

Lately some companies joined forces to release OpenDaylight under Linux® Foundation (see note). While another 
company was releasing OpenContrail in Opensource.  

NOTE 2:  "Linux is a registered trademark of Linus Torvalds. This information is given for the convenience of 
users of the present document and does not constitute an endorsement by ETSI of the product named. 
Equivalent products may be used if they can be shown to lead to the same results". 

Last, as a challenger to OpenDaylight, ONOS was released in November 2014, out of a collaboration between multiple 
vendors and universities. 

Table C.1: list of Opensource SDN controller 

 Name URL Release/Version 
1 Floodlight [i.12] 1.0 
2 OpenDaylight [i.13] Lithium 
3 OpenContrail  [i.14] 1.2 
4 ONOS [i.15] Blackbird 
5 Ryu [i.16] 3.2.4 
6 MidoNet®  [i.17] 05-2015 
NOTE: "Midonet is the trade name of a collaborative open 

source project from Midokura SARL Ltd. This 
information is given for the convenience of users of 
the present document and does not constitute an 
endorsement by ETSI of the product named. 
Equivalent products may be used if they can be 
shown to lead to the same results". 

 

Other opensource controllers have been developed such as: ONIX, Helios, Hyperflow, Maestro, Kandoo, NOX, Indigo, 
etc.  
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C.2.1 Floodlight  
The Floodlight [i.12] Open SDN Controller is an enterprise-class, Apache-licensed, Java®-based (see note) OpenFlow 
Controller, supporting physical or virtual SDN switches as shown in figure C.1. It is supported by a community of 
developers.It was forked from the Beacon controller, originally developed at Stanford. 

 

Figure C.1: Floodlight SDN controller architecture overview 

NOTE: "Java is a registered trademark of Sun Microsystems, Inc. This information is given for the convenience 
of users of the present document and does not constitute an endorsement by ETSI of the product named. 
Equivalent products may be used if they can be shown to lead to the same results". 

C.2.2 OpenDaylight 
OpenDaylight (ODL) is a highly available, modular, extensible, scalable and multi-protocol controller infrastructure 
built for SDN deployments on modern heterogeneous multi-vendor networks. It provides a model-driven service 
abstraction platform that allows users to write apps that easily work across a wide variety of hardware and southbound 
protocols [i.13]. 

Lithium is the third release of OpenDaylight, the open source platform for building programmable, software-defined 
networks. With Lithium, service providers and enterprises might transition to SDN with particular focus on broadening 
the programmability of intelligent networks. They might compose their own service architectures or leverage an 
OpenDaylight-based commercial offering to deliver dynamic network services in a cloud environment, craft dynamic 
intent-based policies and begin virtualizing functions with Service Function Chaining (SFC).  
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The OpenDaylight platform provides a common foundation and a robust array of services to enable a wide breadth of 
applications and use cases. ODL might deliver the benefits of SDN to use cases as diverse as managing cable modems, 
connecting the Internet of Things, or controlling Ethernet switches using the OpenFlow protocol. 

 

Figure C.2: OpenDaylight Lithium architecture with Example OpenStack use case  

As shown in figure C.2, OpenDaylight is composed of a number of different modules that might be combined as needed 
to meet the requirements of a given scenario. Users might download OpenDaylight directly to compose their own 
service architecture or leverage one of the 20+ available ODL-based commercial offerings. 

One common use case explored here is providing network services for cloud data center platforms such as OpenStack. 
As shown in figure C.2 a standard OpenStack cloud might be paired with OpenDaylight to offload network processing 
and provide enhanced services. This basic use case might be implemented after starting the core ODL controller by 
enabling the AAA, Neutron and OVSDB services. These services alone might support OpenStack by automating 
network Virtualisation and providing centralized control and management of distributed virtual switches and routers 
across the OpenStack cloud. 

With OpenStack within the SDN context, controllers and applications interact using two channels: OpenFlow and 
OVSDB. OpenFlow addresses the forwarding-side of the OVS functionality. OVSDB, on the other hand, addresses the 
management-plane. Open vSwitch (OVS) is generally accepted as the unofficial standard for Virtual Switching in the 
Open hypervisor based solutions. 

Other use cases have been defined such as Service Function Chaining and integration with OPNFV.  

Some highlights of what is new in Lithium: (more on https://www.opendaylight.org/whats-new-lithium): 

• Controller: For Lithium the Controller Project added key new capabilities to improve performance and 
scalability including MD-SAL clustering along with additional enhancements and API Extensions. 

• AAA: Key Updates for Lithium: Added support for persistent data stores, Federation and SSO with OpenStack 
Keystone, and additional extensions and enhancements. 

• ALTO: Application-Layer Traffic Optimization (ALTO) is an IETF protocol to provide network information 
to applications. The ALTO project in OpenDayLight is an effort to implement ALTO in OpenDayLight. In 
addition to implementing the ALTO base protocol (IETF RFC 7285 [i.20]), the project leverages 
OpenDayLight to introduce a provisioning interface for ALTO. 

https://www.opendaylight.org/whats-new-lithium
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• BGP/LS/PCEP: This project is an effort to bring two south-bound plugins into the controller: one for 
supporting BGP Linkstate Distribution as a source of L3 topology information, the other one to add support for 
Path Computation Element Protocol (PCEP) as a way to instantiate paths into the underlying network. Key 
Updates for Lithium: Added support for BGP Flowspec, graceful restart, segment routing, secure transport for 
PCEP. 

