

ETSI GS ENI 019 V3.1.1 (2023-06)

Experiential Networked Intelligence (ENI);
Representing, Inferring, and Proving Knowledge in ENI

Disclaimer

The present document has been produced and approved by the Experiential Networked Intelligence (ENI) ETSI Industry
Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 2

Reference
DGS/ENI-0029_ENI_Models

Keywords
data models, information model, ontology,

semantic reasoning

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2023.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 3

Contents

Intellectual Property Rights .. 6

Foreword ... 6

Modal verbs terminology .. 6

1 Scope .. 7

2 References .. 7

2.1 Normative references ... 7

2.2 Informative references .. 7

3 Definition of terms, symbols and abbreviations ... 8

3.1 Terms .. 8

3.2 Symbols .. 9

3.3 Abbreviations ... 9

4 Representing, Inferring, and Proving Knowledge in ENI .. 10

4.1 Introduction .. 10

4.2 Definitions .. 10

4.2.1 Information Model .. 10

4.2.2 Data Model ... 10

4.2.3 Ontology ... 10

4.3 Information Model Usage in ENI ... 10

4.3.1 Purpose ... 10

4.3.2 Use of an Information Model as a Blueprint for Entity Definitions ... 11

4.3.3 Use of an Information Model to Define a Lexicon and Grammar .. 12

4.4 Data Model Usage in ENI .. 12

4.4.1 Purpose ... 12

4.4.2 Use of a Data Model as a Blueprint for System Data ... 12

4.4.3 Derivation of Data Models from an Information Model ... 12

4.5 Ontology Usage in ENI .. 14

4.5.1 Introduction... 14

4.5.2 Use of Ontologies to Enable Formal Reasoning and Learning ... 14

4.6 Model Augmentation .. 14

4.6.1 Introduction... 14

4.6.2 Augmentation of an Information Model using Ontologies ... 15

4.6.3 Augmentation of Data Models Using Ontologies ... 15

4.7 Synchronizing and Reconciling Modelled Data ... 15

4.8 Securing Modelled Data ... 15

4.9 Decision-Making .. 15

4.9.1 Introduction... 15

4.9.2 Control Loops ... 15

4.9.3 Traditional Learning and Reasoning ... 16

4.9.4 Semantic Learning and Reasoning .. 16

4.9.5 Cognitive Learning and Reasoning ... 16

4.10 Model-Driven DSLs ... 16

4.10.1 Introduction... 16

4.10.2 Constructing Model-Driven DSLs .. 16

4.11 Model-Driven APIs .. 16

5 ENI Information Model .. 16

5.1 Introduction .. 16

5.2 The Design of the ENI Extended Core Model.. 16

5.2.1 Introduction... 16

5.2.2 The MCM (MEF Core Model) ... 17

5.2.2.1 Introduction ... 17

5.2.2.2 Naming Rules .. 17

5.2.2.3 MCM Superstructure ... 18

5.2.2.3.1 Overview ... 18

5.2.2.3.2 MCMRootEntity .. 19

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 4

5.2.2.4 MCMEntity Hierarchy .. 20

5.2.2.4.1 Overview ... 20

5.2.2.4.2 MCMEntity ... 20

5.2.2.4.3 MCMUnManagedEntity Hierarchy ... 23

5.2.2.4.4 MCMManagedEntity Hierarchy .. 24

5.2.2.4.5 MCMDefinition Hierarchy .. 27

5.2.2.4.6 MCMPolicyObject .. 32

5.2.2.4.7 MCMProduct Hierarchy .. 32

5.2.2.4.8 MCMService Hierarchy .. 34

5.2.2.4.9 MCMResource Hierarchy.. 36

5.2.2.4.10 MCMServiceEndpoint ... 41

5.2.2.4.11 MCMParty ... 42

5.2.2.4.12 MCMDomain Hierarchy.. 46

5.2.2.4.13 MCMBusinessObject Hierarchy .. 50

5.2.2.5 MCMInformationResource Hierarchy .. 52

5.2.2.5.1 Overview ... 52

5.2.2.5.2 MCMInformationResource Class Definition... 53

5.2.2.5.3 Attribute Definition ... 53

5.2.2.5.4 Operation Definition .. 53

5.2.2.5.5 Relationship Definition ... 54

5.2.2.5.6 MCMInformationResource Subclasses ... 55

5.2.2.6 MCMMetaData Hierarchy .. 56

5.2.2.6.1 Overview ... 56

5.2.2.6.2 MCMMetaData Class Definition ... 56

5.2.2.6.3 Attribute Definition ... 57

5.2.2.6.4 Operation Definition .. 57

5.2.2.6.5 Relationship Definition ... 57

5.2.2.6.6 MCMMetaData Subclasses ... 57

5.2.3 ENI Extensions to the MCM... 63

5.2.3.1 Introduction ... 63

5.2.3.2 Naming Rules .. 63

5.2.3.3 Events .. 63

5.2.3.3.1 Introduction ... 63

5.2.3.3.2 ENIEvent Class Definition .. 64

5.2.3.3.3 Attribute Definition ... 64

5.2.3.3.4 Operation Definition .. 65

5.2.3.3.5 Relationship Definition ... 66

5.2.3.3.6 ENIEvent Subclasses ... 66

5.2.3.4 Behaviour .. 70

5.2.3.4.1 Introduction ... 70

5.2.3.4.2 ENIBehavior Class Definition ... 71

5.2.3.4.3 Attribute Definition ... 71

5.2.3.4.4 Operation Definition .. 71

5.2.3.4.5 Relationship Definition ... 72

5.2.3.4.6 ENIBehavior Subclasses.. 73

5.2.3.5 Identity .. 74

5.2.3.5.1 Introduction ... 74

5.2.3.5.2 ENIIdentity Class Definition ... 75

5.2.3.5.3 Attribute Definition ... 75

5.2.3.5.4 Operation Definition .. 75

5.2.3.5.5 Relationship Definition ... 76

5.2.3.5.6 ENIIdentityProvider Class Definition ... 76

5.2.3.5.7 Attribute Definition ... 76

5.2.3.5.8 Operation Definition .. 76

5.2.3.5.9 Relationship Definition ... 76

5.2.3.5.10 ENIIdentity Subclasses .. 77

5.2.4 ENI Extended Core Model ... 78

5.3 Models that Inherit from the ENI Extended Core Model ... 78

5.3.1 Introduction... 78

5.3.2 Policy Model ... 78

5.3.2.1 Introduction ... 78

5.3.2.2 Purpose .. 78

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 5

5.3.2.3 Extensions to the PDO Model ... 79

5.3.2.4 MEF Types of Policies .. 79

5.3.2.4.1 Introduction ... 79

5.3.2.4.2 Imperative Policies .. 79

5.3.2.4.3 Declarative Policies ... 79

5.3.2.4.4 Intent Policies .. 80

5.3.2.5 MEF Policy Model Naming Rules .. 80

5.3.2.6 MEF Policy Hierarchy .. 80

5.3.2.6.1 Overview ... 80

5.3.2.6.2 MPMPolicyStructure Overview .. 81

5.3.2.6.3 MPMPolicyStructure Class Definition .. 82

5.3.2.6.4 MPMPolicyStructure Subclasses ... 87

5.3.2.6.5 MPMPolicyComponentStructure Class Hierarchy .. 92

5.3.2.6.6 MPMPolicyComponentStructure Class Definition ... 93

5.3.2.6.7 MPMPolicyComponentStructure Subclasses .. 93

5.3.2.7 ENI Extensions to the MPM ... 122

5.3.2.7.1 Introduction ... 122

5.3.2.7.2 Naming Rules .. 123

5.3.2.7.3 ENI Policy Statement Extensions .. 123

5.3.2.7.4 ENI Policy Clause Extensions ... 127

5.3.2.8 ENI Extended Policy Model ... 130

6 ENI Data Models .. 130

6.1 Introduction .. 130

6.2 ENI Technology-Neutral Data Model .. 130

6.3 ENI Technology-Specific Data Models ... 130

7 Requirements .. 131

7.1 Information Model Requirements .. 131

7.2 Data Model Requirements .. 131

7.3 Ontology Requirements .. 131

8 Future Work ... 131

8.1 Open Issues for the Present Document ... 131

8.2 Issues for Future Study ... 131

History .. 134

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 6

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Experiential Networked
Intelligence (ENI).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 7

1 Scope
The purpose of the present document is to define the ENI information model. The present document will also provide at
least two different examples of how to derive technology-specific data models from the ENI information model.
Finally, it will explain how ontologies can be incorporated to augment, enhance, and specify meaning and different
relationships between modelled entities. This latter is critical to provide semantic reasoning. The present document is
specific to and enhances the current ENI System Architecture.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI GS ENI 001 (V3.1.1): "Experiential Networked Intelligence (ENI); ENI use cases".

[2] ETSI GS ENI 002 (V3.1.1): "Experiential Networked Intelligence (ENI); ENI requirements".

[3] ETSI GS ENI 005 (V3.1.1): "Experiential Networked Intelligence (ENI); System Architecture".

[4] MEF 78.1: "MEF Core Model (MCM)", Strassner J., editor, July 2020.

[5] MEF 95: "MEF Policy Driven Orchestration", Strassner J., editor, July 2021.

[6] OMG: "OMG Meta Object Facility (MOF) Core Specification", version 2.5.1, October 2019.

[7] MEF 95.0.1: "Amendment to MEF 95: Policy Driven Orchestration", October 2022.

[8] The Semantic Versioning specification.

[9] NIST SP 1800-161: "Cybersecurity Supply Chain Risk Management Practices for Federal
Information Systems and Organizations", May 2022.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] Strassner. J.: "Knowledge Representation, Processing, and Governance in the FOCALE
Autonomic Architecture", book chapter, 2011, Elsevier.

[i.2] Strassner, J.: "Policy-Based Network Management", Morgan Kaufman, ISBN 978-1558608597,
September 2003.

https://docbox.etsi.org/Reference/
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/001/03.01.01_60/gs_eni001v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/002/03.01.01_60/gs_eni002v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/005/03.01.01_60/gs_eni005v030101p.pdf
https://www.mef.net/resources/mef-78-1-mef-core-model-mcm/
https://www.mef.net/resources/mef-95-mef-policy-driven-orchestration/
https://www.omg.org/spec/MOF/2.5.1/PDF
https://www.mef.net/resources/mef-95-0-1-amendment-to-mef-95-policy-driven-orchestration/
https://semver.org/
https://csrc.nist.gov/publications/detail/sp/800-161/rev-1/final

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 8

[i.3] Strassner, J., de Souza, J.N., Raymer, D., Samudrala, S., Davy, S., Barrett, K.: "The Design of a
Novel Context-Aware Policy Model to Support Machine-Based Learning and Reasoning", Journal
of Cluster Computing, Vol 12, Issue 1, pages 17-43, March, 2009.

[i.4] Strassner, J., van der Meer, S., O'Sullivan, D., and Dobson, S.: "The Use of Context-Aware
Policies and Ontologies to Facilitate Business-Aware Network Management", Journal of Network
and Systems Management 17(3), pages 255-284, 2009.

[i.5] ETSI GR ENI 016 (V2.1.1): "Experiential Networked Intelligence (ENI); Functional Concepts for
Modular System Operation".

[i.6] Liskov, B.H., Wing, J.M.: "A Behavioral Notion of subtyping", ACM Transactions on
Programming languages and Systems 16 (6): 1811 - 1841, 1994.

[i.7] Gamma, E., Helm, R. Johnson, R., Vlissides, J.: "Design Patterns: Elements of Reusable Object-
Oriented Software", Addison-Wesley, Nov, 1994. ISBN 978-0201633610.

[i.8] Bäumer, D. Riehle, W. Siberski, M. Wulf: "The Role Object Pattern", Proceedings of the 1997
Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA '97), ACM Press, 1997, Pages 218-228.

[i.9] ETSI TR 102 748 (V1.1.1): "Electromagnetic compatibility and Radio spectrum Matters (ERM);
Impact of the trend towards flexibility in spectrum usage on the principles for drafting Harmonized
Standards and the ETSI work programme for Harmonized Standards".

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the terms given in ETSI GS ENI 005 [3] and the following apply:

behaviour: way in which a set of objects function

NOTE: This includes how the object reacts in a particular situation given one or more events.

camelCase: naming convention in which the first letter of each word in a compound word is capitalized, except for the
first word

NOTE: This is also called lowerCamelCase.

formal: study of (typically linguistic) meaning of an object by constructing formal mathematical models of that object
and its attributes and relationships:

• formal grammar: set of structural rules that define how to form valid strings from a language's alphabet that
obey the syntax of the language

• formal semantics: set of tools that define grammatical meaning in a language

identity: the set of data and information that allow an object to be disambiguated from all other objects in a system,
including objects of the same type:

• digital identity: set of data and information used by a computer system to represent an actor, such as a person,
device, or application

• contextual identity: digital identity of an object for a particular context

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 9

inheritance: defining the characteristics and behaviour of an entity on another entity

NOTE 1: The following definition of inheritance is from ETSI TR 102 748 [i.9]: "typical property related to the
concept of classes: when building a new derived class it will inherit properties from one or more
previously-defined base classes, while possibly allowing for redefining or adding new properties". The
ENI Information Model does not allow redefinition of properties, as this breaks information
encapsulation. See ETSI GR ENI 016 [i.5], clause 4.1.2.

• class-based inheritance: defining the characteristics and behaviour of a subclass on a superclass

NOTE 2: Class-based inheritance defines a subclass of a superclass as a class that keeps all of the characteristics
and behaviour of its superclass, and refines that definition in one or more of the following ways:

1) the subclass changes the class from abstract to concrete;

2) the subclass adds one or more attributes, operations, constraints, and/or relationships to its
definition.

• multiple inheritance: object or class may inherit characteristics and/or behaviour from more than one
superclass

NOTE 3: This style of inheritance is not used in ENI.

• single inheritance: object or class shall inherit characteristics and/or behaviour from only one superclass

model element: classes, attributes, operations, constraints, relationships and stereotypes used in constructing a model

override: changing of an attribute or operation implementation by a subclass that is already provided by its superclasses

NOTE: The ENI information model does not use overriding, because this alters the semantics of the class.

PascalCase: naming convention in which the first letter of all words in a compound word is capitalized

NOTE: This is also called UpperCamelCase.

refine: addition of attributes, operations, constraints, and/or relationships to an inherited class

NOTE: Refinement is only added to the semantics of the class. Refinement is not used to delete or override
attributes, operations, constraints, and/or relationships that it inherits.

semantics: study of the meaning of something (e.g. a sentence or a relationship in a model)

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
ASCII American Standard Code for Information Interchange
DSL Domain Specific Language
ECA Event-Condition-Action
ID IDentification
IP Internet Protocol
LDAP Lightweight Directory Access Protocol
MAC Media Access Control
MBM MEF Business Model
MCM MEF Core Model
MEF MEF (a standards body)
MIME Multipurpose Internet Mail Extension
MPM MEF Policy Model

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 10

NFV Network Functions Virtualisation
OCL Object Constraint Language
ONF Open Networking Foundation
PDO Policy Driven Orchestration
POC Proof Of Concept
RDBMS Relational Database Management System
RMM Remote Monitoring and Management
SDO Standards Defining Organisation
SNMP Simple Network Management Protocols
SQL Structured Query Language
TMF TeleManagement Forum
TTL Time-To-Live
UML Unified Modeling Language
YANG Yet Another Next Generation

4 Representing, Inferring, and Proving Knowledge in
ENI

4.1 Introduction
A model is a representation of the entities of a system, including their relationships and dependencies, using an
established set of rules and concepts. It is a vital part of a larger knowledge management infrastructure, which includes
a set of interoperable hardware, software, and other artifacts, along with a set of standardized procedures to use them for
various tasks. Models include information and data models, as well as ontologies, as described in the subclauses below.
Artifacts include the representation and storage of data, information, knowledge, and wisdom (see ETSI
GR ENI 016 [i.5], clause 4.4), as well as inferences made by the ENI System (see ETSI GR ENI 016 [i.5], clause 4.5
and ETSI GS ENI 005 [3], clauses 6.3.4, 6.3.6 and 6.3.7).

4.2 Definitions

4.2.1 Information Model

An information model is a representation of concepts of interest to an environment in a form that is independent of data
repository, data definition language, query language, implementation language, and protocol. The purpose of an
information model is to represent facts in a technology-neutral manner.

4.2.2 Data Model

A data model is a representation of concepts of interest to an environment in a form that is dependent on data
repository, data definition language, query language, implementation language, and/or protocol. The purpose of a data
model is to represent facts in a technology-specific manner.

4.2.3 Ontology

An ontology is a language, consisting of a vocabulary and a set of primitives, that enable the semantic characteristics of
a domain to be modelled. The purpose of an ontology is to represent facts and meaning in a technology-neutral manner.

4.3 Information Model Usage in ENI

4.3.1 Purpose

The purpose of an Information Model is to define and manage objects and their relationships at a conceptual level,
independent of any specific implementations or protocols used to transport the data. ETSI GR ENI 016 [i.5] provides a
set of important principles for designing modular systems.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 11

Application interoperability requires a set of consensual high level patterns for the creation, manipulation, and use of
descriptive, machine understandable information. In particular, it is not enough to define data with a simple MIME type
(or its equivalent), as this does not provide needed semantics or metadata. The ENI information model defines a rich
metadata hierarchy (see clause 5.2 of the present document) and relationships that enable any class to optionally have
metadata attached to it. Examples include both descriptive (e.g. best current practices) and prescriptive (e.g. minimum
version of an object, or valid time interval of a policy) information [4].

An Information Model provides a standardized framework for organizing data. Its structure encourages reusability and
facilitates searching.

NOTE 1: Metadata may also provide advanced functionality by defining additional metadata information to search
on.

MEF 78.1 [4] and ETSI GR ENI 016 [i.5] provide an overview of the MEF Core Model (MCM) and a set of design
principles that use modelling, respectively. Key requirements in this approach follow (see clause 7.1 for more detailed
information):

• Inheritance: The ENI information model shall use single inheritance. This simplifies implementation, as not
all systems are able to implement multiple inheritance (MEF 78.1 [4]).

• Overriding attributes: The ENI information model shall not override an inherited attribute or operation. This
is because the semantics of the object containing the overridden attribute or operation are now changed
(MEF 78.1 [4]).

• Information Hiding: Information hiding prevents implementation details from being unnecessarily exposed.
This makes the design more robust, since implementations details are hidden behind a stable interface that
does not change. It also supports modular decomposition of a system into smaller, reusable components. The
ENI information model shall use information hiding to ensure that clients of an object do not have to change
when the implementation of an object changes. An important corollary is that different model elements can be
developed independently and do not have to know how other software entities work (ETSI GR ENI 016 [i.5]).

• Encapsulation: Encapsulation is an implementation mechanism that defines the boundaries of a model
element (e.g. a class is a collection of attributes, operations, and relationships that are part of a single object)
(ETSI GR ENI 016 [i.5]).

• Single Responsibility: Classes should be designed having one responsibility; this means that the only reason
for a class to change is if its responsibility changes (ETSI GR ENI 016 [i.5]).

• Liskov Substitution: Subclasses should be able to be substituted for superclasses without affecting the
behaviour of the system (ETSI GR ENI 016 [i.5]).

• Loose Coupling: Each element of a loosely coupled system should depend on as little knowledge as possible
of other elements. This means that classes should not depend on other classes. Rather, different types of
associations should be used to realize those dependencies (ETSI GR ENI 016 [i.5]).

NOTE 2: Many models use class attributes to contain values of one or more attributes of one or more other classes.

EXAMPLE: A Person class may contain one or more phone number attributes. This violates loose coupling. A
better design is to define a relationship between the Person class and a ContactInfo class. This
way, if one or more phone numbers change, the Person class is not affected.

• Design by Contract: Software entities whose behaviour needs to be managed should be designed using
formal specifications that use pre- and post-conditions, as well as invariants, to specify the behaviour of the
entity (ETSI GR ENI 016 [i.5]).

4.3.2 Use of an Information Model as a Blueprint for Entity Definitions

The use of an information model is similar to how master data management is used. The information model provides a
consensual set of definitions for the model elements of a system. This in turn ensures accuracy, uniformity, and
consistency of semantics for objects represented in the information model. It also provides a consistent set of identifiers
that can unambiguously identify different instances of the same object.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 12

4.3.3 Use of an Information Model to Define a Lexicon and Grammar

An information model defines the meaning of concepts of interest to the managed environment in the form of classes.
Classes may have zero or more attributes, operations, and relationships [i.5]. When instantiated, classes become objects.

In linguistics a lexicon contains syntactic and semantic information about words used in a particular context. The
lexicon serves as a consensual reference for different users with varying skills and terminologies. It is thus analogous to
a lingua franca, serving to enable communication between diverse groups of people who do not have a common set of
vocabularies that can describe the salient features and behaviour of objects in the managed environment.

In an ENI System, the ENI Information Model helps enforce a lexicon that is readable for humans and machines. It
provides definitions of classes and relationships between classes, and through associated metadata (see clause 5.2.2.6),
provides additional descriptive and/or prescriptive information associated with those objects.

4.4 Data Model Usage in ENI

4.4.1 Purpose

The purpose of a Data Model is to define and manage objects and their relationships at a conceptual level. Data models
are dependent of platform, language and/or protocol. Since a data model is a specific technology-dependent
instantiation of a common information model, data models enable application-specific needs to be represented in an
optimal form. In this way, a common concept can be translated into multiple application-specific forms. For example, a
customer could be represented as a set of relative distinguished names in a directory and as a set of tables in an
RDBMS. Since both data models were derived from the same information model, common characteristics and
behaviour is embedded in both. This ensures that both applications have understand what the customer is.

Data modeling tools and techniques translate complex system designs into clearly understood representation of data
flows and processes.

4.4.2 Use of a Data Model as a Blueprint for System Data

Data modeling creates a UML definition of all or part of a system. This includes graphical representations of the design
as well as textual definitions of the objects. It may also include different types of UML diagrams that show different
aspects of the interaction between objects. In addition, code may be generated from the UML model in most UML
tools. Data models are living documents that evolve along with changing business needs.

Information models are built around business needs. Data models instantiate those models into artefacts (e.g. data
structures and code) particular to the needs of an application. Data modeling employs standardised schemas and formal
techniques that are specific to a particular platform, language, and/or protocol. This provides a common and consistent
mechanism of defining and managing data resources across an organization, or even beyond.

4.4.3 Derivation of Data Models from an Information Model

ENI specifies the use of a single information model, along with zero or more data models, as shown in Figure 4-1.

Figure 4-1: Modelling Tiers

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 13

In Figure 4-1, the information model serves as the definitive source for specifying model elements in a technologically
neutral fashion. This enables different data models (e.g. a directory and a relational database) to be derived from the
information model without introducing bias in the mapping.

EXAMPLE: A relational database uses a much more powerful language (SQL) than a directory, and has more
powerful relationships (e.g. SQL enables very complex relationships to be defined that have no
equivalent in directories).

If a data model was used for defining concepts, each concept would have an associated bias from the dependencies of
that data model on data repository, data definition language, query language, implementation language, and protocol. In
contrast, using an information model enables each concept to be defined without such biases.

Accordingly, Figure 4-1 illustrates one form of model mapping for possible use in ENI. In this Figure, a particular Data
Model (for example, a Directory) is produced from an information model. This mapping produces a directory
implementation that is conformant with the appropriate standards (e.g. LDAP or X.500). This is different than another
data model, which for example is for a Relational Database, and is conformant with SQL92. The second tier of mapping
accounts for the fact that different vendors provide varying degrees of compliance with a standard. In addition, some
vendors provide features that are not yet standardized. This second tier of mapping enables these differences to be
normalized, so that different implementations of the same data model can better interoperate. Thus, our hierarchy shows
an information model standard being mapped to the appropriate data model standard, from which various
vendor-specific implementations are built.

The reason for having a single information model is best understood via an analogy. Imagine that a new word was
introduced in a document for which there were three dictionaries. This word had three different definitions, one in each
dictionary. The reader is now confused, because the reader is not sure which definition is correct.

The above simple analogy is exacerbated if there are multiple information models, which contain large number of
objects, attributes, operations, and relationships to other objects. More importantly, consider Figure 4-2, which shows
two information models that have concepts that appear to be similar.

Figure 4-2: High-Level Functional Architecture of ENI When an API Broker is Not Used

The information model on the left is significantly different than the one on the right of this figure. For example, in the
left model, all of the subclasses of ManagedElement inherit an aggregation to Metadata. In contrast, the right model
only enables the subclasses of Rule to inherit a similar aggregation. Furthermore, even though there are two instances of
an entity called IntentPolicy, this inheritance means that the two are semantically dissimilar. In addition, the
IntentPolicy entity on the left cannot be "copied" to the model on the right, because there is no common root class
between the two models. Even if there was, the IntentPolicy class has two significant differences: inheritance and
aggregations. Even if Policy was introduced as a subclass of Rule (to enable the introduction of IntentPolicy in the
model on the right), it is still lacking two features from the model on the left:

1) applications can aggregate Policy; and

2) applications also have Metadata.

This does not cover all of the differences (e.g. the left model enables Applications to aggregate different types of
Policies, while the right model does not offer this capability); this capability would also need to be copied to the model
on the right.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 14

4.5 Ontology Usage in ENI

4.5.1 Introduction

Information and data models are widely used to represent managed objects. As such, they are natural to use for building
APIs, since the models describe the objects that are being communicated and manipulated by the API.

However, information and data models do not have standardized formal semantics. For the purposes of the present
document, all ontologies shall have a formal grammar and associated formal semantics.

In an ENI System, models represent facts, and ontologies add meaning to those facts. This forms a semantic network, as
described in clause 6.3.4.4.1 of ETSI GS ENI 005 [3]. This combination of models and ontologies enable semantic tools
and applications to be built that may infer knowledge and gain insight for operational purposes.

In an ENI System, models should be constructed using the principles set forth in ETSI GR ENI 016 [i.5]. This
significantly simplifies the creation of semantic links between a set of model elements and a set of ontological concepts.

4.5.2 Use of Ontologies to Enable Formal Reasoning and Learning

An ontology is a consensual formal description of knowledge within a domain. This knowledge consists of both objects
and the relationships that hold between them. It therefore ensures a common understanding of information.
Relationships between concepts in an ontology enable automated reasoning. More importantly, ontologies are able to
add new and change existing knowledge about a domain dynamically.

In an ENI System, ontologies should be used to specify common representations of knowledge from external and
internal systems. The reason an ENI System will use both models and ontologies is twofold. First, data models of
managed objects relevant to an ENI System are readily available. Since ontologies are available in a significantly
limited number and for a smaller set of domains, models are realized first and form the "backbone" of knowledge
management in an ENI System. Second, given the limitations of models discussed in clause 4.5.1 of the present
document and in ETSI GS ENI 005 [3] (but especially in clause 6.3.4 of ETSI GS ENI 005 [3]), ontologies are needed
to add and formalize knowledge. This shifts the focus from managing and using data to managing and using knowledge.
This enables interoperability and enhanced search (e.g. based on the meaning of what is being searched for, not just
names and attributes).

Typical use cases for an ENI System include:

• Augment and enhance model elements with meaning.

• Discover new concepts through inference.

• Discover new relationships between concepts through inference.

• Ensure that knowledge in an ENI System is always up-to-date by learning experientially.

4.6 Model Augmentation

4.6.1 Introduction

The information model is the "ultimate source of truth". However, ENI is an experiential system, and as such, is able to
discover new data, information, and knowledge, as well as changes in existing data, information, and knowledge. This
is enabled by noting such changes in the set of data models that are deployed, and sending these changes to the
Knowledge Management Functional Block. This is captured in clause 5.6 of ETSI GS ENI 005 [3] and discussed more
in clause 6.3.4 of ETSI GS ENI 005 [3].

It is therefore recommended that the information model, and all derived data models, be each augmented with
ontological information. The above reasons result in many of the requirements in clause 5.6 of ETSI GS ENI 005 [3].

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 15

4.6.2 Augmentation of an Information Model using Ontologies

Whilst information models are indispensable, they do have some key technical limitations. Three such limitations that
are critical to ENI are:

1) Information models do not provide the ability to robustly represent semantics.

2) Information models do not provide the ability to conduct semantic searches.

3) Information models do not provide the ability to formally prove hypotheses.

Information models work by defining facts using model elements (e.g. classes, attributes, operations, relationships, and
constraints). This means that information models can not inherently infer new facts. For example, if an information
model defines the concepts of father and brother, it is unable to infer that an uncle is the brother of a father (this
example ignores more complex definitions, which suffer from the same inability as that identified). In contrast,
ontologies use formal logic, and can therefore infer this relationship without having to predefine a new object called
uncle. This enables ontological systems to dynamically add and change information.

A semantic search is one in which the subject of the search is based on the meaning, behaviour, or processes involved
concerning the subject (as opposed to being limited to just keywords or phrases). For example, it is very difficult for an
information model to find telemetry data that depends on a particular measurement operation, or to compare telemetry
data that use similar measurement operations.

The Unified Modeling Language (UML) standard lacks the ability to use formal logic as part of its definitions of model
elements. This means that facts cannot be proven. For example, a relationship is created between two objects because
that relationship is asserted as a fact. Formal logic is able to mathematically prove whether in fact such a relationship
exists, and more importantly, where its ideal location is (e.g. between one or more superclasses or subclasses of the
objects in question).

Therefore, semantic relationships are used to attach meaning (from the ontologies) to technology-neutral facts (from the
information model). This is discussed more in clause 6.3.4 of [i.1].

4.6.3 Augmentation of Data Models Using Ontologies

The reasoning in the clause 4.3.2 also applies to data models, since data models are built from information models.
More importantly, the purpose of a data model is to describe the structure of the data required for a particular
application or service. In contrast, an ontology represents knowledge, using formal logic, that can be applied to multiple
applications and services. The main difference is that semantic relationships are now used to attach meaning (from the
ontologies) to technology-specific facts (from the data model).

4.7 Synchronizing and Reconciling Modelled Data
This is for further study in Release 4 of the present document.

4.8 Securing Modelled Data
This is for further study in Release 4 of the present document.

4.9 Decision-Making

4.9.1 Introduction

This is for further study in Release 4 of the present document.

4.9.2 Control Loops

This is for further study in Release 4 of the present document.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 16

4.9.3 Traditional Learning and Reasoning

This is for further study in Release 4 of the present document.

4.9.4 Semantic Learning and Reasoning

This is for further study in Release 4 of the present document.

4.9.5 Cognitive Learning and Reasoning

This is for further study in Release 4 of the present document.

4.10 Model-Driven DSLs

4.10.1 Introduction

This is for further study in Release 4 of the present document.

4.10.2 Constructing Model-Driven DSLs

This is for further study in Release 4 of the present document.

4.11 Model-Driven APIs
A preliminary example of how models were used to build ENI APIs is described in clause 8 of ETSI GS ENI 005 [3].

NOTE: This clause will be updated in the next version of the present document.

5 ENI Information Model

5.1 Introduction
The present document shall use Unified Modeling Language (UML) [6] to describe the salient characteristics and
behaviour of objects of interest to the managed environment, and how these objects may interact with each other.
Interaction may be a feature of objects (e.g. dependencies between objects) or externally defined (e.g. ENI Policies are
used to change the state of a managed object).

5.2 The Design of the ENI Extended Core Model

5.2.1 Introduction

The design of the MCM is based on a single-rooted model. Many models do not use a single root hierarchy. A single
root enables all subclasses to have a common interface, and be defined as the same type of object. This also means that
all objects in a type hierarchy have a set of guaranteed functionality.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 17

5.2.2 The MCM (MEF Core Model)

5.2.2.1 Introduction

The MCM is an object-orientated information model that defines objects and their relationships that represent entities
and concepts important to a managed environment. It uses a set of naming rules, defined in clause 5.2.2.2, to guarantee
naming consistency in model elements. This also facilitates creating namespaces to provide the developer additional
flexibility in constructing applications.

The MCM has been constructed using classification theory [i.6]. This defines class hierarchies, where each class
hierarchy is a family of types. The type of an object determines both a set of legal values and an interface with its
environment (through calls on its operations). In each hierarchy, higher level supertypes define a set of behaviours that
all of their subtypes inherit. All subtypes preserve the behaviour of the supertype operations and the attributes of its
supertype.

For further information on the MCM, see [4]. The rest of clause 5.2.2 and its subclauses summarise the salient
information from [4] that is used to build the ENI Extended Core Model.

5.2.2.2 Naming Rules

The following lists the MCM naming rules, adapted to ETSI terminology:

1) The MCM uses the following rules to define the names of its model elements.

2) Class names shall be in UpperCamelCase (i.e. the first letter is capitalized). Class names shall not begin with
any non-alphabetic character, and no spaces are allowed.

3) Attribute names shall be in lowerCamelCase (i.e. the first letter is lower case); attribute names shall not begin
with any non-alphabetic character except for the underscore, and no spaces are allowed.

NOTE: Attribute names that begin with an underscore are private attributes that reference an end of an
association.

4) Relationship names shall be in UpperCamelCase (i.e. the first letter is capitalized). Relationship names shall
not begin with any non-alphabetic character, and no spaces are allowed.

5) Each class shall be prefixed with "MCM". For example, RootEntity is named "MCMRootEntity". This serves
two purposes. First, it helps provide context to textual descriptions of these model elements. Second, it enables
MCM model elements, patterns, and approaches to be compared to those of other SDOs and consortia
unambiguously.

6) Each attribute shall be prefixed with "mcm".

EXAMPLE 1: The attribute "commonName" in the MCMRootEntity class is named "mcmCommonName". If an
attribute starts with an underscore, then "mcm" immediately follows the underscore
(e.g. _mcmARef).

7) Each relationship shall be prefixed with "MCM".

EXAMPLE 2: The aggregation "EntityHasMetaData" is named "MCMEntityHasMCMMetaData".

8) All association classes shall be suffixed with the word "Detail".

EXAMPLE 3: The association class for the above example is named "MCMEntityHasMCMMetaDataDetail".
This makes it obvious that a class is an association class.

Regarding interoperability with concepts from other SDOs:

1) All classes that model a concept from another SDO and change the model of that SDO (e.g. to be able to be
used in the MCM) shall be prefixed with "MCMMEF". For example, the concept of a Descriptor from ETSI
NFV is named "MCMMEFDescriptor".

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 18

2) All classes that model a concept from another SDO exactly as it is defined in that SDO shall be prefixed with
"MCM", followed by the name of the SDO, followed by the class name. For example, if an SDO named Foo
defined a class named Bar, and MCM imported this concept with no changes, it would be named
MCMFooBar.

A note about associations, aggregations, compositions, and their multiplicity. The UML guidelines do not specify in
detail what valid multiplicities are. In the MCM, multiplicities are important, in order to provide a robust foundation for
code generation, as well as to accommodate the future incorporation of ontologies.

Therefore:

1) Association relationships may have a 0..* - 0..* multiplicity. This is because they represent a generic
dependency, and one end of the association may not be instantiated yet.

2) Aggregation and composition relationships should not have a 0..* - 0…*.

3) multiplicity. This is because both aggregations and compositions are a type of whole-part relationship.
Ontologically, it is impossible to talk about a "whole" when no "parts" exist (or vice-versa). If there is the
possibility of not instantiating the relationship, then the cardinality of the aggregate (or composite) part should
be 0..1, where the 0 signifies that the relationship has not yet been instantiated.

4) Relationships whose owner (i.e. the source of the relationship) is a value greater than 0 (e.g. 1 or 1..* or 3..7)
should have a part multiplicity of at least 1. This is because one side of the relationship shall exist, and it
makes no sense to have one side of a relationship exist while the other side does not.

5.2.2.3 MCM Superstructure

5.2.2.3.1 Overview

Figure 5-1 shows the MCM Superstructure. This consists of MCMRootEntity, which is the root of the entire MCM, and
its three subclasses.

Figure 5-1: The MCM Superstructure

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 19

5.2.2.3.2 MCMRootEntity

5.2.2.3.2.1 Overview

MCMRootEntity defines a set of attributes that enable all objects to be unambiguously named, described, and identified
in a managed environment. It defines three subclasses, which provide three class hierarchies to represent different
objects and concepts important to a managed environment. The limit of three subclasses simplifies the understanding of
the model, and uses classification theory to ensure that objects are organized into groups according to a set of criteria
(e.g. their similarities and/or differences).

The three subclasses create three parallel class hierarchies that can interact with each other. For example, object
instances from the MCMMetaData class hierarchy are designed to be attached to object instances from the other two
class hierarchies. In addition, classes from the MCMInfoResource class hierarchy are inherently related to classes from
the MCMEntity class hierarchy.

5.2.2.3.2.2 Class Definition

MCMRootEntity is an abstract class that defines the top of the MEF Core Model (MCM) class hierarchy It specifies a
set of attributes, methods, and relationships that other classes in the MCM inherit.

5.2.2.3.2.3 Attribute Definition

Table 5-1 defines the attributes of the MCMRootEntity class.

Table 5-1: Attributes of the MCMRootEntity Class

Attribute Name Description
mcmCommonName :
String[0..1]

This is a string attribute that represents a user-friendly name for this object.
This attribute shall not be used as a naming attribute.

mcmDescription:
String[0..1]

This is a string attribute that defines a free-form description of the object.

mcmObjectIDContent:
String[1..1]

This attribute is a string that, with the mcmObjectIDFormat attribute, define a composite
objectID. This class attribute contains the value of the objectID. The objectID enables the
developer to customise the content and format to represent a unique ID of an object.
The value of this attribute shall not be a NULL or EMPTY string.

mcmObjectIDFormat:
String[1..1]

This attribute is a string that, with the mcmObjectIDFormat attribute, define a composite
objectID. This class attribute defines the format of the objectID. The objectID enables the
developer to customise the content and format to represent a unique ID of an object.
The value of this attribute shall not be a NULL or EMPTY string.

5.2.2.3.2.4 Operation Definition

Table 5-2 defines the operations for the MCMRootEntity class. there are no individual getters and setters for the
mcmObjectIDContent and mcmObjectIDFormat attributes because they form a tuple.

Table 5-2: Operations of the MCMRootEntity Class

Operation Name Description

getMCMCommonName() :
String[1..1]

This operation returns this object's mcmCommonName attribute as a String.
If this attributes does not have a value, then this operation should return an
empty string.

setMCMCommonName(
in inputString : String[1..1])

This operation sets the current value of the mcmCommonName attribute of this
object. The mcmCommonName String parameter attribute contains a new
value for this attribute.
An empty string should be used to define an empty value for this attribute.

getMCMObjectID() : String[2..2]

This operation returns this object's mcmObjectID attribute as a String of
multiplicity [2], where the first element contains the mcmObjectIDContent
attribute, and the second element contains the mcmObjectIDFormat attribute.
If either returned parameter is NULL or an empty string, then an exception
shall be thrown.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 20

Operation Name Description

setMCMObjectID(
in objectContent : String[1..1],
in objectFormat: String[1..1])

This operation sets the current value of the value of the mcmObjectID. The first
input parameter defines the new value of the mcmObjectIDContent attribute.
The second input parameter defines the new value of the mcmObjectIDFormat
attribute.
Both parameters shall not be NULL or EMPTY strings.

getMCMDescription() : String[1..1]
This operation returns this object's mcmDescription attribute as a String.
If this attributes does not have a value, then this operation should return an
empty string.

setMCMDescription(
in inputString : String[1..1])

This operation sets the current value of the mcmDescription attribute. Its String
parameter contains the new value of the mcmDescription attribute.
An empty string should be used to define an empty value for this attribute.

5.2.2.3.2.5 Relationship Definition

No relationships (i.e. associations, aggregations, or compositions) are defined that involve RootEntity. This is because
any such relationships would apply to all MCM classes, which would in turn violate software architecture principles.

5.2.2.4 MCMEntity Hierarchy

5.2.2.4.1 Overview

The MCMEntity hierarchy defines the five major different types of entities that are of interest to the managed
environment. An MCMEntity defines the externally visible characteristics and behaviour of the managed environment
in more detail. Each MCMEntity has a separate and distinct existence (i.e. an MCMEntity is not just a collection of
attributes or an abstraction of behaviour). The MCMEntity class has five abstract subclasses, as shown in Figure 5-2.

Figure 5-2: The MCMEntity Hierarchy

5.2.2.4.2 MCMEntity

5.2.2.4.2.1 Overview

Any object that is monitored or configured is typically a subclass of MCMEntity. An MCMEntity inherits the attributes,
operations, and relationships of MCMRootEntity. This means that any subclass of MCMEntity can aggregate zero or
more MCMMetaData objects (see clause 5.2.2.5) and zero or more MCMInformationResource objects (see
clause 5.2.2.6).

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 21

5.2.2.4.2.2 Class Definition

An MCMEntity is an abstract class that represents objects that are important to the managed environment. Each of its
five subclasses form a unique class hierarchy that may play one or more business functions, and may be managed or
unmanaged (using digital mechanisms). Examples include Chassis, Rack, and CableDuct (unmanaged) and Product,
Service, and Resource (managed).

5.2.2.4.2.3 Attribute Definition

This class does not currently define any attributes, because there is no attribute that is common to all of its subclasses.

5.2.2.4.2.4 Operation Definition

Table 5-3 defines the operations for the MCMEntity class.

Table 5-3: Operations of the MCMEntity Class

Operation Name Description

getMCMMetaDataList() :
MCMMetaData[1..*]

This operation returns the set of MCMMetaData objects that are attached to this
particular MCMEntity object.
If this object does not have any attached MCMMetaData, then a NULL
MCMMetaData object should be returned.

setMCMMetaDataList(
in attachedMetaDataList :
MCMMetaData[1..*])

This operation defines the set of MCMMetaData objects that will be attached to
this particular MCMEntity object. The single input parameter, called
attachedMetaDataList, is an array of one or more MCMMetaData objects. This
operation creates a set of aggregations between this particular MCMEntity object
and the set of MCMMetaData objects identified in the input parameter. Any
existing aggregations not specified in the input parameter are deleted.
Each aggregation created by this operation should have an instance of the
MCMEnttyHasMCMMetaDataDetail class.

setMCMMetaDataPartialList(
in attachedPartialMetaDataList:
MCMMetaData[1..*])

This operation defines a set of one or more MCMMetaData objects that will be
attached to this particular MCMEntity object without affecting any other existing
contained MCMMetaData objects or the objects that are contained in them. This
operation creates a set of aggregations between this particular MCMEntity object
and the set of MCMMetaData objects identified in the input parameter.
Each aggregation created by this operation should have an instance of the
MCMEntityHasMCMMetaDataDetail class.

delMCMMetaDataList()

This operation deletes all instances of attached MCMMetaData for this particular
MCMEntity. This operation removes the association class and the aggregation
between this MCMEntity object and each MCMMetaData object that is attached
to this MCMEntity object.

delMCMMetaDataPartialList(
in attachedPartialMetaDataList :
MCMMetaData[1..*])

This operation deletes a set of MCMMetaData objects from this particular
MCMEntity. This operation removes the association class and its aggregation
between each MCMMetaData object specified in the input parameter and this
MCMEntity.
All other aggregations between this MCMEntity and other MCMMetaData objects
that are not specified in the input parameter shall not be affected.

getMCMInfoResourceList() :
MCMInformationResource[1..*]

This operation returns the set of MCMInformationResource objects that are
currently attached to this particular MCMEntity object as an array of one or more
MCMInformationResource objects.
If this object does not have any attached MCMInformationResource objects, then
a NULL MCMInformationResource object should be returned.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 22

Operation Name Description

setMCMInfoResourceList(in
attachedInfoResourceList :
MCMInfoResource[1..*])

This operation defines the set of MCMInformationResource objects that will be
attached to this particular MCMEntity object. This operation deletes any existing
attached MCMInformationResource objects and then instantiates a new set of
MCMInformationResource objects; in doing so, each MCMInformationResource
object is attached to this particular MCMEntity object by creating an instance of
the MCMEntityHasMCMInfoResource aggregation and realizing that aggregation
instance as an association class.
Each aggregation created by this operation should have an instance of the
MCMEntityHasMCMInfoResourceDetail class.

setMCMInfoResourcePartialList(i
n attachedInfoResource-
PartialList :
MCMInfoResource[1..*])

This operation defines a set of one or more MCMInformationResource objects
that will be attached to this particular MCMEntity object without affecting any
other existing contained MCMInformationResource objects or the objects that are
contained in them. This operation creates a set of aggregations between this
particular MCMEntity object and the set of MCMInformationResource objects
identified in the input parameter.
Each aggregation created by this operation should have an instance of the
MCMEntityHasMCMInfoResourceDetail class.

delMCMInfoResourceList()

This operation deletes all instances of attached MCMInformationResource
objects for this particular MCMEntity. This operation removes the association
class and its aggregation between this MCMEntity object and each
MCMInformationResource object that is attached to this MCMEntity object.

delMCMInfoResourcePartialList(i
n attachedPartial-MetaData :
MCMInformation-Resource[1..*])

This operation deletes a set of MCMInformationResource objects from this
particular MCMEntity. This operation removes the association class and its
aggregation between each MCMInformationResource object specified in the input
parameter and this MCMEntity.
All other aggregations between this MCMEntity and other
MCMInformationResource objects that are not identified in the input parameter
shall not be affected.

