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Foreword 
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Experiential Networked 
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Modal verbs terminology 
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Executive summary 
The present document specifies how a transformer architecture may be used to translate intent policies from an 
end-user, application, or other external source to ENI Policies for use in cognitive networking and decision making in 
modern system design. The primary use cases are twofold:  

1) to translate a natural language intent policy into an ENI Policy that uses a Domain-Specific Language; and  

2) to translate an ENI Domain Specific Language intent policy into an implementation that uses a programming 
language, such as Python™ or Java®. 
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architecture can be used to translate input policies from an end-user, application, or other external source to ENI 
Policies for use in cognitive networking and decision making in modern system design. 

The present document specifies a transformer-based architecture that can be used to parse, understand, and translate 
text. This enables different types of input policies to be translated into an appropriate ENI Policy using a transformer 
architecture. 

2 References 

2.1 Normative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 
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https://docbox.etsi.org/Reference. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are necessary for the application of the present document. 
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[2] ETSI GS ENI 019 (V3.1.1): "Experiential Networked Intelligence (ENI); Representing, Inferring, 
and Proving Knowledge in ENI". 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] ETSI GR ENI 018 (V2.1.1) (08-2021): "Experiential Networked Interlligence (ENI); Introduction 
to Artificial Intelligence Mechanisms for Modular Systems". 

[i.2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I. Polosukhin: 
"Attention Is All You Need", 31st Conference on Neural Information Processing Systems, 2017. 

[i.3] J. Wei, et al.: "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models", 
January 2023. 

[i.4] Z. Dai, et al.: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context", 
57th Conference for the Association for Computational Linguistics, 2019. 

[i.5] J. Rae, et al.: "Compressive Transformers for Long-Range Sequence Modelling", November 2019. 

[i.6] J. Devlin, et al.: "BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding", Google AI, March 2019. 

https://docbox.etsi.org/Reference/
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/005/03.01.01_60/gs_eni005v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/019/03.01.01_60/gs_eni019v030101p.pdf
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[i.7] Y. Liu, et al.: "RoBERTa: A Robustly Optimized BERT Pretraining Approach", University of 
Washington and Facebook AI, 2019. 

[i.8] Z. Lan, et al.: "ALBERT: A Lite BERT for Self-supervised Learning of Language 
Representations", International Conference on Learning Representation, February 2020. 

[i.9] A. Radford, et al.: "Improving language understanding by generative pre-training", Technical 
Report, OpenAI blog, 2018. 

[i.10] A. Radford, et al.: "Language models are unsupervised multitask learners", OpenAI blog, 1(8):9, 
2019. 

[i.11] T. Brown, et al.: "Language models are few-shot learners", Advances in Neural Information 
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Model", June 2023 (final version, v4). 

[i.16] A. Chowdery, et al.: "PaLM: Scaling Language Modelling with Pathways", October 2022. 

[i.17] P. Barham, et al.: "Pathways: Asynchronous Distributed Dataflow for ML", March 2022. 

[i.18] D. Driess, et al.: "PaLM-E: An Embodied Multimodal Language Model", March 2023. 

[i.19] Google®: "PaLM 2 Technical Report", May 2023. 

[i.20] K. Singhal, et al.: "Large language models encode clinical knowledge", July 2023. 
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[i.33] Y. Wang, et al.: "CodeT5+: Open Code Large Language Models for Code Understanding and 
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[i.34] S. Mahdavi: "Large Language Models Encode Clinical Knowledge", December 2022. 
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3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the following terms apply: 

active learning: learning algorithm that can query a user interactively to label data with the desired outputs 

NOTE: The algorithm proactively selects the subset of examples to be labelled next from the pool of unlabelled 
data. The idea is that an ML algorithm could potentially reach a higher level of accuracy while using a 
smaller number of training labels if it were allowed to choose the data it wants to learn from. 

attention: part of a neural architecture that dynamically computes a weighted distribution on input text, assigning 
higher values to more relevant elements 

NOTE: Attention mimics cognitive attention as performed in the human brain. It selectively enhances some parts 
of the input data while diminishing other parts. Instead of encoding the input sequence into a single fixed 
context vector, the attention model develops a context vector that is filtered specifically for each output 
time step. The model then predicts next word based on context vectors associated with these source 
positions and all the previous generated target words. 

batch learning: type of offline learning algorithm that is updated (i.e. retrained) periodically 

catastrophic forgetting: tendency of an artificial neural network to forget previously learned information when 
learning new information 

chatbot: computer program that simulates human conversation through text or voice interactions 

concept drift: underlying statistical properties of the data an algorithm is trained on change over time 

NOTE: Concept drift means that the LLM or transformer is not taking changing data and its meanings into 
account during inference time. 

domain specific language: small human-understandable language that uses a higher level of abstraction to 
communicate and configure software systems for a particular application domain 

embedding: vector that represents the meaning of a word or phrase to the LLM 

ensemble model: technique created by combining the predictions of multiple base models 

Extended Backus-Naur Fom: notation used to define the syntax of a formal language 

foundation model: type of LLM trained on a vast quantity of data at scale (often by self-supervised learning or 
semi-supervised learning) such that it can be adapted to a wide range of downstream tasks 

generative artificial intelligence: type of artificial intelligence that can create new content (e.g. text, images or music) 
by learning the patterns and structures of existing data and then using those patterns to generate new data that is similar 
to the original data 

https://github.com/microsoft/Megatron-DeepSpeed


 

ETSI 

ETSI GS ENI 030 V4.1.1 (2024-03) 9 

graph transformer: type of transformer that generalizes the transformer architecture to graphs 

instruction tuning: making a language model more generic by training the model on a large set of varied instructions 

language model: use of probabilistic and/or statistical mechanisms to determine the probability of a given sequence of 
words occurring in a sentence 

large language model: type of self-supervised language model whose number of parameters in the model can change 
autonomously as it learns 

mixture of experts model: technique where multiple expert models are used to divide a problem space into 
homogeneous regions, where only one or a few expert models will be run 

one-cold vector: 1 × N matrix (vector) used to distinguish each word in a vocabulary from every other word in the 
vocabulary, where the vector consists of 1s in all cells with the exception of a single 0 in a cell used uniquely to identify 
the word 

one-hot vector: 1 × N matrix (vector) used to distinguish each word in a vocabulary from every other word in the 
vocabulary, where the vector consists of 0s in all cells with the exception of a single 1 in a cell used uniquely to identify 
the word 

pipeline: end-to-end construct that orchestrates a flow of events and data in response to a trigger 

prompt: input that an LLM responds to 

prompt drift: degradation of a model's performance due to changes in the prompts that it is given 

prompt engineering: process of designing a set of prompts to generate a specific output 

prompt injection: attack against applications that have been built on top of AI models 

prompt tuning: efficient, low-cost method of adapting an AI foundation model to new downstream tasks without 
retraining the model and updating its weights 

prompt pipeline: pipeline that takes a user request and translates into a prompt or set of prompts 

NOTE: A prompt pipeline typically uses one or more prompt templates and may also use external knowledge. 

prompt template: pre-defined structure that can be used to generate text 

prompting, chain-of-thought: concatenating a series of prompts that serve as intermediate steps to achieve desired 
behaviour 

prompting, few-shot: prompting an LLM with a small number of examples of expected behaviour 

prompting, skills-in-context: instructs an LLM how to compose basic skills to resolve more complex problems 

prompting, tree-of-thought: prompting an LLM with a starting point and then asking it to explore different possible 
outcomes or conclusions that serve as intermediate steps toward problem solving 

prompting, zero-shot: prompting an LLM without any examples of expected behaviour 

retrieval augmented generation: framework for improving the performance of LLMs by providing them with access 
to external knowledge sources 

reinforcement learning: use of software agents to take actions in an environment in order to maximize a cumulative 
reward 

reinforcement learning with human feedback: trains the reward model in reinforcement learning from human 
feedback 

transfer learning: mechanism where knowledge learned from one task is reused to improve performance on a related 
task 

transformer: deep learning transduction model that utilizes attention, weighing the influence of different parts of the 
input data 
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transpiler: translates one language into an equivalent language 

NOTE: A transpiler works at a high level of abstraction. More specifically, while it may ultimately produce 
source code, that code is human-readable and cannot be directly executed (it requires its own compiler). 

vector database: type of database that stores data as vectors 

3.2 Symbols 
Void. 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

AI Artificial Intelligence 
AIIMS All India Institutes of Medical Sciences 
ANN Artificial Neural Network 
API Application Programming Interface 
BERT Bidirectional Encoder Representations from Transformers 
BoW Bag of Words 
BSS Business Support System 
CNN Convolutional Neural Network 
CoT Chain-of-Thought 
DPR Dense Passage Retrieval 
DSL Domain Specific Language 
EBNF Extended Backus-Naur Fom 
EBNF Extended Backus-Naur Form 
FAISS Facebook AI Similarity Search 
FB Functional Block 
FLAN Finetuned LAnguage Net 
GoT Graph-of-Thought 
GPT Generative Pre-trained Transformer 
GPU Graphics Processing Unit 
GRU Gated Recurrent Unit 
LLM Large Language Model 
LM Language Model 
LSTM Long Short-Term Memory 
MedQA Medical Question Answering 
MoE Mixture of Experts 
NEET National Eligibility cum Entrance Test 
NLP Natural Language Processing 
OSS Operational Support System 
PHP Hypertext Preprocessor 
PPO Proximal Policy Optimization 
RAG Retrieval Augmented Generation 
ReLU Rectified Linear Unit 
RLHF Reinforcement Learning from Human Feedback 
RNN Recurrent Neural Network 
SiC Skills-in-Context 
SOP Sentence-Order Prediction 
ToT Tree-of-Thought 
TPU Tensor Processing Unit 
TRPO Trust Region Policy Optimization 
USMLE United States Medical Licensing Examination 
VLM Visual Language Model 



 

ETSI 

ETSI GS ENI 030 V4.1.1 (2024-03) 11 

4 Natural Language Processing with AI 

4.1 Introduction (informative) 
Natural Language Processing (NLP) is a branch of machine learning that enables machines to "understand" human 
language. A combination of linguistics, computer science, and machine learning, NLP works to transform regular 
spoken or written language into a form that can be processed by machines. 

The purpose of this clause is to explain why a Transformer Architecture is preferred to other approaches. 

4.2 Problems with Natural Language Processing (informative) 
There are a number of fundamental problems in processing natural language. The most obvious first problem is that the 
amount of text to be processed is variable. A linear algebra model cannot deal with vectors with varying dimensions. 
This means that vector processing is recommended to be used. However, the size of the vectors grow as the size of the 
text grows (see clause 4.3.1 for a naïve solution and its attendant problems). 

Word order is critical, as the ordering often provides important semantics. This causes the size of the vectors used to 
increase. Vector space model or term vector model is an algebraic model for representing text documents (and any 
objects, in general) as vectors of identifiers (such as index terms). It is used in information filtering, information 
retrieval, indexing and relevancy rankings. Its first use was in the SMART Information Retrieval System. 

Both of these problems dictate an increased computational cost as size increases. 

4.3 Background and Previous Work (informative) 

4.3.1 Bag of Words Model 

The Bag of Words (BoW) model represents the input text as a vector. The size of the vector is the size of the number of 
terms in the text. Hence, most of the vector elements will be zeros. To minimize the size of the vector for computation, 
only the positions of the presented terms are stored. 

Each element denotes the normalized number of occurrence of a term in the present document. BoW uses exact term 
matching to count the number of occurrences of each term.  

For example, given the two sentences:  

John likes to read books. Kim also likes books. 
Kim also likes to watch game shows. 

The corresponding BoW models are: 

BoW1 = {"John":1,"likes":2,"to":1,"read":1,"books":2,"Kim":1,"also":1}; 

BoW2 = {"Kim":1,"also":1,"likes":1,"to":1,"watch":1,"game":1,"shows":1}. 

The Bag-of-words model is an orderless document representation. The only thing that matters is the counts of terms. 
This means that simple patterns present in the text cannot be found. For example, note that in all three sentences, the 
verb "likes" always follows a person's name in this text. 

Another critical problem with the BoW model is that it ignores the ordering of the words. For example: "Work to live" 
is different from "Live to Work." To keep the data order, it is necessary to increase the dimension of the graph (n-gram) 
to add the order into our equation. 
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4.3.2 n-Gram Model 

The n-gram model is an alternative to the BoW model. This model is a contiguous sequence of n items from a given 
sample of text. The items can be phonemes, syllables, letters, words or base pairs according to the application Applying 
to the same example above, a bigram model will parse the text from the first sentence into the following units and store 
the term frequency of each unit as before. 

[ 
    "John likes", 
    "likes to", 
    "to read", 
    "read books", 
    "Kim also", 
   "also likes", 
    "likes books", 
] 

In n-gram models, the probability of a word depends on the (n-1) previous comments, which means that the model will 
not correlate with words earlier than (n-1). To overcome that, n is increased, which increases the computational 
complexity exponentially. 

While variations of both the BoW and n-gram models exist, none provide enough improvements to make them 
competitive with other models below (especially transformers). 

4.3.3 Recurrent Neural Networks Model 

The Recurrent Neural Network (RNN) is the same as the n-gram model, except that the output of the current input will 
depend on the output of all of the previous computations. More specifically, an RNN has connections between nodes 
that form a directed or undirected graph along a temporal sequence (e.g. the ingesting of the characters of a word one 
character at a time), enabling it to exhibit temporal dynamic behaviour. This is shown in Figures 4.3.3-1a and 4.3.3-1b. 

 

  Figure 4.3.3-1a: Rolled RNN        Figure 4.3.3-1b: Unrolled RNN 

Figure 4.3.3-1a is a shorthand version of Figure 4.3.3-1b. The term "rolled" means that the structure is collapsed upon 
itself. Given a sentence, the output of the Rolled RNN is the predicted output, while the Unrolled RNN shows each 
individual step in determining the predicted output. The RNN handles a variable-length sequence by having a recurrent 
hidden state whose activation at each time is dependent on that of the previous time. 

The key element of the RNN is the hidden layer, which is used to remember some information about a sequence. This 
enables the RNN to predict the next word of a sentence by examining the previous words that it found. This also makes 
the RNN fundamentally different from other artificial neural networks (which work in a linear fashion in both the 
feedforward and back-propagation processes), since the RNN follows a recurrent relation and uses back-propagation 
through time to learn (i.e. the errors at each time step are calculated to update the weights). 
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A neural network is a series of nodes, or neurons. The weight is the parameter within a neural network that transforms 
input data within the network's hidden layers. A weight can be thought of as the strength of the connection, and affects 
how much influence a change in the input has on the output. There is also a bias, which represents how far off the 
predictions are from their intended value. Within each node is a set of inputs, weight, and a bias value. As an input 
enters the node, it gets multiplied by a weight value and the resulting output is either observed, or passed to the next 
layer in the neural network. Often the weights of a neural network are contained within the hidden layers of the 
network. The weights and biases are learnable parameters, and are typically randomized before training begins. RNNs 
apply weights to the current and to the previous input. Furthermore, an RNN also adjusts the weights through gradient 
descent and backpropagation through time. Back-propagation fine tunes the weights of a neural net based on the error 
rate (i.e. loss) obtained in the previous iteration. Proper tuning of the weights ensures lower error rates, making the 
model reliable by increasing its generalization. 

Learnable parameters in the RNN are shared in each layer in order to create a common function that can be applied at 
all time steps. Parameters are used to train the model. At each time step, the loss is computing and is backpropagated 
through the gradient descent algorithm. 