• GBP: The group-based policy (GBP) project defines an application-centric policy model for OpenDaylight 
that separates information about application connectivity requirements from information about the underlying 
details of the network infrastructure. Key Updates for Lithium: added support for integration with OpenStack 
Neutron; support for Service Function Chaining; one renderer called OpenFlow Overlay Renderer (OfOverlay) 
with NAT support, table offsets; overall improvements in code quality, stability and performance. 

• IoT: The IoTDM project is about developing a data-centric middleware that will act as a oneM2M compliant 
IoT Data Broker (IOTDM) and enable authorized applications to retrieve IoT data uploaded by any device. 

• LACP: The LACP Project within OpenDaylight implements Link Aggregation Control Protocol (LACP) as an 
MD-SAL service module and will be used to auto-discover and aggregate multiple links between an 
OpenDaylight controlled network and LACP-enabled endpoints or switches. 

• LISP flow mapping service: LISP (IETF RFC 6830 [i.19]) is a protocol that enables separation of Endpoint 
Identity (EID) from Routing Location (RLOC) by defining an overlay in the EID space which is mapped to the 
underlying network in the RLOC space. LISP also provides a Mapping Service that provides the [i.20] EID-to-
RLOC mapping information including forwarding policy (load balancing, traffic engineering, etc.) to LISP 
routers for tunneling and forwarding purposes. The LISP Mapping Service might serve the mapping data to 
dataplane nodes as well as to ODL applications. To leverage this service, a northbound API allows 
OpenDaylight applications and services to define the mappings and policies in the LISP Mapping Service. 
This project also includes a southbound LISP plugin that enables LISP dataplane devices to interact with the 
OpenDaylight via the LISP protocol. Key Updates for Lithium: Improved ELP Processing, NB API 
transitioned to MD-SAL, Continuous integration with Service Function Chaining, Neutron enhancements. 

• NIC: Network Intent Composition (NIC) is an interface that allows clients to express a desired state in an 
implementation-neutral form that will be enforced via modification of available resources under the control of 
the OpenDaylight system. 

• Neutron and OVSB plugin: Several services and plugins in opendaylight work together to provide simplified 
integration with the OpenStack Neutron framework. These services enable OpenStack to offload network 
processing to ODL, while also enabling ODL to provide enhanced network services to OpenStack. Key 
Updates for Lithium: Transitioned API's to MD-SAL, increased feature parity with Neutron including support 
for LBaaS, added Distributed Virtual Router, SNAT, External Gateway & Floating IP support, improvements 
to performance and stability. 

• Openflow plugin: The plugin is based on the Model Driven Service Abstraction Layer (MD-SAL) architecture. 
Key Updates for Lithium: For Lithium the OpenFlow Plugin underwent a complete rearchitecture, this new 
OpenFlow 1.0/1.3 MD-SAL based plugin is distinct from the old OpenFlow 1.0 plugin which was based on the 
API driven SAL (AD-SAL) architecture; support for Table Type Patterns added. 

• Opflex: The ODL Opflex Agent is a policy agent that works with OVS to enforce a group-based policy 
networking model with locally attached virtual machines or containers. 

• Reservation: Reservation is meant to provide dynamic low level resource reservation so that users might get 
network as a service, connectivity or a pool of resources (ports, bandwidth) for a specific period of time. The 
idea behind the reservation application is to be able to have end to end multi-layer provisioning. Assume the 
two end to be two ports in a device. The link provisioning could be done based on information such as latency, 
bandwidth, etc. Link reservation also might consider the period of time (duration), and taking into account the 
cost of reservation. 
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• SFC: OpenDaylight Service Function Chaining (SFC) provides the ability to define an ordered list of a 
network services (e.g. firewalls, load balancers). These service are then "stitched" together in the network to 
create a service chain. This project provides the infrastructure (chaining logic, APIs) needed for ODL to 
provision a service chain in the network and an end-user application for defining such chains. Key Updates for 
Lithium: Added Yang models for expressing service function chains; SFC receiver for intent expressions from 
REST and RPC; UI for service chain construction; LISP support; function grouping for load balancing; 
Openflow renderer for NSH, MPLS and VLAN; Southbound REST interface; SFC-OVS for SFF bridges, 
tunnels, and ports CRUD via OVSDB; Classifier (IP Tables based) for classifying packets into selected 
Service Chains; Integration with ODL GBP project. 

• SNBI: SNBI uses a zero-touch approach to bootstrapping that leverages manufacturer-installed IEEE 802.1AR 
certificates to secure even the initial communications. SNBI devices and controllers automatically discover 
each other, get an IP-address assigned, and establish secure IP connectivity. In addition, this discovery process 
reveals the physical topology of the network, exposes each type of a device, and assigns the domain for each 
device. Key Updates for Lithium: Added Linux side abstraction layer for forwarding elements along with 
enhancements to feature abstraction and bootstrapping infrastructure. 