5.2.2.4.2.5 Relationship Definition

MCMEntity defines two relationships, called MCMEntityHasMCMInfoResource and MCMEntityHasMCMMetaData,
as shown in Figure 5-2.

MCMEntityHasMCMInfoResource is an optional aggregation that defines the set of MCMInformationResource objects
that are associated with this particular set of MCMEntity objects. Its multiplicity is 0..1 - 0..*. If this aggregation is
instantiated, then zero or more MCMInformationResource objects can be aggregated by this particular MCMEntity
object. The cardinality on the part side is 0..*, which enables an MCMEntity object to be defined without having to
define an MCMInformationResource object for it to be associated with. The semantics of this aggregation are defined
by the MCMEntityHasMCMInfoResourceDetail association class. This enables the semantics of the aggregation to be
defined using the attributes and behaviour of this association class. For example, it can be used to define which
MCMInformationResource objects are allowed to be associated with which MCMEntity objects.

MCMEntityHasMCMMetaData is an optional aggregation that defines the set of MCMMetaData objects that are
associated with this particular set of MCMEntity objects. Its multiplicity is 0..1 - 0..*. If this aggregation is instantiated,
then zero or more MCMMetaData objects can be aggregated by this particular MCMEntity object. The cardinality on
the part side is 0..*; this enables an MCMEntity object to be defined without having to define an MCMMetaData object
for it to be associated with. The semantics of this aggregation are defined by the MCMEntityHasMCMMetaDataDetail
association class. This enables the semantics of the aggregation to be defined using the attributes and behaviour of this
association class. For example, it can be used to define which MCMMetaData objects are allowed to be associated with
which MCMEntity objects.

Both of the above association classes can be further enhanced by using the Policy Pattern to define policy rules that
constrain which part objects (i.e. MCMMetaData) are attached to which object. MCMPolicyStructure is an abstract
class that is the superclass of imperative, declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for
an exemplary illustration of the Policy Pattern.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 23

5.2.2.4.3 MCMUnManagedEntity Hierarchy

5.2.2.4.3.1 Overview

A simplified view of the MCMUnManagedEntity hierarchy is shown in Figure 5-3.

Figure 5-3: The MCMUnManagedEntity Hierarchy

The purpose of the MCMUnManagedEntity hierarchy is to model the different types of MCMEntities that cannot be
intrinsically managed, yet are of interest to the managed environment. In the MCM, any purely physical object is
defined as unmanageable. Examples include geographic areas, building, Racks, Chassis, and other purely physical
Entities. Management capabilities are provided by the logical objects that are attached to a physical object.

MCMUnMangedEntity objects are important to the managed environment because they provide context (e.g. where a
customer premise equipment is located) and a point of reference (e.g. ensure that cell coverage covers this geographic
area).

NOTE: The use of subclasses of MCMUnManagedEntity in the ENI Extended Core Model are for further study.

5.2.2.4.3.2 Class Definition

MCMUnMangedEntity is an abstract class, and specializes MCMEntity. It represents MCMEntities that are important
to the managed environment, but which have no inherent ability to digitally communicate with other MCMEntities.
Hence, they cannot be managed by digital mechanisms.

Two main subclasses of MCMUnManagedEntity, called MCMLocation and MCMPhysicalEntity, are defined.

5.2.2.4.3.3 Attribute Definition

This class defines a single attribute, which is shown in Table 5-4.

Table 5-4: Attributes of the MCMUnManagedEntity Class

Attribute Name Description

mcmIsToponym[0..1]
This is a Boolean attribute. If the value of this attribute is TRUE, then this
MCMUnManagedEntity is a toponym (i.e. a name of a place). Examples include
"Corporate Headquarters" and "CustomerSiteLocation".

5.2.2.4.3.4 Operation Definition

The operations of this class are shown in Table 5-5.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 24

Table 5-5: Operations of the MCMUnManagedEntity Class

Operation Name Description

getMCMIsToponym : Boolean[1..1]
This operation returns the value of the mcmIsToponym attribute. If the value
of this attribute is TRUE, then this MCMUnManagedEntity is a toponym (i.e.
a name of a place).

setMCMIsToponym(
in isAToponym : Boolean[1..1])

This operation sets the current value of the mcmIsToponym attribute. It
contains a single input parameter, of type Boolean, to define the new value of
this attribute.

5.2.2.4.3.5 Relationship Definition

No relationships are defined for the MCMUnManagedEntity class. It participates in one relationship, called
MCMMgdEntityRefersToMCMUnManagedEntity, which is defined in clause 5.2.2.4.4.5.

5.2.2.4.4 MCMManagedEntity Hierarchy

5.2.2.4.4.1 Overview

The MCMManagedEntity class has six abstract subclasses, as shown in Figure 5-4.

Figure 5-4: The MCMManagedEntity Hierarchy

The MCMManagedEntity hierarchy represents and manages Products, Services, and Resources. As such, the
MCMDefinition hierarchy is used to specify common characteristics and behaviour of these three concepts, and the
MCMPolicyObject hierarchy is used to manage these three concepts.

5.2.2.4.4.2 Class Definition

MCMManagedEntity is an abstract class, and specializes MCMEntity. It represents objects that have the following
common semantics:

1) each has the potential to be managed;

2) each can be associated with at least one ManagementDomain;

3) each can be related to Products, Resources, and/or Services of the system being managed.

This is the base class for defining Product, Resource, Service, and Policy hierarchies.

5.2.2.4.4.3 Attribute Definition

Table 5-6 defines the attributes of this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 25

Table 5-6: The Attributes of the MCMManagedEntity Class

Attribute Name Description

mcmAdminState :
MCMAdminState[1..1]

This is a mandatory enumeration that defines the set of states for what the IETF
and ITU-T call "AdminStatus". The MCM extends this concept to include locked, in
test, and enabled states. The values that this attribute can have are defined by the
MCMAdminState enumeration.

mcmOperState :
MCMOperState[1..1]

This is a mandatory enumeration that defines the set of states for what the IETF
and ITU-T call "OperStatus". The MCM version extends this concept to include
operating, not operating, enabled, installed, and other states. The values that this
attribute can have are defined by the MCMOperState enumeration.

mcmMgdEntityCreationDate :
TimeAndDate[1..1]

This is a TimeAndDate attribute. It defines the time and date that this object
instance was created.
This attribute should have a valid time and/or date.
The implementation may ensure that the fields in this data type are set to an
appropriate default value.

mcmExternalID-
AttrName : String[0..1]

This attribute is a string, and defines the name of an objectID that an external
Application is using.
This attribute shall not be used as a naming attribute.
If an object does not have a value for this class attribute, then an empty string
should be used.

A common need of many operational and business support systems is to define an objectID that meets their business
needs. For example, a purchase order ID might be expected to have a particular structure. The MCM has therefore
defined an attribute, called mcmExternalIDAttrName, to provide this flexibility. This is the purpose of the
mcmExternalIDAttrName defined in Table 5-6.

The mcmExternalIDAttrName attribute shall be defined as a string, in order to simplify the design and improve
interoperability. This enables operational and business support systems to name an attribute that can be used for all
MCMManagedEntity classes in an interoperable manner.

5.2.2.4.4.4 Operation Definition

Table 5-7 defines the operations of this class. These operations include getters and setters that manipulate the behaviour
provided in relationships that MCMManagedEntity participates in.

Table 5-7: Operations of the MCMManagedEntity Class

Operation Name Description
getMCMAdminState() :
MCMAdminState[1..1]

This operation returns the value of the mcmAdminState attribute. The value
returned is one of the values defined in the MCMAdminState enumeration.

setMCMAdminState (in
newAdminState :
MCMAdminState[1..1])

This operation defines the new value for the mcmAdminState attribute. The
newAdminState input parameter defines the new value to be used.

getMCMOperState() :
MCMOperState[1..1]

This operation returns the value of the mcmOperState attribute. The value
returned is one of the values defined in the MCMOperState enumeration.

setMCMOperState(in
newOperState :
MCMOperState[1..1])

This operation defines the new value for the mcmOperState attribute. The
newOperState input parameter contains the value to be used.

getMCMMgdEntityCreation-
Date() : TimeAndDate[1..1]

This operation returns the value of the mcmMgdEntityCreationDate attribute. The
value returned is a TimeAndDate attribute.
This attribute should have a complete and valid time and/or date.
The implementation may ensure that the fields in this data type are set to an
appropriate default value.

setMCMMgdEntityCreation-
Date(in newTimeAndDate :
TimeAndDate [1..1])

This operation defines a new value for the mcmMgdEntityCreationDate attribute.
The newTimeAndDate attribute defines the value to be used.
This attribute should have a complete and valid time and/or date.

getMCMExternalIDAttrName() :
String[1..1]

This operation retrieves the value of the mcmExternalIDAttrName attribute.
This class attribute shall not be used as a naming attribute.
If an object does not have a value for this class attribute, then an empty string
should be used.

setMCMExternalIDAttrName (in
newAttrName : String[1..1])

This operation defines a new value for the ExternalIDAttrName attribute. The
newAttrName input parameter defines the new name of this attribute.
This class attribute shall not be used as a naming attribute.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 26

Operation Name Description

getMCMParentDomain() :
MCMManagement-Domain[1..1])

This operation retrieves the MCMManagementDomain that contains this
MCMManagedEntity.
If this MCMManagedEntity has no containing MCMManagementDomain, then it
should return a NULL MCMManagementDomain object.

setMCMParentDomain (in
newMgmtDomain :
MCMManagement-Domain[1..1])

This operation defines a new MCMManagementDomain to contain this particular
MCMManagedEntity. The newMgmtDomain attribute defines the new parent.
If this MCMManagedEntity object already has a parent, then its existing parent
will be deleted by first, deleting the accompanying association class, and second,
deleting the corresponding aggregation. Then, a new aggregation (an instance of
MCMMgmtDomainHasMCMMgdEntity) is created; following that, a new
association class is then created to realize the semantics of the aggregation.
This MCMManagementDomain object shall not have more than one parent.

delMCMParentDomain()

This operation removes the aggregation, and its association class, that enables
this MCMManagedEntity to be contained by this MCMManagementDomain. This
operation does not affect either the MCMManagementDomain object or the
MCMManagedEntity object; it just deletes the aggregation between this
MCMManagementDomain object and this MCMManagedEntity.

getReferredMCMUnManaged-
EntityList() :
MCMUnManagedEntity[1..*]

This operation retrieves the set of MCMUnManagedEntity objects that refer to
this MCMManagedEntity object.
If this MCMManagedEntity object does not refer to an MCMUnManagedEntity
object, then it should return a NULL MCMUnManagedEntity object.

setReferredMCMUnManaged-
EntityList(in
newUnMgdEntityList :
MCMUnManagedEntity[1..*])

This operation defines a new set of MCMUnManagedEntity objects that refer to
this particular MCMManagedEntity object. The newUnMgdEntityList input
parameter defines a set of one or more MCMUnManagedEntity objects. If this
MCMManagedEntity object already has a set of one or more
MCMUnManagedEntity objects that it refers to, then those
MCMUnManagedEntity objects will be deleted by first, deleting the accompanying
association class, and second, deleting the corresponding association. Then, a
new association (an instance of MCMMgdEntityRefersToMCMUnManagedEntity)
is created for each UnManagedEntity object in the newUnMgdEntityList.
Every association created should have a new association class created to
realize the semantics of that association.

setReferredMCMUnManaged-
EntityPartialList(in
newUnMgdEntityList :
MCMUnManagedEntity[1..*])

This operation defines a new set of MCMUnManagedEntity objects that refer to
this particular MCMManagedEntity object. The newUnMgdEntityList input
parameter defines a set of one or more MCMUnManagedEntity objects. If this
MCMManagedEntity object already has a set of one or more
MCMUnManagedEntity objects that it refers to, then those
MCMUnManagedEntity objects are ignored. Then, a new association (an
instance of MCMMgdEntityRefersToMCMUnManagedEntity) is created for each
UnManagedEntity object in the newUnMgdEntityList.
Every association created should have a new association class created to
realize the semantics of that association.

delReferredMCMUnManaged-
Entity()

This operation removes the association, and its association class, for all
MCMUnManagedEntity objects that this particular MCMManagedEntity refers to.
This operation does not affect any of the MCMUnManagedEntity objects or the
MCMManagedEntity object; it just deletes all associations between this
MCMManagedEntity object and this MCMUnManagedEntity object.

delReferredMCMUnManaged-
EntityPartial(in unMgdEntityList
: MCMUnManagedEntity[1..1])

This operation removes the association, and its association class, for each
MCMUnManagedEntity object in the unMgdEntityList that is associated with this
particular MCMManagedEntity object. The unMgdEntityList input parameter
defines the set of MCMUnManagedEntity objects that will be unlinked from this
particular MCMManagedEntity object. This operation does not affect either the
MCMUnManagedEntity object or the MCMManagedEntity object; it just deletes
the association between this MCMManagedEntity object and this
MCMUnManagedEntity object.
Any association between this MCMManagedEntity object and other
MCMUnManagedEntity objects that are not specified in the unMgdEntityList shall
not be affected.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 27

5.2.2.4.4.5 Relationship Definition

The MCMManagedEntity class defines a single optional association, called
MCMMgdEntityRefersToMCMUnMgdEntity. This association enables an MCMManagedEntity to refer to a set of
MCMUnManagedEntities, and vice versa. The value of this relationship is that it can link content of the
MCMUnManagedEntity (e.g. location or address) to the MCMManagedEntity.

EXAMPLE 1: An MCMService could be associated with the location of an MCMPhysicalEntity at a particular
MCMLocation.

The multiplicity of this relationship is 0..* - 0..*. If this association is instantiated, then zero or more
MCMUnManagedEntity objects can be associated with this particular MCMManagedEntity object. The cardinality on
the part side (MCMUnManagedEntity) is 0..*; this enables an MCMManagedEntity object to be defined without having
to define an associated MCMUnManagedEntity object for it.

The semantics of this association are defined by the MCMMgdEntityRefersToMCMUnMgdEntityDetail association
class. This enables the semantics of the association to be defined using the attributes and behaviour of this association
class.

EXAMPLE 2: This association class can be used to define which MCMUnManagedEntity objects are allowed to
be associated with which MCMManagedEntity objects (or vice-versa).

The Policy Pattern may be used to define policy rules that constrain which objects of one type are related to which
objects of the other type (e.g. which MCMUnManagedEntity objects are related to which MCMManagedEntity
objects). The MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and intent policy
rules. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of the Policy Pattern.

The MCMManagedEntity class also participates in an aggregation, called MCMMgmtDomainHasMCMMgdEntity.
This is described in clause 5.2.2.4.11.6.1.

5.2.2.4.5 MCMDefinition Hierarchy

5.2.2.4.5.1 Overview

This is the MCM equivalent of the ONF and TMF "specification" classes. It defines the salient characteristics,
capabilities, and constraints of concrete subclasses of an MCMManagedEntity. When concrete subclasses of
MCMDefinition are instantiated, these characteristics, capabilities, and constraints will be invariant over all instances of
each concrete subclass of MCMDefinition.

The use of MCMDefinition objects is critical to enabling scalable and consistent creation of Product, Service, and
Resource hierarchies that share common properties and behaviour.

5.2.2.4.5.2 Class Definition

MCMDefinition is an abstract class, and specializes MCMManagedEntity. It is a template that defines the salient
characteristics, behaviour, capabilities, and constraints of concrete subclasses of an MCMManagedEntity. When
concrete subclasses of MCMDefinition are instantiated, these characteristics, capabilities, and constraints will be
invariant over all instances of each concrete subclass of MCMDefinition.

5.2.2.4.5.3 Attribute Definition

No attributes are defined for the MCMDefinition class. This is because MCMDefinition objects can be created for other
types of MCMEntity objects (e.g. an Inventory or a ProductOrder) that are not part of the MCMManagedEntity class
hierarchy. While MCMDefinition objects are manageable, they may be used to structure information that is not
manageable. This makes it impossible to define attributes that apply to managed and unmanaged objects that use
MCMDefinition objects.

5.2.2.4.5.4 Operation Definition

No operations are defined for the MCMDefinition class for the same reason as that in clause 5.2.2.4.5.3.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 28

5.2.2.4.5.5 Relationship Definition

No operations are defined for the MCMDefinition class for the same reason as that in clause 5.2.2.4.5.3.

5.2.2.4.5.6 MCMDefinition Subclasses

5.2.2.4.5.6.1 MCMDefinitionDecorator

This is an abstract class, and specializes MCMDefinition. It applies the decorator pattern to an MCMDefinition class.
This enables all or part (e.g. a subset of the attributes of a class) of one or more concrete subclasses of MCMFeature or
MCMBusinessTerm to "wrap" another concrete subclass of MCMOffer.

At this time, no attributes are defined for the MCMDefinitionDecorator class.

At this time, no relationships are defined for the MCMDefinitionDecorator class. It participates in two aggregations,
called MCMFeatureDecoratesMCMDefinition (see clause 5.2.2.4.5.6.3) and MCMOfferHasMCMDefinitionDecorator
(see clause 5.2.2.4.5.6.4).

5.2.2.4.5.6.2 MCMBusinessTerm

This is a concrete class, and specializes MCMDefinitionDecorator. It defines the set of business terms that dictate how a
particular type of MCMOffer (i.e. a business offering, typically based on demographics) is sold to Customers. An
MCMOffer aggregates one or more MCMFeatures, MCMBusinessTerms, and other business logic; see
clause 5.2.2.4.5.6.4 for the definition of an MCMOffer.

Table 5-8 defines the attributes of the MCMBusinessTerm class.

Table 5-8: Attributes of the MCMBusinessTerm Class

Attribute Name Description

mcmBusTermRMM : String[0..1]

This is a string attribute that describes the Remote Monitoring and Management
(RMM) capabilities included in this MCMOffer. RMM solutions enable many
mundane, time consuming activities to be scripted and delivered on a scheduled
basis without human intervention.

mcmBusTermServiceDesk :
String[0..1]

This is a string attribute that defines the type of problem management and
remediation services that are available to MCMCustomers that purchase this
MCMOffer. It serves as a single point of contact for all end-user issues.

mcmBusTermVendorMgmt :
String[0..1]

This is a string attribute. It defines the type of vendor management that is
included for Buyers that purchase an MCMOffer that has this
MCMBusinessTerm. Vendor management offloads all interactions with the
vendors from the customer.

Table 5-9 defines the operations of the MCMBusinessTerm class.

Table 5-9: Operations of the MCMBusinessTerm Class

Operation Name Description

getMCMBusTermRMM() :
MCMString[1..1]

This operation returns the value of the mcmBusTermRMM attribute.
The value returned describes the remote monitoring and management
capabilities of this MCMBusinessTerm.
If the mcmBusTermRMM attribute is empty, then an empty string
should be returned.

setMCMBusTermRMM (in newString :
String[1..1])

This operation defines a new value for the mcmBusTermRMM attribute.
The input parameter contains the text that describes the remote
monitoring and management capabilities of this MCMBusinessTerm.
The newString attribute may contain an empty string (e.g. for clearing
this field).

getMCMBusTermServiceDesk() :
String[1..1]

This operation returns the value of the mcmBusTermServiceDesk
attribute. The value returned describes the problem management and
remediation services of this MCMBusinessTerm.
If the mcmBusTermRMM attribute is empty, then an empty string
should be returned.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 29

Operation Name Description

setMCMBusTermServiceDesk (in
newString : String[1..1])

This operation defines the new value for the mcmBusTermServiceDesk
attribute. The input parameter contains a description of the problem
management and remediation services of this MCMBusinessTerm.
The newString attribute may contain an empty string (e.g. for clearing
this field).

getMCMBusTermVendorMgmt() :
String[1..1]

This operation returns the value of the mcmBusTermVendorMgmt
attribute. The value returned is a String that describes the type of
vendor management that is included for Buyers that purchase an
MCMOffer that has this MCMBusinessTerm.
If the mcmBusTermVendorMgmt attribute is empty, then an empty
string should be returned.

setMCMBusTermVendorMgmt (in
newString : String[1..1])

This operation defines a new value for the mcmBusTermVendorMgmt
attribute. The input parameter contains a description of the type of
vendor management that is included for Buyers that purchase an
MCMOffer that has this MCMBusinessTerm.
The newString attribute may contain an empty string (e.g. for clearing
this field).

getMCMFeatureList() : MCMFeature[1..*]

This operation returns the set of MCMFeature objects that currently
decorate this MCMBusinessTerm object. The return value is an array of
one or more MCMFeature objects.
If this MCMBusinessTerm object is not decorated by any MCMFeature
objects, then a NULL MCMFeature object should be returned.

setMCMFeatureList(in newFeatureList :
MCMFeature[1..*])

This operation defines the set of MCMFeatures that will decorate this
MCMBusinessTerm object. This operation decorates this particular
MCMBusinessTerm object with the set of MCMFeature objects
identified in the input parameter. This operation deletes any existing
MCMFeature objects that decorate the MCMBusinessTerm object, and
then instantiates a new set of MCMFeature objects to decorate this
particular MCMBusinessTerm object.
Implementations may realize the decorator pattern in any way they
wish, so long as the Decorator forwards requests to the object that it is
wrapping.
A decorator object may perform additional actions before and/or after
forwarding requests to the object that it is wrapping.

setMCMFeaturePartialList(in
newFeaturePartialList :
MCMFeature[1..*])

This operation defines the set of MCMFeatures that will decorate this
MCMBusinessTerm object without affecting any other decorated
objects on this MCMBusinessTerm object. This operation decorates
this particular MCMBusinessTerm object with the set of MCMFeature
objects identified in the input parameter. No other model elements of
this MCMBusinessTerm object shall be affected.
Implementations may realize the decorator pattern in any way they
wish, so long as the Decorator forwards requests to the object that it is
wrapping.
A decorator object may perform additional actions before and/or after
forwarding requests to the object that it is wrapping.

delMCMFeatureList()

This operation removes all instances of MCMFeature objects that were
decorating this particular MCMBusinessTerm object by deleting their
associations. It does not delete the MCMFeature objects.
Implementations may remove the decorating object any way they wish,
including deleting the object.

delMCMFeaturePartialList(in
newFeaturePartialList :
MCMFeature[1..*])

This operation removes the set of MCMFeature objects identified in the
input parameter that were decorating this MCMBusinessTerm object
without affecting any other decorated objects on this
MCMBusinessTerm object.
Implementations may remove the decorating object any way they wish,
including deleting the object.

At this time, no relationships are defined for the MCMBusinessTerm class.

5.2.2.4.5.6.3 MCMFeature

MCMFeature is an abstract class, and specializes MCMDefinitionDecorator. It defines the characteristics and behaviour
of a set of functions that are contained in an MCMOffer.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 30

An MCMFeature is a salient characteristic or behaviour of an object that it describes. An MCMFeature may be related
to one or more MCMCapability objects via the MCMEntityHasMCMMetaData aggregation. This enables a list of used
and unused capabilities to augment the definition of each MCMFeature object.

MCMFeature is the superclass for the MCMProductFeature, MCMServiceFeature, and MCMResourceFeature classes.
This enables features that are part of the templates that define MCMProduct, MCMService, and MCMResource,
respectively, to be used to construct a business offering (a subclass of MCMOffer).

At this time, no attributes are defined for the MCMFeature class.

At this time, no operations are defined for the MCMFeature class.

At this time, a single optional aggregation, called MCMFeatureDecoratesMCMDefinition, is defined for the
MCMFeature class. This aggregation defines the set of MCMFeatures that wrap (or decorate) this particular
MCMDefinition object. The multiplicity of this aggregation is 0..1 - 0..*. If this aggregation is instantiated (e.g. the "1"
part of the 0..1 cardinality), then zero or more MCMFeature objects can wrap this particular MCMDefinitionDecorator
object. The 0..* cardinality enables an MCMFeature object to be defined without having to define an associated
MCMDefinitionDecorator object for it to aggregate. The semantics of this aggregation are defined by the
MCMFeatureDecoratesMCMDefinitionDetail association class. This enables the management system to control which
set of concrete subclasses of MCMFeature (e.g. a subclass of MCMFeature) are used to wrap a concrete subclass of
MCMDefinitionDecorator (e.g. an MCMBusinessTerm).

The Policy Pattern may be used to control which specific MCMFeature objects are used to wrap a given
MCMDefinition object for a given context. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of the
Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and
intent policy rules.

5.2.2.4.5.6.4 MCMOffer

MCMOffer is an abstract class, and specializes MCMDefinition. It defines a business offering, typically based on
demographics, to interact with internal or external Customers. An Offer aggregates one or more MCMFeatures,
MCMBusinessTerms, and other business logic.

It has three subclasses: MCMProductOffer, MCMServiceOffer, and MCMResourceOffer. This enables features from
MCMProduct, MCMService, and MCMResource, respectively, to be used to construct a business offering (a subclass of
MCMOffer).

The structure of MCMOffer parallels that of MCMFeature. The MCMOfferHasMCMDefinitionDecorator aggregation
is part of a pattern that enables MCMOffers to be made up of a combination of different MCMFeatures and
MCMBusinessTerms. Both MCMFeature and MCMBusinessTerm can be added dynamically at runtime to an
MCMOffer. This addresses the use case of changing an order in flight without having to recompile and redeploy.

At this time, no attributes are defined for the MCMOffer class. Note that concepts such as a time period that defines the
starting and ending time that this MCMOffer is valid for are realized as associated MCMMetadata objects.

Table 5-10 defines the operations of the MCMBusinessTerm class.

Table 5-10: Operations of the MCMOffer Class

Operation Name Description

getMCMBusTermRMM() :
MCMString[1..1]

This operation returns the value of the mcmBusTermRMM attribute.
If the mcmBusTermRMM attribute is empty, then an empty string
should be returned.

setMCMBusTermRMM (in newString :
String[1..1])

This operation defines a new value for the mcmBusTermRMM attribute.
The input parameter contains the text that describes the remote
monitoring and management capabilities of this MCMBusinessTerm.
The newString attribute may contain an empty string (e.g. for clearing
this field).

getMCMBusTermServiceDesk() :
String[1..1]

This operation returns the value of the mcmBusTermServiceDesk
attribute.
If the mcmBusTermRMM attribute is empty, then an empty string
should be returned.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 31

Operation Name Description

setMCMBusTermServiceDesk (in
newString : String[1..1])

This operation defines the new value for the mcmBusTermServiceDesk
attribute. The input parameter contains a description of the problem
management and remediation services of this MCMBusinessTerm.
The newString attribute may contain an empty string (e.g. for clearing
this field).

getMCMBusTermVendorMgmt() :
String[1..1]

This operation returns the value of the mcmBusTermVendorMgmt
attribute.
If the mcmBusTermVendorMgmt attribute is empty, then an empty
string should be returned.

setMCMBusTermVendorMgmt (in
newString : String[1..1])

This operation defines a new value for the mcmBusTermVendorMgmt
attribute. The input parameter contains a description of the type of
vendor management that is included for Buyers that purchase an
MCMOffer that has this MCMBusinessTerm.
The newString attribute may contain an empty string (e.g. for clearing
this field).

getMCMFeatureList() : MCMFeature[1..*]

This operation returns the set of MCMFeature objects that currently
decorate this MCMBusinessTerm object.
If this MCMBusinessTerm object is not decorated by any MCMFeature
objects, then a NULL MCMFeature object should be returned.

setMCMFeatureList(in newFeatureList :
MCMFeature[1..*])

This operation defines the set of MCMFeatures that will decorate this
MCMBusinessTerm object. This operation decorates this particular
MCMBusinessTerm object with the set of MCMFeature objects
identified in the input parameter. This operation deletes any existing
MCMFeature objects that decorate the MCMBusinessTerm object, and
then instantiates a new set of MCMFeature objects to decorate this
particular MCMBusinessTerm object.
Implementations may realize the decorator pattern in any way they
wish, so long as the Decorator forwards requests to the object that it is
wrapping.
A decorator object may perform additional actions before and/or after
forwarding requests to the object that it is wrapping.

setMCMFeaturePartialList(in
newFeaturePartialList :
MCMFeature[1..*])

This operation defines the set of MCMFeatures that will decorate this
MCMBusinessTerm object without affecting any other decorated
objects on this MCMBusinessTerm object. This operation decorates
this particular MCMBusinessTerm object with the set of MCMFeature
objects identified in the input parameter.
No other model elements of this MCMBusinessTerm object shall be
affected.
Implementations may realize the decorator pattern in any way they
wish, so long as the Decorator forwards requests to the object that it is
wrapping.
A decorator object may perform additional actions before and/or after
forwarding requests to the object that it is wrapping.

delMCMFeatureList()

This operation removes all instances of MCMFeature objects that were
decorating this particular MCMBusinessTerm object.
Implementations may remove the decorating object any way they wish,
including deleting the object.

delMCMFeaturePartialList(in
newFeaturePartialList :
MCMFeature[1..*])

This operation removes the set of MCMFeature objects identified in the
input parameter that were decorating this MCMBusinessTerm object
without affecting any other decorated objects on this
MCMBusinessTerm object. Implementations may remove the
decorating object any way they wish, including deleting the object.

A single optional aggregation, called MCMOfferHasMCMDefinitionDecorator, is defined for the MCMOffer class.
This aggregation defines the set of MCMDefinitionDecorators that are contained by this particular MCMOffer object.
This is an optional aggregation. Its multiplicity is 0..1 – 0..*. If this aggregation is instantiated (e.g. the "1" part of the
0..1 cardinality), then zero or more MCMDefinitionDecorator objects can be aggregated by this particular MCMOffer
object. The cardinality on the part side (MCMDefinitionDecorator) is 0..*; this enables an MCMOffer object to be
defined without having to define an associated MCMDefinitionDecorator object for it to aggregate. The semantics of
this aggregation are defined by the MCMOfferHasMCMDefinitionDecoratorDetail association class. This enables the
management system to control which set of concrete subclasses of MCMDefinitionDecorator (e.g. a concrete subclass
of MCMFeature) are contained by this particular (concrete subclass of) MCMOffer.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 32

The Policy Pattern may be used to control which specific concrete subclasses of MCMDefinitionDecorator are used to
wrap a given concrete subclass of MCMOffer for a given context. See Figure 3 for ETSI GS ENI 005 [3] for an
exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of
imperative, declarative, and intent policy rules.

5.2.2.4.6 MCMPolicyObject

5.2.2.4.6.1 Overview

This MCM class is the root of the MPM (MEF Policy Model). This provides a set of abstractions for viewing any type
of Policy, regardless of its programming paradigm (e.g. imperative, declarative, or intent). More importantly, this means
that any MCMManagedEntity can be the target of an MCMPolicy, and that other MCM objects (e.g. MCMPartyRole,
see clause 5.2.2.6) can the subject of an MCMPolicy. See clauses 5.3.2.6.7.28 and 5.3.2.6.7.27, respectively.

5.2.2.4.6.2 Class Definition

This is an abstract class that is the root of the MPM. Its purpose is to ensure that MCMPolicy objects can interact with
other objects of the MCM via relationships. The MPM is discussed in clause 5.3.2.

5.2.2.4.6.3 Attribute Definition

No attributes are defined for the MCMPolicyObject class. This is because MPM models policies as consisting of a set
of MPMPolicyStructure and MPMPolicyComponentStructure objects. No common attribute exists for these subclasses
that is not already inherited by MCMPolicyObject.

5.2.2.4.6.4 Operation Definition

No operations are defined for the MCMPolicyObject class for the same reason as that in clause 5.2.2.4.6.3.

5.2.2.4.6.5 Relationship Definition

No relationships are defined for the MCMPolicyObject class for the same reason as that in clause 5.2.2.4.6.3.

5.2.2.4.7 MCMProduct Hierarchy

NOTE: Should this version of the ENI Extended Core Model use Product classes?

5.2.2.4.7.1 Overview

An MCMProduct defines the set of goods and services offered to a market by an MCMParty that is playing an
appropriate MCMPartyRole (e.g. MCMServiceProvider). MCMProducts are purchased by an MCMCustomer, which is
also a type of MCMPartyRole. Each such purchased Product is based on an MCMProductOffer, and results in a
separate instance of the MCMProduct class.

The MCMProduct class hierarchy is shown in Figure 5-5.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 33

Figure 5-5: The MCMProduct Hierarchy

5.2.2.4.7.2 Class Definition

MCMProduct is an abstract class that that specializes MCMManagedEntity. An MCMProduct defines the set of goods
and services, offered to a market, by a set of MCMPartyRoles. MCMProducts are purchased by an MCMCustomer,
which is another type of MCMPartyRole.

Each such Product is based on an MCMProductOffer, even if it uses shared Resources and/or Services, and results in a
separate instance of the MCMProduct class.

An MCMProduct may exist in a purchased or unpurchased state.

5.2.2.4.7.3 Attribute Definition

At this time, no attributes are defined for the MCMProduct class. Most attributes will likely be realized using
relationships and/or operations. For example, the usage of an MCMProduct can be considered from two viewpoints:

1) how much content is left (e.g. a subscription limits downloads to 1 Gb/month, and the current usage is
750 Mb); and

2) how much time is left (e.g. the MCMProduct is being used on a time-limited subscription).

In either of these cases, an attribute is inappropriate, since one or more computations and information from one or more
relationships are required to provide a value. In addition, the MCMProduct itself does not "know" how much usage is
incurred, but can find out (e.g. by using an operation).

5.2.2.4.7.4 Operation Definition

Table 5-11 defines the operations of the MCMProduct class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 34

Table 5-11: Operations of the MCMProduct Class

Operation Name Description
getMCMProductParent() :
MCMProductComposite[1..1]

This operation returns the parent of this MCMProduct object. If this MCMProduct
object has no parent, then a NULL MCMProduct object should be returned.

setMCMProductParent(in
newParent :
MCMProductComposite[1..1])

This operation defines the parent of this MCMProduct object. The input
parameter is of type MCMProductComposite.
If this MCMProduct object already has a parent, then an exception should be
raised.
This MCMProduct object shall not have more than one parent.

5.2.2.4.7.5 Relationship Definition

The MCMProduct class participates in two aggregations, which are shown in Figure 5-5.

NOTE: These will be defined if it is decided to use MCMProduct and its subclasses.

5.2.2.4.8 MCMService Hierarchy

5.2.2.4.8.1 Overview

An MCMService represents functionality that can be used by different internal and external users (e.g. a management
system and a Customer, respectively). Services may be used by other Services, but not by Resources. The MCMService
class hierarchy is shown in Figure 5-6.

Figure 5-6: The MCMService Hierarchy

5.2.2.4.8.2 Class Definition

MCMService is an abstract class, and specializes MCMManagedEntity. It represents functionality that can be used by
different internal and external users (e.g. a management system and a Customer, respectively) for different purposes.
Services may be consumed by other Services, but not by Resources. A Service has a distinct state.

5.2.2.4.8.3 Attribute Definition

At this time, no attributes are defined for the MCMService class. Most attributes will likely be realized using
relationships and/or operations. For example, the usage of an MCMService can be considered from two viewpoints:

1) how much content is left (e.g. a subscription limits downloads to 1 Gb/months, and the current usage is
750 Mb); and

2) how much time is left (e.g. the MCMService is being used on a time-limited subscription).

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 35

In the above examples, the MCMService itself does not "know" how much usage is incurred, but can find out (e.g. by
using an operation). As another example, an MCMManagedEntity may need to know the status of all of the
MCMServiceEndpoints and MCMServiceComponents that are associated with a particular MCMService. In either of
these cases, an attribute is inappropriate, since one or more computations and information from one or more
relationships are required to provide a value. This is exacerbated in the latter case, since MCMServiceComponents and
MCMServiceEndpoints are both objects that decorate an MCMDeliveredService.

5.2.2.4.8.4 Operation Definition

Table 5-12 defines the operations of the MCMProduct class.

Table 5-12: Operations of the MCMService Class

Operation Name Description

getMCMServiceParent() :
MCMServiceComposite[1..1]

This operation returns the parent of this MCMService object.
The parent shall be of type MCMServiceComposite.
If this MCMService object has no parent, then a NULL MCMService object should be
returned.

setMCMServiceParent(in
newParent :
MCMServiceComposite [1..1])

This operation defines the parent of this MCMService object.
The input parameter shall be of type MCMServiceComposite.
If this MCMService object already has a parent, then an exception should be raised.
This MCMService object shall not have more than one parent.

5.2.2.4.8.5 Relationship Definition

The MCMService class participates in three aggregations, as shown in Figure 5-6.

NOTE: These will be defined if it is decided to use MCMService subclasses.

5.2.2.4.8.6 MCMService Subclasses

5.2.2.4.8.6.1 MCMServiceAtomic Class Definition

MCMServiceAtomic is an abstract class that specializes MCMService. This class represents stand-alone MCMService
objects that shall not contain another MCMService object.

At this time, no attributes are defined for the MCMServiceAtomic class.

At this time, no operations are defined for the MCMServiceAtomic class.

At this time, no relationships are defined for the MCMServiceAtomic class.

5.2.2.4.8.6.2 MCMServiceComposite Class Definition

MCMServiceComposite is an abstract class, and specializes MCMService. This class represents a set of
MCMServiceComposite objects that are organized into a tree structure. Each MCMServiceComposite may contain zero
or more MCMServiceAtomic and/or zero or more MCMServiceComposite objects.

At this time, no attributes are defined for the MCMServiceComposite class. Most attributes will likely be realized using
relationships and/or operations. For example, a query to an instance of the MCMServiceComposite class to provide its
set of contained MCMServices will be done by using class operations; the MCMServiceComposite instance will query
each of its contained MCMServiceAtomic and MCMServiceComposite objects (which will in turn call their operations
to acquire their MCMServices), aggregate and organize the information, and provide that information in its operation
response. In more detail, the MCMServiceComposite could ask for the set of MCMInternalServices that are used to
support an MCMDeliveredService; the set of MCMInternalServices in this example could include Analytics, Traffic
Engineering, and other MCMInternalServices that are not visible to the MCMCustomer.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 36

Table 5-13 defines following operations for this class.

Table 5-13: Operations of the MCMServiceComposite Class

Operation Name Description

getMCMServiceList() :
MCMService[1..*]

This operation returns the set of all MCMService objects that are contained in
this specific MCMServiceComposite object. This operation returns a list of zero
or more MCMService objects.
If this object does not contain any MCMService objects, then a NULL
MCMService object should be returned.

setMCMServiceList (in
childObjectList :
MCMService [1..*])

This operation defines a set of MCMService objects that will be contained by this
particular MCMServiceComposite object. This operation deletes any existing
contained MCMService objects (and their aggregations and association classes),
and then instantiates a new set of MCMService objects; in doing so, each
MCMService object is contained within this particular MCMServiceComposite
object by creating an instance of the MCMHasService aggregation.
Each created aggregation should have an association class (i.e. an instance of
the MCMHasServiceDetail association class).

setMCMServicePartialList (in
childObjectList :
MCMService[1..*])

This operation defines a set of one or more MCMService objects that should be
contained within this particular MCMServiceComposite object without affecting
any other existing contained MCMService objects or the objects that are
contained in them. This operation creates a set of aggregations between this
particular MCMServiceComposite object and each of the MCMService objects
identified in the childObjectList.
Each created aggregation should have an association class (i.e. an instance of
the MCMHasServiceDetail association class).

delMCMServiceList()

This operation deletes all contained MCMService objects of this particular
MCMServiceComposite object. This removes both the association class and the
aggregation between this MCMServiceComposite object and each MCMService
object that is contained in this MCMServiceComposite object.

delMCMServicePartialList (in
childObjectList :
MCMService[1..*])

This operation deletes a set of MCMService objects from this particular
MCMServiceComposite object. This has the effect of removing both the
association and the aggregation between each MCMService object specified in
the input parameter and this MCMServiceComposite object.
All other aggregations between this MCMServiceComposite and other
MCMService objects that are not identified in the input parameter shall not be
affected.

The MCMServiceComposite class defines a single optional aggregation, called MCMHasService. This aggregation is
used to define the set of MCMServices that are contained within this particular MCMServiceComposite object. Its
multiplicity is defined to be 0..1 - 0..*. If this aggregation is instantiated (e.g. the "1" part of the 0..1 cardinality), then
zero or more MCMService objects can be aggregated by this particular MCMServiceComposite object. Note that the
cardinality on the part side (MCMService) is 0..*; this enables an MCMServiceComposite object to be defined without
having to define an associated MCMService object for it to aggregate.

The semantics of the MCMHasService aggregation is realized using an association class, called MCMHasServiceDetail.
This enables the semantics of the MCMHasService aggregation to be realized using the attributes, operations, and
relationships of the MCMHasServiceDetail association class.

The Policy Pattern may be used to control which specific MCMService objects are contained within a given
MCMServiceComposite object for a given context. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration
of the Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of imperative,
declarative, and intent policy rules.

5.2.2.4.9 MCMResource Hierarchy

5.2.2.4.9.1 Overview

An MCMResource defines a set of capabilities that may be consumed by other Resources and/or Services. Resources
are typically limited in quantity and/or availability, and may be logical or virtual in nature. Physical resources are NOT
defined as a subclass of Resource because a physical entity is not inherently manageable. Rather, physical resources are
defined by the PhysicalElement class, which is a subclass of UnManagedEntity.

A simplified view of part of the MCMResource hierarchy is shown in Figure 5-7.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 37

Figure 5-7: The MCMResource Hierarchy

5.2.2.4.9.2 Class Definition

MCMResource is an abstract class that specializes MCMManagedEntity. It provides capabilities that may be consumed
by other MCMResources and/or MCMServices. In addition, an MCMResource, which may be logical or virtual in
nature, may consume other MCMResources. An MCMResource has a distinct state. MCMResources are typically
limited in quantity and/or availability. Physical entities are not defined as a subclass of MCMResource, because a
physical entity is not inherently manageable. Rather, physical entities are defined by the MCMPhysicalEntity class,
which is a subclass of MCMUnManagedEntity (see clause 5.2.2.4.3).

5.2.2.4.9.3 Attribute Definition

At this time, no attributes are currently defined for this class. A future version of the present document will add
attributes to this class hierarchy after discussions about backwards compatibility with other models (e.g. SNMP,
YANG, etc.) are completed.

5.2.2.4.9.4 Operation Definition

At this time, no operations are currently defined for this class.

5.2.2.4.9.5 Relationship Definition

The MCMResource class participates in a single aggregation, called MCMResourceDefinedByMCMResourceOffer, as
shown in Figure 5-7.

NOTE: This will be defined if it is decided to use MCMOffer subclasses.

5.2.2.4.9.6 MCMResource Subclasses

5.2.2.4.9.6.1 MCMVirtualResource Class Definition

MCMVirtualResource is an abstract class that specializes MCMResource. It represents a set of objects that are
configured by software to produce a new set of objects that behave like the resource(s) being virtualized. However, the
behaviour of the newly created set of MCMVirtualResources are not directly associated with the underlying physical
hardware.

At this time, no attributes are currently defined for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 38

Table 5-14 defines following operations for this class.

Table 5-14: Operations of the MCMVirtualResource Class

Operation Name Description

getMCMVirtualResourceParent() :
MCMVirtualResource[1..1]

This operation returns the parent of this MCMVirtualResource object.
If this MCMVirtualResource object has no parent, then a NULL
MCMVirtualResource object should be returned.

setMCMVirtualResourceParent(in
newParent :
MCMVirtualResourceComposite[1..1])

This operation defines the parent of this MCMVirtualResource object.
If this MCMVirtualResource object already has a parent, then an
exception should be raised.
This MCMVirtualResource object shall not have more than one
parent.