The RNN consists of multiple fixed activation function units, one for each time step. Each unit has an internal hidden 
state, which holds the past knowledge of the network currently at a given time step. The hidden state is updated at every 
time step to signify the change in the knowledge of the network about the past. The hidden state is updated using the 
following recurrence relation at each time step: 

 h(t) = f(x(t) + h(t-1) + bh) 

where h(t) is the new hidden state, h(t-1) is the old hidden state, x(t) is the current input, bh is the bias parameter, and f() 
is a fixed function with trainable weights. 

The activation function (i.e. a function that determines whether a neuron will be activated) uses the traditional tanh 
function applied to the sum of the weight times the recurrent neuron plus the weight times the input neuron. The output 
function is the weight of the output layer times the current state. Figure 4.3.3-2 can be simplified to emphasize their 
repeating structure using a single activation function, as it is done below. 

 

Figure 4.3.3-2: Repeating Cell in a Standard RNN 

Models that are trained with gradient descent and backpropagation are subject to two problems: 

1) Vanishing gradients occurs when the gradient becomes too small. When the gradient continues to become 
smaller, the earlier layers in the network will learn more slowly than later layers. This causes the weight 
parameters to continue to update until they become insignificant, which results in an algorithm that is no 
longer learning. 

2) Exploding gradients occur when the gradient becomes too large. In this case, the model weights will grow too 
large, and they will eventually be represented as undefined. 

Actual RNNs are not constrained to have the same number of inputs and outputs. For example, RNNs can map many 
inputs to one or many outputs. Bidirectional recurrent neural networks are another a variant of RNNs. Unidirectional 
RNNs can only use previous inputs to make predictions about the current state, but bidirectional RNNs can also use 
future data to improve their accuracy.  
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4.3.4 Convolutional Neural Networks Model 

A Convolutional Neural Network (CNN) is a Deep Learning algorithm that takes an input, assign importance (learnable 
weights and biases) to various aspects/objects in the input, and be able to differentiate one from the other. It specializes 
in processing data that has a grid-like topology, such as an image. The pre-processing required in a CNN is much lower 
compared to other classification algorithms. A CNN can determine spatial and temporal dependencies in the input 
through the application of relevant filters. A convolution is the application of a filter to an input that results in an 
activation. Repeated application of the same filter to an input results in a map of activations called a feature map, 
indicating the locations and strength of a detected feature in an input, such as an image. 

CNNs have the ability to automatically learn a large number of filters in parallel specific to a training dataset under the 
constraints of a specific predictive modelling problem, such as image classification. The result is highly specific 
features that can be detected anywhere on input images. The architecture of a CNN is analogous to that of the 
connectivity pattern of neurons in the human brain. Individual neurons respond to stimuli only in a restricted region of 
the visual field; a collection of such fields overlap to cover the entire visual area. A typical CNN has three main layers: 
convolutional, pooling, and fully connected. The convolutional layer uses filters that perform convolution operations as 
it scans the input with a filter, building up a feature map. The pooling layer is typically applied after the convolution 
layer, and applies a particular function (e.g. minimum, average or maximum) of its current view. The fully connected 
layer connects each input to all of its neurons, and is used to optimize objectives. 

CNNs are not applicable to word translation due to high computational cost, but some architectures do use a 
convolutional function as part of their architecture. 

4.3.5 Long Short Term Memory Model 

Long Short-Term Memory (LSTM) was created to solve the vanishing and exploding gradient problems that RNN 
approaches had. LSTM focuses on modelling chronological sequences and their long-range dependencies more 
precisely than conventional RNNs. The main difference between an RNN and an LSTM architecture is that the LSTM's 
hidden layer is a gated unit. The problematic issues of vanishing gradients is solved through LSTM because it keeps the 
gradients steep enough, which keeps the training relatively short and the accuracy high. 

A simplified block diagram of an LSTM cell is shown in Figure 4.3.5-1. 

 

Figure 4.3.5-1: Basic LSTM Cell Architecture 

The three parts of an LSTM cell shown in Figure 4.3.5-1 are known as gates. The first part is called the Forget gate, and 
chooses whether the information coming from the previous timestamp is to be remembered or can be forgotten. The 
second part is called the Input gate, and learns new information from the input to this cell. The last part is called the 
Output gate, and sends the updated information from the current timestamp to the next timestamp. The gate calculations 
are computed as follows: 

 Ft = σ(XtWxf + Ht-1Whf + bf) 

 Ft = σ(XtWxi + Ht-1Whi + bi) 
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 Ot = σ(XtWxo + Ht-1Who + bo) 

Where Wxy are weight parameters and bx are bias parameters. 

The next step in understanding the LSTM architecture is to add a memory cell. This is shown in Figure 4.3.5-2. 

 

Figure 4.3.5-2: Adding Cell Memory to the LSTM 

The candidate memory cell (since the input and forget gate contributions have not yet been incorporated) uses a tanh 
activation function: 

 ��� = tanh(xt × Wxc + Uf + Ht-1 × Wxc + bc) 

where Wxc and Wxc are weight parameters and bc is a bias parameter. 

Incorporating the contributions of the input and forget gates, yields the following: 

 Ct = Ft ⊗ Ct-1 × Wxc + It ⊗ ���  

where ⊗ denotes a point-wise multiplication. 

In Figure 4.3.5-2, CT, T-1 and HT, T-1 are hidden and cell memory states for the current and previous time stamps. The 
hidden state represents short-term memory, while the cell state represents long-term memory. 

The hidden state is computed as follows: 

 Ht = Ot ⊗ tanh(Ct)  

Whenever the output gate approximates 1, all memory information is passed through to the predictor, whereas when the 
output gate is close to 0, all information within the memory cell is retained, and no further processing is performed. 

One of the advantages of this architecture is when its input contains multiple sentences. As the LSTM moves from the 
first sentence to the second sentence, it needs to realize that a different subject is being discussed. This is accomplished 
by the Forget gate. If two sentences both refer to the same subject, the input gate determines whether new information 
carried by the input is important or not. The function of the output gate is to predict the next term in the input sequence. 
The hidden state is a function of Long term memory Ct and the current output. 

One weakness of the LSTM, and of many contemporary RNNs, is capacity. They are designed so that each unit of 
memory can influence every other unit in memory with a learnable weight. But this results in a computationally 
inefficient system: the number of learnable parameters in the model grows quadratically with the memory size. For 
example, an LSTM with a memory of size 64 KB results in parameters of size 8 GB. Circumventing this memory 
capacity bottleneck has been an active research area. 
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4.3.6 Gated Recurrent Units 

Gated Recurrent Units (GRUs) are slightly simplified variants of the basic LSTM architecture, and typically provide 
faster computation. The key difference between RNNs and GRUs is that GRUs support dedicated mechanisms for when 
a hidden state needs to be updated as well as when it needs to be reset. These mechanisms are learned. For example, if 
the first token is very significant, the GRU will learn not to update the hidden state after the first observation. 
Conversely, if the first token is irrelevant, the GRU will learn to skip it. 

A GRU is similar to an LSTM with a forget gate, but has fewer parameters because it does not have an output gate. 
Each recurrent unit of the GRU adaptively captures dependencies at different time scales. Similarly to the LSTM, the 
GRU has gating units that modulate the flow of information inside the unit; however, the GRU gating units do not have 
a separate memory cells. A GRU has two special gates, called a Reset Gate and an Update Gate. These are shown in 
Figure 4.3.6-1. They are both vectors whose values are in the range (0,1). The purpose of the Reset Gate ("R" in) is to 
control how much of the previous state needs to be remembered. The purpose of the Update Gate ("Z") is to control 
how much of the new state is simply a copy of the old state. 

 

Figure 4.3.6-1: Gates in the GRU Architecture 

The formulae to calculate the reset and update gate functions are: 

 Rt = σ(XtWxr + Ht-1Whr + br) 

 Zt = σ(XtWxz + Ht-1Whz + bz) 

The candidate hidden state is calculated as: 

 H�� = tanh(XtWxh + (Rt ⊗ Ht-1) Whh + br) 

This is a candidate, since the contribution of the update is included. The final hidden state is calculated as: 

 Ht = Zt ⊗ Ht-1 + (1 - Zt) ⊗ + H�� 

Whenever the update gate Xt is close to 1, the old state is kept, meaning that the information from Xt is ignored. This 
can be thought of as skipping time step t in the dependency chain. In contrast, whenever Zt is close to 0, the new latent 
state Ht approaches the candidate latent state H��. This leads to the final block diagram of a GRU. 
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Figure 4.3.6-2: The GRU Architecture 

Both the LSTM and the GRU keep the existing content of the activation and add new content to it, while the RNN 
replaces the activation with a new value computed from the current input and the previous hidden state. This enables 
both the LSTM and the GRU to remember the existence of a specific feature in the input stream for a long series of 
steps. Any important feature, decided by either the forget gate of the LSTM unit or the update gate of the GRU, will not 
be overwritten but be maintained as it is. In addition, this effectively creates shortcut paths that bypass multiple 
temporal steps, which allows the error to be back-propagated without vanishing too quickly. 

4.3.7 Attention 

4.3.7.1 Motivation 

Prior to the concept of attention, NLP models would first capture all of the information in the input sentence (e.g. the 
details of objects, and how objects are related to each other) in an intermediate state and then use this intermediate state 
information to compute the output. The size of the vector used for this intermediate state is fixed. 

If an input consists of very long text, the intermediate state fails because its fixed state is too small to contain all of the 
information. Typically, the system would "forget" the first part of the intermediate state by the time it completes 
processing the entire input. This yields incorrect outputs. 

Hence, there are three motivations: 

1) to remove the bottleneck of a fixed length vector; and 

2) to relieve the intermediate state from being solely responsible for encoding all of the information available to 
the decoder; and 

3) context for different parts of speech changes throughout a sentence. Therefore, all words need to be examined 
at the same time, enabling a system to learn to "pay attention" to the correct parts of the sentence depending on 
the task at hand. 

This has given rise to what AI people call "attention". It is simply a notion of memory, gained from attending at 
multiple inputs through time. 
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4.3.7.2 Definition 

The Attention mechanism [i.3] overcomes the information bottleneck of the intermediate state by allowing the decoder 
model to access all of the hidden states, rather than a single vector (i.e. the intermediate state) build out of the encoder's 
last hidden state, while predicting each output. More specifically, the information (from the intermediate state) can be 
spread throughout the sequence of encoder hidden states, which can be selectively retrieved by the decoder according to 
where in the input it is processing. This is done by using the Attention mechanism to search for a set of positions in the 
input text where the most relevant information is concentrated. The model then predicts next word based on context 
vectors associated with these source positions and all the previous generated target words. 

Given a set of key-value pairs and a query, an attention mechanism computes weights of each key with respect to the 
query, and aggregates the values with these weights to form the value corresponding to the query. The queried values 
are invariant to the ordering of the key-value pairs Attention consists of an encoder that encodes a source sentence into 
a fixed-length vector from which a decoder generates a translation. The essence of attention is that is enables a model to 
automatically search for parts of a source text that are relevant to predicting a target word, without having to explicitly 
form these parts ahead of time. 

Multi-head attention allows the model to jointly inspect information from different representation subspaces at different 
positions. While powerful, this requires tensor functions. 

Self-attention, sometimes called intra-attention is an attention mechanism relating different positions of a single 
sequence in order to compute a representation of the sequence. self-attention (where keys and queries are identical) to 
give expressive sequence-to-sequence mappings in natural language processing. Put another way, each query attends to 
all the key-value pairs and generates one attention output. Since the queries, keys, and values come from the same 
place, this performs self-attention. Self-attention has been used successfully in a variety of tasks including reading 
comprehension, abstractive summarization, textual entailment and learning task-independent sentence representations. 
End- to-end memory networks are based on a recurrent attention mechanism instead of sequence aligned recurrence and 
have been shown to perform well on simple language question answering and language modelling tasks. 

4.3.7.3 Example 

The following is a simple example of how self-attention works. 

Sentence A: "I poured coffee from the carafe into the mug until it was full." 
Sentence B: "I poured coffee from the carafe into the mug until it was empty." 

The difference between sentence A and sentence B is that the adjective at the end of sentence a (i.e. "full") was changed 
to "empty" in sentence B. Self-attention recognizes that, and hence, changes the reference that "it" refers to. 

There are three types of attention that a given model can contain: 

• Encoder-Decoder attention: attention between the input sequence and the output sequence. 

• Self attention in the input sequence: attention to all the words in the input sequence. 

• Self attention in the output sequence: attention to all the words in the input sequence. 

By changing one word "full" — > "empty" the reference object for "it" changed. Changes like this are difficult for an 
LLM to keep up with unless it is augmented with some type of grammatical analyser, such as a parser. 
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4.4 Transformers and Large Language Models 

4.4.1 Motivation (informative) 

Clause 4.3 showed some of the problems in processing natural language with previous architectures. In summary, 
RNNs cannot handle vanishing and exploding gradients (i.e. when the gradient becomes too small or too large). This 
introduced LSTM and later GRU networks to overcome these problems by using memory cells and gates. However, 
long-term dependencies are not addressed because both architectures rely on these new gate/memory mechanisms to 
pass information from old steps to the current ones. The solution was to use self-attention (see clause 4.3.7) to process 
an entire sentence, as opposed to process individual words sequentially. Self-attention enables the system to focus on 
parts of the input sequence while the output sequence is being predicted. This enables the transformer to have access to 
all of the words in the sentence. More importantly, the self-attention mechanism makes sure each word is related to all 
of the words in the sentence. This is described in much more detail in [i.2]. 

Another important motivation is parallelization. In previous architectures, each hidden state has dependencies on the 
previous words' hidden state. Thus the word embeddings (i.e. a vector of words, where words with closer meanings are 
closer to each other) of the current step are generated one time step at a time. In contrast, a Transformer architecture has 
no concept of time; the input sequence can be passed into the Encoder as a single term. 

A Large Language Model (LLM) is a statistical model that predicts the next word in a sequence. It is trained on a 
massive dataset of text, and can be used to generate text, translate languages, write different kinds of creative content, 
and answer your questions in an informative way. The majority of LLMs are architected as variants of the Transformer 
architecture. The present document will only consider these types of LLMs. 

LLMs are trained on massive datasets of text, typically in the order of billions of words. This allows them to learn the 
statistical relationships between words and phrases, and to generate text that is both grammatically correct and 
semantically meaningful. 

All LLMs are generative: they can create new content, such as text, images, or music, by learning the patterns and 
structures of existing data and then using those patterns to generate new data that is similar to the original data. 
However, not all transformers are generative, because they are only used for tasks that do not require generation, such 
as classification or question answering. For example, the BERT model (see clause 4.4.4.4) is a transformer model that is 
used for natural language understanding tasks, and is not used for text generation or translation. 

4.4.2 Basic Transformer Architecture (informative) 

4.4.2.1 Architectural Overview 

The transformer revolutionised machine learning, as it replaced recurrent and convolution mechanisms and 
architectures with an attention mechanism. They were first introduced in [i.2]. 

The Transformer architecture takes the encoder-decoder models (see clause 4.3.7). The key difference is that instead of 
attention being one of the mechanisms used by these models, in the Transformer architecture, attention was the only 
mechanism used to derive dependencies between input and output. 

There are an equal number of encoders and decoders; the number is chosen based on the type of task. This is shown in 
Figure 4.4.2-1. 
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Figure 4.4.2-1: Basic Transformer Architecture 

Input text is fed to the Encoder, which converts each word in the input to an embedding (i.e. a high-dimensional vector 
of words) to represent the meaning of each word. Word embedding on its own lacks any positional information 
(remember, this was provided by RNNs since they process input text sequentially. To preserve the positional 
information, the transformer injects a vector into individual input embeddings. This vector follows a specific periodic 
function (e.g. a combination of various sine and cosine functions having different frequencies) that the model learns and 
is able to determine the position of individual word with respect to each other based on the values. This injected vector 
is called "positional encoding" and is added to the input embeddings at the entrance to both encoder and decoder stacks. 