• Topology Processing Service (TPS): Provides a framework for simplified aggregation and querying of 
topology data which might be used to enable a unified topology view including multi-protocol, Underlay and 
Overlay resources. 

• VPN: Virtual Private network (VPN) key updates with Lithium: API for L3 VPN Services; Integration with 
open source routing suites including Quagga & RYU; OpenStack Neutron integration. 

• VTN: Virtual Tenant Network (VTN) migration to MD-SAL; Significant improvements to policy management 
in VTN Manager. 

• USC: The Unified Secured Channel (USC) framework provides a central server to coordinate encrypted 
communications between endpoints. 

OpenDaylight Lithium Deployment: deploying OpenDaylight has some pre-requisites.  

The OpenDaylight Karaf container, OSGi bundles, and Java class files are portable run on any Java 7- or Java 8-
compliant JVM to run. Certain projects and certain features of some projects might have additional requirements. Those 
are noted in the project-specific release notes. 

Projects and features which have known additional requirements are:  

• TCP-MD5 requires 64-bit Linux  

• TSDR has extended requirements for external databases  

• Persistence has extended requirements for external databases  

• SFC requires addition features for certain configurations  

• SXP depends on TCP-MD5 on thus requires 64-bit Linux  

• SNBI has requirements for Linux and Docker * OpFlex requires Linux  

• DLUX requires a modern web browser to view the UI  

• AAA when using federation has additional requirements for external tools  

• VTN has components which require Linux 

Typically SNBI pre-requisites are: 64 bit Ubunutu® (see note) 14.04 LTS Especially for Docker, its required that be 
deployed docker version greater than 1.0 on a 14.04 Ubuntu. 4 GB RAM 4 GB of Hard disk space, sufficient enough to 
store certificates. Java Virtual Machine 1.7 or above Apache Maven 3.04 or above. 

NOTE: "Ubuntu is the trade name of a product supplied by CANONICAL Ltd. This information is given for the 
convenience of users of the present document and does not constitute an endorsement by ETSI of the 
product named. Equivalent products may be used if they can be shown to lead to the same results". 
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C.2.3 OpenContrail  
OpenContrail [i.14] is an Apache 2.0-licensed project that is built using standards-based protocols and provides all the 
necessary components for network Virtualisation-SDN controller, virtual router, analytics engine and published 
northbound APIs. As shown in the following subsections it has an extensive REST API to configure and gather 
operational and analytics data from the system. Built for scale, OpenContrail might act as a fundamental network 
platform for cloud infrastructure. The key aspects of the system are: 

Network Virtualisation: Virtual networks are the basic building block of the OpenContrail approach. Access-control, 
services and connectivity are defined via high level policies. By implementing inter-network routing in the host, 
OpenContrail reduces latency for traffic crossing virtual-networks. Eliminating intermediate gateways also improves 
resiliency and minimizes complexity. 

Network Programmability and Automation: OpenContrail uses a well-defined data model to describe the desired 
state of the network. It then translates that information into configuration needed by each control node and virtual 
router. By defining the configuration of the network versus of a specific device, OpenContrail simplifies and automates 
network configuration. 

Big Data for Infrastructure: The analytics engine is designed for very large scale ingestion and querying of structured 
and unstructured data. Real-time and historical data is available via a simple REST API, providing visibility over a wide 
variety of information. 

OpenContrail might forward traffic within and between virtual networks without traversing a gateway. It supports 
features such as IP address management; policy-based access control; NAT and traffic monitoring. It interoperates 
directly with any network platform that supports the existing BGP/MPLS L3VPN standard for network Virtualisation. 

OpenContrail might use most standard router platforms as gateways to external networks and might easily fit into 
legacy network environments. OpenContrail is modular and integrates into open cloud computing platforms such as 
OpenStack, Cloudstack, and is currently supported across multiple Linux distributions and hypervisors. 

The Contrail Controller is based on the Border Gateway Protocol (BGP) that is already embedded in widely deployed 
IP infrastructures, (switches and routers from leading network vendors). 

It also employs XMPP, a protocol for transmitting message-oriented middleware messages, to control the virtual 
switches inside of hypervisors. It uses Multiprotocol Label Switching (MPLS), which encapsulates packets on a 
network and controls their forwarding through those labels; MLPS exists between Layers 2 and 3 in the network stack. 

There are a number of other protocols that the Contrail Controller uses to separate the data and control planes in the 
switching stack and making them more malleable, but at the moment the OpenFlow protocols are not supported. 

OpenContrail Architecture Overview 

As shown below in figure C.3, the OpenContrail System consists of two parts: a logically centralized but physically 
distributed controller and a set of vRouters that serve as software forwarding elements implemented in the hypervisors 
of general purpose Virtualised servers. 

The controller provides northbound REST APIs used by applications. These APIs are used for integration with the 
cloud computing system, for example for integration with OpenStack via a neutron plugin. The REST APIs might also 
be used by other applications and/or by the operator's OSS/BSS. Finally, the REST APIs are used to implement the 
web-based GUI included in the OpenContrail System. 