The MCMVirtualResource class participates in one aggregation, called MCMHasVirtualResource; see
clause 5.2.2.4.9.6.3.

5.2.2.4.9.6.2 MCMVirtualResourceAtomic Class Definition

MCMVirtualResourceAtomic is an abstract class that specializes MCMVirtualResource. It represents an
MCMResource that is modeled as a single, stand-alone, manageable entity that is virtualized (i.e. it is not directly
associated with the underlying physical hardware).

This object shall not contain another MCMVirtualResource object.

At this time, no attributes are currently defined for this class.

At this time, no operations are currently defined for this class.

At this time, no relationships are defined for this class.

5.2.2.4.9.6.3 MCMVirtualResourceComposite Class Definition

MCMVirtualResourceComposite is an abstract class that specializes MCMVirtualResource. It represents an
MCMResource that is composite in nature (e.g. made up of multiple distinct MCMResource objects). An
MCMVirtualResourceComposite represents a whole-part relationship; this produces a tree-structured class hierarchy. A
composite object defines three types of objects: the whole, the part, and the assembly of the whole with its parts.

An MCMVirtualResourceComposite object may contain zero or more MCMVirtualResourceAtomic and/or zero or
more MCMVirtualResourceComposite objects.

At this time, no attributes are defined for the MCMVirtualResourceComposite class. Most attributes will likely be
realized using relationships and/or operations. For example, to find the set of MCMVirtualResources contained in an
MCMVirtualResourceComposite object uses class operations to query each of its contained MCMVirtualResources
(which will in turn call their operations to acquire their MCMVirtualResources), aggregate and organize the
information, and provide that information in its operation response.

Table 5-15 defines following operations for this class.

Table 5-15: Operations of the MCMVirtualResourceComposite Class

Operation Name Description

getMCMVirtualResourceList() :
MCMVirtualResource[1..*]

This operation returns the set of all MCMVirtualResource objects that are
contained in this specific MCMVirtualResourceComposite object. This
operation returns a list of zero or more MCMVirtualResource objects.
If this MCMVirtualResourceComposite object has no children, then it should
return a NULL MCMVirtualResource object.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 39

Operation Name Description

setMCMVirtualResourceList (in
childObjectList :
MCMVirtualResource [1..*])

This operation defines a set of MCMVirtualResource objects that are contained
by this particular MCMVirtualResourceComposite object. This operation
deletes any existing contained MCMVirtualResource objects, and then
instantiates a new set of MCMVirtualResource objects; in doing so, each
MCMVirtualResource object is contained within this particular
MCMVirtualResourceComposite object by creating an instance of the
MCMHasVirtualResource aggregation.
Each created aggregation should have an association class (i.e. an instance of
the MCMHasVirtualResourceDetail association class).

setMCMVirtualResourcePartialList
(in childObjectList :
MCMVirtualResource[1..*])

This operation defines a set of one or more MCMVirtualResource objects that
should be contained within this particular MCMVirtualResourceComposite
object without affecting any other existing contained MCMVirtualResource
objects or the objects that are contained in them. This operation creates a set
of aggregations between this particular MCMVirtualResourceComposite object
and each of the MCMVirtualResource objects identified in the childObjectList.
Each created aggregation should have an association class (i.e. an instance of
the MCMHasVirtualResourceDetail association class).

delMCMVirtualResourceList()

This operation deletes all contained MCMVirtualResource objects of this
particular MCMVirtualResourceComposite object. This removes both the
association class and the aggregation between this
MCMVirtualResourceComposite object and each MCMVirtualResource object
that is contained in this MCMVirtualResourceComposite object.

delMCMVirtualResourcePartialList
(in childObjectList :
MCMVirtualResource [1..*])

This operation deletes a set of MCMVirtualResource objects from this particular
MCMVirtualResourceComposite object. This removes both the association
class and the aggregation between each MCMVirtualResource object specified
in the input parameter and this MCMVirtualResourceComposite object.
All other aggregations between this MCMVirtualResourceComposite and other
MCMVirtualResource objects that are not identified in the input parameter shall
not be affected.

The MCMVirtualResourceComposite class defines a single optional aggregation called MCMHasVirtualResource. The
multiplicity of this aggregation is 0..1 - 0..*. If this aggregation is instantiated (e.g. the "1" part of the 0..1 cardinality),
then zero or more MCMVirtualResource objects can be aggregated by this particular MCMVirtualResourceComposite
object. The cardinality on the part side (MCMVirtualResource) is 0..*; this enables an MCMVirtualResourceComposite
object to be defined without having to define an associated MCMVirtualResource object for it to aggregate.

The semantics of this aggregation are defined by the MCMHasVirtualResourceDetail association class. This enables the
management system to control which set of concrete subclasses of MCMVirtualResource are aggregated by this
particular MCMVirtualResourceComposite object. The Policy Pattern may be used to control which specific
MCMVirtualResource objects can be aggregated by which MCMVirtualResourceComposite objects for a given context.
See Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of the Policy Pattern. The MCMPolicyStructure
object is an abstract class that is the superclass of imperative, declarative, and intent policy rules.

NOTE: The use of other MCMVirtualResource subclasses besides those defined in the present document is for
further study.

5.2.2.4.9.6.4 MCMLogicalResource Class Definition

MCMLogicalResource is an abstract class that specializes MCMResource. It represents MCMResources that have
inherent digital communication and management capabilities and are neither physical nor virtual in nature. Examples
include operating systems, application and management software, protocols, and the logic required to perform
forwarding, routing, and other functions. It is shown in Figure 5-7.

At this time, no attributes are currently defined for this class.

The operations for this class are shown in Table 5-16.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 40

Table 5-16: Operations of the MCMLogicalResource Class

Operation Name Description

getMCMLogicalResourceParent() :
MCMLogicalResource[1..1]

This operation returns the parent of this MCMLogicalResource object.
If this MCMLogicalResource object has no parent, then a NULL
MCMLogicalResource object should be returned.

setMCMLogicalResourceParent (in
newParent) :
MCMLogicalResourceComposite[1..1]

This operation defines the parent of this MCMLogicalResource object.
This MCMLogicalResource object shall not have more than one parent.
If this MCMLogicalResource object already has a parent, then an
exception should be raised.

The MCMLogicalResource class participates in one aggregation, called MCMHasLogicalResource; see
clause 5.2.2.4.9.6.6.

5.2.2.4.9.6.5 MCMLogicalResourceAtomic Class Definition

This is an abstract class that specializes MCMLogicalResource. It represents an MCMResource that is modeled as a
single, stand-alone, manageable object.

This object shall not contain another MCMLogicalResource object.

At this time, no attributes are currently defined for this class.

At this time, no operations are currently defined for this class.

At this time, no relationships are defined for this class.

5.2.2.4.9.6.6 MCMLogicalResourceComposite Class Definition

MCMLogicalResourceComposite is an abstract class that specializes MCMLogicalResource. It represents
MCMResources that are composite in nature. An MCMLogicalResourceComposite represents a whole-part
relationship; this produces a tree-structured class hierarchy. A composite object defines three types of objects: the
whole, the part, and the assembly of the whole with its parts.

An MCMLogicalResourceComposite object may contain zero or more MCMLogicalResourceAtomic and/or zero or
more MCMLogicalResourceComposite objects.

At this time, no attributes are defined for the MCMLogicalResourceComposite class. Most attributes will likely be
realized using relationships and/or operations. For example, the usage of an MCMLogicalResourceComposite can be
considered from two viewpoints:

1) how much content is left (e.g. a subscription limits downloads to 1 Gb/months, and the current usage is
750 Mb); and

2) how much time is left (e.g. it is being used on a time-limited subscription).

In either of these cases, an attribute is inappropriate, since one or more computations and information from one or more
relationships are required to provide a value. In addition, the MCMLogicalResourceComposite itself does not "know"
how much usage is incurred, but can find out (e.g. by using a operation). Hence, class operations will likely be added to
provide more detailed information for instances of this class.

Table 5-17 defines following operations for this class.

Table 5-17: Operations of the MCMLogicalResourceComposite Class

Operation Name Description

getMCMLogicalResourceList() :
MCMLogicalResource[1..*]

This operation returns the set of all MCMLogicalResource objects that are
contained in this specific MCMLogicalResourceComposite object. This
operation returns a list of zero or more MCMLogicalResources.
If this MCMLogicalResourceComposite object has no children, then it should
return a NULL MCMLogicalResource object.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 41

Operation Name Description

setMCMLogicalResourceList (in
childObjectList :
MCMLogicalResource [1..*])

This operation defines a set of MCMLogicalResource objects that will be
contained by this particular MCMLogicalResourceComposite object. This
operation deletes any existing contained MCMLogicalResource objects (and
their aggregations and association classes), and then instantiates a new set of
MCMLogicalResource objects; in doing so, each MCMLogicalResource object
is contained within this particular MCMLogicalResourceComposite object by
creating an instance of the MCMHasLogicalResource aggregation.
Each created aggregation should have an association class (i.e. an instance
of the MCMHasLogicalResourceDetail association class).

setMCMLogicalResourcePartialList
(in childObjectList :
MCMLogicalResource[1..*])

This operation defines a set of one or more MCMLogicalResource objects that
should be contained within this particular MCMLogicalResourceComposite
object without affecting any other existing contained MCMLogicalResource
objects or the objects that are contained in them. This operation creates a set
of aggregations between this particular MCMLogicalResourceComposite
object and each of the MCMLogicalResource objects identified in the
childObjectList.
Each created aggregation should have an association class (i.e. an instance
of the MCMHasLogicalResourceDetail association class).

delMCMLogicalResourceList()

This operation deletes all contained MCMLogicalResource objects of this
particular MCMLogicalResourceComposite object. This has the effect of first,
removing the association class, and second, removing the aggregation,
between this MCMLogicalResourceComposite object and each
MCMLogicalResource object that is contained in this
MCMLogicalResourceComposite object. This operation has no input
parameters.

delMCMLogicalResourcePartialList
(in childObjectList :
MCMLogicalResource [1..*])

This operation deletes a set of MCMLogicalResource objects from this
particular MCMLogicalResourceComposite object. This operation removes
both the association class and its aggregation between each
MCMLogicalResource object specified in the input parameter and this
MCMLogicalResourceComposite object.
All other aggregations between this MCMLogicalResourceComposite and
other MCMLogicalResource objects that are not identified in the input
parameter shall not be affected.

NOTE: The use of other MCMLogicalResource subclasses besides those defined in the present document is for
further study.

5.2.2.4.10 MCMServiceEndpoint

5.2.2.4.10.1 Overview

An MCMServiceEndpoint represents the (logical) point of delivery of a Service to an MCMConsumer.

5.2.2.4.10.2 Class Definition

This is a concrete class that specializes MCMManagedEntity. It represents a (logical) point of delivery of an
MCMService to an MCMConsumer, as viewed by the MCMService that the MCMConsumer is using.

An MCMServiceEndpoint that is in use shall be associated with a single MCMServiceInterface.

An MCMService may exist without an MCMServiceInterface; in such a case, the MCMService is in a planned or some
other state, but it is not yet instantiated.

5.2.2.4.10.3 Attribute Definition

At this time, no attributes are currently defined for this class.

5.2.2.4.10.4 Operation Definition

At this time, no operations are currently defined for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 42

5.2.2.4.10.5 Relationship Definition

A single optional aggregation, named MCMServiceEndpointHasMCMServiceInterface, is defined. This aggregation
defines the set of MCMServiceInterfaces that are associated with this particular MCMServiceEndpoint object. The
multiplicity of this aggregation is 0..1 - 1. If this aggregation is instantiated (e.g. the "1" part of the 0..1 cardinality),
then only one MCMServiceInterface object shall be allowed to be aggregated by this particular MCMServiceEndoint
object.

The semantics of this aggregation are defined by the MCMServiceEndpointHasMCMServiceInterfaceDetail association
class. This enables the management system to control which MCMServiceInterface is used with a given
MCMServiceEndpoint. The Policy Pattern may be used to control which specific MCMServiceInterface object is used
with a given MCMServiceEndpoint for a given context. MCMPolicyStructure is an abstract class that is the superclass
of imperative, declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of
the Policy Pattern.

5.2.2.4.11 MCMParty

NOTE: Should this version of the ENI Extended Core Model use MCMParty Objects?

5.2.2.4.11.1 Overview

The MCMParty class has two subclasses, as shown in Figure 5-8.

Figure 5-8: The MCMParty Hierarchy

5.2.2.4.11.2 MCMParty Class Definition

This is an abstract class that specializes MCMEntity. It represents either an individual person or a group of people that
function as an organization. A group of people can also be structured as an organization made up of organizational
units. An MCMParty may take on zero or more MCMPartyRoles. For example, an MCMParty that takes on the role
HelpDesk can be used to represent any group or individual that performs a HelpDesk function.

5.2.2.4.11.3 Attribute Definition

At this time, no attributes are defined for this class.

5.2.2.4.11.4 Operation Definition

Class operations and relationships are used to provide flexibility and power in using this class (and its subclasses). For
example, an MCMManagedEntity may need to know which set of MCMPartyRoles are currently associated with this
particular MCMManagedEntity. Since MCMPartyRoles can change dynamically at runtime, an attribute cannot
accurately reflect this. In contrast, a operation can simply look for instantiated aggregations of type
MCMPartyHasMCMPartyRole (see clause 5.2.2.4.11.5); it can even look at the MCMPartyHasMCMPartyRoleDetail
association class, and/or associated MCMMetaData objects, if it needs further detail.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 43

Table 5-18 defines following operations for this class.

Table 5-18: Operations of the MCMParty Class

Operation Name Description

getMCMPartyParent() :
MCMOrganization[1..1]

This operation returns the parent of this MCMParty object.
If this MCMParty object has no parent, then a NULL MCMParty object should
be returned.

setMCMPartyParent(in
newParent : MCMOrganization
[1..1])

This operation defines the parent of this MCMParty object..
This MCMParty object shall not have more than one parent.
If this MCMParty object already has a parent, then an exception should be
raised.

getMCMPartyRoleList() :
MCMPartyRole[1..*]

This operation returns the set of MCMPartyRole objects that are decorating this
MCMParty object. For each instance of this aggregation, this operation then
adds each MCMPartyRole defined in this aggregation to an array that is
returned by this operation.
If this MCMParty object does not aggregate any MCMPartyRole objects, then a
NULL MCMPartyRole object should be returned.

setMCMPartyRoleList (in
newPartyRoleList :
MCMPartyRole[1..*])

This operation defines the set of MCMPartyRole objects that will be aggregated
by this MCMParty object. This operation creates a set of aggregations between
this particular MCMParty object and the set of MCMPartyRole objects identified
in the input parameter. This operation deletes any existing MCMPartyRole
objects (and their aggregations and association classes) that were aggregated
by this MCMParty object, and then instantiates a new set of MCMPartyRole
objects; in doing so, each MCMPartyRole object is attached to this particular
MCMParty object by creating an instance of the MCMPartyHasMCMPartyRole
aggregation, and realizing that aggregation instance as an association class.
Each created aggregation should have an association class (i.e. an instance of
the MCMPartyHasMCMPartyRoleDetail association class).

setMCMPartyRolePartialList (in
newPartyRoleList:
MCMPartyRole[1..*])

This operation defines a set of one or more MCMPartyRole objects that will
decorate this MCMParty object without affecting any other existing
MCMPartyRole objects that are decorating this MCMParty object. This operation
creates a set of aggregations between this particular MCMParty object and the
set of MCMPartyRole objects identified in the input parameter.
This operation shall not affect any existing aggregated MCMPartyRole objects.
Each created aggregation should have an association class (i.e. an instance of
the MCMPartyHasMCMPartyRoleDetail association class).

delMCMPartyRoleList()

This operation deletes all MCMPartyRole object instances that are decorating
this MCMParty object. This operation removes both the association class and
the aggregation between this MCMParty object and each MCMPartyRole object
that is aggregated by this MCMParty object. This operation does not delete any
of the MCMPartyRole objects; it simply disconnects them from the MCMParty
that they were aggregating.
This operation shall not delete any MCMPartyRole object that were aggregated
by this MCMParty.
If no MCMPartyRole objects are aggregated by this MCMParty, then an
exception should be raised.

delMCMPartyRolePartialList (in
newPartyRoleList :
MCMPartyRole[1..*])

This operation deletes a set of MCMPartyRole objects that are aggregated by
this particular MCMParty object. This operation removes both the association
class and the aggregation between each MCMPartyRole object specified in the
input parameter and this MCMParty object. All other aggregations between this
MCMParty object and other MCMPartyRole objects that are not specified in the
input parameter are NOT affected.
This operation shall not delete any MCMPartyRole object that is not named in
the input parameter.
If no MCMPartyRole objects are aggregated by this MCMParty, then an
exception should be raised.

5.2.2.4.11.5 Relationship Definition

The MCMParty class defines one aggregation and participates in two other aggregations.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 44

MCMPartyHasMCMPartyRole is an optional aggregation that defines the set of MCMPartyRoles that this particular
MCMParty can take on. The multiplicity of this aggregation is 0..1 - 0..*. If this aggregation is instantiated (e.g. the "1"
part of the 0..1 cardinality), then zero or more MCMPartyRole objects can be aggregated by this particular MCMParty
object. The cardinality on the part side (MCMPartyRole) is 0..*; this enables an MCMParty object to be defined without
having to define an associated MCMPartyRole object for it to aggregate. The semantics of this aggregation are defined
by the MCMPartyHasMCMPartyRoleDetail association class. This enables the management system to control which set
of concrete subclasses of MCMPartyHasMCMPartyRole are taken on by this particular MCMParty. The Policy Pattern
may be used to control which specific responsibilities, which are defined by a set of MCMPartyHasMCMPartyRole
objects, are taken on by a given MCMParty for a given context. Note that MCMPolicyStructure is an abstract class that
is the superclass of imperative, declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for an
exemplary illustration of the Policy Pattern.

The MCMParty class participates in the MCMHasMCMParty (see clause 5.2.2.4.11.6.1). The MCMParty class also
participates in the MCMPartyRoleDetailHasMCMContact aggregation (see clause 5.2.2.5.6.2).

5.2.2.4.11.6 MCMParty Subclasses

5.2.2.4.11.6.1 MCMOrganization Class Definition

This is a concrete class, and specializes MCMParty. An MCMOrganization defines a group of people (e.g. a set of
MCMPerson, MCMOrganization, and/or their subclasses) identified by shared interests or purpose. This includes
attributes such as the legal name of the organization. Attributes such as the head of the organization, or which types of
employees belong to which organization, are instead modeled as subclasses of MCMMetaData and associated with that
MCMOrganization using the Role-Object pattern, since:

1) they are not necessary to define the concept of an MCMOrganization; and

2) they can change.

An MCMOrganization object can interact with other MCMOrganization and MCMPerson objects directly or through
their MCMPartyRole(s). Behaviour and characteristics that are specific to an MCMOrganization are modeled using a
combination of classes for specific concepts augmented by the Role-Object pattern for each; this ensures that:

1) the model is not dependent on one particular person, group, or organization; and

2) it separates the characteristics and behaviour of the Entity being modeled from its responsibilities and
functions. This provides a more accurate and extensible model.

Table 5-19 defines following attributes for this class.

Table 5-19: Attributes of the MCMOrganization Class

Attribute Name Description
mcmIsLegalEntity :
Boolean[0..1] This is a Boolean attribute. If its value is TRUE, then this organization is a legal entity.

mcmIsTempOrg :
Boolean[0..1]

This is a Boolean attribute. If its value is TRUE, then this organization represents a
temporary organization that has a defined lifetime (defined in associated MCMMetaData).

mcmIsVirtualOrg :
Boolean[0..1]

This is a Boolean attribute. If its value is TRUE, then this organization represents a virtual
organization that convenes using an electronic mechanism (e.g, via phone or Internet).

mcmOrgName :
String[1..1] This is a string attribute, and contains the name of this MCMOrganization.

Table 5-20 defines following operations for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 45

Table 5-20: Operations of the MCMOrganization Class

Operation Name Description
getMCMIsLegalEntity() :
Boolean[1..1] This operation returns the value of the mcmIsLegalEntity attribute.

setMCMIsLegalEntity(in isLegal
: Boolean[1..1])

This operation defines the value of the mcmIsLegalEntity attribute. If the value of
this attribute is TRUE, then this MCMOrganization is a legal entity.

getMCMIsTempOrg():
Boolean[1..1] This operation returns the value of the mcmIsTempOrg attribute.

setMCMIsTempOrg (in isTemp :
Boolean[1..1])

This operation defines the value of the mcmIsTempOrg attribute. If the value of
this attribute is TRUE, then this MCMOrganization is a temporary organization.

getMCMIsVirtualOrg():
Boolean[1..1] This operation returns the value of the mcmIsLegalEntity attribute.

setMCMIsVirtualOrg(in
isVirtualOrg : Boolean[1..1])

This operation defines the value of the mcmIsLegalEntity attribute. If the value of
this attribute is TRUE, then this MCMOrganization is a virtual organization.

getMCMOrgName() : String[1..1] This operation returns the value of the mcmOrgName attribute.
setMCMOrgName(in
newOrgName : String[1..1]) This operation defines the value of the mcmOrgName attribute.

At this time, a single optional aggregation named MCMHasMCMParty is defined for the MCMOrganization class. The
multiplicity of this aggregation is 0..1 - 0..*. If this aggregation is instantiated (e.g. the "1" part of the 0..1 cardinality),
then zero or more MCMParty objects can be aggregated by this particular MCMOrganization object. The cardinality on
the part side (MCMParty) is 0..*; this enables an MCMOrganization object to be defined without having to define an
associated MCMParty object for it to aggregate. The semantics of this aggregation are defined by the
MCMHasMCMPartyDetail association class. This enables the management system to control which set of concrete
subclasses of MCMParty objects are aggregated by this particular MCMOrganization. The Policy Pattern may be used
to control which specific part objects (i.e. MCMParty) are associated with which specific aggregate (i.e.
MCMOrganization) object, respectively, for a given context. Note that MCMPolicyStructure is an abstract class that is
the superclass of imperative, declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary
illustration of the Policy Pattern.

5.2.2.4.11.6.2 MCMPerson Class Definition

This is a concrete class that specializes MCMParty. An MCMPerson defines the concept of an individual that may have
a set of MCMPartyRoles that formalize the responsibilities of that individual. Attributes such as username, password,
phone number(s), the format of the name of the MCMPerson, and skills that the MCMPerson has are modeled as
subclasses of MetaData and associated with that Person using the Role-Object pattern, since:

1) they are not necessary to define the concept of an MCM attributes such as gender and birthDate Person; and

2) they can change dynamically.

An MCMPerson can interact with an MCMOrganization directly or through his or her MCMPartyRole(s). Behaviour
and characteristics that are specific to an individual are modeled using a combination of classes for specific concepts
augmented by the Role-Object pattern for each; this ensures that:

1) the model is not dependent on one particular person, group, or organization; and

2) it separates the characteristics and behaviour of the individual and his or her responsibilities being modeled
from its responsibilities and functions.

This provides a more accurate and extensible model.

Table 5-21 defines following attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 46

Table 5-21: Attributes of the MCMPerson Class

Attribute Name Description

mcmBirthDate :
TimeAndDate[1..1]

This is a TimeAndDate attribute that contains the date (and optionally, the time) that this
MCMPerson was born.
If the value of this attribute is not known, then an accepted value to denote this should be
used.

mcmBirthPlace :
String[0..1]

This is a String attribute, and contains the name of the place that this MCMPerson was born.
Due to variations in formatting, this is a simple string and not a type of Location object.
If the value of this attribute is not known, then an empty string should be used.

mcmFirstName :
String[0..1]

This is a String attribute, and contains the first name of this MCMPerson.
If the value of this attribute is not known, then an empty string should be used.

mcmLastName :
String[1..1]

This is a String attribute, and contains the last name of this MCMPerson.
If the value of this attribute is not known, then an empty string should be used.

Table 5-22 defines following operations for this class.

Table 5-22: Operations of the MCMPerson Class

Operation Name Description
getMCMBirthDate() :
TimeAndDate[1..1] This operation returns the value of the mcmBirthDate attribute.

setMCMBirthDate (in
birthdate :
TimeAndDate[1..1])

This operation defines the value of the mcmBirthDate attribute.
A default TimeAndDate value for signifying an unknown Date may be used.

getMCMBirthPlace() :
String[1..1] This operation returns the value of the mcmBirthPlace attribute.

setMCMBirthPlace (in
birthPlace : String[1..1]) This operation defines the value of the mcmBirthPlace attribute.

getMCMFirstName() :
String[1..1] This operation returns the value of the mcmFirstName attribute.

setMCMFirstName (in
firstName : String [1..1]) This operation defines the value of the mcmFirstName attribute.

getMCMLastName() :
String[1..1] This operation returns the value of the mcmastName attribute.

setMCMLastName (in
lastName : String [1..1]) This operation defines the value of the mcmastName attribute.

No relationships are currently defined for this class.

5.2.2.4.12 MCMDomain Hierarchy

5.2.2.4.12.1 Overview

A domain is defined as a collection of entities that share a common purpose. An MCMDomain constrains this definition
and requires that each constituent MCMEntity in an MCMDomain is both uniquely addressable and uniquely
identifiable within that MCMDomain. An MCMDomain (or its subclasses) should be used to provide access to both
Internal and External Reference Points as well as APIs.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 47

The MCMDomain class has a single subclass, as shown in Figure 5-9.

Figure 5-9: The MCMDomain Hierarchy

5.2.2.4.12.2 Class Definition

An MCMDomain is an abstract class that specializes MCMEntity. An MCMDomain is a collection of MCMEntities
that share a common purpose. In addition, each constituent MCMEntity in an MCMDomain is both uniquely
addressable and uniquely identifiable within that MCMDomain.

An MCMDomain should not be used to contain MCMManagedEntity objects. Instead, an MCMManagementDomain
object shall be used.

5.2.2.4.12.3 Attribute Definition

At this time, no attributes are defined for the MCMDomain class.

5.2.2.4.12.4 Operation Definition

At this time, no operations are defined for the MCMDomain class.

5.2.2.4.12.5 Relationship Definition

At this time, no relationships are defined for the MCMDomain class.

5.2.2.4.12.6 MCMDomain Subclasses

5.2.2.4.12.6.1 MCMManagementDomain Class Definition

MCMManagementDomain is a concrete class that specializes MCMDomain. An MCMManagementDomain is used to
contain zero or more MCMManagedEntities and zero or more MCMEntities. It therefore refines the notion of a Domain
by adding several important behavioural features, as specified in the following requirements:

1) Each MCMManagedEntity contained in an MCMManagementDomain shall be uniquely identifiable for
management purposes.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 48

2) An MCMManagementDomain should define a set of administrators that collectively govern the set of
MCMManagedEntities that it contains. That is, all contained MCMManagedEntities are governed by at least
one administrator.

3) An administrator may be restricted to execute a subset of operations for a given MCMManagementDomain.
For example, if administrators A and B can managed a given MCMManagementDomain, then their respective
management operations can be different.

4) An MCMManagementDomain should define a set of applications that are responsible for all envisaged
governance operations, such as monitoring and configuration.

5) Different applications may be responsible for different governance operations. For example, monitoring and
configuration operations may be performed by the same or different applications).

6) An MCMManagementDomain should define a common set of management mechanisms, such as policy rules,
that are used to govern the behaviour of MCMManagedEntities contained in the MCMManagementDomain.

This set of features collectively enable an MCMManagementDomain to be administered as a single unit.

The constraint for having an MCMDomain contain MCMManagedEntities, and not simply MCMEntities, shall be
realized using the MCMMgmtDomainHasMCMManagedEntity aggregation. This aggregation is realized using an
association class (called MCMMgmtDomainHasMCMManagedEntityDetail), whose attributes are controlled by a set of
policies.

This association may also be further refined using OCL.

Currently, no attributes are defined for this class.

Table 5-23 defines the operations for the MCMManagementDomain class.

Table 5-23: Operations of the MCMManagementDomain Class

Operation Name Description

getMCMMgmtDomainParent() :
MCMMgmtDomainComposite[1..1]

This operation returns the parent of this MCMDomain object.
If this MCMDomain object has no parent, then a NULL
MCMDomainComposite object should be returned.

setMCMMgmtDomainParent(
in newParent :
MCMMgmtDomainComposite[1..1])

This operation defines the parent of this MCMDomain object.
If this MCMDomain object already has a parent, then an exception should
be raised.
This MCMLocation object shall not have more than one parent.

At this time, a single optional aggregation is defined for the MCMManagementDomain class. This aggregation is
named MCMMgmtDomainHasMCMMgdEntity, and defines the set of MCMManagedEntities that are contained in this
particular MCMManagementDomain. The multiplicity of this aggregation is 0..1 - 0..*. If this aggregation is
instantiated (e.g. the "1" part of the 0..1 cardinality), then zero or more MCMManagedEntity objects can be aggregated
by this particular MCMManagementDomain object. The cardinality on the part side (MCMManagedEntity) is 0..*; this
enables an MCMManagementDomain object to be defined without having to define an associated MCMManagedEntity
object for it to aggregate. The semantics of the MCMMgmtDomainHasMCMManagedEntity aggregation is realized
using the MCMMgmtDomainHasMCMMgdEntityDetail association class. This enables the semantics of the
MCMMgmtDomainHasMCMMgdEntity aggregation to be realized using the attributes, operations, and relationships of
the MCMMgmtDomainHasMCMMgdEntityDetail association class. The Policy Pattern may be used to control which
type of MCMManagedEntity objects are contained in a particular MCMManagementDomain object. Note that
MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and intent policy rules. See
Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of the Policy Pattern.

This class also participates in a second aggregation, called MCMHasManagementDomain; this is defined in
clause 5.2.2.4.12.6.3.

5.2.2.4.12.6.2 MCMManagementDomainAtomic Class Definition

MCMManagementDomainAtomic is a concrete class, and specializes MCMManagementDomain. Each
MCMMgmtDomainAtomic has characteristics and behaviour that is externally visible.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 49

This class represents stand-alone MCMManagementDomain objects (i.e. they shall not contain another
MCMMgmtDomain object).

At this time, no attributes are defined for the MCMMgmtDomainAtomic class.

At this time, no operations are defined for the MCMMgmtDomainAtomic class.

At this time, no relationships are defined for the MCMMgmtDomainAtomic class.

5.2.2.4.12.6.3 MCMManagementDomainComposite Class Definition

MCMManagementDomainComposite is a concrete class, and specializes MCMManagementDomain. This class
represents a set of related MCMManagementDomain objects that are organized into a tree structure.

Each MCMMgmtDomainComposite may contain zero or more MCMMgmtDomainAtomic and/or zero or more
MCMMgmtDomainComposite objects.

At this time, no attributes are defined for the MCMMgmtDomainComposite class.

Table 5-24 defines the operations for the MCMMgmtDomainComposite class.

Table 5-24: Operations of the MCMManagementDomainComposite Class

Operation Name Description

getMCMMgmtDomainChildList() :
MCMManagementDomain [1..*]

This operation returns the set of all MCMMgmtDomain objects that are
contained in this specific MCMMgmtDomainComposite object. This operation
returns a list of zero or more MCMMgmtDomain objects.
If this MCMMgmtDomainComposite object has no child objects, then a NULL
MCMMgmtDomain object should be returned.

setMCMMgmtDomainChildList (in
childObjectList :
MCMManagementDomain [1..*])

This operation defines a set of MCMMgmtDomain objects that will be
contained by this particular MCMMgmtDomainComposite object. This
operation deletes any existing contained MCMMgmtDomain objects (and their
aggregations and association classes), and then instantiates a new set of
aggregations between each MCMMgmtDomain object in the childObjectList
and this particular MCMMgmtDomainComposite object ; in doing so, each
MCMMgmtDomain object is contained within this particular
MCMMgmtDomainComposite object by creating an instance of the
MCMHasManagementDomain aggregation and realizing that aggregation
instance as an association class.
Each created aggregation should have an association class (i.e. an instance
of the MCMHasManagementDomainDetail association class).

setMCMMgmtDomainPartialChild-
List (in childObjectList :
MCMManagementDomain [1..*])

This operation defines a set of one or more MCMMgmtDomain objects that
are contained within this particular MCMMgmtDomainComposite object
without affecting any other existing contained MCMMgmtDomain objects or
the objects that are contained in them. This operation creates a set of
aggregations between this particular MCMMgmtDomainComposite object and
each of the MCMMgmtDomain objects identified in the childObjectList.
Each created aggregation should have an association class (i.e. an instance
of the MCMHasManagementDomainDetail class).

delMCMMgmtDomainChildList ()

This operation deletes all contained MCMMgmtDomain objects of this
particular MCMMgmtDomainComposite object. This operation removes both
the association class and the aggregation between this
MCMMgmtDomainComposite object and each MCMMgmtDomain object that
is contained in this MCMMgmtDomainComposite object.

delMCMMgmtDomainPartialChild-
List (in childObjectList :
MCMManagementDomain[1..*])

This operation deletes a set of MCMMgmtDomain objects from this particular
MCMMgmtDomainComposite object. This operation removes both the
association class and the aggregation, between each MCMMgmtDomain
object specified in the input parameter and this MCMMgmtDomainComposite
object.
All other aggregations between this MCMMgmtDomainComposite and other
MCMMgmtDomain objects that are not identified in the input parameter
shall not be affected.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 50

The MCMHasManagementDomainComposite class defines a single optional aggregation, called
MCMHasManagementDomain. This aggregation is used to define the set of MCMManagementDomains that are
contained within this particular MCMMgmtDomainComposite. Its multiplicity is defined to be 0..1 - 0..*. If this
aggregation is instantiated (e.g. the "1" part of the 0..1 cardinality), then zero or more MCMManagementDomain
objects can be aggregated by this particular MCMManagementDomainComposite object. Note that the cardinality on
the part side (MCMManagementDomain) is 0..*; this enables an MCMManagementDomainComposite object to be
defined without having to define an associated MCMManagementDomain object for it to aggregate.

The semantics of the MCMHasManagementDomain aggregation is realized using an association class, called
MCMHasManagementDomainDetail. This enables the semantics of the MCMHasManagementDomain aggregation to
be realized using the attributes, operations, and relationships of the MCMHasManagementDomainDetail association
class. The Policy Pattern may be used to control which specific MCMManagementDomain objects are contained within
a given MCMManagementDomainComposite object for a given context. Note that MCMPolicyStructure is an abstract
class that is the superclass of imperative, declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for
an exemplary illustration of the Policy Pattern.

5.2.2.4.13 MCMBusinessObject Hierarchy

5.2.2.4.13.1 Overview

The MCMBusinessObject class hierarchy defines the abstract concept of business objects that are types of
MCMEntities, but not types of MCMManagedEntities. Examples include Order, TroubleTicket, and Report.

The utility of this class hierarchy is to connect business objects with the network, business applications, and/or
Customers for modelling the full lifecycle of business operations that results in network services.

The MCMBusinessObject class has two subclasses, as shown in Figure 5-10.

Figure 5-10: The MCMBusiness Hierarchy

MCMBusinessObject is a subclass of MCMEntity, and is a sibling of MCMManagedEntity. The MCM models business
objects differently than other types of managed entities, because:

1) their lifecycle is different; and

2) their semantics are different.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 51

This class is the superclass of concepts such as Orders, POCs, and Quotes. The full model of business entities is defined
in the MEF Business Model (MBM). In the MBM, all business objects that contain other objects, such as Orders, are
subclasses from MCMAggregatingBusinessObject. Similarly, all business objects that are contained by another
business object, such as OrderItems, are subclassed from MCMSimpleBusinessObject.

NOTE: Should this version of the ENI Extended Core Model use MCMBusiness Objects?

5.2.2.4.13.2 Class Definition

MCMBusinessObject is an abstract class, and specializes MCMEntity. It represents business objects that are produced
by the business but are not managed in the way that MCMManagedEntity objects are. Examples include Orders,
TroubleTickets, Inventory, and Reports.

Concepts like the set of MCMPartyRoles that interact with this MCMBusinessObject, and the time period in which this
MCMBusinessObject is valid, are realized as relationships, not as attributes of the MCMBusinessObject class. More
specifically, the former is provided by MCMEntityHasMCMMetaData, since MCMBusinessObject is a subclass of
MCMEntity and therefore inherits this aggregation. The latter is an attribute that is already defined in MCMMetaData.

5.2.2.4.13.3 Attribute Definition

Table 5-25 defines the attributes of the MCMBusinessObject class. Most attributes will likely be realized using
relationships and/or operations. For example, concepts like the Buyer and Seller object identifiers, along with Buyer
order, implementation, and technical contacts will be defined using a combination of relationships and operations.

Table 5-25: Attributes of the MCMBusinessObject Class

Attribute Name Description

mcmBusinessPurpose :
String[0..1]

This is a string attribute that contains a description of the business purpose of this
MCMBusinessObject.
If an object does not have a value for the mcmCommonName attribute, then an empty
string should be used.

mcmBizObjCreationDate :
TimeAndDate[0..1]

This is a TimeAndDate attribute that contains the date and time when this object was
produced.
This attribute should have a complete and valid time and/or date.
The implementation may ensure that the fields in this data type are set to an
appropriate default value.

5.2.2.4.13.4 Operation Definition

Table 5-26 defines the operations of the MCMBusinessObject class.

Table 5-26: Operations of the MCMBusinessObject Class

Operation Name Description

getMCMBusinessPurpose() :
String[1..1]

This operation returns the mcmBusinessPurpose textual attribute for this particular
MCMBusinessObject.
If a business purpose is not defined, then an empty string should be returned.

setMCMBusinessPurpose(in
bizPurpose: String[1..1])

This operation sets the mcmBusinessPurpose textual attribute for this particular
MCMBusinessObject.
If a business purpose is not defined, then an empty string should be used.

getMCMDateCreated() :
TimeAndDate[1..1]

This is a TimeAndDate attribute that contains the date and time that this object was
created.
This attribute should have a complete and valid time and/or date.
The implementation may ensure that the fields in this data type are set to an
appropriate default value.

setMCMDateCreated (in
newCreationDate:
TimeAndDate[1..1])

This is a TimeAndDate attribute that contains the date and time that this object was
created.
This attribute should have a complete and valid time and/or date.

5.2.2.4.13.5 Relationship Definition

At this time, no relationships are defined for the MCMBusinessObject class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 52

5.2.2.4.13.6 MCMBusinessObject Subclasses

5.2.2.4.13.6.1 MCMAggregatingBusinessObject Class Definition

This is an abstract class that specializes MCMBusinessObject. Its purpose is to represent a commonly occurring
business pattern of an object that contains different items that have a numerical significance. These contained items are
called "line items". Examples include Order and OrderItems, Quote and QuoteItems, and ProductOfferQualification
(POC) and POCItems objects.

There are two ways to realize this restriction. The first is to apply OCL to the aggregation, while the second is to use the
association class to restrict which types of part components (e.g. an OrderItem) can be aggregated by which type of
aggregating object (i.e. an Order in this example).

This class currently has no attributes. This is because its purpose is to enable its concrete subclasses to aggregate
(i.e. contain) concrete subclasses of the MCMSimpleObject class.

Similarly, this class currently has no operations.

This class participates in one optional relationship, called MCMAggregatesSimpleBusinessObject. This defines the set
of concrete subclasses of MCMSimpleBusinessObject that a concrete subclass of this MCMAggregatingBusinessObject
can contain.

All subclasses of MCMAggregatingBusinessObject inherit this relationship. The multiplicity of this aggregation is
0..1 - 1..*. If this aggregation is instantiated (e.g. the "1" part of the 0..1 cardinality), then one or more
MCMSimpleBusinessObject objects are aggregated by this particular MCMAggregatingBusinessObject.

The semantics of this aggregation are defined by the MCMAggregatesSimpleBusinessObjectDetail association class.
This enables a particular set of MCMSimpleBusinessObjects to be contained by a given
MCMAggregatingBusinessObject. The MCMAggregatesSimpleBusinessObjectDetail association class is abstract; this
enables the developer to build concrete subclasses of this association class to define details specific to different
combinations of MCMAggregatingBusinessObject and MCMSimpleBusinessObject. For example, a concrete
association class could be defined to restrict which particular subclasses of MCMSimpleBusinessObject may be
aggregated by a particular concrete subclass of MCMAggregatingBusinessObject. The Policy Pattern may be used to
control which specific MCMOrderItem objects are attached to a given MCMOrderStructure object for a given context.
Note that MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and intent policy
rules. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of the Policy Pattern.

5.2.2.4.13.6.2 MCMSimpleBusinessObject Class Definition

This is an abstract class that represents different types of objects that enumerate different items of an aggregating object.
Examples, including Order Items, Quote Items, and POC Item objects, which can each be contained by Order, Quote,
and POC objects, respectively.

This class currently has no attributes. This is because its purpose is to enable its concrete subclasses to be aggregated by
(i.e. contained by) concrete subclasses of the MCMAggregatingBusinessObject class.

Similarly, this class currently has no operations.

Similarly, this class currently has no relationships.

5.2.2.5 MCMInformationResource Hierarchy

5.2.2.5.1 Overview

Figure 5-11 shows the MCMInformationResource class hierarchy, along with some important aggregations that it
participates in. The following clauses describe the classes in the MCMInformationResource class hierarchy in more
detail.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 53

Figure 5-11: The MCMInformationResource Hierarchy

NOTE: Should this version of the ENI Extended Core Model use Business Objects?

5.2.2.5.2 MCMInformationResource Class Definition

This is an abstract class that specializes MCMRootEntity. It defines information that is needed by a management system
to describe information that is not an inherent part of an MCMEntity; rather, that information is managed and controlled
using another MCMManagedEntity. For example, an IPAddress is not directly managed by the MCMManagedEntity
that it is associated with, such as a router; rather, an MCMManagedEntity that is responsible for the lifecycle of the
IPAddress (e.g. a DHCPServer) is responsible for the management of an IPAddress. Therefore, the concept of an
IPAddress is represented as a type of MCMInformationResource, and is associated to an MCMManagedEntity that
performs its management.

5.2.2.5.3 Attribute Definition

There are no attributes defined for this class. This is because its two subclasses are semantically different, and common
information, such as version and time created, can be supplied by metadata.

5.2.2.5.4 Operation Definition

Table 5-27 defines following operations for this class.

Table 5-27: Operations of the MCMInformationResource Class

Operation Name Description

getMCMNetworkAddress-
FreeList() :
MCMNetworkAddress[1..*]

This operation returns the set of all MCMNetworkAddress objects that are
free-standing (i.e. they are not aggregated by any subclass of an MCMEntity
class).
If no MCMNetworkAddress objects are found, then a NULL
MCMNetworkAddress object should be returned.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 54

Operation Name Description

setMCMNetworkAddressFreeList
(in newNetAddrFreeList :
MCMNetworkAddress[1..*])

This operation defines a new set of MCMNetworkAddresses to be created
that are free-standing (i.e. they are not aggregated by any subclass of
MCMEntity). Each element in the input parameter is used to create an
MCMNetworkAddress. This operation does not associate any
MCMIPAddress with an MCMEntity.
This operation shall not affect any other MCMNetworkAddress object that
are aggregated by any MCMEntity class.
If an MCMNetworkAddress defined in the input parameter already exists,
then an exception should be raised.

delMCMNetworkAddressFreeList()

This operation is used to delete all free-standing MCMNetworkAddress
objects.
This operation shall not affect any other MCMNetworkAddress object that
are aggregated by any MCMEntity class.

delMCMNetworkAddressFree-
PartialList (in
newNetworkAddressList :
MCMNetworkAddress[1..*])

This operation deletes all MCMNetworkAddress object instances that are
specified in its input parameter that are free-standing (i.e. not aggregated by
any subclass of MCMEntity).
This operation shall not affect any MCMNetworkAddress object that is not
specified in its input parameter.
This operation shall not affect any other MCMNetworkAddress object that
are aggregated by any MCMEntity class.

getMCMContactFreeList() :
MCMContact[1..*]

This operation returns the set of all MCMContact objects that are free-
standing (i.e. they are not aggregated by any subclass of an MCMEntity
class). The getMCMInfoResourceList operation is used to retrieve the set of
MCMContact objects that are aggregated by a given MCMEntity object.
If no MCMContact objects are found, then a NULL MCMContact object
should be returned.

setMCMContactFreeList(in
newContactList :
MCMContact[1..*])

This operation defines a new set of MCMContact to be created that are free-
standing (i.e. they are not aggregated by any subclass of MCMEntity). This
operation only defines the MCMContact objects; it does not associate them
with an MCMEntity.
This operation shall not affect any other MCMContact object that are
aggregated by any MCMEntity class.

delMCMContactFreeList()
This operation is used to delete all free-standing MCMContact objects.
This operation shall not affect any other MCMContact object that are
aggregated by any MCMEntity class.

delMCMContactFreePartialList (in
newContactList :
MCMContact[1..*])

This operation deletes all MCMContact object instances that are specified in
its input parameter that are free-standing (i.e. not aggregated by any
subclass of MCMEntity). Each element in the input parameter is used to
delete an MCMContact.
If an MCMContact corresponding to an element in the input parameter is not
found, then an error shall be raised.
This operation shall not affect any MCMContact object that is not specified
in its input parameter.
This operation shall not affect any other MCMContact object that are
aggregated by any MCMEntity class.