Each encoder consists of two layers: a self-attention layer and a feed-forward neural network layer. The encoder's inputs 
first flow through a self-attention layer - a layer that helps the encoder look at other words in the input text as it encodes 
a specific word.  

The encoder maps an input sequence of text (x₁, …, xₙ) to an intermediate sequence of text z = (z₁, …, zₙ). This can be 
conceptualized as the output from self-attention with some additional post-processing. More specifically, this layer 
outputs word vectors with positional information; that is the word's meaning and its context in the sentence. Since an 
attention vector for each word could be weighted too highly, a multi-head attention approach is used, where multiple 
attention vectors are used per word and a weighted average (or some other means to normalize the result) is taken to 
compute the final Attention vector for every word. Multiple attention heads allow the model to jointly attend to 
information from different representation sub-spaces at different positions; this provides a better contextual meaning, 
and is not possible using a single attention head. 

The outputs of the self-attention layer are fed to a feed-forward neural network in parallel. The exact same feed-forward 
network is independently applied to each position. The output will be a set of encoded vectors for every word. 

Each decoder consists of three layers: a multi-head masked self-attention layer, a multi-head attention layer, and a 
feed-forward neural network layer. The encoder-decoder multi-head attention layer and the feed-forward neural 
network layer of the decoder are the exact same as those for the encoder; the difference is that the decoder also has a 
masked multi-head attention layer preceding it. The number of encoder and decoder units is a hyperparameter (the 
original paper [i.2] used 6). As shown in Figure 4.4.2-1, the masked multi-head self attention unit is based on the word 
embeddings of the output. The masked multi-head attention block operates similarly to the multi-head attention in the 
encoder block, except that only the previous words of the solution text are fed into this decoder's attention block. The 
masked attention block computes the Attention vectors for current and prior words. This, along with some of the 
outputs of the encoder, feed a multi-head attention mechanism. The multi-head attention block in the decoder acts as the 
encoder-decoder, which receives vectors from the encoder's multi-head attention and decoder's masked multi-head 
attention blocks. This attention block will determine how related each word vector is with respect to each other, and this 
is where the mapping from input word to output word happens. The output of this block is a set of attention vectors for 
every word, where each vector represents the relationships with other words in input and output. These vectors are 
passed into the feed-forward layer linear layer. Like the encoder's feed-forward layer, this layer normalizes each word 
consisting of multiple vectors into a single attention vector for the next decoder block or a linear layer. The purpose of 
the decoder is to predict the following word, so the output size of this feed-forward layer is the number of words in the 
vocabulary. Softmax transforms the output into a probability distribution, which outputs a word corresponding to the 
highest probability of the next word. 
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At each step the model is auto-regressive, consuming the previously generated symbols as additional input when 
generating the next. 

4.4.3 Basic Transformer Models (informative) 

4.4.3.1 Introduction 

The Transformer uses multi-head attention in three different ways: 

1) In "encoder-decoder attention" layers, the queries come from the previous decoder layer, and the memory keys 
and values come from the output of the encoder. This allows every position in the decoder to attend over all 
positions in the input sequence. This mimics the typical encoder-decoder attention mechanisms in 
sequence-to-sequence models such as described in [i.37]. 

2) The encoder contains self-attention layers. In a self-attention layer all of the keys, values and queries come 
from the same place, in this case, the output of the previous layer in the encoder. Each position in the encoder 
can attend to all positions in the previous layer of the encoder. 

3) Similarly, self-attention layers in the decoder allow each position in the decoder to attend to all positions in the 
decoder up to and including that position. Leftward information flow in the decoder needs to be prevented to 
preserve the auto-regressive property. This is implemented inside of scaled dot- product attention by masking 
out (setting to) all values in the input of the softmax which correspond to illegal connections. 

4.4.3.2 The Original Transformer Architecture 

Figure 4.4.3.2-1 shows the original transformer architecture proposed in [i.2]. 

 

Figure 4.4.3.2-1: Original Transformer Architecture 

The following new concepts are introduced by [i.2]: 

Residual Connections. The encoder is composed of a stack of 6 identical layers. Each layer has two sub-layers: a 
multi-head self-attention mechanism, and a position-wise fully connected feed-forward network. A residual connection 
uses two or more skip connections to jump over one or more layers. The skip connection skips the activation function of 
the layers that it skips, and instead uses a rectifier or ReLU (Rectified Linear Unit) activation function, which is:  

 function: f(x) = max(0,x), 

where x is the input to a neuron and f(x) is the output. This is also known as a ramp function. 

NOTE: This characteristic allows ReLU to introduce non-linearity into neural networks, which is crucial for their 
ability to learn complex patterns in data. 
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As can be seen, each of the units in the encoder has a residual connection, followed by layer normalization. That is, the 
output of each sub-layer is LayerNorm (x + Sublayer(x)), where Sublayer (x) is the function implemented by the 
sub-layer itself. The decoder is also composed of a stack of N = 6 identical layers. In addition to the two sub-layers that 
are identical to the encoder sub-layers, the decoder inserts a third sub-layer, which performs multi-head attention over 
the output word embeddings offset by one position. The self-attention sub-layer is modified by masking to ensure that 
the predictions for position i can depend only on the known outputs at positions less than i. 

Multi-head Attention. Multi-head attention is based on three matrices, called Q (Query), K (Key), and V (Value). 
These vectors are trained and updated during the training process. The idea is to map a query and a set of key-value 
pairs to an output, where the query, keys, values, and output are all vectors. This is done by taking the dot product of the 
Query vector for a given word with the keys vectors of all the words. Then, these scores are divided by the square root 
of the dimension of the key vector and are normalized using the softmax activation function. These normalized scores 
are then multiplied by the value vectors, and the resultant vectors are summed to provide the final vector. This is the 
output of the self-attention layer. It is then passed on to the feed-forward network as input. Self-attention is thus 
computed not once but multiple times in the Transformer's architecture, in parallel and independently. The outputs are 
concatenated and linearly transformed. 

4.4.3.3 Transformer Advantages 

There are several advantages of attention layers over recurrent and convolutional networks, the two most important 
being:  

1) their lower computational complexity; 

2) their higher connectivity, especially useful for learning long-term dependencies in sequences; and  

3) their ability to quickly adapt to other tasks that they have not been trained on. 

Transformers have a lower computational complexity than RNNs or CNNs because they were designed to avoid 
recursion and allow parallel computation, which reduces training time and improves performance on long dependencies. 
The main characteristics of transformers are that they are non-sequential, meaning that sentences are processed as a 
whole rather than word by word, and they use self-attention to compute similarity scores between words in a sentence. 
They instead process a sentence as a whole. That is why there is no risk to lose (or "forget") past information. They also 
use positional embeddings to encode information related to the specific position of a token in a sentence. In addition, 
they use multi-head attention and positional embeddings both provide information about the relationship between 
different words. 

RNNs and their variants only have feedforward connections, impairs the learning of long dependencies. In contrast, 
transformers use self-attention mechanisms to compute similarity scores between all pairs of elements in a sequence, 
allowing them to capture long-range dependencies more effectively. This is because self-attention allows the model to 
directly access the representations of all elements in the sequence, regardless of their distance in time. 

Pretrained transformer models can adapt extremely easily and quickly to tasks they have not been trained on because of 
their ability to transfer knowledge from one task to another (this is known as transfer learning). This is possible because 
transformers are designed to learn context and meaning by tracking relationships in sequential data. By finding patterns 
between elements mathematically, transformers eliminate the need for explicit feature engineering. In addition, the math 
that transformers use lends itself to parallel processing, so these models can run fast. 

4.4.3.4 Transformer Limitations 

There are four major limitations to this basic transformer architecture: 

• First, attention can only deal with fixed-length text strings. The text has to be split into a certain number of 
segments or chunks, before being fed into the system as input. 

• Second, this chunking of text causes context fragmentation. For example, if a sentence is split from the middle, 
then a significant amount of context is lost. In other words, the text is split without respecting the sentence or 
any other semantic boundary. 

• Third, the use of self-attention with every other token in the input means that the processing will be in the 
order of O(N^2, which means that it is going to be costly to apply transformers on long sequences, compared 
to RNNs. 
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• Fourth, basic Transformer architectures cannot process input sequentially. This means that Transformers 
cannot perform recursive computation on sequential tasks. The number of transformations possible on the 
input is bounded by the model depth. 

4.4.4 Other Transformer Models (informative) 

4.4.4.1 Introduction 

The following major types of Transformer models have been created to address the limitations discussed in 
clause 4.4.3.3 along with other limitations that will be described below. 

4.4.4.2 Transformer-XL 

Transformer-XL [i.4] was specifically created by Google® to overcome the two issues described in clause 4.4.3.3, and 
consists of two techniques: a segment-level recurrence mechanism and a relative positional encoding scheme. This 
enables learning dependency beyond a fixed length without disrupting temporal coherence. Transformer-XL is open 
source, and uses the Apache® 2.0 license. 

More specifically, recurrence is introduced a self-attention network. Instead of computing the hidden states from scratch 
for each new segment, Transformer-XL reuses the hidden states from previous segments. During training, the hidden 
state sequence computed for the previous segment is fixed and cached to be reused as an extended context. In each 
segment, each hidden layer receives the output of the previous hidden layer and the output of the previous segment. The 
use of contextual information from multiple previous segments increases the ability to capture long-range dependency 
information. Hence, this solves the context fragmentation issue and without the evaluation speed by processing an entire 
segment while using the representations from the previous segments without recomputation. 

This approach also solves a subtle issue. If recurrence is used without any corrective information, then the resulting 
positional information will become incoherent, since tokens from different segments will end up with the same 
positional encoding (this is called temporal confusion). Transformer-XL solves this problem by using relative positional 
encodings by encoding positional information bias in the hidden states themselves. This is different from other 
approaches, which typically incorporate bias in the initial embedding. The use of fixed embeddings with learnable 
transformations makes it more intuitive and more generalizable to longer sequences. The relative positional encodings 
make segment-level recurrence possible so that Transformer-XL can model much longer-term dependency than a 
vanilla Transformer model. 

One last important feature of Transformer-XL is that the size of the memory can be used to control the size of past 
activations, thus controlling how much context is kept. One last important feature of Transformer-XL is that the size of 
the memory can be used to control the size of past activations, thus controlling how much context is kept. 

4.4.4.3 Compressive Transformers 

Another drawback of the original transformer architecture is the computational cost of attending to every time-step, as 
well as the associated storage cost of preserving this memory. Recall that the transformer represents the past as a tensor 
of (depth x memory size x dimension) of past observations. Furthermore, a human retains memories over a diverse 
array of timescales, from minutes to months to years to decades, based on context. 

The Compressive Transformer [i.5] is a simple extension to the Transformer that maps past hidden activations 
(memories) to a smaller set of compressed representations (compressed memories). The Compressive Transformer uses 
the same attention mechanism over its set of memories and compressed memories, learning to query both its short-term 
granular memory and longer-term coarse memory. 

The Compressive Transformer builds on the ideas of the Transformer-XL, which maintains a memory of past 
activations at each layer to preserve a longer history of context. Instead of discarding past activations when they become 
sufficiently old, the Compressive Transformer compacts these old memories, and store them in an additional 
compressed memory. Different functions can be chosen as the compression mechanism, where each function has a 
different compression factor and associated loss. The loss guides the Transformer to keep around task-relevant 
information. It can learn to filter out irrelevant memories, as well as combine memories so that the salient information is 
preserved and retrievable over a longer period of time. 
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The Compressive Transformer is able to produce narrative in a variety of styles, from multi-character dialogue, 
first-person diary entries, or third-person prose. Although the model does not have an understanding of language that's 
grounded in the real world, or the events that take place in it - by capturing longer-range correlations, the emergence of 
more coherent text is made possible. 

One advantage of the Compressive Transformer is its increased ability to use past activations to find long-range 
temporal dependencies efficiently. This will be especially important when long-range language modelling (e.g. books or 
certain types of conversational agents) is important. Another advantage is that compression appears to be more suitable 
for scaling memory and attention that, for example, dynamic or sparse attention, as these typically require custom 
kernels to make them efficient. In contrast, the Compressive Transformer can use simple neural network components, 
such as convolutions, to build effective compression modules. 

The disadvantage is the additional complexity of the architecture for those tasks that do not require long-range 
reasoning. 

4.4.4.4 BERT Models (informative) 

4.4.4.4.1 The Original BERT Model 

A language model is a probability distribution over words or word sequences. This does not refer to grammatical 
validity. Rather, it means that it defines the probability of a word or set of words occurring in a given document. As 
such, the purpose of BERT is different than that of a generic Transformer, whose goal is to produce output text. BERT 
is open source, and uses the Apache® 2.0 license. 

BERT (Bidirectional Encoder Representations from Transformers) [i.6] is a new type of open source language model 
developed and released by Google® in late 2018, and is focussed on natural language processing tasks, including 
Natural Language Inference, Text Classification, Question Answering, and Named Entity Recognition. BERT achieved 
state-of-the-art results on a range of NLP tasks while relying on unannotated text drawn from the web, as opposed to a 
language corpus that's been labelled specifically for a given task. BERT is significant because it used transfer learning 
to pre-train a transformer encoder over unlabelled data using masking (i.e. replacing certain words in a sentence with a 
"[MASK]" token and then trying to predict them; this can also be applied to groups of words or even sentences). 

Recall that a Transformer includes two separate mechanisms - an encoder that reads the text input and a decoder that 
produces a prediction for the task. Since BERT's goal is to generate a language model, only the encoder mechanism is 
necessary. BERT's key innovation is using the encoder portion of a Transformer for bidirectional training. In contrast, 
previous efforts were limited to analysing a text sequence either from left to right or combined left-to-right and 
right-to-left. 

BERT is designed to pretrain deep bidirectional representations from unlabelled text by taking both the left and the right 
context into account in all layers. As a result, the pre-trained BERT model can be finetuned with just one additional 
output layer. The input to BERT can be a single sentence or a sentence pair (as in a Question Answer task). 

There are two phases to using BERT: pre-training and fine-tuning. During pre-training, the model is trained on 
unlabelled data over different pre-training tasks. This phase consists of two unsupervised predictive tasks, Masked 
Language Model and Next Sentence Prediction. Masked Language Model is a process in which some percentage (15 % 
in the original paper) of the input tokens are masked at random, and then those masked tokens are predicted. The final 
hidden vectors corresponding to the mask tokens are fed into an output softmax over the vocabulary. This represents the 
context of the left and right sides of the fusion, which makes it possible to pre-train the deep two-way Transformer. A 
downside is that there is a mismatch between pre-training and fine-tuning, since the [MASK] token does not appear 
during fine-tuning. To mitigate this, the authors propose a training data generator that chooses 15 % of the token 
positions at random for prediction. If the i-th token is chosen, it is replaced with: 

1) the [MASK] token 80 % of the time; 

2) a random token 10 % of the time;  

3) the unchanged i-th token 10 % of the time.  

The BERT loss function takes into consideration only the prediction of the masked values and ignores the prediction of 
the non-masked words. As a consequence, the model converges slower than directional models, a characteristic which is 
offset by its increased context awareness. 
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Tokenizers have to deal with punctuation, spaces, and other grammatical forms. Different Transformers use different 
tokenizers. The BERT tokenizer is called WordPiece, which deals with grammatical tokens by finding the symbol pair 
whose probability divided by the probabilities of its first symbol followed by its second symbol is the greatest among all 
symbol pairs. For example, if the two symbols are "l" and "y", they will be merged into "ly" only if the probability of 
"ly" divided by "l" + "y" are greater than for any other symbol pair. 