The OpenContrail System provides three interfaces: a set of north-bound REST API's that are used to talk to the 
Applications, south-bound interfaces that are used to talk to virtual network elements (vRouters) or physical network 
elements (gateway routers and switches), and an east-west interface used to peer with other controllers. OpenStack and 
CloudStack are supported via standard BGP (the east-west interface), XMPP is the southbound interface for vRouters, 
BGP and Netconf and the southbound interfaces for gateway routers and switches. 

Internally, the controller consists of three main components: 

• Configuration nodes which are responsible for translating the high-level data model into a lower level form 
suitable for interacting with network elements. 

• Control nodes which are responsible for propagating this low level state to and from network elements and 
peer systems in an eventually consistent way. 
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• Analytics nodes which are responsible for capturing real-time data from network elements, abstracting it and 
presenting it in a form suitable for applications to consume. 

All of these nodes will be described in detail later in this clause. 

 

Figure C.3: OpenContrail SDN controller system overview 

The vRouters are network elements implemented entirely in software. They are responsible for forwarding packets from 
one virtual machine to other virtual machines via a set of server-to-server tunnels. The tunnels form an overlay network 
sitting on top of a physical IP-over-Ethernet network. Each vRouter consists of two parts: a user space agent that 
implements the control plane and a kernel module that implements the forwarding engine. 

The OpenContrail System implements three basic building blocks:  

1) physical or virtual network services such as firewalls, Deep Packet Inspection (DPI), or load balancers. Multi-
tenancy, also known as network Virtualisation or network slicing is the ability to create Virtual Networks that 
provide Closed User Groups (CUGs) to sets of VMs. 

2) Gateway functions: this is the ability to connect virtual networks to physical networks via a gateway router 
(e.g. the Internet), and the ability to attach a non-Virtualised server or networking service to a virtual network 
via a gateway. 

3) Service chaining as an NFV use case: this is the ability to steer flows of traffic through a sequence of physical 
or virtual network services such as firewalls, Deep Packet Inspection (DPI) or load balancers. 

OpenContrail Nodes 

Looking at the internal structure of the system, as shown in figure C.4, the system is implemented as a cooperating set 
of nodes running on general-purpose x86 servers. Each node might be implemented as a separate physical server or it 
might be implemented as a Virtual Machine (VM). 

All nodes of a given type run in an active-active configuration so no single node is a bottleneck. This scale out design 
provides both redundancy and horizontal scalability. 

• Configuration nodes keep a persistent copy of the intended configuration state and translate the high-level data 
model into the lower level model suitable for interacting with network elements. Both these are kept in a 
NoSQL database. 
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• Control nodes implement a logically centralized control plane that is responsible for maintaining ephemeral 
network state. Control nodes interact with each other and with network elements to ensure that network state is 
eventually consistent. 

• Analytics nodes collect, store, correlate, and analyse information from network elements, virtual or physical. 
This information includes statistics, logs, events and errors. 

In addition to the node types which are part of the OpenContrail Controller, some additional nodes types have been 
identified for physical servers and physical network elements performing particular roles in the overall OpenContrail 
System: 

• Compute nodes are general-virtualizedalised servers which host VMs. These VMs might be tenant running 
general applications, or these VMs might be service VMs running network services such as a virtual load 
balancer or virtual firewall. Each compute node contains a vRouter that implements the forwarding plane and 
the distributed part of the control plane. 

• Gateway nodes are physical gateway routers or switches that connect the tenant virtual networks to physical 
networks such as the Internet, a customer VPN, another data center, or to non-Virtualised servers. 

• Service nodes physical network elements providing network services such as Deep Packet Inspection (DPI), 
Intrusion Detection (IDP), Intrusion Prevention (IPS), WAN optimizers, and load balancers. Service chains 
might contain a mixture of virtual services (implemented as VMs on compute nodes) and physical services 
(hosted on service nodes). 

For clarity, the figure does not show physical routers and switches that form the underlay IP over Ethernet network. 
There is also an interface from every node in the system to the analytics nodes. This interface is not shown in figure C.4 
to avoid clutter. 

 

Figure C.4: OpenContrail SDN Controller system implementation 

C.2.4 Ryu 
Ryu [i.16] is a component-based software defined networking framework as shown in figure C.5. Ryu provides 
software components with well-defined API that make it easy for developers to create new network management and 
control applications. Ryu supports various protocols for managing network devices, such as OpenFlow, Netconf, OF-
config, etc. About OpenFlow, Ryu supports fully 1.0, 1.2, 1.3, 1.4 and Nicira Extensions. All of the code is in Python 
and is freely available under the Apache 2.0 license. Ryu means "flow" in Japanese. Ryu is pronounced "re"-yooh".  

https://www.opennetworking.org/sdn-resources/openflow


 

ETSI 

ETSI GS NFV-EVE 005 V1.1.1 (2015-12)107 

 

Figure C.5: Ryu SDN Controller architecture overview 

 

Figure C.6: Ryu SDN controller software components 

 

Figure C.7: Ryu SDN Controller user interface and topology discovery 
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C.2.5 ONOS 

C.2.5.1 Introduction 

ONOS [i.15] release considered here is Blackbird. ONOS releases quarterly in February, May, August and November. 