5.2.2.5.5 Relationship Definition

At this time, the MCMInformationResource class defines a single optional aggregation, called
MCMInfoResourceHasMCMMetaData. The multiplicity of this aggregation is 0..1 - 0..*. If this aggregation is
instantiated (e.g. the "1" part of the 0..1 cardinality), then zero or more MCMMetaData objects can be aggregated by
this particular MCMInformationResource object. The cardinality on the part side (MCMMetaData) is 0..*; this enables
an MCMInformationResource object to be defined without having to define an associated MCMMetaData object for it
to aggregate.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 55

The semantics of this aggregation are defined by the MCMInfoResourceHasMCMMetaDataDetail association class.
This enables the management system to control which set of MCMMetaData objects are aggregated by which set of
MCMInformationResource objects. Note that the Policy Pattern may be used to control which specific part objects
(i.e. MCMMetaData) are associated with which specific aggregate (i.e. MCMInformationResource) objects,
respectively, for a given context. The MCMPolicyStructure is an abstract class that is the superclass of imperative,
declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of the Policy
Pattern.

The MCMInformationResource participates in a second aggregation, called MCMEntityHasMCMInfoResource (see
clause 5.2.2.4.2.5).

5.2.2.5.6 MCMInformationResource Subclasses

5.2.2.5.6.1 MCMNetworkAddress Class Definition

This is an abstract class that specializes MCMInformationResource. It defines a network address, which is a unique
identifier for a node on a network. Such identifiers can be local, private, or public (e.g. globally unique). A network
node may have zero or more MCMNetworkAddresses (e.g. a router may have multiple interfaces, and each interface
may have a set of MCMNetworkAddresses). Examples of an MCMNetworkAddress include telephone numbers, IPv4
and IPv6 addresses, MAC addresses, and X.21 or X.25 addresses (in a circuit-switched data network).

Table 5-28 defines the attributes for this class.

Table 5-28: Attributes of the MCMNetworkAddress Class

Attribute Name Description
mcmAddressType:
MPMAddressType[1..1]

This attributes defines the type of network address that this instance is. Valid values
are defined in the MPMAddressType enumeration.

mcmAddressScope :
MPMAddressScope[1..1]

This attributes defines the scope for this network address. Valid values are defined in
the MPMAddressScope enumeration.

Table 5-29 defines the operations for this class.

Table 5-29: Operations of the MCMNetworkAddress Class

Operation Name Description
getMCMNetworkAddress() :
MPMAddressType[1..1]

This operation returns the value of the mcmAddressType attribute.
If a NULL or empty value is found, then an error shall be raised.

setMCMNetworkAddress(in
newType : MPMAddressType [1..1]) This operation defines a new value for the mcmAddressType attribute.

getMCMNetworkScope() :
MPMAddressScope[1..1]

This operation returns the value of the mcmAddressScope attribute.
If a NULL or empty value is found, then an error shall be raised.

setMCMNetworkScope(in
newScope :
MPMAddressScope[1..1])

This operation defines a new value for the mcmAddressType attribute.

No relationships are currently defined for this class.

5.2.2.5.6.2 MCMContact Class Definition

This is a concrete class that specializes MCMInformationResource. It represents the information needed to
communicate with a particular MCMParty or MCMPartyRole. Examples include technical and administrative contacts
for Order information and technical implementation work (e.g. the network administrator of an
MCMManagementDomain or MCMManagedEntity).

No attributes are currently defined for this class. Extensions to the MCM are encouraged to define supporting classes
that collect different contact methods, such as types of emails, phone numbers, and other information; relationships
could then be defined between selected supporting classes and the MCMContact class to generalise these settings. This
is because there is no specific email or phone number that can always be used for a given MCMContact. In addition, an
MCMParty that can have multiple MCMPartyRoles (e.g. Employee, HelpDesk, and HelpDeskSupervisor) would likely
need different contact information for each of those MCMPartyRoles.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 56

No operations are currently defined for this class.

This class participates in a single optional association, called MCMPartyRoleDetailHasMCMContact. This is an
association between the MCMPartyRoleDetail association class and the MCMContact class. An MCMPartyRoleDetail
is an association class that defines a set of MCMPartyRoles that are used by a given MCMParty. Hence, the
MCMPartyRoleDetailHasMCMContact association defines the set of MCMContacts that are related to this particular
MCMPartyRoleDetail object. Put another way, it defines the set of MCMParty objects that are playing one or more
specific MCMPartyRoles. A common use is to define the contact information for different types of MCMBuyer and
MCMSeller objects.

The multiplicity of this association is 0..* - 0..*. If this association is instantiated (e.g. the "0..* cardinality on the
MCMPartyHasMCMPartyRoleDetail is greater than 0), then zero or more MCMContact objects can be associated with
this particular MCMPartyHasMCMPartyRoleDetail object. The cardinality on the part side (MCMContact) is 0..*; this
enables an MCMPartyHasMCMPartyRoleDetail object to be defined without having to define an associated
MCMContact object for it to aggregate.

The semantics of this aggregation are defined by the MCMPartyRoleDetailHasMCMContactDetail association class.
This enables the management system to control which set of MCMPartyRoleDetail objects are associated to which set
of MCMContact objects. The MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative,
and intent policy rules. The Policy Pattern may be used to control which specific part objects (i.e. MCMMetaData) are
associated with which specific aggregate (i.e. MCMInformationResource) objects, respectively, for a given context. See
Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of the Policy Pattern.

5.2.2.6 MCMMetaData Hierarchy

5.2.2.6.1 Overview

The purpose of the MCMMetaData hierarchy is to define objects that describe and/or prescribe the characteristics
and/or behaviour of MCMEntity and MCMInformationResource objects. This is done by instantiating an association
between the MCMEntity or MCMInformation resource object and the appropriate set of MCMMetaData objects.

Figure 5-12 shows the top portion of the MCMMetaData class hierarchy.

Figure 5-12: The MCMMetaData Hierarchy, Top Level View

5.2.2.6.2 MCMMetaData Class Definition

This is an abstract class that specializes MCMRootEntity. It defines prescriptive and/or descriptive information about
the MCMEntity or MCMInformationResource object(s) to which it is attached. These descriptive and/or prescriptive
characteristics and behaviour shall not be an inherent, distinguishing characteristic or behaviour of that object
(otherwise, it would be an integral part of that object). Examples of prescriptive and descriptive metadata are the
definition of a time period during which specific types of operations are allowed, and documentation about best current
practices, respectively.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 57

5.2.2.6.3 Attribute Definition

Table 5-30 defines following attributes for this class.

Table 5-30: Attributes of the MCMMetaData Class

Attribute Name Description
mcmMetaDataEnableStatus :
MCMMetaDataEnableStatus[0..1]

This is an optional enumeration that defines whether the MCMEntity that this
MCMMetaData object refers to is enabled for normal operation or not.

mcmMetaDataCreationTime :
TimeAndDate[1..1]

This contains a date stamp and a timestamp that defines the date and time
that this MCMMetaData object was created.
This attribute should have a complete and valid time and/or date.
The implementation may ensure that the fields in this data type are set to an
appropriate default value.

mcmMetaDataDescriptiveText :
String[0..1]

This attribute contains descriptive content about the MCMEntity or
MCMInformationResource to which it is attached.

5.2.2.6.4 Operation Definition

Table 5-31 defines following operations for this class.

Table 5-31: Operations of the MCMMetaData Class

Operation Name Description

getMCMMetaDataEnableStatus() :
MCMMetaDataEnableStatus[1..1]

This operation returns the value of the mcmMetaDataEnableStatus attribute.
If this object does not have a value for the mcmLocationDataList attribute, then
a NULL string should be returned by the getMCMLocationDataList operation.

setMCMMetaDataEnableStatus (in
newStatus :
MCMMetaDataEnableStatus1..1])

This operation defines the value of the mcmMetaDataEnableStatus attribute.

getMCMMetaDataCreationTime() :
TimeAndDate[1..1]

This operation returns the value of the mcmMetaDataCreationTime attribute.
This attribute should have a complete and valid time and/or date.
The implementation may ensure that the fields in this data type are set to an
appropriate default value.

setMCMMetaDataCreationTime(in
newTime : TimeAndDate[1..1])

This operation defines the value of the mcmMetaDataCreationTime attribute.
The implementation may ensure that the fields in this data type are set to an
appropriate default value.

getMCMMetaDataDescriptiveText()
: String[1..1]

This operation returns the value of the mcmMetaDataDescriptiveText attribute.
If this object does not have a value for this attribute, then a NULL string should
be returned.

setMCMMetaDataDescriptiveText
(in newStatus : String[1..1])

This operation defines the value of the mcmMetaDataDescriptiveText attribute.
A NULL string should not be used.

5.2.2.6.5 Relationship Definition

The MCMMetaData class participates in three aggregations. The first two, MCMEntityHasMCMMetaData and
MCMInfoResourceHasMCMMetaData, have been previously defined in clauses 5.2.2.4.2.5 and 5.2.2.5.4, respectively.
The third, MCMHasMCMMetaDataDecorator, is defined in clause 5.2.2.6.6.2.3.

5.2.2.6.6 MCMMetaData Subclasses

5.2.2.6.6.1 Overview

Figure 5-13 shows the important subclasses of MCMMetaData.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 58

Figure 5-13: The MCMMetaData Important Subclasses

5.2.2.6.6.2 MCMRole Class Hierarchy

5.2.2.6.6.2.1 MCMRole Class Definition

This is an abstract class that specializes MCMMetadata. It represents a set of characteristics and behaviours (also
referred to as responsibilities throughout this document) that an object takes on in a particular context. This enables an
object to adapt to the needs of different clients through transparently attached role objects (as opposed to having to alter
the inherent nature of the object itself). The Role Object pattern [i.8] models context-specific views of an object as
separate role objects that are dynamically attached to and removed from the core object to which the MCMRole objects
are attached.

An important concept when using MCMRoles is that of a role combination. A role combination defines the set of
MCMRoles that are attached to a given object. Data mining mechanisms can be used to optimize the number of roles,
permission assignments, and other factors. This subject is beyond the scope of the present document; however, this is
why the getRoleCombination operation is provided by this class.

Implementers should use the Role-Object pattern to implement MCMRoles.

Table 5-32 defines the following attributes for this class.

Table 5-32: Attributes of the MCMRole Class

Attribute Name Description

mcmRoleName :
String[1..1]

This is a string attribute that contains the name of this Role object. This is different from the
mcmCommonName attribute, which defines a name by which this object is known.
The mcmRoleName attribute shall not be used as a naming attribute (i.e. to uniquely
identify an instance of this object).
The mcmRoleName attribute shall not be empty or Null.

Table 5-33 defines following operations for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 59

Table 5-33: Operations of the MCMRole Class

Attribute Name Description

getMCMRoleName :
String[1..1]

This operation returns the name of this MCMRole object.
The mcmRoleName attribute shall not be used as a naming attribute (i.e. to
uniquely identify an instance of this object).
The mcmRoleName attribute shall not be empty or Null string.

setMCMRoleName (in
newRoleName :
String[1..1])

This operation defines the name of this MCMRole object.
The mcmRoleName attribute shall not be used as a naming attribute (i.e. to
uniquely identify an instance of this object).
The mcmRoleName attribute shall not be empty or Null string.

At this time, no relationships are defined for this class.

5.2.2.6.6.2.2 MCMPartyRole Class Definition

This is an abstract class that specializes MCMRole. It represents a set of unique behaviours played by an MCMParty in
a given context. Table 5-34 defines the attributes for this class:

Implementers should use the Role-Object pattern to implement MCMPartyRoles.

Table 5-34: Attributes of the MCMPartyRole Class

Attribute Name Description

mcmPartyRoleID :
String[1..1]

This is a mandatory string attribute that contains a unique value that enables instances of
this MCMPartyRole to be disambiguated from other MCMPartyRoles (including
MCMPartyRoles of the same object type).
This attribute shall not be used as an objectID, since one is inherited from
MCMRootEntity.
The value of this attribute shall not be a NULL or EMPTY string.

Table 5-35 defines following operations for this class.

Table 5-35: Operations of the MCMPartyRole Class

Attribute Name Description

getMCMPartyRoleID :
String[1..1]

This operation returns the ID of this MCMPartyRole object.
The mcmPartyRoleID attribute shall not be used as a naming attribute (i.e. to uniquely
identify an instance of this object).
The mcmPartyRoleID attribute shall not be a NULL or empty string.

setMCMPartyRoleID (in
newRoleID : String[1..1])

This operation defines the ID of this MCMPartyRole object.
The mcmPartyRoleID attribute shall not be used as a naming attribute (i.e. to uniquely
identify an instance of this object).
The mcmPartyRoleID attribute shall not be a NULL or empty string.

MCMParty defines five important operations: getMCMPartyRoleList, setMCMPartyRoleList,
setMCMPartyRolePartialList, delMCMPartyRoleList, and delMCMPartyRolePartialList; see clause 5.2.2.4.11.

The MCMPartyRoleDetailHasMCMContact was defined in clause 5.2.2.5.6.2.

5.2.2.6.6.2.3 MCMMetaDataDecorator Class Definition

This is an abstract class that specializes MCMMetaData. It defines the decorator pattern for use with MCMMetaData.
This enables all or part of one or more concrete subclasses of MCMMetaDataDecorator to "wrap" another concrete
subclass of MCMMetaData.

At this time, no attributes are defined for the MCMMetaDataDecorator class.

Table 5-36 defines the operations of this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 60

Table 5-36: Operations of the MCMMetaDataDecorator Class

Attribute Name Description

getMCMMetaDecoratorList() :
MCMMetaDataDecorator[1..*]

This operation returns the set of MCMMetaDataDecorator objects that are
decorating this MCMMetaData object.
If this MCMMetaData object is not decorated by any MCMMetaDataDecorator
objects, then a NULL MCMMetaDataDecorator object should be returned.

setMCMMetaDecoratorList (in
newDecoratorList :
MCMMetaDataDecorator[1..*])

This operation defines the set of MCMMetaDataDecorator objects that decorate
this MCMMetaData object. This operation creates a set of aggregations
between this particular MCMMetaData object and the set of
MCMMetaDataDecorator objects identified in the input parameter. This
operation first deletes any existing MCMMetaDataDecorator objects (and their
aggregations and association classes) that decorate this MCMMetaData object,
and then instantiates a new set of MCMServiceComponent objects; in doing so,
each MCMMetaDataDecorator object is attached to this particular
MCMMetaData object by creating an instance of the
MCMHasMetaDataDecorator aggregation and realizing that aggregation
instance as an association class.
Each created aggregation should have an association class (i.e. an instance of
the MCMHasMetaDataDecoratorDetail association class).

setMCMMetaDecoratorPartial-
List (in newDecoratorList :
MCMMetaDataDecorator[1..*])

This operation defines a set of one or more MCMMetaDataDecorator objects
that decorate this MCMMetaData object without affecting any other existing
MCMMetaDataDecorator objects that are decorating this MCMMetaData object.
This operation creates a set of aggregations between this particular
MCMMetaData object and the set of MCMMetaDataDecorator objects identified
in the input parameter.
Each created aggregation should have an association class (i.e. an instance of
the MCMHasMetaDataDecoratorDetail association class).

delMCMMetaDecoratorList()

This operation deletes all MCMMetaDataDecorator object instances that are
decorating this MCMMetaData object. This operation removes the association
class and the aggregation between this MCMMetaData object and each
MCMMetaDataDecorator object that is decorating this MCMMetaData object.
This operation does not delete any of the MCMMetaDataDecorator objects; it
simply disconnects them from the MCMMetaData that they were decorating.

delMCMMetaDecoratorPartial-
List (in newDecoratorList :
MCMMetaDataDecorator [1..*])

This operation deletes a set of MCMMetaDataDecorator objects that are
decorating this particular MCMMetaData object. This operation removes both
the association class and the aggregation between each
MCMMetaDataDecorator object specified in the input parameter and this
MCMMetaData object.
All other aggregations between this MCMMetaData object and other
MCMMetaDataDecorator objects that are not specified in the input parameter
shall not be affected.

A single optional aggregation, called MCMHasMetaDataDecorator, is defined for MCMMetaDataDecorator. This
defines the set of concrete subclasses of MCMMetaDataDecorator that wrap (or decorate) a concrete subclass of
MCMMetaData. The multiplicity of this aggregation is 0..1 - 0..*. If this aggregation is instantiated (e.g. the "1" part of
the 0..1 cardinality), then zero or more concrete subclasses of MCMMetaDataDecorator can decorate (i.e. "wrap") this
particular concrete subclass of MCMMetaData. Note that the cardinality on the part side (MCMMetaData) is 0..*; this
enables an MCMMetaData object to be defined without having to define an associated MCMMetaDataDecorator object.

The semantics of this aggregation are defined by the MCMHasMetaDataDecoratorDetail association class. This enables
the management system to control which set of concrete subclasses of MCMMetaDataDecorator wrap this particular
MCMMetaData. The Policy Pattern may be used to control which specific MCMMetaDataDecorator objects wrap a
given MCMMetaData for a given context. The MCMPolicyStructure is an abstract class that is the superclass of
imperative, declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of
the Policy Pattern.

5.2.2.6.6.2.4 MCMCapability Class Definition

This is an abstract class that specializes MCMMetaDataDecorator. It represents a set of features (i.e. attributes,
operations, and relationships) that are available to be used from an MCMEntity. These features may include all, or a
subset, of the available features of an MCMEntity. These features may, but do not have to, be used.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 61

At this time, no attributes are defined for the MCMCapability class. Most attributes will be realized using relationships
and/or operations. For example, the set of mandatory, recommended, and optional capabilities of a given
MCMManagedEntity can be gathered and sorted by using an appropriate operation.

At this time, no relationships are defined for this class.

At this time, no relationships are defined for this class.

5.2.2.6.6.2.5 MCMVersion Class Definition

This is a concrete class that specializes MCMMetaDataDecorator. It defines versioning information, in the form of
metadata, that can be added to an MCMEntity or MCMInformationResource. This approach has two main benefits:

1) It enables a standardized form of versioning to be attached to any MCMEntity or MCMInformationResource.

2) It enables a standardized form of version information to be easily changed at runtime by wrapping an object
instance of the MCMEntity or MCMInformationResource class (or its subclasses) with all or part of this
object.

Version information is defined in a generic format based on the Semantic Versioning 2.0.0 [8] specification as follows:

 <major>.<minor>.<patch>[<pre-release>][<build-metadata>]

where the first three components (major, minor, and patch) shall be present, and the latter two components (pre-release
and build-metadata) may be present. A version number shall take the form <major>.<minor>.<patch>, where <major>,
<minor>, and <patch> are each non-negative integers that shall not contain leading zeros.

In addition, the value of each of these three elements shall increase numerically. In this approach:

1) mcmVersionMajor denotes a new release. This number shall be incremented when either changes are
introduced that are not backwards-compatible, and/or new functionality not previously present is introduced.

2) mcmVersionMinor denotes a minor release. This number shall be incremented when new features and/or bug
fixes to a major release that are backwards-compatible are introduced, and/or if any features are marked as
deprecated.

3) mcmVersionPatch denotes a version that consists ONLY of bug fixes. It shall be incremented when these bug
fixes are NOT backwards-compatible.

When multiple versions exist, the following rules define their precedence:

1) Precedence shall be calculated by separating the version into major, minor, patch, and pre-release identifiers,
in that order. Note that build-metadata is NOT used to calculated precedence.

2) Precedence shall be determined by the first difference when comparing each of these identifiers, from left to
right, as follows:

- Major, minor, and patch versions are always compared numerically (e.g. 1.0.0 < 2.0.0 < 2.1.0 < 2.1.1).

- When major, minor, and patch are equal, a pre-release version has lower precedence than a normal
version (e.g. 1.0.0-alpha < 1.0.0).

Precedence for two pre-release versions with the same major, minor, and patch version shall be determined by
comparing each dot separated identifier from left to right until a difference is found as follows:

1) Identifiers consisting only of digits are compared numerically and identifiers with letters and/or hyphens are
compared lexically in ASCII sort order.

2) Numeric identifiers always have lower precedence than non-numeric identifiers.

3) A larger set of pre-release fields has a higher precedence than a smaller set, if all of the preceding identifiers
are equal.

EXAMPLE: 1.0.0-alpha < 1.0.0-alpha.1 < 1.0.0-alpha-beta < 1.0.0-beta < 1.0.0-beta.2 < 1.0.0-rc.1 < 1.0.0.

Table 5-37 defines the attributes of this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 62

Table 5-37: Attributes of the MCMVersion Class

Attribute Name Description

mcmVersionMajor : String[1..1]

This is a mandatory string attribute that indicates that a significant increase in
functionality is present in this version. Improvements to each starting initial
version, before they are released to the public, are denoted by incrementing the
minor and patch version numbers.
A major version may indicate that this version has changes that are NOT
backwards-compatible.
The lack of backwards-compatibility may be denoted using attached
MCMMetaData and/or using the mcmVersionBuildMetaData class attribute.
The major version X (i.e. X.y.z, where X > 0) shall be incremented if any
backwards incompatible changes are introduced.
The major version X (i.e. X.y.z, where X > 0) shall be incremented if any new
functionality is introduced.
The minor and patch version numbers shall be reset to 0 when the major
version number is incremented.

mcmVersionMinor : String[1..1]

This is a mandatory string attribute that indicates that this release contains a
set of features and/or bug fixes that are backwards-compatible.
The minor version Y (i.e. x.Y.z, where x > 0) shall be incremented if new,
backwards-compatible changes are introduced.
A minor version indicates that this release contains a set of features and/or bug
fixes that shall be backwards-compatible.
The special string "0.1.0" is for initial development and shall not be considered
stable.
The minor version shall be incremented if any features are marked as
deprecated.
The minor version may be incremented if improved functionality is introduced.
The patch version number shall be reset to 0 when the minor version number
is incremented.

mcmVersionPatch : String[1..1]

This is a mandatory string attribute that indicates this version ONLY contain
bug fixes. A bug fix is defined as an internal change that fixes incorrect
behaviour.
A patch version indicates that this version shall only contain bug fixes.
The patch version Z (i.e. x.y.Z, where x > 0) shall be incremented if new,
backwards-compatible changes are introduced.

mcmVersionPreRelease :
String[0..1]

This is an optional string attribute that indicates that the version is unstable and
might not satisfy the intended compatibility requirements as denoted by its
associated normal version.
Identifiers shall comprise only ASCII alphanumerics and a hyphen.
Identifiers shall not be empty.
Numeric identifiers shall not include leading zeroes.

mcmVersionBuildMetaData :
String[0..1]

This is an optional string attribute that contains build metadata. These are
metadata that explain changes made to the current non-production release.
Examples include: 1.0.0.-alpha+1, 1.0.0+20130313144700, and
1.0.0-beta+exp.sha.5114f85.
Identifiers shall be made up of only ASCII alphanumerics and a hyphen.
Identifiers shall not be empty.
Build metadata should be ignored when determining version precedence.

Table 5-38 defines the operations of this class.

Table 5-38: Operations of the MCMVersion Class

Operation Name Description

getMCMVersionMajor() : String[1..1] This operation returns the value of the mcmVersionMajor attribute.
The value of this attribute shall not be a NULL or an empty string value.

setMCMVersionMajor(in
newVersionMajor : String[1..1])

This operation defines the value of the mcmVersionMajor attribute.
The value of this attribute shall not be a NULL or an empty string value.

getMCMVersionMinor() : String[1..1] This operation returns the value of the mcmVersionMinor attribute.
The value of this attribute shall not be a NULL or an empty string value.

setMCMVersionMinor(in
newVersionMinor : String[1..1])

This operation defines the value of the mcmVersionMinor attribute.
The value of this attribute shall not be a NULL or an empty string value.

getMCMVersionPatch() : String[1..1] This operation defines the value of the mcmVersionPatch attribute.
The value of this attribute shall not be a NULL or an empty string value.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 63

Operation Name Description
setMCMVersionPatch(in
newVersionPatch : String[1..1])

This operation defines the value of the mcmVersionPatch attribute.
The value of this attribute shall not be a NULL or an empty string value.

getMCMVersionPreRelease() :
String[1..1]

This operation defines the value of the mcmVersionPreRelease attribute.
Identifiers shall not be empty.
The value of this attribute shall not be a NULL or an empty string value.

setMCMVersionPreRelease(in
newVersionPreRelease : String[1..1])

This operation defines the value of the mcmVersionPreRelease attribute.
Identifiers shall not be empty.
The value of this attribute shall not be a NULL or an empty string value.

getMCMVersionBuildMetaData :
String[1..1]

This operation defines the value of the mcmVersionBuildMetaData
attribute.
Identifiers shall be made up of only ASCII alphanumerics and a hyphen.
Identifiers shall not be empty.
The value of this attribute shall not be a NULL or an empty string value.

setMCMVersionBuildMetaData(in
newVersionBuild : String[1..1])

This operation defines the value of the mcmVersionBuildMetaData
attribute.
Identifiers shall be made up of only ASCII alphanumerics and a hyphen.
Identifiers shall not be empty.
The value of this attribute shall not be a NULL or an empty string value.

At this time, no relationships are defined for this class.

5.2.3 ENI Extensions to the MCM

5.2.3.1 Introduction

The MCM provides an extensible framework that is organized into three class hierarchies: Entity, InformationResource,
and MetaData. This clause defines extensions to the Entity class hierarchy in order to represent key concepts that are
needed for an ENI System to achieve its functional requirements as described in clause 5 of ETSI GS ENI 005 [3].

5.2.3.2 Naming Rules

The naming rules of ENI extensions to the MCM model follow the naming rules of the MCM (see clause 5.2.2.2),
except as detailed below.

1) Class extension names defined by ENI shall be named with an "ENI" prefix. This serves two purposes. First, it
helps provide context to textual descriptions of these model elements. Second, it enables ENI-defined
extensions to the MCM model elements, patterns, and approaches to be easily recognized.

2) ENI class names shall be in UpperCamelCase.

3) ENI attribute names shall be in lowerCamelCase. Attribute names that begin with an underscore are private
attributes that reference an end of an association.

4) ENI relationship names shall be in UpperCamelCase (i.e. the first letter is capitalized). Relationship names
shall not begin with any non-alphabetic character, and no spaces are allowed.

5) Each attribute shall be prefixed with "eni".

6) Each relationship shall be prefixed with "ENI".

5.2.3.3 Events

5.2.3.3.1 Introduction

An Event is a mandatory abstract class that models significant occurrences that contain data and/or knowledge
pertaining to a specific context. An Event carries information that may be used by one or more to evaluate whether a set
of MCMEntity objects should execute some behaviour or not (e.g. whether it should make a state transition or not). For
MCMUnManagedEntity objects, this is done using a proxy object. For example, a Rack or a Chassis is a type of
UnManagedEntity. However, both could have a type of MCMManagedEntity object, such as a sensor, attached to them
that could react to an event. Hence, while the Rack or Chassis itself has no behaviour, it could contain a sensor (or
similar object) that provides information on behalf of the Rack or Chassis (e.g. the number of free slots).

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 64

The information may be the event itself (e.g. sending an acknowledgement) or the Event may carry (or point to) one or
more data objects. Events can be applied to the MCMParty, MCMManagedEntity, MCMBusinessObject, and/or
MCMDomain classes.

5.2.3.3.2 ENIEvent Class Definition

This is a mandatory abstract class.

An ENIEvent is a significant occurrence that contains data and/or knowledge pertaining to a specific context. An
ENIEvent carries information that may be used by one or more MCMEntity objects to evaluate whether an MCMEntity
object should execute some behaviour or not (e.g. whether it should make a state transition or not). The information
may be the Event itself (e.g. sending an acknowledgement) or the Event may carry one or more data objects.

An Event has a distinct identity - a set of attributes and associated operations that are used to distinguish multiple
instances of the same Event, and ensure that the correct Identity data and operations to verify those data are bound to
the correct Context.

Events may be asynchronous that can happen at arbitrary times (e.g. signal, time and change) or synchronous (e.g.
a call).

Figure 5-14 defines the top level classes, attributes, and operations of the ENIEvent class hierarchy.

Figure 5-14: Overview of the ENIEvent Class Hierarchy

5.2.3.3.3 Attribute Definition

Table 5-39 defines the attributes of this class. An ENIEvent may be defined as valid for a particular time period; this
would be done using attached MCMMetaData. Similarly, a location may be associated with an ENIEvent; this could be
defined using an explicit association between MCMLocation and ENIEvent; alternatively, the existing
MCMMgdEntityRefersToMCMUnMgdEntity association could be used.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 65

Table 5-39: Attributes of the ENIEvent Class

Attribute Name Description

eniEVTEventID : String[1..1]

This is a mandatory string attribute, and contains a unique value that enables
instances of this ENIEvent object to be disambiguated from other ENIEvent
objects (including ENIEvent objects of the same type).
The value of this attribute shall not be a NULL or EMPTY string.

eniEvtIsExternal : Boolean[0..1]
This is an optional Boolean attribute. If the value of this attribute is TRUE, then
this ENIEvent object originated from a source external to the ENI System.
Otherwise, this ENIEvent object was generated by the system being monitored.

eniEvtIsSynthetic : Boolean[0..1]

This is an optional Boolean attribute. If the value of this attribute is TRUE, then
this ENIEvent object was generated by the ENI System (e.g. for aggregating
multiple events). Otherwise, this ENIEvent object is a natural event that was
generated by the system being monitored.

eniEvtCreateTime : String[0..1] This is an optional TimeAndDate attribute that contains the date and time that
this ENIEvent object was created.

eniEvtStatus :
ENIEventStatus[1..1]

This is an optional enumerated string attribute that contains the status
information of this ENIEvent (e.g. processed, ignored). Allowed values are
defined in the ENIEventStatus enumeration.

eniEVTTTL : Integer[0..1]

This attribute defines the Time-To-Live (TTL) for this ENIEvent object. The TTL
is a value for the period of time that a packet, or data, should exist on a
computer or network before being discarded.
A default value may be defined for this attribute.

5.2.3.3.4 Operation Definition

Table 5-40 defines the operations of this class.

Table 5-27: Operations of the ENIEvent Class

Operation Name Description

getEVTEventID() : String[1..1]

This operation returns the value of the evtEventID attribute, which is a textual
identifier to disambiguate this ENIEvent object instance from all other
ENIEvents. There are no input parameters to this operation.
If an attribute value is NOT found, then an error shall be returned.
The value of this attribute shall not be an empty or NULL string.

setEVTEventID(in newID :
String[1..1])

This operation sets the value of the evtEventID attribute, which is a textual
identifier to disambiguate this ENIEvent object instance from all other
ENIEvents. This operation takes a single input parameter, called newID,
which is a String attribute.
The value of this attribute shall not be an empty or NULL string.

getEVTCreateTime() :
TimeAndDate[1..1]

This operation returns the value of the evtCreateTime attribute, which defines
when this ENIEvent object instance was created. There are no input
parameters to this operation.
If an attribute value is NOT found, then an error shall be returned..

setEVTCreateTime(in newTime :
TimeAndDate[1..1])

This operation sets the value of the evtCreateTime attribute, which defines
when this ENIEvent object instance was created.

getEVTIsExternal() : Boolean[1..1]

This operation returns the value of the evtIsExternal attribute, which defines
whether this ENIEvent object originated from a source external to the ENI
System. There are no input parameters to this operation.
If an attribute value is NOT found, then an error shall be returned.

setEVTIsExternal (in isExternal :
Boolean[1..1])

This operation sets the value of the evtIsExternal attribute, which defines
whether this ENIEvent object originated from a source external to the ENI
System.

getEVTIsSynthetic() : Boolean[1..1]

This operation returns the value of the evtIsExternal attribute, which defines
whether this ENIEvent object originated from a source external to the ENI
System. There are no input parameters to this operation.
If an attribute value is NOT found, then an error shall be returned.

setEVTIsSynthetic (in isSynthetic :
Boolean[1..1])

This operation sets the value of the evtIsExternal attribute, which defines
whether this ENIEvent object originated from a source external to the ENI
System.

getEVTStatus :
ENIEvtEventStatus[1..1]

This operation returns the value of the evtStatus attribute, which defines the
status of this ENIEvent instance (e.g. whether it has been received and
processed).
If an attribute value is NOT found, then an error shall be returned.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 66

Operation Name Description

setEVTStatus (in newStatus :
ENIEvtEventStatus[1..1])

This operation sets the value of the evtStatus attribute, which defines the
status of this ENIEvent instance (e.g. whether it has been received and
processed). This operation takes a single input parameter, called newStatus,
which is an ENIEvtEventStatus datatype.

getENIEVTTTL() : Integer[1..1] This operation returns the value of the eniEVTTTL attribute.
If an attribute value is NOT found, then an error shall be returned.

setENIEVTTTL(in newVal:
Integer[1..1])

This operation sets the value of the eniEVTTTL attribute. This operation takes
a single input parameter, called newVal, which is an integer attribute.

5.2.3.3.5 Relationship Definition

This class participates in a single aggregation, called ENIEventHasEvent. See clause 5.2.3.3.6.3. At this time, no
relationships are defined for this class.

5.2.3.3.6 ENIEvent Subclasses

5.2.3.3.6.1 Introduction

Figure 5-14 provides an overview of the three current ENIEvent subclass attributes and operations.

NOTE: Figure 5-14 may be augmented with additional subclasses in the future.

5.2.3.3.6.2 ENIEventAtomic

This is an abstract class, and specializes ENIEvent. This class represents stand-alone ENIEvent objects.

This object shall not contain another ENIEvent object.

Table 5-41 defines the attributes of this class.

Table 5-41: Attributes of the ENIEventAtomic Class

Attribute Name Description
eniEVTIsHeaderEditable :
Boolean[0..1]

This is an optional Boolean attribute. If the value of this attribute is TRUE, then
the header of this ENIEvent is editable. Otherwise, it is not.

eniEVTHasAttachmentList:
EByteArray[0..*] This is an optional list of arrays that serve as a set of attachments to this event.

eniEVTPayloadDataList:
EByteArray [0..*]

This is an optional list of arrays that collectively serve as a payload of this
event.

eniEVTPayloadEnrichDataList:
EByteArray [0..*]

This is an optional list of arrays that serve as a set of enriched data for the
payload of this event.

eniEVTPersistentStorage:
Boolean[0..1]

This is an optional Boolean attribute. If the value of this attribute is TRUE, then
this ENIEvent object instance will be persistently stored.

Table 5-43 defines the operations of this class.

Table 5-43: Operations of the ENIEventAtomic Class

Operation Name Description
getENIEVTIsHeaderEditable() :
Boolean[1..1]

This operation returns the value of the eniEVTIsHeaderEditable attribute.
There are no input parameters to this operation.

setENIEVTIsHeaderEditable (in newVal
: Boolean[1..1])

This operation sets the value of the eniEVTIsHeaderEditable attribute. This
operation takes a single input parameter, called newVal, which is a Boolean
attribute.

getENIEVTHasAttachmentList() :
EByteArray[1..*]

This operation returns the value of the eniEVTHasAttachmentList attribute.
There are no input parameters to this operation.
If an attribute value is NOT found, then an error shall be returned.

setENIEVTHasAttachmentList(in
newVal : EByteArray[1..*])

This operation sets the value of the eniEVTHasAttachmentList attribute.
This operation takes a single input parameter, called newVal, which is an
EByteArray attribute.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 67

Operation Name Description

getENIEVTPayloadDataList() :
EByteArray[1..*]

This operation returns the value of the eniEvtPayloadList attribute. There
are no input parameters to this operation.
If an attribute value is NOT found, then an error shall be returned.

setENIEVTPayloadDataList(in newVal :
EByteArray[1..*])

This operation sets the value of the eniEvtPayloadList attribute.
This operation takes a single input parameter, called newVal, which is an
EByteArray attribute.

getENIEVTPayloadEnrichDataList() :
EByteArray[1..*]

This operation returns the value of the eniEVTPayloadEnrich attribute.
There are no input parameters to this operation.
If an attribute value is NOT found, then an error shall be returned.

setENIEVTPayloadEnrichDataList(in
newVal : EByteArray[1..*])

This operation sets the value of the eniEVTPayloadEnrich attribute. This
operation takes a single input parameter, called newVal, which is an
EByteArray attribute.

getENIEVTPersistentStorage :
Boolean[1..1]

This operation returns the value of the eniEVTPersistentStorage attribute.
There are no input parameters to this operation.
If an attribute value is NOT found, then an error shall be returned.

setENIEVTPersistentStorage(in
newVal : Boolean[1..1])

This operation sets the value of the eniEVTPersistentStorage attribute. This
operation takes a single input parameter, called newVal, which is a Boolean
attribute.

getEVTParentAtomic :
ENIEventComposite[1..1]

This operation retrieves the ENIEventComposite object that contains this
ENIEventAtomic object. This operation takes no input parameters.
If this ENIEventAtomic object has no containing ENIEventComposite object,
then it should return a NULL ENIEventComposite object.
An ENIEventAtomic object shall not have more than one parent
ENIEventComposite object.

setEVTParentAtomic : (in newParent :
ENIEventComposite[1..1])

This operation sets the parent of this ENIEventAtomic object. This
operation takes a single input parameter, called newParent, which is an
ENIEventComposite object.

delEVTParentAtomic() This operation deletes the inheritance relationship of this ENIEventAtomic
object. There are no input parameters to this operation.

At this time, no relationships are defined for this class.

5.2.3.3.6.3 ENIEventComposite

This is an abstract class, and specializes the ENIEvent class. This class represents a set of related ENIEvent objects that
are organized into a tree structure.

Its primary use is to collect other types of ENIEvent objects. Typically, these other ENIEvent objects are related in
some way. For example, an ENIEventComposite object may aggregate other ENIEventComposite and
ENIEventAtomic objects for delivery to one or more MCMManagedEntity objects.

Each ENIEventComposite object may contain zero or more ENIEventAtomic and/or zero or more ENIEventComposite
objects.

Table 5-43 defines the attributes of this class.

Table 5-43: Attributes of the ENIEventComposite Class

Attribute Name Description
eniEVTNoDuplicate :
Boolean[0..1]

This is an optional Boolean attribute. If the value of this attribute is TRUE, then
this ENIEventComposite object shall not contain duplicate ENIEvent objects.

Table 5-44 defines the operations of this class.

Table 5-44: Operations of the ENIEventComposite Class

Operation Name Description

getENIEVTNoDuplicate() :
Boolean[1..1]

This operation returns the value of the eniEVTNoDuplicate attribute. If the
value of this attribute is TRUE, then no duplicate ENIEvents are allowed to be
contained in this ENIEventComposite object.

setENIEVTNoDuplicate (in newVal :
Boolean [1..1])

This operation sets the value of the eniEVTNoDuplicate attribute. This
operation takes a single input parameter, called newVal, which is a Boolean
attribute.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 68

Operation Name Description

getENIEVTParentComposite() :
ENIEventComposite[1..1]

This operation retrieves the parent of this ENIEventComposite object. This
operation takes no input parameters.
If this ENIEventComposite object is not contained by an ENIEventComposite
object, then it should return a NULL ENIEventComposite object.
An ENIEventComposite object shall not have more than one parent
ENIEventComposite object.

setENIEVTParentComposite
(in newParent :
ENIEventComposite[1..1])

This operation defines a new ENIEventComposite to contain this particular
ENIEvent object. This operation takes a single input parameter, called
newParent, which is an ENIEventComposite object. If this ENIEvent object
already has a parent ENIEventComposite object, then this
ENIEventComposite object will be deleted by first, deleting the accompanying
association class, and second, deleting the corresponding aggregation. Then,
a new aggregation (an instance of ENIEventHasEvent) is created; following
that, a new association class is then created to realize the semantics of the
aggregation.
This ENIEvent object shall not have more than one parent.

delENIEVTParentComposite() This operation deletes the parent of this ENIEventComposite object.
If another parent is found, then an error shall be returned.

This class defines a single optional aggregation, called ENIEventHasEvent. This is an optional aggregation, and defines
the set of ENIEventAtomic and/or ENIEventComposite objects that are contained in an ENIEventComposite object.
The semantics of this aggregation are defined by the ENIEventHasEventDetail association class.

The multiplicity of this aggregation is 0..1 - 0..n. If this aggregation is instantiated (i.e. the "1" part of the 0..1
cardinality), then zero or more ENIEventAtomic and/or ENIEventComposite objects may be contained in this particular
ENIEventComposite object. The 0..* cardinality enables an ENIEventAtomic or an ENIEventComposite object to be
defined without having to define a containing ENIEventComposite object.

The ENIEventHasEventDetail object is a concrete association class, and defines the semantics of the
ENIEventHasEvent aggregation. The attributes and relationships of this class can be used to define which
ENIEventAtomic and/or ENIEventComposite object can be contained in this particular ENIEventComposite object.
These semantics can be further enhanced by using the Policy Pattern to define policy rules that constrain which
ENIEventAtomic and/or ENIEventComposite objects can be contained in this particular ENIEventComposite object.
The MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and intent policy rules.
See Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of the Policy Pattern.

5.2.3.3.6.4 ENIEventDecorator

This is a mandatory abstract class, and is used to implement the decorator pattern for ENIEvents. This means that any
concrete subclass of ENIEventDecorator can wrap any concrete subclass of ENIEventAtomic and/or
ENIEventComposite.

The Decorator Pattern is a design pattern that allows behaviour to dynamically be added to an object, without affecting
the behaviour of other objects from the same class. More specifically, this pattern enables all or part of one object to
wrap another object. In effect, this means that the decorated object may intercept a call to the object it is wrapping, and
insert attributes or execute operations before and/or after the wrapped object executes.

Hence, the decorator pattern provides a flexible alternative to subclassing for extending functionality where different
behaviours are required (e.g. dependent on context).

In addition, subclassing statically defines the characteristics and behaviour of an object at compile time, whereas the
decorator pattern can change the characteristics and behaviour of an object at runtime

A concrete subclass of the ENIEventDecorator class may be used to decorate any concrete subclass of the
ENIEventAtomic or ENIEventComposite classes.

Table 5-45 defines the attributes of this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 69

Table 5-45: Attributes of the ENIEventDecorator Class

Attribute Name Description

eniEVTDecConstraint :
MPMPolCompDecConstraint[1..1]

This is a mandatory non-negative enumerated integer attribute that defines the
language used, if any, that this ENIEventDecorator object uses to constrain
the object that it is wrapping. Valid values are defined by the
MPMPolCompDecConstraint enumeration.
A default value of 2 (NONE) may be defined.

eniEVTDecWrap:
MPMPolCompDecWrap[1..1]

This is an optional attribute that defines if this decorated object should be
wrapped before and/or after the wrapped object is executed. Valid values are
defined by the MPMPolCompDecWrap enumeration.

Table 5-46 defines the operations of this class.