The Next Sentence Prediction task enables the relationship between two sentences to be understood. This is required for 
some tasks, such as Question Answering, and is not directly represented in normal language modelling. Given two 
sentences S1 and S2, and given that 50 % of the time S2 is the next sentence after S1 (the other 50 % of the time S2 is 
randomly selected from the corpus), learn the correlation. 

NOTE: The steps for doing this are beyond the scope of the present document. 

For fine-tuning, the BERT model is first initialized with the pre-trained parameters, and all of the parameters are 
fine-tuned using labelled data from the downstream tasks. Each downstream task has separate fine-tuned models, even 
though they are initialized with the same pre-trained parameters. There is minimal difference between the pre-trained 
architecture and the final downstream architecture due to BERT's unified architecture. During fine-tuning, all 
parameters are fine-tuned. 

4.4.4.4.2 RoBERTa 

RoBERTa (Robustly optimized BERT approach) [i.7] is another open source variation that posits that the original 
BERT model was significantly undertrained. Hence, RoBERTa modifies key BERT hyperparameters, along with 
increasing the size of the data: 

1) Train the model longer over more data using larger batches (from 16 GB to over 160 GB). 

2) Removed the Next Sentence Prediction pre-training task. 

3) Trained on longer sequences (each input is up to 512 tokens and consists of full sentences). 

4) Dynamically changing the masking pattern in pretraining. 

RoBERTa emphasized how data size, training time, and pretraining objectives influence the model performance. The 
original BERT implementation performed masking once during data pre-processing, resulting in a single static mask. 
To avoid using the same mask for each training instance in every epoch, training data was duplicated 10 times so that 
each sequence is masked in 10 different ways over the 40 epochs of training. Thus, each training sequence was seen 
with the same mask four times during training. RoBERTa uses this dynamic masking, where the masking pattern is 
generated every time new input is sent to it. 

RoBERTa also changes the tokenizer from WordPiece to Byte-Pair Encoding. This relies on a pre-tokenizer that splits 
the training data into words according to a set of rules. After pre-tokenization, a set of unique words has been created, 
along with an associated frequency of each word. Next, it creates a base vocabulary consisting of all symbols that occur 
in the set of unique words. Finally, it learns merge rules to form a new symbol from two symbols of the base 
vocabulary. It does so until the vocabulary has attained the desired vocabulary size, which is a hyperparameter. 
RoBERTa is open source, and uses the Apache® 2.0 license. 

4.4.4.4.3 ALBERT 

The motivation for ALBERT (A Lite BERT) [i.8] is to lower memory consumption and increase the training speed of 
BERT. This is because previous attempts were focussed on increasing model size; however, at some point this becomes 
difficult due to GPU/TPU memory limitations and longer training times. This is also open source. 

Albert decided that the WordPiece embedding used in BERT and RoBERTa was suboptimal. First, WordPiece 
embeddings are intended to learn context-independent representations, whereas hidden-layer embeddings are meant to 
learn context-dependent representations. BERT associates the size of the embedding E with the size of the hidden layer 
H (E ≡ H). Since BERT uses context, this does not make sense. Second, NLP typically requires a large vocabulary size 
V. However, if E ≡ H, increasing H means that the embedding matrix (which is V x E) becomes huge. Worse, most of 
the parameters will only be sparsely updated during training. 

In ALBERT the embedding parameters are decomposed into two smaller matrices. Instead of projecting the one-hot 
vectors directly into the hidden space, they are first projected into a lower dimensional embedding space of size E, and 
then projected into the hidden space. By using this decomposition, the embedding parameters are reduced from 
O(V x H) to O(V x E + E x H). This parameter reduction is significant when H is much larger than E. 
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ALBERT also eliminates Next Sentence Prediction. It posits that this task, as formulated in BERT, conflates topic 
prediction and coherence prediction in a single task. In its place, it proposes a loss function based on coherence. 
ALBERT uses a Sentence-Order Prediction (SOP) loss, which avoids topic prediction and instead focuses on modelling 
inter-sentence coherence. The SOP loss uses as positive examples the same technique as BERT (two consecutive 
segments from the same document), and as negative examples the same two consecutive segments but with their order 
swapped. This forces the model to learn finer-grained distinctions about discourse-level coherence properties. 

ALBERT has less hyperparameters than the large version of BERT, and achieves significantly better results. However, 
it is computationally more expensive due to its larger structure. ALBERT is open source, and uses the Apache® 2.0 
license. 

4.4.4.4.4 CodeBERT 

As the name implies, CodeBERT [i.31] is optimized for coding descriptions, queries, and generation. It uses the same 
architecture as RoBERTa, with 125 million parameters. It defines a bimodal pretrained model for programming 
language and natural language. This enables it to support applications such as natural language code search, code 
documentation, and code generation. Natural language is a sequence of words, and code is a sequence of tokens.  

This model will require further review. While it is very good at coding, users also need to be able to enter natural 
language and have that translated to a policy. CodeBERT could be used with a DSL, but it would be difficult to use the 
models in [2] with it. 

4.4.4.4.5 Additional Optimization Features 

The above three optimizations are some of many proposed for BERT. Other possibilities include: 

1) sparse factorizations of the attention matrix; 

2) recomputation of attention matrices to save memory; 

3) fast attention kernels for training; 

4) block attention (splitting the input into blocks, apply intra self-attention to each block, then apply 
inter-self-attention to all blocks); 

5) hard example mining (n-gram model that learns precise syntactic and semantic word relationships); 

6) more efficient language modelling training; 

7) exploiting redundancy inherent in the word vectors within the BERT model. 

4.4.4.5 GPT Models (informative) 

4.4.4.5.1 Introduction 

GPT, or Generative Pre-trained Transformer, is a type of transformer-based neural network that is used for generating 
human-like text from given inputs. It uses a language model that is pre-trained on large datasets of text to generate 
realistic outputs based on user prompts. GPT is built using only transformer decoder blocks (no encoder blocks). GPT 
models do not use encoder blocks because they are designed to generate text one token at a time, using only the context 
of the previous tokens in the sequence. This is known as an auto-regressive model. The encoder part of the original 
transformer architecture is not needed in GPT models because the model does not need to learn the representation of the 
input sequence. Instead, GPT models use a masked self-attention mechanism that only looks at prior tokens. 

NOTE: This means that such models cannot plan or reason (whereas transformers can do both) without external 
aids (e.g. prompting). 

4.4.4.5.2 OpenAI GPT Models 

GPT models were popularized by OpenAI. There are four main releases: GPT-1, GPT-2, GPT-3, and GPT-4. None of 
these models are open source. 
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In GPT-1 [i.9], the multi-head attention module with cross-attention is removed from the decoder of transformer 
because there is no encoder in GPT. Hence, the decoder blocks used in GPT have only positional encoding, masked 
multihead self-attention module and feedforward network with their adding, layer normalization, and activation 
functions. GPT's attention mechanism focuses on word, pairs of words, pairs of pairs of words, and so on, only on the 
previous (left) words, pairs of words, etc. This is because the objective of GPT is to predict the next word given all of 
the previous words. 

GPT-2 [i.10] and GPT-3 [i.11] are extensions of GPT-1 with an increased number of stacks of decoders. Hence, they 
have more learnable parameters and can be trained with more data for better language modelling and inference. For 
example, Table 4.4.4.5.2-1 lists 5 important metrics for the four GPT models. The phrase "Not released" means that 
OpenAI did not release these data. 

Table 4.4.4.5.2-1: Metrics for OpenAI's GPT Models 

 GPT-1 GPT-2 GPT-3 GPT-4 

Parameters 117 
million 

1.5 
billion 

175 
billion 1,76 trillion (estimated) 

Decoder 
Layers 12 48 96 Not released 

Hidden 
Layers 768 1 600 12 288 Not released 

Context 
(Token 
Size) 

512 1 024 2 048 8 192 or 32 768 

Batch Size 64 512 128 1 024 and 4 096 
 

GPT-3 introduced a number of important improvements: 

• First, it used in-context learning. This mechanism improves In-context learning is a technique used to LLM 
performance by incorporating additional context during the training phase. This takes advantage of an LLM's 
ability to recognize patterns in data, which helps them minimize loss. During in-context learning, the LLM is 
given a prompt consisting of a list of input-output pairs that demonstrate a task. At the end of the prompt, a test 
input is appended and the LLM makes a prediction just by conditioning on the prompt and predicting the next 
tokens. Significantly, no parameters need to be optimized.  

• Second, it concretises the notion of larger models performing better in zero-, one, and few-shot learning (see 
clause 4.5.2.1). Of course, larger context windows enable more examples to be provided.  

• Third, GPT-3 was trained on a mix of five different corpora (Common Crawl, WebText2, Books1, Books2 and 
Wikipedia). 

InstructGPT [i.12] utilizes instruction tuning to control the language model and generate desired human-like content. 
Instruction tuning works by first pre-training an LLM on a massive dataset of text and code. This allows the model to 
learn the statistical relationships between words and concepts. The pre-trained model is then fine-tuned on a collection 
of natural language instructions. These instructions describe how to perform different tasks, such as question answering, 
sentiment analysis, and text summarization. Significantly, instruction tuning helps the LLM to learn how to interpret 
and follow natural language instructions. This allows the LLM to perform these tasks even if it has not been explicitly 
trained on them. Hence, InstructGPT starts with collecting a dataset of labelled demonstrations of the desired model 
behaviour, which are then used as instructions to fine-tune GPT-3. This allows for controlling the model to generate 
answers that align with human expectations. In term of the optimization algorithm, InstructGPT leverages 
reinforcement learning from human feedback [i.13]. This dramatically improved the output of GPT-3. 

GPT-4 [i.14] has undergone significant improvements, allowing it to perform a wide range of tasks without the need for 
additional training. Unfortunately, very little technical information is available. However, [i.14] makes it apparent that 
GPT-4 is a multimodal model, meaning that it can process both images and text. This allows it to describe humour in 
unusual images, summarize text from screenshots, and even answer exam questions that contain diagrams. 

There is also a code-specific form, called CodeGPT. However, it was only trained on code, and hence, cannot be used 
for the purposes of ENI. 
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4.4.4.5.3 BLOOM 

BLOOM [i.15] was coordinated by BigScience, an open research consortium. Over 1 200 participants from 38 countries 
participated. The BLOOM architecture is based on causal-decoder transformer models. BLOOM introduced a couple of 
key innovations to standard causal-decoder models. It is currently the largest open source LLM. BLOOM uses the 
RAIL license, and requires that its users comply with certain ethical and safety guidelines. Its main features include: 

1) ALiBi Positional Embeddings. The researchers wanted to extrapolate to longer sequences, so instead of adding 
positional information to the embedding layer, ALiBi directly weakens the attention scores based on the 
distance between the keys and queries. A consequence of this was that it also led to smoother training and 
improved downstream performance, even outperforming both learned and rotary embeddings. 

2) Embedding LayerNorm. The team experimented with an additional layer normalization placed immediately 
after the embedding layer. BigScience decided to train BLOOM with an additional layer normalization after 
the first embedding layer to avoid training instabilities using bfloat16 (instead of float16). Since then, float16 
has been identified as the cause of many observed instabilities in training LLMs, and it is possible that 
bfloat16 alleviates the need for the embedding LayerNorm. 

3) Megatron-DeepSpeed20 [i.38]. This is a combination of the DeepSpeed learning optimization library and 
Megatron-LM, a large and powerful transformer model. This framework enables three types of parallelism: 

a) Data parallelism, which replicates the model multiple times and place search replica on a different 
device, where it is fed a slice of the data. The processing is done in parallel, and all model replicas are 
synchronized at the end of each training step. 

b) Tensor parallelism, which partitions individual layers of the model across multiple devices. This places 
shards of this tensor on separate GPUs, making it possible to perform horizontal parallelism or 
intra-layer model parallelism. 

c) Pipeline parallelism, which splits the model's layers across multiple GPUs so that only a fraction of the 
layers of the model are placed on each GPU. 

4) Large corpus. BLOOM was trained on the ROOTS corpus, which includes 498 HuggingFace datasets that 
cover 46 languages and 13 programming languages. The training process includes data sourcing and 
processing stages. 

BLOOM is the first multilingual LLM trained in complete transparency. It is an open-access model, meaning that 
researchers, academics, non-profits, and smaller companies can download, run, and study it to investigate the 
performance and behaviour of recently developed large language models. 

4.4.4.5.4 PaLM Models 

Version 1 of the Pathways Language Model (PaLM) [i.16] was released in April 2022 and finalized in October 2022. It 
uses a proprietary license, and does not grant users the right to redistribute or modify the PaLM models. 

PaLM version 1 is a 540-billion parameter, dense decoder-only model trained with the Pathways system. 
Pathways [i.17] is a large scale orchestration layer for accelerators that is designed to enable exploration of new systems 
and ML research ideas, while retaining state of the art performance for current models. Pathways uses a sharded 
dataflow graph of asynchronous operators that consume and produce futures, and efficiently gang-schedules 
heterogeneous parallel computations on thousands of accelerators while coordinating data transfers over their dedicated 
interconnects. 

PaLM used the Pathways system to train a single model across 6 144 Tensor Processing Unit (TPU) pods. TPUs are 
custom silicon for machine learning training. The training is scaled using data parallelism at the Pod level across two 
TPU v4 pods, while using standard data and model parallelism within each Pod. It features the attention and 
feedforward layers to be computed in parallel. PaLM was trained using a combination of English and multilingual 
datasets that include high-quality web documents, books, Wikipedia, conversations, and GitHub code. PaLM uses a 
"lossless" vocabulary that preserves all whitespace (especially important for code), splits out-of-vocabulary Unicode 
characters into bytes, and splits numbers into individual tokens, one for each digit. 
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PaLM-E [i.18] a multi-modal embodied Visual Language Model (VLM) with 562 billion parameters that integrates 
vision and language for robotic control. It can perform a variety of tasks without the need for retraining. PaLM-E can 
generate a plan of action for a mobile robot platform with an arm and execute the actions itself by analysing data from 
the robot's camera without needing a pre-processed scene representation. This eliminates the need for a human to 
pre-process or annotate the data and allows for more autonomous robotic control. PaLM-E is a next-token predictor 
based on PaLM. PaLM-E takes continuous observations, like images or sensor data, and encodes them into a sequence 
of vectors that are the same size as language tokens. This enables PaLM-E to process sensory information in the same 
way it processes language. 

PaLM 2 [i.19] provides significant advantages over PaLM. First, it has been trained on over 100 spoken-word 
languages. This enables it to understand nuanced phrases in different languages including the use of ambiguous or 
figurative meanings of words rather than their literal meaning. Second, PaLM 2 provides stronger logic, common sense 
reasoning, and mathematics than previous models. PaLM 2 also understands, generates and debugs code and was 
pretrained on more than 20 programming languages. Alongside popular programming languages like Python™ and 
JavaScript, PaLM 2 can also handle older languages like Fortran. These three features are based on improved dataset 
pretraining that extends across hundreds of languages and domains, demonstrating that larger models can handle 
disparate non-English datasets without sacrificing English-language understanding performance. PaLM 2 also includes 
control tokens to enable control over toxicity at inference time; and multilingual out-of-distribution "canary" token 
sequences that are injected into the pretraining data to provide insights on memorization across languages. 