SDN Operating System released by on.lab, www.onlab.us. On.lab is a non-profit 501 organization. 

ONOS is a multi-module project whose modules are managed as OSGi bundles. ONOS is designed with a few goals in 
mind: 

• Code Modularity: It is be possible to introduce new functionalities as self-contained units. 

• Configurability: It is be possible to load and unload various features, whether it be at startup or at runtime. 

• Separation of Concern: There are clear boundaries between subsystems to facilitate modularity.  

• Protocol agnosticism: It, and its applications, are not be bound to specific protocol libraries or 
implementations. 

Looking at each below. 

Code Modularity 

The project is comprised of a set of sub-projects, each with their own source tree that might be built independently. To 
do this, the ONOS source tree is organized in a hierarchical fashion that takes advantage of Maven's notion of a 
hierarchical POM file organization. Each sub-project has its own pom.xml file, and intermediate directories have parent 
aggregate pom.xml files. The latter contains shared dependencies and configurations for those sub-projects, enabling 
them to be built independent of unrelated sub-projects. The ONOS root contains the top-level POM (Project Object 
Model) file used to build the full project and all of its modules.  

For implementation details of the source tree organization, refer to Appendix C of the Developer's Guide [i.24]. 

Configurability 

ONOS is written to leverage Apache Karaf as its OSGi framework. In addition to dependency resolution at startup and 
dynamic module loading at runtime, Karaf provides the following: 

• Enable use of standard JAX-RS API to develop REST APIs and make them secure 

• The notion of features as a set of bundles allowing assembly of custom setups 

• Strict semantic versioning of code bundles, including third-party dependencies 

• Local and remote ssh console with easily extensible CLI 

• The notion of run-time log levels 

Separation of Concern 

ONOS is partitioned into: 

• Protocol-aware network-facing modules that interact with the network; 

• Protocol-agnostic system core that tracks and serves information about network state; and 

• Applications that consume and act upon the information provided by the core. 

Each of the above are tiers in a layered architecture, where network-facing modules interact with the core via a 
southbound (provider) API, and the core with the applications via the northbound (consumer) API. The southbound 
API defines protocol-neutral means to relay network state information to the core, and for the core to interact with the 
network via the network-facing modules. The northbound API provides applications with abstractions that 
describe network components and properties, so that they may define their desired actions in terms of policy instead of 
mechanism.  

http://www.onlab.us/
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Protocol Agnosticism 

If ONOS needs to support a new protocol, it is possible to build a new network-facing module against the southbound 
API as a plugin that might be loaded into the system.  

Figure C.8 illustrates ONOS SDN controller architecture overview. 

 

Figure C.8: ONOS SDN Controller architecture overview 

C.2.5.2 ONOS Architecture 

ONOS is architected as a logically centralized but physically distributed SDN control plane. ONOS comprises a cluster 
of instances that work together to manage the applications and the network. As demands on the SDN control plane 
grow, either due to an increase in the size of the network or due to an increase in the number of network control 
applications, ONOS might scale by adding additional instances to the cluster. 
ONOS automatically offloads a portion of the work to these new instances. Architecting a distributed but logically 
centralized SDN control plane such as ONOS is a true technical challenge. ONOS' ability to successfully provide and 
demonstrate high performance, scale and high availability together is what differentiates it from other open source SDN 
controllers available today. ONOS measurements that validate the benefits of its distributed architecture including 
providing high performance and scalability are highlighted in figure C.9. 

The ONOS Blackbird release defines the following set of metrics to effectively measure performance and other carrier 
grade attributes of the SDN control plane. 

Performance Metrics: 

• Topology - Switch change latency 

• Topology - Link change latency 

• Flow installation throughput 

• Intent (Northbound) install latency 

• Intent (Northbound) withdraw latency 

• Intent (Northbound) reroute latency 

• Intent (Northbound) throughput 

Target numbers for metrics 

• Flow Throughput: 1 Million flow operations/second 

• Latency: Less than 100 ms latency (ideally under 10 ms) 
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Figure C.9: ONOS SDN Controller software architecture 

C.2.5.3 ONOS User Interface  

The ONOS user interface as described in figures C.12 and C.13 enables:  

• IP packet and optical view 

• Topology view 

The layout is automatically done based on GPS information from the network elements.  

 

Figure C.10: ONOS IP Packet and Optical View 
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Figure C.11: ONOS Topology user interface 

C.2.6 MidoNet 

MidoNet is a distributed, de-centralized, software-defined virtual network platform for Infrastructure as a Service (IaaS) 
as shown in figure C.12.  

 

Figure C.12: Midonet SDN controller architecture overview 

Midonet [i.17] was released as opensource end of 2013 by a Japanese startup company.  