Table 5-46: Operations of the ENIEventAtomic Class

Operation Name Description

getENIEVTDecConstraint() :
MPMPolCompDecConstraint[1..1]

This operation returns the current value of the eniEVTDecConstraint
attribute. This operation takes no input parameters.
If this attribute does not have a value, then this operation should return
an error, because NONE is one of the enumerated values of
MPMPolCompDecConstraint.

setENIEVTDecConstraint(in newVal :
MPMPolCompDecConstraint[1..1])

This operation sets the value of the eniEVTDecConstraint attribute.
This operation takes a single input parameter, called newVal, which
defines the new value for the eniEVTDecConstraint attribute.

getENIEVTDecWrap() :
MPMPolCompDecWrap[1..1]

This operation returns the current value of the eniEVTDecWrap
attribute. This operation takes no input parameters.
If this attribute does not have a value, then this operation should return
an error.

setENIEVTDecWrap(in newVal :
MPMPolCompDecWrap[1..1])

This operation sets the value of the eniEVTDecWrap attribute. This
operation takes a single input parameter, called newValue, which
defines the new value for the eniEVTDecWrap attribute.

This class defines a single optional aggregation, called ENIEventHasDecorator. This is an optional aggregation, and
defines the set of ENIEventDecorator objects that wrap, or decorate, an ENIEventAtomic or an ENIEventComposite
object. The semantics of this aggregation are defined by the ENIEventHasDecoratorDetail association class.

The attachment of different ENIEventDecorator objects shall be used to change the syntax, semantics, and/or behaviour
of a given ENIEventAtomic or an ENIEventComposite object.

The multiplicity of this aggregation is 0..1 - 0..n. If this aggregation is instantiated (i.e. the "1" part of the 0..1
cardinality), then zero or more ENIEventDecorator objects can decorate an ENIEventAtomic or an ENIEventComposite
object. The 0..* cardinality enables an ENIEventAtomic or an ENIEventComposite object to be defined without having
to define an associated ENIEventDecorator object for it to decorate.

The ENIEventHasDecoratorDetail object is a concrete association class, and defines the semantics of the
ENIEventHasDecorator aggregation. The attributes and relationships of this class can be used to define which
ENIEventDecorator objects can decorate an ENIEventAtomic or an ENIEventComposite object. These semantics can
be further enhanced by using the Policy Pattern to define policy rules that constrain which part objects
(i.e. ENIEventDecorator) are attached to which object. The MCMPolicyStructure is an abstract class that is the
superclass of imperative, declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary
illustration of the Policy Pattern.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 70

5.2.3.4 Behaviour

5.2.3.4.1 Introduction

The purpose of this class hierarchy is to define a common management approach to represent the behaviour of
MCMManagedEntity and MCMParty objects. More specifically, objects in this class hierarchy shall be able to represent
how a MCMManagedEntity or an MCMParty functions. In this definition, the term "functions" shall include the
following two different meanings:

1) Operation:

a) For MCMManagedEntity objects, this should include defining how the object operates. This may include
defining appropriate Role objects that specifically provide the desired behaviour.

b) For MCMParty objects, this includes the set of responsibilities that an object has. This should be realized
using appropriate Role objects.

2) Reaction to Events:

a) For MCMManagedEntity objects, this includes how the object reacts to different stimuli in different
situations.

b) For MCMParty objects, this includes defining the set of Role objects that are used to define the reaction
of the object in response to different stimuli in different situations.

The above is reflected in Figure 5-15.

Figure 5-15: Overview of the ENIBehavior Class Hierarchy

This class hierarchy should also used to orchestrate and/or choreograph the behaviour of one or more
MCMManagedEntity and/or MCMParty objects.

The classes in this hierarchy do not include information such as the time and date that this MCMManagedEntity was
created; this is because this information exists in the Version subclass of MetaData, which is related to this class
through the EntityHasMetaData aggregation.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 71

5.2.3.4.2 ENIBehavior Class Definition

ENIBehavior is a mandatory abstract class that extends the Entity class to represent how an MCMManagedEntity or an
MCMParty object functions and reacts to Events in a given context.

5.2.3.4.3 Attribute Definition

Table 5-45 defines the attributes of this class. An ENIBehavior object may be defined as valid for a particular time
period; this would be done using attached MCMMetaData. Similarly, a location may be associated with an
ENIBehavior; this could be defined using an explicit association between MCMLocation and ENIBehavior.

Table 5-47: Attributes of the ENIEvent Class

Attribute Name Description

eniBehaviorID: String[1..1]

This is a mandatory string attribute, and contains a unique value that enables
instances of this ENIBehavior object instance to be disambiguated from all
other ENIBehavior object instances (including ENIBehavior objects of the
same type).
The value of this attribute shall not be a NULL or EMPTY string.

eniBehaviorCreateTime:
TimeandDate[1..1]

This is a mandatory TimeAndDate attribute that contains the date and time
that this ENIBehavior object was created.

eniBehaviorStatus:
ENIBehaviorStatus[1..1]

This is a mandatory enumerated string attribute that contains the status
information of this ENIBehavior object (e.g. processed, ignored). Allowed
values are defined in the ENIBehaviorStatus enumeration.

5.2.3.4.4 Operation Definition

Table 5-48 defines the operations of this class.

Table 5-48: Operations of the ENIEventAtomic Class

Operation Name Description

getENIBehaviorID() : String[1..1]

This operation returns the current value of the eniBehaviorID attribute.
This operation takes no input parameters.
If this attribute does not have a value, then an error shall be returned.
The value of this attribute shall not be an empty or NULL string.

setENIBehaviorID(in newID :
String[1..1])

This operation sets the value of the eniBehaviorID attribute, which is a
textual identifier to disambiguate this ENIBehavior object instance from
all other ENIBehavior object instances. This operation takes a single
input parameter, called newID, which is a String attribute.
The value of this attribute shall not be an empty or NULL string.

getENIBehaviorCreateTime() :
TimeAndDate[1..1]

This operation returns the eniBehaviorCreateTime attribute, which
defines when this ENIBehavior object instance was created. There are
no input parameters to this operation.
If an attribute value is NOT set, then an error shall be returned.

setENIBehaviorCreateTime(in
newTime : TimeAndDate[1..1])

This operation sets the value of the eniBehaviorCreateTime attribute,
which defines when this ENIBehavior object instance was created.
This operation takes a single input parameter, called newTime, which is
a String attribute.

getENIBehaviorStatus() :
ENIBehaviorStatus[1..1]

This operation returns the eniBehaviorStatus attribute, which defines
the status of this ENIBehavior object instance (e.g. whether it has been
received and processed). There are no input parameters to this
operation.
If an attribute value is NOT set, then an error shall be returned.

setENIBehaviorStatus(in newStatus:
ENIBehaviorStatus[1..1])

This operation sets the value of the eniBehaviorStatus attribute, which
defines the status of this ENIBehavior object instance (e.g. whether it
has been received and processed).
This operation takes a single input parameter, called newStatus, which
is an ENIBehaviorStatus datatype.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 72

5.2.3.4.5 Relationship Definition

This class defines a single optional aggregation, called ENIBehaviorDependsOnEvent. This is an optional aggregation,
and defines the set of ENIEvent objects that affect the behavior of this particular ENIBehavior object. The semantics of
this aggregation are defined by the ENIBehaviorDependsOnEventDetail association class.

The multiplicity of this aggregation is 0..1 - 0..*. If this aggregation is instantiated (i.e. the "1" part of the 0..1
cardinality), then zero or more ENIEvent objects affect this particular ENIBehavior object. The 0..* cardinality enables
an ENIEvent object to be defined without having to define an associated ENIBehavior object.

The ENIBehaviorDependsOnEventDetail object is a concrete association class, and defines the semantics of the
ENIBehaviorDependsOnEvent aggregation. The attributes and relationships of this class can be used to define which
ENIEvent objects can affect this particular ENIBehavior object. These semantics can be further enhanced by using the
Policy Pattern to define policy rules that constrain which part objects (i.e. ENIEvent) affect which aggregate (i.e.
ENIBehavior) object. The MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and
intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of the Policy Pattern.

This association class defines the following attributes.

Table 5-49: Attributes of the ENIBehaviorDependsOnENIEventDetail Class

Attribute Name Description
eniEventAffectsBehaviorList :
ENIEvent[0..*]

This attribute defines an array of ENIEvent objects that are permitted to affect
the behavior of this particular ENIBehavior object.

eniEventAffectsBehaviorReason
: String[0..*]

This attribute defines an array of strings that describe why each ENIEvent in
the eniEventAffectsBehaviorList attribute can affect the behavior of this
particular ENIBehavior object.

This association class defines the following operations.

Table 5-50: Attributes of the ENIBehaviorDependsOnENIEventDetail Class

Attribute Name Description

getENIEventAffectsBehaviorList:
ENIEvent[0..*]

This operation returns the set of ENIEvent objects that can affect this
particular ENIBehavior object. This operation takes no input parameters.
If there are no ENIEvent objects that can affect this particular ENIBehavior
object, then a NULL ENIEvent object should be returned.

getENIEventAffectsBehaviorList:
String[0..*]

This operation defines a new set of ENIEvent objects that affect the operation
of this particular ENIBehavior object. This operation takes a single input
parameter, called newEventList, which defines a set of one or more ENIEvent
objects. If one or more ENIEvent objects are already associated with this
particular ENIBehavior object, then those ENIEvent objects will be deleted by
first, deleting the accompanying association class, and second, deleting the
corresponding association. Then, a new association (an instance of
ENIBehaviorDependsOnENIEventDetail) is created for each ENIEvent object
in the newEventList.
Every association created should have a new corresponding association
class to realize the semantics of that association.

getENIEventAffectsBehavior-
Reason() : String[0..*]

This operation returns the set of reasons, which are textual descriptions, of
why each ENIEvent object affects this particular ENIBehavior object.
This operation takes no input parameters.
If there are no ENIEvent objects that can affect this particular ENIBehavior
object, then a NULL String object should be returned.

setENIEventAffectsBehavior-
Reason(in newReasonList :
String[1..*])

This operation defines the set of reasons, which are textual descriptions, of
why each ENIEvent object affects this particular ENIBehavior object. This
operation takes a single input parameter, called newReasonList, which
defines a set of one or more Strings, each containing a description of the
reason corresponding to a particular ENIEvent.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 73

5.2.3.4.6 ENIBehavior Subclasses

5.2.3.4.6.1 Introduction

Figure 5-15 provides an overview of the three current ENIBehavior subclass attributes and operations.

NOTE: Figure 5-15 may be augmented with additional subclasses in the future.

5.2.3.4.6.2 ENIBehaviorME

This is a mandatory abstract class that defines the behavior of MCMManagedEntity objects. The behavior of an
MCMManagedEntity object can be affected in two different ways:

1) Operation:

- This defines how the object operates. This may include defining appropriate Role objects that
specifically provide the desired behavior.

2) Reaction to Events:

- This includes how the object reacts to different stimuli in different situations.

The operation is best expressed by defining operations on the object in conjunction with using an
ENIFiniteStateMachine. The reaction to Events is best expressed by the above in combination with Activity and/or
Interaction diagrams.

5.2.3.4.6.3 ENIBehaviorPR

This is a mandatory abstract class that defines the behavior of MCMPartyRole objects. The behavior of an
MCMPartyRle object can be affected in two different ways:

1) Operation:

- This defines the set of responsibilities that an object has. This should be realized using appropriate Role
objects. Roles are context-dependent.

2) Reaction to Events:

- This defines how the object reacts to different stimuli in different situations.

The operation is best expressed by defining operations on the object in conjunction with using an
ENIFiniteStateMachine. The reaction to Events is best expressed by the above in combination with Activity and/or
Interaction diagrams.

5.2.3.4.6.4 ENIBehaviorDecorator

This is a mandatory abstract class, and is used to implement the decorator pattern for ENIBehavior objects. This means
that any concrete subclass of ENIEventDecorator can wrap any concrete subclass of ENIBehaviorME and/or
ENIBehaviorPR.

The Decorator Pattern is a design pattern that allows behaviour to dynamically be added to an object, without affecting
the behaviour of other objects from the same class. More specifically, this pattern enables all or part of one object to
wrap another object. In effect, this means that the decorated object may intercept a call to the object it is wrapping, and
insert attributes or execute operations before and/or after the wrapped object executes.

Hence, the decorator pattern provides a flexible alternative to subclassing for extending functionality where different
behaviours are required (e.g. dependent on context). In addition, subclassing statically defines the characteristics and
behaviour of an object at compile time, whereas the decorator pattern can change the characteristics and behaviour of an
object at runtime.

A concrete subclass of the ENIEventDecorator class may be used to decorate any concrete subclass of the
ENIEventAtomic or ENIEventComposite classes.

This class currently does not define any attributes or operations.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 74

This class defines a single aggregation, called ENIBehaviorHasDecorator. This is an optional aggregation, and defines
the set of ENIBehaviorDecorator objects that wrap, or decorate, an ENIBehavior object. The semantics of this
aggregation are defined by the ENIBehaviorHasDecoratorDetail association class.

The attachment of different ENIBehaviorDecorator objects shall be used to change the syntax, semantics, and/or
behaviour of a given ENIBehavior object. The multiplicity of this aggregation is 0..1 - 0..n. If this aggregation is
instantiated (i.e. the "1" part of the 0..1 cardinality), then zero or more ENIBehaviorDecorator objects can decorate any
concrete subclass of the ENIBehavior object. The 0..* cardinality enables concrete subclass of the ENIBehavior class to
be defined without having to define an associated ENIBehaviorDecorator object for it to decorate.

The ENIBehaviorHasDecoratorDetail object is a concrete association class, and defines the semantics of the
ENIBehaviorHasDecorator aggregation. The attributes and relationships of this class can be used to define which
ENIBehaviorHasDecorator objects can wrap any concrete subclass of the ENIBehavior object. These semantics can be
further enhanced by using the Policy Pattern to define policy rules that constrain which part objects
(i.e. ENIEventDecorator) are attached to which object. The MCMPolicyStructure is an abstract class that is the
superclass of imperative, declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary
illustration of the Policy Pattern.

5.2.3.5 Identity

5.2.3.5.1 Introduction

The identity of an object is the set of data and information that allow an object to be disambiguated from all other
objects in a system, including objects of the same type.

A digital identity is the set of data and information used by a computer system to represent an actor, such as a person,
device, or application.

A contextual identity is the digital identity of an object for a particular context. For example, a person may have a
combination of username and password to log onto a system as well as a passport to enable that person to fly. Each
identity in this example is specific to a particular context in which it is used.

An ENI System shall use digital identities for all objects in its information and data models.

An ENI System should use contextual identities where possible.

Figure 5-16 shows the ENIIdentity class hierarchy.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 75

Figure 5-16: Overview of the ENIIdentity Class Hierarchy

5.2.3.5.2 ENIIdentity Class Definition

An ENIIdentity is a mandatory abstract class that defines a set of characteristics and behaviours by which an object
shall be uniquely recognized and disambiguated from all other objects in the system, including objects of the same type.

From a security point-of-view, an Identity is the set of characteristics by which a Subject or Target Entity is
recognizable and that, within the scope of an Identity Provider's responsibility, is sufficient to uniquely disambiguate an
instance of that Actor from an instance of any other Actor [9].

5.2.3.5.3 Attribute Definition

Table 5-51 defines the operations of this class.

Table 5-51: Attributes of the ENIIdentity Class

Attribute Name Description

eniIdentityID: String[1..1]

This is a mandatory string attribute, and contains a unique value that enables
instances of this ENIIdentity object to be disambiguated from other
ENIIdentity objects (including ENIIdentity objects of the same type).
The value of this attribute shall not be a NULL or EMPTY string.

5.2.3.5.4 Operation Definition

Table 5-52 defines the operations of this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 76

Table 5-52: Operations of the ENIIdentity Class

Operation Name Description

getENIIdentityID() : String[1..1]

This operation returns the current value of the eniIdentityID attribute.
This operation takes no input parameters.
If this attribute does not have a value, then an error shall be returned.
The value of this attribute shall not be an empty or NULL string.

setENIIdentityID(in newID :
String[1..1])

This operation sets the value of the eniIdentityID attribute, which is a
textual identifier to disambiguate this ENIIdentity object instance from
all other ENIIdentity object instances. This operation takes a single
input parameter, called newID, which is a String attribute.
The value of this attribute shall not be an empty or NULL string.

5.2.3.5.5 Relationship Definition

This class participates in a single relationship, called ENIIdentityProviderOfENIIdentity. This association is defined in
clause 5.2.3.5.9.

5.2.3.5.6 ENIIdentityProvider Class Definition

An ENI Identity Provider is mandatory abstract class. It defines an organization that manages the Authentication
Credentials of an Actor.

5.2.3.5.7 Attribute Definition

Table 5-53 defines the operations of this class.

Table 5-53: Attributes of the ENIIdentity Class

Attribute Name Description

eniIdPID: String[1..1]

This is a mandatory string attribute, and contains a unique value that enables
instances of this ENIIdentityProvider object to be disambiguated from other
ENIIdentityProvider objects (including ENIIdentityProvider objects of the
same type).
The value of this attribute shall not be a NULL or EMPTY string.

5.2.3.5.8 Operation Definition

Table 5-54 defines the operations of this class.

Table 5-54: Operations of the ENIIdentity Class

Operation Name Description

getENIIdPID() : String[1..1]

This operation returns the current value of the eniIdPID attribute. This
operation takes no input parameters.
If this attribute does not have a value, then an error shall be returned.
The value of this attribute shall not be an empty or NULL string.

setENIIdPID (in newID : String[1..1])

This operation sets the value of the eniIdPID attribute, which is a textual
identifier to disambiguate this ENIIdentityProvider object instance from
all other ENIIdentityProvider object instances. This operation takes a
single input parameter, called newID, which is a String attribute.
The value of this attribute shall not be an empty or NULL string.

5.2.3.5.9 Relationship Definition

This class defines a single optional association, called ENIIdentityProviderForENIIdentity that defines the particular
ENIIdentityProvider that authenticates this particular ENIIdentity object. The semantics of this association are defined
by the ENIIdentityProviderForENIIdentityDetail association class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 77

The multiplicity of this association is 0..1 - 0..*. If this association is instantiated (i.e. the "1" part of the 0..1
cardinality), then one ENIIdentityProvider object is defined to authenticate one or more particular ENIIdentity object.
The 0..* cardinality enables an ENIIdentity object to be defined without having to define an associated
ENIIdentityProvider object.

The ENIIdentityProviderForENIIdentityDetail object is a concrete association class, and defines the semantics of the
ENIIdentityProviderForENIIdentity association. The attributes and relationships of this class can be used to define
which ENIIdentityProvider object can be used to authenticate this set of ENIIdentity objects. These semantics can be
further enhanced by using the Policy Pattern to define policy rules that constrain which part objects (i.e. ENIIdentity) by
which specific aggregate (i.e. ENIIdentityProvider) object. The MCMPolicyStructure is an abstract class that is the
superclass of imperative, declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary
illustration of the Policy Pattern.

This association class defines the following attributes.

Table 5-55: Attributes of the ENIIdentityProviderForENIIdentityDetail Class

Attribute Name Description
eniAuthProtocolAvailList:
ENIAuthProtocolList[1..1]

This attribute defines an approved set of authentication protocols to use by an
ENIIdentityProvider to authenticate an ENIIdentity object.

eniAuthProtocolInUse:
ENIAuthProtocolList[1..1]

This attribute defines the current authentication protocol that is used to
authenticate this particular ENIIdentity object by this specific ENIIdentityProvider.

This association class defines the following operations.

Table 5-56: Attributes of the ENIIdentityProviderForENIIdentityDetail Class

Attribute Name Description

getENIAuthProtocolAvailList:
ENIAuthProtocolList [0..*]

This operation returns the set of approved authentication protocols that can be
used by an ENIIdentityProvider to authenticate an ENIIdentity object. This
operation takes no input parameters.

setENIAuthProtocolAvailList(in
newList : ENIAuthProtocolList
[1..1])

This operation defines a new set of approved authentication protocols that can
be used by an ENIIdentityProvider to authenticate an ENIIdentity object. This
operation takes a single input parameter, called newList, which defines a set of
one or more authentication protocols.

getENIAuthProtocolInUse:
ENIAuthProtocolList [1..1]

This operation returns the current authentication protocol that is being used to
authenticate this particular ENIIdentity object by this ENIIdentityProvider object.
This operation takes no input parameters.

getENIAuthProtocolInUse(in
newList : ENIAuthProtocolList
[1..1])

This operation defines a new authentication protocol that is being used to
authenticate this particular ENIIdentity object by this ENIIdentityProvider object.
This operation takes a single input parameter, called newList, which defines an
approved authentication protocol to use.

5.2.3.5.10 ENIIdentity Subclasses

5.2.3.5.10.1 Introduction

Figure 5-16 provides an overview of the three current ENIIdentity subclass attributes and operations.

5.2.3.5.10.2 ENIDigitalIdentity

An ENIDigitalIdentity is a mandatory abstract class. It contains the set of data and information used by a computer
system to represent an actor, such as a person, device, or application.

An ENI System shall use digital identities for all objects in its information and data models.

This class, and its subclasses, are for further study in Release 4 of the present document.

5.2.3.5.10.3 ENIContextualIdentity

An ENIContextualIdentity is a mandatory abstract class. It contains the digital identity of an object for a particular
context.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 78

EXAMPLE: A person may have a combination of username and password to log onto a system as well as a
passport to enable that person to fly. Each identity in this example is specific to a particular
context in which it is used.

An ENI System should use contextual identities where possible.

This class, and its subclasses, are for further study in Release 4 of the present document.

5.2.4 ENI Extended Core Model

The ENI Extended Core Model shall be based on the MCM classes, attributes, operations, and relationships defined in
the present document. In addition, three class hierarchies (i.e. ENIEvent, ENIBehaviour, and ENIIdentity and their
respective subclasses) are defined by ETSI ISG ENI that extend the MCM. These three class hierarchies should be used
to define the ENI Extended Core Model.

Additional classes defined by ETSI ISG ENI are for further study in Release 4 of the present document.

5.3 Models that Inherit from the ENI Extended Core Model

5.3.1 Introduction

The MCM has a number of models that refine it. Each of these models is an extension (refinement) of a concept defined
in the MCM. The Policy model is one such model, as it refines the MCMPolicyObject class (which is a type of
MCMManagedEntity).

5.3.2 Policy Model

5.3.2.1 Introduction

The present document shall use UML (Unified Modeling Language) [6] to describe the salient characteristics and
behaviour of ENI Policies. ENI Policies may take the following forms: imperative, declarative, and intent policies. ENI
Policies may contain multiple types of policies (e.g. an intent policy may invoke an imperative policy). The present
document defines how an ENI Policy can affect the behaviour of entities that are important to the managed
environment. In particular, it defines an information model for describing ENI Policies.

[i.2] describes policy management in detail, and is a good background for understanding the present document.

5.3.2.2 Purpose

Management involves monitoring the activity of a system, making decisions about how the system is acting, and
performing control actions to modify the behaviour of the system. The purpose of policy is to ensure that consistent
decisions are made governing the behaviour of a system. Consistency shall be provided by using a common mechanism
to construct and format recommendations and commands, as well as a standard mechanism to deliver ENI Policies.

The definition of policy is in ETSI GS ENI 005 [3]:

• a set of rules that is used to manage and control the changing; and/or

• maintaining of the state of one or more managed objects.

Hence, policies are one mechanism for controlling the behaviour of an Entity. Two important types of Policies are
authorization and obligation policies. Authorization policies define what the target of a policy is permitted or not
permitted to do. Obligation policies define what the management engine "shall" or "shall not" do and hence, guide the
decision-making process. These two types of Policies are based on deontic logic
(https://plato.stanford.edu/entries/logic-deontic/).

NOTE: There are other types of policies that correspond to different types of logic
(https://plato.stanford.edu/entries/logic-modal/). Examples include alethic logic (i.e. the logic of necessity
and possibility), epistemic logic (i.e. the logic of certainty), temporal logic (i.e. logic that qualifies
statements based on time). These are beyond the scope of the present document.

https://plato.stanford.edu/entries/logic-deontic/
https://plato.stanford.edu/entries/logic-modal/

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 79

The different types of logics may be used to help translate a policy to a mathematical form that can be validated
(i.e. proven to be correct). This validated form can then be used to disambiguate the (original) policy and to check for
conflicts with other policies.

For further information on the MPM, see [5] and [7]. The rest of clause 5.3.2 and its subclauses summarise the
salient information from [5] and [7] that are used to build the ENI Extended Policy Model.

5.3.2.3 Extensions to the PDO Model

The MEF PDO model (MPM) is defined in [5]. The MPM uses five important abstractions that collectively enable it to
model multiple types of policies:

1) The first is the concept of a policy container. This means that any type of policy shall be structured as an
object that is made up of policy components.

2) The second defines two fundamental types of objects, a policy (called MPMPolicyStructure) and a policy
component (called MPMPolicyComponentStructure). Hence, any policy consists of one instance of
MPMPolicyStructure and one or more instances of MPMPolicyComponentStructure.

3) Third, the content of any policy shall be made up of one or more statements (called MPMPolicyStatement).

4) Fourth, any MPMPolicyStatement may be made up of one or more clauses (called MPMPolicyClause).

5) Fifth, the type of policy shall determine the set of statements that it can contain. This is enforced by a novel
software pattern.

In summary, there are two parallel hierarchies: one for types of policies, and one for policy components. The type of
policy determines the allowed set of policy components that it can contain. Each policy component defines content that
is either represented in a policy clause or a policy statement.

5.3.2.4 MEF Types of Policies

5.3.2.4.1 Introduction

There are three main types of policy that are used in the PDO:

• imperative;

• declarative; and

• intent policies.

The policy abstractions defined above enable other types of policies (e.g. utility functions) to be easily added in the
future.

5.3.2.4.2 Imperative Policies

Imperative policies follow the imperative programming paradigm, which focuses on describing how a program
operates. Conceptually, the policy author is the "compiler", since the policy author is responsible for controlling the
transitioning of one state to another state. Specifically, there is only one target state that is allowed to be chosen.

MPM defines two types of imperative policies:

• commands and Event-Condition-Action (ECA) policies.

These are specified in clauses 5.3.2.6.4.6 and 5.3.2.6.4.7 of the present document.

5.3.2.4.3 Declarative Policies

Declarative policies describe what needs to be done without defining its implementation.

For the purposes of the present document, a declarative policy is defined as a program that executes according to a
theory defined in a formal logic. Declarative policies are written in a formal logic language, such as First Order Logic.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 80

This is contrasted with intent policies (see clause 5.3.2.4.4), which are written in a (controlled) natural language and
then translated to a different form.

More information about declarative policies is specified in clause 5.3.2.6.4.

5.3.2.4.4 Intent Policies

An intent policy is a type of declarative policy. As such, it describes what needs to be done without defining its
implementation. However, an intent policy is written in a controlled natural language, whereas a declarative policy is
written in a formal logic language. As such, each statement in an intent policy may require the translation of one or
more of its terms to a form that another managed functional entity can understand. More information about intent
policies is specified in clause 5.3.2.6.4.5.

5.3.2.5 MEF Policy Model Naming Rules

The MPM uses the following naming rules, which are compatible with those used in the MCM (see clause 5.2.2.2).
Naming rules for ENI-defined extensions of the MPM are defined in clause 5.3.2.5:

1) Class names shall be in PascalCase.

2) Class names shall not begin with any non-alphabetic character.

3) Each MPM class shall be prefixed with "MPM".

NOTE 1: This serves three purposes. First, it helps provide context to textual descriptions of these model elements.
Second, it provides a namespace for MPM objects. Third, it enables MPM model elements, patterns, and
approaches to be compared to those of other SDOs and consortia unambiguously.

4) Attribute names shall be in camelCase.

5) Attribute names shall not begin with any non-alphabetic character except for the underscore.

6) Each attribute shall be prefixed with "mpm".

7) Relationship names shall be in PascalCase.

8) Each relationship shall be prefixed with "MPM".

9) All association classes shall be suffixed with the word "Detail".

NOTE 2: This enables association classes to be easily identified and differentiated from regular classes.

10) All MPM classes that model a concept from another SDO and change the model of that SDO (e.g. to be able to
be used in the MPM) shall be prefixed with "MPMMEF".

11) All MPM classes that model a concept from another SDO exactly as it is defined in that SDO shall be prefixed
with "MPM", followed by the name of the SDO, followed by the class name.

NOTE 3: For example, if an SDO named Foo defined a class named Bar, and MPM imported this concept with no
changes, it would be named MPMFooBar.

5.3.2.6 MEF Policy Hierarchy

5.3.2.6.1 Overview

Figure 5-17 shows a simplified functional diagram of the MEF Policy Model, emphasizing the abstractions defined in
clause 5.3.2.3.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 81

Figure 5-17: Simplified Functional Diagram of the MEF Policy Model

Different types of policies are represented by different subclasses of MPMPolicyStructure. Once a particular subclass of
MPMPolicyStructure is chosen, this restricts the types of MPMPolicyStatements that can be used to define its content.
The restriction should be implemented using a combination of the attributes, operations, and relationships of the
MPMPolicyHasMPMPolicyStatementDetail association class. In addition, OCL may be used for formal specification of
these restrictions.

Conceptually, the "left side" of Figure 5-17 represents the type of policy, and the "right side" represents the contents of
the policy. When a given policy is defined on the left side, the set of components that can be used to populate its content
are then defined on the right side.

The content of any policy is defined as a set of one or more statements. Any statement can be decorated by subclasses
of the MPMPolicyComponentDecorator class.

5.3.2.6.2 MPMPolicyStructure Overview

Figure 5-18 shows the subclasses of the MPMPolicyStructure class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 82

Figure 5-18: Subclasses of the MPMPolicyStructure Class

5.3.2.6.3 MPMPolicyStructure Class Definition

MPMPolicyStructure is a mandatory abstract class that defines the type of an MPMPolicy (i.e. imperative, declarative,
or intent). The MPMPolicyStructure class is a type of PolicyContainer, which defines the set of
MPMPolicyComponentStructure objects that it may contain. The following table defines the attributes of the
MPMPolicyStructure class.

Table 5-57 defines the attributes for this class.

Table 5-57: Attributes of the MPMPolicyStructure Class

Attribute Name Description
mpmPolAdminStatus :
MPMPolicyAdminStatus[1..1]

This is a mandatory enumerated non-negative integer attribute that defines the
current administrative status of this particular MPMPolicy object.

mpmPolContinuumLevel:
MPMPolContinuumLevel[0..1]

This is an optional enumerated non-negative integer attribute that defines the
level of abstraction, as represented by the Policy Continuum Level, of this
particular MPMPolicy.

mpmPolDeployStatus :
MPMPolicyDeployStatus[0..1]

This is an optional enumerated, non-negative integer attribute that indicates
whether this MPMPolicy can or cannot be deployed by the policy management
system. This attribute enables the policy manager to know which MPMPolicies
are currently deployed, and may be useful for the policy execution system for
planning the staging of MPMPolicies.

mpmPolDesignStatus :
MPMPolicyDesignStatus[0..1]

This is an optional enumerated, non-negative integer whose value defines the
current design status of this MPMPolicy object.

mpmPolExecFailStrategy:
MPMPolExecFailStrategy[0..1]

This is an optional enumerated, non-negative integer attribute. It is used to
define what actions, if any, should be taken by this particular MPMPolicy if it fails
to execute correctly.
Some systems may not be able to support all options specified in this
enumeration. For example, if rollback is NOT supported by the system, then
options 2 and 3 may be skipped, and options 4 and 5 may be used in their place.
The allowable values of this enumeration are defined by the
MPMPolExecFailStrategy enumeration.

mpmPolExecStatus:
MPMPolicyExecStatus[0..1]

This is an optional enumerated non-negative enumerated integer whose value
defines the current execution status of this MPMPolicy object.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 83

Attribute Name Description

mpmPolExecOrder: Integer[0..1]

This is an optional non-negative integer whose value defines the desired order of
execution of this MPMPolicy Object (compared with all other MPMPolicy
Objects). The MPMPolicy whose mpmPolExecOrder attribute has the highest
value is executed first.
A default value of 0 may be defined.
MPMPolicies that have the same value for their mpmPolExecOrder attributes
may be executed in any order.

Table 5-58 defines the operations for this class.

Table 5-58: Operations of the MPMPolicyStructure Class

Operation Name Description

getMPMPolAdminStatus() :
MPMPolicyAdminStatus[1..1]

This operation returns the current administrative status of this particular
MPMPolicy object. If the mpmPolAdminStatus attribute does not have a
value, then this operation shall return an error.

setMPMPolAdminStatus
(in inputStatus :
MPMPolicyAdminStatus[1..1])

This operation sets the value of the current administrative status of this
particular MPMPolicy object.

getMPMPolContinuumLevel() :
MPMPolContinuumLevel[1..1]

This operation returns the level of abstraction, as represented by the Policy
Continuum Level, of this particular MPMPolicy.
If the mpmPolContinuumLevel attribute does not have a value, then this
operation should return a NULL string.

setMPMPolContinuumLevel(in
polContinuumLevel :
MPMPolContinuumLevel[1..1])

This operation sets the level of abstraction, as represented by the Policy
Continuum Level, of this particular MPMPolicy.

getMPMPolDeployStatus() :
MPMPolicyDeployStatus[1..1]

This operation returns the current deployment status of this particular
MPMPolicy, which is defined by the MPMPolicyDeployStatus enumeration.
If the mpmPolDeployStatus attribute does not have a value, then this
operation should return a NULL string.

setMPMPolDeployStatus(in
polDeployStatus :
MPMPolicyDeployStatus[1..1])

This operation sets the current deployment status of this particular
MPMPolicy.

getMPMPolDesignStatus() :
MPMPolicyDesignStatus[1..1]

This operation returns the current design status of this particular MPMPolicy
object, which is defined by the MPMPolicyDesignStatus enumeration.
If the mpmPolDesignStatus attribute does not have a value, then this
operation shall return an error.

setMPMPolDesignStatus(in
polDesignStatus :
MPMPolicyDesignStatus[1..1])

This operation sets the value of the current design status of this particular
MPMPolicy object.

getMPMPolExecFailStrategy() :
MPMPolExecFailStrategy[1..1]

This operation returns the current strategy for dealing with execution failures.
This defines what actions, if any, should be taken by this particular
MPMPolicy if it fails to execute correctly.
If the mpmPolExecFailStrategy attribute does not have a value, then this
operation should return a NULL string.

setMPMPolExecFailStrategy(in
polExecFailStrategy :
MPMPolExecFailStrategy[1..1])

This operation sets the current strategy for dealing with execution failures.
This defines what actions, if any, should be taken by this particular
MPMPolicy if it fails to execute correctly.

getMPMPolExecStatus() :
MPMPolicyExecStatus[1..1]

This operation returns the current execution status of this MPMPolicy object.
If the mpmPolExecStatus attribute does not have a value, then this operation
should return a NULL string.

setMPMPolExecStatus(in
polExecStatus :
MPMPolicyExecStatus[1..1])

This operation sets the current execution status of this MPMPolicy object.

getMPMPolExecOrder() : Integer[1..1] This operation returns the current execution order of this MPMPolicy Object.
setMPMPolExecOrder(in
newOrder : Integer[1..1]) This operation sets the current execution order of this MPMPolicy Object.

getMPMPolSourceObjectList() :
MPMPolicySource[1..*]

This operation retrieves the set of MPMPolicySource objects that are
contained in this particular MPMPolicyStructure object. This is obtained by
following the MPMPolicyHasMPMPolicySource aggregation.
Each instance of this aggregation defines an MPMPolicySource object, which
is then added to the return value of this operation. The return value of this
operation is an array of one or more MPMPolicySource objects.
If this MPMPolicyStructure object does not instantiate this aggregation, then
this operation should return a NULL MPMPolicySource object.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 84

Operation Name Description

setMPMPolSourceObjectList(in
polSourceObjectList :
MPMPolicySource[1..*])

This operation defines a new set of MPMPolicySource objects that will be
contained in this particular MPMPolicyStructure object. If this
MPMPolicyStructure object already has a set of one or more
MPMPolicySource objects that it contains, then those MPMPolicySource
objects will be deleted by deleting both the accompanying association class
and the corresponding association. Then, a new association (an instance of
MPMPolicyHaMPMPolicySource) is created for each MPMPolicySource
object in the polSourceObjectList parameter.
Every association created should have a new association class created to
realize the semantics of that association.

setMPMPolSourceObjectPartialList
(in polSourceObjectList :
MPMPolicySource[1..*])

This operation defines a new set of MPMPolicySource objects that will be
contained in this particular MPMPolicyStructure object. If this
MPMPolicyStructure object already has a set of one or more
MPMPolicySource objects that it contains, then those MPMPolicySource
objects are ignored. Then, a new association (an instance of
MPMPolicyHaMPMPolicySource) is created for each MPMPolicySource
object in the polSourceObjectList.
Every association created should have a new association class created to
realize the semantics of that association.
Any association between this MPMPolicyStructure object and other
MPMPolicySource objects that is not specified in the polSourceObjectList
shall not be affected.

delMPMPolSourceObjectList()

This operation removes all instances of the MPMPolicyHasMPMPolicySource
aggregation, and its association classes, that enables this particular
MPMPolicyStructure object to contain any MPMPolicySource objects. This
operation does NOT affect either the MPMPolicySource object or the
MPMPolicyStructure object; it just deletes the association between this
MPMPolicyStructure object and this MPMPolicySource object.

delMPMPolSourceObjectPartialList
(in polSourceObjectList :
MPMPolicySource[1..*])

This operation removes the association, and its association class, for each
MPMPolicySource object in the polSourceObjectList that is contained by this
particular MPMPolicyStructure object. This operation takes a single input
parameter, called polSourceObjectList, that defines the set of
MPMPolicySource objects that will be unlinked from this particular
MPMPolicyStructure object. This operation does NOT affect either the
MPMPolicyStructure object or the MPMPolicySource object; it just deletes the
association between this MPMPolicyStructure object and this
MPMPolicySource object.
Any association between this MPMPolicyStructure object and other
MPMPolicySource objects that is not specified in the polSourceObjectList
shall not be affected.

getMPMPolTargetObjectList() :
MPMPolicyTarget[1..*]

This operation retrieves the set of MPMPolicyTarget objects that are
contained in this particular MPMPolicyStructure object. This is obtained by
following the MPMPolicyHasMPMPolicyTarget aggregation.
Each instance of this aggregation defines an MPMPolicyTarget object, which
is then added to the return value of this operation. The return value of this
operation is an array of one or more MPMPolicyTarget objects.
If this MPMPolicyStructure object does not instantiate this aggregation, then
this operation should return a NULL MPMPolicyTarget object.

setMPMPolTargetObjectList(in
polTargetObjectList :
MPMPolicyTarget[1..*])

This operation defines a new set of MPMPolicyTarget objects that will be
contained by this particular MPMPolicyStructure object. This operation takes
a single input parameter, called polTargetObjectList, which defines a set of
one or more MPMPolicyTarget objects. If this MPMPolicyStructure object
already has a set of one or more MPMPolicyTarget objects that it refers to,
then those MPMPolicyTarget objects will be deleted by first, deleting the
accompanying association class, and second, deleting the corresponding
association. Then, a new association (an instance of
MPMPolicyHasMPMPolicyTarget) is created for each MPMPolicyTarget
object in the polTargetObjectList parameter.
Every association created should have a new association class created to
realize the semantics of that association.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 85

Operation Name Description

setMPMPolTargetObjectPartialList
(in polTargetObjectList :
MPMPolicyTarget[1..*])

This operation defines a new set of MPMPolicyTarget objects that will be
contained by this particular MPMPolicyStructure object. This operation takes
a single input parameter, called polTargetObjectList, which defines a set of
one or more MPMPolicyTarget objects. If this MPMPolicyStructure object
already has a set of one or more MPMPolicyTarget objects that it contains,
then those MPMPolicyTarget objects are ignored. Then, a new association
(an instance of MPMPolicyHaMPMPolicyTarget) is created for each
MPMPolicyTarget object in the polTargetObjectList.
Every association created should have a new association class created to
realize the semantics of that association.
Any association between this MPMPolicyStructure object and other
MPMPolicyTarget objects that is not specified in the polTargetObjectList shall
not be affected.

delMPMPolTargetObjectList()

This operation removes all instances of the MPMPolicyHasMPMPolicyTarget
aggregation, and its association classes, that enables this particular
MPMPolicyStructure object to refer to any MPMPolicyTarget objects. This
operation does NOT affect either the MPMPolicyTarget object or the
MPMPolicyStructure object; it just deletes the association between this
MPMPolicyStructure object and this MPMPolicyTarget object.

delMPMPolTargetObjectPartialList
(in polTargetObjectList :
MPMPolicyTarget[1..*])

This operation removes the association, and its association class, for each
MPMPolicyTarget object in the polSourceObjectList that is associated with
this particular MPMPolicyStructure object. This operation takes a single input
parameter, called polTargetObjectList, that defines the set of
MPMPolicyTarget objects that will be unlinked from this particular
MPMPolicyStructure object. This operation does NOT affect either the
MPMPolicyStructure object or the MPMPolicyTarget object; it just deletes the
association between this MPMPolicyStructure object and this
MPMPolicyTarget object.
Any association between this MPMPolicyStructure object and other
MPMPolicyTarget objects that is not specified in the polTargetObjectList shall
not be affected.

getMPMPolStatementList() :
MPMPolicyStatement[1..*]

This operation retrieves the set of MPMPolicyStatement objects that are
contained in this particular MPMPolicyStructure object. This is obtained by
following the MPMPolicyHasMPMPolicyStatement aggregation.
Each instance of this aggregation defines an MPMPolicyStatement object,
which is then added to the return value of this operation. The return value of
this operation is an array of one or more MPMPolicyStatement objects.
If this MPMPolicyStructure object does not instantiate this aggregation, then
this operation should return a NULL MPMPolicyStatement object.

setMPMPolStatementList (in
polStatementObjectList :
MPMPolicyStatement[1..*])

This operation defines a new set of MPMPolicyStatement objects that are
contained by this particular MPMPolicyStructure object. This operation takes
a single input parameter, called polStatementObjectList, which defines a set
of one or more MPMPolicyStatement objects. If this MPMPolicyStructure
object already has a set of one or more MPMPolicyStatement objects that it
refers to, then those MPMPolicyStatement objects will be deleted by first,
deleting the accompanying association class, and second, deleting the
corresponding association. Then, a new association (an instance of
MPMPolicyHaMPMPolicyStatement) is created for each
MPMPolicyStatement object in the polStatementObjectList parameter.
Every association created should have a new association class created to
realize the semantics of that association.

setMPMPolStatementPartialList(in
polStatementObjectList:
MPMPolicyStatement[1..*])

This operation defines a new set of MPMPolicyStatement objects that refer to
this particular MPMPolicyStructure object. This operation takes a single input
parameter, called polStatementObjectList, which defines a set of one or more
MPMPolicyStatement objects. If this MPMPolicyStructure object already has
a set of one or more MPMPolicyStatement objects that it refers to, then those
MPMPolicyStatement objects are ignored. Then, a new association (an
instance of MPMPolicyHaMPMPolicyStatement) is created for each
MPMPolicyStatement object in the polStatementObjectList.
Every association created should have a new association class created to
realize the semantics of that association.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 86

Operation Name Description

delMPMPolStatementObjectList()

This operation removes all instances of the
MPMPolicyHaMPMPolicyStatement aggregation, and its association classes,
that enables this particular MPMPolicyStructure object to refer to any
MPMPolicyStatement objects. This operation does NOT affect either the
MPMPolicyStatement object or the MPMPolicyStructure object; it just deletes
the association between this MPMPolicyStructure object and this
MPMPolicyStatement object.

delMPMPolStatementObjectPartialLi
st
(in polStatementObjectList:
MPMPolicyStatement[1..*])

This operation removes the association, and its association class, for each
MPMPolicyStatement object in the polStatementObjectList that is associated
with this particular MPMPolicyStructure object. This operation takes a single
input parameter, called polStatementObjectList, that defines the set of
MPMPolicyStatement objects that will be unlinked from this particular
MPMPolicyStructure object. This operation does NOT affect either the
MPMPolicyStructure object or the MPMPolicyStatement object; it just deletes
the association between this MPMPolicyStructure object and this
MPMPolicyStatement object.
Any association between this MPMPolicyStructure object and other
MPMPolicyStatement objects that is not specified in the
polStatementObjectList shall not be affected.

The MPMPolicyStructure class participate in four relationships.