Med-PaLM 2 [i.20] is a medical language model that is based on PaLM 2 and is fine-tuned on medical information. 
Med-PaLM 2 is designed to provide high-quality answers to medical questions, and has been aligned to the medical 
domain and evaluated using medical exams, medical research, and consumer queries. [i.34] introduces the 
MultiMedQA benchmark, which was instrumental in training various PaLM models including Med-PaLM2. Med-
PaLM 2 was the first LLM to perform at an "expert" test-taker level performance on the MedQA dataset of US Medical 
Licensing Examination (USMLE)-style questions, reaching 85 % + accuracy, and it was the first AI system to reach a 
passing score on the MedMCQA dataset comprising Indian AIIMS and NEET medical examination questions, scoring 
72,3 %. 

4.4.4.5.5 LLaMA Models 

LLaMA [i.21] is a collection of foundation models that range from 7 billion to 65 billion parameters. This model family 
was trained on trillions of tokens (i.e. pieces of a word that make sense to the LLM) using publicly available datasets 
from 20 popular languages. The LLaMA models are notable for being small but powerful (e.g. it has been used to 
generate text, solve mathematical theorems, and predict protein structures). Its size requires far less computing power 
and resources to validate and test new applications. LLaMA is primarily a research tool that requires prompt 
engineering (see clause 4.5) to interact with. The LLaMA models are open source, and use the Apache® 2.0 license. 

LLaMA 2 [i.22] has a number of model sizes, including 7, 13 and 70 billion parameters. Meta claims the pre-trained 
models have been trained on a massive dataset that was 40 % larger than the one used for LLaMA. The context length 
has also been expanded to 4 096 tokens, double the context length of LLaMA. LLaMA 2 uses grouped-query attention, 
which allows key and value projections to be shared across multiple heads in multi-head attention models, reducing 
memory costs associated with caching; this maintains performance while optimizing memory usage. The LLaMA 2 
model goes through a series of supervised fine-tuning stages, followed by a cycle of RLHF to help provide a further 
degree of safety and responsibility. LLaMA 2 is open source for research and commercial use, but the license prohibits 
certain uses of the model, such as training other language models. 

4.4.4.6 Sparse Transformers (informative) 

Sparse transformers use a special type of attention, called sparse attention, to reduce computational and memory 
requirements. Sparse attention computes the attention weights for a subset of the input vectors. This subset can be 
chosen randomly or based on some importance measure. EXPHORMER [i.23] is a framework for building scalable 
graph transformers. Graph transformers extend the transformer architecture to graphs by using the attention mechanism 
to learn relationships between nodes in the graph. The attention mechanism works by computing a weighted sum of the 
node features, where the weights are determined by the similarity between the node features and a query vector. 
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Exphormer is a framework for building powerful and scalable graph transformers. It consists of a sparse attention 
mechanism based on two mechanisms: virtual global nodes and expander graphs. The virtual global nodes mechanism 
uses a set of virtual global nodes that are connected to all other nodes in the graph, enabling the attention mechanism to 
learn long-range dependencies between nodes in the graph, even if they are not directly connected. The expander graphs 
mechanism uses expander graphs (i.e. a type of graph that has good connectivity properties) to sparsify the attention 
matrix. This enables the attention mechanism to focus on the most important connections in the graph, while ignoring 
the less important connections. Overall, the sparse architecture uses fewer training parameters, is faster to train and has 
memory complexity linear in the size of the graph. These properties help scale to larger graphs. Exphormer is open 
source, and use the Apache® 2.0 license. 

4.4.4.7 T5 Models (informative) 

The Text-to-Text Transfer Transformer (T5) [i.24] uses the concept of transfer learning. Transfer learning typically is 
made up of two stages: training on a general dataset and fine-tuning over a more specific dataset (as in BERT, described 
in clause 4.4.4.4). T5 works by first converting the input task into a text-to-text format. T5 is then trained to generate 
the output text from the input text using masked language modelling. In masked language modelling, some of the words 
in the input text are masked out, and the model is trained to predict the missing words. The novelty of T5 is that it uses a 
unified framework for applying transfer learning to different problems. 

FLAN-T5 [i.25] applies FLAN to the T5 model. FLAN stands for Finetuned LAnguage Net. It is a method for 
improving the zero-shot learning performance of natural language processing models by using instruction tuning (see 
clause 4.4.4.5.1). Interestingly, [i.25] proved that finetuning on only data that does not include Chain-Of-Thought (CoT) 
data degrades performance on CoT tasks by a significant amount. Therefore, FLAN-T5 jointly finetunes on both 
non-CoT and CoT data, resulting in much better CoT performance while maintaining performance on non-CoT tasks. A 
final benefit of instruction finetuning on CoT data both with and without exemplars is that the resulting model is able to 
perform CoT reasoning in a zero-shot setting. FLAN-T5 is multilingual (T5 is not), and comes in 5 versions (small, 
base, large, XL, and XXL versions that have 0,08, 0,25, 0,78, 3, and 11 billion parameters, respectively). [i.25] 
FLAN-T5 also uses chain-of-thought (see clause 4.5.2.4) to improve reasoning ability of the models. FLAN-T5 also 
uses RLHF in some of its datasets to fine-tune FLAN-T5 using RLHF (T5 did not use RLHF). It, like T5, is open 
source, and uses the Apache® 2.0 license. 

CodeT5 [i.32] is a bimodal transformer model trained on code and text. CodeT5 is built on T5-large, and has 70 million 
parameters. uses a identifier-aware pre-training objective to better leverage the identifiers and a bimodal dual generation 
task to learn a better alignment between natural language and programming language using code and its comments. 
CodeT5 supports both code understanding and generation tasks.  

CodeT5+ [i.33] is an extension of CodeT5. It is a family of models ranging from 220 to 770 million parameters.in 
which component modules can be flexibly combined to suit a wide range of downstream code tasks by its mixture of 
pretraining objectives on both unimodal and bimodal multilingual code corpora. It uses instruction tuning (see 
clause 4.6) for scaling. 

Both CodeT5 and CodeT5+ can be used to translate natural language into code. 

4.4.4.8 Mixture of Experts Model (informative) 

A mixture of experts (MoE) model is a machine learning technique where multiple expert models are used to divide a 
problem space into homogeneous regions. It differs from ensemble techniques in that typically only one or a few expert 
models will be run, rather than combining results from all models. 

[i.26] describes MoEBERT is an MoE model based that is based on BERT (see clause 4.4.4.4), which is a 
transformer-based language model. Each model in the MoE is itself a BERT model. The MoE architecture consists of 
two main components:  

1) a set of expert models, each of which is a small BERT model that is trained for a specific domain or task; and  

2) a gating network, which selects the appropriate expert model to use for a given input. 

Each BERT model is trained on a different subset of the training data. The gating network selects the appropriate BERT 
model to use for a given input. Since each BERT model is trained on a different subset of the same data, each BERT 
model will have a different match (or level of expertise). MOEBERT uses an "importance score" to measure the 
importance of each BERT model's contribution. Since this compresses the model and causes a performance drop, the 
paper adapts a layer-wise task-specific distillation algorithm. MOEBERT is open source, and uses an Apache® 2.0 
license. 
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4.4.5 Conclusions (normative) 

Clause 5.8.3 of [1] defines the requirements for policy management, and [2] defines the ENI Extended Core and 
Extended Policy Information Models. One of the options for constructing policies is to formulate them using a DSL. 

A DSL is a small domain-specific programming language, so it would be helpful if the model was trained using a code 
dataset. Otherwise, prompting or instruction tuning (see clauses 4.5 and 4.6, respectively) shall be used to ensure good 
translation capabilities. However, some of the transformer models reviewed have restrictive licenses, so this limits the 
described transformers to those that have open source licenses with the right to modify the model, such as the 
Apache® 2.0 license. A summary of the models that meet these two requirements follows: 

1) T5 and FLAN-T5 were both trained on a massive dataset of text and code. 

2) CodeT5 and CodeT5+ were specifically designed for coding, but can also translate natural language into code. 

3) BERT was designed for language translation but cannot generate code. 

4) CodeBERT can translate natural language into code since it was trained on a bimodal data set of natural 
language and code. 

While any of the above choices may work, CodeT5+ is a more powerful model. However, it is a larger family of models 
and hence, may require more resources. In terms of their use for a DSL: 

1) BERT, T5 and FLAN-T5 may all be used to translate natural language to the grammar of a DSL using 
appropriate prompts and fine-tuning or instruction tuning. 

2) CodeT5+ is the most powerful coding model, but is not well suited for translating to a DSL. It should be 
preferred for pure coding tasks (e.g. the use of Java®, Python™, etc.). 

3) CodeBERT may also be used for translating into code, but is not as powerful as CodeT5+. 

4.5 Prompting for LLMs, Transformers, and Chatbots 

4.5.1 Introduction (normative) 

Prompting is one way of improving the performance of LLMs, transformers, and chatbots. 

A chatbot is a computer program that simulates human conversation through text or voice interactions. 

There are two main types of chatbots: rule-based and AI-powered. Rule-based chatbots are programmed with a set of 
rules that define how they should respond to certain prompts or questions. In contrast, AI-powered chatbots use 
machine learning to learn from and adapt to their users. This means that they can become more accurate and helpful 
over time. The present document will only consider AI-based chatbots. 

Chatbots typically use LLMs to generate human-like responses to prompts that is both grammatically correct and 
semantically meaningful. When a user types in a question or statement, the chatbot shall use the LLM to generate a 
response that is relevant to the user's input. The chatbot may also use the LLM to translate text from one language to 
another, or to write different kinds of creative content. The present document will further restrict analysing chatbots that 
use an LLM-based architecture. 

Significantly, prompting should be used for transformers and LLMs, and is not limited to being used with chatbots. 
However, for the rest of this clause, the term LLM will be used to include transformers and chatbots. 

4.5.2 Prompting 

4.5.2.1 Introduction (normative) 

Prompting is a technique for adapting an LLM to a new task without retraining the model from scratch. Prompts are 
used as a means to interact with LLMs to accomplish a task. A prompt is an input that the model shall respond to. 
Prompts may include instructions, questions, or any other type of input, depending on the intended use of the model. 
Prompts may come from end-users or applications. While prompts can take non-textual forms (e.g. an image), the 
present document is restricted to textual prompts. 



 

ETSI 

ETSI GS ENI 030 V4.1.1 (2024-03) 32 

Prompts may also include specific constraints or requirements like tone, style, or even desired length of the response. 
For example, a prompt to write a letter to a friend can specify tone, word limit, and specific topics to include. 

The quality and relevance of the response generated by the LLM is heavily dependent on the quality of the prompt. 
Hence, prompts play a critical role in customizing LLMs to ensure that the responses of the model meet the 
requirements of a custom use case. 

The term prompt engineering refers to the process of designing a set of prompts to generate a specific output. Prompts 
play a critical role in obtaining optimal results from the model. Benefits of using prompts include improved accuracy, 
along with the model illustrating how it reach a conclusion or answer. 

The following subclauses provide a non-exhaustive introduction to prompts that may be used in an ENI System. 

4.5.2.2 Input-Output Prompts 

4.5.2.2.1 Introduction (informative) 

This type of prompt provides the LLM with an input and an output. The LLM is then tasked with generating text that is 
similar to the output. 

4.5.2.2.2 Zero-Shot Prompts (informative) 

Zero-shot means prompting the model without any example of expected behaviour from the model. The problem with 
zero-shot prompts is that without examples, the model possibly will not understand a key term or phrase in the prompt. 
In addition, when applications include complex conversations, decision making and more, a single prompt does not 
typically enable the LLM to understand the context of the prompt; this could lead to inaccurate or incorrect results. 

4.5.2.2.3 Few-Shot Prompts (informative) 

Few-shot prompts provide a small number of examples in the prompt to overcome the above difficulty. A few-shot 
prompt enables the model to learn without training. This is one way of engineering a prompt. 

4.5.2.3 Self-Consistency Prompts (normative) 

This type of prompt asks the LLM to generate text that is consistent with itself. This can be done by providing the LLM 
with a starting point and then asking it to continue the text in a way that is consistent with the starting point. 
Self-consistency prompts can be used to improve the coherence and accuracy of the text that the LLM generates, 
because the LLM shall ensure that any new text that is generated is consistent with previous text that it has already 
generated. 

Self-consistency prompts may also be used to improve the creativity of the text that the LLM generates. This is because 
the LLM is forced to come up with new ideas that are consistent with the starting point. However, this could be 
challenging, because the LLM may not be able to come up with new ideas that are consistent with the starting point. 
This is one reason why LLMs are trained with very large datasets. 

4.5.2.4 Chain-of-Thought Prompts (normative) 

Chain-of-thought (CoT) prompting [i.3] refers to concatenating a series of prompts to achieve a task. The concatenation 
may be viewed as a set of intermediate natural language reasoning steps that lead to the final output. More specifically, 
CoT prompting breaks down multi-step problems into intermediate steps, allowing language models to tackle complex 
reasoning tasks that cannot be solved with standard prompting techniques. It improves the reasoning ability of LLMs by 
prompting them to generate a series of intermediate steps that lead to the final answer of a multi-step problem. CoT 
prompting enables LLMs to address more challenging problems, including advanced arithmetic, common sense, and 
symbolic reasoning. 
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CoT thought prompting is a method used to guide the responses of an AI model during its reasoning process in a 
step-by-step manner. It involves providing a series of prompts, each building on the previous one, that lead the model 
towards a desired output. In this process, the LLM starts by recognizing the user's input and understanding the context 
of the conversation. The LLM shall analyse the user's request and determine the best course of action to fulfil it. Then, 
the LLM should deliberate on the possible responses it can generate based on its internal knowledge and capabilities. 
The LLM shall then generate a response and review its response for any errors or inaccuracies before sending it to the 
user. 

This process repeats with each new user input, allowing for dynamic and interactive conversations. It is important to 
understand that while this process is linear in description, in practice it can be quite complex with multiple factors 
influencing each step. CoT prompting leverages few-shot learning by inserting several examples of reasoning problems 
being solved within the prompt. Each example is paired with a chain of thought (or rationale) that augments the answer 
to a problem by textually explaining how the problem is solved step-by-step. Due to their few-shot learning capabilities, 
LLMs can learn to generate a rationale along with their answers by observing the exemplars within a CoT prompt, 
which can improve reasoning performance. 

Similar to self-consistency prompts, CoT prompts can be used to improve the coherence, accuracy, and creativity of the 
text that the LLM generates. However, CoT prompts can also be challenging for the LLM because it may not be able to 
come up with new ideas that are consistent with the starting point. This is typically solved by training with a very large 
dataset. 

An important variant of CoT is called least-to-most prompting. This approach extends CoT prompting to decompose a 
problem into a set of smaller steps that are solved one-at-a-time, where the output of each subproblem is used as an 
input for the next subproblem. 

4.5.2.5 Tree-of-Thought Prompts (normative) 

A Tree-of-Thought (ToT) prompt [i.27] generalizes the CoT model by proving the LLM with a starting point and then 
asking the LLM to explore different possible outcomes or conclusions over coherent units of text (thoughts) that serve 
as intermediate steps toward problem solving. ToT enables exploration over multiple paths of thought simultaneously. It 
does this by maintaining a tree of thoughts, where thoughts represent coherent language sequences that serve as 
intermediate steps toward solving a problem. 

ToT provides a series of prompts, each branching out from the previous one, to lead the model towards a desired output. 
The LLM shall recognize the user's input and understand the context of the conversation. It shall then analyse the user's 
request and determine the best course of action to fulfil it by defining a tree consisting of multiple paths, each 
representing a different approach to generating a response. The LLM shall then evaluate each branch based on its 
potential to generate a satisfactory response, and select the most promising branch. It shall then generate a response 
based on that branch. The LLM should review its response for any errors or inaccuracies before sending it to the user. 