MidoNet virtualizes the network functionality for IaaS products, such as OpenStack, providing functionally advanced, 
robust, scalable, and secure networks. MidoNet is an overlay network that runs software on standard x86 servers, and 
sits on top of any scalable network underlay (for example, physical servers and switches), pushing the intelligent 
network functions to the edge of the network, in software, as shown in figure C.13.  
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Figure C.13: Midonet SDN controller deployment model 

Supports Ubuntu & RHEL® (see note).  

NOTE: "RHEL is a registered trademark of Red Hat, Inc. This information is given for the convenience of users 
of the present document and does not constitute an endorsement by ETSI of the product named. 
Equivalent products may be used if they can be shown to lead to the same results". 

These are the key features of MidoNet: 

• Layer 2 through 4 networking 

• VLAN-less VLANs - Virtual L2 distributed isolation and switching with virtually none of the limitations of 
conventional VLANs 

• Fully distributed architecture with no single points of failure 

• Virtual L3 distributed routing 

• Distributed load balancing and firewall services 

• Stateful and stateless NAT 

• Access Control Lists (ACLs) 

• Restful API 

• Monitoring of networking services 

• VXLAN support: VXLAN tunnel zones, VXLAN L2 Gateway 

• Zero-delay NAT connection tracking 

Member companies: there are about 20 member companies, all vendors. 
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Table C.2: Midonet Versions available 

Series  Status  Releases Date  

version 2015.4  Under 
development  Due  Apr 30, 2015  

version 2015.3  
Under 
development  Due  Mar 30, 2015  

version 2015.2  Under 
development  Due  Feb 27, 2014  

 

C.3 Comparison criteria 

C.3.1 List of Comparison Criteria  
Table C.3: list of comparison criteria 

Criteria Answer #1 Other answer Comment 
OS Linux  Which Linux 
Packages Debian other  
Language written 
in  

C Python others  

Protocols 
Openflow 
Netconf 
BGP 
OVSDB 
LISP 
VXLAN 
GRE 
etc. 

Openflow 1.4 or prior  Other List of supported southbound protocol 

Openstack 
integration 

Yes, version, API No + comment on level of integration 

Cloudstack 
integration 

Yes, version, API   

North bound API  REST Other Northbound API Protocol and other details  
Licence Apache 2.0 Other Opensource licence 
Virtualised Yes No  
Applications Yes, which ones No  
ETSI NFV POC Yes No  
Docker support Yes  No  

 

NOTE: Latest Openflow release is 1.4. 

• OS: most common OS is Linux 

• Language written: most common language is C, C++ or Python  

• Protocol: most common protocol is Openflow, but others are supported too 

- Openflow: protocol between data plane and control plane defined by ONF (Open Networking 
Foundation) 

- OVSDB: The Open vSwitch Database Management Protocol (OVSDB) is an OpenFlow configuration 
protocol that is designed to manage Open vSwitch implementations.  

Open vSwitch is a virtual switch that enables network automation, while supporting standard management interfaces 
and protocols, like NetFlow. Open vSwitch also supports distribution across multiple physical servers. 

In an Open vSwitch implementation, a database server and a switch daemon are used. The OVSDB protocol is used in a 
control cluster, along with other managers and controllers, to supply configuration information to the switch database 
server. Controllers use OpenFlow to identify details of the packet flows through the switch. Each switch might receive 
directions from multiple managers and controllers, and each manager and controller might direct multiple switches. 
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Using the OVSDB protocol, IT professionals might determine the number of individual virtual bridges within an Open 
vSwitch implementation, allowing a network engineer to create, configure and delete ports and tunnels from a bridge. 
Engineers might also create, configure and delete queues: 

• VXLAN 

• GRE 

• BGP 

• LISP 

• etc. 

Licence: most common and flexible licence is the permissive Apache 2.0 license – this essentially means that anyone 
might deploy and modify the System code without any obligation to publish or release the code modifications. 

C.3.2 Impact of Docker 
Docker is a way to rollout applications within Linux containers and manage their configurations in a portable fashion. 
While the LXC technology does not provide the resource level isolation that virtual machines (VM) had with the 
hypervisor, it provides some level of isolation.  

 

Figure C.14: Docker architecture overview 

Today, Docker picks Linux bridge as the default network for each spawned container and allocates a static IP address 
from a default range. The container traffic is then NAT'ed through the host network. This is similar to spawning VMs 
with KVM or VirtualBox on your laptop. As container usage gets more complicated to span multiple hosts, multiple 
application tiers and multiple datacenters, good underlying plumbing and well understood abstractions are needed. 

It is certainly possible to use same networking principles as was used with VMs, or adopt a clean slate thinking for 
container communication. In the VM world, each individual entity was addressable by a MAC/IP address combination. 
In the container world, however, it is possible that the containers are not individually addressable, and share the host 
network or use other means for communicating (e.g. Unix domain sockets). 