MPMPolicyHasMPMPolicyStatement is a mandatory aggregation that defines the content of the policy as a set of one
or more statements. The attachment of different MPMPolicyStatement objects changes the content, and hence the
behaviour, of a given ENIPolicy. The multiplicity of this aggregation 0..1 - 1..n. If this aggregation is instantiated (i.e.
the "1" part of the 1..* cardinality), then one or more MPMPolicyStatement objects can be aggregated by this particular
MPMPolicyStructure object. The cardinality on the part side (MPMPolicyStatement) is 1..*; this cardinality was chosen
to make explicit that any MPMPolicy shall contain at least one MPMPolicyStatement to be considered a valid policy
rule. The semantics of this aggregation are defined by the MPMHasPolicyStatementDetail association class. This
enables the management system to control which MPMPolicyStatement objects can be attached to which particular set
of MPMPolicyStructure objects. These semantics can be further enhanced by using the Policy Pattern to define policy
rules that constrain which part objects (i.e. MPMPolicyStatement) are attached to which object. The
MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and intent policy rules. See
Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of the Policy Pattern.

MPMPolicyHasMPMPolicySource is an optional aggregation that defines a set of MPMPolicySource objects that
authored, or have responsibility for, this policy. MPMPolicyHasMPMPolicyTarget defines the set of objects that will be
affected by this policy. MPMPolicySource objects are used for authorization policies, as well as to enforce deontic and
alethic logic. The multiplicity of this aggregation is 0..1 - 0..n. If this aggregation is instantiated (i.e. the "1" part of the
0..1 cardinality), then zero or more MCMPolicySource objects can wrap this particular MCMPolicyStructure object.
The 0..* cardinality enables an MCMPolicyStructure object to be defined without having to define an associated
MCMPolicySource object for it to aggregate. The semantics of this aggregation are defined by the
MPMHasPolicySourceDetail association class. This enables the management system to control which set of concrete
subclasses of MCMPolicyStructure can aggregate which types of MPMPolicySource objects. These semantics can be
further enhanced by using the Policy Pattern to define policy rules that constrain which part objects (i.e.
MPMPolicyStatement) are attached to which object. The MCMPolicyStructure is an abstract class that is the superclass
of imperative, declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of
the Policy Pattern.

MPMPolicyHasMPMPolicyTarget is a mandatory aggregation that defines the set of MPMPolicyTarget objects that are
attached to this particular MPMPolicyStructure object. MPMPolicyTarget objects are MCMManagedEntity objects
whose state and/or behaviour will be affected by the execution of a set of MPMPolicy objects. The multiplicity of this
aggregation is 0..1 - 0..n. If this aggregation is instantiated (i.e. the "1" part of the 0..1 cardinality), then zero or more
MPMPolicyTarget objects can be aggregated by this particular MPMPolicyStructure object. Note that the cardinality on
the part side (MPMPolicyTarget) is 0..*; this enables an MPMPolicyStructure object to be defined without having to
define an associated MPMPolicyTarget object for it to aggregate. The semantics of this aggregation are defined by the
MPMHasPolicyTargetDetail class. This enables the management system to control which set of concrete subclasses of
MCMPolicyStructure can aggregate which types of MPMPolicyTarget objects. These semantics can be further
enhanced by using the Policy Pattern to define policy rules that constrain which part objects (i.e. MPMPolicyStatement)
are attached to which object. The MCMPolicyStructure is an abstract class that is the superclass of imperative,
declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of the Policy
Pattern.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 87

The MPMPolicyStructureHasPolicy aggregation is an optional aggregation and defines the set of MPMPolicyStructure
Objects that are attached to this particular MPMPolicyStructureComposite Object. The semantics of this aggregation are
defined by the MPMPolicyStructureHasPolicyDetail association class. The multiplicity of this aggregation is 0..1 - 0..*.
If this aggregation is instantiated (i.e. the "1" part of the 0..1 cardinality), then zero or more (0..*) MPMPolicyStructure
Objects can be contained in this particular MPMPolicyStructureComposite Object.

The 0..* cardinality enables an MCMPolicyStructureComposite Object to be defined without having to first define an
associated MPMPolicyStructure Object for it to aggregate. The semantics of this aggregation are defined by the
MPMPolicyStructureHasPolicyDetail association class. This enables the management system to control which set of
concrete subclasses of MCMPolicyStructureComposite can aggregate which types of MPMPolicyStructure Objects.
The MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and intent policy rules.
See Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of the Policy Pattern.

5.3.2.6.4 MPMPolicyStructure Subclasses

5.3.2.6.4.1 MPMPolicyStructureAtomic

This is an abstract class that specializes MPMPolicyStructure. This class represents stand-alone MPMPolicy Objects. It
is shown in Figure 5-18.

An MPMPolicyStructureAtomic Object shall not contain another MPMPolicyStructure Object.

At the current time, this class defines no attributes. This is because this class is meant to ontologically distinguish
between stand-alone and composite MPMPolicyStructure objects.

Table 5-59 defines the operations for this class.

Table 5-59: Operations of the MPMPolicyStructureAtomic Class

Operation Name Description

getMPMPolicyAtomicParent() :
MPMStructure[1..1]

This operation returns the parent of this MPMPolicyStructureAtomic object.
If this MPMPolicyStructureAtomic object is a stand-alone MMPolicy, then a NULL
MPMPolicyStructure object should be returned.
If this MPMPolicyStructureAtomic object is part of a policy hierarchy, then a
MPMPolicyStructureComposite object shall be returned.

setMPMPolicyAtomicParent(
in: newParent :
MPMPolicyStructure [1..1])

This operation sets the parent of this MPMPolicyStructureAtomic object.
If this MPMPolicyStructureAtomic object is a stand-alone MMPolicy, then its
parent shall be a NULL MPMPolicyStructure object.
If this MPMPolicyStructureAtomic object is part of a policy hierarchy, then its
parent shall be a MPMPolicyStructureComposite object.

At the current time, this class has no relationships.

5.3.2.6.4.2 MPMPolicyStructureComposite

This is an abstract class that specializes MPMPolicyStructure. This class represents a set of related
MCMPolicyStructure Objects that are organized into a tree structure. It is shown in Figure 5-18.

Each MPMPolicyStructureComposite Object may contain zero or more MPMPolicyStructureAtomic objects.

Each MPMPolicyStructureComposite Object may contain zero or more MPMPolicyStructureComposite Objects.

At the current time, this class defines no attributes. This is because this class is meant to ontologically distinguish
between stand-alone and composite MPMPolicyStructure objects.

Table 5-60 defines the operations of this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 88

Table 5-60: Operations of the MPMPolicyStructureComposite Class

Operation Name Description

getMPMPolicyList() :
MPMStructure[1..*]

This operation returns the set of all MPMPolicyStructure objects (i.e. the list is made
up of MPMPolicyStructureAtomic and/or MPMPolicyStructureComposite objects) that
are contained in this specific MPMPolicyStructureComposite Object.
If this Object does not contain any MPMPolicyStructure Objects, then a NULL
MPMPolicyStructure Object should be returned.

setMPMPolicyList (in
childObjectList :
MPMPolicyStructure [1..*])

This operation defines a set of MPMPolicyStructure Objects that will be contained by
this particular MPMPolicyStructureComposite Object. This operation first deletes any
existing contained MPMPolicyStructure Objects (and their aggregations and
association classes), and then instantiates a new set of MPMPolicyStructure objects
for each element in the input parameter. Each MPMPolicyStructure object is
contained within this particular MPMPolicyStructure Composite object by creating an
instance of the MCMPolicyStructureHasPolicy aggregation.
Each created aggregation should have an association class (i.e. an instance of the
MCMPolicyStructureHasPolicy association class).

setMPMPolicyPartialList (in
childObjectList :
MPMPolicyStructure[1..*])

This operation defines a set of one or more MPMPolicyStructure Objects that should
be contained within this particular MPMPolicyStructureComposite Object without
affecting any other existing contained MPMPolicyStructure Objects or the Objects
that are contained in them. This operation creates a set of aggregations between this
particular MPMPolicyStructureComposite Object and each of the
MPMPolicyStructure objects identified in the input parameter.
Each created aggregation should have an association class (i.e. an instance of the
MPMPolicyStructureHasPolicy association class).

delMPMPolicyList()

This operation deletes all contained MPMPolicyStructure Objects of this particular
MPMPolicyStructureComposite Object. This has the effect of removing both the
association class and the aggregation between this MPMPolicyStructureComposite
Object and each MPMPolicyStructure Object that is contained in this
MPMPolicyStructureComposite Object.

delMPMPolicyPartialList (in
childObjectList :
MPMPolicyStructure[1..*])

This operation deletes a set of MPMPolicyStructure Objects from this particular
MPMPolicyStructureComposite Object. This has the effect of removing both the
association class and the aggregation between each MPMPolicyStructure object
specified in the input parameter and this MPMPolicyStructureComposite object.
All other aggregations between this MPMPolicyStructureComposite and other
MPMPolicyStructure Objects that are not identified in the input parameter shall not
be affected.

There is one relationship defined for the MPMPolicyStructureComposite class, called MPMPolicyStructureHasPolicy.
It was defined in clause 5.3.2.6.3.

5.3.2.6.4.3 MPMImperativePolicy

This is a mandatory abstract class, which is a type of PolicyContainer that is used to represent imperative policy rules.
An imperative policy explicitly defines how the state of the target MCMManagedEntity objects will be affected. This
version of the present document supports two types of imperative policy rules:

1) ECA policy rules; and

2) commands.

Figure 5-18 shows the attributes and operations of the MPMImperativePolicy class.

Table 5-61 defines the operations of this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 89

Table 5-61: Attributes of the MPMPolicyStructureComposite Class

Attribute Name Description

mpmImpPolPriority :
Integer[0..1]

This is an optional non-negative integer attribute that defines the priority of this
particular MPMImperativePolicy object. A larger value indicates a higher priority.
Priority can be used to resolve conflicts among policy actions by selecting the
policy action with the highest priority. Priority can also be used to define the
execution order of a set of policy rules.
A default value of 0 may be assigned.

mpmImpPolExecStrategy :
MPMImpPolExecStrategy [1]

This is a mandatory non-negative integer attribute that defines the execution
strategy of this particular MPMImperativePolicy object. The execution strategy
consists of the order that actions will execute, and whether encountering an error
terminates the process of executing actions or not.
If no actions are contained in this MPMImperativePolicy class, then an error shall
be returned.

Table 5-62 shows the operations of the MPMImperativePolicy class.

Table 5-62: Operations of the MPMImperativePolicy Class

Operation Name Description

getMPMImpPolPriority() :
Integer[1..1]

This operation returns the current value of the mpmImpPolRulePriority attribute.
If the mpmImpPolRulePriority attribute does not have a value, then this operation
shall return an error.

setMPMImpPolPriority (in
polRulePriority : Integer[1..1])

This operation sets the value of the mpmImpPolRulePriority attribute.
The value of the mpmImpPolRulePriority attribute shall be a non-negative integer.

getMPMImpPolExecStrategy() :
MPMImpPolExecStrategy [1..1]

This operation returns the current value of the mpmImpPolExecStrategy attribute.
If the mpmImpPolExecStrategy attribute does not have a value, then this
operation shall return an error.

setMPMImpPolExecStrategy(in
newStrategy :
MPMImpPolExecStrategy[1..1])

This operation sets the value of the mpmImpPolExecStrategy attribute.

At the current time, this class participates in no relationships.

5.3.2.6.4.4 MPMDeclarativePolicy

This is a mandatory concrete class, which is a type of PolicyContainer that is used to represent declarative policy rules.
A declarative policy uses statements to express the goals of the policy, but not how to accomplish those goals.

In the present document, Declarative Policy are defined as policies that execute as theories of a formal logic.

A Declarative Policy shall be written using propositional, predicate, or a higher form of a formal logic.

Figure 5-18 shows the attributes and operations of the MPMDeclarativePolicy class.

Table 5-63 defines its attributes.

Table 5-63: Attributes of the MPMImperativePolicy Class

Attribute Name Description
mpmDecPolLogicType :
MPMFormalLogicType[1..1]

This is a mandatory non-negative enumerated integer. It defines the type of
formal logic used by this MPMDeclarativePolicy object.

Table 5-64 shows the operations of the MPMImperativePolicy class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 90

Table 5-64: Operations of the MPMImperativePolicy Class

Operation Name Description

getMPMDeclLogicType() :
MPMFormalLogicType[1..1]

This operation returns the current value of the mpmDecPolLogicType attribute.
If the mpmDecPolLogicType attribute does not have a value, then this operation
shall return an error.

setMPMDeclLogicType(in
polLogicType :
MPMFormalLogicType[1..1])

This operation sets the value of the mpmDecPolLogicType attribute.

At the current time, this class participates in no relationships.

5.3.2.6.4.5 MPMIntentPolicy

This is a mandatory concrete class, which is a type of PolicyContainer that is used to represent intent policy rules.

An intent policy is a type of policy that uses statements from a restricted natural language to express the goals of the
policy, but not how to accomplish those goals. An Intent Policy is written in a Controlled Language (i.e. a language that
restricts the grammar and vocabulary used). In particular, formal logic syntax shall not used. This version of the present
document will use a restricted version of English. Controlled languages simplify machine translation of the source
content, and enable the source content to be translated to other types of languages. An example of a Controlled
Language is the Attempto Controlled English language; most Domain Specific Languages (DSLs) are also Controlled
Languages.

An Intent Policy shall be written in a Controlled Language.

An Intent Policy may be written in a DSL.

In general, a newly written intent is likely to not be directly executable. This is because of ambiguities in using a
Controlled Language, as well as the use of more abstract comments. For example, a Customer might be referred to by
name; this would need to be translated to a form that is machine processable (e.g. an IP address).

Figure 5-18 shows the attributes and operations of the MPMIntentPolicy class.

Table 5-65 defines its attributes.

Table 5-65: Attributes of the MPMIntentPolicy Class

Attribute Name Description

mpmIntentTranslationStatus :
MPMIntentTranslationStatus[1..1]

This is a mandatory non-negative enumerated integer, and defines the
status of the translation of the content of this MPMIntentPolicy.
If the value of the mpmIntentTranslationStatus attribute is not 2 (i.e.
SUCCESS), then this MPMIntentPolicy shall not be executed.

Table 5-66 defines its attributes.

Table 5-66: Operations of the MPMIntentPolicy Class

Operation Name Description

getMPMIntentTranslationStatus() :
MPMIntentTranslationStatus[1..1]

This operation returns the current value of the mpmIntentTranslationStatus
attribute.
If the mpmIntentTranslationStatus attribute does not have a value, then this
operation shall return an error.

setMPMIntentTranslationStatus(in
intentTranslationStatus :
MPMIntentTranslationStatus[1..1])

This operation sets the value of the mpmIntentTranslationStatus attribute.

At the current time, this class participates in no relationships.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 91

5.3.2.6.4.6 MPMECAPolicy

This is a mandatory concrete class that specializes MPMImperativePolicy. An MPMECAPolicy is a PolicyContainer
that aggregates a set of events, conditions, and actions into an imperative policy rule known as an Event-Condition-
Action (ECA) policy rule. This has the following semantics:

 IF the event portion of the policy rule evaluates to TRUE
 IF the condition portion of the policy rule evaluates to TRUE
 THEN actions in the action portion of the policy rule may be executed
 ENDIF
 ENDIF

In the above definition:

1) An event is a Boolean clause that represents something that happens or is happening that triggers a decision-
making process to start.

2) A condition is a Boolean clause that is an evaluation in a decision-making process.

3) An action is a Boolean clause that defines an atomic computation that is executed as a result of a decision-
making process.

4) Actions may be executed according to the semantics of the MPMECAPolicyRule instance.

Figure 5-18 shows the attributes and operations of the MPMECAPolicy class.

The event, condition, and action portions of an MPMECAPolicy will be referred to as Event, Condition, and Action
Statements (to differentiate them from Event, Condition, and Action objects). The Event, Condition, and Action
Statements are all Boolean clauses (i.e. a statement that produces a value of either true or false). An MPMECAPolicy
refines the notion of an MPMImperativePolicy by mandating that at least one Event or Condition Statement is present,
and at least one Action Statement is present.

An MPMECAPolicy shall contain at least one Event Statement or at least one Condition Statement.

An MPMECAPolicy shall contain at least one Action Statements.

Any Boolean statement can be combined with another Boolean statement to form compound Boolean statements using
any of the logical connectives (i.e. AND, OR, and NOT). This realizes the concept of a portion of an MPMECAPolicy
evaluating to true. For example, if an event Boolean clause is true, that satisfies the first IF statement in the above
pseudocode. As another example, the event portion of an MPMECAPolicy may consist of two or more Boolean
statements; this enables the evaluation of the event portion to be determined by the Boolean value of each statement
according to the logical connectives that are present in the event portion. Boolean statements are realized by the
MPMBooleanStatement class. Note that other types of MPMPolicyStatements may be combined with one or more
MPMBooleanStatements for any of the Event, Condition, and Action Statements. In addition, any Event, Condition, or
Action Statement can be decorated with a concrete subclass of the MPMPolicyComponentDecorator.

The following requirements summarize the structural semantics of an MPMECAPolicy:

1) An MPMECAPolicy shall have an action portion that is made up of one or more MPMPolicyStatements.

2) An MPMECAPolicy may contain one or more Event Statements.

3) If an MPMECAPolicy does not contain an Event Statement, the Condition Statement shall both trigger the
start of the decision-making process and evaluate the decision.

4) An MPMECAPolicy may contain one or more Condition Statements.

5) If an MPMECAPolicy does not contain a Condition Statement, the Event Statement shall both trigger the start
of the decision-making process and evaluate the decision.

6) Either the Event Statement or the Condition Statement, but not both, may be NULL in an MPMECAPolicy.

The following requirements summarize the behavioural semantics of an MPMECAPolicy:

1) An MPMECAPolicy shall contain one or more MPMBooleanStatements.

2) Each of the Event, Condition, and Action Statements shall contain one or more MPMBooleanStatements.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 92

3) Any MPMBooleanStatement may contain other types of MPMPolicyStatements, as long as their addition does
not prevent the MPMBooleanStatement from evaluating to either true or false.

4) Any MPMBooleanStatement may be decorated by one or more concrete subclasses of the
MPMPolicyComponentDecorator class, as long as their addition does not prevent the MPMBooleanStatement
from evaluating to either true or false.

There are currently no attributes, operations, or relationships defined for this class. Its purpose is to provide a concrete
realization of a particular type of MPMImperativePolicy with the above semantics.

5.3.2.6.4.7 MPMCommandPolicy

This is a mandatory concrete class, whose superclass is MPMImperativePolicy. An MPMCommandPolicy is a
PolicyContainer that contains one or more Action Statements. Stylistically, it corresponds to the imperative mood in
English.

The difference between an MPMCommandPolicy and an MPMECAPolicy is that the former only has a set of Action
Statements, whereas the latter has either an Event and/or a Condition Statement in addition to set of Action Statements.

The following requirements summarize the structural semantics of an MPMECAPolicy:

1) An MPMCommandPolicy shall contain one or more Action Statements.

2) An instance of this class shall not contain Event or Condition Statements.

The following requirements summarize the behavioural semantics of an MPMECAPolicy.

1) Each Action Statement shall contain one or more MPMBooleanStatements.

2) Any MPMBooleanStatement may contain other types of MPMPolicyStatements, as long as their addition does
not prevent the MPMBooleanStatement from evaluating to either true or false.

3) Any MPMBooleanStatement may be decorated by one or more concrete subclasses of the
MPMPolicyComponentDecorator class, as long as their addition does not prevent the MPMBooleanStatement
from evaluating to either true or false.

Figure 5-18 shows the attributes and operations of the MPMCommand Policy class. There are currently no attributes or
operations defined for this class. Its purpose is to provide a concrete realization of a particular type of
MPMImperativePolicy that does not need Event and Condition Statements.

5.3.2.6.5 MPMPolicyComponentStructure Class Hierarchy

The top portion of this class hierarchy is shown in Figure 5-19. This class hierarchy is defined to facilitate adding new
types of policy components later. The main "worker" class is MPMPolicyStatement; concrete subclasses of this class
are aggregated by all types of policy rules (i.e. concrete subclasses of MPMPolicyStructure). An MPMPolicyStatement
object may optionally be made up of MPMPolicyClause objects, which are used to define custom
MPMPolicyStatements.

An MPMPolicyComponentDecorator is used to define optional objects (or parts of an object) to decorate, or wrap,
concrete subclasses of MPMPolicyStatement and/or MPMPolicyClause objects.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 93

Figure 5-19: MPMPolicyComponentStructure Hierarchy

5.3.2.6.6 MPMPolicyComponentStructure Class Definition

This is a mandatory abstract class. It is the superclass for all types of components that may be contained in a particular
type of an MPMPolicy. In this model, the type of Policy (e.g. imperative, declarative, intent) is a type of
PolicyContainer. The type of PolicyContainer defines the type of MPMPolicyStructureComponent objects that it can
contain.

The version of the present document does not define any attributes or operations for this class. Its main purpose is from
an ontological perspective, as it is used as the superclass for all types of components that can be contained by all types
of policies that are defined by the MPM. This class participates in one relationship, called
MPMPolicyHasMPMPolicyComponentDecorator, which is defined in clause 5.3.2.6.7.15.

5.3.2.6.7 MPMPolicyComponentStructure Subclasses

5.3.2.6.7.1 MPMPolicyStatement Class Hierarchy

This clause describes the main subclasses of the MPMPolicyStatement class hierarchy. An MPMPolicyStatement
provides the important abstraction that all types of MPMPolicies contain a set of one or more MPMPolicyStatements.
This fundamental abstraction enables the content of multiple types of MPMPolicyRules to be represented using a
common mechanism.

This class and its concrete subclasses can have their functionality enhanced and/or customized by using the
MPMPolicyClause class and its subclasses (this is described in clause 5.3.2.6.7.8) and subclasses of
MPMPolicyComponentDecorator (this is described in clause 5.3.2.6.7.15).

The MPMPolicyStatement class hierarchy is shown in Figure 5-20.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 94

Figure 5-20: MPMPolicyStatement Class Hierarchy

5.3.2.6.7.2 MPMPolicyStatement Class Definition

This is a mandatory abstract class. It separates the representation of an MPMPolicy from its implementation.

An MPMPolicy, regardless of its structure and semantics, shall be abstracted into a set of statements, which are
instances of this class. This is defined by one or more instances of the MPMPolicyHasMPMPolicyStatement
aggregation.

Each MPMPolicyStatement may optionally be abstracted into a set of clauses, which are instances of
MPMPolicyClause (see clause 5.3.2.6.7.9). This is defined by one or more instances of the
MPMPolicyStatementHasMPMPolicyClause aggregation.

Each MPMPolicyClause is made up of a set of policy elements. The type of MPMPolicyStructure determines the type
of policy statements that it can contain; this in turn determines the types of policy clauses and policy elements that are
used by any given type of policy statement.

There are two ways to enforce the semantics of restricting the type of MPMPolicyStatements that can be contained in a
particular type of MPMPolicyStructure:

1) Use the MPMPolicyHasMPMPolicyStatementDetail association class.

2) Define appropriate OCL statements to enforce the restriction.

The first operation avoids the use of OCL, but is harder to implement. It uses the model elements of the
MPMPolicyHasMPMPolicyStatementDetail association class to define explicit semantics to restrict the type of
MPMPolicyStatement, and their decorations, that can be contained by this particular type of MPMPolicyStructure. The
second is easier, since OCL is a formal language that enables these semantics to be easily defined. However, some
implementations do not support OCL, so the particular choice of which operation to use is left to the implementer.

Table 5-67 defines the attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 95

Table 5-67: Attributes of the MPMPolicyStatement Class

Attribute Name Description
mpmPolStmtAdminStatus :
MPMPolicyAdminStatus[1..1]

This is a mandatory enumerated non-negative integer attribute that defines the
current administrative status of this particular MPMPolicyStatement object.

mpmPolStmtConstrainMethod :
MPMPolMethodConstrain-
Mechanism[0..1]

This is a non-negative enumerated integer, and defines the mechanism used to
constrain which concrete subclasses of MPMPolicyStatement can be used with
this particular concrete subclass of MPMPolicyStructure.

mpmPolStmtDeployStatus :
MPMPolStatementDeploy-
Status[0..1]

This is an optional enumerated, non-negative integer attribute. It is used to
indicate whether this MPMPolicyStatement can or cannot be deployed by the
policy management system. This attribute enables the policy manager to know
which MPMPolicies are currently deployed, and may be useful for the policy
execution system for planning the staging of MPMPolicies.

mpmPolStmt-
DesignStatus : MPMPolicy-
DesignStatus[0..1]

This is an optional enumerated, non-negative integer whose value defines the
current design status of this MPMPolicyStatement object.

mpmPolStmtExecStatus :
MPMPolicyExecStatus[1..1]

This is a mandatory enumerated non-negative enumerated integer whose
value defines the current execution status of this MPMPolicyStatement object.

mpmPolStmtConflictStatus :
MPMPolStmtConflict-
Status[1..1]

This is an optional enumerated, non-negative integer whose value defines
whether this particular MPMPolicyStatement has, or ever had, a conflict with
another MPMPolicyStatement.
If the value of this attribute is not "RESOLVED" or "NONE", then this
MPMPolicyStatement object shall not be used.

Table 5-68 defines the operations for this class.

Table 5-68: Operations of the MPMPolicyStatement Class

Operation Name Description

getMPMPolStmtAdminStatus() :
MPMPolicyAdminStatus[1..1]

This operation returns the current value of the mpmPolStmtAdminStatus
attribute.
If the mpmPolStmtAdminStatus attribute does not have a value, then this
operation shall return an error.

setMPMPolStmtAdminStatus(in
newStatus :
MPMPolicyAdminStatus[1..1])

This operation sets the value of the mpmPolStmtAdminStatus attribute.

getMPMPolStmtConstrain-
Method() : MPMPolStmtConstrain-
Mechanism[1..1]

This operation returns the current value of the mpmPolConstrainMethod
attribute.
If the mpmPolConstrainMethod attribute does not have a value, then this
operation shall return an error.

setMPMPolStmtConstrain-
Method (in newStatus : MPMPol-
StmtConstrainMechanism[1..1])

This operation sets the value of the mpmPolConstrainMethod attribute.

getMPMPolStmtDeployStatus() :
MPMPolicyDeployStatus[1..1]

This operation returns the current value of the mpmPolStmtDeployStatus
attribute.
If the mpmPolStmtDeployStatus attribute does not have a value, then this
operation shall return an error.

setMPMPolStmtDeployStatus(in
newStatus :
MPMPolicyDeployStatus[1..1])

This operation sets the value of the mpmPolStmtDeployStatus attribute.

getMPMPolStmtDesignStatus() :
MPMPolicyDesignStatus[1..1]

This operation returns the current value of the mpmPolStmtDesignStatus
attribute.
If the mpmPolStmtDesignStatus attribute does not have a value, then this
operation shall return an error.

setMPMPolStmtDesignStatus(in
newStatus :
MPMPolicyDesignStatus[1..1])

This operation sets the value of the mpmPolStmtDesignStatus attribute.

getMPMPolStmtExecStatus() :
MPMPolicyExecStatus[1..1]

This operation returns the current value of the mpmPolStmtExecStatus
attribute.
If the mpmPolStmtExecStatus attribute does not have a value, then this
operation shall return an error.

setMPMPolStmtExecStatus(in
newStatus :
MPMPolicyExecStatus[1..1])

This operation sets the value of the mpmPolStmtExecStatus attribute.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 96

Operation Name Description

getMPMPolStmtConflictStatus() :
MPMPolStmtConflictStatus[1..1])

This operation returns the current value of the mpmPolStmtConflictStatus
attribute.
If the mpmPolStmtConflictStatus attribute does not have a value, then this
operation shall return an error.

setMPMPolStmtConflictStatus(in
newStatus :
MPMPolStmtConflictStatus[1..1])

This operation sets the value of the mpmPolStmtConflictStatus attribute.

getMPMPolicyClauseList() :
MPMPolicyClause[1..*]

This operation retrieves the set of MPMPolicyClause objects that are
contained in this particular MPMPolicyStatement object. This is obtained by
following the MPMStatementHasMPMPolicyClause aggregation. Each
instance of this aggregation defines an MPMPolicyClause object, which is
then added to the return value of this operation.
If this MPMPolicyStatement object does not instantiate this aggregation,
then this operation should return a NULL MPMPolicyClause object.

setMPMPolicyClauseList(in
newClauseList :
MPMPolicyClause[1..*])

This operation defines a new set of MPMPolicyClause objects that will be
contained in this particular MPMPolicyStatement object. If this
MPMPolicyStatement object already has a set of one or more
MPMPolicyClause objects that it contains, then those MPMPolicyClause
objects will be deleted by deleting both the accompanying association class
and the corresponding association. Then, a new association is created for
each MPMPolicyClause object in the newClauseList parameter.
Every association created should have a new association class created to
realize the semantics of that association.

setMPMPolicyClausePartialList(in
newClauseList :
MPMPolicyClause[1..*])

This operation defines a new set of MPMPolicyClause objects that will be
contained in this particular MPMPolicyStatement object. If this
MPMPolicyStatement object already has a set of one or more
MPMPolicyClause objects that it contains, then those MPMPolicyClause
objects are ignored. Then, a new association is created for each
MPMPolicyClause object in the newClauseList.
Every association created should have a new association class created to
realize the semantics of that association.
Any association between this MPMPolicyStatement object and other
MPMPolicyClause objects that is not specified in the newClauseList shall
not be affected.

delMPMPolClauseObjectList()

This operation removes all instances of the
MPMStatementHasMPMPolicyClause aggregation, and its association
classes, that enables this particular MPMPolicyStatement object to contain
any MPMPolicyClause objects. This operation does not affect either the
MPMPolicyClause object or the MPMPolicyStatement object; it just deletes
the association between this MPMPolicyStatement object and this
MPMPolicyClause object.

delMPMPolClauseObjectPartial-
List(in newClauseList:
MPMPolicyClause[1..*])

This operation removes the association, and its association class, for each
MPMPolicyClause object in the newClauseList that is contained by this
particular MPMPolicyStatement object. This operation does NOT affect
either the MPMPolicyStatement object or the MPMPolicyClause object; it
just deletes the association between this MPMPolicyStatement object and
this MPMPolicyClause object.
Any association between this MPMPolicyStatement object and other
MPMPolicySource objects that is not specified in the newClauseList shall
not be affected.

The MPMPolicyStatement class participates in two aggregations.

MPMPolicyHasMPMPolicyStatement is a mandatory aggregation that was defined in clause 5.3.2.6.3. This defines the
set of MPMPolicyStatement objects that form the content of a given MPMPolicyStructure object.

The MPMStatementHasMPMPolicyClause Aggregation is an optional aggregation that defines the set of
MPMPolicyClause objects that make up this particular MPMPolicyStatement. This aggregation enables the content of
an MPMPolicyStatement to be changed without affecting the rest of the MPMPolicy.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 97

The multiplicity of this aggregation is 0..1 - 0..n. If this aggregation is instantiated (i.e. the "1" part of the 0..1
cardinality), then zero or more MPMPolicyClause objects define the content of this particular MPMPolicyStatement
object. The 0..* cardinality enables an MPMPolicyStatement object to be defined without having to define an associated
MPMPolicyClause object for it to aggregate. The semantics of this aggregation are defined by the
MPMStatementHasMPMPolicyClauseDetail association class. This enables the management system to control which
set of concrete subclasses of MCMPolicyStatement can aggregate which types of MPMPolicyClause objects.

The MPMStatementHasMPMPolicyClauseDetail is a concrete association class, and defines the semantics of the
MPMStatementHasMPMPolicyClause aggregation. The attributes and relationships of this class can be used to define
which MPMPolicyClause objects can be aggregated by which particular set of MCMPolicyStatement objects. These
semantics can be further enhanced by using the Policy Pattern to define policy rules that constrain which part objects
(i.e. MPMPolicyClause) are attached to which MCMPolicyStatement object. The MCMPolicyStructure is an abstract
class that is the superclass of imperative, declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for
an exemplary illustration of the Policy Pattern.

5.3.2.6.7.3 MPMAssertionStatement Class Definition

An MPMAssertionStatement is a collection of one or more MPMAssertionClauses (see clause 5.3.2.6.7.10). The
canonical form of an MPMAssertionStatement is a 3-tuple, containing three MPMAssertionClauses:

 <pre-condition, post-condition, invariant>

In this definition:

1) Pre-conditions are predicates that shall be true in order for a operation or function to execute.

2) Post-conditions are predicates that shall be true after a operation or function has executed.

3) Attributes are predicates that shall be true during the life of operation or function execution (i.e. they are
invariant through the life of the operation).

A valid MPMAssertionStatement shall specify at least one pre-condition, post-condition, or invariant attribute.

This 3-tuple is especially useful when reasoning about whether a computer program is correct. An enumeration
(MPMAssertionStatementType) is defined that specifies what types of MPMAssertionClauses are used by this
particular MPMAssertionStatement. In general, an MPMAssertionStatement is typically used in imperative policies;
MPMAxiom and MPMTheorem policies are used in declarative policies, and MPMEncodedStatement and
MPMBooleanStatement can be used by all policy types.

Figure 5-21 shows the MPMAssertionStatement class.

Figure 5-20: MPMPolicyComponentStructure Hierarchy

Table 5-69 defines the attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 98

Table 5-69: Attributes of the MPMPolicyStatement Class

Attribute Name Description

mpmAssertStmtResponse :
Boolean[1..1]

This is a mandatory Boolean attribute that provides a Boolean response
for this MPMAssertionStatement. This enables this
MPMAssertionStatement to be combined with other subclasses of an
MPMPolicyStatement that provide a Boolean value that defines the status
as to their correctness and/or evaluation state. This enables this object to
be used to construct more complex MPMPolicyStatements.

mpmAssertStmtType :
MPMAssertionStatementType[1..1]

This is a mandatory enumerated non-negative integer attribute that defines
the composition of this particular MPMAssertionStatement object.

Table 5-70 defines the operations for this class.

Table 5-70: Operations of the MPMPolicyStatement Class

Operation Name Description

getMPMAssertStmtResponse() :
Boolean[1..1]

This operation returns the current value of the
mpmAssertStmtResponse attribute.
If the mpmAssertStmtResponse attribute does not have a value, then
this operation shall return an error.

setMPMAssertStmtResponse (in
newValue : Boolean[1..1]) This operation sets the value of the mpmAssertStmtResponse attribute.

getMPMAssertStmtType() :
MPMAssertionStatementType[1..1]

This operation returns the current value of the mpmAssertStmtType
attribute.
If the mpmAssertStmtType attribute does not have a value, then this
operation shall return an error.

setMPMAssertStmtType(in newValue :
MPMAssertionStatementType[1..1]) This operation sets the value of the mpmAssertStmtType attribute.

Note that there are no operations that retrieve the number of MPMAssertionClause objects from an
MPMAssertionStatement. This is because of two reasons. First, the MPMAssertionStatement object inherits the
MPMStatementHasMPMPolicyClause aggregation from its superclass (see clause 5.3.2.6.7.2); this defines the number
of MPMPolicyClause objects that are aggregated in this particular MPMAssertionStatement object. Second, the
MPMAssertionStatement can aggregate more than one type of MPMPolicyClause object.

5.3.2.6.7.4 MPMBooleanStatement Class Definition

An MPMBooleanStatement specializes an MPMPolicyStatement. It defines a statement that evaluates to either true or
false. An MPMBooleanStatement may be made up of one or more Boolean clauses, which is a subclass of the
MPMPolicyClause class (see clause 5.3.2.6.7.9). This is modeled using the MPMStatementHasMPMPolicyClause
aggregation (see clause 5.3.2.6.7.2).

Boolean expressions correspond to propositional formulas in logic. Hence, an MPMBooleanStatement may be used by
imperative, declarative, and intent policies.

Figure 5-21 shows the MPMBooleanStatement class.

Table 5-71 defines the attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 99

Table 5-71: Attributes of the MPMBooleanStatement Class

Attribute Name Description

mpmBoolStmtBindValue :
Integer[1..*]

This is a mandatory array of positive integers that defines the order in which constituent
terms bind to this MPMBooleanStatement. For example, the Boolean expression
 "((A AND B) OR (C AND NOT (D OR E)))"
has the following binding order: terms A and B have a bind value of 1; term C has a
binding value of 2, and terms D and E have a binding value of 3.
All values in this attribute shall be greater than 0.

mpmBoolStmtIsCNF :
Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is TRUE, then this
MPMBooleanStatement is in Conjunctive Normal Form. Otherwise, it is in Disjunctive
Normal Form.

mpmBoolStmtIsNegated:
Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is TRUE, then this
(entire) MPMBooleanStatement is negated.

Table 5-72 defines the operations for this class.

Table 5-72: Operations of the MPMBooleanStatement Class

Operation Name Description

getMPMBoolStmt-BindValueList() :
Integer[1..*]

This operation returns the current value of the mpmBoolStmtBindValue
attribute, which is an array of positive integers.
If the mpmBoolStmtBindValue attribute does not have a value, then this
operation shall return an error.

setMPMBoolStmt-BindValueList
(in newBindList : Integer[1..1])

This operation sets the value of the mpmBoolStmtBindValue attribute.
All values in this attribute shall be greater than 0.

getMPMBoolStmtIsCNF() :
Boolean[1..1]

This operation returns the current value of the mpmBoolStmtIsCNF
attribute.
If the mpmBoolStmtIsCNF attribute does not have a value, then this
operation shall return an error.

setMPMBoolStmtIsCNF (in
newStatus : Boolean[1..1]) This operation sets the value of the mpmBoolStmtIsCNF attribute.

getMPMBoolStmtIsNegated() :
Boolean[1..1]

This operation returns the current value of the mpmBoolStmtIsNegated
attribute.
If the mpmBoolStmtIsNegated attribute does not have a value, then this
operation shall return an error.

setMPMBoolStmtIsNegated (in
newStatus : Boolean[1..1]) This operation sets the value of the mpmBoolStmtIsNegated attribute.

Note that there are no operations that retrieve the number of MPMBooleanClause objects from an
MPMBooleanStatement. This is because of two reasons. First, the MPMBooleanStatement object inherits the
MPMStatementHasMPMPolicyClause aggregation from its superclass; this defines the set of MPMPolicyClause objects
that are aggregated by this particular MPMBooleanStatement. Second, the MPMBooleanStatement can aggregate more
than one type of MPMPolicyClause object.

5.3.2.6.7.5 MPMEncodedStatement Class Definition

An MPMEncodedStatement represents a policy statement as an encoded object. This class defines a generalized
extension mechanism for representing MPMPolicyStatements that have not been modeled with other
MPMPolicyComponentStructure objects. For example, this class is useful for encoding YANG and RDF statements.

This class encodes the contents of the policy clause directly into the attributes of the MPMEncodedStatement. Hence,
MPMEncodedStatement objects are reusable at the object level, whereas other types of MPMPolicyStatement objects
are reusable at the individual policy expression level.

The benefit of an MPMEncodedStatement is that it enables direct encoding of the text of the MPMPolicyStatement,
without having the "overhead" of using other objects. However, note that while this operation is efficient, it does not
reuse other MPMPolicyComponentStructure objects. Furthermore, its potential for reuse is reduced, as only
MPMPolicies that can use the exact encoding of this clause can reuse this object.

Figure 5-21 shows the MPMEncodedStatement class.

Table 5-73 defines the attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 100

Table 5-73: Attributes of the MPMEncodedStatement Class

Attribute Name Description

mpmEncodedStatement
Content : String[1..1]

This is a mandatory string attribute that defines the content of this particular
MPMEncodedStatement object. It works with another class attribute, called
mpmEncodedStatementEncoding, which defines how to interpret the value of this attribute
(e.g. as a string or reference). These two attributes form a tuple, and together enable a
machine to understand the syntax and value of this object instance.

mpmEncodedStatement
Encoding :
MPMEncodingType[1..1]

This is a mandatory enumerated non-negative integer attribute, and defines how to
interpret the value of the mpmEncodedStatementContent class attribute. These two
attributes form a tuple, and together enable a machine to understand the syntax and value
of the encoded clause for the object instance of this class.

mpmEncodedStatement
Response : Boolean[1..1]

This is a mandatory Boolean attribute that emulates a Boolean response of this statement,
so that it may be combined with other subclasses of the MPMPolicyStatement that provide
a Boolean value that defines their correctness and/or evaluation state. This enables this
object to be used to construct more complex Boolean clauses.

Table 5-74 defines the operations for this class.

Table 5-74: Operations of the MPMEncodedStatement Class

Operation Name Description

getMPMEncodedStmtContent() :
String[1..1]

This operation returns the current value of the mpmEncodedStatementContent.
This operation takes no input parameters.
If this attribute does not have a value, then this operation shall return an error.

setMPMEncodedStmtContent (in
newStatement : String[1..1])

This operation sets the value of the mpmEncodedStatementContent attribute.
The value of the mpmEncodedStatementContent attribute shall not be empty
or NULL.

getMPMEncodedStmtEncoding() :
MPMEncodingType[1..1]

This operation returns the current value of the mpmEncodedStatementEncoding
attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMEncodedStmtEncoding(in
newEncoding :
MPMEncodingType[1..1])

This operation sets the value of the mpmEncodedStatementContent attribute.

getMPMEncodedStmtResponse() :
Boolean[1..1]

This operation returns the current value of the
mpmEncodedStatementResponse attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMEncodedStmtResponse(in
: newResponse : Boolean[1..1]) This operation sets the value of the mpmEncodedStatementResponse attribute.

Note that there are no operations that retrieve the number of MPMPolicyClause objects from an
MPMEncodedStatement. This is because the MPMEncodedStatement object inherits the
MPMStatementHasMPMPolicyClause aggregation from its superclass.

5.3.2.6.7.6 MPMTheorem Class Definition

An MPMTheorem refines an MPMPolicyStatement. It represents a logic statement that:

a) is not self-evident;

b) can be proven to be true.

The proof of a theorem is defined by the set of MPMPolicyClauses that it is associated with. Specifically, two or more
MPMPremiseClause (see clause 5.3.2.6.7.13) objects shall have all been proven to be true, which makes the associated
MPMConclusionClause (see clause 5.3.2.6.7.14) true. This is found by following the
MPMStatementHasMPMPolicyClause aggregation (see clause 5.3.2.6.7.2).

An MPMTheorem object shall have previously been proven to be true in order for it to be used.

Figure 5-21 shows the MPMTheorem class.

Table 5-75 defines the attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 101

Table 5-75: Attributes of the MPMTheorem Class

Attribute Name Description
mpmTheorem-
ProvesHypthesis :
Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is TRUE, then this
MPMTheorem proves a previously unknown hypothesis. Otherwise, it is the result of
previously known axioms and/or other theorems.

mpmTheorem-IsInvalid :
Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is TRUE, then this
MPMTheorem was rendered incorrect due to one of its dependent axioms or theorems, that
was previously true, being proved false. This requires revisiting all MPMPolicyStatements
that depended on it.
If the value of this attribute is FALSE, then the system shall set the
mpmPolStmtExecStatus to ERROR for this MPMTheorem.

Table 5-76 defines the operations for this class.

Table 5-76: Operations of the MPMTheorem Class

Operation Name Description

getMPMTheoremProves-
Hypothesis() : Boolean[1..1]

This operation returns the current value of the mpmTheoremProvesHypothesis
attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMTheoremProves-
Hypothesis(in newValue :
Boolean[1..1])

This operation sets the value of the mpmTheoremProvesHypothesis attribute.

getMPMTheoremIsInvalid() :
Boolean[1..1]

This operation returns the current value of the mpmTheoremIsInvalid attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMTheoremProves-
Hypothesis(newValue :
Boolean[1..1])

This operation sets the value of the mpmTheoremIsInvalid attribute.
The value of the mpmTheoremIsInvalid attribute shall be either true or false.
If the value of this attribute is FALSE, then the system shall set the
mpmPolStmtExecStatus to ERROR for this MPMTheorem.

Note that there are no operations that retrieve the number of MPMPolicyClause objects from an MPMTheorem. This is
because the MPMTheorem object inherits the MPMStatementHasMPMPolicyClause aggregation from its superclass.