This process repeats with each new user input, allowing for dynamic and interactive conversations. It is important to 
understand that while this process is linear in description, in practice it can be quite complex with multiple factors 
influencing each step. 

ToT allows LMs to perform deliberate decision making by considering multiple different reasoning paths and 
self-evaluating choices to decide the next course of action, as well as looking ahead or backtracking when necessary to 
make global choices. This allows the LLM to generate text that is more comprehensive and coherent than text generated 
by traditional prompts. ToT requires more resources than other methods, but the modular flexibility of ToT allows users 
to customize such performance-cost trade-offs. 

Similar to self-consistency prompts, ToT prompts Tree-of-thought prompts can be used to improve the coherence, 
creativity, and problem-solving skills of the LLM because it shall reason about the different alternatives it explores to 
solve the problem and connect the different branches of thought in a logical way. However, ToT prompts can also be 
challenging because it may not be able to discover all of the possible outcomes or conclusions. 

4.5.2.6 Skills-in-Context Prompts (informative) 

A Skill-in-Context (SiC) prompt [i.28] instructs an LLM how to compose basic skills to resolve more complex 
problems. The LLM is also prompted to provide examples of how the skills can be used to solve the problem. This is 
often called compositional generalization, which enables an LLM to solve problems that are harder than the ones they 
have seen. Like CoT and ToT prompts, SiC prompts provide a starting point and require the LLM to continue in a way 
that is consistent with the starting point. SiC prompts require both the skills and the compositional examples to be 
demonstrated within the same prompting context. 
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Ideally, SiC prompts teach the LLM to explicitly ground each of its reasoning steps on the (more elementary) skills 
provided in the prompts. Specifically, the SiC prompt is constructed from three main blocks. The first block contains 
the skills that LLMs may need to use in order to solve a more complex problem, which includes both descriptions of the 
skills and the instructions (with a few examples) on how to use them. The second part consists of a few exemplars that 
demonstrate how to explicitly compose these into a solution to a more complex problem. The last part is the problem to 
be solved. 

4.5.2.7 Graph-of-Thought Prompts (normative) 

Graph-of-Thought (GoT) [i.36] extends the CoT and ToT methods by conceptualizing the output of an LLM or 
transformer as a flexible graph structure. In this graph, individual units of information (referred to as "LLM thoughts") 
act as the nodes, while the connections between nodes symbolize the interdependencies among them. GoT expands on 
ToT by representing thoughts as directed acyclic graphs, which enables individual thoughts to be aggregated as well as 
used to loop over one thought. The key advantage of GoT over CoT and ToT is that it can combine multiple chains of 
reasoning (e.g. merge thoughts from different reasoning chains through aggregation nodes in the graph). This enables 
recombining useful knowledge from separate lines of reasoning into a better solution. This innovative approach 
facilitates the amalgamation of diverse LLM thoughts, yielding collaborative outcomes, encapsulating entire networks 
of thoughts, and even refining thoughts using iterative feedback loops. 

Reasoning is done by traversing the graph and performing different operations on the nodes and edges. The operations 
can be used to combine thoughts, split thoughts, and generate new thoughts. In particular, GoT can represent more 
complex and nuanced relationships between thoughts. The LLM shall recognize the user's input and understand the 
context of the conversation. It shall then analyse the user's request and determine the best course of action to fulfil it by 
constructing a graph of thoughts, where each node represents a different approach to generating a response, and edges 
represent connections between these approaches. The LLM shall then evaluate each node in the graph based on its 
potential to generate a satisfactory response. The LLM may navigate through the graph, selecting nodes that lead 
towards a promising response. When complete, the LLM shall generate a response. It should review its response for any 
errors or inaccuracies before sending it to the user. 

This process repeats with each new user input, allowing for dynamic and interactive conversations. It is important to 
understand that while this process is linear in description, in practice it can be quite complex with multiple factors 
influencing each step. 

4.5.2.8 Common Procedures to Increase the Value of Prompting 

4.5.2.8.1 Introduction (informative) 

The following subclauses will briefly describe different ways to augment different types of prompting. 

4.5.2.8.2 Active Learning (normative) 

Active learning is a learning algorithm that can interactively query a user (or some other information source, commonly 
called an oracle) to label new data points with the desired outputs. CoT, ToT, GoT, and SiC prompting can each be 
combined with active learning to use the LLM itself to identify data that should be included in the training set. 

For CoT, ToT and GoT prompting, the following steps can be used to combine either with active learning: 

1) The LLM is given a prompt. 

2) The LLM generates text that is consistent with the prompt. 

3) The text is evaluated by a human or another information source. 

4) If the text is accurate and coherent, then the prompt is added to the training set. 

5) The process is repeated until the training set is complete. 

For SiC prompting, the following steps should be used: 

1) The LLM is given a prompt that specifies the skills that should be used. 

2) The LLM generates text that uses the skills to solve a problem. 
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3) The text is evaluated by a human or another information source. 

4) If the text is accurate and coherent, then the prompt is added to the training set. 

5) The process is repeated until the training set is complete. 

4.5.2.8.3 Information Retrieval (informative) 

LLMs typically have a limited context window. One way to solve this is to use information retrieval mechanisms to 
provide LLMs with access to additional information. A recent trend is to use vector databases, as follows: 

1) Chunking the text into smaller parts (e.g. paragraphs, sentences, etc.). 

2) Producing an embedding (i.e. a vector that represents the meaning of the chunk) for each chunk of text. 

3) Storing these embeddings in a vector database. 

4) Performing vector similarity search (based on these embeddings) to find relevant chunks of text to include in a 
prompt. 

An embedding is based on how the algorithm(s) in the LLM work. The vector is typically created by using a machine 
learning model to learn the relationships between the words in the vocabulary of the LLM. The model can then be used 
to generate vectors for new words or phrases. For example, the algorithm(s) may analyse text based on meaning, 
grammar, sentiment, topic, or other features. 

A vector similarity search finds the most similar vectors to a given vector. There are many open source libraries for 
performing a vector similarity search, such as FAISS (Facebook AI Similarity Search) [i.29] and vector search engines 
(e.g. Weaviate, available at https://sourceforge.net/projects/weaviate.mirror/). 

4.5.3 Prompt Tuning (informative) 

Prompt-tuning is an efficient, low-cost way of adapting an AI foundation model to new downstream tasks without 
retraining the model and updating its weights. Prompt-tuning involves using a small trainable model before using the 
LLM. The small model is used to encode the text prompt and generate task-specific virtual tokens. These virtual tokens 
are pre-appended to the prompt and passed to the LLM. When the tuning process is complete, these virtual tokens are 
stored in a lookup table and used during inference, replacing the smaller model. The prompts can be extra words 
introduced by a human, or AI-generated information introduced into the model. 

Prompt-tuning allows a massive model to be trained to process new tasks with limited available data. It also eliminates 
the need to update the model's billions (or trillions) of weights, or parameters. Prompt tuning has been shown to 
improve the performance of LLMs on a variety of tasks while reducing required training data. It also uses less resources 
than instruction tuning, which retrains the model. In addition, models that are prompt-tuned on different tasks can be 
saved, without the need for large amounts of memory. 

4.5.4 Prompt Templates (normative) 

A prompt template is a pre-defined procedure for generating prompts. Prompt templates may be used for a variety of 
purposes, including generating specific text formats, answering questions in an explicit manner, and translating 
languages. There are two types of prompt templates: natural language and structured. The former use natural language 
to convey instructions, while the latter use a specific non-varying format. 

Structured prompt templates are typically made up of three different parts: 

• context: the part of the template that provides the model with information about the topic of the text. 

• prompt: the part of the template that asks the model to generate text. 

• response: the part of the template that provides the model with an example of the type of text that it should 
generate. 

https://sourceforge.net/projects/weaviate.mirror/
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A prompt template may include instructions, few-shot examples, and specific context and questions appropriate for a 
given task. Prompt templates may be used to generate the same prompt outline in multiple places, but with certain 
values changed. This can be useful for tasks where the same prompt structure can be used with different values to 
generate unique content for different applications. 

If the LLM is not well-suited for expressing the ideas that the user wants to explore, then a prompt template can create a 
custom "mini-language" to teach the LLM. For example, the user may need to query the LLM about graph properties. A 
prompt template shall define the meaning of symbols or statements of its "graph mini-language" to the LLM. This is 
shown in the following example: 

"From now on, whenever I type two identifiers separated by a "→", I am describing a graph. For example, "x→y" 
describes a part of a graph with nodes "x" and "y" connected by an unlabeled edge. If I type "x{l:a, d:b, w:c}→y", 
then I am adding the following properties to the edge: l is its label, d is its direction, and w is the weight of the edge. 
In this example, a shall be a text string, b shall be either 1 (for unidirectional) or 2 (bidirectional), and c shall be a 
positive integer." 

The next set of examples focuses on using natural language to interact with the LLM itself to help create better prompts.  

Here is a template that asks the LLM to always ask additional questions first to help it better answer a user's question: 

"From now on, whenever I ask a question, follow these rules. First, generate up to five additional questions that 
would help you give a more accurate response. Second, assume that I know little about the topic that we are 
discussing and define any terms that are not general knowledge. Third. when I have answered all of your questions, 
combine the answers to each to produce the final answer to my original question." 

Here is a template that asks the LLM to provide fact-checking: 

"From now on, whenever I ask a question, follow these rules. First, generate a set of facts that your response depends 
on. Second, if any fact is incorrect, then your response is also incorrect, and tell me. Third, append the set of facts to 
your response." 

Another example is based on the ToT approach, and ensures that the LLM always suggests alternative ways to 
accomplish the task. For example: 

"From now on, whenever I ask a question about root cause analysis, if there are better approaches to accomplish the 
same goal, list those approaches, compare the pros and cons of each approach using the style that I used, and ask me 
for which approach I would like to use." 

Here is a template that asks the LLM to suggest more refined prompts than entered. 

"From now on, whenever I ask a question about security, suggest a better form of my question in the style I am using 
and ask me if I would like to use your version instead." 

Here is a template that asks the LLM to explain the rationale behind its response when generating code. 

"From now on, whenever you provide a response to a question from about code generation, follow the following 
rules. First, explain any assumptions that you made. Second, explain the reasoning to support your response. Third, 
support your response with any additional code samples. Fourth, define any potential limitations that your response 
has in order to provide a more accurate response." 

Any of the above exemplary templates may be restricted to a particular context. For example, the following could be 
appended to any (except the first (graph) template, and the context may be as narrow or as broad as desired as long as 
the LLM understands the context: 

"Only apply these instructions to the following domains: "security", "deploying a cloud application, and telemetry 
that contains faults." 
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4.5.5 Prompt Pipelines (informative) 

In machine learning and AI, a pipeline is an end-to-end construct, which orchestrates a flow of events and data. The 
pipeline is kicked-off or initiated by a trigger; and based on certain events and parameters, a flow is followed which 
results in an output. A prompt pipeline is a sequence of steps that are used to generate a prompt (or set of prompts) for a 
language model. A prompt pipeline extends prompt templates by automatically injecting contextual reference data for 
each prompt. The pipeline is initiated by a user request, which is directed to a specific prompt template. The variables or 
placeholders in the pre-defined prompt template are populated with the question from the user and the knowledge to be 
searched from the knowledge store. This helps prevent the LLM from making up text that is incorrect or not real (often 
called a "hallucination"). It also ensures that the LLM uses current data. The composed prompt (or set of prompts) is 
then sent to the LLM and the LLM response is returned to the user. 

A prompt pipeline is typically directed to a specific prompt template or set of prompt templates. The combination of 
prompt pipelines and prompt templates include a number of specific advantages: 

1) LLM Prompts can be re-used, shared and fine-tuned. 

2) Prompts can be used within context and is a measured way of controlling the generated content. 

3) Templating of generative prompts allow for the programmability of prompts, storage and re-use. 

4.5.6 Prompt Drift (informative) 

Prompt drift occurs when a model's performance degrades due to changes in the prompts that it is given. For example, if 
a model is trained on a dataset of text prompts that are about telemetry, and then is given a prompt asking about energy 
efficiency, the model's performance can degrade because it is not trained on data about energy efficiency. 

NOTE: Prompt drift is similar to concept drift [1]. Concept drift occurs when a model's performance degrades 
due to changes in the underlying distribution of the data that it is trained on. In contrast, prompt drift 
occurs when a model's performance degrades due to changes in the prompts it receives (as opposed to its 
underlying model). 

Like concept drift, prompt drift consists of cascading inaccuracies. It can result in a divergence in the model output for a 
given input prompt when comparing different iterations of the same model. Prompt engineering, and especially CoT, 
ToT, SiC, and prompt templates are effective for fixing prompt drift, especially when one or more is combined with a 
prompt pipeline. In addition, monitoring and detecting drift among the features, predictions, and ground truth can help 
identify the root causes and consequences of the drift, allowing for appropriate actions to be taken. 

Prompt drift is especially important when chaining together prompts. For example, if one input produces an unforeseen 
output, this can produce drift which is exacerbated in subsequent prompts. This can cause the LLM Response to be 
inaccurate or incorrect, since LLMs are non-deterministic. 

4.5.7 The Use of Prompts in an ENI System (normative) 

Prompt Engineering is rapidly evolving. Prompting is typically superior to fine-tuning in AI development because it 
enables much faster iteration cycles that have lower costs. Prompting eliminates virtually all the overhead, delays, and 
costs involved in data collection, model training, infrastructure, and licensing. This is because: 

1) Prompts do not need to be trained, whereas fine-tuned models do. This in turn implies that prompts can be 
directly tested on production models. This means that: 

a) Prompting uses no additional resources for training, whereas fine-tuning typically uses extensive 
compute resources during training. 

b) Prompts can be dynamically changed at request time. In contrast, fine-tuned models cannot (i.e. they are 
static after being trained). 

c) A corollary of the above is that prompt variations can be quickly tried on a model to see what works best. 
In contrast, fine-tuning requires waiting for each model to finish being trained before it can be evaluated. 

2) Prompts need just a few examples, while fine-tuning needs thousands of training data points. Acquiring 
training data itself can be costly and slow. 
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3) Prompts use general API access so no hosting or engineering overhead. Fine-tuned models need specialized 
hosting infrastructure. 

4) Reduced licensing costs: Prompts use the standard licensed model pricing. Fine-tuning may require additional 
licensing fees. 

It is also possible to automate prompt engineering. This is typically done using a dataset containing expected user input 
data and corresponding expected outputs, and a prompt template. These inputs are fed into an LLM, which then 
generates prompts for text generation. A prompt evaluation function evaluates each candidate prompt, and selects the 
prompt with the highest evaluation score. This approach can be augmented by using a human-in-the-loop approach to 
further increase accuracy and correctness. The advantage of this approach is that users do not have to be technical. 
Rather, the user relies on the ability of the LLM to understand natural language and generate prompts without having to 
provide formal specifications. The limits of this approach are:  

1) the LLM is not given access to external tools; and  

2) this is not (currently) used to generate prompts that chain multiple LLM queries together. 

There is no single approach for providing the best or most efficient prompt for a given LLM or even an application 
using an LLM. This is because of the inherent diversity in how an LLM is trained combined with its architecture, as 
well as the different needs of different applications. However, the methods described in clauses 4.5.2.2 through 4.5.5 
provide a description of the most promising mechanisms to use when performing prompt engineering. 

Prompt engineering is preferred over fine-tuning when: 

1) Responses shall be required quickly and easily. 

2) The systems does not have a large amount of labelled data for the task. 