While the technology and mode of plumbing is up for debate, some of the abstractions will still work in the container 
space. The foremost of that is network Virtualisation, the act of decoupling the application's virtual network from the 
underlying physical network. This abstraction brings in modularity in deployment, portability of groups of containers, 
access control across application boundaries, and plumbing for virtual network services. This is needed in the container 
world too (source ONOS wiki).  
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C.4 Comparison table 
Table C.4 

Criteria OpenDaylight 
Lithium June 

2015 

OpenContrail 1.2 ONOS 
Blackbird 

Ryu Midonet 
(MEM) 

May 2015 
OS Any operating 

system and 
hardware as 
long as it 
supports Java 

Linux, centOS and 
Ubuntu 

Any operating system and 
hardware as long as it supports 
Java 8 

 Linux, 
Ubuntu 
14.04, 
RHEL  

Language 
written in  

Java - requires 
Java 7 or 8 

Python Java Python  

Openflow Yes 1.3 and 
before 

No Yes 1.3+ and prior Yes 1.4 and 
prior 

 

Netconf Yes Yes Yes with 1.2.0 Cardinal Yes  
OVSDB Yes  1.3.0 Release  Yes  
LISP Yes      
BGP Yes Yes Yes (SDN-IP, BGP Routing) Yes  
XMPP  Yes     
MPLS Yes (VPN 

Service) 
Yes, MPLS over 
GRE 

Yes (Segment Routing)   

VXLAN Yes (OVSDB) yes 1.3.0 Release Yes(OVSDB)  
GRE Yes (OVSDB) Yes 1.3.0 Release   
Hypervisor 
support 

KVM Xen, KVM   kVM, Vmware, 
Xen 

 

Openstack 
integration 

Yes with 
OpenFlow & 
OVSB 

Yes Icehouse, 
NEUTRON API 

 Yes via OVX Yes yes 

CloudStack  yes     
Mgt tools 
integration 

 Chef, puppet, 
cobbler, ganglia 
support 

CLI, REST, shell    

North bound 
API  

REST  REST + Java  REST 

Licence EPL-1.0 Apache 2.0 Apache 2.0 Apache 2.0 Apache 
2.0 

Virtualised       
Applications Many, also 

called services 
DLUX 
VTN Coordinator 
OpenStack 
Neutron 
SDNI Wrapper 
DdoS Protection 

 • SDN-IP 
• BGP Routing 
• Segment Routing 
• L2/L3 Forwarding (Ipv4 

+ Ipv6) 
• IP/Optical 
• ProxyARP 
• Mobility  
• CORD (1.2.0)  

  

ETSI NFV 
POC 

Yes  OP-NFV Huawei PoC   

Docker 
support 

Yes i.e. SBNI yes    

Ipv6 support Yes no Yes 1.2.0 Release   
TLS security Yes     
SSl security Yes     
Intent yes  Yes   
 

C.5 ETSI NFV POC with Opensource SDN Controller 

C.5.1 List of POC and Opensource Controller used 
Here is the list of ETSI NFV POC with Opensource SDN Controller. 
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Table C.5 

ETSI POC SDN NE SDN Controller  Comment 
POC#1    
POC#2 OpenFlow RYU  
POC#8 OpenFlow OpenDaylight  
POC#13 OpenFlow Vendor SDN controller  
POC#15 OpenFlow OpenDaylight  
POC#16 OF 1.3 RYU  
POC#21 OpenFlow Floodlight (POF)  
POC#23 OpenFlow Proprietary controller  
POC#26 OpenFlow Ryu  
POC#27 OpenFlow, OF-epc   
POC#28 OpenFlow Vendor SDN controller  
POC#34 OpenFlow OpenDaylight With extensions for GTP 
POC#38 OpenFlow Vendor SDN controller  

 

C.6 Lessons learnt  
Following the comparison of OpenSource SDN controller and based on the experience of the POC using SDN 
controllers, including some of these Opensource software, a few lessons were learnt:  

• Opensource SDN controller follow the ITU model with 3 layers: a layer of resources, a layer of controllers and 
a layer of applications. 

• Most Opensource SDN controller provide some applications embedded inside the SDN controller , while they 
support SDN applications via an open interface , generally REST or java. 

• All Opensource SDN controllers studied support OpenFlow, and this happens to be the most common protocol 
used between SDN controller and SDN resources within ETSI NFV POC using SDN. 

• Most Opensource SDN controller support multiple protocols. 

• Most Opensource SDN controller support hierarchy of SDN controller. 

• Most Opensource SDN controller support federation of SDN controller.  

• Some Opensource SDN controller provide a dedicated interface for federation, called East-West. This interface 
is generally not supporting communication with other type of Opensource SDN controller. 

• While most Opensource SDN controller agree that they support Virtualisation, deploying a given Opensource 
SDN controller in an NFV architectural framework is not documented: no descriptors, no VNF lifecycle 
manager, no description of lifecycle management in NFV environment etc.  

• All Opensource SDN controller support integration with OpenStack Neutron, however lots of ETSI NFV POC 
used direct access to the Opensource SDN controller interface because the neutron interface was not exposing 
the features needed in the POC, e.g. POC#26 vMME used SDN controller for control plane and HW for data 
plane, and used direct access between the two for the SDN controller to access directly information in the 
packet headers for dynamic packet forwarding. 