5.3.2.6.7.7 MPMAxiom Class Definition

An MPMAxiom is a type of MPMStatement that is taken to always be TRUE. Hence, it serves as a premise for other
types of reasoning. Axioms are linked to MPMPolicyStatements using the MPMStatementHasMPMPolicyClause
aggregation (see clause 5.3.2.6.7.2).

An MPMAxiom object shall be defined as true in order for it to be used.

An MPMAxiom shall not have to be proven to be true.

If an MPMAxiom is proven to be true, then:

1) the MPMAxiom shall be transformed into an MPMTheorem by copying its content into a new MPMTheorem
object; and

2) the original MPMAxiom object shall be deleted.

Figure 5-21 shows the MPMAxiom class.

Table 5-77 defines the attributes for this class.

Table 5-77: Attributes of the MPMAxiom Class

Attribute Name Description

mpmAxiomIsDisproved :
Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is TRUE, then this
MPMAxiom has been proven FALSE. This requires revisiting all MPMPolicyStatements
that depended on it.
If the value of this attribute is FALSE, then the system shall set the
mpmPolStmtExecStatus to ERROR for this MPMAxiom.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 102

Table 5-78 defines the operations for this class.

Table 5-78: Operations of the MPMAxiom Class

Operation Name Description
getMPMAxiomIsDisproved() :
Boolean[1..1]

This operation returns the current value of the mpmAxiomIsDisproved attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMAxiomIsDisproved
(newValue : Boolean[1..1])

This operation sets the value of the mpmAxiomIsDisproved attribute.
The value of the mpmAxiomIsDisproved attribute shall be either true or false.
If the value of this attribute is FALSE, then the system shall set the
mpmPolStmtExecStatus to ERROR for this MPMAxiom.

Note that there are no operations that retrieve the number of MPMPolicyClause objects from an MPMAxiom. This is
because the MPMAxiom object inherits the MPMStatementHasMPMPolicyClause aggregation (see clause 5.3.2.6.7.2).

5.3.2.6.7.8 MPMPolicyClause Class Hierarchy

An MPMPolicyClause is a part of a statement. It defines all or part of the content of an MPMPolicyStatement. The
decorator pattern is used to enable an extensible set of objects to "wrap" the MPMPolicyClause; this enables the
contents of a MPMPolicyClause to be adjusted dynamically at runtime without affecting other objects. Put another way,
this enables the contents of an MPMPolicyClause to be dynamically changed without affecting the
MPMPolicyStatements that use it.

MPMPolicyClauses are objects in their own right, which facilitates their reuse. Different MPMPolicyClauses can be
used with different MPMPolicyStatements to realize specific types of MPMPolicies.

An MPMPolicyClause, along with its subclasses, is shown in Figure 5-22.

Figure 5-21: MPMPolicyClause Hierarchy

5.3.2.6.7.9 MPMPolicyClause Class Definition

An MPMPolicyClause is a mandatory abstract class whose subclasses define different types of clauses that are used to
create the content for different types of MPMPolicyStatements. An MPMPolicyClause serves as a convenient
aggregation point for assembling other objects that make up an MPMPolicyStatement.

The attributes of an MPMPolicyClause are shown in Table 5-79.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 103

Table 5-79: Attributes of the MPMPolicyClause Class

Attribute Name Description
mpmPolClause-
AdminStatus :
MPMPolicy-
AdminStatus[1..1]

This is a mandatory enumerated non-negative integer attribute that defines the current
administrative status of this particular MPMPolicyClause object.

mpmPolClause-
DeployStatus :
MPMPolicy-
DeployStatus[1..1]

This is an optional enumerated, non-negative integer attribute that is used to indicate
whether this MPMPolicyClause can or cannot be deployed by the policy management
system. This attribute enables the policy manager to know which MPMClauses are
currently deployed for a given MPMPolicyStatement, and may be useful for the policy
execution system for planning the staging of MPMPolicies.

mpmPolClause-
DesignStatus :
MPMPolicy-
DesignStatus[1..1]

This is an optional enumerated, non-negative integer whose value defines the current
design status of this MPMPolicyClause object.

mpmPolClause-
ExecStatus :
MPMPolicy-
ExecStatus[1..1]

This is a mandatory enumerated non-negative enumerated integer whose value defines
the current execution status of this MPMPolicyClause object.

Table 5-80 defines the operations for this class.

Table 5-80: Operations of the MPMPolicyClause Class

Operation Name Description

getMPMPolClauseAdmin-
Status() : MPMPolicy-
AdminStatus [1..1]

This operation returns the current value of the mpmPolClauseAdminStatus
attribute.
If the mpmPolClauseAdminStatus attribute does not have a value, then this
operation shall return an error.

setMPMPolClauseAdmin-
Status(in newStatus :
MPMPolicyAdminStatus[1..1])

This operation sets the value of the mpmPolClauseAdminStatus attribute.

getMPMPolClauseDeploy-
Status() : MPMPolicy-
DeployStatus [1..1]

This operation returns the current value of the mpmPolClauseDeployStatus
attribute.
If the mpmPolClauseDeployStatus attribute does not have a value, then this
operation shall return an error.

setMPMPolClauseDeploy-
Status(in newStatus :
MPMPolicyDeployStatus[1..1])

This operation sets the value of the mpmPolClauseDeployStatus attribute.

getMPMPolClauseDesign-
Status() : MPMPolicy-
DesignStatus [1..1]

This operation returns the current value of the mpmPolClauseDesignStatus
attribute.
If the mpmPolClauseDesignStatus attribute does not have a value, then this
operation shall return an error.

setMPMPolClauseDesign-
Status(in newStatus :
MPMPolicyDesignStatus[1..1])

This operation sets the value of the mpmPolClauseDesignStatus attribute.

getMPMPolClauseExec-
Status() : MPMPolicy-
ExecStatus [1..1]

This operation returns the current value of the mpmPolClauseExecStatus attribute.
If the mpmPolClauseExecStatus attribute does not have a value, then this
operation shall return an error.

setMPMPolClauseExec-
Status(in newStatus :
MPMPolicyExecStatus[1..1])

This operation sets the value of the mpmPolClauseExecStatus attribute.

5.3.2.6.7.10 MPMAssertionClause Class Definition

An MPMAssertionClause is a predicate (i.e. a Boolean-valued function) that should evaluate to true at that point in the
program's execution. An MPMAssertionClause may be used by different types of MPMPolicyStatements.

An MPMPolicyStatement may contain zero or more MPMAssertionClauses.

An MPMAssertionClause may be used with zero or more other MPMPolicyClauses.

Figure 5-22 shows the MPMPolicyClause class. The attributes of an MPMPolicyClause are shown in Table 5-81.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 104

Table 5-81: Attributes of the MPMAssertionClause Class

Attribute Name Description

mpmAssertClause-
Response :
Boolean[1..1]

This is a mandatory Boolean attribute that provides a Boolean response for this
clause. This enables this MPMAssertionClause to be combined with other
subclasses of an MPMPolicyClause and/or an MPMPolicyStatement that provide
a Boolean value that defines the status as to their correctness and/or evaluation
state. This enables this object to be used to construct more complex
MPMPolicyClauses and MPMPolicyStatements.

mpmAssertClauseType :
MPMAssertionStatementType[1..1]

This is a mandatory enumerated non-negative integer attribute that defines the
composition of this particular MPMAssertionClause object.

Table 5-82 defines the operations for this class.

Table 5-82: Operations of the MPMAssertionClause Class

Operation Name Description

getMPMAssertClause-
Response() : Boolean[1..1]

This operation returns the current value of the mpmAssertClauseResponse
attribute.
If the mpmAssertClauseResponse attribute does not have a value, then this
operation shall return an error.

setMPMAssertClause-
Response(in newValue : Boolean[1..1]) This operation sets the value of the mpmAssertClauseResponse attribute.

getMPMAssertClauseType() :
MPMAssertionStatementType[1..1]

This operation returns the current value of the mpmAssertClauseType
attribute.
If the mpmAssertClauseType attribute does not have a value, then this
operation shall return an error.

setMPMAssertClauseType(in newValue
: MPMAssertionStatementType[1..1]) This operation sets the value of the mpmAssertClauseType attribute.

5.3.2.6.7.11 MPMBooleanClause Class Definition

A Boolean clause has the canonical form of a {variable, operator, value} 3-tuple, which evaluates to either true or false.
A Boolean clause may be made up of a combination of the Boolean constants true or false, along with Boolean-typed
variables, Boolean-valued operators, and Boolean-valued functions.

Boolean clauses may be joined together using logical connectives (e.g. AND OR), forming more complex Boolean
clauses. Individual terms in a Boolean clause, as well as an entire Boolean clause, may be negated.

An MPMPolicyStatement may contain zero or more MPMBooleanClauses.

Figure 5-22 shows the MPMBooleanClause class.

Table 5-83 defines the attributes for this class.

Table 5-83: Attributes of the MPMBooleanClause Class

Attribute Name Description

mpmBoolClauseBindValue :
Integer[1..1]

This is a mandatory array of positive integers that defines the order in which
constituent terms bind to this MPMBooleanClause. For example, the Boolean
expression
 "((A AND B) OR (C AND NOT (D OR E)))"
has the following binding order: terms A and B have a bind value of 1; term C has a
binding value of 2, and terms D and E have a binding value of 3.
All values in this attribute shall be greater than 0.

mpmBoolClauseIsCNF :
Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is TRUE, then this
MPMBooleanClause is in Conjunctive Normal Form. Otherwise, it is in Disjunctive
Normal Form.

mpmBoolClauseIsNegated :
Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is TRUE, then this
(entire) MPMBooleanClause is negated.

Table 5-84 defines the attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 105

Table 5-84: Operations of the MPMBooleanClause Class

Operation Name Description

getMPMBoolClauseBindValue() :
Integer[1..1]

This operation returns the current value of the mpmBoolStmtBindValue attribute,
which is an array of positive integers.
If the mpmBoolStmtBindValue attribute does not have a value, then this
operation shall return an error.

setMPMBoolClauseBind-
Value(in newValue : Integer[1..1])

This operation sets the value of the mpmBoolClauseBindValue attribute..
The value of the mpmBoolClauseBindValue attribute shall be a positive (non-
zero) integer.

getMPMBoolClauseIsCNF() :
Boolean[1..1]

This operation returns the current value of the mpmBoolClauseIsCNF attribute.
If the mpmBoolClauseIsCNF attribute does not have a value, then this operation
shall return an error.

setMPMBoolClauseBind-
Value(in newValue :
Boolean[1..1])

This operation sets the value of the mpmBoolClauseIsCNF attribute.
The value of the mpmBoolClauseIsCNF attribute shall be a Boolean value.

getMPMBoolClauseIsNegated() :
Boolean[1..1]

This operation returns the current value of the mpmBoolClauseIsNegated
attribute.
If the mpmBoolClauseIsNegated attribute does not have a value, then this
operation shall return an error.

setMPMBoolClauseIsNegated (in
newValue : Boolean[1..1])

This operation sets the value of the mpmBoolClauseIsNegated attribute. This
operation takes a single input parameter, called newValue, which defines the
new value for the mpmBoolClauseIsNegated attribute.
The value of the mpmBoolClauseIsNegated attribute shall be a Boolean value.

5.3.2.6.7.12 MPMLogicClause Class Definition

An MPMLogicClause is an abstract class that is the superclass for different types of clauses that are used in declarative
logic policies. This type of clause is limited to being used with the following MPMPolicyStatements:
MPMAssertionStatements, MPMTheorems, and MPMAxioms.

An MPMAssertionStatement may contain zero or more MPMLogicClauses.

An MPMTheorem may contain zero or more MPMLogicClauses.

An MPMAxiom may contain zero or more MPMLogicClauses.

Figure 5-22 shows the MPMLogicClause class and its subclasses. Table 5-85 defines the attributes for this class.

Table 5-85: Attributes of the MPMLogicClause Class

Attribute Name Description
mpmLogicClauseType :
MPMFormalLogicType[1..1]

This is a mandatory enumerated non-zero integer attribute that defines the
formal logic system that this particular MPMLogicClause uses.

Table 5-86 defines the operations for this class.

Table 5-86: Operations of the MPMLogicClause Class

Operation Name Description
getMPMogicClauseType() :
MPMFormalLogicType[1..1]

This operation returns the current value of the mpmLogicClauseType attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMogicClauseType(in
newType :
MPMFormalLogicType[1..1]

This operation sets the value of the mpmLogicClauseType attribute.

5.3.2.6.7.13 MPMPremiseClause Class Definition

An MPMPremiseClause is a declarative logic clause that is used to justify a conclusion (represented by an
MPMConclusionClause; see clause 5.3.2.6.7.14).

Figure 5-22 shows the MPMPremiseClause class and its subclasses. Table 5-87 defines the attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 106

Table 5-87: Attributes of the MPMPremiseClause Class

Attribute Name Description
mpmPremiseIsTrue :
Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is TRUE, then this
MPMPremiseClause has been proven TRUE.

Table 5-88 defines the operations for this class.

Table 5-88: Operations of the MPMPremiseClause Class

Operation Name Description
getMPMPremiseIsTrue() :
Boolean[1..1]

This operation returns the current value of the mpmPremiseIsTrue attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMPremiseIsTrue (in
newValue : Boolean[1..1]) This operation sets the value of the mpmPremiseIsTrue attribute.

This class participates in a single association, called MPMConclusionDependsOn. This is described in
clause 5.3.2.6.7.14.

5.3.2.6.7.14 MPMConclusionClause Class Definition

An MPMConclusionClause is a declarative logic clause that is entailed (i.e. logically proves to be true) from its set of
associated MPMPremiseClauses.

An MPMConclusionClause object shall be associated with two or more MPMPremiseClause objects.

An MPMConclusionClause shall evaluate to TRUE when all of its associated MPMPremiseClause objects have
evaluated to TRUE.

Figure 5-22 shows the MPMConclusionClause class and its subclasses. Table 5-89 defines the operations for this class.

Table 5-89: Attributes of the MPMConclusionClause Class

Attribute Name Description
mpmConclusionIs-True :
Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is TRUE, then this
MPMConclusionClause has been proven TRUE.

Table 5-90 defines the operations for this class.

Table 5-90: Operations of the MPMConclusionClause Class

Operation Name Description
getMPMConclusionIsTrue() :
Boolean[1..1]

This operation returns the current value of the mpmConclusionIsTrue attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMConclusionIsTrue(in
newValue : Boolean[1..1]) This operation sets the value of the mpmConclusionIsTrue attribute.

This class defines a single optional association, called MPMConclusionDepends on, as shown in Figure 5-22. The
MPMConclusionDependsOn association defines the set of MPMPremiseClause objects that are attached to this
particular MPMConclusionClause object. The semantics of this association are defined by the
MPMConclusionDependsOnDetail association class.

The multiplicity of this association is 0..1 - 2..n. This means that it is an optional association (i.e. the "0" part of the 0..1
cardinality). If this association is instantiated (i.e. the "1" part of the 0..1 cardinality), then two or more
MPMPremiseClause objects are associated with this particular MPMConclusionClause object. Specifically, this means
that the MPMConclusionClause depends on the two or more MPMPremiseClause objects. The 2..* cardinality
prescribes a minimum number (2) of MPMPremiseClause objects to be associated with this particular
MPMConclusionClause object. The semantics of this association are defined by the MPMConclusionDependsOnDetail
association class. This enables the management system to control which set of concrete subclasses of
MPMPremiseClause objects can be associated with which types of MPMConclusionClause objects.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 107

The MPMConclusionDependsOnDetail is a concrete association class, and defines the semantics of the
MPMConclusionDependsOn association. The attributes and relationships of this class can be used to define which
MPMPremiseClause objects can be associated with which particular set of MPMConclusionClause objects. These
semantics can be further enhanced by using the Policy Pattern to define policy rules that constrain which part objects
(i.e. MPMPremiseClause) are attached to which MPMConclusionClause object. The MCMPolicyStructure is an abstract
class that is the superclass of imperative, declarative, and intent policy rules. See Figure 3 of ETSI GS ENI 005 [3] for
an exemplary illustration of the Policy Pattern.

5.3.2.6.7.15 MPMPolicyComponentDecorator Class Hierarchy

The Decorator Pattern [i.7] is a design pattern that allows behaviour to dynamically be added to an object, without
affecting the behaviour of other objects from the same class. More specifically, this pattern enables all or part of one
object to wrap another object. In effect, this means that the decorated object may intercept a call to the object it is
wrapping, and insert attributes or execute operations before and/or after the wrapped object executes.

Hence, the decorator pattern provides a flexible alternative to subclassing for extending functionality where different
behaviours are required (e.g. behaviour that is dependent on context). In addition, subclassing statically defines the
characteristics and behaviour of an object at compile time, whereas the decorator pattern can change the characteristics
and behaviour of an object at runtime.

Figure 5-23 shows the MPMPolicyComponentDecorator class and its subclasses and relationships with respect to all
subclasses of the MPMPolicyComponent class (its superclass).

5.3.2.6.7.16 MPMPolicyComponentDecorator Class Definition

This is a mandatory class that is used to implement the decorator pattern. This means that any concrete subclass of
MPMPolicyComponentDecorator can wrap any concrete subclass of MPMPolicyStatement and/or MPMPolicyClause.

The attachment of different MPMPolicyComponentDecorator objects shall be used to change the syntax, semantics,
and/or behaviour of a given MPMPolicyComponentStructure object.

Figure 5-23 shows the attributes and operations for the MPMPolicyComponentDecorator class.

Figure 5-22: MPMPolicyComponentDecorator Attributes and Operations

Table 5-91 defines the attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 108

Table 5-91: Attributes of the MPMPolicyComponentDecorator Class

Attribute Name Description

mpmPolCompDecConstraint :
MPMPolCompDecConstraint[1..1]

This is a mandatory non-negative enumerated integer attribute that defines the
language used, if any, that this MPMPolicyComponentDecorator subclass uses
to constrain the object that it is wrapping.
A default value of 2 (NONE) may be defined.

mpmPolCompDecWrap :
MPMPolCompDecWrap[1..1]

This is an optional attribute that defines if this decorated object should be
wrapped before and/or after the wrapped object is executed.

Table 5-92 defines the attributes for this class.

Table 5-92: Attributes of the MPMPolicyComponentDecorator Class

Operation Name Description

getMPMPolCompDecConstraint() :
MPMPolCompDecConstraint[1..1]

This operation returns the current value of the mpmPolCompDecConstraint
attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMPolCompDecConstraint(in
newValue :
MPMPolCompDecConstraint[1..1])

This operation sets the value of the mpmPolCompDecConstraint attribute.

getMPMPolCompDecWrap() :
MPMPolCompDecWrap[1..1]

This operation returns the current value of the mpmPolCompDecValue
attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMPolCompDecWrap(in
newValue :
MPMPolCompDecWrap[1..1])

This operation sets the value of the mpmPolCompDecValue attribute.

This class participates in a single optional aggregation, called MPMPolicyHasMPMPolicyComponentDecorator. This
aggregation defines the set of MPMPolicyComponentDecorator objects that wrap, or decorate, this particular
MPMPolicyComponentStructure object. An MPMPolicyComponentStructure object may be decorated by zero or more
MPMPolicyComponentDecorator objects. The semantics of this aggregation are defined by the
MPMPolicyHasMPMPolicyComponentDecoratorDetail association class.

The multiplicity of this aggregation is 0..1 - 0..n. If this aggregation is instantiated (i.e. the "1" part of the 0..1
cardinality), then zero or more MPMPolicyComponentDecorator objects can decorate this particular
MPMPolicyComponentStructure object. The 0..* cardinality enables an MPMPolicyComponentStructure object to be
defined without having to define an associated MPMPolicyComponentDecorator object for it to decorate.

The MPMPolicyHasMPMPolicyComponentDecoratorDetail object is a concrete association class, and defines the
semantics of the MPMPolicyHasMPMPolicyComponentDecorator aggregation. The attributes and relationships of this
class can be used to define which MPMPolicyComponentDecorator objects can decorate this particular set of
MPMPolicyComponentStructure objects. These semantics can be further enhanced by using the Policy Pattern to define
policy rules that constrain which part objects (i.e. MPMPolicyComponentDecorator) are attached to which object. The
MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and intent policy rules. See
Figure 3 of ETSI GS ENI 005 [3] for an exemplary illustration of the Policy Pattern.

5.3.2.6.7.17 MPMPolicyTerm

This is a mandatory abstract class that subclasses MPMPolicyComponentDecorator. MPMPolicyTerm is the parent of
MPMPolicy objects that can be used to define a standard way to test or set the value of a variable. It does this by
defining a 3-tuple, whose canonical form is {variable, operator, value}. Each element of the 3-tuple is defined by a
concrete subclass of the appropriate type (i.e. MPMPolicyVariable, MPMPolicyOperator, and MPMPolicyValue
classes, respectively). Since it is a type of MPMPolicyComponentDecorator, it can be attached to (or detached from) an
MPMPolicyStatement or MPMPolicyClause object to change their semantics dynamically at runtime.

For event and condition clauses and statements, this is typically written as:

 <variable> <operator> <value>.

For action clauses and statements, this is typically written as:

 <operator> <variable> <value>.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 109

Generic test and set expressions do not have to only use objects that are subclasses of MPMPolicyTerm. The utility of
the subclasses of MPMPolicyTerm is in the ability of its subclasses to define a generic framework for implementing get
and set expressions directly from the model. This enables a dynamic programming environment to construct get and set
expressions at runtime.

Figure 5-24 shows the attributes and operations of MPMPolicyTerm and its subclasses.

Figure 5-23: MPMPolicyTerm Class Hierarchy Attributes and Operations

Table 5-93 defines the attributes for this class.

Table 5-93: Attributes of the MPMPolicyTerm Class

Attribute Name Description
mpmPolTermIsNegated :
Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is TRUE, then
this (entire) MPMTerm is negated.

Table 5-94 defines the operations for this class.

Table 5-94: Operations of the MPMPolicyTerm Class

Operation Name Description

getMPMPolTermIsNegated() :
Boolean[1..1]

This operation returns the current value of the mpmPolTermIsNegated attribute.
If the mpmPolTermIsNegated attribute does not have a value, then this operation
shall return an error.

setMPMPolTermIsNegated(in
newValue : Boolean[1..1]) This operation sets the value of the mpmPolTermIsNegated attribute.

5.3.2.6.7.18 MPMPolicyVariable Class Definition

This is a mandatory concrete class that defines information that forms a part of an MPMPolicyClause or
MPMPolicyStatement. It specifies a concept or attribute that represents a variable that should be compared to a value
using a particular type of operator.

The value of an MPMPolicyVariable class may be able to be changed dynamically at runtime using the decorator
pattern.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 110

The value of an MPMPolicyVariable object is typically compared to the value of an MPMPolicyValue object using the
type of operator defined in a MPMPolicyOperator object. However, other objects may be used instead of the
MPMPolicyOperator and MPMPolicyValue objects, and other operators may be defined in addition to those defined in
the MPMPolicyOperator class.

MPMPolicyVariables are used to abstract the representation of an MPMPolicyClause (or MPMPolicyStatement) from
its implementation. This means that some MPMPolicyVariable objects need to be restricted in the values and/or the data
type that they may be assigned. For example, port numbers cannot be negative, and they cannot be floating-point
numbers. These and other constraints may be defined in three different ways:

1) Use MPMPolicyComponentDecorator attributes to constrain just that individual object.

2) Use the MPMPolicyClauseHasDecoratorDetail association class attributes to constrain the relationship
between the concrete subclass of the MPMPolicyClause (or MPMPolicyStatement) and the concrete subclass
of the MPMPolicyVariable class.

3) Use OCL statements to define the restriction.

Figure 5-24 shows the MPMPolicyVariable class and its subclasses.

Table 5-95 defines the attributes for this class.

Table 5-95: Attributes of the MPMPolicyVariable Class

Attribute Name Description
mpmPolVariableName :
String[1..1]

This is a mandatory string attribute that contains the name of this
MPMPolicyVariable.

Table 5-96 defines the operations for this class.

Table 5-96: Operations of the MPMPolicyVariable Class

Operation Name Description

getMPMPolVariableName() :
String[1..1]

This operation returns the current value of the mpmPolVariableName attribute.
If the mpmPolVariableName attribute does not have a value, then this operation
shall return an error.

setMPMPolVariableName(in
newName : String[1..1])

This operation sets the value of the mpmPolVariableName attribute.
The value of the mpmPolVariableName attribute shall not be empty or NULL.

5.3.2.6.7.19 MPMPolicyOperator Class Definition

This is a mandatory concrete class for modeling different types of operators that are used in an MPMPolicyClause or
MPMPolicyStatement.

The restriction of the type of operator used in an MPMPolicyClause or MPMPolicyStatement constrains the semantics
that can be expressed in that MPMPolicyClause or MPMPolicyStatement. It is typically, but does not have to be, used
with MPMPolicyVariable and MPMPolicyValue objects to form an MPMPolicyClause or MPMPolicyStatement.

The value of an MPMPolicyVariable object is usually compared to the value of an MPMPolicyValue object using the
type of operator defined in a MPMPolicyOperator object. However, other objects may be used instead of the
MPMPolicyOperator and MPMPolicyValue objects.

In addition, and other operators may be defined in addition to those defined in the MPMPolicyOperator class.

Since this is a subclass of the MPMPolicyComponentDecorator class, its value may be able to be changed dynamically
at runtime using the decorator pattern.

The value of an MPMPolicyOperator class may be able to be changed dynamically at runtime using the decorator
pattern.

Figure 5-24 shows the MPMPolicyOperator class and its subclasses.

Table 5-97 defines the attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 111

Table 5-97: Attributes of the MPMPolicyOperator Class

Attribute Name Description
mpmPolOperator :
MPMPolOperatorType[1..1] This is a mandatory enumerated non-negative integer attribute.

Table 5-98 defines the operations for this class.

Table 5-98: Operations of the MPMPolicyOperator Class

Operation Name Description

getMPMPolOperator() :
MPMPolOperatorType[1..1]

This operation returns the current value of the mpmPolOperator attribute.
If the mpmPolOperator attribute does not have a value, then this operation
shall return an error.

setMPMPolOperator(in newValue :
MPMPolOperatorType[1..1]) This operation sets the value of the mpmPolOperator attribute.

5.3.2.6.7.20 MPMPolicyValue Class Definition

The MPMPolicyValue class is a mandatory concrete class for modeling different types of values and constants that
occur in an MPMPolicyClause or an MPMPolicyStatement.

MPMPolicyValue objects are used to abstract the representation of an MPMPolicyClause or an MPMPolicyStatement
from its implementation. Therefore, the design of the MPMPolicyValue object depends on two important factors. First,
just as with MPMPolicyVariable objects, some types of MPMPolicyValue objects are restricted in the values and/or the
data type that they may be assigned. Second, there is a high likelihood that specific applications will need to use their
own variables that have specific meaning to a particular application.

In general, there are three ways to apply constraints to an object instance of an MPMPolicyValue object:

1) Use MPMPolicyClauseComponentDecorator attributes to constrain just that individual object.

2) Use the MPMPolicyClauseHasDecoratorDetail association class attributes to constrain the relationship
between the concrete subclass of the MPMPolicyClause (or MPMPolicyStatement) and the concrete subclass
of the MPMPolicyVariable class.

3) Use OCL statements to define the restriction.

The value of an MPPolicyValue object is typically compared to the value of an MPMPolicyVariable object using the
type of operator defined in an MPMPolicyOperator object. However, other objects may be used instead of an
MPMPolicyVariable object, and other operators may be defined in addition to those defined in the MPMPolicyOperator
class.

Since this is a subclass of the MPMPolicyComponentDecorator class, its value may be able to be changed dynamically
at runtime using the decorator pattern.

The value of an MPMPolicyValue class may be able to be changed dynamically at runtime using the decorator pattern.

Figure 5-24 shows the MPMPolicyValue class and its subclasses.

Table 5-99 defines the attributes for this class.

Table 5-99: Attributes of the MPMPolicyValue Class

Attribute Name Description
mpmPolValueContent:
String[1..1] This is a mandatory string attribute that defines the value of this MPMPolicyValue object.

mpmPolValueEncoding:
MPMPolValueType[1..1]

This is a mandatory enumerated non-negative integer attribute that defines the datatype
of the mpmPolValueContent class attribute.

Table 5-100 defines the operations for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 112

Table 5-100: Operations of the MPMPolicyValue Class

Operation Name Description

getMPMPolValueContent() :
String[1..1]

This operation returns the current value of the mpmPolValueContent attribute.
If the mpmPolValueContent attribute does not have a value, then this operation shall
return an error.

setMPMPolValueContent(in
newValue : String[1..1])

This operation sets the value of the mpmPolValueContent attribute.
The value of the mpmPolValueContent attribute shall not be empty.

getMPMPolValueEncoding()
: MPMPolValueType [1..1]

This operation returns the current value of the mpmPolValueContent attribute.
If the mpmPolValueContent attribute does not have a value, then this operation shall
return an error.

setMPMPolValueContent(in
newValue : MPMPolValue-
Type [1..1])

This operation sets the value of the mpmPolValueContent attribute.

5.3.2.6.7.21 MPMECAObject Hierarchy

The MPMECAObject abstract class is used to define three concrete subclasses, one each to represent the concepts of
reusable events, conditions, and actions. They are called MPMPolicyEvent, MPMPolicyCondition, and
MPMPolicyAction, respectively.

Figure 5-25 shows the MPMECAObject class and its subclasses.

Figure 5-24: MPMECAObject Hierarchy

MPMECAObjects provide two different ways to construct MPMPolicyClauses. The first is for the MPMECAObject to
be used as either an MPMPolicyVariable or an MPM PolicyValue, and the second is for the MPMECAObject to contain
the entire clause text for an MPMPolicyVariable or an MPMPolicyValue. For example, suppose it is desired to define a
policy condition clause with the text "queueDepth > 10". Two approaches could satisfy this as follows:

1) Approach #1 (canonical form):

- MPMPolicyCondition.mpmPolicyConditionData contains the text 'queueDepth'.

- MPMPolicyOperator.mpmPolOpType is set to '1' (greater than).

- MPMPolicyValue.mpmPolValContent is set to '10'.

2) Approach #2 (MPMECAComponent represents the entire clause):

- MPMPolicyCondition.mpmPolicyConditionData contains the text 'queueDepth > 10'.

In both of the above approaches, MPMPolicyCondition.mpmPolicyConditionEncoding is set to '1' (string).

The main advantage of MPMECAObjects is that they provide a machine-processable mechanism for defining
MPMPolicyClauses at runtime.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 113

5.3.2.6.7.22 MPMECAObject Class Definition

This is a mandatory abstract class that defines three concrete subclasses, one each to represent the concepts of reusable
events, conditions, and actions. They are called MPMPolicyEvent, MPMPolicyCondition, and MPMPolicyAction,
respectively.

Figure 5-25 shows the MPMECAObject class and its subclasses.

Table 5-101 defines the attributes for this class.

Table 5-101: Attributes of the MPMECAObject Class

Attribute Name Description

mpmIsPolicyTerm :
Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is TRUE, then this
MPMECAObject is used as the value of an MPMPolicyTerm to construct an MPMPolicyClause
(this is approach #1 in clause 5.3.2.6.7.21). If the value of this attribute is FALSE, then this
MPMECAObject contains the text of the entire corresponding MPMPolicyClause (this is
approach #2 in the above example).

Table 5-102 defines the operations for this class.

Table 5-102: Operations of the MPMECAObject Class

Operation Name Description

getMPMIsPolicyTerm() :
Boolean[1..1]

This operation returns the current value of the mpmIsPolicyTerm attribute.
If the mpmIsPolicyTerm attribute does not have a value, then this operation shall
return an error.

getMPMIsPolicyTerm (in
newValue : Boolean[1..1]) This operation sets the value of the mpmIsPolicyTerm attribute.

5.3.2.6.7.23 MPMPolicyEvent Class Definition

This is a mandatory concrete class that represents the concept of an Event that is applicable to a policy management
system. Such an Event is defined as anything of importance to the management system (e.g. a change in the system
being managed and/or its environment) occurring at a specific point in time. An MPMPolicyEvent is a subclass of the
MPMPolicyComponentDecorator class, which enables the MPMPolicyEvent object to wrap any concrete subclass of
MPMPolicyComponentStructure, such as the concrete subclasses of MPMPolicyStatement and MPMPolicyClause.

Instances of this class are not themselves events. Rather, instances of this class appear in MPMPolicyClause objects to
describe what types of events the MPMPolicy is triggered by and/or uses. Clause 5.2.3.3 of the present document
defines an ENIEvent.

An MPMPolicyEvent object may refer to an ENIEvent object.

Information from events that trigger MPMPolicies need to be made available for use in condition and action clauses, as
well as in appropriate decorator objects. Application-specific subclasses (such as one for using YANG notifications as
policy events) need to define how the information from the environment or event is used to trigger the evaluation of the
MPMPolicyCondition subclass.

If an MPMPolicyEvent class is extended by subclassing, then that subclass should define how the set of events
represented by the MPMPolicyEvent subclass triggers MPMPolicy evaluation.

Figure 5-25 shows the MPMPolicyEvent class and its subclasses. Table 5-103 defines the attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 114

Table 5-103: Operations of the MPMPolicyEvent Class

Attribute Name Description

mpmPolicyEventData : String[1..*]

This is a mandatory attribute that defines an array of strings. Each string in the
array represents an attribute name and value of an Event object. The format of
each string is defined as a {name:value} tuple. The 'name' part is the name of
the MPMPolicyEvent attribute, and the 'value' part is the value of that attribute.
For example, if the value of this attribute is:
 {('startTime':'08:00'), ('endTime':'17:00'),
 ('date':'2016-05-11'), ('timeZone':'-08:00')}
then this attribute contains four properties, called startTime, endTime, date,
and timeZone, whose values are 0800, 1700, May 11 2016, and Pacific
Standard Time, respectively.
This attribute works with another class attribute, called
mpmPolicyEventEncoding, which defines how to interpret this attribute. These
two attributes form a tuple, and together enable a machine to understand the
syntax and value of the data carried by the object instance of this class.
This attribute may encode attributes and values of an ENIEvent.

mpmPolicyEventEncoding :
PolValueType[1..1]

This is a mandatory non-zero enumerated integer attribute, and defines how to
interpret the mpmPolicyEventData class attribute. These two attributes form a
tuple, and together enable a machine to understand the syntax and value of
the data carried by the object instance of this class.

mpmPolicyEventIsPre-Processed :
Boolean[1..1]

This is an optional Boolean attribute. If the value of this attribute is TRUE, then
this MPMPolicyEvent has been pre-processed by an external entity, such as an
Event Service Bus, before it was received by the Policy Management System.

mpmPolicyEventIsSynthetic :
Boolean[1..1]

This is an optional Boolean attribute. If the value of this attribute is TRUE, then
this MPMPolicyEvent has been produced by the Policy Management System. If
the value of this attribute is FALSE, then this MPMPolicyEvent has been
produced by an entity in the system being managed.

mpmPolicyEventTopic : String[1..*] This is a mandatory array of string attributes, and contains the subject(s) that
describe the nature of this PolicyEvent.

Table 5-104 defines the operations for this class.

Table 5-104: Operations of the MPMPolicyEvent Class

Operation Name Description

getMPMPolicyEventData() :
String[1..*]

This operation returns the current value of the mpmPolicyEventData attribute, which is
an array of one or more strings.
If the mpmPolicyEventData attribute does not have a value, then this operation
should return a NULL string.

setMPMPolicyEventData(in
newValue : String[1..*])

This operation sets the value of the mpmPolicyEventData attribute.
The value of the mpmPolicyEventData attribute shall not be an empty string.

getMPMPolicyEventEncoding
() : MPMPolValueType[1..1]

This operation returns the current value of the mpmPolicyEventEncoding attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMPolicyEventEncoding
(in newValue :
MPMPolValueType[1..1])

This operation sets the value of the mpmPolicyEventEncoding attribute.

getMPMPolicyEventIsPrePro-
cessed() :
Boolean[1..1]

This operation returns the current value of the mpmPolicyEventIsPreProcessed
attribute, which is a Boolean attribute.
If the mpmPolicyEventIsPreProcessed attribute does not have a value, then this
operation shall return an error.

setMPMPolicyEventIsPrePro-
cessed(in newValue :
Boolean[1..1])

This operation sets the value of the mpmPolicyEventIsPreProcessed attribute.

getMPMPolicyEventIsSynthe-
tic() :
Boolean[1..1]

This operation returns the current value of the mpmPolicyEventIsSynthetic attribute,
which is a Boolean attribute.
If the mpmPolicyEventIsSynthetic attribute does not have a value, then this operation
shall return an error.

setMPMPolicyEventIsSynthe-
tic(in newValue :
Boolean[1..1])

This operation sets the value of the mpmPolicyEventIsSynthetic attribute.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 115

Operation Name Description

getMPMPolicyEventTopic() :
String[1..*]

This operation returns the current value of the mpmPolicyEventTopic attribute, which
is an array of one or more strings.
If the mpmPolicyEventData attribute does not have a value, then this operation shall
return an error.

setMPMPolicyEventTopic(in
newValue : String[1..*])

This operation sets the value of the mpmPolicyEventTopic attribute.
The value of the mpmPolicyEventTopic attribute shall not be an empty string.

5.3.2.6.7.24 MPMPolicyCondition Class Definition

This is a mandatory concrete class that represents the concept of a Condition that will determine whether or not the set
of Actions in this MPMPolicy should be executed or not.

MPMPolicyCondition objects can be used as part of an MPMPolicyStatement or an MPMPolicyClause object. An
MPMPolicyCondition is a subclass of the MPMPolicyComponentDecorator class, which enables the
MPMPolicyCondition object to wrap any concrete subclass of MPMPolicyComponentStructure, such as the concrete
subclasses of MPMPolicyStatement and MPMPolicyClause.

Application-specific subclasses of this class (such as one for processing YANG) need to define how the information
from the environment is used by this subclass.

If the MPMPolicyCondition class is extended by subclassing, then it should define how it uses information from the
managed environment to evaluate conditions in MPMPolicies.

Figure 5-25 shows the MPMPolicyCondition class and its subclasses.

Table 5-105 defines the attributes for this class.

Table 5-105: Attributes of the MPMPolicyCondition Class

Attribute Name Description

mpmPolicyConditionData :
String[1..*]

This is a mandatory attribute that defines an array of strings. Each string in the
array represents an attribute name and value of an object that serves as a
condition. The format of each string is defined as a {name:value} tuple. The
'name' part is the name of the MPMPolicyCondition attribute, and the 'value' part
is the value of that attribute. For example, if the value of this attribute is:
 {('sourcePort':'8080'), ('destPort':'8080')}
then this attribute contains two properties, called sourcePort and destPort, whose
values are both "8080".
This attribute works with another class attribute, called
mpmPolicyConditionEncoding, which defines how to interpret this attribute.
These two attributes form a tuple, and together enable a machine to understand
the syntax and value of the data carried by the object instance of this class.

mpmPolicyConditionEncoding :
PolValueType[1..1]

This is a mandatory non-zero enumerated integer attribute, and defines how to
interpret the mpmPolicyConditionData class attribute. These two attributes form
a tuple, and together enable a machine to understand the syntax and value of
the data carried by the object instance of this class. Allowed values are defined
in the MPMPolValueType enumeration.

Table 5-106 defines the operations for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 116

Table 5-106: Operations of the MPMPolicyCondition Class

Operation Name Description

getMPMPolicyConditionData() :
String[1..*]

This operation returns the current value of the mpmPolicyConditionData attribute.
If the mpmPolicyConditionData attribute do7es not have a value, then this operation
shall return an error.

setMPMPolicyConditionData(in
newValue : String[1..*])

This operation sets the value of the mpmPolicyConditionData attribute.
The value of the mpmPolicyConditionData attribute shall not be an empty string.

getMPMPolicyConditionEncodi
ng() : MPMPolValueType[1..1]

This operation returns the current value of the mpmPolicyConditionEncoding attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMPolicyConditionEncodi
ng(in newValue :
MPMPolValueType[1..1])

This operation sets the value of the mpmPolicyConditionEncoding attribute.

5.3.2.6.7.25 MPMPolicyAction Class Definition

This is a mandatory concrete class that represents the concept of an Action, which is a part of an MPMECAPolicy. The
Action may be executed when both the event and the condition clauses of its owning MPMECAPolicy evaluate to true.

An MPMPolicyAction is a subclass of the MPMPolicyComponentDecorator class, which enables the MPMPolicyEvent
object to wrap any concrete subclass of MPMPolicyComponentStructure, such as the concrete subclasses of
MPMPolicyStatement and MPMPolicyClause.

Application-specific subclasses of this class (such as one for processing YANG) need to define how the information
from the environment is used by this subclass.

If the MPMPolicyAction class is extended by subclassing, then it should define how it uses information from the
managed environment to execute actions in MPMPolicies.

The execution of an action is determined by its MPMECAPolicy container, and any applicable MPMPolicyMetadata
objects that are attached to that MPMECAPolicy container.

MPMPolicyAction objects may be used in three different ways:

1) As part of an MPMPolicyClause (e.g. var = MPMPolicyAction.mpmPolicyActionData).

2) As a standalone MPMPolicyClause (e.g. the mpmPolicyActionData attribute contains text that defines the
entire action clause, and the mpmPolicyActionEncoding attribute defines the datatype of the
mpmPolicyActionData attribute).

3) To invoke one or more MPMPolicyActions in a different MPMECAPolicy.

In the third case, note that this is NOT invoking a different MPMECAPolicy, but rather, invoking an MPMPolicyAction
that is contained in a different MPMECAPolicy.

The problem with an MPMECAPolicy calling MPMECAPolicy is best illustrated with the following example:

MPMECAPolicy A is currently executing
MPMPolicyAction A1 executes successfully
MPMPolicyAction A2 calls MPMECAPolicy B
MPMPolicyAction A3 is either waiting to execute, or is executing

When MPMECAPolicy B is called, it presumably should execute under the scope of control of MPMECAPolicy A
(since Policy A has not finished executing). However, calling another MPMECAPolicy means that now, the event
clause of Policy B should be activated. It is very difficult to ensure that the next thing the Policy Engine does is
determine if the event clause of B is satisfied or not.

Furthermore, what happens to MPMPolicyAction A3? Is MPMECAPolicy B supposed to finish execution before
MPMPolicyAction A3? This requires additional logic (priorities do not work here!), which requires communication
between the policy engine and both MPMECAPolicy A and MPMECAPolicy B. Even if these problems are solved,
what happens if MPMPolicyAction A3 fails, and the mpmPolExecFailStrategy has a value of 2 (i.e. if an action fails,
then does a rollback need to be performed)? Does MPMECAPolicy B also get rolled back?

An MPMPolicyAction shall not call another MPMPolicy.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 117

An MPMPolicyAction may invoke one or more MPMPolicyActions in a different MPMECAPolicy

Figure 5-25 shows the MPMPolicyAction class and its subclasses.

Table 5-107 defines the attributes for this class.

Table 5-107: Attributes of the MPMPolicyAction Class

Attribute Name Description

mpmPolicyActionData :
String[1..*]

This is a mandatory attribute that defines an array of strings. Each string in the array
is a 2-tuple, consisting of a single character defining how this attribute is used, and
the value of an attribute name of an MPMPolicyAction object. Since this attribute
could represent a term in an MPMPolicyClause (e.g. var =
MPMPolicyAction.mpmPolicyActionData), a complete MPMPolicyClause (e.g. the
mpmPolicyActionData attribute contains text that defines the entire action clause), or
the name of a MPMPolicyAction to invoke, each element in the string array is
prepended with one of the following strings:
 o 'v:' (or 'variable:'), to denote a term in an MPMPolicyClause
 o 'c:' (or 'clause:'), to denote an entire MPMPolicyClause
 o 'a:' (or 'action:'), to invoke a MPMPolicyAction in a different MPMPolicy
For example, if the value of this attribute is:
 {('t':'set destPort to 80'), ('a':'call PortHandlingAction')}
then this attribute contains two actions. The first is the action portion of an
MPMPolicyClause, and sets the variable destPort to a value of 80. The second calls
the MPMPolicyAction named 'PortHandlingAction'.
This attribute works with another class attribute, called mpmPolicyActionEncoding,
which defines how to interpret this attribute. These two attributes form a tuple, and
together enable a machine to understand the syntax and value of the data carried by
the object instance of this class.

mpmPolicyAction-Encoding :
MPMPolValueType[1..1]

This is a mandatory non-zero enumerated integer attribute, and defines how to
interpret the mpmPolicyActionData class attribute. These two attributes form a tuple,
and together enable a machine to understand the syntax and value of the data
carried by the object instance of this class. Allowed values are defined in the
MPMPolValueType enumeration.