3) Neither the time or resources required to fine-tune the model are available. 

In general, an ENI LLM or transformer should use prompt engineering. However, there are some specialized situations 
in which fine-tuning is preferred. These include: 

1) Use cases that require enriched knowledge using external data. Such use cases are tailor made for fine-tuning, 
and are difficult to be conveyed using prompts. 

2) Use cases that require the best possible accuracy and performance for a given task. 

3) Use cases in which the model needs to be deeply specialized. This can only be accomplished through extensive 
training with carefully curated data. 

4) Use cases that have an inherently complex structure. For example, many structural patterns that can be 
identified using fine-tuning cannot be duplicated using prompts. 

5) Fine-tuned models provide superior cost and latency benefits compared to prompts. In addition: 

a) Fine-tuning eliminates the extra tokens required by prompting, which is important if using a paid API. 

b) Fine-tuning allows creating smaller specialized models distilled from a large model, reducing hosting 
costs. Prompting always requires the large model. 

6) Fine-tuning can teach models to generate output in a very rigid constrained structure that may be difficult to 
consistently enforce through prompting. 

7) Some licensed models only permit fine-tuning but not prompting, so fine-tuning unlocks additional large 
pretrained models. 
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4.6 Instruction Tuning (normative) 
Instruction tuning (also called fine-tuning) is used to align LLMs with user needs. Alignment is needed because most 
LLM model objectives (predicting the next token) are different from the user's desire for the LLM to follow its 
instructions. One of the central approaches in instruction using is incorporating user input; RLHF [i.30] is the most 
often used method to accomplish this and should be incorporated in ENI Systems. Its usual steps are: 

1) Given a pretrained LLM, construct a set of prompts for with the LLM should produce aligned responses. 

2) Use a team of trained humans to label correct responses. 

3) Collect demonstration data, and train a supervised policy. 

4) Collect comparison data between model outputs, and train a reward model based on outputs that human 
labellers prefer. 

5) Optimize a policy against the reward model using a method such as proximal policy optimization. 

6) Steps 4 and 5 can be iterated continuously; more comparison data is collected on the current best policy, which 
is used to train a new reward model and then a new policy. 

Proximal Policy Optimization (PPO) is a family of model-free reinforcement learning algorithms. PPO algorithms are 
policy gradient methods, which means that they search the space of policies rather than assigning values to state-action 
pairs. PPO algorithms have some of the benefits of Trust Region Policy Optimization (TRPO) algorithms, but they are 
simpler to implement, more general, and have better sample complexity. It is done by using a different objective 
function. 

Instruction tuning is a more efficient way to adapt an LLM to a new task than fine-tuning, which involves retraining the 
model on a dataset of examples from the new task. This is because instruction tuning does not require the LLM to learn 
a new set of weights, but only to learn how to interpret the instructions. 

There are several variants of instruction tuning. InstructGPT [i.12] (described in clause 4.4.4.5.1) defines a process of 
adjusting the parameters of the LLM to improve its performance on a specific task without retraining the model from 
scratch. This can be done by manually adjusting the parameters or by using a machine learning algorithm. For example, 
an instruction tuning algorithm might be used to improve the performance of an LLM on a question answering task. 
FLAN-T5 [i.25] (described in clause 4.4.4.7) is based on the idea is that by using supervision to teach an LLM to 
perform tasks described via instructions, it will learn to follow instructions and do so even for unseen tasks. Both 
InstructGPT and FLAN-T5 use transfer learning. 

Here are some of the key differences between prompts and instruction tuning: 

1) Prompts are given to the LLM before it generates text, while instruction tuning is done after the LLM has been 
trained. 

2) Prompts are typically used to provide the LLM with a starting point or a goal, while instruction tuning is used 
to adjust the parameters of the LLM to improve its performance on a specific task. 

3) Prompts can be used to improve the performance of LLMs on a variety of tasks, while instruction tuning is 
typically used for tasks that are difficult to train LLMs for, such as question answering and summarization. 

4.7 The Use of Knowledge Graphs to Improve Reasoning 
(normative) 

NOTE: This topic is for the next phase of ENI. Hence, this clause is limited to a simple description of it. 

Knowledge graphs explain factual knowledge using entities, relationships, and logical rules (e.g. by using formal logic). 
Knowledge graphs may enhance LLMs and/or transformers by providing external knowledge for inference and 
interpretability. However, they are not able to produce textual explanations of their knowledge. Hence, it is desirable to 
combine LLMs and/or transformers with knowledge graphs to provide more powerful reasoning. 
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This requires a suitable framework to support the integration of these two different technologies. The following are 
possible frameworks that may be used to integrate LLMs and/or transformers with knowledge graphs: 

1) Chain-of-thought (see clause 4.5.2.4). CoT can be used to integrate LLMs and/or transformers with knowledge 
graphs by using the LLMs and/or transformers to generate the steps in the chain of thought and the knowledge 
graphs to provide the model with the knowledge it needs to generate the steps. This is a simple and linear 
method. 

2) Tree-of-thought (see clause 4.5.2.5). ToT can be used to integrate LLMs and/or transformers with knowledge 
graphs by using a tree-like data structure to represent the knowledge in a Knowledge Graph. The ToT model is 
trained on a dataset of text and code that is annotated with Knowledge Graph entities. When generating an 
output, the ToT model traverses the tree and retrieves the relevant knowledge from the Knowledge Graph. 
This knowledge is then used to generate the final output. This is a more complex method that exploits 
hierarchy. 

3) Graph-of-thought (see clause 4.5.2.7). GoT extends the CoT and ToT methods by conceptualizing the output 
of an LLM or transformer as a flexible graph structure. Since the knowledge in a GoT approach is represented 
as a directed acyclic graph, it provides the ability to loop over one thought or aggregate two thoughts or more 
together to form a better thought. The key advantages of GoT over CoT and ToT are that it can combine 
multiple chains of reasoning - GoT can merge thoughts from different chains through aggregation nodes in the 
graph. If this approach is selected, then it could take three forms: 

a) Develop a knowledge graph-enhanced LLM (or transformer), which incorporates the knowledge graph 
during the pre-training and inference phases of the LLM (or transformer), 

b) Develop an LLM (or transformer)-augmented knowledge graph, which leverages the LLM (or 
transformer) for different knowledge graph tasks, or  

c) Develop a framework in which an LLM (or transformer) and a knowledge graph play equal roles at 
arriving at a solution. This latter approach may be more complex, but has the advantage of using both in 
bi-directional reasoning driven by both data and knowledge. This in particular may correspond to how 
telecom networks work in the best and most natural way. 

4) For any of the three approaches described in 3) above: 

a) Transformers and LLMs may be trained to link entities in text to entities in a knowledge graph. This may 
help them to better understand the meaning of text and to generate more informative responses. 

b) Transformers and LLMs may be used to check the accuracy of facts by comparing them to the 
knowledge graph. This may help them to avoid generating false or misleading information. 

c) Query expansion: Transformers and LLMs may be used to expand queries by adding relevant entities and 
relationships from a knowledge graph. This may help them to generate more comprehensive and 
informative responses. 

d) Transformers and LLMs may be used to perform knowledge-guided reasoning by using the knowledge 
graph to identify the entities and relationships that are relevant to a task. This may help them to improve 
their performance on a variety of tasks, such as question answering and summarization. 

e) Transformers and LLMs may be used to complete knowledge graphs by identifying and filling in 
missing entities and relationships. This may help to improve the coverage and accuracy of knowledge 
graphs. 

4.8 Retrieval Augmented Generation (normative) 
In-context learning is the ability of an LLM to learn information not through training, but by receiving new information 
in a carefully formatted prompt. Retrieval Augmented Generation (RAG) [i.35] is an architecture used to augment the 
functionality of an LLM by adding an information retrieval system that provides data for the LLM to use. This enables 
the developer to control the data used by an LLM when it formulates a response. RAG can be fine-tuned and its internal 
knowledge can be modified in an efficient manner and without needing the entire model to be retrained. 
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RAG models are typically trained in two stages. First, the LLM is trained on a large corpus of text and code. Then, the 
RAG model is trained to retrieve relevant documents from an external knowledge source and to incorporate the 
information from those documents into the LLM's outputs. Because RAG consists of two stages, RAG is typically 
implemented as a pipeline. The use of a pipeline should ensure that the pipeline is generating high-quality responses, as 
well as where the pipeline can be improved. 

For example, one method for determining how the RAG pipeline is performing is to have the LLM generate a set of 
questions based on their training documents. Then, a subset of those questions is randomly picked as the base 
evaluation questions. 

The RAG process comes in three key parts: 

1) Retrieval: based on the prompt, the system shall retrieve relevant knowledge from a knowledge base. 

2) Augmentation: the system shall combine the retrieved information with the initial prompt. 

3) Generate: the system shall pass the augmented prompt to a large language model, generating the final output. 

RAG shall use word vector embeddings to calculate the similarity between different documents and prompts. A word 
vector embedding takes individual words and translates them into a vector which represents its meaning. There are 
many algorithms that perform this task. One example is Word2Vec (https://github.com/dav/word2vec), a family of 
algorithms that use a neural network model to learn word associations from a large corpus of text. Once trained, such a 
model can detect synonymous words or suggest additional words for a partial sentence. RAG first generates a query 
vector from the prompt using a transformer encoder. The query vector is then used to search for relevant documents in a 
pre-computed database of document vectors. The top-k most similar documents are then retrieved and passed to the 
transformer decoder to generate a response. As an example, the word "king" could first be embedded, then the 
embedding for "man" could be subtracted, and the embedding for "woman" could be added; this would result in a vector 
who's nearest neighbour was the embedding for "queen".  

RAG takes an input and shall retrieve a set of relevant documents from given a source. The documents are concatenated 
as context with the original input prompt and fed to the text generator which produces the final output. This makes RAG 
adaptive for situations where facts could evolve over time. This is very useful as the parametric knowledge of an LLM 
is static. RAG allows language models to bypass retraining, enabling access to the latest information for generating 
reliable outputs via retrieval-based generation. 

NOTE: RAG is very sensitive to semantic nuances, including the use of singular vs. plural forms and complex 
semantics that involve related words that span long lengths. Ultimately, RAG depends on how well the 
underlying LLM is able to process semantics. 

5 Transformer Architectural Requirements (normative) 

5.1 Introduction 
The following clauses define requirements for the ENI transformer architecture. 

5.2 Transformer and LLM Usage in an ENI System 
[TU1] Transformers and/or LLMs may be used in an ENI System. 

[TU2] Transformers and/or LLMs may be used for constructing ENI Policies. 

[TU3] Transformers and/or LLMs may be used for translating natural language inputs into ENI Policies. 

[TU4] Transformers and/or LLMs may be used to provide services for a knowledge graph. 

[TU5] A knowledge graph may provide services for Transformers and/or LLMs. 

[TU6] Transformers and/or LLMs may be used in conjunction with a knowledge graph for providing 
solutions. 

https://github.com/dav/word2vec
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[TU7] Transformers based on T5 or FLAN-T5 should be used to generate EBNF specifications for intent 
policies. 

[TU8] BERT-based transformers may be used to generate EBNF specifications for intent policies. 

[TU9] Transformers based on CodeT5 or CodeT5+ should be used to generate code from EBNF 
specifications for intent policies. 

5.3 Transformer and LLM Architectural Requirements 
[TA1] Transformers and/or LLMs shall be trained on as large a corpus of bimodal data as possible. 

[TA2] Transformers and/or LLMs should use any appropriate knowledge of the ENI System when 
creating, editing, deleting, or otherwise managing an ENI Policy. 

[TA3] Transformers and/or LLMs should use knowledge from [2] for constructing an ENI Policy. 

[TA4] Transformers and/or LLMs shall not be directly exposed to systems external to ENI. 

[TA4.1] Transformers and/or LLMs shall reside within a Functional Block in the ENI System Architecture. 

[TA4.2] Transformers and/or LLMs shall use ENI Internal Reference Points to communicate with other 
ENI internal Functional Blocks. 

[TA5] Transformers and/or LLMs should use context information as defined in [1] for constructing an 
ENI Policy. 

[TA5.1] The ENI System shall notify the Functional Block that contains Transformers and/or LLMs that it 
has updated context information. 

[TA5.2] The ENI System shall make said context data available per the APIs of the selected Reference 
Point of the above communication. 

[TA6] Transformers and/or LLMs should use context information as defined in [1] for constructing an 
ENI Policy. 

[TA6.1] The ENI System shall notify the Functional Block that contains Transformers and/or LLMs that it 
has updated situational awareness information. 

[TA6.2] The ENI System shall make said situational awareness information available per the APIs of the 
selected Reference Point of the above communication. 

[TA7] Transformers and/or LLMs shall use the grammar of a DSL when translating an ENI Policy to a 
DSL. 

[TA8] Transformers and/or LLMs should use RAG to increase the accuracy of generated text. 

[TA9] Transformers and/or LLMs should use prompt engineering to increase the accuracy of generated 
text. 

5.4 Transformer and LLM Reference Point Requirements 
[TR1] Transformers and/or LLMs shall use appropriate Internal Reference Points as defined in [1]. 

[TR2] Transformers and/or LLMs shall use appropriate External Reference Points as defined in [1]. 
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6 Transformer Architecture for ENI (normative) 

6.1 Introduction 
This clause defines a recommended approach for adding LLMs and/or transformers to the ENI System Architecture. It 
discusses the design principles and alternatives for using transformers and/or LLMs, additions to the ENI System 
Architecture [1] to accommodate transformers and/or LLMs, and how transformers and/or LLMs interact with other 
ENI System Functional Blocks. 

From this point forward, the term "transformer" will be used to mean "transformers and/or LLMs". 

6.2 Design Principles 

6.2.1 Use Case 

The following clauses discuss one exemplary use case: using the Transformer Management Functional Block to convert 
an intent in natural language to an ENI Intent Policy in Domain-Specific Language (DSL) format. There are many other 
use cases, which may be added to a future version of the present document. 

6.2.2 Overview 

Figure 6.2.2-1 shows a high-level overview of how transformers will function in ENI. It adds four Functional Blocks 
related to Transformer creation and management that are nested within the Policy Management Functional Block. 

 

Figure 6.2.2-1: Policy Management Architecture (modified from [1]) 

NOTE: Documents for the RAG Framework may be located in the framework itself and/or in the Knowledge 
Repository (contained in the Knowledge Management Functional Block). The Prompting Framework 
may also contain documents to guide the generation of prompts in its framework and/or in the Knowledge 
Repository. 

Conceptually, after an input intent policy is submitted to the ENI API Broker (not shown in Figure 6.2.2-1, but it is the 
intermediary between the Assisted System and the ENI System), the text shall be ingested and normalized and then sent 
over the Semantic Bus to the Policy Management Functional Block. 
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Referring to Figure 6.2.2-1, the Transformer Management Functional Block consists of a Transformer (middle block) 
that should be augmented by both a RAG Framework and a Prompting Framework. These functions are described in 
clauses 4.8 and 4.6, respectively. These two functions (RAG and prompting) represent two of the most efficient 
mechanisms to avoid retraining and enable the behaviour of a pre-trained model to be guided according to the needs of 
the application. As previously mentioned, these two functions are different. Hence, both of these functions should be 
used to augment the functionality of whatever transformer is chosen. 

The Output Generation function provides a common interface for different post-processing operations. This use case 
shall use a DSL Generation function. Other use cases may use other output generation functions. This use case may 
combine the Output Generation and DSL Generation functions into a single interface. 