• Most Opensource SDN controller do not provide performance data: number of SDN resources supported, 
latency on the interfaces, number of simultaneous access on the Application Control Interface, etc.  
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C.7 Other Opensource SDN components 

C.7.1 Switch Software and Stand-Alone OpenFlow Stacks  
Open vSwitch: (C/Python) Open vSwitch is an OpenFlow stack that is used both as a vswitch in Virtualised 
environments and has been ported to multiple hardware platforms. It is now part of the Linux kernel (as of clause 3.3).  

OpenFlow Reference (C): The OpenFlow reference implementation is a minimal OpenFlow stack that tracks the spec. 
Indigo: (C) Indigo is a for-hardware-switching OpenFlow implementation based on the Stanford reference 
implementation.  

Pantou: (C) Pantou is an OpenFlow port to the OpenWRT wireless environment.  

OpenFaucet: (Python) OpenFaucet is a pure Python implementation of the OpenFlow 1.0.0 protocol, based on Twisted. 
OpenFaucet might be used to implement both switches and controllers in Python.  

OpenFlowJ: (Java) OpenFlow stack written in Java.  

Oflib-node: (Javascript) Oflib-node is an OpenFlow protocol library for Node. It converts between OpenFlow wire 
protocol messages and Javascript objects.  

Nettle: (Haskell) OpenFlow library written in Haskell.  

C.7.2 Controller Platforms  
POX: (Python) Pox as a general SDN controller that supports OpenFlow. It has a high-level SDN API including a 
queriable topology graph and support for Virtualisation.  

OpenIRIS: (Java) OpenIRIS is an OpenFlow-based SDN controller platform toward carrier-grade networks. It has an 
elaborate I/O engine for its performance enhancement, Loxigen-based OpenFlow message processor, Floodlight-
compatible north-bound REST-API, and extensible user interface. For highly efficient packet processing, OpenIRIS I/O 
engine utilizes a combination of threading and event-driven architecture with a special type of synchronous queues. 
OpenIRIS supports multiple OpenFlow standards including OpenFlow 1.0.0 and 1.3.2. 

MUL: (C) MūL, is an openflow (SDN) controller. It has a C based muli-threaded infrastructure at its core. It supports a 
multi-level north bound interface for hooking up applications. It is designed for performance and reliability which is the 
need of the hour for deployment in mission-critical networks.  

NOX: (C++/Python) NOX was the first OpenFlow controller.  

Jaxon: (Java) Jaxon is a NOX-dependent Java-based OpenFlow Controller.  

Trema: (C/Ruby) Trema is a full-stack framework for developing OpenFlow controllers in Ruby and C.  

Beacon: (Java) Beacon is a Java-based controller that supports both event-based and threaded operation.  

Maestro: (Java) Maestro "s an OpenFl"w "o"erating sys"em" for orchestrating network control applications.  

ND–I - OESS: OESS is an application to configure and control OpenFlow Enabled switches through a very simple and 
user friendly User Interface.  

NodeFlow (JavaScript) NodeFlow is an OpenFlow controller written in pure JavaScript for Node.JS.  

C.7.3 Special Purpose Controllers  
RouteFlow, is an open source project to provide Virtualised IP routing services over OpenFlow enabled hardware. 
RouteFlow is composed by an OpenFlow Controller application, an independent RouteFlow Server, and a virtual 
network environment that reproduces the connectivity of a physical infrastructure and runs IP routing engines (e.g. 
Quagga).  

Flowvisor (Java) FlowVisor is a special purpose OpenFlow controller that acts as a transparent proxy between 
OpenFlow switches and multiple OpenFlow controllers.  
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SNAC (C++) SNAC is an OpenFlow controller built on NOX, which uses a web-based policy manager to manage the 
network.  

Resonance Resonance is a Network Access Control application built using NOX and OpenFlow.  

Oflops (C) OFlops (OpenFLow Operations Per Second) is a standalone controller that benchmarks various aspects of 
an OpenFlow switch.  

C.7.4 Misc 
Ironflow ironflow is a IF-MAP client to map the offered data from an Openflow controller into the MAP-Infrastructure. 
In addition ironflow offers the possibility to react on request for Investigation requests with the blocking of network 
traffic for the hosts quoted in the request. 

STS SDN Troubleshooting Simulator.  

FlowScale FlowScale is a project to divide and distribute traffic over multiple physical switch ports. FlowScale 
replicates the functionality in load balancing appliances but using a Top of Rack (ToR) switch to distribute traffic.  

NICE-OF NICE is a tool to test OpenFlow controller application for the NOX controller platform.  

OFTest OFTest is a Python based OpenFlow switch test framework and collection of test cases. It is based on unittest 
which is included in the standard Python distribution.  

Mirage Mirage is an exokernel for constructing secure, high-performance network applications across a variety of 
cloud computing and mobile platforms. Apparently, it supports OpenFlow.  

Wakame VDC (Ruby) IaaS platform that uses OpenFlow for the networking portion.  

ENVI ENVI is a GUI framework that was designed as an extensible platform which might provide the foundation of 
many interesting OpenFlow-related networking visualizations.  

NS3 (C++/Python) NS3 is a network simulator. It has openflow support built in to emulate an openflow environment 
and also it might be used for real-time simulations.  
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