Table 5-108 defines the attributes for this class.

Table 5-108: Operations of the MPMPolicyAction Class

Operation Name Description

getMPMPolicyActionData() :
String[1..*]

This operation returns the current value of the mpmPolicyActionData attribute.
If the mpmPolicyActionData attribute does not have a value, then this operation shall
return an error.

setMPMPolicyActionData(in
newValue : String[1..*])

This operation sets the value of the mpmPolicyActionData attribute.
The value of the mpmPolicyActionData attribute shall not be an empty string.

getMPMPolicyActionEncodin
g() : MPMPolValueType[1..1]

This operation returns the current value of the mpmPolicyActionEncoding attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMPolicyActionEncodin
g(in newValue :
MPMPolValueType[1..1])

This operation sets the value of the mpmPolicyActionEncoding attribute.

5.3.2.6.7.26 MPMPolicyCollection

An MPMPolicyCollection is an optional concrete class that enables a collection (e.g. set, bag, or other, more complex,
collections of elements) of arbitrary objects to be defined and used as part of an MPMPolicyClause.

One of the problems with ECA policy rules is when an enumeration occurs in the event and/or condition clauses.

EXAMPLE: If a set of events is received, the policy system may need to wait for patterns of events to emerge
(e.g. any number of Events of type A, followed by either one event of type B or two events of type
Event C). Similarly, for conditions, testing the value of a set of attributes may need to be
performed. Both of these represent behaviour similar to a set of if-then-else statements or a switch
statement in imperative programming languages.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 118

It is typically not desirable for the policy system to represent each choice as its own policy clause (i.e. a 3-tuple), as this
creates object explosion and poor performance. Furthermore, in these cases, it is often required to have a set of complex
logic to be executed, where the logic varies according to the particular event or condition that was selected. It is
therefore much too complex to represent this using separate objects, especially when the logic is application- and/or
vendor-specific. However, recall that one of the goals of the present document was to facilitate the machine-driven
construction of policies. Therefore, a solution to this problem is needed.

Therefore, the present document defines the concept of a collection of entities, called an MPMPolicyCollection.
Conceptually, the items to be collected (e.g. events or conditions) are aggregated in one or more MPMPolicyCollection
objects of the appropriate type.

Another example is for an MPMPolicyCollection object to aggregate logic blocks (including MPMDeclarativePolicies)
to execute.

The computation(s) represented by an MPMPolicyCollection may be part of a larger MPMPolicyClause, since
MPMPolicyCollection is a subclass of MPMPolicyComponentDecorator, and can be used to decorate an
MPMPolicyClause.

Figure 5-26 shows the attributes and operations of the MPMPolicyCollection class.

Figure 5-25: MPMPolicyCollection Attributes and Operations

Table 5-109 defines the attributes for this class.

Table 5-109: Attributes of the MPMCollection Class

Attribute Name Description

mpmPolCollectionData :
String[1..*]

This is a mandatory attribute that defines an array of strings. Each string in the array
defines a domain-specific identifier of an object that is collected by this object instance.
This attribute works with another class attribute, called mpmPolicyCollectionEncoding,
which defines how to interpret this attribute. These two attributes form a tuple, and
together enable a machine to understand the syntax and value of the data carried by the
object instance of this class.

mpmPolCollection-
Encoding :
MPMPolValueType[1..1]

This is a mandatory non-zero enumerated integer attribute, and defines how to interpret
the mpmPolCollectionData class attribute. These two attributes form a tuple, and
together enable a machine to understand the syntax and value of the data carried by the
object instance of this class. Allowed values are defined in the MPMPolValueType
enumeration.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 119

Attribute Name Description
mpmPolCollection-
Function :
MPMPolCollection-
Function[1..1]

This is a mandatory non-zero enumerated integer attribute, and defines how this
collection is used (e.g. is it a collection of objects for an event, or for logic processing, or
other functions).

mpmPolCollectionIs-
Ordered :
Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is TRUE, then all
elements in this instance of this MPMPolicyCollection object are ordered.

mpmPolCollectionType :
MPMPolCollection-
Type[1..1]

This is a mandatory non-zero enumerated integer attribute, and defines the type of
collection that this object instance is.

Table 5-110 defines the operations for this class.

Table 5-110: Operations of the MPMCollection Class

Operation Name Description

getMPMPolCollectionData() :
String[1..*]

This operation returns the current value of the mpmPolCollectionData attribute.
If the mpmPolCollectionData attribute does not have a value, then this operation
shall return an error.

setMPMPolCollectionData(in
newValue : String[1..*])

This operation sets the value of the mpmPolCollectionData attribute.
The value of the mpmPolCollectionData attribute shall not be an empty string.

getMPMPolicyCollection-
Encoding() :
MPMPolValueType[1..1]

This operation returns the current value of the mpmPolicyCollectionEncoding
attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMPolicyCollection-
Encoding(in newValue :
MPMPolValueType[1..1])

This operation sets the value of the mpmPolicyCollectionEncoding attribute.

getMPMPolCollectionFunction() :
MPMPolCollectionFunction[1..1]

This operation returns the current value of the mpmPolicyCollectionFunction
attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMPolCollectionFunction(in
newValue : MPMPolCollection-
Function [1..1])

This operation sets the value of the mpmPolicyCollectionFunction attribute.

getMPMPolCollectionIs-
Ordered() :
Boolean[1..1]

This operation returns the current value of the mpmPolicyCollectionIsOrdered
attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMPolCollectionIsOrdered
(in newValue : Boolean[1..1]) This operation sets the value of the mpmPolicyCollectionIsOrdered attribute.

getMPMPolCollectionType() :
MPMPolCollectionType [1..1]

This operation returns the current value of the mpmPolicyCollectionType attribute.
If this attribute does not have a value, then this operation shall return an error.

setMPMPolCollectionType(in
newValue :
MPMPolCollectionType[1..1])

This operation sets the value of the mpmPolicyCollectionType attribute.

5.3.2.6.7.27 MPMPolicySource

This is an optional class that defines a set of MCMManagedEntity objects that authored, or are otherwise responsible
for, this MPMPolicy. An MPMPolicySource does NOT evaluate or execute MPMPolicies. Its primary use is for
auditability and the implementation of deontic and/or alethic logic.

An MPMPolicySource object should be mapped to a role or set of roles (e.g. using the role-object pattern). This enables
role-based or policy-based access control to be used to restrict which MCMManagedEntity objects can author a given
policy.

An MPMPolicySource object should be mapped to a subclass of MCMPolicyRole.

Figure 5-27 shows the MPMPolicySource and MPMPolicyTarget classes.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 120

Figure 5-26: MPMPolicySource and MPMPolicyTarget Attributes and Operations

The purpose of the MPMPolicySource object is to provide a mechanism for business logic to be inserted into the model
to manipulate the objects that serve as the authors or are responsible for this MPMPolicy.

Table 5-111 defines the attributes for this class.

Table 5-111: Attributes of the MPMPolicySource Class

Attribute Name Description

mpmPolicySourceAuthor
: String[1..*]

This is an optional attribute that defines an array of strings. Each string in the array is a 2-
tuple, consisting of a single character defining the type of object that contains the Author,
and the name of an MCMParty or MCMPartyRole object class. The mapping of the first
character is defined as follow:
 'o': MCMOrganization
 'p': MCMPerson
 'r': MCMPartyRole
For example, if this attribute contains the following values:
 {('o':'CustomerSupport'), ('r':'CSRole')}
then the first 2-tuple identifies an MCMOrganization named 'CustomerSupport', and the
second identifies an MCMPartyRole named 'CSRole'.
This attribute shall only use the characters '0', 'p', and 'r' to define the type of object.
This attribute shall not contain a prefix (i.e. a character before the quote) of more than 1
character.
This attribute shall not contain a NULL or empty string.

mpmPolicySourceGovern
edBy : String[1..*]

This is an optional attribute that defines an array of strings. Each string in the array is a 2-
tuple, consisting of a single character defining the type of object that governs this
MPMPolicy, and the name of an MCMParty or MCMPartyRole object class. The mapping
of the first character is defined as follow:
 'o': MCMOrganization
 'p': MCMPerson
 'r': MCMPartyRole
For example, if this attribute contains the following values:
 {('o':'CustomerSupport'), ('r':'CSRole')}
then the first 2-tuple identifies an MCMOrganization named 'CustomerSupport', and the
second identifies an MCMPartyRole named 'CSRole'.
This attribute shall only use the characters '0', 'p', and 'r' to define the type of object.
This attribute shall not contain a prefix (i.e. a character before the quote) of more than 1
character.
This attribute shall not contain a NULL or empty string.

Table 5-112 defines the operations for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 121

Table 5-112: Operations of the MPMPolicySource Class

Operation Name Description

getMPMPolicySourceAuthor() : String[1..*]

This operation returns the current value of the
mpmPolicySourceAuthor attribute.
This attribute shall be a two-tuple.
This attribute shall only use the characters 'o', 'p', and 'r' to define the
type of object.
If the mpmPolicySourceAuthor attribute does not have a value, then
this operation shall return an error.

setMPMPolicySourceAuthor(in newValue :
String[1..*])

This operation sets the value of the mpmPolicySourceAuthor attribute.
This attribute shall be a two-tuple.
This attribute shall only use the characters 'o', 'p', and 'r' to define the
type of object.
The value of the mpmPolicySourceAuthor attribute shall not be a
NULL or empty string.

getMPMPolicySourceGovernedBy() :
String[1..*]

This operation returns the current value of the
mpmPolicySourceGovernedBy attribute.
This attribute shall be a two-tuple.
If this attribute does not have a value, then this operation shall return
an error.
If the mpmPolicySourceAuthor attribute does not have a value, then
this operation shall return an error.

setMPMPolicySourceGovernedBy(in
newValue : String[1..*])

This operation sets the value of the mpmPolicySourceGovernedBy
attribute.
This attribute shall be a two-tuple.
This attribute shall only use the characters 'o', 'p', and 'r' to define the
type of object.
The value of the mpmPolicySourceGovernedBy attribute shall not be
an empty string.

5.3.2.6.7.28 MPMPolicyTarget

This is a mandatory class that defines a set of MCMManagedEntity objects that an MPMPolicy is applied to.

An MCMManagedEntity object shall satisfy two conditions in order to be defined as an MPMPolicyTarget. First, the
set of MCMManagedEntities that are to be affected by the MPMPolicy shall all agree to play the role of an
MPMPolicyTarget. In general, an MCMManagedEntity may or may not be in a state that enables MPMPolicy objects to
be applied to it to change its state; hence, a negotiation process may need to occur to enable the MPMPolicyTarget to
signal when it is willing to have MPMPolicy objects applied to it. Second, an MPMPolicyTarget shall be able to
process (directly or with the aid of a proxy) the action(s) of a set of MPMPolicy objects on each of the
MCMPolicyTarget objects.

If a proposed MPMPolicyTarget object is in a state that enables changes to be made to it, and if it can process those
changes, it shall have its mpmPolicyTargetEnabled Boolean class attribute set to a value of TRUE.

An MPMPolicyTarget object should be mapped to a role or set of roles using the role-object pattern. This enables role-
based or policy-based access control to be used to restrict which MCMManagedEntity objects can be affected by a
given MPMPolicy.

An MPMPolicyTarget object should be mapped to a subclass of MCMPolicyRole.

Figure 5-26 shows the MPMPolicySource and MPMPolicyTarget classes.

Table 5-113 defines the attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 122

Table 5-113: Attributes of the MPMPolicyTarget Class

Attribute Name Description

mpmPolicyTargetAdminStatus :
MPMPolicyAdminStatus[1..1]

This is a mandatory enumerated non-negative integer attribute that defines the
current administrative status of this particular MPMPolicyTarget object. The
allowable values of this enumeration are defined by the MPMPolicyAdminStatus
enumeration.

mpmPolicyTargetRoleStatus :
MPMPolTargetRoleStatus[1..1]

This is a mandatory enumerated non-negative integer attribute that defines the
current readiness of this particular MPMPolicyTarget object to take on the
PolicyTargetRole.

Table 5-114 defines the operations for this class.

Table 5-114: Operations of the MPMPolicyTarget Class

Operation Name Description

getMPMPolicyTargetAdminStatus() :
MPMPolicyAdminStatus[1..1]

This operation returns the current administrative status of this particular
MPMPolicyTarget object, which is defined by the MPMPolicyAdminStatus
enumeration.
If the mpmPolicyTargetAdminStatus attribute does not have a value, then
this operation shall return an error.

setMPMPolicyTargetAdminStatus(in
newStatus :
MPMPolicyAdminStatus[1..1])

This operation sets the value of the current administrative status of this
particular MPMPolicyTarget object.

getMPMPolicyTargetRoleStatus() :
MPMPolicyRoleStatus[1..1]

This operation returns the current readiness of this particular
MPMPolicyTarget object to play the role of a PolicyTarget.
If the mpmPolicyTargetRoleStatus attribute does not have a value, then
this operation shall return an error.

setMPMPolicyTargetRoleStatus(in
newStatus :
MPMPolicyRoleStatus[1..1])

This operation sets the value of the mpmPolicyTargetRoleStatus attribute
of this particular MPMPolicyTarget object.

5.3.2.7 ENI Extensions to the MPM

5.3.2.7.1 Introduction

The MPM provides an extensible framework that is organized into two main class hierarchies (MPMPolicyStructure
and MPMPolicyComponentStructure) with two supporting classes (MPMPolicySubject and MPMPolicyTarget). This
clause defines extensions to the Entity class hierarchy in order to represent key concepts that are needed for an ENI
System to achieve its functional requirements as described in clause 5 of [3].

Figure 5-27 shows an overview of the ENI Extensions to the MPM. Two classes, ENIIntentPolicyStatement and
ENIIntentPolicyClause, are added, along with subclasses of each (not shown in this figure).

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 123

Figure 5-27: Overview of ENI Extensions to the MPM

5.3.2.7.2 Naming Rules

The naming rules of ENI extensions to the MPM model are the same as the naming rules of the ENI Extensions to the
MCM (see clause 5.2.3.2).

5.3.2.7.3 ENI Policy Statement Extensions

5.3.2.7.3.1 Introduction

Figure 5-28 defines the current set of ETSI ISG ENI extensions to the MPMPolicyStatement class. This enables new
types of ENIPolicyStatement classes to be used with the MPMIntentPolicy, MPMPolicyStatement, and
MPMPolicyClause subclasses to define more specific Intent Policies for use by an ENI System.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 124

Figure 5-28: ENI Extensions to the MPMPolicyStatement Class

5.2.3.7.3.2 ENIIntentPolicyStatement Class Definition

This is an optional concrete class that defines different types of ENI Intent Policies.

Table 5-115 defines the attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 125

Table 5-115: Attributes of the ENIIntentPolicyStatement Class

Attribute Name Description

eniIntPolIsExternal: Boolean[1..1] This is a mandatory Boolean attribute, and whether this
ENIIntentPolicyStatement is for external or internal use.

eniIntPolPCLevel: String[0..1] This is an optional String attribute, and defines the Policy Continuum level of
this ENIIntentPolicyStatement.

eniIntPolParseStatus:
ENIIntPolParseStatus[0..1]

This is an optional attribute that defines the parsing status of this
ENIIntentPolicyStatement. Values are defined in the ENIIntPolParseStatus
enumeration.

eniIntPolRewriteStatus:
ENIIntPolRewriteStatus[0..1]

This is an optional attribute that defines the rewriting status of this
ENIIntentPolicyStatement. Rewriting is needed if a change in abstraction is
required. Values are defined in the ENIIntPolRewriteStatus enumeration.

eniIntPolConflictStatus:
ENIIntPolConflictStatus[0..1]

This is an optional attribute that defines the conflict status of this
ENIIntentPolicyStatement. This is done first, for conflict analysis with other
ENIIntentPolicies and second, for other ENIPolicies. Values are defined in the
ENIIntPolConflictStatus enumeration.

eniIntPolAbstractionStatus:
ENIIntPolAbstractionStatus[0..1]

This is an optional attribute that defines the abstraction status of this
ENIIntentPolicyStatement. Changing abstraction (e.g. to a different Policy
Continuum level) in general requires a repeat of the above steps. Values are
defined in the ENIIntPolAbstractionStatus enumeration.

eniIntPolTranslateStatus:
ENIIntPolTranslateStatus[0..1]

This is an optional attribute that defines the translation status of this
ENIIntentPolicyStatement. Values are defined in the ENIIntPolTranslateStatus
enumeration.

Table 5-116 defines the operations for this class.

Table 5-116: Operations of the ENIIntentPolicyStatement Class

Operation Name Description

getENIIntPolIsExternal() : Boolean[1..1]

This operation returns the current value of the eniIntPolIsExternal attribute.
This operation takes no input parameters.
If the mpmIntentTranslationStatus attribute does not have a value, then this
operation shall return an error.

setENIIntPolIsExternal(in newVal :
Boolean[1..1])

This operation sets the value of the eniIntPolIsExternal attribute. This
operation takes a single input parameter, called newVal, which defines the
new value for the eniIntPolIsExternal attribute.

getENIIntPolPCLevel() : String[1..1]

This operation returns the current value of the eniIntPolPCLevel attribute.
This operation takes no input parameters.
If the eniIntPolPCLevel attribute does not have a value, then this operation
may return an error.

setENIIntPolPCLevel(in newVal :
String[1..1])

This operation sets the value of the eniIntPolPCLevel attribute. This
operation takes a single input parameter, called newVal, which defines the
new value for the eniIntPolPCLevel attribute.

getENIIntPolParseStatus() :
ENIIntPolParseStatus[1..1]

This operation returns the current value of the eniIntPolParseStatus
attribute. This operation takes no input parameters.
If the eniIntPolParseStatus attribute does not have a value, then this
operation shall return an error.

setENIIntPolParseStatus(in newStatus
:
ENIIntPolParseStatus[1..1])

This operation sets the value of the eniIntPolParseStatus attribute. This
operation takes a single input parameter, called newStatus, which defines
the new value for the eniIntPolParseStatus attribute.

getENIIntPolRewriteStatus() :
ENIIntPolRewriteStatus[1..1]

This operation returns the current value of the eniIntPolRewriteStatus
attribute. This operation takes no input parameters.
If the eniIntPolRewriteStatus attribute does not have a value, then this
operation shall return an error.

setENIIntPolRewriteStatus(in
newStatus :
ENIIntPolRewriteStatus[1..1])

This operation sets the value of the eniIntPolRewriteStatus attribute. This
operation takes a single input parameter, called newStatus, which defines
the new value for the eniIntPolRewriteStatus attribute.

getENIIntPolConflictStatus() :
ENIIntPolConflictStatus[1..1]

This operation returns the current value of the eniIntPolConflictStatus
attribute. This operation takes no input parameters.
If the eniIntPolConflictStatus attribute does not have a value, then this
operation shall return an error.

setENIIntPolConflictStatus(in
newStatus :
ENIIntPolConflictStatus[1..1])

This operation sets the value of the eniIntPolConflictStatus attribute. This
operation takes a single input parameter, called newStatus, which defines
the new value for the eniIntPolConflictStatus attribute.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 126

Operation Name Description

getENIIntPolAbstractionStatus() :
ENIIntPolAbstractionStatus[1..1]

This operation returns the current value of the eniIntPolAbstractionStatus
attribute. This operation takes no input parameters.
If the eniIntPolAbstractionStatus attribute does not have a value, then this
operation shall return an error.

setENIIntPolAbstractionStatus(in
newStatus :
ENIIntPolAbstractionStatus[1..1])

This operation sets the value of the eniIntPolAbstractionStatus attribute.
This operation takes a single input parameter, called newStatus, which
defines the new value for the eniIntPolAbstractionStatus attribute.

getENIIntPolTranslateStatus() :
ENIIntPolTranslateStatus[1..1]

This operation returns the current value of the eniIntPolTranslate attribute.
This operation takes no input parameters.
If the eniIntPolTranslate attribute does not have a value, then this operation
shall return an error.

setENIIntPolTranslateStatus(in
newStatus :
ENIIntPolTranslateStatus[1..1])

This operation sets the value of the eniIntPolTranslate attribute. This
operation takes a single input parameter, called newStatus, which defines
the new value for the eniIntPolTranslate attribute.

This class does not define any relationships.

5.3.2.7.3.3 ENIIntentDSLPolicy Class Definition

This is an optional concrete class that defines an ENI Intent Policy that is implemented using a DSL.

Table 5-117 defines the attributes for this class.

Table 5-117: Attributes of the ENIIntentDSLPolicyStatement Class

Attribute Name Description

eniIntPolDSLGrammar: String[1..1] This is a mandatory String attribute, and defines the grammar used by this
DSL.

eniIntPolDSLOntology: String[0..1] This is an optional String attribute, and defines the ontology used to add
meaning to the DSL's grammar.

Table 5-118 defines the operations for this class.

Table 5-118: Operations of the ENIDSLIntentPolicyStatement Class

Operation Name Description

getENIIntPolDSLGrammar() :
String[1..1]

This operation returns the current value of the eniIntPolDSLGrammar
attribute. This operation takes no input parameters.
If the eniIntPolDSLGrammar attribute does not have a value, then this
operation shall return an error.

setENIIntPolDSLGrammar(in
newGrammar : String[1..1])

This operation sets the value of the eniIntPolDSLGrammar attribute.
This operation takes a single input parameter, called newGrammar,
which defines the new value of the eniIntPolDSLGrammar attribute.

getENIIntPolOntology() : String[1..1]

This operation returns the current value of the eniIntPolDSLOntology
attribute. This operation takes no input parameters.
If the eniIntPolDSLOntology attribute does not have a value, then this
operation shall return an error.

setENIIntPolOntology(in newOntology
: String[1..1])

This operation sets the value of the eniIntPolDSLOntology attribute.
This operation takes a single input parameter, called newOntology,
which defines the new value for the eniIntPolDSLOntology attribute.

This class does not define any relationships.

5.3.2.7.3.4 ENIIntentNLPolicy Class Definition

This is an optional concrete class that defines an ENI Intent Policy that uses a restricted natural language.

Table 5-119 defines the attributes for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 127

Table 5-119: Attributes of the ENIIntentPolicyStatement Class

Attribute Name Description

eniIntPolNLType :
ENIIntentPolLang[1..1]

This is a mandatory attribute that defines an approved Restricted Natural
Language to use for this ENIIntentNLPolicy.
A list of Restricted Natural Languages is defined in the ENIIntentPolLang
enumeration.

eniIntPolNLGrammar: String[1..1] This is a mandatory String attribute, and defines the grammar used by this
restricted natural language.

eniIntPolDSLOntology: String[0..1] This is an optional String attribute, and defines the ontology used to add
meaning to the grammar of this restricted natural language.

Table 5-120 defines the operations for this class.

Table 5-120: Operations of the ENIIntentPolicyStatement Class

Operation Name Description

getENIIntPolNLType() :
ENIIntentPolLang[1..1]

This operation returns the current value of the eniIntPolNLType attribute.
This operation takes no input parameters.
If the eniIntPolNLType attribute does not have a value, then this operation
shall return an error.

setENIIntPolNLType(in newNL :
ENIIntentPolLang[1..1])

This operation sets the value of the eniIntPolNLType attribute. This
operation takes a single input parameter, called newNL, which defines the
new value of the eniIntPolNLType attribute.

getENIIntPolNLGrammar() : String[1..1]

This operation returns the current value of the eniIntPolNLGrammar
attribute. This operation takes no input parameters.
If the eniIntPolDSLGrammar attribute does not have a value, then this
operation shall return an error.

setENIIntPolNLGrammar(in
newGrammar : String[1..1])

This operation sets the value of the eniIntPolNLGrammar attribute. This
operation takes a single input parameter, called newGrammar, which
defines the new value of the eniIntPolNLGrammar attribute.

getENIIntPolOntology() : String[1..1]

This operation returns the current value of the eniIntPolNLOntology
attribute. This operation takes no input parameters.
If the eniIntPolNLOntology attribute does not have a value, then this
operation shall return an error.

setENIIntPolOntology(in newOntology
: String[1..1])

This operation sets the value of the eniIntPolNLOntology attribute. This
operation takes a single input parameter, called newOntology, which
defines the new value for the eniIntPolNLOntology attribute.

This class does not define any relationships.

5.3.2.7.4 ENI Policy Clause Extensions

5.3.2.7.4.1 Introduction

Figure 5-29 defines the current set of ETSI ISG ENI extensions to the MPMPolicyStatement class. This enables new
types of ENIPolicyClause classes to be used with the MPMIntentPolicy, MPMPolicyStatement, and MPMPolicyClause
subclasses to define more specific types of Intent Policies for use by an ENI System.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 128

Figure 5-29: ENI Extensions to the MPMPolicyClause Class

5.3.2.7.4.2 ENIIntentPolicyClause Class Definition

This is an optional concrete class that defines different types of ENI Intent Policies.

Table 5-121 defines the attributes for this class.

Table 5-121: Attributes of the ENIIntentPolicyClause Class

Attribute Name Description

eniIntClauseParseStatus:
ENIIntPolParseStatus[0..1]

This is an optional attribute that defines the parsing status of this
ENIIntentPolicyClause. Values are defined in the ENIIntPolParseStatus
enumeration.

eniIntClauseRewriteStatus:
ENIIntPolRewriteStatus[0..1]

This is an optional attribute that defines the rewriting status of this
ENIIntentPolicyClause. Rewriting is needed if a change in abstraction is
required. Values are defined in the ENIIntPolRewriteStatus enumeration.

eniIntClauseConflictStatus:
ENIIntPolConflictStatus[0..1]

This is an optional attribute that defines the conflict status of this
ENIIntentPolicyClause. This is done first, for conflict analysis with other
ENIIntentPolicies and second, for other ENIPolicies. Values are defined in the
ENIIntPolConflictStatus enumeration.

eniIntClauseAbstractionStatus:
ENIIntPolAbstractionStatus[0..1]

This is an optional attribute that defines the abstraction status of this
ENIIntentPolicyClause. Changing abstraction (e.g. to a different Policy
Continuum level) in general requires a repeat of the above steps. Values are
defined in the ENIIntPolAbstractionStatus enumeration.

eniIntClauseTranslateStatus:
ENIIntPolTranslateStatus[0..1]

This is an optional attribute that defines the translation status of this
ENIIntentPolicyClause. Values are defined in the ENIIntPolTranslateStatus
enumeration.

Table 5-122 defines the operations for this class.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 129

Table 5-122: Attributes of the ENIIntentPolicyClause Class

Operation Name Description

getENIIntClauseParseStatus() :
ENIIntPolParseStatus[1..1]

This operation returns the current value of the eniIntClauseParseStatus
attribute. This operation takes no input parameters.
If the eniIntClauseParseStatus attribute does not have a value, then this
operation shall return an error.

setENIIntClauseParseStatus(in
newStatus :
ENIIntPolParseStatus[1..1])

This operation sets the value of the eniIntClauseParseStatus attribute. This
operation takes a single input parameter, called newStatus, which defines
the new value for the eniIntClauseParseStatus attribute.

getENIIntClauseRewriteStatus() :
ENIIntPolRewriteStatus[1..1]

This operation returns the current value of the eniInt
eniIntClauseParseStatus RewriteStatus attribute. This operation takes no
input parameters.
If the eniIntClauseParseStatus attribute does not have a value, then this
operation shall return an error.

setENIIntClauseRewriteStatus(in
newStatus :
ENIIntPolRewriteStatus[1..1])

This operation sets the value of the eniIntClauseRewriteStatus attribute.
This operation takes a single input parameter, called newStatus, which
defines the new value for the eniIntClauseRewriteStatus attribute.

getENIIntClauseConflictStatus() :
ENIIntPolConflictStatus[1..1]

This operation returns the current value of the eniIntClauseConflictStatus
attribute. This operation takes no input parameters.
If the eniIntClauseConflictStatus attribute does not have a value, then this
operation shall return an error.

setENIIntClauseConflictStatus(in
newStatus :
ENIIntPolConflictStatus[1..1])

This operation sets the value of the eniIntClauseConflictStatus attribute.
This operation takes a single input parameter, called newStatus, which
defines the new value for the eniIntClauseConflictStatus attribute.

getENIIntClauseAbstractionStatus() :
ENIIntPolAbstractionStatus[1..1]

This operation returns the current value of the
eniIntClauseAbstractionStatus attribute. This operation takes no input
parameters.
If the eniIntClauseAbstractionStatus attribute does not have a value, then
this operation shall return an error.

setENIIntClauseAbstractionStatus(in
newStatus :
ENIIntPolAbstractionStatus[1..1])

This operation sets the value of the eniIntClauseAbstractionStatus attribute.
This operation takes a single input parameter, called newStatus, which
defines the new value for the eniIntClauseAbstractionStatus attribute.

getENIIntClauseTranslateStatus() :
ENIIntPolTranslateStatus[1..1]

This operation returns the current value of the eniIntClauseTranslate
attribute. This operation takes no input parameters.
If the eniIntClauseTranslate attribute does not have a value, then this
operation shall return an error.

setENIIntClauseTranslateStatus(in
newStatus :
ENIIntPolTranslateStatus[1..1])

This operation sets the value of the eniIntClauseTranslate attribute. This
operation takes a single input parameter, called newStatus, which defines
the new value for the eniIntClauseTranslate attribute.

This class does not define any relationships.

5.3.2.7.4.3 ENIIntPolClauseGoal

This is an optional concrete class. It is used to define goals of an ENIIntentPolicy.

This is for further study in Release 4 of the present document.

5.3.2.7.4.4 ENIIntPolClauseSubject

This is an optional concrete class. It is used to define the subject of an ENIIntentPolicy.

In one abstraction of an ENIIntentPolicy, a subject (e.g. ENIIntPolClauseSubject) is used to perform a set of actions
(e.g. ENIIntPolClauseAction) on a target (e.g. ENIIntPolClauseTarget).

This is for further study in Release 4 of the present document.

5.3.2.7.4.5 ENIIntPolClauseTarget

This is an optional concrete class. It is used to define the target of an ENIIntentPolicy.

In one abstraction of an ENIIntentPolicy, a target (e.g. ENIIntPolClauseTarget) is the object that a subject
(e.g. ENIIntPolClauseSubject) performs a set of actions (e.g. ENIIntPolClauseAction) on.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 130

This is for further study in Release 4 of the present document.

5.3.2.7.4.6 ENIIntPolClauseCondition

This is an optional concrete class. It is used to define goals of an ENIIntentPolicy.

In one abstraction of an ENIIntentPolicy, a condition (e.g. ENIIntPolClauseCondition) is an MPMPolicyClause that
determines whether or not the set of actions (e.g. ENIIntPolClauseAction) in this ENIIntentPolicyClause should be
executed or not.

This is for further study in Release 4 of the present document.

5.3.2.7.4.7 ENIIntPolClauseAction

This is an optional concrete class. It is used to define the actions of an ENIIntentPolicy.

In one abstraction of an ENIIntentPolicy, an action (e.g. ENIIntPolClauseAction) is an MPMPolicyClause that performs
an operation that changes the state of an MCMMangedEntity.

This is for further study in Release 4 of the present document.

5.3.2.7.4.8 ENIIntPolClauseScope

This is an optional concrete class. It is used to define the scope of an ENIIntentPolicy.

In one abstraction of an ENIIntentPolicy, the scope determines the time, context, and applicable MCMManagedEntities
and MCMRoles that are affected by this ENIIntentPolicy [i.3] and [i.4].

This is for further study in Release 4 of the present document.

5.3.2.8 ENI Extended Policy Model

The ENI Extended Policy Model shall be based on the ENI Extended Core Model (see clause 5.2.4 of the present
document). In addition, the ENI Extended Policy Model shall be based on the ENI Extended Core Model (see
clause 5.2.4 of the present document). The ENI Extended Policy Model shall be based on the MPM classes, attributes,
operations, and relationships defined in the present document. Finally, the present document defines two class
hierarchies (i.e. ENIIntentPolicyStatement and ENIIntentPolicyClause and their respective subclasses) that extend the
MPM. These two class hierarchies should be used to define the ENI Extended Policy Model.

Additional classes defined by ETSI ISG ENI are for further study in Release 4 of the present document.

6 ENI Data Models

6.1 Introduction
The ENI Extended Core and Policy Information Models have been used to create a first release of the ENI APIs (see
clause 7 of [3]. This has created a technology-neutral data model for those specific functions. The rest of this clause is
for further study in Release 4 of the present document.

6.2 ENI Technology-Neutral Data Model
Detailed technology-neutral data model requirements are for further study in Release 4 of the present document.

6.3 ENI Technology-Specific Data Models
Detailed technology-specific data model requirements are for further study in Release 4 of the present document.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 131

7 Requirements

7.1 Information Model Requirements
The following clauses define requirements for the ENI information model.

[IM01] The ENI Information Model shall use single inheritance.

[IM02] The ENI Information Model shall not use multiple inheritance.

[IM03] The ENI Information Model shall not use overriding.

[IM04] The ENI Information Model should use the Single Responsibility Principle to design class
hierarchies [i.5].

[IM05] The ENI Information Model should use the Liskov Substitution Principle to design class
hierarchies [i.5].

[IM06] The ENI Information Model should use Design by Contract to manage behaviour [i.5].

[IM07] The ENI Information Model should use the Dependency Inversion Principle [i.5] to ensure that the
model is modular and extensible.

[IM08] The ENI Information Model should strive to realize loose coupling [i.5] whenever possible to
ensure that the model is modular and extensible.

[IM09] The ENI Information Model should strive to realize high cohesion [i.5] whenever possible to
ensure that the model is modular and extensible.

[IM10] The ENI Information Model should use the Role-Object Pattern [i.8] to abstract individual entities
into roles as applicable.

7.2 Data Model Requirements
Detailed data model requirements are for further study in Release 4 of the present document.

7.3 Ontology Requirements
Detailed ontology requirements are for further study in Release 4 of the present document.

8 Future Work

8.1 Open Issues for the Present Document
There are no current open issues for the present document.

8.2 Issues for Future Study
The following are issues for further study in Release 4 of the present document.

From clause 4.7

This is for further study in Release 4 of the present document.

From clause 4.8

This is for further study in Release 4 of the present document.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 132

From clause 4.9

This is for further study in Release 4 of the present document.

From clause 4.10

This is for further study in Release 4 of the present document.

From clause 4.11

A preliminary example of how models were used to build ENI APIs is described in clause 8 of [3]. This will be replaced
by a formal and more complete definition of how this was done in Release 4 of the present document.

From clause 5.2.2.4.3.1

NOTE 1: The use of subclasses of MCMUnManagedEntity in the ENI Extended Core Model are for further study.

From clause 5.2.2.4.5.6.3

NOTE 2: Should this version of the ENI Extended Core Model use the three subclasses of MCMFeature?

From clause 5.2.2.4.7

NOTE 3: Should this version of the ENI Extended Core Model use Product classes?

From clause 5.2.2.4.7.5

NOTE 4: These [Product relationships] will be defined if it is decided to use MCMProduct and its subclasses.

From clause 5.2.2.4.8.5

NOTE 5: These will be defined if it is decided to use MCMService subclasses.

From clause 5.2.2.4.9.5

NOTE 6: This [MCMResource Relationship] will be defined if it is decided to use MCMOffer subclasses.

From clause 5.2.2.4.9.6.3

NOTE 7: The use of other MCMVirtualResource subclasses besides those defined in the present document is for
further study.

From clause 5.2.2.4.9.6.6

NOTE 8: The use of other MCMLogicalResource subclasses besides those defined in the present document is for
further study.

From clause 5.2.2.4.11

NOTE 9: Should this version of the ENI Extended Core Model use MCMParty Objects?

From clause 5.2.2.4.12

NOTE 10: Should this version of the ENI Extended Core Model use MCMBusiness Objects?

From clause 5.2.3

NOTE 11: Additional clauses for describing more required features will be added in the next version of the present
document.

From clause 5.2.3.3.6.1

NOTE 12: This figure [ENIEvent class hierarchy] may be augmented with additional subclasses in the future.

From clause 5.2.3.4.6.1

NOTE 13: This figure [ENIBehavior class hierarchy] may be augmented with additional subclasses in the future.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 133

From clause 5.2.3.5.10.2

This class [ENIDigitalIdentity], and its subclasses, are for further study in Release 4 of the present document.

From clause 5.2.3.5.10.3

This class [ENIContextualIdentity], and its subclasses, are for further study in Release 4 of the present document.

From clause 5.2.4

Additional classes defined by ETSI ISG ENI are for further study in Release 4 of the present document.

From clause 5.3.2.7.4.3

This [ENIIntPolGoal] is further study in Release 4 of the present document.

From clause 5.3.2.7.4.4

This [ENIIntPolClauseSubject] is for further study in Release 4 of the present document.

From clause 5.3.2.7.4.5

This [ENIIntPolClauseTarget] classes defined by ETSI ISG ENI are for further study in Release 4 of the present
document.

From clause 5.3.2.7.4.6

This [ENIIntPolClauseCondition] is for further study in Release 4 of the present document.

From clause 5.3.2.7.4.7

This [ENIIntPolClauseAction] for further study in Release 4 of the present document.

From clause 5.3.2.7.4.8

This [ENIIntPolScope] is for further study in Release 4 of the present document.

From clause 5.3.2.8

Additional classes defined by ETSI ISG ENI are for further study in Release 4 of the present document.

From clause 6.1

The rest of this clause is for further study in Release 4 of the present document.

From clause 7.2

The rest of this clause is for further study in Release 4 of the present document.

From clause 7.3

The rest of this clause is for further study in Release 4 of the present document.

ETSI

ETSI GS ENI 019 V3.1.1 (2023-06) 134

History

Document history

V3.1.1 June 2023 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Representing, Inferring, and Proving Knowledge in ENI
	4.1 Introduction
	4.2 Definitions
	4.2.1 Information Model
	4.2.2 Data Model
	4.2.3 Ontology

	4.3 Information Model Usage in ENI
	4.3.1 Purpose
	4.3.2 Use of an Information Model as a Blueprint for Entity Definitions
	4.3.3 Use of an Information Model to Define a Lexicon and Grammar

	4.4 Data Model Usage in ENI
	4.4.1 Purpose
	4.4.2 Use of a Data Model as a Blueprint for System Data
	4.4.3 Derivation of Data Models from an Information Model

	4.5 Ontology Usage in ENI
	4.5.1 Introduction
	4.5.2 Use of Ontologies to Enable Formal Reasoning and Learning

	4.6 Model Augmentation
	4.6.1 Introduction
	4.6.2 Augmentation of an Information Model using Ontologies
	4.6.3 Augmentation of Data Models Using Ontologies

	4.7 Synchronizing and Reconciling Modelled Data
	4.8 Securing Modelled Data
	4.9 Decision-Making
	4.9.1 Introduction
	4.9.2 Control Loops
	4.9.3 Traditional Learning and Reasoning
	4.9.4 Semantic Learning and Reasoning
	4.9.5 Cognitive Learning and Reasoning

	4.10 Model-Driven DSLs
	4.10.1 Introduction
	4.10.2 Constructing Model-Driven DSLs

	4.11 Model-Driven APIs

	5 ENI Information Model
	5.1 Introduction
	5.2 The Design of the ENI Extended Core Model
	5.2.1 Introduction
	5.2.2 The MCM (MEF Core Model)
	5.2.2.1 Introduction
	5.2.2.2 Naming Rules
	5.2.2.3 MCM Superstructure
	5.2.2.3.1 Overview
	5.2.2.3.2 MCMRootEntity

	5.2.2.4 MCMEntity Hierarchy
	5.2.2.4.1 Overview
	5.2.2.4.2 MCMEntity
	5.2.2.4.3 MCMUnManagedEntity Hierarchy
	5.2.2.4.4 MCMManagedEntity Hierarchy
	5.2.2.4.5 MCMDefinition Hierarchy
	5.2.2.4.6 MCMPolicyObject
	5.2.2.4.7 MCMProduct Hierarchy
	5.2.2.4.8 MCMService Hierarchy
	5.2.2.4.9 MCMResource Hierarchy
	5.2.2.4.10 MCMServiceEndpoint
	5.2.2.4.11 MCMParty
	5.2.2.4.12 MCMDomain Hierarchy
	5.2.2.4.13 MCMBusinessObject Hierarchy

	5.2.2.5 MCMInformationResource Hierarchy
	5.2.2.5.1 Overview
	5.2.2.5.2 MCMInformationResource Class Definition
	5.2.2.5.3 Attribute Definition
	5.2.2.5.4 Operation Definition
	5.2.2.5.5 Relationship Definition
	5.2.2.5.6 MCMInformationResource Subclasses

	5.2.2.6 MCMMetaData Hierarchy
	5.2.2.6.1 Overview
	5.2.2.6.2 MCMMetaData Class Definition
	5.2.2.6.3 Attribute Definition
	5.2.2.6.4 Operation Definition
	5.2.2.6.5 Relationship Definition
	5.2.2.6.6 MCMMetaData Subclasses

	5.2.3 ENI Extensions to the MCM
	5.2.3.1 Introduction
	5.2.3.2 Naming Rules
	5.2.3.3 Events
	5.2.3.3.1 Introduction
	5.2.3.3.2 ENIEvent Class Definition
	5.2.3.3.3 Attribute Definition
	5.2.3.3.4 Operation Definition
	5.2.3.3.5 Relationship Definition
	5.2.3.3.6 ENIEvent Subclasses

	5.2.3.4 Behaviour
	5.2.3.4.1 Introduction
	5.2.3.4.2 ENIBehavior Class Definition
	5.2.3.4.3 Attribute Definition
	5.2.3.4.4 Operation Definition
	5.2.3.4.5 Relationship Definition
	5.2.3.4.6 ENIBehavior Subclasses

	5.2.3.5 Identity
	5.2.3.5.1 Introduction
	5.2.3.5.2 ENIIdentity Class Definition
	5.2.3.5.3 Attribute Definition
	5.2.3.5.4 Operation Definition
	5.2.3.5.5 Relationship Definition
	5.2.3.5.6 ENIIdentityProvider Class Definition
	5.2.3.5.7 Attribute Definition
	5.2.3.5.8 Operation Definition
	5.2.3.5.9 Relationship Definition
	5.2.3.5.10 ENIIdentity Subclasses

	5.2.4 ENI Extended Core Model

	5.3 Models that Inherit from the ENI Extended Core Model
	5.3.1 Introduction
	5.3.2 Policy Model
	5.3.2.1 Introduction
	5.3.2.2 Purpose
	5.3.2.3 Extensions to the PDO Model
	5.3.2.4 MEF Types of Policies
	5.3.2.4.1 Introduction
	5.3.2.4.2 Imperative Policies
	5.3.2.4.3 Declarative Policies
	5.3.2.4.4 Intent Policies

	5.3.2.5 MEF Policy Model Naming Rules
	5.3.2.6 MEF Policy Hierarchy
	5.3.2.6.1 Overview
	5.3.2.6.2 MPMPolicyStructure Overview
	5.3.2.6.3 MPMPolicyStructure Class Definition
	5.3.2.6.4 MPMPolicyStructure Subclasses
	5.3.2.6.5 MPMPolicyComponentStructure Class Hierarchy
	5.3.2.6.6 MPMPolicyComponentStructure Class Definition
	5.3.2.6.7 MPMPolicyComponentStructure Subclasses

	5.3.2.7 ENI Extensions to the MPM
	5.3.2.7.1 Introduction
	5.3.2.7.2 Naming Rules
	5.3.2.7.3 ENI Policy Statement Extensions
	5.3.2.7.4 ENI Policy Clause Extensions

	5.3.2.8 ENI Extended Policy Model

	6 ENI Data Models
	6.1 Introduction
	6.2 ENI Technology-Neutral Data Model
	6.3 ENI Technology-Specific Data Models

	7 Requirements
	7.1 Information Model Requirements
	7.2 Data Model Requirements
	7.3 Ontology Requirements

	8 Future Work
	8.1 Open Issues for the Present Document
	8.2 Issues for Future Study

	History