At a high level, input text will be passed to the Policy Management Functional Block, where (for the purposes of this 
use case) it determines that the text is an intent policy. It then passes this information to the Transformer Management 
Functional Block, contained within it. The top three functions (RAG Framework, Prompting Framework, and 
Transformer Processing) collectively form what clauses 4 and 5 have described as a transformer. The fourth function 
(DSL generation) functions as a transpiler, converting natural language into an ENI DSL according to the grammar of 
that DSL. This output is then returned to the Policy Management Functional Block. Processing should then continue as 
described in clause 6.3.9.6 of [1].  

6.2.3 Using Transformers vs. Traditional Compilers and Parsers 

This architecture provides an alternative to traditional parsers and compilers. It should be used when the natural 
language is not (or only slightly) constrained, because the amount of ambiguity and problems with semantics require 
multiple processing layers to be added to a traditional parser or compiler. 

More specifically, transformers offer a number of advantages over compilers and parsers, including: 

1) Transformers are better at handling long-range dependencies in text. This is because transformers are able to 
attend to different parts of the input text when generating the output text (via self-attention). This is important 
for natural language translation because the meaning of a word or phrase can depend on the context in which it 
is used. 

2) Transformers are better at handling non-sequential processing of text. Compilers and parsers process the words 
in a sentence, while transformers process the sentence as a whole. 

3) Transformers are more data-efficient than compilers and parsers. This is because transformers are able to learn 
the rules of language from data, while compilers and parsers need to be explicitly programmed with these 
rules. 

4) Transformers are highly parallelizable, which enables them to process larger amounts of text more quickly 
than parsers or compilers. 

5) Transformers are more robust to noise in the input text. This is because transformers are able to learn the 
statistical distribution of language, which can be used to correct errors in the input text. This is especially true 
for structured text, such as DSLs. 

6) Transformers are able to generate more fluent and natural-sounding translations than compilers and parsers. 
This is because transformers are able to learn the different styles of language that are used in different 
domains. In addition, parsers and compilers are designed to generate code, and typically do not understand the 
nuances of natural language. 

6.3 Transformer Management Functional Block Architecture 

6.3.1 Introduction 

The Transformer Management Functional Block is located within the Policy Management Functional Block for two 
reasons: 

1) The most common function of the Transformer Management Functional Block is to be used to create and edit 
ENI Policies. 
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2) External Policy Users (i.e. the End-User, an Application, the OSS, the BSS, and the Orchestrator) shall not 
have direct access to functionality provided by the Transformer Management Functional Block. 

Since the Transformer Management Functional Block has no direct external access, no External Reference Points are 
needed. It shall receive and send information from and to the Policy Management Functional Block. 

The Transformer Management Functional Block may require significant computing, memory, and/or other resources for 
its operation. This is one reason why it is designed as a Functional Block. Hence, it may use a set of Internal Reference 
Points, as detailed in clause 7 of the present document. 

6.3.2 RAG Framework Functional Block 

Retrieval Augmented Generation (RAG) uses a two-step process that retrieves relevant information and then generates 
responses based on that information. It is shown in Figure 6.3.2-1. 

 

Figure 6.3.2-1: Conceptual Architecture of the RAG Framework 

In the first step, the RAG model receives an input, such as a prompt. It then uses a retrieval system to search through a 
set of documents to find the ones that are most relevant to the input. This retrieval system uses a dense vector retrieval 
method, which allows the model to efficiently sift through the various knowledge sources and select the most pertinent 
documents to send back to the front end. The actual retrieval model used is based on the types of data sources and the 
needs of the application. Two examples are Best Match 25 (BM25, a probabilistic ranking function used by search 
engines to estimate the relevance of documents to a given search query) and DPR (Dense Passage Retrieval, a deep 
learning-based retrieval model that learns to represent text passages in a dense vector space by finding the passages with 
the most similar vectors). 

Once the relevant documents have been retrieved, the RAG model moves on to the second step: response generation. 
The top retrieved results are concatenated into a context document that is provided to the transformer along with the 
original query. The transformer uses the retrieved information to help generate its response.  

The advantages of the RAG framework include: 

• Dynamicity. The transformer is supplied with relevant facts instead of having to rely on static training data. 

• Context. The transformer is given a more accurate context to work with. 

• Knowledge. Relevant external knowledge is provided to the transformer that is likely not contained in its 
training data, providing enhanced accuracy. 

• Continuous Learning: As RAG models interact with more data, they become better at retrieving relevant 
documents and generating accurate responses. 
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• Auditability. RAG enables training outputs from retrieved information.  

6.3.3 Prompting Framework Functional Block 

Clauses 4.5.2.4, 4.5.2.5 and 4.5.2.7 described the chain-of-thought, tree-of-thought, and graph-of-thought prompting 
frameworks. They are ordered in terms of increasing complexity and accuracy. While all three of these prompting 
frameworks may be used, graph-of-thought should be used if its resource needs and complexity can be satisfied. 

Figure 6.3.3-1 shows a functional architecture of the prompting framework. It assumes a single input modality (text), 
but could be easily expanded into multiple modalities by adding modality-specific encoders and increasing the 
cross-attention layering. 

 

Figure 6.3.3-1: Functional Architecture of the Prompting Framework 

The text is the input text, and the Prompt Constructor function may be any prompt engineering function, including CoT, 
ToT, or GoT. GoT is used from hereon to make the explanation more concrete. 

The text is encoded using a transformer, and the output of the Prompt Encoder is encoded using an appropriate attention 
network (e.g. GoT uses a graph attention network). The cross-attention network aligns text with the prompt being used 
(e.g. text tokens are aligned with graph nodes). A feature fusion function is then used to fuse the text and GoT features 
and pass them into the Transformer decoder to predict the target thought decomposition. The feedback loop then takes 
the thought decomposition, concatenates them with the input text, and runs the same pipeline to produce the final 
results. 

The Prompt Encoder is the key piece of this architecture, and performs the construction of the thought graph as follows: 

1) Thought Unit Representation: As explained in clause 4.5.2.7, the information generated by an LLM is 
modelled as an arbitrary graph, where units of information ("transformer thoughts") are nodes and edges in the 
graph correspond to dependencies between these nodes. These dependencies may be used to represent any 
dependency relevant to the task at hand (e.g. the contextual relevance of the thoughts to each other or to the 
task being performed). 

2) Graph-Enabled Transformations: This approach uses the inherent nature of the graph to apply graph-theoretic 
operations to the overall graph. This includes, but is not limited to, the following: 

a) Generation: a thought may be split into several refined thought paths, enabling each path to be pursued 
independently. For example, a complex problem may be split into multiple sub-problems. 

b) Aggregation: different thought paths in the graph may be merged to provide a single coherent and more 
robust thought. 

c) Merging: multiple thought paths are perceived as solutions to a problem that were previously generated. 
For example, when a complex problem has been split into multiple sub-problems, when each is solved, 
they can be merged into a single answer. 

d) Looping: this provides the ability to refine a thought by looping over a node or a set of nodes. 

e) Backtracking: this enables concluding that the current thought path is either no longer relevant or inferior 
in quality to another thought path, and hence, backtracking to pursue another thought path. 

3) Non-Sequential Nature: By representing thought units as nodes and dependencies between them as edges, GoT 
captures the non-sequential nature of human thinking and allows for a more realistic modelling of thought 
processes. 

Figure 6.3.3-2 compares CoT, ToT and GoT graphically.  
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This figure shows that: 

1) All three approaches support ranking each intermediate thought. 

2) All three approaches support abandoning a thought (for CoT, multiple CoTs are required to support this; each 
is processed linearly and compared at each step). 

3) CoT processes intermediate thoughts in a linear sequence. 

4) ToT represents intermediate thoughts as a tree (and not as a graph). As a tree, backtracking, along with simple 
operations (e.g. splitting and joining) are supported. However, each branch of the tree is independent of the 
others and cannot be combined. 

5) GoT represents intermediate results as a graph. Hence, GoT supports the widest and most flexible range of 
operations that can be performed. For example, GoT supports both looping over one or more nodes to refine a 
thought as well as combining two or more paths to form a more powerful path. 

6) Complexity increases from left-to-right, with CoT being the simplest to implement and GoT being the most 
complex to implement. 

7) Accuracy also increases from left-to-right, with CoT being the least accurate and GoT being the most accurate. 

 

Figure 6.3.3-2: Visual Comparison of CoT, ToT, and GoT Prompting Method 

6.3.4 Transformer Processing Functional Block 

6.3.4.1 Overview 

The landscape of transformers, both open and closed source, is rapidly changing. ETSI ENI should use an open source 
transformer to avoid any IPR issues. 

6.3.4.2 Choice of Transformer to Use 

As stated in clause 4.4.5, the initial (open source) transformer for ETSI ENI should be either BERT, T5, or FLAN-T5. 
More specifically: 

1) T5 should be preferred over BERT because: 

a) T5 provides more flexibility. 
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b) T5 was defined specifically for text-to-text translation applications. 

c) T5 is better for learning from structured data (since the target is a DSL, its grammar is structured). 

2) FLAN-T5 may be preferred over T5 depending on the needs of the application: 

a) FLAN-T5 was designed for zero- and few-shot learning. This means that: 

i) FLAN-T5 models can be used to perform tasks without any prior training or with only a small 
amount of training data. 

ii) FLAN-T5 could be trained on a small dataset of natural language sentences and their corresponding 
EBNF representations, and then be used to translate new natural language sentences to EBNF 
without any further training. 

iii) Zero- and few-shot learning are preferable for translating between languages because they may be 
more efficient than traditional supervised learning methods, which require a large amount of 
labelled data to train. Zero- and few-shot learning models can learn to translate between languages 
with only a small amount of labelled data, or even without any labelled data at all. 

b) FLAN-T5 is smaller (model sizes range from 6,7 to 137 billion parameters, compared to 11 to 
540 billion parameters for T5). 

c) FLAN-T5 has been shown to be more resistant to noise. This is important if there are errors in its training 
dataset. 

3) T5 may be preferred over FLAN-T5 depending on the needs of the application: 

a) T5 is more general purpose than FLAN-T5. 

b) T5 has been shown to produce more accurate results than FLAN-T5. 

c) T5 has been used more frequently than FLAN-T5. 

6.3.4.3 Open Source Components Availability for the Transformer Processing FB 

The DSL should be defined using EBNF. This is a rich structured representation of the grammatical rules specifying a 
language, and is portable across many platforms. The approach is to train T5 or FLAN-T5 as usual, and then finetune it 
with a corpus of natural language to EBNF translations. This would allow T5 to learn the relationship between the two 
languages and to generate EBNF representations from natural language sentences. 

The HuggingFace Transformers library already contains support for using RAG with T5, and examples of using RAG 
with FLAN-T5 exist in open source. For CoT, ToT, and GoT, there are examples of T5 being used with each. However, 
there are only examples of FLAN-T5 being used with CoT. 

It may be possible to generate the DSL directly without post-processing in the Output Generation Functional Block. 
However, in case the EBNF definition becomes complex, the RAG and Prompting Frameworks should be used to 
enable the translation to a DSL grammar. There are many open source frameworks for specifying an EBNF and 
generating code from the EBNF. 
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6.3.5 Output Generation Functional Block 

Figure 6.3.5-1 shows the Output Generation Functional Block. 

 

Figure 6.3.5-1: Output Generation Functional Block 

The Output Generation Functional Block shall be used to generate code corresponding to the EBNF definition of the 
DSL as produced in the Transformer Processing Functional Block. It is designed as a modular set of hierarchical 
Functional Blocks. Two examples are shown. The present document is focussed on the DSL Generation Functional 
Block. As can be seen, it shall consist of one or more Functional Blocks that generate code for a particular 
programming language to implement the DSL. 

The above architecture is modular and extensible, and can accommodate specific modules for different languages as 
well as different tasks. 

Most machine learning and AI systems currently use Java® and Python™; hence, those are shown as examples. The 
actual programming language(s) will be defined in the next release of the present document. 

As described in clause 4.4.5, the two top transformers for generating code and accompanying text, such as 
documentation, are CodeT5 and CodeT5+. They each support C, C#, Go, Java®, JavaScript, PHP, Python™, and Ruby. 
Code T5+ also supports C++. 

The code for generating the DSL shall be based on the output of Transformer Processing Functional Block shown in 
Figure 6.2.2-1. This may include RAG and prompting functions. 

There are two options for generating code: 

1) Generate code directly from an EBNF specification using an open source parser generator. 

2) Generate code directly by feeding the EBNF specification into CodeT5+. 

The former typically produces a good start to coding but may produce some incomplete functions. ETSI ENI should use 
CodeT5+ (or another suitable transformer) instead of a parser generator because transformers are trained on large code 
datasets and have the ability to produce documentation for the code. In addition, CodeT5+ has special ability to 
leverage the code semantics conveyed from the developer-assigned identifiers. In addition, it has a rich API to 
communicate with. 
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6.4 Interaction with Other ENI System Functional Blocks 
All interaction between the Transformer Management Functional Block and other ENI System Functional Blocks is 
done using the Policy Management Functional Block as a proxy. This provides indirect access for the Transformer 
Management Functional Block to all other functionality of the ENI System. 

7 Transformer Internal Reference Points (normative) 

7.1 Introduction 
Since the Transformer Management Functional Block has no direct external access, no External Reference Points are 
needed. It shall receive and send information from and to the Policy Management Functional Block. 

The Transformer Management Functional Block may require significant computing, memory, and/or other resources for 
its operation. Hence, it may use a set Internal Reference Points detailed in clause 6.3. 

7.2 External Reference Points 
External Reference Points connecting the Transformer Management Functional Block to external entities are not 
needed. 

7.3 Internal Reference Points 
The following Internal Reference Points are defined for communication between the Transformer Management 
Functional Block and the ENI System (Isem-pm was already defined in [1], but is included here for completeness). 

Table 7.3-1: Internal Reference Points between the ENI System and 
the Transformer Management Functional Block 

Name Brief Definition 

Isem-pm 
Defines the data and information received by the Policy Management Functional Block from the 
Semantic Bus, as well as data and information that the Policy Management Functional Block 
publishes to the Semantic Bus. This is a bi-directional interface. 

Ipm-tm 

Defines the data and information received by the Transformer Management Functional Block from 
the Policy Management Functional Block, as well as data and information that the Policy 
Management Functional Block receives from the Transformer Management Functional Block. This is 
a bi-directional interface. 

Itm-rag 

Defines the data and information received by the RAG Framework Functional Block from the 
Transformer Management Functional Block, as well as data and information that the RAG 
Framework Functional Block sends to the Transformer Management Functional Block. This is a 
bi-directional interface. 

Itm-pf 

Defines the data and information received by the Prompting Framework Functional Block from the 
Transformer Management Functional Block, as well as data and information that the Prompting 
Framework Functional Block sends to the Transformer Management Functional Block. This is a 
bi-directional interface. 

Itm-tp 

Defines the data and information received by the Transformer Processing Functional Block from the 
Transformer Management Functional Block, as well as data and information that the Transformer 
Processing Functional Block sends to the Transformer Management Functional Block. This is a 
bi-directional interface. 

Itm-og 

Defines the data and information received by the Output Generation Functional Block from the 
Transformer Management Functional Block, as well as data and information that the Output 
Generation Functional Block sends to the Transformer Management Functional Block. This is a 
bi-directional interface. 
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8 Areas of Future Study (informative) 

8.1 Open Issues for the present document 
Void. 

8.2 Issues for Future Study 
From clause 4.7 (The Use of Knowledge Graphs to Improve Reasoning): 

• A future version of the present document will define the interaction between knowledge graphs and 
transformers (and/or LLMs). 

From clause 6.2.1 (Use Case): 

• Additional use cases may be added to a future version of the present document. 
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